Institut
Teknologi
Sepuluh Nopember

FINAL PROJECT - ES234849

DEEP LEARNING-DRIVEN DIABETIC RETINOPATHY
CLASSIFICATION: FROM OPTIMIZED CNN TO FLASK-
BASED DEPLOYMENT

Reyhan Emeraldo
NRP 5026201095

Advisor

Retno Aulia Vinarti, S.Kom., M.Kom., Ph.D.
NIP 1988201812010

Bachelor of Information System

Departemen of Information System

Faculty of Intelligent Electrical and Informatics Technology
Institut Teknologi Sepuluh Nopember

Surabaya

2025

TUGAS AKHIR - ES234849

KLASIFIKASI RETINOPATI DIABETIK BERBASIS DEEP
LEARNING: DARI CNN YANG DIOPTIMALKAN HINGGA
DEPLOYMENT BERBASIS FLASK

Reyhan Emeraldo
NRP 5026201095

Dosen Pembimbing
Retno Aulia Vinarti, S.Kom., M.Kom., Ph.D.
NIP 1988201812010

Program Studi Sarjana Sistem Informasi
Departemen Sistem Informasi

Fakultas Teknologi Elektro dan Informatika Cerdas
Institut Teknologi Sepuluh Nopember

Surabaya

2025

FINAL PROJECT - ES234849

DEEP LEARNING-DRIVEN DIABETIC RETINOPATHY
CLASSIFICATION: FROM OPTIMIZED CNN TO FLASK-
BASED DEPLOYMENT

Reyhan Emeraldo
NRP 5026201095

Advisor
Retno Aulia Vinarti, S.Kom., M.Kom., Ph.D.
NIP 1988201812010

Bachelor of Information System Program
Department of Information System

Faculty of Intelligent Electrical and Informatics Technology
Institut Teknologi Sepuluh Nopember

Surabaya

2025

APPROVAL SHEET

DEEP LEARNING-DRIVEN DIABETIC RETINOPATHY
CLASSIFICATION: FROM OPTIMIZED CNN TO FLASK-BASED
DEPLOYMENT

FINAL PROJECT

Submitted to fulfill one of the requirements for
obtaining a degree S.Kom at
Undergraduate Study Program of Information Systems Department
of Information Systems
Faculty of Intelligent Electrical and Informatics Technology Institut

Teknologi Sepuluh Nopember

Revhan Emeraldo

NRP: 5026201095

Approved:

wik Anggraeni, S.Si, M.Kom
NIP. 197601232001122002

APPROVAL SHEET

DEEP LEARNING-DRIVEN DIABETIC RETINOPATHY CLASSIFICATION:
FROM OPTIMIZED CNN TO FLASK-BASED DEPLOYMENT

FINAL PROJECT

Submitted to fulfill one of the requirements
for obtaining a degree S.Kom at
Undergraduate Study Program of Information Systems
Department of Information Systems
Faculty of Intelligent Electrical and Informatics Technology
Institut Teknologi Sepuluh Nopember

Reyhan Emeraldo
NRP: 5026201095

Approved by Final Project Examiner Team:

i

Retno Aulia Vinarti, S.Kom., M.Kom., Ph.D (Pembimbing 1)
Renny Pradina, S.T, M.T (Penguji 1)
N
/
Prof. Dr. Wiwik Anggraeni, S.Si, M.Kom (Penguji 2)
SURABAYA

January, 2026

STATEMENT OF ORIGINALITY

The undersigned bellow:
Name of Student / NRP : Reyhan Emeraldo / 5026201095
Department : S1 Sistem Informasi
Academic Advisor /NIP : Retno Aulia Vinarti, S.Kom., M.Kom., Ph.D.. /

1988201812010

Hereby declare that the Final Project with the title “DEEP LEARNING-DRIVEN
DIABETIC RETINOPATHY CLASSIFICATION: FROM OPTIMIZED CNN TO
FLASK-BASED DEPLOYMENT?” is the result of my own work, is original, and is
written by following the rules of scientific writing.

If in the future there is a discrepancy with this statement, then I am willing to
accept sanctions in accordance with the provisions that apply at Institut Teknologi
Sepuluh Nopember.

Surabaya, 20 Januari 2026

Acknowledged,

Academic Advisor Student

11}1??)0 Aulia Vinarti, S.Kom., M.Kom., REYHAN EMERALDO

NIP. 1988201812010 NRP.5026201095

vi

ABSTRAK

PENDEKATAN BERBASIS DATA UNTUK MENDETEKSI BURNOUT
DALAM KERJA JARAK JAUH MENGGUNAKAN MODEL PEMBELAJARAN

MESIN

Nama Mahasiswa/ NRP : Reyhan Emeraldo / 5026201095

Departemen : Sistem Informasi FTEIC - ITS

Dosen Pembimbing : Retno Aulia Vinarti, S.Kom., M.Kom., Ph.D.
Abstrak

Retinopati Diabetik (DR) merupakan salah satu penyebab utama kebutaan
akibat diabetes baik di negara maju maupun negara berkembang. Identifikasi dini
sangatlah penting, namun metode skrining tradisional sering sulit diterapkan karena
memerlukan waktu yang lama dan membutuhkan keahlian khusus. Tujuan dari proyek
ini adalah merancang dan mengembangkan sistem otomatis yang dapat mendeteksi
retinopati diabetik (DR) menggunakan Convolutional Neural Network (CNN) tingkat
lanjut dan aplikasi web berbasis Flask yang mampu melakukan analisis gambar secara
real-time.

Model dilatih menggunakan dataset EyePACS, yang memungkinkan proses
klasifikasi antara retinopati diabetik (DR) dan non-retinopati diabetik (No DR).
Beberapa teknik preprocessing diterapkan untuk mengatasi ketidakseimbangan kelas
serta meningkatkan performa model. Teknik-teknik tersebut mencakup normalisasi
gambar, mengubah ukuran menjadi 150 x 150 piksel, zooming, flipping, dan rotating.
Model CNN berhasil mencapai akurasi pengujian sebesar 93% setelah 20 epochs
pelatihan. Model juga menunjukkan nilai precision, recall, dan FI-score yang baik.
Selain itu, model dirancang agar ringan dan cepat.

Flask mempermudah pengguna dalam mengakses model yang telah dilatih.
Pengguna dapat mengunggah foto fundus retina melalui antarmuka grafis sederhana
dan langsung memperoleh prediksi secara instan. Teknologi ini mampu mendeteksi
permasalahan dengan cepat dan akurat. Karya ini memberikan solusi yang sederhana
dan dapat diskalakan untuk mendeteksi DR secara dini. Selain itu, proyek ini membuka
peluang untuk pengembangan di masa depan, seperti klasifikasi multi-kelas, integrasi
explainable Al, serta validasi klinis.

Kata kunci: Retinopati Diabetik (DR), Convolutional Neural Network (CNN),
Sistem Deteksi Otomatis, Analisis Gambar Real-Time, Deteksi Dini Penyakit,
Aplikasi Web Flask.

