

SKRIPSI

PENGARUH SUBSTITUSI Ca TERHADAP SIFAT MEKANIK MEMBRAN PENGHANTAR ION OKSIGEN $La_{1-x}Ca_xCo_{0,8}Fe_{0,2}O_{3-\delta}$

TOTOK TRENGGGINAS NRP 1409 100 089

Dosen Pembimbing I Ir. Endang Purwanti, MT.

Dosen Pembimbing II Hamzah Fansuri, Ph. D.

JURUSAN KIMIA Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 2016

SCRIPT

EFFECT OF Ca SUBSTITUTION TO THE MECHANICAL PROPERTIES OF $La_{1-x}Ca_xCo_{0,8}Fe_{0,2}O_{3-\delta}$ OXYGEN ION CONDUCTING MEMBRANE

TOTOK TRENGGGINAS NRP 1409 100 089

Supervisor I Ir. Endang Purwanti, MT.

Supervisor II Hamzah Fansuri, Ph. D.

DEPARTMENT OF CHEMISTRY Faculty Of Mathematic And Sciences Sepuluh Nopember Institute of Technology Surabaya 2016

KATA PENGANTAR

Puji syukur Alhamdulillah penulis panjatkan atas kehadirat Allah SWT yang telah melimpahkan rahmat dan hidayah-Nya sehingga penyusunan skripsi yang berjudul Pengaruh Subtitusi Ca terhadap Sifat Mekanik Membran Penghantar Ion Oksigen $La_{1-x}Ca_xCo_{0.8}Fe_{0.2}O_{3-\delta}$ dapat diselesaikan dengan baik.

Dalam menyelesaikan skripsi ini penulis mendapat bantuan dari berbagai pihak. Untuk itu, tak lupa penulis mengucapkan terima kasih kepada:

- 1. Ibu Ir. Endang Purwanti S, MT, dan Bapak Hamzah Fansuri, Ph.D selaku dosen pembimbing yang telah memberikan pengarahan, bimbingan dan motivasi selama penyusunan skripsi ini.
- 2. Prof.Dr. Didik Prasetyoko, S.Si., M.Sc selaku Ketua jurusan Kimia FMIPA ITS
- 3. Ibu Yulfi Zetra, M.Si. selaku dosen wali atas semua motivasinya.
- 4. Seluruh jajaran Bapak/Ibu Dosen dan Karyawan jurusan Kimia FMIPA ITS, atas segala dedikasinya.
- 5. Ibu Thowilah, Ibu Afiyah dan (alm) Ayah yang selalu memberi dukungan dan doa.
- 6. Bapak Wahyu Prasetyo Utomo, M.Si dan dan Teman-teman kelompok material energi khususnya Imam dan Shofi yang memberikan semangat, dukungan dan rekan saat beraktivitas di laboratorium.
- 7.) Teman-teman angkatan 2009 (C27) yang selalu memberikan dorongan untuk menyelesaikan skripsi ini.
- 8. Racana Putra-Putri Sepuluh Nopember dan Gugusdepan Surabaya 610-611 atas didikannya selama menjadi mahasiswa.
- 9. Adik Maliha Sya'bana atas bantuannya dalam proses penyusunan skripsi.

10. Semua pihak yang telah membantu dalam penyusunan skripsi ini yang tidak bisa saya sebut secara langsung.

Penulis menyadari sepenuhnya bahwa tugas akhir ini tidak lepas dari kekurangan. Oleh karena itu penulis mengharapkan saran dan kritik yang membangun untuk dapat meningkatkan kualitas dan perbaikan lebih lanjut. Semoga tugas akhir ini memberikan manfaat bagi penulis dan pembaca.

> Surabaya, 5 Februari 2016 Penulis

PENGARUH SUBSTITUSI Ca TERHADAP SIFAT MEKANIK MEMBRAN PENGHANTAR ION OKSIGEN

OKSIGEN La1-xCaxCo0.8Fe0.2O3-6

SKRIPSI

Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana pada Bidang Studi Kimia, Program S-1 Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember

Oleh:

TOTOK TRENGGINAS NRP. 1409100089

JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2016

LEMBAR PENGESAHAN

PENGARUH SUBSTITUSI Ca TERHADAP SIFAT MEKANIK MEMBRAN PENGHANTAR ION OKSIGEN OKSIGEN La_{1-x}Ca_xCo_{0,8}Fe_{0,2}O_{3-δ}

SKRIPSI

Oleh:

TOTOK TRENGGINAS NRP. 1409 100 089

Surabaya, 5 Februari 2016

Menyetujui,

Dosen Pembimbing II

Dosen Pembimbing I

Interl

Ir. Endang Purwanti S, MT. NIP. 19560110 198503 2 001

Hamzah Fansuri, Ph.D NIP. 19691017 199412 1 001

vi

Mengetahui, Ketua Jurusan Kimia

ray

Prof.Dr. Didik Prasetyoko, S.Si., M.Sc NIP. 19710616 199703 1 002

PENGARUH SUBSTITUSI Ca TERHADAP SIFAT MEKANIK MEMBRAN PENGHANTAR ION OKSIGEN OKSIGEN La1-xCaxCo0.8Fe0.2O3-8

Nama Mahasiswa NRP Jurusan

TOTOK TRENGGINAS 1409100089 Kimia FMIPA-ITS Dosen Pembimbing I Nr. Endang Purwanti S. MT.

Dosen Pembimbing II : Hamzah Fansuri, M.Si., Ph.D.

ABSTRAK

Membran rapat telah berhasil disintesis dari serbuk oksida perovskit La_{1-x}Ca_xCo_{0.8}Fe_{0.2}O₃₋₈ (LCCF) 0,1≤x≤0,4. LCCF disintesis menggunakan metode solid state melalui kalsinasi pada suhu 1000 °C. Data difraksi sinar-X menunjukkan bahwa oksida LCCF memiliki kekristalan yang tinggi. Membran LCCF dibuat dengan cara penekanan dengan beban sebesar 6 ton selama 10 menit didalam cetakan, baja dan disinter dengan suhu 1250 °C. Hasil pengamatan morfologi dengan SEM menunjukkan bahwa semua membran LCCF memiliki kerapatan yang tinggi. Tingkat kekerasan rata-rata dalam satuan HV secara berturut-turut adalah 902,08; 915,42; 1093; dan 1178,6 untuk LCCF 9182, 8282, 7382 dan 6482. Pengujian muai panas menunjukkan bahwa LCCF 6482 adalah membran yang paling stabil ditandai dengan koefisien muai panas yang tekecil. Urutan kestabilan membran yakni LCCF 6482>LCCF 7382>LCCF 9182>LCCF 8282.

Kata Kunci: Perovskit, penghantar ion oksigen, membran perovskit, La1-xCaxCo0.8Fe0.2O3-5.

EFFECT OF Ca SUBSTITUTION TO MECHANICAL PROPERTIES OF La_{1-x}Ca_xCo_{0,8}Fe_{0,2}O_{3-δ}OXYGEN ION

CONDUCTING MEMBRANE

Name: TOTOK TRENGGINASNRP: 1409100089Department: Kimia FMIPA-ITSSupervisor I: Ir. Endang Purwanti S, MT.Supervisor II: Hamzah Fansuri, M.Si., Ph.D.

ABSTRACT

Danse membranes have been succesfully synthesized from perovskite oxides $La_{1,x}Ca_xCo_{0,8}Fe_{0,2}O_{3,5}$ (LCCF) powders (0,1 \leq x \leq 4). The powders were prepared from a stoichiometric mixture of each metal oxides and calcined at 1000°C. X-ray diffraction data showed that the resulted powder were LCCF perovskite oxides has high cristallinity. The LCCF membrane were pressed in a hardened stainless steel by applying pressure of 6 tonnes during 10 minutes and sintering process at 1250 °C. SEM analysis results of membranes morphology show that perovskite membrane has hight danse. Their average hardness (reported as HV) were 902,08; 915,42; 1093; and 1178,6 for LCCF 9182, 8282, 7382 and 6482. Thermal expansion analysis resulted LCCF 6482 membrane was the most stable. Their Thermal Expansion Coefficient (TEC) were *LCCF 6482>LCCF* 7382>LCCF 9182>LCCF 8282.

Key Words: Perovskite, Oxygen Ion Transfer, perovskite membrane, La_{1-x}Ca_xCo_{0.8}Fe_{0.2}O₃₋₅.

DAFTAR ISI

KATA PENGANTAR	vii
DAFTAR ISI	ix
DAFTAR GAMBAR	xi
DAFTAR TABEL	xii
DAFTAR PERSAMAAN	xiii
DAFTAR SIMBOL	xiv
BAB I PENDAHULUAN	
1.1. Latar Belakang	1
1.2. Perumusan Masalah	3
1.3. Batasan Masalah	
1.4. Tujuan Penelitian	
1.5. Manfaat Penelitian	4
BAB II TINJAUAN PUSTAKA	5
2.1. Oksida Perovskit	
2.2. Oksida Perovskit Sebagai Membran Penghantar Ion	n 2/5
Oksigen	6
2.3. Pengaruh Substitusi Sisi A dan B pada Membran	
Perovskit	7
2.3.1 Pengaruh substitusi pada situs A	
2.3.2 Pengaruh substitusi pada situs B	9
2.4. Sintesis Oksida Perovskit	10
2.5. Pembuatan Membran Keramik	12
2.6. Karakterisasi	14
2.6.1 Analisa Struktur Dan Fasa dengan Difraksi sinar-	X.14
2.6.2 Analisa Morfologi Membran dengan Scanning	
Electron Microscopy (SEM)	17
2.6.3 Pengujian Kekerasan (<i>Microhardness Test</i>)	19
2.6.4 Uji Koefisien Muai Panas.	20
BAB III METODOLOGI	22
3.1. Bahan dan Alat	23
3.1.1 Bahan	23
3.1.2 Alat	23
3.2. Prosedur Penelitian	23

DAFTAR GAMBAR

DAFTAR TABEL

DAFTAR PERSAMAAN

DAFTAR SIMBOL

Lambang Arti Lambangan / singkatan Faktor Toleransi the RA Jari-jari kation A RB Jari-jari kation B RO Jari-jari anion oksigen XRD X-Ray Diffraction Scanning Electron Microscopy SEM LCCF La_{1-x}Ca_xCo_{0.8}Fe_{0.2}O_{3-δ} δ Non stoikiometri dari ion Oksigen Banyaknya Subsitusi pada Situs A x °C Derajat Celcius **JCPDS** Join Committee on Powder **Diffraction Standard**

BAB I PENDAHULUAN

1.1. Latar Belakang

Bahan bakar menjadi salah satu komponen penting dalam kehidupan manusia. Saat ini pasokan utama bahan bakar berasal dari minyak bumi atau bahan bakar fosil. Akan tetapi ketersediaan bahan bakar minyak semakin lama semakin menipis karena merupakan sumber daya alam yang tidak dapat diperbaharui. Oleh sebab itu, jenis energi lain perlu dikembangkan dan dioptimalkan untuk mengatasi menipisnya persediaan bahan bakar tersebut. Salah satu bahan yang berpotensi digunakan sebagai energi alternatif adalah gas metana karena persediaanya lebih berlimpah daripada minyak bumi. Namun demikian, pemanfaatan gas metana masih terkendala khususnya dalam hal pendistribusian gas tersebut. Untuk mengatasi masalah tersebut, gas metana dapat dikonversi menjadi bahan bakar cair sehingga proses distribusi akan menjadi lebih mudah. (Taheri dkk., 2008).

Gas metana dapat dikonversi menjadi bahan bakar melalui proses oksidasi parsial metana. Proses ini menghasilkan syngas (campuran antara CO dan H_2) yang selanjutnya dapat digunakan untuk mensintesis metanol sebagai bahan bakar cair. Namun demikian, proses oksidasi parsial ini memiliki kekurangan dalam hal selektivitas hasil reaksinya. Syngas yang terbentuk dapat bereaksi lebih jauh dengan oksigen sehingga menghasilkan produk CO₂ dan H_2 O yang tidak diharapkan. Oleh karena itu konsentrasi oksigen yang terlibat dalam reaksi harus dikontrol dengan ketat agar tidak terjadi reaksi oksidasi total (reaksi pembakaran).

