

TUGAS AKHIR - TL 141584

PENGARUH TEMPERATUR SINTERING TERHADAP SIFAT LISTRIK DAN TERMAL Zn_{1-x}Al_xO SEBAGAI KANDIDAT MATERIAL TERMOELEKTRIK

AMELTHIA RAHEL NRP. 2713 100 113

Dosen Pembimbing Rindang Fajarin, S.Si., M.Si. Dr. Widyastuti, S.Si., M.Si.

JURUSAN TEKNIK MATERIAL DAN METALURGI Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2017

TUGAS AKHIR - TL141584

PENGARUH TEMPERATUR SINTERING TERHADAP SIFAT LISTRIK DAN TERMAL Zn_{1-x}Al_xO SEBAGAI KANDIDAT MATERIAL TERMOELEKTRIK

AMELTHIA RAHEL NRP 2713 100 113

Dosen Pembimbing Rindang Fajarin, S.Si., M.Si. Dr. Widyastuti, S.Si., M.Si.

Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2017

FINAL PROJECT - TL141584

EFFECT OF SINTERING TEMPERATURE ON ELECTRICAL AND THERMAL PROPERTIES OF Zn_{1-x}Al_xO AS CANDIDATE MATERIAL FOR THERMOELECTRIC APPLICATION

AMELTHIA RAHEL NRP 2713 100 113

Dosen Pembimbing Rindang Fajarin, S.Si., M.Si. Dr. Widyastuti, S.Si., M.Si.

Materials and Metallurgical Engineering Dept. Faculty of Industrial Technology Institut Teknologi Sepuluh Nopember Surabaya 2017

PENGARUH TEMPERATUR SINTERING TERHADAP SIFAT LISTRIK DAN TERMAL Zn_{1-x}Al_xO SEBAGAI KANDIDAT MATERIAL TERMOELEKTRIK

TUGAS AKHIR

Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Bidang Studi Material Inovatif Program Studi S-1 Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri

Institut Teknologi Sepuluh Nopember

Oleh : AMELTHIA RAHEL NRP. 2713100113

Disetujui oleh Tim Penguji Tugas Akhir:

PENGARUH TEMPERATUR SINTERING TERHADAP SIFAT LISTRIK DAN TERMAL Zn_{1-x}Al_xO SEBAGAI KANDIDAT MATERIAL TERMOELEKTRIK

Nama	: Amelthia Rahel
NRP	: 2713100113
Jurusan	: Teknik Material dan Metalurgi
Pembimbing	: Rindang Fajarin, S.Si., M.Si
_	Dr. Widyastuti, S.Si., M.Si

ABSTRAK

Termoelektrik merupakan sebuah perangkat yang dapat digunakan untuk mengonversikan energi panas sisa menjadi listrik. Sifat listrik dan termal material penyusun sangat menentukan efisiensi termoelektrik. Material oksida logam seperti oksida seng (ZnO) sangat stabil pada rentang temperatur yang besar, tidak beracun, biaya murah dan ramah lingkungan, berpotensi menjadi material termoelektrik pada temperatur tinggi. Dalam penelitian ini, penulis mensintesis Zn_{0.98}Al_{0.02}O dengan metode kopresipitasi serbuk ZnO dan Al₂O₃, serta menganalisis pengaruh temperatur sintering (700, 800, 900, 950°C) terhadap sifat listrik dan termal material. Hasil eksperimen diuji dengan XRD dan SEM-EDX untuk melihat fasa, morfologi, persebaran unsur pada sampel, LCR meter untuk mengetahui sifat listrik, dan TGA untuk menganalisis sifat termal material. Dari hasil pengujian diketahui bahwa Al^{3+} berhasil didoping ke dalam kisi ZnO dan meningkatkan konduktivitas listrik. Material Zno 98Alo 02O vang disintering pada temperatur 900°C memiliki nilai konduktivitas paling tinggi $(4.53 \times 10^{-4} \text{ S/m})$ dan stabil jika beroperasi pada temperatur tinggi, sehingga dapat menjadi salah satu kandidat material termoelektrik.

Kata Kunci: Termoelektrik, ZnO, Al₂O₃, Kopresipitasi, Sintering

EFFECT OF SINTERING TEMPERATURE ON ELECTRICAL AND THERMAL PROPERTIES OF Zn_{1-x}Al_xO AS CANDIDATE MATERIAL FOR THERMOELECTRIC APPLICATION

Name	: Amelthia Rahel
NRP	: 2713100113
Department	: Material and Metallurgical Engineering
Advisor	: Rindang Fajarin, S.Si., M.Si
	Dr. Widyastuti, S.Si., M.Si

ABSTRACT

Thermoelectric is a device that converts waste heat to electricity. The efficiency of thermoelectric is determined by its thermal and electrical properties. Metal oxide material, such as zinc oxide (ZnO) is stable in air at elevated temperatures, non-toxic, low-cost, and environmentally friendly, which makes it a potential candidate for thermoelectric application. In this research, the author investigated the effect of sintering temperature (700, 800, 900, 950°C) on electrical and thermal properties of $Zn_{0.98}Al_{0.02}O$ which has been synthesized using co-precipitation method from ZnO and Al2O3 powder. The powders were characterized using XRD and SEM-EDX to observe its phase, morphology, and distribution of elements, using LCR meter to observe electrical properties and TGA to analyze thermal properties of material. As dopant, Al^{3+} is successfully entered ZnO lattice and increased its electrical conductivity. The highest value of electrical conductivity (4.53x10-4 S/m) is obtained by $Zn_{0.98}Al_{0.02}O$ which sintered at 900°C. This material is stable when operated at elevated temperature, therefore this material can be a candidate for thermoelectric application.

Key Words: Thermoelectric, ZnO, Al₂O₃, Co-precipitation, Sintering

KATA PENGANTAR

Puji syukur penulis panjatkan ke hadirat Tuhan Yang Maha Esa yang telah memberikan berkat dan rahmat-Nya, sehingga penulis dapat menyelesaikan Tugas Akhir berjudul "**Pengaruh Temperatur Sintering terhadap Sifat Listrik dan Termal Zn_{1-x}Al_xO sebagai Kandidat Material Termoelektrik**" yang menjadi salah satu syarat kelulusan mahasiswa di Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya.

Penulis juga ingin mengucapkan terima kasih kepada semua pihak yang telah memberi dukungan, dan bimbingan kepada penulis hingga Tugas Akhir ini dapat diselesaikan. Ucapan terima kasih penulis sampaikan kepada :

- 1. Kedua orang tua dan seluruh keluarga penulis yang senantiasa memberikan dukungan moril, materiil dan doa.
- 2. Ibu Rindang Fajarin, S.Si., M.Si. dan Dr. Widyastuti, S.Si., M.Si. sebagai dosen pembimbing Tugas Akhir.
- 3. Dr. Agung Purniawan, S.T, M.Eng. selaku Ketua Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya.
- 4. Ibu Dian Mughni Felicia, S.T., M.Sc. selaku dosen wali yang membimbing penulis selama menjadi mahasiswa di Jurusan Teknik Material dan Metalurgi.
- 5. Seluruh dosen Teknik Material dan Metalurgi yang telah memberikan ilmu yang dapat menjadi bekal untuk masa yang akan datang.

Penulis menyadari bahwa masih banyak kekurangan dalam penulisan Tugas Akhir ini. Oleh karena itu, penulis mengharapkan kritik dan saran yang membangun. Akhir kata, semoga tulisan ini dapat bermanfaat bagi semua.

Surabaya, Januari 2017 Penulis

DAFTAR ISI

ABSTRAK	vii
ABSTRACT	ix
KATA PENGANTAR	xi
DAFTAR ISI	xiii
DAFTAR GAMBAR	xv
DAFTAR TABEL	xix
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Perumusan Masalah	2
1.3 Batasan Penelitian	3
1.4 Tujuan Penelitian	3
1.5 Manfaat Penelitian	3
BAB II TINJAUAN PUSTAKA	5
2.1 Termoelektrik	5
2.2 Material Termoelektrik	6
2.2.1 Keramik Semikonduktor	8
2.2.2 Oksida Seng	10
2.2.3 Oksida Aluminium	13
2.2.4 Diagram Fasa ZnO-Al ₂ O ₃	16
2.3 Kopresipitasi	18
2.4 Sintering	20
2.5 Penelitian Sebelumnya	20
BAB III METODOLOGI PENELITIAN	23
3.1 Bahan Penelitian	23
3.2 Peralatan	26
3.3 Diagram Alir Penelitian	32
3.4 Prosedur Penelitian	33
3.5 Proses Pengujian	34
3.6 Rancangan Penelitian	
BAB IV ANALISIS DATA DAN PEMBAHASAN	
4.1 Sintesis Serbuk ZnO	
4.1.1 Serbuk ZnO tanpa Doping	

4.1.2 Serbuk ZnO dengan Doping Al41
4.2 Karakterisasi Hasil Sintesis43
4.2.1 Hasil Uji XRD ZnO Tanpa dan dengan Doping44
4.2.2 Hasil Uji XRD Al-doped ZnO dengan Berbagai
Temperatur Sintering47
4.2.3 Hasil Uji SEM-EDX ZnO dengan dan Tanpa Doping.50
4.2.4 Hasil Uji SEM-EDX Al-doped ZnO dengan Berbagai
Temperatur Sintering52
4.3 Hasil Uji Konduktivitas Listrik61
4.4 Hasil Uji Perilaku Termal64
BAB V KESIMPULAN DAN SARAN
5.1 Kesimpulan67
5.2 Saran
DAFTAR PUSTAKAxxi
LAMPIRAN
UCAPAN TERIMA KASIH
BIOGRAFI PENULIS

DAFTAR GAMBAR

Gambar 2.1	Eksperimen yang menunjukkan Efek Seebeck dan
Combon 22	Share hat a set of the
Gambar 2.2	Skema ketergantungan konduktivitas listrik o,
	Koefisien Seebeck α , dan Konduktivitas panas λ
G 1 22	pada konsentrasi <i>free carrier</i>
Gambar 2.3	Struktur Pita Elektron
Gambar 2.4	Efek doping pada struktur pita9
Gambar 2.5	Ketergantungan σ terhadap temperatur untuk semikonduktor ekstrinsik
Gambar 2.6	Representasi Struktur Kristal ZnO. Bola berwarna
	abu-abu dan hitam menunjukkan Zn dan O11
Gambar 2.7	Struktur α - Al ₂ O ₃ 16
Gambar 2.8	Diagram Fasa Biner ZnO-Al ₂ O ₃ 17
Gambar 3.1	Zinc Oxide
Gambar 3.2	Aluminium Oxide24
Gambar 3.3	Larutan HCl24
Gambar 3.4	Larutan NH ₄ OH25
Gambar 3.5	Aquades25
Gambar 3.6	Gelas ukur
Gambar 3.7	Gelas kimia26
Gambar 3.8	Pengaduk kaca27
Gambar 3.9	Spatula27
Gambar 3.10	Pipet
Gambar 3.11	Aluminium Foil
Gambar 3.12	Lakmus
Gambar 3.13	Analytical Balance29
Gambar 3.14	Hot Plate Magnetic Stirrer
Gambar 3.15	Horizontal Furnace
Gambar 3.16	Crucible

Gambar 3.17	Diagram Alir Penelitian33
Gambar 3.18	X-Ray Diffractometer (XRD)
Gambar 3.19	Scanning Electron Microscopy (SEM)
Gambar 3.20	LCR Meter
Gambar 3.21	Mesin DSC/TGA
Gambar 4.1	Hasil penambahan larutan HCl pada serbuk ZnO
Gambar 4.2	Hasil penambahan NH ₄ OH untuk sampel ZnO .40
Gambar 4.3	Hasil akhir ZnO setelah dipanaskan41
Gambar 4.4	Hasil penambahan larutan HCl pada serbuk ZnO dan Al ₂ O ₃
Gambar 4.5	Hasil penambahan NH ₄ OH untuk sampel Al- doped ZnO42
Gambar 4.6	Hasil akhir Al- <i>doped</i> ZnO setelah dipanaskan pada temperatur (a) 700°C (b) 800°C (c) 900°C dan (d) 950°C43

Gambar 4.7	Perbandingan Hasil Uji XRD ZnO 0 dan 2 at% Al
Gambar 4.8	Perbandingan Hasil Uji XRD Al-doped ZnO
	dengan Temperatur Sintering 700, 800, 900, dan
	950°C
Gambar 4.9	Hasil Uji SEM ZnO (Perbesaran 15000x)51
Gambar 4.10	Hasil Uji SEM Al-doped ZnO (Perbesaran
	15000x)51
Gambar 4.11	Hasil EDX Al-doped ZnO52
Gambar 4.12	Hasil Uji SEM Al-doped ZnO pada Temperatur
	Sintering 800°C (a) Perbesaran 5000x (b)
	Perbesaran 15000x (c) Ukuran Partikel53

Gambar 4.14	Hasil Uji SEM Al-doped ZnO pada Temperatur
	Sintering 800°C (a) Perbesaran 5000x (b)
	Perbesaran 15000x (c) Ukuran Partikel55
Gambar 4.15	Hasil Uji EDX Al-doped ZnO pada Temperatur
	Sintering 800°C55
Gambar 4.16	Hasil Uji SEM Al-doped ZnO pada Temperatur
	Sintering 900°C (a) Perbesaran 5000x (b)
	Perbesaran 15000x (c) Ukuran Partikel56
Gambar 4.17	Hasil Uji EDX Al-doped ZnO pada Temperatur
	Sintering 900°C57
Gambar 4.18	Hasil Uji SEM Al-doped ZnO pada Temperatur
	Sintering 950°C (a) Perbesaran 5000x (b)
	Perbesaran 15000x (c) Ukuran Partikel57
Gambar 4.19	Hasil Uji EDX Al-doped ZnO pada Temperatur
	Sintering 950°C58
Gambar 4.20	Perbandingan Hasil Uji SEM Al-doped ZnO pada
	Temperatur Sintering (a) 700°C (b) 800°C (c)
	900°C (d) 950°C pada perbesaran 15000x60
Gambar 4.21	Hasil Kompaksi Spesimen61
Gambar 4.22	Perbandingan Hasil Uji Konduktivitas Listrik
	Sampel Tanpa dan dengan Doping Al62
Gambar 4.23	Perbandingan Hasil Uji Konduktivitas Listrik
	Sampel dengan Variasi Temperatur Sintering
	(700, 800, 900, dan 950°C)63
Gambar 4.24	Perubahan Massa Sampel dengan Peningkatan
	Temperatur64
Gambar 4.25	Kurva DTG Sampel Zn0.98Al0.02O dengan
	Temperatur Sintering 700, 800, 900, 950°C66

DAFTAR TABEL

Tabel 2.1	Sifat Alumina13
Tabel 3.1	Rancangan Penelitian
Tabel 4.1	Nilai Lattice Parameter dan Rasio c/a ZnO Tanpa
	dan Dengan Doping45
Tabel 4.2	Ukuran Kristal ZnO Tanpa dan dengan Doping46
Tabel 4.3	Nilai Lattice Parameter dan Rasio c/a Al-doped
	ZnO dengan Variasi Temperatur Sintering48
Tabel 4.4	Ukuran Kristal Al-doped ZnO dengan Variasi
	Temperatur Sintering49

BAB I PENDAHULUAN

1.1 Latar Belakang

Selama tahun 2000-2011, konsumsi energi meningkat ratarata 3% setiap tahunnya dan diperkirakan pertumbuhan rata-rata kebutuhan energi sebesar 4,7% per tahun selama tahun 2011-2030 (Permana, 2013). Termoelektrik merupakan salah satu sel yang dapat mengonversikan panas yang terbuang menjadi listrik. Material termoelektrik yang baik memiliki nilai figure of merit zT≥1 untuk perbedaan temperatur 300K atau sama dengan efisiensi Carnot sebesar 10%. Adapun hal-hal yang dapat meningkatkan nilai z (efisiensi termoelektrik) adalah dengan meningkatkan power factor, konduktivitas listrik (σ) dan kuadrat koefisien Seebeck (S), dan/atau mereduksi konduktivitas thermal (κ) dari material. Termoelektrik semikonduktor mengalami peningkatan pada konduktivitas listrik, dan reduksi pada S, sejalan dengan konsentrasi pembawa (n) yang meningkat. Dengan melakukan pengaturan terhadap struktur elektronik melalui paduan dan doping, maka bisa didapatkan power factor yang maksimum. Dengan kata lain, nilai zT harus datang dari reduksi κ , ketika mempertahankan nilai transport elektrik yang optimal. Sedangkan, material yang memiliki sifat konduktor listrik yang baik biasanya merupakan konduktor termal yang baik (Roy, 2016).

Pada beberapa dekade belakangan, material seperti paduan silicon-germanium, metal chalcogenides, senyawa boron, dan masih banyak lagi dikembangkan untuk aplikasi termoelektrik. ini, *bismuth-telluride* memiliki Sampai saat nilai sifat thermoelektrik vang terbaik, ditambah lagi jika dipadukan dengan selenium atau anthimony. Hal ini menyebabkan bismuth-telluride digunakan sebagai material termoelektrik yang ada di pasaran (Decker, 2015). Adapun nilai konduktivitas listrik untuk n-type Bi₂Te₃ sebesar $1.5 \times 10^3 / \Omega$.cm dan *p-type* Bi₂Te₃ sebesar $1.55 \times 10^3 / \Omega$.cm. Akan tetapi, aplikasi praktis terbatas karena dekomposisi pada temperatur rendah, oksidasi, penguapan, atau

transisi fasa. Keterbatasan ini didapatkan dari beragam penelitian terhadap oksida sebagai material termoelektrik, karena material tersebut lebih stabil secara thermal dan elektrik pada temperatur tinggi (Saini, 2014). Zinc Oxide dikenal dengan oksida konduktif dengan *bandgap* sebesar 3.5 eV. Pita konduksi dari ZnO terendah kosong pada orbital 4s dan 4p dari Zn²⁺, maka dari itu konduksi elektron dapat menjadi lebih leluasa. Nilai elektronegativitas yang besar dari Zn dan *ionicity* yang kecil menyebabkan ZnO menjadi pembawa dengan mobilitas yang tinggi pada oksida. Konduktivitas listrik dapat ditingkatkan dengan menambahkan doping dan konduktivitas listrik bergantung pada jenis dopan dan konten. Penambahan doping Al meningkatkan σ lebih dari 3 orde pada temperatur kamar serta mengubah perilaku konduksi dari semikonduktor menjadi metalik. Performa termoelektrik menjadi maksimum dengan komposisi x=0.02 dalam Zn_{1-x}Al_xO (Tsubota et al. 1997).

