

TUGAS AKHIR - TM 091585

ANALISIS PENGARUH NOZZLE-TO-SURFACE DISTANCE RATIO DAN BILANGAN REYNOLDS TERHADAP KEKUATAN DAN WAKTU QUENCH HEMISPHERICAL TEMPERED GLASS

FRANS LOEKITO NRP 2113 100 004

Dosen Pembimbing Dr. Ir. Budi Utomo Kukuh Widodo, ME

Jurusan Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2017

TUGAS AKHIR - TM 091585

ANALISIS PENGARUH NOZZLE-TO-SURFACE DISTANCE RATIO DAN BILANGAN REYNOLDS TERHADAP KEKUATAN DAN WAKTU QUENCH HEMISPHERICAL TEMPERED GLASS

FRANS LOEKITO NRP 2113 100 004

Dosen Pembimbing Dr. Ir. Budi Utomo Kukuh Widodo, ME

Jurusan Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2017

FINAL PROJECT - TM 091585

ANALYSIS OF NOZZLE-TO-SURFACE DISTANCE RATIO AND REYNOLDS NUMBER VARIATION ON HEMISPHERICAL TEMPERED GLASS STRENGTH AND QUENCH TIME

FRANS LOEKITO NRP 2113 100 004

Supervisor Dr. Ir. Budi Utomo Kukuh Widodo, ME

Mechanical Engineering Department Faculty of Industrial Engineering Institut Teknologi Sepuluh Nopember Surabaya 2017

ANALISIS PENGARUH NILAI RASIO JARAK NOZZLE-TO-SURFACE DAN BILANGAN REYNOLDS TERHADAP KEKUATAN DAN WAKTU QUENCH KACA TEMPER HEMISPHERICAL

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Program Studi S-1 Jurusan Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

> Oleh : FRANS LOEKITO NRP. 2113 100 004 .

Disetujui oleh Tim Penguji Tugas Akhir :

1. Dr. Ir. Budi Utomo Kukuh Widodo, ME NIP. 195312191981031001

(Penguji I)

- 2. <u>Prof. Dr. Ir. Djatmiko Ichsani, M.Eng</u> NIP. 195310191979031003
- 3. Prof. Dr.Eng. Ir. Prabowo, M.Eng NIP. 196505051990031005
- 4. <u>Vivien Suphandani, ST, ME, PhDurusan</u> (Penguji III) NIP. 198105292003122001

SURABAYA JANUARI, 2017

ANALISIS PENGARUH EFEK PERUBAHAN NOZZLE-TO-SURFACE DISTANCE RATIO DAN BILANGAN REYNOLDS TERHADAP KEKUATAN DAN WAKTU QUENCH HEMISPHERICAL TEMPERED GLASS

Nama	: Frans Loekito
NRP	: 2113 100 004
Jurusan / Fakultas	: Teknik Mesin / FTI – ITS
Dosen Pembimbing	: Dr. Ir. Budi Utomo Kukuh Widodo, ME

Abstrak

Proses pembuatan *hemispherical tempered glass* terbagi menjadi dua tahapan, yaitu *heating* dan *quenching*. Proses *quenching* adalah proses perpindahan panas transien, yang memiliki beberapa parameter kontrol, yaitu waktu, temperatur, dimensi dan geometri produk, serta kecepatan udara pendingin. Variasi parameter-parameter kontrol saat proses pembuatan *tempered glass* akan mempengaruhi kekuatan *tempered glass* pula. Pada tugas akhir ini akan dibahas pengaruh bilangan Reynolds dan *nozzle-to-surface distance* terhadap waktu *quench* dan kekuatan *hemispherical tempered glass*. Proses *quenching* menggunakan metode *impinging jet* dengan *round nozzle* yang tersusun secara *equilaterally staggered* dengan temperatur udara 60°C. *Pitch* dan diameter *nozzle* yang digunakan berturut-turut 27 mm dan 4 mm.

Tahap awal pengerjaan tugas akhir ini adalah identifikasi permasalahan dan studi literatur. Tahap kedua adalah perhitungan nilai koefisien konveksi, pembuatan model matematik, dan penyelesaian model matematik menggunakan *software* MATLAB. Variasi *Reynolds number* (*Re*) yang digunakan adalah 2300, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, dan 87000, sedangkan variasi nilai *H/D outer surface* yang digunakan = 2, 6, 9, dan 12. Data distribusi temperatur hasil penyelesaian model matematik diambil dengan *time increment* = 0.05 detik. Tahap terakhir adalah tahap konversi data ditribusi temperatur setiap variasi menjadi data distribusi tegangan.

Dari kontur temperatur yang dihasilkan dapat diamati bahwa semakin kecil nilai Re, semakin tinggi suhu midplane kaca yang dihasilkan pada waktu tertentu. Selain itu juga dapat diamati bahwa kenaikan nilai H/D akan menghasilkan temperatur interior vang lebih tinggi. Kemudian dari pengamatan kuantitatif grafik distribusi tegangan dapat disimpulkan bahwa tegangan hasil proses quench terdistribusi secara parabolik. Kenaikan nilai Re akan menyebabkan tegangan permukaan yang uniform, sebaliknya, nilai *Re* yang rendah akan menyebabkan perbedaan tegangan permukaan pada setiap nilai θ . Dari perbandingan tersebut juga terlihat bahwa nilai σ dan t yang dihasilkan oleh setiap variasi perameter menunjukkan konvergensi nilai pada Re tinggi. Lalu, didapatkan juga variasi efek kenaikan nilai $Re \, dan \, H/D$, yang berpengaruh paling besar terhadap σ pada nilai 2300 $\leq Re \leq 8000$, memiliki pengaruh sedang pada $8000 \le Re \le 30000$, dan memiliki pengaruh yang kecil pada $Re \geq 30000$. Sedangkan pengaruh kenaikan nilai Re dan H/D terhadap t paling tinggi pada range Re \leq 6500, dan rendah pada $Re \geq$ 6500. Dari kecenderungankecenderungan ini kemudian dirumuskan hubungan t = f(Re, H/D)dan $\sigma = f(Re, H/D)$ dan ditentukan bahwa parameter *quench* optimal adalah pada Re = 8000 dan H/D = 2.

Kata kunci : Impinging jet, Konduksi Transien, Quenching, Tempered glass.

ANALYSIS ON THE EFFECT OF NOZZLE-TO-SURFACE DISTANCE RATIO AND REYNOLDS NUMBER ON HEMISPHERICAL TEMPERED GLASS STRENGTH AND OUENCH TIME

Name	: Frans Loekito
NRP	: 2113 100 004
Department	: Teknik Mesin / FTI – ITS
Advisor	: Dr. Ir. Budi Utomo Kukuh Widodo, ME

Abstract

The process of creating a hemispherical tempered glass can be divided into two main processes. The quench process is a transient heat transfer phenomenon which is governed by several parameters – time, temperature, geometry, and airspeed. Variation on these parameters will affect the output tempered glass' overall strength. In this research, the effect of two such parameters – the quench Reynolds number and nozzle-to-surface distance ratio – on hemispherical tempered glass' strength and quench time are to be analyzed. The quench process will use the impinging jets quench method, with an equilaterally staggered nozzle arrangements. The process is done in an ambient air of 60°C and with a nozzle pitch and diameter of 27 mm and 4 mm respectively.

The first step in conducting this research is problem identification and literary study. The second stage consists of calculation of the convection coefficient, formulation of a mathematic models, and the use of MATLAB software to solve the model. The research will use variations of Reynolds number: 2300, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, and 87000, and *H/D*: 2, 6, 9, and 12. The solution of the mathematic model, a temperature distribution contour, is recorded with a time increment of 0.05 s. The contours will then be converted into a stress distribution graph using an analytical approach.

From the resulting temperature contour, it can be inferred that in a period, a decrease in Re, or an increase in H/D, will raise the local temperature inside the glass. Then, by analyzing the stress

distribution graphs, we can note that they exhibit a quadratic trend. Also, a rise in *Re* will yield a more uniform surface compression stress than those of lower Re, which even produce a dissimilar surface compression value in every θ . When compared, the values of σ and t for all variations will approach an asymptote in higher *Re*. From those comparison, we can also note that both *Re* and H/Dhave a large effect on the value of σ in the range $2300 \le Re \le 8000$. An increase in Re, $8000 \le Re \le 30000$ will decrease the effect of the parameters. In $Re \ge 30000$, the effect of both parameters is modicum that σ appears almost constant. Similarly, both *Re* and *H/D* also have a large effect on the value of t in the range $Re \leq$ 6500. Over this range, both parameters' effect appears to be negligible. From these trends, we will formulate an empiric correlation of t = f(Re, H/D) and $\sigma = f(Re, H/D)$, and we can also determine the quench process' optimal parameter combination (Re = 8000 and H/D = 2).

Keywords: Impinging jet, Quenching, Tempered glass, Transient conduction.

KATA PENGANTAR

Segala puji dan syukur kepada Tuhan atas-Nya sehingga penulis dapat menyelesaikan Tugas Akhir dengan judul "ANALISIS PENGARUH NOZZLE-TO-SURFACE DISTANCE RATIO DAN BILANGAN REYNOLDS TERHADAP KEKUATAN DAN WAKTU QUENCH HEMISPHERICAL TEMPERED GLASS".

Tugas Akhir ini disusun sebagai salah satu persyaratan untuk memperoleh gelar sarjana pada Jurusan Teknik Mesin, Fakultas Teknologi Industri-ITS. Dalam menyelesaikan Tugas Akhir ini penulis banyak mendapat bantuan dan bimbingan dari berbagai pihak. Pada kesempatan ini penulis juga menyampaikan ucapan terima kasih kepada :

- 1. Kedua orangtua yang telah memberikan semangat dan doa untuk menyelesaikan Tugas Akhir ini.
- 2. Kakak saya, Evelyn Loekito, atas bantuan dan dukungannya selama masa pengerjaan Tugas Akhir ini.
- 3. Bapak Ir. Bambang Pramujati, M.Sc.Eng., Ph.D. selaku ketua jurusan Teknik Mesin FTI ITS dan dosen wali penulis yang senantiasa memberikan semangat dan nasehat selama kuliah.
- 4. Bapak Dr. Ir. Budi Utomo Kukuh Widodo, ME, selaku dosen Pembimbing yang selalu mengarahkan, memberikan bimbingan, inspirasi, semangat, doa, dorongan moral, serta spiritual hingga Tugas Akhir ini dapat terselesaikan.
- 5. Prof. Dr. Ir. Djatmiko Ichsani, M.Eng; Prof. Dr.Eng. Prabowo, M.Eng; serta Bu Vivien Suphandhani, ST, M.E, Ph.D, selaku dosen penguji yang telah memberikan saran dan masukan kepada penulis sehingga Tugas Akhir ini dapat terselesaikan dengan sempurna.
- 6. Seluruh dosen pengajar Jurusan Teknik Mesin yang telah banyak memberikan ilmu selama penulis menempuh kuliah.

- 7. Seluruh karyawan Laboratorium Perpindahan Panas dan Massa Teknik Mesin FTI ITS, yang telah memberikan bantuan pengujian spesimen.
- 8. Rekan-rekan Jurusan Teknik Mesin terutama bidang studi Perpindahan Panas, khususnya Hiro, Nimas, Karina, Canny, Mas Andur, dan Dea, atas bantuannya dalam penyelesaian tugas akhir ini.
- 9. Semua teman-teman Mesin seperjuangan angkatan 2013 atas persaudaraan yang berkesan.
- 10. Dan semua pihak yang tidak dapat disebutkan satu persatu. Harapan penulis semoga Tugas Akhir ini dapat bermanfaat

bagi para pembaca. Penulis menyadari bahwa tugas akhir ini masih jauh dari kesempurnaan. Oleh karena itu, diharapkan saran dan kritik untuk tahapan pengembangan selanjutnya.

> Surabaya, 18 Januari 2017 Penulis

DAFTAR ISI

HALAN	MAN JUDUL	i
LEMB	AR PENGESAHAN	iii
ABSTR	AK	iv
ABSTR	ACT	vi
KATA	PENGANTAR	.viii
DAFTA	AR ISI	x
DAFTA	AR GAMBAR	xii
DAFTA	AR TABEL	. xiv
BAB 1	PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	4
1.3	Tujuan Penelitian	4
1.4	Batasan Masalah	5
1.5	Manfaat Penelitian	5
BAB 2	DASAR TEORI DAN TINJAUAN PUSTAKA	7
2.1	Tempered Glass	7
2.1	1.1 Definisi dan Sifat Mekanik Tempered Glass	7
2.1	1.2 Proses Glass Tempering	10
2.2	Konduksi Transien	11
2.2	2.1 Analisa Konduksi Transien Menggunakan Met	tode
2.2		12
2.5	Impinging Jel	10
2.4	Penenuan Teruanulu	19
2.4	$\begin{array}{ccc} +.1 & \text{Galdoll} (1903) \\ 1.2 & \text{Sinh}_{2} (1078) \\ \end{array}$	20
2.4 DAD 2		עב בר
2 1	Elouphant Dopolition	2 3
2.1	Motodo Dopolition	25
3.2	Dimansi Mashing serta Boundary Spesimen	24 26
5.5 2 2	Dimensi, mesining, seria Dounaury Spesifiell	20 26
3.3	3.1 Dimensi Spesimen dan Susunan Wolle	20 26
3.4	Pembahasan Grafik	20 20
BAR 4	ANALISIS DAN PEMBAHASAN	2)

4.1	Analisis Kualitatif Visualisasi Kontur Temperatur pad	la
	Spesimen	31
4.2	Analisis Distribusi Tegangan Spesimen	35
4.2.2	Contoh Perhitungan Distribusi Tegangan pad	la
	Spesimen	35
4.2.3	Pembahasan Grafik Distribusi Tegangan	37
4.3	Analisis Pengaruh Rasio Jarak Nozzle-to-Surface (H/I	2)
(dan Bilangan Reynolds terhadap Tegangan Kompre	si
]	Permukaan	39
4.4	Analisis Pengaruh Rasio Jarak Nozzle-to-Surface (H/I	2)
(dan Bilangan Reynolds terhadap Waktu Quench	13
4.5 I	Penentuan Batas Operasi Berdasarkan Ukuran Pecahan	ı.
	2	17
4.5.1	Contoh Perhitungan Ukuran Pecahan	17
4.5.2	Penentuan Range Bilangan Reynolds Optimal pac	da
	Setiap Nozzle-to-Surface Distance Ratio4	18
BAB 5 KI	ESIMPULAN DAN SARAN	51
5.1	Kesimpulan5	51
5.2	Saran	53
DAFTAR	PUSTAKA	55
LAMPIR	AN5	57

DAFTAR GAMBAR

Gambar 1.1	<i>Four point bending test</i> ^[2] 3
Gambar 1.2	Flowchart proses glass tempering
Gambar 2.1	Profil distribusi tegangan pada penampang <i>tempered glass</i> ^[3]
Gambar 2.2	Skema spesimen yang digunakan untuk mencari ukuran pecahan dengan analisis <i>strain energy</i> ^[7] 9
Gambar 2.3	Viskositas kaca dan temperatur-temperatur spesifik pada pemanasan kaca ^[4] 10
Gambar 2.4	Grafik temperatur permukaan dan interior kaca tebal 4mm terhadap waktu pada proses pemanasan dan <i>quenching</i> ^[4]
Gambar 2.5	Efek <i>Biot number</i> terhadap distribusi temperatur pada konduksi transien dalam <i>plane wall</i> ^[9]
Gambar 2.6	Konduksi transien pada koordinat <i>spherical</i> 13
Gambar 2.7	Diagram nodal untuk metode implisit ^[10] 14
Gambar 2.8	Tumbukan pancaran gas pada permukaan oleh <i>nozzle</i> ^[9]
Gambar 2.9	Tampak atas untuk (a) <i>single round jet</i> , (b) <i>square-</i> <i>in-line array of round jets</i> , (c) <i>equilaterally</i> <i>staggered array of round jets</i> , (d) <i>single slot jet</i> , dan (e) <i>array of slot jets</i> ^[9] 17
Gambar 2.10	Degree of temper sebagai fungsi dari heat transfer coefficient dan temperatur awal quenching pada flat tempered glass dengan ketebalan 0.61 cm ^[5] 19
Gambar 2.11	Diagram skematik susunan peralatan yang digunakan untuk mengukur <i>birefringence tempered</i> glass ^[6] 20
Gambar 2.12	Nilai <i>birefringence</i> pada <i>midplane tempered glass</i> 0.59 cm x 2.5 cm x 15 cm, dengan <i>h</i> sebesar 0.0075 cal/cm ² s $^{\circ}$ C, dan <i>T_i</i> 160 $^{\circ}$ C ^[6] 21
Gambar 2.13	Efek variasi <i>heat transfer rate</i> dan waktu <i>quench</i> terhadap perbedaan temperatur <i>midplane</i> dengan temperatur rata-rata ^[6]

Gambar 3.1	Flowchart penelitian
Gambar 3.2	Pendekatan menggunakan korelasi perpindahan
	panas impinging jets dengan array of equilaterally
	staggered round nozzle on a flat surface26
Gambar 3.3	Tampak depan susunan nozzle27
Gambar 3.4	Susunan nozzle beserta spesimen yang digunakan
	pada permodelan27
Gambar 3.5	Meshing dan boundary condition spesimen30
Gambar 4.1	Kontur temperatur spesimen pada proses <i>quenching</i> dengan $Re = 60000$. $H/D = 9$
Gambar 4.2	Perbandingan distribusi temperatur kelima
	kelompok variasi pada $t = 5.5$
Gambar 4.3	Distribusi subu lokal nodal pada $Re = 2300 \text{ dan } H/D$
Current inc	= 6. auench time = 6.55 s
Gambar 4.4	Distribusi tegangan spesimen pada $Re = 2300$ dan
	H/D = 6, quench time = 6.55 s
Gambar 4.5	Distribusi tegangan spesimen pada $Re = 87000$ dan
	H/D = 6, quench time = 5.2 s
Gambar 4.6	Grafik tegangan kompresi permukaan sebagai
	fungsi bilangan Reynolds dan rasio jarak nozzle-to-
	<i>surface</i> 40
Gambar 4.7	Grafik tegangan kompresi permukaan sebagai
	fungsi bilangan Reynolds dan rasio jarak nozzle-to-
	surface beserta persamaan hasil regresi 2D power
	<i>curve</i> $(H/D = 6)$
Gambar 4.8	Grafik lama proses quench sebagai fungsi bilangan
	Reynolds dan rasio jarak nozzle-to-surface45
Gambar 4.9	Grafik lama proses quench sebagai fungsi bilangan
	Reynolds dan rasio jarak nozzle-to-surface beserta
	persamaan hasil regresi 2D power curve ($H/D = 9$)
Gambar 4.10	Grafik ukuran pecahan masing-masing variasi
	terhadap nilai Re dan H/D, serta spesifikasi ukuran
	menurut ECE R4349

DAFTAR TABEL

Tabel 1.1	Jenis-jenis kaca berdasarkan unsur penyusunnya, serta
	kegunaan masing-masing ^[1] 2
Tabel 3.1	Parameter beserta ukuran nozzle dan spesimen28
Tabel 3.2	Kondisi batas spesimen dan parameter fluida pada
	penelitian
Tabel 4.1	Kelompok berdasarkan tren kontur temperatur32
Tabel 4.2	Sifat-sifat mekanik soda lime glass
Tabel 4.3	Ukuran pecahan masing-masing variasi parameter
	(dalam mm)

(Halaman ini sengaja dikosongkan)

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Kaca merupakan material yang sangat populer pada kehidupan masyarakat. Berdasarkan unsur penyusunnya, kaca dapat dibedakan menjadi lima tipe utama: *soda lime glass, lead glass, borosilicate glass, aluminosilicate glass, dan high-quartz glass*^[1]. Masing-masing jenis kaca tersebut memiliki sifat-sifat berbeda yang mengakibatkan perbedaan pada penggunaannya, seperti terlihat pada Tabel 1.1. *Soda lime glass* adalah jenis kaca yang sangat umum digunakan sebagai bahan baku produksi karena kaca jenis ini mudah untuk dilelehkan dan dibentuk.

Berdasarkan proses pembuatannya, kaca dibedakan menjadi dua, yaitu kaca biasa (*annealed*), dan *tempered glass* (*annealed glass* yang melalui proses *tempering*). Berdasarkan hasil pengukuran melalui metode *four point bending test* (ASTM 1161-13)^[2], seperti terlihat pada Gambar 1.1, *annealed glass* memiliki sifat mekanik yang unik, yaitu memiliki kekerasan dan tegangan kompresi ijin tinggi, namun memiliki tegangan tarik ijin yang rendah. Untuk menanggulangi rendahnya tegangan tarik ijin kaca (*annealed glass*), dikembangkanlah mekanisme penguatan kaca (*glass tempering*) yang menghasilkan *tempered glass* dengan tegangan tarik ijin hampir lima kali lebih besar dari *annealed glass*^[3].

Tempered glass juga memiliki profil serpihan yang bersudut tumpul, sehingga kaca jenis ini menjadi bahan pilihan utama dalam berbagai macam kegunaan, seperti pada konstruksi bangunan, otomotif, serta penggunaan sehari-hari^[3]. *Tempered glass* tersedia dalam berbagai bentuk, antara lain bentuk *plane wall* yang biasa digunakan sebagai panel-panel kaca bangunan, *semi-cylindrical* yang digunakan sebagai bahan kaca pengaman mobil, serta bentuk *hemispherical* yang biasa digunakan untuk kebutuhan sehari-hari seperti pada alat-alat memasak dan kap lampu.

Limitations Glass Type **Properties** Uses Soda Lime Poor Windows: Inexpensive; durability; easy to melt bottles: lightbulbs; and shape; not *most widely* chemically jars used glass resistant; poor thermal shock resistance Lead glass *High density;* Fine crystal Poor (often 20-30%) durability; *briliant*; *verv* radiation *Pb oxide*) easy to melt, easily windows: TV scratched shape out, tube parts and engrave **Borosilicate** Not suitable Very good Labware: (often 5-13%) for long term thermal shock kitchenware; B_2O_3) resistance high special and chemical temperature lightbulbs; durability; use glass pipe; sealed beam easy to melt and shape headlights Aluminosilicate Excellent More *Top-of-stove* (usually 5-10%) thermal difficult to cookware: resistance melt and high quality Al_2O_3 and durability shape than fiberglass borosilicate High silica **Outstanding** Difficult to Spacecraft (Vycor 96.5%; thermal make; verv windows: Fused quartz *labware; fiber* resistance expensive optics 100%)

Tabel 1.1 Jenis-jenis kaca berdasarkan unsur penyusunnya, serta kegunaan masing-masing^[1]

Proses pembuatan *hemispherical tempered glass*, seperti pada Gambar 1.2 merupakan proses yang rumit. Secara garis besar,

Gambar 1.1 Four point bending test^[2]

proses terbagi menjadi dua tahapan, yaitu *heating* dan *quenching*. Pada tahapan *heating*, kaca dipanaskan hingga melampaui suhu *transition point* (560°C), namun tetap berada dibawah suhu *softening point* (712°C). Setelah *heating*, kaca akan didinginkan secara cepat (*quench*) hingga dibawah suhu *strain point* (510°C). Pada masing-masing proses terdapat beberapa parameter kontrol yang dapat mempengaruhi kekuatan *tempered glass*. Proses *quenching* memiliki beberapa parameter kontrol, yaitu waktu, temperatur, dimensi dan geometri produk, serta kecepatan udara pendingin^[4].

Terdapat cukup banyak penelitian tentang efek variasi parameter-parameter tersebut terhadap kekuatan kaca. Gardon (1965) mengamati pengaruh koefisien perpindahan panas

Gambar 1.2 Flowchart proses glass tempering

konveksi (*h*) dan temperatur awal kaca terhadap *degree of temper*^[5]. Sinha (1978) membahas pengaruh waktu *quenching* terhadap tegangan *midplane* pada *flat tempered glass*. Di sisi lain, hanya terdapat sedikit penelitian mengenai pengaruh parameterparameter tersebut terhadap kekuatan kaca berbentuk *hemispherical*^[6].

Kurangnya referensi ini menyebabkan industri hanya berpegang pada *rule of thumb* (secara empirik) dalam proses proses pembuatan *tempered glass*. Hal ini mengakibatkan kerugian pada pihak industri, khususnya pada tahap pengaturan awal mesin, yang ditandai dengan banyaknya *production reject*, yang akan mengakibatkan rendahnya produktivitas dan efisiensi. Oleh karena itu, perlu diadakan penelitian mengenai pengaruh parameter-parameter proses *quenching* terhadap kekuatan *tempered glass* berbentuk *hemispherical*.

1.2 Rumusan Masalah

Rumusan masalah yang dibahas dalam tugas akhir ini adalah sebagai berikut:

- 1. Bagaimana pengaruh variasi nilai rasio jarak *nozzle-to-surface* dan *Reynolds number* terhadap distribusi temperatur pada *hemispherical tempered glass*.
- 2. Bagaimana profil distribusi tegangan lokal pada *hemispherical tempered glass*.
- 3. Bagaimana pengaruh variasi nilai rasio jarak *nozzle-to-surface* dan *Reynolds number* terhadap kekuatan *hemispherical tempered glass* dan *quench time*, serta nilai optimal kedua parameter untuk proses pada industri.

1.3 Tujuan Penelitian

Tujuan Penelitian dalam tugas akhir ini adalah sebagai berikut:

1. Mengetahui pengaruh perubahan nilai rasio jarak *nozzleto-surface* dan *Reynolds number* terhadap distribusi temperatur pada *hemispherical tempered glass*.

- 2. Mengetahui profil distribusi tegangan lokal pada *hemispherical tempered glass*.
- 3. Mengetahui pengaruh variasi nilai rasio jarak *nozzle-to-surface* dan *Reynolds number* terhadap kekuatan *hemispherical tempered glass* dan *quench time*, serta nilai optimal kedua parameter untuk proses pada industri.

