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Dosen Pembimbing : Dr. Sutikno, S.Si, M.Si.
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ABSTRAK

Jumlah kasus pneumonia pada balita di Kabupaten Tuban menyajikan dua
tantangan data yang signifikan, yaitu overdispersi dan dependensi spasial.
Penelitian ini bertujuan untuk mengembangkan dan menerapkan model
Generalized Poisson Spatial Autoregressive (GPSAR) untuk mengatasi kedua
masalah tersebut secara bersamaan. Estimasi parameter model dilakukan
menggunakan metode Maximum Likelihood Estimation dengan prosedur iterasi
Berndt-Hall-Hall-Hausman (BHHH). Hasil penelitian mengonfirmasi validitas dan
keunggulan model spasial yang diajukan. Model GPSAR terbukti lebih unggul
dibandingkan model non-spasial Generalized Poisson Regression (GPR) dalam hal
kebaikan model (AICc: 1673,39 vs 1717,24). Secara statistik, parameter struktural
untuk lag spasial dan parameter dispersi bernilai signifikan (p < 0,001), yang
mengonfirmasi adanya pengelompokan spasial yang kuat dan fenomena
overdispersi pada data. Tiga variabel prediktor ditemukan berpengaruh signifikan:
Cakupan Air Bersih (X,) yang menunjukkan efek protektif (negatif), serta Kelas
Ibu Hamil (X3) dan Imunisasi Campak (X5) yang menunjukkan asosiasi positif yang
berpotensi berkaitan dengan kualitas surveilans kesehatan.

Kata Kunci: Data Cacah, Model SAR, Overdispersi, Pneumonia, Spatial Lag.
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PARAMETER ESTIMATION IN THE GENERALIZED POISSON
SPATIAL AUTOREGRESSIVE MODEL
(Case Study: Modeling Pneumonia Cases in Toddlers in Tuban Regency)

Student Name :Joshua Capri Gunawan Sihombing

NRP ;6003232015

Department : Statistics FSAD - ITS

Advisor : Dr. Sutikno, S.Si, M.Si.

Co-Advisor . Dr. Achmad Choiruddin, S.Si, M.Sc.
ABSTRACT

The number of pneumonia cases in children under five in Tuban Regency
presents two significant data challenges: overdispersion and spatial dependency.
This study aims to develop and apply the Generalized Poisson Spatial
Autoregressive (GPSAR) model to address both issues simultaneously. The model
parameters were estimated using the Maximum Likelihood Estimation method with
the Berndt-Hall-Hall-Hausman (BHHH) iteration procedure. The results confirm
the validity and superiority of the spatial model. The GPSAR model outperformed
the non-spatial Generalized Poisson Regression (GPR) model in terms of goodness-
of-fit (AICc: 1673,39vs. 1717,24). Statistically, the structural parameters for spatial
lag and dispersion were highly significant (p < 0,001), confirming strong spatial
clustering and overdispersion in the data. Three predictor variables were found to
be statistically significant determinants: Clean Water Coverage (X,), which showed
a protective effect, as well as Prenatal Classes (X3) and Measles Immunization (X5),
which showed positive associations potentially linked to healthcare surveillance
quality.

Kata Kunci: Count Data, SAR Model, Overdispersion, Pneumonia, Spatial Lag.



(Halaman ini sengaja dikosongkan)

vi



KATA PENGANTAR

Puji syukur kehadirat Tuhan Yang Maha Esa atas segenap karunia-Nya yang
tak terhitung jumlahnya, sehingga penulis dapat menyelesaikan laporan Tugas
Akhir dengan judul “Penaksiran Parameter Pada Model Generalized Poisson
Spatial Autoregressive (Studi kasus: Pemodelan Kasus Pneumonia Pada Balita
di Kabupaten Tuban)” dengan baik dan lancar. Penyusunan laporan Tesis ini
dapat diselesaikan bukan tanpa bantuan serta dukungan dari berbagai pihak. Oleh
karena itu, penulis ingin menyampaikan ucapan terima kasih dan penghargaan
setinggi-tingginya kepada:

1. Tuhan Yang Maha Esa yang telah melimpahkan rahmat dan hidayah-Nya
sehingga penulis mendapatkan kesempatan untuk melanjutkan studi pada
jenjang Magister.

2. Kedua orang tua tercinta yaitu Ayahanda Parsaoran Sihombing dan Ibunda
Valentina Pasaribu yang selalu memberikan kasih sayang, nasehat, dukungan
dalam berbagai bentuk, serta doa yang tiada hentinya kepada penulis.

3. Bapak Dr. Sutikno, S.Si1, M.Si. selaku dosen pembimbing yang telah yang telah
meluangkan waktunya serta dengan sangat sabar memberikan bimbingan dan
banyak memberi masukan kepada penulis.

4. Bapak Dr. Achmad Choiruddin, S.Si, M.Sc. selaku dosen wali dan Co-
pembimbing atas bimbingan, arahan, saran, dukungan serta motivasi selama
perkuliahan serta penyusunan Tesis ini.

5. Bapak/Ibu staf dan karyawan di Departemen Statistika ITS, terima kasih atas
segala bantuan selama masa perkuliahan penulis.

6. Bapak dan Ibu dosen Departemen Statistika FSAD ITS yang telah memberikan
ilmu yang bermanfaat dan barokah.

7. Kepada teman-teman semuanya.

Penulis menyadari bahwa dalam tugas akhir ini masih belum sempurna.
Semoga ketidak sempurnaan itu menjadi celah untuk proses belajar dan
pengembangan keilmuan kedepannya. Semoga Tesis ini bisa menjadi bahan

referensi dan memberikan manfaat bagi pengembangan dunia statistika.

vil



Surabaya, September 2026

Penulis

viil



DAFTAR ISI

LEMBAR PENGESAHAN .....oooiiiiiie ettt ettt stee st e saeeesneeeenes i
ABSTRAK ...ttt ettt e et e e tee et e e s atee s taeeenbeesateesnseeenaeeenneenn iii
ABSTRACT ...ttt et e et e e s te e e ta e e tbeesbeeessbeessbaeesbeeessaeenssaeans v
KATA PENGANTAR .......ooiieeeeeeee ettt ettt e st sveeetaeestveessveeesnneaens vii
DAFTARISL......oooeee ettt e et e e et e et eessteessseeessseesssseensseeensseennseenn ix
DAFTAR GAMBAR........oooiieeee ettt et e tb e e s ree e e xiil
DAFTAR TABEL .......oooiie ettt ettt e e e vee e s e e e abe e e e ennbaaeeeneees XV
DAFTAR NOTASL ...ttt et e st e e ste e st essaeessseeensaeesnseeennes XVvii
BAB I LATAR BELAKANG ........oooiiiiiieie ettt etee et etee e snseesnaeesnneeenns 1
1.1 Latar BelaKang ........c.coooveeiiiiiiiieeeieee et 1
1.2 Rumusan Masalah ..........cccoooiiiiiiiiieiiieiccece e 4
1.3 Tujuan Penelitian.........c.ccocuieriieiiieiiiecieeieeeteeee e 5
1.4 Manfaat Penelitian...........ccoccveeviieiiiieeiiiecie e 6
1.5 Batasan Penelitian ...........cccccueeiiiiiiiiiiiiiie et 6
BAB II TINJAUAN PUSTAKA ... .ottt 7
2.1 ReGIesT POISSON ....ceeiiiiiiiiieiiie ettt ettt etae e s eeebeeesnnee e 7
2.1.1 Model Regresi POISSON .......ccccveeeiuiieeiiieeeiieeeiieeeieeeeiee e 7

2.1.2 Estimasi Parameter..........ccccccveeeiiiieiiieeeiieeeieecee e 9

2.1.3 Pengujian HIpotesis .....ccevvreeieieeriiieeeiiieeeiieeeieeeeiee e eevee e 11

2.2 Pengujian EGUIAIDErSION ..........ccocccueeeuieiiieeiieiieeieeeiieeie et see e 13
2.3 Distribusi Generalized POiSSON ..........coovieiiieiiiniieiieeieeitece e 14
2.3.1 Generalized Poisson Regression (GPR)........ccccoecvvvviieinciieiniieenee, 14

2.3.2 Penaksir Parameter..........cocueevveeriieniieeiieieeieee e 16

2.3.3 Pengujian HIpotesis .....ccevureeiuiieeiiieeeiieeeiieeeieeeeiee e eree e 19

2.4 Analisis SPasial .......c.ceoiiiiiiiiiiiieie e 20
2.5 Poisson Spatial AUtOTEZIESSIVE ....ccueevvieriieeiieiienieeieeeeeeiee e eeeeeeee e 21
2.5.1 Estimasi Parameter..........cccueevuieeiieniieeiieriieeieeee e 21

2.5.2 Pengujian Hipotesis .....cccvureeiuiieeiiiieeiiieeeiieeeiee et eevee e eree e 24

X



2.6 Pengujian Aspek Spasial.........ccccceeveiieiiiriiienieeiieeeeee e 26

2.6.1 Uji Dependensi Spasial .........cc.eevveeeiienieeiiienieeieenie e 26
2.7 Generalized Poisson Spatial AUtOregressive ........eeevvveeeceveeecieeeeveeesveeenes 29
2.8 Pembobot Spasial...........cccviiiiiiiiiiiciee e e 31
2.9 Kriteria Pemilihan Model Terbaik ...........cccoverviniiniiiiiniinicienieeeiene 32
2.10 Pneumonia Pada Balita ...........ccccooieiiiiinieiieieeeeeeeeeeeeie e 32
2.10.1 Gambaran Umum Pneumonia Pada Balita...........c..cccccooeninnennne. 32

2.10.2 Faktor-Faktor yang Memengaruhi Kasus Pnomonia Pada Balita 33

2.11 Hasil Penelitian Terdahulu.............cccoeoiiiiiiniiniiiiieeeeeeeeeeee 35
BABIII METODOLOGI ........c..ooiiiiieeeee ettt 37
3.1 Langkah-langkah Penaksir Parameter GPSAR.........cccccooeiiniiniininiinnne 37
3.2 Langkah-langkah Pemodelan Kasus Pneumonia pada Balita..................... 39
3.2.1 Sumber Data......c.c.oouiiiiiiiiiii e 39

3.2.2 Spesifikasi Model, Variabel dan Struktur Data Penelitian............. 39

3.2.3 Langkah-langkah Analisis Pemodelan GPSAR ..........cccccoceeie 41

BAB IV HASIL DAN PEMBAHASAN.......ooooiiiieeeete ettt eee e e e 43
4.1 Penaksiran Parameter GPSAR.........ccoooiiiiiiiiiec, 43
4.2 Penerapan Model GPSAR .......c.ooo it 57
4.2.1 Gambaran Umum Data Penelitian..........c..ccoceriiiniiiinniinninnne. 57

4.2.2 Pola Hubungan Variabel Respon dan Variabel Prediktor.............. 62

4.2.3 Deteksi MultikolInIeritas...........coceeviienieiieenieiieeneceee e 62

4.2.4 Pengujian EQUIAISPETsi.....ccceeeevieriiriiieniieeiieriie e 63

4.2.5 Pemodelan Generalized Poisson Regression .............cccoecvueeeeunenn. 63

4.2.6 Pembobotan Spasial dan Pengujian Dependensi Spasial ............... 64

4.2.7 Penaksir Parameter Generalized Poisson Spatial Autoregressive.. 65

4.2.8 Pemilihan Model Terbaik...........ccoeceeveeiinieninniniinieicnieneeeeen 68

BAB V KESIMPULAN DAN SARAN ..ottt 69
5.1 KEeSIMPUIAN ..ottt e e e s 69
5.2 SATAN ..eiiiiiiiii ettt e s 70
DAFTAR PUSTAKA ...ttt sttt ettt e 73



LAMPIRAN
BIODATA P

ENULILS......coooiiie et e e

xi



xil



DAFTAR GAMBAR

Gambar 1.1 Peta Jumlah Kasus Sebaran Pneumonia Kabupaten Tuban ......3
Gambar 1.2 Roadmap Penelitian.............ccccoevieniieiieniiieieeieeeecie e 5
Gambar 2.1 Penyebab Kasus Pneumonia pada Balita ..............ccceeenneenneee. 33
Gambar 2.2 Kerangka Konsep Penelitian ...........cccccoceeviniiniinennincnennne. 35
Gambar 3.1 Wilayah Administrasi Tuban Berdasarkan Desa .................... 39
Gambar 3.2 Diagram Alir Analisis Data..........cccceevvievienciienieeieeieeeeenee. 42
Gambar 4.1 Sebaran Kasus Jumlah Pneumonia............ccoccoeieeiiniiennnnnen. 59
Gambar 4.2 Sebaran Kasus Variabel Prediktor.............coocoviiiniiiiiennnen. 60

Xiii



(Halaman ini sengaja dikosongkan)

Xiv



DAFTAR TABEL

Tabel 2.1 Penelitian tentang Pneumonia pada Balita ............cccccoeevveieeieennnen. 34
Tabel 2.2 Pemetaan Hasil Penelitian Terdahulu............cccccooeviininiiniinenenn. 36
Tabel 3.1 Variabel Penelitian...........ccooeeveriiniiiinieniieeeeececeeee e 40
Tabel 3.2 Struktur Data GPSAR......... oo 41
Tabel 4.1 Statistik Deskriptf..........ccce oo 57
Tabel 4.2 Korelasi Variabel Respon dan Prediktor ............ cocoovevvieiieniienenne. 62
Tabel 4.3 Nilai VIF Masing-masing Variabel Prediktor ..........c.cccovvvevrveevnveennnen. 62
Tabel 4.4 Nilai Taksiran Parameter GPR ............ccccoooiiiiiiiiiie, 63
Tabel 4.5 Pengujian Lagrange Multiplier (LM)........ccccooceioiiniiiniiiiienieeien. 64
Tabel 4.6 Nilai Taksiran Parameter GPSAR ........c.ccooiiiiiiiiniieceee 65
Tabel 4.7 Perbandingan nilai AICC ........cccoeeiieiiiiiiiiniiciceeeee e 68

XV



(Halaman ini sengaja dikosongkan)

Xxvi



DAFTAR NOTASI

a : Taraf signifikan

S

: Banyak unit observasi

: Banyak variabel prediktor

: Banyak variabel respon

: Efek spasial lag

: Vektor variabel pengamatan

: Vektor parameter koefisien regresi berukuran (p + 1) X 1
: Nilai Moran’]

: Ruang parameter dibawah populasi

£ B ~ ™R O TV A

: Ruang parameter dibawah H,,

o~

: Indeks unit penelitian, i = 1,2,...,n

: Indeks variabel respon, j = 1

~ o~

: Indeks variabel prediktor untuk observasi ke-i
x; : Vektor variabel prediktor untuk observasi ke-i
W : Matriks pembobot spasial

w : Eigenvalue dari matriks pembobot spasial

F  : Statistik uji pada uji serentak

G? : Statistik uji Glejser

H : Matriks Hessian

W, : Statistik uji pada uji parsial

L(*) : Fungsi likelihood

&€ : Vektor residual

2() : Fungsi In-likelihood

xvii






BAB I
LATAR BELAKANG

1.1 Latar Belakang

Pneumonia merupakan infeksi saluran pernapasan akut yang menyerang
paru-paru dan hingga saat ini masih tercatat sebagai salah satu penyebab utama
kematian pada anak di bawah usia lima tahun (balita) secara global. Penyakit ini
memiliki prevalensi yang tinggi karena sistem kekebalan tubuh balita yang belum
terbentuk sempurna, terutama di negara berkembang dengan akses layanan
kesehatan yang terbatas. Organisasi kesehatan dunia seperti WHO dan UNICEF
bahkan telah mempublikasikan The Integrated Global Action Plan for Prevention
and Control Pneumonia and Diarrhoea (GAPPD) sebagai respons terhadap
tingginya mortalitas ini. Hal ini menegaskan bahwa penanganan pneumonia bukan
sekadar masalah medis rutin, melainkan prioritas kesehatan masyarakat yang
mendesak.

Di Indonesia, beban penyakit ini juga signifikan. Berdasarkan data Profil
Kesehatan Indonesia tahun 2022, pneumonia menyumbang angka kematian balita
terbesar, yaitu mencapai 12,5%. Kondisi ini tercermin pula di tingkat daerah,
khususnya di Provinsi Jawa Timur dan Kabupaten Tuban. Meskipun data Badan
Pusat Statistik (BPS) menunjukkan adanya penurunan kasus di Kabupaten Tuban
dari 1.707 kasus pada tahun 2021 menjadi 1.485 kasus pada tahun 2022 (turun
3,03%), angka absolut ribuan kasus ini menunjukkan bahwa ancaman tersebut
masih nyata. Fluktuasi kasus yang tinggi di berbagai desa mengindikasikan
perlunya pemodelan statistik yang presisi untuk memetakan faktor risikonya.

Dalam analisis statistika, data jumlah kasus kejadian penyakit seperti
pneumonia dikategorikan sebagai data count. Pendekatan standar untuk
memodelkan hubungan antara variabel respon berupa data count dengan variabel
prediktor adalah Regresi Poisson. Model ini dibangun di atas asumsi fundamental
yang dikenal sebagai equidispersion, di mana nilai rata-rata (mean) dari variabel

respon diasumsikan sama dengan nilai variansnya. Penggunaan model ini sangat



populer karena kesederhanaan interpretasinya dalam menjelaskan laju kejadian
suatu peristiwa.

Namun, dalam penerapan pada data riil kesehatan, asumsi equidispersion
tersebut sangat sering dilanggar. Pelanggaran ini terbukti secara empiris dalam data
penelitian ini. Berdasarkan statistik deskriptif terhadap kasus pneumonia di 328
desa/kelurahan di Kabupaten Tuban, ditemukan karakteristik data yang ekstrem.
Rata-rata jumlah kasus tercatat sebesar 4,527 kasus kejadian, sementara nilai
variansnya melonjak hingga 60,29. Hal ini menghasilkan Variance-to-Mean Ratio
sebesar 13,32, yang jauh lebih besar dari 1. Kondisi ini mengonfirmasi dugaan
adanya overdispersion, yang jika dipaksakan menggunakan Regresi Poisson
standar, akan menghasilkan kesimpulan yang tidak valid akibat standard error yang
bias.

Untuk mengatasi keterbatasan Regresi Poisson dalam menangani
overdispersion, diperlukan model alternatif yang lebih fleksibel. Salah satu
pendekatan yang dapat digunakan adalah Generalized Poisson Regression (GPR).
Keunggulan utama GPR dibandingkan model standar adalah kemampuannya
menangani struktur data, baik yang mengalami overdispersion maupun
underdispersion. Dengan menggunakan GPR, estimasi parameter menjadi lebih
akurat karena model ini secara eksplisit mengakomodasi variabilitas data yang
tinggi yang tidak tertangkap oleh model Poisson biasa.

Selain karakteristik distribusi data, analisis penyakit menular tidak dapat
dilepaskan dari aspek lokasi atau geografis. Unit pengamatan dalam penelitian ini
adalah desa/kelurahan, yang secara geografis saling berbatasan. Mengasumsikan
bahwa kejadian penyakit di satu desa independen dengan desa tetangganya adalah
asumsi yang tidak realistis. Hal ini sesuai dengan hukum pertama geografi Tobler
yang menyatakan bahwa "segala sesuatu saling berhubungan, namun hal-hal yang
dekat memiliki hubungan yang lebih erat daripada hal-hal yang jauh". Mengabaikan
interaksi antarwilayah ini dapat menghilangkan informasi penting mengenai pola

penyebaran penyakit.



Urgensi untuk memasukkan aspek spasial ke dalam model diperkuat oleh
bukti visual dan statistik. Berdasarkan peta sebaran kasus pneumonia di Kabupaten
Tuban pada Gambar 1.1 menunjukkan pola yang tidak acak, melainkan cenderung
membentuk klaster atau pengelompokan di wilayah-wilayah tertentu. Pola ini
menunjukkan adanya dependensi spasial yang jelas, di mana desa-desa yang

berdekatan secara geografis cenderung memiliki jumlah kasus yang serupa.

6.8°S
Jumlah Kasus
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40

30
7.0°8 20
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Sumber Data: [PDPM ITS]

Gambar 1.1 Sebaran Kasus Jumlah Pneumonia menurut desa/kelurahan
di Kabupaten Tuban

Secara statistik, fenomena ini dikonfirmasi melalui Uji Moran’s I yang
menghasilkan p-value < 0,001 . Hasil ini memberikan bukti mutlak bahwa
terdapat dependensi spasial positif yang signifikan. Artinya, desa dengan kasus
tinggi cenderung dikelilingi oleh desa dengan kasus tinggi pula, sehingga analisis
spasial menjadi wajib dilakukan.

Meskipun metode spasial telah berkembang, terdapat kesenjangan dalam
penerapannya untuk data spesifik ini. Penelitian terkini oleh Sutikno et al. (2025)
di lokasi yang sama telah menggunakan Multivariate Spatial Autoregressive
(MSAR) untuk menangani dependensi spasial. Namun, pendekatan tersebut
dibangun untuk memodelkan persentase kasus. Asumsi normalitas tidak tepat
digunakan untuk memodelkan data count.

Penerapan pemodelan SAR untuk kasus ril pada data count dilakukan oleh

Rohimah (2015) untuk mengetahui faktor-faktor yang memengaruhi jumlah



penderita HIV di Provinsi Jawa Timur (Rohimah, 2015). Saat ini penerapan SAR
untuk data count masih sebatas memodelkan dengan pendekatan distribusi Poisson
yang mana artinya model belum mempertimbangkan kondisi saat asumsi
equidispersion tidak terpenuhi. Oleh karena itu, pada penelitian ini dikembangkan
model SAR untuk data count yang fleksibel terhadap asumsi equidispersion dengan
data yang berdistribusi Generalized Poisson. Model ini selain mempertimbangkan
aspek spasial juga mempertimbankan aspek asumsi equidispersion yang tidak
terpenuhi. Selain itu, penerapan model ini juga dilakukan pada kasus ril mengenai
permasalahan kesehatan anak yaitu tentang penyakit pneumonia pada balita.

Berdasarkan kebutuhan untuk menangani overdispersion dan dependensi
spasial secara simultan, penelitian ini bertujuan mengembangkan dan mengestimasi
parameter model Generalized Poisson Spatial Autoregressive (GPSAR). Penelitian
ini akan mengaplikasikan model tersebut untuk menentukan faktor-faktor yang
memengaruhi kejadian pneumonia di Kabupaten Tuban secara presisi, melibatkan
variabel prediktor seperti persentase pemberian ASI eksklusif, pemberian vitamin
A, akses air bersih, serta balita yang mendapatkan imunisasi campak. Melalui
pendekatan ini, diharapkan dihasilkan model yang tidak hanya valid secara statistik
tetapi juga akurat dalam memberikan rekomendasi kebijakan kesehatan.