Selain itu, faktor lain yang dapat menurunkan resistivitas adalah proses laku panas yang mana memberikan efek terhadap konsentrasi dan mobilitas *carrier* (Zhang et al., 2013). Melihat hal tersebut, maka peneliti akan melakukan penelitian terhadap pengaruh temperatur sintering terhadap sifat listrik dan termal material $Zn_{(1-x)}Al_xO$ dengan metode kopresipitasi.

1.2 Perumusan Masalah

Berdasarkan penjabaran latar belakang di atas, maka dapat dirumuskan masalah sebagai berikut:

- 1. Bagaimana pengaruh temperatur *sintering* terhadap sifat listrik $Zn_{(1-x)}Al_xO$ sebagai kandidat material termoelektrik?
- 2. Bagaimana pengaruh temperatur *sintering* terhadap sifat termal $Zn_{(1-x)}Al_xO$ sebagai kandidat material termoelektrik?

1.3 Batasan Penelitian

Batasan masalah yang digunakan pada penelitian ini adalah sebagai berikut:

- 1. Kondisi lingkungan dianggap sama selama persiapan bahan dan kopresipitasi.
- 2. Kondisi *furnace* dianggap vakum sempurna selama proses sintering.

1.4 Tujuan Penelitian

Tujuan dari diadakannya penelitian ini adalah:

- 1. Menganalisis pengaruh temperature *sintering* terhadap sifat listrik $Zn_{(1-x)}Al_xO$ sebagai kandidat material termoelektrik.
- 2. Menganalisis pengaruh temperature *sintering* terhadap sifat termal Zn_(1-x)Al_xO sebagai kandidat material termoelektrik.

1.5 Manfaat Penelitian

Penelitian ini bermanfaat untuk mengetahui pengaruh temperatur *sintering* terhadap sifat listrik dan termal $Zn_{(1-x)}Al_xO$ sebagai kandidat material termoelektrik, sehingga didapatkan hasil optimum dari temperatur sintering. Serta dapat menjadi acuan penelitian berikutnya terhadap material termoelektrik, khususnya material $Zn_{(1-x)}Al_xO$.

BAB II TINJAUAN PUSTAKA

2.1 Termoelektrik

Efek termoelektrik yang pertama ditemukan pada tahun 1821 oleh T.J. Seebeck yang menunjukkan gaya gerak listrik dapat diproduksi dengan memanaskan gabungan antara dua konduktor. Efek Seebeck merupakan fenomena konversi energi panas menjadi tenaga listrik. Makna fisiknya dapat dinilai dengan memikirkan efek yang memaksakan kestabilan perbedaan temperatur sepanjang konduktor. Pada mulanya konduktor memiliki distribusi uniform pembawa muatan, tetapi kehadiran perbedaan temperatur, pembawa muatan bebas pada ujung panas akan memiliki energi kinetik yang lebih besar dan memiliki kecenderungan untuk berdifusi ke bagian yang lebih dingin (Rowe & Bhandari, 1983).

Gambar 2. 1 Eksperimen yang menunjukkan Efek Seebeck dan Peltier (Goldsmid, 2010)

Sedangkan Efek peltier merupakan fenomena yang digunakan pada termoelektrik pendingin, dengan laju penyerapan panas yang reversibel \dot{Q} diikuti dengan arus I yang melalui sambungan. Kenyataan bahwa Efek Seebeck dan Peltier terjadi

LAPORAN TUGAS AKHIR Jurusan Teknik Material dan Metalurgi

pada gabungan konduktor berbeda hanya antara yang menunjukkan fenomena antarmuka tetapi efek ini sangat bergantung pada sifat material yang terlibat. Saat ini, arus listrik dibawa melalui konduktor dengan cara elektron yang memiliki perbedaan energi pada material berbeda. Ketika arus melalui satu material ke material lainnya, energi ditransportasikan dengan elektron berubah, perbedaan yang terlihat sebagai pemanasan atau pendinginan pada sambungan dikenal dengan efek Peltier. Demikian sebaliknya, ketika sambungan dipanaskan, elektron dapat bergerak dari material dengan energi yang lebih rendah ke energi yang lebih tinggi, memberikan gaya gerak listrik.

termokopel dapat Performa ditingkatkan dengan meningkatkan koefisien Seebeck. dengan meningkatkan konduktivitas electron dari dua percabangan dan dengan mereduksi konduktivitas thermal (Anatychuk, 1998). Pada tahun 1950, dikenalkan sebagai material termoelektrik. semikonduktor Berhasil pada termokopel membawanya pada pembuatan generator termoelektrik dengan efisiensi yang tinggi untuk aplikasi tertentu (Goldsmid, 2010).

2.2 Material Termoelektrik

Ketiga parameter pada *figure of merit* merupakan fungsi dari konsentrasi pembawa muatan, biasanya diekspresikan dalam Energi Fermi \mathcal{E} . Ketergantungan α , σ , dan λ ditunjukkan pada **Gambar 2.2**. *Figure of merit* maksimum pada konsentrasi pembawa berada pada nilai antara 10^{25} sampai 10^{26} m⁻³, sebagai contoh adalah semikonduktor yang di-*doped*.

Gambar 2. 2 Skema ketergantungan konduktivitas listrik σ , koefisien Seebeck α , dan konduktivitas panas λ pada konsentrasi *free carrier* (Rowe & Bhandari, 1983)

Pada dasarnya material solid diklasifikasikan menjadi tiga jenis berdasarkan kemampuan menghantarkan listrik, yaitu isolator, semikonduktor dan konduktor. Metal merupakan konduktor yang baik dengan nilai konduktivitas berada pada kisaran 10⁷ (Ω -m)⁻¹. Sebaliknya material dengan konduktivitas yang sangat rendah berada pada 10⁻¹⁰ dan 10⁻²⁰ (Ω -m)⁻¹ yang disebut sebagai material isolator. Material dengan konduktivitas di antara keduanya kira-kira sekitar 10⁻⁶ hingga 10⁴ (Ω -m)⁻¹ merupakan material semikonduktor. Hal yang membedakan antara isolator dan semikonduktor adalah band gap antara yang dimiliki semikonduktor lebih kecil dibandingkan isolator (Callister, 2007). LAPORAN TUGAS AKHIR Jurusan Teknik Material dan Metalurgi

Gambar 2. 3 Struktur Pita Elektron

(a) Struktur pita elektron ini dapat ditemukan pada metal seperti tembaga, yang mana terdapat *available electron state* di atas dan berdekatan dengan *filled state*. (b) Struktur pita elektron dari metal seperti magnesium, yang mana tumpang tindih antara *filled* dan *empty bands*. (c) Karakteristik insulator: *bandgap* relative besar (>2eV). (d) Karakteristik semikonduktor dengan *bandgap* lebih kecil dari insulator (<2eV) (Callister, 2007)

2.2.1 Keramik Semikonduktor

Semikonduktor memiliki E_f yang kecil seperti pada **Gambar 2.3**. Pada semikonduktor σ proporsional terhadap *n* dan μ (untuk lubang dan elektron). Secara umum terdapat tiga cara untuk menghasilkan elektron dan lubang pada keramik:

- 1. Ekstitasi sepanjang *bandgap* (semikonduktor intrinsik)
- 2. Terdapat impuritas/dopan (semikonduktor ekstrinsik)
- 3. Terpisah dari stoikiometri (semikonduktor nonstoikimetri)

Kebanyakan oksida semikonduktor didoping untuk membuat cacat ekstrinsik atau dianneal di bawah kondisi agar menjadi nonstoikiometri.

Semikonduktor ekstrinsik yang mengandung impuritas entah secara tidak disengaja atau pun sengaja ditambahi. Efek dari impuritas ini terhadap diagram pita energi adalah memberikan tingkat energi tambahan terhadap *badgap* seperti pada **Gambar 2.4**. Tingkat energi baru ini dekat dengan tepi pita.

Gambar 2. 4 Efek doping pada struktur pita (Carter & Norton, 2007)

Ketika tingkat impuritas di atas pita valensi, impuritas merupakan 'acceptor' karena dapat menerima elektron yang meninggalkan lubang pada pita valensi. Jika impuritas dapat menyediakan elektron pada pita konduksi maka disebut sebagai 'donor' dan tingkat levelnya berada di bawah pita konduksi. Jika impuritas berlaku sebagai pendonor elektron maka semikonduktor ini dikenal dengan semikonduktor tipe-n karena elektron (atau spesies bermuatan negatif) merupakan pembawa muatan utama. Jika impuritas berlaku sebagai penerima elektron maka semikonduktor inii dikenal dengan semikonduktor tipe-p karena lubang (atau spesies bermuatan positif) sebagai pembawa muatan utama.

Pada temperatur rendah jumlah pembawa muatan ditentukan oleh energi ionisasi pendonor dan penerima. Pada temperatur yang cukup tinggi, seluruh ionisasi dari impuritas didapatkan dan densitas pembawa menjadi tidak bergantung pada temperatur. Daerah ini disebut sebagai 'exhaustion' atau daerah jenuh. Pada temperatur yang lebih tinggi lagi, energi panas cukup untuk mengeksitasi elektron sepanjang energi *bandgap* dan material bersifat seperti semikonduktor intrinsic (Carter & Norton, 2007). Daerah-daerah ini ditunjukkan pada **Gambar 2.5**.

Gambar 2.5 Ketergantungan σ terhadap temperatur untuk semikonduktor ekstrinsik. Titik putus-putus menunjukkan kontribusi dari n dan μ kepada σ (Carter & Norton, 2007).

2.2.2 Oksida Seng

Oksida Seng (ZnO) ada secara natural pada mineral *zincite*. Secara kimia ZnO murni berwarna putih dan *zincite* berwarna merah karena mengandung 10% Mn serta sedikit FeO. Terdapat dua cara memproduksi ZnO dari *zincite* yaitu dengan oksidasi dari penguapan metal seng di udara dan reduksi dari *sphalerite* (ZnS) dengan karbon dan CO. Pengguna terbesar ZnO adalah perusahaan perekat dan karet. Selain itu ZnO juga banyak ditemukan pada cat lateks, ubin, porcelain, dan yang paling banyak digunakan untuk varistor (Carter & Norton, 2007).

Sebagian besar kristal grup II-VI semikonduktor senyawa biner berbentuk struktur *cubic zinc blende* atau *hexagonal wurtzite* (Wz) yang mana masing-masing anion dikelilingi oleh empat kation pada bagian tengah dari tetrahedral, dan sebaliknya. Koordinasi tetrahedral ini khas dari ikatan kovalen sp³, tapi material ini memiliki karakter ionik kuat yang cenderung meningkatkan *bandgap* melebihi ikatan kovalen. ZnO merupakan

semikonduktor senyawa II-IV yang mana sifat ioniknya tinggal di perbatasan antara semikonduktor kovalen dan ionik. Struktur kristal ZnO adalah *wurtzite* (B4), *zinc blende* (B3) dan *rocksalt* (B1) seperti pada Gambar 2.9. Pada kondisi ambien, struktur yang stabil secara termodinamika adalah *wurtzite*. Struktur *zinc blende* dapat menjadi stabil hanya dengan menumbuhkannya pada substrat kubik dan *rocksalt* bisa didapatkan dari tekanan tinggi.

Gambar 2. 6 Representasi Struktur Kristal ZnO. Bola berwarna abu-abu dan hitam menunjukkan Zn dan O (Morkoç & Özgür, 2009).

Seng oksida merupakan semikonduktor dengan *bandgap* 3.2-3.5 eV. Seng memiliki sifat elektronegatif yang tinggi sebagai metal, menghasilkan ikatan Zn-O yang kurang terpolarisasi jika dibandingkan dengan ikatan metal-oksigen pada oksida metal. Meskipun rasio dari radius ionic Zn₂₊ dan O₂₋ secara geometris membutuhkan 6-lipatan koordinasi dari O₂₋ sekitar Zn₂₊, Zn₂₊ lebih cenderung membentuk 4-lipatan koordinasi pada kenyataannya, sehingga kristal ZnO pada *wurzite* mengandung berbagi-puncak tetrahedral ZnO₄, nilai *packing density* dari ion-ion sedikit lebih kecil daripada packing yang paling dekat. Sehubungan dengan struktur koordinasi ini, orbital dari elektron valensi Zn dalam ZnO dapat dianggap campuran sp³ mirip dengan C dalam komponen organik, menyebabkan kovalensi yang besar dari ikatan kimia oksida. Struktur koordinasi ini sebagai oksida membatasi kelarutan elemen dan limit kelarutan substitusi Zn pada ZnO (Ohtaki, 2011).

Pada benda solid, atom dalam semikonduktor pada temperatur selain 0° berada pada gerakan terus-menerus, berosilasi pada keadaan ekuilibrium. Amplitudo dari vibrasi meningkat dengan temperatur dan sifat panas dari semikonduktor menentukan respon material terhadap perubahan temperatur. Sifat dan konduktivitas termal bergantung pada temperatur dan temperatur maksimum untuk mempelajari efek ini adalah temperatur meleleh, yang mana untuk ZnO sekitar 1975 K.

Konduktivitas termal (K), sifat kinetik yang didapatkan dengan kontribusi dari getaran, rotasi, dan derajat kebebasan elektronik, merupakan sifat material yang penting untuk elektronik dengan kekuatan tinggi/temperatur tinggi dan alat optoelektronik. Untuk kristal murni, gerakan acak phonon, yang mana ideal terhadap T⁻¹ di atas temperatur Debye, membatasi proses konduktivitas termal. Secara spesifik, transfer panas sebagian besar didapatkan dari gerakan acak phonon-phonon Umklapp dan gerakan acak phonon dari cacat titik dan yang lebih luas, seperti vakansi, pengotor, dan fluktuasi isotop. Untuk semikonduktor dengan cacat titik memainkan peran besar dalam konduktivitas termal ZnO. Berdasarkan Olorunyolemi *et al.* (2002) konduktivitas termal dari ZnO berukuran nanometer pada temperatur kamar sebesar 1.160 W/mK.

Kelebihan dari bandgap ZnO yang besar adalah dapat pada temperatur tinggi dan beroperasi kekuatan tinggi. pembentukan noise rendah, tegangan breakdown lebih tinggi, dan kemampuan untuk bertahan pada medan listrik yang besar. Perpindahan elektron pada semikonduktor dapat terjadi untuk medan listrik rendah dan tinggi. (i) Pada medan listrik yang cukup rendah, energi vang didapatkan dari elektron lebih kecil dibandingkan dengan energi panas elektron dan distribusi energi dari elektron tidak terpengaruh oleh medan listrik rendah. Karena gerakan acak memengaruhi mobilitas elektron kecepatan tergantung dari fungsi distribusi elektron, mobilitas elektron independen terhadap medan listrik, dan hukum Ohm terpenuhi. (ii) Ketika medan listrik meningkat ke titik di mana energi yang

didapat oleh elektron dari luar tidak dapat diabaikan dibandingkan dengan energi panas dari elektron, fungsi distribusi berubah secara signifikan dari nilai ekuilibrium (Morkoç & Özgür, 2009).

2.2.3 Oksida Aluminium

Alumina (Al_2O_3) atau Oksida Aluminum merupakan satusatunya oksida yang dibentuk oleh metal aluminum dan terjadi pada alam sebagai mineral *corundum* (Al_2O_3), *diaspora* (Al_2O_3•H_2O); *gibbsite* (Al_2O_3•3H_2O); dan yang paling sering ditemui adalah bauksit, yang merupakan bentuk tidak murni dari *gibbsite*. Batu berharga seperti *ruby* dan *sapphire* terdiri dari *corundum*.

Fused Alumina (substansi yang diproduksi setelah dicairkan dan mengalami rekristalisasi) identik dengan sifat kimia dan fisika *corundum* di alam. Material ini sangat keras dan kekerasannya dapat dikahalkan hanya dengan intan dan beberapa substansi sintesis seperti *carborundum* dan karbida silikon. Sifat dari alumina membuatnya menjadi material abrasif. Alumina memiliki temperatur lebur di atas 2000°C (3632°F), yang dapat diaplikasikan menjadi furnace khusus (Encyclopedia Britannica, 2016).

Berikut merupakan sifat fisika, mekanik, kimia, dan listrik dari alumina (kemurnian 99,5%) seringkali digunakan pada industri keramik tergambar pada tabel berikut:

Sifat	Satuan	Standar Pengujian	Nilai		
Fisik					
Densitas	g/cm ³	ASTM C20	3.7-3.97		
Warna			Ivory/Putih		
Struktur Kristal			Hexagonal		

 Tabel 2. 1 Sifat Alumina (Sumber: Ferro-Ceramic Grinding, Inc)

LAPORAN TUGAS AKHIR Jurusan Teknik Material dan Metalurgi

Absorpsi Air	% pada T kamar	ASTM C373	0.0
	munim		
Kekerasan	Mohs		9
Hardness	Knoop (kg/mm ²)	Knoop 100 g	2000
Mekanik			
Kekuatan	MPa pada	ASTM C773	2070-2620
Tekan	Tkamar		
Kekuatan Tarik	MPa pada	ACMA Test	260-300
	T kamar	#4	
Modulus	GPa	ASTM C848	393
Elastisitas			
Kekuatan	MPa pada	ASTM F417	310-379
Lentur	T kamar		
Ketangguhan	MPa x m ^{1/2}	Notched	4.5
		Beam Test	
Thermal		L	
Temperatur	°C	Tanpa	1750
Maksimum di		pembebanan	
Udara			
Ketahanan	ΔT (°C)	Quenching	200
terhadap			
Thermal Shock			
Konduktivitas	W/m-K	ASTM C408	35
Thermal	pada T		
	kamar		

14

Koefisien	Mm/m-°C	ASTM C372	8.4		
Linear	(`25°C				
Ekspansi	hingga				
Thermal, α_1	1000°C)				
Specific Heat,	Cal/g-°C	ASTM C351	0.21		
Ср	pada T				
	kamar				
Listrik					
Konstanta	1 MHz	ASTM D150	9.6		
Dielektrik	pada T				
	kamar				
Kekuatan	kV/mm	ASTM D116	15		
Dielektrik					
Resistansi	Ωcm pada	ASTM D1829	>1014		
Listrik	T kamar				

Terdapat beberapa bentuk kristal dari Al₂O₃, di antaranya adalah α , x, η , δ , γ , κ , ρ , θ . Sebagai contoh fasa- α dari Al₂O₃ bisa didapatkan di corundum/sapphire seperti **Gambar 2.7**. Bentuk lainnya biasanya merupakan transisi Al₂O₃ dan meningkat selama dekomposisi thermal dari *aluminium trihydroxides* di bawah kondisi yang berbeda. Fasa- α dari Al₂O₃ merupakan fasa paling stabil dari senyawa yang terbentuk antara Al dan O, dan merupakan produk akhir dari thermal atau dehidroksilasi dari hidroksida. Al₂O₃ yang biasa digunakan diproduksi melalui proses Bayer mulai dari bauksit yang mana terdiri dari aluminium hidrat (Shirai et al., 2009).

