

TUGAS AKHIR - RE 141581

PERENCANAAN PENGELOLAAN TERPADU AIR LIMBAH KERETA API DI STASIUN SURABAYA KOTA

LUKMANUL HAKIM 3312100703

Dosen Pembimbing:

Ir. Eddy Setiadi Soedjono Dipl.SE., M.Sc., Ph.D.

JURUSAN TEKNIK LINGKUNGAN Fakultas Teknik Sipil dan Perencanaan

Institut Teknologi Sepuluh Nopember

Surabaya 2017

TUGAS AKHIR - RE 141581

PERENCANAAN PENGELOLAAN TERPADU AIR LIMBAH KERETA API DI STASIUN SURABAYA KOTA

LUKMANUL HAKIM 3312100703

Dosen Pembimbing:

Ir. Eddy Setiadi Soedjono, Dipl.SE., M.Sc., Ph.D.

JURUSAN TEKNIK LINGKUNGAN Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember Surabaya 2017

FINAL PROJECT - RE 141581

INTEGRATED WASTEWATER MANAGEMENT PLANNING OF TRAIN IN SURABAYA KOTA STATION

LUKMANUL HAKIM 3312100703

SUPERVISOR:

Ir. Eddy Setiadi Soedjono, Dipl.SE., M.Sc., Ph.D.

DEPARTEMENT OF ENVIRONMENTAL ENGINEERING

Faculty of Civil Engineering and Planning Institut Teknologi Sepuluh Nopember Surabaya 2017

LEMBAR PENGESAHAN

PERENCANAAN PENGELOLAAN TERPADU AIR LIMBAH KERETA API DI STASIUN SURABAYA KOTA

TUGAS AKHIR

Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada

Program Studi S-1 Jurusan Teknik Lingkungan Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember

> Oleh: LUKMANUL HAKIM NRP. 3312 100 703

Disetujui oleh Pembimbing Tugas Akhir:

Ir. Eddy Setiadi Soedjono, Dipl.SE., M.Sc., Ph.D. NIP. 196003081989031001

KATA PENGANTAR

Segala puji bagi Allah SWT, Tuhan semesta alam, yang telah melimpahkan segala kenikmatannya sehingga penulis dapat menyelesaikan Laporan Tugas Akhir yang berjudul "Perencanaan Pengelolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota".

Dalam penyusunan Laporan Tugas Akhir ini, penulis mengucapkan terima kasih kepada semua pihak yang telah membantu dalam proses penyelesaiannya, antara lain :

- Wakil Dekan Fakultas Teknik Sipil dan Perencanaan, Ibu IDAA Warmadewanthi; Plt Ketua Jurusan Teknik Lingkungan, Bapak Ali Masduki; dan Koordinator Tugas Akhir, Ibu Harmin Sulistyaningsih; atas segala kesempatan dan kemudahan yang diberikan.
- 2. DAOP VIII Surabaya, Balai Yasa Gubeng, dan Jajaran Pegawai Stasiun Surabaya Kota atas segala bantuan selama proses penyusunan Tugas Akhir.
- 3. Bapak Eddy Setiadi Soedjono sebagai Dosen Pembimbing Tugas Akhir dan Bapak Alfan Purnomo sebagai Dosen Wali sekaligus Dosen Penguji Tugas Akhir yang senantiasa membimbing, mengarahkan dan memberi masukan.
- 4. Dosen Penguji, Ibu Alia Damayanti, Bapak Rachmat Budisantoso, dan Bapak Agus Slamet yang telah memberi kritakan, saran, dan masukannya.
- 5. Ayah, Ibu, Kakek, dan Nenek yang selalu memberi dukungan, doa, dan motivasi.
- 6. Ahmad Shodiq, Hutomono Dwi Prbowo, Rizqi Amalia Barakwan, dan Ismy Nur Syahbiba rekan kelas dan lab atas bantuan, kerja sama dan motivasinya.
- Teman-teman Keluarga Mahasiswa Teknik Lingkungan, Teknik Lingkungan Angkatan 2012, Pramuka ITS, CSSMoRA ITS, CSSMoRA ITS 2012, dan Pengurus Nasional CSSMoRA 2014/2015.

Surabaya, Januari 2017

Penulis

Halaman ini sengaja dikosongkan

PERENCANAAN PENGELOLAAN TERPADU AIR LIMBAH KERETA API DI STASIUN SURABAYA KOTA

Mahasiswa : Lukmanul Hakim

NRP : 3312100703

Dosen Pembimbing : Ir. Eddy Setiadi Soedjono, Dipl.SE.,

M.Sc., Ph.D.