1.4 Batasan Masalah

Batasan masalah yang digunakan pada tugas akhir ini adalah sebagai berikut:

- 1. Variabel yang akan dianalisis adalah temperatur tiap nodal $(T_{r,l})$ dan kekuatan tiap nodal (σ_r)
- 2. Spesimen yang digunakan dalam penelitian adalah kaca berbentuk *hemispherical* dengan tebal kaca 4 mm, tinggi kubah 3.3 cm, dan diameter tembereng 40 cm
- 3. Nozzle disusun secara *staggered*, dengan *diagonal* dan *transvere pitch* (P_d dan P_i) masing-masing 27 mm, serta diameter *outlet* 4 mm.
- 4. Media *quench* yang digunakan adalah udara dengan suhu 60° C.
- 5. Pengamatan 2D *transient conduction* dilakukan sepanjang busur spesimen.
- 6. Kaca memiliki temperatur awal yang uniform 625°C
- 7. Pada proses *quenching* tidak terjadi perubahan struktur mikro kaca.
- 8. Analisis koefisien konveksi dilakukan dengan pendekatan *equilaterally staggered impinging jets on a flat surface* dengan nilai *H/D* yang bervariasi pada masing-masing nodalnya sesuai dengan kelengkungan permukaan

1.5 Manfaat Penelitian

Manfaat dari tugas akhir ini adalah sebagai berikut:

1. Bagi dunia industri *tempered glass*, diharapkan penelitian ini dapat dijadikanacuan atau rujukan dalam menetapkan parameter operasi.

- 2. Bagi kalangan akademis khususnya mahasiswa, penelitian ini diharapkan mampu menambah khasanah kajian tentang konduksi transien pada industri kaca.
- 3. Bagi kalangan akademis khususnya mahasiswa, penelitian ini diharapkan mampu menambah khasanah kajian tentang pengaruh perubahan parameter-parameter proses *quenching* terhadap kekuatan kaca *hemispherical*.

BAB 2 DASAR TEORI DAN TINJAUAN PUSTAKA

2.1 Tempered Glass

2.1.1 Definisi dan Sifat Mekanik Tempered Glass

Tempered glass adalah jenis kaca yang telah melalui proses penguatan dengan cara *tempering*, yaitu pemanasan kaca mencapai *transition point*, kemudian disertai dengan pendinginan cepat, atau disebut proses *quenching*. Berbeda dengan proses *tempering* pada material metalik, *tempering* pada kaca tidak disertai perubahan mikrostruktur, sehingga proses *tempering* pada kaca menghasilkan profil tegangan parabolik, seperti pada Gambar 2.1, pada permukaan dan interior kaca, sehingga akan menaikkan kekuatan kaca^[3].

Kegagalan kaca biasa terjadi akibat adanya cacat pada permukaan yang akan mengakibatkan terjadinya konsentrasi tegangan. Oleh karena itu, adanya tegangan sisa kompresi pada

Gambar 2.1 Profil distribusi tegangan pada penampang *tempered* glass^[3]

permukaan *tempered glass* akan menaikkan ketahanan permukaan terhadap tegangan tarik. Tegangan sisa tarik didalam kaca tidak akan mempengaruhi kekuatan *tempered glass*, karena tegangan kompresi permukaan akan mengurangi resultan tegangan tarik dari gaya-gaya eksternal. *Tensile strength* untuk *annealed glass* bernilai sekitar 4400 psi. Dengan mekanisme *tempering* yang sempurna, tegangan tarik ijin kaca dapat dinaikkan menjadi 19100 psi, 4 sampai 5 kali lebih kuat dari kaca biasa (*annealed*)^[3].

Tingkat *temper* dari kaca ditunjukkan menggunakan skala yang disebut *degree of temper*. *Degree of temper* dari *tempered glass* dapat diketahui melalui pengukuran pembiasan cahaya (*birefringence*) pada *midplane* kaca. Kaca *fully tempered* memiliki *birefringence* sebesar 3200 nm/in, yang setara dengan tegangan tarik pada *midplane* sebesar 6400 psi, dan tegangan kompresi permukaan sebesar 14000 psi. Kaca *semi tempered*, yang memiliki nilai *birefringence* sekitar separuh dari nilai *briefringence* kaca *fully tempered*, lebih kuat daripada *annealed glass*, namun masih memiliki profil pecahan yang sama dengan *annealed glass*^[3].

Selain dengan pengukuran *birefringence*, kekuatan *tempered glass* dapat dihitung secara analitis. Besar tegangan pada jarak *x*dari *midplane* (σ_x) dihitung sebagai fungsi dari perbedaan temperatur antarabagian tersebut dengan udara sekitar (θ_x), temperatur rata-rata kaca (θ_{avg}), modulus *Young* (*E*), *poisson ratio* (v), serta koefisien pemuaian (α). Perumusan besar tegangan adalah sebagai berikut:

Besar tegangan *tension* pada *midplane* (σ_m) dan tegangan *compression* (σ_s) permukaan kemudian dapat dirumuskan:

$$\sigma_m = \frac{E\alpha}{1-v} (\theta_m - \theta_{avg}) \quad \dots \quad 2.2^{[6]}$$

$$\sigma_s = \frac{Eu}{1-v} (\theta_s - \theta_{avg}) \quad \dots \quad 2.3^{[6]}$$

Gambar 2.2 Skema spesimen yang digunakan untuk mencari ukuran pecahan dengan analisis *strain energy*^[7]

Proses glass tempering juga dapat memperkecil ukuran pecahan kaca sehingga ketika pecah kaca tidak lagi memiliki pecahan besar bersudut tajam. Annealed glass, yang memiliki kekuatan rendah, juga akan memiliki internal strain energy yang rendah, sehingga permukaan baru yang terbentuk saat pecah relatif lebih sedikit. Tingginya tegangan internal pada tempered glass akan menaikkan tingkat *internal strain energy* dari kaca, sehingga ketika pecah akan terbentuk serpihan kecil berbentuk cuboid (kondisi *full temper*)^[3]. Beberapa standar telah dibuat untuk menentukan spesifikasi kualitas tempered glass komersial. European Standard ECE R43 menyatakan bahwa tempered glass harus memiliki jumlah pecahan minimal 40 dan maksimal 400 pada sebuah spesimen dengan luas 50 mm x 50 mm^[8]. Ukuran pecahan kaca (x) bergantung pada fracture toughness kaca (K_{1c}), tegangan *midplane* (σ_m), *poisson ratio* (v), serta dimensi kaca, sehingga dapat dirumuskan:

dimana t dan δ menyatakan tebal kaca dan tebal *compression layer*, yang diilustrasikan oleh Gambar 2.2.

2.1.2 Proses Glass Tempering

Proses *glass tempering* secara garis besar terbagi menjadi dua proses, yaitu pemanasan dalam *furnace*, dan *quenching*. Pada proses pemanasan, kaca dipanaskan melewati temperatur transisi, yaitu temperatur dimana tegangan-tegangan dalam kaca akan hilang. Semakin tinggi temperatur pemanasan, semakin rendah viskositas kaca

Gambar 2.3 Viskositas kaca dan temperatur-temperatur spesifik pada pemanasan kaca^[4]

(Gambar 2.3), sehingga kaca memiliki permukaan yang cukup lunak. Permukaan kaca yang lunak dapat didinginan cepat (*quenching*) tanpa adanya potensi terjadi retakan pada permukaan. Namun, semakin tinggi temperatur pemanasan, semakin lunak pula kaca, sehingga kaca tidak boleh dipanaskan melampaui temperatur *softening* agar bentuk kaca tidak terdistorsi^[4].

Proses *quenching* merupakan proses konduksi transien. Pada tahapan *quenching*, kaca didinginkan secara cepat menggunakan media cair ataupun media gas dengan temperatur konstan (Gambar 2.4). Pada awal tahapan *quenching*, temperatur permukaan akan lebih rendah dibandingkan dengan temperatur interior kaca, sehingga permukaan kaca akan mengeras, sedangkan interior kaca masih relatif lebih lunak. Saat interior kaca mendingin dan

menyusut, permukaan kaca yang telah terlebih dahulu mengeras akan menahan penyusutan interior kaca, sehingga interior kaca akan mengalami tegangan tarik. Sebaliknya, penahanan penyusutan interior kaca akan menyebabkan permukaan kaca mengalami tegangan kompresi. Untuk memperoleh keadaan ini, maka perbedaan temperatur antara permukaan dengan interior kaca harus dipertahankan sedemikian sampai melewati *strain point*, sehingga dihasilkan *tempered glass* dengan kekuatan standar^[3].

2.2 Konduksi Transien

Konduksi transien dipengaruhi oleh dua parameter utama, yaitu bilangan *Biot* (*Bi*) dan *Fourier* (*Fo*). *Biot number* adalah rasio dari perbedaan temperatur benda dengan perbedaan temperatur permukaan benda dengan fluida sekitar, yang dapat dirumuskan menjadi:

$$\frac{T_{s,1} - T_{s,2}}{T_{s,2} - T_{\infty}} = \frac{L/kA}{1/hA} = \frac{R_{t,konduksi}}{R_{t,konveksi}} = \frac{hL}{k} = Bi \quad \dots \dots \quad 2.5^{[9]}$$

Dengan $T_{s,1}$ dan $T_{s,2}$ adalah temperatur pada permukaan benda, dan T_{∞} adalah temperatur fluida sekitar. Berdasarkan persamaan 2.5, nilai *Bi* akan rendah bila hambatan termal konduksi lebih kecil daripada hambatan termal konveksi, ySang mengakibatkan persebaran temperatur uniform

Gambar 2.4 Grafik temperatur permukaan dan interior kaca tebal 4mm terhadap waktu pada proses pemanasan dan *quenching*^[4]

Gambar 2.5 Efek *Biot number* terhadap distribusi temperatur pada konduksi transien dalam *plane wall*^[9]

didalam benda. Sebaliknya, semakin tinggi nilai Bi, perbedaan temperatur dalam benda akan menjadi semakin signifikan (Gambar 2.5). Untuk memudahkan perhitungan, L pada persamaan 2.5 didefinisikan sebagai *characteristic length* (L_c), yaitu rasio antara volume dengan luas permukaan benda^[9].

Bilangan *Fourier* (*Fo*) adalah parameter waktu tak-berdimensi (*t**). *Fo* dirumuskan sebagai:

$$Fo = \frac{\alpha t}{L_c^2} = \frac{kL^2(1/L)\Delta T}{\rho c_p (L^3/t)\Delta T} = \frac{\dot{Q}_{conduction}}{\dot{Q}_{store}} \quad \dots \dots 2.6^{[9]}$$

Dimana α adalah *thermal diffusivity*, yaitu rasio antara konduktivitas termal (*k*) dengan kapasitas kalor (ρ . c_p). *t* pada persamaan 2.6 melambangkan waktu ketika fenomena perpindahan panas transien dianalisa.

2.2.1 Analisa Konduksi Transien Menggunakan Metode Numerik

Konduksi transien secara umum mengikuti *heat diffusion* equation yaitu untuk koordinat spherical:

Dengan asumsi tidak ada *heat generation*, perpindahan panas transien 2 dimensi, dan koefisien konduktivitas termal yang konstan, persamaan 2.7 akan berubah menjadi:

$$\frac{\partial^2 T}{\partial r^2} + \frac{2}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{ctg\theta}{r^2} \frac{\partial T}{\partial \theta} = \frac{1}{\alpha} \frac{\partial T}{\partial t} \quad \dots \dots 2.8^{[9]}$$

Persamaan 2.8 merupakan persamaan diferensial parsial tipe *parabolic*. Untuk menyelesaikan persamaan diferensial tersebut, perlu diketahui dua *boundary condition* dan satu *initial condition*. *Initial condition* pada konduksi transien digunakan:

Batasan tersebut berarti temperatur awal pada tiap-tiap jarak r dan θ dari *midplane* adalah $T_{i,j}$. Sedangkan, *boundary condition* yang digunakan pada *surface* 2 (*outer surface*) dan 1 (*inner surface*) adalah, seperti diilustrasikan pada Gambar 2.6:

$$-k\frac{\partial I}{\partial r_{r=r_2}} = h_2[T(r_2, t) - T_{\infty}] \quad \dots \dots \quad 2.10^{[10]}$$

Gambar 2.6 Konduksi transien pada koordinat spherical

$$k \frac{\partial T}{\partial r_{r=r_1}} = h_1 [T(r_1, t) - T_\infty] \quad \dots \quad 2.11^{[10]}$$

Persamaan diferensial parsial tipe *parabolic* biasa diselesaikan dengan metode implisit^[10]. Pada Gambar 2.7 diilustrasikan metode implisit pada sebuah diagram nodal. Simbol T^n , T^{n+1} , dan seterusnya melambangkan bahwa pada *time increment* dituliskan pada bagian atas variabel persamaan, sedangkan simbol T_i , T_{i+1} , dan seterusnya menandakan bahwa *space increment* dituliskan pada bagian bawah variabel. Berdasarkan sifatnya, metode ini merupakan metode implisit, yang persamaan-persamaannya tidak dapat diselesaikan secara langsung, melainkan harus disubstitusi satu sama lain untuk memperoleh hasil penyelesaian. Metode ini menggunakan *forward difference* untuk komponen turunan pertama temperatur terhadap waktu

dan turunan pertama temperatur terhadap dimensi jarak (x atau r) dan sudut (θ) diperoleh dari *central difference approximation* pada akhir (T^{n+1}) *time increment*, berturut-turut dapat dituliskan:

Gambar 2.7 Diagram nodal untuk metode implisit^[10]

$$\frac{\partial T}{\partial r} \cong \frac{T_{i+1,j}^{n+1} - T_{i-1,j}^{n+1}}{\Delta r} \quad \dots \dots 2.13(a)^{[10]}$$
$$\frac{\partial T}{\partial \theta} \cong \frac{T_{i,j+1}^{n+1} - T_{i,j-1}^{n+1}}{\Delta \theta} \quad \dots \dots 2.13(b)^{[10]}$$

Sedangkan komponen turunan kedua dari temperatur terhadap dimensi panjang (x atau r) dan sudut (θ) diperoleh dari *central difference approximation* akhir (T^{n+1}) *time increment*, dapat berturut-turut dituliskan:

$$\frac{\partial^2 T}{\partial r^2} \approx \frac{T_{i+1,j}^{n+1} - 2T_{i,j}^{n+1} + T_{i-1,j}^{n+1}}{(\Delta r^2)} \quad \dots \dots 2.14(a)^{[10]}$$
$$\frac{\partial^2 T}{\partial \theta^2} \approx \frac{T_{i,j+1}^{n+1} - 2T_{i,j}^{n+1} + T_{i,j-1}^{n+1}}{(\Delta \theta^2)} \quad \dots \dots 2.14(b)^{[10]}$$

Dengan mensubstitusi persamaan 2.12, 2.13, dan 2.14 kedalam persamaan 2.8, dengan $r = (i-1)\Delta r + r_1 \operatorname{dan} \theta = (j-1)\Delta \theta$, akan didapatkan persamaan untuk nodal *interior*:

$$T_{i,j}^{n} = \left(2\Delta t\alpha \left(\frac{1}{(r\Delta\theta)^{2}} + \frac{1}{\Delta r^{2}}\right) + 1\right) T_{i,j}^{n+1} - \frac{\alpha\Delta t}{\Delta r} \left(\frac{1}{\Delta r} + \frac{1}{r}\right) T_{i+1,j}^{n+1} - \frac{\alpha\Delta t}{\Delta r} \left(\frac{1}{\Delta r} - \frac{1}{r}\right) T_{i-1,j}^{n+1} - \frac{\alpha\Delta t}{r\Delta\theta} \left(\frac{1}{r\Delta\theta} + \frac{ctg\theta}{2r}\right) T_{i,j+1}^{n+1} - \frac{\alpha\Delta t}{r\Delta\theta} \left(\frac{1}{r\Delta\theta} - \frac{ctg\theta}{2r}\right) T_{i,j-1}^{n+1} - \frac{\alpha\Delta t}{r\Delta\theta} \left(\frac{1}{r\Delta\theta} - \frac{2.15}{r}\right)$$

Sedangkan, pada *outer* dan *inner surface* berlaku *convection*
boundary condition, sehingga dengan mensubstitusikan persamaan
2.10 atau 2.11 kedalam persamaan 2.15, didapatkan persamaan
untuk *outer surface*,

$$T_{i,j}^{n} + \frac{2h_2\alpha\Delta t}{k} \left(\frac{1}{\Delta r} + \frac{1}{r}\right) T_{\infty} = \left(2\Delta t\alpha \left(\frac{h_2}{k\Delta r} + \frac{h_2}{r} + \frac{1}{(r\Delta\theta)^{2}} + \frac{1}{\Delta r^{2}}\right) + 1\right) T_{i,j}^{n+1} - \frac{2\alpha\Delta t}{\Delta r^{2}} T_{i-1,j}^{n+1} - \frac{\alpha\Delta t}{r\Delta\theta} \left(\frac{1}{r\Delta\theta} + \frac{ctg\theta}{2r}\right) T_{i,j+1}^{n+1} - \frac{\alpha\Delta t}{r\Delta\theta} \left(\frac{1}{r\Delta\theta} - \frac{ctg\theta}{2r}\right) T_{i,j-1}^{n+1} - \frac{2.16a}{c\Delta t} \left(\frac{1}{\Delta r} - \frac{1}{r}\right) T_{\infty} = \left(2\Delta t\alpha \left(\frac{h_2}{k\Delta r} + \frac{h_2}{r} + \frac{1}{(r\Delta\theta)^{2}} + \frac{1}{\Delta r^{2}}\right) + 1\right) T_{i,j}^{n+1} - \frac{2\alpha\Delta t}{k} \left(\frac{1}{\Delta r} - \frac{1}{r}\right) T_{\infty} = \left(2\Delta t\alpha \left(\frac{h_2}{k\Delta r} + \frac{h_2}{r} + \frac{1}{(r\Delta\theta)^{2}} + \frac{1}{\Delta r^{2}}\right) + 1\right) T_{i,j}^{n+1} - \frac{2\alpha\Delta t}{k} \left(\frac{1}{\Delta r} - \frac{1}{r}\right) T_{\infty} = \left(2\Delta t\alpha \left(\frac{h_2}{k\Delta r} + \frac{h_2}{r} + \frac{1}{(r\Delta\theta)^{2}} + \frac{1}{\Delta r^{2}}\right) + 1\right) T_{i,j}^{n+1} - \frac{2\alpha\Delta t}{k} \left(\frac{1}{\Delta r} - \frac{1}{r}\right) T_{\infty} = \left(2\Delta t\alpha \left(\frac{h_2}{k\Delta r} + \frac{h_2}{r} + \frac{1}{(r\Delta\theta)^{2}} + \frac{1}{\Delta r^{2}}\right) + 1\right) T_{i,j}^{n+1} - \frac{2\alpha\Delta t}{k} \left(\frac{1}{\Delta r} - \frac{1}{r}\right) T_{\infty} = \left(2\Delta t\alpha \left(\frac{h_2}{k\Delta r} + \frac{h_2}{r} + \frac{1}{(r\Delta\theta)^{2}} + \frac{1}{\Delta r^{2}}\right) + 1\right) T_{i,j}^{n+1} - \frac{2\alpha\Delta t}{k} \left(\frac{1}{\Delta r} - \frac{1}{r\Delta\theta}\right) \left(\frac{1}{r\Delta\theta} + \frac{ctg\theta}{2r}\right) T_{i,j+1}^{n+1} - \frac{\alpha\Delta t}{r\Delta\theta} \left(\frac{1}{r\Delta\theta} - \frac{\alpha\Delta t}{r\Delta\theta}\right) \left(\frac{1}{r\Delta\theta} - \frac{\alpha\Delta t}{r\Delta\theta}\right) \left(\frac{1}{r\Delta\theta} + \frac{ctg\theta}{2r}\right) T_{i,j+1}^{n+1} - \frac{\alpha\Delta t}{r\Delta\theta}\left(\frac{1}{r\Delta\theta} - \frac{\alpha\Delta t}{r\Delta\theta}\right) \left(\frac{1}{r\Delta\theta} - \frac{\alpha\Delta t}{r\Delta\theta}\right) T_{i,j-1}^{n+1} - \frac{\alpha\Delta t}{r\Delta\theta}\left(\frac{1}{r\Delta\theta} - \frac{\alpha\Delta t}{r\Delta\theta}\right) \left(\frac{1}{r\Delta\theta} + \frac{ctg\theta}{2r}\right) T_{i,j+1}^{n+1} - \frac{\alpha\Delta t}{r\Delta\theta}\left(\frac{1}{r\Delta\theta} - \frac{\alpha\Delta t}{r\Delta\theta}\right) \left(\frac{1}{r\Delta\theta} + \frac{ctg\theta}{2r}\right) T_{i,j+1}^{n+1} - \frac{\alpha\Delta t}{r\Delta\theta}\left(\frac{1$$

2.3 Impinging Jet

Pada impinging jet, gas dipancarkan keluar menuju udara sekitar melalui sebuah nozzle atau sebuah celah. Pancaran udara yang dihasilkan bersifat turbulen, serta terdapat profil kecepatan yang uniform pada nozzle exit. Seperti yang terlihat pada Gambar 2.8, free boundary dari pancaran gas akan melebar seiring bertambahnya jarak dari *nozzle* akibat interaksi antara momentum pancaran gas dengan udara sekitar. Potential core, vaitu daerah dimana kecepatan keluar uniform dipertahankan, juga ikut mengecil, sehingga profil kecepatan pada penampang pancaran gas menjadi non-uniform. Kecepatan maksimum (kecepatan pada pusat pancaran) juga mengecil seiring dengan bertambahnya jarak dari nozzle exit. Pada daerah stagnasi, atau impingement zone, aliran akan tertahan oleh permukaan benda, dan mengalami perlambatan kearah sumbu z (normal), serta percepatan kearah sumbu *r* atau *x* (transversal). Namun, karena *boundary laver* aliran semakin melebar, percepatan aliran kearah transversal pada daerah stagnasi akan berubah menjadi wall jet yang mengalami perlambatan. Bila terdapat perbedaan

Gambar 2.8 Tumbukan pancaran gas pada permukaan oleh $nozzle^{[9]}$

temperatur atau konsentrasi antara *surface* dengan *outlet nozzle*, akan terjadi perpindahan panas atau perpindahan massa^[7].

Perpindahan panas *impinging jets* sering menggunakan suatu susunan *nozzle*, seperti yang terlihat pada Gambar 2.9. Selain karakteristik aliran pada daerah *free jet*, daerah stagnasi, dan daerah *wall jet*, akan terbentuk daerah stagnasi sekunder akibat interaksi dari pancaran gas yang bersebelahan. Untuk *nozzle* tunggal, koefisien konveksi lokal dan rata-rata terkait dengan semua nilai r > 0 dan x > 0. Untuk sebuah susunan *nozzle*, nilai koefisien konveksi lokal dan rata-rata akan ekuivalen dengan nilai koefisien konveksi lokal dan rata-rata untuk setiap *unit cell* (daerah yang dibatasi oleh garis putus-putus). *Nozzle* yang tersusun secara *square-in-line* akan memiliki *unit cells* berbentuk persegi, dan *nozzle* yang tersusun secara *equilaterally staggered* akan memiliki *unit cells* berbentuk segi enam beraturan. Suatu parameter geometri yang penting adalah A_r , yaitu rasio antara luasan *nozzle exit* dengan luasan *unit cell*^[7].

Gambar 2.9 Tampak atas untuk (a) *single round jet*, (b) *squarein-line array of round jets*, (c) *equilaterally staggered array of round jets*, (d) *single slot jet*, dan (e) *array of slot jets*^[9].

Nilai Nu rata-rata didapatkan dengan mengintegrasikan Nu lokal sebesar luas permukaan benda. Untuk *single round nozzle*, korelasi empirik antara Nu_{avg} , Pr, dan Re yang berlaku adalah

$$\frac{Nu}{Pr^{0.42}} = G[2Re^{0.5}(1+0.005Re^{0.55})^{0.5}] \dots 2.17^{[9]}$$

G adalah:

dengan G adalah:

$$G = 2A_r^{0.5} \frac{1 - 2.2A_r^{0.5}}{1 + 0.2(H/D - 6)A_r^{0.5}} \quad \dots \dots 2.18^{[9]}$$

Korelasi tersebut berlaku untuk $2000 \le Re \le 400000, 2 \le H/D \le 12$, dan $0.004 \le A_r \le 0.04$. Sedangkan, untuk *array of round nozzle*, korelasi empirik antara *Nu*_{avg}, *Pr* dan *Re* yang berlaku adalah

$$\frac{\overline{Nu}}{Pr^{0.42}} = 0.5K \ GRe^{2/3} \ \dots 2.19^{[9]}$$

dengan K adalah:

Korelasi tersebut berlaku untuk $2000 \le Re \le 100000, 2 \le H/D \le 12$, dan $0.004 \le A_r \le 0.04$. Variabel K ditambahkan pada korelasi ini karena untuk *array of round nozzle*, pada $H/D \ge 0.6/A_r^{0.5}$, Nu_{avg} akan menurun lebih cepat seiring dengan bertambahnya H/Ddibandingkan dengan pada *single round nozzle*. Dari korelasikorelasi tersebut, dapat disimpulkan bahwa perpindahan panas *impinging jets* dipengaruhi oleh parameter yaitu *Reynolds number*, *Prandtl number, nozzle-to-surface distance* (H/D), serta rasio luasan *nozzle exit* dengan *unit cell* (A_r)^[7].

2.4 Penelitian Terdahulu

2.4.1 Gardon (1965)

Robert Gardon, dalam *The Tempering of Flat Glass by Forced Convection*, melakukan penelitian eksperimental terhadap *flat tempered glass* dengan ketebalan 0.61 cm. Pada penelitian ini digunakan fluida *quench* udara dengan variasi *heat transfer coefficient* (*h*) dari 0.0003 cal/cm²°C sec (*natural convection*) hingga 0.0132 cal/cm²°C sec, serta temperatur awal proses *quenching* dari 500°C hingga 750°C. Penelitian berujuan untuk mengetahui pengaruh parameter koefisien perpindahan panas dan temperatur awal *quenching* terhadap kekuatan akhir kaca yang ditunjukkan dengan nilai *degree of temper*^[5].

Gambar 2.10 *Degree of temper* sebagai fungsi dari *heat transfer coefficient* dan temperatur awal *quenching* pada *flat tempered glass* dengan ketebalan 0.61 cm^[5]

Hasil eksperimen menunjukkan adanya keterkaitan antara nilai *heat transfer coefficient* dengan temperatur awal *quenching* dan *degree of temper*, seperti terlihat pada Gambar 2.10. Dari gambar tersebut tampak bahwa semakin tinggi *heat transfer coefficient*, semakin tinggi pula *degree of temper* yang dihasilkan proses *quenching*. Namun, semakin tinggi *heat transfer coefficient*, semakin tinggi pula suhu terendah ijin proses *quenching*. Kenaikan *quenching temperature* juga akan menaikkan nilai *degree of temper*. Pada temperatur *quenching* yang tinggi, grafik akan menunjukkan nilai *degree of temper* yang konstan, karena *degree of temper* tidak lagi bergantung pada *quench temperature*^[5].

