

TUGAS AKHIR (RC-14-1510)

PEMODELAN ALIRAN 1D PADA BENDUNGAN TUGU MENGGUNAKAN SOFTWARE HEC-RAS

SINTYA MAGHFIRA ISMAWATI NRP 3113 100 006

Dosen Pembimbing Dr. Techn. Umboro Lasminto, S.T.,M.Sc.

JURUSAN TEKNIK SIPIL Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember Surabaya 2017

FINAL PROJECT (RC-14-1510)

1D FLOW MODELING ON THE DAMS OF TUGU USING HEC-RAS SOFTWARE

SINTYA MAGHFIRA ISMAWATI NRP 3113 100 006

Supervisor Dr. Techn. Umboro Lasminto, S.T., M.Sc

DEPARTMENT OF CIVIL ENGINEERING Faculty of Civil Engineering and Planning Institut Teknologi Sepuluh Nopember Surabaya 2017

PEMODELAN ALIRAN 1D PADA BENDUNGAN TUGU MENGGUNAKAN SOFTWARE HEC-RAS

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Bidang Studi Hidroteknik Program Studi S-1 Jurusan Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember

SURABAYA

Januari, 2017

"Halaman ini sengaja dikosongkan"

PEMODELAN ALIRAN 1D PADA BENDUNGAN TUGU MENGGUNAKAN SOFTWARE HEC-RAS

Nama Mahasiswa	: Sintya Maghfira Ismawati
NRP	: 3113 100 006
Jurusan	: Teknik Sipil FTSP – ITS
Dosen Pembimbing	: Dr. techn. Umboro L. S.T., M.Sc.

Abstrak

Dalam perencanaan bangunan air khususnya perencanaan bendungan dilakukan suatu perhitungan aliran untuk mendapatkan profil muka air. Perhitungan aliran tersebut menggunakan konsep steady atau unsteady flow. Perhitungan steady flow dapat dilakukan secara analitis sehingga diperoleh aliran seragam, sementara untuk perhitungan unsteady flow diperlukan suatu program bantu guna untuk mempermudah perhitungan, salah satu program bantu yang dapat digunakan adalah HEC-RAS. Program HEC-RAS merupakan salah satu analisis hidraulika program pemodelan aliran pada saluran/sungai.

Pemodelan aliran dengan HEC-RAS pada Bendungan Tugu dapat disimulasikan menjadi 2 cara. Cara 1 yaitu dengan memodelkan waduk sebagai River Station dan bendungan sebagain Inline Structure. Sementara untuk cara ke 2, waduk dimodelkan sebagai Storage Area dan bendungan sebagai Inline Structure. Pemodelan geometri pelimpah dapat disimulasikan ke dalam kedua pemodelan tersebut. Hasil dari beberapa pemodelan tersebut salah satunya yaitu profil permukaan air, hasil inilah yang digunakan untuk membandingkan dengan hasil perhitungan analitis.

Dari hasil beberapa pemodelan yang telah dilakukan diperoleh elevasi muka air waduk pada kondisi debit periode ulang 1000 tahun sebesar +256.07(pemodelan cara 1), dengan debit yang sama untuk pemodelan dengan cara 2 diperoleh elevasi muka air sebesar +255.99. Sementara untuk hasil perhitungan analitis tinggi muka air waduk berada pada elevasi +256.65(Q1000), dengan begitu maka selisih antara hasil perhitungan analitis dengan pemodelan menggunakan HEC-RAS tidak jauh berbeda. Salah satu kelebihan perencanaan desain hidraulik bendungan menggunakan software HEC-RAS adalah apabila terdapat alternatif desain baru maka dapat disimulasikan lebih cepat dibandingkan dengan perhitungan analitis.

Kata kunci : Bendungan, HEC-RAS, spillway, waduk.

1D FLOW MODELING ON THE DAMS OF TUGU USING HEC-RAS SOFTWARE

Name	: Sintya Maghfira Ismawati
NRP	: 3113 100 006
Department	: Civil Engineering FTSP – ITS
Supervisor	: Dr. techn. Umboro L. S.T., M.Sc.

Abstract

In water constructions design, especially in dam design, a flow rate calculation is used to calculate the height of water surface. The flow rate calculation is using steady or unsteady flow concept. Steady flow calculation can be done analitically so we can get a uniform flow, while in unsteady flow calculation a program is used to make the calculation easier. The program that used in that calculation is HEC-RAS. HEC-RAS is a computer program that models the hydraulics of water flow through rivers or channels.

Flow modeling at Tugu Dam using HEC-RAS program can be simulated in two methods. First method is performed by modeling the reservoir as River Station and the dam as Inline Structure. While in the second method, the reservoir is assumed as Storage Area and the dam is assumed as Inline Structure. The geometry modeling of the spillway can also be simulated using two methods that have been mentioned above. The modeling generates some results such as the elevation of the water surface profile which will be compared with the result of analytical calculation.

Based on some of the modeling results that have been done, the elevation height of the reservoir's water level at the Q_{1000} years is +256.07 using the first method, while the second method generates a result of +255.99 unit height. On the other side, the analytical calculation shows that the elevation height of the reservoir's water level is +256.65 (Q_{1000}), which indicates that the difference of the results between the analytical calculation and the flow modeling using HEC-RAS is not much different. One of the advantages of planning the design of the hydraulic dam using HEC-RAS software is when there is a new design alternative that can be simulated faster than with analytical calculations.

Key word: dam, HEC-RAS, reservoir, spillway.

KATA PENGANTAR

Puji syukur penulis ucapkan kepada Allah SWT yang telah memberikan berkat, rahmat dan karunia – NYA sehingga penulis dapat menyelesaikan Tugas Akhir dengan judul "Pemodelan Aliran 1D pada Bendungan Tugu Menggunakan *Software* HEC-RAS". Dalam kesempatan ini penulis bermaksud mengucapkan terima kasih kepada:

- 1. Orang tua dan keluarga yang senantiasa memberikan doa dan dukungan.
- 2. Bapak Dr. Techn. Umboro Lasminto, ST. MSc. selaku dosen pembimbing Tugas Akhir yang sudah meluangkan banyak waktu untuk memberikan bimbingan kepada penulis dalam menyelesaikan Tugas Akhir.
- 3. Departemen PU Balai Besar Wilayah Sungai Brantas Surabaya dan Tulung Agung yang telah memberikan data Tugas Akhir ini serta membimbing Penulis selama Kerja Praktik di Bendungan Tugu.
- 4. Teman-teman kuliah di Jurusan Teknik Sipil ITS yang telah banyak membantu dalam pembuatan Tugas Akhir ini. Terima kasih untuk Devy, Indah, Uyun, Rika, Tika, Anna, Dilla dan kamu yang telah menyemangati dan membantu penulis dalam menyelesaikan Tugas Akhir.
- 5. Semua pihak yang tidak dapat penulis sebutkan satu persatu yang telah memberikan bantuan secara ikhlas.

Penulis menyadari bahwa masih banyak terdapat kekurangan dan kesalahan dalam penyusunan Tugas Akhir ini, oleh karena itu penulis sangat mengharapkan kritik dan saran yang sifatnya membangun dari semua pihak untuk penyempurnaan Tugas Akhir ini. Besar harapan penulis agar Tugas Akhir ini dapat bermanfaat bagi kita semua. Amin.

> Surabaya, Januari 2017 Penulis

"Halaman ini sengaja dikosongkan"

DAFTAR ISI

Lembar Pengesahan	v
Abstrak	vii
Kata Pengantar	ix
Daftar isi	xi
Daftar tabel	xiii
Daftar gambar	xiv
Daftar lampiran	XV

BAB 1 PENDAHULUAN

1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Tujuan	3
1.4 Batasan Masalah	3
1.5 Manfaat	3
1.6 Peta Lokasi	4

BAB II TINJAUAN PUSTAKA

2.1	Analisi	s Hidrologi	7
2.2	Data T	eknis Bendungan Tugu	7
	2.2.1	Dimensi bendungan utama	7
	2.2.2	Dimensi bangunan pelimpah	8
2.3	Prinsip	Dasar Aliran	11
	2.3.1	Persamaan aliran permanen	12
	2.3.2	Persamaan aliran tak permanen	15
2.4	Program	m HEC-RAS	16
	2.4.1	Langkah kerja pemodelan	17

BAB III METODOLOGI

Studi Literatur	29
Pengumpulan Data	29
Analisis Penampang Eksisting	
(Dengan HEC-RAS)	30
	Studi Literatur Pengumpulan Data Analisis Penampang Eksisting (Dengan HEC-RAS)

3.4	Simulasi Aliran Menggunakan Software	
	HEC-RAS	30
3.5	Membandingkan Hasil Running HEC-RAS	31
3.6	Kesimpulan dan Saran	31
	•	
BAB I	V PEMBAHASAN	
4.1	Penerapan Persamaan Aliran Tak Permanen	35
4.2	Parameter HEC-RAS	38
	4.2.1 Data Aliran	38
	4.2.2 Penampang melintang sungai	40
	4.2.3 Koefisien kekasaran Manning	45
4.3	Pemodelan Waduk dan Bendungan	46
4.4	Tahap Pemodelan dengan HEC-RAS	48
	4.4.1 Pemodelan dengan <i>river station</i> dan	
	inline Structure	48
	4.4.1.1 Pemodelan pertama	49
	4.4.1.2 Pemodelan kedua	71
	4.4.1.3 Pemodelan ketiga	85
	4.4.2 Pemodelan dengan <i>storage area</i> dan	
	inline Structure	97
	4.4.2.1 Pemodelan pertama	97
	4.4.2.2 Pemodelan kedua	115
4.5	Perbandingan Hasil HEC-RAS dengan Hasil	
	Analitis	125
4.6	Kelebihan dan Kekurangan Pemodelan	
	HEC-RAS	127
BAB V	/. KESIMPULAN	
7 1		100

5.1 Kesimpulan	129
5.2 Saran	131
DAFTAR PUSTAKA	133
LAMPIRAN	134
BIODATA PENULIS	149

DAFTAR TABEL

Tabel 2.1	Data Teknis Bendungan Utama	7
Tabel 2.2	Data Teknis Bangunan Pelimpah	9
Tabel 4.1	Rekapitulasi Debit Banjir Rancangan	
	Metode Nakayasu	39
Tabel 4.2	Rekapitulasi Debit <i>Inflow</i> dan	
	Outflow	40
Tabel 4.3	Jarak dan Elevasi Salah Satu	
	Cross Section Sungai	45
Tabel 4.4	Distance dan Elevation pada RS 0	55
Tabel 4.5	Data downstream reach lengths	
	pada Setiap RS	55
Tabel 4.6	(a) Debit Banjir Hulu untuk RS 27,	
	(b) Debit Banjir Hulu untuk RS 21	61
Tabel 4.7	Data Cross Section Pelimpah di	
	RS 5.5 – RS 5.2	73
Tabel 4.8	Downstream Reach Length	
	pada Pelimpah	74
Tabel 4.9	Main Channel Bank Station	
	pada Pelimpah	74
Tabel 4.10	Debit Outflow sebagai Data	
	Flow Hydrograph	88
Tabel 4.11	Hubungan Elevasi, Luas Genangan	
	dan Volume Genangan	103
Tabel 4.12	Hasil Perbandingan Menggunakan	
	Pemodelan Cara 1	125
Tabel 4.13	Hasil Perbandingan Menggunakan	
	Pemodelan Cara 2	126

DAFTAR GAMBAR

Gambar 1.1	Borrow area di sebalah hilir	
	bendungan	4
Gambar 1.2	Lokasi Bendungan Tugu	4
Gambar 1.3	Potongan Memanjang Bendungan	
	Tugu	5
Gambar 1.4	Potongan Melintang Bendungan Tugu	5
Gambar 2.1	Profil Air pada Saluran Pengarah	
	Pelimpah Samping	10
Gambar 2.2	Profil Muka Air pada Saluran	
	Transisi Bangunan Pelimpah	10
Gambar 2.3	Profil Muka Air pada Saluran	
	Peluncur Bangunan Pelimpah	11
Gambar 2.4	Diagram Aliran Berubah Beraturan	13
Gambar 2.5	Layar Penetapan Folder Default	
	PenyimpananmFile Project	18
Gambar 2.6	Layar Pengaturan Nilai Default	
	Koefisien Ekspansi dan Konstraksi	19
Gambar 2.7	Layar Pengaturan Sistem Satuan	20
Gambar 2.8	Tampilan Geometri Data	20
Gambar 2.9	Tampilan Setelah Memilih Icon	
	Cross Section	21
Gambar 2.10	Layar Hitungan Aliran Simulasi Banjir	
	(Contoh)	26
Gambar 2.11	Layar Hitungan Aliran Tak Permanen	
	Setelah Simulasi	27
Gambar 2.12	Catatan Kesalahan dan Peringatan	27
Gambar 2.13	Profil Muka Air di Sepanjang Sungai	28
Gambar 3.1	Bagan Alir Tugas Akhir	32

Gambar 4.1	Aliran Melalui Alur Utama dan	
	Bantaran	36
Gambar 4.2	Kontur Daerah Sungai Keser	41
Gambar 4.3	Tampilan Mengubah File DXF	
	Menjadi XYZ	42
Gambar 4.4	Layar Pemilihan Zone dan Datum	42
Gambar 4.5	Tampilan Kontur Sungai Keser	
	dengan Global Mapper	43
Gambar 4.6	Hasil Cross Section pada Salah Satu	
	Penampang	44
Gambar 4.7	Tampilan Menu untuk Menyimpan	
	ke CSV File	44
Gambar 4.8	Beberapa Pemodelan dengan	
	HEC-RAS	47
Gambar 4.9	Layar Utama HEC-RAS	49
Gambar 4.10	Layar Pembuatan Project Baru	50
Gambar 4.11	Layar Editor Data Geometri	50
Gambar 4.12	Layar Pengisian Nama Sungai dan	
	Ruas Sungai	51
Gambar 4.13	Layar Konfirmasi Pemotongan Sungai	51
Gambar 4.14	Layar Penamaan Bagian Hilir	52
Gambar 4.15	Layar Penamaan Junction	52
Gambar 4.16	Skema Sungai Keser	52
Gambar 4.17	Layar Penyimpanan Geometri Data	53
Gambar 4.18	Layar Editor Tampang Lintang	53
Gambar 4.19	Layar Tampilan Cross Section Data	
	untuk RS 0	56
Gambar 4.20	Layar Editor Data Geometri Seluruh	
	Sungai Keser	57
Gambar 4.21	Interpolasi Tampang Lintang	58
Gambar 4.22	Layar Editor Data Geometri setelah	
	Interpolasi	58
Gambar 4.23	Layar Editor Inline Structure Weir	
	Station Elevation	59
Gambar 4.24	Layar Editor Inline Structure	60

Gambar 4.25	Layar Editor Data Geometri setelah	c 0
0 1 100	terdapat <i>Weir</i>	60
Gambar 4.26	RS 27	62
Gambar 4.27	Hidrograf Debit di Batas Hulu	02
	RS 21	62
Gambar 4.28	Syarat Awal pada Masing-Masing	
	Ruas Sungai	63
Gambar 4.29	Layar Hitungan Simulasi Aliran	
	Sungai Keser	64
Gambar 4.30	Layar Hitungan Aliran Unsteady	
	SetelahSimulasi	65
Gambar 4.31	Cross Section Bendungan	66
Gambar 4.32	Cross Section pada RS 15	
	(Upstream)	66
Gambar 4.33	Cross Section pada RS 0	
	(Downstream)	66
Gambar 4.34	Long Section pada Setiap	
	Reach	67
Gambar 4.35	Rating Curve pada RS 6	67
Gambar 4.36	Plot Prespektif X-Y-Z untuk Ketiga	
	Reach	68
Gambar 4.37	Velocity Distribution RS 15	68
Gambar 4.38	Velocity Distribution RS 0	68
Gambar 4.39	Stage dan Flow Hydrograph pada	
	RS 7	69
Gambar 4.40	Tabel Hasil Hitungan di RS 15	69
Gambar 4.41	Unsteady Flow Spatial Plot pada	
	Semua Reach	70
Gambar 4.42	Unsteady Flow Time Series pada	
	RS 15	70
Gambar 4.43	Profil Output Table pada Reach	
	Downstream	71
Gambar 4.44	Penampang Geometri Pelimpah	75

Gambar 4.45	Stage Hydrograph pada RS 4.2 (Downstream)	76
Gambar 4.46	Initial Condition pada Masing- Masing RS	76
Gambar 4 47	Lavar Hitungan Simulasi Aliran	77
Gambar 4 48	Layar Hitungan Aliran Unsteady	, ,
Sumbur 1.16	Setelah Simulasi	78
Gambar 4 49	Cross Section Bendungan	79
Gambar 4 50	Cross Section pada RS (Upstream)	79
Gambar 4 51	Cross Section pada RS 4 2	.,
Guillour 1101	(Downstream)	79
Gambar 4 52	Cross Section pada RS 6 5	. ,
	(Saluran Peluncur)	80
Gambar 4.53	Long Section pada Semua RS	80
Gambar 4.54	Plot Prespektif X-Y-Z untuk Ketiga	
	Reach	80
Gambar 4.55	Rating Curve pada RS 5	81
Gambar 4.56	Tabel Hasil Hitungan di RS 5	81
Gambar 4.57	Unsteady Flow Spatial Plot pada	01
	Semua <i>Reach</i>	82
Gambar 4.58	Unsteady Flow Time Series pada	-
	RS 5	82
Gambar 4.59	Stage dan Flow Hydrograph pada	
	RS 6.7	83
Gambar 4.60	Velocity Distribution pada RS 0	
	(Downstream)	83
Gambar 4.61	Velocity Distribution pada RS 24	83
Gambar 4.62	Profil Output Table pada	
	Reach Downstream	84
Gambar 4.63	Penampang Geometri Pelimpah pada	
	Pemodelan 3	86
Gambar 4.64	Kondisi Awal pada Pemodelan	
	Ketiga	87
Gambar 4.65	Flow Hydrograph sebagai Kondisi	
	Batas Hulu	87

88
90
90
91
91
91
92
92
92
93
93
93
94
94
95
95
95
96
96
98
99
100

Gambar 4.88 Tampilan Layar <i>Editor</i>				
	River Station	100		
Gambar 4.89	Tampilan Layar setelah Terdapat	Tampilan Layar setelah Terdapat		
	Skema Waduk	101		
Gambar 4.90	Layar Permintaan Penggabungan	Lavar Permintaan Penggabungan		
	Sungai-Waduk	101		
Gambar 4.91	Layar Editor Data Geometri	102		
Gambar 4.92	Layar Storage Area Editor	104		
Gambar 4.93	Layar Hubungan Volume			
	dengan Elevasi	104		
Gambar 4.94	Layar Editor Stage Hydrograph	105		
Gambar 4.95	Layar Kondisi Batas Tanpa			
	Storage Area	106		
Gambar 4.96	Layar Pemilihan Storage Area			
	Sebagai Kondisi Batas	106		
Gambar 4.97	<i>Lateral Hydrograph</i> pada Kondisi			
	Batas Storage Area	107		
Gambar 4.98	Layar Editor Unsteady Flow			
	Data	108		
Gambar 4.99	Layar Hitungan Simulasi Aliran			
	Tak Permanen	109		
Gambar 4.100	Layar Hitungan Aliran Unsteady			
	Setelah Simulasi	109		
Gambar 4.101	Cross Section Bendungan	110		
Gambar 4.102	Cross Section Sungai Downstream	110		
Gambar 4.103	Long Section Sungai dan Bendungan	111		
Gambar 4.104	X-Y-Z Prespective Plot	111		
Gambar 4.105	Rating Curve pada RS 2	112		
Gambar 4.106	Stage and Flow Hydrograph			
	pada RS 7	112		
Gambar 4.107	Unsteady Flow Spatial Plot			
	(Profil Plot)	113		
Gambar 4.108	Profil Output Table	113		
Gambar 4.109	Flow Time Series Plot pada RS 2	114		

Gambar 4.110	Unsteady Flow Spatial Plot	
	(Schematic Plot)	114
Gambar 4.111	Stage and Flow Hydrograph	
	pada Waduk	115
Gambar 4.112	Layar Editor Data Geometri	116
Gambar 4.113	Layar Initial Condition	118
Gambar 4.114	14 Layar Hitungan Simulasi Aliran Tak	
	Permanen	119
Gambar 4.115	Layar Hitungan Aliran Unsteady	
	Setelah Simulasi	119
Gambar 4.116	Cross Section pada Bendungan	120
Gambar 4.117	Cross Section pada RS 6.8	
	(Upstream)	120
Gambar 4.118	Cross Section pada RS 4	
	(Downstream)	120
Gambar 4.119	Cross Section pada RS 6	
	(Saluran Peluncur)	121
Gambar 4.120	Long Section pada Saluran	
	Pelimpah	121
Gambar 4.121	Plot Prespektif X-Y-Z	121
Gambar 4.122	Rating Curve pada RS 6	122
Gambar 4.123	Stage and Flow Hydrograph	
	pada RS 6.8	122
Gambar 4.124	Unsteady Flow Spatial Plot	
	(Profil Plot)	122
Gambar 4.125	Unsteady Flow Spatial Plot	
	(Schematic Plot)	123
Gambar 4.126	Flow Time Series Plot pada RS 6	123
Gambar 4.127	Cross Section Output pada RS 4.8	123
Gambar 4.128	Profil Output Table	124
Gambar 4.129	Stage and Flow Hydrograph pada	
	Waduk	124

BAB I PENDAHULUAN

1.1 Latar Belakang

Dalam rangka pembangunan potensi sumber daya air di wilayah Sungai Brantas, telah banyak bangunan-bangunan air yang dibangun dengan baik agar berfungsi sesuai dengan sasaran yang direncanakan seperti pengendali banjir, penyediaan air baku, pembangkit tenaga listrik. Namun demikian masih diperlukan pengembangan lebih lanjut guna memanfaatkan potensi yang masih ada untuk meningkatkan kemakmuran rakyat dengan tetap menjaga kelestarian lingkungan. Pengembangan yang dimaksud adalah pembangunan Bendungan Tugu yang memiliki banyak manfaat untuk memenuhi kebutuhan manusia. Bendungan yang direncanakan di Desa Nglinggis, Kecamatan Tugu Kabupaten Trenggalek ini dimanfaatkan untuk memenuhi kebutuhan air baku minum dan irigasi, disamping sebagai pengendali banjir aliran dari Sungai Keser terhadap kota Trenggalek yang berada di bagian hilirnya.

Pemilihan konstruksi Bendungan Tugu harus mempertimbangkan berbagai aspek teknik baik secara filosofi pengembangan sumber daya air, aspek topografi, geologi dan hidrologi serta aspek sosial budaya akibat pembangunan bendungan tersebut. Dari aspek hidrologi dalam pembuatan bendungan yang perlu diperhitungkan adalah debit banjir rencana. Selain itu jika ditinjau dari segi hidraulik faktor-faktor terpenting untuk diperhitungkan adalah pola aliran sungai (meliputi kecepatan dan arahnya pada waktu banjir), tinggi muka air pada debit banjir rencana, kedalaman dan lebar muka air pada waktu merupakan terpenting yang debit banjir hal-hal harus diperhitungkan dalam mendesain bendungan.

Oleh karena itu dalam perencanaan bangunan air digunakan suatu perhitungan aliran dengan konsep *steady* dan *unsteady flow*. Perhitungan *steady flow* dapat dilakukakan secara analitis sehingga didapat aliran yang seragam, akan tetapi untuk memperhitungkan *unsteady flow* diperlukan suatu program bantu untuk mempermudah dalam memperhitungkan profil muka air. Program bantu yang dimaksud adalah program bantu seperti HEC-RAS. Program HEC-RAS merupakan salah satu program pemodelan analisis hidraulika aliran pada saluran/sungai. Untuk itu dalam menganalisa desain hidraulik Bendungan Tugu dapat dilakukan dengan program bantu HEC-RAS, dengan begitu maka dapat mengetahui profil muka air yang terjadi. Selain untuk mengetahui profil muka air, dengan program bantu HEC-RAS dapat memperkirakan penampang sungai yang tergenang air dan mengetahui fluktuasi muka air sesuai dengan waktu yang akan direncanakan baik itu dalam jam ataupun menit.

Dengan *software* ini dapat mensimulasi pola aliran yang ada pada sungai bagian hulu kemudian aliran pada tampungan bendungan yang dilanjut dengan aliran yang melewati spillway sampai dengan sungai bagian hilir. Simulasi software HEC-RAS digunakan bangunan sehingga bisa untuk air. dapat memperkirakan penampang sungai tergenang air, aliran sungai bisa disimulasikan steady dan unsteady, akan tetapi pada Tugas Akhir ini desain hidraulik Bendungan Tugu menggunakan konsep aliran unsteady. Hasil pemodelan aliran tersebut berfungsi untuk mengetahui tinggi profil muka air dan hasilnya akan dibandingakan dengan hasil perhitungan analitis yang dilakukan oleh konsultan perencana Bendungan Tugu.

1.2 Rumusan Masalah

Berdasarkan latar belakang diatas maka dapat dirumuskan permasalahan sebagai berikut :

- 1. Bagaimana memodelkan aliran 1D pada desain Bendungan Tugu dengan *software* HEC-RAS?
- 2. Bagaimana perbandingan aliran antara hasil simulasi program HEC-RAS dengan perencanaan analitis?
- 3. Apa kelebihan dan kekurangan desain hidraulik Bendungan Tugu menggunakan program HEC-RAS?

1.3 Tujuan

Dengan rumusan masalah tersebut maka tujuan yang diharapkan adalah sebagai berikut :

- 1. Memodelkan desain aliran 1D pada Bendungan Tugu dengan *software* HEC-RAS.
- 2. Membandingkan aliran hidraulik dari hasil program HEC-RAS dengan perencanaan analitis.
- 3. Mengetahui kelebihan dan kekurangan desain hidraulik Bendungan Tugu dengan program HEC-RAS.

1.4 Batasan Masalah

Batasan permasalahan dalam penyusunan Tugas Akhir ini adalah :

- 1. Tidak melakukan simulasi angkutan sedimen.
- 2. Tidak melakukan perhitungan stabilitas bendungan.
- 3. Tidak membahas mengenai metode pelaksanaan dan ekonomi teknik.
- 4. Tidak memperhitungkan saluran *intake* ketika kondisi banjir.

1.5. Manfaat

Manfaat yang dapat diberikan dari penyusunan Tugas Akhir ini adalah :

- 1. Meningkatkan kemampuan penulis dalam mendesain hidraulik bendungan dengan *software* HEC-RAS.
- 2. Sebagai bahan referensi bagi pembaca dalam merencanakan desain hidraulik bendungan dan meningkatkan kemampuan pengetahuan tentang program bantu HEC-RAS.

1.6. Peta Lokasi

Lokasi Bendungan Tugu terletak di Sungai Keser yang merupakan salah satu anak sungai di basin Sungai Ngrowo yang secara administratif masuk dalam Wilayah Desa Nglinggis, Kecamatan Tugu, Kabupaten Trenggalek Propinsi Jawa Timur. Secara geografis terletak pada posisi 111^{0} 34'- 111^{0} 37' Bujur Timur dan 8^{0} 1' – 8^{0} 3' Lintang Selatan. Luas daerah aliran sungai di lokasi bendungan adalah sebesar 43,06 km² dengan panjang sungai 9.295 km.

Gambar 1.1 Borrow Area Sebalah Hilir Bendungan (Sumber : Balai Besar Wilayah Sungai Brantas - Surabaya)

Gambar 1.2 Lokasi Bendungan Tugu (Sumber : Balai Besar Wilayah Sungai Brantas - Surabaya)

Gambar 1.3 Potongan Memanjang Bendungan Tugu (Sumber : Balai Besar Wilayah Sungai Brantas - Surabaya)

Gambar 1.4 Potongan Melintang Bendungan Tugu (Sumber : Balai Besar Wilayah Sungai Brantas - Surabaya)

"Halaman ini sengaja dikosongkan"

BAB II TINJAUAN PUSTAKA

2.1 Analisis Hidrologi

Pada analisis hidrologi untuk menentukan debit banjir rencana pada Bendungan Tugu sudah dilakukan perhitungan oleh konsultan perencana Balai Besar Wilayah Sungai Brantas (BBWS) Surabaya dan hasilnya digunakan sebagai data dalam Tugas Akhir ini.

2.2 Data Teknis Bendungan Tugu

Data teknis Bendungan Tugu digunakan untuk membantu memasukkan data-data geometri yang diperlukan ke dalam *software* HEC-RAS. Data-data tersebut yang dimaksud adalah sebagai berikut :

2.2.1 Dimensi bendungan utama

Elevasi puncak bendungan ditentukan berdasarkan tinggi muka air banjir diatas ambang pelimpah ditambah dengan tinggi jagaan. Dari perhitungan penelusuran banjir melalui pelimpah, didapatkan data elevasi puncak bendungan sebagaimana berikut ini :

No	Keterangan	Bendungan Utama
1	Tipe Bendungan	Urugan batu random inti tegak
2	Debit Banjir Rencana	
	Q ₁₀₀₀	670.95 m ³ /dt
	Q_{PMF}	928.44 m^3/dt
3	Elevasi Puncak	El. 259
4	Lebar Puncak	12 m

Tabel 2.1 Data Teknis Bendungan Utama

Lanjutan Tabel 2.1 Data Teknis Bendungan Utama

5	Kemiringan Hulu	1: 2.25
6	Kemiringan Hilir	1:2
7	Panjang Timbunan	437. 27 m
8	Dasar Sungai	El. 177
9	Muka Air Banjir	El. 256
10	Muka Air PMF	El. 258
11	Muka Air Normal	El. 251
12	Muka Air Rendah	El.215.5

Sumber : Balai Besar Wilayah Sungai Brantas Surabaya

2.2.2 Dimensi bangunan pelimpah

Bangunan pelimpah adalah bangunan pelengkap dari suatu bendungan yang digunakan untuk mengalirkan kelebihan air *reservoir* agar bendungan tetap aman bila terjadi banjir. Penentuan tipe bangunan pelimpah harus mempertimbangkan banyak faktor yaitu kondisi geologi, topografi, segi keamanan, sosial ekonomi, cara operasi pemeliharaan dan juga bendungan itu sendiri.

Berdasarkan pertimbangan bentuk topografi pada as bendungan, dimana pada tebing kiri merupakan tebing yang terjal sedangkan di tebing kanan relatif lebih landai, maka posisi bangunan pelimpah direncanakan pada tebing sebelah kanan. Ambang pelimpah hasil dari perhitungan optimasi terletak pada Elevasi +251,00. Ambang pelimpah direncanakan mampu melewatkan debit banjir dengan kala ulang 1000 tahun (Q_{1000}) yang diregulasi oleh waduk dengan kontrol debit PMF (Q_{PMF}).

Berikut merupakan data teknis perencanaan bangunan pelimpah dari Bendungan Tugu :

No	Keterangan	Bangunan Pelimpah
1	Tipe Pelimpah	Pelimpah samping tanpa pintu
2	Elevasi Ambang	El. 251
3	Lebar Ambang	22 m
4	Elevasi Sal. Pengarah	El. 249
5	Lebar Sal Transisi	16 m
6	Panjang Sal. Transisi	115 m
7	Lebar Saluran Peluncur	16 m
8	Panjang Sal. Peluncur	235.75 m
9	Lebar Peredam Energi	16 m
10	Panjang Peredam Energi	40 m
11	Elevasi Peredam Energi	El.164

Tabel 2.2 Data Teknis Bangunan Pelimpah

Secara umum bangunan pelimpah terdiri dari saluran pengarah, pelimpah, saluran peluncur dan pemecah energi. Untuk saluran pengarah dan saluran peluncur direncanakan harus mampu menampung debit banjir maksimum sehingga elevasi muka air banjir di *reservoir* tetap terkendali, sementara saluran pemecah energi direncanakan mampu untuk melindungi dasar sungai, tebing dan fasilitas lainnya.

Saluran transisi direncanakan dengan lebar 16 m dengan kemiringan dasar 1 :1000 dengan *end sill* setinggi 2.5 m. Saluran peluncur direncanakan dengan debit $Q_{100} = 326.51 \text{ m}^3/\text{dt}$ yang kemudian dikontrol dengan debit Q_{1000}

Sumber : Balai Besar Wilayah Sungai Brantas Surabaya

Gambar 2.1 Profil Air pada Saluran Pengarah Pelimpah Samping Sumber : Balai Besar Wilayah Sungai Brantas – Surabaya

Gambar 2.2 Profil Muka Air pada Saluran Transisi Bangunan Pelimpah Sumber : Balai Besar Wilayah Sungai Brantas – Surabaya

Gambar 2.3 Profil Muka Air pada Saluran Peluncur Bangunan Pelimpah

Sumber : Balai Besar Wilayah Sungai Brantas – Surabaya

2.3 Prinsip Dasar Aliran

Saluran terbuka menurut asalnya dapat dibedakan menjadi saluran alam (*natural*) dan saluran buatan (*artificial*). Saluran alam meliputi semua alur air yang terdapat secara alami di bumi, mulai dari anak sungai di pegunungan, sungai besar sampai dengan muara sungai. Sementara itu, saluran buatan dibentuk oleh manusia, seperti saluran banjir, dan saluran irigasi. Aliran saluran terbuka diklasifikasikan menjadi dua kategori yaitu:

- 1. Aliran permanen (steady flow)
 - a. Seragam (uniform)
 - b. Berubah (non-uniform)
 - Berubah lambat laun (gradually)
 - Berubah tiba-tiba (*rapidly*)

- 2. Aliran tidak permanen (unsteady flow)
 - a. Seragam (uniform)
 - b. Berubah (non-*uniform*)
 - Berubah lambat laun (*gradually*)
 - Berubah tiba-tiba (*rapidly*)

Hitungan hidraulika aliran pada dasarnya adalah mencari kedalaman dan kecepatan aliran di sepanjang alur yang ditimbulkan oleh debit yang masuk ke dalam alur dan kedalaman aliran di batas hilir.

