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ABSTRAK 

Jumlah kasus pneumonia pada balita di Kabupaten Tuban menyajikan dua 

tantangan data yang signifikan, yaitu overdispersi dan dependensi spasial. 

Penelitian ini bertujuan untuk mengembangkan dan menerapkan model 

Generalized Poisson Spatial Autoregressive (GPSAR) untuk mengatasi kedua 

masalah tersebut secara bersamaan. Estimasi parameter model dilakukan 

menggunakan metode Maximum Likelihood Estimation dengan prosedur iterasi 

Berndt-Hall-Hall-Hausman (BHHH). Hasil penelitian mengonfirmasi validitas dan 

keunggulan model spasial yang diajukan. Model GPSAR terbukti lebih unggul 

dibandingkan model non-spasial Generalized Poisson Regression (GPR) dalam hal 

kebaikan model (AICc: 1673,39 vs 1717,24). Secara statistik, parameter struktural 

untuk lag spasial dan parameter dispersi bernilai signifikan (𝑝 < 0,001),  yang 

mengonfirmasi adanya pengelompokan spasial yang kuat dan fenomena 

overdispersi pada data. Tiga variabel prediktor ditemukan berpengaruh signifikan: 

Cakupan Air Bersih (𝑋4) yang menunjukkan efek protektif (negatif), serta Kelas 

Ibu Hamil (𝑋3) dan Imunisasi Campak (𝑋5) yang menunjukkan asosiasi positif yang 

berpotensi berkaitan dengan kualitas surveilans kesehatan.  

 

Kata Kunci: Data Cacah, Model SAR, Overdispersi, Pneumonia, Spatial Lag.  
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PARAMETER ESTIMATION IN THE GENERALIZED POISSON 

SPATIAL AUTOREGRESSIVE MODEL 

(Case Study: Modeling Pneumonia Cases in Toddlers in Tuban Regency) 
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NRP : 6003232015 
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Advisor : Dr. Sutikno, S.Si, M.Si. 
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ABSTRACT 

The number of pneumonia cases in children under five in Tuban Regency 

presents two significant data challenges: overdispersion and spatial dependency. 

This study aims to develop and apply the Generalized Poisson Spatial 

Autoregressive (GPSAR) model to address both issues simultaneously. The model 

parameters were estimated using the Maximum Likelihood Estimation method with 

the Berndt-Hall-Hall-Hausman (BHHH) iteration procedure. The results confirm 

the validity and superiority of the spatial model. The GPSAR model outperformed 

the non-spatial Generalized Poisson Regression (GPR) model in terms of goodness-

of-fit (AICc: 1673,39vs. 1717,24). Statistically, the structural parameters for spatial 

lag and dispersion were highly significant (𝑝 < 0,001), confirming strong spatial 

clustering and overdispersion in the data. Three predictor variables were found to 

be statistically significant determinants: Clean Water Coverage (𝑋4), which showed 

a protective effect, as well as Prenatal Classes (𝑋3) and Measles Immunization (𝑋5), 
which showed positive associations potentially linked to healthcare surveillance 

quality.  

 

Kata Kunci: Count Data, SAR Model, Overdispersion, Pneumonia, Spatial Lag. 
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BAB I 

LATAR BELAKANG 

1.1 Latar Belakang 

Pneumonia merupakan infeksi saluran pernapasan akut yang menyerang 

paru-paru dan hingga saat ini masih tercatat sebagai salah satu penyebab utama 

kematian pada anak di bawah usia lima tahun (balita) secara global. Penyakit ini 

memiliki prevalensi yang tinggi karena sistem kekebalan tubuh balita yang belum 

terbentuk sempurna, terutama di negara berkembang dengan akses layanan 

kesehatan yang terbatas. Organisasi kesehatan dunia seperti WHO dan UNICEF 

bahkan telah mempublikasikan The Integrated Global Action Plan for Prevention 

and Control Pneumonia and Diarrhoea (GAPPD) sebagai respons terhadap 

tingginya mortalitas ini. Hal ini menegaskan bahwa penanganan pneumonia bukan 

sekadar masalah medis rutin, melainkan prioritas kesehatan masyarakat yang 

mendesak. 

Di Indonesia, beban penyakit ini juga signifikan. Berdasarkan data Profil 

Kesehatan Indonesia tahun 2022, pneumonia menyumbang angka kematian balita 

terbesar, yaitu mencapai 12,5%. Kondisi ini tercermin pula di tingkat daerah, 

khususnya di Provinsi Jawa Timur dan Kabupaten Tuban. Meskipun data Badan 

Pusat Statistik (BPS) menunjukkan adanya penurunan kasus di Kabupaten Tuban 

dari 1.707 kasus pada tahun 2021 menjadi 1.485 kasus pada tahun 2022 (turun 

3,03%), angka absolut ribuan kasus ini menunjukkan bahwa ancaman tersebut 

masih nyata. Fluktuasi kasus yang tinggi di berbagai desa mengindikasikan 

perlunya pemodelan statistik yang presisi untuk memetakan faktor risikonya. 

Dalam analisis statistika, data jumlah kasus kejadian penyakit seperti 

pneumonia dikategorikan sebagai data count. Pendekatan standar untuk 

memodelkan hubungan antara variabel respon berupa data count dengan variabel 

prediktor adalah Regresi Poisson. Model ini dibangun di atas asumsi fundamental 

yang dikenal sebagai equidispersion, di mana nilai rata-rata (mean) dari variabel 

respon diasumsikan sama dengan nilai variansnya. Penggunaan model ini sangat 
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populer karena kesederhanaan interpretasinya dalam menjelaskan laju kejadian 

suatu peristiwa. 

Namun, dalam penerapan pada data riil kesehatan, asumsi equidispersion 

tersebut sangat sering dilanggar. Pelanggaran ini terbukti secara empiris dalam data 

penelitian ini. Berdasarkan statistik deskriptif terhadap kasus pneumonia di 328 

desa/kelurahan di Kabupaten Tuban, ditemukan karakteristik data yang ekstrem. 

Rata-rata jumlah kasus tercatat sebesar 4,527 kasus kejadian, sementara nilai 

variansnya melonjak hingga 60,29. Hal ini menghasilkan Variance-to-Mean Ratio 

sebesar 13,32, yang jauh lebih besar dari 1. Kondisi ini mengonfirmasi dugaan 

adanya overdispersion, yang jika dipaksakan menggunakan Regresi Poisson 

standar, akan menghasilkan kesimpulan yang tidak valid akibat standard error yang 

bias. 

Untuk mengatasi keterbatasan Regresi Poisson dalam menangani 

overdispersion, diperlukan model alternatif yang lebih fleksibel. Salah satu 

pendekatan yang dapat digunakan adalah Generalized Poisson Regression (GPR). 

Keunggulan utama GPR dibandingkan model standar adalah kemampuannya 

menangani struktur data, baik yang mengalami overdispersion maupun 

underdispersion. Dengan menggunakan GPR, estimasi parameter menjadi lebih 

akurat karena model ini secara eksplisit mengakomodasi variabilitas data yang 

tinggi yang tidak tertangkap oleh model Poisson biasa. 

Selain karakteristik distribusi data, analisis penyakit menular tidak dapat 

dilepaskan dari aspek lokasi atau geografis. Unit pengamatan dalam penelitian ini 

adalah desa/kelurahan, yang secara geografis saling berbatasan. Mengasumsikan 

bahwa kejadian penyakit di satu desa independen dengan desa tetangganya adalah 

asumsi yang tidak realistis. Hal ini sesuai dengan hukum pertama geografi Tobler 

yang menyatakan bahwa "segala sesuatu saling berhubungan, namun hal-hal yang 

dekat memiliki hubungan yang lebih erat daripada hal-hal yang jauh". Mengabaikan 

interaksi antarwilayah ini dapat menghilangkan informasi penting mengenai pola 

penyebaran penyakit. 
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Urgensi untuk memasukkan aspek spasial ke dalam model diperkuat oleh 

bukti visual dan statistik. Berdasarkan peta sebaran kasus pneumonia di Kabupaten 

Tuban pada Gambar 1.1 menunjukkan pola yang tidak acak, melainkan cenderung 

membentuk klaster atau pengelompokan di wilayah-wilayah tertentu. Pola ini 

menunjukkan adanya dependensi spasial yang jelas, di mana desa-desa yang 

berdekatan secara geografis cenderung memiliki jumlah kasus yang serupa.  

Secara statistik, fenomena ini dikonfirmasi melalui Uji Moran’s I yang 

menghasilkan 𝑝-value < 0,001 . Hasil ini memberikan bukti mutlak bahwa 

terdapat dependensi spasial positif yang signifikan. Artinya, desa dengan kasus 

tinggi cenderung dikelilingi oleh desa dengan kasus tinggi pula, sehingga analisis 

spasial menjadi wajib dilakukan. 

Meskipun metode spasial telah berkembang, terdapat kesenjangan dalam 

penerapannya untuk data spesifik ini. Penelitian terkini oleh Sutikno et al. (2025) 

di lokasi yang sama telah menggunakan Multivariate Spatial Autoregressive 

(MSAR) untuk menangani dependensi spasial. Namun, pendekatan tersebut 

dibangun untuk memodelkan persentase kasus. Asumsi normalitas tidak tepat 

digunakan untuk memodelkan data count. 

Penerapan pemodelan SAR untuk kasus ril pada data count dilakukan oleh 

Rohimah (2015) untuk mengetahui faktor-faktor yang memengaruhi jumlah 

Gambar 1.1 Sebaran Kasus Jumlah Pneumonia menurut desa/kelurahan  

di Kabupaten Tuban 
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penderita HIV di Provinsi Jawa Timur (Rohimah, 2015). Saat ini penerapan SAR 

untuk data count masih sebatas memodelkan dengan pendekatan distribusi Poisson 

yang mana artinya model belum mempertimbangkan kondisi saat asumsi 

equidispersion tidak terpenuhi. Oleh karena itu, pada penelitian ini dikembangkan 

model SAR untuk data count yang fleksibel terhadap asumsi equidispersion dengan 

data yang berdistribusi Generalized Poisson. Model ini selain mempertimbangkan 

aspek spasial juga mempertimbankan aspek asumsi equidispersion yang tidak 

terpenuhi. Selain itu, penerapan model ini juga dilakukan pada kasus ril mengenai 

permasalahan kesehatan anak yaitu tentang penyakit pneumonia pada balita. 

Berdasarkan kebutuhan untuk menangani overdispersion dan dependensi 

spasial secara simultan, penelitian ini bertujuan mengembangkan dan mengestimasi 

parameter model Generalized Poisson Spatial Autoregressive (GPSAR). Penelitian 

ini akan mengaplikasikan model tersebut untuk menentukan faktor-faktor yang 

memengaruhi kejadian pneumonia di Kabupaten Tuban secara presisi, melibatkan 

variabel prediktor seperti persentase pemberian ASI eksklusif, pemberian vitamin 

A, akses air bersih, serta balita yang mendapatkan imunisasi campak. Melalui 

pendekatan ini, diharapkan dihasilkan model yang tidak hanya valid secara statistik 

tetapi juga akurat dalam memberikan rekomendasi kebijakan kesehatan. 

Penelitian ini mengkaji tentang penaksiran parameter model Generalized 

Poisson Spatial Autoregressive (GPSAR). Variabel respon yang digunakan dalam 

penelitian ini yaitu jumlah kasus pneumonia pada balita. Selanjutnya, penelitian ini 

juga menjelaskan tentang pengaplikasian model GPSAR pada variabel jumlah 

pneumonia pada balita di Kabupaten Tuban Tahun 2023. 

1.2 Rumusan Masalah 

Berdasarkan latar belakang yang telah diuraikan, data jumlah kasus pneumonia 

pada balita di Kabupaten Tuban tahun 2023 merupakan data count yang dihadapkan 

pada dua tantangan metodologis. Pertama, adanya bukti dependensi spasial antar 

desa (Uji Moran's I, 𝑝-value < 0,001). Kedua, adanya potensi ketidakterpenuhan 

asumsi equidispersion. Kedua kondisi tersebut tidak dapat ditangani secara 

memadai oleh model regresi Poisson standar. Oleh karena itu, penelitian ini 

mengusulkan pengembangan model Generalized Poisson Spatial Autoregressive 
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(GPSAR), yang mengintegrasikan kemampuan model Generalized Poisson (GP) 

dalam menangani permasalahan dispersi dengan kemampuan model Spatial 

Autoregressive (SAR) dalam mengakomodasi autokorelasi spasial, guna 

memperoleh hasil penaksiran dan pemodelan yang lebih akurat. Berdasarkan uraian 

tersebut, rumusan masalah dalam penelitian ini dirumuskan sebagai berikut: 

1. Bagaimana bentuk penaksir parameter model GPSAR? 

2. Bagaimana penerapan model GPSAR terhadap jumlah kasus pneumonia tiap 

desa di Kabupaten Tuban? 

Roadmap penelitian disajikan pada Gambar 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gambar 1.2 Roadmap Penelitian 

Keterangan: 

              : yang diteliti 

 

1.3 Tujuan Penelitian 

Berdasarkan rumusan masalah di atas, maka tujuan yang ingin dicapai pada 

penelitian ini sebagai berikut. 

Regresi Poisson 
Overdispersi atau 

underdispersi 

Generalized Poisson 

Regression 

(Famoye et al., 2004) 

Efek pasial 

Poisson Spatial Autoregressive 

(Rohimah, 2015), (Rohimah, 2019), 

(Mohammed, 2025) 

 

Efek spasial 

Generalized Poisson Spatial 

Autoregressive 

Studi Kasus: Jumlah Kasus Pneumonia 

pada Balita Kabupaten Tuban Tahun 

2023 

 

Penelitian Terkait Pneumonia 

(Aulia, 2017), (Watun, dkk., 2020), (Saputri, 2022), (Kurnia, 

dkk., 2023), (Sutikno et al., 2025) 
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1. Mendapatkan bentuk penaksir parameter model GPSAR. 

2. Mendapatkan model GPSAR terhadap jumlah kasus pneumonia tiap desa di 

Kabupaten Tuban. 

1.4 Manfaat Penelitian 

Manfaat penelitian ini terdiri atas dua bidang, yaitu keilmuan dan aplikasi. 

Manfaat keilmuan yang diperoleh adalah pengembangan ilmu statistika dengan 

dikembangkannya model GPSAR yaitu gabungan Generalized Poisson Regression 

dengan menambahkan efek spasial. Manfaat aplikasi adalah mendapatkan model 

GPSAR untuk menganalisis faktor-faktor yang mempengaruhi jumlah kasus 

pneumonia pada balita di Kabupaten Tuban. Hasil penelitian ini dapat dijadikan 

dasar pertimbangan dinas kesehatan di Kabupaten Tuban dalam upaya 

meningkatkan capaian penurunan jumlah pneumonia di Kabupaten Tuban. 

1.5 Batasan Penelitian 

Batasan penelitian diperlukan untuk mendapatkan hasil penelitian yang fokus 

dan maksimal, serta sesuai dengan rentang waktu yang telah direncanakan. 

Batasan-batasan penelitian diantaranya adalah sebagai berikut : 

1. Metode pengujian hipotesis parameter yang digunakan adalah uji MLRT 

untuk pengujian hipotesis secara serentak dan uji Wald untuk pengujian 

hipotesis secara parsial. 

2. Pengujian efek spasial menggunakan alat uji yang berbasis distribusi 

normal. 

3. Pengujian aspek spasial yang di ujikan hanyalah dependensi spasial dengan 

Moran’s I. 
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BAB II 

TINJAUAN PUSTAKA 

Bab ini menyajikan landasan teoretis yang menjadi dasar pengembangan 

model yang diusulkan. Pembahasan dimulai dari model fundamental untuk data 

count, yaitu Regresi Poisson, beserta asumsi equidispersion yang seringkali tidak 

terpenuhi. Sebagai solusi atas keterbatasan tersebut, akan diuraikan konsep GPR 

yang mampu menangani masalah overdispersion. Selanjutnya, akan dibahas 

keterbatasan model non-spasial dalam menganalisis data geografis, yang mengarah 

pada pengenalan model SAR untuk mengakomodasi dependensi spasial. Puncak 

dari tinjauan pustaka ini adalah sintesis dari konsep-konsep tersebut untuk 

membangun kerangka teoretis model GPSAR. Bab ini juga akan melengkapi 

pembahasan dengan konsep-konsep pendukung seperti pembobot spasial, 

pengujian asumsi, dan tinjauan penelitian terdahulu mengenai faktor-faktor yang 

memengaruhi kasus pneumonia pada balita. 

2.1 Regresi Poisson 

Analisis regresi Poisson mengasumsikan bahwa distribusi variabel respon Y 

yang digunakan adalah berdistribusi Poisson. Fungsi kepadatan peluang dengan 

parameter 𝜇 dinyatakan sebagai berikut (Cameron & Trivedi, 2013): 

𝑃(𝑦𝑖|𝜇𝑖) =
𝑒−𝜇𝑖𝜇𝑦𝑖

𝑦𝑖!
; 𝑦𝑖 = 0, 1, … ; 0 ≤ 𝜇 ≤ ∞ (2.1) 

Distribusi Poisson memiliki mean yang sama dengan variance, yaitu 𝐸(𝑦𝑖) =

𝑉(𝑦𝑖) = 𝜇𝑖 , kondisi ini disebut sebagai equidispersion. Pada praktiknya kondisi 

equidispersion tidak selalui terpenuhi, seringkali nilai variance lebih kecil dari 

mean (underdispersion) atau nilai variance lebih besar dari mean (overdispersion). 

2.1.1 Model Regresi Poisson 

Regresi Poisson merupakan salah satu pendekatan yang dapat digunakan 

untuk melakukan analisis data count, dimana model yang terbentuk merupakan 

model non linier (Cameron & Trivedi, 2013). Jika 𝑦𝑖 adalah data dari banyaknya 

suatu kejadian yang terjadi dalam periode waktu dan/atau wilayah tertentu, maka 
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regresi Poisson mengasumsikan 𝑦𝑖  merupakan variabel random berdistribusi 

Poisson. 

Model regresi Poisson merupakan salah satu contoh Generalized Linear 

Model (GLM). Generalized Linear Model terdiri dari tiga komponen yaitu, 

1. komponen random, komponen sistematik, dan link function (McCullagh & 

Nelder, 1989). Komponen random terdiri dari variabel respon 𝒚 dengan nilai 

observasi (𝑦1, 𝑦2, … , 𝑦𝑛)
𝑇 yang independen.  

2. Komponen sistematik untuk kovariat 𝑥𝑖𝑗  dimana 𝑗 = 1, 2, … , 𝑝 menghasilkan 

suatu kombinasi linier variabel prediktor atau linear predictor 𝜼 = 𝑿𝜷 . 𝑿 

adalah matriks dari variabel prediktor dan 𝜷  adalah vektor dari parameter 

model.  

3.  Link function merupakan komponen yang menghubungkan komponen random 

dengan komponen sistematik, 𝐸(𝒚) = 𝜼 = 𝑿𝜷.  

Cara mendapatkan link function untuk model regresi Poisson adalah sebagai 

berikut. 

a) Logaritmakan kedua ruas persamaan (2.1) 

log 𝑃(𝑦𝑖|𝜇𝑖) = log (
𝑒−𝜇𝑖𝜇𝑖

𝑦𝑖

𝑦𝑖
) = −𝜇𝑖 + 𝑦𝑖 log 𝜇𝑖 − log 𝑦𝑖! 

b) Eksponensialkan kedua ruas persamaan yang didapatkan pada tahap (a) 

exp(𝑙𝑜𝑔 𝑃(𝑦𝑖|𝜇𝑖)) = ex p(−𝜇𝑖 + 𝑦𝑖 log 𝜇𝑖 − log 𝑦𝑖 !)  

𝑃(𝑦𝑖|𝜇𝑖) = ex p(−𝜇𝑖 + 𝑦𝑖 log 𝜇𝑖 − log 𝑦𝑖 !)  

c) Menyatakan kembali persamaan yang didapatkan pada tahap (b) dalam bentuk 

umum keluarga distribusi eksponensial. Bentuk umum keluarga distribusi 

eksponensial adalah sebagai berikut: 

𝑃(𝒚, 𝜽, 𝜙) = exp {
𝒚𝜽 − 𝑏(𝜽)

𝑎(𝜙)
+ 𝑐(𝒚,𝜙)} 

(2.2) 

sehingga 

𝑃(𝑦𝑖|𝜇𝑖) = exp(−𝜇𝑖 + 𝑦𝑖 log 𝜇𝑖 − log 𝑦𝑖 !) 

𝑃(𝑦𝑖|𝜇𝑖) = exp(𝑦𝑖 log 𝜇𝑖 − 𝜇𝑖 − log 𝑦𝑖 !) 
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Jadi, link function untuk model regresi Poisson adalah log(
𝑖
), sehingga model 

yang terbentuk adalah: 

Log(𝜇𝑖) = 𝛽0 + 𝛽1𝑥1𝑖 +⋯+ 𝛽𝑝𝑥𝑝𝑖 

𝜇𝑖 = exp(𝛽0 + 𝛽1𝑥1𝑖 +⋯+ 𝛽𝑝𝑥𝑝𝑖) , 𝑖 = 1, 2, … , 𝑛 

atau jika dinyatakan dalam bentuk vektor menjadi 

log(𝜇𝑖)  = 𝒙𝑖
𝑇𝜷  

𝜇𝑖 = exp(𝒙𝑖
𝑇𝜷) (2.3) 

dengan, 

𝒙𝑖 (𝑝+1)×1 = [1 𝑥1𝑖 ⋯ 𝑥𝑝𝑖]𝑇 

𝜷(𝑝+1)×1 = [𝛽0 𝛽1 ⋯ 𝛽𝑝]𝑇  

2.1.2 Estimasi Parameter 

Salah satu metode yang dapat digunakan untuk menaksir parameter regresi 

Poisson adalah Maximum Likelihood Estimation (MLE). Adapun langkah – langkah 

dari penaksiran parameter Regresi Poisson adalah sebagai berikut: 

1. Menyusun fungsi likelihood untuk regresi Poisson. 

𝐿(𝜇𝑖) =∏𝑃(𝑦𝑖|𝜇𝑖)

𝑛

𝑖=1

 
 

 
=∏(

𝜇𝑖
𝑦𝑖 exp(−𝜇𝑖)

𝑦𝑖!
)

𝑛

𝑖=1

 
 

 
=
∏ 𝜇𝑖

𝑦𝑖 exp(−𝜇𝑖)
𝑛
𝑖=1

∏ 𝑦𝑖!
𝑛
𝑖=1

 
(2.4) 

 

2. Menyusun fungsi ln likelihood. 

ℓ(𝜇𝑖)  = ∑𝑦𝑖 ln(𝜇𝑖)

𝑛

𝑖=1

−∑𝜇𝑖

𝑛

𝑖=1

−∑ln(𝑦𝑖!)

𝑛

𝑖=1

 (2.5) 

Jika 𝜇𝑖 = exp(𝒙𝑖
𝑇𝜷), maka fungsi ln likelihood yang terbentuk: 

ℓ(𝜷) =∑𝑦𝑖 ln(exp(𝒙𝑖
𝑇𝜷))

𝑛

𝑖=1

−∑exp(𝒙𝑖
𝑇𝜷)

𝑛

𝑖=1

−∑ln(𝑦𝑖!)

𝑛

𝑖=1
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=∑[𝑦𝑖(𝒙𝑖

𝑇𝜷) − exp(𝒙𝑖
𝑇𝜷) − ln(𝑦𝑖!)]

𝑛

𝑖=1

 
(2.6) 

 

3. Menurunkan fungsi ln likelihood terhadap parameter yang ditaksir, yaitu 𝜷. 

Kemudian, hasil penurunan tersebut disamakan dengan nol. 

𝜕(ℓ(𝜷))

𝜕𝜷
  =
𝜕(∑ [𝑦𝑖(𝒙𝑖

𝑇𝜷) − exp(𝒙𝑖
𝑇𝜷) − ln(𝑦𝑖!)]

𝑛
𝑖=1 )

𝜕𝜷
 

 

0  = ∑[𝑦𝑖𝒙𝑖 − 𝒙𝑖 exp(𝒙𝑖
𝑇𝜷)]

𝑛

𝑖=1

 (2.7) 

Solusi yang didapatkan dari persamaan turunan pertama ln likelihood tidak 

memiliki bentuk closed-form, estimasi parameter harus dilakukan melalui prosedur 

iterasi numerik. Metode iterasi numerik yang digunakan dalam penelitian ini adalah 

algoritma Berndt-Hall-Hall-Hausman (BHHH). Metode BHHH dipilih karena 

metode ini memanfaatkan informasi dari gradien turunan pertama untuk 

mengaproksimasi matriks Hessian, sehingga menghindari turunan kedua yang 

kompleks. Adapun prosedur iterasi BHHH didefinisikan melalui langkah-langkah 

berikut. 

Definisi: 

Misalkan 𝜷((𝑝+1)×1) = [𝛽0 𝛽1…𝛽𝑝]
𝑇

 adalah vektor parameter yang akan di 

estimasi, ℓ𝑖(𝜷) adalah ln likelihood  untuk observasi ke-i, dimana 𝑖 = 1, 2, … , 𝑛. 

Fungsi ln likelihood total adalah ∑ ℓ𝑖(𝜷)
𝑛
𝑖=1  

Inisialisasi: 

1. Menentukan nilai awal parameter 𝜷(0) . Nilai awal parameter menentukan 

kecepatan tercapainya konvergensi pada proses iterasi. Idealnya nilai awal 

parameter untuk model regresi Poisson adalah 0 untuk semua parameter. 

2. Menentukan toleransi konvergensi 𝜖 > 0 yang mana dalam penelitian ini 10−3 

menjadi batas toleransi konvergensi. 

3. Menentukan batas maksimum iterasi (𝑚𝑚𝑎𝑘𝑠).  Misalkan 𝑚𝑚𝑎𝑘𝑠  yang 

ditetapkan adalah 1000. Ketika iterasi tidak mencapai konvergensi pada iterasi 

ke-1000 maka proses iterasi akan berhenti walaupun konvergensi belum tercapai. 

4. Menentukan set iterasi awal adalah 𝑘 = 0. 



 

 

11 

 

Prosedur Iterasi: 

Langkah 1: Menghitung vektor gradien individu untuk setiap observasi 𝑖 =

1, 2, … , 𝑛. 

ℊ𝑖(𝜷
(𝑘)) =

𝜕ℓ𝑖(𝜷)

𝜕𝜷
|
𝜷=𝜷(𝑘)

 

Langkah 2: Menghitung penjumlahan gradien seluruh sampel. 

𝓰(𝜷(𝑘)) =∑ℊ𝑖(𝜷
(𝑘))

𝒏

𝒊=𝟏

 

Langkah 3: Mengaproksimasi matriks Hessian menggunakan informasi vektor 

gradien individu. Misalkan 𝑯∗adalah aproksimasi matriks Hessian, maka 

𝑯∗(𝜷(𝑘)) = −∑ℊ𝑖(𝜷
(𝑘))ℊ𝑖(𝜷

(𝑘))
𝑇

𝒏

𝒊=𝟏

 

Langkah 4: Memperbaharui nilai parameter menggunakan arah BHHH. 

𝜷(𝑘+1) = 𝜷(𝑘) −𝑯∗−1(𝜷(𝑘))𝓰(𝜷(𝑘)) 

Langkah 5: Mengevaluasi konvergensi dengan melihat kondisi berikut. 

‖𝜷(𝑘+1) − 𝜷(𝑘)‖ ≤ 𝜖 

Jika iterasi BHHH belum mencapai kondisi konvergen, set 𝑘 = 𝑘 + 1 dan kembali 

ke langkah 1. Jika kondisi konvergen telah tercapai, maka 𝜷(𝑘+1) adalah estimator 

dari 𝜷̂. 

2.1.3 Pengujian Hipotesis 

Pengujian hipotesis dapat dilakukan dengan menggunakan metode MLRT. 

Pengujian hipotesis pada model regressi Poisson dilakukan dengan dua tahap yaitu 

pengujian hipotesis secara serentak dan pengujian hipotesis secara parsial. Untuk 

pengujian hipotesis secara serentak memiliki hipotesis sebagai berikut. 