Penelitian ini mengkaji tentang penaksiran parameter model Generalized
Poisson Spatial Autoregressive (GPSAR). Variabel respon yang digunakan dalam
penelitian ini yaitu jumlah kasus pneumonia pada balita. Selanjutnya, penelitian ini
juga menjelaskan tentang pengaplikasian model GPSAR pada variabel jumlah

pneumonia pada balita di Kabupaten Tuban Tahun 2023.

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah diuraikan, data jumlah kasus pneumonia
pada balita di Kabupaten Tuban tahun 2023 merupakan data count yang dihadapkan
pada dua tantangan metodologis. Pertama, adanya bukti dependensi spasial antar
desa (Uji Moran's I, p-value < 0,001). Kedua, adanya potensi ketidakterpenuhan
asumsi equidispersion. Kedua kondisi tersebut tidak dapat ditangani secara
memadai oleh model regresi Poisson standar. Oleh karena itu, penelitian ini

mengusulkan pengembangan model Generalized Poisson Spatial Autoregressive



(GPSAR), yang mengintegrasikan kemampuan model Generalized Poisson (GP)

dalam menangani permasalahan dispersi dengan kemampuan model Spatial

Autoregressive (SAR) dalam mengakomodasi autokorelasi spasial, guna

memperoleh hasil penaksiran dan pemodelan yang lebih akurat. Berdasarkan uraian

tersebut, rumusan masalah dalam penelitian ini dirumuskan sebagai berikut:

1. Bagaimana bentuk penaksir parameter model GPSAR?

2. Bagaimana penerapan model GPSAR terhadap jumlah kasus pneumonia tiap

desa di Kabupaten Tuban?

Roadmap penelitian disajikan pada Gambar 1.2.

Poisson Spatial Autoregressive

(Rohimah, 2015), (Rohimah, 2019),
(Mohammed, 2025)

Generalized Poisson Spatial
Autoregressive
Studi Kasus: Jumlah Kasus Pneumonia
pada Balita Kabupaten Tuban Tahun

1
1 2023
1
1

(Aulia, 2017), (Watun, dkk., 2020), (Saputri, 2022), (Kurnia,

Penelitian Terkait Pneumonia

dkk., 2023), (Sutikno et al., 2025)

Keterangan:

1.3 Tujuan Penelitian

Gambar 1.2 Roadmap Penelitian

| . yang diteliti

Berdasarkan rumusan masalah di atas, maka tujuan yang ingin dicapai pada

penelitian ini sebagai berikut.

Overdi ot Generalized Poisson
Regresi Poisson Verd 1s(1:1)§r51 atau > Regression
underdispersi (Famoye et al., 2004)
Efek pasial Efek spasial
F--------- L N N N _§N _§N J



1. Mendapatkan bentuk penaksir parameter model GPSAR.
2. Mendapatkan model GPSAR terhadap jumlah kasus pneumonia tiap desa di
Kabupaten Tuban.

1.4 Manfaat Penelitian

Manfaat penelitian ini terdiri atas dua bidang, yaitu keilmuan dan aplikasi.
Manfaat keilmuan yang diperoleh adalah pengembangan ilmu statistika dengan
dikembangkannya model GPSAR yaitu gabungan Generalized Poisson Regression
dengan menambahkan efek spasial. Manfaat aplikasi adalah mendapatkan model
GPSAR untuk menganalisis faktor-faktor yang mempengaruhi jumlah kasus
pneumonia pada balita di Kabupaten Tuban. Hasil penelitian ini dapat dijadikan
dasar pertimbangan dinas kesehatan di Kabupaten Tuban dalam upaya

meningkatkan capaian penurunan jumlah pneumonia di Kabupaten Tuban.

1.5 Batasan Penelitian

Batasan penelitian diperlukan untuk mendapatkan hasil penelitian yang fokus
dan maksimal, serta sesuai dengan rentang waktu yang telah direncanakan.
Batasan-batasan penelitian diantaranya adalah sebagai berikut :

1. Metode pengujian hipotesis parameter yang digunakan adalah uji MLRT
untuk pengujian hipotesis secara serentak dan uji Wald untuk pengujian
hipotesis secara parsial.

2. Pengujian efek spasial menggunakan alat uji yang berbasis distribusi
normal.

3. Pengujian aspek spasial yang di ujikan hanyalah dependensi spasial dengan

Moran’s 1.



BAB II
TINJAUAN PUSTAKA

Bab ini menyajikan landasan teoretis yang menjadi dasar pengembangan
model yang diusulkan. Pembahasan dimulai dari model fundamental untuk data
count, yaitu Regresi Poisson, beserta asumsi equidispersion yang seringkali tidak
terpenuhi. Sebagai solusi atas keterbatasan tersebut, akan diuraikan konsep GPR
yang mampu menangani masalah overdispersion. Selanjutnya, akan dibahas
keterbatasan model non-spasial dalam menganalisis data geografis, yang mengarah
pada pengenalan model SAR untuk mengakomodasi dependensi spasial. Puncak
dari tinjauan pustaka ini adalah sintesis dari konsep-konsep tersebut untuk
membangun kerangka teoretis model GPSAR. Bab ini juga akan melengkapi
pembahasan dengan konsep-konsep pendukung seperti pembobot spasial,
pengujian asumsi, dan tinjauan penelitian terdahulu mengenai faktor-faktor yang

memengaruhi kasus pneumonia pada balita.

2.1 Regresi Poisson
Analisis regresi Poisson mengasumsikan bahwa distribusi variabel respon Y
yang digunakan adalah berdistribusi Poisson. Fungsi kepadatan peluang dengan
parameter u dinyatakan sebagai berikut (Cameron & Trivedi, 2013):
e_lfti Vi
y—’f;yi=o,1,...;osust>o 1)
i H

Distribusi Poisson memiliki mean yang sama dengan variance, yaitu E (y;) =

P(y;ilu) =

V(y;) = u;, kondisi ini disebut sebagai equidispersion. Pada praktiknya kondisi
equidispersion tidak selalui terpenuhi, seringkali nilai variance lebih kecil dari

mean (underdispersion) atau nilai variance lebih besar dari mean (overdispersion).

2.1.1 Model Regresi Poisson

Regresi Poisson merupakan salah satu pendekatan yang dapat digunakan
untuk melakukan analisis data count, dimana model yang terbentuk merupakan
model non linier (Cameron & Trivedi, 2013). Jika y; adalah data dari banyaknya

suatu kejadian yang terjadi dalam periode waktu dan/atau wilayah tertentu, maka



regresi Poisson mengasumsikan y; merupakan variabel random berdistribusi

Poisson.

Model regresi Poisson merupakan salah satu contoh Generalized Linear

Model (GLM). Generalized Linear Model terdiri dari tiga komponen yaitu,

1. komponen random, komponen sistematik, dan link function (McCullagh &
Nelder, 1989). Komponen random terdiri dari variabel respon y dengan nilai
observasi (¥, ¥y, ..., ¥»)T yang independen.

2. Komponen sistematik untuk kovariat x;; dimana j = 1, 2, ..., p menghasilkan
suatu kombinasi linier variabel prediktor atau linear predictor n = Xf. X
adalah matriks dari variabel prediktor dan B adalah vektor dari parameter
model.

3. Link function merupakan komponen yang menghubungkan komponen random
dengan komponen sistematik, E(y) = n = XB.

Cara mendapatkan /ink function untuk model regresi Poisson adalah sebagai
berikut.

a) Logaritmakan kedua ruas persamaan (2.1)

e My i)

i

log P(y;lu;) = log( = —u; +y;logu; —logy;!

b) Eksponensialkan kedua ruas persamaan yang didapatkan pada tahap (a)
exp(log P(yilu))= exp(—u; + y;logu; —logy;!)
P(yilu)= exp(—p; + y;logpu; —logy;!)
¢) Menyatakan kembali persamaan yang didapatkan pada tahap (b) dalam bentuk
umum keluarga distribusi eksponensial. Bentuk umum keluarga distribusi
eksponensial adalah sebagai berikut:

y0 — b(0)
a(¢)

(2.2)

P(y,0,¢9)= eXp{ +c(y, ¢>)}

sehingga
P(yilu;) = exp(—p; + y;logu; —logy; 1)
P(yilu;) = exp(y;logu; —u; —logy;!)



Jadi, link function untuk model regresi Poisson adalah log(,ui), sehingga model

yang terbentuk adalah:
Log(u)= Bo + f1x1; + -+ BpXp;
Hi= exp(ﬁo + fixqy + o+ Bpxpl-),i =1,2,..,n
atau jika dinyatakan dalam bentuk vektor menjadi
log(y) = x7 B
ui= exp(x{ B) (2.3)
dengan,

'xi(p+1)><1:[1 Xy Xpi]”

Bpinxi=1[Bo B = Bpl”

2.1.2 Estimasi Parameter
Salah satu metode yang dapat digunakan untuk menaksir parameter regresi
Poisson adalah Maximum Likelihood Estimation (MLE). Adapun langkah — langkah

dari penaksiran parameter Regresi Poisson adalah sebagai berikut:

1.  Menyusun fungsi likelihood untuk regresi Poisson.

L) =] [ PGl
i=1

B ﬁ <uiy : eXp(—ui)>
1 yi!

ot exp(—py) (2.4)

n
i=1 Vi!

2. Menyusun fungsi /n likelihood.

t(uy) = i yiIn(y;) — zn: Wi — i In(y;) (2.5)
i1 i1 i1

Jika y; = exp(x! B), maka fungsi In likelihood yang terbentuk:

£ =) yiln(exp(IB)) ~ ) exp@IH) — ) In(yih



n (2.6)
= > [vi(x{B) —exp(x] B) — In(y;)]

i

3. Menurunkan fungsi /n likelihood terhadap parameter yang ditaksir, yaitu .
Kemudian, hasil penurunan tersebut disamakan dengan nol.

o(£(B) I, [yi(x] B) — exp(x{ B) — In(y,N])
ap B

0= Z[yixi — x;exp(x] B)] 2.7)

i=1
Solusi yang didapatkan dari persamaan turunan pertama /n likelihood tidak
memiliki bentuk closed-form, estimasi parameter harus dilakukan melalui prosedur
iterasi numerik. Metode iterasi numerik yang digunakan dalam penelitian ini adalah
algoritma Berndt-Hall-Hall-Hausman (BHHH). Metode BHHH dipilih karena
metode ini memanfaatkan informasi dari gradien turunan pertama untuk
mengaproksimasi matriks Hessian, sehingga menghindari turunan kedua yang
kompleks. Adapun prosedur iterasi BHHH didefinisikan melalui langkah-langkah
berikut.

Definisi:
Misalkan B((p +1)x1) = [ﬁo B - ﬁp]T adalah vektor parameter yang akan di

estimasi, £;(B) adalah [n likelihood untuk observasi ke-i, dimana i = 1,2, ...,n.

Fungsi In likelihood total adalah Y. ; €;(8)

Inisialisasi:

1. Menentukan nilai awal parameter B(®) . Nilai awal parameter menentukan
kecepatan tercapainya konvergensi pada proses iterasi. Idealnya nilai awal
parameter untuk model regresi Poisson adalah 0 untuk semua parameter.

2. Menentukan toleransi konvergensi € > 0 yang mana dalam penelitian ini 1073
menjadi batas toleransi konvergensi.

3. Menentukan batas maksimum iterasi (M,qxs). Misalkan My, 4s yang
ditetapkan adalah 1000. Ketika iterasi tidak mencapai konvergensi pada iterasi
ke-1000 maka proses iterasi akan berhenti walaupun konvergensi belum tercapai.

4. Menentukan set iterasi awal adalah k = 0.

10



Prosedur Iterasi:
Langkah 1: Menghitung vektor gradien individu untuk setiap observasi i =
12, ..,n

at:(B)
B p=p"®

Langkah 2: Menghitung penjumlahan gradien seluruh sampel.

#(#) =Y 0.(8)

Langkah 3: Mengaproksimasi matriks Hessian menggunakan informasi vektor

5(8%) =

gradien individu. Misalkan H*adalah aproksimasi matriks Hessian, maka

n
. T
H'(B®) = - ) 3:(8®)g:(8Y)
i=1

Langkah 4: Memperbaharui nilai parameter menggunakan arah BHHH.

ﬁ(k+1) = I;(k) _ H*—l(ﬁ(k))g(ﬂ(k))
Langkah 5: Mengevaluasi konvergensi dengan melihat kondisi berikut.

I8+ - g0 <

Jika iterasi BHHH belum mencapai kondisi konvergen, set k = k + 1 dan kembali

ke langkah 1. Jika kondisi konvergen telah tercapai, maka B*+1 adalah estimator

dari .

2.1.3 Pengujian Hipotesis

Pengujian hipotesis dapat dilakukan dengan menggunakan metode MLRT.
Pengujian hipotesis pada model regressi Poisson dilakukan dengan dua tahap yaitu
pengujian hipotesis secara serentak dan pengujian hipotesis secara parsial. Untuk
pengujian hipotesis secara serentak memiliki hipotesis sebagai berikut.
Hy: Bi=B, ==, =0
H; : minimaladasatuf;, # 0,k =1,2,...,p

Statistik uji yang digunakan adalah sebagai berikut:

— 2 [ng; 2[e(@) - £(8)]

11



Pada persamaan diatas (@) yaitu fungsi In likelihood dari himpunan
parameter di bawah H, dan é’(ﬁ) yaitu fungsi /n likelihood dari himpunan
parameter dibawah populasi. Himpunan parameter di bawah H adalah w = {f,,}
dan himpunan parameter dibawah populasi adalah Q = {ﬁo,ﬁl, ...,ﬁp}. Bentuk
fungsi likelihood dan In likelihood dari @ = {ﬁo} yaitu:

L@) _ ﬁ <exp(/?0a,)y exp(—ex p(ﬁod))

yi!

i=1

3 | eXp(BOw)yi exp(— eXP(ﬁOw)yi)

=1 Vi!
@ = yiln(exp(Fon)) = ) exp(Bou) = ) In(yiD)
i=1 i=1 i=1
[yi(BOw) eXp(ﬁOw) ln(yl') (2-8)
i=1

Kemudian bentuk fungsi likelihood dan [n likelihood dari himpunan parameter di

bawah Q = {ﬁo,ﬁl, ...,Bp} yaitu:

L(@) = 11[ (exp(xiTﬁ)yi exp(— exp(xm))>

yi!

i=1
n exp(xl-TB)yi exp(— exp(xl-T[A)’)yi)
= Vi
2(Q) = Z yiIn(exp(x7B)) — Z exp(x!B) — Z In(y;1)
i=1 i=1 i=1

n

i(x B) — exp(x] B) — In(y:D] (2.9)
i=1
Dari persamaan (2.8) dan (2.9) selanjutnya diperoleh nilai G dengan bentuk sebagai
berikut:
——2In [““’) 2[¢@) — ¢(

=_2[Zi=1 [yi(BOw) eXp(.BOw) In(y;)] - ?:1[Yi(xiTﬁ)—
exp(x] B) — In(y;D]]
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G* =2[X1, [yi(xi B) — exp(x] B) — In(y:D] — iy vi(Bow) —
exp(ﬁo(u) In(y:)]
(2.10)
Nilai G? dibandingkan dengan distribusi )((Zp) dimana H, akan ditolak jika nilai dari

statistik G2 > )((Za;p) dengan « adalah taraf signifikan yang digunakan.

Kemudian jika didapat keputusan tolak H, maka selanjutnya dilakukan
pengujian parsial terhadap masing-masing parameter yang bertujuan untuk
mengetahui parameter mana yang berpengaruh signifikan terhadap variabel respon
secara individual. Statistik uji yang digunakan untuk uji parsial yaitu uji Wald
dimana saat dibawah H, maka 3, sama dengan nol. Hipotesis dalam pengujian
parsial adalah sebagai berikut.

Hy: B =10
Hi: Br#0;k=1,2,..k ...p
Untuk ukuran sampel yang cukup besar, penaksir 5 terdistribusi mendekati

distribusi normal dengan rata-rata ), dan varians S, adalah elemen diagonal dari
—H*"'(B) sehingga diperoleh se(f;) = [Var(f,). Statistik uji Wald di bawah

H, adalah seperti pada persamaan (2.11).

S BY (2.11)
Wie = <se(ﬁk)>

Nilai W, dibandingkan dengan distribusi )((21) dimana H, akan ditolak jika

nilai dari statistik W;, > )((Za;l) dengan « adalah taraf signifikan yang digunakan.

2.2 Pengujian Equidipersion

Pada regresi Poisson, terdapat kondisi yang perlu dipenuhi, yaitu kondisi
equidispersion. Kondisi equidispersion dapat dipenuhi jika nilai variansi sama
dengan nilai rata-rata. Salah satu metode pengujian yang dapat digunakan untuk
mengetahui adanya kasus overdispersion adalah uji Deviance. Langkah-langkah

pengujian adalah sebagai berikut:

vy

Ho: E(y)

= 1 (Equidispersion)

13



Hi: % # 1 (Terjadi kasus overdispersion atau underdispersion)

Statistik uji (Hilbe, 2014):

D= Zz (3’1' In (%) - - ﬁi)) (2.12)
1

dengan fi; = eXi B,
Tolak Hy jika D > )(é}n_(p +1)- Kasus overdispersion terjadi ketika nilai dari
deviance (D) dibagi dengan derajat bebas lebih besar dari 1, sedangkan kasus

underdispersion terjadi jika nilai dari deviance (D) dibagi dengan derajat bebas

lebih kecil dari 1.

2.3 Distribusi Generalized Poisson

Generalized Poisson (GP) memiliki dua parameter, yaitu 4 dan ¢ sebagai
parameter dispersi. Jika ¢ = 0, maka terdapat kondisi equidispersion. Jika ¢p < 0,
maka terdapat kasus underdispersion dan jika ¢ > 0, maka terdapat kasus
overdispersion (Famoye et al., 2004). Misalkan y;~GP (u;, ¢) dengani = 1,2, ...,
n merupakan sampel random maka fungsi distribusi peluang dari distribusi
Generalized Poisson (GP) sebagai berikut (Noriszura, et al., 2005):

Hi ]yi (1+ ¢py)rit exp <_ w,(1+ ¢y
1+ oy yi! 1+ oy

P(yilu, @) = >,yi =0,1,2..

(2.13)
dimana rata — rata dan variansi dari y; adalah E(y;) = u; dan V(y;) = w; (1 +

¢.Ui)2-

2.3.1 Generalized Poisson Regression (GPR)

Pada regresi Poisson terdapat beberapa asumsi yang harus dipenuhi, yaitu
variabel respon harus berdistribusi Poisson, tidak terjadi multikolinearitas antar
variabel prediktor, serta memiliki rata — rata dan variansi yang sama dari variabel
respon. Namun, pada umumnya sering terjadi kasus dimana rata-rata dari variabel
respon lebih besar daripada variansinya atau rata-rata lebih kecil daripada
variansinya. Jika terjadi wunderdispersion dan overdispersion, maka dapat

menyebabkan regresi Poisson tidak dapat digunakan. Salah satu pendekatan yang

14



dapat digunakan sebagai salah satu alternatif untuk mengatasi kasus tersebut adalah

Generalized Poisson Regression (GPR).
GPR adalah Generalized Linear Model (GLM), sehingga untuk mendapatkan
link function dari model GPR dilakukan langkah — langkah berikut.

a. Logaritmakan kedua ruas persamaan (2.9).

log(f il ¢)) i P+ gy)¥it? w1+ ¢y;)
- log( 1+ ¢Mi] V! P <_ 1+ du; >>

_ log[ K ) + log (1+ ¢y)”i?
1+ éu yi!

wi(1+ ¢yi)>

log(f ilus ¢))

1+ ou;

= y;logu; — y;log(1 + ¢y;) + (y; — 1) log(1l + ¢y;)
B w1+ ¢y

1+ ou;

+log exp (—

—log(y;!)

— y.log; + log 1+ ¢py)¥it ~ log(y,!) — w1+ ¢y;)
' ' 1+ ¢y a 1+ ou;

b. Eksponensialkan kedua ruas persamaan yang didapatkan pada tahap (a)

yilog u; + log A+ gy
l l (1+ ¢y;)i

(1 4+ dyi)
1+ o

1
exp{log(f ilus #))} = S exP

1 (1+ ¢yi)yi—1 Vi logui
=0T dy &P w1+ dyi)
a l 1+ ou

c. Menyatakan kembali persamaan yang didapatkan pada tahap (b) dalam bentuk
umum keluarga distribusi eksponensial. Bentuk umum keluarga distribusi

eksponensial adalah sebagai berikut:

y0 — b(0)

“ad) +c(y, ¢)}

P(y,0,¢) = eXp{

15



sehingga

1(1 DYt i(1 i
POl §) = ~ L+ 9¥) “H—"’”}

yi (L+ ¢y)i 1+ oy
Jadi, dapat diketahui bahwa /ink function untuk model GPR adalah log(,ui)

exp {3’1' log u; —

sehingga bentuk umum dari model GPR adalah:
log(u;) = Bo + Brx1i + -+ Bpxpi
Ui = exp(,BO + Bixq; + o+ ﬁpxpl-),i =1,2,..,n
atau
log(1) = x{ B
ui= exp(x{ B) (2.14)

Dengan,

Bpinxi=1[Bo B1 - Bpl”

2.3.2 Penaksir Parameter

Penaksiran parameter dari model GPR dapat dilakukan dengan Maximum
Likelihood Estimation (MLE). Adapun langkah — langkah dari penaksiran
parameter tersebut adalah sebagai berikut:

1.  Menyusun fungsi likelihood untuk regresi Poisson.

L) = | [ £l )

i=1
= ﬁ [ Ui ]Yi 1+ ¢Yi)yi—1 o <_ M) (2.15)
i 1+ ¢u y;! p 1T o

2. Menyusun fungsi /n likelihood.

~ n 1 Yi(1+4 ¢y;)¥itt pi(1+ ¢y;)
(@) =In (H = qbul-] vl P <" 1+ pu; ))

Jika yu; = exp(x! B), maka fungsi In likelihood yang terbentuk:
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( . | exp(lf) T (1t gyt
_ 1+ ¢ exp(x]p) il
e =n 1;[ oo (SPGB (L + 7))

P 1+ ¢pexp(xB)

n [yixi B —yiIn(1 + ¢ exp(x] B)) + (v; — DIn(1 + $y;)
Z o eRGIB A+ ¢y
= YT T f pexp(TB)

(2.16)

3. Menurunkan fungsi /n likelihood terhadap parameter yang ditaksir, yaitu # dan

¢. Kemudian, hasil penurunan tersebut disamakan dengan nol.