Perhitungan hidraulika pelimpah Bendungan Tugu dapat menghasilkan profil aliran pelimpah dengan bantuan perangkat lunak HEC-RAS. Hitungan hidraulika aliran di dalam HEC-RAS dilakukan dengan membagi aliran ke dalam dua kategori, yaitu aliran permanen dan aliran tak permanen. HEC-RAS menggunakan metode hitungan yang berbeda untuk masingmasing kategori aliran tersebut.

2.3.1 Persamaan aliran permanen

Untuk aliran permanen, HEC-RAS memakai persamaan energi kecuali di tempat-tempat yang kedalaman alirannya melewati kedalaman kritis. Di tempat terjadi loncat air, pertemuan alur, dan aliran dangkal melalui jembatan, HEC-RAS memakai persamaan (kekekalan) momentum. Di tempat terjadi terjunan, aliran melalui peluap, dan aliran melalui bendung, HEC-RAS memakai persamaan-persamaan empiris. Untuk aliran tak permanen, HEC-RAS memakai persamaan kekekalan massa (continuity, conservation of mass) dan persamaan momentum.

a. Persamaan Energi

Untuk aliran permanen, HEC-RAS menghitung profil muka air di sepanjang alur urut dari satu tampang lintang ke tampang lintang berikutnya. Muka air dihitung dengan memakai persamaan energi yang diselesaikan dengan metode yang dikenal sebagai *standard step method*. Persamaan energi antara dua tampang lintang dituliskan dalam bentuk berikut:

$$Y_2 + Z_2 + \frac{\alpha_2 V_2^2}{2g} = Y_1 + Z_1 + \frac{\alpha_1 V_1^2}{2g} + h_e$$
 (2.1)

Arti variabel-variabel dalam persamaan di atas adalah:

Y_1, Y_2	=	kedalaman aliran,	
Z_1, Z_2	=	elevasi dasar saluran,	
V_1, V_2	=	kecepatan rata-rata (debit dibagi	luas
		tampang basah),	
α_1, α_2	=	koefisien,	
g	=	percepatan gravitasi,	
he	=	kehilangan tinggi energi.	

Dari diagram aliran pada Gambar 2.4, tampak bahwa kedalaman aliran diukur ke arah vertikal. Hal ini membawa konsekuensi bahwa hitungan profil muka air dengan HEC-RAS hanya cocok untuk alur sungai yang memiliki kemiringan dasar kecil.

Gambar 2.4 Diagram Aliran Berubah Beraturan Sumber : Istiarto, 2014

b. Kehilangan Tinggi Energi

Kehilangan (tinggi) energi, *he*, di antara dua tampang lintang terdiri dari dua komponen, yaitu kehilangan energi karena gesekan (*friction losses*) dan kehilangan energi karena perubahan tampang (*contraction or expansion losses*). Kehilangan energi antara tampang 2 dan 1 dinyatakan dengan persamaan berikut:

$$h_{e} = LS_{f} + C \left| \frac{\alpha_{2} V_{2}^{2}}{2g} - \frac{\alpha_{1} V_{1}^{2}}{2g} \right|$$
(2.2)

Dalam persamaan di atas,

L	=	panjang ruas tampang	sungai a	ntar kedua
\mathbf{S}_{f}	=	kemiringan <i>slope</i>)	gesekan	(friction
С	=	koefisien eksp	ansi dan l	kontraksi

Panjang ruas sungai antar dua tampang (jarak sepanjang bentang), *L*, dinyatakan dengan persamaan berikut:

$$L = \frac{L_{lob} Q_{lob} + L_{ch} Q_{ch} + L_{rob} Q_{rob}}{Q_{lob} + Q_{ch} + Q_{rob}}$$
(2.3)

Dimana,

2.3.2 Persamaan aliran tak permanen

Aliran di saluran atau sungai merupakan proses fisik yang mengikuti hukum kekekalan massa dan kekekalan momentum. Proses fisik ini dapat digambarkan dengan persamaan matematis, yang dikenal sebagai Persamaan St. Venant. Persamaan St. Venant terdiri dari persamaan kontinuitas (prinsip konservasi massa) dan persamaan momentum (prinsip konservasi momentum), yang dituliskan dalam bentuk persamaan diferensial parsial sebagai berikut:

Persamaan Kontinuitas

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} - q_1 = 0$$
(2.4)

Persamaan Momentum

$$\frac{\partial Q}{\partial t} + \frac{\partial QV}{\partial x} + g A \left(\frac{\partial z}{\partial x} + S_{f} \right) = 0$$
(2.5)

Arti notasi variabel dalam dua persamaan di atas adalah:

- A = luas tampang aliran (jumlah luas tampang aliran di *main channel* dan *overbank channel*)
- Q = debit aliran
- q_1 = debit lateral per satuan panjang
- V = kecepatan aliran
- g = percepatan gravitasi
- x = jarak, diukur searah aliran
- z = elevasi muka air
- t = waktu
- S_f = kemiringan garis energy (*friction slope*), dihitung dengan persamaan Manning

$$S_{f} = \frac{n^{2}|Q|Q}{A^{2}R^{2}}$$
(2.6)

Dimana,

- n = Koefisien kekasaran Manning
- R = Radius hidraulik

2.4 Program HEC-RAS

Menurut Istiarto (2014), HEC-RAS merupakan aplikasi untuk memodelkan aliran di sungai, *River Analysis System* (RAS), *software* ini dibuat oleh *Hydrologic Engineering Center* (HEC) yang merupakan satu divisi di dalam Institut *for Water Resources* (IWR). HEC-RAS merupakan *software* satu dimensi aliran permanen maupun tak permanen (*steady and unsteady onedimensional flow model*), HEC-RAS memiliki empat komponen analisa hidraulika satu dimensi untuk :

1) hitungan profil muka air aliran permanen,

2) simulasi aliran tak permanen,

3) hitung transport sedimen,

4) hitungan kualitas air.

Satu elemen penting dalam HEC-RAS adalah keempat komponen tersebut menggunakan data geometri yang sama, hitungan hidraulika yang sama.

HEC-RAS merupakan program aplikasi yang mengintegrasikan fitur *graphical user interface*, analisis hidraulik, manajemen dan penyimpanan data, grafik, serta pelaporan, Istiarto (2014).

1. Graphical User Interface

Interface berfungsi sebagai penghubung antara pemakai dan HEC-RAS. Graphical interface dibuat untuk memudahkan pemakai HEC-RAS dengan tetap mempertahankan efisiensi. Melalui graphical interface ini, dimungkinkan untuk melakukan hal-hal berikut in dengan mudah:

- a. Manajemen file
- b. Input dan edit data
- c. Melakukan analisis hidraulik
- d. Menampilkan data masukan dan hasil analisis dalam bentuk tabel dan grafik
- e. Penyusunan laporan
- f. Mengakses on-line help
- 2. Analisa Hidraulik

Berdasarkan karakter sungai, maka analisa akan dilakukan untuk menghitung profil muka air aliran permanen berubah lambat laun, program mampu memodelkan jaringan sungai. Aliran yang dapat dimodelkan adalah aliran sub-kritis, super-kritis, maupun gabungan dari kedua aliran tersebut. Selain itu, *software* ini mampu menyimulasikan aliran tak permanen satu dimensi pada sungai yang memiliki alur kompleks.

3. Manajemen dan Penyimpanan Data

Data masukan dari pengguna HEC-RAS disimpan ke dalam file dan dikelompokkan menjadi : *plan, geometry, steady flow, unsteady flow, project* dan *sediment* data. Hasil dari program akan disimpan ke dalam *binary file*.

4. Grafik dan Pelaporan

Software ini menyediakan pola fitur plot 3D beberapa tampang lintang sekaligus. Hasil dari program dapat ditampilkan dalam bentuk tabel. Grafik dan tabel tersebut dapat ditampilkan di layar, dicetak, atau disalin ke *clipboard* untuk dimasukkan ke dalam program aplikasi lain. Fasilitas ini dapat berupa pencetakan data masukan dan keluaran hasil pada *printer* atau *plotter*.

2.4.1 Langkah kerja pemodelan

Terdapat lima langkah penting dalam membuat model hidraulika dengan HEC-RAS yaitu:

- 1. Pembuatan project
- 2. Memasukkan data geometri sungai
- 3. Memasukkan hidraulika sungai
- 4. Melakukan perhitungan hidraulika
- 5. Menampilkan dan mencetak hasil perhitungan

Tahapan diatas merupakan tahapan penting dalam membuat pemodelan dengan program HEC-RAS, untuk

pengerjaan pemodelan harus sesuai dengan tahapan-tahapan tersebut, yaitu:

1. Pembuatan project

Langkah pertama pembuatan model sungai adalah pembuatan *project* baru. Terlebih dahulu untuk melakukan pengaturan awal HEC-RAS agar memudahkan penggunaannya. Pengaturan ini bertujuan untuk menetapkan nilai atau definisi bawaan HEC-RAS (nilai *default*). Pengaturan ini tidak mutlak harus dilakukan, namun apabila dilakukan akan memudahkan pemakai dalam melakukan pemodelan dengan HEC-RAS. Menu *Options* menyediakan fasilitas untuk melakukan pengaturan ini. Pengaturan yang sebaiknya dilakukan antara lain *Program Setup / Default Project Folder, Default Project Parameters / Expansion and Contraction Coef*, serta *Unit System* (US *Customary/*SI).

a. Default Project Folder. Opsi ini dipakai untuk mengatur folder default yang dipakai untuk menyimpan file project. Memilih menu Options / Program Setup / Default Project Folder

Gambar 2.5 Layar Penetapan Folder *Default* Penyimpanan *File Project*

b. *Expansion and Contraction Coefficients*. Nilai default koefisien perlebaran (ekspansi) dan persempitan (kontraksi) tampang sungai berturut-turut adalah 0.3 dan 0.1. Kedua nilai tersebut umumnya berlaku pada perubahan tampang sungai secara gradual. Jika perubahan

tampang sungai pada kasus yang sedang dimodelkan pemakai sebagian besar adalah perubahan mendadak, maka nilai default kedua koefisien tersebut lebih baik diubah, misal koefisien ekspansi menjadi 0.8 dan koefisien kontraksi menjadi 0.3. Untuk mengubah nilai default kedua koefisien ini, mengklik pada menu *Options* / *Default Parameters* / *Expansion and Contraction Coef.*

HEC-RAS
Set Default values for:
Cross Section flow Contraction Coef10 Cross Section flow Expansion Coef30
OK Cancel Defaults Help

Gambar 2.6 Layar Pengaturan Nilai *Default* Koefisien Ekspansi dan Konstraksi

c. Unit System. Sistem satuan yang dipakai dalam HEC-RAS dapat mengikuti sistem Amerika (US Customary) atau sistem internasional (SI). Default satuan adalah US Customary. Untuk mengubahnya, klik pada menu Options / Unit System (US Customary/SI) / System International (Metric System). Agar sistem satuan SI menjadi sistem satuan default setiap kali membuat project baru, klik Set as default for new projects, yaitu baris ketiga di bawah System International (Metric System) seperti tampak pada Gambar 2.7. Pengubahan sistem satuan yang telah ditetapkan pada suatu project, dari US Customary ke SI atau sebaliknya, selalu dapat dilakukan dengan memakai menu Options / Convert Project Units.

HEC-RAS		
	Select Units System	
 ○ US Customary ○ System Internation ✓ Set as default for 	onal (Metric System) r new projects	
OK	Cancel	Help

Gambar 2.7 Layar Pengaturan Sistem Satuan

2. Memasukkan data geometri

Parameter geometri sungai yang dibutuhkan untuk membangun model adalah alur sungai, tampang panjang dan lintang (*longitudinal section dan cross section*), kekasaran dasar sungai (koefisien *Manning*), serta kehilangan energi di tempat perubahan tampang lintang sungai (koefisien ekspansi dan kontraksi). Pembuatan geometri data adalah dengan cara mengklik *tool bar Edit / Enter Geometric Data* () dari tampilan awal HEC-RAS.

Gambar 2.8 Tampilan Geometri Data

Setelah tampilan geometri data muncul kemudian membuat *lay out* sungai dengan cara mengklik *tool bar River*

Reach () dari tampilan geometri data, dari tampilan geometri data tersebut nantinya dapat digunakan untuk menggambar *lay out* sungai, serta memberi nama pada *River* dan *Reach* tersebut. Arah aliran saluran adalah sesuai dengan arah penggambaran. Setelah *lay out* sungai selesai, langkah selanjutnya adalah memasukkan data potongan melintang (*cross section*) sungai dengan cara mengklik ikon *Cross Section* () pada tampilan geometri data.

Cross Section Data	-	
Exit Edit Options Plot Help		
River:	Apply Data 🙀 🤝	Plot Options 🖻 🚔 🗆 Keep Prev XS Plots Clear Prev
Reach: Rive	r Stal: 🔽 🕇 🕇	
Description	÷	
Del Row Ins Row Cross Section Coordinates Station Elevation	Downstream Reach Lengths LOB Channel ROB	
1 2 3	Manning's n Values	
5 6 7	Main Channel Bank Stations Left Bank Right Bank	No Data for Plot
8 9 10	ContVExp Coefficient (Steady Flow)	
11 12 13		
14		
Edit Station Elevation Data (m)		1

Langkah yang perlu dilakukan setelah itu adalah:

- Memasukan data-data potongan melintang dengan mengklik *Option* | *Add a New Cross Section*.
- *River, Reach, dan River Station* merupakan kotak yang memungkinkan pengguna untuk memilih *River* ataupun *Reach* tertentu yang tersedia dalam diagram skematik. *River* dan *Reach* ini menentukan penampang yang akan berlokasi. *River Station* tidak harus menjadi *station* sungai yang sebenarnya dari penampang, tetapi harus menjadi nilai numerik dari penampang. Semakin besar angka numerik yang diberikan pada *River Station* maka menandakan semakin ke hulu *River Station* tersebut.

- Memasukkan data *station* dan *elevation*. Data ini berupa data koordinat titik-titik tampang lintang, urut dari titik paling kiri ke kanan. *Station* adalah jarak titik diukur dari kiri dan *elevation* adalah elevasi titik tersebut.
- Memasukkan *Downstream Reach Length* atau jarak antar potongan melintang. *Downstream Reach Length* menggambarkan jarak antar penampang saat ini dan penampang berikutnya bagian hilir. Terdiri dari jarak antar bantaran kiri (*left overbank*, LOB), jarak antar alur utama (*main channel*, Channel), dan jarak antar bantaran kanan (*right overbank*, ROB).
- Memasukkan angka Manning berdasarkan kekasaran material. Pada kondisi minimum, pengguna harus memasukkan data Manning secara spesifik untuk *left* overbank, main channel dan right overbank.
- Main Channel Bank Station, berguna untuk menentukan bagian mana dari penampang yang dianggap sebagai saluran utama atau dianggap sebagai *left overbank area* atau *right overbank area*.
- Memasukkan bangunan yang berada di sungai (bendung).

Setelah semua geometri di *input*, langkah selanjutnya yaitu menyimpan data geometri dengan cara *Save Geometri Data* As.

3. Memasukkan data aliran dan kondisi batas

Langkah pertama adalah memasukkan jumlah profil yang akan dihitung, kemudian data alirannya. Data aliran dimasukkan langsung ke dalam tabel. Data tersebut dimasukkan dari hulu ke hilir. Setelah data aliran dimasukkan, besarnya aliran dianggap tetap sampai menemui lokasi yang memiliki nilai aliran berbeda. Untuk menambahkan lokasi perubahan aliran pada tabel, pilih sungai dan ruas sungai dimana pada tempat tersebut diinginkan ada perubahan besar aliran. Setelah itu memilih stasiun yang diinginkan dan tekan *Add Flow Change Location*, lokasi perubahan aliran akan ditambahkan pada tabel. Setiap profil secara otomatis akan diberi nama berdasarkan nomor profil (PF1,PF2, dst). Nama profil ini bisa diubah melalui menu *Options, Edit Profiles Names*. Nama profil ini umumnya diganti dengan lamanya periode ulang banjir/aliran yang ada dibawahnya, misal: 10 tahun, 50 tahun, dsb.

Setelah semua data dimasukkan ke dalam tabel, langkah selanjutnya adalah kondisi batas yang mungkin dibutuhkan. Untuk memasukkan data kondisi batas, tekan tombol Boundary batas Conditions. Kondisi diperlukan untuk menentukan permukaan air mula-mula di ujung-ujung sistem sungai (hulu dan hilir). Muka air awal dibutuhkan untuk memulai perhitungan. Pada resim aliran subkritik, kondisi batas hanya diperlukan di ujung sistem sungai bagian hilir. Jika resim aliran superkritik yang hendak dihitung, kondisi batas hanya diperlukan pada ujung hulu dari sistem sungai. Jika perhitungan resim aliran campuran yang akan dibuat, kondisi batas harus dimasukan pada kedua ujung sistem sungai.

• Aliran Steady

Pada aliran steady, Boundary Condition yang perlu dimasukkan adalah data yang ada di hulu maupun di hilir sungai dengan cara mengklik salah satu ikon "Known W.S., Critical Depth, Normal Depth, dan Rating Curve". Data yang dimasukkan harus sesuai dengan kondisi yang ada dan pada kondisi puncak. Jika memilih Known W.S. berarti mengetahui muka air di hilir saluran, jika memilih Critical Depth berarti pengguna mengasumsikan bahwa di hilir saluran akan terjadi muka air kritis, sedangkan jika apabila memilih Normal Depth, biasanya akan diminta untuk memasukkan kemiringan dasar saluran (slope), dan yang terakhir, jika memilih rating curve, berarti pengguna sudah memiliki data elevasi vs debit, yang biasanya terdapat di bendung.

• Aliran Unsteady

Pada Boundary Condition data yang dimasukkan hampir sama dengan kondisi batas pada aliran steady. Hanya saja, data yang dimasukkan bukan hanya pada kondisi puncak melainkan data aliran tiap waktu. Data yang dimasukkan bisa tiap detik, menit, jam, hari bahkan Untuk *boundary* condition pada bulan. unsteadv dibedakan menjadi 2 yaitu kondisi batas di hulu (upstream boundary conditions) dan kondisi batas hilir (downstream boundary conditions). Upstream boundary conditions diperlukan pada akhir hulu dari semua reach vang tidak terhubung ke reach lain atau storage areas. Kondisi batas hulu diterapkan sebagai hidrograf aliran debit terhadap waktu (Flow Hydrograph). Sementara untuk downstream boundary conditions diperlukan pada akhir hilir yang tidak terhubung ke reach lain ataupun storage area. Terdiri dari 4 kondisi dari downstream boundary conditions yaitu:

- Stage Hydrograph

A stage hydrograph merupakan ketinggian air terhadap waktu, dapat digunakan sebagai syarat batas hilir jika sungai mengalir ke lingkungan yang kecil seperti muara atau teluk dimana ketinggian permukaan air diatur oleh fluktuasi pasang surut, atau dimana air tersebut mengalir ke danau atau reservoir of known stage.

- Flow Hydrograph

Flow hydrograph dapat digunakan sebagai syarat batas hilir jika data pencatatan hasil alat ukur tersimpan yang kemudian di kalibrasi untuk *specific flood*.

- Single-Valued Rating Curve

Single-Valued Rating Curve dapat digunakan untuk menggambarkan secara akurat hubungan antar stage dan aliran terjun bebas seperti di air terjun, atau struktur control hidraulik seperti *spillway*, bendung, atau *dam operations*.

- Normal Depth

Menggunakan persamaan Manning dengan memasukkan kemiringan gesekan (*friction slope*) jika kondisi aliran seragam ada. Karena kondisi aliran seragam biasanya tidak ada di sungai alami, kondisi batas hilir ini harus digunakan cukup jauh dari daerah studi yang dilakukan dan memastikan bahwa tidak mempengaruhi hasil dari daerah studi.

Pada aliran *unsteady*, selain data *boundary condition*, data initial conditions juga harus dimasukkan. Data *initial condition* ini merupakan asumsi aliran pada jam ke-nol.

4. Melakukan perhitungan hidraulika aliran

Hitungan penelusuran aliran banjir (*hydraulic flood routing*) dengan syarat batas dan syarat awal yang telah disiapkan dilakukan melalui menu *Run*. Langkah-langkah untuk melakukan hitungan penelusuran aliran banjir adalah sebagai berikut:

- a. Mengaktifkan layar hitungan aliran tak permanen dengan memilih menu *Run | Unsteady Flow Analysis* atau mengklik tombol *Perform an unsteady flow analysis*.
- b. Mengaktifkan ketiga modul hitungan pada menu Programs to Run, yaitu Geometry Preprocessor, Unsteady Flow Simulation, dan Post Processor.
- c. Mengatur waktu simulasi pada kotak *Computation* dari *Starting Date* (mengisikan hari awal mulai untuk simulasi) dan *Starting Time* (waktu mulai simulasi) sampai *Ending Date* (mengisikan hari berakhir untuk simulasi) dan *Ending Time* (waktu akhir simulasi).
- d. Mengatur selang waktu hitungan untuk *Computation Interval, Hydrograph Output Interval*, dan juga untuk *Detailed Output Interval*.
- e. Menyimpan file hitungan aliran dengan memilih menu *File | Save Plan.* Memberi judul file.

- f. Mengaktifkan hitungan dengan mengklik tombol *Compute.*
- g. Apabila hitungan (simulasi) aliran tak permanen ini berhasil, maka pada layar proses hitungan akan tampak baris-baris pita hitungan *Geometry Processor*, *Unsteady Flow Simulation, dan Post Process* berwarna biru semua (Gambar 2.11). Apabila ada baris pita yang berwarna merah, maka hitungan tidak berhasil, berarti terdapat kesalahan. Untuk itu perlu memeriksa kembali data geometri sungai atau data aliran.
- h. Kembali ke layar utama HEC-RAS dan mengaktifkan layar catatan kesalahan hitungan dengan memilih menu View / Summary Err, Warn, Notes atau mengklik ikon Summary of Errors, Warnings, and Notes (ikon kedua dari kanan pada papan tombol).
- i. Menampilkan semua catatan kesalahan untuk semua ruas (*All Rivers*) dan semua profil (*All Profiles*). Tampak bahwa terdapat beberapa catatan peringatan. Pada kasus tertentu biasanya catatan peringatan tersebut dibiarkan karena catatan kesalahan (*error*) tidak dijumpai dalam hitungan.

r an i jointalan banjir sangar sala	Short D 1901
Geometry File :	Sungai salu cabang
Unsteady Flow File :	Debit banjir sungai satu cabang
	Plan Description :
Programs to Run	Simulasi banjir Sungai Tirtaraya yang memiliki
Unsteadu Flow Simulation	satu cabang di Junction Tanggi
Post Processor	
Simulation Time Window	*
Starting Date: 01JA1	V2009 📰 Starting Time: 0000
Ending Date: 01JAN	42009 📃 Ending Time: 0600
Computation Settings	
Computation Interval: 10 Min	nute V Hydrograph Output Interval: 10 Minute
Computation Level Output	Detailed Output Interval: 10 Minute
DSS Output Filename: CNUs	ers\User\Documents\HEC Data\Sungai Tiitaray
🔲 Mixed Flow Regime (see me	nu: "Options/Mixed Flow Options")

Gambar 2.10 Layar Hitungan Aliran Simulasi Banjir (Contoh)

River. Sungai Tirtaraya	ES:	D	
Reach: Hilr	Node Type:	Eross Section	
IB Curve:			
Unsteady Flow Simulation			
Simulation:			
Time: 6.0000 01JAN Writing Profiles 200	12009 06:00:00	Iteration: 7	
Post Process			
River. Sungai Tirtagiri	HS:	2950	
Reach: Gunung	Node Type:	Dross Section	
Profile: 01JAN 2009 0600			
Simulation: 38/38			
Computation Massagers			
	4011		
Writing Results to DSS Finished Writing Results to DSS)		
Writing Results to DSS Finished Writing Results to DSS Reading Data for Post Process	3		
Witing Results to DSS Finished Witting Results to DSS Reading Data for Post Process Running Post Processor Vareit	n 4.1.0 Jan 2010		
Writing Results to DSS Frinked Writing Results to DSS Reading Data for Post Process Running Post Processor Variat Frinked Post Processing) m 4.1.0Jan 2010		
Whiting Results to DSS Friched Whiting Results to DSS Reading Data for Post Processo Running Post Processor Vareic Friched Post Processing Task	3 24 4.1.0 Jan 2010 Time		
Willing Results to DSS Frished Witing Results to DSS Reading Data for Post Process Running Post Processor Vareic Frished Post Processing Task Preprocessing Geometry) m 4.1.0 Jan 2010 Time 0.20 rec		
Writing Results to DSS Frinked Writing Results to DSS Reading Data for Post Process Running Post Processor Varsic Frinked Post Processing Task Preprocessing Geometry Unsteady Flow Computations	5 m 4.1.0 Jan 2010 Time 0.20 sec 0.31 sec		
Weing Results to DSS Finished Weing Results to DSS Reading Data for Post Processon Running Post Processon Variat Finished Post Processing Task Perporcessing Geometry Unctesdy Flow Computations Weing to DSS	7 4.1.0 Jan 2010 Time 0.20 sec 0.31 sec 0.23 sec		
Weins Results to DSS Frished Withing Results to DSS Reading Data for Post Process Running Post Processing Tank Frished Post Processing Tank Undready Plow Computatione Writing & DSS Post-Processing) 1 1 0 Jan 2010 Time 0.20 sec 0.31 sec 0.23 sec 0.25 sec 0.25 sec		
Weima Results to DSS Frished Witrig Results to DSS Reading Data for Post Process Running Post Processing Taki Preposeeing Geometry Unsteady Flow Computatione Writing to DSS Post-Processing Compilete Process) n 41.0 Jan 2010 Time 0.20 sec 0.31 sec 0.25 sec 8.00 sec 8.01 sec 8.01 sec		

Gambar 2.11 Layar Hitungan Aliran Tak Permanen Setelah Simulasi

🖻 Erro	rs Warnings and Notes for Plan : U01 📃	
River:	Il Flivers) 🔹 Profile: (All Profiles) 💌	
Reach:	 Plan: Simulasi banjir sungai satu cabang 	•
Location:	River: Sungai Tirtagiii Reach: Gunung RS: 0 Profile: Max WS	▲
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.	
Location:	River: Sungai Tirtagiii Reach: Gunung RS: 0 Profile: 01JAN2009 0130	
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.	
Location:	River: Sungai Tirtagiri Reach: Gunung RS: 0 Profile: 01JAN2009 0140	
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.	
Location:	River: Sungai Tirtagiri Reach: Gunung RS: 0 Profile: 01JAN2009 0150	
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.	
Location:	River: Sungai Tirtagiri Reach: Gunung RS: 0 Profile: 01JAN2009 0200	•
Clipboard	Print Fle Close	

Gambar 2.12 Catatan Kesalahan dan Peringatan untuk Hitungan Aliran Simulasi Banjir

5. Presentasi Hasil Hitungan

HEC-RAS menampilkan hasil hitungan dalam bentuk grafik atau tabel. Presentasi dalam bentuk grafik dipakai untuk menampilkan tampang lintang di suatu *River Reach*, tampang panjang (profil muka air sepanjang alur), kurva ukur debit, gambar perspektif alur, atau hidrograf. Presentasi dalam bentuk tabel dipakai untuk menampilkan hasil rinci berupa angka (nilai) variabel di lokasi/titik tertentu atau di sepanjang alur. Pada setiap layar tampilan hasil hitungan/simulasi disediakan menu *Options*. Menggunakan menu ini untuk mengatur tampilan. Pengguna dapat memilih plan, parameter, variabel, ruas sungai yang ditampilkan.

Gambar 2.13 Profil Muka Air di Sepanjang Sungai (contoh)

BAB III METODOLOGI

Pada bab ini akan dijelaskan tahapan, alur pikir dan langkah-langkah yang akan dilakukan dengan menguraikan segala sesuatu yang berhubungan dengan Tugas Akhir.

3.1 Studi Literatur

Studi literatur dilakukan mulai dari awal penyusunan Tugas Akhir sampai selesai. Literatur yang digunakan adalah literatur yang berhubungan dan menunjang Tugas Akhir. Literatur dapat berupa buku panduan, makalah, tesis, dan sebagainya.

3.2 Pengumpulan Data

Data yang digunakan adalah data sekunder dan diambil dari instansi terkait yaitu Balai Besar Wilayah Sungai Brantas Surabaya. Pengumpulan data dimaksudkan untuk menunjang keperluan studi pemodelan aliran pada Bendungan Tugu menggunakan program HEC-RAS. Data yang dimaksud adalah :

1. Data Hidrologi

Terdiri dari data debit di Bendungan Tugu.

2. Data Peta

Data peta yang digunakan adalah peta topografi yang berguna untuk mengetahui kontur lokasi guna mencari arah aliran *existing* dari elevasi kontur. Kontur sendiri nantinya digunakan untuk mengetahui masing-masing data *cross section* Sungai Keser. Selain itu, peta lokasi kawasan, untuk mengetahui *catchment area* kawasan studi. Dalam kasus ini, *catchment area* pada Bendungan Tugu sudah diketahui jadi tidak melakukan perhitungan.

- 3. Data Hidraulika
 - Data hidraulika terdiri dari penampang melintang dan memanjang sungai, bendungan dan *spillway*.
 - Elevasi bendungan dan spillway.
 - Koefisien Manning.

3.3 Analisis Penampang Eksisting dengan HEC-RAS

Analisis penampang eksisting dengan menggunakan HEC-RAS bertujuan untuk mengetahui kondisi dari Kali Keser saat ini (eksisting). Dengan menggunakan program bantu HEC-RAS maka dapat mengetahui profil muka air saat terjadi banjir. HEC-RAS akan menampilkan model dari Kali Keser sesuai dengan input data yang dimasukkan.

Input data yang digunakan untuk analisis ini adalah:

- 1. Data Geometri
 - Skema alur Kali Keser.
 - Data penampang memanjang dan melintang sungai.
- 2. Data Debit
 - Data debit di Bendungan Tugu.
- 3. Data Hidraulika
 - Memasukkan nilai koefisien Manning.
 - Memasukkan elevasi dan jarak bendungan dan *spillway*.

Output yang dihasilkan dari analisis ini adalah:

- 1. *Output* utama berupa profil muka air pada setiap penampang sesuai dengan periode waktu yang diambil.
- 2. Kecepatan aliran pada penampang sungai dihilir bendungan.
- 3. Rating Curve spillway.

3.4 Simulasi Aliran dengan Software HEC-RAS

Terdapat lima langkah-langkah utama dalam menciptakan suatu model hidraulik dengan HEC-RAS yaitu:

- Memulai suatu proyek baru dengan memberi nama proyek dan tempat menyimpannya.
- Membuat data geometri baru dan menggambar skema alur sungai.

- Memasukkan data geometri (skema alur sungai, *cross section*, koefisien hidraulik, bendungan dll.)
- Memasukkan syarat batas.
- Melakukan hitungan hidraulika aliran.

3.5 Membandingkan Hasil Running HEC-RAS

Pada tahap ini akan dilakukan perbandingan aliran desain hidrolis dari hasil *running* HEC-RAS dengan hasil perhitungan analitis oleh konsultan perencana Bendungan Tugu. Hal ini dilakukan untuk memberikan alternatif lain dalam perencanaan Bendungan Tugu agar perencanaan lebih baik.

3.6 Kesimpulan dan Saran

Pada tahap ini akan ditarik kesimpulan dari analisis data dan pembahasan sesuai dengan tujuan yang hendak dicapai dalam penulisan Tugas Akhir ini.

Gambar 3.1 Bagan Alir Tugas Akhir

Lanjutan Gambar 3.1 Bagan Alir Tugas Akhir

"Halaman ini sengaja dikosongkan"

BAB IV PEMBAHASAN

4.1 Penerapan Persamaan Aliran Tak Permanen

Hukum kekekalan massa dan kekekalan momentum merupakan proses fisik yang diikuti oleh suatu aliran di saluran ataupun di sungai. Proses fisik ini dapat digambarkan dengan persamaan matematis, yang dikenal dengan persamaan St. Venant. Persamaan ini terdiri dari persamaan kontinuitas dan persamaan momentum yang dituliskan dalam persamaan diferensial parsial sebagai berikut :

> Persamaan Kontinuitas $\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} - q_1 = 0$

 $\begin{array}{l} Persamaan \ Momentum \\ \frac{\partial Q}{\partial t} + \frac{\partial QV}{\partial x} + g \ A \ (\frac{\partial z}{\partial x} + S_f) = 0 \end{array}$

Dimana,

- A = luas tampang aliran (jumlah luas tampang aliran di *main channel* dan *overbank channel*)
- Q = debit aliran
- q_1 = debit lateral per satuan panjang
- V = kecepatan aliran
- g = percepatan gravitasi
- x = jarak, diukur searah aliran
- z = elevasi muka air
- t = waktu
- S_f = kemiringan garis energy (*friction slope*), dihitung dengan persamaan Manning

$$S_{f} = \frac{n^{2}|Q|Q}{A^{2}R^{2}}$$

Dimana,

n	=	Koefisien kekasaran Manning
R	=	Radius hidraulik

Penerapan persamaan aliran tersebut pada HEC-RAS sendiri yaitu HEC-RAS membagi alur saluran menjadi tiga bagian, yaitu bantaran kiri, alur utama, dan bantaran kanan seperti diilustrasikan pada Gambar 4.129. Saat air sungai naik, air bergerak menyamping, menjauh dari alur utama, menggenangi bantaran dan mengisi tampungan-tampungan yang ada di sepanjang bantaran. Seiring dengan kenaikan muka air lebih lanjut, air di bantaran mulai mengalir ke hilir, aliran di bantaran ini umumnya menempuh jarak yang lebih pendek daripada aliran di alur utama. Saat air mulai surut, air di bantaran bergerak menuju alur utama, menggantikan aliran di alur utama. Karena arah utama aliran adalah sepanjang alur utama, aliran dua dimensi ini sering dapat didekati dengan anggapan aliran satu dimensi. Kawasan genangan di luar alur utama dapat dimodelkan sebagai kawasan tampungan yang airnya dapat saling berpindah ke dan dari alur utama. Aliran di bantaran dapat didekati sebagai aliran melalui alur terpisah dari alur utama.

