

PENGURANGAN FLICKER PADA VIDEO ANIMASI KUNO MENGGUNAKAN

WAVELET TRESHOLDING

Desita Ria Yusian TB
Prof. Dr. Ir. Mauridhi Hery Purnomo, M.Eng.,
Dr. Ir. Yoyon Kusnendar Suprapto, M.Sc

Jurusan Teknik Elektro Institut Teknologi Sepuluh Nopember cytaria@yahoo.co.id

OVERVIEW

Latar Belakang

Permasalahan

Tujuan & Manfaat

Transformasi Wavelet Diskrit

Tresholding (Bayesshrink)

Hasil Percobaan

Kesimpulan

LATAR BELAKANG

- 1. Video animasi kuno dibuat oleh animator secara manual sehingga seringkali dalam proses pembuatan gambar-gambar tersebut terjadi ketidaksesuaian antara gambar satu dengan gambar yang ke dua.
- 2. Kualitas visual yang tidak sempurna seperti flicker, noise, blotches dan gerakan objek pda video yang kurang halus.

TUJUAN

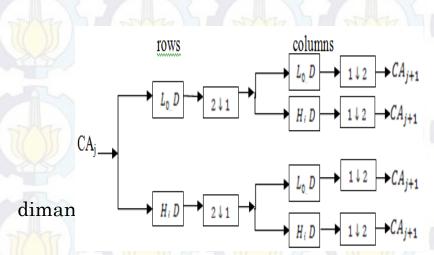
- 1. Menghasilkan kualitas video animasi kuno dari kerusakan berupa flicker menjadi lebih halus
- 2. Membantu penelitian selanjutnya seperti motion estimasi dan motion vector smoothing untuk data teliti video animasi kuno.

MANFAAT

Melakukan perbaikan video animasi kuno dari kerusakan yang diakibatkan karena flicker maka akan memperoleh hasil gambar video yang lebih halus dan dapat membantu dalam penelitian selanjutnya seperti *motion estimasi* dan *motion verctor smoothing* untuk data teliti video animasi kuno

WAVELET

Wavelet adalah fungsi matematika yang memotong-motong data menjadi kumpulan-kumpulan frekuensi yang berbeda, sehingga masing masing komponen tersebut dapat dipelajari dengan menggunakan skala resolusi yang berbeda. Wavelet merupakan sebuah fungsi variabel real t, diberi notasi Ψ t dalam ruang fungsi $L^2(R)$. Fungsi ini dihasilkan oleh parameter dilatasi dan translasi yang dinyatakan dalam persamaan [5]:

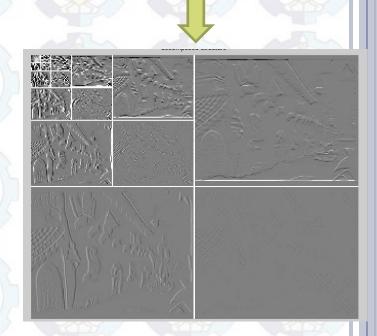

$$\Psi a, b^{(t)} = a^{-1/2} \Psi \left(\frac{t - b}{a} \right); a > 0, b \in \mathcal{R}$$

$$\Psi j, k^{(t)} = a^{j/2} \Psi \left(2^{j}t - k \right); j, k \in \mathbb{Z}$$
(1.1)

TRANSFORMASI WAVELET DISKRIT

Transformasi wavelet merupakan uraian dari suatu sinyal atau citra menggunakan fungsi wavelet. Transformasi wavelet memiliki prinsip dasar membagi data menjadi komponen-komponen frekuensi yang berbeda. Proses ini dinamakan dekomposisi.

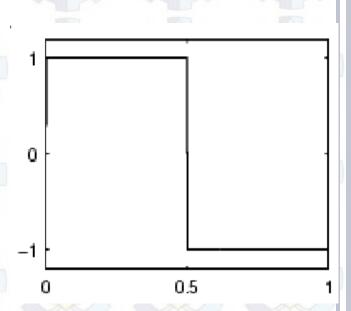
DWT menghitung sinyal diskrit domain waktu menggunakan highpass filter dan lowpass filter. Dibawah ini adalah gambar dari trasnformasi wavelet diskrit dua dimensi dengan level dekomposisi satu.