Vil

ABSTRACT

DEEP LEARNING-DRIVEN DIABETIC RETINOPATHY CLASSIFICATION:
FROM OPTIMIZED CNN TO FLASK-BASED DEPLOYMENT

Student Name / NRP : Reyhan Emeraldo / 5026201095

Department : Information System FTEIC - ITS

Advisor : Retno Aulia Vinarti, S.Kom., M.Kom., Ph.D.
Abstract

Diabetic Retinopathy (DR) is a leading cause of diabetes-induced blindness both
in developed and developing countries. Identifying problems early is crucial, but
traditional screening methods can be difficult to apply because they are time-
consuming and require expertise. The objective of this project is to design and develop
an automated system that can detect diabetic retinopathy (DR) within the use of an
advanced CNN and a Flask-based web app, which performs real-time image analysis.

The model was trained on the EyePACS dataset, which facilitate the
differentiation between diabetic retinopathy (DR) and non-diabetic retinopathy (No
DR). Some preprocessing techniques were applied to mitigate the class imbalance and
enhance the model's performance. These techniques included normalising images,
resizing to 150 x 150 pixels, zooming, flipping, and rotating. The CNN model achieved
a test accuracy of 93% after 20 training epochs. It also had confident precision, good
recall, and the F1-score. It was going to be light and fast.

Flask made it simple for people to use the trained model. Customers can use a
simple graphical interface to upload retinal fundus photos and get predictions right
away. The technology was able to quickly and correctly find problems. This work
gives us a simple and scalable way to find DR early on. It also sets the stage for future
progress, such as multi-class classification, explainable Al integration, and clinical
validation.

Keywords: Diabetic Retinopathy, Convolutional Neural Network, Automated
Diagnosis System, Real-Time Image Analysis, Early Disease Detection, Flask Web
Application.

viii

ACKNOWLEDGMENT

All praise and gratitude are due to Almighty God, Allah SWT, for His abundant grace,
mercy, and blessings, which have enabled the author to successfully complete this
Final Year Project. Through His guidance and strength, the author was able to
overcome various challenges encountered throughout the research and writing process.
This Final Year Project is submitted as one of the academic requirements to obtain a
Bachelor’s Degree in Information Systems under the Double Degree Program between
Institut Teknologi Sepuluh Nopember (ITS) and Universiti Teknologi PETRONAS
(UTP).

Throughout the completion of this Final Year Project, the author has received
invaluable support, guidance, and assistance from many individuals and institutions.
Therefore, the author would like to express sincere appreciation and deepest gratitude
to the following parties:

1. The Information Systems Department of Institut Teknologi Sepuluh Nopember
(ITS) for providing academic support, facilities, and a conducive learning
environment that greatly contributed to the author’s academic development and
research experience.

2. Assistant Retno Aulia Vinarti, S.Kom., M.Kom., Ph.D., as the ITS supervisor,
for her continuous guidance, patience, constructive feedback, and valuable
insights throughout the preparation and completion of this Final Year Project.

3. Dr. Shashi Bhushan, from Universiti Teknologi PETRONAS (UTP), as the
UTP supervisor, for his invaluable supervision, encouragement, and thoughtful
guidance from the early stages of the research until the completion of this
project. His expertise and suggestions played a crucial role in shaping the
direction and quality of this work.

4. All lecturers and academic staff of the Department of Information Systems at
ITS, who have shared their knowledge, guidance, and support throughout the
author’s study period, which laid the foundation for the successful completion
of this Final Year Project.

5. The author’s beloved family, whose unconditional love, prayers, patience, and
moral support have been a constant source of strength and motivation
throughout the author’s academic journey.

6. Friends and colleagues, especially those from the ITS-UTP Double Degree
Program, who provided encouragement, constructive feedback, and
companionship during both academic and non-academic moments. Their
support and motivation were invaluable during the completion of this Final
Year Project.

7. All other parties who cannot be mentioned individually, for their direct or
indirect contributions, assistance, and support that helped make the completion
of this Final Year Project possible.

Malaysia, 20 August 2025

Author

X

TABLE OF CONTENT

APPROVAL SHEET

APPROVAL SHEET

STATEMENT OF ORIGINALITY

ABSTRAK

ABSTRACT

ACKNOWLEDGMENT

TABLE OF CONTENT

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

CHAPTER 1 INTRODUCTION
1.1 Background of Study
1.2 Problem Statement
1.3 Objective
1.4 Scope of Study

CHAPTER 2 LITERATURE REVIEW
2.1 Deep Learning in Diabetic Retinopathy Detection
2.2 CNN Architectures and Feature Learning
2.3 Image Preprocessing and Augmentation
2.4 Explainability and Clinical Trust
2.5 Efficient and Lightweight Models

2.6 Model Evaluation
2.6.1 Accuracy
2.6.2 Confusion Matrix
2.6.3 Precision, Recall, and F1-Score
2.6.4 Training and Validation Loss/Accuracy Curves

CHAPTER 3 METHODOLOGY
3.1 Overview
3.2 Dataset Description

3.3 Data Preprocessing
331 Image Cropping and Resizing
3.3.2 Color Chanel Normalization
333 Data Augmentation
3.3.4 Dataset Splitting

iv

vi
vii
viii

ix

Xii
Xiii

Xiv

Noooo o uu n A A AN W N N R Rk

= =
= O O

[
B W W WwWwW

3.4
3.5
3.6

Model Architecture
Model Training Configuration

Evaluation Metrix

3.6.1 Accuracy

3.6.2 Confusion Matrix

3.6.3 Precision, Recall, and F1-Score
3.6.4 Training and Validation Curves

3.7

System Implementation

3.71 System Architecture
3.7.2 Image Processing Pipeline
373 Deployment Context

CHAPTER 4 RESULT & DISCUSSION

4.1 Overview
4.2 Training Performance
4.3 Test Set Distribution
4.4 Confusion Matrix Analysis
4.5 Classification Metrics
4.6 Comparison with Previous Studies
4.7 GUI Integration and Usability
4.8 Discussion
CHAPTER 5 CONCLUSION & RECOMMENDATION
5.1 Conclusion
5.2 Recommendation
5.3 Limitations
REFERENCES
BIODATA PENULIS

xi

14
16

16
16
16
17
17

17
18
19
19

20
20
20
20
21
22
22
23
24
25
25
25
26

LIST OF FIGURES

FIGURE 3-1CNN ARCHITECTURE AND IMAGE PREPROCESSING ...ceeiiiieiiieieieieieieeeieeeeeeeseeeesesesesesssessssssssssssssssssennns 10
FIGURE 3-2 RESEARCH FLOW CHART .. it ieieieiiie ettt ettt e e e e e e e e et et e e et e e et et et e e e e e e s e e e e e e e s e s e e e e e aaaaeseseseaeserens 11
FIGURE 3-3 EXAMPLE OF RETINAL FUNDUS IMAGE OF DIABETIC RETINOPATHY ..cciiiiiiiiiiieieieeeeeeeeeeseseesesssesesssesenenens 12
FIGURE 3-4 EXAMPLE OF NORMAL RETINAL FUNDUS IMAGEcceeeveeenn. .12
FIGURE 3-5 PHYTON CODE FOR IMAGE PREPROCESSING AND RESIZING.. .13
FIGURE 3-6 CODE SNIPPET FOR SPLITTING DATASET................. .14
FIGURE 3-7 CODE SNIPPET DEFINING THE CNN ARCHITECTURE . .15
FIGURE 3-8 CODE SNIPPET FOR IMIODEL TRAINING ...ceitiiiiiieiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseassssessssesaassesssannsarens 16
FIGURE 3-9 CODE SNIPPET FOR MODEL COMPILATION, TRAINING AND CALLBACK CONFIGURATION ...cvvvueeeererrennnnnnns 18
FIGURE 4-1 TRAINING AND VALIDATION ACCURACY AND LOSS CURVES ACROSS EPOCHS.......ccvvvvirererererrnrenererenenenens 20
FIGURE 4-2 CONFUSION MATRIX OF CNN IMODEL ON THE TEST DATASET .eieiiiiiiieiiieieeeeeeeeeeeeeeeeseseesesssssesssesssenens 22
FIGURE 4-3 SCREENSHOT OF FLASK-BASED WEB INTERFACEcciiiiiiiiieiiiiieieieeeeeceeeeeeeeeeeesesesessssssssssssssssssenssenens 24