𝐻0 ∶  𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0 

𝐻1 ∶  minimal ada satu 𝛽𝑘 ≠ 0, 𝑘 = 1, 2, … , 𝑝 

Statistik uji yang digunakan adalah sebagai berikut: 

𝐺2 = −2 ln [
𝐿(𝝎̂)

𝐿(𝛀̂)
] = −2[ℓ(𝝎̂) − ℓ(𝛀̂)]  
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Pada persamaan diatas ℓ(𝝎̂)  yaitu fungsi ln likelihood dari himpunan 

parameter di bawah 𝐻0  dan ℓ(𝛀̂)  yaitu fungsi ln likelihood dari himpunan 

parameter dibawah populasi. Himpunan parameter di bawah 𝐻0 adalah 𝝎 = {𝛽0𝜔}  

dan himpunan parameter dibawah populasi adalah 𝛀 = {𝛽0, 𝛽1, … , 𝛽𝑝} . Bentuk 

fungsi likelihood  dan ln likelihood dari 𝝎̂ = {𝛽̂0} yaitu: 

𝐿(𝝎̂) 
=∏(

exp(𝛽̂0𝜔)
𝑦𝑖
exp(−ex p(𝛽̂0𝜔))

𝑦𝑖!
)

𝑛

𝑖=1

 
 

 

=
∏ exp(𝛽̂0𝜔)

𝑦𝑖
exp(−exp(𝛽̂0𝜔)

𝑦𝑖
)𝑛

𝑖=1

∏ 𝑦𝑖!
𝑛
𝑖=1

 

 

ℓ(𝝎̂) =∑𝑦𝑖 ln(exp(𝛽̂0𝜔))

𝑛

𝑖=1

−∑exp(𝛽̂0𝜔)

𝑛

𝑖=1

−∑ln(𝑦𝑖!)

𝑛

𝑖=1

  

 =∑[𝑦𝑖(𝛽̂0𝜔) − exp(𝛽̂0𝜔) − ln(𝑦𝑖!)]

𝑛

𝑖=1

 (2.8) 

Kemudian bentuk fungsi likelihood dan ln likelihood dari himpunan parameter di 

bawah 𝛀̂ = {𝛽̂0, 𝛽̂1, … , 𝛽̂𝑝} yaitu: 

𝐿(𝛀̂) =∏(
exp(𝒙𝑖

𝑇𝜷̂)
𝑦𝑖
exp(− exp(𝒙𝑖

𝑇𝜷̂))

𝑦𝑖!
)

𝑛

𝑖=1

 
 

 

=
∏ exp(𝒙𝑖

𝑇𝜷̂)
𝑦𝑖
exp(− exp(𝒙𝑖

𝑇𝜷̂)
𝑦𝑖
)𝑛

𝑖=1

∏ 𝑦𝑖!
𝑛
𝑖=1

 

 

ℓ(𝛀̂) =∑𝑦𝑖 ln(exp(𝒙𝑖
𝑇𝜷̂))

𝑛

𝑖=1

−∑exp(𝒙𝑖
𝑇𝜷̂)

𝑛

𝑖=1

−∑ln(𝑦𝑖!)

𝑛

𝑖=1

 
 

 
=∑[𝑦𝑖(𝒙𝑖

𝑇𝜷̂) − exp(𝒙𝑖
𝑇𝜷̂) − ln(𝑦𝑖!)]

𝑛

𝑖=1

 (2.9) 

Dari persamaan (2.8) dan (2.9) selanjutnya diperoleh nilai G dengan bentuk sebagai 

berikut: 

𝐺2 = −2 ln [
𝐿(𝝎̂)

𝐿(𝛀̂)
] = −2[ℓ(𝝎̂) − ℓ(𝛀̂)]  

𝐺2 = −2[∑ [𝑦𝑖(𝛽̂0𝜔) − exp(𝛽̂0𝜔) − ln(𝑦𝑖!)]
𝑛
𝑖=1 − ∑ [𝑦𝑖(𝒙𝑖

𝑇𝜷̂) −𝑛
𝑖=1

exp(𝒙𝑖
𝑇𝜷̂) − ln(𝑦𝑖!)]]  
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𝐺2 = 2[∑ [𝑦𝑖(𝒙𝑖
𝑇𝜷̂) − exp(𝒙𝑖

𝑇𝜷̂) − ln(𝑦𝑖!)]
𝑛
𝑖=1 − ∑ [𝑦𝑖(𝛽̂0𝜔) −

𝑛
𝑖=1

exp(𝛽̂0𝜔) − ln(𝑦𝑖!)]  

 (2.10) 

Nilai 𝐺2 dibandingkan dengan distribusi 𝜒(𝑝)
2  dimana 𝐻0 akan ditolak jika nilai dari 

statistik 𝐺2 > 𝜒(𝛼;𝑝)
2  dengan 𝛼 adalah taraf signifikan yang digunakan. 

Kemudian jika didapat keputusan tolak 𝐻0  maka selanjutnya dilakukan 

pengujian parsial terhadap masing-masing parameter yang bertujuan untuk 

mengetahui parameter mana yang berpengaruh signifikan terhadap variabel respon 

secara individual. Statistik uji yang digunakan untuk uji parsial yaitu uji Wald 

dimana saat dibawah 𝐻0  maka 𝛽𝑘  sama dengan nol. Hipotesis dalam pengujian 

parsial adalah sebagai berikut. 

𝐻0 ∶  𝛽𝑘 = 0  

𝐻1 ∶  𝛽𝑘 ≠ 0; 𝑘 = 1, 2, … , 𝑘, … , 𝑝  

Untuk ukuran sampel yang cukup besar, penaksir 𝛽𝑘 terdistribusi mendekati 

distribusi normal dengan rata-rata 𝛽𝑘 dan varians 𝛽𝑘 adalah elemen diagonal dari 

−𝑯∗−1(𝜷̂) sehingga diperoleh 𝑠𝑒(𝛽̂𝑘) = √𝑉𝑎𝑟̂(𝛽̂𝑘). Statistik uji Wald di bawah 

𝐻0 adalah seperti pada persamaan (2.11). 

𝑊𝑘 = (
𝛽̂𝑘

𝑠𝑒(𝛽̂𝑘)
)

2

 
(2.11) 

Nilai 𝑊𝑘  dibandingkan dengan distribusi 𝜒(1)
2  dimana 𝐻0  akan ditolak jika 

nilai dari statistik 𝑊𝑘 > 𝜒(𝛼;1)
2  dengan 𝛼 adalah taraf signifikan yang digunakan. 

2.2 Pengujian Equidipersion 

Pada regresi Poisson, terdapat kondisi yang perlu dipenuhi, yaitu kondisi 

equidispersion. Kondisi equidispersion dapat dipenuhi jika nilai variansi sama 

dengan nilai rata-rata. Salah satu metode pengujian yang dapat digunakan untuk 

mengetahui adanya kasus overdispersion adalah uji Deviance. Langkah-langkah 

pengujian adalah sebagai berikut: 

𝐻0:
𝑉(𝒚)

𝐸(𝒚)
= 1 (𝐸𝑞𝑢𝑖𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛) 



14 

 

𝐻1:
𝑉(𝒚)

𝐸(𝒚)
≠ 1  (Terjadi kasus 𝑜𝑣𝑒𝑟𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 atau 𝑢𝑛𝑑𝑒𝑟𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛) 

Statistik uji (Hilbe, 2014): 

𝐷 = 2∑(𝑦𝑖 ln (
𝑦𝑖
𝜇̂𝑖
) − (𝑦𝑖 − 𝜇̂𝑖))

𝑛

𝑖=1

 

dengan 𝜇̂𝑖 = 𝑒
𝒙𝑖
𝑇𝜷̂. 

Tolak 𝐻0 jika 𝐷 > 𝜒𝛼,𝑛−(𝑝+1)
2 . Kasus overdispersion terjadi ketika nilai dari 

deviance (D) dibagi dengan derajat bebas lebih besar dari 1, sedangkan kasus 

underdispersion terjadi jika nilai dari deviance (D) dibagi dengan derajat bebas 

lebih kecil dari 1. 

2.3 Distribusi Generalized Poisson 

Generalized Poisson (GP) memiliki dua parameter, yaitu 𝜇  dan 𝜙  sebagai 

parameter dispersi. Jika 𝜙 = 0, maka terdapat kondisi equidispersion. Jika 𝜙 < 0, 

maka terdapat kasus underdispersion dan jika 𝜙 > 0 , maka terdapat kasus 

overdispersion (Famoye et al., 2004). Misalkan 𝑦𝑖~𝐺𝑃(𝜇𝑖, 𝜙) dengan 𝑖 = 1, 2, … ,

𝑛  merupakan sampel random maka fungsi distribusi peluang dari distribusi 

Generalized Poisson (GP) sebagai berikut (Noriszura, et al., 2005): 

𝑃(𝑦𝑖|𝜇𝑖, 𝜙) = [
𝜇𝑖

1 +  𝜙𝜇𝑖
]
𝑦𝑖 (1 +  𝜙𝑦𝑖)

𝑦𝑖−1

𝑦𝑖!
exp (−

𝜇𝑖(1 +  𝜙𝑦𝑖)

1 +  𝜙𝜇𝑖
) , 𝑦𝑖 = 0, 1, 2, … 

(2.13) 

dimana rata – rata dan variansi dari 𝑦𝑖  adalah 𝐸(𝑦𝑖) = 𝜇𝑖  dan 𝑉(𝑦𝑖) = 𝜇𝑖(1 +

 𝜙𝜇𝑖)
2. 

2.3.1 Generalized Poisson Regression (GPR) 

Pada regresi Poisson terdapat beberapa asumsi yang harus dipenuhi, yaitu 

variabel respon harus berdistribusi Poisson, tidak terjadi multikolinearitas antar 

variabel prediktor, serta memiliki rata – rata dan variansi yang sama dari variabel 

respon. Namun, pada umumnya sering terjadi kasus dimana rata-rata dari variabel 

respon lebih besar daripada variansinya atau rata-rata lebih kecil daripada 

variansinya. Jika terjadi underdispersion dan overdispersion, maka dapat 

menyebabkan regresi Poisson tidak dapat digunakan. Salah satu pendekatan yang 

(2.12) 
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dapat digunakan sebagai salah satu alternatif untuk mengatasi kasus tersebut adalah 

Generalized Poisson Regression (GPR). 

GPR adalah Generalized Linear Model (GLM), sehingga untuk mendapatkan 

link function dari model GPR dilakukan langkah – langkah berikut. 

a. Logaritmakan kedua ruas persamaan (2.9). 

log(𝑓(𝑦𝑖|𝜇𝑖, 𝜙)) = log ([
𝜇𝑖

1 +  𝜙𝜇𝑖
]
𝑦𝑖 (1 +  𝜙𝑦𝑖)

𝑦𝑖−1

𝑦𝑖!
exp (−

𝜇𝑖(1 +  𝜙𝑦𝑖)

1 +  𝜙𝜇𝑖
)) 

log(𝑓(𝑦𝑖|𝜇𝑖, 𝜙)) = log [
𝜇𝑖

1 +  𝜙𝜇𝑖
]
𝑦𝑖

+ log
(1 +  𝜙𝑦𝑖)

𝑦𝑖−1

𝑦𝑖!
 

    + log exp(−
𝜇𝑖(1 +  𝜙𝑦𝑖)

1 +  𝜙𝜇𝑖
) 

 = 𝑦𝑖 log 𝜇𝑖 − 𝑦𝑖 log(1 +  𝜙𝑦𝑖) + (𝑦𝑖 − 1) log(1 +  𝜙𝑦𝑖) 

     − log(𝑦𝑖!) −
𝜇𝑖(1 +  𝜙𝑦𝑖)

1 +  𝜙𝜇𝑖
 

 

 
= 𝑦𝑖 log 𝜇𝑖 + log

(1 +  𝜙𝑦𝑖)
𝑦𝑖−1

(1 +  𝜙𝑦𝑖)𝑦𝑖
− log(𝑦𝑖!) −

𝜇𝑖(1 +  𝜙𝑦𝑖)

1 +  𝜙𝜇𝑖
 

b. Eksponensialkan kedua ruas persamaan yang didapatkan pada tahap (a) 

exp{𝑙𝑜𝑔(𝑓(𝑦𝑖|𝜇𝑖, 𝜙))} =
1

𝑦𝑖!
exp

{
 
 

 
 𝑦𝑖 𝑙𝑜𝑔 𝜇𝑖 + 𝑙𝑜𝑔

(1 +  𝜙𝑦𝑖)
𝑦𝑖−1

(1 +  𝜙𝑦𝑖)𝑦𝑖

−
𝜇𝑖(1 +  𝜙𝑦𝑖)

1 +  𝜙𝜇𝑖 }
 
 

 
 

 

 

=
1

𝑦𝑖!

(1 +  𝜙𝑦𝑖)
𝑦𝑖−1

(1 +  𝜙𝑦𝑖)𝑦𝑖
exp{

𝑦𝑖 𝑙𝑜𝑔 𝜇𝑖

−
𝜇𝑖(1 +  𝜙𝑦𝑖)

1 +  𝜙𝜇𝑖

} 

 

c. Menyatakan kembali persamaan yang didapatkan pada tahap (b) dalam bentuk 

umum keluarga distribusi eksponensial. Bentuk umum keluarga distribusi 

eksponensial adalah sebagai berikut: 

 

𝑃(𝒚, 𝜽, 𝜙) = exp {
𝒚𝜽 − 𝑏(𝜽)

𝑎(𝜙)
+ 𝑐(𝒚,𝜙)} 
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sehingga 

𝑃(𝑦𝑖|𝜇𝑖, 𝜙) =
1

𝑦𝑖

(1 +  𝜙𝑦𝑖)
𝑦𝑖−1

(1 +  𝜙𝑦𝑖)𝑦𝑖
exp {𝑦𝑖 𝑙𝑜𝑔 𝜇𝑖 −

𝜇𝑖(1 +  𝜙𝑦𝑖)

1 +  𝜙𝜇𝑖
} 

Jadi, dapat diketahui bahwa link function untuk model GPR adalah 𝑙𝑜𝑔(
𝑖
) 

sehingga bentuk umum dari model GPR adalah: 

log(𝜇𝑖)  = 𝛽0 + 𝛽1𝑥1𝑖 +⋯+ 𝛽𝑝𝑥𝑝𝑖 

𝜇𝑖  = exp(𝛽0 + 𝛽1𝑥1𝑖 +⋯+ 𝛽𝑝𝑥𝑝𝑖) , 𝑖 = 1, 2, … , 𝑛 

atau 

log(𝜇𝑖)  = 𝒙𝑖
𝑇𝜷  

𝜇𝑖 = exp(𝒙𝑖
𝑇𝜷) (2.14) 

Dengan, 

𝒙𝑖 (𝑝+1)×1 = [1 𝑥1𝑖 ⋯ 𝑥𝑝𝑖]𝑇 

𝜷(𝑝+1)×1 = [𝛽0 𝛽1 ⋯ 𝛽𝑝]𝑇 

2.3.2 Penaksir Parameter 

Penaksiran parameter dari model GPR dapat dilakukan dengan Maximum 

Likelihood Estimation (MLE). Adapun langkah – langkah dari penaksiran 

parameter tersebut adalah sebagai berikut: 

1. Menyusun fungsi likelihood untuk regresi Poisson. 

𝐿(𝜇𝑖, 𝜙) =∏𝑓(𝑦𝑖|𝜇𝑖 , 𝜙)

𝑛

𝑖=1

 
 

 
=∏[

𝜇𝑖
1 +  𝜙𝜇𝑖

]
𝑦𝑖 (1 +  𝜙𝑦𝑖)

𝑦𝑖−1

𝑦𝑖!
exp (−

𝜇𝑖(1 +  𝜙𝑦𝑖)

1 +  𝜙𝜇𝑖
)

𝑛

𝑖=1

 
(2.15) 

2. Menyusun fungsi ln likelihood. 

 

ℓ(𝜇𝑖, 𝜙) = ln (∏[
𝜇𝑖

1 +  𝜙𝜇𝑖
]
𝑦𝑖 (1 +  𝜙𝑦𝑖)

𝑦𝑖−1

𝑦𝑖!
exp (−

𝜇𝑖(1 +  𝜙𝑦𝑖)

1 +  𝜙𝜇𝑖
)

𝑛

𝑖=1

)  

Jika 𝜇𝑖 = exp(𝒙𝑖
𝑇𝜷), maka fungsi ln likelihood yang terbentuk: 
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ℓ(𝜷, 𝜙)  = ln

(

 
 
∏

[
exp(𝒙𝑖

𝑇𝜷)

1 + 𝜙 exp(𝒙𝑖
𝑇𝜷)

]

𝑦𝑖 (1 +  𝜙𝑦𝑖)
𝑦𝑖−1

𝑦𝑖!

exp (−
exp(𝒙𝑖

𝑇𝜷) (1 +  𝜙𝑦𝑖)

1 + 𝜙 exp(𝒙𝑖
𝑇𝜷)

)

𝑛

𝑖=1

)

 
 

 

 

 

 = ∑[

𝑦𝑖𝒙𝑖
𝑇𝜷− 𝑦𝑖 ln(1 + 𝜙 exp(𝒙𝑖

𝑇𝜷)) + (𝑦𝑖 − 1) ln(1 +  𝜙𝑦𝑖)

− ln 𝑦𝑖! −
exp(𝒙𝑖

𝑇𝜷) (1 +  𝜙𝑦𝑖)

1 + 𝜙 exp(𝒙𝑖
𝑇𝜷)

]

𝑛

𝑖=1

  

 (2.16)  

3. Menurunkan fungsi ln likelihood terhadap parameter yang ditaksir, yaitu 𝜷 dan 

𝜙. Kemudian, hasil penurunan tersebut disamakan dengan nol. 

𝜕 ℓ(𝜷,𝜙)

𝜕𝜷
 =∑

[
 
 
 
 
 
 
 𝒙𝑖

𝑇𝑦𝑖 −
𝑦𝑖𝜙 exp(𝒙𝑖

𝑇𝜷)

(1 + 𝜙 exp(𝒙𝑖
𝑇𝜷))

−(1 + 𝜙yi)

(

 
 

𝒙𝑖
𝑇 exp(𝒙𝑖

𝑇𝜷)

(1 + 𝜙 exp(𝒙𝑖
𝑇𝜷))

−
𝜙𝒙𝑖

𝑇 exp(2𝒙𝑖
𝑇𝜷)

(1 + 𝜙 exp(𝒙𝑖
𝑇𝜷))2)

 
 
 

]
 
 
 
 
 
 
 

𝑛

𝑖=1

 

 (2.17) 

𝜕 ℓ(𝜷,𝜙)

𝜕𝜙
 =∑

[
 
 
 
 

𝑦𝑖𝜙 exp(𝒙𝑖
𝑇𝜷)

(1 + 𝜙 exp(𝒙𝑖
𝑇𝜷))

+
𝑦𝑖(𝑦𝑖 − 1)

(1 + 𝜙yi)

− exp(𝒙𝑖
𝑇𝜷)(

𝑦𝑖
(1 + 𝜙 exp(𝒙𝑖

𝑇𝜷))
−
(1 + 𝜙yi) exp(𝒙𝑖

𝑇𝜷)

(1 + 𝜙 exp(𝒙𝑖
𝑇𝜷))2

) 
]
 
 
 
 𝑛

𝑖=1

 

 (2.18) 

Solusi yang didapatkan dari persamaan turunan pertama ln likelihood tidak 

memiliki bentuk closed-form, sehingga estimasi parameter harus dilakukan melalui 

prosedur iterasi numerik. Metode iterasi numerik yang digunakan dalam penelitian 

ini adalah algoritma BHHH. Metode BHHH dipilih karena metode ini 

memanfaatkan informasi dari gradien turunan pertama untuk mengaproksimasi 

matriks Hessian, sehingga menghindari turunan kedua yang kompleks. Adapun 

prosedur iterasi BHHH didefinisikan melalui langkah-langkah berikut. 

Definisi: Misalkan 𝜽((𝑝+2)×1) = [𝛽0 𝛽1…𝛽𝑝 𝜙]
𝑇

 adalah vektor parameter yang 

akan di estimasi, ℓ𝑖(𝜽)  adalah ln likelihood  untuk observasi ke-i, dimana 𝑖 =

1, 2, … , 𝑛. Fungsi ln likelihood total adalah ∑ ℓ𝑖(𝜽)
𝑛
𝑖=1  
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Inisialisasi: 

1. Menentukan nilai awal parameter 𝜽(0) . Nilai awal parameter menentukan 

kecepatan tercapainya konvergensi pada proses iterasi. Idealnya nilai awal 

parameter untuk model Generalized Poisson Regression adalah nilai hasil 

estimasi parameter regresi Poisson. 

2. Menentukan toleransi konvergensi 𝜖 > 0 yang mana dalam penelitian ini 10−6 

menjadi batas toleransi konvergensi. 

3. Menentukan batas maksimum iterasi (𝑚𝑚𝑎𝑘𝑠) . Misalkan 𝑚𝑚𝑎𝑘𝑠  yang 

ditetapkan adalah 1000. Ketika iterasi tidak mencapai konvergensi pada iterasi 

ke-1000 maka proses iterasi akan berhenti walaupun konvergensi belum tercapai. 

4. Menentukan set iterasi awal adalah 𝑘 = 0. 

Prosedur Iterasi: 

Langkah 1: Menghitung vektor gradien individu untuk setiap observasi 𝑖 =

1, 2, … , 𝑛. 

ℊ𝑖(𝜽
(𝑘)) =

𝜕ℓ𝑖(𝜽)

𝜕𝜽
|
𝜽=𝜽(𝑘)

 

Langkah 2: Menghitung penjumlahan gradien seluruh sampel. 

𝓰(𝜽(𝑘)) =∑ℊ𝑖(𝜽
(𝑘))

𝒏

𝒊=𝟏

 

Langkah 3: Mengaproksimasi matriks Hessian menggunakan informasi vektor 

gradien individu. Misalkan 𝑯∗adalah aproksimasi matriks Hessian, maka 

𝑯∗(𝜽(𝑘)) = −∑ℊ𝑖(𝜽
(𝑘))ℊ𝑖(𝜽

(𝑘))
𝑇

𝒏

𝒊=𝟏

 

Langkah 4: Memperbaharui nilai parameter menggunakan arah BHHH. 

𝜽(𝑘+1) = 𝜽(𝑘) −𝑯∗−1(𝜽(𝑘))𝓰(𝜽(𝑘)) 

Langkah 5: Mengevaluasi konvergensi dengan melihat kondisi berikut. 

‖𝜽(𝑘+1) − 𝜽(𝑘)‖ ≤ 𝜖 

Jika iterasi BHHH belum mencapai kondisi konvergen, set 𝑘 = 𝑘 + 1 dan kembali 

ke langkah 1. Jika kondisi konvergen telah tercapai, maka 𝜽(𝑘+1) adalah estimator 

dari 𝜽̂. 
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2.3.3 Pengujian Hipotesis 

Pengujian hipotesis dapat dilakukan dengan menggunakan metode MLRT. 

Pengujian hipotesis pada model regressi Poisson dilakukan dengan dua tahap yaitu 

pengujian hipotesis secara serentak dan pengujian hipotesis secara parsial. 

Pengujian parameter regresi secara serentak dapat menggunakan Likelihood ratio 

Test. Untuk pengujian hipotesis secara serentak memiliki hipotesis sebagai berikut. 

𝐻0 ∶  𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0 

𝐻1 ∶  minimal ada satu 𝛽𝑘 ≠ 0, 𝑘 = 1, 2, … , 𝑝   

Statistik uji yang digunakan adalah sebagai berikut: 

𝐺2 = −2 ln [
𝐿(𝛚̂)

𝐿(𝛀̂)
] = −2[ℓ(𝛚̂) − ℓ(𝛀̂)]  

Pada persamaan diatas ℓ(𝛚̂)  adalah fungsi likelihood dari himpunan 

parameter di bawah H0  dan ℓ(𝛀̂)  adalah fungsi likelihood dari himpunan 

parameter dibawah populasi. Himpunan parameter dibawah 𝐻0 adalah 𝝎 = {𝛽0, 𝜙} 

dan himpunan parameter dibawah populasi adalah 𝛀 = {𝛽0, 𝛽1, … , 𝛽𝑝, 𝜙}. Bentuk 

fungsi likelihood dan ln likelihood dari 𝛚̂ = {𝛽̂0𝜔, 𝜙̂} yaitu: 

𝐿(𝛚̂) =∏[
exp(𝛽̂0𝜔)

1 + 𝜙 exp(𝛽̂0𝜔)
]

𝑦𝑖 (1 +  𝜙𝑦𝑖)
𝑦𝑖−1

𝑦𝑖!
exp (−

exp(𝛽̂0𝜔) (1 +  𝜙𝑦𝑖)

1 + 𝜙 exp(𝛽̂0𝜔)
)

𝑛

𝑖=1

 

ℓ(𝛚̂) =∑[

𝑦𝑖𝛽̂0𝜔 − 𝑦𝑖 ln(1 + 𝜙 exp(𝛽̂0𝜔)) + (𝑦𝑖 − 1) ln(1 +  𝜙𝑦𝑖)

− ln 𝑦𝑖! −
exp(𝛽̂0𝜔) (1 +  𝜙𝑦𝑖)

1 + 𝜙 exp(𝛽̂0𝜔)

]

𝑛

𝑖=1

 

 (2.19) 

Kemudian bentuk fungsi likelihood dan ln likelihood dari himpunan 

parameter di bawah 𝛀̂ = {𝛽̂0, 𝛽̂1, … , 𝛽̂𝑝, 𝜙̂} yaitu: 

𝐿(𝛀̂) =∏[
ex p(𝒙𝑖

𝑇𝜷̂)

1 + 𝜙ex p(𝒙𝑖
𝑇𝜷̂)

]

𝑦𝑖 (1 +  𝜙𝑦𝑖)
𝑦𝑖−1

𝑦𝑖!
exp (−

exp(𝒙𝑖
𝑇𝜷̂) (1 +  𝜙𝑦𝑖)

1 + 𝜙ex p(𝒙𝑖
𝑇𝜷̂)

)

𝑛

𝑖=1

 

ℓ(𝛀̂) =∑[

𝑦𝑖𝒙𝑖
𝑇𝜷̂ − 𝑦𝑖 ln(1 + 𝜙ex p(𝒙𝑖

𝑇𝜷̂)) + (𝑦𝑖 − 1) ln(1 +  𝜙𝑦𝑖)

− ln 𝑦𝑖! −
ex p(𝒙𝑖

𝑇𝜷̂) (1 +  𝜙𝑦𝑖)

1 + 𝜙 exp(𝒙𝑖
𝑇𝜷̂)

]

𝑛

𝑖=1

 

 (2.20) 
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Dari persamaan (2.19) dan (2.20) selanjutnya diperoleh nilai G dengan 

penjabaran sebagai berikut: 

𝐺 = −2 ln [
𝐿(𝛚̂)

𝐿(𝛀̂)
] = −2[ℓ(𝛚̂) − ℓ(𝛀̂)] 

 

= 2

[
 
 
 
 
 
 
 

∑

(

 
 
 
 
 [

𝑦𝑖𝒙𝑖
𝑇𝜷̂ − 𝑦𝑖 ln(1 + 𝜙 exp(𝒙𝑖

𝑇𝜷̂)) + (𝑦𝑖 − 1) ln(1 +  𝜙𝑦𝑖)

− ln 𝑦𝑖! −
exp(𝒙𝑖

𝑇𝜷̂) (1 +  𝜙𝑦𝑖)

1 + 𝜙 exp(𝒙𝑖
𝑇𝜷̂)

]

− [

𝑦𝑖𝛽̂0 − 𝑦𝑖 ln(1 + 𝜙 exp(𝛽̂0)) + (𝑦𝑖 − 1) ln(1 +  𝜙𝑦𝑖)

− ln 𝑦𝑖! −
exp(𝛽̂0) (1 +  𝜙𝑦𝑖)

1 + 𝜙 exp(𝒙𝑖
𝑇𝜷̂)

]

)

 
 
 
 
 

𝑛

𝑖=1

]
 
 
 
 
 
 
 

 

 (2.21)  

Tolak H0 jika 𝐺2 > 𝜒(𝛼;𝑝)
2 . 