2.4.2 Sinha (1978)

N.K. Sinha, dalam Stress State in Tempered Glass Plate and Determination of Heat Transfer Rate, membandingkan antara kekuatan tempered glass yang dihitung melalui metode analitis dan yang didapatkan dari pengukuran birefringence. Skema percobaan untuk mengukur birefringence kaca dapat dilihat pada Gambar 2.11. Selain itu, penelitian ini juga dilakukan untuk mengetahui efek heat transfer rate dan waktu quench terhadap distribusi temperatur pada flat tempered glass^[6].

Gambar 2.11 Diagram skematik susunan peralatan yang digunakan untuk mengikur *birefringence tempered glass*^[6]

Gambar 2.12 Nilai *birefringence* pada *midplane tempered glass* 0.59 cm x 2.5 cm x 15 cm, dengan *h* sebesar 0.0075 cal/cm² s °C, dan T_i 160°C^[6]

Berdasarkan penelitian yang dilakukan, diketahui bahwa kekuatan kaca yang diperoleh berdasarkan metode analitis (persamaan 2.1) akan mendekati kekutan kaca berdasarkan pengukuran *birefringence*. Grafik kekuatan kaca berdasarkan kedua meode dapat dilihat pada Gambar 2.12. Selain itu, didapatkan pula pengaruh *heat transfer rate* terhadap distribusi temperatur pada *tempered glass*. Tampak pada Gambar 2.13, bahwa semakin tinggi *heat transfer rate*, semakin tinggi pula perbedaan antara temperatur *midplane* dengan temperatur rata-rata kaca. Namun, seiring berjalannya waktu, *heat transfer rate* yang tinggi akan menyebabkan penurunan yang cepat pada selisih temperatur *midplane* dengan temperatur rata-rata kaca^[6].

Gambar 2.13 Efek variasi *heat transfer rate* dan waktu *quench* terhadap perbedaan temperatur *midplane* dengan temperatur rata-rata^[6]

BAB 3 METODOLOGI

3.1 Flowchart Penelitian

Dalam menganalisis pengaruh perubahan parameter geometri tak berdimensi, waktu *quenching*, dan/atau kecepatan angin terhadap kekuatan *hemispherical tempered glass*, akan dilakukan tahap-tahap seperti tampak pada Gambar 3.1 dibawah ini

Gambar 3.1 Flowchart penelitian

3.2 Metode Penelitian

Dalam menganalisis pengaruh perubahan parameter geometri tak berdimensi, waktu *quenching*, dan/atau kecepatan angin terhadap kekuatan *hemispherical tempered glass*, terdapat beberapa tahap yang akan dilakukan, yaitu:

1. Studi literatur.

Untuk memperdalam pemahaman mengenai permasalahan yang dibahas, dilakukan studi literatur yang berkaitan dengan proses perpindahan panas *impinging jet* dengan pengaruh variasi rasio *H/D* (*dimensionless nozzle-to-surface distance*), pengaruh kelengkungan permukaan terhadap perpindahan panas *impinging jet*, pengaruh koefisien konveksi (*h*) terhadap kekuatan kaca, serta studi literatur mengenai analisa numerik perpindahan panas transien pada koordinat *spherical*. Studi literatur diperoleh dari buku-buku teks, jurnal, *e-book*, dan penelitian terdahulu.

2. Perhitungan koefisien konveksi fluida (*h*)

Perhitungan nilai koefisien konveksi (*h*) dilakukan sebelum tahap permodelan matematik. Nilai koefisien konveksi rata-rata (h_{avg}) pada permukaan luar dan dalam spesimen akan didekati menggunakan korelasi perpindahan panas *impinging jet* dengan *array of round nozzle on a flat surface*, dengan nilai *H/D* yang bervariasi pada masing-masing nodal sesuai dengan kelengkungan permukaan. Variasi nilai *H/D* yang digunakan (2, 6, 9, dan 12) adalah nilai *H/D* untuk $\theta = 0^\circ$, seperti terlihat pada Gambar 3.2. Selain itu digunakan pula variasi *Re* yaitu Re = 2300, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, dan 87000. Pendekatan Menggunakan Korelasi Perpindahan Panas Impinging Jets dengan Array of Round Nozzles

Gambar 3.2 Pendekatan menggunakan korelasi perpindahan panas *impinging jets* dengan *array of equilaterally staggered round nozzle on a flat surface*

3. Permodelan dan penulisan kode pemrograman

Tahap permodelan dimulai dengan menentukan jumlah *meshing* pada spesimen. Setelah ditentukan jumlah *meshing* yang digunakan, diturunkan persamaan differensial *parabolic* serta ditentukan *initial condition* dan *convection boundary condition* berdasarkan nilai *h* yang diperoleh pada tahap perhitungan. Setelah proses permodelan, model matematik dimasukkan ke dalam kode pemrograman dalam bentuk matriks untuk diselesaikan menggunakan program MATLAB. Hasil penyelesaian program MATLAB akan berupa distribusi temperatur, yang akan diproses secara analitis untuk menghasilkan data distribusi kekuatan *tempered glass*.

4. Pengolahan data kekuatan tempered glass

Distribusi nilai kekuatan *tempered glass* (σ) didapatkan dengan mengkonversi data distribusi temperatur yang didapatkan. Data distribusi kekuatan *tempered glass* akan ditampilkan dalam bentuk grafik untuk dianalisis secara kuantitatif. Dari grafik tersebut, akan tampak pengaruh perubahan H/D dan kecepatan angin terhadap kekuatan *hemispherical tempered glass* serta waktu *quenching*.

3.3 Dimensi, *Meshing*, serta *Boundary* Spesimen 3.3.1 Dimensi Spesimen dan Susunan *Nozzle*

Adapun spesimen dan *nozzle* yang digunakan dalam penelitian beserta ukurannya dapat dilihat pada Gambar 3.3, Gambar 3.4, dan Tabel 3.1.

3.3.2 Meshing, Boundary, serta Parameter Spesimen

Pembuatan meshing dilakukan berdasarkan geometri control volume. Mesh yang digunakan adalah jenis

Tampak Atas

Gambar 3.3 Tampak depan susunan Nozzle

Gambar 3.4 Susunan *nozzle* beserta spesimen yang digunakan pada permodelan

Parameter	Ukuran
Diameter <i>Nozzle</i> (ϕ_{nozzle})	4 mm
Radius <i>Dome</i> (R_{dome})	622.56 mm
Diameter Hemisphere	400 mm
$(\phi_{hemisphere})$	
Diagonal Nozzle Pitch (P_d)	27 mm
Transverse Nozzle Pitch (P_t)	27 mm
Jumlah Nozzle Total	190

Tabel 3.1 Parameter beserta ukuran nozzle dan spesimen

quadrilateral-map dengan susunan radial. Meshing untuk pemodelan hemispherical tempered glass ditunjukkan pada Gambar 3.3. Permodelan numerik konduksi transien pada hemispherical tempered glass akan menggunakan time

De	T 4	
penelitian		
Tabel 3.2 Kondisi batas spesimen dan parameter fluida pada		

Parameter		Input	
Boundary	Outer surface	Konveksi (T_{∞} , h_{outer})	
condition	Inner surface	Konveksi (T_{∞} , h_{inner})	
	Initial condition	$T_{initial} = 625^{\circ}\mathrm{C}$	
Fluidak	Udara	$T_{\infty} = 60^{\circ}\mathrm{C}$	
		$\rho = 1.08 \text{ kg/m}^3$	
		$\mu = 196.4 \text{ x } 10^{-7} \text{ N.s/m}$	
		$k_f = 0.028 \text{ W/m.K}$	
		$P_r = 0.7035$	
		$C_p = 1.008 \text{ kJ/kg.K}$	
Material kaca	Float Glass	$E = 7.45 \text{ x } 10^{10} \text{ N/m}^2$	
		<i>v</i> = 0.201	
		$\alpha = 7.7 \text{ x } 10^{-6} \text{ /K}$	
		k = 0.8793 W/m.K	
		$K_{1c} = 2.15 \text{ Mpa/m}^{0.5}$	

increment (Δt) sebesar 0.05 sekon serta Δr dan $\Delta \theta$ sebesar 0.1 mm dan 2°. Sedangkan, kondisi batas dan material spesimen, serta parameter fluida yang berlaku pada spesimen dapat dilihat pada tabel 3.2.

3.4 Pembahasan Grafik

Setelah data distribusi temperatur diubah menjadi data distribusi kekuatan, dilakukan pengambilan data grafik dan kontur yang akan dibahas dalam BAB IV, yaitu:

- Kontur temperatur pada setiap variasi bilangan Reynolds (*Re*) dan *nozzle-to-surface distance* (*H/D*) untuk setiap *time increment*
- 2. Grafik distribusi tegangan untuk setiap variasi bilangan Reynolds (*Re*) dan *nozzle-to-surface distance* (*H*/*D*)
- 3. Grafik ukuran pecahan setiap variasi bilangan Reynolds (*Re*) dan *nozzle-to-surface distance* (*H*/*D*)

dari grafik dan kontur ini akan dilakukan perbandingan terhadap variasi Re dan H/D pada setiap *time increment* sehingga dapat ditentukan *range* optimal operasi dari kedua parameter.

Gambar 3.5 Meshing dan boundary condition spesimen

BAB 4 ANALISIS DAN PEMBAHASAN

Pada bab ini akan dibahas hasil analisis numerik tentang pengaruh efek perubahan rasio jarak *nozzle-to-surface* (*H/D*) dan bilangan Reynolds *impinging jet* terhadap waktu *quench* (t = f(Re, *H/D*)) dan kekuatan *hemispherical tempered glass* ($\sigma = f(Re, H/D)$). Perhitungan numerik dilakukan menggunakan software MATLAB. Data kuantitatif yang akan ditampilkan dan dibahas yaitu analisis nilai tegangan lokal, grafik distribusi tegangan, serta grafik tegangan dan waktu *quench* sebagai fungsi dari bilangan Reynolds dan rasio jarak *nozzle-to-surface*. Data kualitatif yang akan ditampilkan yaitu kontur temperatur.

4.1 Analisis Kualitatif Visualisasi Kontur Temperatur pada Spesimen

Dari permodelan dan analisis numerik didapatkan data berupa visualisasi kontur temperatur spesimen pada domain waktu dengan variasi *Re* dan *H/D*. Gambar 4.1 menunjukkan kontur temperatur spesimen selama proses *quench* dengan *Re* = 60000 dan H/D = 9. Temperatur awal spesimen (t = 0 s) adalah sebesar 625°C (898 K). Sisi luar (r₁) dan dalam (r₂) spesimen didinginkan secara konveksi dengan koefisien konveksi yang dihitung berdasarkan pendekatan *array of round impinging jets* dengan nilai *H/D* bergantung pada posisi masing-masing nodal, seperti dituliskan pada persamaan 2.18 – 2.20.

$$G = 2A_r^{0.5} \frac{1 - 2.2A_r^{0.5}}{1 + 0.2(H/D - 6)A_r^{0.5}} \dots 2.18^{[9]}$$
$$\frac{\overline{Nu}}{Pr^{0.42}} = 0.5K \ GRe^{2/3} \dots 2.19^{[9]}$$
$$K = \left[1 + \left(\frac{H/D}{0.6/A_r^{0.5}}\right)^6\right]^{-0.05} \dots 2.20^{[9]}$$

Distribusi temperatur dapat dilihat dari spektrum: warna merah menunjukkan temperatur tertinggi, sedangkan warna biru tua menunjukkan temperatur terendah. Terlihat bahwa temperatur tertinggi terletak pada bagian *interior* dan temperatur paling rendah terletak pada permukaan interior spesimen.

Secara garis besar, tren kontur temperatur yang dihasilkan oleh semua variasi nilai Re dan H/D dapat dibedakan menjadi 5 kelompok seperti pada tabel dibawah ini:

Kelompok	Waktu	H/D	Re
	Quench		
	(s)		
А	$t \leq 5.3$	2	Re = 30000 - Re = 87000
		6	Re = 40000 - Re = 87000
		9	Re = 50000 - Re = 87000
		12	Re = 60000 - Re = 87000
В	$5.3 < t \le 5.5$	2	Re = 20000
		6	Re = 20000 - Re = 30000
		9	Re = 20000 - Re = 40000
		12	Re = 30000 - Re = 50000
С	$5.5 < t \le 5.6$	2	Re = 10000
		12	Re = 20000
D	$5.6 < t \le 5.8$	2	Re = 10000
		6	Re = 10000
		9	Re = 10000
		12	Re = 10000
Е	t > 5.8	2	Re = 2300
		6	Re = 2300
		9	Re = 2300
		12	Re = 2300

Tabel 4.1 Kelompok berdasarkan tren kontur temperatur

Gambar 4.1 Kontur temperatur spesimen pada proses *quenching* dengan Re = 60000, H/D = 9

Kelompok (A), (B), (C), (D), dan (E) memiliki suhu kaca yang seluruhnya berada di bawah *strain point* (510°C, 783 K) berturut-turut pada t = 5.3 s, pada t = 5.5 s, pada t = 5.6 s, pada t = 5.8 s, dan

Gambar 4.2 Perbandingan distribusi temperatur kelima kelompok variasi pada t = 5.5

pada t = 6.9 s. Perbandingan kontur suhu kelima kelompok pada t = 5.5 s dapat dilihat pada Gambar 4.2. Dari gambar ini dapat dilihat pula hubungan nilai Re dan H/D terhadap distribusi temperatur pada spesimen.

Semakin kecil nilai Re, semakin tinggi suhu *midplane* pada waktu yang bersangkutan, hal ini akibat kecilnya laju perpindahan panas dari spesimen ke lingkungan. Selain itu, kenaikan nilai H/D akan menghasilkan temperatur interior lebih tinggi, karena semakin besar jarak antara *nozzle* dan permukaan spesimen, semakin rendah pula koefisien konveksi *impinging jets*. Perbedaan temperatur lokal yang dihasilkan saat melewati *strain point* akan menghasilkan profil tegangan pada kaca. Seperti terlihat pada Gambar 4.1 maupun Gambar 4.2 (A), setiap nilai θ akan memiliki sedikit perbedaan pada distribusi temperatur, sehingga profil tegangan yang dihasilkan maupun penurunan nilai Re dan H/D akan menyebabkan perubahan profil tegangan, karena perubahan parameter-parameter *quench* tersebut juga terlihat menghasilkan perbedaan kontur temperatur.

4.2 Analisis Distribusi Tegangan Spesimen

Setelah didapatkan kontur temperatur spesimen, tegangan lokal spesimen dihitung menggunakan persamaan 2.1. Data yang digunakan dalam perhitungan ini adalah data distribusi temperatur spesimen sesaat setelah seluruh temperatur benda melewati *strain point* (510°C, 783 K). Pada pembahasan ini akan diambil contoh perhitungan pada variasi Re = 2300 dan H/D = 6, menghasilkan *quench time* 6.55 s.

4.2.2 Contoh Perhitungan Distribusi Tegangan pada Spesimen

Dari distribusi temperatur pada gambar 4.3, didapatkan suhu rata-rata spesimen = 657.662 K (384.662°C). Selanjutnya, nilai tegangan lokal spesimen dihitung menggunakan persamaan 2.1. Data-data sifat mekanik *soda lime glass* tertera pada tabel dibawah ini:

No	Properties	Nilai	
1.	Modulus elastisitas (E)	6 x 10 ¹⁰ N/m ²	
2.	Poisson ratio (v)	0.201	
3.	Koefisien muai panjang (α)	7.7 x 10 ⁻⁶ /K	
4.	Fracture toughness (K_{lc})	2.15 Mpa/m ^{0.5}	

Tabel 4.2 Sifat-sifat mekanik *soda lime glass*

Sebagai contoh perhitungan, digunakan data temperatur pada r = 0.6220 m dan $\theta = 6^{\circ}$.

- T = 573.684 K
- $T_{avg} = 657.662 \text{ K}$

Gambar 4.3 Distribusi suhu lokal nodal pada Re = 2300 dan H/D = 6, quench time = 6.55 s

$$\sigma_{r=0.622, \ \theta=6^{o}} = \frac{E\alpha}{1-v} \left(\theta_{r=0.622, \ \theta=6^{o}} - \theta_{avg}\right)$$

$$\sigma_{r=0.622, \ \theta=6^{o}} = \frac{6 \times 10^{10} (7.7 \times 10^{-6})}{1-0.201} (573.684 - 657.662)$$

$$\sigma_{r=0.622, \ \theta=6^{o}} = \frac{46.2 \times 10^{4}}{0.799} (-83.978)$$

$$\sigma_{r=0.622, \ \theta=6^{o}} = -48.558 \ MPa = -7042.76 \ psi$$

Perlu diperhatikan, tanda negatif hasil perhitungan tegangan menunjukkan arah kompresi.

4.2.3 Pembahasan Grafik Distribusi Tegangan

Seperti ditunjukkan pada Gambar 4.4, distribusi tegangan lokal spesimen memiliki profil parabolik. Profil ini menunjukkan bahwa proses glass tempering akan menghasilkan tegangan tarik tertinggi pada interior spesimen, dan tegangan tekan tertinggi pada permukaan kaca. Terlihat juga bahwa terjadi perbedaan nilai tegangan kompresi pada permukaan dalam benda (r = 0.6185 m) dan permukaan luar benda (r = 0.6225 m). Perbedaan ini disebabkan oleh kelengkungan benda yang menyebabkan perbedaan nilai H/D nodal. Semakin besar nilai H/D, semakin besar pula nilai koefisien konveksi lokal, sehingga berakibat turunnya temperatur nodal tersebut. Berdasarkan persamaan 2.1

$$\sigma_x = \frac{E\alpha}{1-v} \left(\theta_x - \theta_{avg}\right) \dots 2.1^{[6]}$$

rendahnya temperatur nodal akan mengakibatkan tegangan spesimen yang rendah pula. Hal ini juga menjelaskan perbedaan tren antara kedua permukaan benda. Pada permukaan dalam, terlihat nodal pada $\theta = 0^{\circ}$ memiliki tegangan kompresi permukaan terendah, dan nodal pada $\theta = 19^{\circ}$ memiliki tegangan kompresi permukaan tertinggi. Sebaliknya, permukaan luar spesimen menunjukan tren berlawanan, dengan tegangan kompresi tertinggi pada $\theta = 0^{\circ}$ dan terendah pada $\theta = 19^{\circ}$

Gambar 4.4 juga menunjukkan bahwa tegangan kompresi permukaan minimum yang dihasilkan oleh proses *glass tempering* dengan Re = 2300 dan H/D = 6 menghasilkan tegangan diatas tegangan spesifikasi *tempered glass* (*outer compression* = 14000 psi, *midplane tension* = 6400 psi). Perlu diperhatikan pula, karena dihasilkan dua tegangan kompresi permukaan yang berbeda pada proses ini, akan dipilih tegangan kompresi permukaan paling rendah (pada outer surface, $\theta = 19^{\circ}$) sebagai tegangan kompresi *overall* kaca.

Proses *quench* dengan nilai *Re* lebih tinggi, seperti ditunjukkan pada Gambar 4.5, juga akan menghasilkan profil tegangan parabolik pada kaca. Seperti halnya Gambar 4.4, Gambar 4.5 juga menunjukkan tegangan kompresi permukaan dan tegangan tarik internal diatas batas spesifikasi *tempered glass*. Hal ini menunjukkan bahwa proses *glass tempering* dengan Re = 87000 dan H/D = 6 sudah menghasilkan *tempered glass* sesuai spesifikasi. Namun, bila dibandingkan

Gambar 4.4 Distribusi tegangan spesimen pada Re = 2300 dan H/D = 6, quench time = 6.55 s

Gambar 4.5 Distribusi tegangan spesimen pada Re = 87000 dan H/D = 6, quench time = 5.2 s

dengan Gambar 4.4, perbedaan nilai tegangan kompresi pada tiap θ akan semakin kecil dengan kenaikan nilai *Re*. Selain itu, nilai proses dengan nilai *Re* lebih tinggi juga akan menghasilkan nilai *midplane tension* dan *surface compression* yang tinggi pula. Hal ini disebabkan karena naiknya *Re* akan menyebabkan kenaikan pula pada T_{avg} , sehingga berdasarkan persamaan 2.1, nilai tegangan lokal akan naik.

4.3 Analisis Pengaruh Rasio Jarak *Nozzle-to-Surface* (*H*/D) dan Bilangan Reynolds terhadap Tegangan Kompresi Permukaan

Gambar 4.6 menunjukkan hubungan antara tegangan kompresi permukaan benda dengan nilai Re dan H/D. Dapat terlihat pada gambar, bahwa semakin tinggi nilai Re, semakin

tinggi pula tegangan kompresi permukaan kaca. Sebaliknya, semakin tinggi H/D, semakin rendah tegangan kompresi. Bila dibandingkan dengan standar, seluruh variasi nilai Re maupun H/D yang digunakan dalam penelitian ini telah menghasilkan tegangan kompresi permukaan sesuai standar. Selain itu, pada gambar juga nampak bahwa kenaikan nilai tegangan kompresi permukaan akibat perubahan nilai Re dan H/D akan mendekati nilai tertentu pada $Re = \infty$.

Bila diteliti lebih lanjut, grafik pada Gambar 4.6 dapat dibagi menjadi tiga bagian: $Re \le 8000$, $8000 \le Re \le 30000$, dan $Re \ge 30000$. Pada *region* pertama, $Re \le 8000$, kenaikan nilai Re akan sangat berpengaruh terhadap kenaikan nilai tegangan kompresi permukaan (gradien grafik curam). Selain itu, penurunan nilai H/D juga berpengaruh pada kenaikan nilai tegangan

Gambar 4.6 Grafik tegangan kompresi permukaan sebagai fungsi bilangan *Reynolds* dan rasio jarak *nozzle-to-surface*

kompresi permukaan. Sebaliknya, bila dibandingkan dengan region pertama, gradien grafik region kedua lebih landai. Hal ini berarti nilai *Re* pada *region* kedua memiliki pengaruh yang lebih kecil terhadap tegangan kompresi permukaan. Nilai H/D juga sudah tidak terlalu berpengaruh karena bila diamati, kenaikan nilai *H/D* sebesar tiga kali lipat (H/D = 2 menjadi H/D = 6) hanya akan menurunkan tegangan kompresi permukaan sebesar 400 psi (pada Re = 30000). Sebagai pembanding, pada region 1, kenaikan nilai H/D = 2 menjadi H/D = 6 pada Re = 4300 akan menurunkan tegangan kompresi permukaan sebesar 1500 psi. Pengaruh kedua parameter quench akan semakin kecil pada $Re \ge 30000$. Pada region ini, grafik menunjukkan nilai tegangan kompresi permukaan nyaris sama untuk setiap variasi nilai H/D pada nilai Re tertentu. Hal ini dapat diartikan sebagai kecilnya pengaruh nilai *H/D* pada nilai *Re* tinggi. Selain itu, grafik juga menunjukkan gradien yang lebih kecil dibandingkan dengan gradien grafik pada region 1 dan 2, yang berarti nilai Re akan memiliki pengaruh relatif lebih kecil terhadap nilai tegangan kompresi permukaan.

Dari ketiga *region* tersebut, akan dibentuk persamaan untuk menghasilkan hubungan antara nilai Re, H/D, dan tegangan kompresi permukaan (σ_{sfc}). Berdasarkan tren grafik, akan digunakan regresi non-linear 2 dimensi mengikuti *power curve*. Hubungan dapat dituliskan secara universal:

$$\sigma_{sfc} = f(Re, H/D)$$

Dengan menggunakan regresi 2D *power curve*, untuk *region* 1, persamaan akan menjadi:

$$\sigma_{sfc} = C. Re^m. \left(\frac{H}{D}\right)^n$$

Analisis regresi grafik menggunakan *software* LABFIT^[11] akan menghasilkan nilai C, m, dan n berturut-turut sebesar 3664.43, 0.198, dan -0.065, sehingga dapat dituliskan:

$$\sigma_{sfc} = 3664.43 Re^{0.198} \cdot \left(\frac{H}{D}\right)^{-0.065}$$

Nilai n yang negatif sesuai dengan pengamatan grafik, dimana nilai σ_{sfc} akan turun seiring dengan bertambahnya nilai H/D.

Dalam menentukan hubungan antara nilai σ_{sfc} , *Re*, dan *H/D* pada *region* 2 dan 3, juga akan digunakan regresi 2D *power curve*. Namun, berbeda dengan *region* 1, pada persamaan untuk *region* 2 dan 3 akan ditambahkan suatu konstanta (parameter) untuk memperbaiki akurasi persamaan. Persamaan *power curve* yang digunakan akan beruah menjadi:

$$\sigma_{sfc} = C. Re^m. \left(\frac{H}{D}\right)^n + C_o$$

Regresi menggunakan *software* LABFIT^[11] akan menghasilkan nilai C = 43167.84, m = 0.03, n = -0.006159, dan C_o = -35872.24 untuk *region* 2, dan nilai C = 34772.06, m = 0.0204, n = -0.0055, dan C_o = -20099.83 untuk *region* 3. Kedua persamaan dapat ditulis:

$$\sigma_{sfc} = 43167.84Re^{0.03} \cdot \left(\frac{H}{D}\right)^{-0.006159} - 35872.24$$

$$\sigma_{sfc} = 34772.06Re^{0.0204} \cdot \left(\frac{H}{D}\right)^{-0.005} - 20099.83$$

Ketiga persamaan empiris yang dihasilkan bila digabung akan menjadi:

$$= \begin{cases} 3664.43Re^{0.198} \cdot (H/D)^{-0.065}, [Re \le 8000] \\ 43167.84 \cdot (H/D)^{-0.006159} - 35872.24, [8000 \le Re \le 30000] \\ 34772.06Re^{0.0204} \cdot (H/D)^{-0.005} - 20099.83, [Re \ge 30000] \end{cases}$$

Perbandingan grafik persamaan empiris dengan grafik nilai σ_{sfc} hasil analisis numerik dapat dilihat pada Gambar 4.7 Persamaan empiris ini memiliki tingkat kesesuaian dengan nilai σ_{sfc} aktual (*R squared value*) sebesar 95%. Bila diamati, nilai pangkat *Re* dan

squared value) sebesar 95%. Bila diamati, nilai pangkat *Re* dan *H/D* akan semakin menurun. Hal ini sesuai dengan tren aktual nilai σ_{sfc} pada tiap *region*: kenaikan nilai *Re* dan *H/D* akan memiliki pengaruh yang signifikan terhadap nilai σ_{sfc} pada pada *region* 1, dan akan memiliki pengaruh paling kecil pada *region* 3. Besar pengaruh dari kedua parameter ini dapat menjelaskan konvergensi nilai σ_{sfc} terhadap perubahan nilai *H/D* pada *region* 3, serta tren nilai σ_{sfc} yang akan mendekati suatu asimtot pada *region* 3. Perbedaan nilai m dan n juga menunjukkan bahwa pada proses glass tempering, besar nilai *Re* akan lebih berpengaruh terhadap kekuatan kaca dibandingkan dengan nilai *H/D*.