Gambar 4.1 Aliran Melalui Alur Utama dan Bantaran

36

Berbagai cara telah dilakukan untuk memodelkan permasalahan aliran melalui alur utama dan bantaran. Salah satu cara adalah pengabaian kapasitas angkut bantaran dan menganggap bahwa bantaran hanya berfungsi sebagai tampungan. Cara ini cocok untuk sungai-sungai besar yang alurnya dibatasi tanggul dan bantarannya merupakan kawasan bervegetasi lebat atau merupakan sebuah kawasan tampungan (*off-channel storage*). Cara HEC-RAS memodelkan aliran di bantaran didasarkan pada metode yang awalnya dikembangkan oleh Fread (1976) dan Smith (1978), yang kemudian dikembangkan lebih lanjut oleh Barkau (1982). Secara garis besar, metode ini dipaparkan di bawah ini.

Fread (1976) dan Smith (1978) mamandang aliran melalui alur utama dan melalui bantaran sebagai dua aliran yang melewati dua tampang saluran terpisah serta menuliskan persamaan kontinuitas dan persamaan momentum untuk masing-masing tampang tersebut. Penyederhanaan dilakukan dengan menganggap muka air di kedua tampang saluran pada arah lateral (tegak lurus arah aliran) datar atau horizontal. Dengan demikian: 1) transfer momentum di antara kedua tampang dapat diabaikan, dan 2) debit terbagi ke kedua tampang berdasarkan kapasitas angkut (*conveyance*) masing-masing tampang yaitu:

$$Q_c = \phi Q$$

Dimana,

Qc	=	debit aliran melalui alur utama (channel)
Q	=	debit total aliran
ф	=	Kc/ (Kc+Kf)
Kc	=	kapasitas angkut tampang alur utama
Kf	=	kapasitas angkut tampang bantaran

Dengan anggapan tersebut, maka persamaan aliran satu dimensi dapat digabungkan menjadi satu kelompok persamaan sebagai berikut:

$$\frac{\partial Q}{\partial t} + \frac{\partial (\frac{\partial^2 Q^2}{A_c})}{\partial X_c} + \frac{\partial \left[\frac{(1-\phi)^2 Q^2}{A_f}\right]}{\partial X_f} = 0$$

$$\frac{\partial Q}{\partial t} + \frac{\partial \left(\frac{\phi^2 Q^2}{A_c}\right)}{\partial X_c} + \frac{\partial \left[\frac{(1-\phi)^2 Q^2}{A_f}\right]}{\partial X_f} + gA_c(\frac{\partial z}{\partial X_c} + S_{fc}) + gA_f(\frac{\partial z}{\partial X_f} + S_{ff}) = 0$$

 $\partial(\phi 0) = \partial[(1-\phi)0]$

Dalam kedua persamaan di atas, subskrip c mengacu pada alur utama dan subskrip f mengacu pada bantaran. Persamaan di atas dijabarkan dengan pendekatan beda hingga implisit dan persamaan yang diperoleh diselesaikan dengan cara iterasi Newton-Raphson. (*Sumber : Istiarto,2014*)

4.2 Parameter HEC-RAS

Parameter-parameter di dalam HEC-RAS digunakan untuk membentuk seri penampang sungai sepanjang saluran sungai. Parameter tersebut terdiri dari data geometri saluran sungai, nilai kekasaran Manning dan data aliran yang digunakan untuk analisis hidrologi. Ketiga parameter tersebut merupakan komponen utama untuk memodelkan suatu profil aliran.

4.2.1 Data aliran

Data aliran merupakan data yang dimasukkan untuk pembuatan model hidrologi di dalam HEC-RAS. Data ini berupa data debit periode ulang tertentu dalam satuan m³/detik. Data debit dapat berasal dari pengukuran langsung di lapangan, maupun secara tidak langsung. Dalam kasus ini data debit berasal dari perhitungan konsultan perencana Bendungan Tugu, sehingga tidak perlu melakukan perhitungan debit banjir. Selama melakukan *input* data di dalam HEC-RAS harus dapat mewakili *input* aliran yang dapat memberikan masukan kepada setiap sungai yang dianalisis.

Data aliran yang perlu dimasukkan ke dalam HEC-RAS adalah data debit banjir rancangan metode Nakayasu dengan periode ulang 100 tahun dan 1000 tahun. Data debit banjir yang digunakan berupa debit *inflow* dan debit *outflow*. Debit *inflow*

aд

digunakan ketika memodelkan aliran yang berada dalam waduk kemudian melimpah menuju *spillway*. Sementara untuk debit *outflow* digunakan ketika memodelkan profil air yang berada di *spillway*. Berikut merupakan data debit banjir *inflow* (Tabel 4.1) dan debit banjir *outflow* (Tabel 4.2) yang masing-masing telah diperhitungkan oleh konsultan perencana Bendungan Tugu.

			PERIODE ULANG									
No	Waktu	Qt	2	5	10	20	25	50	100	500	1000	PMF
140	(jam)	(m³/dt)	tahun	tahun	tahun	tahun	tahun	tahun	tahun	tahun	tahun	tahun
				$(\mathbf{m}^3/\mathbf{dt})$								
1	0.00	0.00	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42
2	1.00	0.82	13.13	18.06	22.31	26.56	28.98	35.04	42.15	54.87	76.35	105.50
3	1.80	3.38	63.73	88.27	109.45	130.61	142.68	172.84	208.26	271.59	378.54	523.74
4	2.00	3.12	102.62	142.24	176.42	210.57	230.06	278.75	335.92	438.14	610.79	845.18
5	3.00	2.09	112.69	156.22	193.77	231.29	252.70	306.19	368.98	481.29	670.95	928.44
6	4.00	1.40	102.62	142.24	176.42	210.57	230.06	278.75	335.91	438.14	610.78	845.16
7	5.00	0.96	88.45	122.58	152.02	181.44	198.23	240.17	289.41	377.47	526.18	728.08
8	6.00	0.74	65.64	90.92	112.74	134.53	146.97	178.04	214.52	279.76	389.93	539.51
9	7.00	0.56	46.67	64.60	80.07	95.52	104.34	126.38	152.24	198.51	276.63	382.71
10	8.00	0.43	34.21	47.31	58.61	69.90	76.35	92.45	111.35	145.15	202.23	279.73
11	9.00	0.33	25.70	35.51	43.96	52.41	57.23	69.28	83.43	108.72	151.43	209.42
12	10.00	0.26	19.95	27.53	34.06	40.59	44.32	53.62	64.55	84.09	117.09	161.90
13	11.00	0.22	15.75	21.69	26.82	31.94	34.86	42.17	50.74	66.08	91.97	127.13
14	12.00	0.18	12.64	17.37	21.46	25.54	27.87	33.69	40.53	52.75	73.39	101.41
15	13.00	0.14	10.27	14.08	17.38	20.67	22.55	27.24	32.75	42.60	59.24	81.83
16	14.00	0.12	8.45	11.56	14.25	16.93	18.46	22.29	26.78	34.81	48.38	66.79
17	15.00	0.10	6.99	9.53	11.73	13.93	15.18	18.31	21.99	28.56	39.66	54.73
18	16.00	0.08	5.79	7.88	9.67	11.47	12.50	15.06	18.06	23.44	32.52	44.85
19	17.00	0.06	4.82	6.52	7.99	9.46	10.30	12.40	14.86	19.26	26.69	36.77
20	18.00	0.05	4.02	5.41	6.61	7.82	8.50	10.22	12.23	15.83	21.91	30.16
21	19.00	0.04	3.36	4.50	5.49	6.47	7.03	8.44	10.08	13.03	18.00	24.75
22	20.00	0.04	2.83	3.76	4.57	5.37	5.83	6.98	8.33	10.74	14.80	20.33
23	21.00	0.03	2.39	3.15	3.81	4.47	4.85	5.79	6.89	8.86	12.19	16.71
24	22.00	0.02	2.03	2.65	3.19	3.73	4.04	4.81	5.71	7.32	10.05	13.75
25	23.00	0.02	1.74	2.25	2.69	3.13	3.38	4.01	4.75	6.07	8.30	11.32
26	24.00	0.02	1.50	1.91	2.28	2.64	2.84	3.36	3.96	5.04	6.86	9.34
Q mal	ksimum (m ³ /dt)	112.69	156.22	193.77	231.29	252.70	306.19	368.98	481.29	670.95	928.44

Tabel 4.1 Rekapitulasi Debit Banjir Rancangan Metode Nakayasu

Sumber : Balai Besar Wilayah Sungai Brantas – Surabaya

		1		3	5			
Waktu	QI	00	Q1	Q1000		Q1000		MF
(Jam)	Qinf	Qout	Qinf	Qout	Qinf	Qout		
0	0.42	0.417	0.42	0.417	0.42	0.417		
1	42.15	23.96	76.35	43.247	105.50	105.504		
2	335.92	119.29	610.79	245.211	845.18	385.459		
3	368.98	272.804	670.95	532.251	928.44	764.346		
4	335.91	326.484	610.78	609.632	845.16	852.845		
5	289.41	314.345	526.18	573.524	728.08	794.042		
6	214.52	267.807	389.93	480.228	539.51	660.054		
7	152.24	208.64	276.63	367.917	382.71	502.862		
8	111.35	157.859	202.23	274.881	279.73	373.89		
9	83.43	119.03	151.43	207.145	209.42	280.455		
10	64.55	92.341	117.09	159.243	161.90	215.013		
11	50.74	73.072	91.97	124.659	127.13	168.296		
12	40.53	58.228	73.39	99.466	101.41	133.666		
13	32.75	46.683	59.24	80.351	81.83	108.4		
14	26.78	39.003	48.38	66.004	66.79	88.073		
15	21.99	32.373	39.66	54.126	54.73	73.16		
16	18.06	26.775	32.52	44.883	44.85	60.604		
17	14.86	22.1	26.69	37.959	36.77	50.271		
18	12.23	18.222	21.91	31.776	30.16	42.203		
19	10.08	15.726	18.00	26.249	24.75	35.573		
20	8.33	13.885	14.80	21.896	20.33	29.719		
21	6.89	12.114	12.19	18.1	16.71	24.691		
22	5.71	10.475	10.05	15.655	13.75	20.444		
23	4.75	8.997	8.30	13.831	11.32	16.895		
24	3.96	7.689	6.86	12.073	9.34	14.946		

Tabel 4.2 Rekapitulasi Debit Inflow dan Outflow

Sumber : Balai Besar Wilayah Sungai Brantas – Surabaya

4.2.2 Penampang melintang sungai

Penampang melintang sungai merupakan irisan yang memotong daerah yang dialiri oleh aliran sungai. Penampang melintang sungai diperlukan untuk memasukkan data geometri sungai pada HEC-RAS. Penampang melintang (*cross section*) Sungai Keser diperoleh dari Global Mapper dengan cara mengetahui kontur dari daerah sekitar aliran Sungai Keser. Dari kontur inilah nantinya digunakan sebagai data utama untuk dimasukkan ke dalam Global Mapper. Pada tugas akhir ini,kontur diperoleh dari konsultan perencana Bendungan Tugu dalam bentuk autocad (Gambar 4.2).

Kontur dengan bentuk autacad kemudian di simpan ulang sebagai file DXF. Dengan *software* DXF2XYZ file yang berbentuk DXF kemudian di simpan kembali menjadi file berformat XYZ (Gambar 4.3). Langkah selanjutnya yaitu mengimpor file yang berbentuk XYZ tersebut ke dalam *software* Global Mapper. Sebelum masuk ke layar utama Global Mapper, hal pertama yang perlu dilakukan adalah pengaturan Zona dan Datum yang muncul pada layar (Gambar 4.4). Pada kotak pemilihan Zona dipilih -49 *Southern*, pemilihan ini sesuai dengan lokasi Bendungan Tugu Trenggalek yang berada di selatan.

Gambar 4.2 Kontur Daerah Sungai Keser

Dxf2xyz 2.0		1	XX III
Look in: 🕌 A. BISMILLAH LANCAR 🗨	+ 🗈 💣 📰 -		Save kontur.xyz Save As
Name	Date modified	Ty	Number dat
1.DD.Bend Tugu Trenggalek (PT.Indra Karya) LESTI III	2/29/2016 8:23 AM 2/29/2016 8:29 AM	Fi Fi	Length: 10964535
axi kontur	10/17/2016 4:57 PM	A	Min×Y: 562995.537670.
LAYOUT BENDUNGAN TUGU_NEW 2000	10/15/2016 9:55 AM	A	Max X Y: 565505 950808
AYOUT BENDUNGAN TUGU_NEW R	10/15/2016 9:55 AM	Aı	
LAYOUT BENDUNGAN TUGU_NEW	10/15/2016 9:33 AM	Aı	
<		F	
Files of type: AutoCAD DXF files (*.dxf)	•		Quit
Filters: Entities	Output Format		About
Layers			Help
 Paul			
1 615			
Region			
DXF2AYZ 2.0 A 21 - DXF/DWG to XYZ/BLN Converter Copyright (C) 1939.2005, Guthrie CAD/GIS Software Pty L Select file to translate	td. All rights reserved.		×

Gambar 4.3 Tampilan Mengubah File DXF Menjadi XYZ

5	Select Projection for kontur.xyz	X
	Projection	
	Projection:	Load From File
	UTM 🔻	Save To File
	Zone:	Init From EPSG
1	-49 (108°E - 114°E - Southern Hemisphere)	
	Datum:	- Add Datum
	Planar Units: Elevation	Units:
	METERS METER	S 💌
	Parameters:	
	Attribute	Value
	CENTRAL MERIDIAN SCALE FACTOR	0.999600000
	CENTRAL MERIDIAN	111.0000000
		0.0000000
	FALSE NORTHING (m)	1000000
	Use Selected Projection for All Selected	Files
	OK Cano	cel Help

Gambar 4.4 Layar Pemilihan Zone dan Datum

Gambar 4.5 Tampilan Kontur Sungai Keser dengan Global Mapper

Untuk mengetahui *cross section* pada penampang masing-masing sungai dapat dilakukan dengan cara mengklik *3D Path File* () pada layar menu *toolbar* yang disediakan oleh *Global Mapper*. Sungai Keser dapat dibagi menjadi 27 bagian penampang sungai (Gambar 4.5). Penentuan jumlah bagian ini tidak harus sebanyak 27 bagian, semakin banyak bagian sungai maka data penampang sungai yang nantinya akan dimasukkan ke dalam geometri HEC-RAS akan banyak pula. Ini memberi keuntungan karena penampang melintang sungai akan lebih detail penampang dan jaraknya.

Untuk mengetahui cross section sungai maka langkah selanjutnya yaitu mengklik 3D Path File dan menarik garis sesuai dengan penampang sungai yang ingin diketahui cross sectionnya. Hasil dari 3D Path File tersebut disajikan dalam gambar 4.6. Setelah itu memilih menu File /Save CSV File, ini berfungsi untuk menyimpan seluruh bagian penampang sungai ke dalam excel. Hal ini digunakan untuk mempermudah dalam

memasukkan data cross section sungai ke dalam software HEC-RAS.

Output yang diperoleh dari langkah ini yaitu mengetahui *station* dan *elevation* pada masing-masing penampang sungai (Tabel 4.3). Selain itu, dari tahapan ini dapat mengetahui data geometri lainnya seperti jarak antar tampang sungai ke tampang sungai bagian hilir (*Downstream Reach Lengths*).

Gambar 4.6 Hasil Cross Section pada Salah Satu Penampang

Gambar 4.7 Tampilan Menu untuk Menyimpan ke CSV File

Berikut merupakan salah satu contoh jarak dan elevasi yang didapatkan pada potongan melintang Sungai Keser bagian ke 6.

								0000	001101	. ~	5***
No	Distance	Elevation	No	Distance	Elevation	No	Distance	Elevation	No	Distance	Elevation
1	27.285	245.1	22	182.27	189.618	43	339.75	168.542	64	497.23	171.865
2	34.784	240	23	189.77	187.667	44	347.25	167.85	65	504.73	174.934
3	42.283	245	24	197.27	185	45	354.75	167.241	66	524.73	177.516
4	49.782	244.315	25	204.76	185	46	362.25	166.55	67	532.23	178.31
5	57.281	240.325	26	212.26	181.177	47	369.75	165.94	68	539.73	179.552
6	64.78	236.855	27	219.76	180	48	377.25	165.355	69	547.23	180.211
7	72.28	230.961	28	227.26	179.702	49	384.74	164.431	70	554.73	185.074
8	79.779	228.872	29	234.76	178.551	50	392.24	161.573	71	562.22	189.103
9	87.278	222.008	30	242.26	177.229	51	399.74	160	72	569.72	192.141
10	94.777	220.311	31	249.76	176.078	52	407.24	160	73	577.22	196.22
11	99.776	220	32	257.26	175	53	414.74	160	74	584.72	200.054
12	107.28	218.291	33	264.76	175	54	422.24	161.253	75	592.22	202.143
13	114.77	215.406	34	272.26	175	55	429.74	164.281	76	599.72	203.972
14	122.27	210.467	35	279.76	173.955	56	437.24	166.487	77	607.22	205
15	129.77	208.517	36	287.26	172.809	57	444.74	167.166	78	614.72	206.784
16	137.27	205.517	37	294.75	171.432	58	452.24	167.742	79	622.22	209.332
17	144.77	205	38	302.25	170.074	59	459.74	168.215	80	629.72	209.881
18	152.27	200.568	39	309.75	170	60	467.24	168.898	81	637.22	210
19	159.77	196.519	40	317.25	170	61	474.73	169.63	82	644.72	211.574
20	167.27	193.768	41	324.75	169.842	62	482.23	170	83	653.05	213.256
21	174.77	191.173	42	332.25	169.151	63	489.73	170.706	84	659.71	214.45

Tabel 4.3 Jarak dan Elevasi Salah Satu Cross Section Sungai

Sumber : Perhitungan dengan Global Mapper

4.2.3 Koefisien kekasaran Manning

Koefisien kekasaran merupakan representasi dan resistensi terhadap aliran banjir sungai pada saluran sungai dan pada dataran banjir.

$$V = 1/n R^{2/3} S^{1/2}$$

Keterangan :

V = Kecepatan aliran (m/dt)

R = Radius hidrolik (m)

S = Kemiringan garis energy

n = Koefisien kekasaran Manning

Pada kasus ini, kekasaran Manning sudah di tentukan oleh konsultan perencana sebesar 0.030 pada daerah aliran sungai. Dan untuk bangunan pelimpah, kekasaran Manning direncanakan sebesar 0.014 dengan saluran akhir berupa bronjong dengan nilai n sebesar 0.035. Nilai-nilai tersebut yang nantinya dimasukkan ke dalam data geometri HEC-RAS.

4.3 Pemodelan Waduk dan Bendungan pada HEC-RAS

Setelah mengetahui data aliran, data potongan melintang pada masing-masing sungai dan kekasaran koefisien Manning maka langkah selanjutnya adalah memasukkan data-data tersebut ke dalam *software* HEC-RAS.

Yang dimaksut dengan waduk pada pemodelan disini adalah geometri sungai di daerah genangan, sementara pengertian bendungan pada pemodelan ini adalah aliran air yang melewati *outflow* pelimpah (ambang pelimpah). HEC-RAS memodelkan bendungan dan waduk dengan dua pilihan cara. Cara 1 yaitu geometri sungai di daerah genangan (waduk) dimodelkan layaknya sebuah alur sungai dengan memodelkan sejumlah *river station*, sementara bendungan yang berupa *outflow* pelimpah dimodelkan sebagai *inline structure*. Yang dimaksut dengan *river station* pada pemodelan ini adalah potongan melintang sungai di daerah genangan. Cara ke 2 yaitu geometri sungai di daerah genangan (waduk) dimodelkan sebagai *storage area* dan bendungan yang berupa *outflow* pelimpah sebagai *inline structure*.

Dari masing-masing cara tersebut dibagi menjadi berbagai pemodelan. Untuk cara 1 dimana waduk dimodelkan sebagai *river station* dan bendungan sebagai *inline structure*, untuk cara ini dapat dibagi menjadi 3 pemodelan. Model 1 yaitu waduk sebagai *river station* yang dibendung dengan bendungan dan ketika banjir datang muka air banjir tersebut melimpah melalui *outflow* pelimpah atau ambang pelimpah yang langsung menuju hilir sungai. Hampir sama dengan pemodelan 1 pada pemodelan ke 2 ini yang membedakannya yaitu adanya penambahan peniruan geometri pelimpah secara lengkap (saluran pengarah, saluran peluncur dan kolam olak). Berbeda dengan pemodelan 1 dan 2 yang masih memodelkan waduk sebagai *river station* pada pemodelan 3 ini yang dimodelkan hanyalah saluran pelimpah secara detail.

Berbeda dari cara 1 yang memodelakan waduk sebagai *river reach*, pada cara ke 2 ini waduk dimodelkan sebagai *storage*

area dan bendungan sebagai *inline structure*. Cara ke 2 ini dapat dibagi menjadi dua pemodelan. Pemodelan pertama tidak adanya pemodelan saluran pelimpah sehingga air dari waduk langsung mengalir melalui ambang pelimpang yang diteruskan langsung menuju sungai, sementara pada pemodelan kedua saluran pelimpah tersebut dimodelkan.

Gambar 4.8 Beberapa Pemodelan dengan HEC-RAS

Dari gambar 4.8 tersebut dapat disimpulkan untuk pemodelan waduk dan bendungan dapat dilakukan dengan cara sebagai berikut:

- a. Pemodelan cara 1 yang memodelkan geometri sungai di daerah genangan sebagai *river station* dan *outflow* pelimpah (ambang pelimpah) sebagai *inline structure*. Pada pemodelan ini dapat dimodelkan menjadi beberapa pemodelan yaitu:
 - Pemodelan I (memodelkan geometri sungai di daerah genangan dan ambang pelimpah tetapi tidak memodelkan geometri pelimpah secara detail)
 - Pemodelan II (sama dengan pemodelan I, hanya saja adanya penambahan geometri pelimpah secara detail)

- Pemodelan III (hanya memodelkan geometri saluran pelimpah)
- b. Pemodelan cara 2 yang memodelkan geometri sungai di daerah genangan sebagai *storage area* dan *outflow* pelimpah (ambang pelimpah) sebagai *inline structure*. Pemodelan ini dapat dimodelkan menjadi :
 - Pemodelan I (memodelkan geometri sungai di daerah genangan dan ambang pelimpah tetapi tidak memodelkan geometri pelimpah secara detail)
 - Pemodelan II (sama dengan pemodelan I, hanya saja adanya penambahan geometri pelimpah secara detail)

4.4 Tahap Pemodelan dengan HEC-RAS

Setelah mengetahui macam-macam cara dan model yang digunakan untuk memodelkan waduk dan bendungan maka langkah selanjutnya adalah tahapan dalam memodelkannya. Tahap pemodelan sama dengan layaknya memodelkan aliran di sungai, yaitu dengan cara :

- 1. Memodelkan geometri (geometry data)
- 2. Memodelkan aliran (*unsteady flow* data)
- 3. Melakukan simulasi (perform unsteady flow analysis)
- 4. Menampilkan hasil simulasi

Tahapan pemodelan waduk dan bendungan dengan HEC-RAS dilakukan berdasarkan cara-cara yang telah dijelaskan sebelumnya. Berikut merupakan tahapan pemodelan pada masing-masing cara.

4.4.1 Pemodelan dengan river station dan inline structure

Seperti penjelasan sebelumnya bahwa pemodelan dengan menganggap geometri sungai di daerah genangan sebagai *river station* dan bendungan sebagai *inline structure* dapat dibagi menjadi 3 pemodelan. Masing-masing pemodelan memiliki 4 tahapan yang sama.

4.4.1.1 Pemodelan pertama

Pada pemodelan ini geometri sungai dianggap sebagai *river station* yang dibendung dengan bendungan dan ketika banjir datang muka air banjir tersebut melimpah melalui ambang pelimpah yang kemudian langsung menuju hilir sungai, pada pemodelan ini tidak memodelkan saluran pelimpah secara mendetail.

Tahapan pemodelan pertama terdiri dari 4 tahap yaitu, memodelkan geometri, memodelkan aliran, melakukan simulasi dan menampilkan hasil. Berikut merupakan tahapan dalam memodelkan pemodelan pertama.

1. Penirauan geometri sungai dan bendungan

Saat pertama kali mengaktifkan program HEC-RAS, maka layar utama (Gambar 4.9) akan muncul. Langkah pertama untuk pemodelan dengan HEC-RAS adalah membuat file *project*. Suatu model dalam HEC-RAS disimpan dalam sebuah file *project* (Gambar 4.10) dengan cara memilih menu file lalu mengklik *new project*.

Setelah itu mengaktifkan layar editor data geometri (Gambar 4.11) dengan memilih menu *edit | Geometric* data atau dapat dilakukan dengan cara mengklik tombol *Edit/Enter geometric data*.

HEC-RAS 4.1	10	×
File Edit Ru	un View Options GISTools Help	
	▆▔▚▖▝▛▅▌▙▙▟▋▓▝▛ፇ▎▀▛▕▋▓▆▝▀	Ial
Project:		
Plan:		
Geometry:		
Steady Flow:		
Unsteady Flow:		
Description :	🗘 🛄 SI Units	

Gambar 4.9 Layar Utama HEC-RAS

Gambar 4.10 Layar Pembuatan Project Baru

Gambar 4.11 Layar Editor Data Geometri

Setelah tampilan layar editor data geometri muncul maka langkah selanjutnya yaitu mengklik tombol *River Reach* () dan membuat skema saluran dengan cara meng-klik-kan titik-titik sepanjang alur Sungai Keser pada layar editor data geometri. Alur sungai harus dibuat dari hulu ke hilir. Setelah itu, mengklik dua kali pada ujung hilir sungai untuk mengakhiri pembuatan skema alur. Pada layar akan muncul kotak dengan bertuliskan *River* dan *Reach* (Gambar 4.12). Pada kotak ini berfungsi untuk menuliskan nama sungai dan ruas sungai sebagai penamaan selama proses pemodelan.

Gambar 4.12 Layar Pengisian Nama Sungai dan Ruas Sungai

Pembuatan ulang alur sungai dengan mengklik ulang tombol *River Reach*. Dengan cara yang sama, membuat ulang skema sungai bagian lainnya. Klik yes pada layar konfirmasi yang muncul untuk menyetujui pemotongan ruas Sungai Keser menjadi dua ruas (Gambar 4.13). Layar isian nama sungai dan ruas di sisi hilir titik pemisahan Sungai Keser akan muncul. Menuliskan "Sungai Keser" sebagai nama River dan mengganti "*Upstream*" menjadi "*Downstream*" sebagai nama *Reach* (Gambar 4.14). Pada layar isian nama titik cabang (*junction*) yang muncul, mengisikan "J1" sebagai nama *junction* (Gambar 4.15).

Gambar 4.13 Layar Konfirmasi Pemotongan Sungai

×	×
A new	reach will be created below split, enter the new name.
River:	Keser
Reach:	Downstream
	OK Cancel

Gambar 4.14 Layar Penamaan Bagian Hilir

HEC-RAS			
Enter a junction name to connect reaches "Upstream" and "Downstream"			
J1			
OK Cancel			

Gambar 4.15 Layar Penamaan Junction

Hasil dari pembuatan skema geometri sungai disajikan pada Gambar 4.16. Setelah itu menyimpan geometri data dengan cara *File | Save Geometry Data* (Gambar 4.17).

Gambar 4.16 Skema Sungai Keser

Gambar 4.17 Layar Penyimpanan Geometri Data

Langkah selanjutnya dalam peniruan geometri sungai adalah penulisan data tampang lintang sungai yaitu dengan mengaktifkan layar editor tampang lintang dengan mengklik tombol *cross section* (). Menuliskan data tampang lintang sungai dimulai dari sungai bagian hilir sampai ujung hulu. Untuk menuliskan data tampang lintang klik *options / Add a new cross section* dan menuliskan nomor tampang lintang dengan angka 0 sebagai hilir sungai. Setiap tampang lintang diidentifikasikan sebagai *river station* yang diberi nomor urut dimulai dari hilir dan bertambah besar ke arah hulu. Setelah langkah ini, layar editor tampang lintang akan tampak seperti gambar di bawah ini.

Cross Section Data - weir	
Exit Edit Options Plot Help	
River: Keser	🕴 📴 🦾 🗆 Keep Prev XS Plots 🛛 Clear Prev
Reach: Downstream 💌 River Sta.: 0 💌 🖡 🕇	
Description 🗍 🔅 📖	
Del Roy Inc Revit Downstam Reach Lergitze Const Sector Construct Station Elevation A Station Elevation A B 2 Constant of the construct Constant of the construct Constant of the construct 3 Constant of the construct A Constant of the construct Constant of the construct 6 Constant of the construct A Constant of the construct Constant of the consthe construct Constant of the consthe co	No Data for Plot

Gambar 4.18 Layar Editor Tampang Lintang

Setelah mengaktifkan dan menuliskan nomor tampang lintang, maka langkah selanjutnya yaitu mengisikan data *cross section* pada masing-masing sungai. Seperti penjelasan sebelumnya bahwa data geometri sungai di dapat dari perhitungan *software* Global Mapper. Data geometri yang perlu dimasukkan adalah data *elevation* dan *station* pada masing-masing sungai (Tabel 4.4), data *downstream reach lengths* (Tabel 4.5), nilai kekasaran Manning, dan *Main Channel Bank Station*.

Untuk *downstream reach lengths* merupakan jarak tampang ke tampang tetangga di sisi hilir yaitu jarak antar bantaran kiri (*left overbank*, **LOB**), jarak antar alur utama (*main channel*, *channel*), dan jarak antar bantaran kanan (*right overbank*, **ROB**). Karena pada tampang 0 merupakan tampang paling hilir, maka isian ini dapat dibiarkan kosong atau diisi dengan angka nol. Jika tampang berada pada *river station* (RS) 1 maka jarak LOB, *Channel* dan ROB merupakan jarak dari RS 1 menuju ke RS bagian hilir (RS 0).

Nilai koefisien kekasaran dasar (*Manning's and Values*) adalah 0.03 untuk semua bagian tampang baik LOB, ROB dan *Channel* karena dalam kasus ini tampang lintang sungai dianggap tampang tunggal, bukan tampang majemuk.

Sementara untuk *Main Channel Bank Station* adalah titik batas antara LOB dan *Channel* serta antara *Channel* dan ROB. Pada contoh RS 0 *Left Bank* diisikan dengan 118.68 dan *Right Bank* pada *station* 190.61.

Data Cont/Exp Coefficients dibiarkan sesuai dengan nilai default yang ada di dalam HEC-RAS yaitu 0.1 untuk Contraction dan 0.3 untuk Expansion. Pada isian untuk River Station (RS) selanjutnya dilakukan dengan cara yang sama seperti langkah-langkah di atas. Sementara hasil dari input data untuk River Sta 0 terlihat seperti gambar 4.19.

					River	Sta 0					
No	Distance	Elevation	No	Distance	Elevation	No	Distance	Elevation	No	Distance	Elevation
1	1.269	158.205	30	55.85	156.506	59	111.07	155	88	166.49	150
2	3.173	158.146	31	57.754	156.447	60	112.97	155	89	167.76	150
3	5.077	158.087	32	59.658	156.388	61	114.87	155	90	169.67	150
4	6.981	158.028	33	61.562	156.329	62	116.78	155	91	171.57	150
5	8.885	157.968	34	63.466	156.269	63	118.68	154.78	92	173.47	150
6	10.789	157.909	35	65.37	156.21	64	120.59	154.512	93	175.38	150
7	12.693	157.85	36	67.274	156.151	65	122.49	154.253	94	177.28	150
8	14.597	157.791	37	69.178	156.091	66	124.39	153.989	95	179.19	150
9	16.501	157.731	38	71.082	156.032	67	126.3	153.71	96	181.09	150
10	18.405	157.672	39	72.986	155.973	68	128.2	153.431	97	182.99	150
11	20.309	157.613	40	74.89	155.914	69	130.11	153.152	98	184.9	150
12	22.213	157.553	41	76.794	155.854	70	132.01	152.873	99	186.8	150.789
13	24.117	157.494	42	78.698	155.795	71	133.91	152.597	100	188.71	152.709
14	25.386	157.455	43	80.602	155.736	72	135.82	152.342	101	190.61	154.787
15	27.29	157.395	44	82.506	155.677	73	137.72	152.087	102	192.51	157.485
16	29.194	157.336	45	84.41	155.617	74	139.63	151.824	103	194.42	159.788
17	31.098	157.277	46	86.314	155.558	75	141.53	151.558	104	196.32	160
18	33.002	157.218	47	88.218	155.499	76	143.43	151.291	105	198.23	160
19	34.906	157.158	48	90.122	155.439	77	145.34	151.025	106	200.13	160.098
20	36.81	157.099	49	92.026	155.38	78	147.24	150.758	107	202.03	160.244
21	38.714	157.04	50	93.93	155.321	79	149.15	150.492	108	203.94	160.39
22	40.618	156.98	51	95.834	155.262	80	151.05	150.225	109	205.84	160.536
23	42.522	156.921	52	97.738	155.202	81	152.95	150	110	207.75	160.681
24	44.426	156.862	53	99.642	155.143	82	154.86	150	111	209.65	160.827
25	46.33	156.803	54	101.55	155.084	83	156.76	150	112	211.55	160.973
26	48.234	156.743	55	103.45	155.025	84	158.67	150	113	213.46	161.119
27	50.138	156.684	56	105.35	155	85	160.57	150	114	215.36	161.265
28	52.042	156.625	57	107.26	155	86	162.47	150			
29	53.946	156.566	58	109.16	155	87	164.38	150			

Tabel 4.4 Distance dan Elevation pada RS 0

Sumber : Perhitungan dengan Global Mapper

RS	LOB	Channel	ROB
27	106.9	106.9	106.9
26	80.5	80.5	80.5
25	95.6	95.6	95.6
24	59.6	69.6	74.8
23	59.2	126.3	144.3
22	94.8	200.8	271.9
21	80.5	82.6	85.3
20	81.8	75.08	72.3
19	81.6	81.46	81.3
18	77.5	80.3	82.3
17	93 98	94 75	91 75

203.5

96.5

110.2

100.8

112.6

105.8

144

121.5 92.8

108.2

102.8

108.5

102.4

155.8

290

99.8

113.2

102.8

119.5

109.8

132

16

15

14

13

12

11

10

Tabel 4.5 Data *downstream reach lengths* pada Setiap RS

9	134	134	134.5
8	127	130	136
7	119	119	119
6	138	131	125
5	128	125	122
4	115	119	121
3	115	118	121
2	124.8	134	146
1	108	113	125
0	0	0	0

Lanjutan Tabel 4.5 Data downstream reach lengths pada Setiap RS

Sumber : Perhitungan dengan Global Mapper

Untuk satuan panjang pada data geometri tampang lintang sungai adalah meter karena *project* ini menggunakan sistem satuan SI. Setelah memasukkan seluruh data geometri tersebut klik tombol *Apply Dat*a untuk menyimpan data ke dalam HEC-RAS. Disisi kanan layar akan ditampilkan gambar tampang lintang seperti ditampilkan pada gambar 4.19. Selanjutnya mengklik *Exit / Exit Cross Section Editor* untuk kembali ke layar editor dan geometri, sehingga tampilan geometri dari seluruh Sungai Keser akan terlihat seperti gambar 4.20.