Pengontrolan jumlah oksigen ini dapat dilakukan dengan menggunakan membran penghantar ion oksigen. Pada proses oksidasi parsial dengan bantuan membran, ion oksigen yang dipakai dalam reaksi adalah oksigen kisi yang berasal dari kisi kristal membran. Ion oksigen ini mampu berdifusi melewati kisi kristal membran tanpa mengubah struktur kristal membran. Keunggulan inilah yang menjadikan membran penghantar ion oksigen berpotensi untuk dikembangkan (Noble dan L.Falconer, 1995).

Salah satu membran penghantar ion oksigen yang sekarang adalah membran rapat dari bahan oksida dikembangkan perovskit. Struktur umum perovskit adalah ABO₃, dimana situs A merupakan ion logam golongan alkali, alkali tanah, atau lantanida yang mempunyai jari-jari besar. Sedangkan situs B merupakan ion logam golongan transisi yang mempunyai jari-jari lebih kecil (Mundscau dkk., 2008). Pada situs A maupun situs B, ion logam penyusunnya dapat disubstitusi dengan ion logam lainnya sehingga oksida perovskit mempunyai yariasi komposisi unsur yang berbeda-beda. Selain itu, membran oksida perovskit yang baik adalah membran yang dapat menjaga selektivitas hantaran oksigen yang tinggi. Sehingga membran yang digunakan haruslah tipis, rapat (tidak berpori) dan tidak retak sehingga tidak ada kemungkinan terjadi difusi molekul oksigen melalui retakanretakan atau pori pada membran tersebut.

Hasil penelitian terhadap perovskit LaCoO₃ yang dilakukan oleh Yang dkk. (2005) menunjukkan bahwa perovskit tersebut memiliki sifat oksidasi dan reduksi yang baik, dapat menghantarkan ion oksigen serta memiliki selektivitas dan aktivitas yang tinggi. Oksida tersebut dapat mempertahankan strukturnya pada saat tereduksi dan dapat kembali kekeadaan asal setelah direoksidasi. Tetapi penggunaan LaCoO₃ sebagai membran penghantar oksigen masih memiliki kelemahan yakni mudah pecah dan fluks oksigen masih relatif rendah, sehingga diperlukan penelitian lebih lanjut untuk mendapatkan membran dengan fluks oksigen yang tinggi dan kekuatan mekanis yang bagus.

Salah satu metode untuk meningkatkan fluks dan kekuatan mekanis membran adalah dengan melakukan subtitusi pada situs A dan situs B perovskit. Subtitusi pada situs A berfungsi untuk meningkatkan pembentukan ikatan kristal dan stabilitas oksigen, sementara subtitusi pada situs B berfungsi mengoptimalkan aktifitas katalis dari reaksi oksidasi (Taheri dkk., 2008).

1.2. Perumusan Masalah

Membran yang diharapkan adalah membran yang rapat dan tidak mudah retak. Oleh karena itu diperlukan material yang memiliki sifat pelebur sehingga dapat menurunkan titik leleh bahan sehingga dapat mengoptimalkan proses sintering membran. Penelitian ini menggunakan Ca^{2+} sebagai subtituen pada situs A untuk mendapatkan sifat fisik yang lebih baik. Penelitian sebelumnya yang dilakukan oleh Reichmann dkk. (2014) menunjukkan bahwa subtitusi parsial situs A dengan Ca^{2+} memiliki pengaruh signifikan pada difusi oksigen membran yang dihasilkan. Oleh karena itu perlu dilakukan optimasi komposisi Ca^{2+} pada $La_{1-x}Ca_xCo_{0.8}Fe_{0.2}O_{3-\delta}$. Penambahan substituen Ca^{2+} pada situs A dapat mempengaruhi sifat fisik dan mekanik membran $La_{1-x}Ca_xCo_{0.8}Fe_{0.2}O_{3-\delta}$ seperti tingkat kekerasan (membrane hardness) dan pemuaian termalnya.

1.3. Batasan Masalah

Pada penelitian ini membran penghantar ion oksigen yang diteliti adalah membran oksida perovskit $La_{1-x}Ca_xCo_{0,8}Fe_{0,2}O_{3-\delta}$ (LCCF) yang disintesis dengan metode *solid-state*.

1.4. Tujuan Penelitian

Penelitian ini bertujuan untuk mendapatkan jumlah ideal substituen Ca^{2+} pada membran oksida perovskit La_{1-x}Ca_xCo_{0,8}Fe_{0,2}O_{3-δ} pada rentang x mulai dari 0,1 sampai dengan 0,4 yang menghasilkan membran dengan tingkat kerapatan, kekerasan dan koefisien muai panas yang sesuai untuk digunakan sebagai membran penghantar ion oksigen.

1.5. Manfaat Penelitian

Hasil yang diperoleh dari penelitian ini diharapkan mampu menambah informasi tentang pengaruh perbedaan komposisi pada membran oksida perovskit $La_{1-x}Ca_xCo_{0.8}Fe_{0.2}O_{3.\delta}$ (x=0,1-0,4) terhadap sifat fisik dan mekanik membran penghantar ion oksigen. Sehingga diharapkan dapat digunakan sebagai acuan dalam mendesain atau menentukan komposisi membran perovskit pada penelitian-penelitian selanjutnya.

BAB II TINJAUAN PUSTAKA

1.1. Oksida Perovskit

Oksida perovskit memiliki rumus umum ABO₃ (Chen dkk, 2009), dengan situs A tersusun dari ion unsur tanah jarang/ lantanida dan logam alkali tanah yang memiliki jari-jari besar, meliputi La³⁺, Sr²⁺, Ca²⁺, atau ion logam lainnya. sedangkan situs B tersusun dari ion logam transisi dengan jari-jari lebih kecil, meliputi Fe³⁺, Fe²⁺, Co³⁺, Co²⁺, Mn³⁺, Ru³⁺, atau yang lainnya (Taheri dkk., 2008 dan Mundscau dkk., 2008). Muatan total ionion oksigen dalam struktur oksida perovskit adalah negatif 6, oleh karena itu jumlah muatan total ion-ion A dan B haruslah 6 agar terjadi kesetimbangan muatan (Tien-Thao dkk., 2007). Dari sifat tersebut, bentuk struktur kristal perovskit secara umum adalah kubus (Kusaba dkk., 2006) sebagaimana ditunjukkan pada Gambar 2.1.

Gambar 2. 1 Struktur umum oksida perovskit ABO3

Jari-jari kritis untuk struktur kubus perovskit merupakan suatu faktor penting pada energi migrasi ion oksigen dan konduktivitas ionnya. Pada struktur kubus ideal perovskit ABO₃, kristal tersusun dari oktahedral tiga dimensi BO₆, dan kation situs A mencakup 12 koordinasi dibentuk oleh jaringan BO₃ dan dikelilingi oleh 12 ekivalen ion oksigen seperti dijelaskan pada Gambar 2.2 a. Gambar 2. 2 a. Struktrur kristal dengan oksigen melewati titik berat, b. Geometri jari-jari kritis.

a1.5

à

Penentuan unsur-unsur yang dapat mengisi situs A dan B dapat dilakukan dengan memperhitungkan faktor toleransi (t) Goldschmidt yang ditunjukkan pada Persamaan 2.1. Faktor toleransi untuk perkiraan stabilitas perovskit dan mengindikasikan struktur kubus dapat tercapai adalah antara 0,8-1, dengan perhitungan:

 $t = \frac{r_{\rm A} + r_{\rm O}}{\sqrt{2} (r_{\rm P} + r_{\rm O})}$

dimana r_A , r_B dan r_0 masing-masing adalah jari-jari ion A, B dan O. Apabila hasil perhitungan t yang dihasilkan lebih besar atau lebih kecil dari 1 tetapi masih dalam jangkauaan nilai tersebut, maka struktur perovskit dapat terbentuk namun diiringi dengan terjadinya distorsi struktur (Ismunandar, 2004). Saat t < 1, maka fungsi lebih ke bagian B dari perovskit. Saat t > 1, maka fungsi lebih ke situs A. Sedangkan saat t = 1, maka fungsi dari situs A dan B menurun (Nansheng dkk., 2010).

1.2. Oksida Perovskit Sebagai Membran Penghantar Ion Oksigen

Membran penghantar ion oksigen atau biasa dikenal dengan MIEC (*Mixed Ionic Electronic Conductor*) merupakan membran rapat tanpa pori dimana proses transfer oksigennya

2.1

terjadi melalui kisi kristal dari bahan membran. Oksida-oksida perovskit adalah salah satu bahan yang dapat digunakan sebagai membran MIEC (Galasso,1969).

Salah satu contoh oksida perovskit yang telah diteliti sebagai membran penghantar ion oksigen adalah membran dengan jenis $La_xSr_{1-x}Co_yFe_{1-y}O_{3-\delta}$. Oksida ini mampu berperan sebagai bahan membran penghantar ion karena nilai flux oksigennya yang tinggi (Taheri dkk., 2008). Nilai fluks oksigen diperlukan untuk dapat meningkatkan tingkat konversi tanpa mengurangi tingkat selektivitasnya terhadap produk. Salah satu upaya yang dapat dilakukan untuk meningkatkan fluks oksigen adalah dengan cara membuat MIEC dengan ketebalan sekecil mungkin dan suhu reaksi yang tinggi (Kusaba dkk., 2006).

Kelebihan yang dimiliki oleh membran oksida perovskit adalah sebagian dari ion-ion oksigen penyusun strukturnya dapat dilepaskan (mengalami reduksi), tanpa mengalami perubahan struktur yang berarti. Kekosongan ion oksigen ini selanjutnya dapat diisi kembali oleh ion oksigen lain melalui reaksi reoksidasi. Dengan sifat seperti ini, oksida perovskit dapat berperan sebagai oksidator atau sumber oksigen bagi suatu reaksi oksidasi yang bersifat reversibel karena dapat direoksidasi (Zheng dkk., 2007.

1.3. Pengaruh Substitusi Sisi A dan B pada Membran Perovskit

Mobilitas oksigen kisi pada oksida perovskit bergantung pada struktur kisinya yang dapat dimodifikasi dengan melakukan subtitusi isomorfis, baik pada ion situs A maupun B dengan ionion sejenis.

2.3.1 Pengaruh substitusi pada situs A

Penambahan ion logam tanah jarang/lantanida atau ion logam alkali tanah mempengaruhi nonstoikiometri oksigen dan kestabilan dari perovskit (Taheri dkk., 2008). Perovskit yang memiliki bentuk umum ABO₃, pada situs A dengan ion valensi kecil maka menghasilkan oksigen nonstoikiometri yang tinggi dan jumlah dari kekosongan oksigen dapat diatur dari jumlah atau komposisi ion pada situs A (Chen dkk., 2009). Sebagai contoh adanya La⁺ dapat menambah stabilitas dari perovskit (Taheri dkk., 2008). Hal ini terjadi karena La⁺ mengaktifkan permukaan oksigen dan membantu dalam penyerapan CO pada permukaan (Sun dkk., 2011). Selain itu, membran oksida perovskit dengan La⁺ sebagai kation sisi A menunjukkan konduktivitas ion oksigen vang paling tinggi daripada unsur lantanida lainnya (Kammer, 2006) seperti terlihat pada Gambar 2.3 yang menerangkan konduktivitas dari perovskit dengan subsitusi pada situs A, dimana konduktivitas La > Pr > Sm > Gd. Hal ini disebabkan karena La⁺ dengan jari-jari ion 1,36 adalah yang paling mendekati dengan jari-jari ion unsur lainnya di perovskit, sehingga sel dan kisi-kisi kristalnya tidak berubah (Chen dkk., 2009).