Gambar 2. 7 Struktur α- Al₂O₃ (Saalfeld & Mehrotra, 1965).

2.2.4 Diagram Fasa ZnO-Al₂O₃

Liquidus pada sistem ditentukan dengan melakukan pengamatan terhadap fusi dari beragam campuran dari oksida aluminium murni dan zinc dipanaskan pada temperatur konstan yang berbeda di krusibel terbuat dari paduan Ir/Pt pada furnace induksi. Sampel secara visual diperiksa pada temperatur kamar setelah pendinginan dan diperiksa sudah berdifusi atau belum. Data yang didapatkan dari penelitian sebelumnya oleh Bunting (1932) disempurnakan dengan data terbaru yang didapatkan dengan proses tadi sehingga dapat digambarkan dalam diagram fasa biner seperti pada **Gambar 2.8**.

Titik leleh dari Al₂O₃ dan ZnO murni didapatkan sekitar 2054°C dan 1970°C. Terdapat tiga fasa solid pada sistem; *corundum* (Al₂O₃), *spinel* (Zn_xAl_{3-x}O_{4+y}), dan *zincite* (ZnO). Ditemukan bahwa sekitar 2 mol pct ZnO dilarutkan dengan *corundum* dari 1250°C hingga 1695°C. Komposisi dari *spinel* mendekati *gahnite* (ZnAl₂O₄) ketika berada di ekuilibrium dengan *zincite*; namun, kelarutan signifikan dari Al₂O₃ pada *spinel* ditemukan pada temperatur yang lebih tinggi dalam ekuilibrium

dengan *corundum*. Kelarutan maksimum dari Al_2O_3 di zincite adalah 4.7 mol pct pada 1695°C dan kelarutannya menurun secara cepat dengan menurunnya temperatur ke <0.5 mol pct pada 1550°C dan di bawahnya (Hansson et al., 2005).

Terlihat bahwa pada Gambar 2.8 tidak ada *solid solution* pada daerah ZnO. Menurut G. Heiland et al. (1959), disimpulkan bahwa pada sistem Al₂O₃-ZnO, Al₂O₃ tidak terlarut pada ZnO. Namun, penambahan Al₂O₃ pada ZnO merupakan satu contoh semikonduktor dengan *doping* tipe-n. Hasil penelitian yang dilakukan oleh Tsubota et al (1997), menunjukkan bahwa pada sampel Zn_{1-x}Al_xO, fasa spinel (ZnAl₂O₄) mulai terdeteksi ketika x ≥ 0.02 . Berikut merupakan persamaan reaksi doping Al₂O₃ pada ZnO:

$$Al_2O_3 \xrightarrow{ZnO} 2Al_{Zn}^{\bullet} + 2e' + 2O_0^x + \frac{1}{2}O_2 \uparrow$$
(Cai et al., 2003)

2.3 Kopresipitasi

Presipitasi merupakan proses memisahkan fasa solid yang terbentuk dari larutan homogen, setelah jenuh sehubungan dengan presipitasi solid yang sudah tecapai. Kristalisasi dari larutan merupakan proses, yang mana solid langsung didapatkan dalam bentuk kristal. Kristalisasi biasanya dihasilkan pada tingkat kejenuhan yang rendah, yang mana sebagian besar dipaksa oleh reduksi pada temperatur atau penguapan dari larutan. Presipitasi biasanya digunakan untuk mendeskripsikan proses, yang mana pembentukan solid diinduksi dengan penambahan agen yang menginisiasi reaksi kimia atau yang mereduksi kelarutan. Presipitasi secara normal melibatkan tingkat kejenuhan yang tinggi dan karena itu sering kali amorfus didapatkan ketika petama kali solid terbentuk.

Dilansir dari IUPAC nomenclature (1973), kopresipitasi merupakan presipitasi secara bersamaan dari komponen terlarut dengan komponen makro dari larutan yang sama dengan formasi dari kristal campuran dengan adsorpsi, *occlusion*, atau *mechanical entrapment*. Atau secara umum dapat diartikan sebagai substansi terlarut yang turun. Dalam beberapa kasus, kedua komponen yang akan diendapkan pada dasarnya tidak larut di bawah kondisi presipitasi, meskipun produk kelarutannya berbeda masing-masing substansi.

Pengetahuan terhadap kelarutan relatif dari presipitat, dan kemungkinan dari pembentukan untuk mendefinisikan fasa yang dicampur, sangat diperlukan. Jika salah satu komponen lebih terlarut daripada komponen lainnya, ada kemungkinan presipitasi berurutan akan terjadi. Hal ini akan memengaruhi gradien konsentrasi pada produk. Jika efek ini tidak diimbangi dengan adsorpsi atau *occlusion* dari komponen yang lebih larut, presipitasi harus dilakukan pada tingkat kejenuhan tinggi agar menghasilkan produk kelarutan untuk kedua komponen secara bersamaan. Presipitasi dari produk kurang terlarut akan sedikit lebih cepat dan membentuk partikel yang berlaku sebagai tempat nukleasi untuk

presipitat yang lebih terlarut yang mana terbentuk oleh presipitasi tidak homogen.

Seringkali, komposisi dari endapan merupakan hasil dari konsentrasi larutan. Penyimpangan yang terjadi dapat disebabkan jika perbedaan kelarutan dari senyawa yang berbeda sangat besar dan proses pengendapan tidak lengkap atau jika dalam penambahan kepada senyawa stoikiometri, hanya satu komponen membentuk endapan tidak terlarut (Ertl, Knözinger, & Weitkamp, 1997).

Impuritas pada kristal mengendap karena kopresipitasi atau setelah presipitasi. Tiga kasus dari co-presipitasi dapat dibedakan menjadi: *mixed crystal formation*, yang mana impuritas tergabung ke dalam kisi kristal; *real coprecipitation*, yang mana impuritas membentuk ketidaksempurnaan dalam kristal dan *surface adsorption* dengan presipitasi setelah terbentuk. Dari ketiga kasus ini, kehadiran impuritas dikaitkan dengan adsorpsi, ketika pertumbuhan kristal atau setelah pemisahan. Dalam kasus *real coprecipitation*, adsorpsi dari ion asing selama pertumbuhan partikel merupakan hal yang penting. Tergantung dari potensi termodinamika presipitat selama pertumbuhan, kation dan anion kopresipitasi dapat diperkirakan (Kolthoff, 1932).

Sebagian besar ion metal dipreparasi dalam larutan dan dikopresipitasikan sebagai hidroksida, oksalat, dsb. Kemudian dilaksinasi atau digerus ulang untuk menghasilkan komposisi kimia yang uniform. Kopresipitasi muncul sebagai jalan yang unggul dan telah digunakan secara efektif. Namun, beberapa studi menunjukkan potensi dari inhomogenitas ketika pencampuran. Beberapa senyawa mengendap pada pH atau konsentrasi yang sama, karena itu proses pengendapan harus terjadi selama pencampuran intensif untuk memastikan beberapa jenis presipitasi tidak terjadi. Kontinuitas, stoikiometri, dan pencampuran intensif harus dilakukan untuk mencapai kopresipitasi yang sukses dalam skala lab ataupun industri (Wang, 1976).

2.4 Sintering

Sintering merupakan proses yang mana serbuk kompak ditransformasikan menjadi keramik yang kuat dan rapat melalui pemanasan. *Sintering* dapat terjadi pada keadaan fasa cair atau padat.

Solid-state sintering dapat terjadi dengan dua cara yang pertama reduksi dari luas permukaan total dengan peningkatan pada ukuran rata-rata partikel atau membuat partikel menjadi kasar dan kedua eiminasi solid/uap dari permukaan serta pembentukan batas butir yang diikuti oleh pertumbuhan butir atau dikenal dengan densifikasi. Mekanisme partikel menjadi kasar bermula dari permukaan partikel dan terbenam pada bagian leher, sedangkan mekanisme densifikasi bermula dari batas butir atau daerah antara kedua partikel dan terbenam pada daerah leher/pori. Terdapat tiga tahapan proses sintering, di antaranya adalah tahap inisial, tahap menengah, tahap akhir. Pada tahap awal daerah kontak antar partikel meningkat dengan pertumbuhan leher yang mana meningkatkan densitas 60-65%. Kemudian pada tahap berikutnya terjadi difusi pada saluran pori kontinu yang meningkatkan densitas 65-90%. Pada tahap akhir, saluran pori kontinu sudah tidak ada, pori yang tersisa berbentuk lenticular ketika tersisa pada batas butir atau bulat jika tersisa antara butiran.

Kinetik dari *sintering* bergantung pada banyak variable yaitu ukuran partikel dan *packing*, atmosfer ketika proses berlangsung, derajat aglomerasi, temperature dan keberadaan impuritas (Barsoum, 1997).

2.5 Penelitian Sebelumnya

Sepanjang sejarah penelitian termoelektrik, ditunjukkan bahwa material termoelektrik yang memiliki struktur nano dapat meningkatkan nilai zT beberapa orde lebih tinggi daripada dalam bentuk *bulk*/makro (Vineis et al., 2010). Beberapa material termoelektrik dengan performa yang tinggi seperti bismuth-telluride dan lead-telluride sangat beracun, mudah teroksidasi dan terdekomposisi pada temperatur tinggi. Pada sisi lain, material

oksida metal seperti oksida seng (ZnO) sangat stabil pada jarak temperatur yang besar, tidak beracun, biaya lebih murah dan memiliki pengaruh lingkungan yang lebih rendah (Ohtaki, 2011). Sebagai tambahan, ZnO memiliki nilai koefisien yang Seebeck yang cukup tinggi (Colder et al., 2010).

Menurut Tsubota et al. (1997), ZnO yang tidak didoping merupakan semikonduktor tipe-n menunjukkan peningkatan o dengan meningkatnya temperatur. Penambahan doping Al meningkatkan σ lebih dari 3 order pada temperatur kamar serta mengubah perilaku konduksi dari semikonduktor menjadi metalik. Beliau melakukan penelitian terhadap jumlah doping Al maksimum dalam ZnO dengan menggunakan ball mill. Performa termoelektrik menjadi maksimum dengan komposisi x=0.02 dalam Zn_{1-x}Al_xO, dengan kelarutan dari Al dalam ZnO lebih kecil dari 2mol%, kelebihan Al akan membentuk ZnAl₂O₄ (spinel) pada sampel x \ge 0.02. *Power factor* dari Zn_{0.98}Al_{0.02}O cukup besar sekitar 10-18x10⁻⁴ W/mK² sepanjang jarak temperatur yang besar. Hal ini disebabkan, pada jumlah penambahan Al yang kecil, atom Al akan masuk ke dalam site Zn dan meningkatkan carrier mobilitas consentration tapi menekan dengan mengubah mikrostruktur, kemudian untuk penambahan Al yang lebih banyak mengakibatkan peningkatan dalam akan mikrostruktur. menghasilkan pemulihan mobilitas dan meningkatkan σ hingga fasa spinel muncul dan berefek pada konduktivitas. Hasil ini menunjukkan bahwa sifat elektrik dari oksida dapat ditingkatkan lebih jauh dengan mengoptimalkan mikrostruktur.

Berdasarkan *review* yang dilakukan Ohtaki (2011), mobilitas pembawa ZnO pada temperatur kamar didapatkan sebesar ~200 cm2/Vs untuk kristal tunggal dan 80 cm²/Vs untuk sampel yang didoping Al. Nilai ini dapat dibandingkan dengan SnO² (240 cm²/Vs untuk kristal tunggal), dan merupakan salah satu nilai terbesar di oksida. Konduktivitas panas κ dari ZnO sangat besar dibandingkan dengan material termoelektrik lain, 54 W/mK untuk kristal tunggal (sepanjang sumbu-c) dan 40 W/mK untuk sampel polikristal pada temperatur kamar. Nilai κ yang besar

membatasi performa dari oksida Z=0.24 x 10-3 K-1, zT=0.3 pada 1273K. Namun, nilai ini adalah nilai terbesar di antara oksida tipen. Menurut Cai (2003), konduktivitas termal menurun dengan meningkatnya jumlah Al_2O_3 yang mana ditambahkan bertujuan untuk meningkatkan gerakan acak *phonon*.

Co-presipitasi jika dibandingkan dengan metode lain, copresipitasi cukup mendapatkan perhatian karena mudah, ekonomis, dan proses ramah lingkungan (Zhang et al., 2014). Devaraj et al. (2014) melakukan sintesis ZnO dengan metode co-presipitasi dan melakukan penelitian terhadap variasi temperatur dan kecepatan stirring. Prekursor yang digunakan adalah zinc acetate dihvdrate $[Zn(CH_3(COO))_2 \cdot 2H_2O]$ dengan basa NaOH. Diaduk selama 2 jam pada magnetic stirrer. Kecepatan stirring divariasikan dari 900 rev/min hingga 1500 rev/min dengan temperatur pengadukan yang bervariasi dari 30-70°C. Presipitat dikeringkan semalaman pada oven, kemudian di-anneal pada 600°C selama 1 jam. Hasilnya adalah pengotor terbentuk selama sintesis dikeluarkan melalui perlakuan annealing pada 600°C selama 1 jam. Dengan temperatur dan kecepatan pengadukan yang bervariasi menghasilkan bentuk yang berbeda-beda seperti spherical, hexagonal, dan rectangular. Ukuran nanopartikel berkurang dengan kecepatan pengadukan yang meningkat. Perlakuan annealing meningkatkan ukuran ratarata dari partikel yang disintesis.

Dalam penelitiannya, setelah di co-presipitasi, dilakukan pre-kalsinasi pada temperatur 400°C dan post-kalsinasi pada temperatur sekitar 600-900°C yang mana resistivitas dari AZO menurun pada temperatur kalsinasi di bawah 900°C dan meningkat pada temperatur kalsinasi di atasnya. Pada waktu post-kalsinasi yang cukup tinggi, Al³⁺ masuk ke dalam kisi ZnO meningkat, menurunkan resistivitas dari AZO. Namun, kelebihan waktu pada post-kalsinasi akan menyebabkan terbentuknya fasa kaca dalam AZO dan meningkatkan resistivitasnya. Temperatur post-kalsinasi terbaik adalah 900°C selama 2 jam untuk konsentrasi doping 1.5at% Al.

BAB III METODOLOGI PENELITIAN

3.1 Bahan Penelitian

Adapun bahan-bahan yang digunakan dalam penelitian ini adalah sebagai berikut:

1. Bubuk Zinc Oxide (ZnO)

Zinc Oxide merupakan semikonduktor yang digunakan sebagai bahan utama pembuatan termoelektrik dalam penelitian ini. Adapun *Zinc Oxide* yang digunakan memiliki kemurnian 99%. Didapatkan dalam bentuk bubuk berwarna putih yang diproduksi Emsure.

Gambar 3. 1 Zinc Oxide

2. Bubuk Aluminium Oxide (Al₂O₃)

Aluminium Oxide digunakan sebagai dopan material Zinc Oxide untuk membuat semikonduktor tipe-n. Adapun aluminium oxide yang digunakan adalah fasa- α dengan ukuran 100 mesh dan kemurnian 99%. Didapatkan dalam bentuk bubuk berwarna putih yang diproduksi oleh Sigma-Aldrich.

Gambar 3. 2 Aluminium Oxide

 Larutan Hydrochloric Acid (HCl) Hydrochloric Acid (HCl) merupakan asam kuat yang digunakan dalam penelitian ini sebagai pelarut oksida dari Zinc Oxide dan Aluminium Oxide sebelum melakukan sintesis dengan metode co-presipitasi. Digunakan dalam bentuk larutan yang didapatkan dari SAP Chemicals.

Gambar 3. 3 Larutan HCl

4. Larutan Ammonium Hydroxide (NH₄OH) Ammonium Hydroxide merupakan basa yang digunakan dalam penelitian ini untuk membentuk zinc hydroxide

dengan metode co-presipitasi. Digunakan dalam bentuk larutan yang didapatkan dari SAP Chemicals.

Gambar 3. 4 Larutan NH₄OH

5. Aquades

Aquades digunakan untuk melarutkan *Hydrochloric Acid* dan *Ammonium Hydroxide* untuk mencapai molaritas yang digunakan dalam penelitian ini. Didapatkan dari SAP Chemicals.

Gambar 3. 5 Aquades

3.2 Peralatan

Peralatan yang digunakan dalam penelitian ini adalah sebagai berikut:

1. Gelas Ukur

Gelas ukur berfungsi untuk mengukur volume larutan. Gelas ukur yang digunakan dalam penelitian ini ada dua yaitu yang memiliki skala 100 ml dan 10 ml.

Gambar 3. 6 Gelas ukur

2. Gelas Kimia

Gelas kimia berfungsi untuk melakukan pencampuran bubuk dan larutan atau pun melarutkan larutan yang digunakan dalam penelitian ini.

Gambar 3. 7 Gelas kimia

3. Pengaduk Kaca Pengaduk kaca berfungsi untuk menghomogenkan larutan.

Gambar 3. 8 Pengaduk kaca

4. Spatula

Spatula digunakan untuk mengambil bahan kimia yang berbentuk padatan atau dalam penelitian ini berbentuk bubuk.

Gambar 3. 9 Spatula

5. Pipet

Pipet berfungsi untuk memindahkan larutan dalam volume yang sedikit (berupa tetesan).

Gambar 3. 10 Pipet

6. Aluminium Foil Aluminium Foil digunakan untuk menutup gelas kimia yang berisikan larutan.

Gambar 3. 11 Aluminium Foil

7. Kertas Lakmus

Lakmus digunakan untuk mengukur tingkat keasaman dari larutan.

Gambar 3. 12 Lakmus

8. Analytical Balance

Analytical Balance digunakan untuk melakukan pengukuran yang presisi terhadap massa bubuk zinc oxide dan aluminium oxide pada penelitian ini. Adapun merk analytical balance yang digunakan adalah Mettler Toledo.

Gambar 3. 13 Analytical Balance

9. *Hot Plate Magnetic Stirrer Hot Plate Magnetic Stirrer* digunakan untuk memanaskan larutan dan menghomogenkannya dengan pengadukan.

Gambar 3. 14 Hot Plate Magnetic Stirrer

10. Furnace

Furnace digunakan untuk melakukan pemanasan dan sintering pada hasil co-presipitasi sehingga dihasilkan nanopartikel material $Zn_{(1-x)}Al_xO$.

Gambar 3. 15 Horizontal Furnace

11. Crucible

Crucible digunakan untuk wadah bubuk hasil copresipitasi ketika dimasukkan ke dalam furnace.