Xii

LIST OF TABLES

TABLE 2-1COMPARATIVE SUMMARY OF RECENT DEEP LEARNING APPROACH «.ceeeeiiiiiiiiiiiicceeeceeeeececeeeeeeeeeeeeeeeeeeeeaas 9
TABLE 3-1 SUMMARY OF THE CNIN ARCHITECTURE USED 1.uuiieiiiiiiiiiiiiiiieeieeeieieieseieeeeeeeeeeaenaaeseaenaaaaesasaaaaaaaaaanans 15
TABLE 3-2 SUMMARY OF WEB-BASED DIABETIC RETINOPATHY DETECTION SYSTEM COMPONENTS.....cccveverieeeieeeeanns 19
TABLE 4-1 DISTRIBUTION OF TEST DATASET SAMPLES BY CLASS «eeiiieieiiiiiiiiiiiieieieieieieeeieeeeeeseeenenenenaaeaaaeaeaeaeaaaaas 21
TABLE 4-2 CONFUSION MATRIX OF CNN IMODEL PREDICTIONS 1.ucieieieieieiieieieieieieieieieieeeeeeaeseseseseaasaaeaeaeaaaesaaaanans 21
TABLE 4-3 CLASSIFICATION REPORT OF CNIN IMIODEL ..uuuiieieieiiieieicieseeeeeeseeeeee e eeeeee i e ee e e e e e e e n e e e e e aeneaaaaaaaaaaaaaaaaaaas 22
TABLE 4-4 PERFORMANCE COMPARISON OF THE PROPOSED IMIODEL WITH EXISTING STUDIES ..cceeevieiiiiiieieeeeeeeeeeeeens 23

xiii

Al

CNN

DR

FN

FP

Flask

Grad-CAM

GUI

HTML

ReLU

RGB

TN

TP

XAl

LIST OF ABBREVIATIONS

Artificial Intelligence

Convolutional Neural Network
Diabetic Retinopathy

False Negative

False Positive

A Python Micro Web Framework
Gradient-weighted Class Activation Mapping
Graphical User Interface

Hyper Text Markup Language
Rectified Linear Unit

Red Green Blue (color channel format)
True Negative

True Positive

Explainable Artificial Intelligence

X1V

CHAPTER 1 INTRODUCTION

1.1 Background of Study
Diabetic retinopathy (DR) is a frequent problem for people with diabetes that

damages the blood vessels in the retina. It's one of the main reasons why individuals
go blind when they don't have to, especially persons who are working age. The
problem gets worse as more individuals throughout the world get diabetes. It highlights
how vital it is to find strategies to find the condition early and treat it rapidly to improve

quality of life and stop eyesight loss [1].

Regular eye exams and trained professionals looking at retinal images by hand are
common ways to find DR early. This method shows a lot of problems. First, it requires
careful analysis to define small retinal problems like microaneurysms, exudates, and
haemorrhages [3]. Second, it is too dependent on the availability and experience of the
expert, which can cause delays in some of areas that have limited supporting medical
facilities or specialists. Also, the manual interpretation is subjective which could cause

differences or even inconsistencies in diagnoses the patient.

Due to these problems and challenges, people want to use the help of artificial
intelligence, specifically deep learning methods, to identify DR automatically. The
CNN (Convolutional Neural Network) is one of the deep learning models that has
presented a lot of promise since CNN can learn complicated hierarchical features from
the retinal pictures based on the models without having a lot of manual feature
extraction in the architecture. CNN can discover other symptoms of DR in a systematic

way, which are faster, reliable, and make it easier for the diagnostic process [5].

The recent improvements in CNN have made the detection of DR more accurate
and efficient at the same time. Deep learning frameworks that use DenseNet or residual
blocks architecture have shown to be more precise at diagnosing because the better
gradient flow and ability to extract more feature that have [4]. Also, new techniques
like data augmentation and image preprocessing have been used to improve image
become clearer and improve the performance of CNN models. Thus, will make them
more resistant to changes in contrast, lighting, and quality that have been common

things in clinical retinal images [1].

Even though CNN has improvements, the use of CNN-based systems in real-world
practice is still very hard because of things like the difficulty of understanding, how
hard they are to compute, and the unbalanced data that is available. Clinicians often
need to know how the automated models make decisions, which is why explainable
Al is important. Recent search shows the growing need for models that can not only
accurately classify DR but also give outputs that are easy to understand and trust by

clinicians

To make sure that deep learning-based Diabetic Retinopathy systems can be
adapted to real-world clinical settings, it is important to fill in the gaps. So, the goal of
this research is to create a CNN-based model that is simple but effective at identifying
DR from retinal images. This model will include important preprocessing techniques

to help the adaptation in a variety of clinical settings

1.2 Problem Statement

Despite the potential of CNN-based detection systems, there are several challenges
that hinder their deployment in real-world clinical environments. The system often
depends on balance and high quality dataset, which may not reflect the variability in
real applications of clinical images. Many public datasets include noisy, low contrast,

or imbalanced images, which can affect model generalizability [4].

Additionally, many advanced deep learning models are intensive computationally
and may not be suitable for low-resource deployment. Furthermore, while these
models achieve a high performance, their decision-making process often lacks

transparency, making the trustworthiness among clinicians limited

There is an urgency for a more efficient, robust, and explainable CNN-based
model for DR detection that is applicable to diverse datasets and can be deployed under

the constraint of real-world problem.

1.3 Objective

The study objectives are:

1 Develop a CNN (Convolutional Neural Network) model for binary classification
of DR using retinal fundus images and deploy it through a Flask-based system
2 Implement preprocessing, including normalization, resizing, and augmentation, to

enhance the quality of the image and model robustness.

3 Evaluate the performance of the model using metrics such as the confusion matrix,
accuracy, precision, recall, and F1-score.
4 Compare models effectiveness with the recent studies using similar methods and

datasets

1.4 Scope of Study
Use 3,662 retinal fundus imaes from EyePACS collection, which was collected

through Kaggle Diabetic Retinopathy Detection Competition, this research
investigates how to classify whether a person has DR or not. The model is made and
constructed using TensorFlow/Keras and consists of three convolutional layers,
followed by dense and dropout layers. All of the images undergo preprocessing, which
includes normalization and data augmentation techniques like zooming, flipping, and
rotating, after being standardized to 150 x 150 pixels. The metrics used to evaluate this
model’s performance are accuracy, precision, recall, F1-score, and confusion matrix

after the test set has been trained for 20 epochs.