Perovskit berbasis LaCoO₃ yang disubstitusi parsial dengan ion-ion dari golongan logam alkali tanah (misalnya Sr, Ba dan Ca) pada kation sisi A (lantanum) menunjukkan peningkatan konduktivitas ionik dan elektroniknya. Berdasarkan laporan sebelumnya (Li dkk., 1999), pada investigasi peneliti permeabilitas oksigen dan stabilitas membran tipe perovskit $La_{1-x}A_{x}Co_{0.2}Fe_{0.8}$ (A=Sr, Ba, Ca) didapatkan data fluks oksigen pada sampel LSCF 2828 sebesar 0.81ml.min⁻¹cm⁻²; LBCF 2828 sebesar 0,40 ml.min⁻¹cm⁻²; dan LCCF sebesar 0,12 ml.min⁻¹cm⁻². Dengan adanya substitusi ion terhadap La³⁺ maka secara otomatis muatannya akan dikompensasi dengan peningkatan bilangan oksidasi kation B dari Co³⁺ menjadi Co⁴⁺, adanya valensi yang tidak umum tersebut menyebabkan terjadinya kekosongan oksigen (oxvgen vacancy) sekaligus mobilitas oksigen dan menyebabkan perubahan sifat elektronik (Zawadzki dkk., 2010). Mobilitas ion oksigen inilah yang terukur sebagai fluks permeasi oksigen

2.3.2 Pengaruh substitusi pada situs B

Membran oksida perovskit yang mengandung Co memiliki bentuk morfologi butiran yang rapi, dari pada unsur transisi lainnya yang masih terdapat pori-pori pada permukaannya (Herve dan Bahlawane., 2009). Morfologi permukaan membran dapat diamati sebagaimana dicontohkan pada Gambar 2.4. Membran dengan bahan LaCoO₃ memiliki bentuk permukaan yang lebih merata karena ukuran butiran yang lebih seragam. Selain itu juga tidak terbentuk pori pada membran.

Subtitusi situs B dapat mempengaruhi optimalisasi sifat katalitik dari membran oksida perovskit dalam reaksi oksidasi (Taheri dkk., 2008). Sebagai contoh pengarus subtitusi Co pada situs B pada sistem LaCoO₃ yang disubtitusi dengan Fe dapat meningkatkan nilai fluks oksigen dan meningkatkan kestabilan membran rapat perovskit (Taheri dkk., 2008).

Gambar 2. 4 Permukaan mikrograph SEM dari lapisan perovskit

1.4. Sintesis Oksida Perovskit

Oksida perovskit yang merupakan zat padat dapat disintesis dengan banyak metode. Tiga metode sintesis yang paling banyak digunakan antara lain metode sol gel, *solid state*, dan kopresipitasi. Pemilihan metode dalam sintesisnya dapat mempengaruhi kekristalan oksida perovskit dan waktu pembentukan perovskit (Idayati., 2008).

Metode sol-gel dikenal sebagai salah satu metode sintesis nanopartikel yang cukup sederhana dan mudah. Metode ini merupakan salah satu "*wet method*" karena pada prosesnya melibatkan larutan sebagai medianya. Pada metode sol-gel, sesuai dengan namanya larutan mengalami perubahan fase menjadi sol (koloid yang mempunyai padatan tersuspensi dalam larutannya) dan kemudian menjadi gel (koloid tetapi mempunyai fraksi solid yang lebih besar daripada sol). Metode ini biasanya berawal dengan prekursor aktif seperti alkoksida logam. Alkoksida logam ini kemudian dihidrolisis secara bertahap dalam beberapa tahap (Ismunandar., 2004).

Pembuatan oksida perovskit dengan cara sol-gel umumnya dengan menggunakan larutan garam-garam nitrat dari logamlogam yang akan digunakan. Sebagai contoh, untuk oksida perovskit LaCo_{1-x}Cu_xO₃ disiapkan dari campuran La(NO₃)₃·6H₂O dan Co(NO₃)₂·6H₂O dan Cu(NO₃)₂·3H₂O. Kemudian asam sitrat ditambahkan sebagai agen pengompleks sambil diaduk. Penambahan jumlah asam sitrat yaitu perbandingan mol kation logam dan mol asam sitrat sebesar 1:1. Selanjutnya campuran larutan tersebut dievaporasi pada suhu 80°C sampai terbentuk gel. Setelah terbentuk gel dikeringkan pada suhu 100°C dan kemudian dikalsinasi pada suhu 800°C selama 6 jam (Bourzutschky dan Homs, 1990).

Kelebihan metode ini adalah suhu kalsinasi lebih rendah dibandingkan metode kopresipitasi dan solid state. Akan tetapi metode ini memiliki kelemahan pada reaksi dari bentuk sol ke gel, karena banyak faktor yang harus diperhatikan saat proses hidrolisis dan kondensasi. Faktor-faktor tersebut antara lain pH, jumlah air yang digunakan, serta kondisi pengeringan (West,1984).

Pada metode solid state, padatan yang direaksikan harus dalam kemurnian tinggi. Selain itu, suhu kalsinasi umumnya tinggi yaitu di atas 1000°C. Padatan yang disintesis melalui metode ini biasanya dibentuk dalam bentuk pelet. Hal ini dilakukan agar luas kontaknya ketika melalui proses kalsinasi lebih besar. Keunggulan metode ini adalah bahan yang dibutuhkan sedikit dan reaksinya mudah. Akan tetapi metode ini memiliki kelemahan, yaitu suhu pemanasan sangat tinggi dan sulit untuk mengatur homogenitas produknya (West, 1984).

Metode kopresipitasi menggunakan prekursor sebagai zat yang akan diendapkan. Pada metode ini, reaktan dalam bentuk garam yang dilarutkan di air, dicampurkan bersama-sama yang diikuti dengan penambahan bahan pengendap. Pengendapan dari logam-logamnya harus terjadi secara bersama-sama, lalu disaring dan dikalsinasi. Prekursor yang digunakan harus memiliki nilai Ksp yang tinggi. Hal ini karena prekursor bersifat membantu dalam pengendapan secara bersama.

Metode ini mempunyai kelemahan, yaitu kelarutan dari sampel yang ada harus sama agar sama-sama mengendap. Akan

tetapi, kelebihan dari metode kopresipitasi ini adalah suhu kalsinasi bisa lebih rendah. Selain itu, penambahan defek (reagen yang terdekomposisi sebelum atau selama reaksi, contohnya: nitrat $\rightarrow O_2 + NO_x$) dapat meningkatkan laju difusi dan luas permukaan dari padatan yang dihasilkan mempunyai homogenitas yang tinggi (West, 1984).

1.5. Pembuatan Membran Keramik

Membran ialah sebuah penghalang selektif antara dua fasa yang memiliki morfologi berpori atau non-pori atau campuran keduanya. Membran terbuat dari polimer atau zat anorganik yang dapat menahan atau melewatkan spesi-spesi tertentu. Penggunaan membran memiliki beberapa kelebihan, diantaranya: proses berlangsung kontinu/berlanjut, konsumsi energi yang rendah, mudah untuk ditingkatkan kapasitasnya dan dapat diatur berdasarkan penggunaannya. Membran bermacam-macam jenisnya yang dikelompokkan berdasarkan sifat Fisika/kimia, struktur maupun materialnya. Dalam penelitian kali ini membran yang akan dibuat adalah membran rapat keramik dengan struktur simetris.

Membran keramik adalah campuran zat yang dipanaskan pada suhu tinggi yang digunakan untuk aplikasi pada pemisahan atau penghantar ion oksigen. Membran keramik mempunyai banyak aplikasi, diantaranya sebagai membran katalis atau pendukung membran katalis dan sebagai sensor oksigen dan fuel cell. Membran untuk sensor oksigen tidak membutuhkan membran yang rapat, sementara membran untuk fuel cell memerlukan membran yang rapat agar dapat terjadi perbedaan pada tekanan oksigen parsial dari gas standar (Goodenough, 1997).

Teknik pembuatan membran karamik yang digunakan bergantung pada jenis material dasar yang digunakan sebagai membran dan jenis struktur membran yang diinginkan. Tahap pembuatan membran keramik dalam penelitian ini meliputi pencetakan dan *sintering*. Pencetakan menggunakan metode cetak kering (*dry* pressing) dengan penekanan secara uniaxial. Oksida perovskit dengan ukuran partikel tertentu diberi tekanan menggunakan alat ini, hingga dihasilkan koin membran keramik yang padat (membran mentah). Cetakan yang digunakan adalah baja anti karat dengan memberikan tekanan menggunakan alat press hidrolik pada sampel serbuk. Pemberian tekanan bertujuan untuk mendapatkan kerapatan yang lebih homogen sebelum dilakukan sintering. Jika partikel-partikelnya semakin rapat maka semakin sedikit ruang-ruang kosong (voids) yang terbentuk dan kemungkinan terjebaknya gas-gas yang menurunkan kerapatan membran semakin kecil.

Sintering merupakan perlakuan termal membran mentah. Suhu sintering biasanya lebih dari setengah titik leleh material yang di-sinter. Proses yang terjadi selama sintering dapat dijelaskan sebagai berikut: pada kenaikan sampai penahanan suhu awal, yang terjadi adalah pelepasan ikatan dan penghilangan cairan yang terkandung dalam sampel seperti air. Pada penahanan suhu pertama ini dilakukan dalam suhu yang masih rendah yaitu hanya sekitar beberapa ratus derajat.

Laju peningkatan suhu harus dikontrol secara hati-hati. Hal ini bertujuan untuk menghindari terjadinya lonjakan kondisi lingkungan yang ekstrim pada saat reaksi berlangsung serta memaksimalkan proses reaksi yang terjadi (Ismunandar, 2006). Lonjakan kondisi lingkungan yang ekstrim dikhawatirkan dapat membuat membran langsung retak atau pembentukan lapisan luar yang memadat namun bagian intinya tidak memadat secara sempurna (Setiawati, 2012).

Tujuan sintering yaitu meningkatkan kekuatan ikatan dari partikel-partikel dan mengurangi porositas padatan. Gambar 2.5 memperlihatkan tahap perubahan partikel pada saat sintering. Pada tahap awal terjadi peleburan tanpa penyusutan padatan dan pembentukan leher (*necking*) yang menghasilkan cekungan dan pertumbuhan pori. Kemudian partikel saling mendekat dan terjadi penyusutan padatan (German, 1996).

Gambar 2. 5 Tahap perubahan partikel pada saat sintering (a) partikel awal, (b) tahap awal sintering, (c) tahap pertengahan sintering, (d) tahap akhir sintering (Mulder, 1996).

1.6. Karakterisasi

2.6.1 Analisa Struktur Dan Fasa dengan Difraksi sinar-X

Difraksi sinar-X (X-Ray Diffraction-XRD) merupakan salah satu metode karakterisasi material yang sering digunakan. Teknik ini digunakan untuk menganalisa padatan kristalin dimana termasuk keramik, logam, material geologi, organik dan polimer. Material ini dapat berupa serbuk, Kristal tunggal, lapisan tipis, serat dan material lainnya (Settle, 1997). Analisa padatan ini dilakukan dengan cara menentukan parameter struktur kisi serta untuk mendapatkan ukuran partikel (Chorkendroff dan Niemanstverdriet, 2003). Struktur perovskit dianalisa dengan XRD menunjukkan bentuk kubus (Taheri dkk., 2008).

Sinar-X merupakan radiasi elektromagnetik dengan panjang gelombang (λ) yang pendek yaitu sekitar 10⁻⁵ Å hingga 100 Å. Ketika sinar-X dihamburkan oleh kristal,terjadi gangguan antara sinar yang dihamburkan. Difraksi dihasilkan pada saat jarak antara pusat hamburan sama besar dengan panjang gelombang radiasi. Ketika gelombang sinar-X mengenai

permukaan kristal pada sudut θ , sebagian akan dihamburkan oleh lapisan atom pada permukaan. Sinar yang tidak dihamburkan akan menembus ke lapisan atom kedua yang nantinya akan dihamburkan kembali dan sisanya akan melewati lapisan ketiga. Prinsip ini dapat diamati pada Gambar 2.6.