4.4 Analisis Pengaruh Rasio Jarak *Nozzle-to-Surface (H/D)* dan Bilangan Reynolds terhadap Waktu *Quench*

Gambar 4.8 menunjukkan hubungan antara waktu *quench* dengan nilai Re dan H/D. Dapat terlihat pada gambar, bahwa semakin tinggi nilai Re, semakin singkat waktu *quench*. Sebaliknya, semakin tinggi H/D, semakin lama waktu *quench* yang diperlukan. Selain itu, pada gambar juga nampak bahwa penurunan lama waktu *quench* akibat perubahan nilai Re dan H/D akan mendekati nilai tertentu pada $Re = \infty$.

Berbeda dengan Gambar 4.6, Gambar 4.8 memiliki tren yang dapat dibagi menjadi dua bagian: $Re \le 6500$ dan $Re \ge 6500$. Pada region pertama, $Re \leq 6500$, kenaikan nilai Re akan sangat berpengaruh terhadap penurunan lama proses quench (gradien grafik curam). Selain itu, penurunan nilai H/D juga berpengaruh pada penurunan lama quench. Sebaliknya, bila dibandingkan dengan region pertama, gradien grafik region kedua lebih landai. Hal ini berarti nilai *Re* pada *region* kedua memiliki pengaruh lebih kecil terhadap lama quench. Nilai H/D juga sudah tidak terlalu berpengaruh karena bila diamati, kenaikan nilai H/D sebesar tiga kali lipat (H/D = 2 menjadi H/D = 6) hanya akan menaikkan lama proses quench sebesar 0.07 detik (pada Re = 36300). Sebagai pembanding, pada region 1, kenaikan nilai H/D = 2 menjadi H/D= 6 pada Re = 3000 akan menaikkan lama *quench* sebesar 0.2 detik. Semakin tinggi nilai Re, semakin kecil pula pengaruh variasi nilai H/D, sehingga pada gambar akan tampak seolah-olah lama proses quench akan konvergen pada satu nilai.

Dari ketiga *region* tersebut, akan dibentuk persamaan untuk menghasilkan hubungan antara nilai *Re*, *H/D*, dan lama proses *quench* (t_q). Sama halnya dengan σ_{sfc} , akan digunakan regresi non-linear 2 dimensi mengikuti *power curve*. Hubungan dapat dituliskan secara universal:

$$t_q = f(Re, H/D)$$

Dengan menggunakan regresi 2D power curve, untuk region 1, persamaan akan menjadi: $(U + z)^{n}$

$$t_q = C.Re^m.(H/D)'$$

Analisis regresi grafik menggunakan *software* LABFIT^[11] akan menghasilkan nilai C, m, dan n berturut-turut sebesar 16.078, -0.12, dan -0.02, sehingga dapat dituliskan:

$$t_q = 16.078 Re^{-0.12} \cdot \left(\frac{H}{D}\right)^{0.02}$$

Nilai m yang negatif sesuai dengan pengamatan grafik, dimana nilai t_q akan turun seiring dengan bertambahnya nilai H/D.

Dalam menentukan hubungan antara nilai t_q , Re, dan H/D pada region 2, juga akan digunakan regresi 2D power curve. Regresi

menggunakan *software* LABFIT^[11] akan menghasilkan nilai C = 8.08, m = -0.04, dan n = 0.005. Dapat dituliskan:

$$t_q = 8.08 Re^{-0.04} \cdot \left(\frac{H}{D}\right)^{0.005}$$

Kedua persamaan empiris yang dihasilkan bila digabung akan menjadi:

$$t_q = \begin{cases} 16.078Re^{-0.12} \cdot \left(\frac{H}{D}\right)^{0.028}, [Re \le 6500] \\ 8.08Re^{-0.04} \cdot \left(\frac{H}{D}\right)^{0.005}, [Re \ge 6500] \end{cases}$$

Perbandingan grafik persamaan empiris dengan grafik nilai t_q hasil analisis numerik dapat dilihat pada Gambar 4.9 Persamaan empiris ini memiliki tingkat kesesuaian dengan nilai t_q aktual (*R squared value*) sebesar 92%. Bila diamati, nilai pangkat *Re* dan *H/D* akan semakin

Gambar 4.8 Grafik lama proses *quench* sebagai fungsi bilangan *Reynolds* dan rasio jarak *nozzle-to-surface*

menurun. Hal ini sesuai dengan tren aktual nilai t_q pada tiap *region*: kenaikan nilai $Re \, dan H/D$ akan memiliki pengaruh yang signifikan terhadap nilai t_q pada pada *region* 1, dan akan memiliki pengaruh kecil pada *region* 2. Besar pengaruh dari kedua parameter ini dapat menjelaskan konvergensi nilai t_q terhadap perubahan nilai H/Dpada *region* 2, serta tren nilai t_q yang akan mendekati suatu asimtot pada *region* 2. Perbedaan nilai m dan n juga menunjukkan bahwa pada proses *glass tempering*, besar nilai Re akan lebih berpengaruh terhadap lama *quench* dibandingkan dengan nilai H/D.

Dari kecenderungan ini, dapat disimpulkan bahwa variasi nilai *Re* dan *H/D* pada proses *glass tempering* sebaiknya dilakukan pada *region* 1. Kombinasi paling optimal dari kedua parameter pada *region* 1 adalah pada *Re* = 6500 dan *H/D* = 2, yang akan menghasilkan *tempered glass* dengan t_q paling rendah pada *region* 1 (5.87 detik). *Region* 1 dianggap paling optimal dalam proses *glass tempering* karena kenaikan nilai *Re* maupun penurunan nilai

Gambar 4.9 Grafik lama proses *quench* sebagai fungsi bilangan *Reynolds* dan rasio jarak *nozzle-to-surface* beserta persamaan empiris hasil regresi 2D *power curve* (H/D = 9)

H/D masih memiliki pengaruh signifikan. Penggunaan *Re* tinggi dalam *glass tempering* tidak akan efektif karena pada *region* 2, nilai t_q menjadi tidak sensitif terhadap kenaikan nilai *Re* maupun penurunan nilai H/D.

4.5 Penentuan Batas Operasi Berdasarkan Ukuran Pecahan

Setelah diketahui efek dari nilai Re dan H/D terhadap kekuatan *hemispherical tempered glass*, akan ditentukan *range* optimal kedua parameter. Sebagai dasar penentuan *range* optimal operasi, digunakan *European Standard* ECE R43. Standar ECE R43 memberikan batas atas dan batas bawah spesifikasi untuk *tempered* glass, dinyatakan dalam jumlah pecahan pada luasan 5 cm x 5 cm, yang dapat dikonversikan menjadi ukuran maksimum dan minimum pecahan. Pada contoh perhitungan ini, akan digunakan Persamaan 2.4 beserta distribusi tegangan pada Re = 2300 dan H/D = 6, dan menghasilkan pecahan sebesar 3.91 mm x 3.91 mm.

4.5.1 Contoh Perhitungan Ukuran Pecahan

Dari batas spesifikasi ECE R43, diperoleh bahwa jumlah pecahan *tempered glass* dengan ukuran awal 5 cm x 5 cm adalah antara 40 sampai dengan 400 buah. Dengan pembagian sederhana kemudian dapat diperoleh ukuran pecahan terbesar dan terkecil yang diperbolehkan berturut-turut sebesar 7.906 mm dan 2.5 mm. Berdasarkan Gambar 4.4, didapatkan tegangan *midplane* (σ_m) kaca sebesar 10146.09 psi, dan ketebalan kompresi (δ) sebesar 0.84 mm. Tegangan *midplane* ini kemudian akan digunakan untuk menentukan ukuran pecahan berdasarkan Persamaan 2.4. Data *soda lime glass poisson ratio* dan *fracture toughness* dapat dilihat pada Tabel 4.2.

$$x = 2(1+\nu) \left(\frac{K_{1c}}{\sigma_m}\right)^2 \frac{t}{t-2\delta}$$

$$x = 2(1+0.201) \left(\frac{2150 \ kpa}{\frac{10146.09}{0.145038} \ kpa}\right)^2 \frac{4 \ mm}{(4-2(0.84 \ mm))}$$

(ualalli lilli)				
H/D				
Re	2	6	9	12
2300	3,659	3,912	4,135	4,541
10000	2,744	2,820	2,895	2,995
20000	2,556	2,590	2,646	2,708
30000	2,469	2,519	2,556	2,606
40000	2,431	2,475	2,498	2,522
50000	2,411	2,434	2,464	2,507
60000	2,391	2,415	2,431	2,470
70000	2,385	2,411	2,424	2,440
80000	2,382	2,387	2,416	2,434
87000	2,372	2,382	2,393	2,423

Tabel 4.3 Ukuran pecahan masing-masing variasi parameter (dalam mm)

 $x = 2.402 \ x \ (0.0307)^2 m \ x \ 1,724$

x = 0.00391 m = 3.91 mm

Terlihat bahwa pada Re = 2300 dan H/D = 6, didapatkan pecahan berukuran 3.91 mm, yang masih berada diantara batas bawah dan batas atas spesifikasi ECE R43. Hal ini berarti Re = 2300 dan H/D = 2 termasuk didalam *range* kombinasi optimal. Ukuran pecahan setiap variasi dapat dilihat pada Tabel 4.3. Pada tabel tersebut, daerah yang berwarna merah menandakan bahwa kombinasi nilai *Re* dan H/D tersebut akan menghasilkan ukuran pecahan yang tidak sesuai dengan standar ECE R43.

4.5.2 Penentuan *Range* Bilangan Reynolds Optimal pada Setiap *Nozzle-to-Distance Ratio*

Tabel 4.3 menunjukkan hubungan antara ukuran pecahan dengan Re dan H/D. Dapat dilihat bahwa semakin besar nilai Re, semakin kecil ukuran pecahan. Demikian pula, semakin kecil nilai H/D, semakin kecil pula ukuran pecahan yang dihasilkan. Hal ini memungkinkan karena ukuran pecahan bergantung pada tegangan

midplane tempered glass, yang akan mengalami kenaikan seiring dengan naiknya nilai Re maupun turunnya nilai H/D. Kemudian berdasarkan standar ECE R43, dapat ditentukan *range* nilai Re setiap variasi H/D yang diijinkan sebagai kondisi optimal.

Seperti terlihat pada Gambar 4.10, semua variasi memiliki ukuran pecahan dibawah batas ukuran maksimal (7.906 mm x 7.906 mm). Namun, sebagian variasi memiliki ukuran pecahan dibawah spesifikasi ECE R43 (2.5 mm x 2.5 mm). Untuk variasi H/D = 2, Re = 2300 - 25000 akan menghasilkan ukuran pecahan sesuai dengan spesifikasi. Naiknya nilai H/D akan menyebabkan range bilangan Reynolds yang diperbolehkan menjadi lebih besar - H/D = 6 akan memiliki range bilangan Reynolds operasi mulai Re = 2300 - 31000. Re operasi maksimal yang masih diijinkan (pada H/D = 12) berada pada Re = 50000. Diatas nilai ini, ukuran pecahan akan semakin kecil sehingga tidak akan memenuhi kriteria ECE R43.

Gambar 4.10 Grafik ukuran pecahan masing-masing variasi terhadap nilai *Re* dan *H/D*, serta spesifikasi ukuran menurut ECE R43

Berdasarkan analisis dari pengaruh variasi nilai Re dan *H/D* terhadap kekuatan kaca dan lama proses *quenching*, dapat disimpulkan bahwa perubahan nilai Re dan H/D akan lebih berpengaruh terhadap kekuatan kaca dibandingkan terhadap lama quench. Karena itu, kombinasi paling optimal dari kedua parameter adalah antara Re = 8000 - 30000, dimana proses berada pada region 2 untuk nilai kekuatan kaca dan lama proses quench. Region 2 pada grafik nilai kekuatan kaca dianggap optimal, karena fleksibilitas dan stabilitas operasi pada region ini lebih tinggi dibandingkan region lain. Pada region 1, perubahan kecil pada nilai Re akan berakibat turunnya kekuatan kaca secara drastis, vang menunjukkan ketidakstabilan dari tempered glass strength. Region 3, meskipun menghasilkan tempered glass dengan kekuatan lebih tinggi, dianggap kurang fleksibel karena pada region ini nilai kekuatan kaca cenderung konvergen pada 1 nilai, sehingga kenaikan nilai Re secara besar hanya akan menghasilkan kenaikan kecil pada kekuatan kaca. Tetapi, meski range Re = 8000 - 30000berada di region 2 untuk lama quench, perbedaan antara t_q pada Re = 8000 dan H/D = 2 dengan t_q pada Re = 30000 dan H/D = 2 hanya sekitar 0.4 detik. Perbedaan sekecil ini tidak akan mengakibatkan kerugian signifikan pada pihak perusahaan.

Range bilangan Reynolds antara 8000 – 30000 yang sebelumnya telah ditentukan sebagai *range* optimal operasional kemudian akan dikombinasikan dengan analisis Gambar 4.10. Berdasarkan gambar tersebut, dapat disimpulkan bahwa *range Re* = 8000 – 30000 masih diijinkan untuk variasi H/D = 6, 9 dan 12. Hal ini dikarenakan ukuran pecahan pada Re = 30000 masih lebih besar dari batas spesifikasi bawah ECE R43. Namun untuk H/D = 2, *range Re* operasional yang diijinkan menjadi Re = 8000 - 25000, karena diatas Re = 25000, ukuran peahan berada dibawah batas spesifikasi bawah ECE R43.

BAB 5 PENUTUP

5.1 Kesimpulan

Dari penelitian yang telah dilakukan, dapat ditarik kesimpulan mengenai pengaruh perubahan rasio jarak *nozzle-to-surface* dan nilai bilangan Reynolds terhadap kekuatan dan waktu *quench hemispherical tempered glass* sebagai berikut:

- 1. Hasil pengamatan kualitatif kontur distribusi temperatur menunjukkan bahwa:
 - Semakin kecil nilai *Re*, semakin tinggi suhu *midplane* kaca yang dihasilkan pada waktu tertentu.
 - Kenaikan nilai *H/D* akan menghasilkan temperatur interior yang lebih tinggi pada waktu tertentu.

2. Dari grafik distribusi tegangan pada *tempered glass* dapat disimpulkan bahwa:

- Tegangan hasil proses *quench* terdistribusi secara parabolik.
- Kenaikan nilai *Re* akan menyebabkan tegangan permukaan yang uniform.
- Sebaliknya, nilai Re yang rendah akan menyebabkan perbedaan tegangan permukaan pada setiap nilai θ .
- 3. Berdasarkan perbandingan nilai *surface compression* dan *quench time* yang dihasilkan oleh tiap-tiap variasi parameter dapat disimpulkan bahwa:

- Nilai σ dan t yang dihasilkan oleh setiap variasi perameter menunjukkan konvergensi nilai pada Re tinggi.
- Kenaikan nilai *Re* dan *H/D* berpengaruh paling besar terhadap σ pada nilai 2300 ≤ *Re* ≤ 8000, memiliki pengaruh sedang pada 8000 ≤ *Re* ≤ 30000, dan memiliki pengaruh yang kecil pada *Re* ≥ 30000.
- Pengaruh kenaikan nilai *Re* dan *H/D* terhadap *t* paling **tinggi** pada range *Re* ≤ 6500, dan **rendah** pada *Re* ≥ 6500.
- Hubungan antara nilai $Re \operatorname{dan} H/D$ terhadap nilai σ_{sfc} dapat dirumuskan sebagai:

$$\sigma_{sfc} = \begin{cases} 3664.43Re^{0.198} \cdot \left(\frac{H}{D}\right)^{-0.065}, [Re \le 8000] \\ 43167.84 \cdot \left(\frac{H}{D}\right)^{-0.006159} - 35872.24, [8000 \le Re \le 30000] \\ 34772.06Re^{0.0204} \cdot \left(\frac{H}{D}\right)^{-0.005} - 20099.83, [Re \ge 30000] \end{cases}$$

Hubungan antara nilai *Re* dan *H/D* terhadap nilai *t_q* dapat dirumuskan sebagai:

$$t_q = \begin{cases} 16.078Re^{-0.12} \cdot \left(\frac{H}{D}\right)^{0.028}, [Re \le 6500] \\ 8.08Re^{-0.04} \cdot \left(\frac{H}{D}\right)^{0.005}, [Re \ge 6500] \end{cases}$$

• Dari kedua persamaan, serta dengan batasan standar ECE R43, disimpulkan bahwa variasi nilai H/D = 6, 9, dan 12 memiliki range Re optimal = 8000 - 30000, sedangkan variasi nilai <math>H/D = 2 memiliki range Re optimal = 8000 - 25000.

5.2 Saran

Saran-saran yang dapat diberikan untuk mengoptimalkan proses *quench* pada *glass tempering* antara lain:

- 1. Sebagai bahan penelitian lebih lanjut, pendekatan *convection coefficient* tiap nodal dapat dilakukan dengan korelasi *impinging jets on a sloped surface*, dengan mengalikan hasil pendekatan *impinging jets on a flat surface* tiap nodal dengan faktor koreksi (sin α)^{0.17}, dengan α adalah sudut deklinasi permukaan dengan *range* 1° ≤ α ≤ 30°.
- 2. Untuk penelitian lebih lanjut, perlu dilakukan analisis CFD terhadap permukaan *tempered glass* untuk mengethaui pengaruh kelengkungan permukaan terhadap nilai koefisien konveksi lokal pada metode *array of equilaterally staggered impinging jets convection*.
- 3. Selain itu, juga perlu dilakukan analisis CFD terhadap aliran *impinging jets* dan permukaan *tempered glass* untuk menyelidiki efek nilai *Re* terhadap *boundary layer thickness* pada *curved surface*.

(Halaman ini dibiarkan kosong)

DAFTAR PUSTAKA

- [1] Kolb, Kenneth E. 2016. **Glass,** <URL: http://www.chemistryexplained.com/Ge-Hy/Glass.html>.
- [2] ASTM International. 2014. "Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature". 2014 Annual Book of ASTM Standards 15.01, C1161-13.
- [3] Gardon, Robert. 1980. Elasticity and Strength in Glasses: Thermal Tempering of Glass in Kreidl, N. J and Uhlmann, D.R (Ed). Glass Science and Technology. Amsterdam: Elsevier.
- [4] Barr, Jonathan. The Glass Tempering Handbook: Understanding the Glass Tempering Process. Dipublikasikan sendiri.
- [5] Gardon, Robert. 1965. "The Tempering of Flat Glass by Forced Convection". **Proc. Int. Cong. Glass**, **7th** Paper No.79.
- [6] Sinha, N.K. 1978. "Stress State in Tempered Glass Plate and Determination of Heat Transfer Rate".
 Experimental Mechanics 18, 25-34
- [7] Rajan et al. 2005. "Controlling the Fragmentation Behavior of Stressed Glass". Bradt et al. (Ed). **Fracture Mechanics of Ceramics**, 77-91
- [8] United Nations Economic Commission for Europe. 2012. "Uniform Provisions Concerning the Approval of Safety Glazing Materials and Their Installation on Vehicles". ECE R43-2000
- [9] Incropera et al. 2012. Fundamentals of Heat and Mass Transfer, 7th edition. New Jersey: John Wiley & Sons, Inc.

- [10] Chapra, Steven. C and Canale, Raymond. P. 2010. Numerical Methods for Engineers, 6th edition. New York: Mc Graw-Hill Companies, Inc.
- [11] Silva, W.P. and Silva, C.M.D.P.S. LAB Fit Curve Fitting Software (Nonlinear Regression and Treatment of Data Program) V 7.2.48 (1999-2011), online, available at the world wide web at: www.labfit.net, date of access: 2016-11-30.
LAMPIRAN

- A. Pseudocode MATLAB untuk Konduksi Transien 58
- - b. Kelompok B (5.3 s \leq t_q \leq 5.5 s), *Re* = 30000, *H/D* = 9 .. 66
 - c. Kelompok C (5.5 s \leq t_q \leq 5.6 s), *Re* = 10000, *H/D* = 2 .. 67
 - d. Kelompok D (5.6 s \leq t_q \leq 5.8 s), *Re* = 10000, *H/D* = 12 68

- - b. Kelompok B (5.3 s \le t_q \le 5.5 s), Re = 30000, H/D = 9...75
 - c. Kelompok C (5.5 s \leq t_q \leq 5.6 s), Re = 10000, H/D = 2...80
 - d. Kelompok D (5.6 s \le t_q \le 5.8 s), Re = 10000, H/D = 12 85
 - e. Kelompok E ($t_q > 5.8$ s), Re = 2300, H/D = 12 90

A. Pseudocode MATLAB untuk Konduksi Transien

```
%deklarasi variabel
clc;
b=0.004;
teta=19;
alpha=0.00000015;
dr=0.0001:
dteta=1;
dt=0.05:
z=8/dt;
r1=0.6185;
r2=0.6225;
Tinf=333;
n=(b/dr)+1;
m = (teta/dteta) + 1;
A=zeros(n,m,z); % Tmatrix
B=zeros(n*m,n*m,z); % leftmatrix
C=zeros(n*m,1,z); %rightside
x = zeros(n*m, 1, z);
A(:,:,1)=898;
h2=zeros(m,1);
h1=zeros(m,1);
re=2300; %variasi Re
pr=0.7035;
dnoz=0.004:
H=12*dnoz; %variasi H/D
kf=0.02815;
k=1.4:
ar=pi*(dnoz^2)/(2*sqrt(3)*0.027^2);
```

```
%koefisien konveksi
for j=1:m
theta = degtorad((j-1)*dteta);
```

```
%outer h
  K2=(1+(((H+r2-r2*cos(theta))/dnoz)/(0.6/(ar^{0.5})))^{6})^{-0.05};
  G2=2*(ar^{0.5})*((1-2.2*ar^{0.5})/(1+0.2*(ar^{0.5})*(((H+r2-
r2*\cos(\text{theta}))/dnoz)-6)));
  nu2=0.5*K2*G2*(re^{(2/3)})*(pr^{0.42});
  h2(j,1)=nu2*kf/dnoz;
  %inner h
  K1 = (1 + (((H-r1+r1*\cos(theta))/dnoz)/(0.6/(ar^{0.5})))^{6})^{-0.05};
  G1=2*(ar^0.5)*((1-2.2*ar^0.5)/(1+0.2*(ar^0.5)*(((H-
r1+r1*cos(theta))/dnoz)-6)));
  nu1=0.5*K1*G1*(re^(2/3))*(pr^0.42);
  h1(i,1)=nu1*kf/dnoz;
end
%matrix
for t=1:z-1
  %inner-left
  i=1; j=1;
  num = (i-1)*m+j;
  r = (i-1)*dr+r1;
  teta = degtorad((j-1)*dteta);
  B(num,num,t+1)=2*dt*alpha*((1/dr^2)+(h1(j,1)/(kf*dr))-
(h1(j,1)/(kf^*r))+(1/(r^*degtorad(dteta))^2))+1;
  B(num,num+m,t+1)=-2*alpha*dt/dr^2;
  B(num,num+1,t+1)=-(2*alpha*dt/(r*degtorad(dteta))^2);
  %inner-right
  i=1; j=m;
  num = (i-1)*m+i;
  r = (i-1)*dr+r1;
  B(num,num,t+1)=2*dt*alpha*((1/dr^2)+(h1(j,1)/(kf*dr))-
(h1(j,1)/(kf^*r))+(1/(r^*degtorad(dteta))^2))+1;
  B(num,num+m,t+1)=-2*alpha*dt/dr^2;
  B(num,num-1,t+1) = -(2*alpha*dt/(r*degtorad(dteta))^2);
```

```
%outer-left
  i=n; i=1;
  num = (i-1)*m+j;
  r = (i-1)*dr+r1;
B(num,num,t+1)=2*dt*alpha*((1/dr^2)+(h2(j,1)/(kf*dr))+(h2(j,1)))
/(kf^*r))+(1/(r^*degtorad(dteta))^2))+1;
  B(num,num-m,t+1)=-2*alpha*dt/dr^2;
  B(num,num+1,t+1)=-(2*alpha*dt/(r*degtorad(dteta))^2);
  %outer-right
  i=n; j=m;
  num = (i-1)*m+i;
  r = (i-1)*dr+r1;
  theta = degtorad((j-1)*dteta);
B(num,num,t+1)=2*dt*alpha*((1/dr^2)+(h2(j,1)/(kf*dr))+(h2(j,1)))
/(kf^*r)+(1/(r*degtorad(dteta))^2))+1;
  B(num,num-m,t+1)=-2*alpha*dt/dr^2;
  B(num,num-1,t+1) = -(2*alpha*dt/(r*degtorad(dteta))^2);
  for j=2:m-1
     %inner sfc
     i=1:
    num = (i-1)*m+j;
     r = (i-1)*dr+r1;
     theta = degtorad((j-1)*dteta);
    B(num,num,t+1)=2*dt*alpha*((1/dr^2)+(h1(j,1)/(kf*dr))-
(h1(j,1)/(kf^*r))+(1/(r^*degtorad(dteta))^2))+1;
    B(num,num+m,t+1)=-2*alpha*dt/dr^2;
     B(num.num-1,t+1)=-
(alpha*dt/(r*degtorad(dteta)))*((1/(r*degtorad(dteta)))-
((\cot(\text{theta}))/(2*r)));
     B(num,num+1,t+1)=-
(alpha*dt/(r*degtorad(dteta)))*((1/(r*degtorad(dteta)))+((cot(thet
a))/(2*r)));
```

```
%outer sfc
     i=n;
     num = (i-1)*m+j;
     r = (i-1)*dr+r1;
     theta = degtorad((j-1)*dteta);
B(num,num,t+1)=2*dt*alpha*((1/dr^2)+(h2(j,1)/(kf*dr))+(h2(j,1)))
/(kf^*r))+(1/(r^*degtorad(dteta))^2))+1;
     B(num,num-m,t+1)=-2*alpha*dt/dr^2;
     B(num,num-1,t+1) = -
(alpha*dt/(r*degtorad(dteta)))*((1/(r*degtorad(dteta)))-
((\cot(\text{theta}))/(2*r)));
     B(num,num+1,t+1)=-
(alpha*dt/(r*degtorad(dteta)))*((1/(r*degtorad(dteta)))+((cot(thet
a))/(2*r)));
  end
  for i=2:n-1
     %leftmost
    j=1;
     num = (i-1)*m+j;
     r = (i-1)*dr+r1;
B(num,num,t+1)=2*dt*alpha*((1/dr^2)+(1/(r*degtorad(dteta))^2))
)+1;
     B(num,num-m,t+1) = -((1/dr)-(1/r))*(alpha*dt/dr);
     B(num,num+m,t+1) = -((1/dr)+(1/r))*(alpha*dt/dr);
     B(num,num+1,t+1)=-(2*alpha*dt/(r*degtorad(dteta))^2);
     %rightmost
     j=m;
     num = (i-1)*m+i;
     r = (i-1)*dr+r1;
```

```
B(num,num,t+1)=2*dt*alpha*((1/dr^2)+(1/(r*degtorad(dteta))^2))
)+1;
     B(num,num-m,t+1) = -((1/dr)-(1/r))*(alpha*dt/dr);
     B(num,num+m,t+1) = -((1/dr)+(1/r))*(alpha*dt/dr);
     B(num,num-1,t+1) = -(2*alpha*dt/(r*degtorad(dteta))^2);
  end
  %interior
  for i=2:n-1 %row
     for j=2:m-1 %col
       num = (i-1)*m+j;
       r = (i-1)*dr+r1;
       theta = degtorad((j-1)*dteta);
B(num,num,t+1)=2*dt*alpha*((1/dr^2)+(1/(r*degtorad(dteta))^2))
)+1;
       B(num,num-m,t+1) = -((1/dr)-(1/r))*(alpha*dt/dr);
       B(num,num+m,t+1) = -((1/dr)+(1/r))*(alpha*dt/dr);
       B(num,num-1,t+1)=-
(alpha*dt/((r^2)*degtorad(dteta)))*((1/degtorad(dteta))-
((\cot(\text{theta}))/2));
       B(num,num+1,t+1)=-
(alpha*dt/((r^2)*degtorad(dteta)))*((1/degtorad(dteta))+((cot(thet
a))/2));
     end
  end
  %rhs
  for i=1:n
     for j=1:m
       num = (i-1)*m+i;
       r = (i-1)*dr+r1;
       theta = degtorad((i-1)*dteta);
       if i==n %outer
```

```
C(num, 1, t+1) = ((1/r) + (1/dr))*(2*h2(j, 1)*alpha*dt/kf)*Tinf+A(i, j, t+1)
);
        elseif i==1 %inner
          C(num, 1, t+1) = ((1/dr) -
(1/r))*(2*h1(j,1)*alpha*dt/kf)*Tinf+A(i,j,t);
        else %interior
          C(num,1,t+1)=A(i,j,t);
        end
     end
  end
% solve matrix eqn
  x(:,:,t)=B(:,:,t+1)\setminus C(:,:,t+1);
  for i=1:n
     for j=1:m
        num = (i-1)*m+i;
        A(i,j,t+1)=x(num,1,t);
     end
  end
end
% graphic
EX = [0:19];
YE = [.6185:.0001:.6225];
hsurf=surf(EX, YE, A(:.:,1), 'EdgeColor', 'none', 'facecolor',
'interp');
ylim([0.6185 0.6225]);
xlim([0 19]);
xlabel('0^{o} < \theta < 19^{o}', 'FontSize', 16);
ylabel('r (m)', 'FontSize', 16);
zlabel('K', 'FontSize', 16);
view(0,90);
zlim([0 900]);
colorbar;
```

```
caxis([390 898]);
for k=2:z
set(hsurf,'ZData',A(:,:,k-1));
zlim([0 900]);
colorbar;
pause(.05);
view(0,90);
title(['t=',num2str((k-1)*0.05),'s'],'FontSize', 16);
end
```