: merupakan downsample kolom

 $2\downarrow 1$: merupakan downsample baris

 $1 \downarrow 1$



WAVELET HAAR

Fungsi Haar telah digunakan dari tahun 1910 ketika mereka diperkenalkan oleh matematikawan Hungaria Alfred Haar. Haar wavelet adalah wavelet yang paling sederhana di antara berbagai jenis wavelet. Mereka adalah fungsi langkah di atas garis nyata dapat mengambil hanya tiga nilai 0, 1 dan -1. Wavelet Haar didefinisikan untuk interval [0,1) tetapi dalam kasus umum t [A,B], kita membagi interval [A,B] menjadi subinterval yang sama.

Dalam hal ini, himpunan orthogonal dari fungsi Haar didefinisikan dalam interval [A,B]

(1)

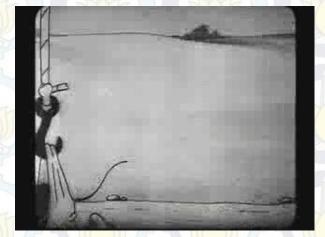
PSNR DAN MSE

MSE adalah pengukuran kualitas citra yang paling sederhana, dimana mempresentasikan kekuatan noise atau perbedaan antara citra asli dan citra bernoise. Nilai yang besar untuk MSE menunjukkan citra tersebut berkualitas buruk.

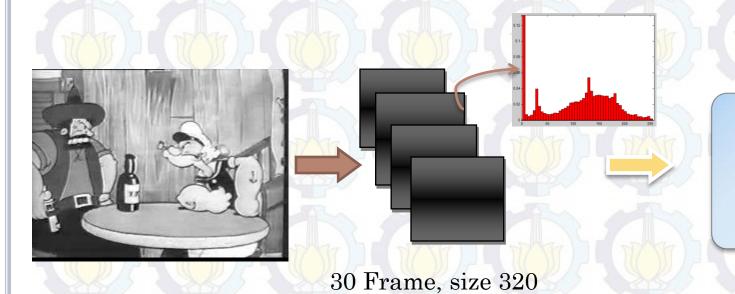
$$MSE = \frac{1}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} (x(m,n) - \hat{x}(m,n))^{2}$$
(3)

PSNR adalah rasio antara kekuatan makasimum sinyal dan kekuatan noise yang biasanya dinyatakan dalam bentuk decibel logaritmatik