Gambar 2. 6 Difraksi sinar X

of min 44

Dasar dari penggunaan difraksi sinar-X untuk mempelajari kisi kristal adalah berdasarkan persamaan W.L. Bragg yaitu :

$n\lambda = 2d \sin \theta$

dengan n merupakan bilangan bulat, λ merupakan panjang gelombang, d merupakan jarak antar bidang dalam kristal sedangkan θ merupakan besarnya sudut hamburan.

Berdasarkan persamaan Bragg, jika seberkas sinar-X di jatuhkan pada sampel kristal, maka bidang kristal itu akan membiaskan sinar-X yang memiliki panjang gelombang sama dengan jarak antar kisi dalam kristal tersebut. Sinar yang dibiaskan akan ditangkap oleh detektor kemudian diterjemahkan sebagai sebuah puncak difraksi. Makin banyak bidang kristal yang terdapat dalam sampel, makin kuat intensitas pembiasan yang dihasilkannya. Tiap puncak yang muncul pada pola XRD mewakili satu bidang kristal yang memiliki orientasi tertentu dalam sumbu tiga dimensi. Komponen instrumen difraktometer sinar-X sama dengan komponen instrumen spektroskopi optik, yaitu terdiri dari sumber cahaya, monokromator, wadah

2.2

sampel, detektor atau *transducer* dan *signal processor* serta *read* out (Settle, 1997).

Gambar 2.7 menunjukkan contoh difraktogram sinar X oksida perovskit La_{0.5}A_{0.5}Fe_{0.7}Ga_{0.3}O₃₋₈ (LAGF) dari dan $La_{0.5}A_{0.5}Fe_{0.7}Co_{0.3}O_{3-\delta}$ (LACF) dengan A = Ca, Sr, and Ba. Oksida perovskit tersebut dikalsinasi pada suhu 1000 °C. Analisis difraksi sinar-X dilakukan pada rentang sudut 20 antara 20° - 80°. Pada rentang sudut tersebut, puncak-puncak khas perovskit sudah tampak dengan jelas. Puncak-puncak difraksi yang khas tersebut berada pada 20 sekitar 23°, 32°, dan 33° seperti terlihat pada Gambar 2.7 (Tien-Thao dkk., 2007). Semua pola difraksi (difraktogram) hampir menunjukkan pola yang sama dengan puncak difraksi oksida perovskit induk yaitu LaCoO₃ pada data JCPDS (Joint Committee on Powder Diffraction Standar). Pada difaktogram menunjukkan keberadaan fasa oksida perovskit vang muncul di daerah puncak yang sama meskipun ada sedikit pergeseran sebagai akibat dari subtitusi. Meskipun demikian oksida terebut dapat dipastikan fasa perovkit sudah terbentuk

Gambar 2. 7 Difraktogram sinar –X dari oksida perovskit dengan XRD dari (a) LSGF (b) LSCF (c)LCGF (d) LCCF dan (e) LBCF

2.6.2 Analisa Morfologi Membran dengan Scanning Electron Microscopy (SEM)

Metode untuk mengkarakterisasi permukaan suatu material padat yaitu mikroskop optik. Resolusi mikroskop optik terbatas pada efek difraksi pada panjang gelombang cahaya. Namun, pada saat ini, informasi mengenai morfologi permukaan suatu material dengan resolusi yang tinggi dapat diperoleh dengan 3 cara, yaitu Scanning Electron Microscopy (SEM), Scanning Tunneling Microscopy (STM), dan Atomic Force Microscopy (AFM).

SEM merupakan teknik sederhana yang dapat digunakan untuk karakterisasi morfologi permukaan dan penampang melintang membran. Porositas dan distribusi pori suatu membran secara kualitatif diperoleh dengan menganalisis foto SEM. Scanning menggunakan SEM dilakukan dengan 2 pasang kumparan yang terletak dalam lensa objektif, satu pasang membelokkan gelombang pada arah sumbu x terhadap sampel, dan satu pasang yang lain membelokkan ke arah sumbu y. Pembesaran (M) yang diperoleh pada gambar SEM yaitu:

Dengan W merupakan lebar tabung sinar katoda dan w merupakan lebar garis pindai (scan) yang melewati sampel. Karena nilai W konstan, maka perbesaran meningkat dengan menurunnya nilai w. Hal tersebut menunjukkan gelombang elektron yang dipusatkan pada titik kecil dapat menghasilkan perbesaran tertentu. Batasan perbesaran yang diperoleh yaitu 10 kali hingga 100.000 kali. SEM menghasilkan gelombang elektron dalam kolom elektron di dalam wadah sampel. Elektron tersebut dihasilkan dengan sumber emisi termal, seperti filamen tungsten yang dipanaskan atau dengan *Field Emission Cathode*. Energi elektron tersebut sekitar 100 eV atau 30 keV bergantung pada sampel yang dianalisis. Gelombang elektron dipindai dengan pola raster pada permukaan sampel. Elektron yang diemisikan detektor elektron. Intensitas sinyal elektron yang diemisikan ditandai dengan terangnya tabung sinar katoda (*Cathode Ray Tube*). Display CRT merupakan perbandingan ukuran gambar yang ditampilkan terhadap daerah sampel yang dipindai dengan gelombang elektron. Sampel yang digunakan untuk analisis SEM harus menghantarkan arus listrik. Material sampel yang tidak menghantarkan arus listrik dilapisi dengan lapisan tipis karbon, emas atau material penghantar listrik lainnya agar dapat memperoleh konduktivitas tanpa mempengaruhi permukaan sampel yang diamati.

Gambar 2.8 menunjukkan contoh mikrogaf SEM dari membran yang telah disinterring pada suhu 1350°C dan 1250 °C. SEM mikrograf tersebut menunjukkan struktur mikro dari membran yang telah sinter. Ukuran butiran rata-rata sangat mirip, kecuali untuk membran LSCF, yang memiliki ukuran butir lebih besar. Membran LCGF menunjukkan tingkat kerapatan yang sangat rendah karena batas butir tidak terlihat jelas (Reichman dkk., 2014).

Gambar 2. 8 Mikrograf SEM (a) LSGF (b) LSCF (c) LCGF (d) LCCF

2.6.3 Pengujian Kekerasan (Microhardness Test)

Kekerasan merupakan ukuran ketahanan material terhadap deformasi tekan. Efek deformasi tergantung pada kekerasan permukaan material. Ada beberapa cara pengukuran kekerasan yang cukup dikenal dalam bidang material di antaranya adalah kekerasan gores, kekerasan pantul (dinamis) dan gores tergantung kekerasan indentasi. Kekerasan pada kemampuan gores material vang satu terhadap material lainnya. Kekerasan pantul mencakup deformasi dinamis dari permukaan material yang dinyatakan dalam jumlah energi impak yang diserap permukaan pada saat benda penekan jatuh. Kekerasan indentasi berupa penjejakan oleh sebuah indentor yang keras yang ditekankan ke permukaan material yang diuji. Pada penelitian kali ini pengujian hanya dibatasi pada jenis uji kekerasan indentasi menggunakan alat model Vickers Micro Hardness. Perbedaan kekerasan dapat diketahui dari bentuk indentor yang ditekankan pada permukaan Alat penguji kekerasan ini material memakai indentor berbentuk piramid yang membuat jejakan pada material dengan pembebanan tertentu dengan waktu penjejakan berlangsung beberapa detik. Permukaan membran yang diuji harus rata

Ukuran inden ditentukan secara optik dengan mengukur panjang dari duadiagonal inden persegi di permukaan. Nilai kekerasan didapatkan dari fungsi gaya yang diberikan dibagi dengan luas permukaan inden. Panjang diagonal jejakan yang diukur pada arah horisontal ditandai sebagai d-1 dan panjang diagonal jejakan pada arah vertical ditandai sebagai d-2, lalu dihitung d-rerata sebagai panjang diagonal jejakan (Mittemeijer, 2010). Nilai kekerasan material uji dicari pada tabel yang tersedia dengan memproyeksikan d-rerata serta bobot beban yang digunakan atau dapat dihitung berdasarkan rumus Vickers sebagai berikut: $HVN = \frac{189 \times F \times 10^3}{d^2}$

F d

HVN = Nilai Kekerasan Vicker's

= Beban Tumbuk dalam Newton (N)

= Panjang Jejakan Rata-rata dalam μm

Nilai kekerasan berkaitan dengan kekuatan luluh atau tarik logam. Hal ini disebabkan selama indentasi (penjejakan) logam mengalami deformasi sehingga terjadi regangan dengan persentase tertentu. Nilai kekerasan Vickers didefinisikan sama dengan beban dibagi luas jejak piramida (indentor) dalam kg/mm2 dan besarnya kurang lebih tiga kali besar tegangan luluh untuk logam-logam yang tidak mengalami pengerjaan pengerasan.

2.6.4 Uji Koefisien Muai Panas

Thermal analysis digunakan untuk mengamati sifat-sifat material yang dipengaruhi oleh perubahan suhu. Menurut IUPAC thermal analysis merupakan teknik yang digunakan untuk mengetahui sifat fisik suatu material yang dipengaruhi oleh suhu. Salah satu metode yang umum digunakan thermomechanical analysis (TMA). Pada dasarnya TMA adalah teknik yang digunakan untuk mengamati perubahan dimensi material akibat perubahan suhu.

Stabilitas dimensi dan sifat mekanik material merupakan faktor terpenting dalam aplikasi material karena penggunaannya pada rentang suhu yang luas.Contohnya polimer yang diproses pada suhu tinggi sehingga menjadi lebih viscous dan lebih mudah untuk difabrikasi. Begitu juga dengan keramik yang dipanggang untuk memperoleh strukur yang diinginkan. Pemanasan pada material secara tidak langsung juga mengubah sifat dari material sehingga dibutuhkan instrument vang tersebut. dapat mengidentifikasi pengaruh temperatur dan pembebanan terhadap dapat didefinisikan material TMA sebagai instrument pengukuran dimensi material (luas atau volume) sebagai fungsi temperatur, dimana pembebanan konstan diaplikasikan pada specimen uji. Dengan instrument ini koefisien ekspansi termal dapat ditentukan. Beberapa material akan terdeformasi jika diberi pembebanan pada suhu tertentu. koefisien muai panas dari suatu padatan. Koefisien muai panas (ekspansi termal) didefiniskan sebagai perubahan ukuran partikel terhadap perubahan suhu pada tekanan konstan sebagaimana Persamaan 2.5.

dL 1 α= · Lo dT

dimana α adalah koefisien muai panas (K⁻¹), dL adalah perubahan tebal (μ m), Lo adalah tebal mula-mula (μ m) dan dT adalah perubahan suhu (K) (West, 1984).

2.5

BAB III METODOLOGI

Penelitian ini dibagi menjadi dua tahap. Tahap pertama adalah sintesis oksida perovskit $La_{1-x}Ca_xCo_{0.8}Fe_{0.2}O_{3-\delta}$ beserta karakterisasinya dan tahap kedua pembuatan membran rapat beserta karakterisasainya.

1.1. Bahan dan Alat

3.1.1 Bahan

Bahan-bahan yang digunakan dalam penelitian ini adalah Oksida Lantanum(III) (La₂O₃), Oksida Kobalt (Co₃O₄), Oksida Besi (Fe₂O₃) dan Ca(II) Oksida (CaO).

3.1.2 Alat

Peralatan yang digunakan dalam penelitian terdiri dari peralatan sintesis dan peralatan karakterisasi. Peralatan sistesis meliputi kaca arloji, oven, mortar serta alu batu agat, neraca timbang, krusibel, cetakan membran berbahan *stainless steel*, alat press hidrolik dan *furnace*. Sedangkan alat untuk karakterisasi terdiri dari difraktometer sinar X (*X-ray Diffractometer/XRD*) Philips X'Pert system, *Scanning Electron Mocroscopy* SEM Zeiss EVO MA 10, *Vickers's microhardness tester* MVK-H310A3 dan *Termomechanical Analysis* TMA/SDTA 840 Mettler Toledo.