Gambar 4.19 Layar Tampilan Cross Section Data untuk RS 0

Gambar 4.20 Layar Editor Data Geometri Seluruh Sungai Keser

Pada Gambar 4.20 seluruh ruas Sungai Keser diwakili oleh 27 data tampang lintang, namun untuk kebutuhan ketelitian hitungan profil muka air 27 penampang tersebut tidak mencukupi. Untuk itu, perlu dilakukan interpolasi agar Sungai Keser yang memiliki panjang sungai utama sepanjang 9.3 km ini dapat diperhitungkan ketelitiannya. Untuk itu langkah selanjutnya yaitu memilih menu *Tools | XS Interpolation | Within a Reach* pada layar editor data geometri, pada isian *River* pilih (*All River*) untuk menginterpolasi semua sungai dengan nilai interval yang sama (Gambar 4.21). Pada isian *Maximum Distance between XS's* mengisi 20 yang berarti jarak maksimum antar tampang lintang adalah 20 m. Kemudian klik tombol *Interpolate XS's* (Gambar 4.21) dan *close* maka hasilnya seperti pada gambar 4.22.

Setelah memasukkan semua data geometri pada masing sungai dan menginterpolasinya maka langkah selanjutnya adalah menyimpan data geometri tersebut dengan memilih menu *File / Save Geometry Data*.

XS Interpolatio	n by Reach						
River:	(All Rivers)		-				
Reach:			•				
Upstream Riv 9	ita:		•				
Downstream R	v Sta:		•				
Maximum Dista	ance between×	S's:	20				
Cut Line GIS (Linearly inl (only avail	Cut Line GIS Coordinates Cut Line GIS Coordinates (only available when bounding XS's are Georeferenced)						
C Generate (will be rep	or display as per ositioned as cro	pendicular se ss section dal	gments to rea ta is changed	ach inve 1)	ert		
Decimal places	in interpolated 9	ta/Elev:	0.0	00	•		
Delete In	erpolated XS's		Interpolate	XS's			
				Close			
Enter max distar	nce between inte	rp XSs.					

Gambar 4.21 Interpolasi Tampang Lintang

Gambar 4.22 Layar Editor Data Geometri Setelah Interpolasi

Untuk melakukan peniruan geometri bendungan maka langkah pertama yang perlu dilakukan yaitu mengklik tombol *Edit and/or create inline structure*, kemudian mengaktifkan *River*: Keser dan *Reach*: *Downstream*.

Klik menu *Options | Add an Inline Structure*, kemudian menuliskan nomor tampang lintang baru "6.8" dan klik OK. Maka sebuah tampang lintang baru, RS 6.8 akan muncul pada layar editor data *inline structure*. Setelah itu mengklik tombol

Weir/Embankment pada papan tombol kiri dan mengisikan data data geometri *weir* (Gambar 4.23) seperti :

- *Distance* diisikan jarak dari lintang hulu (RS 7) yaitu 20 m.
- *Width* merupakan lebar puncak bendungan di sepanjang sungai yaitu 12 m.
- Weir coef merupakan koefisien aliran.
- U.S Embankment SS adalah kemiringan hulu bendungan.
- *D.S Embankment SS* adalah kemiringan hilir bendungan.
- *Spillway Approach Height* merupakan elevasi puncak *spillway* dikurangi ketinggian rata-rata tanah dasar bagian hulu dari *spillway*.

Pada tahap ini pula pemodelan ambang pelimpah dilakukan dengan memasukkan data elevasi dan jarak dari ambang pelimpah yaitu pada elevasi +251 dengan lebar ambang yaitu 22 meter. Sehingga ketika memasukkan data *station* dan *elevation* pada bendungan, tidak semua memiliki elevasi +259 (Gambar 23). Setelah semua data geometri tersebut dimasukkan selanjutnya klik tombol OK. Maka gambar *weir* akan tampak pada layar editor *inline structure* (Gambar 4.24).

Inline Structure Weir St	ation Elevation Editor		Inline Structure Weir Station Elevation Editor					
Distance 20	Width 12	Weir Coef 2.18		Distance Width Weir Coef 20 12 2.18				
Clear Del Ro	ow Ins Row	Filter		Clear Del Row Ins Row Filter Edit Station and Elevation coordinates				
1 130. 1 155. 3 180. 4 205. 5 230. 6 255. 7 280. 8 3nF. U.S Embankment SS "Weir Data Weir Crest Shape © Broad Crested © Dgee Desig	n 259. 259. 259. 259. 259. 259. 259. 259.	ankment SS 2 197 5.6 Cd		Station Elevation 17 500. 259. 18 555. 259. 20 590. 259. 21 602. 251. 22 602. 251. 22 605. 259. 24 63. 259. 24 63. 259. 24 63. 259. 24 63. 259. 25 D.S Embankment SS 2 Weir Data Weir Creat Shape 9. Orgoe Created Spillway Approach Height: 19.7 Design Energy Head: 5.6 Cd				
Enter distance between u	upstream cross section and	IK Cancel deck/roadway. (m)		OK Cance Enter distance between upstream cross section and deck/roadway. (m)	÷			

Gambar 4.23 Layar Editor Inline Structure Weir Station Elevation

Gambar 4.24 Layar Editor Inline Structure

Setelah kembali ke layar editor geometri data, langkah selanjutnya adalah menyimpan data *inline structure* tersebut dengan cara memilih *File | Save Geometry Data*. Maka tampilan layar editor geometri data akan terlihat seperti gambar berikut.

Gambar 4.25 Layar Editor Data Geometri Setelah Terdapat Weir

2. Memodelkan aliran

Parameter hidraulika sungai yang dibutuhkan untuk membangun model adalah debit dibatas hulu dan muka air dibatas hilir. Penirauan hidraulika Sungai Keser pada pemodelan pertama dilakukan dengan mengaktifkan layar editor data aliran tak permanen, kemudian memilih menu *Edit | Unsteady Flow Data*.

Berikutnya yaitu memasukkan data aliran di batas hulu Sungai Keser sesuai dengan tabel 4.6. Untuk memasukkan data hidrograf di batas hulu Sungai Keser posisikan kursor pada RS 21 dan RS 27 untuk mengklik tombol *Flow Hydrograph*. Sementara untuk *Flow Hydrograph* dapat digunakan dalam kondisi batas hulu ataupun hilir, tetapi lebih disarankan untuk kondisi batas hulu. Terdapat beberapa pilihan *Boundary Condition* yang tersedia. Apabila waduk dimodelkan dengan *River Station* (RS) maka pada RS paling hulu didefinisikan syarat batas *Flow Hydrograph* supaya lebih mudah mensimulasikannya.

Tabel 4.6 (a) Debit Banjir Hulu untuk RS 27, (b) Debit Banjir Hulu untuk RS 21.

	(a)		(D)				
Jam	Aliran Dasar	Debit	Jam	Aliran Dasar	Debit		
	m3/detik	m3/detik		m3/detik	m3/detik		
0	1.400	1.400	0	2.004	2.004		
1	1.400	197.299	1	2.004	60.959		
2	1.400	390.331	2	2.004	119.051		
3	1.400	441.920	3	2.004	134.576		
4	1.400	353.789	4	2.004	108.054		
5	1.400	282.596	5	2.004	86.628		
6	1.400	239.364	6	2.004	73.618		
7	1.400	167.966	7	2.004	52.131		
8	1.400	135.855	8	2.004	42.468		
9	1.400	87.119	9	2.004	27.801		
10	1.400	59.226	10	2.004	19.406		
11	1.400	42.360	11	2.004	14.330		
12	1.400	30.832	12	2.004	10.861		
13	1.400	22.888	13	2.004	8.471		
14	1.400	17.305	14	2.004	6.790		
15	1.400	13.172	15	2.004	5.547		
16	1.400	10.113	16	2.004	4.626		
17	1.400	7.849	17	2.004	3.945		
18	1.400	6.174	18	2.004	3.440		
19	1.400	4.933	19	2.004	3.067		
20	1.400	4.015	20	2.004	2.791		
21	1.400	3.336	21	2.004	2.586		
22	1.400	2.833	22	2.004	2.435		
23	1.400	2.460	23	2.004	2.323		
24	1.400	2.185	24	2.004	2.240		
	Maksimum	441.920		Maksimum	134.576		

61

Langkah selanjutnya setelah mengklik tombol *Flow Hydrograph* yaitu memasukkan data debit banjir *inflow* sesuai dengan data yang tersedia. Kemudian mengklik pada tombol plot data maka hidrograf akan muncul (Gambar 4.26 dan Gambar 4.27). Kondisi Normal *Depth* dipilih untuk batas hilir RS 0 dengan nilai *friction slope* yaitu 0.001. Kondisi Normal *Depth* ini hanya dapat digunakan pada kondisi batas hilir untuk *open-ended reach*.

Gambar 4.26 Hidrograf Debit di Batas Hulu RS 27

Gambar 4.27 Hidrograf Debit di Batas Hulu RS 21

上 Unste	🐛 Unsteady Flow Data - UNST FOR WEIR Q1000								
File Op	tions Help								
Bounda Initial F	Boundary Conditions Initial Conditions Apply Data Initial Flow Distribution Method								
⊂ Us ⊙ En Ad	C Use a Restart File Filename: C Enter Initial flow distribution Add RS								
		Local	tions of Flow	Data Changes					
R	iver	Reach	RS	Initial Flow					
1 K	ESER	Downstream	15	3.4					
2 K	2 KESER 1 Upstream 21 2.004								
3 K	3 KESER 2 Upstream 27 1.4								

Gambar 4.28 Syarat Awal pada Masing-Masing Ruas Sungai

Initial Condition sebaiknya harus dimasukkan, karena berfungsi sebagai syarat awal dalam memulai memodelkan unsteady flow. Syarat awal berupa debit aliran pada waktu t = 0 ditetapkan sebagai debit pada jam ke-0 pada hidrograf debit. Klik Initial Condition pada layar editor data aliran dan memasukkan debit sesuai dengan masing-masing RS (Gambar 4.28). Menyimpan file data aliran dengan memilih menu File / Save Unsteady Flow Data . Kemudian klik OK.

Pada masing-masing pemodelan menggunakan debit banjir dengan periode ulang 100, dan 1000. Pada data di atas merupakan data ketika debit banjir periode ulang 1000 tahun. Untuk memasukkan data debit banjir periode ulang 100 tahun dapat dilakukan dengan mengklik *File | Save Unsteady Flow Data as.* Dengan cara seperti itu maka semua data debit banjir periode ulang tertentu dapat tersimpan semua dalam HEC-RAS. Yang membedakan dari ketiga data debit banjir tersebut adalah ketika memasukkan syarat batas hulu pada masing-masing RS. Nilai dari *Flow Hydrograph* pada masing-masing debit banjir periode ulang tertentu berbeda-beda sesuai dengan hasil perhitungan. 3. Melakukan simulasi

Hitungan penelusuran aliran sepanjang Sungai Keser dengan syarat batas dan syarat awal yang telah disiapkan, dilakukan melalui menu *Run* dengan langkah sebagai berikut.

Langkah pertama yaitu mengaktifkan layar hitungan aliran tak permanen dengan memilih menu *Run | Unsteady Flow Analysis* atau mengklik tombol *Perform an Unsteady Flow Analysis* ()). Mengaktifkan ketiga modul hitungan pada menu *Program to Run* yaitu *Geometry Preprocessor, Unsteady Flow Simulation*, dan *Post Processor*. Setelah itu mengatur waktu simulasi pada kotak *computation* dari *starting date* "18Nov2016" dan *starting time* "0000" sampai *ending date* "18Nov2016" dan *ending time* "2400". Kemudian mengatur selang waktu hitungan pada "1 minute" untuk *Computation Interval, Hydrograph Output Interval*, dan juga untuk *Detailed Output Interval* (Gambar 4.29).

Mengaktifkan hitungan atau simulasi dengan mengklik tombol *Compute*. Jika berhasil maka pada layar proses hitungan akan tampak baris-baris hitungan untuk *Geometry Preprocessor*, *Unsteady Flow Simulation*, dan *Post Processor* berwarna biru semua (Gambar 4.30).

Gambar 4.29 Layar Hitungan Simulasi Aliran Sungai Keser

4. Menampilkan hasil

Hasil hitungan ditampilkan oleh HEC-RAS dalam bentuk grafik atau tabel. Presentasi dalam bentuk grafik digunakan untuk menampilkan *cross section* di suatu *River Reach*, tampang panjang berupa profil muka air sepanjang alur, kurva ukur debit, gambar perspektif alur, atau hidrograf. Sementara untuk presentasi dalam bentuk tabel digunakan untuk menampilkan hasil rinci berupa angka (nilai) variabel di lokasi tertentu atau di sepanjang alur.

Menampilkan hasil perhitungan dapat dilakukan dengan cara mengklik tombol view cross section, view profil, view general profil plot, view computed rating curve, view 3D multiple cross section plot, etc. periodelan I dengan cara 1 dapat terlihat seperti gambar 4.31 sampai dengan gambar 4.43.

Gambar 4.33 Cross Section pada RS 0 (Downstream)

Dari gambar 4.31 sampai gambar 4.33 merupakan tinggi muka air pada kondisi WS Max. Yang dimaksud dengan WS Max (*Water Surface Maximum*) adalah kondisi muka air banjir yang terjadi secara maksimum. Pada gambar 4.32 tinggi muka air pada daerah tampungan (hulu) berada pada elevasi +256.00 sementara tinggi muka air bagian hilir sungai berada pada di elevasi +154.50 (Gambar 4.33).

Gambar 4.35 Rating Curve pada RS 6

Pada gambar 4.35 merupakan hubungan antara tinggi muka air maksimum dengan debit total yang terjadi.

Gambar 4.36 Plot Prespektif X-Y-Z untuk Ketiga Reach

Gambar 4.38 Velocity Distribution RS 0

Untuk gambar 4.37 dan gambar 4.38 merupakan distribusi kecepatan pada masing-masing penampang. Dimana warna-warna tersebut dapat dicocokan dengan keterangan sisi kanan gambar. Untuk lebih jelasnya mengenai kecepatan pada masing-masing penampang dapat dilihat dari *output* berupa tabel, dengan memilih *view/ profile summary tables* (III) pada menu *toolbar* yang disediakan HEC-RAS (Gambar 4.43).

Gambar 4.39 Stage dan Flow Hydrograph pada RS 7

Gambar 4.40 Unsteady Flow Spatial Plot pada Semua Reach

River KESER	. Profi	er May 1//9	-		
		e. maxwo			
Reach Downstream	► RS:	15 🗾	🖣 🔳 🛛 Pla	an: Plan 63	<u> </u>
	Plan: Plan 6	3 KESER Downstream RS:15	Profile: Max WS		
E.G. Elev (m)	256.00	Element	Left OB	Channel	Right OB
Vel Head (m)	0.00	Wt. n-Val.	0.030	0.030	0.030
W.S. Elev (m)	256.00	Reach Len. (m)	19.96	19.30	18.56
Crit W.S. (m)		Flow Area (m2)	388.97	4483.12	966.05
E.G. Slope (m/m)	0.000000	Area (m2)	388.97	4483.12	966.05
Q Total (m3/s)	536.15	Flow (m3/s)	13.19	474.68	48.29
Top Width (m)	214.51	Top Width (m)	41.93	104.44	68.14
Vel Total (m/s)	0.09	Avg. Vel. (m/s)	0.03	0.11	0.05
Max Chl Dpth (m)	46.00	Hydr. Depth (m)	9.28	42.92	14.18
Conv. Total (m3/s)	1954789.0	Conv. (m3/s)	48084.7	1730645.0	176059.5
Length Wtd. (m)	19.25	Wetted Per. (m)	54.46	113.75	75.57
Min Ch El (m)	210.00	Shear (N/m2)	0.01	0.03	0.01
Alpha	1.21	Stream Power (N/m s)	16636.12	0.00	0.00
Fretn Loss (m)	0.00	Cum Volume (1000 m3)	3310.93	7095.49	3747.09
C & E Loss (m)		Cum SA (1000 m2)	115.48	135.35	131.90
		Errors, Warnings and Notes			
Select Profile					

Gambar 4.41 Tabel Hasil Hitungan di RS 15

Gambar 4.42Unsteady Flow Time Series pada RS 15

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
Downstream	7.57142×	Max WS	535.91	165.00	256.00		256.00	0.000000	0.03	26151.61	509.27	0.00
Downstream	7.42857*	Max WS	535.90	165.00	256.00		256.00	0.000000	0.03	26283.09	500.42	0.00
Downstream	7.28571×	Max WS	535.89	165.00	256.00		256.00	0.000000	0.03	26426.96	490.62	0.00
Downstream	7.14285*	Max WS	535.88	165.00	256.00		256.00	0.000000	0.03	26580.52	483.84	0.00
Downstream	7	Max WS	535.88	165.00	256.00	169.19	256.00	0.000000	0.03	26738.98	478.51	0.00
Downstream	6.8		Inl Struct									
Downstream	6	Max WS	535.88	160.00	164.39	164.47	165.90	0.007177	5.44	98.49	35.14	1.04
Downstream	5.85714*	Max WS	535.87	160.00	164.26	164.39	165.78	0.007671	5.46	98.08	36.80	1.07
Downstream	5.71428*	Max WS	535.87	160.00	164.11	164.29	165.67	0.008038	5.53	96.87	37.06	1.09
Downstream	5.57142×	Max WS	535.87	160.00	163.96	164.15	165.54	0.007932	5.57	96.21	36.11	1.09
Downstream	5.42857×	Max WS	535.87	160.00	163.81	163.98	165.37	0.007849	5.54	96.81	36.48	1.08
Downstream	5.28571*	Max WS	535.87	160.00	163.67	163.82	165.19	0.007737	5.47	97.93	37.25	1.08
Downstream	5.14285×	Max WS	535.87	160.00	163.52	163.65	165.00	0.007669	5.39	99.36	38.48	1.07
Downstream	5	Max WS	535.87	160.00	163.38	163.51	164.82	0.007711	5.32	100.64	40.00	1.07
Downstream	4.85714*	Max WS	535.87	160.00	163.24	163.40	164.68	0.008085	5.32	100.81	41.79	1.09
Downstream	4.71428×	Max WS	535.86	160.00	163.09	163.29	164.54	0.008616	5.33	100.55	43.70	1.12
Downstream	4.57142*	Max WS	535.86	160.00	162.93	163.20	164.40	0.009460	5.38	99.68	46.02	1.17
Downstream	4.42857*	Max WS	535.86	160.00	162.75	163.09	164.27	0.010849	5.46	98.10	49.18	1.23
Downstream	4.28571*	Max WS	535.86	160.00	162.54	162.97	164.15	0.012848	5.63	95.13	51.83	1.33
Downstream	4.14285*	Max WS	535.86	160.00	162.27	162.84	164.11	0.016629	6.00	89.24	53.70	1.49
Downstream	4	Max WS	535.86	160.00	161.87	162.69	164.46	0.029032	7.13	75.20	53.23	1.91
Downstream	3.83333*	Max WS	535.86	159.32	161.32	162.18	163.98	0.027180	7.24	74.05	48.67	1.87
Downstream	3.66666*	Max WS	535.85	158.63	160.81	161.67	163.46	0.024375	7.21	74.32	45.14	1.79
Downstream	3.5*	Max WS	535.85	157.94	160.37	161.18	162.88	0.020573	7.02	76.30	42.31	1.67
Downstream	3.33333*	Max WS	535.84	157.26	160.00	160.72	162.30	0.016485	6.71	79.83	39.93	1.52
Downstream	3.16666*	Max WS	535.84	156.57	159.71	160.28	161.77	0.013061	6.36	84.23	38.10	1.37
Downstream	3	Max WS	535.84	155.89	159.47	159.90	161.34	0.010616	6.06	88.47	36.60	1.24
Downstream	2.83333*	Max WS	535.84	155.74	159.26	159.78	161.13	0.011172	6.06	88.38	38.10	1.27
Downstream	2.66666*	Max WS	535.84	155.59	159.03	159.66	160.91	0.011844	6.07	88.28	39.87	1.30
Downstream	2.5*	Max WS	535.84	155.44	158.78	159.42	160.67	0.013717	6.09	87.96	44.35	1.38
Downstream	2.33333*	Max WS	535.84	155.30	158.48	159.14	160.43	0.017181	6.19	86.62	50.79	1.51
Downstream	2.16666*	Max WS	535.84	155.15	158.10	158.81	160.23	0.021256	6.47	82.81	53.41	1.66
Downstream	2	Max WS	535.84	155.00	157.54	158.46	160.55	0.036322	7.68	69.74	52.06	2.12
Downstream	1.85714*	Max WS	535.84	154.29	156.86	157.93	160.39	0.036315	8.32	64.38	42.51	2.16
Downstream	1.71428*	Max WS	535.84	153.57	156.17	157.38	159.93	0.035259	8.59	62.40	38.37	2.15
Downstream	1.57142*	Max WS	535.84	152.86	155.52	156.78	159.22	0.032701	8.52	62.88	36.88	2.08
Downstream	1.42857*	Max WS	535.84	152.14	154.96	156.13	158.22	0.026458	8.00	67.02	36.79	1.89
Downstream	1.28571*	Max WS	535.83	151.43	154.54	155.33	157.02	0.017772	6.98	76.82	38.26	1.57
Downstream	1.14285*	Max WS	535.83	150.71	154.27	154.64	155.94	0.010333	5.73	93.52	41.50	1.22

Gambar 4.43 Profil Output Table pada Reach Downstream

Hasil akhir yang diperoleh pada pemodelan pertama ini adalah mengetahui elevasi muka air, baik muka air di bagian hulu (waduk) dan bagian hilir (sungai). Elevasi muka air bagian hulu dengan debit banjir periode ulang 100 tahun berada pada elevasi + 254.44 sedangkan untuk debit banjir periode ulang 1000 tahun berada pada elevasi + 256.07. Sementara untuk bagian hilir debit banjir rencana dengan periode ulang 100 tahun dan 1000 tahun diperoleh sebesar + 153.23 dan +154.50.

4.4.1.2 Pemodelan kedua

Berbeda dari pemodelan pertama yang tidak memodelkan bangunan pelimpah, pada pemodelan ini pelimpah akan dimodelkan mulai dari ambang pelimpah, saluran pengarah, saluran peluncur dan kolam olak, sampai dengan saluran menuju sungai. Tahapan pemodelan kedua ini sama dengan pemodelan pertama yang melalui 4 tahapan yang terdiri dari:

1. Peniruan geometri sungai dan pelimpah

Peniruan geometri sungai pada pemodelan kedua ini hampir sama dengan pemodelan sungai pemodelan pertama. Langkah pertama yang perlu dilakukan adalah mengaktifkan layar editor data geometri dan menyimpan file data geometri pada pemodelan pertama ke dalam file dengan judul dan nama yang berbeda. Dari layar editor data geometri, memilih menu *File / Save Geometry Data As* dan menuliskan nama baru sebagai file data geometri sungai baru.

Langkah selanjutnya yaitu mengedit geometri sungai dengan mengganti *cross section* sungai dari RS 6 sampai dengan RS 0 dengan *cross section* baru. *Cross section* baru yang dimaksud adalah *cross section* dari pelimpah samping Bendungan Tugu yang nantinya akan dimodelkan. Salah satu data penampang *cross section* baru terlampir pada tabel 4.7. Data-data tersebut berasal dari *shop drawing* hasil perhitungan konsultan perencana Bendungan Tugu.

Setelah memasukkan data *cross section* pelimpah, langkah selanjutnya yaitu memasukkan nilai *Downstream Reach Lengths* (Tabel 4.8), nilai koefisien Manning (0.03) dan *Main Channel Bank Stations* (Tabel 4.9). Mengklik *Exit / Exit Cross Section Editor* untuk kembali ke layar editor dan geometri, sehingga tampilan geometri untuk seluruh pelimpah akan terlihat seperti gambar 4.44.

Untuk pemodelan bendungan sama dengan pemodelan pertama yaitu mengklik menu *Options / Add an Inline Structure*, kemudian menuliskan nomor tampang lintang baru "6.8" dan klik OK. Maka sebuah tampang lintang baru, RS 6.8 akan muncul pada layar editor data *inline structure*. Setelah itu mengklik tombol *Weir/Embankment* pada papan tombol kiri dan mengisikan data geometri *weir*. Memastikan setiap mengedit penampang geometri untuk selalu menyimpan dengan mengklik *Save / Save Geometry Data*. Data *elevation* dan *station*

bendungan sama dengan data yang dimasukkan ke dalam pemodelan pertama.

Tabel 4.7 Dat	a Cross Section	Pelimpa	h di RS	5 5.5 – F	RS 5.2
---------------	-----------------	---------	---------	-----------	--------

RS	5.5	RS	5.4	RS	5.3	RS 5.2	
station	elevation	station	elevation	station	elevation	station	elevation
580	188.18	580	179.81	580	180	580	181
581.5	188.18	581.5	179.81	581.5	180	581.5	181
581.5	186.7875	581.5	178.4175	581.5	176.4675	581.5	176.75
581.5	185.395	581.5	177.025	581.5	172.935	581.5	172.5
581.5	184.0025	581.5	175.6325	581.5	169.4025	581.5	168.25
581.5	182.61	581.5	174.24	581.5	165.87	581.5	164
583	182.61	583	174.24	583	165.87	583	164
584.5	182.61	584.5	174.24	584.5	165.87	584.5	164
586	182.61	586	174.24	586	165.87	586	164
587.5	182.61	587.5	174.24	587.5	165.87	587.5	164
589	182.61	589	174.24	589	165.87	589	164
590.5	182.61	590.5	174.24	590.5	165.87	590.5	164
592	182.61	592	174.24	592	165.87	592	164
593.5	182.61	593.5	174.24	593.5	165.87	593.5	164
595	182.61	595	174.24	595	165.87	595	164
596.5	182.61	596.5	174.24	596.5	165.87	596.5	164
597.5	182.61	597.5	174.24	597.5	165.87	597.5	164
597.5	184.0025	597.5	175.6325	597.5	169.4025	597.5	168.25
597.5	185.395	597.5	177.025	597.5	172.935	597.5	172.5
597.5	186.7875	597.5	178.4175	597.5	176.4675	597.5	176.75
597.5	188.18	597.5	179.81	597.5	180	597.5	181
599	188.18	599	179.81	599	180	599	181

Sumber : Perhitungan

Tabel 4.8 Downstream Reach Length pada Pelimpah

River Station	LOB	Channel	ROB
6.7	25	25	25
6.6	25	25	25
6.5	25	25	25
6.4	25	25	25
6.3	25	25	25
6.2	25	25	25
6.1	25	25	25
6	25	25	25
5.9	25	25	25
5.8	25	25	25
5.7	25	25	25

5.6	25	25	25
5.5	25	25	25
5.4	25	25	25
5.3	25	25	25
5.2	25	25	25
5.1	25	25	25
5	25	25	25
4.9	25	25	25
4.8	25	25	25
4.7	25	25	25
4.6	25	25	25
4.5	25	25	25
4.4	25	25	25
4.3	25	25	25
4.2	0	0	0

Lanjutan Tabel 4.8 Downstream Reach Length pada Pelimpah

Tabel 4.9 Main Channel Bank Station pada Pelimpah

Reach	River Station	Left Bank Sta	Right Bank Sta
	6.7	598.72	621.17
	6.6	581.5	597.5
	6.5	581.5	597.5
	6.4	581.5	597.5
	6.3	581.5	597.5
	6.2	581.5	597.5
	6.1	581.5	597.5
	6	581.5	597.5
	5.9	581.5	597.5
	5.8	581.5	597.5
	5.7	581.5	597.5
am	5.6	581.5	597.5
stre	5.5	581.5	597.5
ŝuv	5.4	581.5	597.5
Do	5.3	581.5	597.5
	5.2	581.5	597.5
	5.1	588	626
	5	586	625
	4.9	586	625
	4.8	587	625
	4.7	593	625
	4.6	593	619
	4.5	593	619
	4.4	593	619
	4.3	593	620
	4.2	593	619

Gambar 4.44 Penampang Geometri Pelimpah

2. Memodelkan aliran (syarat batas dan syarat awal)

Mengaktifkan layar editor data aliran tak permanen dengan memilih menu Edit / Unsteady Flow Data. Klik menu File | Save Unsteady Flow Data As dengan memberi nama baru. Hal ini bertujuan supaya data aliran pada pemodelan lama tidak berubah dan hilang. Untuk kondisi batas dan kondisi awal pada pemodelan kedua ini hampir sama dengan pemodelan pertama yang membedakannya adalah ketika kondisi hilir batas hydrograph. menggunakan stage Untuk mengedit stage hydrograph sama dengan mengedit flow hydrograph, hanya saja yang dimasukkan berupa stage bagian hilir sungai (Gambar 4.45). Untuk Flow Hydrograph dapat digunakan dalam kondisi batas hulu ataupun hilir, tetapi lebih disarankan untuk kondisi batas hulu. Apabila waduk dimodelkan dengan River Station (RS) maka pada RS paling hulu didefinisikan syarat batas *Flow Hydrograph* supaya lebih mudah mensimulasikannya.

Berbeda dengan pemodelan pertama yang memasukkan kondisi awal dengan debit ketika t = 0 jam, untuk kondisi awal pada pemodelan kedua ini dimasukkan dengan t = 10 menit (Gambar 4.46). Kondisi awal dengan debit ketika 10 menit dimasukkan karena untuk debit dengan waktu 0 jam ketika dijadikan kondisi awal nilainya terlalu kecil ketika di simulasikan,

mengakibatkan *software* HEC-RAS tidak dapat memodelkannya (*error*).

Setelah memasukkan kondisi awal dan kondisi batas langkah selanjutnya yaitu menyimpan data tersebut dengan mengklik *File | Save Unsteady* Flow.