Ty, Yibexp(xip)
T 0+ ¢ expaTB))

2¢B,0) _ z": ( *! exp(xl B)
B —(1+ by (1+ ¢ exp(x; B))

 gxT exp(24) |

(1 + ¢ exp(x] B))?
2.17)
i yvipexp(x] B)  yi(y; — 1)
LB, d) _ z (1+¢exp(xlp)) 1+ yp)
0 Ll T8 < Vi 4+ ¢y) eXp(xl-TB)>
PRABINOTF pexpGTB) ~ (1 + pexp(xl B))2
(2.18)

Solusi yang didapatkan dari persamaan turunan pertama /n likelihood tidak
memiliki bentuk closed-form, sehingga estimasi parameter harus dilakukan melalui
prosedur iterasi numerik. Metode iterasi numerik yang digunakan dalam penelitian
ini adalah algoritma BHHH. Metode BHHH dipilih karena metode ini
memanfaatkan informasi dari gradien turunan pertama untuk mengaproksimasi
matriks Hessian, sehingga menghindari turunan kedua yang kompleks. Adapun

prosedur iterasi BHHH didefinisikan melalui langkah-langkah berikut.
Definisi: Misalkan 9((p +2)x1) = [,80 B1 By qb]T adalah vektor parameter yang

akan di estimasi, €;(@) adalah [n likelihood untuk observasi ke-i, dimana i =

1,2, ...,n. Fungsi In likelihood total adalah )i~ £;(0)
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Inisialisasi:

1. Menentukan nilai awal parameter 8(®) . Nilai awal parameter menentukan
kecepatan tercapainya konvergensi pada proses iterasi. Idealnya nilai awal
parameter untuk model Generalized Poisson Regression adalah nilai hasil
estimasi parameter regresi Poisson.

2. Menentukan toleransi konvergensi € > 0 yang mana dalam penelitian ini 1076
menjadi batas toleransi konvergensi.

3. Menentukan batas maksimum iterasi (Myqrs) - Misalkan my, s yang
ditetapkan adalah 1000. Ketika iterasi tidak mencapai konvergensi pada iterasi
ke-1000 maka proses iterasi akan berhenti walaupun konvergensi belum tercapai.

4. Menentukan set iterasi awal adalah k = 0.

Prosedur Iterasi:
Langkah 1: Menghitung vektor gradien individu untuk setiap observasi [ =
12,..,n.

9¢,(0)
g:(8%) = 50

0=0

Langkah 2: Menghitung penjumlahan gradien seluruh sampel.

g,(g(k)) = igi(g(k))

Langkah 3: Mengaproksimasi matriks Hessian menggunakan informasi vektor

gradien individu. Misalkan H"adalah aproksimasi matriks Hessian, maka

n
H(6®) = — Z 3:(0%) g, (00"
i=1

Langkah 4: Memperbaharui nilai parameter menggunakan arah BHHH.
U+ — gk) _ H*‘l(g(k))g(g(k))
Langkah 5: Mengevaluasi konvergensi dengan melihat kondisi berikut.
60D — 9| < ¢
Jika iterasi BHHH belum mencapai kondisi konvergen, set k = k + 1 dan kembali

(k+1)

ke langkah 1. Jika kondisi konvergen telah tercapai, maka @ adalah estimator

dari 6.

18



2.3.3 Pengujian Hipotesis

Pengujian hipotesis dapat dilakukan dengan menggunakan metode MLRT.
Pengujian hipotesis pada model regressi Poisson dilakukan dengan dua tahap yaitu
pengujian hipotesis secara serentak dan pengujian hipotesis secara parsial.
Pengujian parameter regresi secara serentak dapat menggunakan Likelihood ratio
Test. Untuk pengujian hipotesis secara serentak memiliki hipotesis sebagai berikut.
Hy: py=p,=-=pp=0
H; : minimaladasatuf; # 0,k =1,2,...,p
Statistik uji yang digunakan adalah sebagai berikut:

= —2In [““’) —2[e@) — £(Q)]

Pada persamaan diatas ¢(®) adalah fungsi likelihood dari himpunan
parameter di bawah H, dan ¢ (ﬁ) adalah fungsi [likelihood dari himpunan
parameter dibawah populasi. Himpunan parameter dibawah H, adalah @ = {B,, ¢}
dan himpunan parameter dibawah populasi adalah Q = {,80, B1s -+ By qb}. Bentuk
fungsi likelihood dan In likelihood dari & = {f,, $} yaitu:

&) = ﬁ [ eXP(BOw) ri 1+ py)¥i~! exp (_ exp(Bo,) (1 ‘|: ¢J’i)>
] 1+¢ exp(ﬁOw) y;! 1+ ¢ exp(ﬁOw)

n [YiBow — yiln(1 + ¢ exp(Bow)) + (i — DIn(1 + ¢y;)
(@ =) oy exP(Bou) (L+ éy)
YT T ¥ g exp(Bow)

(2.19)

Kemudian bentuk fungsi likelihood dan In likelihood dari himpunan

parameter di bawah Q = {ﬁo, By, ..., ﬁp, (ﬁ} yaitu:

r TR i i—1 TR .
L(@) = 1—[[ exp(x;B) l 1+ d)?!/i)y exp <_ exp(x;B) (1 + ¢y1)>

L 111+ dex p(xTB) 1+ ¢exp(xTB)

n [yix{B —yiIn(1 + ¢exp(x{B)) + (i — DIn(L + ¢y))
=) oy PGB (L ¢

i=1 L

1+ ¢ exp(x!B)
(2.20)
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Dari persamaan (2.19) dan (2.20) selanjutnya diperoleh nilai G dengan
penjabaran sebagai berikut:
L(&
G =-2In [(—‘f)
L(Q)
yix{ B —yiIn(1 + ¢ exp(x]B)) + (v; = DIn(1 + )
exp(x{B) (1 + $y:)
n - T5
_, Z 1+ ¢ exp(x7B)
Ll [yiBo—yiln(1+ ¢exp(Bo)) + (vi — DIn(1 + ¢y,)
- S (IR D)
—my;: — o
1+ ¢ exp(xTB)

= =2[¢(@®) — ¢(Q)]

—Iny;!

(2.21)

Tolak Hy jika G% > x{y.)-

Kemudian jika didapat keputusan tolak H, selanjutnya dilakukan pengujian
parsial terhadap parameter yang bertujuan untuk mengetahui parameter mana saja
yang berpengaruh signifikan terhadap variabel respon secara individual. Statistik
uji yang digunakan untuk uji parsial yaitu uji Wald dimana saat dibawah H, maka
B sama dengan nol. Hipotesis dalam pengujian parsial adalah sebagai berikut.
Hy: B =0
Hy: Br#0;k=1,2,..k ..,p

Untuk ukuran sampel yang cukup besar, penaksir 5, terdistribusi mendekati

distribusi normal dengan rata-rata 8, dan varians 3} adalah elemen diagonal dari
—H*"'(B) sehingga diperoleh se(f;) = [Var(p,). Statistik uji Wald di bawah

H, adalah seperti pada persamaan (2.22).

( B >2 (2.22)
se(Br)
Nilai W, dibandingkan dengan distribusi )((21) dimana H, akan ditolak jika

nilai dari statistik W, > )((Za;l) dengan a adalah taraf signifikan yang digunakan.

2.4 Analisis Spasial
Spasial merupakan hal — hal yang berhubungan dengan aspek kewilayahan,

sedangkan data spasial adalah data yang observasinya merupakan suatu lokasi atau
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wilayah. Keterkaitan antar wilayah sering kali dipengaruhi oleh lokasi yang saling
berdekatan, sehingga diperlukan analisis spasial untuk mengetahui pengaruh

hubungan antara lokasi dengan respon.

2.5 Poisson Spatial Autoregressive

Pengembangan model spasial telah banyak dilakukan, salah satunya adalah
pengembangan model spasial untuk data count. Jika fungsi link Poisson Spatial
Autoregressive (PSAR) didefinikan dalam persamaan (2.23), dan variabel respon
berdistribusi Poisson, yaitu:

yi~Poisson(u;);i =1,2,...,n

Model PSAR yang standar menerapkan lag spasial pada prediktor linear, yaitu
(Lambert et al. 2010):

n
Inp = x[B+ ) pwyngy

J#L
Dalam notasi matriks, persamaan di atas menjadi:
Inu=XB+pWinpu
Inpu—pWinu =Xp
I—pW)Inu =X
Inu=>U-pW) 1XB
Inu=A"1XB
uPSAR = exp(A1XB) (2.23)
dengan A = (I — pW) dan A~! adalah matriks invers dari matriks A, X adalah
matriks prediktor berukuran n X (p + 1), B adalah parameter koefisien regresi
berukuran (p X 1) X 1, dan p adalah parameter koefisien spasial /lag pada variabel

respon, dan W adalah matriks pembobot berukuran (n X n).

2.5.1 Estimasi Parameter
Salah satu metode yang dapat digunakan untuk menaksir parameter PSAR

adalah Maximum Likelihood Estimation (MLE). Parameter yang di estimasi adalah

Opsar = [ﬁo B1 - Bp p]T. Adapun langkah — langkah dari penaksiran parameter
PSAR adalah sebagai berikut:
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1. Menyusun fungsi likelihood untuk regresi Poisson Spatial Autoregressive.

2.

n
L(uPSAR)= np(yillufs‘AR)
i=1

_ ﬁ ((‘ufSAR)yi exp(_uiPSAR)>
i

i=1
_ T (hP*47) " exp(=pf*4) (2.24)
n .1
i=1Yi:

Menyusun fungsi /n likelihood.

n n n
{(HfSAR) — Z Vi ln(‘ufSAR) _ z ’ufSAR _ Z ln(yl') (225)
i=1 i=1 i=1

Jika uf*4R = exp(A~'XB);, dimana (A~*Xp); adalah baris ke-i dari vektor
(A1XB) maka fungsi In likelihood yang terbentuk:

£@psar) = ) yiIn(A7XB)) — D (AXE) — D ()

L (2.26)
= ) [yi(A7'XB) — exp(A™'XB) — In(y; )]

i=1

Menurunkan fungsi /n likelihood terhadap parameter yang ditaksir, yaitu f.

Kemudian, hasil penurunan tersebut disamakan dengan nol.

d f(ep AR) -
: aﬁs )= Zb’i —exp(A7'XB);](A71 )" (2.27)

i=1

3(2(Opssr) L
% = D i~ exp(47XB) (A WA Xp)

i=1

Solusi yang didapatkan dari persamaan turunan pertama /n likelihood tidak

memiliki bentuk closed-form, sehingga estimasi parameter harus dilakukan melalui

prosedur iterasi numerik. Metode iterasi numerik yang digunakan dalam penelitian

ini adalah BHHH. Metode BHHH dipilih karena metode ini memanfaatkan

informasi dari gradien turunan pertama untuk mengaproksimasi matriks Hessian,

sehingga menghindari turunan kedua yang kompleks. Adapun prosedur iterasi

BHHH didefinisikan melalui langkah-langkah berikut.
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Definisi:

Misalkan Opgar = [,80 B1 - Bp p]T adalah vektor parameter yang akan di estimasi,

2;(Bps4r) adalah In likelihood untuk observasi ke-i, dimana i = 1, 2, ..., n. Fungsi
In likelihood total adalah Y7 €;(@psar)

Inisialisasi:

1.

4.

Menentukan nilai awal parameter eps g Nilai awal parameter menentukan
kecepatan tercapainya konvergensi pada proses iterasi. Idealnya nilai awal
parameter untuk model Generalized Poisson Regression adalah nilai hasil

estimasi parameter regresi Poisson.

. Menentukan toleransi konvergensi € > 0 yang mana dalam penelitian ini 1076

menjadi batas toleransi konvergensi.

. Menentukan batas maksimum iterasi (Mpyqrs) - Misalkan my,qks yang

ditetapkan adalah 1000. Ketika iterasi tidak mencapai konvergensi pada iterasi
ke-1000 maka proses iterasi akan berhenti walaupun konvergensi belum tercapai.

Menentukan set iterasi awal adalah k = 0.

Prosedur Iterasi:

Langkah 1: Menghitung vektor gradien individu untuk setiap observasi i =

1,2,..,n

@i (0(")) — afi (ePSAR)

00 K
PSAR 10psar=0pdan

Langkah 2: Menghitung penjumlahan gradien seluruh sampel.

(k) (k)
0 PSAR Z @i OPSAR

Langkah 3: Mengaproksimasi matriks Hessian menggunakan informasi vektor

gradien individu. Misalkan H*adalah aproksimasi matriks Hessian, maka

T
«( (o) E (k) (k)
H BPSAR gi BPSAR BPSAR)

Langkah 4: Memperbaharui nilai parameter menggunakan arah BHHH.

(k+1) _ (k) s=1( p(k) ()
Opsar = Opsar —H (BPSAR)g’(ePSAR)

Langkah 5: Mengevaluasi konvergensi dengan melihat kondisi berikut.
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(k+1) _ (k)
||0PSAR - OPSAR” se€

Jika iterasi BHHH belum mencapai kondisi konvergen, set k = k + 1 dan kembali

ke langkah 1. Jika kondisi konvergen telah tercapai, maka 01(,’;;? adalah estimator

dari BPSAR'

2.5.2 Pengujian Hipotesis

Pengujian hipotesis dapat dilakukan dengan menggunakan metode MLRT.
Pengujian hipotesis pada model Poisson Spatial Autoregressive dilakukan dengan
dua tahap, yaitu pengujian hipotesis secara serentak dan pengujian hipotesis secara
parsial. Untuk pengujian hipotesis secara serentak memiliki hipotesis sebagai
berikut.

Hy: By =Pa==pBp=0

H; : minimaladasatuf, # 0,k =1,2,...,p
Statistik uji yang digunakan adalah sebagai berikut:
G2 =—2In [% = —2[¢(@) - £(Q)]

Pada persamaan diatas (@) yaitu fungsi In likelihood dari himpunan
parameter di bawah Hy dan ¢ (ﬁ) yaitu fungsi In likelihood dari himpunan
parameter dibawah populasi. Himpunan parameter di bawah H, adalah w =
{Bo, P} dan himpunan parameter dibawah populasi adalah Q = {,[)’0, B1s s Bp» p}.
Bentuk fungsi likelihood dari @ yaitu:

L(®) _ ﬁ <exp(30w + 37 wiy;) " exp(Bow + X7y Wij)’j))
yi!

i=1
= exp(Bow + X1 Wij}’j)yi exp(Bow + Xi=1 Wij¥;)
?:1 yi!
(@)= Y71 [Vi(Bow + XF=1wijy;) — exp(Bow + X1 wijy;) —In(y)]  (2.28)

Kemudian bentuk fungsi likelihood dari himpunan parameter di bawah § =

~

Bo, b1, ...,,Bp yaitu:

L(@) = ﬁ (exp(x?l?)Yi exp(— eXP(X?T)’)))

yi!

i=1
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i exp(x]B)”" exp(— exp(x7B)”")
=1 Vil

£(Q) = Z yiIn(exp(xfB)) — Z exp(x7B) — Z In(y;!)
=1 i=1 i=1

n

= > i(*]B) — exp(x]B) — In(y:")] (2.29)
i=1
Dari persamaan (2.8) dan (2.9) selanjutnya diperoleh nilai G dengan bentuk sebagai
berikut:
Hy (2.30)
L(®)
=_2In [L( 5 2[t@) —¢(Q)] ~ xif
n — oo

Nilai G2 dibandingkan dengan distribusi )((de) dimana H, akan ditolak jika nilai
dari statistik G? > )((Za;d £y dengan « adalah taraf signifikan yang digunakan dan
df =n(2) —n(w) =(p+2)—-2=np.

Kemudian jika didapat keputusan tolak H, selanjutnya dilakukan pengujian
parsial terhadap parameter yang bertujuan untuk mengetahui parameter mana saja
yang berpengaruh signifikan terhadap variabel respon secara individual. Statistik
uji yang digunakan untuk uji parsial yaitu uji Wald dimana saat dibawah H, maka
Br sama dengan nol. Hipotesis dalam pengujian parsial untuk S adalah sebagai
berikut.

Hy: B =0
H:fe#0k=12 ..k ..,p
Untuk ukuran sampel yang cukup besar, penaksir 3, terdistribusi mendekati

distribusi normal dengan rata-rata f8;, dan varians 3} adalah elemen diagonal dari
—H*~"(B) yang bersesuaian dengan f. Sehingga diperoleh se (,[?k) = V’dr(ﬁk).

Statistik uji Wald di bawah H,, adalah seperti pada persamaan (2.31).

N 2
(B 2.31)
Wie = <se(ﬁk)>
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Nilai W, dibandingkan dengan distribusi )((21) dimana H, akan ditolak jika
nilai dari statistik W, > )((Za;l) dengan «a adalah taraf signifikan yang digunakan.

Kemudian untuk uji parsial parameter p hipotesis dalam pengujian parsialnya

adalah sebagai berikut.

Hy: p=0
Hi: p+0
Statistik uji didapatkan dengan uji Wald yang dapat dinyatakan sebagai berikut.
b\’ (2.32)
W, = (LA)
se(p)

Nilai W, dibandingkan dengan distribusi )((21) dimana H, akan ditolak jika

nilai dari statistik W, > )((Za;l) dengan «a adalah taraf signifikan yang digunakan.

Nilai se(p) adalah \/Var(p) dan Var(p) merupakan elemen diagonal utama dari
—H *"1(3) yang bersesuaian dengan p.

2.6 Pengujian Aspek Spasial

Efek spasial dapat dikategorikan menjadi dua, yaitu dependensi spasial dan
heterogenitas spasial. Dependensi spasial menunjukkan adanya ketergantungan
atau keterkaitan antar lokasi pengamatan, dimana nilai pengamatan di suatu lokasi
dipengaruhi oleh nilai pengamatan di lokasi lain yang letaknya berdekatan.
Kemudian, heterogenitas spasial dapat menunjukkan adanya perbedaan
karakteristik pada setiap lokasi pengamatan sehingga setiap lokasi dapat memiliki
bentuk fungsi dan parameter yang berbeda — beda. Dalam penelitian ini kita akan
fokus dengan menguji dependensi spasial yang diuji dengan menggunakan Moran’s

I dan Lagrange Multiplier (LM).

2.6.1 Uji Dependensi Spasial

Dependensi spasial dapat diketahui melalui Moran’s 1. Indeks moran’s 1
digunakan untuk menguji dependensi spasial. Jika indeks moran’s I bernilai positif
maka terdapat dependensi spasial yang positif yang artinya wilayah dengan nilai
pengamatan tinggi cenderung berdekatan dengan wilayah yang memiliki nilai
pengamatan tinggi, begitu juga wilayah dengan nilai rendah cenderung berdekatan

dengan wilayah nilai rendah. Selanjutnya, jika indeks moran’s I bernilai negatif
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maka terdapat dependensi spasial yang negatif yang artinya wilayah dengan nilai
tinggi cenderung berdekatan dengan wilayah nilai rendah, dan sebaliknya. Metode
ini tidak menguji autokorelasi pada data mentah, melainkan pada Deviance
Residuals dari model Generalized Linear Model (GLM) global.

Pendekatan ini didasarkan pada sifat teoretis bahwa deviance residuals (r; 43)
dari model GLM (seperti Poisson atau Generalized Poisson) terdistribusi secara
asimtotik normal (Z-score) ketika ukuran sampel cukup besar. Dengan demikian,
residual ini memenuhi syarat distribusi untuk dijadikan input dalam statistik
Moran's I standar. Statistik uji ini, yang dinotasikan sebagai Itpg,, didefinisikan
sebagai adaptasi dari formula Moran's I klasik dengan mensubstitusi variabel
amatan dengan deviance residuals (Zhang & Lin, 2008):

_ n (B ZE o wir (g = ) (rina — 7))

IDR - m —
So Zi=1(ri,d - rd)z

dimana I, adalah adaptasi dari Moran's I yang menggunakan residual

(2.33)

devians sebagai input, w;;+ adalah elemen pembobot spasial antara lokasi i dan
lokasi i*. Biasanya w;;» = 1 jika i dan i* bertetangga, dan 0 jika tidak (dengan
wy; = 0), 1; 4 adalah residual devians pada lokasi i, ;= 4 adalah residual devians

pada lokasi i*, 7; adalah rata-rata residual devians, dan S, = Yj; Do Wy
Residual devians dapat dinyatakan sebagai 7;4 = sign(n; — f;) |d{? dimana
sign(-) adalah fungsi tanda yang didefinisikan sebagai sign(a) = 1 jikaa > 0,
dan sign(a) = -1 jika a<0 , dff=2 [ni log (%) — (i —a) + (i —

1) log (%)] untuk y; # 0 dan d°” =~ 2[4; — log(1 + ¢f;)] untuk y; = 0.

Matriks pembobot spasial yang digunakan pada uji dependensi spasial adalah
matriks pembobot dengan pendekatan contiguity (persinggungan). Terdapat tiga
macam contiguity untuk membentuk matriks pembobot spasial, yaitu
persinggungan sisi (rook), persinggungan sudut (bishop), dan persinggungan sisi
dan sudut (queen). Elemen matriks pembobot spasial berdasarkan kriteria — kriteria
tersebut adalah:

{ 1,jika i dan i* bersinggungan
Wii'10, jika i dan i* tidak bersinggungan
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Hipotesis pengujian signifikansi untuk indeks moran’s I adalah:
Hy:1 = 0 (Tidak terdapat dependensi spasial)
H, : I # 0 (Terdapat dependensi spasial)’
dengan statistik uji:
Ipr — E(Ipg)
Zipp = —F7— (2.34)

VVar(lpg)

Adapun nilai harapan (ekspektasi) dari statistik Moran's I, dinotasikan
sebagai E(Ipg) = — ﬁ, Sementara itu, variansnya, yaitu V (1), diperoleh melalui

m[(m?-3m+3)S;—mS,+352|-b,[(m?-m)S;-2mS,+653]

(m—1)(m—2)(m-3)s% [E(Ipr)]*. Aspek ini

V(Ipr) =

bergantung pada tiga komponen utama yang didasarkan pada matriks pembobot
spasial (w). Komponen pertama, S;, adalah setengah dari jumlah total kuadrat dari

penjumlahan elemen matriks pembobot dan transposnya, atau dapat dinyatakan

n n
1 2
$1= EZ Z (Wi + w;)

i=1i*=1

sebagai:

Komponen kedua, S,, adalah jumlah dari kuadrat penjumlahan setiap baris dan

kolom matriks pembobot, yang dirumuskan sebagai

n n n 2
3 (S S
i*=1 i*=1

i=1

dan
2o Z?zl(ri,d —7g)*

) (Z?zl(ri,d - 7_”az)z)z

Tolak H, jika |Z,(hl-tung)| > Za, artinya terdapat dependensi spasial, sehingga
2

dapat dilanjutkan pemodelan regresi spasial.
a. Lagrage Multiplier (LM)
Uji Lagrange Multiplier (LM) digunakan untuk menentukan ada atau

tidaknya efek dependensi spasial, serta menentukan model spasial yang akan
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dibentuk. Pengujian hipotesis dalam uji LM salah satunya adalah model Spatial
Autoregressive Model (SAR).