1.2. Prosedur Penelitian

3.2.1 Sintesis dan Karakterisasi Oksida Perovskit LCCF

Sintesis LCCF dilakukan dengan metode solid state. Penelitian ini menggunakan 4 variasi komposisi. Masing-masing komposisi yang disintesis menghasilkan oksida perovskit sebanyak 30 gram. Serbuk Oksida Lantanum(III) (La₂O₃), Oksida Kobalt (Co₃O₄), Oksida Besi (Fe₂O₃) dan Ca(II) Oksida (CaO) dicampur dengan perbandingan komposisi massa yang berbeda
sesuai dengan perbandingan mol dari jenis perovskit. Sintesis LCCF diawali dengan mempersiapkan La_2O_3 , Co_3O_4 , CaO dan Fe₂O₃ sesuai hasil perhitungan stoikiometri sebagaimana ditunjukkan pada Tabel 3.1. Sebelum ditimbang seluruh reaktan dipanaskan terlebih dahulu di dalam oven selama 1 jam pada suhu 105 °C untuk menghilangkan kelembaban.

gram perovskit	LCCF			
Komposisi Oksida	Massa Reaktan (gram)			
Perovskit	La ₂ O ₃	CaO	Co ₃ O ₄	Fe ₂ O ₃
$\frac{\text{La}_{1-x}\text{Ca}_{x}\text{Co}_{0,8}\text{Fe}_{0,2}\text{O}_{3-\delta}}{(\text{LCCF 6482})}$	14,256	3,272	9,365	2,329
La _{1-x} Ca _x Co _{0,8} Fe _{0,2} O _{3-δ} (LCCF 7382)	15,869	2,341	8,936	2,222
La _{1-x} Ca _x Co _{0,8} Fe _{0,2} O _{3-δ} (LCCF 8282)	17,439	1,501	8,592	2,137
$La_{1-x}Ca_{x}Co_{0,8}Fe_{0,2}O_{3-\delta}$ (LCCF 9182)	18,690	0,715	8,185	2,036

Tabel 3. 1 Jumlah reaktan yang dibutuhkan untuk mensintesis 30 gram perovskit LCCF

Serbuk kemudian dicampur lalu digerus selama 1 jam dengan mortar sampai homogen dan halus. Serbuk dikalsinasi menggunakan *furnace* pada suhu 1000 °C dengan penahanan pada suhu 400 °C selama 1 jam dan pada 900 °C selama 2 jam serta suhu 1000 °C selama 4 jam dengan kenaikan 3 °C/menit dan tahapan tersebut dilakukan dua kali dengan penggerusan sebelum kalsinasi kedua.

Serbuk LCCF yang telah disintesis kemudian dikarakterisasi menggunakan difraktometer sinar-X. Sumber sinar X adalah Cu K α yang dihasilkan oleh tegangan 40 kV dan arus 30 mA serta sudut 2 θ mulai dari 20° hingga 90°. Uji ini dilakukan untuk mengetahui fasa perovskit LCCF yang telah disintesis apakah sudah terbentuk, dengan melihat puncak-puncak khas perovskit. Data difraktogram XRD dibandingkan dengan data standar perovskit berbasis LaCoO₃ yang mempunyai puncak pada daerah sudut yang khas.

3.2.2 Pembuatan dan Karakterisasi Membran LCCF

Membran dibuat dari serbuk oksida perovskit LCCF yang sudah dikalsinasi dan diketahui fasa kristalnya dicetak menjadi pelet berbentuk koin dengan diameter 13 mm dan ketebalan sekitar ± 1 mm. Sedangkan bubuk oksida perovskit yang dibutuhkan sebanyak 0,5 gram.

Pencetakan dilakukan dengan cetakan berbahan baja tahan karat seperti ditunjukkan oleh Gambar 3.1. Pencetakan dilakukan dengan memasukkan serbuk LCCF ke dalam cetakan, kemudian diratakan dengan mengetuk cetakan pada permukaan yang datar, sekaligus untuk mendapatkan sebaran dan kerapatan partikel yang merata di dalam cetakan. Selanjutnya, dilakukan penekanan uniaksial dengan alat *press* dengan beban sebesar 6 ton yang ditahan pada tekanan tersebut selama 10 menit didalam cetakan berbahan baja tahan karat.

Gambar 3. 1 Cetakan membran LCCF berbahan baja tahan karat.

Setelah didiamkan selama 10 menit pada tekanan yang diberikan, hasil cetakan yang disebut dengan membran mentah (green pellet) dikeluarkan secara hati-hati dari cetakan membran. Membran mentah LCCF yang terbentuk kemudian disinter menggunakan *furnace* pada suhu 1250 °C dengan kenaikan suhu 3 °C/menit selama 4 jam. Membran yang telah terbentuk kemudian dilakukan karakterisasi analisa morfologi permukaan untuk melihat kerapatan membran dengan Scanning Electron Microscopy (SEM), uji kerapatan dengan tetes air seperti yang dilakukan sebelumnya oleh Zulaicha (2013). Selain itu juga dilakukan uji kekerasannya (Microhardeness Test) dan uji koefisien muai termalnya.

Karakterisasai yang pertama adalah uji tetes air untuk membuktikan kerapan dari membran yang telah dihasilkan dilakukan uji kerapatan dengan meneteskan air di permukaan membran kemudian diamati apakah air akan tetap tertahan dipermukaan apakah terserap ke dalam membran. Proses pengamatan dilakukan selama 15 menit. Pada membran yang rapat, tetes air akan bertahan dalam bentuk tetesan sedangkan pada membran berpori, tetesan tersebut akan terserap ke dalam membran. Selaian itu juga dihitung prosentase penyusutan membrane setelah dilakukan sintering

Karakterisasai kedua dilakukan analisa morfologi permukaan dan penampang lintang. Morfologi permukaan membran LCCF dikaji dengan *Scanning Electron Microscopy* (SEM). Membran LCCF yang sudah berbentuk koin diletakkan pada perekat pita karbon yang direkatkan pada aluminium holder dan tanpa melalui proses *coating*, karena membran perovskit termasuk material konduktor atau penghantar elektron yang baik. Analisis SEM dilakukan untuk melihat porositas permukaan dan kerapatan membran.Membran difoto dengan jarak kerja (*working distance*) antara 8,5 dan 10,5 mm dan tegangan pemercepat elektron (*accelarting voltage*) 20,00 KV.

Karakterisasi yang ketiga dilakukan pengujian tingkat kekerasan pada membran. Nilai kekerasan berkaitan dengan kekuatan luluh atau tarik logam. Hal ini disebabkan selama indentasi (penjejakan) logam mengalami deformasi sehingga terjadi regangan dengan persentase tertentu. Uji kekerasan dengan *Vickers Micro Hardness Tester* menggunakan beban indentasi sebesar 0.5 kgf atau 0.5 Newton dengan waktu indentasi selama 30 detik dimulai dari tepi membran melewati bagian tengah membran dan berakhir di bagian tepi yang lain

untuk membandingkan tingkat kekerasan membran di bagian tepi maupun bagian tengah membran. Kemudian dicatat panjang diagonal jejakan yang diukur pada arah horisontal ditandai sebagai d-1 dan panjang diagonal jejakan pada arah vertical ditandai sebagai d-2, lalu dihitung d-rerata sebagai panjang diagonal jejakan. Setelah itu dihitung dengan menggunakan rumus yang ada.

Karakterisasi yang terakhir dilakukan pengujian muai panas atau nilai koefisien muai panas dari membrane. Uji sifat termal khususnya ekspansi termal membran ini menggunakan Termal mekhanik analyzer (TMA). Membran yang sudah disinterring ditempatkan pada quarts dengan probe kemudian dipanaskan didalam furnace pada suhu 25°C-900°C dengan laju pemanasan/pendinginan 10°C/menit.

BAB IV HASIL DAN PEMBAHASAN

Bab ini terdiri dari dua bagian yang menguraikan hasil penelitian dan pembahasannya. Bagian pertama membahas tentang sintesis oksida perovskit LCCF beserta karakterisasinya. Bagian kedua membahas tentang pembuatan membran dan karakterisasinya.

1.1. Sintesis Oksida Perovskit LCCF

Oksida perovskit LCCF disintesis dengan metode *solid state*. Metode ini sesuai pada penelitian sebelumnya yang dilakukan oleh Idayati (2008) yang melaporkan bahwa penggunaan metode *solid state* dapat menghasilkan produk dalam jumlah banyak dan kristalinitas yang tinggi.

Sintesis dilakukan dengan melakukan variasi subtitusi La²⁺ oleh Ca²⁺ pada situs-A dengan x=0,1-0,4. Jumlah subtituen Ca²⁺ yang disubtitusikan pada situs A akan berpengaruh pada nilai toleransi perovskit vang dihasilkan (t). Nilai toleransi perovskit merupakan range nilai dimana struktur akan membentuk struktur perovskit apabila memiliki nilai toleransi diantara range tersebut, vakni sebesar 0,8-1,00. Nilai toleransi diluar range tersebut menandakan struktur perovskit yang terbentuk memiliki struktur perovskit vang terdistorsi. Hasil perhitungan nilai toleransi perovskit untuk keempat komposisi ditunjukkan pada Tabel 4.1. Hasil yang diperoleh menunjukkan bahwa keempat komposisi memiliki nilai toleransi perovskit diantara 0,8-1,0 sehingga bisa disimpulkan bahwa keempat komposisi tersebut mampu membentuk struktur perovskit yang stabil (tanpa distorsi). Perhitungan lengkap nilai toleransi perovskit ditampilkan pada lampiran B.

Oksida Per <mark>ovski</mark> t	Jumlah Substitusi Ca ²⁺ (mol)	Faktor Toleransi
LCCF 9182	0,1	0,9314
LCCF 8282	0,2	0,9517
LCCF 7382	0,3	0,9720
LCCF 6482	0,4	0,9923

Tabel 4. 1 Oksida perovskit La_{1-x}Ca_xCo_{0,8}Fe_{0,2}O_{3-δ} beserta faktor toleransinya

Proses sintesis dimulai dengan penghitungan secara stoikiometris jumlah reaktan yakni La2O3, CaO, Co3O4 dan Fe2O3 yang dibutuhkan untuk menghasilkan tiap-tiap komposisi perovskit. Selanjutnya, proses penimbangan reaktan dilakukan berdasarkan jumlah stoikiometris tersebut. Sebelum proses penimbangan, semua reaktan dipanaskan terlebih dahulu di dalam oven selama 1 jam pada suhu 105 °C. Pemanasan ini bertujuan untuk menghilangkan kemungkinan adanya air yang terikat secara fisik pada reaktan, sehingga ketika penimbangan dilakukan, jumlah (massa) reaktan yang ditimbang mendekati jumlah (massa) sebenarnya karena tidak dipengaruhi oleh air fisik tersebut. Reaktan yang telah ditimbang selanjutnya dicampurkan menurut komposisinya dan digerus dengan pastel dan mortar porselen selama 1 jam untuk membentuk campuran serbuk reaktan yang homogen.

Setelah proses penggerusan, campuran serbuk reaktan yang telah homogen selanjutnya dikalsinasi. Proses kalsinasi ini bertujuan agar terjadi reaksi antar serbuk reaktan sehingga membentuk oksida perovskit. Proses kalsinasi ini dilakukan dengan beberapa tahap penahanan dengan kenaikan suhu 3 °C/menit. Penahanan pertama dilakukan pada suhu 400 °C selama 1 jam untuk menghilangkan air yang terdapat pada campuran oksida. Penahanan kedua, dilakukan pada suhu 900 °C selama 2 jam untuk memulai terjadinya pembentukan oksida perovskit. Hal ini sesuai hasil penelitian sebelumnya yang dilaporkan oleh Maulida (2010) yang menyatakan bahwa fasa perovskit mulai

terbentuk pada suhu 880 °C. Kalsinasi kemudian dilanjutkan pada 1000 °C suhu dengan penahanan selama 4 jam untuk memastikan kesempurnaan mengoptimalkan dan reaksi pembentukan perovskit sehingga menghasilkan kristalinitas yang tinggi (Reichman dkk., 2014). Proses kalsinasi ini dilakukan sebanyak dua kali dengan melakukan penggerusan ulang sebelum kalsinasi kedua dilakukan. Penggerusan ini dilakukan untuk membentuk bidang reaksi baru. Selain itu, penggerusan juga berfungsi untuk mengurangi rongga antar partikel serta memperkecil ukuran partikel yang menyebabkan luas total permukaan reaksi meningkat (Ismunandar, 2004).