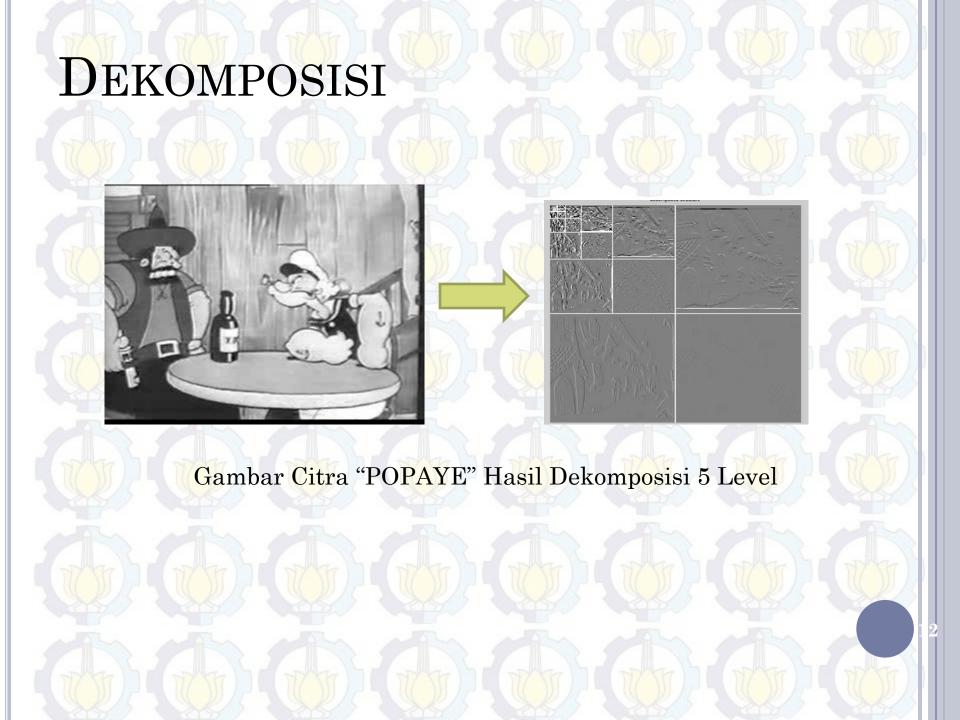
$$PSNR = 10 \log \frac{255^2}{MSE}$$


Wang Y, Ostermann J, and Zhang YQ. Video Processing and Communications. New Jersey: Prentice-Hall. 2002.

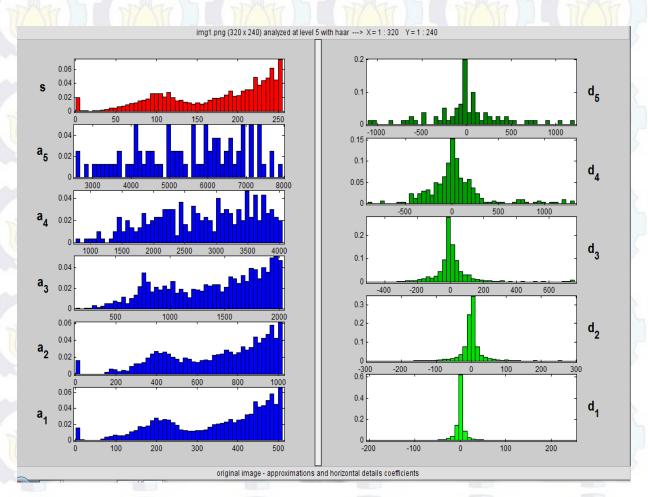
DATA PENELITIAN


Sumber: Video animasi "Popaye", "Felix The Cat tahun 1922 "dan "Steamboat Willie Walt Disney tahun 1928"

BLOK DIAGRAM



x240


Transfromasi Wavelet Diskrit (DWT)

Menghitung PSNR citra denoised Invers
Transfromasi
Wavelet Diskrit
(IDWT)

Tresholding (Bayesshrink)

DEKOMPOSISI #2

Gambar hasil dekomposisi menampilkan histogram koefisien aproxsimasi dan koefisien detail

BAYESSHRINK)

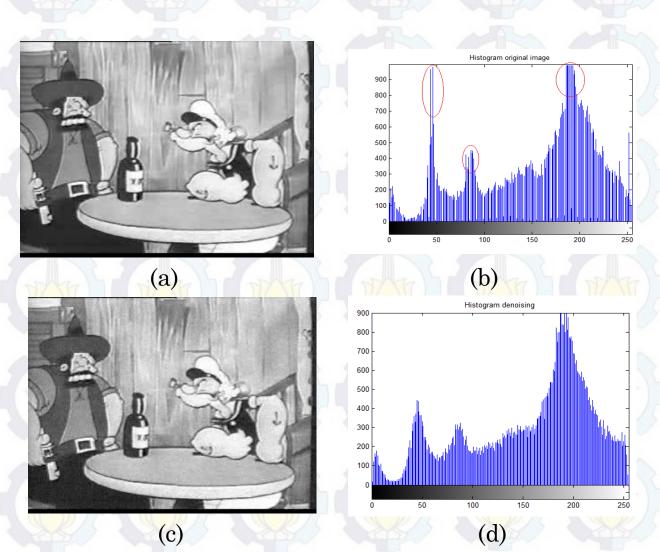
INFOLIOFDING

Bayesshrink termasuk dalam level adaptive threshold dimana nilai threshold dihitung dari tiap nilai koefisien detail pada tiap level dekomposisi [11].

$$t_B = \frac{\sigma^2}{\sigma_x}$$

Dengan variansi dari *noise* yang dapat diestimasi dengan menggunakan persamaan berikut:

$$\sigma = \frac{Median |Y_{ij}|}{o.6745}, \qquad Y_{ij} \in subband d_1^{diagonal}$$