H, : p = 0 (tidak ada efek dependensi spasial autoregressive pada model)
H,:p # O(terdapat efek spasial dependensi spasial autoregressive)

Statistik Uji :

(elg y)z (2.35)
()

(WXB)'M(WXB)
2

LM]_ =

Adapun nilain/ =T + , Dalam persamaan ini, komponen

T merupakan nilai trace dari perkalian matriks pembobot spasial, yang

dihitung dengan rumus T = tr[(W + W')W]. Selanjutnya, komponen s?

!

adalah varians galat yang didefinisikan sebagai s? = %, dan adapun matriks

M yang digunakan pada bagian pembilang adalah matriks proyeksi (matriks
idempoten dan simetris) yang diperoleh dari M = I — X(X'X)~1X’. Tolak H,
jika LMy > x81.1_ o

2.7 Generalized Poisson Spatial Autoregressive

Model dari bentuk umum dari model Generalized Poisson Spatial
Autoregressive didasarkan pada formulasi multiplikatif untuk menangani sifat
simultan dari interaksi spasial dan masalah pelanggaran asumsi equidispersion.
Model ini mengasumsikan bahwa nilai harapan di suatu lokasi (y;) bergantung
pada kovariat di lokasi tersebut dan pada nilai harapan di lokasi-lokasi tetangganya
(uj). Formulasi spasial multiplikatif untuk data cacah adalah sebagai berikut

(Lambert et al. 2010):

E(y:) = w; = exp(x{ B) H[E(Yj)]pWij

J*i

Karena E (yj) = u;, maka berlaku

n
p; = exp(x] B) 1_[ PV

J#i
Bentuk multiplikatif ini sulit untuk dioperasionalkan secara langsung dalam analisis

dan estimasi. Untuk memudahkan penyelesaian aljabar, model tersebut perlu
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ditransformasi ke dalam bentuk linear dengan menerapkan fungsi logaritma natural

pada kedua ruas, sehingga menghasilkan model struktural berikut:

n
In(y;) = In| exp(x{ B) Hu;"w”

Jj#i

n
In(u;) = % B + ZPWU’ In u;

j#i
Untuk generalisasi model pada seluruh lokasi observasi, persamaan di atas
diekspresikan dalam notasi matriks. Transformasi ini menghasilkan bentuk umum
dari model GPSAR:
Inu=Xp+pWinpu
Inu—pWinu =X
(I—pW)Inu=XB
Inp = (I-pW)'XB
Inu=A4"1XB
dengan A = (I — pW) dan A~! adalah matriks invers dari matriks A. Dari
penurunan di atas, diperoleh bentuk reduced form dari rata-rata kondisional untuk
model GPSAR, yaitu:
uCPSAR = exp(A~1XB) (2.36)
ui"S4R = exp(A1XB); (2.37)
Dimana u adalah vektor ekspektasi rata-rata berukuran (n X 1) dimana n
adalah jumlah total lokasi atau area observasi, p adalah parameter koefisien spasial
lag pada variabel respon, W adalah matrik pembobot berukuran (n X n) ,
(A1XpB); Baris ke-i dari vektor (A"*XB), X merupakan matriks yang memuat
nilai-nilai dari semua variabel prediktor yang berukuran (n X (p+ 1)) di mana k
adalah jumlah variabel prediktor dan kolom tambahan adalah untuk intercept, 8
adalah vektor kolom yang berisi koefisien regresi yang akan diestimasi oleh model

yang berukuran ((p + 1) x 1).
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Persamaan (2.34) merepresentasikan model SAR yang telah diadaptasi untuk
data count dengan asumsi distribusi Generalized Poisson dalam bentuk vektor dan
persamaan (2.35) merepresentasikan model SAR yang telah diadaptasi untuk data

count dengan asumsi distribusi Generalized Poisson dalam bentuk unit observasi.

2.8 Pembobot Spasial
Matriks pembobot spasial (W) diperoleh melalui informasi jarak dari

ketetanggaan (neighbourhood) atau kedekatan antara satu wilayah dengan wilayah
yang lain. Wilayah yang berdekatan cenderung akan memberikan pengaruh yang
lebih besar dibandingkan wilayah yang lebih jauh jaraknya, hal ini merupakan
hukum pertama geografi yang dinyatakan oleh Tobler (Anselin, 1988). Terdapat
beberapa metode yang dapat digunakan dalam mendefinisikan hubungan
persinggungan (contiguity) antar wilayah.

1. Rook Contiguity (persinggungan sisi); mendefinisikan w;; = 1 untuk wilayah
yang bersisian (common side) dengan wilayah yang menjadi perhatian, w;; =
0 untuk wilayah lainnya.

2. Bhisop Contiguity (persinggungan sudut); mendefinisikan w;; = 1 untuk
wilayah yang titik sudutnya (common vertex) bertemu dengan sudut wilayah
yang menjadi perhatian, w;; = 0 untuk wilayah lainnya.

3. Queen Contiguity (persinggungan sisi-sudut); mendefinisikan w;; = 1 untuk
wilayah yang bersisian (common side) atau titik sudutnya (common vertex)
bertemu dengan wilayah yang menjadi perhatian, w;; = 0 untuk wilayah
lainnya.

Dari berbagai macam metode dalam pembobotan, pembobotan gueen

contiguity merupakan pembobotan yang lebih kompleks atau lengkap. Dengan
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mempertimbangkan karakteristik antar wilayah desa/kelurahan kabupaten Tuban
yang tidak simetris maka penelitian ini digunakan pembobotan queen contiguity.
Hal ini karena bentuk dari tiap daerah cocok dengan mekanisme pembobotan gueen

contiguity.

2.9 Kriteria Pemilihan Model Terbaik

Dalam pemilihan model regresi terbaik, akan digunakan AICc yang
mempertimbangkan ukuran sampel dengan meningkatkan penalty relative untuk
model yang kompleks dengan ukuran data yang kecil. Formula dari AICc adalah
sebagai berikut (Burnham & Anderson, 2004):

2p(p+ 1)

2.38
n—p—1 (2.38)

AlICc = —2log (L(@)) +2p +

dimana p adalah jumlah parameter dan n adalah jumlah observasi. Model terbaik

adalah model dengan nilai AICc terkecil (Akaike, 1998)

2.10 Pneumonia Pada Balita

Studi kasus dalam penelitian ini adalah kasus pneumonia pada balita. Oleh
karena itu, pada subab ini akan dijelaskan tentang gambaran umum pneumonia pada
balita dilanjutkan mengenai faktor-faktor yang diduga mempengaruhi kasus

pneumonia pada balita.

2.10.1 Gambaran Umum Pneumonia Pada Balita

Balita dapat diartikan sebagai anak usia di bawah usia lima tahun. Periode ini
merupakan periode penting dalam perkembangan dan pertumbuan karena dapat
menentukan keberhasilan pertumbuhan dan perkembangan di periode selanjutnya.
Oleh karena itu, penyakit-penyakit yang diderita balita pada masa ini dapat menjadi
penghambat dalam pertumbuhan dan perkembangan.

Pneumonia merupakan penyakit menular berupa peradangan pada daerah
saluran pernapasan bagian bawah yaitu paru-paru. Pneumonia disebabkan oleh
beberapa agen infeksi seperti virus, bakteri dan jamur. Agen infeksi pneumonia
yang paling umum adalah bakteri Streptrococcus pneumoniae, Haemophilus

influenzae tipe b, dan virus pernapasan syncytial (WHO, 2022).
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Gejala pneumonia pada anak diawali dengan infeksi saluran pernapasan atas
(hidung dan tenggorokan). Selain itu, pneumonia pada anak juga ditandai dengan
gejala diare apabila penyebabnya adalah bakteri (Tim Medis Siloam Hospitals,
2024).

2.10.2 Faktor-Faktor yang Diduga Memengaruhi Kasus Pnomonia Pada
Balita

Pneumonia lebih sering terjadi pada balita. Hal ini dikarenakan sistem
kekebalan tubuh pada balita masih lemah. Kerangka berpikir untuk menganalisis
faktor-faktor yang diduga memengaruhi kasus pneumonia dari the Epidemiologic
Triangle through infectious disease (Gordon, 1950)) seperti Gambar 2.1.

Dalam menentukan faktor-faktor yang mempengaruhi penyakit dilakukan
pembagian menjadi 3 bagian, yaitu berdasarkan host, agent dan environment.
Faktor host merupakan faktor-faktor dalam diri manusia yang mempengaruhi
timbulnya penyakit. Faktor agent adalah suatu substansi tertentu yang kehadirannya
dapat menimbulkan penyakit. Terakhir, faktor environment atau lingkungan yaitu
faktor ekstrinsik yang menunjang terjadinya suatu penyakit. Faktor lingkungan
mempengaruhi penularan, penyebaran dan perkembangan suatu agent penyebab

penyakit. Penelitian ini hanya berfokus pada faktor host dan environment.

AGENT
. HOST _  Bakteri LINGKUNGAN

- Gizi ~ Virus - Kepadatan Penduduk
- Suplememn vitamin - Cakupan Pelayanan

A - Rumah tangga berPHBS
- Berat Badan Lahir

Rendah
- Imunisasi campak
- ASIEksklusif PNEUMONIA

Gambar 2.1 Penyebab Kasus Pneumonia pada Balita

Penelitian terdahulu terkait metode analisis dan variabel penelitian

ditunjukkan pada Tabel 2.1.
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Tabel 2.1 Penelitian tentang Pneumonia pada Balita

No. Penulis
Studi Kasus/ Metode Variabel yang signifikan
(Tahun)
1. | Wutun., Risk Factors of Pneumonia | 1. Pemberian ASI Eksklusif
in Children under Five in .
dick, 2020 Lewoleba Hospital, East 2. Riwayat Asma
Nusa Tenggara, Indonesia 3. Pengetahuan Ibu tentang
penanggulangan
pneumonia
4. Riwayat anggota keluarga
yang merokok
2. | Saputri, Pemodelan Faktor-Faktor _
_ 1. Persentase pemberian
2022 yang Mempengaruhi Kasus o
) o vitamin A
Pneumonia pada Balita di . .
o 2. Persentase perilaku hidup
Provinsi Jawa Barat dengan )
bersih dan sehat
Metode GWGPR
3. | Kurnia,, Analysis of Factors Affecting | 1. Berat badan lahir rendah
dkk., 2023 Penumonia in Toodlers 2. Status imunisasi dasar
Based on Theory lengkap
Epidemiology Triad 3. Pemberian ASI Eksklusif
4. Status nutrisi
5. Jarak dari rumah
kepabrik/jalan besar
5. Paparan Asap Rokok
4. | Fachrunisah, | Pemodelan Pneumonia pada | Variabel Pneumonia:
2024 Balita di Kabupaten Tuban 1. Persentase ASI eksklusif

Menggunakan Bivariate
Spatial Autoregressive

Models

2. Persentasi imunisasi
dasar lengkap

Variabel Diare

1. Persentasi imunisasi
dasar lengkap

2. Persentase air bersih
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Referensi penelitian terdahulu terkait faktor-faktor yang diduga
berpengaruh terhadap kasus pneumonia pada balita telah banyak yang sesuai
dengan kerangka berpikir the Epidemiologic Triangle. Dari host, agent dan
environment, penelitian terdahulu banyak terfokus pada faktor host dan
environment. Faktor host terdiri dari riwayat asma, status nutrisi, berat badan lahir
rendah, pemberian imunasi dasar lengkap, pemberian ASI Eksklusif, Pemberian
Vitamin A, Pemberian Vaksin A dan D. Faktor environment dari penelitian
terdahulu terdiri dari kepadatan penduduk, rumah tangga berperilaku bersih dan
sehat, pengetahuan ibu, persentase rumah tangga dengan akses jamban sechat,
adanya riwayat anggota keluarga yang merokok, bahkan jarak dari rumah ke jalan
besar.

Berdasarkan ketersediaan data dan pertimbangan unit analisis yang berupa
desa/kelurahan maka variabel-variabel penelitian yang akan dimasukan dalam

model GPSAR ditunjukkan pada Gambar 2.2.

Intervensi Nutrisi
Persentase bayi yang mendapat ASI Eksklusif

Intervensi Nutrisi
Persentase bayi yang mendapat Vitamin A

Pengetahuan Ibu Jumlah Kasus
Persentase Ibu Hamil yang mengikuti kelas ibu Pneumonia pada Balita

hamil

Perilaku Sehat

Persentase rumah tangga cakupan air bersih

Aspek Nutrisi dari Vaksin:

Persentase balita yang mendapat imunisasi campak

Gambar 2.2 Kerangka Konsep Penelitian

2.11 Hasil Penelitian Terdahulu
Adapun untuk menunjang penelitian yang akan dilakukan maka diperoleh

beberapa penelitian yang sesuai dan akan menjadi dasar acuan. Berangkat dari

35



penelitian tersebut perlu dikembangkan pada metode baru untuk memenubhi syarat

kebaruan. Berikut hasil studi penelitian terdahulu pada Tabel 2.2.

Tabel 2.2 Pemetaan Hasil Penelitian Terdahulu

No. | Penulis dan Tahun Judul Metode Hasil

1. | Lee,K. L., & Bell, | 4 Spatial Model hirarkis Mengembangkan model

D. R. (2009) Negative Bayesian yang yang dapat memisahkan efek
Binomial memperluas regresi pada level yang berbeda dan
Regression of Binomial Negatif menangani autokorelasi
Individual-level | standar untuk spasial. Menunjukkan bahwa
Count Data with | memasukkan kovariat | penggunaan kovariat tingkat
Regional and tingkat individu dan wilayah dalam model NBR
Person-Specific | wilayah, serta standar dapat menghasilkan
Covariates autokorelasi spasial koefisien yang bias.

yang tidak teramati.

2. Sellner, R., Fischer, | 4 Spatial Model SAR Poisson Estimator 2NLS  secara
M. M., & Koch, M. | Autoregressive yang diestimasi efektif mengontrol masalah
(2013) Poisson Gravity | menggunakan 2-stage overdispersi atau

Model nonlinear least squares | underdispersi yang sering
(2NLS) yang muncul  akibat  adanya
heteroscedasticity- autokorelasi spasial. Model
robust. ini fleksibel untuk asumsi

distribusi Poisson maupun
Binomial Negatif.

3. | Mohebbi, M., etal. | Disease Model hirarkis Menunjukkan bahwa strategi

(2014) Mapping and Bayesian dengan pemodelan yang
Regression with | distribusi Generalized | menggunakan Generalized
Count Data in Poisson dan Binomial | Poisson ~ dan  Binomial
the Presence of | Negatif untuk Negatif dengan autokorelasi
Overdispersion | menangani spasial bekerja dengan baik
and Spatial overdispersi, dan memberikan dasar yang
Autocorrelation: | dikombinasikan dengan | kuat untuk inferensi. BMA
A Bayesian efek acak spasial efektif dalam menangani
Model (CAR) dan Bayesian ketidakpastian model.
Averaging Model Averaging
Approach (BMA).

4. | Glaser, S. (2017) A review of Tinjauan komparatif Menyoroti bahwa model
spatial model ekonometrik SAR untuk data count kurang
econometric spasial untuk data berkembang  dibandingkan
models for count | count, model untuk data kontinu
data mengklasifikasikannya | karena non-linearitas.

menjadi model Membandingkan  berbagai

observation-driven dan | upaya untuk memasukkan

parameter-driven. efek spasial, mulai dari
model auto-Poisson Besag
hingga pendekatan yang
lebih baru.

5. | N.A. Cruz J.D. Generalized Mengusulkan model Membuktikan melalui teori
Toloza-Delgado spatial GSAR untuk analisis dan simulasi bahwa model
0.0. Melo (2024) autoregressive spasial pada data non- GSAR lebih unggul (efisien,

model normal (seperti data akurat, varians  rendah)
count/binomial) dalam | dibandingkan metode SAR
kerangka GLM. yang ada , dan

mendemonstrasikan

aplikasinya pada data pemilu
riil.
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BAB III
METODOLOGI

Bab ini menyajikan alur kerja penelitian secara detail, mulai dari

pengembangan teoretis hingga implementasi empiris. Metodologi diawali dengan

penjabaran langkah-langkah untuk menaksir parameter model GPSAR yang

diusulkan. Selanjutnya, akan dipaparkan secara rinci tahapan pemodelan pada data

kasus pneumonia di Kabupaten Tuban, yang meliputi deskripsi sumber data,

pendefinisian variabel, serta serangkaian analisis data yang akan dijalankan untuk

menjawab tujuan penelitian.

3.1 Langkah-langkah Penaksir Parameter GPSAR

Penaksir parameter untuk model GPSAR diperoleh dengan mengikuti metode

yang dijabarkan di bawah ini:

1.

Menentukan model GPSAR.

Model GPSAR yang terbentuk mengikuti persamaan (2.36) atau (2.37).
Membentuk fungsi /ikelihood dari model GPSAR.

Menentukan fungsi /n-likelihood model GPSAR.

Memaksimumkan fungsi /n-likelihood model GPSAR dengan mendapatkan
turunan pertama terhadap parameter £, p, ¢ kemudian disamadengankan nol.
Jika hasil langkah ke 4 tidak closed form, maka dibutuhkan iterasi numerik
untuk mendapatkan estimasi parameternya. Salah satu prosedur iterasi numerik
yang dapat digunakan adalah iterasi Berndt Hall-Hall-Hausman (BHHH)
dengan langkah — langkah sebagai berikut:

Definisi

Misalkan 0 = [[30 B1-Bp ® p]T adalah vektor parameter yang akan di
estimasi, £;(@) adalah [n likelihood untuk observasi ke-i, dimana i =
1,2, ...,n. Fungsi In likelihood total adalah Y1 £;(0)

Inisialisasi:

1. Menentukan nilai awal parameter 8(®). Idealnya nilai awal parameter untuk

model regresi Poisson adalah 0 untuk semua parameter.
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2. Menentukan toleransi konvergensi € > 0 yang mana dalam penelitian ini
107% menjadi batas toleransi konvergensi.

3. Menentukan batas maksimum iterasi (Mqxs). Misalkan M, ., yang
ditetapkan adalah 1000. Ketika iterasi tidak mencapai konvergensi pada
iterasi ke-1000 maka proses iterasi akan berhenti walaupun konvergensi
belum tercapai.

4. Menentukan set iterasi awal adalah k = 0.

Prosedur Iterasi:
Langkah 1: Menghitung vektor gradien individu untuk setiap observasi i =
12,..,n.

d¢,(0)
g:(6%)) = 30

9=0"

Langkah 2: Menghitung penjumlahan gradien seluruh sampel.

g(81) = Z 3:(6%)

Langkah 3: Mengaproksimasi matriks Hessian menggunakan informasi
vektor gradien individu. Misalkan H* adalah aproksimasi matriks Hessian,

maka

n
H(8®) = — z 3:(0%) g, (60)"
i=1

Langkah 4: Memperbaharui nilai parameter menggunakan arah BHHH.
e+ — gk) _ H*‘l(g(k))g(g(k))
Langkah 5: Mengevaluasi konvergensi dengan melihat kondisi berikut.
l9%+D — ]| <
Jika belum konvergen, set k = k + 1 dan kembali ke langkah 1. Jika kondisi
konvergen telah tercapai, maka 8%+ adalah estimator dari 8.
Setelah mendapatkan penaksir parameter maka selanjutnya adalah
mendapatkan pengujian hipotesis parameter model GPSAR dilakukan secara

serentak dan secara parsial.
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3.2 Langkah-langkah Pemodelan Kasus Pneumonia pada Balita

Pada subbab ini, dijelaskan tentang sumber data jumlah kasus pneumonia
pada balita, serta variabel dan struktur data yang digunakan dalam penelitian ini
yang digunakan untuk melakukan pemodelan jumlah kasus pneumonia pada balita.
Selanjutnya, akan dijelaskan mengenai langkah-langkah dalam pemodelan jumlah

kasus pneumonia pada balita.

3.2.1 Sumber Data

Data yang digunakan dalam penelitian ini merupakan data sekunder yang
diperoleh dari Pemerintah Kabupaten Tuban dan pusat kajian Potensi Daerah dan
Pemberdayaan Masyarakat (PDPM) ITS. Unit observasi dalam penelitian ini adalah
311 desa dan 17 kelurahan. Data yang digunakan merupakan data tahun 2023.

Adapun peta Kabupaten Tuban tergambar pada Gambar 3.1.

nreE nrsceE nrseE

Peta Administrasi Tuban
Berdasarkan Desa

N

!

| centimeter = 4 kilometers

s

0 32565 13 19,5 26

Kilometer

=

A 1
[y = ¥ s=
B S e ;
A Tan = ay of == K

s

Sumber Peta :
Batas Administrasi BPS

3.2.2 Spesifikasi Model, Variabel dan Struktur Data Penelitian

Model yang digunakan untuk menganalisis faktor-faktor yang berpengaruh
terhadap jumlah kasus pneumonia pada balita adalah GPSAR. Spesifikasi fungsi
link yang akan digunakan dalam penelitian ini adalah sama seperti pada persamaan
2.37 namun akan ditambahkan variabel eksposur sebagai berikut.

uiTAR = q; exp(AT'XB); (3.1

39



dengan A = (I — pW) dan A1 adalah matriks invers dari matriks 4, g; adalah

variabel eksposur yaitu jumlah balita.

Variabel yang digunakan dalam penelitian ini terdiri dari satu variabel respon

(Y) dan lima variabel prediktor (X). Definisi operasional dan skala pengukuran

untuk setiap variabel disajikan secara rinci pada Tabel 3.1.

Tabel 3.1 Variabel Penelitian

No.  Simbol Variabel Skala
Pengukuran
1. Y Jumlah kasus pneumonia pada balita Rasio
2. X, Persentase bayi yang mendapatkan ASI Eksklusif Rasio
3. X, Persentase balita yang mendapatkan vitamin A Rasio
4, X3 Persentase ibu hamil yang mengikuti kelas ibu hamil Rasio
5. X, Persentase rumah tangga dengan cakupan air bersih Rasio
6. Xs Persentase balita yang mendapatkan Imunisasi Campak Rasio

Definisi operasional dari variabel penelitian yang digunakan adalah sebagai

berikut:

1.

Jumlah kasus pneumonia pada balita adalah jumlah balita yang menderita
pneumonia (pneumonia).

Persentase bayi yang mendapatkan ASI eksklusif adalah jumlah bayi kurang
dari 6 bulan yang mendapatkan ASI tanpa menambahkan dan/atau mengganti
dengan makanan atau minuman lain kecuali obat, vitamin dan mineral
dibandingkan dengan jumlah bayi lahir hidup dikalikan 100 persen.
Persentase balita yang mendapatkan imunisasi campak adalah perbandingan
jumlah balita yang mendapatkan imunisasi campak dengan jumlah balita
dikalikan 100 persen.

Persentase balita yang mendapatkan vitamin A adalah perbandingan jumlah
balita yang mendapatkan vitamin A dengan jumlah balita tertimbang dikalikan
100 persen.