Kemudian jika didapat keputusan tolak 𝐻0 selanjutnya dilakukan pengujian 

parsial terhadap parameter yang bertujuan untuk mengetahui parameter mana saja 

yang berpengaruh signifikan terhadap variabel respon secara individual. Statistik 

uji yang digunakan untuk uji parsial yaitu uji Wald dimana saat dibawah 𝐻0 maka 

𝛽𝑘 sama dengan nol. Hipotesis dalam pengujian parsial adalah sebagai berikut. 

𝐻0 ∶  𝛽𝑘 = 0  

𝐻1 ∶  𝛽𝑘 ≠ 0; 𝑘 = 1, 2, … , 𝑘, … , 𝑝  

Untuk ukuran sampel yang cukup besar, penaksir 𝛽𝑘 terdistribusi mendekati 

distribusi normal dengan rata-rata 𝛽𝑘 dan varians 𝛽𝑘 adalah elemen diagonal dari 

−𝑯∗−1(𝜷̂) sehingga diperoleh 𝑠𝑒(𝛽̂𝑘) = √𝑉𝑎𝑟̂(𝛽̂𝑘). Statistik uji Wald di bawah 

𝐻0 adalah seperti pada persamaan (2.22). 

𝑊𝑘 = (
𝛽̂𝑘

𝑠𝑒(𝛽̂𝑘)
)

2

 
(2.22) 

Nilai 𝑊𝑘  dibandingkan dengan distribusi 𝜒(1)
2  dimana H0  akan ditolak jika 

nilai dari statistik 𝑊𝑘 > 𝜒(𝛼;1)
2  dengan 𝛼 adalah taraf signifikan yang digunakan.  

2.4 Analisis Spasial 

Spasial merupakan hal – hal yang berhubungan dengan aspek kewilayahan, 

sedangkan data spasial adalah data yang observasinya merupakan suatu lokasi atau 
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wilayah. Keterkaitan antar wilayah sering kali dipengaruhi oleh lokasi yang saling 

berdekatan, sehingga diperlukan analisis spasial untuk mengetahui pengaruh 

hubungan antara lokasi dengan respon. 

2.5 Poisson Spatial Autoregressive 

Pengembangan model spasial telah banyak dilakukan, salah satunya adalah 

pengembangan model spasial untuk data count. Jika fungsi link Poisson Spatial 

Autoregressive (PSAR) didefinikan dalam persamaan (2.23), dan variabel respon 

berdistribusi Poisson, yaitu: 

𝑦𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖); 𝑖 = 1, 2, … , 𝑛 

Model PSAR yang standar menerapkan lag spasial pada prediktor linear, yaitu 

(Lambert et al. 2010): 

ln 𝜇𝑖  = 𝒙𝑖
𝑇𝜷+∑𝜌𝑤𝑖𝑗 ln 𝜇𝑗

𝑛

𝑗≠𝑖

 

Dalam notasi matriks, persamaan di atas menjadi: 

ln 𝝁 = 𝐗𝛃 + 𝜌𝑾 ln𝝁   

ln 𝝁 − 𝜌𝑾 ln𝝁 = 𝐗𝛃  

(𝑰 − 𝜌𝑾) ln 𝝁 = 𝐗𝛃  

ln 𝝁 = (𝑰 − 𝜌𝑾)−1𝐗𝛃  

ln 𝝁 = 𝑨−1𝐗𝛃  

𝝁𝑃𝑆𝐴𝑅 = exp(𝑨−1𝑿𝜷) (2.23) 

dengan 𝑨 = (𝑰 − 𝜌𝑾)  dan 𝑨−1  adalah matriks invers dari matriks 𝑨, X adalah 

matriks prediktor berukuran 𝑛 × (𝑝 + 1) , 𝜷  adalah parameter koefisien regresi 

berukuran (𝑝 × 1) × 1, dan 𝜌 adalah parameter koefisien spasial lag pada variabel 

respon, dan 𝑾 adalah matriks pembobot berukuran (𝑛 × 𝑛). 

2.5.1 Estimasi Parameter 

Salah satu metode yang dapat digunakan untuk menaksir parameter PSAR 

adalah Maximum Likelihood Estimation (MLE). Parameter yang di estimasi adalah 

𝜽𝑃𝑆𝐴𝑅 = [𝛽0 𝛽1…𝛽𝑝 𝜌]
𝑇
. Adapun langkah – langkah dari penaksiran parameter 

PSAR adalah sebagai berikut: 



22 

 

1. Menyusun fungsi likelihood untuk regresi Poisson Spatial Autoregressive. 

𝐿(𝜇𝑖
𝑃𝑆𝐴𝑅) =∏𝑃(𝑦𝑖|𝜇𝑖

𝑃𝑆𝐴𝑅)

𝑛

𝑖=1

 
 

 
=∏(

(𝜇𝑖
𝑃𝑆𝐴𝑅)

𝑦𝑖
 exp(−𝜇𝑖

𝑃𝑆𝐴𝑅)

𝑦𝑖!
)

𝑛

𝑖=1

 
 

 
=
∏ (𝜇𝑖

𝑃𝑆𝐴𝑅)
𝑦𝑖
exp(−𝜇𝑖

𝑃𝑆𝐴𝑅)𝑛
𝑖=1

∏ 𝑦𝑖!
𝑛
𝑖=1

 
(2.24) 

2. Menyusun fungsi ln likelihood. 

ℓ(𝜇𝑖
𝑃𝑆𝐴𝑅)  = ∑𝑦𝑖 ln(𝜇𝑖

𝑃𝑆𝐴𝑅)

𝑛

𝑖=1

−∑𝜇𝑖
𝑃𝑆𝐴𝑅

𝑛

𝑖=1

−∑ln(𝑦𝑖!)

𝑛

𝑖=1

 (2.25) 

Jika 𝜇𝑖
𝑃𝑆𝐴𝑅 = exp(𝑨−1𝑿𝜷)𝑖, dimana (𝑨−1𝑿𝜷)𝑖 adalah baris ke-i dari vektor 

(𝑨−1𝑿𝜷) maka fungsi ln likelihood yang terbentuk: 

ℓ(𝜽𝑃𝑆𝐴𝑅) =∑𝑦𝑖 ln((𝑨
−1𝑿𝜷)𝑖)

𝑛

𝑖=1

−∑(𝑨−1𝑿𝜷)𝑖

𝑛

𝑖=1

−∑ln(𝑦𝑖!)

𝑛

𝑖=1

 
 

 
=∑[𝑦𝑖(𝑨

−1𝑿𝜷) − exp(𝑨−1𝑿𝜷) − ln(𝑦𝑖!)]

𝑛

𝑖=1

 
(2.26) 

 

3. Menurunkan fungsi ln likelihood terhadap parameter yang ditaksir, yaitu 𝜷. 

Kemudian, hasil penurunan tersebut disamakan dengan nol. 

𝜕(ℓ(𝜽𝑃𝑆𝐴𝑅))

𝜕𝜷
  = ∑[𝑦𝑖 − exp(𝑨

−1𝑿𝜷)𝑖](𝑨
−1𝑿)𝑇

𝑛

𝑖=1

 (2.27) 

𝜕(ℓ(𝜽𝑃𝑆𝐴𝑅))

𝜕𝜌
  = ∑[𝑦𝑖 − exp(𝑨

−1𝑿𝜷)𝑖](𝑨
−1𝑾𝑨−1𝑿𝜷)

𝑛

𝑖=1

 

Solusi yang didapatkan dari persamaan turunan pertama ln likelihood tidak 

memiliki bentuk closed-form, sehingga estimasi parameter harus dilakukan melalui 

prosedur iterasi numerik. Metode iterasi numerik yang digunakan dalam penelitian 

ini adalah BHHH. Metode BHHH dipilih karena metode ini memanfaatkan 

informasi dari gradien turunan pertama untuk mengaproksimasi matriks Hessian, 

sehingga menghindari turunan kedua yang kompleks. Adapun prosedur iterasi 

BHHH didefinisikan melalui langkah-langkah berikut. 
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Definisi: 

Misalkan 𝜽𝑃𝑆𝐴𝑅 = [𝛽0 𝛽1…𝛽𝑝 𝜌]
𝑇
 adalah vektor parameter yang akan di estimasi, 

ℓ𝑖(𝜽𝑃𝑆𝐴𝑅) adalah ln likelihood  untuk observasi ke-i, dimana 𝑖 = 1, 2, … , 𝑛. Fungsi 

ln likelihood total adalah ∑ ℓ𝑖(𝜽𝑃𝑆𝐴𝑅)
𝑛
𝑖=1  

Inisialisasi: 

1. Menentukan nilai awal parameter 𝜽𝑃𝑆𝐴𝑅
(0)

Nilai awal parameter menentukan 

kecepatan tercapainya konvergensi pada proses iterasi. Idealnya nilai awal 

parameter untuk model Generalized Poisson Regression adalah nilai hasil 

estimasi parameter regresi Poisson. 

2. Menentukan toleransi konvergensi 𝜖 > 0 yang mana dalam penelitian ini 10−6 

menjadi batas toleransi konvergensi. 

3. Menentukan batas maksimum iterasi (𝑚𝑚𝑎𝑘𝑠) . Misalkan 𝑚𝑚𝑎𝑘𝑠  yang 

ditetapkan adalah 1000. Ketika iterasi tidak mencapai konvergensi pada iterasi 

ke-1000 maka proses iterasi akan berhenti walaupun konvergensi belum tercapai. 

4. Menentukan set iterasi awal adalah 𝑘 = 0. 

Prosedur Iterasi: 

Langkah 1: Menghitung vektor gradien individu untuk setiap observasi 𝑖 =

1, 2, … , 𝑛. 

ℊ𝑖(𝜽
(𝑘)) =

𝜕ℓ𝑖(𝜽𝑃𝑆𝐴𝑅)

𝜕𝜽𝑃𝑆𝐴𝑅
|
𝜽𝑃𝑆𝐴𝑅=𝜽𝑃𝑆𝐴𝑅

(𝑘)

 

Langkah 2: Menghitung penjumlahan gradien seluruh sampel. 

𝓰(𝜽𝑃𝑆𝐴𝑅
(𝑘)

) =∑ℊ𝑖(𝜽𝑃𝑆𝐴𝑅
(𝑘)

)

𝒏

𝒊=𝟏

 

Langkah 3: Mengaproksimasi matriks Hessian menggunakan informasi vektor 

gradien individu. Misalkan 𝑯∗adalah aproksimasi matriks Hessian, maka 

𝑯∗(𝜽𝑃𝑆𝐴𝑅
(𝑘)

) = −∑ℊ𝑖(𝜽𝑃𝑆𝐴𝑅
(𝑘)

)ℊ𝑖(𝜽𝑃𝑆𝐴𝑅
(𝑘)

)
𝑇

𝒏

𝒊=𝟏

 

Langkah 4: Memperbaharui nilai parameter menggunakan arah BHHH. 

𝜽𝑃𝑆𝐴𝑅
(𝑘+1)

= 𝜽𝑃𝑆𝐴𝑅
(𝑘)

−𝑯∗−1(𝜽𝑃𝑆𝐴𝑅
(𝑘)

)𝓰(𝜽𝑃𝑆𝐴𝑅
(𝑘)

) 

Langkah 5: Mengevaluasi konvergensi dengan melihat kondisi berikut. 



24 

 

‖𝜽𝑃𝑆𝐴𝑅
(𝑘+1)

− 𝜽𝑃𝑆𝐴𝑅
(𝑘)

‖ ≤ 𝜖 

Jika iterasi BHHH belum mencapai kondisi konvergen, set 𝑘 = 𝑘 + 1 dan kembali 

ke langkah 1. Jika kondisi konvergen telah tercapai, maka 𝜽𝑃𝑆𝐴𝑅
(𝑘+1)

 adalah estimator 

dari 𝜽̂𝑃𝑆𝐴𝑅. 

2.5.2 Pengujian Hipotesis 

Pengujian hipotesis dapat dilakukan dengan menggunakan metode MLRT. 

Pengujian hipotesis pada model Poisson Spatial Autoregressive dilakukan dengan 

dua tahap, yaitu pengujian hipotesis secara serentak dan pengujian hipotesis secara 

parsial. Untuk pengujian hipotesis secara serentak memiliki hipotesis sebagai 

berikut. 

𝐻0 ∶  𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0 

𝐻1 ∶  minimal ada satu 𝛽𝑘 ≠ 0, 𝑘 = 1, 2, … , 𝑝 

Statistik uji yang digunakan adalah sebagai berikut: 

𝐺2 = −2 ln [
𝐿(𝝎̂)

𝐿(𝛀̂)
] = −2[ℓ(𝝎̂) − ℓ(𝛀̂)]  

Pada persamaan diatas ℓ(𝝎̂)  yaitu fungsi ln likelihood dari himpunan 

parameter di bawah H0  dan ℓ(𝛀̂)  yaitu fungsi ln likelihood dari himpunan 

parameter dibawah populasi. Himpunan parameter di bawah H0  adalah 𝝎 =

{𝛽0, 𝜌𝜔} dan himpunan parameter dibawah populasi adalah 𝛀 = {𝛽0, 𝛽1, … , 𝛽𝑝, 𝜌}.  

Bentuk fungsi likelihood dari 𝝎̂ yaitu: 

𝐿(𝝎̂) 
=∏(

exp(𝛽̂0𝜔 + ∑ 𝑤𝑖𝑗𝑦𝑗
𝑛
𝑗=1 )

𝑦𝑖
exp(𝛽̂0𝜔 + ∑ 𝑤𝑖𝑗𝑦𝑗

𝑛
𝑗=1 )

𝑦𝑖!
)

𝑛

𝑖=1

 
 

 
=
∏ exp(𝛽̂0𝜔 + ∑ 𝑤𝑖𝑗𝑦𝑗

𝑛
𝑗=1 )

𝑦𝑖
exp(𝛽̂0𝜔 + ∑ 𝑤𝑖𝑗𝑦𝑗

𝑛
𝑗=1 )𝑛

𝑖=1

∏ 𝑦𝑖!
𝑛
𝑖=1

 
 

ℓ(𝝎̂) = ∑ [𝑦𝑖(𝛽̂0𝜔 + ∑ 𝑤𝑖𝑗𝑦𝑗
𝑛
𝑗=1 ) − exp(𝛽̂0𝜔 + ∑ 𝑤𝑖𝑗𝑦𝑗

𝑛
𝑗=1 ) − ln(𝑦𝑖!)]

𝑛
𝑖=1    (2.28) 

Kemudian bentuk fungsi likelihood dari himpunan parameter di bawah 𝜃 =

𝛽̂0, 𝛽̂1, … , 𝛽̂𝑝 yaitu: 

𝐿(𝛀̂) =∏(
exp(𝒙𝑖

𝑇𝜷̂)
𝑦𝑖
exp(− exp(𝒙𝑖

𝑇𝜷̂))

𝑦𝑖!
)

𝑛

𝑖=1
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=
∏ exp(𝒙𝑖

𝑇𝜷̂)
𝑦𝑖
exp(− exp(𝒙𝑖

𝑇𝜷̂)
𝑦𝑖
)𝑛

𝑖=1

∏ 𝑦𝑖!
𝑛
𝑖=1

 

 

ℓ(𝛀̂) =∑𝑦𝑖 ln(exp(𝒙𝑖
𝑇𝜷̂))

𝑛

𝑖=1

−∑exp(𝒙𝑖
𝑇𝜷̂)

𝑛

𝑖=1

−∑ln(𝑦𝑖!)

𝑛

𝑖=1

 
 

 
=∑[𝑦𝑖(𝒙𝑖

𝑇𝜷̂) − exp(𝒙𝑖
𝑇𝜷̂) − ln(𝑦𝑖!)]

𝑛

𝑖=1

 (2.29) 

Dari persamaan (2.8) dan (2.9) selanjutnya diperoleh nilai G dengan bentuk sebagai 

berikut: 

𝐺2 = −2 ln [
𝐿(𝝎̂)

𝐿(𝛀̂)
] = −2[ℓ(𝝎̂) − ℓ(𝛀̂)] 

𝐻0
∼

𝑛 → ∞
𝜒𝑑𝑓
2  

(2.30) 

 

Nilai 𝐺2  dibandingkan dengan distribusi 𝜒(𝑑𝑓)
2  dimana H0  akan ditolak jika nilai 

dari statistik 𝐺2  > 𝜒(𝛼;𝑑𝑓)
2  dengan 𝛼 adalah taraf signifikan yang digunakan dan 

𝑑𝑓 = 𝑛(𝜴) − 𝑛(𝝎) = (𝑝 + 2) − 2 = 𝑝. 

Kemudian jika didapat keputusan tolak H0 selanjutnya dilakukan pengujian 

parsial terhadap parameter yang bertujuan untuk mengetahui parameter mana saja 

yang berpengaruh signifikan terhadap variabel respon secara individual. Statistik 

uji yang digunakan untuk uji parsial yaitu uji Wald dimana saat dibawah 𝐻0 maka 

𝛽𝑘 sama dengan nol. Hipotesis dalam pengujian parsial untuk 𝛽𝑘 adalah sebagai 

berikut. 

𝐻0 ∶  𝛽𝑘 = 0  

𝐻1 ∶  𝛽𝑘 ≠ 0; 𝑘 = 1, 2, … , 𝑘, … , 𝑝  

Untuk ukuran sampel yang cukup besar, penaksir 𝛽𝑘 terdistribusi mendekati 

distribusi normal dengan rata-rata 𝛽𝑘 dan varians 𝛽𝑘 adalah elemen diagonal dari 

−𝑯∗−1(𝜷̂) yang bersesuaian dengan 𝛽̂𝑘. Sehingga diperoleh 𝑠𝑒(𝛽̂𝑘) = √𝑉𝑎𝑟̂(𝛽̂𝑘). 

Statistik uji Wald di bawah 𝐻0 adalah seperti pada persamaan (2.31). 

𝑊𝑘 = (
𝛽̂𝑘

𝑠𝑒(𝛽̂𝑘)
)

2

 
(2.31) 
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Nilai 𝑊𝑘  dibandingkan dengan distribusi 𝜒(1)
2  dimana H0  akan ditolak jika 

nilai dari statistik 𝑊𝜌 > 𝜒(𝛼;1)
2  dengan 𝛼 adalah taraf signifikan yang digunakan. 

Kemudian untuk uji parsial parameter 𝜌  hipotesis dalam pengujian parsialnya 

adalah sebagai berikut. 

𝐻0 ∶  𝜌 = 0  

𝐻1 ∶  𝜌 ≠ 0  

Statistik uji didapatkan dengan uji Wald yang dapat dinyatakan sebagai berikut. 

𝑊𝜌 = (
𝜌̂

𝑠𝑒(𝜌̂)
)
2

 
(2.32) 

Nilai 𝑊𝜌  dibandingkan dengan distribusi 𝜒(1)
2  dimana H0  akan ditolak jika 

nilai dari statistik 𝑊𝜌 > 𝜒(𝛼;1)
2  dengan 𝛼 adalah taraf signifikan yang digunakan. 

Nilai 𝑠𝑒(𝜌̂) adalah √𝑉𝑎𝑟̂(𝜌̂) dan 𝑉𝑎𝑟̂(𝜌̂) merupakan elemen diagonal utama dari 

−𝐻∗−1(𝜽̂) yang bersesuaian dengan 𝜌. 

2.6 Pengujian Aspek Spasial 

Efek spasial dapat dikategorikan menjadi dua, yaitu dependensi spasial dan 

heterogenitas spasial. Dependensi spasial menunjukkan adanya ketergantungan 

atau keterkaitan antar lokasi pengamatan, dimana nilai pengamatan di suatu lokasi 

dipengaruhi oleh nilai pengamatan di lokasi lain yang letaknya berdekatan. 

Kemudian, heterogenitas spasial dapat menunjukkan adanya perbedaan 

karakteristik pada setiap lokasi pengamatan sehingga setiap lokasi dapat memiliki 

bentuk fungsi dan parameter yang berbeda – beda. Dalam penelitian ini kita akan 

fokus dengan menguji dependensi spasial yang diuji dengan menggunakan Moran’s 

I dan Lagrange Multiplier (LM). 

2.6.1 Uji Dependensi Spasial 

Dependensi spasial dapat diketahui melalui Moran’s I. Indeks moran’s I 

digunakan untuk menguji dependensi spasial. Jika indeks moran’s I bernilai positif 

maka terdapat dependensi spasial yang positif yang artinya wilayah dengan nilai 

pengamatan tinggi cenderung berdekatan dengan wilayah yang memiliki nilai 

pengamatan tinggi, begitu juga wilayah dengan nilai rendah cenderung berdekatan 

dengan wilayah nilai rendah. Selanjutnya, jika indeks moran’s I bernilai negatif 
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maka terdapat dependensi spasial yang negatif yang artinya wilayah dengan nilai 

tinggi cenderung berdekatan dengan wilayah nilai rendah, dan sebaliknya. Metode 

ini tidak menguji autokorelasi pada data mentah, melainkan pada Deviance 

Residuals dari model Generalized Linear Model (GLM) global. 

Pendekatan ini didasarkan pada sifat teoretis bahwa deviance residuals (𝑟{𝑖,𝑑}) 

dari model GLM (seperti Poisson atau Generalized Poisson) terdistribusi secara 

asimtotik normal (Z-score) ketika ukuran sampel cukup besar. Dengan demikian, 

residual ini memenuhi syarat distribusi untuk dijadikan input dalam statistik 

Moran's I standar. Statistik uji ini, yang dinotasikan sebagai 𝐼{𝐷𝑅} , didefinisikan 

sebagai adaptasi dari formula Moran's I klasik dengan mensubstitusi variabel 

amatan dengan deviance residuals (Zhang & Lin, 2008): 

𝐼𝐷𝑅 =
𝑛

𝑆0

(∑ ∑ 𝑤𝑖𝑖∗(𝑟𝑖,𝑑 − 𝑟̄𝑑)(𝑟𝑖∗,𝑑 − 𝑟̄𝑑)
𝑛
𝑖∗=1

𝑛
𝑖=1 )

∑ (
𝑚

𝑖=1
𝑟𝑖,𝑑 − 𝑟̄𝑑)2

 (2.33) 

dimana 𝐼𝐷𝑅  adalah adaptasi dari Moran's I yang menggunakan residual 

devians sebagai input, 𝑤𝑖𝑖∗   adalah elemen pembobot spasial antara lokasi 𝑖  dan 

lokasi 𝑖∗ . iiasanya 𝑤𝑖𝑖∗ = 1  jika 𝑖  dan 𝑖∗  bertetangga, dan 0 jika tidak (dengan 

𝑤𝑖𝑖 = 0 ), 𝑟𝑖,𝑑  adalah residual devians pada lokasi 𝑖 , 𝑟𝑖∗,𝑑  adalah residual devians 

pada lokasi 𝑖∗ , 𝑟̄𝑑  adalah rata-rata residual devians, dan 𝑆0 = ∑ ∑ 𝑤𝑖𝑖∗
𝑛
𝑖∗=1

𝑛
𝑖=1 . 

Residual devians dapat dinyatakan sebagai 𝑟𝑖,𝑑 = 𝑠𝑖𝑔𝑛(𝑛𝑖 − 𝑛̂𝑖)√𝑑𝑖
𝐺𝑃 dimana 

𝑠𝑖𝑔𝑛(∙)  adalah fungsi tanda yang didefinisikan sebagai 𝑠𝑖𝑔𝑛(𝑎) = 1  jika 𝑎 ≥ 0 , 

dan 𝑠𝑖𝑔𝑛(𝑎) = −1  jika 𝑎 < 0 ,  𝑑𝑖
𝐺𝑃 = 2 [𝑛𝑖 log (

𝑦𝑖

𝜇̂𝑖
) − (𝑦𝑖 − 𝜇̂𝑖) + (𝑦𝑖 −

1) log (
𝑦𝑖(1+𝜙)

𝜇̂𝑖+𝜙𝑦𝑖
)] untuk 𝑦𝑖 ≠ 0 dan 𝑑𝑖

𝐺𝑃 ≈ 2[𝜇̂𝑖 − log(1 + 𝜙𝜇̂𝑖)] untuk 𝑦𝑖 = 0.  

Matriks pembobot spasial yang digunakan pada uji dependensi spasial adalah 

matriks pembobot dengan pendekatan contiguity (persinggungan). Terdapat tiga 

macam contiguity untuk membentuk matriks pembobot spasial, yaitu 

persinggungan sisi (rook), persinggungan sudut (bishop), dan persinggungan sisi 

dan sudut (queen). Elemen matriks pembobot spasial berdasarkan kriteria – kriteria 

tersebut adalah: 

𝑤𝑖𝑖∗ {
1, jika 𝑖 dan 𝑖∗ bersinggungan

0, jika 𝑖 dan 𝑖∗ tidak bersinggungan
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Hipotesis pengujian signifikansi untuk indeks moran’s I adalah: 

𝐻0: 𝐼 = 0 (Tidak terdapat dependensi spasial)  

𝐻1 ∶ 𝐼 ≠ 0 (Terdapat dependensi spasial)` 

dengan statistik uji: 

𝑍𝐼𝐷𝑅 =
𝐼𝐷𝑅 − 𝐸(𝐼𝐷𝑅)

√𝑉𝑎𝑟(𝐼𝐷𝑅)
 (2.34) 

Adapun nilai harapan (ekspektasi) dari statistik Moran's I, dinotasikan 

sebagai  𝐸(𝐼𝐷𝑅) = −
1

𝑛−1
, Sementara itu, variansnya, yaitu 𝑉(𝐼), diperoleh melalui 

𝑉(𝐼𝐷𝑅) =
𝑚[(𝑚2−3𝑚+3)𝑆1−𝑚𝑆2+3𝑆0

2]−𝑏2[(𝑚
2−𝑚)𝑆1−2𝑚𝑆2+6𝑆0

2]

(𝑚−1)(𝑚−2)(𝑚−3)𝑆0
2 − [𝐸(𝐼𝐷𝑅)]

2. Aspek ini 

bergantung pada tiga komponen utama yang didasarkan pada matriks pembobot 

spasial (𝑤). Komponen pertama, 𝑆1, adalah setengah dari jumlah total kuadrat dari 

penjumlahan elemen matriks pembobot dan transposnya, atau dapat dinyatakan 

sebagai: 

𝑆1 =
1

2
∑∑(𝑤𝑖𝑖∗ + 𝑤𝑖∗𝑖)

2

𝑛

𝑖∗=1

𝑛

𝑖=1

 

Komponen kedua, 𝑆2 , adalah jumlah dari kuadrat penjumlahan setiap baris dan 

kolom matriks pembobot, yang dirumuskan sebagai 

𝑆2 =∑(∑𝑤𝑖𝑖∗

𝑛

𝑖∗=1

+ ∑ 𝑤𝑖∗𝑖

𝑛

𝑖∗=1

)

2𝑛

𝑖=1

 

dan 

𝑏2 =
𝑛∑ (

𝑛

𝑖=1
𝑟𝑖,𝑑 − 𝑟̄𝑑)

4

(∑ (
𝑛

𝑖=1
𝑟𝑖,𝑑 − 𝑟̄𝑑)2)

2 

 

Tolak 𝐻0  jika |𝑍𝐼(ℎ𝑖𝑡𝑢𝑛𝑔)| > 𝑍𝛼
2

, artinya terdapat dependensi spasial, sehingga 

dapat dilanjutkan pemodelan regresi spasial. 

a. Lagrage Multiplier (LM) 

Uji Lagrange Multiplier (LM) digunakan untuk menentukan ada atau 

tidaknya efek dependensi spasial, serta menentukan model spasial yang akan 
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dibentuk. Pengujian hipotesis dalam uji LM salah satunya adalah model Spatial 

Autoregressive Model (SAR). 