LAPORAN TUGAS AKHIR Jurusan Teknik Material dan Metalurgi

Gambar 3. 16 Crucible

- 12. Mesin Uji *Scanning Electron Microscopy* (SEM) Mesin Uji *Scanning Electron Microscopy* (SEM) digunakan untuk mengetahui morfologi dan perkiraan ukuran partikel dari hasil sintesis material Zn_(1-x)Al_xO.
- Mesin Uji X-Ray Diffractometer (XRD) Mesin Uji X-Ray Diffractometer (XRD) digunakan untuk melihat fasa yang terbentuk pada hasil penelitian, bilamana fasa yang terbentuk seluruhnya merupakan Zn_(1-x)Al_xO atau terdapat fasa-fasa lain.
- 14. Mesin Uji LCR (*Inductance, Capacitance, Resistance*) Meter.

Mesin Uji LCR Meter digunakan untuk mengukur konduktivitas listrik yang dimiliki oleh material $Zn_{(1-x)}Al_xO$. Konduktivitas listrik termasuk ke dalam salah satu parameter penentuan efisiens/*figure of merit* dari termoelektrik.

15. Mesin Uji *Differential Scanning Calorimetry/Thermogravimetric Analysis* (DSC/TGA) Mesin Uji *Differential Scanning Calorimetry* (DSC) dan *Thermogravimetric Analysis* (TGA) merupakan metode untuk memeriksa sifat panas dari material Zn_(1-x)Al_xO.

3.3 Diagram Alir Penelitian

Berikut merupakan diagram alir penelitian ini

Gambar 3. 17 Diagram Alir Penelitian

3.4 Prosedur Penelitian

Penelitian dimulai dengan melakukan preparasi alat dan bahan. Adapun preparasi yang dilakukan adalah menimbang ZnO dan Al₂O₃ dengan Al₂O₃ sebanyak 0.2 at% ZnO, selain itu melarutkan HCl 37% dalam 100 ml aquades. Pertama-tama Al₂O₃ dan ZnO dilarutkan HCl yang sudah dilarutkan dengan menggunakan *magnetic stirrer* selama 1.5 jam pada temperatur kamar. Setelah itu NH₄OH dimasukkan perlahan sembari diaduk

dengan *magnetic stirrer* selama 25 menit pada temperatur 60°C. Adapun reaksi yang terjadi adalah sebagai berikut:

$ZnO_{(s)} + 2HCl_{(l)} \rightarrow ZnCl_{2(l)} + H_2O_{(l)}$	(3.1)
$ZnCl_{2(s)} + 2NH_4OH_{(1)} \rightarrow Zn(OH)_{2(s)} + 2NH_4Cl_{(1)}$	(3.2)
$Zn^{2+}(l) + 4OH^{-} \rightarrow Zn(OH)_{4(l)}$	(3.3)
$Zn(OH)_{4(l)} \rightarrow ZnO_{(s)} + H_2O_{(l)} + 2OH_{(l)}^-$	(3.4)

$$\begin{array}{l} Al_2O_{3(s)} + 6HCl_{(l)} \rightarrow 2AlCl_{3(l)} + 3H_2O_{(l)} \\ 2AlCl_{3(s)} + NH_4OH_{(l)} \rightarrow Al(OH)_{3(l)} + 2NH_4Cl_{(l)} \end{array}$$
(3.5)
(3.6)

Setelah selesai, endapkan larutan kemudian dicuci dengan aquades dan difiltrasi dengan menggunakan kertas saring. Setelah itu dimasukkan ke dalam *horizontal furnace* untuk disintering dengan temperatur 700, 800, 900 dan 950°C selama 2 jam. Dilakukan pengujian terhadap sampel dengan menggunakan *Scanning Electron Microscopy* (SEM), *X-Ray Diffraction* (XRD), pengujian konduktivitas listrik dengan LCR meter, dan pengujian laku panas dengan mesin uji *Differential Scanning Calorimetry/Thermogravimetric Analysis* (DSC/TGA).

3.5 Proses Pengujian

1. Uji X-Ray Diffractometer (XRD)

XRD (**Gambar 3.18**) merupakan salah satu alat uji material yang digunakan untuk mengidentifikasi fasa yang dapat berupa unsur atau senyawa (analisis kualitatif), menentukan komposisi, mengestimasi ukuran kristal, *lattice parameter*, dan *microstrain* (analisis kuantitatif). Pengujian XRD memanfaatkan difraksi dari *X-ray* atau sinar-X.Generator bertegangan tinggi memiliki fungsi sebagai pembangkit daya sumber sinar-X pada bagian x-ray tube. Sampel berbentuk serbuk yang telah dimampatkan diletakkan di atas wadah yang dapat diatur posisinya. Lalu berkas sinar-X ditembak ke sampel dan didifraksikan oleh sampel, masuk ke alat pencacah. Intensitas difraksi sinar-X

ditangkap oleh pendeteksi dan diterjemahkan dalam bentuk kurva. Dalam penelitian ini, analisis difraksi sinar-X digunakan untuk mengidentifikasi fasa $Zn_{(1-x)}Al_xO$ yang terbentuk pada sampel dari hasil co-presipitasi. Alat yang digunakan XRD pada Teknik Material dan Metalurgi FTI-ITS dengan Cu-K α 1.54060 Å dan generator 30mA, 40kV. Pemindaian direkam dari 10° menuju 90° (2 θ) dengan step 0.017° dan waktu 10s setiap step.

Hasil XRD berupa grafik dengan sumbu y intensitas dan sumbu x sudut pengukuran (2θ) kemudian dicocokkan dengan ICDD (International Centre for Diffraction Data) dibantu dengan software HighScore untuk mengetahui fasa dan struktur Kristal yang sesuai. Selain itu dilakukan penghitungan lebih lanjut untuk mendapatkan *lattice parameter*, menggunakan persamaan Scherrer untuk mendapatkan ukuran kristal dan Williamson-Hall untuk mendapatkan *microstrain*.

Gambar 3. 18 X-Ray Diffractometer (XRD)

2. Uji Scanning Electron Microscopy (SEM)

Pengujian SEM (**Gambar 3.19**) menggunakan alat *PAN Analytical Scanning Electron Microscope* yang dilakukan di Laboratorium Karakterisasi Teknik Material dan Metalurgi ITS. Pengujian SEM dilakukan untuk mengamati morfologi sampel. Pengujian SEM dapat diiringi dengan pengujian komposisi pada satu titik yaitu EDX. Adapun SEM merupakan jenis mikroskop

elektron yang menampilkan gambar permukaan sampel dengan memindai sinar elektron berenergi tinggi dalam pola raster scan. Elektron berinteraksi dengan atom – atom menghasilkan sinyal pantulan yang berisi informasi tentang topografi permukaan sampel. SEM menghasilkan gambar resolusi sangat tinggi dari permukaan sampel.

Sebelum diuji, sampel pertama-tama dipreparasi. Untuk sampel uji SEM terutama yang berbentuk serbuk ditempelkan pada *carbon tape*. Pada sampel semikonduktor ini diperlukan *sputter coating* dengan Au. *Sputter coating* ini berfungsi untuk melapisi sampel, sehingga memiliki layer yang bersifat konduktif agar dapat memantulkan sinyal elektron dengan baik untuk dibaca topografi permukaannya.

Gambar 3. 19 Scanning Electron Microscopy (SEM)

3. Uji Sifat Listrik

Pengujian listrik dilakukan untuk mendapatkan nilai konduktivitas listrik dengan alat LCR Meter (**Gambar 3.20**). Pengujian dilakukan di salah satu Laboratorium di Fisika FMIPA, ITS. Pengujian dilakukan dengan menjepit sampel dan diberikan arus dengan frekuensi 1-100 khz. Sampel berbentuk pellet dengan ukuran diameter 1 cm dan tinggi 0.2-0.5 cm yang sebelum pengujian diberikan *silver paste* pada permukaan bagian atas dan bawah. Hasil dari pengujian ini berupa nilai tahanan, impedansi, dan kapasitor. Nilai konduktivitas listrik bisa didapatkan dari nilai tahanan, luas penampang, dan ketebalan sampel.

Gambar 3. 20 LCR Meter

4. Uji Sifat Termal

Pengujian TGA dilakukan untuk mengetahui stabilitas prinsipnya Pada metode ini mengukur termal sampel. berkurangnya massa material ketika dipanaskan dari temperatur kamar hingga temperatur tinggi. Alat TGA dilengkapi dengan timbangan mikro di dalamnya sehingga secara otomatis berat sampel setiap saat bisa terekam dan ditampilkan dalam bentuk grafik. Pelaksanaan pengujian ini dilakukan dengan menempatkan sampel pada crucible di atas meja putar yang ada di dalam mesin. Selanjutnya dilakukan pengisian data berat awal untuk masing masing sampel ke dalam sistem komputer di mana berat maksimal 20 mg. Kondisi dalam mesin dialiri udara kering dari tabung gas dengan kecepatan pengaliran tertentu. Program pengoperasian mesin berupa kecepatan pemanasan, jarak temperatur, dan pendinginan dilakukan dengan melalui pemasukan data ke komputer. Analisa dilakukan dengan menaikkan temperatur secara bertahap dan analisa berat terhadap temperatur, sehingga didapatkan kurva hasil pengujian berupa fungsi temperatur terhadap berat sampel. Pada pengujian ini temperatur yang digunakan dimulai dari 25°C hingga 900°C dengan kecepatan kenaikan temperatur sebesar 10°C/menit tanpa aliran gas inert. Mesin uji TGA dapat dilihat pada Gambar 3.21.

Setelah didapatkan hasil TGA, maka dengan menggunakan Software STARe dapat dikonversikan menjadi

kurva DSC atau perubahan *heat flow* akibat pemanasan, pendinginan atau pun *holding*.

Gambar 3. 21 Mesin DSC/TGA

3.6 Rancangan Penelitian

Rancangan penelitian yang akan dilakukan adalah sebagai berikut:

Kode Sampel	Temperatur Sintering	SEM	XRD	DSC/TGA	LCR Meter
А	700°C	V	v	V	V
В	800°C	V	v	V	V
C	900°C	V	v	V	V
D	950°C	v	v	V	v

 Tabel 3. 1 Rancangan Penelitian

BAB IV ANALISIS DATA DAN PEMBAHASAN

4.1 Sintesis Serbuk ZnO

Proses kopresipitasi serbuk Al-*doped* ZnO dalam penelitian ini merujuk pada penelitian yang telah dilakukan sebelumnya oleh Giovannelli (2014) dan Zhang *et al.* (2014). Terdapat dua jenis serbuk ZnO yang disintesis, yang pertama adalah serbuk ZnO tanpa doping (0 at% Al) dan serbuk ZnO dengan doping (2 at% Al). Adapun Al yang digunakan berasal dari serbuk Al₂O₃, dengan perhitungan terdapat pada lampiran A.

4.1.1 Serbuk ZnO tanpa Doping

Proses koresipitasi dimulai dengan melarutkan serbuk ZnO sebanyak 5 gram dengan 8 ml HCl (37% atau setara dengan 10,2M) dalam 100ml aquades. Larutan diaduk dengan *magnetic stirrer* selama 90 menit pada temperatur kamar. Reaksi yang terjadi adalah sebagai berikut:

$$ZnO_{(s)} + 2HCl_{(l)} \rightarrow ZnCl_{2(l)} + H_2O_{(l)}$$

$$(4.1)$$

ZnO merupakan serbuk berwarna putih dan ketika larut dalam bentuk Zn²⁺ dengan penambahan HCl larutan akan berwarna bening seperti pada **Gambar 4.1** (Vogel, 1941). Penambahan HCl membuat pH larutan mencapai 1.

Gambar 4. 1 Hasil penambahan larutan HCl pada serbuk ZnO

Setelah itu, larutan ini dicampur dengan agen kopresipitasi, yaitu NH₄OH (25% atau setara dengan 10,5M) sebanyak 11,5ml dengan penambahan perlahan sembari diaduk oleh *magnetic stirrer* selama 25 menit untuk menghasilkan endapan seng hidroksida, melalui reaksi:

$$ZnCl_{2(s)} + 2NH_4OH_{(l)} \rightarrow Zn(OH)_{2(s)} + 2NH_4Cl_{(l)}$$

$$Zn^{2+}_{(l)} + 4OH^{-} \rightarrow Zn(OH)_4^{2-}_{(l)}$$
(4.2)
(4.3)

 $Zn(OH)_{4(l)} \rightarrow ZnO_{(s)} + H_2O_{(l)} + 2OH_{(l)}^{-}$ (4.4)

Penambahan NH₄OH dilakukan pada temperatur 60°C untuk mempercepat reaksi yang terjadi. Endapan seng hidroksida berwarna putih susu seperti pada **Gambar 4.2** (Vogel, 1941). Penambahan NH₄OH membuat larutan mencapai pH 7. NH₄OH cenderung luruh di dalam air menghasilkan OH⁻ dan NH₄⁺. Karena OH⁻ banyak, larutan yang mula-mula terbentuk endapan Zn(OH)₂ dapat dilarutkan kembali oleh OH⁻ yang berlebih dan akan menghasilkan Zn(OH)₄^{2–}. Zn(OH)_{2(s)} berlaku seperti reservoir yang menjaga konsentrasi Zn²⁺ sehingga nukleasi bisa terjadi (Purwaningsih et.al, 2016).

Gambar 4. 2 Hasil penambahan NH₄OH untuk sampel ZnO

Kemudian, endapan dan larutan yang masih menyatu disaring dengan kertas saring dan dilakukan pencucian sebanyak 5 kali oleh aquades untuk menghilangkan sisa-sisa NH₄OH yang tidak bereaksi dan NH₄Cl. Endapan yang terbentuk dikeringkan di

atas *hot-plate* dengan temperatur 100°C selama 60 menit sebelum disintering di dalam *furnace* pada temperatur 900°C dengan waktu tahan 120 menit.

Hasil akhir ZnO setelah dipanaskan berwarna putih, sesuai dengan warna asli ZnO (Vogel, 1941).

Gambar 4. 3 Hasil akhir ZnO setelah dipanaskan

4.1.2 Serbuk ZnO dengan Doping Al

Proses kopresipitasi serbuk ZnO dengan doping Al persis dengan proses kopresipitasi serbuk ZnO. Proses kopresipitasi dimulai dengan melarutkan 5 gram serbuk ZnO dan 0.0639 gram Al₂O₃ menggunakan 8,3 ml HCl (37%) dalam 100ml aquades. Dilakukan pengadukan dengan *magnetic stirrer* selama 90 menit pada temperatur kamar dengan reaksi yang terjadi selain ZnO adalah reaksi Al₂O₃ dengan HCl, sebagai berikut:

$$Al_2O_{3(s)} + 6HCl_{(l)} \rightarrow 2AlCl_{3(l)} + 3H_2O_{(l)}$$
 (4.3)

Warna larutan yang terbentuk bening akan tetapi tidak sebening larutan yang didapatkan ketika hanya melarutkan serbuk ZnO seperti pada **Gambar 4.4**. Penambahan HCl membuat pH larutan mencapai 1.

Gambar 4. 4 Hasil penambahan larutan HCl pada serbuk ZnO dan Al₂O₃

Setelah itu, larutan dicampur dengan agen kopresipitasi yaitu NH4OH (25%) sebanyak 11.5 ml dengan penambahan perlahan sembari diaduk oleh *magnetic stirrer* selama 25 menit untuk mengendapkan hidroksida seng dan terjadinya reaksi berikut:

$$2\text{AlCl}_{3(s)} + \text{NH}_4\text{OH}_{(l)} \rightarrow \text{Al}(\text{OH})_{3(l)} + 2\text{NH}_4\text{Cl}_{(l)}$$
(4.4)

Penambahan NH₄OH dilakukan pada temperatur 60°C. Endapan yang terbentuk berwarna putih susu dengan pH akhir mencapai 7 seperti pada Gambar 4.5.

Gambar 4. 5 Hasil penambahan NH₄OH untuk sampel Al-*doped* ZnO

Setelah itu dilakukan pengendapan, penyaringan, pencucian, pengeringan dengan cara yang sama seperti dilakukan pada sampel tanpa doping. Kemudian sampel dipanaskan pada

furnace dengan temperatur *sintering* yang bervariasi, yaitu 700, 800, 900, dan 950°C.

Gambar 4. 6 Hasil akhir Al-*doped* ZnO setelah dipanaskan pada temperatur (a) 700°C (b) 800°C (c) 900°C dan (d) 950°C

Hasil akhir Al-*doped* ZnO setelah disintering pada temperatur 700°C dan 800°C berwarna putih, sedangkan warna serbuk dengan temperature sintering 900°C dan 950°C adalah putih-jingga. Warna putih-jingga dapat disebabkan oleh vakansi oksigen (Hassani et.al., 2002).

4.2 Karakterisasi Hasil Sintesis

Karakterisasi hasil sintesis dilakukan menggunakan pengujian XRD dan SEM. XRD digunakan untuk mengidentifikasi fasa yang dapat berupa unsur atau senyawa (analisis kualitatif), menentukan komposisi, mengestimasi ukuran kristal, *lattice*

parameter, dan *microstrain* (analisis kuantitatif). Sedangkan SEM-EDX digunakan untuk mengamati morfologi sampel, mengetahui komposisi dan distribusi unsur penyusun.

4.2.1 Hasil Uji XRD ZnO Tanpa dan dengan Doping

Hasil uji XRD pada ZnO tanpa *doping* dan dengan *doping* Al 2at% ditunjukkan pada **Gambar 4.7**. Pada hasil analisis kualitatif XRD untuk ZnO tanpa dan dengan *doping* menggunakan metode kopresipitasi secara keseluruhan terdapat satu fasa yang mendominasi yakni ZnO yang bersesuaian dengan ICDD (01-078-3322) dengan struktur heksagonal wurtzite. Atom oksigen tersusun dalam tipe *hexagonal close packed* (HCP) dengan atom seng menempati setengah situs tetrahedral. Atom Zn dan O berkoordinasi secara tetrahedral terhadap satu dan yang lainnya dan dengan posisi yang ekuivalen (Bindu & Thomas, 2014). Adapun ketiga *peak* paling tinggi memiliki bidang (1 0 1), (1 0 0), dan (0 0 2). Peak yang lancip mengindikasikan sifat kristalin.

Gambar 4. 7 Perbandingan Hasil Uji XRD ZnO 0 dan 2 at% Al

Pada ZnO tanpa *doping*, puncak tertinggi fasa ZnO memiliki intensitas sebesar 9999.90 counts pada 2θ 36.2343°. Ketika ditambahkan *doping* Al sebesar 2 at%, intensitas puncak tertinggi fasa ZnO menurun menjadi 8139.87 counts pada 2θ 36.2570°.