Using Flask-based, the trained best model is integrated into a small web
application for practical use. Users can upload retinal images and receive real-time
predictions via a straightforward interface by using HTML. However, the system does
not identify multi-class DR grading or integration into real clinical workflows; it is

merely a prototype for local deployment

CHAPTER 2 LITERATURE REVIEW

2.1 Deep Learning in Diabetic Retinopathy Detection

The success of deep learning methods such as Convolutional Neural Networks has
advanced the application of artificial intelligence for diabetic retinopathy detection.
These models have demonstrated good performance and the ability to detect complex

retinal features like exudates, microaneurysms, and haemorrhages from fundus images.

To enhance the classification of diabetic retinopathy, Zago et al. [1] suggested that
a CNN-based method can incorporate red lesion localisation. In order to increase the
model's interpretability and sensitivity, their approach focused on amplifying and
locating lesion regions for classification. Similar to Maity and Chakravorty [5] used
CNN to produce an automated DR classification model, emphasizing how it could

minimize the screening time and the need of experts.

With the help of OCT (Optical Coherence Tomography), Aggarwal [2]
investigated machine learning with retinal pathology. The study highlights the value
of artificial intelligence in ophthalmologic diagnosis and shows that machine learning
models are transferable across image types, despite the difference between imaging

modality and fundus photography

2.2 CNN Architectures and Feature Learning

Convolutional Neural Networks now have deeper models with some advanced
feature extraction capabilities evolving from the traditional architectures. A CNN was
used by Gaur et al. [3] to classify DR into various levels of severity. Their model was
intended to identify contextual and spatial characteristics that are essential for
differentiating between proliferative and non-proliferative DR, which was trained on

color fundus images

To enhance performance, other research has explored to integrating CNN with
othed method. For example, Qomariah et al. [7] evaluated how good the performance
of CNN and SVM mehod in the classification of normal and diabetic fundus images.
Their research claimed that the use of CNN increased accuracy because it could
automatically learn discriminative image features, eliminating the need for manually

created features

2.3 Image Preprocessing and Augmentation

To guarantee consistency in model input and eliminate superfluous noise, image
preprocessing is crucial. In their comparative study of time series data augmentation
techniques for deep learning models, Pedraza et al. [4] highlighted how these
techniques improve model generalization and lessen overfitting. Even though their
research focused on diabetic neuropathies, retinal image analysis can benefit from the

same augmentation techniques (scaling, flipping, and brightness adjustment).

Preprocessing for DR detection frequently consists of image resizing, RGB
conversion, contrast enhancement, and Gaussian filter application. By standardizing
the dataset, these methods enhance training convergence [6]. In order to compensate
for the lack of annotated datasets and class imbalance, data augmentation also makes

it possible to train models on artificially diversified samples.

2.4 Explainability and Clinical Trust

Prediction transparency is just as important as accuracy when it comes to the
clinical application of deep learning tools. Many Al systems are criticized for being
"black boxes," meaning that clinicians cannot see the decision-making processes. P. S.
T. et al. [11] addressed this by proposing explainable deep learning models that
highlight image regions that contribute to the final classification by creating attention
maps. Ophthalmologists can better comprehend and validate the model's predictions

with the aid of these visual explanations.

Similarly, Surabhi and Prasad [8] improved clinician trust and aided junior
medical staff training by incorporating explainable decision support into their DR
classification system. Thus, Grad-CAM and related methods are now a crucial part of

Al-powered medical applications.

Apart from model transparency, user-facing systems can be crucial in connecting
clinical workflows with Al predictions. For instance, incorporating CNN models into
straightforward web-based interfaces enhances trust by providing clear channels for

interaction with the model and enabling real-time predictions and visual result display.

2.5 Efficient and Lightweight Models

Deeper CNNs make predictions more accurate, but they can be hard on computers.
This could limit how they can be used, especially in edge or mobile settings. Elzennary
et al. [10] suggested a lightweight CNN model for detecting DR that is good for real-
time inference and has a lower computational load. They showed that optimized
architectures with fewer parameters could still perform well in competition, which

made them good for use in portable diagnostic tools.

2.6 Model Evaluation

To fully assess how well a diabetic retinopathy classification model works, you
need to look at more than just its accuracy. To check how well a model works, find
bias, and help with further optimization, people usually use a mix of quantitative

metrics and visualization techniques.
2.6.1 Accuracy

The accuracy of a prediction is the number of correct predictions divided by the
total number of predictions. It is often used for classification problems, but it may not
show how well the model works when there is class imbalance. For example, a model
might seem very accurate at finding diabetic retinopathy (DR) by often predicting the
dominant class (non-DR), which could mean that it misses real DR cases. Still,

accuracy is a quick and easy way to tell how well you're doing overall [6].
2.6.2 Confusion Matrix

A confusion matrix shows the counts of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) to give a better picture of how well a
model works. This helps find certain kinds of misclassifications and see how well the
model separates classes. Zago et al. [1] showed that confusion matrices are very
important for testing how well a model can tell the difference between DR-positive

cases and normal ones, especially when early-stage DR is hard to find.
2.6.3 Precision, Recall, and F1-Score

Precision shows how many of the predicted positive cases are actually true. This
shows how well the model can avoid false positives. Recall shows how sensitive the
model is by showing how well it finds real positive cases. The Fl-score gives an

evaluation by combining recall and precision into one new metric. This will be helpful

6

when classes are not balanced. Many previous DR studies use these metrics, such as
the study of Gaur et al. [3], which used the Fl-score to determine the most reliable

CNN architecture.
2.6.4 Training and Validation Loss/Accuracy Curves

Plotting the training and validation accuracy/loss curves over time will shows if
the models is overfitting or underfitting. Bad generalization can be determined by a
big difference between training and validation accuracy. Surabhi and Prasad [8] tells
how important to see loss in order to choose early stopping points and make the most

of training time to keep the model in good performance and neglect performance loss.

Accurac
Study Model Type Focus Dataset y
Detecting Trained on
early signs of DIARETDBI;
Deep network|DR; tested on
patch-based automatically [several
approach (two(localizing databases
Zago et al.|CNN models) for|lesion regions|(including AUC:
(2020) lesion localization |(red lesions) Messidor) 0.912
Diabetes
prediction using
retinal images; APTOS
DR prediction;|2019 blindness
CNN-based |Classifying detection
method utilizing|retinal images|dataset (approx.
Gaur et al.|DenseNet169 into five DR|13,000 retinal Over
(2025) architecture stages (0-4) images) 82%