Stag	je Hy	drograph				
		River: KESE	R Reach: I	Downstream	RS: 4.2	
C	Rea	d from DSS before sim	ulation	Sele	ct DSS file a	and Path
	File:					
	D-N-	· · · · · · · · · · · · · · · · · · ·				
	Path					
¢	Enter Sela C F	Table ect/Enter the Data's S Jse Simulation Time: ïxed Start Time:	Da tarting Time Date Date	ata time inter Reference 18NOV:	val: 1 H 2016 T	our 💌 ime: 0000
	No.	Ordinates Interp	olate Missing	Values	Del Row	Ins Row
			Hydrogra	anh Data		
		Date	Hydrogra Simulat	aph Data ion Time	Sta	
		Date	Hydrogra Simulat	aph Data ion Time purs)	Sta	age
		Date 17Nov2016 2400	Hydrogr Simulat (ho	aph Data ion Time ours) 0:00	Sta (r 174.	age 🔺
	1	Date 17Nov2016 2400 18Nov2016 0100	Hydrogra Simulat (ho 00	aph Data ion Time ours) 1:00 :00	Sta (r 174. 174.	age
	1 2 3	Date 17Nov2016 2400 18Nov2016 0100 18Nov2016 0200	Hydrogra Simulat (ho 00 01 01	aph Data ion Time ours) 1:00 1:00 2:00	Sta (r 174. 174. 174.	age
	1 2 3 4	Date 17Nov2016 2400 18Nov2016 0100 18Nov2016 0200 18Nov2016 0300	Hydrogra Simulat (ho 00 01 02 03	aph Data ion Time ours) 1:00 1:00 2:00 3:00	Sta (r 174. 174. 174. 174.	age
	1 2 3 4 5	Date 17Nov2016 2400 18Nov2016 0100 18Nov2016 0200 18Nov2016 0300 18Nov2016 0400	Hydrogr Simulat (ho 00 01 02 03 03 04	aph D ata ion Time ours) 1:00 1:00 1:00 1:00 1:00	Sta (r 174. 174. 174. 174. 174. 174.	age
	1 2 3 4 5 6	Date 17Nov2016 2400 18Nov2016 0100 18Nov2016 0200 18Nov2016 0300 18Nov2016 0400 18Nov2016 0500	Hydrogra Simulat (hc 00 01 01 02 03 04 04 05	aph D ata ion Time ours) 2:00 2:00 2:00 2:00 2:00 2:00	Ste (r 174. 174. 174. 174. 174. 174. 174.	age
	1 2 3 4 5 6 7	Date 17Nov2016 2400 18Nov2016 0100 18Nov2016 0200 18Nov2016 0300 18Nov2016 0500 18Nov2016 0500 18Nov2016 0500	Hydrogra Simulat 00 01 01 02 03 04 04 05 06	aph Data ion Time ours) :00 :00 :00 :00 :00 :00 :00	Sta (r 174. 174. 174. 174. 174. 174. 174. 174.	age
	1 2 3 4 5 6 7 8	Date 17Nov2016 2400 18Nov2016 0100 18Nov2016 0200 18Nov2016 0400 18Nov2016 0500 18Nov2016 0500 18Nov2016 0500 18Nov2016 0700	Hydrogra Simulat 000 01 02 03 03 04 05 06 07	aph Data ion Time ours) :00 :00 :00 :00 :00 :00 :00 :00	Sta (r 174. 174. 174. 174. 174. 174. 174. 174.	n)
	1 2 3 4 5 6 7 8 9	Date 17Nov2016 2400 18Nov2016 0100 18Nov2016 0200 18Nov2016 0300 18Nov2016 0500 18Nov2016 0500 18Nov2016 0700 18Nov2016 0700 18Nov2016 0700	Hydrogra Simulat 000 01 02 03 03 04 04 05 06 07 07	aph Data ion Time burs) :00 :00 :00 :00 :00 :00 :00 :00 :00	Sta (r 174. 174. 174. 174. 174. 174. 174. 174.	age
	1 2 3 4 5 6 7 8 9 10	Date 17Nov2016 2400 18Nov2016 0100 18Nov2016 0200 18Nov2016 0400 18Nov2016 0500 18Nov2016 0500 18Nov2016 0600 18Nov2016 0800 18Nov2016 0900	Hydrogra Simulat (ho 00 00 00 00 00 00 00 00 00 00 00 00 00	aph Data ion Time pours) 000 000 000 000 000 000 000 000 000 0	Ste (r 174. 174. 174. 174. 174. 174. 174. 174.	age

Gambar 4.45 *Stage Hydrograph* pada RS 4.2 (*Downstream*)

Unsteady Flow Data - U	NST FOR WEIR	4 Q1000		
le Options Help				
Boundary Conditions Initia Initial Flow Distribution Metl	Conditions hod			Apply Data
C Use a Restart File C Enter Initial flow distribu Add RS	Filename: Ition			<u>é</u>
	Locat	ions of Flow [Data Changes	
River Re	each	RS	Initial Flow	
1 KESER Do	ownstream	15	45.87	
2 KESER 1 Up	pstream	21	11.83	
3 KESER 2 Up	pstream	27	34.05	

Gambar 4.46 Initial Condition pada Masing-Masing RS

3. Melakukan simulasi

Hampir sama dengan pemodelan pertama yaitu mengaktifkan layar hitungan aliran tak permanen, kemudian memilih menu *Run | Unsteady Flow Analysis* atau mengklik tombol *Perform an Unsteady Flow Analysis*. Kemudian mengaktifkan ketiga modul hitungan pada menu *Program to Run* yaitu *Geometry Preprocessor, Unsteady Flow Simulation*, dan *Post Processor*. Setelah itu mengatur waktu simulasi pada kotak *computation* dari *starting date* sampai dengan *ending time*. Mengatur selang waktu hitungan pada "1 minute" untuk *Computation Interval, Hydrograph Output Interval*, dan juga untuk *Detailed Output Interval* (Gambar 4.47).

Mengaktifkan hitungan atau simulasi dengan mengklik tombol *Compute*. Jika berhasil maka pada layar proses hitungan akan tampak baris-baris hitungan untuk *Geometry Preprocessor*, *Unsteady Flow Simulation*, dan *Post Processor* berwarna biru semua (Gambar 4.48).

左 Unsteady Flow Analysis
File Options Help
Plan : Short ID Plan 63
Geometry File : weiradapelimpah4
Unsteady Flow File : UNST FOR WEIR4 Q1000
Plan Description : ✓ Geometry Preprocessor ✓ Unsteady Flow Simulation ✓ Post Processor
Simulation Time Window Starting Date: 18N0V2016 Ending Date: 18N0V2016 Ending Date: 18N0V2016
Computation Settings Computation Intervat I Minute ▼ Hydrograph Output Intervat I O Minute ▼ I Computation Level Output Detailed Output Intervat I O Minute ▼ Dec 0 to to to
Mixed Flow Regime (see menu: "Options/Mixed Flow Options")
Compute]

Gambar 4.47 Layar Hitungan Simulasi Aliran

HEC-RA	S Finished G	omputations			X
- Genmetry F	Processor				
River:	KESER		RS:	4.2	
Reach:	Downstream		Node Type:	Cross Sectio	n
IB Curve:					
Unsteady F	Tow Simulatio	n			
Simulation:					
Time:	24.0000	19N0V2016	00:00:00	Iteration: 0	
Writing Pro	files 900				
Post Proce	ss				
River:	KESER 1		RS:	21	
Reach:	Upstream		Node Type:	Cross Sectio	n
Profile:	18NOV2016	2400			
Simulation:	146/146				
- Computatio	on Messages-				
Finished U	nsteady Flow	Simulation			_
					_
Writing Re	sults to DSS				
Finished W	/riting Results	to DSS			
Reading D	ata for Post P	rocess			
Running P	ont Processor	Version 4.1.0	lan 2010		
Indianagi	03(11006330)	Version 4.1.03	3012010		
Finished P	ost Processini	1			
		-			
T ask			Time		
Preproces	sing Geometry	· 1	0.75 sec		
Unsteady I	Flow Computa	tions :	3.15 sec		
Writing to I	DSS	:	2.51 sec		
Post-Proce	essing	:	21.03 sec		
Complete F	Process	:	27.58 sec		
Computatio	on messages (written to: d:\a.:	sipil\A. A FIRA'	S\pengelohan	data\hecras\semoga.p67.coi
P					_
			Close		

Gambar 4.48 Layar Hitungan Aliran Unsteady Setelah Simulasi

4. Menampilkan hasil simulasi

Hasil hitungan ditampilkan oleh HEC-RAS dalam bentuk grafik atau tabel. Presentasi dalam bentuk grafik digunakan untuk menampilkan *cross section* di suatu *River Reach*, tampang panjang berupa profil muka air sepanjang alur, kurva ukur debit, gambar perspektif alur, atau hidrograf. Sementara untuk presentasi dalam bentuk tabel digunakan untuk menampilkan hasil rinci berupa angka (nilai) variabel di lokasi tertentu atau di sepanjang alur.

Cara untuk menampilkan hasil simulasi yaitu dengan cara mengklik tombol view cross section, view profil, view general profil plot, view computed rating curve, view 3D multiple cross section plot, etc. The Hasil dari simulasi pemodelan II dengan cara 1 dapat terlihat seperti gambar 4.49 sampai dengan gambar 4.62.

Gambar 4.51 Cross Section pada RS 4.2 (Downstream)

Gambar 4.52 Cross Section pada RS 6.5 (Saluran Peluncur)

Gambar 4.54 Plot Prespektif X-Y-Z untuk Ketiga Reach

Gambar 4.55 Rating Curve pada RS 5

Cross Section Output	-	States, or Sold years			
File Type Options	Help				
Biver KESEB	· Profi	ile: MaxWS	•		
				D 00	
Reach Downstream			Plan	Plan 63	<u> </u>
	Plan: Plan	63 KESER Downstream RS:	5 Profile: Max WS		
E.G. Elev (m)	175.76	Element	Left OB	Channel	Right OB
Vel Head (m)	0.24	Wt. n-Val.		0.030	
W.S. Elev (m)	175.52	Reach Len. (m)	25.00	25.00	25.00
Crit W.S. (m)		Flow Area (m2)		249.14	
E.G. Slope (m/m)	0.000427	Area (m2)		249.14	
Q Total (m3/s)	539.57	Flow (m3/s)		539.57	
Top Width (m)	36.89	Top Width (m)		36.89	
Vel Total (m/s)	2.17	Avg. Vel. (m/s)		2.17	
Max Chi Dpth (m)	9.44	Hydr. Depth (m)		6.75	
Conv. Total (m3/s)	26103.6	Conv. (m3/s)		26103.6	
Length Wtd. (m)	25.00	Wetted Per. (m)		44.71	
Min Ch El (m)	166.08	Shear (N/m2)		23.35	
Alpha	1.00	Stream Power (N/m s)	30258.82	0.00	0.00
Fretn Loss (m)	0.01	Cum Volume (1000 m3)	0.19	33.00	0.19
C & E Loss (m)		Cum SA (1000 m2)	0.18	5.98	0.18
		Errors, Warnings and Not	es		
L .					
Enter to move to next down:	stream river station	location			

Gambar 4.56 Tabel Hasil Hitungan di RS 5

Gambar 4.57 Unsteady Flow Spatial Plot pada Semua Reach

Gambar 4.58 Unsteady Flow Time Series pada RS 5

Gambar 4.59 Stage dan Flow Hydrograph pada RS 6.7

Gambar 4.60 Velocity Distribution pada RS 0 (Downstream)

Gambar 4.61 Velocity Distribution pada RS 24

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
Downstream	15	Max WS	539.94	210.00	256.07		256.07	0.000000	0.11	5853.72	214.90	0.01
Downstream	14	Max WS	539.92	205.00	256.07		256.07	0.000000	0.09	7385.14	257.67	0.00
Downstream	13	Max WS	539.89	200.00	256.07		256.07	0.000000	0.10	7152.57	227.55	0.00
Downstream	12	Max WS	539.86	200.00	256.07		256.07	0.000000	0.10	7147.17	248.67	0.00
Downstream	11	Max WS	539.82	194.49	256.07		256.07	0.000000	0.06	10575.87	296.70	0.00
Downstream	10	Max WS	539.79	183.45	256.07		256.07	0.000000	0.05	14760.13	361.03	0.00
Downstream	9	Max WS	539.73	178.35	256.07		256.07	0.000000	0.03	20290.77	448.62	0.00
Downstream	8	Max WS	539.68	165.00	256.07		256.07	0.000000	0.03	25844.65	535.33	0.00
Downstream	7	Max WS	539.62	165.00	256.07	169.20	256.07	0.000000	0.03	26773.70	478.80	0.00
Downstream	6.8		Inl Struct									
Downstream	6.7	Max WS	539.62	241.50	247.85		248.87	0.002924	4.47	120.79	20.08	0.58
Downstream	6.6	Max WS	539.62	240.98	247.36		248.79	0.004637	5.28	102.15	16.00	0.67
Downstream	6.5	Max WS	539.61	240.95	247.17		248.67	0.004980	5.42	99.52	16.00	0.69
Downstream	6.4	Max WS	539.61	240.93	246.93		248.54	0.005489	5.62	96.07	16.00	0.73
Downstream	6.3	Max WS	539.61	240.90	246.66		248.41	0.006151	5.85	92.20	16.00	0.78
Downstream	6.2	Max WS	539.61	241.20	242.73	246.07	267.35	0.310453	21.98	24.55	16.00	5.66
Downstream	6.1	Max WS	539.61	232.83	234.28	237.70	261.82	0.369995	23.25	23.21	16.00	6.16
Downstream	6	Max WS	539.61	224.46	226.02	229.33	249.77	0.293589	21.59	24.99	16.00	5.51
Downstream	5.9	Max WS	539.61	216.07	217.49	220.94	246.08	0.392258	23.69	22.78	16.00	6.34
Downstream	5.8	Max WS	539.61	207.75	209.37	212.62	231.41	0.261376	20.80	25.94	16.00	5.21
Downstream	5.7	Max WS	539.61	199.34	200.72	204.21	231.29	0.435722	24.50	22.03	16.00	6.66
Downstream	5.6	Max WS	539.61	190.98	192.73	195.85	211.69	0.207058	19.29	27.97	16.00	4.66
Downstream	5.5	Max WS	539.61	182.61	183.93	187.48	217.33	0.500887	25.61	21.07	16.00	7.12
Downstream	5.4	Max WS	539.57	174.24	176.45	179.11	188.35	0.101269	15.28	35.30	16.00	3.28
Downstream	5.3	Max WS	535.77	165.87	175.17		175.83	0.001671	3.60	148.72	16.00	0.38
Downstream	5.2	Max WS	539.27	164.00	175.35		175.80	0.001011	2.97	181.57	16.00	0.28
Downstream	5.1	Max WS	539.57	165.59	175.57		175.77	0.000346	2.01	268.59	37.95	0.24
Downstream	5	Max WS	539.57	166.08	175.52		175.76	0.000427	2.17	249.14	36.89	0.27
Downstream	4.9	Max WS	539.57	166.58	175.47		175.75	0.000540	2.36	228.94	35.77	0.30
Downstream	4.8	Max WS	539.45	167.07	175.40		175.73	0.000694	2.58	209.18	34.65	0.34
Downstream	4.7	Max WS	539.26	167.56	175.30		175.71	0.000917	2.85	189.25	33.48	0.38
Downstream	4.6	Max WS	535.68	168.06	175.14		175.69	0.001070	3.31	167.62	32.16	0.43
Downstream	4.5	Max WS	524.15	168.55	174.95		175.63	0.001539	3.67	146.27	30.81	0.50
Downstream	4.4	Max WS	406.61	169.05	174.75		175.30	0.001485	3.29	125.22	29.41	0.48
Downstream	4.3	Max WS	390.87	169.54	174.49		175.21	0.002506	3.76	104.06	26.89	0.61
Downstream	4.2	Max WS	35.51	170.00	174.00	170.78	174.01	0.000042	0.44	80.00	24.00	0.08

Gambar 4.62 Profil Output Table pada Reach Downstream

Pada Gambar 4.62 merupakan hasil *output* dari seluruh penampang sungai. Terdapat 2 pilihan tabel, untuk *std table* 1 hasil yang keluar berupa *Q total, WS Elev, Vel Channel* dll (Gambar 4.62). Untuk keluaran tabel yang berbeda maka dapat memilih menu *Std. Tables | Standard Table 2* maka yang muncul berupa *Q left, Q channel, Q right* dll.

Dari hasil pemodelan kedua didapatkan hasil profil muka air sebagai berikut. Elevasi profil muka air bagian hulu dengan debit andalan periode ulang 1000 tahun didapatkan +256.07, sementara untuk periode ulang 100 tahun didapatkan elevasi +252.08. Untuk elevasi muka air pada bagian hilir (saluran menuju ke sungai) dengan periode ulang 100 tahun dan 1000 tahun berturut-turut sebesar +174.00 dan +174.00.

4.4.1.3 Pemodelan ketiga

Untuk pemodelan ketiga ini berbeda dengan pemodelan sebelum-sebelumnya yang memodelkan waduk sebagai *river station* dan bendungan sebagai *inline structure*. Pemodelan ketiga ini lebih berfokus pada pemodelan di saluran pelimpah, jadi tidak memodelkan waduk dan bendungan. Tahapan pemodelan ketiga sama dengan pemodelan sebelumnya yang melalui 4 tahapan yaitu:

1. Peniruan geometri pelimpah

Peniruan geometri pelimpah pada pemodelan ketiga ini memiliki cara yang sama dengan pemodelan sebelumnya. Langkah pertama yaitu dengan membuat *project* baru kemudian mengaktifkan layar editor data geometri. Setelah tampilan layar editor data geometri muncul maka langkah selanjutnya yaitu mengklik tombol *River Reach* untuk membuat skema saluran, mengklik dua kali setelah pembuatan skema saluran pelimpah selesai. Dari hasil tersebut maka akan muncul kotak dengan bertuliskan *River* dan *Reach*, dari kotak tersebut diisikan nama sungai dan ruas sungai.

Langkah selanjutnya dari peniruan geometri pelimpah adalah memasukkan data tampang lintang pelimpah dengan mengklik tombol *cross section*. Menuliskan data tampang lintang pelimpah dari sungai bagian hilir menuju hulu. Data geometri yang perlu dimasukkan ke dalam pemodelan ini sama dengan data pelimpah yang dimasukkan ke dalam pemodelan kedua. Data geometri yang dimaksud adalah data *elevation* dan *station* (Tabel 4.7), data *downstream reach lengths* (Tabel 4.8), nilai kekasaran Manning (0.014), serta data *Main Channel Bank Station* (Tabel 4.9).

Mengklik *Exit / Exit Cross Section Editor* untuk kembali ke layar editor dan geometri, sehingga tampilan geometri untuk seluruh pelimpah akan terlihat seperti gambar 4.63. Mengklik *Save / Save Geometry Data* untuk menyimpan data geometri pelimpah.

Gambar 4.63 Penampang Geometri Pelimpah pada Pemodelan 3

2. Memodelkan aliran

Seperti pada pemodelan sebelumnya, langkah pertama dalam memodelkan aliran adalah dengan cara mengaktifkan layar editor data aliran tak permanen dengan memilih menu *Edit* | *Unsteady Flow Data.* Berbeda dengan pemodelan pertama dan kedua, pada pemodelan ini menggunakan data debit *outflow*.

kondisi Untuk batas hulu menggunakan Flow Hydrograph dan pada kondisi batas hilir menggunakan kondisi Stage Hydrograph. Pemilihan Flow Hydrograph dipilih supaya lebih mudah dalam mensimulasikannya, sementara Stage Hydrograph dipilih karena kondisi ini dirasa lebih tepat dengan kondisi lapangan. Data yang dimasukkan untuk kondisi batas hulu terdapat pada tabel 4.10.

Sementara untuk kondisi awal dengan debit banjir periode ulang 1000 tahun dimasukkan dengan t = 2 menit, sehingga nilai *initial flow* menjadi 1.13 m³/dt (Gambar 4.64). Kondisi awal dimasukkan ketika 2 menit karena untuk debit dengan t = 0 jam ketika dijadikan kondisi awal nilainya terlalu kecil ketika di simulasikan, mengakibatkan *software* HEC-RAS tidak dapat memodelkannya (*error*). Setelah memasukkan kondisi awal dan kondisi batas langkah selanjutnya yaitu menyimpan data tersebut dengan mengklik *File | Save Unsteady* Flow.

上 Unsteady Flow Data - UNST Q1000	
File Options Help	
Boundary Conditions	Apply Data
Initial Flow Distribution Method	
O Use a Restart File Filename:	Ē
Enter Initial flow distribution	
Add RS	
Locations of Flow Data Changes	
River Reach RS Initial Flow	
1 pelimpah samping 1 25 1.13	

Gambar 4.64 Kondisi Awal pada Pemodelan Ketiga

Flow H	lydrog	raph	-	and the second second							
		River: pelim	pah samping Reach: 1	RS: 25		Ĩ					
СB	ead fro	m DSS before sim	ulation Sele	ect DSS file ar	nd Path)					
Fil	e: 🗌										
Pa	ath:										
~ F			N			Т					
l En ⊢S	iter i ad ielect/B	oie Enter the Data's St	uata time inte ∘artino Time Reference	rvar: THou	ur <u> </u>						
(Use 9	Simulation Time:	Date: 10DEC:	2016 Tin	ne: 0000	1					
C	Fixed	Start Time:	Date:	📰 📰 Tin	ne:						
N	lo. Ordi	inates Interno	late Missing Values	Del Bow	Ins Bow		Flow Hydrog	raph	-		x
			Understande Diete			Bl	ot. Table				
	1	Data	Hydrograph Data			L.BI	ot. Table	River: pelimpah san	nping Reach: 1	RS: 25	Ä
		Date	Hydrograph Data Simulation Time	Flov	N A		0t. Table	River: pelimpah san	nping Reach: 1	RS: 25	
	1 09	Date	Hydrograph Data Simulation Time (hours) 00:00	Flov (m3/	N (S)		01. Table	River: pelimpah san	nping Reach: 1	RS: 25	
	1 09	Date 9Dec2016 2400	Hydrograph Data Simulation Time (hours) 00:00 01:00	Flov (m3/ 0.417 43.247	N		01. Table	River: pelimpsh san	nping Reach: 1	RS: 25 Common Legend G Min + Multiplier Flow	
	1 09 2 10 3 10	Date 9Dec2016 2400 0Dec2016 0100 0Dec2016 0200	Hydrograph Data Simulation Time (hours) 00:00 01:00 02:00	Flov (m3/ 0.417 43.247 245.211	N		01. Table	River: pelimpah san	nping Reach: 1	RS: 25	
	1 09 2 10 3 10 4 10	Date 9Dec2016 2400 9Dec2016 0100 9Dec2016 0200 9Dec2016 0300	Hydrograph Data Simulation Time (hours) 00:00 01:00 02:00 03:00	Flov (m3/ 0.417 43.247 245.211 532.251	N A		00. Table	River: pelimpeh san	nping Reach: 1	RS: 25	
	1 09 2 10 3 10 4 10 5 10	Date 9Dec2016 2400 0Dec2016 0100 0Dec2016 0200 0Dec2016 0300 0Dec2016 0400	Hydrograph Data Simulation Time (hours) 00:00 01:00 02:00 03:00 04:00	Flov (m3/ 0.417 43.247 245.211 532.251 609.632	N S	P. (st in way	00. Table	River: pelimpah san	nping Reach: 1	RS: 25 Legend Q.Mr.+ Mulpher Pibe	
	1 09 2 10 3 10 4 10 5 10 me Ste	Date 3Dec2016 2400 0Dec2016 0100 0Dec2016 0200 0Dec2016 0300 0Dec2016 0400 p Adjustment Optic	Hydrograph Data Simulation Time (hours) 00:00 01:00 02:00 03:00 04:00 ons ("Critical" boundary	Flov (m3/ 0.417 43.247 245.211 532.251 609.632 conditions) -	N S	El (seu la se	101.] Table	River: pelimpah san	nping Reach: 1	RS: 25 Q Min + Multipler Pilos	
	1 09 2 10 3 10 4 10 5 10 Monit	Date 9Dec2016 2400 0Dec2016 0100 0Dec2016 0200 0Dec2016 0300 0Dec2016 0400 p Adjustment Optic tor this hydrograph	Hydrograph Data Simulation Time (hours) 00:00 01:00 02:00 03:00 04:00 or "Critical" boundary for adjustments to com	Flow (m3/ 0.417 43.247 245.211 532.251 609.632 conditions) putational time	N A	(Section and	101.] Table	River: pelimpah san	nping Reach: 1	RS: 25 Q MR + Multipler Pour	
	1 09 2 10 3 10 4 10 5 10 Monit Max	Date 9Dec2016 2400 0Dec2016 0100 0Dec2016 0200 0Dec2016 0300 0Dec2016 0400 0p Adjustment Optic tor this hydrograph change in Flow (v	Hydrograph Data Simulation Time (hours) 00:00 01:00 02:00 03:00 04:00 ons ("Critical" boundary for adjustments to com without changing time s	Flow (m3/ 0.417 43.247 245.211 532.251 609.632 conditions) putational time tep):	w /s)	El Ogradi and	001. Table 700 600 500 - - 500 - - - - - - - - - - - - -	River pelimpah san	nping Reach: 1	RS: 25	
Ti	1 09 2 10 3 10 4 10 5 10 Max Flow:	Date SDec2016 2400 ODec2016 0100 ODec2016 0200 ODec2016 0200 Dec2016 0400 p Adjustment Option tor this hydrograph c Change in Flow (w 0.42	Hydrograph Data Simulation Time (hours) 00:00 01:00 02:00 03:00 04:00 of "Critical" boundary for adjustments to com without changing time s fultiplier:	Flow (m3/ 0.417 43.247 245.211 532.251 609.632 conditions) – putational time tep):	w /s)	El logo Maj	001 Table 1	River: pelimpah san	nping Reach: 1	RS. 25	

Gambar 4.65 Flow Hydrograph sebagai Kondisi Batas Hulu

Stage	Hydrograph	-	-	-	_	_	
		River: pelim	ipah samping P	Reach: 1	RS: 0		
СВ	Read from DSS	before simu	lation	Sele	ct DSS file .	and Path	
		· Derere anne					
E FI	ile:						-
P.	'ath:						
🖲 Er	nter Table		Data t	ime inter	val: 1H	our	-
	Select/Enter th	ne Data's Sta	arting Time Ref	erence	010 -		_
•	 Use Simulat 	ion Time:	Date:	10DEC2	2016 T	ime: 10000	
	Fixed Start 1	Fime:	Date:	01DEC2	2016 🔳 T	ime: 2400)
	No Ordinatos		lata Missing Ya	luon I	Del Rom	1 Ino Ro	
	NO. UTURIALES	interpol	iate missing va	iues	Delhow	iris nu	- w
							_
			Hydrograph	Data			
	D.	ate	Hydrograph Simulation	Data Time	St	age	
	D	ate	Hydrograph Simulation (hours)	Data Time	St. (i	age m)	
	D.	ate 016 2400	Hydrograph Simulation (hours) 00:00	<u>Data</u> Time)	St. (173.	age m)	
-	1 09Dec2 2 10Dec2	ate 016 2400 016 0100	Hydrograph Simulation (hours) 00:00 01:00	Data Time	St. (173. 173.	age m)	
	1 09Dec2 2 10Dec2 3 10Dec2 4 19Dec2	ate 016 2400 016 0100 016 0200	Hydrograph Simulation (hours) 00:00 01:00 02:00	Data Time)	St. (173. 173. 173. 173.	age m)	
	1 09Dec2 2 10Dec2 3 10Dec2 4 10Dec2 5 10Dec2	ate 016 2400 016 0100 016 0200 016 0300 016 0400	Hydrograph Simulation (hours) 00:00 01:00 02:00 03:00 04:00	Data Time)	St. (173. 173. 173. 173. 173.	age	
	1 09Dec2 2 10Dec2 3 10Dec2 4 10Dec2 5 10Dec2 5 10Dec2	ate 016 2400 016 0100 016 0200 016 0300 016 0300 016 0400 016 0500	Hydrograph Simulation (hours] 00:00 01:00 02:00 03:00 04:00 05:00	Data Time)	St. (173. 173. 173. 173. 173. 173. 173.	age	
	1 09Dec2 2 10Dec2 3 10Dec2 4 10Dec2 5 10Dec2 6 10Dec2 7 10Dec2	ate 016 2400 016 0100 016 0200 016 0200 016 0300 016 0400 016 0500 016 0500	Hydrograph Simulation (hours] 00:00 01:00 02:00 03:00 04:00 05:00 06:00	Data Time)	St. (173. 173. 173. 173. 173. 173. 173. 173.	age	
	1 09Dec2 2 10Dec2 3 10Dec2 4 10Dec2 5 10Dec2 6 10Dec2 7 10Dec2 8 10Dec2	ate 016 2400 016 0100 016 0200 016 0200 016 0400 016 0500 016 0500 016 0500 016 0700	Hydrograph Simulation (hours) 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00	Data Time)	St. () 173. 173. 173. 173. 173. 173. 173. 173.	age	
	09Dec20 1 09Dec20 2 10Dec20 3 10Dec20 4 10Dec20 5 10Dec20 6 10Dec20 7 10Dec20 8 10Dec20 9 10Dec20	ate 016 2400 016 0100 016 0200 016 0200 016 0400 016 0500 016 0500 016 0500 016 0500 016 0500 016 0500	Hydrograph Simulation (hours) 00:00 02:00 03:00 04:00 05:00 05:00 07:00 08:00	Data Time)	St. (173. 173. 173. 173. 173. 173. 173. 173.	age	
	D 1 09Dec2 2 10Dec2 3 10Dec2 4 10Dec2 5 10Dec2 6 10Dec2 7 10Dec2 8 10Dec2 9 10Dec2	ate 016 2400 016 0100 016 0200 016 0200 016 0300 016 0500 016 0500 016 0500 016 0700 016 0800 016 0900	Hydrograph Simulation (hours) 00:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 08:00	Data Time	St. () 173. 173. 173. 173. 173. 173. 173. 173.	age	

Gambar 4.66 Stage Hydrograph sebagai Kondisi Batas Hilir

Tabel 4.10 Debit Outflow sebagai Data Flow Hydrograph

Waktu	Qout						
(Jam)	Q100	Q1000	QPMF				
0	0.417	0.417	0.417				
1	23.96	43.247	105.504				
2	119.29	245.211	385.459				
3	272.804	532.251	764.346				
4	326.484	609.632	852.845				
5	314.345	573.524	794.042				
6	267.807	480.228	660.054				
7	208.64	367.917	502.862				
8	157.859	274.881	373.89				
9	119.03	207.145	280.455				
10	92.341	159.243	215.013				
nyurogruph							
------------	--------	---------	---------	--	--	--	--
11	73.072	124.659	168.296				
12	58.228	99.466	133.666				
13	46.683	80.351	108.4				
14	39.003	66.004	88.073				
15	32.373	54.126	73.16				
16	26.775	44.883	60.604				
17	22.1	37.959	50.271				
18	18.222	31.776	42.203				
19	15.726	26.249	35.573				
20	13.885	21.896	29.719				
21	12.114	18.1	24.691				
22	10.475	15.655	20.444				
23	8.997	13.831	16.895				
24	7.689	12.073	14,946				

Lanjutan Tabel 4.10 Debit *Outflow* sebagai Data *Flow Hydrograph*

Sumber : Balai Besar Wilayah Sungai Brantas - Surabaya

3. Melakukan simulasi

Simulasi dilakukan dengan cara sama seperti pemodelan sebelumnya yaitu dengan mengaktifkan layar hitungan aliran tak permanen. Kemudian memilih menu *Run / Unsteady Flow Analysis* atau mengklik tombol *Perform an Unsteady Flow Analysis*. Selanjutnya mengaktifkan ketiga modul hitungan pada menu *Program to Run* yaitu *Geometry Preprocessor, Unsteady Flow Simulation*, dan *Post Processor*. Setelah itu mengatur waktu simulasi pada kotak *computation* dari *starting date* sampai dengan *ending time*.

Langkah selanjutnya yaitu mengatur selang waktu hitungan pada "1 minute" untuk *Computation Interval, Hydrograph Output Interval*, dan juga untuk *Detailed Output Interval* (Gambar 4.67)

		Short ID	Plan 12
Geometry File	geo		
Unsteady Flov	File : UNST Q1000)	
Programs to Run ✓ Geometry Preprocess ✓ Unsteady Flow Simula ✓ Post Processor	Plan Descript or ation	ion :	
Simulation Time Window Starting Date: Ending Date:	10DEC2016	Starting Time: Ending Time:	0000 2400
Computation Settings Computation Interval:	1 Minute 💌 Hydrog utput Detaile	graph Output Interval: ed Output Interval:	1 Hour 1 Hour
DSS Output Filename: V Mixed Flow Regime (s	d:\a.sipil\A. A FIRA'S' ee menu: "Options/Mi	<pre>spengelohan data\hec ked Flow Options'')</pre>	ras\pelimp

Gambar 4.67 Layar Hitungan Simulasi Aliran Pemodelan 3

Geometry I	Processor			
River:	pelimpah samping	RS:	0	
Reach:	1	Node Type:	Cross Sec	tion
IB Curve:				
Unsteady I	Flow Simulation			
Simulation				
Time:	24.0000 11DEC2016	00:00:00	Iteration:	0
Writing Hy	drograph 2 of 2			
Post Proce	168			
River:	pelimpah samping	RS:	25	
Reach:	1	Node Type:	Cross Sec	tion
Profile:	10DEC2016 2400			
Simulation	26/26			
Computatio	n Messares			
Finished U	nsteady Flow Simulation			
Infedience De	an dia ka DCC			
Finished W	/riting Results to DSS			
Reading D	ata for Post Process			
Running F	ost Processor Version 4.1.0	Jan 2010		
Finished P	ost Processing			
Task		Time		
Preproces	sing Geometry	0.59 sec		
Unsteady	Flow Computations	2.01 sec		
Writing to	DSS	0.53 sec		
	essing	1.75 sec		
Post-Proce	Process	4.96 sec		
Post-Proce Complete I				
Post-Proce Complete I Computati	on messages written to: d:\a	sipiNA. A FIRA	S\pengeloh	an data\hecras\pelimpahsampin

Gambar 4.68 Layar Hitungan Aliran Unsteady Setelah Simulasi

4. Menampilkan hasil simulasi

Cara untuk menampilkan hasil simulasi sama dengan pemodelan sebelumnya yaitu dengan cara mengklik tombol view cross section, view profil, view general profil plot, view computed *rating curve, view 3D multiple cross section plot, etc.* Hasil dari simulasi pemodelan III dengan cara 1 dapat terlihat seperti gambar 4.69 sampai dengan gambar 4.84.