Persentase ibu hamil yang mengikuti kelas ibu hamil adalah perbandingan ibu
hamil yang mengikuti kelas ibu hamil di puskesmas dengan jumlah ibu hamil
dikalikan 100 persen.

Persentase rumah tangga dengan cakupan air bersih adalah perbandingan

jumlah rumah tangga dengan sumber air minumnya menggunakan air bersih
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dengan jumlah rumah tangga dikalikan 100 persen. Struktur data penelitian ini
ditunjukkan pada Tabel 3.2.
Tabel 3.2 Struktur Data GPSAR

Des/ | Variabel Variabel Prediktor Variabel
Kel | Respon X, Xy X5 Eksposure

1 Vi X114 X1k X15 q1

2 Vs Xp1 Xok X5 q2

i }’i xi‘l xi,k xi‘s qi
328 V328 X3281 | -+ | X328k | - | X3285 d328

3.2.3 Langkah-langkah Analisis Pemodelan GPSAR

Untuk mengetahui faktor-faktor yang memengaruhi kasus pneumonia pada

balita di Kabupaten Tuban, dilakukan pemodelan Generalized Poisson Spatial

Autoregressive (GPSAR) melalui beberapa langkah berikut.

1.
2.

10.

Membuat analisis deskriptif dan membuat peta tematik variabel prediktor.
Mendeteksi multikolinearitas dan mengatasi jika terjadi multikolinearitas
sampai tidak terjadi multikolinearitas.

Melakukan pengujian equidispersion dengan uji Deviance seperti pada
persamaan (2.12).

Melakukan pemodelan data kasus pneumonia pada balita dengan generalized
poisson regression jika asumsi equidispersion tidak terpenuhi.

Melakukan pembobotan spasial dengan queen contiguity.

Melakukan uji dependensi spasial dengan uji Moran’s I seperti pada persamaan
(2.34).

Memodelkan data kasus pneumonia pada balita dengan GPSAR dengan
menentukan nilai penaksir parameter dan melakukan pengujian parameter
secara serentak dan parsial.

Melakukan interpretasi model terbaik berdasarkan model dengan nilai uji AICc
terkecil (2.38).

Menarik kesimpulan dan saran.

Diagram alir dari langkah analisis data pada penelitian ini adalah ditunjukkan

pada Gambar 3.2.
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pneumonia
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Tidak

Apakah terjadi
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Tidak

Pemodelan regresi
poisson

Apakah data kasus
pneumonia memenuhi
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Ya —»

Pemodelan Poisson
Regression

Apakah ada

efek spasial?

Ya

y

Pemodelan
Generalized Poisson
Spatial
Autoregressive

Tidak

efek spasial

Ya

v

Pemodelan Poisson
spatial
Autoregressive

Gambar 3.2 Diagram Alir Analisis Data.

A

Interpretasi model
terbaik dan
kesimpulan
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BAB 1V
HASIL DAN PEMBAHASAN

Bab ini menjelaskan tentang estimasi parameter model GPSAR, statistik uji
untuk pengujian hipotesis model GPSAR dan pada bagian akhir akan dijelaskan
penerapan model GPSAR beserta pengujian hipotesis parameternya pada jumlah

kasus pneumonia pada balita di desa/kelurahan kabupaten Tuban.

4.1 Penaksiran Parameter GPSAR

Penaksiran parameter model GPSAR dilakukan dengan menggunakan
metode Maximum Likelihood Estimation (MLE). Tujuan utama dari estimasi ini
adalah memperoleh vektor parameter 8 = [BT ¢ p]7 yang memaksimumkan
fungsi likelihood. Berbeda dengan regresi linear klasik, fungsi /n-likelihood pada
model GPSAR bersifat non-linear dan kompleks, sehingga solusi analitik bentuk
tertutup (closed-form solution) tidak dapat diperoleh. Oleh karena itu, proses
optimasi dilakukan menggunakan pendekatan numerik iteratif dengan algoritma
BHHH.

Algoritma BHHH dipilih karena efisiens dalam mengaproksimasi matriks
Hessian menggunakan penjumlahan outer product dari vektor gradien sehingga
menghindari komputasi turunan parsial kedua yang rumit secara analitis dan berat
secara komputasi. Selain itu, algoritma ini menjamin bahwa matriks informasi yang
diestimasi selalu bersifat semidefinit positif, yang mendukung stabilitas
konvergensi algoritma menuju nilai optimum global.

Langkah awal dalam prosedur ini adalah mendefinisikan fungsi distribusi
peluang yang mendasari model GPSAR. Berdasarkan fungsi /ink logaritmik dan
struktur dependensi spasial yang telah diuraikan pada persamaan (3.1), fungsi
massa peluang distribusi GPSAR untuk variabel respon y; didefinisikan sebagai

berikut:

* Yi i—1 *
i 1+ Vi (1 + ,
P(Y; = yilx;, W, 0) = [ al 1+ ¢y, exp (— w A+ dy.) ¢y‘)>

1+ ou; V! 1+ ¢u;

4.1)
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dengan ufFS4R = q; exp([(I, — pW)~*XB];), rata — rata dan variansi dari y;

adalah E(y;) = uf™4R dan V(y;) = w;(1 + qb,ufPSAR)Z yang merujuk pada
spesifikasi model persamaan (3.1), di mana y; merepresentasikan variabel respon
pada lokasi ke—i untuk i = 1, 2, ...,n, dan g;merupakan variabel eksposure, serta
¢ merupakan parameter dispersi yang mengontrol kondisi overdispersion atau
underdispersion pada data.

Fungsi likelihood gabungan dibangun berdasarkan asumsi bahwa kejadian
antar lokasi bersifat independen secara kondisional apabila parameter rata-rata
uCPSAR telah diketahui. Oleh karena itu, fungsi likelihood L(@) didefinisikan
sebagai perkalian dari fungsi massa peluang seluruh pengamatan y; untuk i = 1,

2, ...,n. Persamaan fungsi /ikelihood dinyatakan sebagai berikut:

n
1@ =] [Pt = nlxw,0)
i=1

n

_ A € B2 N B s . DAY RN
= 1 + puiPsaR ¥, exp 1 + pulPsar (4.2)

i=1 t

Persamaan (4.2) menunjukkan bahwa probabilitas gabungan merupakan
produk dari probabilitas marginal masing-masing lokasi. Untuk mempermudah
proses penurunan rumus fungsi tersebut ditransformasikan ke dalam bentuk /n-

likelihood.

n
£(0) = 1n(L(8)) = ) InP(Y; = yilx;, W, 6) 4.3)
i=1
Persamaan (4.2) dapat disederhanakan menjadi fungsi /n-likelihood sebagai berikut:

L SPSAR
Vi In (1 + :p,uGPSAR) + (yl - 1) ln(l + ¢yl)
i

GPSAR
— A+ Py In(y,!)
1+ ¢‘u?PSAR 3

4.4)

Estimasi parameter menggunakan algoritma BHHH mensyaratkan adanya
informasi mengenai turunan parsial pertama dari fungsi I/n-likelihood terhadap
masing-masing parameter. Informasi yang didapatkan ini kemudian disusun dalam

vektor gradien g(@). Oleh karena itu untuk mendapatkan turunan parsial pertama
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dari fungsi In-likelihood terhadap masing-masing parameter perlu dilakukan
dengan menjabarkan fungsi /n-likelihood pada persamaan (4.4) dan menerapkan
aturan rantai pada turunan fungsi /n-likelihood terhadap B dan p. Hal ini diperlukan
karena parameter 8 dan p tidak berhubungan langsung dengan fungsi /n-likelihood,
melainkan melalui perantara prediktor linear ( 7; ) yang telah mengalami
transformasi spasial dan fungsi /ink eksponensial. Sedangkan turunan parsial fungsi
In-likelihood terhadap ¢ dilakukan dengan cara biasa. Sehingga akan didapatkan

bentuk vektor gradien berikut.

06(0) _ = 90(0) QugPSAR am;|
o8 a‘uGPSAR on, 0B
Tl

9(8) = L@ 0£(8) _ N 9£(8) ouf™* am @5)

ap a‘uGPSAR am ap

04(0)
¢
dimana pfPS4R = q; exp([A=*XB];) dan 7; adalah elemen ke —i dari vektor
A71XB.

Turunan parsial fungsi /n-likelihood terhadap f dan terhadap p sama-sama

mengandung unsur turunan parsial fungsi In-likelihood terhadap uf"4R dan

GPSAR

turunan parsial y; terhadap 7; pada proses penurunannya. Sehingga perlu

dilakukan turunan parsial terlebih dahulu fungsi ln-likelihood terhadap ui"S4® dan

GPSAR

turunan parsial yu; terhadap 7;.

1. Turunan Parsial Fungsi In-likelihood terhadap uf"54R

Langkah pertama adalah menurunkan fungsi £(8) terhadap uf**4R. Untuk
mempermudah proses diferensiasi, persamaan (4.4) dipecah menjadi suku-suku
yang mengandung uf*4R dimana suku-suku yang dimaksud adalah suku pertama
dan suku ketiga. Berikut adalah langkah-langkah turunan parsial fungsi /n-

GPSAR

likelihood terhadap u; secara lengkap.

a. Suku pertama
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d Vi yi¢
n(uSPSARY _ v In(1 4 buSPSAR)] = i i
IuCPSAR [y i (.Ul ) Yi ( bu; )] UGPSAR ~ 1 4 GPSAR

disamakan penyebutnya menjadi seperti berikut.

vi vy ouT) - yiguftR
HLGPSAR 1+ d).uiGPSAR ‘Lll-GPSAR(l + ¢‘Lll-GPSAR)
_ Yi
,LliGPSAR(l + (;b,uiGPSAR)

b. Suku ketiga
Bentuk dari suku ketiga merupakan bentuk fungsi rasional dimana kita dapat

menggunakan aturan turunan pembagian yang dinyatakan sebagai berikut.

(E)’ _u'v—uv

v v?
Misalkan u = ufPS4R (1 + ¢y;) dan v = 1 + pufFs4R,
maka akan didapatkan bentuk

u' =1+ ¢y;) danv' = ¢

Sehingga

0 [WE" A+ gy _ (1 + gy (1 + puf™R) — ufPR(+ ¢y ()
GPSAR 1+ d)‘u_GPSAR - (1 + ¢’u.GPSAR)2

ou; :
_a+ ‘p}’i)[(l + gb‘uiGPSAR) — ¢MLGPSAR]
- (1+ ¢'u_GPSAR)2

_ 1+ ¢y,
(1 + ¢‘uiGPSAR)2

Dengan menggabungkan hasil turunan Suku 1 dan negatif dari Suku 3, diperoleh:

04(0) Vi 1+ ¢y,

QuGPSAR - Mlg;PSAR(l + ¢'u§;PSAR) - (1 + <].'>,uiGPSAR)2

l
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_ i3+ puiTR) — ufTIR (A + ¢y)
= 2
UGPSAR (1 4 pyGPSAR)

_ Yy - N — i Ry

2
‘Lll-GPSAR (1 + (p'ul(;PSAR)

L

y; — uGPSAR (4.6)
. i i :
N ‘uiGPSAR(l + d)’uiGPSAR)Z

Setelah mendapatkan bentuk turunan parsial fungsi /n-likelihood terhadap uf">4%
selanjutnya adalah mencari turunan parsial uf">4% terhadap 7.
2. Turunan Parsial uf*54R terhadap 7;
Mengingat fungsi link adalah uf*54R = exp(n;), maka
QGPSAR 9 4.7)
:7—77' = an, (exp(n) = exp(n;) = pi™>4"
L l

Setelah kita mendapatkan turunan parsial fungsi /n-likelihood terhadap
ufP54R dan turunan parsial pSPS4® terhadap 7n;, maka yang perlu dilakukan
sekarang adalah mencari secara utuh turunan parsial fungsi /n-likelihood terhadap
seluruh parameter.

1. Turunan Parsial terhadap Koefisien Regresi (f8)

Penurunan gradien terhadap parameter koefisien regresi 8 dilakukan dengan

menerapkan aturan rantai secara bertingkat seperti yang telah dijelaskan

sebelumnya. Secara matematis, hubungan fungsional tersebut dapat diuraikan

sebagai berikut:

fungsi dari  pgap fungsidari fungsi dari
£(0) ——— i > s > B

di mana prediktor linear spasial 7; didefinisikan dari persamaan struktur model:

n==U,—pW)'XB=A"'Xp

Berdasarkan alur dependensi di atas, turunan parsial fungsi In-likelihood terhadap

P diformulasikan sebagai penjumlahan dari perkalian tiga komponen turunan:
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96(0) < 0£(0) ufTSAR
0B~ LioufFR T on; 0B

Untuk komponen satu dan komponen dua telah didapatkan sebelumnya yang mana
hasilnya dinyatakan pada persamaan (4.5) dan (4.6). Sehingga selanjutnya adalah
mencari komponen ketiga. Diketahui bahwa 7; adalah elemen ke — i dari vektor
A71XB. Misalkan Z = A~1X adalah matriks prediktor yang telah terboboti secara
spasial, maka n; = z! B, di mana z! adalah baris ke — i dari matriks Z. Turunan

skalar n; terhadap vektor f adalah vektor baris tersebut yang ditransposkan:

on; _ 0 _
a—ﬁl =3B ziB) = (z))" = (A7'X)]
Selanjutnya, ketiga komponen tersebut disubstitusikan kembali ke dalam

persamaan (4.6):

T y; — uSPSAR

_ l L GPSAR -1y\T
9B =§ ( 7 | (WfR) - (A X0]
=1 ‘uiGPSAR(l_l_d)‘uiGPSAR)

GPSAR

n r -
2 l
=L+ pui™) _

(4.8)

2. Turunan Parsial terhadap Parameter Spasial (p)

Penurunan gradien terhadap parameter dependensi spasial p dilakukan
dengan menerapkan aturan rantai secara bertingkat yang telah dijelaskan
sebelumnya. Secara matematis, hubungan fungsional tersebut dapat diuraikan

sebagai berikut:

fungsi dari .G pPsAR fungsi dari} fungsi dari\

£(0) ———— u ni > p

Di mana prediktor linear spasial ) didefinisikan dari persamaan struktur model:
n=U,—pW)'XB =A"'XB

Berdasarkan alur dependensi di atas, turunan parsial terhadap p diformulasikan

sebagai penjumlahan dari perkalian tiga komponen turunan:
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96() N~ 0£(0) ufTSAR
0p — Luouftsa®  om;  9p

l

Untuk komponen satu dan komponen dua telah didapatkan sebelumnya yang mana
hasilnya dinyatakan pada persamaan (4.5) dan (4.6). Sehingga selanjutnya adalah
mencari komponen ketiga. Diketahui bahwa 1 = A~1Xf . Karena X tidak
memuat p maka penurunan hanya dilakukan pada matriks invers A~1. Dengan

demikian didapatkan turunannya dalam bentuk berikut.

on (0 _
% —<%A 1)Xﬁ
= A wa Hxp

=A"w (A71Xp)
n

=A"lwny
sehingga

an;
— = [A"wy];
Selanjutnya, ketiga komponen tersebut disubstitusikan kembali ke dalam

persamaan utama:

9¢(0) L ( Vi — pGPSAR > (75
i -1
=) 5 |- (7547 - (a1,
L [\ GPSAR (1 4 puSPSar)
.
[ “9)
- GPSAR 2[ W,
i=1 -(1 + ou; )

3. Turunan Parsial terhadap Parameter Dispersi (¢)

Berbeda dengan parameter regresi dan spasial yang berada di dalam fungsi
ufPSAR - parameter dispersi ¢ muncul secara eksplisit dalam fungsi distribusi
peluang Generalized Poisson untuk mengontrol varians data. Oleh karena itu,

penurunan gradien terhadap ¢ dilakukan langsung pada fungsi [/n-likelihood
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persamaan (4.4) tanpa melalui aturan rantai yang kompleks terhadap 7. Fungsi /n-
likelihood yang memuat komponen ¢ adalah seperti pada persamaan (4.4).
Turunan parsial pertama terhadap ¢ diperoleh dengan memecah dan menurunkan
setiap suku sebagai berikut:

Y In(uP4R) =y n(1 + puePSAF) + (y; = D In(1 + dy;)

wPt At dy)
] + pulPSAR —In(y:)
l

9
¢

Turunan Suku Logaritma Pertama

4 GPSAR GPSAR Y i‘“iG reAr
ag [yi tn(u ) = yiIn(1 + ¢y )N =- 1+ puiPSAR

Turunan Suku Logaritma Kedua

d yi(yi — 1)

—[(y; — 1) In(1 )| ==

35100 = DIn(L+ )] ==
Turunan Suku Rasio (Pecahan) Menggunakan aturan pembagian (%) == vv_zuv di
mana u = u{ AR + ufPSAR gy dan v = 1 + pufP54R, sehingga

0 [ufPR (L + gy)] _ wfPSAR (yi — ufPSAR)
0| 1+ pulPsarR | (1+ d)’uGPSAR)Z
4

4
Setelah penyederhanaan aljabar, suku ini menjadi:

Dengan menggabungkan ketiga komponen tersebut, diperoleh gradien akhir untuk

parameter dispersi:

n
0£(6) Z ~ y;uSPSAR y.(y; — 1) N pGPSAR(y, _ | GPSAR) (4.10)
- GPSAR . 2
99 i=1 1+ du; 1+ ¢y, (1 + ¢ﬂiGPSAR)

Berdasarkan turunan parsial yang telah diperoleh untuk masing-masing
parameter pada persamaan (4.7), (4.8), dan (4.9), didapati bahwa bentuk tersebut
tidak closed form. Kemudian vektor unit gradien dapat disusun komponennya

menjadi seperti berikut.
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g:(8) =

dan

0¢,(8)
00

yi(yi ~ 1) _

GPSAR
yi - ,LlL.

(1 + ¢'uiGPSAR)2
y - lLGPSAR
L 4
2
(1 +¢ ‘ul(;PSAR)

y, ML(}PSAR u

a7

[A~ W],

Lg;PSAR (yi _ ‘uiGPSAR)

| 1+ ¢y,

- 2
1 4 puiPsar (1 + (I)#?PSAR) ]

n
GPSAR
yi - ,Lli

Z (1 + ¢“GPSAR)2

i=1
n GPSAR

A ')

d
9(9)=%=

yi_'ul

A"'wn),

= (1+ pugrsan)’

GPSAR

'ulGPSAR (yl _ ‘uiGPSAR)

zn:yi(yi - 1) B B
&1+ py, 1+ pulPsar (1+ ¢‘ulGPSAR)2 ]

(4.11)

(4.12)

Estimasi parameter 8 = (B7,p,¢)T dilakukan melalui prosedur iteratif

metode BHHH untuk memaksimumkan fungsi /n-likelihood. Berikut adalah

langkah-langkah algoritma estimasi:

Definisi

Misalkan @ = [ﬁo BBy @ p]T adalah vektor parameter yang akan di estimasi,

£;(0) adalah In likelihood untuk observasi ke-i, dimana i = 1, 2, ..., n. Fungsi /n

likelihood total adalah Y7, £;(0)

Inisialisasi:

1. Menentukan nilai awal parameter 8(®. Nilai awal parameter menentukan

kecepatan tercapainya konvergensi pada proses iterasi. Idealnya nilai awal

parameter untuk model GPSAR adalah nilai estimasi parameter dari model GPR.

2. Menentukan toleransi konvergensi € > 0 yang mana dalam penelitian ini 1076

menjadi batas toleransi konvergensi.

3. Menentukan batas maksimum iterasi (M,qxs). Misalkan My, 4s yang

ditetapkan adalah 1000. Ketika iterasi tidak mencapai konvergensi pada iterasi

ke-1000 maka proses iterasi akan berhenti walaupun konvergensi belum tercapai.
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4. Menentukan set iterasi awal adalah k = 0.

Prosedur Iterasi:

Langkah 1: Pada setiap iterasi ke-k, langkah pertama adalah menghitung nilai
numerik dari gradien individu ¢;(0) untuk setiap unit observasi i = 1,2, ..., n.
Perhitungan ini dilakukan dengan mensubtitusi nilai estimasi parameter %) ke
dalam formulasi vektor gradien individu yang telah dijabarkan pada persamaan
(4.11). Komponen ini nantinya akan digunakan untuk menyusun aproksimasi
matriks Hessian.

Langkah 2: Menyusun vektor gradien 9(9(")) yang dibentuk dengan
mengagregasi seluruh hasil evaluasi gradien individu dari langkah sebelumnya.
Proses ini merujuk pada definisi vektor gradien total yang telah dinyatakan dalam
persamaan (4.12)

Langkah 3: Mengaproksimasi matriks Hessian menggunakan informasi vektor

gradien individu. Misalkan H"adalah aproksimasi matriks Hessian, maka

n
H (89 = — z 3:(0%) g, (60)"
i=1

Langkah 4: Memperbaharui nilai parameter menggunakan arah BHHH.
k+1) — gk) _ H*‘l(g(k))g,(g(k))
Langkah 5: Mengevaluasi konvergensi dengan melihat kondisi berikut.
|6%+D — g®|| < e
Jika belum konvergen, set k = k + 1 dan kembali ke langkah 1. Jika kondisi
konvergen telah tercapai, maka 8%+ ditetapkan sebagai estimator 8.

Setelah didapatkan bentuk penaksir parameter selanjutnya menentukan
pengujian hipotesis parameter model GPSAR yang dilakukan melalui dua tahap,
yaitu uji serentak menggunakan metode Maximum Likelihood Ratio Test (MLRT)
dan uji parsial menggunakan uji Wald. Uji serentak bertujuan untuk mengetahui
signifikansi pengaruh variabel prediktor terhadap variabel respon secara bersama.
Prinsip MLRT didasarkan pada perbandingan antara nilai maksimum fungsi /n-
likelihood pada ruang parameter populasi (;psar) dengan nilai maksimum pada

ruang parameter di bawah H, (w¢psar) yang tidak melibatkan variabel prediktor.
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Adapun hipotesis untuk pengujian serentak model GPSAR dapat dinyatakan
sebagai berikut
Hoy:py =P ==px ==, =0
Hy:Minimal adasatu S, # 0,k =1,2,...,p

Fungsi likelihood untuk ruang parameter Q;psag telah diuraikan pada
persamaan (4.2), di mana penaksir parameter yang memaksimalkan fungsi tersebut
Qcpsar = {ﬁ, D, ¢3} disubstitusikan untuk menghasilkan nilai maksimum fungsi /n

likelihood seperti yang dapat dinyatakan pada Persamaan (4.10).

[GPSAR R
n [yi In (l—> +;—1) ln(l + d)yi)]

i ) 1+ GaoFsaR
£(Qepsar) = €(8) = z ﬁngAR(l + dy;) |
i=1 —— -
I @13)

[ 1+ (z)‘ﬁiGPSAR

—In(y;!)