Dari hasil uji XRD dapat dilakukan analisis kuantitatif untuk mengestimasi nilai *lattice parameter* untuk struktur *hexagonal wurtzite*. Nilai *a* dan *b* didapatkan dari bidang (1 0 0) dengan persamaan:

$$a = b = \frac{\lambda}{\sqrt{3}sin\theta} \tag{4.5}$$

Sedangkan, nilai c didapatkan dari bidang (0 0 2) dengan persamaan:

$$c = \frac{\lambda}{\sin\theta} \tag{4.6}$$

Tabel 4. 1 Nilai Lattice Parameter dan Rasio c/a ZnO Tanpa danDengan Doping

at%	a (Å)	b (Å)	<i>c</i> (Å)	c/a
0	3.2519	3.2519	5.2077	1.6014
2	3.2494	3.2494	5.2044	1.6016

Nilai *a*, *b*, *c* dari ZnO tanpa doping dan dengan doping 2at% Al dituliskan pada **Tabel 4.1**. Terlihat bahwa terdapat sedikit penyimpangan dari *lattice parameter* akibat penambahan doping Al. Hal ini bisa terjadi karena keberadaan vakansi oksigen, cacat titik, atau karena dislokasi (Kayani, et al., 2015). Menurut Akdag (2016), perubahan pada nilai *lattice parameter* menunjukkan bahwa proses doping berhasil dilakukan. Sedikit perubahan pada rasio *c/a* menunjukkan bahwa *unit cell* tetap memiliki struktur heksagonal wurtzite.

Profil puncak XRD dapat digunakan untuk mengevaluasi peak broadening dengan ukuran kristal dan regangan kisi karena

dislokasi. Mengestimasi ukuran kristal dapat dilakukan dengan menggunakan metode Scherrer seperti pada persamaan berikut:

$$D = \frac{\kappa\lambda}{\beta cos\theta}$$
(4.7)

nilai *D* pada persamaan (4.7) merupakan diameter kristal (nm), tegak lurus terhadap bidang, yang mana berhubungan terhadap puncak difraksi yang terukur, K merupakan konstanta *Scherrer*, dengan nilai 0.9, λ adalah panjang gelombang yang digunakan pada pengujian XRD yaitu 1.54060 Å, θ adalah posisi sudut puncak, dan β adalah lebar pada FWHM (*full width at half its maximum intensity*) dalam radian. Pada pendekatan konvensional, lebar terintegrasi dari profil murni (β) dipisahkan dari hasil profil difraksi sampel (B) dengan asumsi profil Gaussian atau pun Cauchy. Nilai B dapat dihitung dengan menggunakan *software* Origin. Nilai β dengan metode Gaussian bisa didapatkan dari persamaan:

$$\beta^2 = B^2 - b^2 \tag{4.8}$$

dengan nilai b merupakan lebar profil instrument yang didapatkan dari material standard yaitu silicon pada bidang (1 1 1) dengan nilai 0.00234 radian. Adapun pengitungan ukuran kristal dihitung menggunakan *peak* dengan intensitas paling tinggi (1 0 1), seperti pada **Tabel 4.2**.

at%	Fasa	Intensitas	B	β (rad)	Cos θ	D (nm)
		(Cts)	(°2Th)			
0	ZnO	9999.9	0.16359	0.001638	0.950381	89.04326
2	ZnO	8139.87	0.00308	0.002003	0.950315	72.85935

Tabel 4. 2 Ukuran Kristal ZnO Tanpa dan dengan Doping

Dari **Tabel 4.2**, dapat terlihat bahwa nilai ukuran kristal ZnO menurun dengan penambahan konsentrasi Al, hal ini bersesuaian dengan *paper* yang telah ditulis sebelumnya oleh Ghosh, et al.

(2013) dan Khan, et al. (2013). Penurunan ukuran kristal dengan peningkatan konsentrasi Al disebabkan karena subtitusi ion Al pada Zn dalam kisi ZnO (Ghazai, Salman dan Jabbar, 2016). Jarijari ionik Al³⁺ (0.39 Å) lebih kecil dibandingkan dengan jarijari ionik Zn²⁺ (0.6 Å) yang menyebabkan *unit cell* dari ZnO menyusut (Shui, 2009).

Regangan kisi (ε) akibat ketidaksempurnaan kristal dan distorsi dapat dihitung menggunakan pendekatan Williamson-Hall seperti pada persamaan:

$$\varepsilon = \frac{\beta_{hkl}}{4tan\theta} \tag{4.9}$$

Sehingga, didapatkan nilai *microstrain* untuk sampel tanpa doping sebesar 1.2510×10^{-3} dan untuk sampel dengan doping sebesar 1.5287×10^{-3} . Peningkatan nilai *microstrain* karena pemberian *doping* bersesuaian dengan pendapat Gautam, et al. (2015). Hal ini mengindikasikan bahwa Al telah tergabung ke dalam kisi ZnO.

4.2.2 Hasil Uji XRD Al-*doped* ZnO dengan Berbagai Temperatur Sintering

Hasil uji XRD pada ZnO dengan berbagai temperatur sintering, yaitu 700, 800, 900, dan 950°C diberikan pada **Gambar 4.8**. Pada hasil analisis kualitatif XRD untuk 2% at Al-*doped* ZnO dengan menggunakan metode kopresipitasi secara keseluruhan terdapat satu fasa yang mendominasi yakni ZnO, bersesuaian dengan ICDD (01-078-3322) dengan struktur heksagonal wurtzite. Ketiga *peak* paling tinggi memiliki bidang (1 0 1), (1 0 0), dan (0 0 2). Peak yang lancip mengindikasikan sifat kristalin.

Puncak tertinggi dari Al-*doped* ZnO yang disintering pada temperatur 700°C memiliki intensitas 8488.41 counts pada 20 36.2445°, sedangkan pada temperatur sintering 800°C, puncak tertinggi memiliki intensitas 7437.11 counts pada 20 36.2418°, puncak tertinggi pada temperature sintering 900°C memiliki

intensitas 8139.87 counts pada 20 36.2570° , dan puncak tertinggi pada temperature sintering 950°C memiliki intensitas 10028.96 counts dengan posisi 20 36.2444° .

Dari hasil uji XRD dapat dilakukan analisis kuantitatif untuk mengestimasi nilai *lattice parameter* untuk struktur *hexagonal wurtzite* dengan menggunakan persamaan (4.5) dan (4.6).

Tabel 4. 3 Nilai Lattice Parameter dan Rasio c/a Al	l-doped
ZnO dengan Variasi Temperatur Sintering	

Temperatur	a (Å)	b (Å)	c (Å)	c/a
Sintering (°C)				
700	3.2510	3.2510	5.2072	1.6017
800	3.2511	3.2511	5.2059	1.6013
900	3.2494	3.2494	5.2044	1.6016
950	3.2510	3.2510	5.2066	1.6015

Perubahan nilai *a*, *b*, *c* untuk ZnO yang didoping Al ditunjukkan pada **Tabel 4.3**. Sedikit perbedaan pada nilai *lattice parameter* karena variasi temperatur sintering dapat dikaitkan dengan kehadiran vakansi oksigen, cacat titik, atau dislokasi. *Lattice parameter* secara umum mengalami peningkatan dengan peningkatan temperature *sintering* kecuali pada temperature 800-900°C mengalami sedikit penurunan kemudian meningkat kembali pada temperature 950°C (Kayani *et al.*, 2015).

Berikutnya melakukan analisis kuantitatif untuk mengestimasi ukuran kristal dengan menggunakan persamaan Scherrer seperti yang dijelaskan pada sub bab 4.2.1. Ukuran Kristal Al-*doped* ZnO dengan variasi temperatur sintering dijabarkan pada **Tabel 4.4**.

Tabel	4.	4	Ukuran	Kristal	Al-doped	ZnO	dengan	Variasi
Tempe	ratı	ır S	Sintering					

Temp.	Fasa	Intensitas	В	β (rad)	Cos 0	D (nm)
(°C)		(Cts)	(°2Th)			
700	ZnO	8488.41	0.182	0.003178	0.950351	67.84722
800	ZnO	7437.11	0.18387	0.00321	0.950362	66.36619
900	ZnO	8139.87	0.17638	0.00308	0.950315	72.85935
950	ZnO	10028.96	0.16549	0.00289	0.950355	86.04329

Dengan peningkatan temperatur sintering, ukuran Kristal Al-doped ZnO cenderung meningkat, seperti hasil penelitian yang dilakukan oleh Kayani (2015). Terdapat beberapa kemungkinan yang menyebabkan hal ini. Menurut Fang, et al. (2005), pada peningkatan temperatur, energi yang diberikan untuk difusi atom lebih banyak dan tersisa pada *site* dalam kisi kristal, dan butir dengan energi permukaan lebih rendah akan menjadi besar.

Regangan kisi (ε) dapat dihitung menggunakan pendekatan Williamson-Hall seperti pada persamaan (4.9). Sehingga didapatkan nilai regangan kisi seperti pada **Tabel 4.5**.

ε
(x10 ⁻³)
2.4264
2.4511
2.3510
2.2066

Tabel 4.5 Regangan Kisi Al-doped ZnO dengan VariasiTemperatur Sintering

4.2.3 Hasil Uji SEM-EDX ZnO dengan dan Tanpa Doping

Uji SEM digunakan untuk melihat morofologi, distribusi, dan bentuk partikel serbuk ZnO tanpa doping dan dengan doping. Selain itu, dilakukan pengujian EDX juga untuk mengetahui persebaran unsur penyusun pada salah satu titik yang diamati.

Gambar 4. 9 Hasil Uji SEM ZnO (Perbesaran 15000x)

Dari **Gambar 4.9** dapat terlihat bahwa bentuk dan ukuran partikel secara keseluruhan sama, yaitu *sphere* dan terikat dengan partikel-partikel di sekitarnya membentuk partikel yang lebih besar. Hal ini disebabkan oleh proses *sintering* yang dilakukan pada temperatur 900°C.

Gambar 4. 10 Hasil Uji SEM Al-*doped* ZnO (Perbesaran 15000x)

Pada **Gambar 4.10** dapat dilihat hasil uji SEM untuk sampel dengan *doping* 2 at% Al. Akibat penambahan Al membuat bentuk dan ukuran partikel tidak homogen. Terdapat partikel

dengan ukuran cukup besar dan dikelilingi oleh partikel-partikel yang lebih kecil.

Gambar 4. 11 Hasil EDX Al-doped ZnO

Hasil EDX dari ZnO dengan doping 2at% Al diberikan pada **Gambar 4.11**. Dari hasil EDX terlihat bahwa terdapat unsur Al sebanyak 01.29 at% pada sampel meskipun tidak terdeteksi pada XRD. Hal ini dapat mengindikasikan bahwa tidak ada fasa lain yang terbentuk selain ZnO dan proses *doping* berhasil dilakukan.

4.2.4 Hasil Uji SEM-EDX Al-*doped* ZnO dengan Berbagai Temperatur Sintering

Uji SEM digunakan untuk melihat morofologi, distribusi, dan bentuk partikel serbuk Al-*doped* ZnO dengan temperatur *sintering* yang berbeda-beda. Hasil SEM dilengkapi dengan pengujian EDX untuk mengetahui persebaran unsur penyusun pada salah satu titik yang diamati.

Gambar 4.12 merupakan hasil SEM untuk serbuk ZnO yang didoping 2at% Al dan mendapat perlakuan *sintering* pada temperatur 700°C. Bentuk partikel yang terbentuk beragam, meliputi *sphere*, *rod*, dan *platelet* dengan ukuran partikel berbedabeda. Setelah dilakukan pengukuran terhadap beberapa bentuk partikel, maka diketahui bahwa untuk partikel berbentuk *spehere*,

ukuran partikel berada pada rentang sekitar 600-730 nm, sedangkan untuk partikel berbentuk *rod*, memiliki panjang sekitar 0.9-3 μ m. Hasil SEM menunjukkan topografi partikel yang mengalami aglomerasi.

Gambar 4. 12 Hasil Uji SEM Al-*doped* ZnO pada Temperatur Sintering 800°C (a) Perbesaran 5000x (b) Perbesaran 15000x (c) Ukuran Partikel

Distribusi dan komposisi unsur penyusun sampel Aldoped ZnO pada temperatur sintering 700°C ditunjukkan pada **Gambar 4.13**. Komposisi penyusun partikel terdiri dari Zn, O, dan Al. Terlihat bahwa Al tidak tersebar merata ketika dilakukan *mapping*.

Gambar 4. 13 Hasil Uji EDX Al-*doped* ZnO pada Temperatur Sintering 700°C

Gambar 4.14 menunjukkan hasil uji SEM Al-*doped* ZnO dengan perlakuan *sintering* pada temperature 800°C. Pada perbesaran 15000x terlihat bahwa sebagian besar partikel berbentuk *sphere* yang berbentuk *irregular* akibat terbentuknya *necking* di antara partikel satu dengan partikel lain di sekitarnya. Adapun ukuran dari partikel yang berbentuk *irregular* cukup variatif berkisar antara 0.85-1.95 μ m. Sampel mengalami sedikit aglomerasi, akan tetapi berbeda dari sampel yang mengalami perlakuan *sintering* pada temperature 700°C. Aglomerasi pada sampel ini terlihat lebih sedikit dan berada di sekitar partikel-partikel yang berbentuk *irregular*.

LAPORAN TUGAS AKHIR Jurusan Teknik Material dan Metalurgi

Gambar 4. 14 Hasil Uji SEM Al-*doped* ZnO pada Temperatur Sintering 800°C (a) Perbesaran 5000x (b) Perbesaran 15000x (c) Ukuran Partikel

Gambar 4. 15 Hasil Uji EDX Al-*doped* ZnO pada Temperatur Sintering 800°C

Distribusi dan komposisi unsur penyusun sampel Aldoped ZnO pada temperatur sintering 800°C ditunjukkan pada **Gambar 4.15**. Komposisi penyusun partikel terdiri dari Zn, O, dan Al. Terlihat bahwa Al lebih tersebar merata dibandingkan dengan distribusi Al pada temperature sintering 700°C ketika dilakukan *mapping*.

Gambar 4.16 menunjukkan hasil uji SEM Al-*doped* ZnO dengan perlakuan *sintering* pada temperature 900°C. Hasil sangat dominan dengan partikel berbentuk *irregular* dengan ukuran yang lebih variatif dibandingkan sampel yang diberikan perlakuan *sintering* pada temperature 800°C. Ukuran berkisar antara 0.49-2.1 μ m. Adapun aglomerasi yang terjadi pada sampel ini jauh lebih sedikit dan partikel tersusun lebih padat dibandingkan dengan sampel yang disinterring pada temperature 700°C dan 800°C.

Gambar 4. 16 Hasil Uji SEM Al-*doped* ZnO pada Temperatur Sintering 900°C (a) Perbesaran 5000x (b) Perbesaran 15000x (c) Ukuran Partikel

LAPORAN TUGAS AKHIR Jurusan Teknik Material dan Metalurgi

Gambar 4. 17 Hasil Uji EDX Al-*doped* ZnO pada Temperatur Sintering 900°C

Gambar 4. 18 Hasil Uji SEM Al-*doped* ZnO pada Temperatur Sintering 950°C (a) Perbesaran 5000x (b) Perbesaran 15000x (c) Ukuran Partikel

63.32

ZAF

Distribusi dan komposisi unsur penyusun sampel Aldoped ZnO pada temperatur sintering 900°C ditunjukkan pada **Gambar 4.17**. Komposisi penyusun partikel terdiri dari Zn, O, dan Al. Terlihat bahwa Al tersebar merata ketika dilakukan *mapping*.

Gambar 4.18 menunjukkan hasil uji SEM Al-*doped* ZnO dengan perlakuan *sintering* pada temperature 950°C. Partikel cenderung berbentuk *sphere* berukuran kecil 0.67-0.88 µm yang mengalami aglomerasi dan tidak jauh berbeda dengan sampel Al-*doped* ZnO yang diberikan perlakuan *sintering* pada temperature 700°C.

Gambar 4. 19 Hasil Uji EDX Al-*doped* ZnO pada Temperatur Sintering 950°C

Distribusi dan komposisi unsur penyusun sampel Aldoped ZnO pada temperatur sintering 950°C ditunjukkan pada **Gambar 4.19**. Komposisi penyusun partikel terdiri dari Zn, O, dan Al. Terlihat bahwa Al tidak tersebar merata ketika dilakukan

mapping. Al mengumpul di beberapa titik pada gambar yang diambil.

Hasil SEM dari keempat sampel digabung dalam Gambar 4.20. Secara keseluruhan sampel mengalami aglomerasi yang dialami juga oleh Giovannelli (2014) dan Pookmanee (2010). Kontrol utama yang menyebabkan partikel individu membentuk aglomerat yang lebih besar adalah gaya inter-particle. Laju aglomerasi bergantung pada tabrakan antar partikel per waktu. Tabrakan ini bisa terjadi karena konveksi panas dan gaya geser vang disebabkan oleh proses pengadukan. Keseimbangan dari gaya ini menentukan apakah partikel akan melekat ketika kontak dengan partikel lain. Jika terdapat gaya tarik, maka partikel akan cenderung untuk membentuk ikatan dan mengalami aglomerasi (Zhongli, 2002). Selama proses pemanasan, aglomerat memiliki kecenderungan untuk sinter bersama dan membentuk partikel yang lebih besar, yang tidak hanya menghilangkan driving force untuk mengalami densifikasi tetapi juga membentuk pori yang besar antara aglomerat yang sulit untuk dieliminasi (Barsoum, 1997).

Ukuran partikel pada sampel cukup beragam. Kontrol ukuran partikel pada metode kopresipitasi terbatas karena faktor kinetik dalam reaksi yang dapat berubah seiring dengan pertumbuhan kristal. Secara garis besar terdapat dua tahap dalam teknik kopresipitasi: pertama, konsentrasi spesies yang mencapai keadaan sangat jenuh untuk pembentukan nukleasi; kedua, pertumbuhan inti dengan difusi zat terlarut (Grumezescu, 2016).

Dari membandingkan keempat hasil *sintering*, ukuran partikel cenderung bertambah besar dengan meningkatnya temperatur. Hal ini bersesuaian dengan teori yang dituliskan M.W. Barsoum (1997). Adapun *driving force* dalam solid-state sintering adalah reduksi energi berlebih terkait permukaan yang mana dapat terjadi dalam dua mekanisme yaitu mengurangi luas permukaan dengan meningkatkan ukuran rata-rata dari partikel (*coarsening*)

atau mengeliminasi permukaan solid/uap dan pembentukan batas butir diikuti oleh pertumbuhan butir (*densification*).