b. Kelompok B (5.3 s $\leq t_q \leq 5.5$ s), Re = 30000, H/D = 9

Kelompok D (5.6 s $\leq t_q \leq$ 5.8 s), Re = 10000, H/D =d.

C. Tabel Distribusi Temperatur, Distribusi Tegangan, dan Grafik Tegangan Lokal pada *Strain Point* untuk Masing-Masing Kelompok Variasi

a. Kelompok A $(t_q \le 5.3 \text{ s}), Re = 60000, H/D = 9$

Distil		npera		incini I	-)·					
r A	0	1	2	3	4	5	6	7	8	9
0,6185	348,15249	348,13	348,07	347,96	347,82	347,63	347,39	347,12	346,8	346,44
0,6186	383,95115	383,93	383,87	383,76	383,62	383,43	383,2	382,93	382,61	382,25
0,6187	419,37505	419,35	419,29	419,19	419,05	418,86	418,64	418,37	418,06	417,7
0,6188	454,17482	454,15	454,09	453,99	453,85	453,67	453,45	453,19	452,89	452,54
0,6189	488,11033	488,09	488,03	487,94	487,8	487,62	487,41	487,16	486,86	486,53
0,619	520,954	520,94	520,88	520,79	520,66	520,49	520,28	520,04	519,75	519,43
0,6191	552,49354	552,48	552,42	552,33	552,21	552,05	551,85	551,62	551,35	551,04
0,6192	582,53424	582,52	582,47	582,38	582,26	582,11	581,93	581,7	581,45	581,16
0,6193	610,90054	610,88	610,84	610,76	610,65	610,5	610,33	610,12	609,88	609,61
0,6194	637,43696	637,42	637,38	637,3	637,2	637,07	636,91	636,71	636,49	636,24
0,6195	662,00842	661,99	661,95	661,89	661,79	661,67	661,52	661,34	661,14	660,9
0,6196	684,49986	684,49	684,45	684,39	684,3	684,19	684,06	683,9	683,71	683,5
0,6197	704,81534	704,8	704,77	704,72	704,64	704,54	704,42	704,27	704,11	703,92
0,6198	722,87667	722,87	722,84	722,79	722,72	722,63	722,53	722,4	722,25	722,08
0,6199	738,62167	738,61	738,59	738,55	738,49	738,41	738,32	738,21	738,08	737,94
0,62	752,00222	752	751,97	751,94	751,89	751,83	751,75	751,66	751,55	751,43
0,6201	762,98216	762,98	762,96	762,93	762,89	762,84	762,78	762,71	762,62	762,52
0,6202	771,53528	771,53	771,52	771,5	771,47	771,43	771,38	771,33	771,26	771,19
0,6203	777,64348	777,64	777,63	777,62	777,6	777,57	777,54	777,5	777,46	777,41
0,6204	781,2952	781,29	781,29	781,28	781,27	781,26	781,24	781,22	781,2	781,17
0,6205	782,48417	782,48	782,48	782,48	782,48	782,48	782,48	782,48	782,48	782,48
0,6206	781,20876	781,21	781,21	781,22	781,23	781,24	781,26	781,28	781,29	781,31
0,6207	777,47164	777,47	777,48	777,5	777,52	777,54	777,57	777,61	777,65	777,69
0,6208	771,28012	771,28	771,3	771,32	771,35	771,39	771,43	771,48	771,54	771,61
0,6209	762,64688	762,65	762,67	762,7	762,74	762,79	762,85	762,92	763	763,09
0,621	751,59118	751,6	751,62	751,65	751,7	751,77	751,84	751,93	752,03	752,14
0,6211	738,14045	738,15	738,17	738,22	738,27	738,35	738,44	738,55	738,67	738,8
0,6212	722,33218	722,34	722,37	722,42	722,49	722,57	722,68	722,8	722,94	723,1
0,6213	704,21589	704,23	704,26	704,32	704,39	704,49	704,61	704,75	704,91	705,09
0,6214	683,85524	683,87	683,9	683,97	684,05	684,16	684,3	684,45	684,63	684,84
0,6215	661,32994	661,34	661,38	661,45	661,55	661,67	661,82	661,99	662,19	662,41
0,6216	636,73752	636,75	636,8	636,87	636,97	637,1	637,27	637,45	637,67	637,91
0,6217	610,19462	610,21	610,26	610,34	610,45	610,59	610,76	610,97	611,2	611,46
0,6218	581,8379	581,85	581,91	581,99	582,11	582,26	582,44	582,66	582,91	583,19
0,6219	551,82433	551,84	551,9	551,98	552,11	552,27	552,46	552,69	552,96	553,25
0,622	520,33089	520,35	520,41	520,5	520,63	520,8	521	521,24	521,52	521,83
0,6221	487,55358	487,57	487,63	487,73	487,86	488,04	488,25	488,5	488,79	489,11
0,6222	453,70574	453,73	453,79	453,89	454,03	454,21	454,42	454,68	454,98	455,31
0,6223	419,01585	419,04	419,1	419,2	419,34	419,53	419,75	420,01	420,32	420,66
0,6224	383,72462	383,75	383,81	383,91	384,06	384,24	384,47	384,74	385,05	385,39
0.6225	348.08176	348.1	348.17	348.27	348.42	348.61	348.84	349.11	349.42	349.77

Distribusi Temperatur (dalam K):

0	10	44	12	12	14	10	10	17	10	10
0.0100	246.02	245.50	245.4	244.0	244.00	242.04	10	242.00	242 22	242.45
0,0105	340,05	242,22	200.02	200.42	379,03	345,04	242,20	342,33	370 57	242,42
0,6100	417.21	416.07	300,95 416.4	300,45 41E 0	3/3,33	3/3,40	3/3,12	2/0,02	3/0,5/	3/0,5
0,0107	417,51	410,07	410,4	415,5	415,41	414,57	414,02	414,54	414,00	415,02
0,6100	452,15	451,75	451,27	450,76	450,5	445,67	445,55	445,25	445	440,75
0,0105	400,15 E10.07	F10 67	403,23 E10.24	F17 70	F17 24	405,54 E16.04	400,0 E16.60	400,04 E16 26	405,05	402,00
0,013	515,07	510,07	510,24	517,75	517,54	510,54	510,02	510,50	510,15	515,05
0,6191	550,05	550,51	545,5	545,47	545,04	546,00	540,55	546,11	547,03	547,07
0,6192	500,05	500,47	500,00 600.6	£00 01	207 02	576,5	5/6,01	576,30	5/6,10	505 62
0,6195	675.95	606,50	625.20	606,21	607,65	624.27	607,22	607,01	600,62	600,05
0,6194	650,55	660.25	655,25	659,34	659,30	659,27	654,02	655,62	000,00	650,40
0,6195	600,04	600,55	600,04	600,71	600,00	600,00 201 00	600,07 201 20	656,65	600,04	600,00
0,6190	702.7	702,55	702.01	702.94	702,11	702.44	702.26	702.12	702.02	701.01
0,6137	705,7	705,40	705,21	702,34	702,07	702,44	702,20	702,15	702,02	701,91
0,0130	721,05	727,05	721,40	727,22	726,00	726,75	720,04	726,55	720,44	720,33
0,0155	751.29	751 14	750.97	750.8	750,55	750,62	750,7	750,01	750.3	750,40
0.6201	762.41	762.29	762.15	752.01	761.99	761 77	751 71	761.69	761.66	750,20
0,6202	771.1	771.01	770.91	770.9	770.7	770.62	770 59	770 59	770.6	770.61
0,6202	777 35	777.29	777 21	777 14	777.08	777.04	777.03	777.06	777 1	777 14
0,6203	781.14	781.11	781.07	781.03	781	780.99	781.02	781.07	781.14	781.22
0,6205	782.47	782.46	782.46	782.45	782.46	782.49	782 54	782.63	782 73	782.84
0,6205	781 33	781 36	781 38	781.41	781.45	781 51	781.61	781 72	781.86	782,84
0.6207	777 74	777 79	777.84	777 91	777 98	778.08	778.21	778 36	778 52	778.7
0.6208	771.68	771 76	771.85	771.95	772.06	772 19	772 35	772 54	772 74	772 95
0.6209	763 19	763.3	763.42	763 55	763.69	763.86	764.06	764.28	764 51	764 76
0.621	752.27	752 41	752 56	752 72	752.9	753 11	753 34	753 59	753.87	754 15
0.6211	738.96	739.12	739.3	739.5	739.72	739.95	740.22	740.51	740.82	741.15
0.6212	723.28	723.48	723.69	723.92	724.17	724.44	724.74	725.07	725.42	725.78
0,6213	705.3	705.52	705.76	706.02	706.3	706.61	706.95	707.31	707.7	708.11
0.6214	685.06	685.31	685.58	685.87	686.19	686.53	686.91	687.31	687.73	688.18
0,6215	662,66	662.93	663.23	663,56	663.9	664.28	664.69	665.12	665.59	666.07
0,6216	638.19	638,48	638.81	639.16	639.54	639.95	640.39	640.86	641.36	641.88
0,6217	611,75	612,08	612,43	612,8	613,21	613,65	614,13	614,63	615,16	615,72
0,6218	583,5	583,84	584,22	584,62	585,06	585,53	586,03	586,56	587,13	587,72
0,6219	553,58	553,94	554,34	554,77	555,23	555,72	556,25	556,82	557,41	558,04
0,622	522,17	522,55	522,97	523,42	523,9	524,42	524,97	525,56	526,18	526,84
0,6221	489,47	489,86	490,29	490,76	491,26	491,8	492,38	492,99	493,64	494,32
0,6222	455,68	456,09	456,53	457,02	457,54	458,09	458,69	459,32	459,98	460,68
0,6223	421,04	421,46	421,91	422,41	422,94	423,51	424,12	424,76	425,45	426,16
0,6224	385,78	386,21	386,67	387,17	387,71	388,29	388,91	389,57	390,26	391
0,6225	350,16	350,59	351,06	351,56	352,11	352,7	353,32	353,98	354,68	355,42

r 0	0	1	2	3	4	5	6	7	8	9
0,6185	-23555,5	-23557,3	-23562,6	-23571,4	-23583,7	-23599,6	-23619,1	-23642,2	-23669,0	-23699,3
0,6186	-20553,3	-20555,0	-20560,3	-20569,0	-20581,2	-20597,0	-20616,3	-20639,2	-20665,7	-20695,8
0,6187	-17582,5	-17584,2	-17589,3	-17597,9	-17610,0	-17625,5	-17644,5	-17667,0	-17693,1	-17722,7
0,6188	-14664,0	-14665,7	-14670,7	-14679,1	-14690,9	-14706,0	-14724,6	-14746,6	-14772,1	-14801,0
0,6189	-11818,0	-11819,7	-11824,5	-11832,7	-11844,1	-11858,8	-11876,8	-11898,1	-11922,8	-11950,9
0,619	-9063,6	-9065,2	-9069,9	-9077,7	-9088,7	-9102,8	-9120,1	-9140,6	-9164,4	-9191,4
0,6191	-6418,6	-6420,1	-6424,6	-6432,0	-6442,5	-6456,0	-6472,5	-6492,1	-6514,8	-6540,6
0,6192	-3899,2	-3900,7	-3904,9	-3912,0	-3921,9	-3934,6	-3950,3	-3968,8	-3990,3	-4014,8
0,6193	-1520,3	-1521,7	-1525,6	-1532,3	-1541,5	-1553,5	-1568,2	-1585,6	-1605,8	-1628,8
0,6194	705,1	703,9	700,2	694,0	685,4	674,3	660,6	644,5	625,7	604,3
0,6195	2765,8	2764,7	2761,3	2755,6	2747,7	2737,4	2724,9	2710,0	2692,7	2673,1
0,6196	4652,0	4651,0	4647,9	4642,8	4635,6	4626,3	4614,9	4601,3	4585,7	4567,8
0,6197	6355,8	6354,8	6352,1	6347,5	6341,0	6332,7	6322,5	6310,4	6296,3	6280,3
0,6198	7870,5	7869,7	7867,2	7863,2	7857,5	7850,2	7841,2	7830,5	7818,1	7804,0
0,6199	9190,9	9190,2	9188,1	9184,7	9179,8	9173,5	9165,7	9156,5	9145,8	9133,6
0,62	10313,1	10312,5	10310,7	10307,8	10303,8	10298,5	10292,0	10284,3	10275,3	10265,0
0,6201	11233,9	11233,4	11232,0	11229,7	11226,4	11222,2	11217,0	11210,8	11203,5	11195,3
0,6202	11951,2	11950,8	11949,8	11948,0	11945,6	11942,4	11938,5	11933,8	11928,3	11922,0
0,6203	12463,4	12463,2	12462,5	12461,4	12459,7	12457,6	12455,0	12451,8	12448,0	12443,7
0,6204	12769,7	12769,6	12769,2	12768,7	12767,8	12766,8	12765,4	12763,8	12761,8	12759,5
0,6205	12869,4	12869,4	12869,4	12869,4	12869,4	12869,4	12869,4	12869,2	12869,0	12868,7
0,6206	12762,4	12762,6	12762,9	12763,5	12764,4	12765,4	12766,6	12768,0	12769,6	12771,2
0,6207	12449,0	12449,3	12450,0	12451,2	12452,8	12454,9	12457,4	12460,3	12463,6	12467,3
0,6208	11929,8	11930,1	11931,2	11933,0	11935,4	11938,6	11942,4	11946,8	11951,9	11957,5
0,6209	11205,8	11206,2	11207,7	11210,0	11213,3	11217,5	11222,5	11228,5	11235,3	11242,9
0,621	10278,6	10279,2	10280,9	10283,9	10288,0	10293,2	10299,5	10307,0	10315,5	10325,0
0,6211	9150,6	9151,3	9153,4	9156,9	9161,8	9168,0	9175,6	9184,5	9194,7	9206,2
0,6212	7824,8	7825,6	7828,1	7832,1	7837,8	7845,1	7853,9	7864,3	7876,2	7889,6
0,6213	6305,5	6306,4	6309,2	6313,8	6320,3	6328,5	6338,6	6350,4	6363,9	6379,2
0,6214	4598,0	4599,0	4602,1	4607,3	4614,5	4623,7	4634,9	4648,1	4663,3	4680,3
0,6215	2708,9	2710,0	2713,5	2719,1	2727,1	2737,2	2749,6	2764,1	2780,8	2799,6
0,6216	646,5	647,7	651,4	657,6	666,2	677,3	690,7	706,5	724,7	745,2
0,6217	-1579,5	-1578,2	-1574,2	-1567,6	-1558,3	-1546,4	-1531,9	-1514,9	-1495,3	-1473,3
0,6218	-3957,6	-3956,2	-3952,0	-3944,9	-3935,0	-3922,3	-3906,9	-3888,7	-3867,9	-3844,3
0,6219	-6474,7	-6473,2	-6468,7	-6461,2	-6450,8	-6437,4	-6421,1	-6401,9	-6379,9	-6355,0
0,622	-9115,9	-9114,3	-9109,6	-9101,8	-9090,8	-9076,8	-9059,7	-9039,6	-9016,5	-8990,4
0,6221	-11864,7	-11863,1	-11858,2	-11850,1	-11838,7	-11824,1	-11806,4	-11785,5	-11761,4	-11734,3
0,6222	-14703,4	-14701,7	-14696,6	-14688,2	-14676,5	-14661,5	-14643,2	-14621,6	-14596,8	-14568,8
0,6223	-17612,6	-17610,9	-17605,7	-17597,1	-17585,1	-17569,7	-17551,0	-17528,9	-17503,5	-17474,9
0,6224	-20572,3	-20570,5	-20565,3	-20556,6	-20544,4	-20528,7	-20509,7	-20487,2	-20461,4	-20432,3
0,6225	-23561,4	-23559,7	-23554,4	-23545,6	-23533,3	-23517,5	-23498,3	-23475,6	-23449,5	-23420,1

Distribusi Tegangan (dalam psi):

r A	10	11	12	13	14	15	16	17	18	19
0,6185	-23733,3	-23770,8	-23811,3	-23853,8	-23895,9	-23933,8	-23964,4	-23988,8	-24011,0	-24033,6
0,6186	-20729,5	-20766,6	-20806,8	-20849,0	-20890,8	-20928,4	-20958,6	-20982,7	-21004,7	-21027,0
0,6187	-17755,9	-17792,4	-17832,0	-17873,5	-17914,7	-17951,7	-17981,4	-18005,1	-18026,7	-18048,6
0,6188	-14833,4	-14869,2	-14907,8	-14948,4	-14988,7	-15024,8	-15053,8	-15076,9	-15097,9	-15119,2
0,6189	-11982,3	-12017,0	-12054,5	-12093,9	-12133,0	-12168,0	-12196,1	-12218,4	-12238,7	-12259,2
0,619	-9221,7	-9255,1	-9291,2	-9329,2	-9366,8	-9400,5	-9427,5	-9448,9	-9468,3	-9487,9
0,6191	-6569,5	-6601,4	-6636,0	-6672,2	-6708,1	-6740,3	-6766,0	-6786,3	-6804,7	-6823,3
0,6192	-4042,2	-4072,4	-4105,1	-4139,5	-4173,5	-4204,0	-4228,2	-4247,3	-4264,5	-4281,8
0,6193	-1654,5	-1682,9	-1713,6	-1745,9	-1777,8	-1806,4	-1829,0	-1846,7	-1862,6	-1878,6
0,6194	580,4	554,0	525,4	495,4	465,7	439,2	418,3	402,1	387,7	373,1
0,6195	2651,1	2626,7	2600,4	2572,7	2545,4	2521,2	2502,2	2487,6	2474,7	2461,7
0,6196	4547,7	4525,6	4501,6	4476,5	4451,7	4429,8	4412,8	4399,9	4388,7	4377,4
0,6197	6262,3	6242,4	6220,9	6198,3	6176,1	6156,7	6141,8	6130,8	6121,3	6111,8
0,6198	7788,1	7770,6	7751,6	7731,7	7712,2	7695,2	7682,5	7673,5	7665,8	7658,3
0,6199	9119,9	9104,7	9088,3	9071,1	9054,3	9040,0	9029,6	9022,6	9016,9	9011,4
0,62	10253,5	10240,7	10226,9	10212,5	10198,5	10186,8	10178,8	10173,9	10170,3	10166,9
0,6201	11185,9	11175,6	11164,4	11152,7	11141,6	11132,6	11127,0	11124,4	11123,0	11121,8
0,6202	11914,9	11907,0	11898,4	11889,6	11881,3	11875,1	11872,0	11871,7	11872,6	11873,8
0,6203	12438,8	12433,4	12427,5	12421,5	12416,1	12412,7	12412,2	12414,3	12417,6	12421,2
0,6204	12756,8	12753,8	12750,6	12747,4	12744,9	12744,3	12746,5	12751,1	12756,9	12763,1
0,6205	12868,2	12867,7	12867,1	12866,8	12867,2	12869,5	12874,4	12881,5	12890,0	12898,9
0,6206	12773,0	12774,9	12777,0	12779,5	12782,9	12788,0	12795,7	12805,5	12816,7	12828,4
0,6207	12471,3	12475,6	12480,3	12485,7	12492,0	12500,1	12510,6	12523,2	12537,2	12551,9
0,6208	11963,7	11970,4	11977,8	11986,0	11995,2	12006,3	12019,7	12035,2	12052,1	12069,7
0,6209	11251,3	11260,4	11270,4	11281,4	11293,6	11307,7	11324,0	11342,4	11362,3	11383,1
0,621	10335,6	10347,2	10359,8	10373,5	10388,7	10405,7	10425,0	10446,4	10469,4	10493,4
0,6211	9218,9	9232,9	9248,1	9264,6	9282,7	9302,7	9325,0	9349,4	9375,5	9402,8
0,6212	7904,4	7920,7	7938,4	7957,7	7978,6	8001,6	8026,9	8054,4	8083,7	8114,3
0,6213	6396,1	6414,6	6434,9	6456,8	6480,6	6506,6	6534,8	6565,4	6597,9	6631,8
0,6214	4699,2	4720,0	4742,7	4767,3	4793,8	4822,7	4853,9	4887,5	4923,1	4960,3
0,6215	2820,5	2843,5	2868,5	2895,5	2924,8	2956,4	2990,6	3027,1	3065,9	3106,4
0,6216	767,9	793,0	820,2	849,7	881,6	915,9	952,8	992,2	1034,0	1077,7
0,6217	-1448,7	-1421,8	-1392,4	-1360,6	-1326,3	-1289,5	-1249,9	-1207,7	-1163,0	-1116,2
0,6218	-3818,2	-3789,4	-3758,1	-3724,2	-3687,6	-3648,3	-3606,2	-3561,4	-3514,0	-3464,3
0,6219	-6327,3	-6296,9	-6263,8	-6227,9	-6189,2	-6147,8	-6103,4	-6056,2	-6006,2	-5953,8
0,622	-8961,5	-8929,6	-8894,8	-8857,2	-8816,6	-8773,2	-8726,7	-8677,3	-8625,1	-8570,3
0,6221	-11704,2	-11671,0	-11634,8	-11595,7	-11553,5	-11508,3	-11460,1	-11408,8	-11354,5	-11297,5
0,6222	-14537,7	-14503,5	-14466,1	-14425,7	-14382,2	-14335,5	-14285,8	-14232,9	-14176,9	-14118,1
0,6225	-17443,0	-17407,9	-17369,6	-17328,2	-17283,6	-17235,8	-17184,8	-17130,7	-17073,3	-17013,1
0,6224	-20399,8	-20364,1	-20325,2	-20283,0	-20237,7	-20189,1	-20137,2	-20082,2	-20023,9	-19962,5
0,6225	-23387,4	-23351,4	-23312,0	-23269,4	-23223,6	-23174,5	-23122,2	-23066,6	-23007,8	-22945,7

b. Kelompok B (5.3 s $\le t_q \le$ 5.5 s), Re = 30000, H/D = 9

Distribusi Temperatur (dalam K):