𝐻0 ∶  𝜌 = 0 (tidak ada efek dependensi spasial 𝑎𝑢𝑡𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 pada model)  

𝐻1: 𝜌 ≠ 0(terdapat efek spasial dependensi spasial 𝑎𝑢𝑡𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒)  

Statistik Uji : 

𝐿𝑀1 =
(
𝐞′𝐖𝐲
S2

)
𝟐

(𝑛𝐽)
 

(2.35) 

Adapun nilai 𝑛𝐽 = 𝑇 +
(𝐖𝐗𝛃)′𝐌(𝐖𝐗𝛃)

s2
, Dalam persamaan ini, komponen 

𝑇  merupakan nilai trace dari perkalian matriks pembobot spasial, yang 

dihitung dengan rumus 𝑇 = 𝑡𝑟[(𝐖+𝐖′)𝐖].  Selanjutnya, komponen 𝑠2 

adalah varians galat yang didefinisikan sebagai 𝑠2 =
𝐞′𝐞

n
, dan adapun matriks 

𝐌 yang digunakan pada bagian pembilang adalah matriks proyeksi (matriks 

idempoten dan simetris) yang diperoleh dari 𝐌 = 𝐈 − 𝐗(𝐗′𝐗)−𝟏𝐗′. Tolak 𝐻0 

jika 𝐿𝑀1 > 𝜒(1;1−𝛼)
2 . 

2.7 Generalized Poisson Spatial Autoregressive 

Model dari bentuk umum dari model Generalized Poisson Spatial 

Autoregressive didasarkan pada formulasi multiplikatif untuk menangani sifat 

simultan dari interaksi spasial dan masalah pelanggaran asumsi equidispersion. 

Model ini mengasumsikan bahwa nilai harapan di suatu lokasi (𝜇𝑖) bergantung 

pada kovariat di lokasi tersebut dan pada nilai harapan di lokasi-lokasi tetangganya 

(𝜇𝑗) . Formulasi spasial multiplikatif untuk data cacah adalah sebagai berikut 

(Lambert et al. 2010): 

𝐸(𝑦𝑖) ≡ 𝜇𝑖 = exp(𝒙𝑖
𝑇𝜷)∏[𝐸(𝑦𝑗)]

𝜌𝑤𝑖𝑗

𝒏

𝒋≠𝒊

 

Karena 𝐸(𝑦𝑗) ≡ 𝜇𝑗, maka berlaku 

𝜇𝑖 = exp(𝒙𝑖
𝑇𝜷)∏𝜇𝑗

𝜌𝑤𝑖𝑗

𝒏

𝒋≠𝒊

 

Bentuk multiplikatif ini sulit untuk dioperasionalkan secara langsung dalam analisis 

dan estimasi. Untuk memudahkan penyelesaian aljabar, model tersebut perlu 
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ditransformasi ke dalam bentuk linear dengan menerapkan fungsi logaritma natural 

pada kedua ruas, sehingga menghasilkan model struktural berikut: 

ln(𝜇𝑖)  = ln(exp(𝒙𝑖
𝑇𝜷)∏𝜇𝑗

𝜌𝑤𝑖𝑗

𝒏

𝒋≠𝒊

) 

ln(𝜇𝑖)  = 𝒙𝑖
𝑇𝜷+∑𝜌𝑤𝑖𝑗 ln 𝜇𝑗

𝑛

𝑗≠𝑖

 

Untuk generalisasi model pada seluruh lokasi observasi, persamaan di atas 

diekspresikan dalam notasi matriks. Transformasi ini menghasilkan bentuk umum 

dari model GPSAR: 

ln 𝝁 = 𝑿𝜷 + 𝜌𝑾 ln𝝁   

ln 𝝁 − 𝜌𝑾 ln𝝁 = 𝑿𝜷  

(𝑰 − 𝜌𝑾) ln𝝁 = 𝑿𝜷  

ln 𝝁 = (𝑰 − 𝜌𝑾)−1𝑿𝜷  

ln 𝝁 = 𝑨−1𝑿𝜷  

dengan 𝑨 = (𝑰 − 𝜌𝑾)  dan 𝑨−1  adalah matriks invers dari matriks 𝑨.  Dari 

penurunan di atas, diperoleh bentuk reduced form dari rata-rata kondisional untuk 

model GPSAR, yaitu: 

𝝁𝐺𝑃𝑆𝐴𝑅 = exp(𝑨−1𝑿𝜷) (2.36) 

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 = exp(𝑨−1𝑿𝜷)𝑖 (2.37) 

Dimana 𝝁  adalah vektor ekspektasi rata-rata berukuran (𝑛 × 1)  dimana n 

adalah jumlah total lokasi atau area observasi, 𝜌 adalah parameter koefisien spasial 

lag pada variabel respon, 𝑾  adalah matrik pembobot berukuran (𝑛 × 𝑛) , 

(𝑨−1𝑿𝜷)𝑖  iaris ke-i dari vektor (𝐀−1𝑿𝜷) , X merupakan matriks yang memuat 

nilai-nilai dari semua variabel prediktor yang berukuran (𝑛 × (𝑝 + 1)) di mana k 

adalah jumlah variabel prediktor dan kolom tambahan adalah untuk intercept, 𝜷 

adalah vektor kolom yang berisi koefisien regresi yang akan diestimasi oleh model 

yang berukuran ((𝑝 + 1) × 1). 
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𝑦𝑛×1 =

(

 
 

𝑦1
𝑦2
𝑦3
⋮
𝑦𝑛)

 
 

, 𝜷(𝑝+1)×1 =

(

 
 

𝛽0
𝛽1
𝛽2
⋮
𝛽𝑘)

 
 

, 𝐖𝑛×𝑛 = (

𝑤11
𝑤21
⋮
𝑤𝑛1

  

𝑤12
𝑤22
⋮
𝑤𝑛2

  

𝑤13
𝑤23
⋮
𝑤𝑛3

  

⋯
⋯
⋱
⋯

  

𝑤1𝑛
𝑤2𝑛
⋮
𝑤𝑛𝑛

) 

𝑿𝑛×(𝑝+1) = (

1
1
⋮
1

  

𝑥11
𝑥21
⋮
𝑥𝑛1

  

𝑥12
𝑥22
⋮
𝑥𝑛2

  

⋯
⋯
⋱
⋯

  

𝑥1𝑘
𝑥2𝑘
⋮
𝑥𝑛𝑘

) 

Persamaan (2.34) merepresentasikan model SAR yang telah diadaptasi untuk 

data count dengan asumsi distribusi Generalized Poisson dalam bentuk vektor dan 

persamaan (2.35) merepresentasikan model SAR yang telah diadaptasi untuk data 

count dengan asumsi distribusi Generalized Poisson dalam bentuk unit observasi.  

2.8 Pembobot Spasial 

Matriks pembobot spasial (W) diperoleh melalui informasi jarak dari 

ketetanggaan (neighbourhood) atau kedekatan antara satu wilayah dengan wilayah 

yang lain. Wilayah yang berdekatan cenderung akan memberikan pengaruh yang 

lebih besar dibandingkan wilayah yang lebih jauh jaraknya, hal ini merupakan 

hukum pertama geografi yang dinyatakan oleh Tobler (Anselin, 1988). Terdapat 

beberapa metode yang dapat digunakan dalam mendefinisikan hubungan 

persinggungan (contiguity) antar wilayah. 

1. Rook Contiguity (persinggungan sisi); mendefinisikan 𝑤𝑖𝑗 = 1 untuk wilayah 

yang bersisian (common side) dengan wilayah yang menjadi perhatian, 𝑤𝑖𝑗 = 

0 untuk wilayah lainnya. 

2. Bhisop Contiguity (persinggungan sudut); mendefinisikan 𝑤𝑖𝑗  = 1 untuk 

wilayah yang titik sudutnya (common vertex) bertemu dengan sudut wilayah 

yang menjadi perhatian, 𝑤𝑖𝑗 = 0 untuk wilayah lainnya. 

3. Queen Contiguity (persinggungan sisi-sudut); mendefinisikan 𝑤𝑖𝑗 = 1 untuk 

wilayah yang bersisian (common side) atau titik sudutnya (common vertex) 

bertemu dengan wilayah yang menjadi perhatian, 𝑤𝑖𝑗  = 0 untuk wilayah 

lainnya. 

Dari berbagai macam metode dalam pembobotan, pembobotan queen 

contiguity merupakan pembobotan yang lebih kompleks atau lengkap. Dengan 
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mempertimbangkan karakteristik antar wilayah desa/kelurahan kabupaten Tuban 

yang tidak simetris maka penelitian ini digunakan pembobotan queen contiguity. 

Hal ini karena bentuk dari tiap daerah cocok dengan mekanisme pembobotan queen 

contiguity. 

2.9 Kriteria Pemilihan Model Terbaik 

Dalam pemilihan model regresi terbaik, akan digunakan AICc yang 

mempertimbangkan ukuran sampel dengan meningkatkan penalty relative untuk 

model yang kompleks dengan ukuran data yang kecil. Formula dari AICc adalah 

sebagai berikut (iurnham & Anderson, 2004): 

𝐴𝐼𝐶𝑐 = −2 log (𝐿(𝜃)) + 2𝑝 +
2𝑝(𝑝 + 1)

𝑛 − 𝑝 − 1
 (2.38) 

dimana 𝑝 adalah jumlah parameter dan 𝑛 adalah jumlah observasi. Model terbaik 

adalah model dengan nilai AICc terkecil (Akaike, 1998) 

2.10 Pneumonia Pada Balita 

Studi kasus dalam penelitian ini adalah kasus pneumonia pada balita. Oleh 

karena itu, pada subab ini akan dijelaskan tentang gambaran umum pneumonia pada 

balita dilanjutkan mengenai faktor-faktor yang diduga mempengaruhi kasus 

pneumonia pada balita. 

2.10.1 Gambaran Umum Pneumonia Pada Balita 

Balita dapat diartikan sebagai anak usia di bawah usia lima tahun. Periode ini 

merupakan periode penting dalam perkembangan dan pertumbuan karena dapat 

menentukan keberhasilan pertumbuhan dan perkembangan di periode selanjutnya. 

Oleh karena itu, penyakit-penyakit yang diderita balita pada masa ini dapat menjadi 

penghambat dalam pertumbuhan dan perkembangan. 

Pneumonia merupakan penyakit menular berupa peradangan pada daerah 

saluran pernapasan bagian bawah yaitu paru-paru. Pneumonia disebabkan oleh 

beberapa agen infeksi seperti virus, bakteri dan jamur. Agen infeksi pneumonia 

yang paling umum adalah bakteri Streptrococcus pneumoniae, Haemophilus 

influenzae tipe b, dan virus pernapasan syncytial (WHO, 2022). 
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Gejala pneumonia pada anak diawali dengan infeksi saluran pernapasan atas 

(hidung dan tenggorokan). Selain itu, pneumonia pada anak juga ditandai dengan 

gejala diare apabila penyebabnya adalah bakteri (Tim Medis Siloam Hospitals, 

2024). 

2.10.2 Faktor-Faktor yang Diduga Memengaruhi Kasus Pnomonia Pada 

Balita 

Pneumonia lebih sering terjadi pada balita. Hal ini dikarenakan sistem 

kekebalan tubuh pada balita masih lemah. Kerangka berpikir untuk menganalisis 

faktor-faktor yang diduga memengaruhi kasus pneumonia dari the Epidemiologic 

Triangle through infectious disease (Gordon, 1950)) seperti Gambar 2.1. 

Dalam menentukan faktor-faktor yang mempengaruhi penyakit dilakukan 

pembagian menjadi 3 bagian, yaitu berdasarkan host, agent dan environment. 

Faktor host merupakan faktor-faktor dalam diri manusia yang mempengaruhi 

timbulnya penyakit. Faktor agent adalah suatu substansi tertentu yang kehadirannya 

dapat menimbulkan penyakit. Terakhir, faktor environment atau lingkungan yaitu 

faktor ekstrinsik yang menunjang terjadinya suatu penyakit. Faktor lingkungan 

mempengaruhi penularan, penyebaran dan perkembangan suatu agent penyebab 

penyakit. Penelitian ini hanya berfokus pada faktor host dan environment. 

 

 

Penelitian terdahulu terkait metode analisis dan variabel penelitian 

ditunjukkan pada Tabel 2.1. 

Gambar 2.1 Penyebab Kasus Pneumonia pada Balita 
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Tabel 2.1 Penelitian tentang Pneumonia pada Balita 

No. Penulis 

(Tahun) 
Studi Kasus/ Metode Variabel yang signifikan 

1. Wutun., 

dkk, 2020 

Risk Factors of Pneumonia 

in Children under Five in 

Lewoleba Hospital, East 

Nusa Tenggara, Indonesia 
 

1. Pemberian ASI Eksklusif 

2. Riwayat Asma 

3. Pengetahuan Ibu tentang 

penanggulangan 

pneumonia 

4. Riwayat anggota keluarga 

yang merokok 

2. Saputri, 

2022 

Pemodelan Faktor-Faktor 

yang Mempengaruhi Kasus 

Pneumonia pada Balita di 

Provinsi Jawa Barat dengan 

Metode GWGPR 

1. Persentase pemberian 

vitamin A 

2. Persentase perilaku hidup 

bersih dan sehat 

3. Kurnia., 

dkk., 2023 

Analysis of Factors Affecting 

Penumonia in Toodlers 

Based on Theory 

Epidemiology Triad 

1. Berat badan lahir rendah 

2. Status imunisasi dasar 

lengkap 

3. Pemberian ASI Eksklusif 

4. Status nutrisi 

5. Jarak dari rumah 

kepabrik/jalan besar 

5. Paparan Asap Rokok 

4. Fachrunisah, 

2024 

Pemodelan Pneumonia pada 

Balita di Kabupaten Tuban 

Menggunakan Bivariate 

Spatial Autoregressive 

Models 

Variabel Pneumonia: 

1. Persentase ASI eksklusif 

2. Persentasi imunisasi 

dasar lengkap 

Variabel Diare 

1. Persentasi imunisasi 

dasar lengkap 

2. Persentase air bersih 



 

 

35 

 

Referensi penelitian terdahulu terkait faktor-faktor yang diduga 

berpengaruh terhadap kasus pneumonia pada balita telah banyak yang sesuai 

dengan kerangka berpikir the Epidemiologic Triangle. Dari host, agent dan 

environment, penelitian terdahulu banyak terfokus pada faktor host dan 

environment. Faktor host terdiri dari riwayat asma, status nutrisi, berat badan lahir 

rendah, pemberian imunasi dasar lengkap, pemberian ASI Eksklusif, Pemberian 

Vitamin A, Pemberian Vaksin A dan D. Faktor environment dari penelitian 

terdahulu terdiri dari kepadatan penduduk, rumah tangga berperilaku bersih dan 

sehat, pengetahuan ibu, persentase rumah tangga dengan akses jamban sehat, 

adanya riwayat anggota keluarga yang merokok, bahkan jarak dari rumah ke jalan 

besar. 

Berdasarkan ketersediaan data dan pertimbangan unit analisis yang berupa 

desa/kelurahan maka variabel-variabel penelitian yang akan dimasukan dalam 

model GPSAR ditunjukkan pada Gambar 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

2.11 Hasil Penelitian Terdahulu 

Adapun untuk menunjang penelitian yang akan dilakukan maka diperoleh 

beberapa penelitian yang sesuai dan akan menjadi dasar acuan. Berangkat dari 

Intervensi Nutrisi 
Persentase bayi yang mendapat Vitamin A 

Intervensi Nutrisi 
Persentase bayi yang mendapat ASI Eksklusif 

Pengetahuan Ibu 
Persentase Ibu Hamil yang mengikuti kelas ibu 

hamil 

Perilaku Sehat 
Persentase rumah tangga cakupan air bersih 

Aspek Nutrisi dari Vaksin: 
Persentase balita yang mendapat imunisasi campak 

Jumlah  Kasus 

Pneumonia pada Balita 

Gambar 2.2 Kerangka Konsep Penelitian 
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penelitian tersebut perlu dikembangkan pada metode baru untuk memenuhi syarat 

kebaruan. Berikut hasil studi penelitian terdahulu pada Tabel 2.2. 

Tabel 2.2 Pemetaan Hasil Penelitian Terdahulu 
No. Penulis dan Tahun Judul Metode Hasil 

1. Lee, K. L., & Bell, 

D. R. (2009) 

A Spatial 

Negative 

Binomial 

Regression of 

Individual-level 

Count Data with 

Regional and 

Person-Specific 

Covariates 

Model hirarkis 

Bayesian yang 

memperluas regresi 

Binomial Negatif 

standar untuk 

memasukkan kovariat 

tingkat individu dan 

wilayah, serta 

autokorelasi spasial 

yang tidak teramati. 

Mengembangkan model 

yang dapat memisahkan efek 

pada level yang berbeda dan 

menangani autokorelasi 

spasial. Menunjukkan bahwa 

penggunaan kovariat tingkat 

wilayah dalam model NBR 

standar dapat menghasilkan 

koefisien yang bias. 

2. Sellner, R., Fischer, 

M. M., & Koch, M. 

(2013) 

A Spatial 

Autoregressive 

Poisson Gravity 

Model 

Model SAR Poisson 

yang diestimasi 

menggunakan 2-stage 

nonlinear least squares 

(2NLS) yang 

heteroscedasticity-

robust. 

Estimator 2NLS secara 

efektif mengontrol masalah 

overdispersi atau 

underdispersi yang sering 

muncul akibat adanya 

autokorelasi spasial. Model 

ini fleksibel untuk asumsi 

distribusi Poisson maupun 

Binomial Negatif. 

3. Mohebbi, M., et al. 

(2014) 

Disease 

Mapping and 

Regression with 

Count Data in 

the Presence of 

Overdispersion 

and Spatial 

Autocorrelation: 

A Bayesian 

Model 

Averaging 

Approach 

Model hirarkis 

Bayesian dengan 

distribusi Generalized 

Poisson dan Binomial 

Negatif untuk 

menangani 

overdispersi, 

dikombinasikan dengan 

efek acak spasial 

(CAR) dan Bayesian 

Model Averaging 

(BMA). 

Menunjukkan bahwa strategi 

pemodelan yang 

menggunakan Generalized 

Poisson dan Binomial 

Negatif dengan autokorelasi 

spasial bekerja dengan baik 

dan memberikan dasar yang 

kuat untuk inferensi. BMA 

efektif dalam menangani 

ketidakpastian model. 

4. Glaser, S. (2017) A review of 

spatial 

econometric 

models for count 

data 

Tinjauan komparatif 

model ekonometrik 

spasial untuk data 

count, 

mengklasifikasikannya 

menjadi model 

observation-driven dan 

parameter-driven. 

Menyoroti bahwa model 

SAR untuk data count kurang 

berkembang dibandingkan 

model untuk data kontinu 

karena non-linearitas. 

Membandingkan berbagai 

upaya untuk memasukkan 

efek spasial, mulai dari 

model auto-Poisson Besag 

hingga pendekatan yang 

lebih baru. 

5. N.A. Cruz J.D. 

Toloza-Delgado 

O.O. Melo (2024) 

Generalized 

spatial 

autoregressive 

model 

Mengusulkan model 

GSAR untuk analisis 

spasial pada data non-

normal (seperti data 

count/binomial) dalam 

kerangka GLM. 

Membuktikan melalui teori 

dan simulasi bahwa model 

GSAR lebih unggul (efisien, 

akurat, varians rendah) 

dibandingkan metode SAR 

yang ada , dan 

mendemonstrasikan 

aplikasinya pada data pemilu 

riil. 



 

 

37 

 

BAB III  

METODOLOGI 

Bab ini menyajikan alur kerja penelitian secara detail, mulai dari 

pengembangan teoretis hingga implementasi empiris. Metodologi diawali dengan 

penjabaran langkah-langkah untuk menaksir parameter model GPSAR yang 

diusulkan. Selanjutnya, akan dipaparkan secara rinci tahapan pemodelan pada data 

kasus pneumonia di Kabupaten Tuban, yang meliputi deskripsi sumber data, 

pendefinisian variabel, serta serangkaian analisis data yang akan dijalankan untuk 

menjawab tujuan penelitian. 

3.1 Langkah-langkah Penaksir Parameter GPSAR 

Penaksir parameter untuk model GPSAR diperoleh dengan mengikuti metode 

yang dijabarkan di bawah ini:  

1. Menentukan model GPSAR. 

Model GPSAR yang terbentuk mengikuti persamaan (2.36) atau (2.37). 

2. Membentuk fungsi likelihood dari model GPSAR. 

3. Menentukan fungsi ln-likelihood model GPSAR. 

4. Memaksimumkan fungsi ln-likelihood model GPSAR dengan mendapatkan 

turunan pertama terhadap parameter 𝜷, 𝜌, 𝜙 kemudian disamadengankan nol. 

5. Jika hasil langkah ke 4 tidak closed form, maka dibutuhkan iterasi numerik 

untuk mendapatkan estimasi parameternya. Salah satu prosedur iterasi numerik 

yang dapat digunakan adalah iterasi Berndt Hall-Hall-Hausman (BHHH) 

dengan langkah – langkah sebagai berikut: 

Definisi 

Misalkan 𝜽 = [𝛽0 𝛽1…𝛽𝑝 𝜙 𝜌]
𝑇

 adalah vektor parameter yang akan di 

estimasi, ℓ𝑖(𝜽)  adalah ln likelihood  untuk observasi ke-i, dimana 𝑖 =

1, 2, … , 𝑛. Fungsi ln likelihood total adalah ∑ ℓ𝑖(𝜽)
𝑛
𝑖=1  

Inisialisasi: 

1. Menentukan nilai awal parameter 𝜽(0). Idealnya nilai awal parameter untuk 

model regresi Poisson adalah 0 untuk semua parameter. 
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2. Menentukan toleransi konvergensi 𝜖 > 0 yang mana dalam penelitian ini 

10−6 menjadi batas toleransi konvergensi. 

3. Menentukan batas maksimum iterasi (𝑚𝑚𝑎𝑘𝑠).  Misalkan 𝑚𝑚𝑎𝑘𝑠  yang 

ditetapkan adalah 1000. Ketika iterasi tidak mencapai konvergensi pada 

iterasi ke-1000 maka proses iterasi akan berhenti walaupun konvergensi 

belum tercapai. 

4. Menentukan set iterasi awal adalah 𝑘 = 0. 

Prosedur Iterasi: 

Langkah 1: Menghitung vektor gradien individu untuk setiap observasi 𝑖 =

1, 2, … , 𝑛. 

ℊ𝑖(𝜽
(𝑘)) =

𝜕ℓ𝑖(𝜽)

𝜕𝜽
|
𝜽=𝜽(𝑘)

 

Langkah 2: Menghitung penjumlahan gradien seluruh sampel. 

𝓰(𝜽(𝑘)) =∑ℊ𝑖(𝜽
(𝑘))

𝒏

𝒊=𝟏

 

Langkah 3: Mengaproksimasi matriks Hessian menggunakan informasi 

vektor gradien individu. Misalkan 𝑯∗ adalah aproksimasi matriks Hessian, 

maka 

𝑯∗(𝜽(𝑘)) = −∑ℊ𝑖(𝜽
(𝑘))ℊ𝑖(𝜽

(𝑘))
𝑇

𝒏

𝒊=𝟏

 

Langkah 4: Memperbaharui nilai parameter menggunakan arah BHHH. 

𝜽(𝑘+1) = 𝜽(𝑘) −𝑯∗−1(𝜽(𝑘))𝓰(𝜽(𝑘)) 

Langkah 5: Mengevaluasi konvergensi dengan melihat kondisi berikut. 

‖𝜽(𝑘+1) − 𝜽(𝑘)‖ ≤ 𝜖 

Jika belum konvergen, set 𝑘 = 𝑘 + 1 dan kembali ke langkah 1. Jika kondisi 

konvergen telah tercapai, maka 𝜽(𝑘+1) adalah estimator dari 𝜽̂. 

Setelah mendapatkan penaksir parameter maka selanjutnya adalah 

mendapatkan pengujian hipotesis parameter model GPSAR dilakukan secara 

serentak dan secara parsial.  
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3.2 Langkah-langkah Pemodelan Kasus Pneumonia pada Balita 

Pada subbab ini, dijelaskan tentang sumber data jumlah kasus pneumonia 

pada balita, serta variabel dan struktur data yang digunakan dalam penelitian ini 

yang digunakan untuk melakukan pemodelan jumlah kasus pneumonia pada balita. 

Selanjutnya, akan dijelaskan mengenai langkah-langkah dalam pemodelan jumlah 

kasus pneumonia pada balita. 

3.2.1 Sumber Data 

Data yang digunakan dalam penelitian ini merupakan data sekunder yang 

diperoleh dari Pemerintah Kabupaten Tuban dan pusat kajian Potensi Daerah dan 

Pemberdayaan Masyarakat (PDPM) ITS. Unit observasi dalam penelitian ini adalah 

311 desa dan 17 kelurahan. Data yang digunakan merupakan data tahun 2023. 

Adapun peta Kabupaten Tuban tergambar pada Gambar 3.1. 

Gambar 3.1 Wilayah Administrasi Tuban Berdasarkan Desa. 

3.2.2 Spesifikasi Model, Variabel dan Struktur Data Penelitian 

Model yang digunakan untuk menganalisis faktor-faktor yang berpengaruh 

terhadap jumlah kasus pneumonia pada balita adalah GPSAR. Spesifikasi fungsi 

link yang akan digunakan dalam penelitian ini adalah sama seperti pada persamaan 

2.37 namun akan ditambahkan variabel eksposur sebagai berikut. 

 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 = 𝑞𝑖 exp(𝑨

−1𝑿𝜷)𝑖 (3.1) 
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dengan 𝑨 = (𝑰 − 𝜌𝑾)  dan 𝑨−1  adalah matriks invers dari matriks 𝑨,  𝑞𝑖  adalah 

variabel eksposur yaitu jumlah balita. 

Variabel yang digunakan dalam penelitian ini terdiri dari satu variabel respon 

(Y) dan lima variabel prediktor (X). Definisi operasional dan skala pengukuran 

untuk setiap variabel disajikan secara rinci pada Tabel 3.1. 

Tabel 3.1 Variabel Penelitian 

No. Simbol Variabel 
Skala 

Pengukuran 

1. Y Jumlah kasus pneumonia pada balita Rasio 

2. X1 Persentase bayi yang mendapatkan ASI Eksklusif Rasio 

3. X2 Persentase balita yang mendapatkan vitamin A Rasio 

4. X3 Persentase ibu hamil yang mengikuti kelas ibu hamil Rasio 

5. X4 Persentase rumah tangga dengan cakupan air bersih Rasio 

6. X5 Persentase balita yang mendapatkan Imunisasi Campak Rasio 

 

Definisi operasional dari variabel penelitian yang digunakan adalah sebagai 

berikut: 

1. Jumlah kasus pneumonia pada balita adalah jumlah balita yang menderita 

pneumonia (pneumonia). 

2. Persentase bayi yang mendapatkan ASI eksklusif adalah jumlah bayi kurang 

dari 6 bulan yang mendapatkan ASI tanpa menambahkan dan/atau mengganti 

dengan makanan atau minuman lain kecuali obat, vitamin dan mineral 

dibandingkan dengan jumlah bayi lahir hidup dikalikan 100 persen. 

3. Persentase balita yang mendapatkan imunisasi campak adalah perbandingan 

jumlah balita yang mendapatkan imunisasi campak dengan jumlah balita 

dikalikan 100 persen. 

4. Persentase balita yang mendapatkan vitamin A adalah perbandingan jumlah 

balita yang mendapatkan vitamin A dengan jumlah balita tertimbang dikalikan 

100 persen. 

5. Persentase ibu hamil yang mengikuti kelas ibu hamil adalah perbandingan ibu 

hamil yang mengikuti kelas ibu hamil di puskesmas dengan jumlah ibu hamil 

dikalikan 100 persen. 

6. Persentase rumah tangga dengan cakupan air bersih adalah perbandingan 

jumlah rumah tangga dengan sumber air minumnya menggunakan air bersih 
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dengan jumlah rumah tangga dikalikan 100 persen. Struktur data penelitian ini 

ditunjukkan pada Tabel 3.2. 