Gambar 4. 20 Perbandingan Hasil Uji SEM Al-*doped* ZnO pada Temperatur Sintering (a) 700°C (b) 800°C (c) 900°C (d) 950°C pada perbesaran 15000x

4.3 Hasil Uji Konduktivitas Listrik

Sebelum melakukan uji tahanan listrik, sampel yang berbentuk serbuk perlu dikompaksi terlebih dahulu dengan memberikan tekanan sebesar 250 bar selama 3 menit pada sampel dengan massa 1.5gram di dalam dies dengan diameter 1 cm. Setelah dikompaksi, kedua permukaan sampel dioleskan *silverpaste* seperti pada **Gambar 4.21**.

Gambar 4. 21 Hasil Kompaksi Spesimen dengan temperatur sintering (A) 700 (B) 800 (C) 900 (D) 950°C

Dari hasil pengujian LCR meter, didapatkan nilai *R* atau hambatan dari sampel. Sehingga, data perlu diolah terlebih dahulu dengan menggunakan persamaan:

$$\rho = \frac{R.A}{l} \tag{4.10}$$

$$\sigma = \frac{1}{\rho} \tag{4.11}$$

R merupakan nilai hambatan (Ω) yang dipengaruhi oleh konfigurasi spesimen, *A* merupakan luas penampang spesimen (m²), *l* merupakan tebal spesimen, dan ρ merupakan resistivitas bahan yang tidak bergantung pada geometri spesimen (Ω m). Nilai konduktivitas σ (S/m) berbanding terbalik dengan nilai ρ .

Gambar 4.22 menunjukkan pengaruh pemberian doping terhadap konduktivitas listrik. Terlihat dari grafik bahwa material yang diberikan doping sebesar 2at% memiliki konduktivitas yang tinggi sebesar 4.53×10^{-4} S/m dibandingkan dengan tanpa doping sebesar 1.42×10^{-5} S/m. Pada dasarnya, ZnO tanpa *doping*

merupakan semikonduktor intrinsik tipe-n (Xiao Wei Sun dan Yi Yang, 2012)

Gambar 4. 22 Perbandingan Hasil Uji Konduktivitas Listrik Sampel Tanpa dan dengan Doping 2at% Al pada Temperatur Sintering 900°C

Ketika Zn yang memiliki elektron valensi +2 didoping Al yang memiliki elektron valensi +3 dapat meningkatkan jumlah elektron bebas seperti pada persamaan berikut:

$$Al_2O_3 \xrightarrow{ZnO} 2Al_{Zn}^{\bullet} + 2e' + 2O_0^x + \frac{1}{2}O_2 \uparrow \qquad (4.12)$$

Untuk setiap elektron bebas terdapat tingkat energi tunggal yang terletak di antara *forbidden band gap* tepat di bawah pita konduksi yang disebut sebagai donor dan pada pita valensi tidak terbentuk *hole*. Dalam kondisi ini elektron menjadi *carrier* utama, sedangkan *hole* menjadi *carrier* minor (Callister, 2007). Menurut D. Gautam et al. (2015), sampel ZnO tanpa doping memiliki konsentrasi *carrier* yang lebih rendah dibandingkan dengan sampel ZnO tanpa doping sehingga nilai konduktivitas untuk sampel ZnO tanpa doping lebih rendah dari konduktivitas sampel dengan doping, berdasarkan persamaan berikut:

$$\sigma = n. e. \mu e$$

Dengan n adalah jumlah elektron bebas, e adalah besar muatan elektron (-1.6x10⁻¹⁹C) dan μe adalah mobilitas elektron.

Gambar 4. 23 Perbandingan Hasil Uji Konduktivitas Listrik Sampel dengan Variasi Temperatur Sintering (700, 800, 900, dan 950°C)

Gambar 4.23 menunjukkan pengaruh temperatur sintering terhadap konduktivitas listrik. Dari grafik terlihat bahwa konduktivitas listrik tertinggi dihasilkan dari sampel yang didoping 2at% Al dengan perlakuan *sintering* pada temperature 900°C.

Hal ini bersesuaian dengan penelitian sebelumnya yang dilakukan oleh Zhang, *et al.* (2014), yang mana resistivitas dari Aldoped ZnO berkurang hingga temperatur perlakuan panas mencapai 900°C. Di atas temperature 900°C, resistivitas Al-doped ZnO kembali meningkat atau dengan kata lain konduktivitas menurun. Ada beberapa kemungkinan yang menyebabkan konduktivitas meningkat seiring dengan meningkatnya temperatur: Pertama, meningkatkan konsentrasi *carrier* atau dengan kata lain meningkatkan energi sehingga Al³⁺ lebih banyak tergabung ke dalam kisi ZnO. Kedua, meningkatkan mobilitas elektron μe karena butiran menjadi lebih besar dan menurunkan fraksi batas

butir sehingga menurunkan gerak acak dari *charge carrier* (D. Gautam, et al., 2015).

Akan tetapi, pada temperatur sintering 950°C nilai konduktivitas listrik mulai mengalami penurunan. Hal ini disebabkan oleh aglomerasi yang terjadi pada sampel sehingga hubungan antar partikel terputus (Lu, 2013).

4.4 Hasil Uji Perilaku Termal

Perilaku termal, khususnya stabilitas termal pada temperatur tertentu didapatkan dari hasil uji TGA (Wagner, 2009). Hasil uji TGA merupakan kurva peningkatan temperatur terhadap perubahan massa sampel. Dari hasil ini bisa dilihat perilaku material $Zn_{0.98}Al_{0.02}O$ dengan temperatur sintering 700, 800, 900, dan 950°C jika dioperasikan pada temperatur yang tinggi. Adapun hasil uji perilaku termal dapat dilihat pada **Gambar 4.24**.

Gambar 4. 24 Persen Perubahan Massa Sampel Zn_{0.98}Al_{0.02}O dengan Peningkatan Temperatur Operasi

Dari hasil pengujian, terlihat bahwa material ZnO dan Zn_{0.98}Al_{0.02}O hanya mengalami sedikit perubahan massa ketika

dipanaskan hingga temperatur 900°C. Peningkatan massa paling besar dialami oleh sampel yang diberikan perlakuan sintering pada temperatur 700°C, sebesar 1.44%. Sedangkan untuk sampel yang diberikan perlakuan sintering 800°C dan 950°C hanya mengalami peningkatan massa sebesar 0.99%. Sampel 900°C mengalami peningkatan massa paling sedikit yaitu sekitar 0.93%. Peningkatan massa dapat disebabkan oleh reaksi oksidasi (Wagner, 2009). Peningkatan yang tidak sifnifikan ini menyatakan bahwa ZnO dan Zn_{0.98}Al_{0.02}O stabil ketika digunakan pada temperatur tinggi.

Kestabilan termal dari sampel juga dapat terlihat dari kurva DTG yang didapatkan dari turunan pertama kurva TGA. Kurva tersebut menunjukkan laju perubahan massa pada temperatur tertentu. Kurva dari keempat sampel terlihat pada **Gambar 4.25**.

Hasil Kurva DTG dari sampel Zn_{0.98}Al_{0.02}O dengan temperatur sintering 700, 800, 900, 950°C. Dari keempat kurva tersebut terlihat bahwa secara garis besar keempat sampel stabil pada temperatur tinggi. Perubahan laju penambahan massa untuk sampel 700°C berkisar antara 0-0.01 mg/menit. Perubahan laju penambahan massa untuk sampel 800°C berkisar antara 0-0.005 mg/menit. Perubahan laju penambahan massa untuk sampel 900°C berkisar antara 0-0.006 mg/menit. Perubahan laju penambahan massa untuk sampel 950°C berkisar antara 0-0.004 mg/menit.

Jika dibandingkan dengan material termoelektrik yang ada di pasaran, yaitu Bi₂Te₃, ZnO lebih unggul dalam hal sifat tahan pada temperatur tinggi. Aplikasi praktis dari material Bi₂Te₃ terbatas karena dekomposisi pada temperatur rendah, oksidasi, penguapan, atau transisi fasa (Saini, 2014).

Gambar 4. 25 Kurva DTG Sampel Zn_{0.98}Al_{0.02}O dengan temperatur sintering 700, 800, 900, 950°C (urut dari atas ke bawah)

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Adapun kesimpulan yang dapat diambil dari penelitian ini adalah:

- Al-doped ZnO berhasil disintesis dengan metode kopresipitasi. Nilai konduktivitas listrik Al-doped ZnO tertinggi didapatkan dengan melakukan sintering pada temperatur 900°C karena semakin tinggi temperatur akan meningkatkan Al³⁺ yang berdifusi ke dalam kisi ZnO yang akan meningkatkan jumlah elektron bebas dan memperbesar ukuran partikel yang akan meningkatkan mobilitas elektron.
- 2. ZnO memiliki kestabilan termal ketika beroperasi pada temperatur tinggi, sehingga ZnO dapat menjadi salah satu kandidat material termoelektrik pada temperatur tinggi.

5.2 Saran

Beberapa saran yang dapat diperhatikan untuk penelitian selanjutnya adalah:

- 1. Lebih baik menggunakan *raw materials* berupa larutan untuk proses kopresipitasi.
- 2. Melakukan proses pre-sintering terlebih dahulu sebelum sampel disintering.
- 3. Pengujian konduktivitas listrik lebih baik jika dilakukan pada kondisi temperatur yang berbeda-beda.
- 4. Untuk mengetahui koefisien termoelektrik secara utuh maka diperlukan pengujian lain untuk konduktivitas termal dan *Seebeck coefficient*.

(halaman ini sengaja dikosongkan)

DAFTAR PUSTAKA

- Anatychuk, L. (1998). *Physics of Thermoelectricity*. Kiev: Institute of Thermoelectricity.
- Bindu, P. dan Sabu Thomas (2014). Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. *J. Theor. Appl Phys*, 8, 123-134.
- Barsoum, M.W (2003). *Fundamentals of Ceramics*. USA:Institute of Physics Publishing.
- Cai, K.F., E. Muller, C. Drasar, A. Mrotzek (2003). Preparation and Thermoelectric Properties of Al-doped ZnO Ceramics. *Materials Science and Engineering*, B104, 45-48.
- Callister, W. D. (2007). *Materials Science and Engineering*. New York: John Wiley & Sons, Inc.
- Carter, C. B., & Norton, M. G. (2007). *Ceramic Materials: Science* and Engineering. New York: Springer-Verlag.
- Colder, H., Guilmeau, E., Harnois, S., Retoux, R., & Savary, E. (2010). Preparation of Ni-doped ZnO Ceramics for Thermoelectric Application. *Journal of the European Ceramic Society*, 31, 2957–2963.
- Decker, B. Y. (2015). Thermoelectric Properties of Bismuth Telluride Filled Silicone. *Journal of Thermal Engineering*.
- Devaraj, N., Han, T., Low, P., Ong, B., & Sin, Y. (2014). Synthesis and Characterisation of Zinc Oxide Nanoparticles for Thermoelectric Application. *Materials Research Innovations, Vol 18*, Suppl 6, 350-353.
- Ertl, G., Knözinger, H., & Weitkamp, J. (1997). *Handbook of Heterogeneous Catalysis*. Urbana: John Wiley and Sons.
- Fang, Z.B., Z.J. Yan, Y.S. Tan, X.Q. Liu, Y.Y. Wang (2004). Influence of post-annealing treatment on the structure properties of ZnO film. *Appl. Surf. Sci.*, 241, 303.

- Gautam, D., Markus Engenhorst, Caroin Schilling, Gabi Schieming, Roland Schemechel dan Markus Winterer (2014). Thermoelectric properties of pulsed current sintered nanocrystalline Al-doped ZnO by chemical vapour synthesis. *Journal of Materials Chemistry A*, 3, 189-197.
- Ghosh, A., N. Kumari, S. Tewari dan A Bhattacharjee (2013). Structural and optical properties of pure and Al doped ZnO nanocrystal. *Indian J Phys*
- Ghazai, Alaa J., Emad A. Salman, Zahraa A. Jabbar (2016). Effect of Aluminum Doping Zinc Oxide Thin Film Properties Synthesis by Spin Coating Method. American Scientific Research Journal for Engineering, Technologi, and Sciences. Vol. 26, No. 3, 202-211.
- Giovannelli, A. Ngo Ndimba, P. Diaz-Chao, M. Motelica-Heino, P.I. Raynal, C. Autret, F. Delorme (2014). Synthesis of Al doped ZnO nanoparticles by aqueous coprecipitation. *Powder Technology*, 262, 203-208.
- Goldsmid, H. J. (2010). *Introduction to Thermoelectricity*. Sidney: Springer-Verlag Berlin Heidelberg.
- Grumezescu, Alexandru (2016). Surface Chemistry of Nanobiomaterials. UK: William Andrew.
- Hansson, R., Zhao, B., Hayes, P. C., & Jak, E. (2005). A Reinvestigation of Phase Equilibria in the System Al2O3-SiO2-ZnO. *Metallurgical and Materials Transactions B*, *Volume 3, Issue 2*, 187-193.
- Hassani, S., A. Tromson-Carli, A. Lusson, G. Didier, dan R. Triboulet (2002). C and CH4 as Transport Agents for the CVT Growth of ZnO Crystal. *Phys. stat. sol*, 229, No. 2, 835-839.

- IUPAC. (1973). Recommendation on Nomenclature for Contamination Phenomena in Precipitation Form Aqueous Solution. London: Butterworths.
- Kayani, Zohra Nazir, Farhat Saleemi, Iffat Batool (2015). Effect of calcination temperatur on the properties of ZnO nanoparticles. *Appl. Phys. A.*
- Khan, Wasi, Z. A. Khan, A. A. Saad, S. Shervani, A. Saleem, A. H. Naqvi (2013). Synthesis and Characterization of Al doped ZnO Nanoparticles. *International Journal of Modern Physics: Conference Series*, Vol. 22, 630-636.
- Lu, G.Q Max, Xu Zong, Chenghua Sun, Hua Yu, Zhi Gang Chen, Zheng Xing, Delai Ye, Xinyong Li, dan Lainzhou Wang (2013). Activation of Photocatalytic Water Oxidation on N-doped ZnO Bundle-like Nanoparticles under Visible Light. *The Journal of Physical Chemistry*, 117,4937-4942.
- Morkoç, H., & Özgür, Ü. (2009). *Zinc Oxide*. Weinheim: WILEY-VCH.
- Ohtaki, M. (2011). Recent Aspects of Oxide Thermoelectric Materials for Power Generation from Mid-to-high Temperature Heat Source. *The Ceramic Society of Japan*, 119, (11), 770–775.
- Permana, A. D. (2013). Outlook Energi Indonesia. Jakarta: PTPSE.
- Pookmanee, Pusit, Sukon Phanichphant dan Jiraporn Kitikul (2010). Effect of pH on Zinc Oxide Powder Prepared by a Chemical Coprecipitation Method. *Advanced Materials Research*, Vols. 93-94, 691-694.
- Purwaningsih, S.Y., S. Pratapa, Triwikantoro, dan Darminto (2016). Synthesis of nano-sized ZnO particles by coprecipitation method with variation of heating time. *American Institute of Physics*, 030040, 1-6.
- Qin, W., T. Nagase, Y. Umakoshi, dan J.A. Szpunar (2008). Relationship between Microstrain and Lattice Parameter

Change in Nanocrystalline Materials. *Philosophical Magazine Letters*, Vol. 88, No. 3, 169-179.

- Raoufi, D. (2013). Synthesis and Microstructural Properties of ZnO Nanoparticles Prepared by Precipitation Method. *Renewable Energy*, 932-937.
- Rowe, D. (1995). *CRC Handbook of Thermoelectrics*. Michigan: CRC Press.
- Rowe, D., & Bhandari, C. (1983). *Modern Thermoelectrics*. Virginia: Reston Publishing Company, Inc.
- Roy, A. Y.-T. (2016). Amorphous ZnO-Based Compounds as Thermoelectrics. *The Journal of Physical Chemistry*.
- Saini, S. E. (2014). Thermoelectric Properties of Al-Doped ZnO Thin Films. *Journal of Electronic Materials*.
- Shirai, T., Watanabe, H., Fuji, M., & Takahashi, M. (2009). Structural Properties and Surface Characteristics on Aluminum Oxide Powders. 23-31.
- Shui, A., Sumei Wang, Hui Wang, dan Xiasu Cheng (2009). Preparation and properties for aluminum-doped zinc oxide powders with the coprecipitation method. *JOurnal of the Ceramic Society of Japan*, 117, 703-705..
- Søndergaard, M., Bøjesen, E., Borup, K., Christensen, S., Christensen, M., & Iversen, B. (2013). Sintering and Annealing Effects on ZnO Microstructure and Thermoelectric Properties. Acta Materialia, Volume 61, 3314–3323.
- Sun, Xiao Wei dan Yi Yang (2012). ZnO Nanostructures and Their Applications. NW: CRC Press.
- Tsubota, T., Ohtaki, M., Eguchi, K., & Arai, H. (1997). Thermoelectric Properties of Al-doped ZnO as a Promising Oxide Material for High Temperature

Thermoelectric Conversion. *Journal of Materials Chemistry*, 85-90.

- Vineis, C., Shakouri, A., Majumdar, A., & Kanatzidis, M. (2010). Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features. *Advanced Materials*, 22, 3970–3980.
- Vogel, Arthur I (1937). *Macro and Semimicro Qualitative Inorganic Analysis*. London: Longmas.
- Wagner, Matthias (2009). *Thermal Analysis in Practice*. Schwerzenbach: Mettler Toledo.
- Wang, Zhonglin, Yi Liu, Ze Zhang (2002). Handbook of Nanophase and Nanostructured Materials-Synthesis. Springer.
- Zhang, R. Y. Hong, Q. Chen, W.G. Feng, D. Badami (2014). Aluminum-doped zinc oxide powders: synthesis, properties and application. *J Mater Sci: Mater Electron*, 25, 678-692.