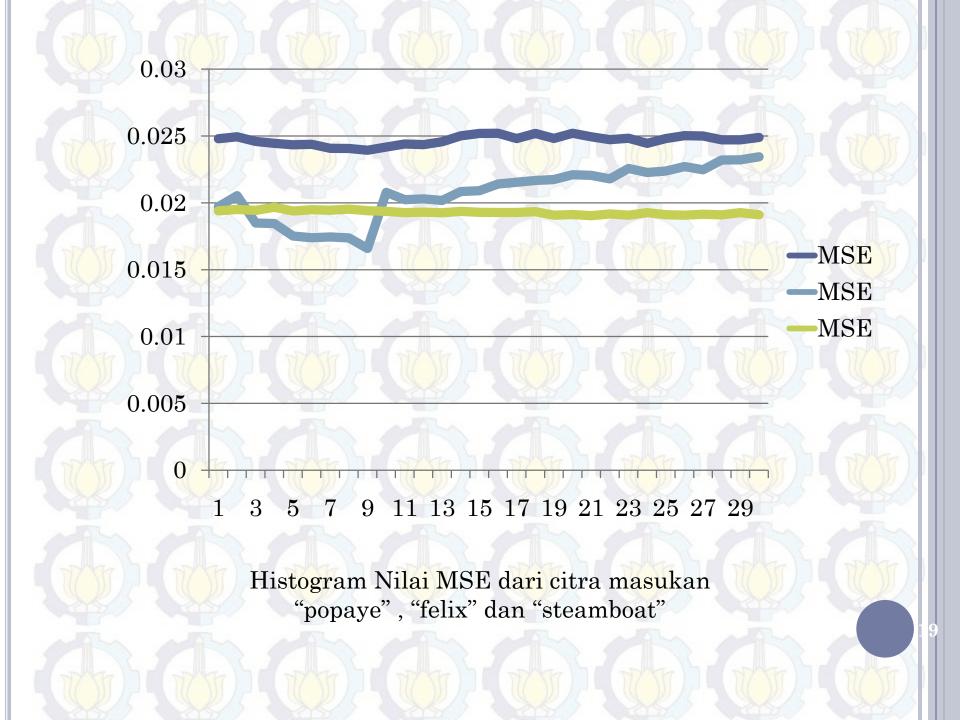

(1.4)

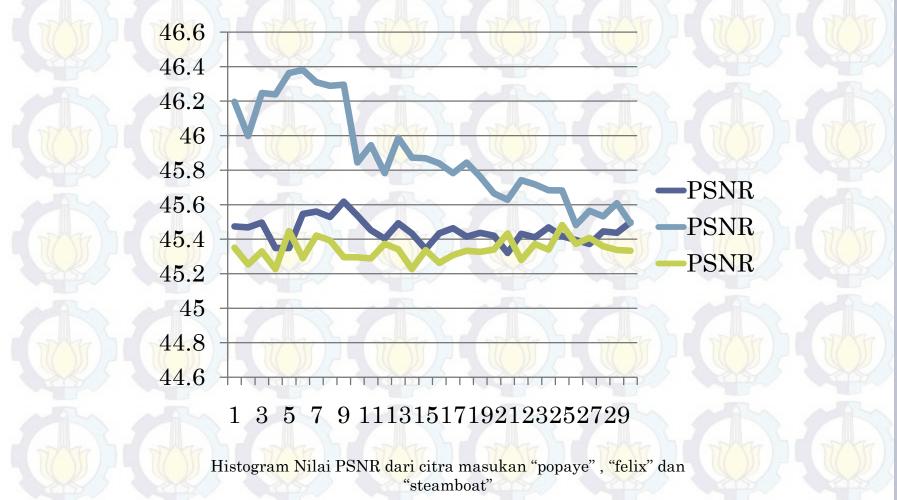
TRESHOLDING #2

• Sedangkan σ_x adalah standar deviasi citra pada persamaan sebelumnya, kemudian karena Xij dan Eij saling *independent* maka dapat diestimasi dengan:

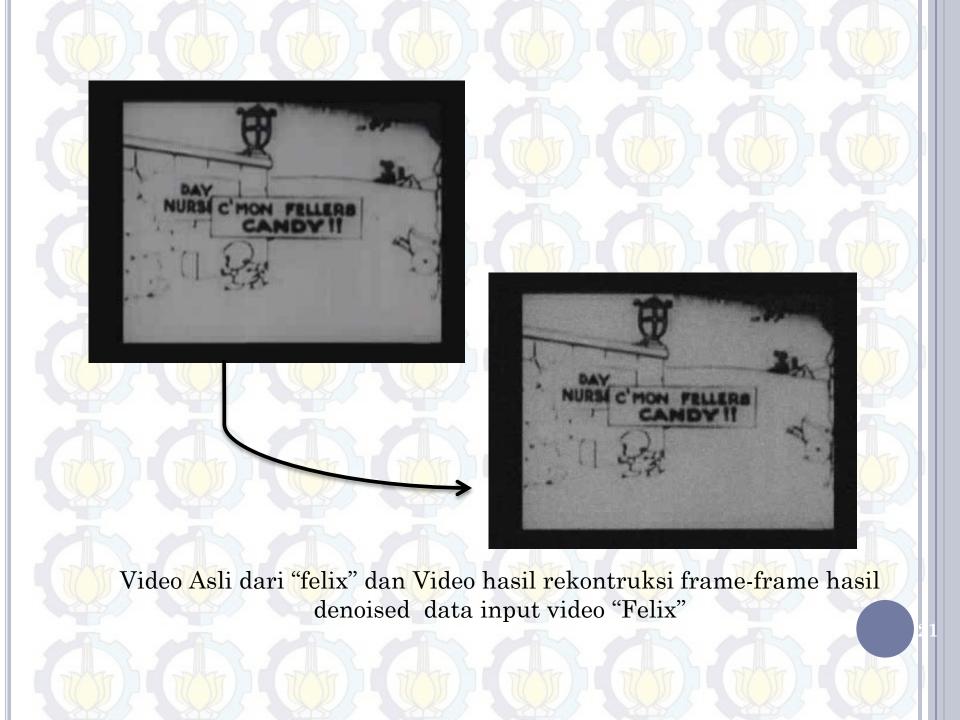
$$\sigma_{\lambda} = \sqrt{max\left(\left(2^{2} - \sigma^{2}\right).0\right)} \tag{1.5}$$

HASIL PENGUJIAN


Gambar 4.8 Citra asli "popaye" (a), Histogram citra asli (b), Citra denoised (c), dan Histogram citra denoised (d)


Analisa

- Dengan melakukan dekomposisi wavelet pada citra inputan sebanyak 5 level menghasilkan koefisien detail untuk kemudian dilakukan proses tresholding.
- 2. Pada proses tresholding dengan mencari nilai variansi dari pixel yang mengandung noise dan membaginya dengan variansi standar deviasi dari setiap koefisien menghasilkan gambar menjadi blur yang kemudian akan di rekontruksi ulang dengan proses IDWT.
- 3. Setelah direkontruksi ulang menjadi sebuah video dapat dilihat hasil video menjadi lebih halus dan perubahan intensitas warna menjadi menurun.