Gambar 4.69 Cross Section pada Ambang Pelimpah (RS 25)

Gambar 4.70 Cross Section pada Saluran Pengarah (RS 24)

Gambar 4.71 Cross Section pada Saluran Peluncur (RS 18)

Gambar 4.73 Cross Section pada RS 0 (Downstream)

Gambar 4.77 Stage and Flow Hydrograph pada RS 25

iver: pelimpah samping	▼ Pro	file: Max WS	-		
each 1	▼ RS	8 💌	📜 🚹 🛛 Plar	: Plan 12	
	Plan: Pla	12 pelimpah samping 1 RS:	3 Profile: Max WS		
E.G. Elev (m)	175.72	Element	Left OB	Channel	Right OB
Vel Head (m)	0.32	Wt. n-Val.		0.035	-
W.S. Elev (m)	175.41	Reach Len. (m)	25.00	25.00	25.00
Crit W.S. (m)		Flow Area (m2)		244.95	
E.G. Slope (m/m)	0.000777	Area (m2)		244.95	
Q Total (m3/s)	609.32	Flow (m3/s)		609.32	
Top Width (m)	36.66	Top Width (m)		36.66	
Vel Total (m/s)	2.49	Avg. Vel. (m/s)		2.49	
Max Chl Dpth (m)	9.33	Hydr. Depth (m)		6.68	
Conv. Total (m3/s)	21855.9	Conv. (m3/s)		21855.9	
Length Wtd. (m)	25.00	Wetted Per. (m)		44.39	
Min Ch El (m)	166.08	Shear (N/m2)		42.06	
Alpha	1.00	Stream Power (N/m s)	2489.65	0.00	0.00
Fretn Loss (m)	0.02	Cum Volume (1000 m3)		30.85	
C & E Loss (m)		Cum SA (1000 m2)		6.09	
		Errors Warnings and Note	24		
			~		

Gambar 4.78 Cross Section Output pada RS 8

Gambar 4.79 Unsteady Flow Spatial Plot (Profil Plot)

Gambar 4.80 Unsteady Flow Time Series pada RS 8

Gambar 4.82 Velocity Distribution pada RS 18

Gambar 4.83 Velocity Distribution pada RS 9

Untuk gambar 4.81- gambar 4.83 merupakan distribusi kecepatan pada masing-masing penampang. Untuk lebih jelasnya mengenai kecepatan pada masing-masing penampang dapat dilihat dari *output* berupa tabel, dengan memilih *view/ profile summary tables* ()) seperti pada gambar 4.84.

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
		1	(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
1	25	Max WS	609.63	241.50	246.00	246.32	248.67	0.002264	7.23	84.29	19.43	1.11
1	24	Max WS	609.61	240.98	245.94	246.26	248.95	0.002595	7.68	79.42	16.00	1.10
1	23	Max WS	609.59	240.95	245.88	246.23	248.92	0.002648	7.73	78.86	16.00	1.11
1	22	Max WS	609.57	240.93	245.81	246.21	248.91	0.002721	7.80	78.10	16.00	1.13
1	21	Max WS	609.55	240.90	245.74	246.18	248.90	0.002783	7.87	77.48	16.00	1.14
1	20	Max WS	609.54	241.20	242.26	246.48	308.01	0.276173	35.93	16.97	16.00	11.14
1	19	Max WS	609.53	232.83	233.77	238.12	317.55	0.406234	40.55	15.03	16.00	13.36
1	18	Max WS	609.52	224.46	225.54	229.74	288.55	0.258067	35.17	17.33	16.00	10.79
1	17	Max WS	609.51	216.07	216.99	221.35	304.41	0.434835	41.42	14.71	16.00	13.79
1	16	Max WS	609.50	207.75	208.89	213.04	266.02	0.221012	33.49	18.20	16.00	10.02
1	15	Max WS	609.49	199.34	200.23	204.63	293.49	0.482183	42.79	14.25	16.00	14.47
1	14	Max WS	609.48	190.98	192.22	196.27	240.00	0.166601	30.62	19.90	16.00	8.76
1	13	Max WS	609.47	182.61	183.47	187.90	284.23	0.545851	44.47	13.70	16.00	15.34
1	12	Max WS	609.46	174.24	175.83	179.50	205.00	0.076889	23.93	25.47	16.00	6.05
1	11	Max WS	609.45	165.87	174.87		175.78	0.000513	4.23	143.98	16.00	0.45
1	10	Max WS	609.43	164.00	175.17		175.77	0.000292	3.41	178.80	16.00	0.33
1	9	Max WS	609.39	165.59	175.47		175.74	0.000622	2.29	265.59	37.77	0.28
1	8	Max WS	609.32	166.08	175.41		175.72	0.000777	2.49	244.95	36.66	0.31
1	7	Max WS	609.26	166.58	175.32		175.70	0.000997	2.72	223.88	35.49	0.35
1	6	Max WS	609.20	167.07	175.21		175.67	0.001310	3.00	202.94	34.29	0.39
1	5	Max WS	609.15	167.56	175.06		175.64	0.001797	3.36	181.24	33.00	0.46
1	4	Max WS	609.11	168.06	174.82		175.58	0.002679	3.87	157.29	31.51	0.55
1	3	Max WS	609.10	168.55	174.36		175.51	0.004769	4.74	128.39	29.62	0.73
1	2	Max WS	609.28	169.05	174.02		175.76	0.007951	5.84	104.34	25.95	0.93
1	1	Max WS	609.28	169.54	173.74	174.29	176.37	0.014285	7.17	84.93	24.41	1.23
1	0	Max WS	1.90	170.00	173.00	170.11	173.00	0.000000	0.03	57.00	22.00	0.01

Gambar 4.84 Profil Output Table

Dari hasil pemodelan di atas maka didapatkan profil muka air pada masing-masing saluran pelimpah. Dengan debit *outflow* periode ulang 1000 tahun di dapatkan tinggi profil muka air pada ambang pelimpah sebesar +246.00. Sementara untuk tinggi muka air pada saluran pengarah, saluran peluncur dan kolam olak berturut-turut di dapat sebesar +245.94, +225.54 (RS 18) dan +175.47.

4.4.2 Pemodelan dengan storage area dan inline structure

Pemodelan dengan cara yang kedua berbeda dari pemodelan cara pertama, dimana pada cara kedua ini geometri sungai pada daerah genangan dimodelkan sebagai *storage area* dan bendungan sebagai *inline structure*. Seperti penjelasan sebelumnya untuk pemodelan dengan cara ini dibagi menjadi 2 pemodalan. Perbedaan dari kedua pemodelan ini terletak pada peniruan saluran pelimpah, dimana pada pemodelan pertama saluran pelimpah tidak dimodelkan. Berbeda dengan pemodelan kedua yang memasukkan data geometri saluran pelimpah.

4.4.2.1 Pemodelan pertama

Untuk pemodelan pertama waduk dimodelkan sebagai *storage area* yang mana bendungan dimodelkan sebagai *inline structure*. Pada pemodelan ini tidak memasukkan data geometri saluran pelimpah hanya ambang pelimpah pada bendungan. Seperti biasa tahapan dalam memodelkan suatu aliran terdiri dari 4 tahapan yaitu :

1. Memodelkan geometri sungai dan waduk

Peniruan geometri sungai sama halnya dengan pemodelan sebelumnya, data yang dimasukkan pun juga sama. Hanya saja pada pemodelan *storage area* ini RS sungai yang dimasukkan adalah RS 0 sampai dengan RS 7. Pembuatan RS 0 sampai dengan RS 7 ini sama dengan pembuatan geometri sungai pada pemodelan sebelumnya. Pemodelan ini dilakukan sampai dengan RS 7 saja karena pada RS 7 ini merupakan RS hulu dari *inline structure* (bendungan).

Langkah pertama yaitu dengan membuat *project* baru yang dilanjutkan dengan mengaktifkan layar editor data geometri. Ketika tampilan layar editor data geometri muncul maka langkah selanjutnya yaitu mengklik tombol *River Reach* untuk pembuatan skema saluran, mengklik dua kali setelah pembuatan skema sungai selesai. Mengisikan nama sungai dan ruas sungai pada kotak dengan bertuliskan *River* dan *Reach*. Peniruan geometri sungai sama dengan peniruan pada pemodelan sebelumnya yaitu memasukkan data *elevation station*, data *downstream reach lengths*, nilai kekasaran Manning dan data *main channel bank station*. Setelah semua data dimasukkan kemudian mengklik *Exit / Exit Cross Section Editor* untuk kembali ke layar editor dan geometri.

Untuk kebutuhan ketelitian hitungan profil muka air pada penampang sungai tersebut maka dilakukan interpolasi, dengan memilih menu *Tools | XS Interpolation | Within a Reach* pada layar editor data geometri. Untuk isian *River* pilih (*All River*) untuk menginterpolasi semua sungai dengan nilai interval yang sama (Gambar 4.85). Pada isian *Maximum Distance between XS's* mengisi 20 yang berarti jarak maksimum antar tampang lintang adalah 20 m. Kemudian klik tombol *Interpolate XS's* (Gambar 4.85) dan *close*.

XS Interpolatio	n by Reach	
River:	(All Rivers)	<u> </u>
Reach:		•
Upstream Riv 9	òta:	•
Downstream R	iv Sta:	-
Maximum Dista	ance between XS's:	20
Cut Line GIS (Coordinates	
 Linearly in (only avail 	erpolate cut lines from b able when bounding XS'	iounding XS's 🔄 🔯 i's are Georeferenced)
C Generate (will be rep	or display as perpendicu positioned as cross section	ular segments to reach invert ion data is changed)
Decimal places	in interpolated Sta/Elev	v: 0.000 💌
Delete Ini	erpolated XS's	Interpolate XS's
		Close
Enter max distar	nce between interp XSs.	

Gambar 4.85 Interpolasi Tampang Lintang pada Sungai

Gambar 4.86 Skema Sungai RS 0 sampai RS 7 setelah Interpolasi

Untuk peniruan geometri bendungan langkah pertama yaitu mengklik menu *Options / Add an Inline Structure*, kemudian menuliskan nomor tampang lintang baru "6.7" dan klik OK. Maka sebuah tampang lintang baru, RS 6.7 akan muncul pada layar editor data *inline structure*. Setelah itu mengklik tombol *Weir/Embankment* pada papan tombol kiri dan mengisikan data geometri *weir*. Setelah semua data bendungan dimasukkan maka tampilan bendungan akan terlihat seperti gambar 4.87.

Pada pemodelan ini karena geometri sungai di daerah genangan dimodelkan sebagai *storage area* maka minimal harus ada 2 RS bagian hilir setelah *inline structure* (bendungan). Untuk itu setelah interpolasi terdapat RS bagian hulu bendungan yaitu RS 6.8, dari RS tersebut yang semula bersifat sementara maka dijadikan sebagai RS permanen dengan cara memilih *Options / Rename River Station* pada layar *cross section data*. Mengganti nama *River Station* dari yang semula 6.8* menjadi *River Station* 6.8. (Gambar 4.88)

Gambar 4.87 Layar Editor Inline Structure

Gambar 4.88 Tampilan Layar Editor River Station

Sementara untuk peniruan geometri sungai di daerah genangan dapat dilakukan dengan mengklik tombol *Storage Area* () pada layar geometri data. Menggambarkan daerah genangan waduk dengan mengklik garis-garis pada layar geometri data sampai dengan garis terakhir berhenti pada titik pertama

pembuatan genangan waduk. Memberi nama pada layar yang muncul setelah pembuatan geometri data waduk.

Gambar 4.89 Tampilan Layar setelah Terdapat Skema Waduk

Langkah selanjutnya yaitu menggabungkan skema geometri sungai dengan skema geometri waduk, dengan cara memilih menu *Edit | Move Object* kemudian mengklik kan pada skema sungai bagian hulu dan menggabungkannya dengan skema waduk sampai muncul tulisan seperti gambar dibawah ini kemudian klik *Yes*.

Gambar 4.90 Layar Permintaan Penggabungan Sungai-Waduk

Langkah selanjutnya adalah menyimpan data tersebut dengan *File | Save Geometry Data*. Maka tampilan layar editor geometri data akan terlihat seperti gambar berikut.

Gambar 4.91 Layar Editor Data Geometri

Untuk memasukkan data geometri waduk dapat dilakukan dengan mengklik *Storage Area* pada layar editor geometri data. Data yang perlu dimasukkan berupa data elevasi dan volume. Volume yang dimasukkan ke dalam pemodelan ini merupakan volume dari genangan Bendungan Tugu (Tabel 4.11). Setelah tampilan layar editor dari *storage area* muncul maka langkah selanjutnya yaitu memilih *Elevation versus Volume Curve* (Gambar 4.91), memasukkan data elevasi dan volume. Mengklik *Plot Vol-Elev* untuk mengetahui hasil dari data yang telah dimasukkan tersebut (Gambar 4.92).

Mengklik OK setelah semua data dimasukkan. Kemudian menyimpan geometri data dengan memilih *File | Save Geometry Data.*

			-					-	
	Elevasi	Tinggi	Luas	Volume		Elevasi	Tinggi	Luas	Volume
NO		н	Genangan	Genangan	NO		н	Genangan	Genanga
	(m)	(m)	10 (m)	10 (m)		(m)	(m)	10 (m)	10 (m)
0	179.00	0.00	1.08	0.00	42	221.00	42.00	131.61	128.82
1	180.00	1.00	2.09	1.59	43	222.00	43.00	136.28	133.95
2	181.00	2.00	2.88	2.49	44	223.00	44.00	140.96	138.62
3	182.00	3.00	4.25	3.57	45	224.00	45.00	146.77	143.86
4	183.00	4.00	5.35	4.80	46	225.00	46.00	155.69	151.23
5	184.00	5.00	6.13	5.74	47	226.00	47.00	162.29	158.99
6	185.00	6.00	9.03	7.58	48	227.00	48.00	167.11	164.70
7	186.00	7.00	10.44	9.74	49	228.00	49.00	172.14	169.63
8	187.00	8.00	11.44	10.94	50	229.00	50.00	177.19	174.67
9	188.00	9.00	12.97	12.20	51	230.00	51.00	191.01	184.10
10	189.00	10.00	17.74	15.35	52	231.00	52.00	198.76	194.89
11	190.00	11.00	21.13	19.44	53	232.00	53.00	204.92	201.84
12	191.00	12.00	24.38	22.76	54	233.00	54.00	211.72	208.32
13	192.00	13.00	27.73	26.05	55	234.00	55.00	218.46	215.09
14	193.00	14.00	30.88	29.30	56	235.00	56.00	237.43	227.94
15	194.00	15.00	33.10	31.99	57	236.00	57.00	243.19	240.31
16	195.00	16.00	35.81	34.46	58	237.00	58.00	248.18	245.69
17	196.00	17.00	38.76	37.29	59	238.00	59.00	253.03	250.61
18	197.00	18.00	42.61	40.69	60	239.00	60.00	257.80	255.42
19	198.00	19.00	45.71	44.16	61	240.00	61.00	267.86	262.83
20	199.00	20.00	48.49	47.10	62	241.00	62.00	277.10	272.48
21	200.00	21.00	51.36	49.93	63	242.00	63.00	284.13	280.62
22	201.00	22.00	55.00	53.18	64	243.00	64.00	290.86	287.50
23	202.00	23.00	57.69	56.34	65	244.00	65.00	297.87	294.37
24	203.00	24.00	60.52	59.10	66	245.00	66.00	308.88	303.38
25	204.00	25.00	63.01	61.77	67	246.00	67.00	318.46	313.67
26	205.00	26.00	65.34	64.18	68	247.00	68.00	326.84	322.65
27	206.00	27.00	68.57	66.95	69	248.00	69.00	334.82	330.83
28	207.00	28.00	71.72	70.15	70	249.00	70.00	342.85	338.84
29	208.00	29.00	74.66	73.19	71	250.00	71.00	354.68	348.76
30	209.00	30.00	78.57	76.61	72	251.00	72.00	365.37	360.02
31	210.00	31.00	82.69	80.63					
32	211.00	32.00	86.55	84.62					
33	212.00	33.00	89.15	87.85					
34	213.00	34.00	92.79	90.97					
35	214.00	35.00	96.06	94.42					
36	215.00	36.00	100.75	98.40					
37	216.00	37.00	106.11	103.43					
38	217.00	38.00	110.30	108.21					
39	218.00	39.00	114.79	112.54					
40	219.00	40.00	120.11	117.45					
41	220.00	41.00	126.03	123.07					

Tabel 4.11 Hubungan Elevasi, Luas Genangan dan Volume Genangan

Sumber : Balai Besar Wilayah Sungai Brantas – Surabaya

Storage Area	Edito	or		
Storage Area: Connections XS: RS:	and =7	UGU References to this	▼ ↓	1
C Area times	dept	h method Area (Min El	1000 n	
Elevation v	/ersu	s Volume Curve		
	F	Elevation Vo irst elevation must	olume Curve t have zero volume	
		Elevation	/olume (1000 m3	
	1	179.	0.	
	2	180.	1588.55	
	3	181.	2485.61	
	4	182.	3565.5	
	-5	183.	4800.51	
	- <u>-</u>	184.	5/41.35	
		100.	7003.00	
		100.	10938.9	
	10	188	12202.74	
	11	189.	15351.94	
	12	190.	19435.05	
	13	191.	22755.07	
	14	192.	26054.75	
	15	193.	29304.74	
	16	194.	31989.64	-
Plot Vol-Elev		01	K Cance	

Gambar 4.92 Layar Storage Area Editor

Gambar 4.93 Layar Hubungan Volume dengan Elevasi

2. Memodelkan aliran

Peniruan hidraulika pada pemodelan ini dilakukan dengan mengaktifkan layar editor data aliran tak permanen. Layar dapat diaktifkan dengan memilih menu *Edit | Unsteady Flow Data*.

Untuk kondisi batas yang perlu dimasukkan adalah kondisi batas hilir dengan memilih *Stage Hydrograph* sebagai kondisi batasnya. *Stage Hydrograph* dipilih jika mengetahui rata-rata elevasi profil muka air pada bagian hilir. Pada pemodelan ini rata-rata profil muka air bagian hilir terletak pada elevasi +153 (Gambar 4.94). Sementara untuk kondisi batas hulu dapat dilakukan percobaan dimana batas hulu pada *storage area* dapat dimasukkan ataupun tidak.

Stage Hy	drograph	-	_	-		-	
	River: KESE	R Reach: I	JPS-DOWN	IS RS: 0			
O Rea	d from DSS before sim	ulation	Sele	ct DSS fi	le and l	Path	
File							
Path	(_
● Enter Sele	Table act/Enter the Data's St Ise Simulation Time:	Da arting Time Date:	ta time inter Ref <u>erence</u> 10DEC2	val: 1	Hour Time:	0000	•
No.	Ordinates Interpo	Date: Iate Missing	Values	Del Ro	jime: w	Ins Ro	w
		Hydrogra	aph Data				
	Date	Simulat	ion Time		Stage		-
		(hc	urs)		(m)		
1	09Dec2016 2400	00	:00	153.			
2	10Dec2016 0100	01	01:00				
3	10Dec2016 0200	02	:00	153.			
4	10Dec2016 0300	03	:00	153.			
5	10Dec2016 0400	04	:00	153.			
6	10Dec2016 0500	05	:00	153.			
7	10Dec2016 0600	:00	153.				
8	8 10Dec2016 0700 07:00 153.						
9	10Dec2016 0800	08	:00	153.			
10	10Dec2016 0900	09	:00	153.			•
		Diat Diata	1 0	ו אר			

Gambar 4.94 Layar Editor Stage Hydrograph

Jika batas hulu pada pemodelan ini (storage area) dimasukkan maka langkah pertama untuk memasukkan data tersebut yaitu dengan memilih Add Storage Area pada layar Unsteady Flow Data. Setelah memilih Add Storage Area pada layar Unsteady Flow Data maka akan muncul layar pemilihan storage area mana yang nantinya akan dimasukkan ke dalam *Boundary Condition*. Memilih Tugu sebagai *storage area* untuk dimasukkan ke dalam *Boundary Condition* (Gambar 4.96). Setelah itu Klik OK. Untuk mempermudah dalam pemodelan maka data kedua pemodelan hidraulika ini dapat disimpan dengan nama yang berbeda.

Boundary Conditions	Initial Conditions	1		Apply Da
		Boundary Co	ondition Types	
Stage Hydrograph	Flow Hy	drograph	Stage/Flow Hydr.	Rating Curve
Normal Depth	Lateral Ir	nflow Hydr.	Uniform Lateral Inflow	Groundwater Interflov
T.S. Gate Openings	Elev Cont	rolled Gates	Navigation Dams	IB Stage/Flow
Rules				
	A	dd Boundary C	ondition Location	_
Add RS	Add Stora	ge Area	Add SA Connection	Add Pump Station
	Select Location	in table then s	elect Boundary Condition Ty	be
River	Reach	RS	Boundary Condition	
1 KESER	UPS-DOWNS	0	Stage Hydrograph	

Gambar 4.95 Layar Kondisi Batas Tanpa Storage Area

Gambar 4.96 Layar Pemilihan *Storage Area* Sebagai Kondisi Batas

Gambar 4.97 Lateral Hydrograph pada Kondisi Batas Storage Area

Langkah selanjutnya yaitu memasukkan *Lateral Inflow Hydrograph* sebagai kondisi batas pada *storage area*, kemudian layar pengisian debit jam-jaman akan muncul. Memasukkan debit *inflow* periode ulang 1000 tahun sebagai kondisi batas hulu (Gambar 4.97). Perbedaan apabila kondisi batas pada *storage area* dimasukkan adalah terletak pada *output* yang dihasilkan berupa profil muka air pada bagian hilir dan pada *stage and flow hydrograph*.

Sementara untuk kondisi awal pada *River Station* 7 dimasukkan debit awal ketika t = 1 jam sebesar 76.35 m³/dt. Debit tersebut berasal dari debit banjir *inflow* periode ulang 1000 tahun. Debit awal dimasukkan ketika pada jam pertama karena ketika *initial flow* dimasukkan pada jam ke 0 maka simulasi tidak dapat dilakukan atau terjadi *error* dikarenakan debit terlalu kecil. Pada kolom *Initial Elevation of Storage Areas* dimasukkan elevasi sebesar +252. *Initial Elevation of Storage Areas* merupakan ketinggian awal untuk semua *storage area* di dalam pemodelan. *Storage area* bisa mulai kering, akan tetapi ketinggian minimum dari tempat tersebut harus tetap dimasukkan ke dalam pemodelan, karena dalam pemodelan HEC-RAS tidak diperbolekan adanya daerah yang kering. Menyimpan data hidraulika tersebut dengan memilih menu *File | Save Unsteady Flow Data*.

Gambar 4.98 Layar Editor Unsteady Flow Data

3. Melakukan simulasi

Simulasi dilakukan sama seperti pada pemodelan sebelumnya. Langkah pertama yaitu mengaktifkan layar hitungan aliran tak permanen dengan memilih menu *Run | Unsteady Flow Analysis* atau mengklik tombol *Perform an Unsteady Flow Analysis*. Kemudian mengaktifkan ketiga modul hitungan pada menu *Program to Run* yaitu *Geometry Preprocessor, Unsteady Flow Simulation*, dan *Post Processor*. Setelah itu mengatur waktu

simulasi pada kotak *computation* dari *starting date* sampai dengan *ending time*.

上 Unsteady Flow Analysis	×
File Options Help	
Plan : Plan 06	Short ID Plan 05
Geometry File :	GE01
Unsteady Flow File :	UNST2
Programs to Run Geometry Preprocessor Unsteady Flow Simulation Post Processor	Plan Description :
Simulation Time Window Starting Date: 10DE0 Ending Date: 10DE0	22016 Starting Time: 0000 22016 Ending Time: 2400
Computation Settings Computation Interval: 1 Minut Computation Level Output DSS Output Filename: dt\a.si	te V Hydrograph Output Intervat: 1 Hour V Detailed Output Intervat: 1 Hour V pilVA A FIRA'S\pengelohan data\hecras\AAAA
Mixed Flow Regime (see mer	u: "Options/Mixed Flow Options")
	Compute

Gambar 4.99 Layar Hitungan Simulasi Aliran Tak Permanen

HEC-RAS Finished Computat	ions		
Geometry Processor			
River: KESER	RS:	0	
Reach: UPS-DOWNS	Node Type:	Cross Section	
IB Curve:			
Unsteady Flow Simulation			
Simulation			
Time: 24.0000 11DEC2 Writing Hydrograph 6 of 6	016 00:00:00	Iteration: 0	
Post Process			
River: KESER	BS:	7	
Reach: UPS-DOWNS	Node Type:	Cross Section	
Profile: 10DEC2016 2400			
Simulation: 26/26			
Computation Messages			
Finished Unsteady Flow Simulation	1		
Writing Regular to DSS			
Finished Writing Results to DSS			
Reading Data for Post Process			
Running Post Processor Version	4.1.0 Jan 2010		
Finished Post Processing			
Task	Time		
Preprocessing Geometry	0.16 sec		
Unsteady Flow Computations	1.09 sec		
Writing to DSS	0.33 sec		
Post-Processing	1.12 sec		
Complete Process	2.73 sec		
Lomputation messages written to:	d:\a.sipi/VA. A FIRA	(S\pengelohan data\h	ecras\AAAAA.p06.co

Gambar 4.100 Layar Hitungan Aliran Unsteady Setelah Simulasi

4. Menampilkan hasil simulasi

Cara yang sama untuk menampilkan hasil simulasi pada pemodelan ini yaitu dengan mengklik tombol view cross section, view profil, view general profil plot, view computed rating curve, view 3D multiple cross section plot, etc. Hasil dari simulasi ditampilakan dalam bentuk gambar dan tabel seperti gambar dibawah ini. Hasil yang ditampilkan pada pemodelan ini adalah ketika pemodelan hidraulika menggunakan kondisi batas hulu storage area (Lateral Hydrograph). Hasil dari simulasi pemodelan I dengan cara 2 dapat terlihat seperti gambar 4.101 sampai dengan gambar 4.111.

Gambar 4.102 Cross Section Sungai Downstream

110

Gambar 4.103 Long Section Sungai dan Bendungan

Gambar 4.104 X-Y-Z Prespective Plot

Pada gambar 4.105 merupakan hubungan antara tinggi muka air maksimum dengan debit total yang terjadi. Semakin besar debit yang terjadi maka semakin tinggi pula elevasi muka air banjir.

Gambar 4.106 Stage and Flow Hydrograph pada RS 7

Pada gambar 4.106 merupakan hubungan antara elevasi (meter), waktu (jam) dan debit (m^3/dt) yang terjadi ketika kondisi muka air banjir maksimum (*water surface maximum*).

Gambar 4.107 Unsteady Flow Spatial Plot (Profil Plot)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
UPS-DOWNS	7	Max WS	110.09	180.23	252.89		252.89	0.000000	0.01	23854.95	466.23	0.00
UPS-DOWNS	6.8	Max WS	110.09	164.00	252.89	165.82	252.89	0.000000	0.01	26703.37	492.59	0.00
UPS-DOWNS	6.7		Inl Struct									
UPS-DOWNS	6.2	Max WS	110.09	161.00	162.61	163.02	163.94	0.022403	5.11	21.53	20.33	1.59
UPS-DOWNS	6	Max WS	110.09	160.00	162.29		162.77	0.005296	3.08	35.69	24.12	0.81
UPS-DOWNS	5.83333*	Max WS	110.09	160.00	162.14		162.66	0.005795	3.19	34.46	23.72	0.85
UPS-DOWNS	5.66666*	Max WS	110.09	160.00	162.03		162.53	0.005560	3.13	35.19	24.32	0.83
UPS-DOWNS	5.5×	Max WS	110.09	160.00	161.95		162.41	0.005139	2.99	36.83	25.79	0.80
UPS-DOWNS	5.33333*	Max WS	110.09	160.00	161.89		162.30	0.004658	2.83	38.91	27.57	0.76
UPS-DOWNS	5.16666*	Max WS	110.09	160.00	161.83		162.20	0.004277	2.68	41.03	29.62	0.73
UPS-DOWNS	5	Max WS	110.09	160.00	161.77		162.11	0.004032	2.56	42.94	31.81	0.70
UPS-DOWNS	4.8×	Max WS	110.09	160.00	161.68		162.00	0.004175	2.53	43.44	33.68	0.71
UPS-DOWNS	4.6×	Max WS	110.09	160.00	161.57		161.90	0.004492	2.53	43.52	35.83	0.73
UPS-DOWNS	4.4×	Max WS	110.09	160.00	161.44		161.78	0.005186	2.58	42.61	37.93	0.78
UPS-DOWNS	4.2×	Max WS	110.09	160.00	161.25		161.65	0.007046	2.78	39.63	39.87	0.89
UPS-DOWNS	4	Max WS	110.09	160.00	160.76	161.07	161.77	0.032264	4.45	24.74	38.50	1.77
UPS-DOWNS	3.8×	Max WS	110.09	159.18	160.00	160.34	161.09	0.032727	4.62	23.83	35.42	1.80
UPS-DOWNS	3.6×	Max WS	110.09	158.35	159.27	159.62	160.41	0.031717	4.74	23.21	32.36	1.79
UPS-DOWNS	3.4×	Max WS	110.09	157.53	158.56	158.92	159.75	0.029883	4.84	22.74	29.36	1.76
UPS-DOWNS	3.2×	Max WS	110.09	156.71	157.98	158.26	158.97	0.019934	4.42	24.91	27.12	1.47
UPS-DOWNS	3	Max WS	110.09	155.89	157.65	157.64	158.26	0.008435	3.46	31.82	26.02	1.00
UPS-DOWNS	2.8×	Max WS	110.09	155.71	157.45	157.45	158.06	0.008773	3.48	31.66	26.53	1.02
UPS-DOWNS	2.6×	Max WS	110.09	155.53	157.24	157.26	157.86	0.009314	3.51	31.33	27.10	1.04
UPS-DOWNS	2.4×	Max WS	110.09	155.36	157.01	157.07	157.66	0.010265	3.59	30.67	27.71	1.09
UPS-DOWNS	2.2×	Max WS	110.09	155.18	156.74	156.87	157.46	0.012245	3.76	29.30	28.25	1.18
UPS-DOWNS	2	Max WS	110.09	155.00	156.17	156.67	157.75	0.038153	5.57	19.75	24.75	1.99
UPS-DOWNS	1.83333*	Max WS	110.09	154.17	155.34	155.86	156.99	0.038171	5.68	19.37	23.57	2.00
UPS-DOWNS	1.66666*	Max WS	110.09	153.33	154.52	155.04	156.21	0.038367	5.76	19.12	22.89	2.01
UPS-DOWNS	1.5×	Max WS	110.09	152.50	153.70	154.22	155.39	0.037673	5.76	19.12	22.55	2.00
UPS-DOWNS	1.33333*	Max WS	110.09	151.67	153.07	153.40	154.18	0.020416	4.67	23.58	23.98	1.50
UPS-DOWNS	1.16666*	Max WS	40.34	150.83	152.98		153.02	0.000488	0.93	43.37	29.97	0.25
UPS-DOWNS	1	Max WS	40.34	150.00	153.00		153.01	0.000121	0.57	71.17	35.90	0.13
UPS-DOWNS	.8×	Max WS	40.34	150.00	153.00		153.01	0.000081	0.48	83.95	40.40	0.11
UPS-DOWNS	.6×	Max WS	40.34	150.00	153.00		153.01	0.000058	0.42	97.10	45.37	0.09
UPS-DOWNS	.4×	Max WS	61.44	150.00	153.00		153.01	0.000103	0.55	112.26	53.65	0.12
UPS-DOWNS	.2×	Max WS	61.42	150.00	153.00		153.01	0.000075	0.48	126.81	57.68	0.10
UPS-DOWNS	0	Max WS	73.81	150.00	153.00	150.78	153.02	0.000087	0.54	136.34	57.83	0.11

Gambar 4.108 Profil Output Table

Gambar 4.109 Flow Time Series Plot pada RS 2

Gambar 4.110 Unsteady Flow Spatial Plot (Schematic Plot)

Gambar 4.111 Stage and Flow Hydrograph pada Waduk

Salah satu hasil dari pemodelan ini yaitu mengetahui elevasi profil muka air. Elevasi muka air pada bagian hulu dengan periode ulang 1000 tahun berada pada elevasi +252 dan untuk bagian hilir diperoleh elevasi sebesar +153. Sementara untuk hasil stage and flow hydrograph pada waduk (Gambar 4.111) terdapat aliran (*inflow*) ke waduk yang dimodelkan sebagai *lateral inflow*. Hasil simulasi menunjukan aliran keluar waduk (*outflow*) lebih besar daripada *inflow*, sehingga debit netto bernilai negatif pada 2 jam pertama. Mulai dari jam ke 3 dan seterusnya *inflow* lebih besar daripada *outflow* sehingga debit netto bernilai positif.

4.4.2.2 Pemodelan kedua

Pemodelan kedua hampir sama dengan pemodelan pertama yang membedakan adalah adanya pemodelan geometri pelimpah secara detail. Tahapan dalam memodelkan sama seperti pemodelan sebelumnya yang terdiri dari 4 tahapan, yaitu :

1. Memodelkan geometri

Cara untuk memodelkan sungai pada pemodelan ini sama dengan pemodelan pertama, hanya saja data pada RS 6.6 sampai RS 0 diganti dengan data tampang lintang pelimpah. Data tampang lintang pelimpah yang dimasukkan sama dengan data tampang pelimpah pada pemodelan sebelumnya. Sementara untuk RS 7 dan RS 6.8 dibiarkan tetap karena dianggap sebagai hulu dari bendungan (*inline structure*).

Langkah pertama yang perlu dilakukan adalah mengaktifkan layar editor data geometri, kemudian memilih menu *File | Save Data Geometry Data As* untuk menyimpan ulang data geometri pada pemodelan pertama. Hal ini bertujuan agar data geometri pada pemodelan pertama tidak berubah.

Untuk mengubah RS 6.6 sampai RS 0 dengan data penampang pelimpah yang baru maka mengklik tombol *Cross Section* data. Peniruan geometri sungai sama dengan peniruan pada pemodelan sebelumnya yaitu memasukkan data *elevation station*, data *downstream reach lengths*, nilai kekasaran Manning dan data *main channel bank station*. Untuk mengubah nama pada *River Station* pilih menu *Options | Rename River Station*. Setelah semua data dimasukkan kemudian mengklik *Exit | Exit Cross Section Editor* untuk kembali ke layar editor dan geometri.

Pada peniruan bendungan dan waduk sama dengan pemodelan pertama, untuk tahapan ini tidak perlu dilakukan karena sudah dimodelkan pada pemodelan pertama. Langkah selanjutnya yaitu menyimpan data geometri dengan memilih menu *File | Save Geometry Data*. Maka tampilan layar layar editor geometri data akan seperti gambar berikut.