LAMPIRAN

Lampiran A : Perhitungan Massa Doping

Menghitung massa Al_2O_3 yang harus digunakan untuk mencapai 2at% Al dalam 5 gram ZnO.

$$massa Zn = \frac{Ar Zn}{Mr ZnO} x massa ZnO$$

$$massa Zn = \frac{65.38}{81.38} x 5 gr$$

$$massa Zn = 4.016957 gr$$

$$massa 2 atom Al = \frac{2x26.98}{6.022x10^{23}} = 8.96x10^{-23}$$

$$massa 98 atom Zn = \frac{98x65.38}{6.022x10^{23}} = 1.06x10^{-20}$$

wt% Al adalah 0.84% wt% Zn, maka massa Al yang dibutuhkan adalah 0.03374 gr. Untuk mendapatkan Al sejumlah itu, maka Al_2O_3 yang dibutuhkan adalah:

massa
$$Al_2 O_3 = \frac{Mr Al_2 O_3}{2 Ar Al} x massa Al$$

massa $Al_2 O_3 = \frac{101.957}{2x26.98} x 0.03374 = 0.0639 gr$

Lampiran B : Hasil Pengujian XRD

B1. ZnO tanpa Doping (Temperatur Sintering 900°C)

Peak List:

Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
6291.34	0.0669	2.81858	62.91
4353.59	0.0816	2.60383	43.54
2025.70	0.0408	2.60272	20.26
9999.90	0.0816	2.47716	100.00
4760.35	0.0408	2.47614	47.60
150.14	0.1632	2.30114	1.50
2137.65	0.1020	1.91157	21.38
1047.06	0.0816	1.91121	10.47
2922.03	0.1020	1.62559	29.22
	Height [cts] 6291.34 4353.59 2025.70 9999.90 4760.35 150.14 2137.65 1047.06 2922.03	Height [cts] FWHM Left [°2Th.] 6291.34 0.0669 4353.59 0.0816 2025.70 0.0408 9999.90 0.0816 4760.35 0.0408 150.14 0.1632 2137.65 0.1020 1047.06 0.0816 2922.03 0.1020	Height [cts]FWHM Left [°2Th.]d-spacing [Å]6291.340.06692.818584353.590.08162.603832025.700.04082.602729999.900.08162.477164760.350.04082.47614150.140.16322.301142137.650.10201.911571047.060.08161.911212922.030.10201.62559

56.7294	1434.33	0.0612	1.62543	14.34
62.8464	2318.69	0.1224	1.47749	23.19
63.0313	1211.83	0.0816	1.47727	12.12
66.3515	352.78	0.1224	1.40769	3.53
66.5329	202.89	0.0816	1.40778	2.03
67.9263	1916.04	0.1224	1.37883	19.16
68.1198	1000.74	0.1020	1.37881	10.01
69.0581	950.24	0.1020	1.35897	9.50
69.2560	442.68	0.1020	1.35894	4.43
72.5261	142.00	0.1224	1.30230	1.42
76.9539	271.44	0.1224	1.23803	2.71
77.1699	162.33	0.1224	1.23817	1.62
81.4035	131.01	0.1224	1.18122	1.31
89.5906	546.54	0.1224	1.09328	5.47
89.8650	268.15	0.0612	1.09336	2.68

B2. 2 at% Al-doped ZnO (Temperatur Sintering 700°C)

Peak List:

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
31.7572	5221.65	0.1020	2.81542	61.52
31.8561	2638.07	0.0408	2.81388	31.08
34.4184	3819.76	0.1020	2.60358	45.00
34.5211	1864.30	0.0408	2.60252	21.96
35.1965	102.26	0.2448	2.54778	1.20
36.2445	8488.41	0.0816	2.47648	100.00
36.3534	4353.56	0.0612	2.47545	51.29
39.1320	115.41	0.1632	2.30014	1.36
47.5317	1720.59	0.1020	1.91141	20.27
47.6710	974.86	0.0612	1.91089	11.48

56.5833	2372.03	0.1020	1.62524	27.94
56.7530	1209.12	0.0816	1.62481	14.24
62.8476	1914.98	0.1224	1.47747	22.56
63.0313	980.67	0.1020	1.47726	11.55
66.3647	310.56	0.1428	1.40744	3.66
67.9533	1519.55	0.1428	1.37835	17.90
68.1324	842.65	0.1020	1.37858	9.93
69.0662	702.95	0.1020	1.35883	8.28
69.2730	409.87	0.1224	1.35865	4.83
72.5616	117.65	0.1428	1.30175	1.39
76.9733	247.56	0.1020	1.23776	2.92
81.3880	119.69	0.1224	1.18141	1.41
89.6071	396.87	0.1428	1.09312	4.68

B3. 2 at% Al-doped ZnO (Temperatur Sintering 800°C)

Peak List:

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
31.7563	4545.50	0.1224	2.81550	61.12
31.8530	2134.59	0.0408	2.81415	28.70
34.4268	3424.96	0.1020	2.60296	46.05
35.6796	106.63	0.1632	2.51439	1.43
36.2418	7437.11	0.1020	2.47666	100.00
36.3494	3716.40	0.0612	2.47571	49.97
37.1334	92.28	0.2448	2.41922	1.24
39.1237	140.73	0.1632	2.30061	1.89
47.5363	1528.69	0.1020	1.91124	20.55
47.6678	807.90	0.0612	1.91101	10.86

56.5715	2041.97	0.1020	1.62555	27.46
56.7341	1055.66	0.1020	1.62531	14.19
57.4341	39.16	0.2448	1.60317	0.53
61.3352	34.84	0.4896	1.51022	0.47
62.8615	1792.98	0.1020	1.47718	24.11
63.0364	906.08	0.0816	1.47716	12.18
66.3256	257.81	0.1020	1.40817	3.47
67.9253	1324.99	0.1224	1.37885	17.82
68.1425	736.52	0.0816	1.37840	9.90
69.0648	642.21	0.1428	1.35886	8.64
69.2681	340.29	0.0816	1.35873	4.58
72.5784	126.86	0.1224	1.30149	1.71
76.9341	193.38	0.1224	1.23829	2.60
81.3668	91.15	0.3264	1.18166	1.23
89.6147	341.52	0.1632	1.09305	4.59
89.8573	262.24	0.0612	1.09344	3.53

B4. 2 at% Al-doped ZnO (Temperatur Sintering 900°C)

Peak List:

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
31.7725	4930.03	0.1224	2.81410	60.57
31.8684	2439.79	0.0408	2.81282	29.97
34.4376	3643.66	0.0816	2.60218	44.76
34.5406	1846.78	0.0408	2.60110	22.69
35.1612	100.53	0.3264	2.55026	1.24
36.2570	8139.87	0.1020	2.47566	100.00
36.3674	3916.03	0.0612	2.47453	48.11
39.1490	122.13	0.1632	2.29918	1.50
47.5493	1712.36	0.1020	1.91075	21.04
47.6844	901.13	0.0612	1.91038	11.07

56.5874	2253.11	0.1020	1.62513	27.68
56.7602	1147.87	0.0816	1.62462	14.10
61.3522	33.41	0.4896	1.50985	0.41
62.8695	1939.47	0.1020	1.47701	23.83
63.0557	982.27	0.1020	1.47675	12.07
66.3717	304.62	0.0816	1.40731	3.74
67.9321	1466.96	0.1224	1.37873	18.02
68.1356	800.59	0.1020	1.37853	9.84
69.0808	804.02	0.1020	1.35858	9.88
69.2603	432.43	0.0816	1.35887	5.31
72.6058	112.59	0.1224	1.30106	1.38
76.9977	206.96	0.1632	1.23743	2.54
81.3587	70.68	0.3264	1.18176	0.87
89.6180	483.73	0.0816	1.09302	5.94

B5. 2 at% Al-doped ZnO (Temperatur Sintering 950°C)

Peak List:

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
31.7569	6049.97	0.0816	2.81545	60.32
31.8552	2609.68	0.0408	2.81396	26.02
34.4222	4184.01	0.0816	2.60330	41.72
34.5260	2020.70	0.0408	2.60216	20.15
35.2511	111.05	0.3264	2.54396	1.11
36.2444	10028.96	0.0816	2.47649	100.00
36.3528	4658.70	0.0408	2.47549	46.45
37.1712	117.49	0.1224	2.41684	1.17
39.1121	139.23	0.1224	2.30126	1.39
47.5389	2084.44	0.1020	1.91114	20.78

47.6688	1043.43	0.0612	1.91097	10.40
56.5801	2693.98	0.1020	1.62532	26.86
56.7410	1333.98	0.0816	1.62513	13.30
62.8589	2231.20	0.1020	1.47723	22.25
63.0447	1148.89	0.1020	1.47698	11.46
66.3643	339.53	0.1224	1.40745	3.39
67.9429	1738.13	0.1020	1.37854	17.33
68.1263	977.95	0.1020	1.37869	9.75
69.0705	917.63	0.1020	1.35876	9.15
69.2813	477.33	0.1020	1.35851	4.76
72.5411	89.88	0.3264	1.30206	0.90
76.9420	260.35	0.1020	1.23819	2.60
77.1546	182.44	0.0816	1.23837	1.82
81.4000	117.00	0.1632	1.18126	1.17
89.6124	519.25	0.1428	1.09307	5.18

Lampiran C : Hasil Uji Hambatan Listrik

	Frekuensi	Hambatan		Frekuensi	Hambatan
No	(Hz)	(Ohm)	No	(Hz)	(Ohm)
1	1000	1.80E+08	96	96000	3.09E+07
2	2000	1.80E+08	97	97000	2.99E+07
3	3000	1.80E+08	98	98000	3.01E+07
4	4000	1.80E+08	99	99000	2.92E+07
5	5000	1.80E+08	100	100000	2.92E+07
6	6000	1.98E+08	101	110000	2.67E+07
7	7000	1.88E+08	102	120000	2.45E+07
8	8000	1.65E+08	103	130000	2.51E+07
9	9000	1.57E+08	104	140000	2.22E+07
10	10000	1.46E+08	105	150000	2.07E+07
11	11000	1.16E+08	106	160000	1.99E+07
12	12000	1.02E+08	107	170000	1.87E+07
13	13000	1.01E+08	108	180000	1.74E+07
14	14000	1.04E+08	109	190000	1.63E+07
15	15000	9.36E+07	110	200000	1.62E+07
16	16000	9.46E+07	111	210000	1.57E+07
17	17000	8.83E+07	112	220000	1.53E+07
18	18000	8.76E+07	113	230000	1.30E+07
19	19000	8.68E+07	114	240000	1.27E+07
20	20000	8.44E+07	115	250000	1.16E+07
21	21000	7.66E+07	116	260000	1.12E+07
22	22000	7.31E+07	117	270000	1.06E+07
23	23000	7.14E+07	118	280000	9.74E+06
24	24000	6.88E+07	119	290000	9.66E+06

C1. ZnO tanpa Doping (Temperatur Sintering 900°C)

25	25000	6.40E+07	120	300000	9.11E+06
26	26000	6.60E+07	121	310000	8.57E+06
27	27000	6.78E+07	122	320000	8.57E+06
28	28000	6.63E+07	123	330000	8.22E+06
29	29000	6.50E+07	124	340000	8.17E+06
30	30000	6.75E+07	125	350000	7.75E+06
31	31000	6.09E+07	126	360000	7.70E+06
32	32000	5.99E+07	127	370000	7.65E+06
33	33000	6.35E+07	128	380000	7.46E+06
34	34000	6.19E+07	129	390000	7.22E+06
35	35000	6.04E+07	130	400000	7.07E+06
36	36000	5.92E+07	131	410000	6.91E+06
37	37000	5.69E+07	132	420000	6.70E+06
38	38000	5.61E+07	133	430000	6.54E+06
39	39000	5.44E+07	134	440000	6.37E+06
40	40000	5.63E+07	135	450000	6.32E+06
41	41000	5.25E+07	136	460000	6.27E+06
42	42000	5.06E+07	137	470000	6.10E+06
43	43000	4.33E+07	138	480000	5.97E+06
44	44000	4.28E+07	139	490000	5.71E+06
45	45000	4.54E+07	140	500000	5.49E+06
46	46000	5.26E+07	141	510000	5.46E+06
47	47000	5.35E+07	142	520000	5.50E+06
48	48000	5.20E+07	143	530000	5.12E+06
49	49000	4.35E+07	144	540000	5.36E+06
50	50000	4.22E+07	145	550000	5.15E+06
51	51000	4.17E+07	146	560000	4.47E+06
52	52000	3.90E+07	147	570000	4.93E+06
53	53000	3.97E+07	148	580000	4.76E+06

54	54000	3.90E+07	149	590000	4.75E+06
55	55000	3.92E+07	150	600000	4.53E+06
56	56000	3.74E+07	151	610000	4.50E+06
57	57000	4.20E+07	152	620000	4.59E+06
58	58000	4.23E+07	153	630000	4.16E+06
59	59000	3.96E+07	154	640000	4.26E+06
60	60000	4.03E+07	155	650000	4.48E+06
61	61000	4.05E+07	156	660000	4.21E+06
62	62000	4.09E+07	157	670000	4.17E+06
63	63000	3.91E+07	158	680000	4.07E+06
64	64000	4.15E+07	159	690000	4.12E+06
65	65000	3.95E+07	160	700000	4.03E+06
66	66000	3.98E+07	161	710000	3.86E+06
67	67000	3.95E+07	162	720000	3.81E+06
68	68000	3.87E+07	163	730000	3.90E+06
69	69000	3.67E+07	164	740000	3.88E+06
70	70000	3.84E+07	165	750000	3.81E+06
71	71000	3.75E+07	166	760000	3.59E+06
72	72000	3.67E+07	167	770000	3.72E+06
73	73000	3.69E+07	168	780000	3.69E+06
74	74000	3.66E+07	169	790000	3.56E+06
75	75000	3.50E+07	170	800000	3.28E+06
76	76000	3.57E+07	171	810000	3.23E+06
77	77000	3.53E+07	172	820000	3.20E+06
78	78000	3.56E+07	173	830000	3.19E+06
79	79000	3.46E+07	174	840000	3.15E+06
80	80000	3.47E+07	175	850000	3.15E+06
81	81000	3.42E+07	176	860000	3.13E+06
82	82000	3.48E+07	177	870000	3.13E+06

83	83000	3.30E+07	178	880000	3.23E+06
84	84000	3.29E+07	179	890000	3.41E+06
85	85000	3.22E+07	180	900000	3.38E+06
86	86000	3.21E+07	181	910000	3.32E+06
87	87000	3.05E+07	182	920000	3.09E+06
88	88000	3.02E+07	183	930000	2.99E+06
89	89000	2.96E+07	184	940000	2.92E+06
90	90000	2.90E+07	185	950000	2.91E+06
91	91000	3.09E+07	186	960000	2.87E+06
92	92000	3.20E+07	187	970000	2.84E+06
93	93000	3.19E+07	188	980000	2.80E+06
94	94000	3.07E+07	189	990000	2.78E+06
95	95000	3.04E+07	190	999000	2.78E+06

C2. 2 at% Al-doped ZnO (Temperatur Sintering 700°C)

No	Frekuensi (Hz)	Hambatan (Ohm)	No	Frekuensi (Hz)	Hambatan (Ohm)
1	1000	1.20E+07	96	96000	1.87E+06
2	2000	1.06E+07	97	97000	1.86E+06
3	3000	9.75E+06	98	98000	1.87E+06
4	4000	9.00E+06	99	99000	1.84E+06
5	5000	8.46E+06	100	100000	1.78E+06
6	6000	8.02E+06	101	110000	1.64E+06
7	7000	7.67E+06	102	120000	1.55E+06
8	8000	7.32E+06	103	130000	1.47E+06
9	9000	7.10E+06	104	140000	1.40E+06
10	10000	6.85E+06	105	150000	1.32E+06
11	11000	6.61E+06	106	160000	1.27E+06
12	12000	6.43E+06	107	170000	1.21E+06
----	-------	----------	-----	--------	----------
13	13000	6.27E+06	108	180000	1.21E+06
14	14000	5.95E+06	109	190000	1.14E+06
15	15000	5.74E+06	110	200000	1.11E+06
16	16000	5.59E+06	111	210000	1.06E+06
17	17000	5.44E+06	112	220000	1.01E+06
18	18000	5.30E+06	113	230000	989900
19	19000	5.17E+06	114	240000	944600
20	20000	5.07E+06	115	250000	906500
21	21000	4.92E+06	116	260000	876100
22	22000	4.77E+06	117	270000	838600
23	23000	4.67E+06	118	280000	844100
24	24000	4.57E+06	119	290000	849400
25	25000	4.46E+06	120	300000	825100
26	26000	4.37E+06	121	310000	798200
27	27000	4.31E+06	122	320000	770900
28	28000	4.22E+06	123	330000	764900
29	29000	4.08E+06	124	340000	750700
30	30000	3.97E+06	125	350000	737800
31	31000	3.90E+06	126	360000	715600
32	32000	3.85E+06	127	370000	643100
33	33000	3.80E+06	128	380000	606600
34	34000	3.69E+06	129	390000	663900
35	35000	3.66E+06	130	400000	650500
36	36000	3.69E+06	131	410000	664200
37	37000	3.56E+06	132	420000	614700
38	38000	3.53E+06	133	430000	607800
39	39000	3.50E+06	134	440000	602900
40	40000	3.42E+06	135	450000	594700

1	1	1	1	1	1
41	41000	3.33E+06	136	460000	580900
42	42000	3.25E+06	137	470000	571700
43	43000	3.23E+06	138	480000	555700
44	44000	3.17E+06	139	490000	552700
45	45000	3.12E+06	140	500000	537100
46	46000	3.06E+06	141	510000	532500
47	47000	3.02E+06	142	520000	522900
48	48000	2.96E+06	143	530000	518200
49	49000	2.87E+06	144	540000	524500
50	50000	2.86E+06	145	550000	476100
51	51000	2.86E+06	146	560000	488500
52	52000	2.80E+06	147	570000	468400
53	53000	2.75E+06	148	580000	466500
54	54000	2.73E+06	149	590000	460000
55	55000	2.69E+06	150	600000	460500
56	56000	2.67E+06	151	610000	456600
57	57000	2.67E+06	152	620000	445000
58	58000	2.63E+06	153	630000	443100
59	59000	2.60E+06	154	640000	437600
60	60000	2.56E+06	155	650000	441200
61	61000	2.53E+06	156	660000	433500
62	62000	2.52E+06	157	670000	425700
63	63000	2.43E+06	158	680000	420600
64	64000	2.43E+06	159	690000	413800
65	65000	2.44E+06	160	700000	407700
66	66000	2.41E+06	161	710000	402600
67	67000	2.41E+06	162	720000	399600
68	68000	2.45E+06	163	730000	394100
69	69000	2.41E+06	164	740000	381400

70	70000	2.37E+06	165	750000	370900
71	71000	2.34E+06	166	760000	384000
72	72000	2.31E+06	167	770000	374100
73	73000	2.26E+06	168	780000	372600
74	74000	2.25E+06	169	790000	368100
75	75000	2.21E+06	170	800000	363800
76	76000	2.11E+06	171	810000	370500
77	77000	2.16E+06	172	820000	375000
78	78000	2.16E+06	173	830000	357500
79	79000	2.14E+06	174	840000	358800
80	80000	2.16E+06	175	850000	356500
81	81000	2.15E+06	176	860000	351200
82	82000	2.12E+06	177	870000	365600
83	83000	2.11E+06	178	880000	374800
84	84000	2.09E+06	179	890000	375300
85	85000	2.11E+06	180	900000	363700
86	86000	2.07E+06	181	910000	330800
87	87000	2.03E+06	182	920000	326600
88	88000	1.99E+06	183	930000	330600
89	89000	2.00E+06	184	940000	328100
90	90000	2.02E+06	185	950000	324100
91	91000	1.97E+06	186	960000	337000
92	92000	1.91E+06	187	970000	306400
93	93000	1.91E+06	188	980000	309000
94	94000	1.88E+06	189	990000	310100
95	95000	1.88E+06	190	999000	309700