Pre-trained Diabetic
Deep Learning|Retinopathy
Models (AlexNet,|(DR) detection;
GoogLeNet, Clinical
ResNet, VGGNet)|decision Balanced Not
with transfer|support; dataset of 3,662 explicitly
Padhmapri |learning and fine-|Automated DR |retinal scan|stated in
ya et al. (2025) |tuning screening images abstract
Automated
DR diagnosis;
Building
Computational |reliable and
ly efficient deep|computationally
learning CNN efficient deep Commonly
based on|learning model;|used labeled
DenseNet-121 Detecting retinal images 95.64%
Elzennary |architecture with|severity of the|dataset (from/|(validation
et al. (2020) transfer learning |disease Kaggle) accuracy)
Novel Hybrid
Approach
(combining SVM, Prior DR 98.06%
KNN, Binary Trees|detection and Multiple |(Sensitivity:
with preprocessing|classification [severities of|83.67%,
Bilal et al.|and feature|for disease|disease grading|Specificity:
(2021) extraction) grading databases 100%)
Publicly ROC
Integrated Efficient sccessible AUC: 0.94
IDNet and|Diabetic datasets such as (Precision:
A Raghu|Residual Networks|Retinopathy Messidor, 0.924, Recall:
Vira Pratap et|(ResNet); includes|Grading; Messidor-2. 0.955, F14
al. (2024) data augmentation |Diagnosing DR DRISHTLGS, score: 0.931)

and a Retinal

Dataset from
GitHub
Empirical
comparative
Multilayer analysis of data
Perceptrons (MLP)|augmentation
and Convolutional|techniques for
Neural Networks|diabetic Up to
(CNN) with neuropathy Preprocesse|100% (with|
various data|detection using|d dataset|Jittering for
Pedraza et|augmentation time series|(postural timeMLP &
al. (2024) techniques analysis series data) CNN)
Examining
the effect of
data
augmentation
on performance
for analyzing
Deep ophthalmologic AUC:
convolutional al diseases Optical 0.97 (with
neural network|(AMD, CSR,|Coherence data
Aggarwal |(Retrained DR, MH) using| Tomography |laugmentation
(2019) VGG16) OCT images Image Database|)

Table 2-1 Comparative Summary of Recent Deep Learning Approach

CHAPTER 3 METHODOLOGY

3.1 Overview
This chapter will explain how a Convolutional Neural Network (CNN)-based

system was made to classify diabetic retinopathy in retinal fundus images. The method
is designed to achieve high classification performance while keeping it usable and
lightweight in an environment with limited computational resources. This chapter goes
into detail about the dataset's features, the image preprocessing methods used, the
architecture of the CNN model, the training setup, and the evaluation metrics used to

measure how well the model worked.

Extracting Features Classification

! l l }

Dense
Preprocessing - (128 unit Sigmoid Output
R Ll igmol utput
153}(5;25% input shap@ & % Dropout O (0: No DR, 1: DR)
Normalize, (5 (05)
Augment o
Convolution Pooling Fully

connected

Figure 3-1CNN Architecture and Image Preprocessing

10

Figure 3-2 Research Flowchart

3.2 Dataset Description
The original EyePACS dataset has more than 35,000 labeled retinal images, but

this study only used 3,662 of them. The choice was made to keep the class distribution
even (1,875 images with DR and 1,805 without DR) while still being able to work
within the limits of the development environment (Google Colab with limited GPU
and storage space). This smaller but still representative sample made it possible to train

and test the model quickly without losing the study's clinical relevance.
Originally, the dataset includes five severity classes:
e 0—NoDR
e 1-Mild
e 2 —Moderate
e 3 —Severe

4 — Proliferative DR

However, for the purpose of this study, the classification task was simplified into

a binary classification problem:

e Class 0: No DR

11

e Class 1: DR present (combining Classes 1-4)

This simplification makes it easier to deal with differences between classes and
lets the model focus on finding out if there is a disease or not, which is an important
first step in screening applications. There is a big class imbalance in the data, even
though there are a lot of it (about 35,000 training images). Too many images are
labelled as "No DR." To improve generalization, augmentation techniques must be

used because of this imbalance.

Figure 3-3 Example of Retinal Fundus Image of Diabetic Retinopathy

Figure 3-4 Example of Normal Retinal Fundus Image

12

3.3 Data Preprocessing

Because the original images had problems with brightness, contrast, and size, a lot
of preprocessing was done to make sure that the data was consistent and of high quality

for the CNN model.

© def process_and_crop_images (i output

for category in ['Dia ', 'No
category_path < D

save_path = os.path.join(output_folder, category)

os.makedirs(save_path, exist_ok=True)

for filename in os.listdir(category path):
if filename.lower().endswith(('.png’, '.jpg’, '.jpeg')):
try:
img_path = os.path.join(category_path, filename)
img = Image.open(img_path).convert('RGB")
w, h = img.size

ing = img.crop(((w - min_dim) // 2, (h - min dim) // 2,
w + min_dim) // 2, (h + min_dim) // 2))

ing = img.resize(target_size)

i (0s.path. join(save_path, filename))

tion
g {img path}: {e}")

original_data_path =
cropped_data_path =
process_and_crop_images(original_data path, cropped_data_path)

Figure 3-5 Phyton Code for Image Preprocessing and Resizing

3.3.1 Image Cropping and Resizing

Different aspect ratios were shown in the raw images, and they often had extra

black borders or artifacts. To make the dataset consistent:

e Allimages were cropped to a square shape by removing excess width or height,

centering the retina.

e They were then resized to 150x150 pixels, balancing computational efficiency

with sufficient detail retention for lesion recognition.

This step significantly reduces memory consumption and enables faster training

without a notable loss in image quality.
3.3.2 Color Chanel Normalization
All images were:
e Converted to RGB format, ensuring consistency in input channels.
o Normalized by dividing pixel values by 255 to scale them into the range [0, 1].

This normalization helps stabilize and accelerate model convergence during

training.

3.3.3 Data Augmentation

13

Because the dataset was uneven and had different acquisition conditions,

ImageDataGenerator was used to add to it on the fly. Some of the methods used were:
e Rotation (£15°): To simulate varied head tilts
e Zoom (up to 20%): To mimic different focus levels
o Width/Height Shift (+x10%): To create translational invariance
e Shear Transformation
o Horizontal Flipping: Useful for symmetric anatomical structures

These changes do a good job of making the dataset more diverse, lowering the risk

of overfitting, and making the model more robust.
3.3.4 Dataset Splitting

The preprocessed dataset was divided using splitfolders.ratio() with the following

ratio:
e 80% training set
e 10% validation set
e 10% test set

Each subset maintained class distribution to prevent bias in learning or evaluation.

[1 splitfolders.ratio(cropped_data_path, output="/content/Final Data", seed=42, ratio=(.

Figure 3-6 Code Snippet for Splitting Dataset

3.4 Model Architecture

To ensure data quality and consistency, the following preprocessing steps are

applied based on the provided code files:

TensorFlow/Keras (Sequential APT) was used to implement the CNN model.
Lightweight and moderately deep, the architecture is appropriate for deployment in
settings with constrained computational power. The following layers make up the
design, which was influenced by conventional CNN pipelines used for image

classification tasks:

14

Layer Details

32 filters, 3x3 kernel, ReLU activation, input shape

Conv2D (1st layer)
= (150, 150, 3)

MaxPooling2D 2x2 pool size
Conv2D (2nd layer) 64 filters, 3x3 kernel, ReLLU activation
MaxPooling2D 2x2 pool size
Conv2D (3rd layer) 128 filters, 3%3 kernel, ReLU activation
MaxPooling2D 2x2 pool size
Flatten Converts 3D output to 1D for dense layers
Dense (Fully) o

128 units, ReLLU activation

Connected)

0.5 rate — randomly disables 50% of neurons

Dropout . .
during training

1 unit, Sigmoid activation — outputs binary

Dense (Output Layer)

probability (DR vs. No DR)

Table 3-1 Summary of the CNN Architecture Used

° model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation="relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(1, activation='sigmoid"

1)

model.compile(optimizer="adam', loss='t y_cr tropy', metrics=['ac

model. summary()

Figure 3-7 Code Snippet Defining the CNN Architecture

15

3.5 Model Training Configuration

The following parameters were used to put together and train the model:

e Loss Function: binary crossentropy appropriate for binary classification

e Optimizer: Adam adaptive learning rate and widely used for image models
e Metrics: accuracy

The training was carried out for 20 epochs with the following callbacks:

o EarlyStopping: Halts training when validation loss stops improving (patience

e ModelCheckpoint: Saves the model with the best validation accuracy

Training took place on Google Colab, which has a GPU-enabled environment
(usually a Tesla T4 with 12 GB VRAM). This made the training time shorter and the

model work better.

callbacks = [

1

history = model.fit(train_generator, epochs=20, validation_data=val_generator, callbacks=callbacks)

Plot training validation accuracy and loss

plt.figure(figsize=(12, 5))

Figure 3-8 Code Snippet for Model Training

3.6 Evaluation Metrix
3.6.1 Accuracy

Accuracy was used as a baseline measure to see how many of the predicted
outcomes were correct. But because there is an imbalance in the classes, accuracy

alone is not enough to show how well the model works.