Oksida perovskit hasil sintesis pada proses kalsinasi berupa serbuk berwarna hitam yang ditunjukkan pada Gambar 4.1. Perubahan warna dari bubuk perkusor ini menandakan telah terjadi reaksi dan diperkirakan sudah terbentuk oksida perovskit.

Gambar 4. 1 Campuran oksida: (a) sebelum kalsinasi; (b) setelah kalsinasi

Serbuk hasil disintesis selanjutnya dikarakterisasi dengan difraktometer sinar-X untuk memastikan fasa yang terbentuk adalah fasa perovskit. Difraktogram keempat sampel ditunjukkan pada Gambar 4.2. Difraktogram-difraktogram tersebut menunjukkan pola puncak yang sama dengan difraktogram puncak perovskit LaCoO₃ (JCPDS tahun 2011 No. 01-075-0279) yang ditandai dengan puncak difraksi 20 pada area 23,26°;

33,13°; 40,88°; 47,56°; 53,60°; 59,19°). Hal ini menunjukkan bahwa serbuk oksida perovskit telah terbentuk. Selain itu, tidak ditemukan puncak-puncak lain selain puncak perovskit sehingga bisa disimpulkan pula bahwa tidak terbentuk fasa lain dalam sampel yang telah disintesisi. Perovskit dapat disintesis dengan tingkat kemurnian yang tinggi.

Gambar 4. 2 Difraktogram XRD perovskit LCCF.

Difraktogram pada Gambar 4.2 menunjukkan terjadinya pergeseran nilai 20. Pergeseran puncak difraksi cenderung menuju ke 20 yang lebih kecil seiring dengan bertambahnya subtituen Ca²⁺. Berdasarkan persamaan Bragg ($2\lambda = 2d \sin \theta$), hasil ini menunjukkan bahwa sudut puncak difraksi berbanding terbalik dengan jarak antar bidang kristal. Pergeseran menuju ke 20 yang lebih rendah menunjukkan jarak antar bidang kristal bertambah lebar. Penambahan jarak antar bidang ini terjadi karena penambahan volume kristal akibat subtitusi Ca²⁺ (Kong dkk., 2008).

Dari analisa difraktogram diatas, dapat disimpulkan bahwa oksida perovskit telah terbentuk dengan optimal, dimana strukturnya memiliki jarak antar bidang kristal lebih besar seiring dengan pertambahan subtituen Ca²⁺. Serbuk oksida perovskit LCCF selanjutnya dapat dibuat menjadi membran dan dikarakterisasi.

1.2. Pembuatan dan Karakterisasi Membran Perovskit

Pembuatan membran LCCF dilakukan menekan serbuk perovskit yang berada di dalam cetakan membran secara uniaksial dengan tekanan sebesar 6 ton dan penahanan selama 10 menit. Massa oksida perovskit yang dibutuhkan untuk membuat membran sebesar 0,5 gram. Massa ini dipilih karena dapat menghasilkan membran yang tipis dan tidak pecah.

Membran mentah yang terbentuk selanjutnya disinter melalui dua tahapan sintering untuk menghasilkan membran dengan kerapatan tinggi dan tidak mudah retak. Pertama dilakukan sintering dengan *muffle furnace* dengan suhu 900°C selama 2 jam dan kenaikan 3 °C.menit⁻¹. Kenaikan suhu diatur secara perlahan agar tidak terjadi *thermal shock*/kenaikan suhu yang drastis. Laju pemanasan yang terlalu cepat akan menyebabkan membran mengalami keretakan atau pecah (Tan dkk, 2003). Sintering kedua dilakukan dengan *high temperature furnace* dengan pada suhu 1250°C dengan kenaikan suhu 3 °C.menit⁻¹ (Reichmann dkk., 2014). Proses sintering kedua ini menghasilkan membran yang secara fisik tampak kuat dan rapat. Membran sebelum dan sesudah sintering pada suhu 1250 °C ditunjukkan pada Gambar 4.3 Gambar 4. 3 Membran (a) mentah setelah dicetak, (b) setelah disinter pada suhu 1250 °C.

Proses sintering yang dilakukan mengakibatkan terjadinya penyusutan pada ukuran membran. Hasil pengukuran dimensi membran menunjukkan penyusutan yang terjadi bervariasi mulai dari 10-20% dari volume awal, tergantung pada komposisi membrannya sebagaimana yang ditunjukkan pada Tabel 4.2. Hal ini disebabkan karena penekanan yang dilakukan pada saat pembuatan membran cukup merata sehingga menyebabkan ukuran membran yang relatif tipis dan kompak. Semakin banyak kandungan Ca²⁺, ukuran membran mentah semakin kecil yang mengindikasikan membran mentah lebih kompak dibandingkan komposisi lain, sehingga penyusutannya pun paling kecil. Pola penyusutan yang kecil ini kemungkinan akan berhubungan dengan tingkat kekerasan membran.

Jenis Membran	LCCF 9182	LCCF 8282	LCCF 7382	LCCF 6482
Volume Awal (mm ³)	52,289	52,289	51,813	50,813
Volume Akhir (mm ³)	42,007	43,936	45,364	46,208
Penyusutan (%)	19,663	15,976	12,447	10,818

Tabel 4. 2 Penyusutan membran setelah disinter suhu 1250 °C

Pengujian kerapatan membran secara fisik dilakukan melalui uji tetes air. Uji ini didasarkan pada prinsip kapilaritas dimana air akan meresap masuk ke dalam pori-pori membran jika membran tidak rapat. Dengan demikian, kerapatan membran ditunjukkan oleh tertahannya tetesan air di permukaan membran. Gambar 4.4 menunjukkan bahwa seluruh membran telah rapat karena air tertahan di atas membran.

Gambar 4. 4 Pengujian tetes air : a) LCCF 9184; b) LCCF 8282; c) LCCF 7382; d) LCCF 6482.

Untuk menunjang hasil uji tetes air yang menunjukkan membran telah rapat maka perlu data pendukung yaitu pengamatan morfologi permukaan dengan SEM. Gambar-gambar hasil uji SEM ditunjukkan pada Gambar 4.5.

Gambar 4.5 menunjukkan bahwa membran LCCF hasil sintering pada suhu 1250 °C telah rapat karena telah terjadi penggabungan butiran. Gambar 4.5 menunjukkan butiran yang terbentuk memiliki ukuran yang bervariasi. Butiran yang lebih kecil mengisi sela-sela antar membran yang berukuran lebih besar, sehingga dapat meningkatkan kerapatan. Ukuran butiran menunjukkan semakin besar seiring dengan bertambahnya subtitusi La³⁺ oleh Ca²⁺. Pertambahan ukuran ini bisa disebabkan karena semakin banyaknya kekosongan oksigen kisi. Hal ini disebabkan karena subtituen Ca^{2+} (1,76 Å) mempunyai jari-jari ionik yang lebih besar dan valensi lebih kecil dari pada La^{3+} (1,18 Å) sehingga menyebabkan kekosongan oksigen.

Gambar 4. 5 Foto SEM permukaan membran (sinterring 1250 °C): a) LCCF 9184; b) LCCF 8282; c) LCCF 7382; d) LCCF 6482.

Pengamatan terhadap penampang lintang membran juga dilakukan untuk memastikan bahwa kerapatan membran tidak hanya berada pada permukaannya saja melainkan juga bada bagian dalam membran. Gambar 4.6 menunjukkan penampang lintang dari membran LCCF 8282.

Gambar 4.6 menunjukkan bahwa terdapat rongga pada membran LCCF 8282. Namun rongga tersebut tidak terhubung satu sama lain. Rongga hanya terlokalisasai di di bagian-bagian tertentu. Hal ini bisa terjadi karena adanya udara yang terperangkap saat proses sintering, dimana pada suhu tingggi ionion logamnya (khususnya kobalt dan besi) mulai tereduksi dan melepaskan oksigen kisinya menjadi gas oksigen. Gas tersebut terperangkap dan belum sempat terlepas dari badan membran pada saat proses sintering berakir (suhu furnace mengalami penurunan). Hal inilah yang mengakibatkan adanya rongga didalam membran. Fenomena serupa ini telah dilaporkan pula oleh Syafii (2015) pada membran BSCF.

Gambar 4. 6 Foto SEM penampang lintang LCCF 8282

Pengujian kekerasan membran dilakukan dengan alat ukur kekerasan *Vicker's Microhardness*. Uji ini mengukur kekuatan membran dalam menahan beban yang diberikan selama beberapa waktu tanpa mengalami keretakan. Pengujian dilakukan pada lima titik yang berbeda sebagaimana ditunjukkan pada Gambar 4.7. Tekanan yang diberikan sebesar 0.5 kgf dan lama penahanan selama 10 detik. Penahanan ini bertujuan untuk memberikan distribusi gava vang merata pada membran sehingga pengukuran akurat dan tidak terjadi keretakan saat indentor diangkat dari permukaan membran.

Gambar 4. 7 Titik indentasi hardness vicher

Hasil pengukuran menunjukkan nilai kekerasan (hardness) keempat membrane cukup tinggi sebagaimana ditampilkan pada Tabel 4.3. Nilai kekerasan semakin tinggi seiring dengan naiknya jumlah substituen Ca²⁺. Hal ini sesuai dengan gambar SEM bahwa semakin banyak subtituen Ca²⁺ pertumbuhan ukuran butiran juga semakin besar sehingga membran LCCF lebih rapat, kuat dan kompak. Selain itu tingkat kekerasan yang tinggi ini juga sesuai dengan tingkat penyusutan yang rendah. Hal ini disebabkan karena proses pencetakan membran sudah menghasilkan membran yang cukup rapat dan kompak.

John To J	Tabel 4.3 I	lasil pengukura	an kekerasan	NTR 1		
7:4:1.	()/-Kekerasan (HV)					
Indentosi	LCCF	LCCF	LCCF	LCCF		
muentasi	9182	8282	7382	6482		
walk a	989,7	1002	933,1	1517		
2	854,4	892,4	1165	1090		
3	837	733,3	1284	1024		
4	905,3	967,2	960,9	1188		
5	924	982,2	1122	1074		
Rata- Rata	902,08	915,42	1093	1178,6		

Hasil pengukuran kekerasan membran juga menunjukkan bahwa nilai kekerasan pada tiap titik uji menghasilkan tingkat kekerasan yang berbeda-beda sebagaimana ditampilan pada Gambar 4.8. Hal ini dikarenakan proses pencetakan hanya memberikan tekanan searah saja, sehingga kekerasan yang dihasilkan berbeda di masing-masing bagian. Bagian tepi membran tidak sama dengan di bagian tengah membran. Perbedaan kekerasan ini juga disebabkan karena proses sintering, dimana bagian tengah membran hanya mendapat panas dari atas dan bawah, sedangkan bagian tepi selain dari atas dan bawah juga mendapat panas dari samping. Sehingga kekerasan bagian tepi lebih tinggi dibandingkan bagian tengah. Namun secara keseluruhan hasil yang diperoleh menunjukkan tinggat kekerasan rata-rata membrane LCCF sudah relatif tinggi berkisar antara 691.2 HV sampai 1178.6 HV.