	Frekuensi	Hambatan		Frekuensi	Hambatan
No	(Hz)	(Ohm)	No	(Hz)	(Ohm)
1	1000	3.38E+06	96	96000	622300
2	2000	2.80E+06	97	97000	619460
3	3000	2.47E+06	98	98000	616790
4	4000	2.25E+06	99	99000	613920
5	5000	2.08E+06	100	100000	610900
6	6000	1.95E+06	101	110000	581800
7	7000	1.85E+06	102	120000	556300
8	8000	1.76E+06	103	130000	533600
9	9000	1.68E+06	104	140000	513300
10	10000	1.61E+06	105	150000	494600
11	11000	1.55E+06	106	160000	477700
12	12000	1.50E+06	107	170000	461900
13	13000	1.45E+06	108	180000	447900
14	14000	1.41E+06	109	190000	435200
15	15000	1.37E+06	110	200000	423500
16	16000	1.33E+06	111	210000	412300
17	17000	1.30E+06	112	220000	401400
18	18000	1.28E+06	113	230000	391200
19	19000	1.25E+06	114	240000	380900
20	20000	1.22E+06	115	250000	372700
21	21000	1.20E+06	116	260000	364200
22	22000	1.18E+06	117	270000	356100
23	23000	1.16E+06	118	280000	348500
24	24000	1.14E+06	119	290000	341300
25	25000	1.12E+06	120	300000	334600

C3. 2 at% Al-doped ZnO (Temperatur Sintering 800°C)

26	26000	1.10E+06	121	310000	327900
27	27000	1.08E+06	122	320000	321900
28	28000	1.07E+06	123	330000	316100
29	29000	1.05E+06	124	340000	310300
30	30000	1.04E+06	125	350000	304900
31	31000	1.02E+06	126	360000	299700
32	32000	1.01E+06	127	370000	294800
33	33000	996220	128	380000	290000
34	34000	983780	129	390000	285300
35	35000	970970	130	400000	280900
36	36000	959710	131	410000	276900
37	37000	948090	132	420000	273000
38	38000	937160	133	430000	269200
39	39000	926330	134	440000	265100
40	40000	916730	135	450000	261300
41	41000	907080	136	460000	257700
42	42000	898080	137	470000	254300
43	43000	889260	138	480000	251000
44	44000	880630	139	490000	247700
45	45000	872270	140	500000	246700
46	46000	864140	141	510000	243700
47	47000	855920	142	520000	240900
48	48000	848040	143	530000	238100
49	49000	840780	144	540000	234100
50	50000	833730	145	550000	232100
51	51000	826190	146	560000	229400
52	52000	819310	147	570000	226800
53	53000	813030	148	580000	224400
54	54000	806540	149	590000	221900

55	55000	800110	150	600000	219500
56	56000	793870	151	610000	217100
57	57000	788030	152	620000	214800
58	58000	782230	153	630000	212500
59	59000	776120	154	640000	210200
60	60000	770170	155	650000	208100
61	61000	765070	156	660000	205900
62	62000	759420	157	670000	203800
63	63000	754130	158	680000	201700
64	64000	748790	159	690000	199700
65	65000	743730	160	700000	197900
66	66000	738830	161	710000	196000
67	67000	734010	162	720000	194100
68	68000	729350	163	730000	192300
69	69000	724750	164	740000	190400
70	70000	720190	165	750000	188500
71	71000	715810	166	760000	186800
72	72000	710970	167	770000	184700
73	73000	706740	168	780000	181900
74	74000	702410	169	790000	181900
75	75000	697990	170	800000	180200
76	76000	693610	171	810000	713000
77	77000	689600	172	820000	170100
78	78000	685430	173	830000	173900
79	79000	681250	174	840000	172800
80	80000	677330	175	850000	171600
81	81000	673580	176	860000	170400
82	82000	669860	177	870000	169000
83	83000	666010	178	880000	167600

84	84000	662460	179	890000	165500
85	85000	658490	180	900000	165400
86	86000	655130	181	910000	164200
87	87000	651440	182	920000	162900
88	88000	647620	183	930000	161700
89	89000	644510	184	940000	160500
90	90000	640840	185	950000	159400
91	91000	637770	186	960000	158000
92	92000	634870	187	970000	157200
93	93000	631830	188	980000	156000
94	94000	628730	189	990000	155000
95	95000	625590	190	999000	154100

C4. 2 at% Al-doped ZnO (Temperatur Sintering 900°C)

No	Frekuensi	Hambatan	No	Frekuensi	Hambatan
NU	(112)			(112)	
1	1000	2.40E+06	96	96000	634780
2	2000	2.07E+06	97	97000	630740
3	3000	1.90E+06	98	98000	627510
4	4000	1.82E+06	99	99000	622490
5	5000	1.83E+06	100	100000	619300
6	6000	1.65E+06	101	110000	581800
7	7000	1.61E+06	102	120000	549400
8	8000	1.57E+06	103	130000	520800
9	9000	1.54E+06	104	140000	495430
10	10000	1.50E+06	105	150000	472700
11	11000	1.66E+06	106	160000	452700
12	12000	1.50E+06	107	170000	434300

13	13000	1.59E+06	108	180000	417400
14	14000	1.39E+06	109	190000	402300
15	15000	1.36E+06	110	200000	388300
16	16000	1.35E+06	111	210000	375300
17	17000	1.32E+06	112	220000	363100
18	18000	1.30E+06	113	230000	351800
19	19000	1.28E+06	114	240000	341300
20	20000	1.26E+06	115	250000	331100
21	21000	1.25E+06	116	260000	322000
22	22000	1.23E+06	117	270000	313200
23	23000	1.21E+06	118	280000	305300
24	24000	1.19E+06	119	290000	297700
25	25000	1.17E+06	120	300000	290500
26	26000	1.16E+06	121	310000	283400
27	27000	1.14E+06	122	320000	277000
28	28000	1.13E+06	123	330000	271000
29	29000	1.11E+06	124	340000	264900
30	30000	1.10E+06	125	350000	259400
31	31000	1.09E+06	126	360000	254200
32	32000	1.06E+06	127	370000	249000
33	33000	1.05E+06	128	380000	244000
34	34000	1.04E+06	129	390000	239500
35	35000	1.03E+06	130	400000	235000
36	36000	1.02E+06	131	410000	230700
37	37000	1.01E+06	132	420000	226600
38	38000	1.00E+06	133	430000	222500
39	39000	992840	134	440000	219000
40	40000	982920	135	450000	214900
41	41000	974220	136	460000	211700

12	42000	057050	127	470000	200000
42	42000	937930	120	470000	209900
43	43000	948370	138	480000	205700
44	44000	939540	139	490000	202400
45	45000	929650	140	500000	200400
46	46000	919890	141	510000	198400
47	47000	910470	142	520000	195100
48	48000	902480	143	530000	191600
49	49000	894850	144	540000	190000
50	50000	886410	145	550000	187100
51	51000	878950	146	560000	184900
52	52000	870760	147	570000	180300
53	53000	863160	148	580000	177400
54	54000	855520	149	590000	175000
55	55000	848050	150	600000	172700
56	56000	840850	151	610000	170900
57	57000	834220	152	620000	168400
58	58000	827110	153	630000	166300
59	59000	820200	154	640000	164200
60	60000	812930	155	650000	162300
61	61000	808730	156	660000	160400
62	62000	798860	157	670000	158500
63	63000	792500	158	680000	157200
64	64000	785310	159	690000	155400
65	65000	779910	160	700000	153500
66	66000	773970	161	710000	151700
67	67000	768300	162	720000	149600
68	68000	763390	163	730000	149000
69	69000	757720	164	740000	147300
70	70000	752420	165	750000	145300

•			•		
71	71000	747190	166	760000	144300
72	72000	741610	167	770000	142400
73	73000	735700	168	780000	141700
74	74000	730840	169	790000	140200
75	75000	726010	170	800000	137700
76	76000	721320	171	810000	136500
77	77000	716360	172	820000	135700
78	78000	711700	173	830000	133900
79	79000	707030	174	840000	132700
80	80000	702100	175	850000	131400
81	81000	697540	176	860000	130400
82	82000	692810	177	870000	129200
83	83000	688220	178	880000	128100
84	84000	684160	179	890000	126800
85	85000	679710	180	900000	127900
86	86000	675330	181	910000	126700
87	87000	671180	182	920000	124000
88	88000	666510	183	930000	124600
89	89000	661990	184	940000	121500
90	90000	657880	185	950000	121700
91	91000	652530	186	960000	119500
92	92000	649070	187	970000	119200
93	93000	645820	188	980000	118700
94	94000	642080	189	990000	117400
95	95000	638370	190	999000	116600

	Frekuensi	Hambatan		Frekuensi	Hambatan
No	(Hz)	(Ohm)	No	(Hz)	(Ohm)
1	1000	1.34E+07	96	96000	1.18E+06
2	2000	9.69E+06	97	97000	1.17E+06
3	3000	7.95E+06	98	98000	1.16E+06
4	4000	6.87E+06	99	99000	1.15E+06
5	5000	6.15E+06	100	100000	1.14E+06
6	6000	5.61E+06	101	110000	1.07E+06
7	7000	5.18E+06	102	120000	1.01E+06
8	8000	4.81E+06	103	130000	951200
9	9000	4.52E+06	104	140000	903300
10	10000	4.27E+06	105	150000	860200
11	11000	4.08E+06	106	160000	820100
12	12000	3.90E+06	107	170000	784700
13	13000	3.74E+06	108	180000	751900
14	14000	3.62E+06	109	190000	722300
15	15000	3.50E+06	110	200000	695700
16	16000	3.39E+06	111	210000	671900
17	17000	3.24E+06	112	220000	648400
18	18000	3.15E+06	113	230000	627400
19	19000	3.08E+06	114	240000	606700
20	20000	3.03E+06	115	250000	587200
21	21000	2.95E+06	116	260000	569800
22	22000	2.88E+06	117	270000	553700
23	23000	2.80E+06	118	280000	538200
24	24000	2.74E+06	119	290000	523500
25	25000	2.68E+06	120	300000	509800

C5. 2 at% Al-doped ZnO (Temperatur Sintering 950°C)

26	26000	2.62E+06	121	310000	496800
27	27000	2.58E+06	122	320000	485100
28	28000	2.52E+06	123	330000	473500
29	29000	2.43E+06	124	340000	461300
30	30000	2.39E+06	125	350000	450000
31	31000	2.35E+06	126	360000	439800
32	32000	2.30E+06	127	370000	431400
33	33000	2.24E+06	128	380000	421200
34	34000	2.20E+06	129	390000	412500
35	35000	2.16E+06	130	400000	404100
36	36000	2.12E+06	131	410000	396000
37	37000	2.10E+06	132	420000	388000
38	38000	2.06E+06	133	430000	380500
39	39000	2.04E+06	134	440000	373700
40	40000	2.01E+06	135	450000	366600
41	41000	1.98E+06	136	460000	359900
42	42000	1.95E+06	137	470000	353500
43	43000	1.93E+06	138	480000	347900
44	44000	1.90E+06	139	490000	341400
45	45000	1.88E+06	140	500000	336300
46	46000	1.86E+06	141	510000	330700
47	47000	1.84E+06	142	520000	325400
48	48000	1.81E+06	143	530000	320000
49	49000	1.79E+06	144	540000	314800
50	50000	1.76E+06	145	550000	310100
51	51000	1.73E+06	146	560000	305300
52	52000	1.72E+06	147	570000	300400
53	53000	1.70E+06	148	580000	295900
54	54000	1.68E+06	149	590000	292100

55	55000	1.66E+06	150	600000	287500
56	56000	1.65E+06	151	610000	283200
57	57000	1.63E+06	152	620000	279500
58	58000	1.61E+06	153	630000	275600
59	59000	1.60E+06	154	640000	271900
60	60000	1.58E+06	155	650000	268300
61	61000	1.57E+06	156	660000	264800
62	62000	1.55E+06	157	670000	261400
63	63000	1.54E+06	158	680000	258000
64	64000	1.52E+06	159	690000	255000
65	65000	1.51E+06	160	700000	251900
66	66000	1.50E+06	161	710000	248800
67	67000	1.48E+06	162	720000	245600
68	68000	1.47E+06	163	730000	242800
69	69000	1.46E+06	164	740000	239900
70	70000	1.44E+06	165	750000	236900
71	71000	1.43E+06	166	760000	234200
72	72000	1.41E+06	167	770000	231500
73	73000	1.40E+06	168	780000	229200
74	74000	1.39E+06	169	790000	226500
75	75000	1.38E+06	170	800000	224000
76	76000	1.37E+06	171	810000	221800
77	77000	1.36E+06	172	820000	219200
78	78000	1.35E+06	173	830000	217100
79	79000	1.34E+06	174	840000	215100
80	80000	1.35E+06	175	850000	212900
81	81000	1.32E+06	176	860000	210600
82	82000	1.31E+06	177	870000	208500
83	83000	1.30E+06	178	880000	206500

84	84000	1.29E+06	179	890000	204400
85	85000	1.28E+06	180	900000	203800
86	86000	1.27E+06	181	910000	201900
87	87000	1.26E+06	182	920000	199900
88	88000	1.25E+06	183	930000	197800
89	89000	1.24E+06	184	940000	195900
90	90000	1.23E+06	185	950000	194000
91	91000	1.22E+06	186	960000	192300
92	92000	1.21E+06	187	970000	190300
93	93000	1.20E+06	188	980000	188400
94	94000	1.19E+06	189	990000	186800
95	95000	1.19E+06	190	999000	185300

Lampiran D: Hasil Uji DSC/TGA

D2. 2 at% Al-doped ZnO (Temperatur Sintering 700°C)

D3. 2 at% Al-doped ZnO (Temperatur Sintering 800°C)

D4. 2 at% Al-doped ZnO (Temperatur Sintering 900°C)

E5. 2 at% Al-doped ZnO (Temperatur Sintering 950°C)

UCAPAN TERIMA KASIH

Penulis juga ingin mengucapkan terima kasih kepada semua pihak yang telah memberi dukungan, dan bimbingan kepada penulis hingga Tugas Akhir ini dapat diselesaikan. Ucapan terima kasih penulis sampaikan kepada :

- 1. Kedua orang tua dan seluruh keluarga penulis yang senantiasa memberikan dukungan moril, materiil dan doa.
- 2. Ibu Rindang Fajarin, S.Si., M.Si. dan Dr. Widyastuti, S.Si., M.Si. sebagai dosen pembimbing Tugas Akhir yang senantiasa memberikan bimbingan, motivasi dan dana pennelitian.
- 3. Dr. Agung Purniawan, S.T, M.Eng. selaku Ketua Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya.
- 4. Ibu Dian Mughni Felicia, S.T., M.Sc. selaku dosen wali yang membimbing penulis selama menjadi mahasiswa dan memberikan motivasi untuk melanjutkan pendidikan ke jenjang yang lebih tinggi di luar negri.
- 5. Seluruh dosen Teknik Material dan Metalurgi yang telah mengabdi sebagai pahlawan tanpa tanda jasa dengan memberikan ilmu yang dapat menjadi bekal untuk masa yang akan datang.
- Partner Tugas Akhir, Ilham Ramadhan P. dan Nurul Lailatul M., yang membagikan ilmu, suka dan duka selama mengerjakan Tugas Akhir
- 7. Mbak Iis, Mas Ridha, Pak Soleh, dan Mbak Vita yang telah membantu penulis membuat dan menguji sampel.
- 8. Teman-teman Laboratorium Fisika Material yang telah menemani penulis selama satu semester mengerjakan Tugas Akhir.
- 9. Teman-teman Grader Metalurgi yang saling membagikan ilmu mengenai Metalurgi serta mengajarkan penulis arti berbagi dan bermanfaat untuk orang lain.

- 10. Praktikan Metalurgi tahun 2015-2016 yang telah mengajarkan penulis arti kesabaran dan keikhlasan dalam berbagi.
- 11. Teman-teman MT15 yang memberikan dukungan dalam bentuk transportasi dan doa kepada penulis selama mengerjakan Tugas Akhir.
- 12. Unit Kerja Khusus periode 2014/2015 dan 2015/2016 yang telah memberikan banyak pengalaman dan pembelajaran.
- 13. Pembinaan PKMBK 2015/2016 yang memberikan warna untuk hidup penulis.
- 14. Teman setia sedari SMP, Surya Alam, yang telah memberikan dukungan dan bantuan yang sangat banyak hingga tidak dapat disebutkan satu per satu khususnya selama penulis tinggal di Surabaya.
- 15. Kelompok Kecil, Ditta dan Madeline, yang selalu memberikan doa, dukungan dan warna-warni yang mengisi hari-hari penulis.
- Pihak lain yang tidak dapat disebutkan satu per satu tapi telah membantu penulis menyelesaikan perkuliahan S1 Teknik Material dan Metalurgi.

BIOGRAFI PENULIS

Amelthia Rahel dilahirkan di Jakarta pada 12 Juni 1996. Penulis merupakan anak pertama dari 3 bersaudara. Penulis menempuh pendidikan formal di SDK PENABUR X Muara Karang, SMPK PENABUR Bintaro Jaya, SMAK PENABUR Bintaro Jaya. Setelah itu melanjutkan pendidikan perguruan tingginya di Jurusan Teknik Material dan Metalurgi Institut Teknologi Sepuluh Nopember Surabaya

angkatan 2013. Selama menjadi mahasiswi, penulis aktif di kegiatan akademik maupun non akademik. Dalam bidang akademik, penulis aktif menjadi Grader Laboratorium Metalurgi sejak (2015 s.d 2017), Asisten Laboratorium Kimia Material (2014) dan Asisten Laboratorium Polimer (2016). Sedangkan dalam bidang non akademik, penulis aktif di Himpunan Mahasiswa Teknik Material dan Metalurgi, Fakultas Teknologi Industri, ITS (HMMT, FTI-ITS) sebagai Staff Unit Kerja Khusus (2014/2015), project manager Materials Smart Games Silver Parade V (2014/2015).Kepala Divisi Teknis Unit Keria Khusus (2015/2016). Wakil Koordinator Sie. Pembinaan PKMBK (2015/2016) dan Kepala Divisi Science INDOCOR Student Chapter ITS (2015/2016). Prestasi yang pernah diraih penulis adalah menjadi peserta Sustainable Mining Bootcamp Batch V yang diadakan oleh PT Newmont Nusa Tenggara dan juara Harapan II Lomba Karya Tulis Ilmiah Green Scientific Competition (2015). Saat ini penulis bertempat tinggal di Bandung, dan memiliki alamat e-mail: amelthiarahel96@gmail.com.