r 0	0	1	2	3	4	5	6	7	8	9
0,6185	356,66285	356,63	356,53	356,37	356,14	355,84	355,48	355,05	354,56	353,99
0,6186	391,8519	391,82	391,72	391,56	391,33	391,04	390,68	390,26	389,77	389,21
0,6187	426,62226	426,59	426,5	426,34	426,11	425,83	425,48	425,06	424,58	424,03
0,6188	460,73676	460,71	460,61	460,46	460,24	459,96	459,62	459,22	458,75	458,21
0,6189	493,96754	493,94	493,85	493,7	493,49	493,22	492,89	492,5	492,04	491,52
0,619	526,09906	526,07	525,98	525,84	525,64	525,38	525,06	524,69	524,25	523,75
0,6191	556,9305	556,9	556,82	556,68	556,49	556,25	555,94	555,58	555,17	554,69
0,6192	586,27784	586,25	586,17	586,05	585,86	585,63	585,35	585,01	584,61	584,16
0,6193	613,97515	613,95	613,88	613,76	613,59	613,37	613,1	612,78	612,41	611,99
0,6194	639,87545	639,85	639,79	639,67	639,52	639,31	639,06	638,77	638,43	638,04
0,6195	663,85088	663,83	663,77	663,67	663,52	663,33	663,11	662,83	662,52	662,16
0,6196	685,79231	685,77	685,72	685,62	685,49	685,32	685,12	684,87	684,58	684,26
0,6197	705,60851	705,59	705,54	705,46	705,34	705,19	705	704,78	704,53	704,23
0,6198	723,22483	723,21	723,17	723,09	722,99	722,86	722,69	722,5	722,27	722,01
0,6199	738,58162	738,57	738,53	738,47	738,38	738,26	738,12	737,96	737,76	737,54
0,62	751,6324	751,62	751,59	751,54	751,46	751,37	751,25	751,11	750,95	750,76
0,6201	762,342	762,33	762,31	762,27	762,21	762,13	762,04	761,92	761,79	761,64
0,6202	770,68473	770,68	770,66	770,63	770,58	770,53	770,45	770,37	770,27	770,15
0,6203	776,64266	776,64	776,63	776,6	776,58	776,54	776,49	776,43	776,36	776,28
0,6204	780,20422	780,2	780,2	780,19	780,17	780,15	780,13	780,1	780,06	780,02
0,6205	781,36313	781,36	781,36	781,36	781,36	781,36	781,36	781,36	781,35	781,35
0,6206	780,1177	780,12	780,13	780,14	780,15	780,17	780,19	780,22	780,24	780,27
0,6207	776,47063	776,48	776,49	776,51	776,54	776,58	776,62	776,67	776,73	776,8
0,6208	770,42926	770,44	770,46	770,49	770,53	770,59	770,66	770,74	770,83	770,93
0,6209	762,00624	762,01	762,04	762,08	762,14	762,22	762,31	762,42	762,54	762,67
0,621	751,22063	751,23	751,26	751,32	751,39	751,48	751,6	751,73	751,89	752,06
0,6211	738,09934	738,11	738,15	738,21	738,3	738,42	738,55	738,71	738,9	739,1
0,6212	722,67883	722,69	722,74	722,81	722,91	723,05	723,21	723,39	723,61	723,85
0,6213	705,00692	705,02	705,07	705,16	705,28	705,42	705,61	705,82	706,06	706,34
0,6214	685,1447	685,16	685,22	685,31	685,44	685,61	685,82	686,05	686,33	686,64
0,6215	663,16831	663,19	663,25	663,35	663,5	663,68	663,91	664,17	664,47	664,81
0,6216	639,17051	639,19	639,26	639,37	639,53	639,73	639,98	640,26	640,59	640,96
0,6217	613,26196	613,29	613,36	613,48	613,65	613,87	614,13	614,44	614,8	615,2
0,6218	585,57206	585,6	585,68	585,81	585,99	586,22	586,5	586,83	587,21	587,64
0,6219	556,24925	556,28	556,36	556,5	556,69	556,93	557,23	557,58	557,98	558,44
0,622	525,46082	525,49	525,58	525,72	525,92	526,18	526,49	526,86	527,28	527,76
0,6221	493,39208	493,42	493,51	493,66	493,87	494,14	494,46	494,85	495,29	495,78
0,6222	460,2449	460,28	460,37	460,52	460,74	461,02	461,35	461,75	462,21	462,72
0,6223	426,23571	426,27	426,36	426,52	426,74	427,03	427,37	427,78	428,25	428,78
0,6224	391,59301	391,63	391,72	391,88	392,11	392,4	392,75	393,17	393,64	394,18
0,6225	356,55433	356,59	356,69	356,85	357,08	357,37	357,73	358,15	358,63	359,18

r A	10	11	12	13	14	15	16	17	18	19
0,6185	353,36	352,66	351,91	351,12	350,34	349,63	349,06	348,61	348,2	347,78
0,6186	388,59	387,9	387,15	386,37	385,6	384,9	384,34	383,89	383,48	383,07
0,6187	423,42	422,74	422,01	421,24	420,48	419,79	419,24	418,8	418,4	418
0,6188	457,61	456,95	456,24	455,49	454,74	454,08	453,54	453,11	452,72	452,33
0,6189	490,95	490,31	489,61	488,89	488,17	487,52	487	486,59	486,21	485,83
0,619	523,2	522,58	521,92	521,22	520,52	519,9	519,4	519,01	518,65	518,29
0,6191	554,16	553,58	552,94	552,27	551,61	551,02	550,55	550,17	549,83	549,49
0,6192	583,66	583,11	582,51	581,87	581,25	580,69	580,24	579,89	579,57	579,25
0,6193	611,52	611	610,44	609,84	609,26	608,73	608,31	607,99	607,69	607,4
0,6194	637,6	637,11	636,59	636,04	635,49	635	634,62	634,32	634,05	633,78
0,6195	661,76	661,31	660,83	660,32	659,82	659,37	659,02	658,75	658,51	658,27
0,6196	683,89	683,49	683,05	682,58	682,13	681,72	681,41	681,17	680,96	680,75
0,6197	703,91	703,54	703,15	702,73	702,32	701,96	701,69	701,48	701,31	701,13
0,6198	721,72	721,4	721,05	720,69	720,33	720,02	719,78	719,61	719,47	719,32
0,6199	737,29	737,01	736,71	736,39	736,08	735,82	735,62	735,49	735,38	735,27
0,62	750,55	750,31	750,06	749,79	749,53	749,31	749,16	749,07	749	748,93
0,6201	761,47	761,28	761,07	760,85	760,65	760,48	760,37	760,32	760,29	760,26
0,6202	770,02	769,87	769,72	769,55	769,4	769,28	769,22	769,2	769,21	769,23
0,6203	776,19	776,09	775,98	775,86	775,76	775,69	775,68	775,71	775,76	775,82
0,6204	779,96	779,91	779,84	779,78	779,73	779,71	779,75	779,82	779,92	780,03
0,6205	781,34	781,32	781,31	781,3	781,3	781,33	781,42	781,54	781,68	781,84
0,6206	780,3	780,33	780,37	780,41	780,46	780,55	780,68	780,85	781,05	781,25
0,6207	776,87	776,94	777,02	777,11	777,22	777,36	777,55	777,77	778,01	778,27
0,6208	771,04	771,16	771,28	771,43	771,59	771,78	772,02	772,29	772,59	772,9
0,6209	762,82	762,99	763,16	763,36	763,57	763,82	764,11	764,43	764,79	765,15
0,621	752,25	752,45	752,68	752,92	753,19	753,49	753,83	754,21	754,62	755,04
0,6211	739,33	739,58	739,85	740,15	740,47	740,83	741,22	741,66	742,12	742,6
0,6212	724,12	724,41	724,73	725,07	725,44	725,85	726,31	726,8	727,32	727,86
0,6213	706,64	706,98	707,34	707,74	708,16	708,63	709,13	709,68	710,26	710,86
0,6214	686,98	687,35	687,76	688,2	688,68	689,2	689,76	690,36	690,99	691,66
0,6215	665,19	665,61	666,06	666,55	667,07	667,64	668,25	668,91	669,6	670,33
0,6216	641,38	641,83	642,32	642,85	643,43	644,05	644,71	645,42	646,17	646,95
0,6217	615,64	616,13	616,66	617,24	617,86	618,52	619,24	620	620,8	621,64
0,6218	588,11	588,64	589,21	589,82	590,48	591,19	591,96	592,76	593,62	594,52
0,6219	558,94	559,49	560,1	560,75	561,45	562,21	563,01	563,87	564,77	565,72
0,622	528,29	528,87	529,5	530,19	530,93	531,72	532,56	533,46	534,41	535,4
0,6221	496,34	496,94	497,61	498,32	499,09	499,92	500,8	501,73	502,72	503,76
0,6222	463,29	463,92	464,6	465,35	466,14	467	467,91	468,88	469,9	470,97
0,6223	429,36	430,01	430,71	431,48	432,3	433,17	434,11	435,1	436,15	437,26
0,6224	394,78	395,44	396,16	396,94	397,77	398,67	399,63	400,64	401,71	402,84
0,6225	359,78	360,45	361,18	361,97	362,82	363,72	364,69	365,72	366,81	367,95

Distribusi Tegangan (dalam psi):

r 0	0	1	2	3	4	5	6	7	8	9
0,6185	-23064,701	-23067	-23076	-23089	-23109	-23133	-23164	-23200	-23241	-23289
0,6186	-20113,597	-20116	-20124	-20138	-20157	-20181	-20211	-20247	-20288	-20335
0,6187	-17197,606	-17200	-17208	-17222	-17240	-17264	-17294	-17329	-17369	-17415
0,6188	-14336,618	-14339	-14347	-14360	-14378	-14402	-14430	-14464	-14504	-14548
0,6189	-11549,742	-11552	-11560	-11572	-11590	-11612	-11640	-11673	-11711	-11755
0,619	-8855,0564	-8857,5	-8864,7	-8876,7	-8893,6	-8915,3	-8942	-8973,6	-9010,2	-9051,8
0,6191	-6269,3995	-6271,7	-6278,6	-6290	-6306,1	-6326,8	-6352,2	-6382,3	-6417,2	-6456,9
0,6192	-3808,2065	-3810,4	-3816,9	-3827,7	-3842,9	-3862,4	-3886,4	-3914,9	-3947,9	-3985,5
0,6193	-1485,3916	-1487,4	-1493,5	-1503,6	-1517,9	-1536,2	-1558,7	-1585,4	-1616,3	-1651,5
0,6194	686,71852	684,83	679,2	669,79	656,6	639,58	618,71	593,92	565,18	532,45
0,6195	2697,4003	2695,7	2690,5	2681,9	2669,8	2654,1	2634,9	2612,2	2585,8	2555,6
0,6196	4537,5026	4535,9	4531,2	4523,4	4512,4	4498,2	4480,8	4460,2	4436,2	4408,8
0,6197	6199,3739	6198	6193,8	6186,8	6176,9	6164,3	6148,7	6130,2	6108,7	6084,1
0,6198	7676,754	7675,5	7671,8	7665,7	7657	7645,9	7632,2	7615,9	7596,9	7575,3
0,6199	8964,6396	8963,6	8960,4	8955,1	8947,7	8938,1	8926,3	8912,2	8895,9	8877,2
0,62	10059,134	10058	10056	10051	10045	10037	10027	10015	10002	9985,8
0,6201	10957,287	10957	10954	10951	10946	10940	10932	10922	10911	10898
0,6202	11656,944	11656	11655	11652	11648	11644	11638	11630	11622	11612
0,6203	12156,601	12156	12155	12153	12151	12148	12144	12139	12133	12126
0,6204	12455,289	12455	12455	12454	12452	12451	12449	12446	12443	12439
0,6205	12552,48	12552	12553	12553	12553	12552	12552	12552	12552	12551
0,6206	12448,033	12448	12449	12450	12451	12452	12454	12456	12459	12461
0,6207	12142,174	12143	12144	12145	12148	12151	12155	12159	12164	12170
0,6208	11635,519	11636	11638	11640	11644	11649	11655	11661	11669	11677
0,6209	10929,129	10930	10932	10936	10941	10947	10955	10964	10974	10985
0,621	10024,601	10026	10028	10033	10039	10047	10056	10068	10080	10095
0,6211	8924,1941	8925,3	8928,5	8933,8	8941,2	8950,7	8962,2	8975,7	8991,1	9008,4
0,6212	7630,9638	7632,2	7635,9	7642,1	7650,7	7661,8	7675,2	7690,9	7708,9	7729,1
0,6213	6148,9219	6150,3	6154,6	6161,6	6171,4	6184	6199,2	6217,1	6237,6	6260,7
0,6214	4483,1913	4484,8	4489,5	4497,4	4508,3	4522,4	4539,4	4559,5	4582,5	4608,3
0,6215	2640,1572	2641,9	2647,1	2655,8	2667,9	2683,3	2702,2	2724,3	2749,6	2778,2
0,6216	627,59923	629,5	635,17	644,6	657,76	674,61	695,12	719,24	746,9	778,04
0,6217	-1545,2023	-1543,2	-1537	-1526,9	-1512,7	-1494,5	-14/2,4	-1446,4	-1416,6	-1383
0,6218	-3867,3963	-3865,2	-3858,7	-3847,9	-3832,7	-3813,3	-3789,7	-3/61,9	-3/30,1	-3694,1
0,6219	-6326,5325	-6324,2	-6317,3	-6305,9	-6289,8	-6269,3	-6244,3	-6214,9	-6181,2	-6143,1
0,622	-8908,5814	-8906,2	-8898,9	-8886,9	-88/0,1	-8848,5	-8822,3	-8/91,4	-8/56	-8/16
0,6221	-11598,003	-11595	-11588	-115/5	-11558	-11535	-11508	-114/6	-11439	-11397
0,6222	-143/7,868	-143/5	-1436/	-14355	-14536	-14513	-14285	-14252	-14213	-141/0
0,6223	-1/230,023	-1/22/	-1/219	-1/206	-1/18/	-1/164	-1/135	-1/101	-1/061	-1/01/
0,6224	-20135,309	-20133	-20124	-20111	-20092	-20068	-20038	-20003	-19963	-19918
0,0225	-23073,002	-230/1	-23003	-23043	-23030	-23003	-22373	-22340	-22500	-22034

r O	10	11	12	13	14	15	16	17	18	19
0,6185	-23342	-23400	-23463	-23529	-23595	-23654	-23702	-23740	-23775	-23810
0,6186	-20387	-20445	-20508	-20573	-20638	-20697	-20744	-20781	-20816	-20850
0,6187	-17466	-17523	-17584	-17649	-17713	-17770	-17817	-17853	-17887	-17921
0,6188	-14599	-14654	-14714	-14777	-14839	-14895	-14940	-14976	-15009	-15042
0,6189	-11803	-11857	-11915	-11976	-12036	-12091	-12134	-12169	-12200	-12232
0,619	-9098,5	-9150	-9205,8	-9264,5	-9322,7	-9374,9	-9416,7	-9449,8	-9479,9	-9510,4
0,6191	-6501,4	-6550,6	-6603,9	-6659,8	-6715,4	-6765,1	-6804,9	-6836,4	-6864,8	-6893,6
0,6192	-4027,6	-4074,1	-4124,6	-4177,6	-4230,1	-4277,2	-4314,6	-4344,2	-4370,8	-4397,8
0,6193	-1691,1	-1734,7	-1782,1	-1831,8	-1881,1	-1925,2	-1960,2	-1987,6	-2012,2	-2037,1
0,6194	495,72	455,12	411,1	364,84	319,03	278,17	245,9	220,81	198,35	175,69
0,6195	2521,9	2484,5	2444	2401,4	2359,3	2321,8	2292,5	2269,9	2249,8	2229,5
0,6196	4378,1	4344,1	4307,2	4268,4	4230,2	4196,3	4170	4150,1	4132,5	4114,9
0,6197	6056,5	6026	5992,9	5958,1	5923,9	5893,7	5870,7	5853,5	5838,7	5823,8
0,6198	7550,9	7524	7494,7	7464	7433,9	7407,6	7387,9	7373,7	7361,7	7349,7
0,6199	8856,1	8832,8	8807,5	8780,9	8755	8732,6	8716,4	8705,3	8696,3	8687,3
0,62	9968,1	9948,4	9927,1	9904,8	9883,1	9864,8	9852,1	9844,3	9838,4	9832,7
0,6201	10884	10868	10851	10832	10815	10801	10792	10788	10785	10783
0,6202	11601	11589	11576	11562	11549	11539	11534	11533	11534	11535
0,6203	12119	12110	12101	12091	12083	12077	12076	12078	12083	12088
0,6204	12435	12430	12425	12420	12416	12414	12417	12423	12432	12441
0,6205	12550	12549	12548	12547	12547	12550	12557	12567	12579	12592
0,6206	12463	12466	12469	12472	12477	12484	12495	12510	12526	12543
0,6207	12175	12182	12189	12196	12205	12217	12232	12251	12272	12293
0,6208	11686	11696	11707	11719	11733	11749	11769	11792	11817	11843
0,6209	10998	11011	11026	11042	11060	11081	11105	11133	11162	11193
0,621	10111	10128	10147	10167	10190	10215	10244	10276	10310	10345
0,6211	9027,6	9048,5	9071,3	9096	9123	9152,8	9186,1	9222,5	9261,4	9301,9
0,6212	7751,5	7776	7802,6	7831,5	7862,9	7897,3	7935,1	7976,2	8019,9	8065,4
0,6213	6286,3	6314,3	6344,8	6377,8	6413,5	6452,4	6494,8	6540,5	6589,1	6639,7
0,6214	4637	4668,4	4702,6	4739,6	4779,6	4823	4869,9	4920,3	4973,7	5029,4
0,6215	2809,9	2844,6	2882,5	2923,4	2967,5	3015,2	3066,6	3121,5	3179,7	3240,5
0,6216	812,62	850,58	891,89	936,56	984,71	1036,5	1092,2	1151,7	1214,6	1280,3
0,6217	-1345,7	-1304,7	-1260	-1211,8	-1159,8	-1104	-1044,1	-980,34	-912,88	-842,43
0,6218	-3654,2	-3610,4	-3562,7	-3511,1	-3455,5	-3395,9	-3332,1	-3264,2	-3192,4	-3117,4
0,6219	-6100,8	-6054,4	-6003,8	-5949	-5890,2	-5827	-5759,5	-5687,8	-5612	-5532,6
0,622	-8671,6	-8622,7	-8569,5	-8512	-8450,1	-8383,7	-8312,9	-8237,6	-8158,1	-8074,8
0,6221	-11351	-11300	-11245	-11185	-11120	-11051	-10977	-10899	-10816	-10729
0,6222	-14122	-14070	-14012	-13950	-13883	-13812	-13735	-13654	-13568	-13478
0,6223	-16968	-16914	-16854	-16791	-16722	-16648	-16570	-16486	-16398	-16306
0,6224	-19868	-19813	-19752	-19687	-19617	-19542	-19462	-19377	-19287	-19192
0,6225	-22803	-22747	-22686	-22620	-22549	-22472	-22391	-22305	-22214	-22118

c. Kelompok C (5.5 s $\leq t_q \leq$ 5.6 s), Re = 10000, H/D = 2

Distribusi Temperatur (dalam K):

r A	0	1	2	3	4	5	6	7	8	9
0,6185	364,46246	364,44	364,36	364,24	364,08	363,87	363,61	363,3	362,96	362,56
0,6186	398,8747	398,85	398,78	398,66	398,5	398,29	398,03	397,73	397,39	397
0,6187	432,83523	432,81	432,74	432,62	432,46	432,26	432,01	431,72	431,38	431
0,6188	466,12052	466,1	466,03	465,92	465,76	465,56	465,32	465,04	464,71	464,34
0,6189	498,51608	498,49	498,43	498,32	498,17	497,98	497,74	497,47	497,16	496,8
0,619	529,81909	529,8	529,73	529,63	529,49	529,3	529,08	528,82	528,52	528,18
0,6191	559,84057	559,82	559,76	559,66	559,52	559,35	559,14	558,89	558,6	558,28
0,6192	588,4071	588,39	588,33	588,24	588,11	587,94	587,74	587,51	587,24	586,94
0,6193	615,36201	615,34	615,29	615,2	615,08	614,93	614,74	614,52	614,28	614
0,6194	640,56604	640,55	640,5	640,42	640,31	640,16	639,99	639,79	639,56	639,31
0,6195	663,89752	663,88	663,84	663,76	663,66	663,53	663,37	663,19	662,98	662,75
0,6196	685,25201	685,24	685,2	685,13	685,04	684,92	684,78	684,61	684,43	684,23
0,6197	704,54155	704,53	704,49	704,43	704,35	704,25	704,12	703,98	703,81	703,64
0,6198	721,6935	721,68	721,65	721,6	721,53	721,43	721,33	721,2	721,06	720,92
0,6199	736,64917	736,64	736,61	736,57	736,51	736,43	736,34	736,23	736,12	736
0,62	749,36225	749,35	749,33	749,29	749,24	749,18	749,1	749,02	748,93	748,85
0,6201	759,79714	759,79	759,77	759,74	759,7	759,65	759,6	759,53	759,47	759,42
0,6202	767,92742	767,92	767,91	767,89	767,86	767,82	767,78	767,74	767,71	767,68
0,6203	773,7343	773,73	773,72	773,71	773,69	773,67	773,65	773,63	773,62	773,63
0,6204	777,20549	777,2	777,2	777,19	777,19	777,18	777,17	777,18	777,2	777,24
0,6205	778,33419	778,33	778,33	778,34	778,34	778,35	778,36	778,39	778,44	778,52
0,6206	777,11853	777,12	777,13	777,13	777,15	777,17	777,2	777,25	777,33	777,45
0,6207	773,5614	773,56	773,57	773,59	773,62	773,65	773,71	773,78	773,89	774,04
0,6208	767,67065	767,68	767,69	767,72	767,75	767,8	767,87	767,97	768,11	768,3
0,6209	759,45967	759,47	759,49	759,52	759,57	759,63	759,72	759,84	760,01	760,24
0,621	748,94835	748,96	748,98	749,02	749,08	749,16	749,27	749,41	749,61	749,88
0,6211	736,16433	736,17	736,2	736,25	736,32	736,42	736,54	736,71	736,94	737,25
0,6212	721,14446	721,16	721,19	721,24	721,33	721,44	721,58	721,77	722,03	722,38
0,6213	703,93637	703,95	703,99	704,05	704,14	704,27	704,43	704,65	704,94	705,33
0,6214	684,60016	684,61	684,66	684,73	684,83	684,97	685,15	685,39	685,71	686,14
0,6215	663,20987	663,23	663,27	663,35	663,46	663,61	663,81	664,08	664,43	664,9
0,6216	639,85497	639,87	639,92	640,01	640,13	640,3	640,51	640,8	641,18	641,68
0,6217	614,64135	614,66	614,71	614,81	614,94	615,12	615,35	615,65	616,06	616,61
0,6218	587,69217	587,71	587,77	587,87	588,01	588,2	588,45	588,77	589,21	589,79
0,6219	559,14809	559,17	559,23	559,33	559,48	559,68	559,95	560,29	560,75	561,36
0,622	529,1671	529,19	529,25	529,36	529,52	529,73	530,01	530,37	530,85	531,49
0,6221	497,92384	497,95	498,01	498,13	498,29	498,51	498,8	499,18	499,68	500,34
0,6222	465,60835	465,63	465,7	465,82	465,99	466,22	466,51	466,9	467,42	468,11
0,6223	432,42431	432,45	432,52	432,64	432,82	433,05	433,35	433,76	434,29	435
0,6224	398,58684	398,61	398,68	398,81	398,99	399,22	399,54	399,95	400,49	401,21
0,6225	364,31988	364,34	364,42	364,54	364,72	364,97	365,28	365,7	366,25	366,98

r A	10	11	12	13	14	15	16	17	18	19
0,6185	362,12	361,63	361,1	360,54	359,97	359,47	359,18	359,12	359,18	359,22
0,6186	396,57	396,09	395,57	395,01	394,45	393,97	393,68	393,63	393,7	393,74
0,6187	430,58	430,11	429,61	429,06	428,52	428,05	427,77	427,73	427,8	427,84
0,6188	463,93	463,48	462,99	462,46	461,93	461,48	461,22	461,18	461,25	461,31
0,6189	496,41	495,97	495,5	495	494,49	494,06	493,81	493,78	493,86	493,92
0,619	527,8	527,39	526,94	526,46	525,98	525,57	525,34	525,32	525,4	525,47
0,6191	557,93	557,54	557,12	556,67	556,21	555,83	555,62	555,61	555,7	555,77
0,6192	586,61	586,25	585,85	585,43	585,01	584,66	584,47	584,47	584,57	584,66
0,6193	613,69	613,36	612,99	612,61	612,23	611,9	611,74	611,76	611,87	611,96
0,6194	639,03	638,73	638,4	638,05	637,7	637,42	637,28	637,32	637,44	637,55
0,6195	662,5	662,23	661,94	661,63	661,33	661,08	660,98	661,03	661,17	661,29
0,6196	684,01	683,77	683,52	683,26	683	682,79	682,72	682,79	682,95	683,09
0,6197	703,45	703,25	703,04	702,82	702,61	702,45	702,41	702,52	702,69	702,86
0,6198	720,76	720,6	720,44	720,27	720,11	719,99	720	720,13	720,33	720,52
0,6199	735,88	735,77	735,65	735,53	735,42	735,36	735,4	735,57	735,8	736,02
0,62	748,76	748,69	748,62	748,56	748,5	748,5	748,59	748,79	749,06	749,32
0,6201	759,37	759,34	759,33	759,32	759,32	759,37	759,52	759,76	760,07	760,37
0,6202	767,68	767,7	767,73	767,78	767,85	767,97	768,16	768,46	768,81	769,15
0,6203	773,67	773,73	773,83	773,94	774,07	774,25	774,51	774,86	775,25	775,65
0,6204	777,32	777,44	777,59	777,77	777,97	778,22	778,54	778,95	779,4	779,85
0,6205	778,64	778,81	779,02	779,27	779,54	779,86	780,25	780,72	781,24	781,76
0,6206	777,62	777,84	778,12	778,43	778,78	779,18	779,64	780,18	780,77	781,36
0,6207	774,26	774,54	774,88	775,26	775,69	776,17	776,71	777,33	777,99	778,65
0,6208	768,56	768,9	769,31	769,77	770,28	770,85	771,47	772,17	772,91	773,66
0,6209	760,55	760,95	761,43	761,97	762,57	763,22	763,93	764,71	765,54	766,38
0,621	750,24	750,7	751,25	751,88	752,56	753,3	754,11	754,98	755,89	756,83
0,6211	737,66	738,19	738,81	739,52	740,29	741,12	742,02	742,99	744	745,04
0,6212	722,85	723,44	724,13	724,92	725,79	726,72	727,71	728,78	729,89	731,03
0,6213	705,84	706,49	707,27	708,14	709,1	710,12	711,22	712,39	713,6	714,85
0,6214	686,71	687,42	688,27	689,23	690,28	691,4	692,6	693,87	695,19	696,55
0,6215	665,52	666,29	667,21	668,26	669,4	670,62	671,92	673,29	674,72	676,19
0,6216	642,35	643,19	644,18	645,31	646,54	647,86	649,26	650,73	652,27	653,85
0,6217	617,32	618,22	619,28	620,49	621,81	623,22	624,71	626,29	627,93	629,62
0,6218	590,55	591,5	592,63	593,91	595,32	596,82	598,41	600,08	601,82	603,62
0,6219	562,16	563,17	564,37	565,72	567,2	568,79	570,46	572,23	574,07	575,97
0,622	532,33	533,39	534,64	536,06	537,61	539,28	541,04	542,89	544,82	546,82
0,6221	501,22	502,32	503,62	505,1	506,72	508,46	510,29	512,23	514,24	516,33
0,6222	469,02	470,15	471,51	473,04	474,71	476,51	478,41	480,42	482,51	484,68
0,6223	435,93	437,1	438,48	440,06	441,78	443,63	445,59	447,66	449,81	452,05
0,6224	402,16	403,36	404,77	406,38	408,15	410,04	412,04	414,15	416,36	418,66
0.6225	367.95	369.16	370.59	372.23	374.02	375.94	377.98	380.13	382.37	384.71