3.6.2 Confusion Matrix
The confusion matrix provides a breakdown of prediction outcomes:
e True Positives (TP): Correctly detected DR cases

e True Negatives (TN): Correctly identified non-DR cases

16

o False Positives (FP): Normal cases incorrectly classified as DR

o False Negatives (FN): Missed DR cases

This matrix was plotted to visualize and analyze misclassification trends.
3.6.3 Precision, Recall, and F1-Score

To supplement accuracy:

e Precision checks how many of the predicted DR cases were correct.

e Recall (or Sensitivity) checks how many real DR cases were found.

e The F1-Score balances both metrics and gives you a harmonic mean, which is

great for datasets that aren't balanced.
We used sklearn.metrics.classification_report to figure out these numbers.
3.6.4 Training and Validation Curves
Line plots were generated to visualize:
e The accuracy of training and validation.
e The loss of training and validation.

These curves help find overfitting (when the validation loss goes up while the
training loss goes down) and make sure the model works well on data it has not seen

before.

3.7 System Implementation
We used the Flask web framework to put the trained CNN model into a lightweight

web app so that it could make predictions in real time and be more useful in real life.
The system is a front-end interface that lets you upload retinal fundus images and get

an immediate binary classification output (DR or No DR).

17

port Flask, render_template, request
tensorflow.keras.models load_model
tensorflow.keras.preprocessing.image import img_to_array

model = load_model('mode

predict_image(filepath):

img = Image.open(filepath).convert('RGB"')

W, h = img.size

min_dim = min(w, h)

img = img.crop(((w - min_dim) // 2, (h - min_dim) // 2,
w + min_dim) // 2, (h + min_dim) // 2))

img = img.resize((150, 150))

img_array = img_to_array(img) / 255.0

img_array = np.expand_dims(img_array, axis=0)

prediction = model.predict(img_array)[@][@]
Reti if prediction > 0.5 else

@app.route('/', methods=['G
30 index()J
prediction
image_path

if request.method ==
file = request.files e']
if file:
filepath = os.path.join(app.config['UP OLDER'], file.filename)
file.save(filepath)
prediction = predict_image(filepath)
image_path = filepath

n render_template('i .html', prediction=prediction, image_path=image_path)

app.run(debug=

Figure 3-9 Code Snippet for Model Compilation, Training and Callback Configuration

3.7.1 System Architecture

The web-based system consists of the following components:

Component Description

Frontend Created with HTML and CSS. Has a form for uploading

images and a styled way to show the results

Backend Made with Flask. Takes care of loading models,

preprocessing images, and making predictions

Model The trained CNN (.h5 format) was loaded at runtime for

inference in real time

18

Output Shows either "Diabetic Retinopathy" or "No Diabetic

Retinopathy" along with a preview of the uploaded image

Table 3-2 Summary of Web-Based Diabetic Retinopathy Detection System Components

3.7.2 Image Processing Pipeline
Uploaded images are:
e Changed to RGB format
e Cropped to a square and resized to 150x150 pixels
e Normalized to a [0—1] pixel range

This make sure that the input is always the same before the prediction is made with

the same CNN model that was trained before
3.7.3 Deployment Context

The app is currently running on a local Flask server, which is good for testing and
showing off. In the future, the system can be expanded to work on cloud platforms like

Render and Heroku, or it can be turned into a mobile app with REST API endpoints.

19

CHAPTER 4 RESULT & DISCUSSION

4.1 Overview

This chapter talks about what happened when a Convolutional Neural Network
(CNN) model was used to classify diabetic retinopathy (DR) images as either having
or not having the disease. We used metrics like accuracy, precision, recall, F1-score,
and the confusion matrix to measure how well the model worked. Also, a graphical
user interface (GUI) was made to show how the model can make predictions in real
time. The results are also compared to those of other studies that looked at similar

things.

4.2 Training Performance
We trained the model for 20 epochs on Google Colab, which has a GPU. We kept

track of and plotted the accuracy and loss for training and validation (Figures 10).
e The accuracy of the training slowly get better, reaching about 91%.
e The accuracy of the validation stayed between 91% and 93%

e The training and validation loss both went down over epochs, with only small

difference, which means the model wasn’t overfitting

These trends show that the model can generalise well and learn effectively

Model Accuracy Model Loss

—— Train Accuracy 0.55 —— Train Loss
Val Accuracy Val Loss

o<~
00 /\/—_\/ 0.50
\//\/

05 0.45 4
ol
8 0.40
g |
£ 080
/ 035 \VZ
0.75 0.30 \

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 0.0 25 5.0 7.5 10.0 12.5 15.0 17.5
Epoch Epoch

Figure 4-1 Training and Validation Accuracy and Loss Curves Across Epochs
4.3 Test Set Distribution

The final dataset was divided into three parts: training (80%), validation (10%),
and testing (10%). There were 368 images in the test set, and they were divided into

the following classes:

20

Class Number of Images
Diabetic Retinopathy 187
No Diabetic Retinopathy 181
Total 386

Table 4-1 Distribution of Test Dataset Samples by Class

This distribution is nearly balanced, allowing for fair evaluation across both

classes.

4.4 Confusion Matrix Analysis
The model's predictions on the test set were evaluated using a confusion matrix,

shown in Table 5

Actual \ Predicted Diabetic No Diabetic
Retinopathy Retinopathy
Diabetic 169 (True Positive) 18 (False Negative)
Retinopathy
No Diabetic 7 (False Positive) 174 (True Negative)
Retinopathy

Table 4-2 Confusion Matrix of CNN Model Predictions

This demonstrates strong diagnostic capability for both classes:
o High true positive rate for DR (168/187)

o High true negative rate for non-DR (174/181)

21

Confusion Matrix

160

140

120

100

Actual

-80

- 60

-40

-20

Predicted

Figure 4-2 Confusion Matrix of CNN Model on the Test Dataset

4.5 Classification Metrics

The detailed evaluation report from the classification report() function is

summarized below:

Class Precision Recall F1- Support
score

Diabetic 0.96 0.90 0.93 187
Retinopathy

No Diabetic 0.91 0.96 0.93 181
Retinopathy

Accuracy 0.93 368

Macro Average 0.93 0.93 0.93

Weighted Average 0.93 0.93 0.93

Table 4-3 Classification Report of CNN Model

4.6 Comparison with Previous Studies

The model performance is compared with previous works in Table 4.2:

22

Study Dataset Accuracy Method
Description
Zago et EyePACS 85.3% Red lesion
al. (2020) localization
Surabhi APTOS 2019 92% Convolutional
S (2023) Blindness Detection | (DenseNet- Neural Networks (CNN)
dataset 201) and DenseNet-201
Gaur et APTOS 2019 Over 82% CNN-based method
al. (2025) blindness detection utilizing DenseNet169
dataset (approx. architecture
13,000 retinal images)
This EyePACS 93.0% 3-layer CNN +
Study (Kaggle) Dropout + GUI

Table 4-4 Performance Comparison of the Proposed Model with Existing Studies
The proposed model works better than similar lightweight CNN architectures
while keeping a simple structure, which makes it good for use in places with few

resources.