Sebaliknya, himpunan parameter di bawah Hy (wspsag) dibentuk dengan
menerapkan restriksi bahwa seluruh koefisien variabel prediktor bernilai nol.
Fungsi likelihood untuk kondisi restriksi ini dinyatakan dalam Persamaan (4.11).

uSPSAR - N\YH(1 4 ¢,y (4.14)
1+ iy " Vil

Lw

=]
R ¥ exp<_uf£SAR(1+¢yi)
1+ ¢w,LlGPSAR

Lw

n

dimana pfPS4R = exp(A;11B00)i» Aw = (I — p,W), AZ' adalah matriks
invers dari A4, dan 1 = [1 1...1]7 berukuran n X 1. Sama halnya dengan kondisi
populasi, penaksir parameter di bawah H, diperoleh dengan memaksimumkan
fungsi pada persamaan (4.11). Hasil tersebut didapatkan setelah melakukan
penaksiran parameter di bawah hipotesis nol dengan menggunakan metode MLE
dan iterasi BHHH yang dijelaskan lebih lanjut pada lampiran 3. Penaksir parameter
yang memaksimalkan fungsi tersebut @g;psag = {,L?Ow, [ qu} disubstitusikan

untuk menghasilkan nilai maksimum fungsi /n likelihood seperti yang dapat

dinyatakan pada Persamaan (4.12).
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~GPSAR
2 ) (4.15)
n [yiIn <iw—AGPSAR> + (i — DIn(1 + ¢, y:)
L(@gpsar) =  dulti,
e O
tr gz O
dimana P54k = exp(?l;llﬁo(u)i, A, =U-p,W), A, adalah matriks invers

dariA,,dan1 = [11...1]7 berukuran n x 1.

Penaksir  parameter Qgpsar = B0, ® dan  @gpsar = Bows Pur P
selanjutnya disubstitusikan pada masing-masing fungsi [likelihood menjadi
L(f)GPSAR) dan L(@¢psar) sehingga likelihood ratio test dihitung dengan rumus

pada persamaan (4.13).

_ L@cpsar) (4.16)

LR = — < LR
L(Qgpsar)

Statistik uji untuk pengujian hipotesis parameter secara serentak diperoleh pada

persamaan (4.14).

GgPSAR = —In(LR)?
GgPSAR = —2In(LR)
Gépsar — 2In L(@¢psar)
L('?\ZGPSAR)
Gépsan = —2 (¢@cpsar) — £(Qapsar) ) (4.17)

dimana #(@;psar) Daerah kritis pengujian hipotesis adalah sebagai berikut.
a =P(LR < LR;),0 < LR, <1
= P(In(LR? < LR?))
= P(InLR? < InLR?)
= P(Gépsar > )((Za,df)) (4.18)

Gépsap mengikuti distribusi chi-square untuk n — oo sehingga daerah

penolakan H, adalah GZpgap > )((Za’df) atau p — value < a dengan derajat bebas
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(df) merupakan jumlah parameter di bawah populasi dikurangi dengan jumlah
parameter di bawah H,.
af = n(ﬁGPSAR) — n(@®gpsar)
=[p+D+1+1]-[1+1+1]=p

Apabila pengujian hipotesis parameter secara serentak telah dilakukan dan
diperoleh keputusan tolak H,, maka langkah selanjutnya adalah pengujian hipotesis
parameter secara parsial. Pengujian hipotesis parameter secara parsial dalam hal ini
bertujuan untuk mengetahui variabel prediktor dan parameter struktural (p, ¢)
mana yang berpengaruh signifikan terhadap variabel respon secara individu.

Pengujian hipotesis parameter secara parsial menggunakan uji Wald karena
uji Wald mampu menguji signifikansi parameter individu dalam model yang
kompleks dan bersesuaian dengan asumsi distribusi normal. Pengujian hipotesis
secara parsial terhadap parameter p terlebih dahulu dilakukan dengan hipotesis
sebagai berikut.
Hy:p=0
Hi:p#0
Statistik uji parsial untuk n — oo disusun berdasarkan sifat asimtotik penaksir p.
Penaksir ini berdistribusi normal dengan rata-rata p, sedangkan variansnya
merupakan diagonal utama utama dari —H*_l(a) pada posisi yang bersesuaian
dengan p. Oleh karena itu, diperoleh statistik uji sebagai berikut.

p—p
se(p)

~N(0,1)
dimana se(p) merupakan standart error p yang diperoleh dari v/ Var(p) . Dengan

demikian, statistik uji Walds di bawah H, dapat dinyatakan dalam persamaan (4.19).

p\ (4.19)
A (se(ﬁ)) JRICES

Kriteria pengambilan keputusan untuk statistik uji pada persamaan (4.19) adalah

H, ditolak jika nilai W, > x{, 1.
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Selanjutnya pengujian signifikansi parameter B, secara parsial. Hipotesis

yang digunakan untuk menguji parameter S, secara parsial adalah sebagai berikut.
H 0- ﬂk =0

Hl:ﬂk 0

Statistik uji parsial untuk n — oo disusun berdasarkan sifat asimtotik penaksir Sy.
Penaksir ini berdistribusi normal dengan rata-rata [, sedangkan variansnya
merupakan diagonal utama utama dari —H*_l(g) pada posisi yang bersesuaian
dengan f;.. Oleh karena itu, diperoleh statistik uji sebagai berikut.

~

:Bk _ﬂk
Se(ﬁAk

~N(0,1)

dimana Se(Bk) merupakan standart error f yang diperoleh dari ’VE?"(TB;).

Dengan demikian, statistik uji Walds di bawah H, dapat dinyatakan dalam
persamaan (4.20).

< ,’3; 2 , (4.20)
Wp, = —A> ~X(a)

(%)

Kriteria pengambilan keputusan untuk statistik uji Wald pada persamaan (4.20)
adalah H, ditolak jila nilai Wy > )((Za,l).

Selanjutnya pengujian signifikansi parameter ¢ secara parsial. Hipotesis
yang digunakan untuk menguji parameter secara parsial adalah sebagai berikut.
Hy:p=0
Hi:¢p #0
Statistik uji parsial untuk n — oo disusun berdasarkan sifat asimtotik penaksir ¢
Penaksir ini berdistribusi normal dengan rata-rata ¢, sedangkan variansnya
merupakan diagonal utama utama dari —H*_l(a) pada posisi yang bersesuaian
dengan ¢. Oleh karena itu, diperoleh statistik uji sebagai berikut.

¢—¢

——F=~N(0,1
se(qb) o1
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dimana S€($) merupakan standart error ¢ yang diperoleh dari /V’Er((ﬁ). Dengan

demikian, statistik uji Walds di bawah H,, dapat dinyatakan dalam persamaan (4.21).

2 \? 4.21
W, = LA ~X 2 ( )
¢ se ( ¢) (a,1)
Kriteria pengambilan keputusan untuk statistik uji Wald persamaan (4.21) adalah

H, ditolak jila nilai Wy, > ¥, 1.

4.2 Penerapan Model GPSAR Terhadap Jumlah Kasus Pneumonia Pada
Balita di Kabupaten Tuban
Pada subab ini akan dijelaskan terlebih dahulu mengenai deskripsi variabel
yang digunakan dalam penelitian ini dan dilanjutkan dengan pemodelan GPSAR

pada jumlah kasus pneumonia pada balita di Kabuaten Tuban.

4.2.1 Gambaran Umum Data Penelitian
Statistik deskriptif memberikan gambaran umum mengenai karakteristik data
yang digunakan dalam penelitian, meliputi nilai rata-rata (mean), standar deviasi,
nilai minimum, dan nilai maksimum. Ringkasan statistik untuk variabel respon dan
kelima variabel prediktor disajikan pada Tabel 4.1.
Tabel 4.1 Statistik Deskriptif

Variabel Rata- Standar Minimum Maksimum
rata Deviasi
[Y1] Pneumonia 4,53 7,78 0 115
[X1] Asi Eksklusif (%) 6,54 7,23 0,00 64,10
[X2] Vitamin A (%) 110,69 71,25 0,00 813,04
[X3] Kelas Ibu Hamil (%) 63,83 57,69 0,00 500,00
[X4] Cakupan Air Bersih 97,17 6,09 61,11 100,00
[X5] Imunisasi Campak 21,86 8,61 6,56 89,74

Berdasarkan hasil analisis statistik deskriptif yang disajikan pada Tabel 4.1,
data menunjukkan bahwa rata-rata kejadian pneumonia di setiap desa/kelurahan
adalah sekitar 4 hingga 5 kasus. Namun, angka rata-rata ini tidak mencerminkan
kondisi seragam di seluruh wilayah. Rentang data menunjukkan variasi yang sangat
lebar, di mana terdapat wilayah yang mencatatkan 0 kasus, sementara wilayah lain

mencatat hingga 115 kasus. Hal ini mengindikasikan bahwa kejadian pneumonia
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terpusat secara signifikan pada lokasi-lokasi tertentu saja, tidak menyebar merata
di seluruh kabupaten.

Pada aspek pencegahan dan gizi, terdapat beberapa catatan penting. ASI
menjadi makanan tunggal terbaik karena mengandung nutrisi lengkap dan antibodi
untuk mendukung pertumbuhan, perkembangan otak, dan kekebalan tubuh bayi.
Namun menurut data yang terjadi di kabupaten Tuban tingkat partisipasi pemberian
ASI Eksklusif tercatat rendah, dengan rata-rata capaian wilayah hanya sebesar
6,54%. Angka ini menunjukkan bahwa praktik pemberian ASI eksklusif belum
menjadi budaya yang dominan di sebagian besar wilayah.

Selanjutnya data menunjukkan rata-rata capaian di atas 100% untuk
pemberian Vitamin A (110,69%) dan angka yang bervariasi luas pada Kelas Ibu
Hamil (63,83%). Nilai maksimum yang tinggi pada kedua variabel ini (mencapai
813,04% untuk Vitamin A dan 500% untuk Kelas Ibu Hamil) kemungkinan
disebabkan oleh jumlah pelayanan yang melebihi estimasi target penduduk asli,
misalnya karena adanya pelayanan bagi warga pendatang atau perbedaan basis data
sasaran. Tingginya cakupan Vitamin A di data ini adalah modal positif, artinya
secara programatik, distribusi suplemen sudah berjalan baik untuk menjaga struktur
jaringan paru balita. Kemudian variasi angka partisipasi dalam data ini menyiratkan
bahwa kesiapan ibu dalam merawat kesehatan bayi belum merata.

Secara rata-rata, 97,17% wilayah telah terlayani air bersih. Meskipun
demikian, perhatian tetap diperlukan bagi wilayah dengan cakupan terendah yang
berada di angka 61,11% untuk memastikan pemerataan akses sanitasi dasar.
Ketersediaan air bersih berkorelasi langsung dengan Higiene dan Sanitasi (PHBS).
Meskipun pneumonia adalah penyakit pernapasan, kebiasaan mencuci tangan ibu
dan pengasuh dengan air bersih terbukti efektif memutus rantai penularan virus dan
bakteri. Tingginya akses air bersih di Tuban adalah fondasi yang kuat untuk
pencegahan penyakit infeksi secara umum.

Terdapat ketimpangan yang cukup tajam dalam pelaksanaan imunisasi
campak. Rata-rata cakupan imunisasi berada di angka 21,86%. Namun,
kesenjangan antarwilayah sangat terlihat, di mana wilayah dengan kinerja terendah
hanya mencakup 6,56% sasaran, sedangkan wilayah dengan kinerja terbaik mampu

menjangkau hingga 89,74% sasaran. Campak dikenal dapat melemahkan sistem
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imun anak selama beberapa minggu hingga bulan setelah infeksi, yang sering kali
berujung pada komplikasi berat berupa pneumonia. Rendahnya cakupan imunisasi
campak di data ini (21,86%) membuka celah risiko besar yang mana banyak balita
yang tidak terlindungi dari virus campak, yang secara tidak langsung meningkatkan
risiko mereka terkena pneumonia berat sebagai komplikasi ikutan.

Selanjutnya untuk memberikan gambaran yang lebih komprehensif mengenai
lokasi sebaran data dan mengidentifikasi wilayah dengan kecenderungan nilai

ekstrem, berikut ditampilkan peta sebaran bagi setiap variabel penelitian.

Jumlah Kasus
Pneumonia

Terendah:
| Banyuurip (0)

Gambar 4.1 Sebaran Kasus Jumlah Pneumonia menurut desa/kelurahan
di Kabupaten Tuban Tahun 2023

Perbedaan jumlah kasus yang sangat mencolok antar desa/kelurahan seperti
yang disajikan pada Gambar 4.1. Di satu sisi, terdapat desa yang tidak memiliki
kasus sama sekali atau nol kasus, seperti Desa Banyuurip. Di sisi lain, terdapat desa
dengan jumlah kasus yang sangat tinggi, yaitu Desa Gedongombo dengan 115
kasus. Kondisi ini menunjukkan bahwa beban penyakit pneumonia tidak tersebar
merata di semua wilayah. Ada desa tertentu yang menanggung jumlah kasus jauh
lebih besar dibandingkan rata-rata wilayah lainnya. Dalam istilah statistik, variasi
data yang besar ini disebut sebagai overdispersi.

Selain ketimpangan jumlah kasus, peta juga memperlihatkan pola penyebaran

yang mengelompok. Desa-desa dengan kasus tinggi cenderung berkumpul di
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wilayah bagian timur Kabupaten Tuban. Wilayah yang berwarna cokelat tampak
saling berdekatan satu sama lain. Sebaliknya, wilayah bagian barat didominasi oleh
warna kuning muda yang menandakan kasus rendah. Pola ini mengindikasikan
bahwa kejadian pneumonia di satu desa berkaitan dengan kondisi di desa
tetangganya. Keterkaitan antarwilayah yang berdekatan ini merupakan tanda

adanya autokorelasi spasial.
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Gambar 4.2 Sebaran Kasus Persentase Asi Ekslusif (A), Vitamin A (B), Kelas
Ibu Hamil (C), Air Bersih (D), dan Imunisasi Campak (E) Menurut
Desa/kelurahan di Kabupaten Tuban Tahun 2023

Peta sebaran spasial di Kabupaten Tuban menyingkap sebuah dikotomi tajam
antara kemapanan infrastruktur fisik dan kerapuhan partisipasi kesehatan
masyarakat. Akses Air Bersih (Peta D) berdiri sebagai satu-satunya variabel yang
menunjukkan keberhasilan kawasan yang solid; blok warna gelap yang
mendominasi hampir seluruh peta menegaskan bahwa sanitasi dasar telah menjadi
"tulang punggung" yang kokoh dan merata, tidak lagi menjadi pembeda risiko yang
signifikan antarwilayah. Kontras yang sangat mencolok justru terlihat pada ASI
Eksklusif (Peta A), yang tampil sebagai "sisi terlemah" dalam pertahanan kesehatan

balita. Alih-alih merata, peta ASI didominasi oleh lautan warna pucat dengan
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capaian rendah yang nyaris seragam di seluruh kabupaten, menyisakan hanya
segelintir desa sebagai "pulau keberhasilan" yang terisolasi. Ini menandakan bahwa
intervensi yang menuntut perubahan perilaku budaya (menyusui) jauh lebih sulit
ditembus dibandingkan sekadar membangun instalasi pipa air.

Di sisi lain, peta perlindungan medis dan edukasi (Vitamin A, Kelas Ibu
Hamil, dan Imunisasi) memperlihatkan wajah ketimpangan yang lebih kaotis dan
sporadis. Tidak seperti pola air bersih yang stabil, sebaran Vitamin A dan partisipasi
Kelas Ibu Hamil tampak acak desa dengan capaian ekstrem tinggi bisa bersebelahan
langsung dengan desa yang nol capaiannya mencerminkan ketidakkonsistenan
performa pelayanan di tingkat mikro. Lebih mengkhawatirkan lagi adalah pola pada
Imunisasi Campak (Peta E); meskipun sekilas terlihat lebih baik dari ASI,
keberadaan "kantong-kantong" wilayah berwarna terang yang menyebar di tengah
wilayah bergambar gelap menciptakan celah kerentanan yang berbahaya. Dalam
epidemiologi, lubang-lubang kecil dalam cakupan imunisasi ini sudah cukup untuk
menjadi pintu masuk wabah yang fatal. Secara keseluruhan, lanskap spasial Tuban
menceritakan satu simpulan tegas yaitu risiko pneumonia di wilayah ini tidak lagi
dipicu oleh lingkungan fisik yang buruk, melainkan oleh kegagalan sistemik dalam
memeratakan perilaku sehat dan perlindungan biologis pada balita.

Kemudian kondisi tumpang tindih dari peta-peta ini memperlihatkan adanya
akumulasi risiko yang serius pada wilayah tertentu. Desa-desa yang konsisten
berwarna terang di berbagai peta misalnya desa yang cakupan ASI-nya rendah
sekaligus imunisasinya minim pada dasarnya membentuk zona kerentanan ganda.
Di wilayah ini, balita menghadapi ancaman dari dua arah sekaligus, yaitu
pertahanan internal tubuh yang lemah karena kurangnya asupan alamiah, dan
hilangnya perlindungan eksternal karena tidak terbentuknya kekebalan kelompok
di lingkungan mereka. Realitas spasial ini menegaskan bahwa pekerjaan rumah
Kabupaten Tuban saat ini bukan lagi sekadar pembangunan fisik, melainkan
pembangunan sosial. Oleh karena itu tantangannya adalah bagaimana memastikan
standar kesehatan di satu desa dapat "menular" ke desa tetangganya, menghapus
batas tegas antara wilayah yang sehat dan yang rentan demi keselamatan balita

secara menyeluruh.
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4.2.2 Pola Hubungan Variabel Respon dan Variabel Prediktor

Sebelum analisis lebih lanjut dilakukan, pola hubungan antara variabel respon
dan variabel prediktor perlu diketahui. Pola hubungan yang mungkin terjadi adalah
hubungan positif, Negatif, dan tidak berhubungan. Hubungan variabel respon
dengan variabel prediktor ditunjukkan dengan nilai korelasi. Nilai korelasi antara
variabel respon dengan variabel prediktor ditunjukkan pada Tabel 4.2.

Tabel 4.2 Korelasi Variabel Respon dan Variabel Prediktor

Variabel Pneumonia AsiEks Vit A Kls Ibu Hamil  Air Bersih Campak
Pneumonia 1,00 -

Asi Eks -0.04 1,00

Vit A -0,02 0,03 1,00

Kls Ibu Hamil 0,12 0,11 0,14 1,00

Air Bersih -0,06 -0,12 0,11 -0,04 1,00

Im Campak 0,03 0,41 -0,07 -0,07 -0,03 1,00

Berdasarkan Tabel 4.2, hasil uji korelasi menunjukkan nilai koefisien korelasi
antara variabel respon (Pneumonia) dengan variabel-variabel prediktor tergolong
sangat lemah (mendekati 0), baik yang bernilai positif maupun negatif. Sebagai
contoh, korelasi ASI Eksklusif tercatat sebesar -0,04 dan Vitamin A sebesar -0,02.

Lemahnya korelasi linier global ini tidak serta-merta menyimpulkan bahwa
tidak ada hubungan kausalitas. Justru, hal ini memberikan indikasi awal bahwa
hubungan antara faktor risiko dan kejadian Pneumonia bersifat kompleks dan tidak
dapat ditangkap sepenuhnya hanya dengan pendekatan linier sederhana.
Kemungkinan besar, hubungan tersebut tertutupi oleh variasi spasial (efek lokasi)
atau adanya hubungan non-linier akibat distribusi data yang overdispersed. Temuan
ini semakin memperkuat urgensi penggunaan metode multivariat yang lebih robust

seperti regresi spasial untuk menyingkap pola hubungan yang sebenarnya.

4.2.3 Deteksi Multikolinieritas
Pemeriksaan multikolinearitas dilakukan untuk memenuhi asumsi pemodelan
regresi, yaitu antar variabel prediktor harus independen. Hasil perhitungan nilai VIF
pada variabel prediktor disajikan dalam Tabel 4.3.
Tabel 4.3 Nilai VIF Masing-masing Variabel Prediktor

Variabel VIF
[X1] Asi Eksklusif (%) 1,25
[X2] Vitamin A (%) 1,04
[X3] Kelas Ibu Hamil (%) 1,05
[X4] Cakupan Air Bersih 1,03
[X5] Imunisasi Campak 1,22
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Seluruh variabel prediktor memiliki nilai VIF yang sangat rendah, berkisar
antara 1,03 hingga 1,25. Nilai ini berada jauh di bawah ambang batas kritis yang
umumnya ditetapkan dalam literatur statistik, yaitu VIF < 10 (atau ambang batas
yang lebih ketat VIF <5).

Rendahnya nilai VIF ini mengonfirmasi bahwa tidak ada lagi masalah
multikolinearitas dalam model. Dengan demikian, estimasi koefisien regresi yang
dihasilkan dapat dipastikan bersifat stabil, presisi, dan tidak bias akibat inflasi
varians, sehingga signifikansi pengaruh masing-masing variabel prediktor terhadap

kejadian Pneumonia dapat diinterpretasikan secara valid.

4.2.4 Pengujian Equidispersi

Berdasarkan hasil analisis, diperoleh nilai statistik Deviance sebesar
1.601,227 dengan derajat bebas (df) 322. Nilai ini terbukti melampaui nilai kritis
pada tabel distribusi Chi-Square (y2) untuk df ~ 320 pada taraf nyata 5%, yaitu
sebesar 362,72.

4.2.5 Pemodelan Generalized Poisson Regression

Setelah dikonfirmasi adanya overdispersi pada data, artinya pemodelan
dengan regresi Poisson tidak disarankan, sehingga pemodelan dilanjutkan
menggunakan pendekatan Generalized Poisson Regression (GPR). Tabel 4.4
menyajikan hasil estimasi parameter model GPR yang mencakup nilai koefisien,
standard error, serta nilai signifikansi statistik (p — value) untuk setiap variabel.

Tabel 4.4 Nilai Taksiran Parameter GPR

Parameter Nilai  Standar Z p-value
Taksiran  Error
[Bo] Intercept -0,6636 0,9042  -0,7339 0,4629
[¢] Dispersi -6,1351 0,0899 -68,2117 0,0001
[B1] Asi Eksklusif 0,0210 0,0084 2,5175 0,0118
[B,] Vitamin A -0,0013  0,0009  -1,4660 0,1426
[#5] Kelas Ibu Hamil 0,0011  0,0012 0,9771 0,3285
[B4] Cakupan Air Bersih ~ -0,0302  0,0091 -3,3050 0,0009
[B5] Imunisasi Campak 0,0072  0,0070 1,0301 0,3029

Setelah data selesai dimodelkan dengan model GPR maka selanjutnya adalah

menguji residual dari model untuk menguji dependensi spasial.
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4.2.6 Pembobotan Spasial dan Pengujian Dependensi Spasial

Pemodelan GPSAR untuk memodelkan jumlah kasus pneumonia pada balita
di Kabupaten Tuban menggunakan matriks pembobot spasial queen contiguity. Hal
tersebut berdasarkan bentuk wilayah Kabupaten Tuban yang tidak simetris. Matriks
pembobot spasial dibuat berdasarkan persinggungan antar desa/kelurahan yang
ditampilkan pada Lampiran 2.