Pengukuran pemuaian panas atau ekspansi termal membran LCCF dilakukan dengan TMA dalam atmosfer udara dengan beban yang diberikan sebesar 0,02 N untuk mengetahui stabilitas termal membran. Hasil pengujian menunjukkan besar pemuaian panas sebanding dengn kenaikan suhu seperti ditunjukkan pada Gambar 4.9. Pemuaian atau ekspansi ini sebagai akibat dari peningkatan jarak ikat antar kation-anion sebagai akibat dari gaya tolak (*repulsion force*) ketika ion-ion oksigen dilepaskan dari kisi. Pada saat ion oksigen dilepas, elektronelektron yang sebelumnya terdistribusi didekat oksigen (karena elektronegativitas oksigen tinggi) akan berpindah ke bidang antara kation dengan anion yang menghasilkan ekspansi pada kisi dan pada waktu bersamaan meningkatkan tegangan ikatan. Hal ini menyebabkan atom penyusun perovskit tidak lagi stoikiometri dan jumlah atom oksigen bukan bilangan bulat lagi. Karena terisinya bidang antar kation dengan anion itu teriadi pertambahan volume sel kristal. Peristiwa lepasnya ion oksigen ini terjadi pada suhu tinggi (Huang dkk., 2010).

Gambar 4. 9 Pola pemuaian membran LCCF

Gambar 4.9 menunjukkan tingkat pemuaian membran dari suhu 25°C – 900 °C berbanding terbalik dengan jumlah subtituen Ca²⁺. Pola pemuaian mengikuti urutan LCCF 8282>LCCF 9182>LCCF 7382>LCCF 6482. Semakin banyak subtituen Ca²⁺ koefisien muai panas semakin kecil. Itu artiya LCCF 6482 memiliki kestabilan termal paling tinggi. Hal ini bisa berhubungana dengan tingginya kerapatan membran karena ikatan kation-anion kuat sehingga cenderung stabil

BAB V KESIMPULAN

1.1. Kesimpulan

Oksida perovskit LCCF 9182, LCCF 8282, LCCF 7382 dan LCCF 6282 berhasil disintesis dengan metode solid state. Membran rapat telah berhasil dibuat dari keempat komposisi perovskit tersebut dengan suhu sintering 1250 °C dengan kenaikan suhu 3 °C/menit selama 4 jam. Membran yang dihasilkan juga memiliki kerapatan tinggi meskipun penampang lintang menunjukkan adanya pori. Namun demikian, pori yang terbentuk tidak terhubung satu sama lain. Butiran serbuk juga menunjukkan ukuran yang semakin besar seiring dengan meningkatnya jumlah subtituen Ca2+. Kekerasan keempat membran semakin meningkat seiring dengan bertambahnya subtituen Ca²⁺ dengan kekerasan tertinggi ditunjukkan oleh membran LCCF 6482. Koefisien muai termal semakin menurun seiring dengan bertambahnya subtituen Ca²⁺ dengan muai termal terkecil ditunjukkan membran LCCF 6482. Hasil tersebut menunjukkan bahwa jumlah ideal substituen Ca²⁺ adalah sebesar 0,4 atau oksida perovskit LCCF 6482.

1.2. Saran

Penelitian ini telah memberikan informasi terkait pengaruh substitusi Ca²⁺ pada sifat fisik dan mekanik membran LCCF. Selanjutnya, perlu dipelajari pula pengaruh substitusi kation tersebut terhadap sifat kimia membrane yang dihasilkan, khususnya pada kapasitas reduksi oksidasi dan terhadap fluks oksigen membrane LCCF.

DAFTAR PUSTAKA

Bourzutschky, J.A.B. and Homs, N.B. (1990). Conversion of Syngas to Higher Alcohols Over Nanosized LaCo_{0.7}Cu_{0.3}O₃ Perovskite Precursors. J. Cata, 12, pp 52–72.

Chen, S.Q., Wang, H. and Liu, Y. (2009). Perovskite La–St–Fe– O (St= Ca, Sr) supported nickel catalysts for steam reforming of ethanol: The effect of the A site substitution, Hydrogen Energy 34, pp. 7995-8005.

Chorkendroff, I and Niemantsverdriet, J.W. (2003). Concepts of Modern Catalysis and Kinetics, Wiley-VHC, Winheim.

Galasso, F.S., (1969), Structure, Properties and Preparation of perovskite Type Compounds, Pergamon Press, Oxford

German, R.M. (1996). Sintering theory and practice. John Wiley & Sons. Canada.

Goodenough, J. & Zhou, J.S. (2001). Thermal, Mechanical and Phase Stability of LaCoO3 in Reducing and Oxidizing Environments. Structure Bond. 98. 17-113.

Herve, P.T.N. and Bahlawane, N. (2009). Chemical Vapor Deposition and Electric Characterization of Perovskite Oxides LaMO₃ (M= Co, Fe, Cr and Mn) Thin Films. Journal of Solid State Chemistry. vol. 182, pp. 849-854. Huang, B. X., Malzbender, J., Steinbrech. R. W., Wessel, E., Penkaila, H. J., Singheiser, L. (2010). *Journal of Membran Science 349*, pp. 183-188.

Idayati, E. (2008). Perbandingan Hasil Sintesis Oksida Perovskit La_{1-x}Sr_xCoO_{3-δ}dari Tiga Variasi Metode (Sol-Gel, Solid-State,Kopresipitasi), Kimia ITS, Surabaya

Ismunandar, (2004). Padatan Oksida Logam: Struktur Sintesis dan Sifat – Sifatnya, FMIPA-ITB, Bandung.

Ismunandar. (2006). Padatan oksida logam: Struktur, sintesis, dan sifat-sifatnya. ITB, Bandung.

Kammer, K., (2006). Studies of Fe–Co based perovskite cathodes with different A-site cations, Solid State 177, pp. 1047-1051.

Kong, L.B., Zhang, T.S., Ma, J. dan Boey. (2008). Progress in Synthesis of Ferroelectric Ceramic Materials Via High-Energy Mechanocemical Technique, Progress in Material Science, Vol. 53, hal. 207-322.

Kusaba, H., Shibata, Y., Sasaki, K. and Teraoka, Y. (2006). Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskitetype oxide, Solid State Ionics 177, pp. 2249–2253.

Lee, T.H., Qiu, L., Liu, L.M., Yang, Y.L. and Jacobson, J.A. (1995). Oxygen permeation studies of SrC_{0,8}Fe_{0,2}O_{3-δ}, Solid State Ionics, pp.321-329.

Li, S., Hong, Q., Namping, X. and Jun, S. (1999). Tubular dense perovskite type membrane preparation, sealing

and oxygen permeation properties. Industrial and Developments Chemical Research, 38, 5028-5033.

Maulidah, N.(2010). Sintesis dan Karakterisasi Oksida Perovskit La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-δ} (0,0≤x,y≤0,5) dengan Metode *Solid-State*, Skripsi, Kimia FMIPA-ITS, Surabaya.

Mittemeijer, E. J. (2010). Fundamentals of Materials Science, Springer, Stutgart, Germany.

Mulder, M. (1996). Basic principles of membrane technology, 2nd ed. Kluwer Academic Publisher. Dordrecht.

Mundscau, M.V., Cristtopher, G.B. and David Jr, A.G. (2008). Diesel Fuel Reforming Using Catalytic Membran Reaktor, Catalysis Today, 136, pp. 190–205.

Nansheng, Xu, Zhao, H., Zhou, X., Wei, W., Lu, X., Ding, W. and Li, F. (2010). Dependence of critical radius of the cubic perovskite ABO₃ oxides on the radius of A- and B-site cations, Hydrogen Energy 35, pp. 7295-7301.

Noble, R. D. & L.Falconer, J. (1995) Direct Catalytic Conversion of CH₄ to CH₃OH in A Non-isothermal Membrane Reactor. Colorado, Department of Chemical Engineering-University of Colorado.

Reichmann, M., P.M.Geffroy., J. Fouletier., N. Richet., T. Chartier. (2014). Effect of cation substitution in the A site on the oxygen semipermeation flux in La_{0.5}A_{0.5}Fe_{0.7}Ga_{0.3}O₃and La_{0.5}A_{0.5}Fe_{0.7}Co_{0.3}O₃ dense perovskite membranes with A ¹/₄ Ca, Sr and Ba (part

I).

Setiawati, H. (2012). Optimalisasi komposisi perovskit La1xSrxCo0,8Fe0,2O3-8 sebagai membran rapat, Thesis, Kimia, FMIPA, Institut Teknologi Sepuluh Nopember, Surabaya.

Settle, F. (1997). Handbook of Instrumental Techniques for Analytical Chemistry, Prentice-Hall Inc., New Jersey.

 Sun, Y., Hla, S.S., Duffy, G.J., Cousins, A.J., French, D., Morpeth, L.D., Edwards, J.H. and Roberts, D.G. (2011). Effect of Ce on the structural features and catalytic properties of La(0.9-x)CexFeO3 perovskitelike catalysts for the high temperature water-gas shift reaction, Hydrogen Energy 36, pp. 79-86.

Syafi'i, I. (2015). Optimasi teknik sintering membran rapat simetris BSCF 5582, 6482 dan 7382 beserta karakterisasi sifat mekaniknya, Skripsi, Kimia FMIPA-ITS, Surabaya.

Taheri, Z., Nazari, K., Safekordi, A.A., Seyed-Matin, N., Ahmadi, R., Esmaeili, N. and Tofigh, A. (2008). Oxygen permeation and oxidative coupling of methane in membrane reactor: A new facile synthesis method for selective perovskite catalyst, Journal of Molecular Catalysis A: Chemical 286, pp. 79–86.

Tien-Thao N., Alamdari, H., Zahedi-Niaki, M.H. and Kaliaguine, S. (2007). Conversion of Syngas to Higher Alcohols over Nanosized LaCo_{0.7}Cu_{0.3}O₃ Perovskite Precursors, *Appl.Catal*, A 245, 348-357.

West, A.R. (1984). Solid State Chemistry and Its Applications, John Willey &Sons, New York. Yang, W., Wang, H., Zhu, X. and Lin, L., (2005).Development and Application of Oxygen Permeable Membrane in Selective Oxidation of Light Alkanes.Topics in Catalysis, 3, 155-167.

Zawadzki, M., Grabowska, H. and Trawczysnski, J. (2010). Effect of synthesis method of LSCF perovskite on its catalytic properties for phenol methylation. Solid State Ionic, 181, 1131-1139.

Zheng, P., Chen, Z., Zhou, W., Gu, H., Shao, Z. and Liu, S. (2007). Re-evaluation ofBa_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3.8} perovskite as oxygen semi-permeable membrane. *Journal of Membrane Science*, vol. 291, pp.148-156.

Zulaicha, Vivi. (2013). Pengaruh Substitusi Ba Terhadap Kerapatan Membran Penghantar Ion Oksigen LaCo_{0,8}Fe_{0,2}O_{3-δ}, Skripsi, Kimia FMIPA-ITS, Surabaya.

LAMPIRAN B PERHITUNGAN

1. Perhitungan Komposisi Oksida secara Stoikhiometri

Perhitungan massa masing-masing oksida untuk pembuatan

perovskit La_{1-x}Ca_xCo_{0,8}Fe_{0,2}O₃ (LCCF).

Massa senyawa target = 30 gram.

Tabel B.1 Ar dan Mr setiap molekul target.