4.7 GUI Integration and Usability

We made a Flask-based GUI to simulate real-time screening to make it easier to
use. With this interface, users can upload fundus images and get classification results

right away.
Features:
e Upload image
e Predict DR presence
o Display predicted label and uploaded image
e Intuitive design for non-technical users

This component validates the system’s practical applicability, particularly in

telemedicine or mobile healthcare settings.

23

Diabetic
Retinopathy
Prediction

Choose File | No file chosen

Upload & Predict

Prediction:

Diabetic Retinopathy

Figure 4-3 Screenshot of Flask-Based Web Interface

4.8 Discussion
The model was able to generalise well, getting 93% of the test right and an F1
score of 0.93 across both classes. It is perfect for use in screening systems with limited

resources due to its simplicity and good performance.
Key Points:
e Minimal architecture yields competitive results
o Balanced class performance minimizes false diagnoses
e GUI interface bridges model usability and real-world impact

The models achieve remarkable performance, especially considering the lighting
of the images. It is also ready to be used in real-world scenarios for future clinical

testing or integration into a real web-based based.

24

CHAPTER S CONCLUSION & RECOMMENDATION

5.1 Conclusion
The study was able to produce and test a Convolutional Neural Network (CNN)

model that can identify diabetic retinopathy (DR) early and classify it into two groups
using the fundus image of the retina. The model was trained on the EyePACS dataset,
which is available publicly on Kaggle. The wide range of retinal images shows that
the dataset it can be representative clinically. The preprocessing techniques improve

the model capability to handle and generalise changes in the real world retinal images.

The model achieves an overall accuracy of 93% on the test dataset. The other
metrics, such as recall, precision, and F1-score values, were all around 0.93 for both
the DR-positive and DR-negative classes. This shows that the model is trustworthy at

identifying diabetic retinopathy, which means useful as a practical screening tool.

The model’s confusion matrix analysis showed that it worked well, with low rates
of false negatives and false positives, which is a very important aspect for clinical
screening or diagnosing. The proposed CNN architecture shows a better performance
than the previous study while still being computationally efficient, making it suitable

for general use with limited resources

The deployment of a trained Convolutional Neural Network model into a Flask-
based web application showed the usefulness of real-time use. The graphical user

interface (GUI) was made to help users in real-time DR prediction.

5.2 Recommendation

1. Multi-class Classification:
Build models that can create a multi-class grading system for the severity of
diabetic retinopathy with binary classification (mild, moderate, severe, and
proliferative). This would help medical to get more and detailed information

for decision making and diagnosing.

2. Explainability and Interpretability:
Include an explainable artificial intelligence (XAI) like Grad-CAM or attention
maps to make the model more transparent to help medical experts understand

and trust Al-driven decisions.

25

3. Clinical Validation:

Testing with the real-world clinical datasets from local hospitals or clinics to

make the model more reliable and credible for diabetic retinopathy detection.

Deployment in Resource-limited Settings:
Making the model work better on mobile devices or edge computing
environments (like Raspberry Pi) could make it more available in rural and
underserved areas, giving people a useful diagnostic tool where there aren't

many ophthalmologists.

User and Expert Feedback:
Future versions should include structured feedback from ophthalmologists and
healthcare providers to make the model and interface even better, making sure

they fit with clinical workflows and user needs.

In conclusion, this study is a big step forward in the automated detection of

diabetic retinopathy. It shows how machine learning and real-world use can make

healthcare better. Continued research and development in the suggested areas could

greatly improve the early diagnosis, treatment, and management of diabetic

retinopathy around the world.

5.3 Limitations

Even though the research got some good results, it had a lot of problems:

There were only 3,662 retinal images in the dataset, which is a small part of
the full EyePACS dataset. This small amount of data may make the model less

generalisable and robust when used in more clinical settings.

The model only looked at binary classification (DR vs. No DR), which is fine
for early screening but doesn't help with the different stages of diabetic

retinopathy severity that are needed for a full medical diagnosis.

The Flask-based web app can only be used in a limited area right now. It wasn't

tested on real clinical data or used in real healthcare systems.

26

e The model doesn't have features that make it easy to understand, like Grad-
CAM or attention maps, which are important for getting doctors to use it and

for building trust among them.

To improve generalisation, future research should include a bigger and more
varied image dataset to get around these problems. It is suggested that the system be
expanded to include multi-class classification, explainable Al (XAI) methods, and
clinical validation using real-world hospital data. Also, putting the system on cloud
platforms or mobile devices will make it easier to use in real life and in telemedicine
and underserved areas.

27

REFERENCES

[1] G. T. Zago et al., "Diabetic Retinopathy Detection Using Red Lesion
Localization and Convolutional Neural Networks," *Computers in Biology and
Medicine*, vol. 116, p. 103545, 2020. doi: 10.1016/j.compbiomed.2019.103537

[2] P. Aggarwal, "Machine learning of retinal pathology in optical coherence
tomography images," *Journal of Medical Artificial Intelligence*, vol. 2, 2019.
[Online]. Available: https://jmai.amegroups.org/article/view/5145

[3] S. Gaur, A. Kandwal, and B. Pandey, "Detection of diabetic retinopathy and
classification of its stages by using convolutional neural network," *Indonesian

Journal of Electrical Engineering and Computer Science*, vol. 37, no. 2, pp. 1284—
1293, 2025. doi: 10.11591/ijeecs.v37.i12.pp1284-1293.

[4] N. Pedraza, C. Villegas, D. C. Aqueveque, and R. Das, "A Comparative
Analysis of Time Series Data Augmentation Methods in the Identification of Diabetic
Neuropathies Based on Deep Learning Algorithms," in *Proc. 2024 IEEE Chilean
Conference on Electrical, Electronics Engineering, Information and Communication
Technologies (SCCC)*, pp. 1-8, 2024. doi: 10.1109/SCCC63879.2024.10767645.

[5] P. Maity and C. Chakravorty, "Al Based Automated Detection & Classification
of Diabetic Retinopathy," 2023 7th International Conference on Computation System
and Information Technology for Sustainable Solutions (CSITSS), Bangalore, India,
2023, pp. 1-6, doi: 10.1109/CSITSS60515.2023.10334199.

[6] M. F. Mostafa, H. Khan, F. Farhana, and M. A. H. Miah, "Application of Deep
Learning Framework for Early Prediction of Diabetic Retinopathy," AppliedMath, vol.
5,no0. 1, p. 11, 2025, doi: 10.3390/appliedmath5010011.

[7] D. U. N. Qomariah, H. Tjandrasa and C. Fatichah, "Classification of Diabetic
Retinopathy and Normal Retinal Images using CNN and SVM," 2019 12th
International Conference on Information & Communication Technology and System
(ICTS), Surabaya, Indonesia, 2019, pp. 152-157, doi: 10.1109/ICTS.2019.8850940.