r . Ø	0	1	2	3	4	5	6	7	8	9
0,6185	-22594,113	-22596	-22602	-22612	-22626	-22644	-22666	-22691	-22720	-22754
0,6186	-19708,155	-19710	-19716	-19726	-19740	-19758	-19779	-19804	-19833	-19865
0,6187	-16860,079	-16862	-16868	-16878	-16891	-16908	-16929	-16954	-16982	-17014
0,6188	-14068,633	-14071	-14076	-14086	-14099	-14116	-14136	-14160	-14187	-14218
0,6189	-11351,803	-11354	-11359	-11368	-11381	-11397	-11417	-11440	-11466	-11496
0,619	-8726,5988	-8728,4	-8733,7	-8742,5	-8754,6	-8770	-8788,7	-8810,6	-8835,8	-8864,2
0,6191	-6208,869	-6210,6	-6215,6	-6224	-6235,5	-6250,1	-6267,9	-6288,7	-6312,6	-6339,4
0,6192	-3813,1576	-3814,8	-3819,5	-3827,4	-3838,3	-3852,1	-3868,8	-3888,4	-3910,8	-3935,9
0,6193	-1552,6039	-1554,1	-1558,6	-1565,9	-1576,1	-1589	-1604,6	-1622,8	-1643,7	-1667
0,6194	561,11386	559,72	555,59	548,78	539,38	527,44	513,02	496,19	477,02	455,66
0,6195	2517,7916	2516,5	2512,7	2506,5	2497,9	2486,9	2473,8	2458,5	2441,1	2421,8
0,6196	4308,6707	4307,5	4304,1	4298,4	4290,6	4280,8	4268,9	4255,1	4239,6	4222,6
0,6197	5926,3738	5925,3	5922,3	5917,2	5910,3	5901,5	5891	5878,9	5865,3	5850,5
0,6198	7364,8097	7363,9	7361,2	7356,8	7350,7	7343,1	7333,9	7323,5	7311,9	7299,6
0,6199	8619,0563	8618,3	8616	8612,2	8607	8600,5	8592,8	8584	8574,5	8564,7
0,62	9685,2292	9684,6	9682,7	9679,5	9675,2	9669,9	9663,6	9656,6	9649,2	9642
0,6201	10560,344	10560	10558	10556	10552	10548	10543	10538	10533	10528
0,6202	11242,184	11242	11241	11239	11236	11233	11230	11227	11224	11222
0,6203	11729,174	11729	11728	11727	11725	11724	11722	11720	11720	11721
0,6204	12020,283	12020	12020	12019	12019	12018	12018	12018	12020	12024
0,6205	12114,94	12115	12115	12115	12115	12116	12117	12119	12124	12130
0,6206	12012,989	12013	12014	12014	12016	12017	12020	12024	12031	12041
0,6207	11714,673	11715	11716	11717	11719	11722	11727	11733	11742	11755
0,6208	11220,65	11221	11222	11224	11227	11232	11238	11246	11257	11273
0,6209	10532,042	10533	10534	10537	10541	10546	10554	10564	10578	10598
0,621	9650,5179	9651,2	9653,2	9656,6	9661,6	9668,3	9677,3	9689,5	9706	9728,8
0,6211	8578,3956	8579,2	8581,6	8585,6	8591,5	8599,5	8610,1	8624,2	8643,4	8669,5
0,6212	7318,7648	7319,7	7322,5	7327,2	7334	7343,2	7355,3	7371,5	7393,2	7422,7
0,6213	5875,6212	5876,7	5879,8	5885,2	5892,9	5903,3	5917	5935,1	5959,5	5992,3
0,6214	4254,0032	4255,2	4258,7	4264,7	4273,3	4284,8	4300,1	4320,2	4347,1	4383,2
0,6215	2460,1227	2461,4	2465,3	2471,9	2481,3	2494	2510,8	2532,8	2562,2	2601,6
0,6216	501,48035	502,89	507,12	514,27	524,56	538,39	556,55	580,45	612,28	654,91
0,6217	-1613,041	-1611,5	-1607	-1599,3	-1588,2	-1573,3	-1553,7	-1528,1	-1493,9	-1448,2
0,6218	-3873,1145	-3871,5	-3866,6	-3858,4	-3846,6	-3830,7	-3809,8	-3782,5	-3746,1	-3697,5
0,6219	-6266,9435	-6265,2	-6260,1	-6251,4	-6238,8	-6222	-6200	-6171,1	-6132,6	-6081,3
0,622	-8781,2773	-8779,5	-8774,1	-8764,9	-8751,7	-8734,1	-8710,9	-8680,6	-8640,3	-8586,5
0,6221	-11401,47	-11400	-11394	-11384	-11371	-11352	-11328	-11297	-11255	-11198
0,6222	-14111,586	-14110	-14104	-14094	-14080	-14061	-14036	-14003	-13960	-13902
0,6223	-16894,541	-16893	-16887	-16876	-16862	-16842	-16817	-16783	-16738	-16679
0,6224	-19732,297	-19730	-19724	-19714	-19699	-19679	-19653	-19618	-19573	-19512
0,6225	-22606,07	-22604	-22598	-22587	-22572	-22552	-22525	-22491	-22444	-22383

Distribusi Tegangan (dalam psi):

r 0	10	11	12	13	14	15	16	17	18	19
0,6185	-22791	-22831	-22876	-22923	-22971	-23012	-23037	-23042	-23037	-23033
0,6186	-19902	-19942	-19985	-20032	-20079	-20119	-20143	-20148	-20142	-20139
0,6187	-17049	-17088	-17131	-17176	-17222	-17262	-17285	-17289	-17283	-17279
0,6188	-14252	-14290	-14331	-14375	-14420	-14458	-14480	-14483	-14477	-14472
0,6189	-11529	-11565	-11605	-11647	-11689	-11726	-11747	-11749	-11742	-11738
0,619	-8895,7	-8930,3	-8968	-9008,2	-9048,5	-9082,9	-9102,3	-9104,2	-9097	-9091,4
0,6191	-6369,2	-6401,8	-6437,4	-6475,2	-6513,1	-6545,2	-6563	-6563,9	-6556,2	-6550
0,6192	-3963,8	-3994,2	-4027,3	-4062,5	-4097,7	-4127,3	-4143,3	-4143,2	-4134,7	-4127,7
0,6193	-1692,7	-1720,8	-1751,2	-1783,5	-1815,7	-1842,6	-1856,5	-1855,1	-1845,8	-1837,9
0,6194	432,23	406,77	379,28	350,13	321,15	297,24	285,63	288,48	298,82	307,88
0,6195	2400,8	2378,1	2353,8	2328	2302,5	2281,8	2272,7	2277,3	2288,9	2299,3
0,6196	4204,1	4184,4	4163,4	4141,2	4119,5	4102,3	4096	4102,4	4115,5	4127,5
0,6197	5834,8	5818,2	5800,7	5782,4	5764,6	5751,2	5748	5756,6	5771,4	5785,3
0,6198	7286,7	7273,4	7259,6	7245,3	7231,7	7222,4	7222,5	7233,6	7250,5	7266,6
0,6199	8554,8	8544,9	8535	8525	8515,9	8510,8	8514,6	8528,5	8547,9	8566,6
0,62	9635,1	9628,9	9623,1	9617,6	9613,2	9612,7	9620,4	9637,5	9659,7	9681,4
0,6201	10525	10522	10521	10520	10521	10525	10537	10558	10583	10608
0,6202	11222	11223	11226	11230	11236	11245	11262	11287	11316	11345
0,6203	11724	11729	11737	11746	11757	11773	11794	11823	11857	11890
0,6204	12030	12040	12053	12067	12084	12105	12132	12166	12204	12242
0,6205	12141	12155	12173	12193	12216	12243	12276	12315	12358	12402
0,6206	12055	12074	12097	12123	12152	12186	12225	12270	12319	12368
0,6207	11773	11796	11825	11857	11893	11934	11979	12031	12086	12142
0,6208	11295	11324	11358	11397	11440	11487	11540	11598	11660	11723
0,6209	10624	10657	10697	10743	10793	10847	10907	10972	11042	11112
0,621	9759,2	9797,8	9843,9	9896,1	9953,4	10016	10083	10156	10233	10311
0,6211	8704,2	8748	8800,3	8859,5	8924,2	8994,2	9069,8	9150,7	9235,7	9322,5
0,6212	7461,7	7510,9	7569,4	7635,6	7708	7786	7869,7	7958,9	8052,3	8147,9
0,6213	6035,6	6090,1	6154,9	6228,2	6308,4	6394,5	6486,6	6584,2	6686,4	6791
0,6214	4430,8	4490,7	4561,8	4642,2	4730,1	4824,4	4924,9	5031,2	5142,3	5256,1
0,6215	2653,5	2718,6	2795,9	2883,4	2979	3081,5	3190,4	3305,4	3425,4	3548,6
0,6216	/10,89	/81,16	864,59	958,94	1062,1	11/2,6	1290	1413,5	1542,5	16/5,1
0,6217	-1388,2	-1313	-1223,7	-1122,6	-1012,1	-893,74	-768,25	-636,22	-498,4	-356,55
0,6218	-3633,7	-3553,8	-3458,8	-3351,3	-3233,8	-3107,9	-2974,6	-2834,3	-2688	-2537,1
0,6219	-6014	-5929,6	-5829,3	-5/15,8	-5591,7	-5458,7	-5317,9	-5169,9	-5015,3	-4855,8
0,622	-8515,9	-8427,4	-8322,3	-8203,3	-80/3	-/933,5	-//85,/	-/630,4	-/468,2	-/300,6
0,6221	-11125	-11033	-10923	-10/99	-10664	-10518	-10364	-10202	-10033	-9857,8
0,6222	-13826	-13/30	-13617	-13489	-13348	-13197	-13038	-128/0	-12694	-12513
0,6223	-16601	-16503	-10386	-16254	-16110	-15954	-15/90	-1561/	-15436	-15249
0,6224	-19432	-19532	-19213	-190/9	-18931	-18//2	-18604	-1842/	-18242	-18049
0,0225	-225UZ	-22201	-22080	-21345	-21/35	-21031	-21400	-21201	-21092	-20036

d. Kelompok D (5.6 s $\le t_q \le$ 5.8 s), Re = 10000, H/D = 12

Distribusi Temperatur (dalam K):

r A	0	1	2	3	4	5	6	7	8	9
0,6185	388,07091	388,01	387,82	387,51	387,08	386,52	385,84	385,03	384,1	383,03
0,6186	421,49233	421,43	421,25	420,95	420,52	419,98	419,31	418,52	417,6	416,56
0,6187	454,34694	454,29	454,11	453,82	453,41	452,88	452,22	451,45	450,56	449,55
0,6188	486,43296	486,38	486,21	485,92	485,52	485,01	484,38	483,64	482,78	481,79
0,6189	517,55845	517,5	517,34	517,07	516,69	516,19	515,59	514,88	514,05	513,1
0,619	547,54341	547,49	547,34	547,08	546,71	546,24	545,67	544,99	544,2	543,3
0,6191	576,22147	576,17	576,03	575,78	575,44	574,99	574,45	573,8	573,05	572,2
0,6192	603,44124	603,39	603,26	603,03	602,7	602,29	601,78	601,17	600,46	599,66
0,6193	629,06708	629,02	628,9	628,68	628,38	627,99	627,52	626,95	626,29	625,54
0,6194	652,97948	652,94	652,82	652,62	652,35	651,99	651,55	651,02	650,42	649,73
0,6195	675,07492	675,04	674,93	674,75	674,5	674,17	673,77	673,29	672,73	672,1
0,6196	695,26544	695,23	695,13	694,97	694,74	694,45	694,08	693,65	693,15	692,57
0,6197	713,47766	713,45	713,36	713,22	713,01	712,75	712,42	712,04	711,59	711,08
0,6198	729,6517	729,63	729,55	729,42	729,24	729,01	728,73	728,39	727,99	727,54
0,6199	743,73975	743,72	743,65	743,54	743,39	743,19	742,95	742,65	742,32	741,93
0,62	755,70458	755,69	755,63	755,54	755,41	755,25	755,04	754,8	754,51	754,19
0,6201	765,51801	765,5	765,46	765,39	765,28	765,15	764,99	764,79	764,56	764,3
0,6202	773,15941	773,15	773,12	773,06	772,98	772,88	772,76	772,61	772,44	772,24
0,6203	778,61439	778,61	778,59	778,55	778,5	778,43	778,35	778,25	778,13	777,99
0,6204	781,87366	781,87	781,86	781,84	781,82	781,78	781,74	781,68	781,62	781,54
0,6205	782,93216	782,93	782,93	782,93	782,93	782,93	782,93	782,92	782,91	782,9
0,6206	781,78858	781,79	781,8	781,82	781,85	781,88	781,92	781,96	782	782,05
0,6207	778,44516	778,45	778,47	778,51	778,56	778,63	778,7	778,79	778,89	779
0,6208	772,90788	772,92	772,95	773,01	773,08	773,18	773,3	773,43	773,59	773,76
0,6209	765,18703	765,2	765,25	765,32	765,42	765,55	765,71	765,89	766,1	766,33
0,621	755,29802	755,32	755,37	755,46	755,59	755,75	755,95	756,18	756,45	756,74
0,6211	743,26257	743,28	743,35	743,46	743,61	743,81	744,05	744,33	744,64	745
0,6212	729,10999	729,14	729,21	729,34	729,52	729,75	730,03	730,35	730,72	731,14
0,6213	712,87874	712,91	713	713,14	713,35	713,61	713,92	714,3	714,72	715,2
0,6214	694,61791	694,65	694,75	694,91	695,14	695,44	695,79	696,21	696,69	697,23
0,6215	674,38872	674,43	674,53	674,72	674,97	675,29	675,69	676,15	676,68	677,28
0,6216	652,26593	652,31	652,43	652,62	652,9	653,26	653,69	654,2	654,78	655,43
0,6217	628,33891	628,38	628,51	628,73	629,03	629,41	629,88	630,43	631,06	631,77
0,6218	602,71257	602,76	602,9	603,13	603,45	603,87	604,37	604,96	605,64	606,41
0,6219	575,5078	575,56	575,71	575,95	576,29	576,74	577,27	577,9	578,63	579,44
0,622	546,86155	546,91	547,07	547,33	547,69	548,16	548,73	549,39	550,16	551,02
0,6221	516,92645	516,98	517,15	517,42	517,8	518,29	518,88	519,58	520,39	521,3
0,6222	485,86993	485,93	486,1	486,38	486,78	487,29	487,91	488,64	489,48	490,43
0,6223	453,87296	453,93	454,11	454,4	454,81	455,34	455,98	456,74	457,61	458,59
0,6224	421,12822	421,19	421,37	421,67	422,1	422,64	423,3	424,08	424,98	425,99
0,6225	387,83804	387,9	388,09	388,4	388,83	389,38	390,06	390,86	391,77	392,81

r 0	10	11	12	13	14	15	16	17	18	19
0,6185	381,84	380,51	379,04	377,44	375,7	373,82	371,81	369,72	367,68	365,95
0,6186	415,39	414,08	412,65	411,08	409,36	407,51	405,54	403,48	401,47	399,78
0,6187	448,41	447,14	445,74	444,2	442,53	440,73	438,79	436,78	434,82	433,16
0,6188	480,69	479,46	478,11	476,62	475	473,25	471,37	469,42	467,51	465,9
0,6189	512,04	510,86	509,56	508,13	506,57	504,88	503,07	501,18	499,34	497,79
0,619	542,28	541,15	539,91	538,54	537,05	535,43	533,7	531,89	530,12	528,64
0,6191	571,24	570,17	568,99	567,69	566,27	564,73	563,08	561,36	559,68	558,27
0,6192	598,76	597,75	596,64	595,41	594,08	592,63	591,07	589,44	587,85	586,52
0,6193	624,7	623,76	622,72	621,58	620,32	618,96	617,51	615,98	614,49	613,24
0,6194	648,95	648,07	647,11	646,05	644,89	643,63	642,27	640,85	639,46	638,3
0,6195	671,38	670,59	669,7	668,73	667,66	666,5	665,25	663,94	662,66	661,6
0,6196	691,93	691,2	690,4	689,51	688,54	687,48	686,34	685,15	683,99	683,02
0,6197	710,5	709,85	709,13	708,33	707,46	706,5	705,48	704,4	703,35	702,49
0,6198	727,03	726,46	725,82	725,12	724,35	723,5	722,59	721,63	720,7	719,94
0,6199	741,48	740,99	740,44	739,83	739,15	738,42	737,62	736,78	735,97	735,31
0,62	753,82	753,4	752,93	752,41	751,84	751,21	750,53	749,81	749,12	748,57
0,6201	764	763,66	763,27	762,85	762,38	761,86	761,29	760,7	760,13	759,69
0,6202	772	771,74	771,44	771,11	770,74	770,33	769,88	769,41	768,96	768,63
0,6203	777,82	777,64	777,43	777,19	776,92	776,61	776,28	775,93	775,6	775,38
0,6204	781,45	781,34	781,21	781,07	780,89	780,7	780,48	780,25	780,04	779,93
0,6205	782,87	782,84	782,8	782,74	782,67	782,58	782,48	782,37	782,28	782,29
0,6206	782,09	782,14	782,18	782,22	782,24	782,26	782,27	782,28	782,32	782,43
0,6207	779,12	779,24	779,36	779,49	779,62	779,74	779,86	779,99	780,15	780,38
0,6208	773,94	774,14	774,35	774,57	774,79	775,02	775,26	775,51	775,79	776,14
0,6209	766,59	766,86	767,15	767,46	767,79	768,12	768,47	768,84	769,24	769,71
0,621	757,06	757,41	757,79	758,19	758,61	759,05	759,52	760	760,52	761,11
0,6211	745,39	745,82	746,28	746,77	747,29	747,84	748,41	749,01	749,66	750,37
0,6212	731,6	732,1	732,65	733,23	733,84	734,5	735,18	735,9	736,67	737,5
0,6213	715,73	716,31	716,93	717,6	718,32	719,07	719,87	720,71	721,6	722,54
0,6214	697,82	698,48	699,18	699,94	700,75	701,61	702,51	703,47	704,48	705,55
0,6215	677,94	678,67	679,46	680,3	681,2	682,16	683,18	684,25	685,37	686,57
0,6216	656,16	656,96	657,82	658,75	659,75	660,81	661,93	663,11	664,35	665,66
0,6217	632,56	633,43	634,37	635,39	636,47	637,62	638,85	640,14	641,5	642,92
0,6218	607,25	608,19	609,2	610,29	611,47	612,71	614,03	615,43	616,9	618,44
0,6219	580,35	581,35	582,43	583,6	584,85	586,19	587,6	589,1	590,67	592,32
0,622	551,98	553,04	554,19	555,43	556,76	558,17	559,68	561,27	562,94	564,7
0,6221	522,31	523,42	524,63	525,93	527,33	528,83	530,41	532,09	533,86	535,71
0,6222	491,48	492,64	493,9	495,27	496,73	498,3	499,96	501,72	503,57	505,52
0,6223	459,69	460,89	462,2	463,62	465,14	466,77	468,5	470,33	472,26	474,28
0,6224	427,11	428,35	429,7	431,17	432,74	434,42	436,21	438,1	440,1	442,19
0,6225	393,96	395,23	396,61	398,11	399,72	401,45	403,28	405,23	407,28	409,44

Distribusi Tegangan (dalam psi):

r A	0	1	2	3	4	5	6	7	8	9
0,6185	-21477,397	-21483	-21498	-21524	-21560	-21607	-21664	-21732	-21811	-21900
0,6186	-18674,534	-18680	-18695	-18720	-18756	-18801	-18858	-18924	-19001	-19088
0,6187	-15919,206	-15924	-15939	-15964	-15998	-16043	-16097	-16162	-16237	-16322
0,6188	-13228,335	-13233	-13247	-13271	-13305	-13348	-13400	-13463	-13535	-13617
0,6189	-10618,018	-10623	-10636	-10659	-10691	-10732	-10783	-10843	-10912	-10992
0,619	-8103,3515	-8107,7	-8120,8	-8142,5	-8173	-8212,4	-8260,6	-8317,8	-8384,1	-8459,6
0,6191	-5698,2864	-5702,4	-5714,8	-5735,3	-5764,2	-5801,4	-5847,1	-5901,2	-5964	-6035,6
0,6192	-3415,52	-3419,4	-3431	-3450,3	-3477,4	-3512,4	-3555,2	-3606,1	-3665,1	-3732,4
0,6193	-1266,4274	-1270	-1280,8	-1298,8	-1324,1	-1356,6	-1396,6	-1444	-1499	-1561,8
0,6194	738,9681	735,63	725,68	709,07	685,77	655,71	618,82	575,01	524,15	466,09
0,6195	2591,9868	2588,9	2579,8	2564,7	2543,4	2515,9	2482,2	2442,1	2395,5	2342,4
0,6196	4285,2497	4282,5	4274,3	4260,6	4241,4	4216,5	4186	4149,8	4107,6	4059,5
0,6197	5812,6046	5810,1	5802,8	5790,6	5773,5	5751,4	5724,2	5691,8	5654,2	5611,1
0,6198	7169,0287	7166,9	7160,5	7149,8	7134,8	7115,4	7091,5	7063,1	7030	6992,1
0,6199	8350,5127	8348,7	8343,2	8334	8321,1	8304,5	8284	8259,5	8231	8198,4
0,62	9353,9345	9352,4	9347,8	9340,2	9329,5	9315,6	9298,4	9278	9254,1	9226,6
0,6201	10176,93	10176	10172	10166	10157	10146	10132	10116	10097	10075
0,6202	10817,771	10817	10814	10810	10803	10795	10784	10772	10757	10740
0,6203	11275,249	11275	11273	11270	11266	11260	11253	11244	11234	11223
0,6204	11548,585	11548	11547	11546	11544	11541	11537	11533	11527	11521
0,6205	11637,355	11637	11637	11637	11637	11637	11637	11637	11636	11634
0,6206	11541,45	11542	11543	11544	11546	11549	11552	11556	11559	11563
0,6207	11261,056	11262	11264	11267	11271	11276	11283	11290	11299	11308
0,6208	10796,677	10798	10800	10805	10811	10820	10829	10841	10854	10868
0,6209	10149,173	10150	10154	10160	10169	10180	10193	10208	10226	10245
0,621	9319,839	9321,4	9326	9333,7	9344,4	9358,1	9374,7	9394	9416,1	9440,7
0,6211	8310,4939	8312,4	8317,9	8327,1	8340	8356,4	8376,3	8399,6	8426,3	8456,1
0,6212	7123,5983	7125,8	7132,2	7143	7158	7177,1	7200,4	7227,7	7258,8	7293,8
0,6213	5762,3762	5764,9	5772,2	5784,5	5801,6	5823,5	5850,1	5881,2	5916,9	5957
0,6214	4230,9448	4233,7	4242	4255,8	4274,9	4299,5	4329,4	4364,4	4404,6	4449,8
0,6215	2534,4391	2537,5	2546,7	2561,9	2583,1	2610,4	2643,4	2682,3	2726,9	2777
0,6216	679,12689	682,49	692,51	709,17	732,42	762,21	798,44	841,04	889,88	944,85
0,6217	-1327,495	-1323,8	-1313	-1295	-1269,8	-1237,5	-1198,2	-1152	-1099	-1039,3
0,6218	-3476,6292	-3472,7	-3461,1	-3441,7	-3414,6	-3380	-3337,8	-3288,1	-3231,1	-3167
0,6219	-5758,1376	-5754	-5741,6	-5720,9	-5692,1	-5655,2	-5610,2	-5557,3	-5496,6	-5428,1
0,622	-8160,5347	-8156,1	-8143	-8121,2	-8090,8	-8051,7	-8004,2	-7948,2	-7883,9	-7811,4
0,6221	-10671,021	-10666	-10653	-10630	-10598	-10557	-10507	-10448	-10381	-10304
0,6222	-13275,553	-13271	-13256	-13233	-13199	-13157	-13105	-13043	-12973	-12893
0,6223	-15958,956	-15954	-15939	-15914	-15880	-15836	-15782	-15718	-15645	-15563
0,6224	-18705,069	-18700	-18685	-18659	-18624	-18578	-18523	-18458	-18382	-18298
0,6225	-21496,926	-21492	-21476	-21450	-21414	-21367	-21311	-21244	-21167	-21080