Tabel 3.2 Struktur Data GPSAR 
Des/ 

Kel 

Variabel 

Respon 

Variabel Prediktor Variabel 

Eksposure 𝑋1 … 𝑋𝑘 … 𝑋5 

1 𝑦1 𝑥1,1 … 𝑥1,𝑘 … 𝑥1,5 𝑞1 

2 𝑦2 𝑥2,1 … 𝑥2,𝑘 … 𝑥2,5 𝑞2 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝑖 𝑦𝑖 𝑥𝑖,1 … 𝑥𝑖,𝑘 … 𝑥𝑖,5 𝑞𝑖 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
328 𝑦328 𝑥328,1 … 𝑥328,𝑘 … 𝑥328,5 𝑞328 

3.2.3 Langkah-langkah Analisis Pemodelan GPSAR 

Untuk mengetahui faktor-faktor yang memengaruhi kasus pneumonia pada 

balita di Kabupaten Tuban, dilakukan pemodelan Generalized Poisson Spatial 

Autoregressive (GPSAR) melalui beberapa langkah berikut. 

1. Membuat analisis deskriptif dan membuat peta tematik variabel prediktor. 

2. Mendeteksi multikolinearitas dan mengatasi jika terjadi multikolinearitas 

sampai tidak terjadi multikolinearitas. 

3. Melakukan pengujian equidispersion dengan uji Deviance seperti pada 

persamaan (2.12). 

4. Melakukan pemodelan data kasus pneumonia pada balita dengan generalized 

poisson regression jika asumsi equidispersion tidak terpenuhi. 

5. Melakukan pembobotan spasial dengan queen contiguity. 

6. Melakukan uji dependensi spasial dengan uji Moran’s I seperti pada persamaan 

(2.34). 

7. Memodelkan data kasus pneumonia pada balita dengan GPSAR dengan 

menentukan nilai penaksir parameter dan melakukan pengujian parameter 

secara serentak dan parsial. 

8. Melakukan interpretasi model terbaik berdasarkan model dengan nilai uji AICc 

terkecil (2.38). 

9. Menarik kesimpulan dan saran. 

10. Diagram alir dari langkah analisis data pada penelitian ini adalah ditunjukkan 

pada Gambar 3.2. 
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Gambar 3.2 Diagram Alir Analisis Data. 
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BAB IV 

HASIL DAN PEMBAHASAN 

Bab ini menjelaskan tentang estimasi parameter model GPSAR, statistik uji 

untuk pengujian hipotesis model GPSAR dan pada bagian akhir akan dijelaskan 

penerapan model GPSAR beserta pengujian hipotesis parameternya pada jumlah 

kasus pneumonia pada balita di desa/kelurahan kabupaten Tuban. 

4.1 Penaksiran Parameter GPSAR 

Penaksiran parameter model GPSAR dilakukan dengan menggunakan 

metode Maximum Likelihood Estimation (MLE). Tujuan utama dari estimasi ini 

adalah memperoleh vektor parameter 𝜽 = [𝜷𝑇 𝜙 𝜌]𝑇  yang memaksimumkan 

fungsi likelihood. Berbeda dengan regresi linear klasik, fungsi ln-likelihood pada 

model GPSAR bersifat non-linear dan kompleks, sehingga solusi analitik bentuk 

tertutup (closed-form solution) tidak dapat diperoleh. Oleh karena itu, proses 

optimasi dilakukan menggunakan pendekatan numerik iteratif dengan algoritma 

BHHH.  

Algoritma BHHH dipilih karena efisiens dalam mengaproksimasi matriks 

Hessian menggunakan penjumlahan outer product dari vektor gradien sehingga 

menghindari komputasi turunan parsial kedua yang rumit secara analitis dan berat 

secara komputasi. Selain itu, algoritma ini menjamin bahwa matriks informasi yang 

diestimasi selalu bersifat semidefinit positif, yang mendukung stabilitas 

konvergensi algoritma menuju nilai optimum global. 

Langkah awal dalam prosedur ini adalah mendefinisikan fungsi distribusi 

peluang yang mendasari model GPSAR. Berdasarkan fungsi link logaritmik dan 

struktur dependensi spasial yang telah diuraikan pada persamaan (3.1), fungsi 

massa peluang distribusi GPSAR untuk variabel respon 𝑦𝑖  didefinisikan sebagai 

berikut: 

𝑃(𝑌𝑖 = 𝑦𝑖|𝑥𝑖 ,𝑾, 𝜽) = [
𝜇𝑖
∗

1 + 𝜙𝜇𝑖
∗]

𝑦𝑖 (1 + 𝜙𝑦𝑖)
𝑦𝑖−1

𝑦𝑖!
exp (−

𝜇𝑖
∗(1 + 𝜙𝑦𝑖)

1 + 𝜙𝜇𝑖
∗ ) 

(4.1) 
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dengan 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 = 𝑞𝑖 𝑒𝑥𝑝([(𝑰𝑛 − 𝜌𝑾)

−1𝑿𝜷]𝑖) , rata – rata dan variansi dari 𝑦𝑖 

adalah 𝐸(𝑦𝑖) = 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅  dan 𝑉(𝑦𝑖) = 𝜇𝑖(1 +  𝜙𝜇𝑖

𝐺𝑃𝑆𝐴𝑅)
2

 yang merujuk pada 

spesifikasi model persamaan (3.1), di mana 𝑦𝑖 merepresentasikan variabel respon 

pada lokasi ke−𝑖 untuk 𝑖 = 1, 2, … , 𝑛, dan 𝑞𝑖merupakan variabel eksposure, serta 

𝜙  merupakan parameter dispersi yang mengontrol kondisi overdispersion atau 

underdispersion pada data. 

Fungsi likelihood gabungan dibangun berdasarkan asumsi bahwa kejadian 

antar lokasi bersifat independen secara kondisional apabila parameter rata-rata 

𝝁𝐺𝑃𝑆𝐴𝑅  telah diketahui. Oleh karena itu, fungsi likelihood 𝐿(𝜽)  didefinisikan 

sebagai perkalian dari fungsi massa peluang seluruh pengamatan 𝑦𝑖 untuk 𝑖 = 1,

2, … , 𝑛. Persamaan fungsi likelihood dinyatakan sebagai berikut: 

𝐿(𝜽) =∏𝑃(𝑌𝑖 = 𝑦𝑖|𝑥𝑖 ,𝑾, 𝜽)

𝑛

𝑖=1

 
 

 
=∏[(

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅

1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅)

𝑦𝑖 (1 + 𝜙𝑦𝑖)
𝑦𝑖−1

𝑦𝑖!
exp (−

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝑦𝑖)

1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 )]

𝑛

𝑖=1

 (4.2) 

Persamaan (4.2) menunjukkan bahwa probabilitas gabungan merupakan 

produk dari probabilitas marginal masing-masing lokasi. Untuk mempermudah 

proses penurunan rumus fungsi tersebut ditransformasikan ke dalam bentuk ln-

likelihood. 

ℓ(𝜽) = ln(𝐿(𝜽)) =∑ln𝑃(𝑌𝑖 = 𝑦𝑖|𝑥𝑖 ,𝑾, 𝜽)

𝑛

𝑖=1

 (4.3) 

Persamaan (4.2) dapat disederhanakan menjadi fungsi ln-likelihood sebagai berikut: 

ℓ(𝜽) =∑

[
 
 
 
 𝑦𝑖 ln (

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅

1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅) + (𝑦𝑖 − 1) ln(1 + 𝜙𝑦𝑖)

−
𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝑦𝑖)

1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 − ln(𝑦𝑖!)

]
 
 
 
 𝑛

𝑖=1

 (4.4) 

Estimasi parameter menggunakan algoritma BHHH mensyaratkan adanya 

informasi mengenai turunan parsial pertama dari fungsi ln-likelihood terhadap 

masing-masing parameter. Informasi yang didapatkan ini kemudian disusun dalam 

vektor gradien 𝒈(𝜽). Oleh karena itu untuk mendapatkan turunan parsial pertama 
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dari fungsi ln-likelihood terhadap masing-masing parameter perlu dilakukan 

dengan menjabarkan fungsi ln-likelihood pada persamaan (4.4) dan menerapkan 

aturan rantai pada turunan fungsi ln-likelihood terhadap 𝜷 dan 𝜌. Hal ini diperlukan 

karena parameter 𝜷 dan 𝜌 tidak berhubungan langsung dengan fungsi ln-likelihood, 

melainkan melalui perantara prediktor linear ( 𝜂𝑖 ) yang telah mengalami 

transformasi spasial dan fungsi link eksponensial. Sedangkan turunan parsial  fungsi 

ln-likelihood terhadap 𝜙 dilakukan dengan cara biasa. Sehingga akan didapatkan 

bentuk vektor gradien berikut. 

𝒈(𝛉) =
∂ℓ(𝜽)

∂𝜽
=

[
 
 
 
 
 
 
 𝜕ℓ(𝜽)

𝜕𝜷
=∑

𝜕ℓ(𝜽)

𝜕𝜇𝑖
𝐺𝑃𝑆𝐴𝑅

𝑛

𝑖=1

⋅
𝜕𝜇𝑖

𝐺𝑃𝑆𝐴𝑅

𝜕𝜂𝑖
⋅
𝜕𝜂𝑖
𝜕𝜷

𝜕ℓ(𝜽)

𝜕𝜌
=∑

𝜕ℓ(𝜽)

𝜕𝜇𝑖
𝐺𝑃𝑆𝐴𝑅

𝑛

𝑖=1

⋅
𝜕𝜇𝑖

𝐺𝑃𝑆𝐴𝑅

𝜕𝜂𝑖
⋅
𝜕𝜂𝑖
𝜕𝜌

𝜕ℓ(𝜽)

𝜕𝜙 ]
 
 
 
 
 
 
 

 (4.5) 

dimana 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 = 𝑞𝑖 𝑒𝑥𝑝([𝑨

−1𝑿𝜷]𝑖)  dan 𝜂𝑖  adalah elemen 𝑘𝑒 − 𝑖  dari vektor 

𝑨−1𝑿𝜷.  

Turunan parsial fungsi ln-likelihood terhadap 𝜷 dan terhadap 𝜌 sama-sama 

mengandung unsur turunan parsial fungsi ln-likelihood terhadap 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅  dan 

turunan parsial 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅  terhadap 𝜂𝑖  pada proses penurunannya. Sehingga perlu 

dilakukan turunan parsial  terlebih dahulu fungsi ln-likelihood terhadap 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 dan 

turunan parsial 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 terhadap 𝜂𝑖. 

1. Turunan Parsial Fungsi ln-likelihood terhadap 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 

Langkah pertama adalah menurunkan fungsi ℓ(𝜽) terhadap 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 . Untuk 

mempermudah proses diferensiasi, persamaan (4.4) dipecah menjadi suku-suku 

yang mengandung 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 dimana suku-suku yang dimaksud adalah suku pertama 

dan suku ketiga. Berikut adalah langkah-langkah turunan parsial fungsi ln-

likelihood terhadap 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 secara lengkap. 

a. Suku pertama 
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𝜕

𝜕𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 [𝑦𝑖 ln(𝜇𝑖

𝐺𝑃𝑆𝐴𝑅) − 𝑦𝑖 ln(1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅)] =

𝑦𝑖

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 −

𝑦𝑖𝜙

1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 

disamakan penyebutnya menjadi seperti berikut. 

𝑦𝑖

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 −

𝑦𝑖𝜙

1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 =

𝑦𝑖(1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅) − 𝑦𝑖𝜙𝜇𝑖

𝐺𝑃𝑆𝐴𝑅

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝜇𝑖

𝐺𝑃𝑆𝐴𝑅)

=
𝑦𝑖

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝜇𝑖

𝐺𝑃𝑆𝐴𝑅)
 

b. Suku ketiga  

Bentuk dari suku ketiga merupakan bentuk fungsi rasional dimana kita dapat 

menggunakan aturan turunan pembagian yang dinyatakan sebagai berikut.  

(
𝑢

𝑣
)
′

=
𝑢′𝑣 − 𝑢𝑣′

𝑣2
 

Misalkan 𝑢 = 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝑦𝑖) dan 𝑣 = 1 + 𝜙𝜇𝑖

𝐺𝑃𝑆𝐴𝑅,  

maka akan didapatkan bentuk 

𝑢′ = (1 + 𝜙𝑦𝑖) dan 𝑣′ = 𝜙 

Sehingga  

𝜕

𝜕𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 [

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝑦𝑖)

1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 ] =

(1 + 𝜙𝑦𝑖)(1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅) − 𝜇𝑖

𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝑦𝑖)(𝜙)

(1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅)

2  

 
=
(1 + 𝜙𝑦𝑖)[(1 + 𝜙𝜇𝑖

𝐺𝑃𝑆𝐴𝑅) − 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅]

(1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅)

2  

 
=

1 + 𝜙𝑦𝑖

(1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅)

2 

Dengan menggabungkan hasil turunan Suku 1 dan negatif dari Suku 3, diperoleh: 

𝜕ℓ(𝜽)

𝜕𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 =

𝑦𝑖

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝜇𝑖

𝐺𝑃𝑆𝐴𝑅)
−

1 + 𝜙𝑦𝑖

(1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅)

2 
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=
𝑦𝑖(1 + 𝜙𝜇𝑖

𝐺𝑃𝑆𝐴𝑅) − 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝑦𝑖)

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝜇𝑖

𝐺𝑃𝑆𝐴𝑅)
2  

 

 
=
𝑦𝑖 + 𝑦𝑖𝜙𝜇𝑖

𝐺𝑃𝑆𝐴𝑅 − 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 − 𝜇𝑖

𝐺𝑃𝑆𝐴𝑅𝜙𝑦𝑖

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝜇𝑖

𝐺𝑃𝑆𝐴𝑅)
2  

 

 
=

𝑦𝑖 − 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝜇𝑖

𝐺𝑃𝑆𝐴𝑅)
2 

(4.6) 

Setelah mendapatkan bentuk turunan parsial fungsi ln-likelihood terhadap 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 

selanjutnya adalah mencari turunan parsial 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 terhadap 𝜂𝑖.  

2. Turunan Parsial 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 terhadap 𝜂𝑖 

Mengingat fungsi link adalah 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 = exp(𝜂𝑖), maka 

 𝜕𝜇𝑖
𝐺𝑃𝑆𝐴𝑅

𝜕𝜂𝑖
=
𝜕

𝜕𝜂𝑖
(exp(𝜂𝑖)) = exp(𝜂𝑖) = 𝜇𝑖

𝐺𝑃𝑆𝐴𝑅 
(4.7) 

Setelah kita mendapatkan turunan parsial fungsi ln-likelihood terhadap 

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅  dan turunan parsial 𝜇𝑖

𝐺𝑃𝑆𝐴𝑅  terhadap 𝜂𝑖 , maka yang perlu dilakukan 

sekarang adalah mencari secara utuh turunan parsial fungsi ln-likelihood terhadap 

seluruh parameter. 

1. Turunan Parsial terhadap Koefisien Regresi (𝜷) 

Penurunan gradien terhadap parameter koefisien regresi 𝜷 dilakukan dengan 

menerapkan aturan rantai secara bertingkat seperti yang telah dijelaskan 

sebelumnya. Secara matematis, hubungan fungsional tersebut dapat diuraikan 

sebagai berikut: 

 

di mana prediktor linear spasial 𝜂𝑖 didefinisikan dari persamaan struktur model: 

𝜼 = (𝑰𝑛 − 𝜌𝑾)
−1𝑿𝜷 = 𝑨−1𝑿𝜷 

Berdasarkan alur dependensi di atas, turunan parsial fungsi ln-likelihood terhadap 

𝜷 diformulasikan sebagai penjumlahan dari perkalian tiga komponen turunan: 
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𝜕ℓ(𝜽)

𝜕𝜷
=∑

𝜕ℓ(𝜽)

𝜕𝜇𝑖
𝐺𝑃𝑆𝐴𝑅

𝑛

𝑖=1

⋅
𝜕𝜇𝑖

𝐺𝑃𝑆𝐴𝑅

𝜕𝜂𝑖
⋅
𝜕𝜂𝑖
𝜕𝜷

 

Untuk komponen satu dan komponen dua telah didapatkan sebelumnya yang mana 

hasilnya dinyatakan pada persamaan (4.5) dan (4.6). Sehingga selanjutnya adalah 

mencari komponen ketiga. Diketahui bahwa 𝜂𝑖  adalah elemen 𝑘𝑒 − 𝑖 dari vektor 

𝑨−1𝑿𝜷. Misalkan 𝒁 = 𝑨−1𝑿 adalah matriks prediktor yang telah terboboti secara 

spasial, maka 𝜂𝑖 = 𝒛𝑖
𝑇𝜷, di mana 𝒛𝑖

𝑇 adalah baris 𝑘𝑒 − 𝑖 dari matriks 𝒁. Turunan 

skalar 𝜂𝑖 terhadap vektor 𝜷 adalah vektor baris tersebut yang ditransposkan: 

𝜕𝜂𝑖
𝜕𝜷

=
𝜕

𝜕𝜷
(𝒛𝑖
𝑇𝜷) = (𝒛𝑖

𝑇)𝑇 = (𝑨−1𝑿)𝑖
𝑇 

Selanjutnya, ketiga komponen tersebut disubstitusikan kembali ke dalam 

persamaan (4.6): 

𝜕ℓ(𝜽)

𝜕𝜷
 =∑[(

𝑦𝑖 − 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝜇𝑖

𝐺𝑃𝑆𝐴𝑅)
2) ⋅ (𝜇𝑖

𝐺𝑃𝑆𝐴𝑅) ⋅ (𝑨−1𝑿)𝑖
𝑇]

𝑛

𝑖=1

 
 

 
=∑[

𝑦𝑖 − 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅

(1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅)

2
(𝑨−𝟏𝑿)𝑖

𝑇]

𝑛

𝑖=1

 
(4.8) 

2. Turunan Parsial terhadap Parameter Spasial (𝜌) 

Penurunan gradien terhadap parameter dependensi spasial 𝜌  dilakukan 

dengan menerapkan aturan rantai secara bertingkat yang telah dijelaskan 

sebelumnya. Secara matematis, hubungan fungsional tersebut dapat diuraikan 

sebagai berikut: 

 

Di mana prediktor linear spasial 𝜼 didefinisikan dari persamaan struktur model: 

𝜼 = (𝑰𝑛 − 𝜌𝑾)
−1𝑿𝜷 = 𝑨−1𝑿𝜷 

Berdasarkan alur dependensi di atas, turunan parsial terhadap 𝜌  diformulasikan 

sebagai penjumlahan dari perkalian tiga komponen turunan: 
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𝜕ℓ(𝜽)

𝜕𝜌
=∑

𝜕ℓ(𝜽)

𝜕𝜇𝑖
𝐺𝑃𝑆𝐴𝑅

𝑛

𝑖=1

⋅
𝜕𝜇𝑖

𝐺𝑃𝑆𝐴𝑅

𝜕𝜂𝑖
⋅
𝜕𝜂𝑖
𝜕𝜌

 

Untuk komponen satu dan komponen dua telah didapatkan sebelumnya yang mana 

hasilnya dinyatakan pada persamaan (4.5) dan (4.6). Sehingga selanjutnya adalah 

mencari komponen ketiga. Diketahui bahwa 𝜼 = 𝑨−𝟏𝑿𝜷 . Karena 𝑿𝜷  tidak 

memuat 𝜌  maka penurunan hanya dilakukan pada matriks invers 𝑨−𝟏 . Dengan 

demikian didapatkan turunannya dalam bentuk berikut. 

𝜕𝜼

𝜕𝜌
 = (

𝜕

𝜕𝜌
𝑨−𝟏)𝑿𝜷 

 = (𝑨−𝟏𝑾𝑨−𝟏)𝑿𝜷 

 = 𝑨−𝟏𝑾(𝑨−𝟏𝑿𝜷)⏟      
𝛈

 

 = 𝑨−𝟏𝑾𝜼 

sehingga 

𝜕𝜂𝑖
𝜕𝜌

= [𝑨−𝟏𝑾𝜼]𝑖 

Selanjutnya, ketiga komponen tersebut disubstitusikan kembali ke dalam 

persamaan utama: 

𝜕ℓ(𝜽)

𝜕𝜌
 =∑[(

𝑦𝑖 − 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝜇𝑖

𝐺𝑃𝑆𝐴𝑅)
2) ⋅ (𝜇𝑖

𝐺𝑃𝑆𝐴𝑅) ⋅ [𝑨−𝟏𝑾𝜼]𝑖]

𝑛

𝑖=1

 
 

 

 

=∑[
𝑦𝑖 − 𝜇𝑖

𝐺𝑃𝑆𝐴𝑅

(1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅)

2
[𝑨−𝟏𝑾𝜼]𝑖]

𝑛

𝑖=1

 
(4.9) 

3. Turunan Parsial terhadap Parameter Dispersi (𝜙) 

Berbeda dengan parameter regresi dan spasial yang berada di dalam fungsi 

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 , parameter dispersi 𝜙  muncul secara eksplisit dalam fungsi distribusi 

peluang Generalized Poisson untuk mengontrol varians data. Oleh karena itu, 

penurunan gradien terhadap 𝜙  dilakukan langsung pada fungsi ln-likelihood 
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persamaan (4.4) tanpa melalui aturan rantai yang kompleks terhadap 𝜼. Fungsi ln-

likelihood yang memuat komponen 𝜙  adalah seperti pada persamaan (4.4). 

Turunan parsial pertama terhadap 𝜙 diperoleh dengan memecah dan menurunkan 

setiap suku sebagai berikut: 

𝜕

𝜕𝜙
[

𝑦𝑖 𝑙𝑛(𝜇𝑖
𝐺𝑃𝑆𝐴𝑅) − 𝑦𝑖 𝑙𝑛(1 + 𝜙𝜇𝑖

𝐺𝑃𝑆𝐴𝑅) + (𝑦𝑖 − 1) ln(1 + 𝜙𝑦𝑖)

−
𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝑦𝑖)

1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 − ln(𝑦𝑖!)

] 

Turunan Suku Logaritma Pertama 

𝜕

𝜕𝜙
[𝑦𝑖 𝑙𝑛(𝜇𝑖

𝐺𝑃𝑆𝐴𝑅) − 𝑦𝑖 𝑙𝑛(1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅)] = −

𝑦𝑖𝜇𝑖
𝐺𝑃𝑆𝐴𝑅

1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 

Turunan Suku Logaritma Kedua 

𝜕

𝜕𝜙
[(𝑦𝑖 − 1) ln(1 + 𝜙𝑦𝑖)] =

𝑦𝑖(𝑦𝑖 − 1)

1 + 𝜙𝑦𝑖
 

Turunan Suku Rasio (Pecahan) Menggunakan aturan pembagian (
𝑢

𝑣
)
′

=
𝑢′𝑣−𝑢𝑣′

𝑣2
 di 

mana 𝑢 = 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 + 𝜇𝑖

𝐺𝑃𝑆𝐴𝑅𝜙𝑦𝑖 dan 𝑣 = 1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅, sehingga 

𝜕

𝜕𝜙
[
𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝑦𝑖)

1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 ] =

𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(𝑦𝑖 − 𝜇𝑖

𝐺𝑃𝑆𝐴𝑅)

(1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅)

2  

Setelah penyederhanaan aljabar, suku ini menjadi: 

Dengan menggabungkan ketiga komponen tersebut, diperoleh gradien akhir untuk 

parameter dispersi: 

𝜕ℓ(𝜽)

𝜕𝜙
=∑[−

𝑦𝑖𝜇𝑖
𝐺𝑃𝑆𝐴𝑅

1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 +

𝑦𝑖(𝑦𝑖 − 1)

1 + 𝜙𝑦𝑖
+
𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(𝑦𝑖 − 𝜇𝑖

𝐺𝑃𝑆𝐴𝑅)

(1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅)

2 ]

𝑛

𝑖=1

 
(4.10) 

Berdasarkan turunan parsial yang telah diperoleh untuk masing-masing 

parameter pada persamaan (4.7), (4.8), dan (4.9), didapati bahwa bentuk tersebut 

tidak closed form. Kemudian vektor unit gradien dapat disusun komponennya 

menjadi seperti berikut. 
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ℊ𝑖(𝛉) =
∂ℓ𝑖(𝛉)

∂𝜽
=

[
 
 
 
 
 
 
 
 

𝑦
𝑖
− 𝜇

𝑖
𝐺𝑃𝑆𝐴𝑅

(1 + 𝜙𝜇
𝑖
𝐺𝑃𝑆𝐴𝑅)

2
(𝑨−𝟏𝑿)𝑖

𝑇

𝑦
𝑖
− 𝜇

𝑖
𝐺𝑃𝑆𝐴𝑅

(1 + 𝜙𝜇
𝑖
𝐺𝑃𝑆𝐴𝑅)

2
[𝑨−𝟏𝑾𝜼]𝑖

𝑦
𝑖
(𝑦
𝑖
− 1)

1 + 𝜙𝑦
𝑖

−
𝑦
𝑖
𝜇
𝑖
𝐺𝑃𝑆𝐴𝑅

1 + 𝜙𝜇
𝑖
𝐺𝑃𝑆𝐴𝑅

−
𝜇
𝑖
𝐺𝑃𝑆𝐴𝑅(𝑦

𝑖
− 𝜇

𝑖
𝐺𝑃𝑆𝐴𝑅)

(1 + 𝜙𝜇
𝑖
𝐺𝑃𝑆𝐴𝑅)

2
]
 
 
 
 
 
 
 
 

 

(4.11) 

dan 

𝓰(𝛉) =
∂ℓ(𝜽)

∂𝜽
=

[
 
 
 
 
 
 
 
 ∑

𝑦
𝑖
− 𝜇

𝑖
𝐺𝑃𝑆𝐴𝑅

(1 + 𝜙𝜇
𝑖
𝐺𝑃𝑆𝐴𝑅)

2
(𝑨−𝟏𝑿)𝑖

𝑇

𝑛

𝑖=1

∑
𝑦
𝑖
− 𝜇

𝑖
𝐺𝑃𝑆𝐴𝑅

(1 + 𝜙𝜇
𝑖
𝐺𝑃𝑆𝐴𝑅)

2
[𝑨−𝟏𝑾𝜼]𝑖

𝑛

𝑖=1

∑
𝑦
𝑖
(𝑦
𝑖
− 1)

1 + 𝜙𝑦
𝑖

−
𝑦
𝑖
𝜇
𝑖
𝐺𝑃𝑆𝐴𝑅

1 + 𝜙𝜇
𝑖
𝐺𝑃𝑆𝐴𝑅

−
𝜇
𝑖
𝐺𝑃𝑆𝐴𝑅(𝑦

𝑖
− 𝜇

𝑖
𝐺𝑃𝑆𝐴𝑅)

(1 + 𝜙𝜇
𝑖
𝐺𝑃𝑆𝐴𝑅)

2

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 

 

(4.12) 

Estimasi parameter 𝜽 = (𝜷𝑇 , 𝜌, 𝜙)𝑇  dilakukan melalui prosedur iteratif 

metode BHHH untuk memaksimumkan fungsi ln-likelihood. Berikut adalah 

langkah-langkah algoritma estimasi: 

Definisi 

Misalkan 𝜽 = [𝛽0 𝛽1…𝛽𝑝 𝜙 𝜌]
𝑇

 adalah vektor parameter yang akan di estimasi, 

ℓ𝑖(𝜽) adalah ln likelihood  untuk observasi ke-i, dimana 𝑖 = 1, 2, … , 𝑛. Fungsi ln 

likelihood total adalah ∑ ℓ𝑖(𝜽)
𝑛
𝑖=1  

Inisialisasi: 

1. Menentukan nilai awal parameter 𝜽(0).  Nilai awal parameter menentukan 

kecepatan tercapainya konvergensi pada proses iterasi. Idealnya nilai awal 

parameter untuk model GPSAR adalah nilai estimasi parameter dari model GPR. 

2. Menentukan toleransi konvergensi 𝜖 > 0 yang mana dalam penelitian ini 10−6 

menjadi batas toleransi konvergensi. 