[8] S. Surabhi and R. Prasad, "Diabetic Retinopathy Classification using Deep
Learning Techniques," 2023 7th International Conference on Emerging Approaches
in Science, Computing and Technology (EASCT), [City, Country of conference - not
provided in source], 2023, pp. 1-6, doi: 10.1109/EASCT59475.2023.10392721.

[9] A. Bilal, G. Sun, Y. Li, S. Mazhar, and A. Q. Khan, "Diabetic Retinopathy
Detection and Classification Using Mixed Models for a Disease Grading Database,"
IEEE Access, vol. 9, pp. 23544-23553, 2021, doi: 10.1109/ACCESS.2021.3056186.

[10] A. Elzennary, M. Soliman, and M. Ibrahim, "Early Deep Detection for
Diabetic Retinopathy," 2020 International Symposium on Advanced Electrical and
Communication Technologies (ISAECT), Marrakech, Morocco, 2020, pp. 1-5, doi:
10.1109/ISAECT50560.2020.9523650.

[I1]P.S. T, S. M, K. S. A, and P. J. B, "Explainable Deep Learning Models for
Clinical Decision Support in Diabetic Retinopathy Detection," 2025 I[EEE
International Conference on Interdisciplinary Approaches in Technology and
Management for Social Innovation (IATMSI), Gwalior, India, 2025, pp. 1-6, doi:
10.1109/IATMSI164286.2025.10984647.

[12] A. R. V. Pratap, A. V. S. S. Nanditha, T. Laahiri, and M. Nurulla, "Integrating
IDNET and Residual Blocks for Efficient Diabetic Retinopathy Grading," 2024 5th
IEEE Global Conference for Advancement in Technology (GCAT), Bangalore, India,
2024, pp. 1-6, doi: 10.1109/GCAT62922.2024.10923934.

[13] E. Dugas, J. Jared, J. Jorge, and W. Cukierski, "Diabetic Retinopathy
Detection [Data set]," Kaggle, 2015. [Online]. Available:
https://www.kaggle.com/competitions/diabetic-retinopathy-detection

APPENDIX

Ipip install pillow tensorflow keras matplotlib numpy split-folders
import zipfile

import os

from PIL import Image

import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt

import numpy as np

import splitfolders

import shutil

from google.colab import files

with zipfile.ZipFile('
zip_ref.extractall(

lef process_and_crop_images(input_folder, output_folder,
for category in [

B 0 e

category path = os.path.join(input_folder, category)
save_path = os.path.join(output_folder, category)
os.makedirs(save_path, exist ok=)

for filename in os.listdir(category_path):

if filename.lower().endswith((".

img = Image.open(img_path).convert('R
w, h = img.size
min_dim = min(w, h)
img = img.crop(((w - min_dim) // 2, (h - min_dim) // 2,
w + min_dim) // 2, (h + min_dim) // 2))

img = img.resize(target_size)
img.save(os.path.join(save_path, filename))

except Exception as e:

print(f"Err ng {img_path}: {e}")

original_data_path = ' ntent

cropped_data_path =

train_dir = °
val_dir
test_dir =

train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=15,
zoom_range=0.2,
width_shift_range
height_shift_rang
shear_range=0.1,
horizontal _flip:
fill_mode="nea

)

val_test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from directory(train_dir, target size=(150, 150), batch_size=32, class_mod
val_generator = val_test_datagen.flow_from directory(val dir, target size=(150, 150), batch_size=32, class_mod
test_generator = val_test_datagen.flow_from directory(test_dir, target_size=(150, 150), batch_size=32, class_mod: nary’, shuffle=

[1 model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu’),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(1, activation="sigmoid’

model.compile(optimizer="adam', loss='binary crossentropy', metrics=['accuracy'])

model. summary ()

callbacks = [
tf.keras.callbacks.ModelCheckpoint("best_ retinopathy model.h5", save best_only=
tf.keras.callbacks.EarlyStopping(patience=5, restore_best_weights=)

history = model.fit(train_generator, epochs=20, validation_data=val generator, callbacks=callbacks)

Plot training & validation accuracy and loss

plt.figure(figsize=(12, 5))

Accuracy
t.subplot(1, 2, 1)

plt.plot(history.history['accuracy'], label='Train Accuracy')

.plot(history.history["’
.title('Model Accuracy')
.xlabel('Epoch")
.ylabel('Accuracy')
.legend()

val_accuracy'], label='Val Accuracy')

Loss
plt.subplot(1, 2, 2)

plt.plot(history.history['loss'], label='Train Loss')

plt.plot(history.history['val loss'], label='Val Loss')
plt.title('Model Loss"')
plt.xlabel('E h')

t.ylabel('Loss")

t.legend()

.tight_layout()
.show()

Ipip install seaborn
import seaborn as sns

from sklearn.metrics import confusion_matrix, classification_report

loss, accuracy = model.evaluate(test_generator)
print(f"Test Accuracy: {accuracy * 100:.2f}%")

Get predictions

y_pred = model.predict(test_generator)

y_pred_classes = (y_pred > 0.5).astype("int32" For binary
True labels

y_true = test generator.classes

Confusion Matrix
confusion_matrix(y_true, y_pred_classes)

.figure(figsize=(6, 4))

-heatmap(cm, annot= , fmt='d"', cmap="Blues"')

.title('Confusion Matrix')

.xlabel('Predicted")

.ylabel('Actual")

.show()
Classification Report
target_names = list(test_generator.class_indices.keys())
print(classification_report(y_true, y pred classes, target names=target_names))

f classify _local image(image_path):
try:

img = Image.open(image path).convert('RGB")

w, h = img.size

min_dim = min(w, h)

img = img.crop(((w - min_dim) // 2, (h - min_dim) // 2,
w + min_dim) // 2, (h + min_dim) // 2))

img = img.resize((150, 150))

img_array = np.expand_dims(np.array(img) / 255.0, axis=0)

prediction = model.predict(img_array)[0][0]

label = 'N R n if prediction > 0.5 e
confidence

plt.i

.title(f'Pre : {label} ({confidence*100:.2f}%)")
.show()

except Exception
print(f"Er

classify local image(’

BIODATA PENULIS

My name is Reyhan Emeraldo, born in Pasuruan on 3rd April
2001. I completed my primary education at SDN 1 Petungasri,
continued my junior secondary education at SMPN 1 Pandaan,
and finished my senior secondary education at SMA Semesta
BBS. I then pursued my higher education at the Institut Teknologi
Sepuluh Nopember (ITS), where I studied in the Information
Systems program. During my studies, I participated in a Double
Degree Program with Universiti Teknologi PETRONAS (UTP),
Malaysia, which enhanced my academic exposure in information
systems and strengthened my international learning experience.
Through this program, I was able to broaden my perspective on
data management, business processes, and information systems
implementation in a global context. In addition, I gained practical

industry experience as an Operation Associate Intern at Carpedia Global Holidays Sdn. Bhd.,
Cyberjaya. In this role, I was involved in supporting daily operational activities, coordinating
with stakeholders, managing operational data, and ensuring smooth execution of logistics-
related processes. This experience strengthened my understanding of operational workflows,
problem-solving in real business environments, and effective coordination within a fast-paced

organization.