Gambar 4.112 Layar Editor Data Geometri

Sementara untuk memasukkan data geometri waduk dapat dilakukan dengan pemodelan pertama dengan mengklik *Storage Area* pada layar editor geometri data. Data yang perlu dimasukkan juga sama dengan pemodelan pertama yaitu data volume dan elevasi. Mengklik OK setelah semua data dimasukkan. Kemudian menyimpan data geometri data dengan memilih menu *File | Save Geometry Data*.

2. Memodelkan aliran

Peniruan hidraulika pada pemodelan kedua ini dilakukan dengan mengaktifkan layar editor data aliran tak permanen. Layar dapat diaktifkan dengan memilih menu *Edit / Unsteady Flow Data*.

Sama dengan pemodelan pertama, untuk kondisi batas yang perlu dimasukkan adalah kondisi batas hilir dengan memilih *Stage Hydrograph* sebagai kondisi batasnya. *Stage Hydrograph* dipilih jika mengetahui rata-rata elevasi profil muka air pada bagian hilir. Pada pemodelan ini rata-rata profil muka air bagian hilir terletak pada elevasi +173 (pada saluran pelimpah hilir).

Sama halnya dengan kondisi batas hulu pada pemodelan pertama yang memasukkan kondisi *lateral inflow hydrograph* sebagai kondisi batas hulu *storage area*. Langkah pertama untuk memasukkan kondisi batas hulu tersebut yaitu dengan memilih *Add Storage Area* pada layar *Unsteady Flow Data*. Memasukkan data debit *inflow* periode ulang 1000 tahun. Klik OK setelah memasukkan data tersebut sebagai *lateral inflow hydrograph*.

Sementara untuk kondisi awal pada *River Station* 7 dimasukkan debit awal ketika t = 70 menit sebesar 139.4 m³/dt. Debit tersebut berasal dari debit banjir *inflow* periode ulang 1000 tahun. Pada kolom *Initial Elevation of Storage Areas* dimasukkan elevasi sebesar +256. *Initial Elevation of Storage Areas* merupakan ketinggian awal untuk semua *storage area* di dalam pemodelan. *Storage area* bisa mulai kering, akan tetapi ketinggian minimum dati tempat tersebut harus tetap dimasukkan ke dalam pemodelan, karena dalam pemodelan HEC-RAS tidak diperbolekan adanya daerah yang kering. Elevasi +256 dipilih karena merupakan ketinggian rata-rata muka air banjir ketika debit banjir periode ulang 1000 tahun.

Unsteady Flow Data	- UNST FOR GEO	2.A		
ile Options Help				
Boundary Conditions	Initial Conditions			Apply Data
Initial Flow Distribution	Method			
C Lise a Bestart File	Filename			ca ca
Enter Initial flow di	stribution			-
. Enter milde horr di				
Add RS				
	Loca	tions of Flow	Data Changes	
River	Reach	RS	Initial Flow	
1 KESER	UPS-DOWNS	7	139.4	
Initi	al Elevation of Storag	ge Areas		Import Min SA Elevation(s)
Storage Area			Initial Elevation	
1 TUGU			256	
111000			200	

Gambar 4.113 Layar Initial Condition

3. Melakukan simulasi

Simulasi pada pemodelan ini sama dengan simulasi pada pemodelan sebelumnya yaitu dengan mengaktifkan layar hitungan aliran tak permananen dengan memilih menu *Run / Unsteady Flow Analysis* atau mengklik tombol *Perform an Unsteady Flow Analysis*. Kemudian mengaktifkan ketiga modul hitungan pada menu *Program to Run* yaitu *Geometry Preprocessor, Unsteady Flow Simulation,* dan *Post Processor*. Setelah itu mengatur waktu simulasi pada kotak *computation* dari *starting date* sampai dengan *ending time*.

上 Unsteady Flow Analysis	×
File Options Help	
Plan : Plan 08	Short ID Plan 07
Geometry File :	GE02 -
Unsteady Flow File :	UNST3
Programs to Run ✓ Geometry Preprocessor ✓ Unsteady Flow Simulation ✓ Post Processor	Plan Description :
Simulation Time Window Starting Date: 10DEC Ending Date: 10DEC	2016 Starting Time: 0000 2016 Ending Time: 2400
Computation Settings Computation Interval 1 Minut Computation Level Output DSS Output Filename: dt\a si Mixed Flow Regime (see men	e Hydrograph Output Intervat Detailed Output Intervat I Hour I Hour I Hour I A FIRA'S\pengelohan data\necras\AAAA/ II I Uptions/Mixed Flow Options')
	Compute

Gambar 4.114 Layar Hitungan Simulasi Aliran Tak Permanen

	ocessor		
River: I	KESER	RS:	4
Reach: I	JPS-DOWNS	Node Type:	Cross Section
B Curve:			
Unsteady Fl	ow Simulation		
Simulation:			
Fime: 2	4.0000 11DEC2016	00:00:00	Iteration: 0
Writing Hydr	ograph 6 of 6		
Post Proces	\$		
River: I	KESER	RS:	7
Reach	JPS-DOWNS	Node Type:	Cross Section
Profile:	10DEC2016 2400		
Simulation: 3	26/26		
Computation	Messages		
Finished Un	steady Flow Simulation		
Writing Res	ults to DSS		
Finished Wr	iting Results to DSS		
Reading Da	ta for Post Process		
Running Po	st Processor Version 4.1.0	Jan 2010	
Finished Po	st Processing		
Task		Time	
Preprocessi	ng Geometry	0.14 sec	
	ow Computations	1.93 sec	
Unsteady Fl	SS	0.34 sec	
Unsteady Fl Writing to D		1.21.000	
Unsteady Fi Writing to D Post-Proces	sing	1.01.000	
Unsteady Fl Writing to D Post-Proces Complete Pr	sing ocess	3.78 sec	

Gambar 4.115 Layar Hitungan Aliran Unsteady Setelah Simulasi

4. Menampilkan hasil

Cara yang sama untuk menampilkan hasil simulasi pada pemodelan ini yaitu dengan mengklik tombol view cross section, view profil, view general profil plot, view computed rating curve, *view 3D multiple cross section plot, etc.* Hasil dari simulasi ditampilakan dalam bentuk gambar dan tabel seperti gambar dibawah ini. Hasil dari simulasi pemodelan II dengan cara 2 dapat terlihat seperti gambar 4.116 sampai dengan gambar 4.129.

Gambar 4.116 Cross Section pada Bendungan

Gambar 4.117 Cross Section pada RS 6.8 (Upstream)

Gambar 4.118 Cross Section pada RS 4 (Downstream)

Gambar 4.119 Cross Section pada RS 6 (Saluran Peluncur)

Gambar 4.121 Plot Prespektif X-Y-Z

Gambar 4.123 Stage and Flow Hydrograph pada RS 6.8

Gambar 4.124 Unsteady Flow Spatial Plot (Profil Plot)

Gambar 4.125 Unsteady Flow Spatial Plot (Schematic Plot)

Gambar 4.126 Flow Time Series Plot pada RS 6

River: KESER	▼ Profi	e: Max WS	•								
Reach UPS-DOWNS	▼ RS:	4.8 💌	🕱 🕇 Pla	n: Plan 14	•						
	Plan: Plan 14	KESER UPS-DOWNS RS: 4	.8 Profile: Max W	6							
E.G. Elev (m)	175.21	Element	Left OB	Channel	Right OB						
Vel Head (m)	0.27	Wt. n-Val.		0.030							
W.S. Elev (m)	174.95	Reach Len. (m)	25.00	25.00	25.00						
Crit W.S. (m)		Flow Area (m2)		228.24							
E.G. Slope (m/m)	0.000507	Area (m2)		228.24							
Q Total (m3/s)	Q Total (m3/s) 520.79			520.79							
Top Width (m)	Top Width (m) 35.73			35.73							
Vel Total (m/s)	Vel Total (m/s) 2.28			2.28							
Max Chl Dpth (m)	8.87	Hydr. Depth (m)		6.39							
Conv. Total (m3/s)	23121.0	Conv. (m3/s)		23121.0							
Length Wtd. (m)	25.00	Wetted Per. (m)		43.08							
Min Ch El (m)	166.08	Shear (N/m2)		26.36							
Alpha	1.00	Stream Power (N/m s)	30258.82	0.00	0.00						
Frotn Loss (m)	0.01	Cum Volume (1000 m3)	0.07	28.49	0.07						
C & E Loss (m)	C & E Loss (m)		0.10	5.75	0.10						
	Errors, Warnings and Notes										

Gambar 4.127 Cross Section Output pada RS 4.8

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
UPS-DOWNS	7	Max WS	834.46	180.23	256.00		256.00	0.000000	0.04	25323.37	478.51	0.00
UPS-DOWNS	6.8	Max WS	526.61	164.00	255.99	168.20	255.99	0.000000	0.02	28252.57	505.35	0.00
UPS-DOWNS	6.7		Inl Struct									
UPS-DOWNS	6.5	Max WS	525.34	241.50	247.77		248.76	0.002880	4.41	119.14	20.04	0.58
UPS-DOWNS	6.4	Max WS	525.26	240.98	247.31		248.68	0.004503	5.19	101.23	16.00	0.66
UPS-DOWNS	6.3	Max WS	525.21	240.95	247.12		248.56	0.004815	5.32	98.79	16.00	0.68
UPS-DOWNS	6.2	Max WS	525.18	240.93	246.90		248.44	0.005275	5.50	95.57	16.00	0.72
UPS-DOWNS	6.1	Max WS	524.88	240.90	246.65		248.31	0.005852	5.70	92.02	16.00	0.76
UPS-DOWNS	6	Max WS	525.14	241.20	242.71	245.97	266.93	0.312237	21.81	24.08	16.00	5.67
UPS-DOWNS	5.9	Max WS	525.13	232.83	234.26	237.60	261.18	0.368272	22.99	22.84	16.00	6.14
UPS-DOWNS	5.8	Max WS	525.12	224.46	225.99	229.23	249.39	0.295833	21.43	24.50	16.00	5.53
UPS-DOWNS	5.7	Max WS	525.11	216.07	217.47	220.84	245.35	0.388920	23.39	22.45	16.00	6.30
UPS-DOWNS	5.6	Max WS	525.09	207.75	209.33	212.52	231.20	0.266182	20.72	25.35	16.00	5.25
UPS-DOWNS	5.5	Max WS	525.08	199.34	200.70	204.11	230.38	0.429055	24.14	21.76	16.00	6.61
UPS-DOWNS	5.4	Max WS	525.06	190.98	192.67	195.75	211.88	0.217612	19.42	27.04	16.00	4.77
UPS-DOWNS	5.3	Max WS	524.90	182.61	183.92	187.38	216.06	0.486595	25.12	20.90	16.00	7.02
UPS-DOWNS	5.2	Max WS	523.15	174.24	176.23	179.00	189.96	0.130211	16.42	31.87	16.00	3.71
UPS-DOWNS	5.1	Max WS	522.96	165.87	174.58		175.30	0.001886	3.75	139.43	16.00	0.41
UPS-DOWNS	5	Max WS	522.72	164.00	174.79		175.26	0.001080	3.03	172.64	16.00	0.29
UPS-DOWNS	4.9	Max WS	521.96	165.59	175.00		175.23	0.000405	2.10	247.99	36.82	0.26
UPS-DOWNS	4.8	Max WS	520.79	166.08	174.95		175.21	0.000507	2.28	228.24	35.73	0.29
UPS-DOWNS	4.7	Max WS	519.64	166.58	174.88		175.19	0.000653	2.50	208.14	34.59	0.32
UPS-DOWNS	4.6	Max WS	518.55	167.07	174.78		175.17	0.000860	2.75	188.28	33.42	0.37
UPS-DOWNS	4.5	Max WS	517.55	167.56	174.65		175.14	0.001181	3.08	167.93	32.18	0.43
UPS-DOWNS	4.4	Max WS	516.79	168.06	174.43		175.10	0.001530	3.64	145.18	30.74	0.50
UPS-DOWNS	4.3	Max WS	516.49	168.55	174.09		175.04	0.002702	4.33	120.40	29.08	0.65
UPS-DOWNS	4.2	Max WS	311.72	169.05	173.69		174.23	0.001957	3.26	95.65	25.27	0.53
UPS-DOWNS	4.1	Max WS	525.80	169.54	173.44	173.88	175.78	0.010159	6.78	77.51	23.79	1.20
UPS-DOWNS	4	Max WS	309.24	170.00	173.00	173.14	174.50	0.008587	5.43	57.00	22.00	1.08

Gambar 4.128 Profil Output Table

Gambar 4.129 Stage and Flow Hydrograph pada Waduk

Dari hasil pemodelan di atas maka didapatkan tinggi muka air pada masing-masing *cross section*. Dengan debit *inflow* yang dimasukkan pada kondisi batas hulu *storage area* maka didapatkan elevasi pada bagian hulu sebesar +255.99. Sementara tinggi elevasi untuk bagian hilir diperoleh sebesar +173.00. Untuk
hasil dari *stage* dan *flow hydrograph* pada waduk (Gambar 4.128) terlihat aliran keluar waduk (*outflow*) lebih besar daripada *inflow*, sehingga debit netto bernilai negatif pada jam ke 14.00 dan seterusnya.

4.5 Perbandingan Hasil HEC-RAS dengan Hasil Analitis

Setelah melakukan beberapa pemodelan aliran menggunakan *software* HEC-RAS, maka salah satu hasil yang diperoleh adalah mengetahui profil muka air. Hasil inilah yang nantinya akan dibandingkan dengan hasil perhitungan analitis dari konsultan perencana Bendungan Tugu. Hasil perbandingan ini nantinya berguna untuk memberikan pertimbangan bagi konsultan perencana dalam merencanakan Bendungan Tugu.

PEMODELAN CARA 1 (RIVER STATION DAN INLINE STRUCTURE)													
		HAS	IL ANALISIS	HAS	IL HEC-RAS								
SECTION	PEMODELAN	ELEVAS	I MUKA AIR (m)	ELEVAS	I MUKA AIR (m)								
		Q100	Q1000	Q100	Q1000								
Waduk	Ι	254.685	256.65	254.44	256.07								
w aduk.	П	254.685	256.65	254.46	256.07								
Saluman Transisi	П	247.5	249.5	246.03	247.36								
Saluran Transisi	III	247.5	249.5	245.14	245.94								
		228.8	229.5	225.55	226.02								
	П	208.9	209.8	208.89	209.37								
Columon Dolumour		192.8	193	192.22	192.73								
Salurali Peluncur		228.8	229.5	225.22	225.54								
	Ш	208.9	209.8	208.55	208.89								
		192.8	193	191.85	192.22								
Kalam Olak	П	176.342	-	174.68	175.35								
Kotaill Olak	III	176.342	-	174.28	175.17								

Tabel 4.12 Hasil Perbandingan Menggunakan Pemodelan Cara 1

Dari tabel diatas maka dapat disimpulkan bahwa hasil elevasi muka air dari pemodelan cara 1 menggunakan *software* HEC-RAS tidak jauh berbeda dari hasil perhitungan analitis. Untuk mengetahui elevasi muka air pada waduk dapat dilihat dari pemodelan pertama dan kedua dengan debit periode ulang 100 tahun dan 1000 tahun, didapatkan hasil elevasi muka air pada pemodelan I dengan debit periode ulang 100 tahun dan 1000 tahun sebesar +254.44 dan +256.07. Sementara untuk pemodelan kedua dengan debit periode ulang 100 tahun dan 1000 tahun diperoleh elevasi muka air waduk berada di elevasi +254.46 dan +256.07. Hasil ini tidak jauh berbeda dengan hasil analitis yang menghasilkan profil muka air pada elevasi +254.685 (Q100) dan +256.65 (Q1000). Pemodelan ketiga tidak dapat untuk mengetahui profil muka air pada waduk karena pada pemodelan ini yang dimodelkan hanya saluran pelimpah secara detail tanpa pengaruh pemodelan dari waduk.

Dengan perhitungan analitis didapatkan elevasi muka air pada saluran transisi saat debit banjir periode ulang 100 tahun dan 1000 tahun sebesar +247.5 dan +249.5. Sementara hasil dari pemodelan menggunakan HEC-RAS dengan pemodelan kedua diperoleh elevasi sebesar +246.03 (Q100) dan +247.36 (Q1000), untuk pemodelan ketiga sendiri diperoleh hasil elevasi muka air pada saluran transisi sebesar +245.24 (Q100) dan +245.94 (Q1000). Pemodelan pertama tidak dapat untuk mengetahui tinggi profil muka air pada saluran transisi, saluran peluncur dan kolam olak karena pada pemodelan ini tidak ada pemodelan tentang saluran pelimpah secara detail.

Sama halnya dengan saluran transisi, pada saluran peluncur yang digunakan untuk mengetahui tinggi profil muka air adalah pemodelan kedua dan ketiga. Untuk membandingkannya diambil beberapa titik pada saluran peluncur, baik titik dari hasil perhitungan analitis ataupun hasil dengan pemodelan HEC-RAS.

PEMODEL	PEMODELAN CARA 2 (STORAGE AREA DAN INLINE STRUCTURE)													
		HASIL ANALISIS	HASIL HEC-RAS											
SECTION	PEMODELAN	ELEVASI MUKA AIR	ELEVASI MUKA AIR											
		(Q1000 TAHUN)	(Q1000 TAHUN)											
Weduk	Ι	256.65	252.89											
vv aduk	П	256.65	255.99											
Saluran Transisi	II	249.5	247.77											
		229.5	225.99											
Saluran Peluncur	Π	209.8	209.33											
		193	192.67											
Kolam Olak	Π	-	175											

Tabel 4.13 Hasil Perbandingan Menggunakan Pemodelan Cara 2

Berbeda dengan pemodelan cara 1 yang menggunakan debit periode ulang 100 tahun dan 1000 tahun, pada pemodelan dengan cara 2 ini hanya menggunakan debit dengan periode 1000 tahun. Sama halnya dengan pemodelan pertama, hasil yang didapat dari pemodelan menggunakan HEC-RAS menghasilkan nilai elevasi muka air yang lebih rendah dibanding dengan hasil perhitungan analitis.

4.3 Kelebihan dan Kekurangan Pemodelan HEC-RAS

Selama melakukan pemodelan dengan HEC-RAS terdapat beberapa kelemahan serta kelebihan. Baik dari pemodelan dengan cara 1 dan cara 2 masing-masing memiliki kelebihan dan kekurangannya. Berikut merupakan penjelasan mengenai kelebihan dan kekurangan desain hidraulik Bendungan Tugu menggunakan *software* HEC-RAS.

Program HEC-RAS memiliki beberapa kelemahan dalam pembuatan model sungai yang mempunyai banyak *meander* dan mempunyai *cross section* sungai yang lebar, hal ini dapat mengakibatkan terjadinya perpotongan antar *cross section* yang mempunyai jarak berdekatan. Sehingga mengakibatkan model geometri sungai kurang sesuai dengan keadaan sebenarnya.

Kelemahan lainnya yaitu pada analisa Unsteady flow HEC-RAS tidak dapat melakukan simulasi sungai dalam keadaan aliran dasar dengan nilai debit yang kecil atau dalam keadaan yang benar-benar kering (Q mendekati 0 m³/s). Selain itu kelemahan dari program HEC-RAS 4.1.0 adalah hanya bisa melakukan analisis hidraulika 1 dimensi. Selain itu, dalam mendesain hidraulik bendungan menggunakan *software* HEC-RAS diperlukan data yang lebih lengkap untuk memodelkan aliran dibandingkan dengan menggunakan perhitungan analitis.

Kelebihan dari pemodelan aliran menggunakan *software* HEC-RAS yaitu untuk masalah praktis di lapangan akurasinya cukup baik karena pada dasarnya untuk mensimulasikan suatu pemodelan aliran diperlukan data-data hidraulika dan hidrologi yang cukup detail. Selain itu, jika terkendala dengan data hidrologi yang akan dimasukkan ke dalam HEC-RAS maka *software* ini memberikan opsi lain dalam mengatur kondisi batas dan kondisi awal untuk pemodelan. Distribusi debit setiap *cross section* dapat diketahui secara langsung setelah melakukan pemodelan, dapat mengetahui besarnya debit dibagian hulu, hilir ataupun daerah percabangan.

Kelebihan lain dari pemodelan aliran menggunakan HEC-RAS adalah untuk perhitungan desain hidraulik bendungan membutuhkan waktu yang lebih cepat dibandingkan dengan perhitungan analitis. Untuk mendesain hidraulik bendungan menggunakan *software* HEC-RAS apabila terdapat kesalahan ketika merencanakannya tidak perlu harus mengulang perhitungan dari awal seperti perencanaan analitis.

BAB V KESIMPULAN

5.1 Kesimpulan

- 1. Berikut merupakan pemodelan yang digunakan untuk memodelkan aliran 1D pada desain Bendungan Tugu menggunakan program HEC-RAS yaitu:
 - a. Pemodelan cara 1 yang memodelkan geometri sungai di daerah genangan sebagai *river station* dan *outflow* pelimpah (ambang pelimpah) sebagai *inline structure*. Pada pemodelan ini dapat dimodelkan menjadi beberapa pemodelan yaitu :
 - Pemodelan I (memodelkan geometri sungai di daerah genangan dan ambang pelimpah tetapi tidak memodelkan geometri pelimpah secara detail)
 - Pemodelan II (sama dengan pemodelan I, hanya saja adanya penambahan geometri pelimpah secara detail)
 - Pemodelan III (hanya memodelkan geometri saluran pelimpah)
 - b. Pemodelan cara 2 yang memodelkan geometri sungai di daerah genangan sebagai *storage area* dan *outflow* pelimpah (ambang pelimpah) sebagai *inline structure*. Pemodelan ini dapat dimodelkan menjadi :
 - Pemodelan I (memodelkan geometri sungai di daerah genangan dan ambang pelimpah tetapi tidak memodelkan geometri pelimpah secara detail)
 - Pemodelan II (sama dengan pemodelan I, hanya saja adanya penambahan geometri pelimpah secara detail)

Dimana pada masing-masing pemodelan tersebut dapat digunakan sebagai alternatif desain hidraulik Bendungan Tugu dikarenakan aman.

- Hasil dari beberapa pemodelan yang dilakukan untuk 2. memodelkan pada aliran 1D Bendungan Tugu menghasilkan elevasi profil muka air yang lebih rendah dibanding dengan perhitungan analitis. Hal ini dikarenakan pada perhitungan analitis menggunakan perhitungan aliran dengan konsep steady flow yang memasukkan data debit maksimal. Berbeda dengan perhitungan aliran dengan HEC-RAS yang menggunakan unsteady flow sehingga debit yang dimasukkan berupa debit dengan sekala waktu.
- 3. Kelemahan desain hidraulik Bendungan Tugu menggunakan program HEC-RAS :
 - a. Pada analisa *unsteady flow* HEC-RAS tidak dapat melakukan simulasi sungai dalam kondisi aliran dasar dengan nilai debit yang kecil (Q mendekati 0 m³/dt).
 - b. Hanya bisa melakukan analisis 1 dimensi.
 - c. Dalam memodelkan sungai yang memiliki *meander* dan *cross section* sungai yang lebar dapat mengakibatkan perpotongan antar *cross section* yang mempunyai jarak berdekatan, hal ini membuat geometri sungai kurang sesuai dengan keadaan sebenarnya.
 - d. Dalam mendesain hidraulik bendungan menggunakan *software* HEC-RAS diperlukan data yang lebih lengkap dibanding dengan perencanaan analitis.

Kelebihan desain hidraulik Bendungan Tugu menggunakan program HEC-RAS :

- a. Memiliki hasil akurasi yang cukup baik.
- b. Jika tidak diperoleh data hidrologi yang detail untuk dimasukkan ke dalam HEC-RAS, maka program ini memberikan opsi lain untuk pengguna dalam memasukkan kondisi batas dan kondisi awal.
- c. Distribusi debit setiap *cross section* dapat diketahui secara langsung setelah melakukan pemodelan, dan

dapat mengetahui besarnya debit dibagian hulu, hilir ataupun daerah percabangan.

d. Untuk mendesain hidraulik bendungan menggunakan *software* HEC-RAS apabila terdapat alternatif desain baru maka dapat disimulasikan lebih cepat dibandingkan dengan perhitungan analitis.

5.2 Saran

Dari kesimpulan diatas, dapat diberikan beberapa saran terkait dengan pemodelan aliran Bendungan Tugu menggunakan program HEC-RAS, diantaranya:

- a. Keterbatasan data profil muka air pada bagian hilir sehingga ketelitian dalam memodelkan aliran untuk kondisi batas hilir kurang.
- b. Tidak dapat membandingkan profil muka air bagian hilir dikarenakan keterbatasan data.
- c. Simulasi yang digunakan dengan HEC-RAS 4.1.0 merupakan pemodelan 1 dimensi dengan keterbatasannya. Untuk hasil yang lebih maksimal pemodelan bisa dilanjutkan dengan menggunakan model 2 atau 3 dimensi.

"Halaman ini sengaja dikosongkan"

DAFTAR PUSTAKA

- Dep. PU Balai Besar Wilayah Sungai Brantas Surabaya. 2010. Laporan Akhir Pekerjaan Proyek Pembangunan Bendungan Tugu. Kabupaten Trenggalek.
- Hydrologic Engineering Center. 2010. HEC-RAS River Analysis System, Application Guide, Version 4.1.0, January 2010. U.S. Army Cormps of Engineers, Davis, CA.
- Hydrologic Engineering Center. 2010. HEC-RAS River Analysis System, Hydraulic Reference Manual, Version 4.1.0, January 2010. U.S. Army Cormps of Engineers, Davis, CA.
- Hydrologic Engineering Center. 2010. HEC-RAS River Analysis System, User's Manual, Version 4.1.0, January 2010. U.S. Army Cormps of Engineers, Davis, CA.
- Istiarto. 2014. Simulasi Aliran 1-Dimensi Dengan Bantuan Paket Program Hidrodinamika Hec-Ras. Junction and Inline Structures. Yogyakarta.
- Istiarto. 2014. Simulasi Aliran 1-Dimensi Dengan Bantuan Paket Program Hidrodinamika Hec-Ras. Lateral Structure, Storage Area, and Pump Station. Yogyakarta
- Istiarto. 2014. Simulasi Aliran 1-Dimensi Dengan Bantuan Paket Program Hidrodinamika Hec-Ras. Modul Pelatihan Simple Geometry River. Yogyakarta.

K.G. Ranga Raju.1986.*Aliran Melalui Saluran Terbuka*. Jakarta Soedibyo. 2003. *Teknik Bendungan*. Pradnya Paramita. Jakarta.

RS	0	RS 1		RS 2		RS 3		RS 4		RS 5		RS 6		RS 7		RS 8		RS 9		RS 10		RS 11	
Distance	Elevation																						
1.269	158.205	2.756	205.211	3.447	235.216	3.951	249.452	4.524	253.726	27.285	245.1	4.658	285	4.421	274.749	4.309	269.817	4.073	273.313	2.745	261.681	2.54	279.844
3.173	158.146	6.89	203.903	8.618	233.538	9.878	246.568	11.309	254.771	34.784	240	11.646	283.203	11.051	275.014	10.772	267.853	10.182	269.27	6.862	260.461	6.35	277.67
5.077	158.087	11.024	202.776	13.788	231.521	15.805	240.672	18.095	253.397	42.283	245	18.633	281.347	17.682	275	17.236	266.446	16.291	264.898	10.979	258.768	10.16	275.336
6.981	158.028	15.158	201.65	18.959	229.963	21.732	237.943	24.88	250.328	49.782	244.315	25.621	278.773	24.313	274.546	23.699	264.837	22.4	261.624	15.097	256.775	13.97	273.112
8.885	157.968	19.292	200.603	24.13	228.909	27.659	234.237	31.666	247.294	57.281	240.325	32.608	274.327	30.944	273.923	30.162	263.948	28.509	259.698	19.214	254.663	17.779	271.034
10.789	157.909	23.426	199.215	29.301	227.855	33.586	232.533	38.451	244.273	64.78	236.855	39.596	270.68	37.575	273.374	36.626	263.069	34.619	258.658	23.331	251.547	21.589	268.84
12.693	157.85	27.56	198.088	34.471	226.801	39.513	230	45.237	241.346	72.28	230.961	46.583	261.443	44.206	272.902	43.089	262.226	40.728	257.531	27.449	249.02	25.399	266.527
14.597	157.791	31.694	197.042	39.642	225.53	45.44	228.011	52.022	238.255	79.779	228.872	53.571	259.077	50.837	272.153	49.552	261.348	46.837	256.88	31.566	247.033	29.209	264.29
16.501	157.731	35.828	195.915	44.813	224.276	51.367	224.935	58.808	235.568	87.278	222.008	60.558	257.067	57.468	271.839	56.016	260.505	52.946	256.791	35.683	245.214	33.019	262.141
18.405	157.672	39.962	194.607	49.983	223.174	57.293	221.003	65.593	229.422	94.777	220.311	67.545	254.813	64.098	271.631	62.479	260	59.055	257.27	39.801	243.768	36.829	259.88
20.309	157.613	44.096	193.48	55.154	221.808	63.22	220.266	72.378	219.834	99.776	220	74.533	251.739	70.729	271.131	68.942	258.725	65.164	258.096	43.918	242.345	40.639	257.849
22.213	157.553	48.23	192.354	60.325	220.141	69.147	226.744	79.164	217.323	107.28	218.291	81.52	246.441	77.36	270.239	75.406	257.178	71.273	259.026	48.035	241.153	44.449	255.9
24.117	157.494	52.364	191.307	65.495	218.126	75.074	227.224	85.949	214.249	114.77	215.406	88.508	242.412	83.991	269.261	81.869	256.287	77.383	260.118	52.152	239.987	48.259	254.125
25.386	157.455	55.12	190.442	68.942	217.006	79.025	227.35	90.473	211.905	122.27	210.467	93.166	240.292	88.412	268.158	86.178	255.695	81.455	260.44	54.897	238.882	50.798	253.03
27.29	157.395	59.254	189.396	74.113	215.123	84.952	226.973	97.259	207.845	129.77	208.517	100.15	232.122	95.042	267.052	92.641	254.686	87.564	261.06	59.015	237.23	54.608	251.501
29.194	157.336	63.388	188.374	79.284	212.147	90.879	224.355	104.04	203.093	137.27	205.517	107.14	226.256	101.67	264.932	99.105	251.982	93.674	261.529	63.132	235.717	58.418	249.937
31.098	157.277	67.522	187.558	84.454	209.641	96.806	220.905	110.83	200	144.77	205	114.13	223.203	108.3	263.351	105.57	250	99.783	261.966	67.249	234.249	62.228	247.874
33.002	157.218	71.656	186.832	89.625	207.103	102.73	217.934	117.62	201.766	152.27	200.568	121.12	219.64	114.94	261.834	112.03	248.432	105.89	262.239	71.367	232.83	66.038	245.999
34.906	157.158	75.79	185.844	94.796	204.599	108.66	215.33	124.4	203.305	159.77	196.519	128.1	216.485	121.57	260.164	118.49	248.222	112	262.071	75.484	231.277	69.848	243.915
36.81	157.099	79.924	184.396	99.966	202.139	114.59	212.245	131.19	203.714	167.27	193.768	135.09	213.57	128.2	258.126	124.96	247.271	118.11	261.753	79.601	229.723	73.658	241.536
38.714	157.04	84.058	183.371	105.14	199.162	120.51	208.753	137.97	202.327	174.77	191.173	142.08	209.452	134.83	255.658	131.42	245	124.22	261.436	83.718	228.163	77.468	238.829
40.618	156.98	88.192	182.232	110.31	196.706	126.44	204.388	144.76	199.171	182.27	189.618	149.07	206.307	141.46	253.209	137.88	243.479	130.33	261.195	87.836	226.674	81.277	235.454
42.522	156.921	92.326	181.093	115.48	194.268	132.37	199.713	151.54	195.276	189.77	187.667	156.05	202.253	148.09	250.748	144.35	240	136.44	260.811	91.953	225.154	85.087	231.965
44.426	156.862	96.46	179.751	120.65	191.851	138.29	196.025	158.33	194.121	197.27	185	163.04	200.034	154.72	247.094	150.81	238.691	142.55	260.341	96.07	223.012	88.897	229.086
46.33	156.803	100.59	178.612	125.82	189.424	144.22	192.316	165.11	193.13	204.76	185	170.03	198.605	161.35	243.256	157.28	236.247	148.66	257.575	100.19	220.965	92.707	225.68
48.234	156.743	104.73	177.438	130.99	188.008	150.15	189.5	171.9	192.184	212.26	181.177	177.02	195.983	167.98	239.907	163.74	234.233	154.77	252.968	104.3	219.564	96.517	223.06
50.138	156.684	108.86	176.108	136.16	186.689	156.08	187.986	178.68	191.384	219.76	180	184	192.055	174.61	232.736	170.2	231.607	160.87	250	108.42	218.398	100.33	220
52.042	156.625	113	174.777	141.33	185.359	162	186.568	185.47	190.395	227.26	179.702	190.99	185.54	181.24	221.81	176.67	230.1	166.98	250	112.54	216.663	104.14	219.374
53.946	156.566	117.13	173.69	146.5	184.449	167.93	185.123	192.26	189.977	234.76	178.551	197.98	184.307	187.87	220.471	183.13	225.535	173.09	249.278	116.66	214.969	107.95	219.864
55.85	156.506	121.26	173.396	151.67	183.537	173.86	184.326	199.04	189.265	242.26	177.229	204.97	181.756	194.51	221.922	189.59	222.271	179.2	246.337	120.77	212.355	111.76	217.169
57.754	156.447	125.4	173.101	156.84	182.808	179.78	183.498	205.83	188.553	249.76	176.078	211.95	181.31	201.14	220.158	196.06	217.674	185.31	242.515	124.89	208.689	115.57	214.974
59.658	156.388	129.53	172.946	162.01	182.053	185.71	182.628	212.61	187.86	257.26	175	218.94	180	207.77	217.837	202.52	214.56	191.42	239.051	129.01	204.29	119.38	211.667
61.562	156.329	133.67	172.135	167.19	181.31	191.64	181.796	219.4	187.148	264.76	175	225.93	179.09	214.4	216.221	208.98	212.537	197.53	235.553	133.13	202.537	123.19	208.942
63.466	156.269	137.8	171.572	172.36	180.423	197.56	180.926	226.18	186.532	272.26	175	232.92	175	221.03	215	215.45	210.066	203.64	231.625	137.24	201.647	127	204.906
65.37	156.21	141.93	171.139	177.53	179.673	203.49	180.094	232.97	185.835	279.76	173.955	239.9	175	227.66	210.81	221.91	206.893	209.75	229.163	141.36	199.71	130.81	201.362
67.274	156.151	146.07	170.577	182.7	178.797	209.42	177.883	239.75	185.118	287.26	172.809	246.89	175	234.29	205.597	228.37	205.469	215.86	225.719	145.48	195.449	134.62	200.748
69.178	156.091	150.2	170.036	187.87	178.071	215.34	175.298	246.54	180.911	294.75	171.432	253.88	174.738	240.92	200.576	234.84	204.168	221.97	223.022	149.6	189.74	138.43	199.994
71.082	156.032	154.34	169.473	193.04	177.317	221.27	175	253.32	174.717	302.25	170.074	260.87	174.154	247.55	194.259	241.3	201.991	228.07	220.397	153.71	185.597	142.24	198.896
72.986	155.973	158.47	169.135	198.21	176.56	227.2	174.129	260.11	173.54	309.75	170	267.85	173.554	254.18	192.95	247.76	201.313	234.18	219.069	157.83	183.677	146.05	197.613
74.89	155.914	162.6	168.571	203.38	175.809	233.13	172.677	266.9	172.314	317.25	170	274.84	172.971	260.81	192.387	254.23	200.731	240.29	217.878	161.95	183.445	149.86	196.454
76.794	155.854	166.74	167.415	208.55	175.06	239.05	171.221	273.68	171.242	324.75	169.842	281.83	172.183	267.44	192.071	260.69	198.418	246.4	215.467	166.06	183.683	153.67	195.082
78.698	155.795	170.87	166.466	213.72	174.212	244.98	170.354	280.47	170.067	332.25	169.151	288.81	171.267	274.08	190	267.15	195	252.51	210.802	170.18	183.921	157.48	194.717
80.602	155.736	175.01	165.636	218.89	173.096	250.91	170	287.25	169.472	339.75	168.542	295.8	170.344	280.71	188.064	273.62	195	258.62	206.006	174.3	184.231	161.29	194.493
82.506	155.677	179.14	164.687	224.06	172.061	256.83	170	294.04	168.727	347.25	167.85	302.79	170	287.34	183.932	280.08	193.308	264.73	201.792	178.42	185.59	165.09	194.767
84.41	155.617	183.27	163.53	229.23	170.947	262.76	168.749	300.82	167.982	354.75	167.241	309.78	170	293.97	181.948	286.54	191.308	270.84	196.566	182.53	187.026	168.9	195
86.314	155.558	187.41	162.701	234.4	169.876	268.69	166.935	307.61	167.254	362.25	166.55	316.76	170	300.6	180.231	293.01	188.86	276.95	190.241	186.65	188.498	172.71	195
88.218	155.499	191.54	161.752	239.57	168.577	274.61	166.187	314.39	166.628	369.75	165.94	323.75	169.52	307.23	179.399	299.47	186.072	283.06	189.143	190.77	189.644	176.52	195
90.122	155.439	195.68	160.802	244.75	167.507	280.54	165.542	321.18	165.904	377.25	165.355	330.74	168.888	313.86	178.571	305.93	185.96	289.17	188.36	194.89	190.566	180.33	195