No.	Jenis	Ar atom (g/mol)	Mr oksida (g/mol)
Я.	0	15,999	
2.	La	138,910	325,818
3.	Ca	40,080	56,079
4.	Co	58,933	240,796
5.	Fe	55,847	159,692

a. $La_{0,9}Ca_{0,1}Co_{0,8}Fe_{0,2}O_3$ (LCCF 9182) Mr LCCF 9182 = (0,9 x 138,910 g/mol) + (0,1 x 40,080 g/mol) + (0,8 x 58,933 g/mol) + (0,2 x 55,847 g/mol) + (3 x 15,999 g/mol) = 235,3398 g/mol Mol LCCF 9182 = $\frac{gram}{Mr}$ = $\frac{30 g}{235,3398 g/mol}$

= 0,1275 mol

Reaksi:

$$\frac{69}{2} La_2O_3 + 0,1 CaO + \frac{68}{3} Co_3O_4 + \frac{62}{2} Fe_2O_3 + \frac{69}{2} La_{0,9}Ca_{0,1}Co_{0,8}Fe_{0,2}O_3$$

Sehingga massa oksida-oksida logam yang dibutuhkan adalah:
 $La_2O_3 = \frac{0,9}{2} x Mr x mol$
 $= \frac{0,9}{2} x 325,818 g/mol x 0,1275 mol$
 $= 18,6901 gram$
CaO = 0,1 x Mr x mol
 $= 0,7149 gram$
Co₃O₄ = $\frac{6,8}{3} x Mr x mol$
 $= \frac{6,8}{3} x 240,796 g/mol x 0,1275 mol$
 $= 8,1854 gram$
Fe₂O₃ = $\frac{6,2}{2} x Mr x mol$
 $= 2,0357 gram$

_

La_{0.8}Ca_{0.2}Co_{0.8}Fe_{0.2}O₃ (LCCF 8282) b. Mr LCCF 8282 = $(0.8 \times 138,910 \text{ g/mol}) + (0.2 \times 40,080 \text{ g/mol})$ g/mol) + (0,8 x 58,933 g/mol) + (0,2 x 55,847 g/mol) + (3 x 15,999 g/mol) = 224,2008 g/mol Mol LCCF 8282 = Mr 30 g 224,2008 g/mol = 0.1338 molReaksi: $\frac{0.8}{2} \operatorname{La}_2 O_3 + 0.2 \operatorname{CaO} + \frac{0.8}{3} \operatorname{Co}_3 O_4 + \frac{0.2}{2} \operatorname{Fe}_2 O_3 \xrightarrow{4}$ La_{0,8}Ca_{0,2}Co_{0,8}Fe_{0,2}O₃ Sehingga massa oksida-oksida logam yang dibutuhkan adalah: $La_2O_3 = \frac{0.9}{2} \times Mr \times mol$ $=\frac{0.9}{2} \times 325,818 \text{ g/mol x } 0,1338 \text{ mol}$ = 17,4388 gram CaO = 0,1 x Mr x mol $= 0,1 \times 56,079 \text{ g/mol} \times 0,1338 \text{ mol}$ = 1,5008 gram

 $Co_3O_4 = \frac{0.8}{3} x Mr x mol$ $=\frac{0.8}{3} \ge 240,796 \text{ g/mol} \ge 0,1338 \text{ mol}$ = 8,5921 gram $Fe_2O_3 = \frac{0.2}{2} x Mr x mol$ $=\frac{0.2}{10} \times 159,692 \text{ g/mol x } 0,1338 \text{ mol}$ = 2,1368 gram c. La_{0,7}Ca_{0,3}Co_{0,8}Fe_{0,2}O₃ (LCCF 7382) Mr LCCF 7382 = (0,7 x 138,910 g/mol) + (0,3 x 40,080 g/mol) + (0,8 x 58,933 g/mol) + (0,2 x 55,847 g/mol) + (3 x 15,999 g/mol) = 215,5738 g/mol gram Mol LCCF 7382 Mr 30 g 215,5738 g/mol = 0,1392 molReaksi: $\frac{0.7}{2}$ La₂O₃ + 0.3 CaO + $\frac{0.8}{3}$ Co₃O₄ + $\frac{0.2}{2}$ Fe₂O₃ $\rightarrow \Delta$ La0,7Ca0,3C00,8Fe0,2O3

Sehingga massa oksida-oksida logam yang dibutuhkan adalah:

 $La_2O_3 = \frac{0.9}{2} \times Mr \times mol$ = $\frac{0.9}{2} \times 325,818 \text{ g/mol} \times 0,1392 \text{ mol}$

= 15,8696 gram

CaO = 0,1 x Mr x mol

= 0,1 x 56,079 g/mol x 0,1392 mol

= 2,3412 gram

 $Co_3O_4 = \frac{0.8}{3} \times Mr \times mol$

 $=\frac{0.8}{3} \times 240,796 \text{ g/mol } \times 0,1392 \text{ mol}$

= 8,936 gram

 $Fe_2O_3 = \frac{0.2}{2} x Mr x mol$

 $=\frac{0.2}{2} \times 159,692 \text{ g/mol x } 0,1392 \text{ mol}$

= 2,2223 gram

d. $La_{0,6}Ca_{0,4}Co_{0,8}Fe_{0,2}O_3$ (LCCF 6482) Mr LCCF 6482 = (0,6 x 138,910 g/mol) + (0,4 x 40,080 g/mol) + (0,8 x 58,933 g/mol) + (0,2 x 55,847 g/mol) + (3 x 15,999 g/mol) = 205,6908 g/mol

Mol LCCF 6482 = $\frac{\text{gram}}{\text{Mr}}$ 30 g 205,6908 g/mol = 0,1458 molReaksi: $\frac{0.6}{2}$ La₂O₃ + 0.4 CaO + $\frac{0.8}{3}$ Co₃O₄ + $\frac{0.2}{2}$ Fe₂O₃ \rightarrow La_{0,6}Ca_{0,4}Co_{0,8}Fe_{0,2}O₃ Sehingga massa oksida-oksida logam yang dibutuhkan adalah: $La_2O_3 = \frac{0.9}{2} \times Mr \times mol$ $=\frac{0.9}{2}$ x 325,818 g/mol x 0,1458 mol = 14,2561 gram CaO = 0,1 x Mr x mol= 0,1 x 56,079 g/mol x 0,1458 mol = 3,2716 gram $Co_3O_4 = \frac{0.8}{3} \times Mr \times mol$ $=\frac{0.8}{3} \times 240,796 \text{ g/mol } \times 0,1458 \text{ mol}$

= 9,3653 gram

 $Fe_2O_3 = \frac{0.2}{2} x Mr x mol$ $=\frac{0.2}{2} \times 159,692 \text{ g/mol x } 0,1458 \text{ mol}$ = 2,3291 gram Perhitungan Faktor Toleransi 2. $rO^{2+} = 1.42 \text{ Å}$ $rLa^{3+} = 1,18 \text{ Å}$ $rCa^{2+} = 1.76 \text{ Å}$ $rCo^{3+} = 0.61 \text{ Å}$ $rFe^{3+} = 0.55 \text{ Å}$ a. La_{0.9}Ca_{0.1}Co_{0.8}Fe_{0.2}O₃ (LCCF 9182) $t = \frac{(0.9 \,\mathrm{xrLa^{3+}}) + (0.1 \,\mathrm{xrCa^{2+}}) + \mathrm{rO^{2-}}}{2^{0.5} \{(0.8 \,\mathrm{xrCo^{3+}}) + (0.2 \,\mathrm{xrFe^{3+}}) + \mathrm{rO^{2-}}\}}$ $t = \frac{(0.9 \times 1.18 \text{ Å}) + (0.1 \times 1.76 \text{ Å}) + 1.42 \text{ Å}}{2^{0.5} \{(0.8 \times 0.61 \text{ Å}) + (0.2 \times 0.55 \text{ Å}) + 1.42 \text{ Å}\}}$ t = 0.9314b. La_{0.8}Ca_{0.2}Co_{0.8}Fe_{0.2}O₃ (LCCF 8282) $t = \frac{(0.8 \text{ x rLa}^{3+}) + (0.2 \text{ x rCa}^{2+}) + rO^{2+}}{2^{0.5} \{(0.8 \text{ x rCo}^{3+}) + (0.2 \text{ x rFe}^{3+}) + rO^{2+} \}}$ $t = \frac{(0,8\times1,18\text{ Å}) + (0,2\times1,76\text{ Å}) + 1,42\text{ Å}}{2^{0.5}\{(0,8\times0,61\text{ Å}) + (0,2\times0,55\text{ Å}) + 1,42\text{ Å}\}}$ t = 0,9517c. La_{0.7}Ca_{0.3}Co_{0.8}Fe_{0.2}O₃ (LCCF 7382)

3. Oksida Perovskit La_{0,7}Ca_{0,3}Co_{0,8}Fe_{0,2}O₃ (LCCF 7382)

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
23.2264	146.94	0.1171	3.82972	23.69
32.8828	620.37	0.1004	2.72382	100.00
33.2452	546.49	0.0836	2.69496	88.09
36.8571	20.06	0.2007	2.43873	3.23
40.6307	149.78	0.2007	2.22052	24.14
42.2532	20.76	0.2676	2.13894	3.35
47.4386	295.58	0.0836	1.91653	47.64
53.2608	40.75	0.2007	1.71995	6.57
58.9103	214.68	0.1338	1.56777	34.60
59.7622	59.98	0.2676	1.54744	9.67
68.9929	51.18	0.3346	1.36123	8.25
69.8536	63.46	0.2676	1.34654	10.23
78.8070	60.80	0.2007	1.21450	9.80
83.6355	10.97	0.6691	1.15624	- (1.77
88.2086	10.46	0.8029	1.10772	1.69
97.0927	42.52	0.5353	1.02861	6.85

Tabel C.3 Puncak Sudut 20 LCCF 7382

4. Oksida Perovskit $La_{0,6}Ca_{0,4}Co_{0,8}Fe_{0,2}O_3$ (LCCF 6482)

Gambar C.4 Difraktogram XRD perovskit LCCF 6482

Tabel	C.4	Puncak	Sudut	20	LCCF	6482
-------	-----	--------	-------	----	------	------

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
23.1805	126.13	0.1338	3.83719	28.58
32.8450	441.34	0.0836	2.72688	100.00
33.2544	407.13	0.1338	2.69424	92.25
36.9751	10.91	0.8029	2.43122	2.47
40.6342	96.11	0.2007	2.22034	21.78
47.4693	231.32	0.3011	1.91536	52.41
53.5651	14.73	0.8029	1.71089	3.34
58.9489	159.08	0.1673	1.56683	36.05
68.9584	46.99	0.3346	1.36182	10.65
69.9062	38.73	0.4015	1.34566	8.78
78.7214	42.02	0.5353	1.21560	9.52
90.5200	29.85	0.1224	1.08446	6.76
97.0242	32.57	0.5353	1.02916	7.38
	1 77			
LAMPIRAN D

3. Membran Oksida Perovskit LCCF 7382

3. Membran Oksida Perovskit LCCF 7382

Nama lengkap penulis adalah Totok Trengginas lahir di desa Tlogoagung-Lamongan pada senin legi 27 Februari 1989. Penulis sendiri merupakan anak pertama dari empat bersaudara dari pasangan (alm) Bapak dan Ibu Svafi'i Thowilah. Penulis telah menempuh pendidikan formal di MD "Miftahul Ulum" Tlogoagung-Lamongan, SMP Negeri 1 Sugio dan SMA Negeri 1 Lamongan.

Penulis diterima di jurusan Kimia FMIPA ITS melalui jalur SNMPTN dengan NRP 1409100089 dan Beasiswa dari Pemerintah Kabupaten Lamongan. Penulis mengambil bidang penelitian Kimia Material dan Energi dengan judul penelitian "Pengaruh Substitusi Ca terhadap Sifat Mekanik Membran Penghantar Ion Oksigen oksigen La_{1-x}Ca_xCo_{0.8}Fe_{0.2}O₃₋₆". Penulis sempat menempuh kerja praktek di Pusat Laboratorium Forensik Cabang Surabaya bidang Balistik dan Metalurgi Forensik. Penulis aktif dalam Gerakan Pramuka, pernah menjabat sebagai Ketua UKM Pramuka periode 2011-2012 dan sekarang sebagai Pembina aktif di Gugusdepan Surabaya 610-611 pangkalan Kampus ITS. Penulis senang dalam kegiatan komunitas sosial politik dan kegiatan *outdoor* terutama naik gunung. Penulis yang memiliki motto "manusia baik adalah yang bermanfaat pada orang lain" ini dapat dihubungi melalui email totok.trengginas@gmail.com atau handphone: 0857 3155 2604.