MSE DAN PSNR

Frame ke-	Popaye		Steamboat		Felix	
	MSE	PSNR	MSE	PSNR	MSE	PSNR
Frame ke 1	0.02479	45.4743	0.0197	46.1964	0.0194	45.3509
Frame ke 2	0.02494	45.4681	0.02052	45.9974	0.01951	45.2536
Frame ke 3	0.02459	45.4958	0.01848	46.2471	0.01943	45.3289
Frame ke 4	0.02445	45.3485	0.01845	46.2387	0.01967	45.2264
Frame ke 5	0.02433	45.3485	0.01751	46.3632	0.01939	45.4472
Frame ke 6	0.02437	45.5466	0.01739	46.3808	0.01948	45.2901
Frame ke 7	0.02407	45.5604	0.01744	46.3097	0.01944	45.4212
Frame ke 8	0.02405	45.5289	0.01737	46.2887	0.01952	45.3931
Frame ke 9	0.02393	45.6177	0.01658	46.2959	0.01941	45.296
Frame ke 10	0.02417	45.5369	0.02078	45.8445	0.01936	45.2947
Frame ke 11	0.02439	45.4517	0.02023	45.9446	0.01927	45.2883
Frame ke 12	0.02435	45.4034	0.02029	45.7826	0.0193	45.3729
Frame ke 13	0.02456	45.4926	0.02017	45.9878	0.01925	45.3418
Frame ke 14	0.025	45.4328	0.02084	45.8722	0.01936	45.2273
Frame ke 15	0.02518	45.3423	0.0209	45.8685	0.01929	45.3371
Frame ke 16	0.0252	45.4338	0.02141	45.8388	0.01928	45.2626
Frame ke 17	0.0248	45.464	0.02154	45.7823	0.01929	45.3084
Frame ke 18	0.02518	45.4142	0.02167	45.8442	0.01934	45.3329
Frame ke 19	0.02482	45.4368	0.02174	45.7626	0.01908	45.3267
Frame ke 20	0.02519	45.4202	0.0221	45.6651	0.01912	45.3407
Frame ke 21	0.02493	45.3198	0.02205	45.6285	0.01904	45.433
Frame ke 22	0.02472	45.4314	0.02178	45.7423	0.01918	45.2791
Frame ke 23	0.02482	45.4104	0.02256	45.7174	0.01907	45.3717
Frame ke 24	0.02444	45.4681	0.02226	45.6835	0.01927	45.3391
Frame ke 25	0.0248	45.4174	0.02237	45.6828	0.01912	45.4823
Frame ke 26	0.02502	45.3951	0.02271	45.4812	0.01908	45.3728
Frame ke 27	0.02499	45.3718	0.02247	45.5649	0.01915	45.4085
Frame ke 28	0.02471	45.4455	0.0232	45.5321	0.0191	45.359
Frame ke 29	0.0247	45.4371	0.0232	45.6084	0.01927	45.3381
Frame ke 30	0.02489	45.4977	0.02343	45.4935	0.01911	45.3335

Hasil yang didapatkan menunjukkan bahwa setelah dilakukan transformasi wavelet menggunakan tipe wavelet Haar diperoleh hasil dekomposisi yang baik dengan diperlihatkan dari nilai MSE dan PSNR memberikan hasil pada video input "Popaye" nilai MSE adalah 0.02392 dan nilai PSNR tertinggi adalah 45.4977. Data input "Steamboat" menunjukkan nilai mSE adalah 0.0173 dan nilai PSNR tertinggi 45.9974. Data Input "Felix" memiliki nilai MSE adalah 0.01908 dan nilai PSNR tertinggi adalah 45.4822.

KESIMPULAN

Pada pengujian pengurangan reduksi *flicker* pada animasi kuno yang diasumsikan sebagai masalah *Gaussian Noise* menggunakan *wavelet tresholding* pada tiga video input "popaye", "steamboat" dan "felix" dengan teknik *bayesshrink* dan memilih *mother wavelet* Haar level 5 dapat diambil kesimpulan bahwa:

- Pengujian pada data uji coba hasil *convert* dari video dengan durasi 1 detik yang memiliki *framerate* 30 *frame/second* dengan membangkitkan *Gaussian Noise* pada antar frame yang selanjutnya pengurangan *flicker* antar frame dilakukan dengan terknik tresholding bayesshrink yang sebelumnya dilakukan proses transformasi pada koefisien wavelet untuk mendapatkan koefisien detail yang kemudian di *threshold* memberikan hasil yang baik.
- Dari hasil ujicoba pada data yang diujikan dengan metode wavelet tresholding didapatkan hasil pengurangan flicker yang baik dengan menghitung kualitas dari antar frame yang telah diuji menggunakan nilai MSE dan PSNR memberikan hasil pada video input "Popaye" nilai MSE adalah 0.02392 dan nilai PSNR tertinggi adalah 45.4977. Data input "Steamboat" menunjukkan nilai mSE adalah 0.0173 dan nilai PSNR tertinggi 45.9974. Data Input "Felix" memiliki nilai MSE adalah 0.01908 dan nilai PSNR tertinggi adalah 45.4822.