3. Menentukan batas maksimum iterasi (𝑚𝑚𝑎𝑘𝑠).  Misalkan 𝑚𝑚𝑎𝑘𝑠  yang 

ditetapkan adalah 1000. Ketika iterasi tidak mencapai konvergensi pada iterasi 

ke-1000 maka proses iterasi akan berhenti walaupun konvergensi belum tercapai. 
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4. Menentukan set iterasi awal adalah 𝑘 = 0. 

Prosedur Iterasi: 

Langkah 1: Pada setiap iterasi ke-k, langkah pertama adalah menghitung nilai 

numerik dari gradien individu ℊ𝑖(𝛉)  untuk setiap unit observasi 𝑖 = 1, 2, … , 𝑛. 

Perhitungan ini dilakukan dengan mensubtitusi nilai estimasi parameter 𝜽(𝑘)  ke 

dalam formulasi vektor gradien individu yang telah dijabarkan pada persamaan 

(4.11). Komponen ini nantinya akan digunakan untuk menyusun aproksimasi 

matriks Hessian. 

Langkah 2: Menyusun vektor gradien 𝓰(𝜽(𝑘))  yang dibentuk dengan 

mengagregasi seluruh hasil evaluasi gradien individu dari langkah sebelumnya. 

Proses ini merujuk pada definisi vektor gradien total yang telah dinyatakan dalam 

persamaan (4.12) 

Langkah 3: Mengaproksimasi matriks Hessian menggunakan informasi vektor 

gradien individu. Misalkan 𝑯∗adalah aproksimasi matriks Hessian, maka 

𝑯∗(𝜽(𝑘)) = −∑ℊ𝑖(𝜽
(𝑘))ℊ𝑖(𝜽

(𝑘))
𝑇

𝒏

𝒊=𝟏

 

Langkah 4: Memperbaharui nilai parameter menggunakan arah BHHH. 

𝜽(𝑘+1) = 𝜽(𝑘) −𝑯∗−1(𝜽(𝑘))𝓰(𝜽(𝑘)) 

Langkah 5: Mengevaluasi konvergensi dengan melihat kondisi berikut. 

‖𝜽(𝑘+1) − 𝜽(𝑘)‖ ≤ 𝜖 

Jika belum konvergen, set 𝑘 = 𝑘 + 1  dan kembali ke langkah 1. Jika kondisi 

konvergen telah tercapai, maka 𝜽(𝑘+1) ditetapkan sebagai estimator 𝜽̂. 

Setelah didapatkan bentuk penaksir parameter selanjutnya menentukan 

pengujian hipotesis parameter model GPSAR yang dilakukan melalui dua tahap, 

yaitu uji serentak menggunakan metode Maximum Likelihood Ratio Test (MLRT) 

dan uji parsial menggunakan uji Wald. Uji serentak bertujuan untuk mengetahui 

signifikansi pengaruh variabel prediktor terhadap variabel respon secara bersama. 

Prinsip MLRT didasarkan pada perbandingan antara nilai maksimum fungsi ln-

likelihood pada ruang parameter populasi (𝛀𝐺𝑃𝑆𝐴𝑅) dengan nilai maksimum pada 

ruang parameter di bawah 𝐻0 (𝝎𝐺𝑃𝑆𝐴𝑅) yang tidak melibatkan variabel prediktor. 
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Adapun hipotesis untuk pengujian serentak model GPSAR dapat dinyatakan 

sebagai berikut 

𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = ⋯ = 𝛽𝑝 = 0  

𝐻1: Minimal ada satu 𝛽𝑘 ≠ 0, 𝑘 = 1, 2, … , 𝑝  

Fungsi likelihood untuk ruang parameter 𝛀𝐺𝑃𝑆𝐴𝑅  telah diuraikan pada 

persamaan (4.2), di mana penaksir parameter yang memaksimalkan fungsi tersebut 

𝛀̂𝐺𝑃𝑆𝐴𝑅 = {𝜷̂, 𝜌̂, 𝜙̂} disubstitusikan untuk menghasilkan nilai maksimum fungsi ln 

likelihood seperti yang dapat dinyatakan pada Persamaan (4.10). 

ℓ(𝛀̂𝐺𝑃𝑆𝐴𝑅) = ℓ(𝜽̂) =∑

[
 
 
 
 𝑦𝑖 ln (

𝜇̂𝑖
𝐺𝑃𝑆𝐴𝑅

1 + 𝜙̂𝜇̂𝑖
𝐺𝑃𝑆𝐴𝑅

) + (𝑦𝑖 − 1) ln(1 + 𝜙̂𝑦𝑖)

−
𝜇̂𝑖
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝑦𝑖)

1 + 𝜙̂𝜇̂𝑖
𝐺𝑃𝑆𝐴𝑅

− ln(𝑦𝑖!)
]
 
 
 
 𝑛

𝑖=1

 

(4.13) 

Sebaliknya, himpunan parameter di bawah 𝐻0 (𝝎𝐺𝑃𝑆𝐴𝑅)  dibentuk dengan 

menerapkan restriksi bahwa seluruh koefisien variabel prediktor bernilai nol. 

Fungsi likelihood untuk kondisi restriksi ini dinyatakan dalam Persamaan (4.11). 

𝐿(𝝎𝐺𝑃𝑆𝐴𝑅) =∏

[
 
 
 
 (

𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅)

𝑦𝑖 (1 + 𝜙𝜔𝑦𝑖)
𝑦𝑖−1

𝑦𝑖!

exp (−
𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝑦𝑖)

1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅 )

]
 
 
 
 𝑛

𝑖=1

 

(4.14) 

dimana 𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅 = exp(𝑨𝜔

−1𝟏𝛽0𝜔)𝑖 , 𝑨𝜔 = (𝑰 − 𝜌𝜔𝑾) , 𝑨𝜔
−1  adalah matriks 

invers dari 𝑨𝜔, dan 𝟏 = [1 1…1]𝑇  berukuran 𝑛 × 1. Sama halnya dengan kondisi 

populasi, penaksir parameter di bawah 𝐻0  diperoleh dengan memaksimumkan 

fungsi pada persamaan (4.11). Hasil tersebut didapatkan setelah melakukan 

penaksiran parameter di bawah hipotesis nol dengan menggunakan metode MLE 

dan iterasi BHHH yang dijelaskan lebih lanjut pada lampiran 3. Penaksir parameter 

yang memaksimalkan fungsi tersebut 𝝎̂𝐺𝑃𝑆𝐴𝑅 = {𝛽̂0𝜔, 𝜌̂𝜔, 𝜙̂𝜔}  disubstitusikan 

untuk menghasilkan nilai maksimum fungsi ln likelihood seperti yang dapat 

dinyatakan pada Persamaan (4.12). 
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ℓ(𝝎̂𝐺𝑃𝑆𝐴𝑅) =∑

[
 
 
 
 𝑦𝑖 ln (

𝜇̂𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

1 + 𝜙̂𝜔𝜇̂𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

) + (𝑦𝑖 − 1) ln(1 + 𝜙̂𝜔𝑦𝑖)

−
𝜇̂𝑖𝜔
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙̂𝑦𝑖)

1 + 𝜙̂𝜔𝜇̂𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

− ln(𝑦𝑖!)
]
 
 
 
 𝑛

𝑖=1

 

(4.15) 

dimana 𝜇̂𝑖𝜔
𝐺𝑃𝑆𝐴𝑅 = exp(𝑨̂𝜔

−1𝟏𝛽̂0𝜔)𝑖 , 𝑨̂𝜔 =
(𝑰 − 𝜌̂𝜔𝑾), 𝑨̂𝜔

−1 adalah matriks invers 

dari 𝑨̂𝜔, dan 𝟏 = [1 1…1]𝑇 berukuran 𝑛 × 1. 

Penaksir parameter 𝛀̂𝐺𝑃𝑆𝐴𝑅 = 𝜷̂, 𝜌̂, 𝜙̂  dan 𝝎̂𝐺𝑃𝑆𝐴𝑅 = 𝛽̂0𝜔, 𝜌̂𝜔 , 𝜙̂𝜔 

selanjutnya disubstitusikan pada masing-masing fungsi likelihood menjadi 

𝐿(𝜴̂𝐺𝑃𝑆𝐴𝑅) dan 𝐿(𝝎̂𝐺𝑃𝑆𝐴𝑅) sehingga likelihood ratio test dihitung dengan rumus 

pada persamaan (4.13). 

𝐿𝑅 =
𝐿(𝝎̂𝐺𝑃𝑆𝐴𝑅)

𝐿(𝜴̂𝐺𝑃𝑆𝐴𝑅)
< 𝐿𝑅0 

(4.16) 

Statistik uji untuk pengujian hipotesis parameter secara serentak diperoleh pada 

persamaan (4.14). 

𝐺𝐺𝑃𝑆𝐴𝑅
2  = − ln(𝐿𝑅)2  

𝐺𝐺𝑃𝑆𝐴𝑅
2  = −2 ln(𝐿𝑅)  

𝐺𝐺𝑃𝑆𝐴𝑅
2  

= −2 ln
𝐿(𝝎̂𝐺𝑃𝑆𝐴𝑅)

𝐿(𝜴̂𝐺𝑃𝑆𝐴𝑅)
 

 

𝐺𝐺𝑃𝑆𝐴𝑅
2  = −2(ℓ(𝝎̂𝐺𝑃𝑆𝐴𝑅) − ℓ(𝛀̂𝐺𝑃𝑆𝐴𝑅)) 

(4.17) 

dimana ℓ(𝝎̂𝐺𝑃𝑆𝐴𝑅)  Daerah kritis pengujian hipotesis adalah sebagai berikut. 

𝛼 = 𝑃(𝐿𝑅 < 𝐿𝑅0), 0 < 𝐿𝑅0 ≤ 1  

 = 𝑃(ln(𝐿𝑅2 < 𝐿𝑅0
2))  

 = 𝑃(ln 𝐿𝑅2 < ln 𝐿𝑅0
2)  

 = 𝑃(𝐺𝐺𝑃𝑆𝐴𝑅
2 > 𝜒(𝛼,𝑑𝑓)

2 ) (4.18) 

𝐺𝐺𝑃𝑆𝐴𝑅
2  mengikuti distribusi chi-square untuk n →  sehingga daerah 

penolakan 𝐻0  adalah 𝐺𝐺𝑃𝑆𝐴𝑅
2 > 𝜒(𝛼,𝑑𝑓)

2  atau 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  dengan derajat bebas 
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(df) merupakan jumlah parameter di bawah populasi dikurangi dengan jumlah 

parameter di bawah 𝐻0. 

𝑑𝑓 = 𝑛(𝜴̂𝐺𝑃𝑆𝐴𝑅) − 𝑛(𝝎̂𝐺𝑃𝑆𝐴𝑅) 

 = [(𝑝 + 1) + 1 + 1] − [1 + 1 + 1] = 𝑝 

Apabila pengujian hipotesis parameter secara serentak telah dilakukan dan 

diperoleh keputusan tolak 𝐻0, maka langkah selanjutnya adalah pengujian hipotesis 

parameter secara parsial. Pengujian hipotesis parameter secara parsial dalam hal ini 

bertujuan untuk mengetahui variabel prediktor dan parameter struktural (𝜌, 𝜙) 

mana yang berpengaruh signifikan terhadap variabel respon secara individu.  

Pengujian hipotesis parameter secara parsial menggunakan uji Wald karena 

uji Wald mampu menguji signifikansi parameter individu dalam model yang 

kompleks dan bersesuaian dengan asumsi distribusi normal. Pengujian hipotesis 

secara parsial terhadap parameter 𝜌  terlebih dahulu dilakukan dengan hipotesis 

sebagai berikut. 

𝐻0: 𝜌 = 0  

𝐻1: 𝜌 ≠ 0  

Statistik uji parsial untuk 𝑛 → ∞ disusun berdasarkan sifat asimtotik penaksir 𝜌̂. 

Penaksir ini berdistribusi normal dengan rata-rata 𝜌,  sedangkan variansnya 

merupakan diagonal utama utama dari −𝑯∗−1(𝜽̂) pada posisi yang bersesuaian 

dengan 𝜌. Oleh karena itu, diperoleh statistik uji sebagai berikut. 

𝜌̂ − 𝜌

𝑠𝑒(𝜌̂)
~𝑁(0,1) 

dimana 𝑠𝑒(𝜌̂) merupakan standart error 𝜌̂ yang diperoleh dari √𝑉𝑎𝑟̂(𝜌̂) . Dengan 

demikian, statistik uji Walds di bawah 𝐻0 dapat dinyatakan dalam persamaan (4.19). 

𝑊𝜌 = (
𝜌̂

𝑠𝑒(𝜌̂)
)
2

~𝜒(𝛼,1)
2  

(4.19) 

Kriteria pengambilan keputusan untuk statistik uji pada persamaan (4.19) adalah 

𝐻0 ditolak jika nilai 𝑊𝜌 > 𝜒(𝜶,1)
2 . 
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Selanjutnya pengujian signifikansi parameter 
𝑘

 secara parsial. Hipotesis 

yang digunakan untuk menguji parameter 
𝑘
 secara parsial adalah sebagai berikut. 

𝐻0: 𝑘 = 0  

𝐻1: 𝑘 ≠ 0  

Statistik uji parsial untuk 𝑛 → ∞ disusun berdasarkan sifat asimtotik penaksir 𝛽̂𝑘. 

Penaksir ini berdistribusi normal dengan rata-rata 𝛽𝑘,  sedangkan variansnya 

merupakan diagonal utama utama dari −𝑯∗−1(𝜽̂) pada posisi yang bersesuaian 

dengan 𝛽𝑘. Oleh karena itu, diperoleh statistik uji sebagai berikut. 

𝛽̂𝑘 − 
𝑘

𝑠𝑒(𝛽̂𝑘)
~𝑁(0,1) 

dimana 𝑠𝑒(𝛽̂𝑘)  merupakan standart error 𝛽̂𝑘  yang diperoleh dari√𝑉𝑎𝑟̂(
𝑘
̂) . 

Dengan demikian, statistik uji Walds di bawah 𝐻0  dapat dinyatakan dalam 

persamaan (4.20). 

𝑊𝑘
= (


𝑘
̂

𝑠𝑒(
𝑘
̂)
)

2

~𝜒(𝛼,1)
2  

(4.20) 

Kriteria pengambilan keputusan untuk statistik uji Wald pada persamaan (4.20) 

adalah 𝐻0 ditolak jila nilai 𝑊𝑘
> 𝜒(𝜶,1)

2 . 

Selanjutnya pengujian signifikansi parameter 𝜙  secara parsial. Hipotesis 

yang digunakan untuk menguji parameter secara parsial adalah sebagai berikut. 

𝐻0: 𝜙 = 0  

𝐻1: 𝜙 ≠ 0  

Statistik uji parsial untuk 𝑛 → ∞ disusun berdasarkan sifat asimtotik penaksir 𝜙̂ 

Penaksir ini berdistribusi normal dengan rata-rata 𝜙,  sedangkan variansnya 

merupakan diagonal utama utama dari −𝑯∗−1(𝜽̂) pada posisi yang bersesuaian 

dengan 𝜙. Oleh karena itu, diperoleh statistik uji sebagai berikut. 

𝜙̂ − 𝜙

𝑠𝑒(𝜙̂)
~𝑁(0,1) 
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dimana 𝑠𝑒(𝜙̂) merupakan standart error 𝜙 yang diperoleh dari√𝑉𝑎𝑟̂(𝜙̂). Dengan 

demikian, statistik uji Walds di bawah 𝐻0 dapat dinyatakan dalam persamaan (4.21). 

𝑊𝜙 = (
𝜙̂

𝑠𝑒(𝜙̂)
)

2

~𝜒(𝛼,1)
2  

(4.21) 

Kriteria pengambilan keputusan untuk statistik uji Wald persamaan (4.21) adalah 

𝐻0 ditolak jila nilai 𝑊𝜙 > 𝜒(𝜶,1)
2 . 

4.2 Penerapan Model GPSAR Terhadap Jumlah Kasus Pneumonia Pada 

Balita di Kabupaten Tuban 

Pada subab ini akan dijelaskan terlebih dahulu mengenai deskripsi variabel 

yang digunakan dalam penelitian ini dan dilanjutkan dengan pemodelan GPSAR 

pada jumlah kasus pneumonia pada balita di Kabuaten Tuban. 

4.2.1 Gambaran Umum Data Penelitian 

Statistik deskriptif memberikan gambaran umum mengenai karakteristik data 

yang digunakan dalam penelitian, meliputi nilai rata-rata (mean), standar deviasi, 

nilai minimum, dan nilai maksimum. Ringkasan statistik untuk variabel respon dan 

kelima variabel prediktor disajikan pada Tabel 4.1. 

Tabel 4.1 Statistik Deskriptif 
Variabel Rata-

rata 

Standar 

Deviasi 

Minimum Maksimum 

[Y1] Pneumonia 4,53 7,78 0 115 

[X1] Asi Eksklusif  (%) 6,54 7,23 0,00 64,10 

[X2] Vitamin A (%) 110,69 71,25 0,00 813,04 

[X3] Kelas Ibu Hamil (%) 63,83 57,69 0,00 500,00 

[X4] Cakupan Air Bersih 97,17 6,09 61,11 100,00 

[X5] Imunisasi Campak 21,86 8,61 6,56 89,74 

Berdasarkan hasil analisis statistik deskriptif yang disajikan pada Tabel 4.1, 

data menunjukkan bahwa rata-rata kejadian pneumonia di setiap desa/kelurahan 

adalah sekitar 4 hingga 5 kasus. Namun, angka rata-rata ini tidak mencerminkan 

kondisi seragam di seluruh wilayah. Rentang data menunjukkan variasi yang sangat 

lebar, di mana terdapat wilayah yang mencatatkan 0 kasus, sementara wilayah lain 

mencatat hingga 115 kasus. Hal ini mengindikasikan bahwa kejadian pneumonia 



58 

 

terpusat secara signifikan pada lokasi-lokasi tertentu saja, tidak menyebar merata 

di seluruh kabupaten. 

Pada aspek pencegahan dan gizi, terdapat beberapa catatan penting. ASI 

menjadi makanan tunggal terbaik karena mengandung nutrisi lengkap dan antibodi 

untuk mendukung pertumbuhan, perkembangan otak, dan kekebalan tubuh bayi. 

Namun menurut data yang terjadi di kabupaten Tuban tingkat partisipasi pemberian 

ASI Eksklusif tercatat rendah, dengan rata-rata capaian wilayah hanya sebesar 

6,54%. Angka ini menunjukkan bahwa praktik pemberian ASI eksklusif belum 

menjadi budaya yang dominan di sebagian besar wilayah. 

Selanjutnya data menunjukkan rata-rata capaian di atas 100% untuk 

pemberian Vitamin A (110,69%) dan angka yang bervariasi luas pada Kelas Ibu 

Hamil (63,83%). Nilai maksimum yang tinggi pada kedua variabel ini (mencapai 

813,04% untuk Vitamin A dan 500% untuk Kelas Ibu Hamil) kemungkinan 

disebabkan oleh jumlah pelayanan yang melebihi estimasi target penduduk asli, 

misalnya karena adanya pelayanan bagi warga pendatang atau perbedaan basis data 

sasaran. Tingginya cakupan Vitamin A di data ini adalah modal positif, artinya 

secara programatik, distribusi suplemen sudah berjalan baik untuk menjaga struktur 

jaringan paru balita. Kemudian variasi angka partisipasi dalam data ini menyiratkan 

bahwa kesiapan ibu dalam merawat kesehatan bayi belum merata.  

Secara rata-rata, 97,17% wilayah telah terlayani air bersih. Meskipun 

demikian, perhatian tetap diperlukan bagi wilayah dengan cakupan terendah yang 

berada di angka 61,11% untuk memastikan pemerataan akses sanitasi dasar. 

Ketersediaan air bersih berkorelasi langsung dengan Higiene dan Sanitasi (PHBS). 

Meskipun pneumonia adalah penyakit pernapasan, kebiasaan mencuci tangan ibu 

dan pengasuh dengan air bersih terbukti efektif memutus rantai penularan virus dan 

bakteri. Tingginya akses air bersih di Tuban adalah fondasi yang kuat untuk 

pencegahan penyakit infeksi secara umum. 

Terdapat ketimpangan yang cukup tajam dalam pelaksanaan imunisasi 

campak. Rata-rata cakupan imunisasi berada di angka 21,86%. Namun, 

kesenjangan antarwilayah sangat terlihat, di mana wilayah dengan kinerja terendah 

hanya mencakup 6,56% sasaran, sedangkan wilayah dengan kinerja terbaik mampu 

menjangkau hingga 89,74% sasaran. Campak dikenal dapat melemahkan sistem 
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imun anak selama beberapa minggu hingga bulan setelah infeksi, yang sering kali 

berujung pada komplikasi berat berupa pneumonia. Rendahnya cakupan imunisasi 

campak di data ini (21,86%) membuka celah risiko besar yang mana banyak balita 

yang tidak terlindungi dari virus campak, yang secara tidak langsung meningkatkan 

risiko mereka terkena pneumonia berat sebagai komplikasi ikutan. 

Selanjutnya untuk memberikan gambaran yang lebih komprehensif mengenai 

lokasi sebaran data dan mengidentifikasi wilayah dengan kecenderungan nilai 

ekstrem, berikut ditampilkan peta sebaran bagi setiap variabel penelitian.  

 

Gambar 4.1 Sebaran Kasus Jumlah Pneumonia menurut desa/kelurahan  

di Kabupaten Tuban Tahun 2023 

Perbedaan jumlah kasus yang sangat mencolok antar desa/kelurahan seperti 

yang disajikan pada Gambar 4.1. Di satu sisi, terdapat desa yang tidak memiliki 

kasus sama sekali atau nol kasus, seperti Desa Banyuurip. Di sisi lain, terdapat desa 

dengan jumlah kasus yang sangat tinggi, yaitu Desa Gedongombo dengan 115 

kasus. Kondisi ini menunjukkan bahwa beban penyakit pneumonia tidak tersebar 

merata di semua wilayah. Ada desa tertentu yang menanggung jumlah kasus jauh 

lebih besar dibandingkan rata-rata wilayah lainnya. Dalam istilah statistik, variasi 

data yang besar ini disebut sebagai overdispersi. 

Selain ketimpangan jumlah kasus, peta juga memperlihatkan pola penyebaran 

yang mengelompok. Desa-desa dengan kasus tinggi cenderung berkumpul di 
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wilayah bagian timur Kabupaten Tuban. Wilayah yang berwarna cokelat tampak 

saling berdekatan satu sama lain. Sebaliknya, wilayah bagian barat didominasi oleh 

warna kuning muda yang menandakan kasus rendah. Pola ini mengindikasikan 

bahwa kejadian pneumonia di satu desa berkaitan dengan kondisi di desa 

tetangganya. Keterkaitan antarwilayah yang berdekatan ini merupakan tanda 

adanya autokorelasi spasial. 

 

Gambar 4.2 Sebaran Kasus Persentase Asi Ekslusif (A), Vitamin A (B), Kelas 

Ibu Hamil (C), Air Bersih (D), dan Imunisasi Campak (E) Menurut 

Desa/kelurahan di Kabupaten Tuban Tahun 2023 

Peta sebaran spasial di Kabupaten Tuban menyingkap sebuah dikotomi tajam 

antara kemapanan infrastruktur fisik dan kerapuhan partisipasi kesehatan 

masyarakat. Akses Air Bersih (Peta D) berdiri sebagai satu-satunya variabel yang 

menunjukkan keberhasilan kawasan yang solid; blok warna gelap yang 

mendominasi hampir seluruh peta menegaskan bahwa sanitasi dasar telah menjadi 

"tulang punggung" yang kokoh dan merata, tidak lagi menjadi pembeda risiko yang 

signifikan antarwilayah. Kontras yang sangat mencolok justru terlihat pada ASI 

Eksklusif (Peta A), yang tampil sebagai "sisi terlemah" dalam pertahanan kesehatan 

balita. Alih-alih merata, peta ASI didominasi oleh lautan warna pucat dengan 
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capaian rendah yang nyaris seragam di seluruh kabupaten, menyisakan hanya 

segelintir desa sebagai "pulau keberhasilan" yang terisolasi. Ini menandakan bahwa 

intervensi yang menuntut perubahan perilaku budaya (menyusui) jauh lebih sulit 

ditembus dibandingkan sekadar membangun instalasi pipa air. 

Di sisi lain, peta perlindungan medis dan edukasi (Vitamin A, Kelas Ibu 

Hamil, dan Imunisasi) memperlihatkan wajah ketimpangan yang lebih kaotis dan 

sporadis. Tidak seperti pola air bersih yang stabil, sebaran Vitamin A dan partisipasi 

Kelas Ibu Hamil tampak acak desa dengan capaian ekstrem tinggi bisa bersebelahan 

langsung dengan desa yang nol capaiannya mencerminkan ketidakkonsistenan 

performa pelayanan di tingkat mikro. Lebih mengkhawatirkan lagi adalah pola pada 

Imunisasi Campak (Peta E); meskipun sekilas terlihat lebih baik dari ASI, 

keberadaan "kantong-kantong" wilayah berwarna terang yang menyebar di tengah 

wilayah bergambar gelap menciptakan celah kerentanan yang berbahaya. Dalam 

epidemiologi, lubang-lubang kecil dalam cakupan imunisasi ini sudah cukup untuk 

menjadi pintu masuk wabah yang fatal. Secara keseluruhan, lanskap spasial Tuban 

menceritakan satu simpulan tegas yaitu risiko pneumonia di wilayah ini tidak lagi 

dipicu oleh lingkungan fisik yang buruk, melainkan oleh kegagalan sistemik dalam 

memeratakan perilaku sehat dan perlindungan biologis pada balita. 

Kemudian kondisi tumpang tindih dari peta-peta ini memperlihatkan adanya 

akumulasi risiko yang serius pada wilayah tertentu. Desa-desa yang konsisten 

berwarna terang di berbagai peta misalnya desa yang cakupan ASI-nya rendah 

sekaligus imunisasinya minim pada dasarnya membentuk zona kerentanan ganda. 

Di wilayah ini, balita menghadapi ancaman dari dua arah sekaligus, yaitu 

pertahanan internal tubuh yang lemah karena kurangnya asupan alamiah, dan 

hilangnya perlindungan eksternal karena tidak terbentuknya kekebalan kelompok 

di lingkungan mereka. Realitas spasial ini menegaskan bahwa pekerjaan rumah 

Kabupaten Tuban saat ini bukan lagi sekadar pembangunan fisik, melainkan 

pembangunan sosial. Oleh karena itu tantangannya adalah bagaimana memastikan 

standar kesehatan di satu desa dapat "menular" ke desa tetangganya, menghapus 

batas tegas antara wilayah yang sehat dan yang rentan demi keselamatan balita 

secara menyeluruh. 
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4.2.2 Pola Hubungan Variabel Respon dan Variabel Prediktor 

Sebelum analisis lebih lanjut dilakukan, pola hubungan antara variabel respon 

dan variabel prediktor perlu diketahui. Pola hubungan yang mungkin terjadi adalah 

hubungan positif, Negatif, dan tidak berhubungan. Hubungan variabel respon 

dengan variabel prediktor ditunjukkan dengan nilai korelasi. Nilai korelasi antara 

variabel respon dengan variabel prediktor ditunjukkan pada Tabel 4.2. 

Tabel 4.2 Korelasi Variabel Respon dan Variabel Prediktor 
Variabel Pneumonia Asi Eks   Vit A Kls Ibu Hamil Air Bersih Campak 

Pneumonia 1,00    -  

Asi Eks -0.04 1,00     

Vit A -0,02 0,03 1,00    

Kls Ibu Hamil 0,12 0,11 0,14 1,00   

Air Bersih -0,06 -0,12 0,11 -0,04 1,00  

Im Campak 0,03 0,41 -0,07 -0,07 -0,03 1,00 

Berdasarkan Tabel 4.2, hasil uji korelasi menunjukkan nilai koefisien korelasi 

antara variabel respon (Pneumonia) dengan variabel-variabel prediktor tergolong 

sangat lemah (mendekati 0), baik yang bernilai positif maupun negatif. Sebagai 

contoh, korelasi ASI Eksklusif tercatat sebesar -0,04 dan Vitamin A sebesar -0,02. 