Berdasarkan hasil analisis, diperoleh nilai indeks Moran’s I teramati sebesar
0,278, yang lebih besar dari nilai ekspektasinya (E[I] = —0,003). Nilai positif ini
mengindikasikan adanya pola autokorelasi spasial positif, di mana wilayah-wilayah
dengan karakteristik sisaan serupa cenderung saling berkelompok (clustering).

Signifikansi pola ini dikonfirmasi oleh nilai statistik uji Zping(8,29) >

Ztape1(1.96) dengan nilai p-value yang sangat kecil, yaitu 2,2 X 10716, Mengingat
nilai p-value jauh di bawah taraf nyata 5%, maka diputuskan untuk menolak
Hipotesis Nol yang menyatakan tidak ada autokorelasi spasial. Keberadaan
dependensi spasial yang signifikan ini menegaskan bahwa model regresi klasik
seperti Generalized Poisson Regression tidak memadai untuk memodelkan data
jumlah kasus Pneumonia di wilayah penelitian, sehingga diperlukan pendekatan
pemodelan spasial untuk menangkap efek ketergantungan antarwilayah tersebut
secara eksplisit. Untuk menentukan spesifikasi model spasial yang paling tepat
dilakukan pengujian Lagrange Multiplier (LM) sesuai dengan prosedur keputusan
Anselin (1988). Berikut adalah hasil pengujian Lagrange Multiplier yang disajikan
pada tabel 4.5.
Tabel 4.5 Pengujian Lagrange Multiplier (LM)

Uji Diagnostik Nilai df p-value Keterangan
Statistik
LM Error (SEM) 26,748 1 2,32 x1077 Signifikan
LM Lag (SAR) 29,730 1 4,97x 1078 Signifikan
Robust LM Error 3,187 1 0,074 Tidak Signifikan
Robust LM Lag 6,169 1 0,013 Signifikan
SARMA 32,918 2 7,12x 1078 Signifikan

Pada tahap awal, uji LM standar menunjukkan bahwa kedua spesifikasi, baik
LM Lag maupun LM Error, bernilai signifikan pada taraf nyata 5% (p < 0,001).
Kondisi signifikansi ganda ini mengindikasikan perlunya pemeriksaan lanjutan

menggunakan uji LM Robust untuk mengidentifikasi efek spasial yang lebih
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dominan. Berdasarkan hasil uji Robust, terlihat perbedaan yang menentukan
statistik Robust LM Lag tetap menunjukkan signifikansi statistik dengan nilai p
sebesar 0,013 (< 0,05), sedangkan statistik Robust LM Error menjadi tidak
signifikan dengan nilai p sebesar 0,074 (> 0,05).

Ketika uji Robust LM Lag signifikan sementara Robust LM Error tidak
signifikan, maka spesifikasi model yang paling sesuai untuk data ini adalah Spatial
Autoregressive (SAR). Keputusan statistik ini sejalan dengan kerangka teoritis
penyakit menular, di mana kejadian penyakit di suatu wilayah dipengaruhi secara
langsung oleh kejadian penyakit di wilayah sekitarnya, bukan sekadar oleh
kemiripan karakteristik error yang tidak teramati. Oleh karena itu, analisis
selanjutnya akan menggunakan model Generalized Poisson Spatial Autoregressive
yang mampu fleksibel terhadap asumsi equidispersion dan asumsi independen antar

tiap pengamatan secara simultan.

4.2.7 Penaksir Parameter Generalized Poisson Spatial Autoregressive

Penaksiran parameter GPSAR dilakukan menggunakan metode MLE dan
dilanjutkan dengan iterasi numerik BHHH karena tidak didapatkan bentuk yang
closed form seperti yang telah diuraikan langkah-langkahnya pada Subbab 3.3.
Setelah proses iterasi konvergen, diperoleh nilai penaksir B, ¢, dan p. Hasil
penaksiran parameter untuk model GPSAR pada data kasus ini ditunjukkan pada
Tabel 4.6.

Tabel 4.6 Nilai Taksiran Parameter GPSAR

Parameter Nilai Taksiran Standar Error Z p-value
[Bo] Intercept 6,095 x 1071 1,663 x 107! 2,692 0,0002
[B,] Asi Eksklusif —2,413 x10~° 2,307 X 1073 -0,953 0,341
[B,] Vitamin A 6,110 X 10° 1,294 x 10~* 20,085 0,932
[B5] Kelas Ibu Hamil 1,432 x 1073 4,976 x 10~* 2.757 0,004
[B.] Cakupan Air Bersih  —9.101x 1073 2,796 x 1073 -3,003 0,001
[B5] Imunisasi Campak 7,170 x 1072 2,851 x 1073 2,335 0,011
[p] Lag 9,899 x 101 1,895 x 1072 37912 2,2x10°°
[¢] Dispersi 2,991 x 101 2,392 x 1072 11442 2,2 x10716

Hasil pengujian menunjukkan bahwa parameter dependensi spasial (p)
memiliki nilai estimasi sebesar 0,989 dengan p-value < 0,001. Hal ini menunjukkan
bahwa parameter p berpengaruh signifikan terhadap model. Nilai positif pada p

mengindikasikan adanya autokorelasi spasial positif, di mana jumlah kasus pada
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suatu lokasi berhubungan lurus dengan jumlah kasus pada lokasi-lokasi
tetangganya. Selain itu, parameter dispersi (¢) memiliki nilai estimasi 0,299 dan
bernilai signifikan, yang mengonfirmasi adanya overdispersion pada data sehingga
penggunaan distribusi Generalized Poisson lebih tepat dibandingkan distribusi
Poisson standar.

Secara parsial, variabel prediktor yang berpengaruh signifikan terhadap
variabel respon pada taraf nyata 5% adalah Persentase ibu hamil yang mengikuti
kelas ibu hamil (X,), Persentase rumah tangga dengan cakupan air bersih (X5), dan
Persentase imunisasi campak (Xg).

Persamaan model GPSAR yang terbentuk berdasarkan nilai estimasi
parameter adalah sebagai berikut:

In(AfP*4R) = Inq; + 0,9899 Z w;;(In a¢7%4% —Ing;) + 0,6095 — 2,413X;;
j#i
— 6,110 X 1075X,; + 0,0014X5; — 0,0091X,; + 0,0072X<;
Dengan mengambil contoh Desa Sidomukti, model GPSAR desa Sidomukti

dengan kode nomor desa 87 dapat dinyatakan sebagai berikut.
1
In(ASPSAR) = In g, + 0,9899 gZ(ln ASPSAR _1n g )| + 0,601 — 2,41X, ¢,
j

— 6,110 X 107°X, g7 + 0,001X35, — 0,0091X, g, + 0,007 X5 g7

dengan j € {55, 56, 85,86, 88,93}.

Model GPSAR pada Desa Sidomukti di atas dapat diinterpretasikan sebagai berikut.

1. Pengaruh spasial lag terbukti menjadi faktor signifikan secara statistik. Hal ini
mengonfirmasi bahwa laju kejadian Pneumonia di Desa Sidomukti mengikuti
pola wabah di desa-desa tetangganya seperti Jamprong, Bendonglateng,
Sidohasri, Tawaran, Jombok, dan Karangtengah. Secara riil, dampaknya adalah
jika rata-rata risiko di desa tetangga mengalami kenaikan sebesar 0,10 satuan,
kasus di Sidomukti diproyeksikan turut melonjak sebesar 10,4% dengan asumsi
faktor lain tetap. Apabila akumulasi risiko gabungan dari keenam desa tetangga
meningkat satu unit, rata-rata kejadian di Sidomukti akan mengalami kenaikan

drastis hingga 17,9%. Artinya, kondisi Desa Sidomukti tidak berdiri sendiri.
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Kegagalan pengendalian wabah di desa tetangga akan secara langsung
menggagalkan upaya kesehatan di Sidomukti.

. Variabel Cakupan Kelas Ibu Hamil menunjukkan pengaruh positif yang
signifikan terhadap jumlah kasus. Interpretasi nilai estimasi tersebut
menunjukkan bahwa setiap kenaikan cakupan Kelas Ibu Hamil sebesar 1%,
estimasi rata-rata kejadian Pneumonia di Desa Sidomukti meningkat sebesar
0,14%, dengan asumsi variabel lain konstan. Meskipun efek marginalnya relatif
kecil yaitu sebesar 0,14%, signifikansi statistik ini mengindikasikan bahwa
intensitas partisipasi dalam program kesehatan berkorelasi dengan tingkat
pelaporan kasus. Hal ini kemungkinan merefleksikan fungsi deteksi dini yang
mana semakin aktif kegiatan kelas ibu hamil, semakin tinggi probabilitas kasus
Pneumonia yang teridentifikasi dan tercatat, bukan berarti kegiatan tersebut
menyebabkan penyakit.

. Variabel Cakupan Air Bersih terbukti memiliki pengaruh negatif yang signifikan
terhadap laju kejadian Pneumonia. Estimasi ini mengonfirmasi bahwa perbaikan
akses sanitasi dasar berfungsi sebagai faktor protektif yang efektif dalam
mereduksi risiko penyakit. Secara kuantitatif, setiap peningkatan tingkat
cakupan air bersih sebesar 1% di Desa Sidomukti berasosiasi dengan penurunan
estimasi rata-rata kejadian Pneumonia sebesar 0,91%. Dalam simulasi
peningkatan kapasitas layanan yang lebih luas sebesar 10%, model memprediksi
penurunan rata-rata kasus yang substansial hingga 8,7%. Temuan ini sejalan
dengan hipotesis epidemiologi lingkungan, di mana ketersediaan air bersih
secara signifikan memutus rantai transmisi patogen penyebab Pneumonia.

. Variabel Cakupan Imunisasi Campak menunjukkan asosiasi positif yang
signifikan terhadap estimasi kejadian Pneumonia. Secara kuantitatif, setiap
peningkatan cakupan imunisasi sebesar 1% berimplikasi pada kenaikan estimasi
rata-rata kasus sebesar 0,72%. Dalam simulasi peningkatan cakupan yang lebih
besar yaitu 10%, model memprediksi peningkatan angka pelaporan kasus
sebesar 7,43%.Temuan arah koefisien yang positif ini perlu diinterpretasikan
sebagai indikator kinerja surveilans, bukan hubungan kausalitas patologis.
Korelasi positif ini mengindikasikan bahwa wilayah dengan cakupan imunisasi

yang tinggi cenderung memiliki akses dan sistem pelaporan kesehatan yang
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lebih baik, sehingga kapasitas deteksi dan pencatatan kasus menjadi lebih tinggi
dibandingkan wilayah dengan cakupan layanan kesehatan yang rendah.

5. Estimasi parameter dispersi diperoleh sebesar ¢ = 0,2991 dengan tingkat
signifikansi yang tinggi (p < 0,001). Signifikansi statistik pada parameter ini
mengonfirmasi adanya fenomena overdispersi pada data, di mana variabilitas
jumlah kasus Pneumonia antar wilayah secara nyata melebihi nilai rata-ratanya,
sehingga melanggar asumsi ekidispersi yang disyaratkan oleh regresi Poisson
standar. Temuan ini memberikan justifikasi empiris yang kuat bahwa penerapan
model GPSAR adalah langkah metodologis yang tepat dibandingkan model
Poisson klasik. Pengakomodasian parameter dispersi ini krusial untuk
mengoreksi bias pada estimasi standard error, sehingga menghasilkan

kesimpulan inferensi (uji signifikansi) yang lebih valid.

4.2.8 Pemilihan Model Terbaik
Pemilihan model terbaik antara GPR dan GPSAR dilakukan dengan
membandingkan nilai AICc. Hasil perbandingan nilai AICc dan RMSE kedua
model ditunjukkan pada Tabel 4.7.
Tabel 4.7 Perbandingan nilai AICc

Model AlCc
Generalized Poisson Regression 1717,24
Generalized Poisson Spatial Autoregressive 1673,39

Berdasarkan tabel tersebut, diperoleh nilai AICc untuk model GPSAR sebesar
1673,39, nilai ini lebih kecil dibandingkan dengan nilai AICc pada model GPR
Non-Spasial sebesar 1717,24. Nilai AICc yang lebih kecil mengindikasikan bahwa
model GPSAR memiliki keseimbangan yang lebih baik antara kompleksitas model.
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BAB YV
KESIMPULAN DAN SARAN

Bab ini menjelaskan tentang kesimpulan yang dapat diambil berdasarkan

hasil dan pembahasan yang diperoleh. Beberapa saran juga disampaikan sebagai

rekomendasi untuk penelitian selanjutnya.

5.1 Kesimpulan

Berdasarkan hasil analisis dan pembahasan, diperoleh kesimpulan sebagai

berikut.

Penaksir parameter model GPSAR dilakukan dengan metode Maximum

Likelihood Estimation adalah sebagai berikut.
n o
200 Z < i >(A(_1 )X (nx( +1)))T]
- 2 nxn nx(p .
ap | (1 +¢’uiGPSAR) i
n o
94(6) z yi — pui AR
= 2
dp i _(1 + d)‘uiGPSAR)

n
9£(8) _ Z L PRy — 1) | pfPSAR (s — pfPSAR)
d¢ 1+ pusPSaR 1 + ¢y, (1+ ¢#L§;P5AR)2

Hasil penaksiran parameter model GPSAR dengan pendekatan MLE tidak

[A(_ann) W(nxn)n(nxl)]i

i=11L

closed form, sehingga didekati secara numerik dengan iterasi BHHH.

Model GPSAR menghasilkan variabel-variabel yang signifikan terhadap
jumlah kasus pneumonia pada balita di 328 desa/kelurahan di Kabupaten
Tuban Tahun 2023, antara lain persentase ibu hamil yang mengikuti kelas ibu
hamil, persentase rumah tangga dengan cakupan air bersih, dan persentase
balita yang mendapatkan imunisasi campak. Berdasarkan nilai AICc model
GPSAR memiliki nilai AICc yang lebih kecil (1673,39) daripada model
Generalized Poisson Regression (GPR) yang memiliki nilai AICc sebesar
1717,24. Hal tersebut membuktikan bahwa model GPSAR lebih baik daripada
model GPR dalam memodelkan jumlah kasus pneumonia pada balita di 328
desa/kelurahan di Kabupaten Tuban Tahun 2023. Selain itu, parameter lag

spasial (p) dan parameter dispersi (¢p) yang sangat signifikan menunjukkan
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adanya dependensi spasial yang kuat dan fenomena overdispersi pada data,

yang berhasil diakomodasi oleh model GPSAR.

5.2 Saran

Saran yang dapat diberikan untuk penelitian selanjutnya adalah sebagai

berikut.

1.

Penelitian selanjutnya sangat disarankan untuk beralih dari penggunaan data
agregat level desa ke data berbasis titik lokasi individu, yaitu menggunakan
alamat rumah pasien yang telah di-geocode. Penggunaan data titik ini
memungkinkan analisis dilakukan dengan resolusi spasial yang lebih halus
serta menghindari bias asumsi bahwa risiko penyakit seragam dalam satu
wilayah administrasi (homogeneous risk). Sebagaimana ditunjukkan oleh
Choiruddin et al. (2023), penggunaan data titik dalam analisis COVID-19
terbukti mampu mengungkap pola dispersi dan faktor risiko pada skala mikro
dengan akurasi yang lebih tinggi.

Mengingat model GPSAR yang dikembangkan saat ini masih terbatas pada
analisis cross-sectional, penelitian selanjutnya perlu memperluas cakupan
model ke ranah spasio-temporal. Pengembangan ini bertujuan untuk
menganalisis dinamika penyebaran penyakit dari tahun ke tahun, sehingga tren
perubahan pola penyakit dapat dipahami secara lebih komprehensif daripada
sekadar memodelkan data agregat spasial panel tradisional.

Berdasarkan hasil uji diagnostik Lagrange Multiplier (LM) pada penelitian ini,
terindikasi adanya dependensi spasial yang tidak hanya terjadi pada lag
variabel respon (Spatial Lag), tetapi juga berpotensi terjadi pada sisaan (Spatial
Error). Hal ini dibuktikan dengan nilai statistik uji SARMA yang signifikan
secara statistik. Oleh karena itu, penelitian selanjutnya disarankan untuk
mengembangkan model Generalized Poisson Spatial Autoregressive Moving
Average (GPSARMA). Pengembangan model ini diharapkan mampu
mengakomodasi struktur hubungan spasial yang lebih kompleks, yaitu
gabungan antara autokorelasi pada variabel dependen dan korelasi pada error

model secara bersamaan.
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4. Karena keterbatasan uji Lagrange Multiplier (LM) pada penelitian ini,

kedepannya dapat mengembangkan statistik uji yang robust untuk data count.
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Lampiran 1. Data Penelitian

LAMPIRAN

Kode | KECAMATAN | DESA v, | X X, X, X, Xs | &
1 BANCAR BANCAR 11| 43113276 | 58.82 | 100.00 | 12.07 | 116
2 BANCAR BANJARJO 41 491 99.43 | 2273 [100.00 | 22.26 | 265
3 BANCAR BOGOREJO 12143 | 89.71 | 64.52 | 100.00 | 21.43 | 84
4 BANCAR BONCONG 3| 5.08]101.12] 0.00 | 100.00 [ 30.51 | 59
5 BANCAR BULUMEDURO | 3| 0.00| 1524 0.00 | 100.00 | 18.75 | 64
111 | MERAKURAK | BOGOREJO 2 930 94.05| 62.50 [ 100.00 [ 20.93 | 43
112 | MERAKURAK | BOREHBANGLE | 5| 4.55| 17.28 [ 200.00 | 95.74 [ 22.73 | 66
113 | MERAKURAK | KAPU 0| 14.63 [ 100.00 | 31.25 | 100.00 | 22.76 | 123
114 | MERAKURAK | MANDIREJO 01043 67.72 | 45.45100.00 | 12.88 | 163
115 | MERAKURAK | PONGPONGAN 6| 227 2150 | 52.63 | 93.06 | 22.16 | 176
324 | WIDANG SIMOREJO 10 | 2.78 [ 106.01 | 116.28 | 100.00 | 16.67 | 144
325 | WIDANG SUMBEREJO 01220 [ 26552 | 35.71 | 100.00 | 13.01 | 123
326 | WIDANG TEGALREJO 2| 4.69 | 106.87 | 128.21 | 100.00 | 19.53 | 128
327 | WIDANG TEGALSARI 6| 3.28]121.48 | 121.95 | 100.00 | 14.75 | 122
328 | WIDANG WIDANG 16 | 3.18 [ 103.74 | 52.63 | 100.00 | 16.61 | 283
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Lampiran 2. Persinggungan antara 328 desa/kelurahan di Kabupaten Tuban

Kode | KECAMATAN | DESA Count | Persinggungan
1 BANCAR BANCAR 5 23 143 166 207 229
2 BANCAR BANJARJO 7 23242930229 237 302
3 BANCAR BOGOREJO 5 2924207229
4 BANCAR BONCONG 3 92330
5 BANCAR BULUJOWO 5 930265300302
111 | MERAKURAK | BOREHBANGLE | 3 236280312
112 | MERAKURAK | KAPU 5 139218 281 295 313
113 | MERAKURAK | MANDIREJO 8 22 84218233273 278 281 313
114 | MERAKURAK | PONGPONGAN 8 88 182 231 236 258 298 312 313
115 | MERAKURAK | SAMBONGGEDE | 6 84 139 225267 273 313
322 | WIDANG SIMOREJO 4 154 160 294 296
323 | WIDANG SUMBEREJO 6 58 153 154 160 171 320
324 | WIDANG TEGALREJO 3 100 251 296
325 | WIDANG TEGALSARI 6 641100 160 251 294
326 | WIDANG WIDANG 6 63241107 165 194
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Lampiran 3. Turunan fungsi likelihood di bawah H,,

Pada pengujian hipotesis pengaruh variabel prediktor, didefinisikan H, sebagai kondisi
di mana tidak terdapat pengaruh variabel prediktor terhadap variabel respon. Model yang
terbentuk di bawah H, adalah model yang hanya memuat parameter intersep Sy,

parameter dependensi spasial (p, ), dan parameter dispersi (¢,,).

1. Spesifikasi Model di Bawah H,,

GPSAR

Fungsi link yang menghubungkan rata-rata respon y;

i " dengan komponen sistematik

model tanpa kovariat didefinisikan sebagai:
n
In(uir*R) = Bow + Pu Z Wi Yj
j=1

Sehingga, nilai harapan (rata-rata) untuk observasi ke — i adalah:

n
uisS4® = exp | Bow + PZ WiY;
Jj=1

di mana w’ adalah baris ke — i dari matriks pembobot spasial W, dan y adalah vektor
variabel respon. Parameter yang akan diestimasi adalah 8, = [Bow, Pur P’ -
Fungsi log-likelihood (¥) untuk satu observasi ke — i adalah sebagai berikut:

N
T+ B

uEAR (1 + ¢y
1 + d) HGPSAR
w

lw

Yiw =i 111( ) + (i — D In(1+ ¢,y — —In(y;)

Total log-likelihood adalah

= It GPSAR GPSAR
1,0((1)) = fiw = Vi In ('ulw—> + (3’1 _ 1) ln(l + ¢wyi) _ Hiw ( ¢wyl)
i i=1

1+ ¢w‘uGPSAR 1+ ¢quPSAR

iw iw

Selanjutnya akan dicari turunan #;,,(8,,) terhadap uZ>S4R.
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L GPSAR
5 y;In (%) + (i — D In(1 + ¢o,¥:)

aeiw(ew) _ 1+ d)wl’ti(u
QuGPSAR = 5 GPSAR GPSAR (1 1 _
Hig Hi _Hiw ( Gic:g’l) ~In(y;)
1 + d)wiuia)
_ ( Vi Yide > 1+ 94y
MR 14 PR ) (1 + ¢, uGPsAR)?
_ yi(l + d)w#iGaI)DSAR) - yi(pwﬂiGaI:SAR _ 1+ d)in
wi(1+ Pouinsar) (1 + poulPsar)?®
_ Vi B 1+ ¢y,
i1+ Gk ™) (1 + ¢ ouSPsar)?