r O	10	11	12	13	14	15	16	17	18	19
0,6185	-22000	-22112	-22234	-22369	-22515	-22673	-22841	-23017	-23188	-23332
0,6186	-19187	-19296	-19416	-19548	-19692	-19847	-20013	-20185	-20353	-20496
0,6187	-16417	-16524	-16641	-16770	-16910	-17061	-17223	-17392	-17557	-17696
0,6188	-13710	-13813	-13927	-14051	-14187	-14334	-14491	-14655	-14815	-14950
0,6189	-11081	-11180	-11289	-11409	-11540	-11682	-11833	-11991	-12146	-12276
0,619	-8544,5	-8639,1	-8743,7	-8858,4	-8983,5	-9119,2	-9264,5	-9416,1	-9564,1	-9689,1
0,6191	-6116,1	-6205,8	-6305	-6413,9	-6532,8	-6661,8	-6800	-6944,4	-7085,3	-7204,1
0,6192	-3808,2	-3892,7	-3986,1	-4088,7	-4200,9	-4322,6	-4453,2	-4589,6	-4722,8	-4835
0,6193	-1632,5	-1711,4	-1798,7	-1894,7	-1999,6	-2113,6	-2236	-2363,9	-2488,9	-2593,9
0,6194	400,66	327,63	246,75	157,75	60,348	-45,525	-159,28	-278,26	-394,44	-491,86
0,6195	2282,4	2215,4	2141,2	2059,5	1969,9	1872,5	1767,7	1658	1551	1461,5
0,6196	4005,1	3944,4	3877	3802,7	3721,2	3632,5	3536,9	3436,9	3339,3	3258,1
0,6197	5562,5	5508,1	5447,7	5380,9	5307,7	5227,8	5141,7	5051,5	4963,7	4890,9
0,6198	6949,3	6901,3	6847,9	6788,9	6724	6653,1	6576,6	6496,4	6418,4	6354,4
0,6199	8161,4	8119,8	8073,6	8022,3	7965,8	7904	7837,2	7767,1	7699	7643,9
0,62	9195,5	9160,5	9121,3	9077,8	9029,8	8977,1	8920	8860	8802,1	8755,9
0,6201	10049	10021	9988,7	9953	9913,4	9869,8	9822,4	9772,6	9724,8	9687,8
0,6202	10721	10699	10674	10646	10615	10580	10543	10503	10465	10438
0,6203	11209	11193	11176	11156	11133	11107	11079	11050	11022	11004
0,6204	11513	11504	11493	11481	11466	11450	11432	11412	11395	11386
0,6205	11632	11630	11626	11621	11615	11608	11599	11590	11583	11583
0,6206	11567	11571	11574	11577	11580	11581	11582	11583	11586	11596
0,6207	11317	11327	11338	11349	11359	11370	11380	11391	11404	11424
0,6208	10884	10900	10918	10936	10955	10974	10994	11015	11038	11068
0,6209	10267	10290	10314	10340	10367	10395	10425	10456	10489	10528
0,621	9467,8	9497,2	9528,8	9562,4	9597,8	9634,8	9673,6	9714,3	9758,2	9807,4
0,6211	8489	8524,8	8563,3	8604,5	8648,1	8694	8742,1	8792,8	8846,9	8906,2
0,6212	7332,4	7374,6	7420,1	7468,9	7520,6	7575,3	7632,8	7693,3	7757,7	7827,1
0,6213	6001,4	6049,8	6102,3	6158,5	6218,4	6281,7	6348,5	6418,8	6493,4	6573
0,6214	4499,7	4554,4	4613,7	4677,3	4745,2	4817,2	4893,2	4973,2	5057,9	5147,6
0,6215	2832,5	2893,4	2959,3	3030,3	3106	3186,5	3271,5	3361,1	3455,8	3555,7
0,6216	1005,8	1072,6	1145,2	1223,3	1306,7	1395,5	1489,3	1588,3	1692,8	1802,7
0,6217	-973,11	-900,48	-821,58	-736,56	-645,59	-548,81	-446,34	-338,2	-224,13	-104,42
0,6218	-3095,7	-3017,5	-2932,4	-2840,8	-2742,6	-2638,1	-2527,3	-2410,3	-2287	-2157,7
0,6219	-5352	-5268,5	-5177,7	-5079,6	-4974,6	-4862,7	-4744	-4618,6	-4486,4	-4347,9
0,622	-7730,9	-7642,4	-7546,1	-7442,1	-7330,6	-7211,8	-7085,6	-6952,3	-6811,7	-6664,5
0,6221	-10220	-10127	-10025	-9915,9	-9798,4	-9673,1	-9540,1	-9399,3	-9250,9	-9095,5
0,6222	-12805	-12708	-12602	-12487	-12364	-12233	-12094	-11946	-11791	-11628
0,6223	-15471	-15370	-15261	-15142	-15014	-14878	-14733	-14579	-14417	-14247
0,6224	-18203	-18099	-17986	-17863	-17731	-17590	-17441	-17282	-17114	-16938
0,6225	-20984	-20877	-20761	-20635	-20500	-20355	-20202	-20039	-19866	-19685

e. Kelompok E ($t_q > 5.8$ s), Re = 2300, H/D = 12

Dist	ribusi	Temperatur	(da	lam	K):
------	--------	------------	-----	-----	-----

r 0	0	1	2	3	4	5	6	7	8	9
0.6185	458.92517	458.8	458.42	457.79	456.9	455.76	454.35	452.68	450.74	448.51
0.6186	487,45927	487.34	486.97	486.37	485.51	484.41	483.06	481.44	479.57	477.43
0,6187	515,24294	515,13	514,78	514,2	513,38	512,32	511,02	509,48	507,68	505,63
0,6188	542,14752	542,04	541,7	541,15	540,37	539,37	538,13	536,65	534,94	532,98
0,6189	568,05237	567,95	567,63	567,11	566,37	565,42	564,24	562,85	561,22	559,35
0,619	592,84567	592,75	592,45	591,96	591,26	590,36	589,26	587,94	586,4	584,64
0,6191	616,42506	616,33	616,06	615,59	614,94	614,1	613,06	611,83	610,39	608,74
0,6192	638,69797	638,61	638,35	637,92	637,32	636,53	635,57	634,42	633,08	631,54
0,6193	659,58182	659,5	659,26	658,87	658,31	657,58	656,69	655,63	654,39	652,96
0,6194	679,00391	678,93	678,71	678,35	677,84	677,17	676,36	675,38	674,24	672,93
0,6195	696,90117	696,83	696,64	696,31	695,84	695,24	694,5	693,61	692,57	691,37
0,6196	713,21967	713,16	712,98	712,69	712,27	711,73	711,06	710,26	709,32	708,24
0,6197	727,91407	727,86	727,7	727,44	727,07	726,59	725,99	725,28	724,45	723,49
0,6198	740,94685	740,9	740,76	740,53	740,21	739,79	739,27	738,65	737,91	737,07
0,6199	752,28757	752,25	752,13	751,93	751,66	751,3	750,85	750,31	749,68	748,95
0,62	761,91202	761,88	761,78	761,62	761,39	761,09	760,71	760,27	759,74	759,12
0,6201	769,80142	769,78	769,7	769,57	769,38	769,14	768,84	768,48	768,05	767,55
0,6202	775,94167	775,92	775,86	775,77	775,63	775,45	775,22	774,94	774,61	774,22
0,6203	780,32262	780,31	780,27	780,21	780,11	779,99	779,83	779,64	779,41	779,13
0,6204	782,93757	782,93	782,91	782,88	782,83	782,77	782,68	782,57	782,44	782,27
0,6205	783,78283	783,78	783,78	783,78	783,78	783,78	783,76	783,74	783,7	783,64
0,6206	782,85744	782,86	782,88	782,92	782,96	783,01	783,07	783,13	783,19	783,24
0,6207	780,16312	780,18	780,22	780,28	780,37	780,48	780,61	780,75	780,91	781,07
0,6208	775,70432	775,72	775,78	775,88	776,01	776,18	776,38	776,61	776,86	777,14
0,6209	769,48855	769,52	769,59	769,72	769,9	770,13	770,4	770,72	771,07	771,45
0,621	761,52675	761,56	761,66	761,82	762,05	762,33	762,68	763,08	763,52	764,02
0,6211	751,83388	751,87	751,99	752,19	752,46	752,81	753,22	753,71	754,25	754,86
0,6212	740,42961	740,48	740,61	740,84	741,16	741,57	742,06	742,63	743,27	743,99
0,6213	727,3391	727,39	727,55	727,81	728,18	728,64	729,21	729,86	730,61	731,43
0,6214	712,59376	712,65	712,83	713,13	713,54	714,07	714,7	715,44	716,29	717,23
0,6215	696,23212	696,3	696,5	696,83	697,29	697,87	698,58	699,41	700,35	701,41
0,6216	678,30059	678,37	678,59	678,96	679,46	680,11	680,89	681,81	682,85	684,01
0,6217	658,85414	658,93	659,17	659,57	660,12	660,83	661,68	662,69	663,83	665,1
0,6218	637,95695	638,04	638,3	638,73	639,33	640,1	641,02	642,11	643,35	644,73
0,6219	615,68279	615,78	616,05	616,52	617,16	617,98	618,98	620,15	621,48	622,98
0,622	592,11531	592,22	592,51	593,01	593,69	594,57	595,64	596,89	598,32	599,92
0,6221	567,34811	567,45	567,77	568,29	569,02	569,96	571,09	572,42	573,94	575,64
0,6222	541,48451	541,6	541,93	542,48	543,25	544,24	545,44	546,84	548,45	550,25
0,6223	514,63724	514,75	515,1	515,68	516,49	517,53	518,79	520,26	521,95	523,85
0,6224	486,92772	487,05	487,41	488,02	488,87	489,95	491,26	492,81	494,57	496,55
0,6225	458,48531	458,61	458,99	459,62	460,5	461,62	462,99	464,6	466,43	468,5

r O	10	11	12	13	14	15	16	17	18	19
0,6185	446	443,2	440,09	436,65	432,89	428,78	424,36	419,72	415,16	411,28
0,6186	475,01	472,3	469,29	465,96	462,32	458,34	454,05	449,54	445,11	441,33
0,6187	503,3	500,7	497,8	494,6	491,09	487,26	483,11	478,76	474,47	470,81
0,6188	530,75	528,27	525,5	522,44	519,07	515,39	511,41	507,22	503,09	499,57
0,6189	557,24	554,88	552,24	549,33	546,12	542,61	538,81	534,8	530,85	527,48
0,619	582,65	580,41	577,92	575,16	572,12	568,78	565,17	561,36	557,6	554,39
0,6191	606,86	604,76	602,42	599,82	596,95	593,8	590,39	586,79	583,23	580,19
0,6192	629,79	627,82	625,63	623,2	620,51	617,56	614,36	610,97	607,62	604,77
0,6193	651,34	649,52	647,48	645,22	642,72	639,97	636,98	633,81	630,68	628,01
0,6194	671,44	669,76	667,88	665,79	663,48	660,93	658,16	655,23	652,32	649,84
0,6195	690,01	688,48	686,76	684,85	682,73	680,39	677,84	675,14	672,45	670,18
0,6196	707,01	705,63	704,07	702,33	700,41	698,28	695,95	693,48	691,03	688,95
0,6197	722,39	721,15	719,75	718,19	716,46	714,54	712,44	710,2	707,98	706,11
0,6198	736,1	735	733,77	732,39	730,84	729,13	727,25	725,25	723,26	721,6
0,6199	748,12	747,16	746,09	744,88	743,53	742,02	740,37	738,59	736,84	735,38
0,62	758,41	757,6	756,68	755,65	754,48	753,18	751,75	750,21	748,69	747,43
0,6201	766,96	766,3	765,54	764,67	763,69	762,6	761,38	760,07	758,77	757,72
0,6202	773,76	773,24	772,63	771,94	771,14	770,25	769,24	768,16	767,09	766,25
0,6203	778,8	778,41	777,96	777,43	776,82	776,12	775,33	774,47	773,63	772,99
0,6204	782,07	781,82	781,52	781,16	780,73	780,22	779,64	779	778,38	777,95
0,6205	783,56	783,45	783,3	783,1	782,85	782,54	782,17	781,75	781,35	781,12
0,6206	783,28	783,31	783,31	783,27	783,2	783,08	782,92	782,71	782,53	782,5
0,6207	781,23	781,39	781,54	781,67	781,78	781,85	781,89	781,9	781,93	782,11
0,6208	777,42	777,72	778,02	778,31	778,59	778,85	779,09	779,31	779,57	779,94
0,6209	771,86	772,29	772,74	773,19	773,65	774,09	774,53	774,97	775,44	776,02
0,621	764,55	765,12	765,71	766,33	766,96	767,59	768,23	768,88	769,57	770,36
0,6211	755,51	756,22	756,96	757,74	758,54	759,37	760,21	761,06	761,97	762,96
0,6212	744,77	745,61	746,5	747,44	748,42	749,43	750,47	751,54	752,66	753,87
0,6213	732,34	733,32	734,36	735,46	736,62	737,82	739,05	740,33	741,67	743,09
0,6214	718,26	719,37	720,57	721,83	723,16	724,55	725,98	727,47	729,02	730,66
0,6215	702,56	703,81	705,16	706,59	708,09	709,66	711,3	713	714,76	716,62
0,6216	685,29	686,68	688,18	689,77	691,44	693,2	695,04	696,94	698,93	701
0,6217	666,51	668,03	669,67	671,43	673,28	675,22	677,25	679,36	681,57	683,85
0,6218	646,26	647,92	649,71	651,62	653,64	655,77	658	660,32	662,73	665,24
0,6219	624,63	626,42	628,35	630,42	632,61	634,92	637,34	639,86	642,49	645,21
0,622	601,68	603,61	605,68	607,91	610,26	612,75	615,36	618,08	620,92	623,85
0,6221	577,52	579,57	581,79	584,16	586,68	589,33	592,13	595,04	598,08	601,23
0,6222	552,24	554,41	556,76	559,27	561,95	564,77	567,74	570,85	574,09	577,44
0,6223	525,94	528,23	530,7	533,36	536,18	539,17	542,31	545,59	549,02	552,58
0,6224	498,75	501,15	503,74	506,52	509,49	512,62	515,93	519,39	523	526,75
0,6225	470,78	473,28	475,98	478,89	481,99	485,26	488,72	492,34	496,13	500,06

r A	0	1	2	3	4	5	6	7	8	9
0,6185	-17719,166	-17730	-17761	-17814	-17889	-17985	-18103	-18243	-18406	-18592
0,6186	-15326,173	-15336	-15367	-15418	-15489	-15582	-15695	-15831	-15988	-16168
0,6187	-12996,116	-13006	-13035	-13084	-13152	-13241	-13350	-13479	-13630	-13803
0,6188	-10739,783	-10749	-10777	-10823	-10889	-10973	-11077	-11200	-11344	-11509
0,6189	-8567,2918	-8576,1	-8602,5	-8646,5	-8708,4	-8788,4	-8886,7	-9003,9	-9140,4	-9296,8
0,619	-6488,0194	-6496,3	-6521,2	-6562,6	-6620,9	-6696,3	-6789	-6899,5	-7028,3	-7176
0,6191	-4510,5514	-4518,3	-4541,6	-4580,4	-4635	-4705,6	-4792,5	-4896,1	-5016,9	-5155,4
0,6192	-2642,6497	-2649,9	-2671,5	-2707,6	-2758,4	-2824,1	-2905	-3001,5	-3114	-3243,3
0,6193	-891,2407	-897,93	-917,88	-951,22	-998,13	-1058,8	-1133,6	-1222,9	-1327	-1446,7
0,6194	737,579	731,45	713,18	682,64	639,66	584,02	515,43	433,52	337,83	227,82
0,6195	2238,5193	2233	2216,4	2188,7	2149,6	2099,1	2036,7	1962,2	1875,1	1774,8
0,6196	3607,0587	3602,1	3587,2	3562,3	3527,2	3481,8	3425,7	3358,6	3280	3189,6
0,6197	4839,3935	4835	4821,8	4799,7	4768,6	4728,3	4678,4	4618,7	4548,8	4468
0,6198	5932,3783	5928,5	5917	5897,8	5870,6	5835,3	5791,7	5739,4	5678	5607
0,6199	6883,4596	6880,2	6870,3	6853,9	6830,6	6800,4	6763	6718	6665,1	6603,8
0,62	7690,6074	7687,9	7679,7	7666	7646,7	7621,5	7590,2	7552,5	7508	7456,3
0,6201	8352,2465	8350,1	8343,6	8332,7	8317,2	8297	8271,8	8241,3	8205,2	8163
0,6202	8867,1934	8865,6	8860,7	8852,5	8840,9	8825,7	8806,5	8783,3	8755,4	8722,7
0,6203	9234,5986	9233,5	9230,3	9224,9	9217,1	9206,7	9193,6	9177,5	9157,9	9134,5
0,6204	9453,9	9453,4	9451,8	9449,1	9445,1	9439,7	9432,6	9423,5	9412,1	9398
0,6205	9524,7871	9524,8	9524,9	9524,9	9524,7	9524,1	9523	9521	9517,8	9513
0,6206	9447,1801	9447,8	9449,4	9452,1	9455,8	9460,1	9464,9	9470	9474,9	9479,3
0,6207	9221,2224	9222,3	9225,7	9231,1	9238,5	9247,7	9258,6	9270,7	9283,7	9297,3
0,6208	8847,2888	8849	8853,9	8862,1	8873,3	8887,5	8904,2	8923,4	8944,6	8967,5
0,6209	8326,0076	8328,2	8334,8	8345,7	8360,8	8379,9	8402,7	8428,9	8458,3	8490,4
0,621	7658,2966	7661,1	7669,3	7683	7701,9	7726	7754,8	7788,2	7825,7	7867,1
0,6211	6845,4112	6848,8	6858,7	6875,1	6897,9	6926,9	6961,9	7002,4	7048,2	7098,9
0,6212	5889,0009	5892,9	5904,5	5923,8	5950,5	5984,5	6025,5	6073,2	6127,3	6187,3
0,6213	4791,1746	4795,7	4808,9	4831	4861,6	4900,7	4947,8	5002,8	5065,2	5134,6
0,6214	3554,5675	3559,6	3574,6	3599,5	3634,1	3678,1	3731,5	3793,7	3864,4	3943,2
0,6215	2182,4105	2188	2204,7	2232,4	2270,9	2320,1	2379,5	2449	2528,1	2616,3
0,6216	678,59511	684,78	703,15	733,65	776,11	830,3	895,92	972,63	1060	1157,7
0,6217	-952,26706	-945,52	-925,47	-892,18	-845,81	-786,62	-714,89	-630,99	-535,33	-428,36
0,6218	-2704,795	-2697,5	-2675,8	-2639,7	-2589,5	-2525,4	-2447,6	-2356,6	-2252,8	-2136,6
0,6219	-4572,8012	-4565	-4541,6	-4502,9	-4448,9	-4379,8	-4296,2	-4198,2	-4086,3	-3961
0,622	-6549,2703	-6540,9	-6516	-6474,6	-6416,9	-6343,1	-6253,7	-6148,8	-6029,1	-5894,9
0,6221	-8626,3541	-8617,5	-8591	-8547,1	-8485,8	-8407,5	-8312,4	-8201	-8073,6	-7930,9
0,6222	-10795,386	-10786	-10758	-10712	-10647	-10564	-10464	-10346	-10211	-10060
0,6223	-13046,913	-13037	-13008	-12959	-12891	-12804	-12699	-12575	-12433	-12275
0,6224	-15370,752	-15360	-15330	-15279	-15208	-15117	-15007	-14878	-14730	-14563
0,6225	-17756,054	-17745	-17714	-17661	-17587	-17493	-17378	-17244	-17090	-16916

Distribusi Tegangan (dalam psi):
r θ	10	11	12	13	14	15	16	17	18	19
0,6185	-18803	-19038	-19299	-19587	-19903	-20247	-20618	-21007	-21389	-21715
0,6186	-16371	-16598	-16850	-17129	-17435	-17768	-18128	-18506	-18878	-19195
0,6187	-13998	-14216	-14459	-14727	-15022	-15343	-15691	-16056	-16416	-16722
0,6188	-11695	-11904	-12136	-12393	-12675	-12984	-13317	-13669	-14015	-14310
0,6189	-9473,8	-9672,2	-9893,1	-10138	-10407	-10701	-11020	-11356	-11687	-11970
0,619	-7343,2	-7530,8	-7739,8	-7971,4	-8226,5	-8506	-8808,8	-9128,4	-9444	-9712,9
0,6191	-5312,5	-5488,8	-5685,4	-5903,5	-6144	-6407,7	-6693,8	-6996	-7294,8	-7549,2
0,6192	-3389,8	-3554,5	-3738,4	-3942,4	-4167,8	-4415,1	-4683,8	-4968	-5249,1	-5488,3
0,6193	-1582,6	-1735,4	-1906,2	-2095,9	-2305,6	-2536,2	-2786,9	-3052,4	-3315,2	-3538,7
0,6194	102,82	-37,941	-195,38	-370,51	-564,39	-777,78	-1010,1	-1256,5	-1500,6	-1707,8
0,6195	1660,8	1532,2	1388,2	1227,8	1050	853,96	640,2	413,23	188,31	-2,3579
0,6196	3086,5	2970,2	2839,7	2694,1	2532,4	2353,8	2158,8	1951,5	1745,9	1572,1
0,6197	4376	4271,8	4154,9	4024,1	3878,5	3717,5	3541,3	3353,6	3167,5	3010,7
0,6198	5525,9	5433,9	5330,4	5214,4	5084,9	4941,3	4783,8	4615,8	4449,2	4309,6
0,6199	6533,5	6453,7	6363,5	6262,1	6148,7	6022,5	5883,6	5735,1	5588	5465,6
0,62	7396,9	7329	7252,1	7165,2	7067,7	6958,6	6838,2	6709,1	6581,4	6476,1
0,6201	8114,3	8058,3	7994,5	7922	7840,1	7748,1	7645,9	7536,1	7427,5	7339,5
0,6202	8684,5	8640,3	8589,5	8531,3	8464,9	8389,6	8305,5	8214,7	8125,2	8054,2
0,6203	9106,9	9074,4	9036,4	8992,2	8941,2	8882,5	8816,2	8744,1	8673,5	8619,7
0,6204	9380,8	9359,9	9334,6	9304,4	9268,5	9226,3	9177,6	9124	9072,1	9035,3
0,6205	9506,1	9496,7	9484,1	9467,7	9446,8	9420,7	9389,5	9354,3	9320,8	9301,1
0,6206	9482,8	9484,8	9484,7	9482,1	9476	9466,1	9452	9435	9419,9	9417,2
0,6207	9311,1	9324,5	9337	9347,9	9356,7	9362,7	9365,7	9366,6	9369,8	9384,2
0,6208	8991,5	9016,3	9041,3	9065,8	9089,3	9111,1	9131,1	9149,9	9171,2	9202,8
0,6209	8524,8	8560,9	8598,4	8636,5	8674,6	8712,3	8749,1	8785,6	8825,1	8873,9
0,621	7911,8	7959,4	8009,3	8061	8113,8	8167,2	8220,7	8275	8332,6	8398,8
0,6211	7154	7213	7275,4	7340,7	7408,1	7477,2	7547,5	7619,4	7695,1	7778,8
0,6212	6252,9	6323,4	6398,3	6477,2	6559,3	6644,1	6731,2	6820,7	6914,5	7015,9
0,6213	5210,6	5292,6	5380,1	5472,6	5569,4	5669,9	5773,7	5880,8	5992,8	6112
0,6214	4029,7	4123,2	4223,3	4329,4	4440,9	4557,1	4677,6	4802,3	4932,5	5069,7
0,6215	2713,2	2818,3	2931	3050,8	3176,9	3308,8	3445,9	3588,2	3736,6	3892
0,6216	1265	1381,6	1506,9	1640,2	1780,9	1928,4	2082,2	2242,1	2408,6	2582,2
0,6217	-310,59	-182,55	-44,825	101,98	257,24	420,31	590,62	767,86	952,49	1144,4
0,6218	-2008,5	-1869,1	-1719,1	-1558,9	-1389,2	-1210,8	-1024,1	-829,6	-626,98	-416,8
0,6219	-3822,8	-3672,3	-3510,1	-3336,7	-3152,9	-2959,3	-2756,5	-2544,9	-2324,5	-2096,1
0,622	-5746,9	-5585,5	-5411,3	-5225,1	-5027,4	-4818,9	-4600,2	-4371,9	-4134	-3887,6
0,6221	-7773,2	-7601,2	-7415,5	-7216,7	-7005,5	-6782,5	-6548,4	-6303,7	-6048,7	-5784,6
0,6222	-9893,6	-9711,4	-9514,5	-9303,6	-9079,3	-8842,3	-8593,3	-8332,8	-8061,1	-7779,7
0,6223	-12099	-11907	-11699	-11477	-11240	-10990	-10726	-10451	-10163	-9864,9
0,6224	-14379	-14178	-13961	-13727	-13479	-13216	-12939	-12649	-12346	-12031
0,6225	-16725	-16515	-16288	-16045	-15785	-15510	-15220	-14917	-14599	-14270

BIODATA PENULIS

Penulis yang memiliki nama lengkap Frans Loekito lahir di Surabaya, pada tanggal 24 Desember 1995. Penulis merupakan anak kedua dari dua bersaudara. dan menjalani pendidikan dari TKK Karitas I Surabaya, SDK Karitas I Surabaya, SMPK Santa Clara Surabava. SMAK St. Louis 1 Surabaya, dan melanjutkan di Jurusan Teknik Mesin Institut Teknologi Sepuluh Nopember (ITS) Surabaya dengan nomor induk 2113100004.

Selama masa studi di Jurusan Teknik Mesin Institut Teknologi

Sepuluh Nopember, penulis merupakan anggota aktif dari Paduan Suara Mahasiswa (PSM) ITS dan merupakan salah satu staf Pengembangan Sumber Daya Musikalitas (PSDMus) periode 2014/2015 dan periode 2015/2016. Penulis menyelesaikan penulisan tugas akhir ini di bawah bimbingan dosen Dr. Ir. Budi Utomo Kukuh Widodo, ME. Penulis dapat dihubungi melalui alamat email sebagai berikut: frans_loekito@hotmail.com

(Halaman sengaja dikosongkan)