Lemahnya korelasi linier global ini tidak serta-merta menyimpulkan bahwa 

tidak ada hubungan kausalitas. Justru, hal ini memberikan indikasi awal bahwa 

hubungan antara faktor risiko dan kejadian Pneumonia bersifat kompleks dan tidak 

dapat ditangkap sepenuhnya hanya dengan pendekatan linier sederhana. 

Kemungkinan besar, hubungan tersebut tertutupi oleh variasi spasial (efek lokasi) 

atau adanya hubungan non-linier akibat distribusi data yang overdispersed. Temuan 

ini semakin memperkuat urgensi penggunaan metode multivariat yang lebih robust 

seperti regresi spasial untuk menyingkap pola hubungan yang sebenarnya. 

4.2.3 Deteksi Multikolinieritas 

Pemeriksaan multikolinearitas dilakukan untuk memenuhi asumsi pemodelan 

regresi, yaitu antar variabel prediktor harus independen. Hasil perhitungan nilai VIF 

pada variabel prediktor disajikan dalam Tabel 4.3. 

Tabel 4.3 Nilai VIF Masing-masing Variabel Prediktor 
Variabel VIF 

[X1] Asi Eksklusif  (%) 1,25 

[X2] Vitamin A (%) 1,04 

[X3] Kelas Ibu Hamil (%) 1,05 

[X4] Cakupan Air Bersih 1,03 

[X5] Imunisasi Campak 1,22 
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Seluruh variabel prediktor memiliki nilai VIF yang sangat rendah, berkisar 

antara 1,03 hingga 1,25. Nilai ini berada jauh di bawah ambang batas kritis yang 

umumnya ditetapkan dalam literatur statistik, yaitu VIF < 10 (atau ambang batas 

yang lebih ketat VIF < 5). 

Rendahnya nilai VIF ini mengonfirmasi bahwa tidak ada lagi masalah 

multikolinearitas dalam model. Dengan demikian, estimasi koefisien regresi yang 

dihasilkan dapat dipastikan bersifat stabil, presisi, dan tidak bias akibat inflasi 

varians, sehingga signifikansi pengaruh masing-masing variabel prediktor terhadap 

kejadian Pneumonia dapat diinterpretasikan secara valid. 

4.2.4 Pengujian Equidispersi 

Berdasarkan hasil analisis, diperoleh nilai statistik Deviance sebesar 

1.601,227 dengan derajat bebas (𝑑𝑓) 322. Nilai ini terbukti melampaui nilai kritis 

pada tabel distribusi Chi-Square (𝜒2) untuk 𝑑𝑓 ≈ 320 pada taraf nyata 5%, yaitu 

sebesar 362,72. 

4.2.5 Pemodelan Generalized Poisson Regression 

Setelah dikonfirmasi adanya overdispersi pada data, artinya pemodelan 

dengan regresi Poisson tidak disarankan, sehingga pemodelan dilanjutkan 

menggunakan pendekatan Generalized Poisson Regression (GPR). Tabel 4.4  

menyajikan hasil estimasi parameter model GPR yang mencakup nilai koefisien, 

standard error, serta nilai signifikansi statistik (𝑝 − 𝑣𝑎𝑙𝑢𝑒) untuk setiap variabel. 

Tabel 4.4 Nilai Taksiran Parameter GPR 

Parameter Nilai 

Taksiran 

Standar 

Error 

Z p-value 

[𝛽0] Intercept -0,6636 0,9042 -0,7339 0,4629 

[𝜙] Dispersi  -6,1351 0,0899 -68,2117 0,0001 

[𝛽1] Asi Eksklusif  0,0210 0,0084 2,5175 0,0118 

[𝛽2] Vitamin A -0,0013 0,0009 -1,4660 0,1426 

[𝛽3] Kelas Ibu Hamil 0,0011 0,0012 0,9771 0,3285 

[𝛽4] Cakupan Air Bersih -0,0302 0,0091 -3,3050 0,0009 

[𝛽5] Imunisasi Campak 0,0072 0,0070 1,0301 0,3029 

Setelah data selesai dimodelkan dengan model GPR maka selanjutnya adalah 

menguji residual dari model untuk menguji dependensi spasial. 
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4.2.6 Pembobotan Spasial dan Pengujian Dependensi Spasial 

Pemodelan GPSAR untuk memodelkan jumlah kasus pneumonia pada balita 

di Kabupaten Tuban menggunakan matriks pembobot spasial queen contiguity. Hal 

tersebut berdasarkan bentuk wilayah Kabupaten Tuban yang tidak simetris. Matriks 

pembobot spasial dibuat berdasarkan persinggungan antar desa/kelurahan yang 

ditampilkan pada Lampiran 2. 

Berdasarkan hasil analisis, diperoleh nilai indeks Moran’s I teramati sebesar 

0,278, yang lebih besar dari nilai ekspektasinya (𝐸[𝐼] = −0,003). Nilai positif ini 

mengindikasikan adanya pola autokorelasi spasial positif, di mana wilayah-wilayah 

dengan karakteristik sisaan serupa cenderung saling berkelompok (clustering). 

Signifikansi pola ini dikonfirmasi oleh nilai statistik uji 𝑍ℎ𝑖𝑡𝑢𝑛𝑔(8,29)  >

𝑍𝑡𝑎𝑏𝑒𝑙(1.96) dengan nilai p-value yang sangat kecil, yaitu 2,2 × 10−16. Mengingat 

nilai p-value jauh di bawah taraf nyata 5%, maka diputuskan untuk menolak 

Hipotesis Nol yang menyatakan tidak ada autokorelasi spasial. Keberadaan 

dependensi spasial yang signifikan ini menegaskan bahwa model regresi klasik 

seperti Generalized Poisson Regression tidak memadai untuk memodelkan data 

jumlah kasus Pneumonia di wilayah penelitian, sehingga diperlukan pendekatan 

pemodelan spasial untuk menangkap efek ketergantungan antarwilayah tersebut 

secara eksplisit. Untuk menentukan spesifikasi model spasial yang paling tepat 

dilakukan pengujian Lagrange Multiplier (LM) sesuai dengan prosedur keputusan 

Anselin (1988). Berikut adalah hasil pengujian Lagrange Multiplier yang disajikan 

pada tabel 4.5. 

Tabel 4.5 Pengujian Lagrange Multiplier (LM) 
Uji Diagnostik Nilai 

Statistik 

df p-value Keterangan 

LM Error (SEM) 26,748 1 2,32 × 10−7 Signifikan 

LM Lag (SAR) 29,730 1 4,97× 10−8 Signifikan 

Robust LM Error  3,187 1 0,074 Tidak Signifikan 

Robust LM Lag 6,169 1 0,013 Signifikan 

SARMA 32,918 2 7,12× 10−8 Signifikan 

Pada tahap awal, uji LM standar menunjukkan bahwa kedua spesifikasi, baik 

LM Lag maupun LM Error, bernilai signifikan pada taraf nyata 5% (p < 0,001). 

Kondisi signifikansi ganda ini mengindikasikan perlunya pemeriksaan lanjutan 

menggunakan uji LM Robust untuk mengidentifikasi efek spasial yang lebih 
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dominan. Berdasarkan hasil uji Robust, terlihat perbedaan yang menentukan 

statistik Robust LM Lag tetap menunjukkan signifikansi statistik dengan nilai p 

sebesar 0,013 (< 0,05), sedangkan statistik Robust LM Error menjadi tidak 

signifikan dengan nilai p sebesar 0,074 (> 0,05). 

Ketika uji Robust LM Lag signifikan sementara Robust LM Error tidak 

signifikan, maka spesifikasi model yang paling sesuai untuk data ini adalah Spatial 

Autoregressive (SAR). Keputusan statistik ini sejalan dengan kerangka teoritis 

penyakit menular, di mana kejadian penyakit di suatu wilayah dipengaruhi secara 

langsung oleh kejadian penyakit di wilayah sekitarnya, bukan sekadar oleh 

kemiripan karakteristik error yang tidak teramati. Oleh karena itu, analisis 

selanjutnya akan menggunakan model Generalized Poisson Spatial Autoregressive 

yang mampu fleksibel terhadap asumsi equidispersion dan asumsi independen antar 

tiap pengamatan secara simultan.  

4.2.7 Penaksir Parameter Generalized Poisson Spatial Autoregressive 

Penaksiran parameter GPSAR dilakukan menggunakan metode MLE dan 

dilanjutkan dengan iterasi numerik BHHH karena tidak didapatkan bentuk yang 

closed form seperti yang telah diuraikan langkah-langkahnya pada Subbab 3.3. 

Setelah proses iterasi konvergen, diperoleh nilai penaksir 𝜷̂, 𝜙̂, 𝑑𝑎𝑛 𝜌̂ . Hasil 

penaksiran parameter untuk model GPSAR pada data kasus ini ditunjukkan pada 

Tabel 4.6. 

Tabel 4.6 Nilai Taksiran Parameter GPSAR 
Parameter Nilai Taksiran Standar Error Z p-value 

[𝛽0] Intercept 6,095 × 10−1 1,663 × 10−1 2,692 0,0002 

[𝛽1] Asi Eksklusif −2,413 × 10−3 2,307 × 10−3 -0,953 0,341 

[𝛽2] Vitamin A −6,110 × 10−5 1,294 × 10−4 -0,085 0,932 

[𝛽3] Kelas Ibu Hamil 1,432 × 10−3 4,976 × 10−4 2.757 0,004 

[𝛽4] Cakupan Air Bersih −9.101 × 10−3 2,796 × 10−3 -3,003 0,001 

[𝛽5] Imunisasi Campak 7,170 × 10−3  2,851 × 10−3 2,335 0,011 

[𝜌] Lag 9,899 × 10−1 1,895 × 10−2 37,912 𝟐, 𝟐 × 𝟏𝟎−𝟏𝟔 

[𝜙] Dispersi  2,991 × 10−1 2,392 × 10−2 11,442 𝟐, 𝟐 × 𝟏𝟎−𝟏𝟔 

Hasil pengujian menunjukkan bahwa parameter dependensi spasial (𝜌) 

memiliki nilai estimasi sebesar 0,989 dengan p-value < 0,001. Hal ini menunjukkan 

bahwa parameter 𝜌 berpengaruh signifikan terhadap model. Nilai positif pada 𝜌 

mengindikasikan adanya autokorelasi spasial positif, di mana jumlah kasus pada 
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suatu lokasi berhubungan lurus dengan jumlah kasus pada lokasi-lokasi 

tetangganya. Selain itu, parameter dispersi (𝜙) memiliki nilai estimasi 0,299 dan 

bernilai signifikan, yang mengonfirmasi adanya overdispersion pada data sehingga 

penggunaan distribusi Generalized Poisson lebih tepat dibandingkan distribusi 

Poisson standar. 

Secara parsial, variabel prediktor yang berpengaruh signifikan terhadap 

variabel respon pada taraf nyata 5% adalah Persentase ibu hamil yang mengikuti 

kelas ibu hamil (𝑋4), Persentase rumah tangga dengan cakupan air bersih (𝑋5), dan 

Persentase imunisasi campak (𝑋6). 

Persamaan model GPSAR yang terbentuk berdasarkan nilai estimasi 

parameter adalah sebagai berikut: 

ln(𝜇̂𝑖
𝐺𝑃𝑆𝐴𝑅) = ln 𝑞𝑖 + 0,9899∑𝑤𝑖𝑗(ln 𝜇̂𝑗

𝐺𝑃𝑆𝐴𝑅 − ln 𝑞𝑗)

𝑗≠𝑖

+ 0,6095 − 2,413𝑋1𝑖

− 6,110 × 10−5𝑋2𝑖 + 0,0014𝑋3𝑖 − 0,0091𝑋4𝑖 + 0,0072𝑋5𝑖 

Dengan mengambil contoh Desa Sidomukti, model GPSAR desa Sidomukti 

dengan kode nomor desa 87 dapat dinyatakan sebagai berikut. 

ln(𝜇̂87
𝐺𝑃𝑆𝐴𝑅) = ln 𝑞𝑖 + 0,9899 [

1

6
∑(ln 𝜇̂𝑗

𝐺𝑃𝑆𝐴𝑅 − ln 𝑞𝑗)

𝑗

] + 0,601 − 2,41𝑋1,87

− 6,110 × 10−5𝑋2,87 + 0,001𝑋3,87 − 0,0091𝑋4,87 + 0,007𝑋5,87 

dengan 𝑗 ∈ {55, 56, 85, 86, 88, 93}. 

Model GPSAR pada Desa Sidomukti di atas dapat diinterpretasikan sebagai berikut. 

1. Pengaruh spasial lag terbukti menjadi faktor signifikan secara statistik. Hal ini 

mengonfirmasi bahwa laju kejadian Pneumonia di Desa Sidomukti mengikuti 

pola wabah di desa-desa tetangganya  seperti Jamprong, Bendonglateng, 

Sidohasri, Tawaran, Jombok, dan Karangtengah. Secara riil, dampaknya adalah 

jika rata-rata risiko di desa tetangga mengalami kenaikan sebesar 0,10 satuan, 

kasus di Sidomukti diproyeksikan turut melonjak sebesar 10,4% dengan asumsi 

faktor lain tetap. Apabila akumulasi risiko gabungan dari keenam desa tetangga 

meningkat satu unit, rata-rata kejadian di Sidomukti akan mengalami kenaikan 

drastis hingga 17,9%. Artinya, kondisi Desa Sidomukti tidak berdiri sendiri. 
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Kegagalan pengendalian wabah di desa tetangga akan secara langsung 

menggagalkan upaya kesehatan di Sidomukti. 

2. Variabel Cakupan Kelas Ibu Hamil menunjukkan pengaruh positif yang 

signifikan terhadap jumlah kasus. Interpretasi nilai estimasi tersebut 

menunjukkan bahwa setiap kenaikan cakupan Kelas Ibu Hamil sebesar 1%, 

estimasi rata-rata kejadian Pneumonia di Desa Sidomukti meningkat sebesar 

0,14%, dengan asumsi variabel lain konstan. Meskipun efek marginalnya relatif 

kecil yaitu sebesar 0,14%, signifikansi statistik ini mengindikasikan bahwa 

intensitas partisipasi dalam program kesehatan berkorelasi dengan tingkat 

pelaporan kasus. Hal ini kemungkinan merefleksikan fungsi deteksi dini yang 

mana semakin aktif kegiatan kelas ibu hamil, semakin tinggi probabilitas kasus 

Pneumonia yang teridentifikasi dan tercatat, bukan berarti kegiatan tersebut 

menyebabkan penyakit. 

3. Variabel Cakupan Air Bersih terbukti memiliki pengaruh negatif yang signifikan 

terhadap laju kejadian Pneumonia. Estimasi ini mengonfirmasi bahwa perbaikan 

akses sanitasi dasar berfungsi sebagai faktor protektif yang efektif dalam 

mereduksi risiko penyakit. Secara kuantitatif, setiap peningkatan tingkat 

cakupan air bersih sebesar 1% di Desa Sidomukti berasosiasi dengan penurunan 

estimasi rata-rata kejadian Pneumonia sebesar 0,91%. Dalam simulasi 

peningkatan kapasitas layanan yang lebih luas sebesar 10%, model memprediksi 

penurunan rata-rata kasus yang substansial hingga 8,7%. Temuan ini sejalan 

dengan hipotesis epidemiologi lingkungan, di mana ketersediaan air bersih 

secara signifikan memutus rantai transmisi patogen penyebab Pneumonia. 

4. Variabel Cakupan Imunisasi Campak menunjukkan asosiasi positif yang 

signifikan terhadap estimasi kejadian Pneumonia. Secara kuantitatif, setiap 

peningkatan cakupan imunisasi sebesar 1% berimplikasi pada kenaikan estimasi 

rata-rata kasus sebesar 0,72%. Dalam simulasi peningkatan cakupan yang lebih 

besar yaitu 10%, model memprediksi peningkatan angka pelaporan kasus 

sebesar 7,43%.Temuan arah koefisien yang positif ini perlu diinterpretasikan 

sebagai indikator kinerja surveilans, bukan hubungan kausalitas patologis. 

Korelasi positif ini mengindikasikan bahwa wilayah dengan cakupan imunisasi 

yang tinggi cenderung memiliki akses dan sistem pelaporan kesehatan yang 
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lebih baik, sehingga kapasitas deteksi dan pencatatan kasus menjadi lebih tinggi 

dibandingkan wilayah dengan cakupan layanan kesehatan yang rendah. 

5. Estimasi parameter dispersi diperoleh sebesar ϕ̂ =  0,2991  dengan tingkat 

signifikansi yang tinggi (p < 0,001). Signifikansi statistik pada parameter ini 

mengonfirmasi adanya fenomena overdispersi pada data, di mana variabilitas 

jumlah kasus Pneumonia antar wilayah secara nyata melebihi nilai rata-ratanya, 

sehingga melanggar asumsi ekidispersi yang disyaratkan oleh regresi Poisson 

standar.Temuan ini memberikan justifikasi empiris yang kuat bahwa penerapan 

model GPSAR adalah langkah metodologis yang tepat dibandingkan model 

Poisson klasik. Pengakomodasian parameter dispersi ini krusial untuk 

mengoreksi bias pada estimasi standard error, sehingga menghasilkan 

kesimpulan inferensi (uji signifikansi) yang lebih valid. 

4.2.8 Pemilihan Model Terbaik 

Pemilihan model terbaik antara GPR dan GPSAR dilakukan dengan 

membandingkan nilai AICc. Hasil perbandingan nilai AICc dan RMSE kedua 

model ditunjukkan pada Tabel 4.7. 

Tabel 4.7 Perbandingan nilai AICc 

Model AICc 

Generalized Poisson Regression 1717,24 

Generalized Poisson Spatial Autoregressive 1673,39 

Berdasarkan tabel tersebut, diperoleh nilai AICc untuk model GPSAR sebesar 

1673,39, nilai ini lebih kecil dibandingkan dengan nilai AICc pada model GPR 

Non-Spasial sebesar 1717,24. Nilai AICc yang lebih kecil mengindikasikan bahwa 

model GPSAR memiliki keseimbangan yang lebih baik antara kompleksitas model. 
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BAB V 

KESIMPULAN DAN SARAN 

Bab ini menjelaskan tentang kesimpulan yang dapat diambil berdasarkan 

hasil dan pembahasan yang diperoleh. Beberapa saran juga disampaikan sebagai 

rekomendasi untuk penelitian selanjutnya. 

5.1 Kesimpulan 

Berdasarkan hasil analisis dan pembahasan, diperoleh kesimpulan sebagai 

berikut. 

1. Penaksir parameter model GPSAR dilakukan dengan metode Maximum 

Likelihood Estimation adalah sebagai berikut. 

𝜕ℓ(𝜽)

𝜕𝜷
=∑[(

𝑦𝑖 − 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅

(1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅)

2) (𝑨(𝑛×𝑛)
−1 𝑿(𝑛×(𝑝+1)))

𝑖

𝑇
]

𝑛

𝑖=1

 

𝜕ℓ(𝜽)

𝜕𝜌
=∑[

𝑦𝑖 − 𝜇𝑖
𝐺𝑃𝑆𝐴𝑅

(1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅)

2 [𝑨(𝑛×𝑛)
−1 𝑾(𝑛×𝑛)𝜼(𝑛×1)]

𝑖
]

𝑛

𝑖=1

 

𝜕ℓ(𝜽)

𝜕𝜙
=∑[−

𝑦𝑖𝜇𝑖
𝐺𝑃𝑆𝐴𝑅

1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅 +

𝑦𝑖(𝑦𝑖 − 1)

1 + 𝜙𝑦𝑖
+
𝜇𝑖
𝐺𝑃𝑆𝐴𝑅(𝑦𝑖 − 𝜇𝑖

𝐺𝑃𝑆𝐴𝑅)

(1 + 𝜙𝜇𝑖
𝐺𝑃𝑆𝐴𝑅)

2 ]

𝑛

𝑖=1

 

Hasil penaksiran parameter model GPSAR dengan pendekatan MLE tidak 

closed form, sehingga didekati secara numerik dengan iterasi BHHH. 

2. Model GPSAR menghasilkan variabel-variabel yang signifikan terhadap 

jumlah kasus pneumonia pada balita di 328 desa/kelurahan di Kabupaten 

Tuban Tahun 2023, antara lain persentase ibu hamil yang mengikuti kelas ibu 

hamil, persentase rumah tangga dengan cakupan air bersih, dan persentase 

balita yang mendapatkan imunisasi campak. Berdasarkan nilai AICc model 

GPSAR memiliki nilai AICc yang lebih kecil (1673,39) daripada model 

Generalized Poisson Regression (GPR) yang memiliki nilai AICc sebesar 

1717,24. Hal tersebut membuktikan bahwa model GPSAR lebih baik daripada 

model GPR dalam memodelkan jumlah kasus pneumonia pada balita di 328 

desa/kelurahan di Kabupaten Tuban Tahun 2023. Selain itu, parameter lag 

spasial (𝜌) dan parameter dispersi (𝜙) yang sangat signifikan menunjukkan 



70 

 

adanya dependensi spasial yang kuat dan fenomena overdispersi pada data, 

yang berhasil diakomodasi oleh model GPSAR. 

5.2 Saran 

Saran yang dapat diberikan untuk penelitian selanjutnya adalah sebagai 

berikut. 

1. Penelitian selanjutnya sangat disarankan untuk beralih dari penggunaan data 

agregat level desa ke data berbasis titik lokasi individu, yaitu menggunakan 

alamat rumah pasien yang telah di-geocode. Penggunaan data titik ini 

memungkinkan analisis dilakukan dengan resolusi spasial yang lebih halus 

serta menghindari bias asumsi bahwa risiko penyakit seragam dalam satu 

wilayah administrasi (homogeneous risk). Sebagaimana ditunjukkan oleh 

Choiruddin et al. (2023), penggunaan data titik dalam analisis COVID-19 

terbukti mampu mengungkap pola dispersi dan faktor risiko pada skala mikro 

dengan akurasi yang lebih tinggi. 

2. Mengingat model GPSAR yang dikembangkan saat ini masih terbatas pada 

analisis cross-sectional, penelitian selanjutnya perlu memperluas cakupan 

model ke ranah spasio-temporal. Pengembangan ini bertujuan untuk 

menganalisis dinamika penyebaran penyakit dari tahun ke tahun, sehingga tren 

perubahan pola penyakit dapat dipahami secara lebih komprehensif daripada 

sekadar memodelkan data agregat spasial panel tradisional. 

3. Berdasarkan hasil uji diagnostik Lagrange Multiplier (LM) pada penelitian ini, 

terindikasi adanya dependensi spasial yang tidak hanya terjadi pada lag 

variabel respon (Spatial Lag), tetapi juga berpotensi terjadi pada sisaan (Spatial 

Error). Hal ini dibuktikan dengan nilai statistik uji SARMA yang signifikan 

secara statistik. Oleh karena itu, penelitian selanjutnya disarankan untuk 

mengembangkan model Generalized Poisson Spatial Autoregressive Moving 

Average (GPSARMA). Pengembangan model ini diharapkan mampu 

mengakomodasi struktur hubungan spasial yang lebih kompleks, yaitu 

gabungan antara autokorelasi pada variabel dependen dan korelasi pada error 

model secara bersamaan. 
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4. Karena keterbatasan uji Lagrange Multiplier (LM) pada penelitian ini, 

kedepannya dapat mengembangkan statistik uji yang robust untuk data count. 
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LAMPIRAN 

Lampiran 1. Data Penelitian 

 

 

 

 

 

 

 

 

 

Kode KECAMATAN DESA 𝑌1 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑞𝑖 

1 BANCAR BANCAR 11 4.31 132.76 58.82 100.00 12.07 116 

2 BANCAR BANJARJO 4 4.91 99.43 22.73 100.00 22.26 265 

3 BANCAR BOGOREJO 1 21.43 89.71 64.52 100.00 21.43 84 

4 BANCAR BONCONG 3 5.08 101.12 0.00 100.00 30.51 59 

5 BANCAR BULU MEDURO 3 0.00 15.24 0.00 100.00 18.75 64 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

111 MERAKURAK BOGOREJO 2 9.30 94.05 62.50 100.00 20.93 43 

112 MERAKURAK BOREHBANGLE 5 4.55 17.28 200.00 95.74 22.73 66 

113 MERAKURAK KAPU 0 14.63 100.00 31.25 100.00 22.76 123 

114 MERAKURAK MANDIREJO 0 10.43 67.72 45.45 100.00 12.88 163 

115 MERAKURAK PONGPONGAN 6 2.27 21.50 52.63 93.06 22.16 176 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

324 WIDANG SIMOREJO 10 2.78 106.01 116.28 100.00 16.67 144 

325 WIDANG SUMBEREJO 0 12.20 265.52 35.71 100.00 13.01 123 

326 WIDANG TEGALREJO 2 4.69 106.87 128.21 100.00 19.53 128 

327 WIDANG TEGALSARI 6 3.28 121.48 121.95 100.00 14.75 122 

328 WIDANG WIDANG 16 3.18 103.74 52.63 100.00 16.61 283 
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Lampiran 2. Persinggungan antara 328 desa/kelurahan di Kabupaten Tuban 

Kode  KECAMATAN DESA Count Persinggungan 

1 BANCAR BANCAR 5 23 143 166 207 229 

2 BANCAR BANJARJO 7 23 24 29 30 229 237 302 

3 BANCAR BOGOREJO 5 2 9 24 207 229 

4 BANCAR BONCONG 3 9 23 30 

5 BANCAR BULUJOWO 5 9 30 265 300 302 

... ... ... ... ... 

111 MERAKURAK BOREHBANGLE 3 236 280 312 

112 MERAKURAK KAPU 5 139 218 281 295 313 

113 MERAKURAK MANDIREJO 8 22 84 218 233 273 278 281 313 

114 MERAKURAK PONGPONGAN 8 88 182 231 236 258 298 312 313 

115 MERAKURAK SAMBONGGEDE 6 84 139 225 267 273 313 

... ... ... ... ... 

322 WIDANG SIMOREJO 4 154 160 294 296 

323 WIDANG SUMBEREJO 6 58 153 154 160 171 320 

324 WIDANG TEGALREJO 3 100 251 296 

325 WIDANG TEGALSARI 6 6 41 100 160 251 294 

326 WIDANG WIDANG 6 6 32 41 107 165 194 
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Lampiran 3. Turunan fungsi likelihood di bawah 𝐻0 

Pada pengujian hipotesis pengaruh variabel prediktor, didefinisikan 𝐻0 sebagai kondisi 

di mana tidak terdapat pengaruh variabel prediktor  terhadap variabel respon. Model yang 

terbentuk di bawah 𝐻0 adalah model yang hanya memuat parameter intersep 𝛽0𝜔, 

parameter dependensi spasial (𝜌𝜔), dan parameter dispersi (𝜙𝜔). 

1. Spesifikasi Model di Bawah 𝐻0 

Fungsi link yang menghubungkan rata-rata respon 𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅 dengan komponen sistematik 

model tanpa kovariat didefinisikan sebagai: 

ln(𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅) = 𝛽0𝜔 + 𝜌𝜔∑𝑤𝑖𝑗𝑦𝑗

𝑛

𝑗=1

 

Sehingga, nilai harapan (rata-rata) untuk observasi 𝑘𝑒 − 𝑖 adalah: 

𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅 = exp(𝛽0𝜔 + 𝜌∑𝑤𝑖𝑗𝑦𝑗

𝑛

𝑗=1

) 

di mana 𝒘𝑖
𝑇 adalah baris 𝑘𝑒 − 𝑖 dari matriks pembobot spasial 𝑾, dan 𝒚 adalah vektor 

variabel respon. Parameter yang akan diestimasi adalah 𝜽𝜔 = [𝛽0𝜔 , 𝜌𝜔 , 𝜙𝜔]
𝑇. 

Fungsi log-likelihood (ℓ) untuk satu observasi 𝑘𝑒 − 𝑖 adalah sebagai berikut: 

ℓ𝑖𝝎 = 𝑦𝑖 ln (
𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅) + (𝑦𝑖 − 1) ln(1 + 𝜙𝜔𝑦𝑖) −

𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝜔𝑦𝑖)

1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅 − ln(𝑦𝑖!) 