Lampiran Tabel 1. Data Cross Section Sungai Dari RS 0 – RS 11

RS	RS 12		RS 13		RS 14		RS 15		RS 16		17	RS 18		RS 19		RS	20
Distance	Elevation																
2.13	277.32	1.532	278.157	2.3	280	2.048	279.315	1.789	285	1.867	277.16	0.928	279.831	0.786	280	0.673	277.987
5.326	275.002	4.979	275.047	5.75	279.581	5.12	277.59	4.473	284.727	4.667	275.317	2.32	278.437	1.966	280	1.684	277.325
8.521	273.011	8.425	274.1	9.201	277.372	8.192	275.805	7.157	282.511	7.467	274.036	3.712	276.769	3.146	279.961	2.694	276.575
11.717	271.004	11.872	273.217	12.651	275.212	11.264	273.912	9.84	280.246	10.267	272.926	5.104	275.093	4.325	279.565	3.704	275.824
14.912	268.846	15.319	272.368	16.101	272.812	14.336	271.997	12.524	276.75	13.067	271.926	6.496	273.384	5.505	278.882	4.714	274.99
18.107	266.587	18.766	271.664	19.551	270.335	17.408	269.944	15.208	274.068	15.867	271.18	7.888	271.636	6.684	278.125	5.725	273.799
21.303	264.356	22.213	271.164	23.002	267.703	20.48	267.28	17.891	271.665	18.668	270.346	9.28	269.861	7.864	277.541	6.735	272.476
24.498	262.123	25.659	270.662	26.452	265.051	23.552	264.836	20.575	268.968	21.468	270	10.673	267.841	9.044	277.101	7.745	271.105
27.694	259.978	29.106	270.041	29.902	261.325	26.624	264.14	23.259	267.078	24.268	270	12.065	265.8	10.223	276.617	8.755	269.334
30.889	258.048	32.553	269.651	33.352	257.351	29.696	264.404	25.942	264.8	27.068	269.487	13.457	263.51	11.403	276.188	9.765	267.182
34.084	256.133	36	269.605	36.803	253.399	32.768	265.494	28.626	262.303	29.868	268.302	14.849	261.038	12.582	275.739	10.776	264.787
37.28	254.135	39.447	269.448	40.253	248.689	35.84	265.358	31.31	259.73	32.668	267.121	16.241	258.409	13.762	275.232	11.786	262.168
40.475	252.014	42.893	268.905	43.703	245.601	38.912	264.535	33.993	256.825	35.469	265.937	17.633	255.277	14.942	273.74	12.796	259.45
42.605	250.601	45.191	268.328	46.003	245.819	40.96	263.978	35.783	254.944	37.335	265.135	18.561	252.38	15.728	272.243	13.469	257.714
45.801	247.936	48.638	267.607	49.454	249.744	44.031	262.587	38.466	252.426	40.135	263.099	19.953	246.976	16.908	270.112	14.48	255.263
48.996	244.917	52.085	266.59	52.904	253.351	47.103	261.247	41.15	249.843	42.936	260.776	21.345	243.081	18.087	267.651	15.49	252.429
52.192	240.579	55.532	265.357	56.354	255.931	50.175	260.052	43.834	246.299	45.736	258.453	22.737	240.589	19.267	265.004	16.5	249.606
55.387	236.423	58.978	263.868	59.804	257.495	53.247	258.835	46.517	243.904	48.536	256.131	24.129	239.907	20.446	262.174	17.51	247.412
58.583	232.352	62.425	262.022	63.255	259.11	56.319	256.655	49.201	242.149	51.336	254.352	25.521	238.547	21.626	259.433	18.521	245.359
61.778	228.319	65.872	260.156	66.705	260.191	59.391	254.78	51.885	240.38	54.136	253.105	26.913	236.966	22.805	253.284	19.531	243.667
64.973	224.662	69.319	258.177	70.155	260.86	62.463	253.817	54.568	239.493	56.936	252.517	28.305	235.417	23.985	246.437	20.541	242.313
68.169	222.89	72.766	255.927	73.605	261.5	65.535	252.895	57.252	238.851	59.736	251.995	29.698	234.882	25.165	242.313	21.551	241.145
71.364	221.134	76.212	253.363	77.056	261.348	68.607	251.901	59.936	238.197	62.537	251.473	31.09	232.458	26.344	240.942	22.561	240.141
74.56	219.16	79.659	250.62	80.506	261.088	71.679	250.748	62.619	237.538	65.337	250.95	32.482	230.289	27.524	239.261	23.572	239.291
77.755	216.868	83.106	247.142	83.956	260.014	74.751	250	65.303	236.879	68.137	250.323	33.874	230	28.703	237.876	24.582	238.538
80.95	215.08	86.553	242.577	87.406	260	77.823	250	67.987	236.221	70.937	247.07	35.266	229.826	29.883	236.572	25.592	237.785
84.146	213.171	90	236.725	90.857	260	80.895	248.815	70.67	235.562	73.737	243.317	36.658	228.632	31.063	235.755	26.602	237.013
87.341	211.163	93.446	231.55	94.307	258.248	83.967	246.891	73.354	234.918	76.537	240.291	38.05	227.236	32.242	235.082	27.612	236.28
90.537	209.551	96.893	228.713	97.757	257.698	87.039	244.918	76.038	234.364	79.338	237.041	39.442	226.13	33.422	234.562	28.623	235.434
93.732	207.37	100.34	226.602	101.21	254.23	90.111	241.584	78.722	233.808	82.138	229.955	40.834	225.088	34.601	234.085	29.633	234.897
96.927	205.241	103.79	224.382	104.66	246.664	93.183	237.654	81.405	233.254	84.938	220	42.226	225	35.781	233.622	30.643	234.556
100.12	200.733	107.23	221.775	108.11	237.845	96.255	231.941	84.089	232.7	87.738	220	43.618	225	36.961	233.045	31.653	234.217
103.32	200	110.68	219.206	111.56	230.538	99.327	226.347	86.773	232.145	90.538	220	45.01	225	38.14	232.141	32.663	233.878
106.51	200	114.13	216.784	115.01	226.62	102.4	220.908	89.456	231.567	93.338	220	46.402	225	39.32	231.189	33.674	233.539
109.71	200	117.57	214.625	118.46	223.354	105.47	218.495	92.14	231.013	96.138	220	47.794	225	40.499	230.319	34.684	233.2
112.9	200	121.02	213.089	121.91	220.389	108.54	216.615	94.824	230.57	98.939	220	49.187	225	41.679	230	35.694	232.862
116.1	200	124.47	211.534	125.36	218.811	111.61	214.884	97.507	230.132	101.74	220	50.579	225	42.859	230	36.704	232.523
119.3	200	127.91	209.958	128.81	217.498	114.69	214.165	100.19	229.567	104.54	220	51.971	225	44.038	230	37.715	232.184
122.49	200	131.36	208.568	132.26	216.273	117.76	213.446	102.87	228.948	107.34	220	53.363	225	45.218	230	38.725	231.844
125.69	200	134.81	207.182	135.71	215.065	120.83	212.726	105.56	228.333	110.14	220	54.755	225	46.397	230	39.735	231.501
128.88	200	138.25	205.85	139.16	213.95	123.9	212.008	108.24	227.718	112.94	220	56.147	225	47.577	230	40.745	231.142
132.08	200	141.7	204.915	142.61	212.672	126.97	211.261	110.93	227.104	115.74	220	57.539	225	48.757	230	41.755	230.771
135.27	200	145.15	204.329	146.06	211.289	130.05	210.512	113.61	226.489	118.54	220	58.931	225	49.936	230	42.766	230.397
138.47	200	148.6	203.994	149.51	209.806	133.12	210	116.29	225.875	121.34	220	60.323	225	51.116	230	43.776	230.067
141.66	200.016	152.04	203.711	152.96	207.704	136.19	210	118.98	225.26	124.14	220	61.715	225.121	52.295	230	44.786	230
144.86	201.896	155.49	203.42	156.41	205.592	139.26	210	121.66	225	126.94	220.551	63.107	225.604	53.475	230	45.796	230
148.05	204.121	158.94	201.644	159.86	205	142.33	210	124.34	224.831	129.74	222.234	64.499	226.105	54.655	230	46.806	230
151.25	206.281	162.38	200	163.31	205	145.41	210	127.03	224.352	132.54	223.192	65.891	226.606	55.834	230	47.817	230

Lampiran Tabel 2. Data Cross Section Sungai dari RS 12 – RS 20

RS	21	RS	5 22	RS	23	RS	24	RS	25	RS	26	RS	5 27
Distance	Elevation												
0.783	279.191	1.695	271.115	1.325	259.047	1.398	260	1.021	252.148	1.102	254.886	0.842	253.022
1.957	278.377	4.239	270.168	3.313	257.643	3.495	260	2.553	250.518	2.755	252.059	2.105	251.938
3.131	277.263	6.782	268.23	5.3	256.24	5.592	260	4.085	250	4.407	251.844	3.368	250.866
4.305	276.102	9.325	266.103	7.288	254.864	7.689	259.823	5.617	249.765	6.06	251.639	4.631	250.253
5.479	274.966	11.868	263.321	9.276	253.636	9.786	259.149	7.149	249.195	7.713	251.433	5.894	249.946
6.653	273.961	14.412	260.35	11.264	252.408	11.883	258.424	8.68	248.667	9.366	251.227	7.158	249.527
7.827	272.958	16.955	256.526	13.251	251.175	13.981	257.698	10.212	248.409	11.019	251.028	8.421	249.084
9.001	271.932	19.498	253.347	15.239	249.926	16.078	256.723	11.744	248.259	12.671	250.812	9.684	248.64
10.175	270.905	22.041	250.197	17.227	248.608	18.175	255.58	13.276	248.122	14.324	250.595	10.947	248.203
11.349	269.875	24.585	247.118	19.214	247.284	20.272	254.208	14.808	247.966	15.977	250.379	12.21	247.793
12.523	268.795	27.128	244.175	21.202	245.96	22.369	252.558	16.34	247.765	17.63	250.162	13.473	247.399
13.697	267.549	29.671	241.179	23.19	244.533	24.466	250.874	17.872	247.549	19.282	249.792	14.736	247.077
14.872	266.3	32.214	240	25.177	242.863	26.563	249.229	19.403	247.389	20.935	248.724	15.999	246.796
15.654	265.457	33.91	240	26.502	241.747	27.961	248.132	20.425	247.193	22.037	247.951	16.841	246.627
16.828	264.088	36.453	240	28.49	240.074	30.058	246.417	21.956	246.789	23.69	246.792	18.104	246.416
18.002	262.637	38.996	240	30.478	238.407	32.155	244.841	23.488	246.405	25.343	245.638	19.368	246.226
19.176	261.186	41.54	240	32.465	237.076	34.252	244.088	25.02	246.005	26.995	245	20.631	246.053
20.351	259.733	44.083	239.121	34.453	235.86	36.349	243.303	26.552	245.516	28.648	245	21.894	245.878
21.525	258.28	46.626	237.487	36.441	234.644	38.446	242.524	28.084	244.913	30.301	245	23.157	245.677
22.699	256.825	49.169	236.146	38.428	233.428	40.544	241.742	29.616	244.355	31.954	244.787	24.42	245.449
23.873	255.366	51.713	234.928	40.416	232.178	42.641	240.951	31.148	243.775	33.607	244.276	25.683	245.192
25.047	253.921	54.256	233.407	42.404	230.855	44.738	240.147	32.679	243.285	35.259	243.766	26.946	245.007
26.221	252.473	56.799	231.778	44.391	229.619	46.835	239.584	34.211	242.862	36.912	243.256	28.209	245
27.395	251.039	59.342	230.144	46.379	228.548	48.932	239.076	35.743	242.439	38.565	242.746	29.472	244.965
28.569	249.688	61.885	228.26	48.367	227.476	51.029	238.562	37.275	242.017	40.218	242.236	30.735	244.717
29.743	248.458	64.429	226.343	50.354	226.402	53.126	238.039	38.807	241.594	41.87	241.729	31.999	244.474
30.917	247.193	66.972	224.705	52.342	225.325	55.223	237.508	40.339	241.171	43.523	241.259	33.262	244.329
32.091	245.905	69.515	223.718	54.33	224.849	57.32	236.977	41.87	240.749	45.176	240.884	34.525	244.203
33.265	244.721	72.058	222.732	56.318	224.891	59.417	236.445	43.402	240.326	46.829	240.507	35.788	244.146
34.439	243.823	74.602	221.746	58.305	224.931	61.514	235.914	44.934	240.038	48.482	240.11	37.051	244.163
35.614	242.942	77.145	220.774	60.293	224.941	63.611	235.382	46.466	240	50.134	239.641	38.314	244.18
36.788	242.048	79.688	219.97	62.281	224.955	65.709	234.788	47.998	240	51.787	239.144	39.577	244.197
37.962	241.143	82.231	219.353	64.268	224.973	67.806	234.024	49.53	240	53.44	238.643	40.84	244.213
39.136	240.309	84.775	218.724	66.256	224.995	69.903	233.25	51.061	240	55.093	238.091	42.103	244.23
40.31	239.482	87.318	218.049	68.244	225	72	232.477	52.593	240	56.745	237.524	43.366	244.247
41.484	238.742	89.861	217.371	70.231	225	74.097	231.697	54.125	240	58.398	236.975	44.63	244.264
42.658	237.999	92.404	216.694	72.219	225	76.194	230.917	55.657	240	60.051	236.434	45.893	244.281
43.832	237.273	94.948	216.016	74.207	225	78.291	230.141	57.189	240	61.704	235.861	47.156	244.297
45.006	236.568	97.491	215.338	76.194	225	80.388	229.442	58.721	239.774	63.357	235.288	48.419	244.314
46.18	235.938	100.03	215	78.182	225	82.485	228.958	60.253	239.501	65.009	235	49.682	244.331
47.354	235.329	102.58	215	80.17	225	84.582	228.705	61.784	239.261	66.662	235	50.945	244.348
48.528	235.035	105.12	215	82.157	225	86.679	228.473	63.316	239.016	68.315	235	52.208	244.365
49.702	235	107.66	215	84.145	225	88.776	228.241	64.848	238.769	69.968	235	53.471	244.381
50.876	235	110.21	215	86.133	225	90.873	228.009	66.38	238.511	71.62	235	54.734	244.398
52.051	235.009	112.75	215	88.12	225	92.971	227.777	67.912	238.252	73.273	235	55.997	244.415
53.225	235	115.29	215	90.108	225	95.068	227.545	69.444	237.994	74.926	235	57.261	244.432
54.399	235.021	117.84	215	92.096	225	97.165	227.313	70.975	237.735	76.579	235	58.524	244.449
55.573	235.034	120.38	215	94.083	225.389	99.262	227.081	72.507	237.477	78.232	235	59,787	244.465

Lampiran Tabel 3. Data *Cross Section* Sungai dari RS 21 – RS 27

Lampiran Tabel 4. Dat	a Cross Section Pelim	pah dari SP 1 – SP 13
-----------------------	-----------------------	-----------------------

S	P 1	S	P 2	S	P 3	S	P 4	S	SP 5		SP 6		SP 7		SP 8		SP 9		P 10	SP 11		SP 12		SP 13	
station	elevation	station	elevation	station	elevation	station	elevation	station	elevation	station	elevation	station	elevation	station	elevation	station	elevation	station	elevation	station	elevation	station	elevation	station	elevation
580	249	580	255	580	259	580	259.05	580	259	580	255	580	238.4	580	230.03	580	221.64	580	213.32	580	204.91	580	196.55	580	188.18
596.72	249	581.5	255	581.5	259	581.5	259.05	581.5	259	581.5	255	581.5	238.4	581.5	230.03	581.5	221.64	581.5	213.32	581.5	204.91	581.5	196.55	581.5	188.18
596.72	249.443	581.5	251,495	581.5	254,488	581.5	254.52	581.5	254.475	581.5	251.55	581.5	237.008	581.5	228.638	581.5	220.248	581.5	211.928	581.5	203.518	581.5	195,158	581.5	186.788
596.72	249 885	581.5	247.99	581.5	249 975	581.5	249.99	581.5	249.95	581.5	248.1	581.5	235 615	581.5	227 245	581.5	218 855	581.5	210 535	581.5	202.125	581.5	193 765	581.5	185 395
596.72	250 328	581.5	244 485	581.5	245 463	581.5	245.46	581.5	245 425	581.5	244.65	581.5	234 223	581.5	225.853	581.5	217.463	581.5	209 143	581.5	200.733	581.5	192 373	581.5	184 003
596.72	250.77	581.5	240.98	581.5	240.95	581.5	240.93	581.5	240.9	581.5	241.2	581.5	232.83	581.5	2221000	581.5	216.07	581.5	207 75	581.5	199.34	581.5	190.98	581.5	182.61
596.9	250.94	583	240.98	583	240.95	583	240.93	583	240.9	583	241.2	583	232.83	583	224.46	583	216.07	583	207.75	583	199.34	583	190.98	583	182.61
597 224	250.51	584.5	240.98	584.5	240.95	584.5	240.93	584.5	240.9	584.5	241.2	584.5	232.83	584.5	224.46	584.5	216.07	584.5	207.75	584.5	199.34	584.5	190.98	584.5	182.61
597.724	250.968	586	240.98	586	240.95	586	240.93	586	240.9	586	241.2	586	232.03	586	224.46	586	216.07	586	207.75	586	199.34	586	190.98	586	182.61
598 724	250.854	587.5	240.98	587.5	240.95	587.5	240.93	587.5	240.9	587.5	241.2	587.5	232.03	587.5	224.46	587.5	216.07	587.5	207.75	587.5	199.34	587.5	190.98	587.5	182.61
599 224	250.612	589	240.98	589	240.95	589	240.93	589	240.9	589	241.2	589	232.83	589	224.46	589	216.07	589	207.75	589	199.34	589	190.98	589	182.61
500 724	250.012	500.5	240.98	500.5	240.95	500.5	240.03	590.5	240.9	500 5	241.2	500.5	232.03	500.5	224.46	500.5	216.07	500.5	207.75	500.5	100.34	500.5	100.08	500.5	182.61
600 224	230.2	502	240.98	502	240.95	592	240.93	592	240.9	502	241.2	592	232.83	590.5	224.40	592	216.07	590.5	207.75	502	199.34	502	100.08	502	182.01
600.224	249.311	502.5	240.98	502.5	240.95	502.5	240.93	502.5	240.9	502.5	241.2	502.5	232.83	502.5	224.40	502.5	216.07	502.5	207.75	502.5	100.24	502.5	100.08	502.5	182.01
601.224	246.704	505	240.98	505	240.93	505	240.93	505	240.9	505	241.2	505	232.83	505	224.40	505	216.07	505	207.75	505	199.34	505	190.98	505	182.01
601.724	247.545	506.5	240.98	506.5	240.93	506.5	240.93	506.5	240.9	506.5	241.2	506.5	232.83	506.5	224.40	506.5	216.07	506.5	207.75	506.5	199.34	506.5	190.96	506.5	182.01
602.224	240.030	507.5	240.96	507.5	240.95	507.5	240.93	507.5	240.9	507.5	241.2	507.5	232.03	507.5	224.40	507.5	216.07	507.5	207.75	507.5	199.34	507.5	190.90	507.5	102.01
602.224	244.207	507.5	240.90	507.5	240.93	507.5	240.93	507.5	240.9	507.5	241.2	507.5	232.03	507.5	224.40	507.5	210.07	507.5	207.73	507.5	200 722	507.5	102 272	507.5	184.002
602.724	241.90	507.5	244.465	597.5	243.403	597.5	243.40	597.5	243.423	507.5	244.03	507.5	234.223	597.5	223.833	507.5	217.405	507.5	209.145	597.5	200.755	507.5	192.575	507.5	104.005
605.77	241.5	597.5	247.99	597.5	249.975	597.5	249.99	597.5	249.95	597.5	248.1	597.5	235.015	597.5	227.245	597.5	218.855	597.5	210.555	597.5	202.125	597.5	195./05	597.5	185.395
008.17	241.5	597.5	251.495	597.5	254.488	597.5	254.52	597.5	254.475	597.5	251.55	597.5	237.008	597.5	228.038	597.5	220.248	597.5	211.928	597.5	203.518	597.5	195.158	597.5	180.788
610.17	241.5	597.5	255	597.5	259	597.5	259.05	597.5	259	597.5	255	597.5	238.4	597.5	230.03	597.5	221.04	597.5	213.32	597.5	204.91	597.5	196.55	597.5	188.18
614.17	241.5	399	255	399	239	399	239.03	399	239	399	233	399	236.4	399	230.03	399	221.04	399	215.52	399	204.91	399	190.55	399	100.10
616.17	241.5																								
618.17	241.5																								
620.17	241.5																								
621.17	241.5																								
621.17	242																								
621.17	242.5																								
621.17	243																								
621.17	243.5																								
621.17	244																								
621.17	244.5																								
621.17	245																								
621.17	245.5																								
621.17	246																								
621.17	246.5																								
621.17	247																								
621.17	247.5																								
621.17	248																								
621.17	248.5																								
621.17	249																								
621.17	249.5																								
621.17	250.5																								
621.17	250.5																						1	37	
622.67	251																						T	57	
022.07	<i>20</i> ,71																								

SP	14	SP	P 15	SP	P 16	SF	P 17	SP	18	SP	SP 19		SP 20		SP 21		SP 22		SP 23		SP 24		25	SP 26	
station	elevation																								
580	179.81	580	180	580	181	580	180.59	580	0	580	0	580	0	580	0	580	0	580	0	580	0	580	0	580	0
581.5	179.81	581.5	180	581.5	181	581	180.59	581	0	581	0	581	0	581	0	581	0	581	0	581	0	581	0	581	0
581.5	178.418	581.5	176.468	581.5	176.75	582	179.59	582	0	582	0	582	0	582	0	582	0	582	0	582	0	582	0	582	0
581.5	177.025	581.5	172.935	581.5	172.5	583	178.59	583	0	583	0	583	0	583	0	583	0	583	0	583	0	583	0	583	0
581.5	175.633	581.5	169.403	581.5	168.25	584	177.59	584	178.08	584	0	584	0	584	0	584	0	584	0	584	0	584	0	584	0
581.5	174.24	581.5	165.87	581.5	164	585	176.59	585	177.08	585	177.58	585	0	585	0	585	0	585	0	585	0	585	0	585	0
583	174.24	583	165.87	583	164	586	175.59	586	176.08	586	176.58	586	177.07	586	0	586	0	586	0	586	0	586	0	586	0
584.5	174.24	584.5	165.87	584.5	164	587	175.59	587	176.08	587	176.58	587	177.07	587	177.56	587	0	587	0	587	0	587	0	587	0
586	174.24	586	165.87	586	164	588	174.59	588	175.08	588	175.58	588	176.07	588	176.56	588	177.06	588	0	588	0	588	0	588	0
587.5	174.24	587.5	165.87	587.5	164	589	173.59	589	174.08	589	174.58	589	175.07	589	175.56	589	176.06	589	176.55	589	0	589	0	589	0
589	174.24	589	165.87	589	164	590	172.59	590	173.08	590	173.58	590	174.07	590	174.56	590	175.06	590	175.55	590	0	590	0	590	0
590.5	174.24	590.5	165.87	590.5	164	591	171.59	591	172.08	591	172.58	591	173.07	591	173.56	591	174.06	591	174.55	591	175.05	591	0	591	0
592	174.24	592	165.87	592	164	592	170.59	592	171.08	592	171.58	592	172.07	592	172.56	592	173.06	592	173.55	592	174.05	592	175.54	592	0
593.5	174.24	593.5	165.87	593.5	164	593	170.59	593	171.08	593	171.58	593	172.07	593	172.56	593	173.06	593	173.55	593	174.05	593	174.54	593	175
595	174.24	595	165.87	595	164	594	169.59	594	170.08	594	170.58	594	171.07	594	171.56	594	172.06	594	172.55	594	173.05	594	173.54	594	174
596.5	174.24	596.5	165.87	596.5	164	595	168.59	595	169.08	595	169.58	595	170.07	595	170.56	595	171.06	595	171.55	595	172.05	595	172.54	595	173
597.5	174.24	597.5	165.87	597.5	164	596	167.59	596	168.08	596	168.58	596	169.07	596	169.56	596	170.06	596	170.55	596	171.05	596	171.54	596	172
597.5	175.633	597.5	169.403	597.5	168.25	597	166.59	597	167.08	597	167.58	597	168.07	597	168.56	597	169.06	597	169.55	597	170.05	597	170.54	597	171
597.5	177.025	597.5	172.935	597.5	172.5	598	165.59	598	166.08	598	166.58	598	167.07	598	167.56	598	168.06	598	168.55	598	169.05	598	169.54	598	170
597.5	178.418	597.5	176.468	597.5	176.75	600	165.59	600	166.08	600	166.58	600	167.07	600	167.56	600	168.06	600	168.55	600	169.05	600	169.54	600	170
597.5	179.81	597.5	180	597.5	181	602	165.59	602	166.08	602	166.58	602	167.07	602	167.56	602	168.06	602	168.55	602	169.05	602	169.54	602	170
599	179.81	599	180	599	181	604	165.59	604	166.08	604	166.58	604	167.07	604	167.56	604	168.06	604	168.55	604	169.05	604	169.54	604	170
						606	165.59	606	166.08	606	166.58	606	167.07	606	167.56	606	168.06	606	168.55	606	169.05	606	169.54	606	170
						608	165.59	608	166.08	608	166.58	608	167.07	608	167.56	608	168.06	608	168.55	608	169.05	608	169.54	608	170
						610	165.59	610	166.08	610	166.58	610	167.07	610	167.56	610	168.06	610	168.55	610	169.05	610	169.54	610	170
						612	165.59	612	166.08	612	166.58	612	167.07	612	167.56	612	168.06	612	168.55	612	169.05	612	169.54	612	170
						614	165.59	614	166.08	614	166.58	614	167.07	614	167.56	614	168.06	614	168.55	614	169.05	614	169.54	614	170
						615	166.59	615	167.08	615	167.58	615	168.07	615	168.56	615	169.06	615	169.55	615	170.05	615	170.54	615	171
						616	167.59	616	168.08	616	168.58	616	169.07	616	169.56	616	170.06	616	170.55	616	171.05	616	171.54	616	172
						617	168.59	617	169.08	617	169.58	617	170.07	617	170.56	617	171.06	617	171.55	617	172.05	617	172.54	617	173
						618	169.59	618	170.08	618	170.58	618	171.07	618	171.56	618	172.06	618	172.55	618	173.05	618	173.54	618	174
						619	170.59	619	171.08	619	171.58	619	172.07	619	172.56	619	173.06	619	173.55	619	174.05	619	174.54	619	175
						620	170.59	620	171.08	620	171.58	620	172.07	620	172.56	620	173.06	620	173.55	620	174.05	620	174.54	620	175
						621	171.59	621	172.08	621	172.58	621	173.07	621	173.56	621	174.06	621	174.55	621	175.05	621	175.54	621	176
L						622	172.59	622	173.08	622	173.58	622	174.07	622	174.56	622	175.06	622	175.55	622	176.05	622	176.54	622	177
						623	173.59	623	174.08	623	174.58	623	175.07	623	175.56	623	176.06	623	176.55	623	177.05	623	177.54	623	178
						624	174.59	624	175.08	624	175.58	624	176.07	624	176.56	624	177.06	624	177.55	624	178.05	624	178.54	624	179
						625	175.59	625	176.08	625	176.58	625	177.07	625	177.56	625	178.06			625	179.05	625	179.54	625	180
						626	175.59	626	176.08	626	176.58	626	177.07	626	177.56	626	178.06			626	179.05	626	179.54	626	180
						627	176.59	627	177.08	627	177.58	627	178.07	627	178.56					627	180.05	627	180.54	627	181
						628	177.59	628	178.08	628	178.58			I								628	181.54	628	182
						629	178.59	629	179.08	629	179.58											629	182.54	629	183
						630	179.59	630	180.08	630	0					ļ						630	183.54	630	184
						631	180.59	631	181.08	631	0					ļ						631	184.54	631	185
						632	180.59	632	181.08	632	0											632	184.54	632	185

Lampiran Tabel 5. Data *Cross Section* Pelimpah dari SP 14 – SP 26

Lampiran Gambar 1. Hasil Pemodelan dengan Cara 1 pada Section Waduk

Lampiran Gambar 2. Hasil Pemodelan dengan Cara 1 pada Section Saluran Transisi

Lampiran Gambar 3. Hasil Pemodelan dengan Cara 1 pada Section Saluran Peluncur

Lampiran Gambar 4. Hasil Pemodelan dengan Cara 1 pada Section Kolam Olak

Lampiran Gambar 5. Hasil Pemodelan dengan Cara 2 pada Section Waduk

Lampiran Gambar 6. Hasil Pemodelan dengan Cara 2 pada Section Saluran Transisi

Lampiran Gambar 7. Hasil Pemodelan dengan Cara 2 pada Section Saluran Peluncur

Lampiran Gambar 8. Hasil Pemodelan dengan Cara 2 pada Section Kolam Olak

POTONGAN MEMANJANG SPILLWAY

PROFIL MUKA AIR HASIL HEC-RAS

PROFIL MUKA AIR HASIL ANALITIS

BIODATA PENULIS

Penulis dilahirkan di Blora, 10 Januari 1995 merupakan anak kedua dari 2 bersaudara. Penulis telah menempuh pendidikan formal yaitu di TK ABA (Blora), SDN Bajo 1 (Blora), SMP Negeri 3 Cepu (Blora), SMA Negeri 1 Blora (Blora). Setelah lulus dari SMAN 1 Blora tahun 2013, Penulis mengikuti ujian masuk Perguruan Tinggi Negeri melalui jalur SNMPTN dan diterima di Teknik Sipil ITS tahun 2013.

Dijurusan Teknik Sipil ini Penulis mengambil bidang studi Hidroteknik. Penulis pernah aktif dalam beberapa kegiatan seminar yang diselenggarakan oleh kampus ITS. Selain itu penulis juga aktif dalam berbagai kepanitian beberapa kegiatan yang ada selama menjadi mahasiswa.