_ Vil + @) — 1 (1 + ¢y y:)
ui(1 + P, ugrsar)’

_ Vi + Vol ™ — uiy " — ui oy

2
IR (1 + @unES )

GPSAR
_ Yi — Uiy

- 2
WS (L + L)

Selanjutnya adalah estimasi parameter regresi (f,,,) dan Spasial (p,,). Akan digunakan
aturan rantai untuk melakukan penurunan terhadap kedua parameter tersebut secara

parsial dengan cara sebagai berikut.

n

0€(wgpsar) _ Z 0€(wepsar) ) aﬂiccfSAR . Miw
90 ouGPsAR oiw 06,

i=1 lw

2. Turunan parsial terhadap S, .

SAR

GP .
Diketahui pu&F54R = exp(n;,) , maka ap;;;) = exp(Mip) = uiFS4R Selanjutnya ZZ’ =
iw 1]
Dengan demikian didapatkan bentuk berikut.
a4( ) n __ GPSAR n __ . GPSAR
W:psAR _ Z ( Yi — Uiy ) (,LL-GPSAR)(l) _ Yi — Uiy
2 iw 2
A L £ (1+ o™
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3. Turunan parsial terhadap p,,.

Dengan demikian didapatkan bentuk berikut.

n n
0¢(wgpsar) _ Z < yi — uiy f ) (MGPSAR) Z Wiy
—_— = 2 iw ijJj

dp, 'uiGaI;SAR(l + ¢wuiGaI;SAR) =

i=1

n

:Z Yi — i, >4F ZW" |
S \(1+ poulEsar)” e

n
i=1 j=1

4. Turunan parsial terhadap ¢,,.

Turunan 0¢(w¢psar) terhadap ¢, dilakukan secara langsung.

9; GPSAR
. In (22 e )+ 0= D In(L + by
b, ~ P yiln 1+ ¢wMiGal)JSAR Vi n buYi
a¢w _ /’[iGaI)JSAR(]- + ¢wyi) _ ln( .l)
1+ pouiyF &

Yis SR =Dy pESR (= i)
1+ ¢wﬂiGaTSAR 1+ d)wyi (1 + ¢)wﬂf£SAR)2

i =Dy AR il O Rl )

Sl Gy L+ Puui AR (14 ¢, uSPSAR)

Sehingga didapatkan bentuk

n
0(wepsar) _ N Yii— 1)yl pf R (= SR

0, — 1+ ¢y 1+ ¢wlfliG£SAR (1 + (l)wMiGaI:SAR)Z

Solusi numerik @ = {Byu, Doy, Po} dapat diperoleh dengan menyelesaikan sistem

persamaan turunan parsial setiap parameter dengan iterasi BHHH.
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Lampiran 4. Kode R
Berikut adalah kode beserta hasilnya.

> # --- 0. PREPARASI & LIBRARY ---

> rm(list = 1s())

> if(!require(pacman)) install.packages("pacman")

> pacman::p_load(sf, readxl, janitor, dplyr, spdep, maxLik, Matrix, car, VGAM,

+ ggplot2, scales, patchwork, ggcorrplot, classInt, tidyr, ggrepel, writexl,

ved)

> # SETUP OUTPUT

> output_folder <- "C:/Users/Parsaroan Sihombing/Desktop/"

> cat("\n[SYSTEM] Output folder set to:", output_folder, "\n")

[SYSTEM] Output folder set to: C:/Users/Parsaroan Sihombing/Desktop/
> # --- LOAD DATA & CLEANING ---
> cat("\n[INIT] Memuat Data...\n")

[INIT] Memuat Data...

> # 1. Load Peta

> path_peta <- file.choose() # Pilih .shp

> peta_indonesia <- st_read(path_peta, quiet = TRUE)

> peta_tuban <- peta_indonesia %>%

+ mutate(kunci_join = paste(toupper(ADM3_EN), toupper(ADM4_EN), sep = "_")) %>%
+ dplyr::select(ADM3_EN, ADM4_EN, kunci_join, geometry)

> # 2. Load Excel

> path_excel <- file.choose() # Pilih Excel

> data_statistik <- read_excel(path_excel)

> data_siap <- clean_names(data_statistik[, 1:11])

> # Rename & Cleaning

> colnames(data_siap)[4:9] <- c("asi_eksklusif", "vit_a", "idl",

+ "kelas_ibu_hamil", "air_bersih", "1lm_campak")
> colnames(data_siap)[11] <- "jumlah_balita"

> data_siap <- data_siap %>%

+ mutate(

+ 1m_campak = as.numeric(lm_campak),

+ desa_koreksi = case_when(

+ toupper(desa) == "BANJARJIO" ~ "Banjarejo",

+ toupper(desa) == "BULU MEDURO" ~ "Bulumeduro",

+ toupper(desa) == "KEDUNGMAKAN" ~ "Kedungmakam",

+ toupper(desa) == "LAJU KIDUL" ~ "Lajo Kidul",

+ toupper(desa) == "SUGIWARAS" ~ "Sugihwaras",

+ TRUE ~ desa

+ )

+ kunci_join = paste(toupper(kecamatan), toupper(desa_koreksi), sep = "_")
+ )

> # 3. Merge & Filter

> data_gabung <- left_join(peta_tuban, data_siap, by = "kunci_join")
> vars_model <- c("pneumonia", "asi_eksklusif", "vit_a", "kelas_ibu_hamil",
+ "air_bersih", "lm_campak", "jumlah_balita")

> data_final <- data_gabung %>%

+ filter(!is.na(pneumonia) & jumlah_balita > @) %>%

+  filter(complete.cases(across(all_of(vars_model)))) %>%

+ mutate(ID_Map = row_number()) %>%

+ mutate(

+ lon = st_coordinates(st_centroid(geometry))[,1],

+ lat = st_coordinates(st_centroid(geometry))[,2]

+ )

> # Buat Bobot Spasial (Digunakan di Tahap 7 & 8)

> nb_queen <- poly2nb(data_final, queen = TRUE)

> listw_queen <- nb2listw(nb_queen, style = "W", zero.policy = TRUE)
> W_matrix <- listw2mat(listw_queen)

> data_tabular <- st_drop_geometry(data_final)

> cat(">> Data Siap. Jumlah Observasi:", nrow(data_final), "\n")

>> Data Siap. Jumlah Observasi: 328

> # =================================== ==========================
> # 1. UJI DISTRIBUSI POISSON

> #f ================== ====

> cat("\n[1] Uji Distribusi Poiss
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[1] Uji Distribusi Poisson (Chi-Square Goodness of Fit)...

> # Menggunakan library vcd

> gf _pois <- goodfit(data_final$pneumonia, type = "poisson", method = "ML")
> summary_gf <- summary(gf_pois)

Goodness-of-fit test for poisson distribution

X~2 df P(> X~2)
Likelihood Ratio 1294.265 20 5.003258e-262
> cat("--- Hasil Uji Goodness of Fit ---\n")

--- Hasil Uji Goodness of Fit ---
> print(summary_gf)

XA2 df P(> X~2)
Likelihood Ratio 1294.265 20 5.003258e-262

> p_val_dist <- summary_gf[1,3] # Ambil P-value dari matriks

> if(p_val_dist < 0.05) {

+ cat(">> KESIMPULAN: Tolak He (Data TIDAK berdistribusi Poisson). Lanjut ke GPR.\n")
+ } else {

+ cat(">> KESIMPULAN: Gagal Tolak HO (Data berdistribusi Poisson).\n")

+}

>> KESIMPULAN: Tolak He (Data TIDAK berdistribusi Poisson). Lanjut ke GPR.

> # ================================== =========================
> cat("\n[2] Statistik Deskriptif...\n")

[2] Statistik Deskriptif...
> tabel_deskriptif <- data_tabular %>%
+ dplyr::select(all_of(vars_model[1:6])) %>%
+ pivot_longer(cols = everything(), names_to = "Variabel", values_to = "Nilai") %>%
+ group_by(Variabel) %>%
+  summarise(
+ Mean = mean(Nilai), SD = sd(Nilai), Min = min(Nilai), Max = max(Nilai)
+ ) %>% mutate(across(where(is.numeric), ~round(., 2)))
> print(as.data.frame(tabel_deskriptif))
Variabel Mean SD  Min Max

1 air_bersih 97.17 6.09 61.11 100.00

2 asi_eksklusif 6.54 7.23 0.00 64.10

3 kelas_ibu_hamil 63.83 57.69 ©.00 500.00

4 Im_campak 21.86 8.61 6.56 89.74

5 pneumonia 4.53 7.78 ©.00 115.00

6 vit_a 110.69 71.25 ©.00 813.04

> write.csv(tabel_deskriptif, paste@(output_folder, "1_Tabel Deskriptif.csv"), row.names =
FALSE)

> # ================================== S========================
> # 3. UJI KORELASI

> # ================================== S========================

> cat("\n[3] Uji Korelasi Pearson...\n")

[3] Uji Korelasi Pearson...

> data_num <- data_tabular %>% dplyr::select(all_of(vars_model[1:6]))
> # Hitung Matriks Angka

> matriks_r <- cor(data_num, method = "pearson")

> matriks_p <- cor_pmat(data_num)

> # Tampilkan Tabel di Console

> cat("--- Matriks Korelasi & Signifikansi ---\n")

--- Matriks Korelasi & Signifikansi ---

> format_korelasi <- function(r, p) {

+ r_txt <- sprintf("%.3f", r)

+ bintang <- case_when(p < 90.001 ~ "**¥*" p < 9,01 ~ "¥*" p < 0.05 ~ "*¥", TRUE ~ "")
+ pasteo(r_txt, bintang)

+}
> matriks_tampil <- matrix(mapply(format_korelasi, matriks_r, matriks_p),
+ nrow=nrow(matriks_r), ncol=ncol(matriks_r),

dimnames=dimnames(matriks_r))

> matriks_tampil[upper.tri(matriks_tampil)] <-

> print(as.data.frame(matriks_tampil))
pneumonia asi_eksklusif vit_a kelas_ibu_hamil air_bersih 1m_campak

pneumonia 1.000***
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asi_eksklusif -0.044 1.000%**

vit_a -0.015 0.029 1.000%**

kelas_ibu_hamil  ©.123* 9.112*  ©0.138* 1.000%**

air_bersih -0.063 -0.124*  0.112% -0.039  1.000***
1m_campak 0.033 0.406%**  -0.065 -0.070 -0.016 1.000%**

> write.csv(matriks_tampil, paste@(output_folder, "2_Tabel Korelasi.csv"))
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cat("\n[4] Uji Multikolinearitas (VIF)...\n")

v

[4] Uji Multikolinearitas (VIF)...
> # Model OLS Dummy hanya untuk VIF
> model_ols_dummy <- lm(pneumonia ~ asi_eksklusif + vit_a + kelas_ibu_hamil + air_bersih +
1m_campak,
+ data = data_num)
> nilai_vif <- vif(model_ols_dummy)
> tabel_vif <- data.frame(Variabel = names(nilai_vif), VIF = as.numeric(nilai_vif))
> print(tabel_vif)
Variabel VIF
asi_eksklusif 1.249157
vit_a 1.040354
kelas_ibu_hamil 1.047661
air_bersih 1.033258
Im_campak 1.224585
if(any(tabel_vif$VIF > 10)) cat("[WARNING] Ada VIF > 1@!\n") else cat("[OK] Tidak ada
Multikolinearitas.\n")
[OK] Tidak ada Multikolinearitas.
> write.csv(tabel_vif, paste@(output_folder, "3_Tabel VIF.csv"), row.names = FALSE)
>

uih wWwWN R

\4

>
>
> # Ref: Hilbe (2014), Persamaan 2.12

> cat("\n[5] Uji Equidispersi (Metode Deviance Manual)...\n")

[5] Uji Equidispersi (Metode Deviance Manual)...

> # A. Fit Model Poisson (untuk mendapatkan mu_hat)

> model_pois <- glm(pneumonia ~ asi_eksklusif + vit_a + kelas_ibu_hamil + air_bersih +
1Im_campak,

+ family = poisson(), data = data_tabular, offset =
log(data_tabular$jumlah_balita))

> y_i <- data_tabular$pneumonia

mu_hat <- fitted(model_pois)

n <- nrow(data_tabular)

p <- 5 # Jumlah prediktor (asi, vit, ibu, air, campak)

# B. Hitung Deviance (D) sesuai Rumus (2.12)

# D=2 *Sigma [ y * 1n(y/mu) - (y - mu) ]

# Note: Jika y=0, limit y*1ln(y) = e.

term_1 <- ifelse(y_i == 0, 0, y_i * log(y_i / mu_hat))

term_2 <- (y_i - mu_hat)

D_hitung <- 2 * sum(term_1 - term_2)

# C. Derajat Bebas (df) =n - (p + 1)

df_model <- n - (p + 1)

# D. Nilai Kritis Chi-Square (Tabel)

alpha <- 0.05

chi_tabel <- gchisq(1l - alpha, df = df_model)

# E. Rasio Dispersi (Phi)

disp_ratio <- D_hitung / df_model

cat("--- Hasil Uji Deviance (Hilbe, 2014) ---\n")

--- Hasil Uji Deviance (Hilbe, 2014) ---

> cat(">> D Hitung (Manual) :", round(D_hitung, 4), "\n")

>> D Hitung (Manual) : 1601.227

> cat(">> Derajat Bebas (df) :", df_model, "\n")

>> Derajat Bebas (df) : 322

VvV VV VVVV VYV VYV VVVYVVYV

> cat(">> Chi-Square Tabel 1", round(chi_tabel, 4), "\n")
>> Chi-Square Tabel : 364.8474

> cat(">> Rasio (D/df) :", round(disp_ratio, 4), "\n")
>> Rasio (D/df) 1 4.9728

> # F. Keputusan Hipotesis
> if(D_hitung > chi_tabel) {
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cat("\n[KESIMPULAN] GAGAL TOLAK HO (Equidispersion Terpenuhi).\n")

+ cat("\n[KESIMPULAN] TOLAK H@.\n")

+ if(disp_ratio > 1) {

+ cat(">> Terjadi OVERDISPERSI (Rasio > 1).\n")

+ cat(">> REKOMENDASI: Wajib menggunakan GPR/GPSAR.\n")
+ } else {

+ cat(">> Terjadi UNDERDISPERSI (Rasio < 1).\n")

+ )

+ } else {

+

+

[KESIMPULAN] TOLAK He.

>> Terjadi OVERDISPERSI (Rasio > 1).

>> REKOMENDASI: Wajib menggunakan GPR/GPSAR.

> # ================================== =========================

> # ================================== =========================
> cat("\n[6] Estimasi Model GPR...\n")

[6] Estimasi Model GPR...

> model_gpr <- vglm(pneumonia ~ asi_eksklusif + vit_a + kelas_ibu_hamil + air_bersih +
1m_campak,

+ family = genpoisson2, data = data_tabular, offset =
log(data_tabular$jumlah_balita))

> coef_gpr <- coef(summary(model_gpr))

> print(coef_gpr)

Estimate Std. Error z value Pr(>|z|)
(Intercept):1 -0.663692702 0.9042569377 -0.7339647 0.4629702321
(Intercept):2 -6.135168006 ©.0899430395 -68.2117042 0.0000000000
asi_eksklusif 0.021063036 0.0083664722 2.5175529 0.0118173231
vit_a -0.001374385 0.0009374845 -1.4660355 0.1426386180
kelas_ibu_hamil ©.001146330 0.0011731891 0.9771058 0.3285167921
air_bersih -0.030273936 0.0091599445 -3.3050348 0.0009496459
Im_campak 0.007201301 0.0069906716 1.0301301 0.3029489230
> write.csv(coef_gpr, paste@(output_folder, "4 _Hasil GPR.csv"))
> # ================================== =========s=ssssssss=sss=ss
> # 7. UJI DEPENDENSI SPASIAL (Pada Residual GPR)
> # ================================== =========s=ssssssss=sss=ss
> cat("\n[7] Uji Dependensi Spasial (Moran's I pada Residual GPR)...\n")
[7] Uji Dependensi Spasial (Moran's I pada Residual GPR)...
> # Hitung Residual Deviance Manual untuk GPR
> y_obs <- data_final$pneumonia
> mu_fit <- fitted(model_gpr)
> phi_hat <- exp(coef(model_gpr, matrix = TRUE)[1, 2])
> dev_i <- numeric(length(y_obs))
> idx_pos <- y_obs > @
> # Rumus Deviance GPR
> dev_i[idx_pos] <- 2 * (y_obs[idx_pos] * log(y_obs[idx_pos]/mu_fit[idx_pos]) -
+ (y_obs[idx_pos]-mu_fit[idx_pos]) +
+ (y_obs[idx_pos]-1) *
log((y_obs[idx_pos]*(1+phi_hat))/(mu_fit[idx_pos]+phi_hat*y_obs[idx_pos])))
> # Kasus y=0
> if(any(!idx_pos)) {
+ mue <- mu_fit[!idx_pos]
+ dev_i[l!idx_pos] <- 2 * (mu@ - log(l + phi_hat * mu@))
+}
> dev_i[dev_i < @] <- ©
> resid_gpr_manual <- sign(y_obs - mu_fit) * sqrt(dev_i)
> # Uji Moran
> moran_res <- moran.test(resid_gpr_manual, listw_queen, randomisation=TRUE,

alternative="two.sided")
> print(moran_res)

Moran I test under randomisation

data: resid_gpr_manual
weights: listw_queen

Moran I statistic standard deviate = 8.2911, p-value < 2.2e-16
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alternative hypothesis: two.sided
sample estimates:

Moran I statistic Expectation Variance

0.278136667 -0.003058104 0.001150244
> # ================================== =========================
> # 8. PEMODELAN GPSAR (Estimasi BHHH)
> # ================================== =========================
> cat("\n[8] Estimasi Model GPSAR...\n")

[8] Estimasi Model GPSAR...

> # Persiapan Matriks

> X_GPSAR <- model.matrix(~ asi_eksklusif + vit_a + kelas_ibu_hamil + air_bersih +
Im_campak, data = data_final)

> y <- data_final$pneumonia

> offset_vec <- data_final$jumlah_balita

> # Fungsi LoglLik GPSAR

> logL_gpsar <- function(theta, y, X, W, offset_vec) {

n <- length(y); p <- ncol(X)

beta <- theta[l:p]; rho <- theta[p+1]; phi <- theta[p+2]
if(is.na(rho) || abs(rho) »>= ©.99) return(rep(-1el@, n))

A <- diag(n) - rho * W
eta <- tryCatch(as.vector(solve(A) %*% X %*% beta), error=function(e) NULL)
if(is.null(eta)) return(rep(-1lel@, n))

mu <- offset_vec * exp(eta)
terml <- y * log(mu/(l+phi*mu)); term2 <- (y-1)*log(l+phi*y)
term3 <- -lgamma(y+1); term4 <- -(mu*(1+phi*y))/(1+phi*mu)
term2[y==0] <- ©
res <- terml + term2 + term3 + term4
res[is.na(res)] <- -lel®
return(res)

}

# Fungsi Gradien

grad_gpsar <- function(theta, y, X, W, offset_vec) {
n <- length(y); p <- ncol(X)
beta <- theta[l:p]; rho <- theta[p+1]; phi <- theta[p+2]
A <- diag(n) - rho * W; A_inv <- tryCatch(solve(A), error=function(e) diag(n))
eta <- A_inv %*% X %*% beta; mu <- offset_vec * exp(eta)
common <- (y - mu) / (1 + phi * mu)~2

grad_beta <- as.vector(common) * (A_inv %*% X)
grad_rho <- as.vector(common) * as.vector(A_inv %*% W %*% eta)

tl <- -(y*mu)/(1+phi*mu); t2 <- (y*(y-1))/(l+phi*y); t3 <- -(mu*(y-mu))/(1+phi*mu)~2
t2[y==0] <- 0; grad_phi <- t1 + t2 + t3
return(cbind(grad_beta, grad_rho, grad_phi))
¥
# Eksekusi
start_val <- c(coef(model_pois), 0.3, 0.1)
model_gpsar <- maxLik(logLik = logL_gpsar, grad = grad_gpsar, method = "BHHH",
start = start_val, y=y, X=X_GPSAR, W=W_matrix,

2R ZE T T T T T S S S S S R A e VIRV S T T T Tk Tk T T T T i S e

offset_vec=offset_vec,

+ control=1list(iterlim=5000, tol=1e-6, printLevel=0))

> summ_gpsar <- summary(model_gpsar)

> print(summ_gpsar)

Maximum Likelihood estimation

BHHH maximisation, 38 iterations

Return code 8: successive function values within relative tolerance limit (reltol)
Log-Likelihood: -828.4704

8 free parameters

Estimates:

Estimate Std. error t value Pr(> t)
(Intercept) 0.6094878 0.1663890 3.663 0.000249 ***
asi_eksklusif -0.0024128 0.0023075 -1.046 0.295737
vit_a 0.0000611 ©0.0001294 0.472 0.636804
kelas_ibu_hamil ©0.0014320 ©.0004976 2.878 0.004004 **
air_bersih -0.0091008 ©0.0027963 -3.255 0.001136 **
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Im_campak 0.0071706 ©.0028505 2.516 0.011885 *
0.9899999 0.0189537 52.232 < 2e-16 ***
0.2990521 0.0239279 12.498 < 2e-16 ***

Signif. codes: © “***’ 9,001 “**’ 9.01 ‘*’ ©.05 ‘.°” 0.1 <’ 1
est_gpsar <- coef(summ_gpsar)

z_val <- est_gpsar[,1]/est_gpsar[,2]

p_val <- 2*pnorm(abs(z_val), lower.tail=FALSE)

tab_gpsar <- cbind(est_gpsar[,1:2], z_value=z_val, p_value=p_val)
write.csv(tab_gpsar, paste@(output_folder, "5_Hasil GPSAR.csv"))

vV V V V V V V vV Vv

cat("\n[9] Perbandingan Kebaikan Model (GPR vs GPSAR)...\n")

[9] Perbandingan Kebaikan Model (GPR vs GPSAR)...
> calc_metrik <- function(logLik, n_par, n, y, pred) {

+ aic <- 2*n_par - 2*loglLik

+ aicc <- aic + (2*n_par*(n_par+l))/(n-n_par-1)

+ rmse <- sqrt(mean((y-pred)”2))

+ return(c(AICc=aicc, RMSE=rmse))

+}

> # Metrik GPR

> m_gpr <- calc_metrik(logLik(model_gpr), length(coef(model_gpr)), length(y), vy,
fitted(model_gpr))

> # Metrik GPSAR

> if(model_gpsar$code %in% c(0,1,2,8)) {

+ cf <- coef(model_gpsar); rho_h <- cf[ncol(X_GPSAR)+1]

+ eta_h <- solve(diag(length(y)) - rho_h * W_matrix) %*% X_GPSAR %*% cf[1:ncol(X_GPSAR)]
+ mu_gpsar <- offset_vec * exp(eta_h)

+ m_gpsar <- calc_metrik(logLik(model_gpsar), length(cf), length(y), y, mu_gpsar)

+ } else { m_gpsar <- c(NA, NA) }

> tab_compare <- data.frame(Indikator=c("AICc", "RMSE"), GPR=m_gpr, GPSAR=m_gpsar)

> print(tab_compare)

Indikator GPR GPSAR
AICc AICc 1717.243627 1673.392207
RMSE RMSE 7.117935 6.406422
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