Total log-likelihood adalah  

ℓ(ω) =∑ℓ𝑖𝝎

𝑛

𝑖=1

=∑𝑦𝑖 ln (
𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅) + (𝑦𝑖 − 1) ln(1 + 𝜙𝜔𝑦𝑖) −

𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝜔𝑦𝑖)

1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

𝑛

𝑖=1

− ln(𝑦𝑖!) 

Selanjutnya akan dicari turunan  ℓ𝑖𝝎(𝜽𝜔) terhadap 𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅. 
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𝜕ℓ𝑖𝝎(𝜽𝜔)

𝜕𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅  =

𝜕

𝜕𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

(

 
 
𝑦𝑖 ln (

𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅) + (𝑦𝑖 − 1) ln(1 + 𝜙𝜔𝑦𝑖)

−
𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝜔𝑦𝑖)

1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅 − ln(𝑦𝑖!)

)

 
 

 

 
= (

𝑦𝑖

𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅 −

𝑦𝑖𝜙𝜔

1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅) −

1 + 𝜙𝜔𝑦𝑖

(1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅)

2 

 
=
𝑦𝑖(1 + 𝜙𝜔𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅) − 𝑦𝑖𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

𝜇𝑖(1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅)

−
1 + 𝜙𝜔𝑦𝑖

(1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅)

2 

 
=

𝑦𝑖

𝜇𝑖(1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅)

−
1 + 𝜙𝑦𝑖

(1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅)

2 

 
=
𝑦𝑖(1 + 𝜙𝜔𝜇𝑖) − 𝜇𝑖(1 + 𝜙𝜔𝑦𝑖)

𝜇𝑖(1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅)

2  

 
=
𝑦𝑖 + 𝑦𝑖𝜙𝜔𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅 − 𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅 − 𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅𝜙𝜔𝑦𝑖

𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝜔𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅)
2  

 
=

𝑦𝑖 − 𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝜔𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅)
2 

Selanjutnya adalah estimasi parameter regresi (𝛽0𝜔) dan Spasial (𝜌𝜔). Akan digunakan 

aturan rantai untuk melakukan penurunan terhadap kedua parameter tersebut secara 

parsial dengan cara sebagai berikut. 

∂ℓ(𝝎𝐺𝑃𝑆𝐴𝑅)

∂θ
=∑

∂ℓ(𝝎𝐺𝑃𝑆𝐴𝑅)

∂𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

𝑛

𝑖=1

⋅
∂𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅

∂η𝑖𝜔
⋅
∂η𝑖𝜔
∂θ𝜔

 

2. Turunan parsial terhadap 𝛽0𝜔. 

Diketahui 𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅 = exp(𝜂𝑖𝜔) ,𝑚𝑎𝑘𝑎

𝜕𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

𝜕𝜂𝑖𝜔
= exp(𝜂𝑖𝜔) = 𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅 Selanjutnya 
𝜕𝜂𝑖

𝜕𝛽0
= 1 

Dengan demikian didapatkan bentuk berikut. 

𝜕ℓ(𝝎𝐺𝑃𝑆𝐴𝑅)

𝜕𝛽0𝜔
=∑(

𝑦𝑖 − 𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝜔𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅)
2) (𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅)(1)

𝑛

𝑖=1

=∑
𝑦𝑖 − 𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅

(1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅)

2

𝑛

𝑖=1
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3. Turunan parsial terhadap 𝜌𝜔. 

𝜕𝜂𝑖𝜔
𝜕𝜌𝜔

=∑𝑤𝑖𝑗

𝑛

𝑗=1

𝑦𝑗 

Dengan demikian didapatkan bentuk berikut. 

𝜕ℓ(𝝎𝐺𝑃𝑆𝐴𝑅)

𝜕𝜌𝜔
=∑[(

𝑦𝑖 − 𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝜔𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅)
2) (𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅)(∑𝑤𝑖𝑗

𝑛

𝑗=1

𝑦𝑗)]

𝑛

𝑖=1

=∑[(
𝑦𝑖 − 𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅

(1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅)

2)(∑𝑤𝑖𝑗

𝑛

𝑗=1

𝑦𝑗)]

𝑛

𝑖=1

 

4. Turunan parsial terhadap 𝜙𝜔. 

Turunan 𝜕ℓ(𝝎𝐺𝑃𝑆𝐴𝑅) terhadap 𝜙𝜔 dilakukan secara langsung. 

𝜕ℓ𝑖𝝎
𝜕𝜙𝜔

 

=
𝜕

𝜕𝜙𝜔

(

 
 
𝑦𝑖 ln (

𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅) + (𝑦𝑖 − 1) ln(1 + 𝜙𝜔𝑦𝑖)

−
𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅(1 + 𝜙𝜔𝑦𝑖)

1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅 − ln(𝑦𝑖!)

)

 
 

 

= −
𝑦𝑖𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅

1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅 +

(𝑦𝑖 − 1)𝑦𝑖
1 + 𝜙𝜔𝑦𝑖

−
𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅(𝑦𝑖 − 𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅)

(1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅)

2   

=
(𝑦𝑖 − 1)𝑦𝑖
1 + 𝜙𝜔𝑦𝑖

−
𝑦𝑖𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅

1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅 −

𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅(𝑦𝑖 − 𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅)

(1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅)

2  

Sehingga didapatkan bentuk 

𝜕ℓ(𝝎𝐺𝑃𝑆𝐴𝑅)

𝜕𝜙𝜔
=∑

𝑦𝑖(𝑦𝑖 − 1)

1 + 𝜙𝜔𝑦𝑖
−

𝑦𝑖𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅

1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅 −

𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅(𝑦𝑖 − 𝜇𝑖𝜔

𝐺𝑃𝑆𝐴𝑅)

(1 + 𝜙𝜔𝜇𝑖𝜔
𝐺𝑃𝑆𝐴𝑅)

2

𝑛

𝑖=1

 

Solusi numerik 𝝎̂ = {𝛽0𝜔̂, 𝜌𝜔̂ ,  𝜙𝜔̂} dapat diperoleh dengan menyelesaikan sistem 

persamaan turunan parsial setiap parameter dengan iterasi BHHH. 
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Lampiran 4. Kode R 

Berikut adalah kode beserta hasilnya. 

> # --- 0. PREPARASI & LIBRARY --- 
> rm(list = ls())  
> if(!require(pacman)) install.packages("pacman") 
> pacman::p_load(sf, readxl, janitor, dplyr, spdep, maxLik, Matrix, car, VGAM,  
+                ggplot2, scales, patchwork, ggcorrplot, classInt, tidyr, ggrepel, writexl, 
vcd)  
> # SETUP OUTPUT 
> output_folder <- "C:/Users/Parsaroan Sihombing/Desktop/"  
> cat("\n[SYSTEM] Output folder set to:", output_folder, "\n") 
 
[SYSTEM] Output folder set to: C:/Users/Parsaroan Sihombing/Desktop/  
> # --- LOAD DATA & CLEANING --- 
> cat("\n[INIT] Memuat Data...\n") 
 
[INIT] Memuat Data... 
> # 1. Load Peta 
> path_peta <- file.choose() # Pilih .shp 
> peta_indonesia <- st_read(path_peta, quiet = TRUE) 
> peta_tuban <- peta_indonesia %>% 
+   mutate(kunci_join = paste(toupper(ADM3_EN), toupper(ADM4_EN), sep = "_")) %>% 
+   dplyr::select(ADM3_EN, ADM4_EN, kunci_join, geometry) 
> # 2. Load Excel 
> path_excel <- file.choose() # Pilih Excel 
> data_statistik <- read_excel(path_excel) 
> data_siap <- clean_names(data_statistik[, 1:11]) 
> # Rename & Cleaning 
> colnames(data_siap)[4:9] <- c("asi_eksklusif", "vit_a", "idl",  
+                               "kelas_ibu_hamil", "air_bersih", "lm_campak") 
> colnames(data_siap)[11] <- "jumlah_balita" 
> data_siap <- data_siap %>% 
+   mutate( 
+     lm_campak = as.numeric(lm_campak), 
+     desa_koreksi = case_when( 
+       toupper(desa) == "BANJARJO"    ~ "Banjarejo", 
+       toupper(desa) == "BULU MEDURO" ~ "Bulumeduro", 
+       toupper(desa) == "KEDUNGMAKAN" ~ "Kedungmakam", 
+       toupper(desa) == "LAJU KIDUL"  ~ "Lajo Kidul", 
+       toupper(desa) == "SUGIWARAS"   ~ "Sugihwaras", 
+       TRUE ~ desa 
+     ), 
+     kunci_join = paste(toupper(kecamatan), toupper(desa_koreksi), sep = "_") 
+   ) 
> # 3. Merge & Filter 
> data_gabung <- left_join(peta_tuban, data_siap, by = "kunci_join") 
> vars_model <- c("pneumonia", "asi_eksklusif", "vit_a", "kelas_ibu_hamil",  
+                 "air_bersih", "lm_campak", "jumlah_balita") 
> data_final <- data_gabung %>% 
+   filter(!is.na(pneumonia) & jumlah_balita > 0) %>% 
+   filter(complete.cases(across(all_of(vars_model)))) %>%  
+   mutate(ID_Map = row_number()) %>%  
+   mutate( 
+     lon = st_coordinates(st_centroid(geometry))[,1], 
+     lat = st_coordinates(st_centroid(geometry))[,2] 
+   ) 
> # Buat Bobot Spasial (Digunakan di Tahap 7 & 8) 
> nb_queen <- poly2nb(data_final, queen = TRUE) 
> listw_queen <- nb2listw(nb_queen, style = "W", zero.policy = TRUE) 
> W_matrix <- listw2mat(listw_queen) 
> data_tabular <- st_drop_geometry(data_final) 
> cat(">> Data Siap. Jumlah Observasi:", nrow(data_final), "\n") 
>> Data Siap. Jumlah Observasi: 328  
> # ============================================================================== 
> # 1. UJI DISTRIBUSI POISSON 
> # ============================================================================== 
> cat("\n[1] Uji Distribusi Poisson (Chi-Square Goodness of Fit)...\n") 



83 

 

 
[1] Uji Distribusi Poisson (Chi-Square Goodness of Fit)... 
> # Menggunakan library vcd 
> gf_pois <- goodfit(data_final$pneumonia, type = "poisson", method = "ML") 
> summary_gf <- summary(gf_pois) 
 
  Goodness-of-fit test for poisson distribution 
 
                      X^2 df      P(> X^2) 
Likelihood Ratio 1294.265 20 5.003258e-262 
> cat("--- Hasil Uji Goodness of Fit ---\n") 
--- Hasil Uji Goodness of Fit --- 
> print(summary_gf) 
                      X^2 df      P(> X^2) 
Likelihood Ratio 1294.265 20 5.003258e-262 
> p_val_dist <- summary_gf[1,3] # Ambil P-value dari matriks 
> if(p_val_dist < 0.05) { 
+   cat(">> KESIMPULAN: Tolak H0 (Data TIDAK berdistribusi Poisson). Lanjut ke GPR.\n") 
+ } else { 
+   cat(">> KESIMPULAN: Gagal Tolak H0 (Data berdistribusi Poisson).\n") 
+ } 
>> KESIMPULAN: Tolak H0 (Data TIDAK berdistribusi Poisson). Lanjut ke GPR. 
> # ============================================================================== 
> # 2. STATISTIK DESKRIPTIF 
> # ============================================================================== 
> cat("\n[2] Statistik Deskriptif...\n") 
 
[2] Statistik Deskriptif... 
> tabel_deskriptif <- data_tabular %>% 
+   dplyr::select(all_of(vars_model[1:6])) %>%  
+   pivot_longer(cols = everything(), names_to = "Variabel", values_to = "Nilai") %>% 
+   group_by(Variabel) %>% 
+   summarise( 
+     Mean = mean(Nilai), SD = sd(Nilai), Min = min(Nilai), Max = max(Nilai) 
+   ) %>% mutate(across(where(is.numeric), ~round(., 2))) 
> print(as.data.frame(tabel_deskriptif)) 
         Variabel   Mean    SD   Min    Max 
1      air_bersih  97.17  6.09 61.11 100.00 
2   asi_eksklusif   6.54  7.23  0.00  64.10 
3 kelas_ibu_hamil  63.83 57.69  0.00 500.00 
4       lm_campak  21.86  8.61  6.56  89.74 
5       pneumonia   4.53  7.78  0.00 115.00 
6           vit_a 110.69 71.25  0.00 813.04 
> write.csv(tabel_deskriptif, paste0(output_folder, "1_Tabel_Deskriptif.csv"), row.names = 
FALSE) 
> # ============================================================================== 
> # 3. UJI KORELASI 
> # ============================================================================== 
> cat("\n[3] Uji Korelasi Pearson...\n") 
 
[3] Uji Korelasi Pearson... 
> data_num <- data_tabular %>% dplyr::select(all_of(vars_model[1:6])) 
> # Hitung Matriks Angka 
> matriks_r <- cor(data_num, method = "pearson") 
> matriks_p <- cor_pmat(data_num) 
> # Tampilkan Tabel di Console 
> cat("--- Matriks Korelasi & Signifikansi ---\n") 
--- Matriks Korelasi & Signifikansi --- 
> format_korelasi <- function(r, p) { 
+   r_txt <- sprintf("%.3f", r) 
+   bintang <- case_when(p < 0.001 ~ "***", p < 0.01 ~ "**", p < 0.05 ~ "*", TRUE ~ "") 
+   paste0(r_txt, bintang) 
+ } 
> matriks_tampil <- matrix(mapply(format_korelasi, matriks_r, matriks_p),  
+                          nrow=nrow(matriks_r), ncol=ncol(matriks_r), 
dimnames=dimnames(matriks_r)) 
> matriks_tampil[upper.tri(matriks_tampil)] <- "" 
> print(as.data.frame(matriks_tampil)) 
                pneumonia asi_eksklusif    vit_a kelas_ibu_hamil air_bersih lm_campak 
pneumonia        1.000***                                                             
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asi_eksklusif      -0.044      1.000***                                               
vit_a              -0.015         0.029 1.000***                                      
kelas_ibu_hamil    0.123*        0.112*   0.138*        1.000***                      
air_bersih         -0.063       -0.124*   0.112*          -0.039   1.000***           
lm_campak           0.033      0.406***   -0.065          -0.070     -0.016  1.000*** 
> write.csv(matriks_tampil, paste0(output_folder, "2_Tabel_Korelasi.csv")) 
> # ============================================================================== 
> # 4. UJI MULTIKOLINEARITAS 
> # ============================================================================== 
> cat("\n[4] Uji Multikolinearitas (VIF)...\n") 
 
[4] Uji Multikolinearitas (VIF)... 
> # Model OLS Dummy hanya untuk VIF 
> model_ols_dummy <- lm(pneumonia ~ asi_eksklusif + vit_a + kelas_ibu_hamil + air_bersih + 
lm_campak,  
+                       data = data_num) 
> nilai_vif <- vif(model_ols_dummy) 
> tabel_vif <- data.frame(Variabel = names(nilai_vif), VIF = as.numeric(nilai_vif)) 
> print(tabel_vif) 
         Variabel      VIF 
1   asi_eksklusif 1.249157 
2           vit_a 1.040354 
3 kelas_ibu_hamil 1.047661 
4      air_bersih 1.033258 
5       lm_campak 1.224585 
> if(any(tabel_vif$VIF > 10)) cat("[WARNING] Ada VIF > 10!\n") else cat("[OK] Tidak ada 
Multikolinearitas.\n") 
[OK] Tidak ada Multikolinearitas. 
> write.csv(tabel_vif, paste0(output_folder, "3_Tabel_VIF.csv"), row.names = FALSE) 
> # ============================================================================== 
> # 5. UJI EQUIDISPERSI 
> # ============================================================================== 
> # Ref: Hilbe (2014), Persamaan 2.12 
> cat("\n[5] Uji Equidispersi (Metode Deviance Manual)...\n") 
 
[5] Uji Equidispersi (Metode Deviance Manual)... 
> # A. Fit Model Poisson (untuk mendapatkan mu_hat) 
> model_pois <- glm(pneumonia ~ asi_eksklusif + vit_a + kelas_ibu_hamil + air_bersih + 
lm_campak, 
+                   family = poisson(), data = data_tabular, offset = 
log(data_tabular$jumlah_balita)) 
> y_i <- data_tabular$pneumonia 
> mu_hat <- fitted(model_pois) 
> n <- nrow(data_tabular) 
> p <- 5 # Jumlah prediktor (asi, vit, ibu, air, campak) 
> # B. Hitung Deviance (D) sesuai Rumus (2.12) 
> #    D = 2 * Sigma [ y * ln(y/mu) - (y - mu) ] 
> #    Note: Jika y=0, limit y*ln(y) = 0. 
> term_1 <- ifelse(y_i == 0, 0, y_i * log(y_i / mu_hat)) 
> term_2 <- (y_i - mu_hat) 
> D_hitung <- 2 * sum(term_1 - term_2) 
> # C. Derajat Bebas (df) = n - (p + 1) 
> df_model <- n - (p + 1) 
> # D. Nilai Kritis Chi-Square (Tabel) 
> alpha <- 0.05 
> chi_tabel <- qchisq(1 - alpha, df = df_model) 
> # E. Rasio Dispersi (Phi) 
> disp_ratio <- D_hitung / df_model 
> cat("--- Hasil Uji Deviance (Hilbe, 2014) ---\n") 
--- Hasil Uji Deviance (Hilbe, 2014) --- 
> cat(">> D Hitung (Manual)   :", round(D_hitung, 4), "\n") 
>> D Hitung (Manual)   : 1601.227  
> cat(">> Derajat Bebas (df)  :", df_model, "\n") 
>> Derajat Bebas (df)  : 322  
> cat(">> Chi-Square Tabel    :", round(chi_tabel, 4), "\n") 
>> Chi-Square Tabel    : 364.8474  
> cat(">> Rasio (D/df)        :", round(disp_ratio, 4), "\n") 
>> Rasio (D/df)        : 4.9728  
> # F. Keputusan Hipotesis 
> if(D_hitung > chi_tabel) { 
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+   cat("\n[KESIMPULAN] TOLAK H0.\n") 
+   if(disp_ratio > 1) { 
+     cat(">> Terjadi OVERDISPERSI (Rasio > 1).\n") 
+     cat(">> REKOMENDASI: Wajib menggunakan GPR/GPSAR.\n") 
+   } else { 
+     cat(">> Terjadi UNDERDISPERSI (Rasio < 1).\n") 
+   } 
+ } else { 
+   cat("\n[KESIMPULAN] GAGAL TOLAK H0 (Equidispersion Terpenuhi).\n") 
+ } 
 
[KESIMPULAN] TOLAK H0. 
>> Terjadi OVERDISPERSI (Rasio > 1). 
>> REKOMENDASI: Wajib menggunakan GPR/GPSAR. 
> # ============================================================================== 
> # 6. PEMODELAN GPR (Generalized Poisson Regression) 
> # ============================================================================== 
> cat("\n[6] Estimasi Model GPR...\n") 
 
[6] Estimasi Model GPR... 
> model_gpr <- vglm(pneumonia ~ asi_eksklusif + vit_a + kelas_ibu_hamil + air_bersih + 
lm_campak, 
+                   family = genpoisson2, data = data_tabular, offset = 
log(data_tabular$jumlah_balita)) 
> coef_gpr <- coef(summary(model_gpr)) 
> print(coef_gpr) 
                    Estimate   Std. Error     z value     Pr(>|z|) 
(Intercept):1   -0.663692702 0.9042569377  -0.7339647 0.4629702321 
(Intercept):2   -6.135168006 0.0899430395 -68.2117042 0.0000000000 
asi_eksklusif    0.021063036 0.0083664722   2.5175529 0.0118173231 
vit_a           -0.001374385 0.0009374845  -1.4660355 0.1426386180 
kelas_ibu_hamil  0.001146330 0.0011731891   0.9771058 0.3285167921 
air_bersih      -0.030273936 0.0091599445  -3.3050348 0.0009496459 
lm_campak        0.007201301 0.0069906716   1.0301301 0.3029489230 
> write.csv(coef_gpr, paste0(output_folder, "4_Hasil_GPR.csv")) 
> # ============================================================================== 
> # 7. UJI DEPENDENSI SPASIAL (Pada Residual GPR) 
> # ============================================================================== 
> cat("\n[7] Uji Dependensi Spasial (Moran's I pada Residual GPR)...\n") 
 
[7] Uji Dependensi Spasial (Moran's I pada Residual GPR)... 
> # Hitung Residual Deviance Manual untuk GPR 
> y_obs <- data_final$pneumonia 
> mu_fit <- fitted(model_gpr) 
> phi_hat <- exp(coef(model_gpr, matrix = TRUE)[1, 2]) 
> dev_i <- numeric(length(y_obs)) 
> idx_pos <- y_obs > 0 
> # Rumus Deviance GPR 
> dev_i[idx_pos] <- 2 * (y_obs[idx_pos] * log(y_obs[idx_pos]/mu_fit[idx_pos]) -  
+                          (y_obs[idx_pos]-mu_fit[idx_pos]) +  
+                          (y_obs[idx_pos]-1) * 
log((y_obs[idx_pos]*(1+phi_hat))/(mu_fit[idx_pos]+phi_hat*y_obs[idx_pos]))) 
> # Kasus y=0 
> if(any(!idx_pos)) { 
+   mu0 <- mu_fit[!idx_pos] 
+   dev_i[!idx_pos] <- 2 * (mu0 - log(1 + phi_hat * mu0)) 
+ } 
> dev_i[dev_i < 0] <- 0 
> resid_gpr_manual <- sign(y_obs - mu_fit) * sqrt(dev_i) 
> # Uji Moran 
> moran_res <- moran.test(resid_gpr_manual, listw_queen, randomisation=TRUE, 
alternative="two.sided") 
> print(moran_res) 
 
 Moran I test under randomisation 
 
data:  resid_gpr_manual   
weights: listw_queen     
 
Moran I statistic standard deviate = 8.2911, p-value < 2.2e-16 
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alternative hypothesis: two.sided 
sample estimates: 
Moran I statistic       Expectation          Variance  
      0.278136667      -0.003058104       0.001150244  
 
> # ============================================================================== 
> # 8. PEMODELAN GPSAR (Estimasi BHHH) 
> # ============================================================================== 
> cat("\n[8] Estimasi Model GPSAR...\n") 
 
[8] Estimasi Model GPSAR... 
> # Persiapan Matriks 
> X_GPSAR <- model.matrix(~ asi_eksklusif + vit_a + kelas_ibu_hamil + air_bersih + 
lm_campak, data = data_final) 
> y <- data_final$pneumonia 
> offset_vec <- data_final$jumlah_balita 
> # Fungsi LogLik GPSAR 
> logL_gpsar <- function(theta, y, X, W, offset_vec) { 
+   n <- length(y); p <- ncol(X) 
+   beta <- theta[1:p]; rho <- theta[p+1]; phi <- theta[p+2] 
+   if(is.na(rho) || abs(rho) >= 0.99) return(rep(-1e10, n)) 
+    
+   A <- diag(n) - rho * W 
+   eta <- tryCatch(as.vector(solve(A) %*% X %*% beta), error=function(e) NULL) 
+   if(is.null(eta)) return(rep(-1e10, n)) 
+    
+   mu <- offset_vec * exp(eta) 
+   term1 <- y * log(mu/(1+phi*mu)); term2 <- (y-1)*log(1+phi*y) 
+   term3 <- -lgamma(y+1); term4 <- -(mu*(1+phi*y))/(1+phi*mu) 
+   term2[y==0] <- 0 
+   res <- term1 + term2 + term3 + term4 
+   res[is.na(res)] <- -1e10 
+   return(res) 
+ } 
> # Fungsi Gradien 
> grad_gpsar <- function(theta, y, X, W, offset_vec) { 
+   n <- length(y); p <- ncol(X) 
+   beta <- theta[1:p]; rho <- theta[p+1]; phi <- theta[p+2] 
+   A <- diag(n) - rho * W; A_inv <- tryCatch(solve(A), error=function(e) diag(n)) 
+   eta <- A_inv %*% X %*% beta; mu <- offset_vec * exp(eta) 
+   common <- (y - mu) / (1 + phi * mu)^2 
+    
+   grad_beta <- as.vector(common) * (A_inv %*% X) 
+   grad_rho  <- as.vector(common) * as.vector(A_inv %*% W %*% eta) 
+    
+   t1 <- -(y*mu)/(1+phi*mu); t2 <- (y*(y-1))/(1+phi*y); t3 <- -(mu*(y-mu))/(1+phi*mu)^2 
+   t2[y==0] <- 0; grad_phi <- t1 + t2 + t3 
+   return(cbind(grad_beta, grad_rho, grad_phi)) 
+ } 
> # Eksekusi 
> start_val <- c(coef(model_pois), 0.3, 0.1) 
> model_gpsar <- maxLik(logLik = logL_gpsar, grad = grad_gpsar, method = "BHHH",  
+                       start = start_val, y=y, X=X_GPSAR, W=W_matrix, 
offset_vec=offset_vec, 
+                       control=list(iterlim=5000, tol=1e-6, printLevel=0)) 
> summ_gpsar <- summary(model_gpsar) 
> print(summ_gpsar) 
-------------------------------------------- 
Maximum Likelihood estimation 
BHHH maximisation, 38 iterations 
Return code 8: successive function values within relative tolerance limit (reltol) 
Log-Likelihood: -828.4704  
8  free parameters 
Estimates: 
                  Estimate Std. error t value  Pr(> t)     
(Intercept)      0.6094878  0.1663890   3.663 0.000249 *** 
asi_eksklusif   -0.0024128  0.0023075  -1.046 0.295737     
vit_a            0.0000611  0.0001294   0.472 0.636804     
kelas_ibu_hamil  0.0014320  0.0004976   2.878 0.004004 **  
air_bersih      -0.0091008  0.0027963  -3.255 0.001136 **  
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lm_campak        0.0071706  0.0028505   2.516 0.011885 *   
                 0.9899999  0.0189537  52.232  < 2e-16 *** 
                 0.2990521  0.0239279  12.498  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
-------------------------------------------- 
> est_gpsar <- coef(summ_gpsar) 
> z_val <- est_gpsar[,1]/est_gpsar[,2] 
> p_val <- 2*pnorm(abs(z_val), lower.tail=FALSE) 
> tab_gpsar <- cbind(est_gpsar[,1:2], z_value=z_val, p_value=p_val) 
> write.csv(tab_gpsar, paste0(output_folder, "5_Hasil_GPSAR.csv")) 
> # ============================================================================== 
> # 9. KEBAIKAN MODEL (Goodness of Fit) 
> # ============================================================================== 
> cat("\n[9] Perbandingan Kebaikan Model (GPR vs GPSAR)...\n") 
 
[9] Perbandingan Kebaikan Model (GPR vs GPSAR)... 
> calc_metrik <- function(logLik, n_par, n, y, pred) { 
+   aic <- 2*n_par - 2*logLik 
+   aicc <- aic + (2*n_par*(n_par+1))/(n-n_par-1) 
+   rmse <- sqrt(mean((y-pred)^2)) 
+   return(c(AICc=aicc, RMSE=rmse)) 
+ } 
> # Metrik GPR 
> m_gpr <- calc_metrik(logLik(model_gpr), length(coef(model_gpr)), length(y), y, 
fitted(model_gpr)) 
> # Metrik GPSAR 
> if(model_gpsar$code %in% c(0,1,2,8)) { 
+   cf <- coef(model_gpsar); rho_h <- cf[ncol(X_GPSAR)+1] 
+   eta_h <- solve(diag(length(y)) - rho_h * W_matrix) %*% X_GPSAR %*% cf[1:ncol(X_GPSAR)] 
+   mu_gpsar <- offset_vec * exp(eta_h) 
+   m_gpsar <- calc_metrik(logLik(model_gpsar), length(cf), length(y), y, mu_gpsar) 
+ } else { m_gpsar <- c(NA, NA) } 
> tab_compare <- data.frame(Indikator=c("AICc", "RMSE"), GPR=m_gpr, GPSAR=m_gpsar) 
> print(tab_compare) 
     Indikator         GPR       GPSAR 
AICc      AICc 1717.243627 1673.392207 
RMSE      RMSE    7.117935    6.406422 
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