ABSTRAK

Kereta api merupakan salah satu moda transportasi darat yang banyak dipilih masyarakat saat ini. Jumlah konsumen pengguna jasa kereta api pada tahun 2014 meningkat sekitar 26% menjadi 280 juta penumpang (PT KAI 2014) dibandingkan tahun sebelumnya. Stasiun Surabaya Kota merupakan stasiun tempat parkir kereta-kereta vand akhir dan pemberangkatannya dari Stasiun Surabaya Kota dan Surabaya Gubeng. Kereta api dan stasiun memiliki menghasilkan limbah domestik tiap hari, namun tidak memiliki tangki septik (stasiun) dan masih dibuang ke badan rel (kereta). Hal tersebut tidak sesuai dengan amanah UU No. 23 tahun 2009. Untuk menyelesaikan masalah tersebut diperlukan perencanaan pengelolaan terpadu yang tepat agar air limbah domestik stasiun dan kereta tidak mencemari lingkungan. Selain itu perencanaan pengelolaan perlu dilengkapi dengan anggaran biaya sehingga beroperasi dengan tepat dan efisien

Perencanaan pengelolaan bersumber dari analisa kondisi kondisi air limbah. kondisi lapangan seperti perencanaan baik kereta maupun stasiun, serta data-data pendukung perencanaan. Pengambilan data kondisi air limbah menggunakan pengambilan sampel, sedangkan data kondisi eksisting wilayah perencanaan diambil dengan survey langsung dan mengambil dari dokumen-dokumen kereta api baik yang terpublikasi maupun tidak. Berdasarkan pengambilan data dan analisa, ada 5 toilet stasiun yang memiliki debit air limbah sebanyak 15,678 m³/hari dan 13 rangkaian kereta api yang memiliki debit air limbah sebanyak 227,371 m³/hari. Begitu juga kualitas air limbah, berdasarkan analisa labolatorium memiliki pH bernilai 8,20, TSS bernilai 830 mg/L, COD bernilai 682 mg/L O_2 , BOD bernilai 420 mg/L O_2 , dan minyak lemak bernilai 480 mg/L. Selain itu stasiun tidak memiliki tangki septik untuk pengolahan air limbah, hanya satu toilet stasiun saja yang terlayani tangki septik, sisanya langsung ke sungai. Selain itu stasiun memiliki saluran drainase yang dapat dimanfaatkan sebagai jalur pipa air limbah walaupun, karena kondisi tanah yang landai dan sedikit lahan kosong.

Hasil analisa data-data dan kondisi menghasilkan dua sistem pengelolaan yang terintegrasi yaitu pengelolaan di kereta dan pengelolaan di stasiun. Kedua-duanya akan berujung pada tempat pengolahan yang sama. Pengelolaan di kereta berupa penampungan dengan dua tipikal kecil dan besar masing-masing memiliki volume 0,25 m³ dan 0,348 m³ dan pengurasan dengan sistem gravitasi di stasiun-stasiun besar. Pengelolaan di stasiun berupa penyaluran dengan sistem *shallow sewer* sepanjang 852,5 m dan pengolahan mengunakan *Anaerobic Baffle Reactor* bevolume pengolahan 60,5 m³/hari dengan sistem 3 unit yaitu *grase trap*, tangki septik, dan kompartemen. Keseluruhan biaya operasi pengelolaan ini adalah Rp. 1.369.100.000.

Kata Kunci : Air Limbah, Kereta Api, Stasiun, Tempat Penampungan, *Anaerobic Baffled Reactor*

INTEGRATED WASTEWATER MANAGEMENT PLANNING OF TRAIN IN SURABAYA KOTA STATION

Student : Lukmanul Hakim

NRP : 3312100703

Supervisor : Ir. Eddy Setiadi Soedjono, Dipl.SE.,

M.Sc., Ph.D.

ABSTRACT

The train is one of the modes of land transportation that have been chosen by many people today. The number of consumer's rail service users in 2014 increased about 26% to 280 million passengers (PT KAI 2014) than the previous year. Surabaya Kota Station is the train's station parking which is late and early departure from Surabaya Kota and Surabaya Gubeng Station. Trains and stations have toilets that produce domestik waste every day, but does not have septic tank (station) and still disposed into a body of railway (trains). It was not in accordance with the mandate of UU No. 23 2009. To resolve these problem, it's required integrated management planning for wastewater domestic of station and train till not pollute the environment. Other than that, management planning need to furnished with budget so that operate be profer and efficient.

Surabaya Kota Station has a wastewater production as much Management plan is produce by analysis of site condition like wastewater, existing planning trains and station, and suporting data for planning. Data of wastewater condition captured by sampling, while existing site planning by survey and take from document publicated and not about trains. From sampling analysis, therea 5 toilet in station have wastewater production as much as 15.678 m³/day and 13 train series as much as 227.371 m³ / day. Wastewater quality labolatorium analysis pH-value 8.20, TSS 830 mg/L, COD 682 mg/L O2, BOD 420 mg/L O2 and fat oil 480 mg/L. Station not have septic tank for

wastewater treatment. Just one station toilet served with septic tank and other direct entry to river. Station have drainage channel can be used to pipeline wastewater with flat condition of land and it have a few wasteland.

Result of data analysis and condition two system integrated planning in train and station. Both of them will be lead to same treatment area. Mangement wastewater in trains can be patch tank with two tipycal small have volume 0,25 m³ and large have volume 0,348 m³ and draining with gravitation system in stations. Management wastewater in station can be sewer with shallow sewer system along 852,5 m and treatment used Anaerobic Baffle Reactor with capacity 60,5 m³/day. It make 3 unit grease trap, septic tank, and compartement. All budget for operation watewater management is Rp. 1.369.100.000.

Kata Kunci : Wastewater, Train, Station, Patch Tank, Anaerobic Baffled Reactor

DAFTAR ISI

LEMBAR PENGESAHAN	l
ABSTRAK	III
ABSTRACT	V
KATA PENGANTAR	.VII
DAFTAR ISI	
DAFTAR GAMBAR	XIII
DAFTAR TABEL	XV
BAB 1 PENDAHULUAN	1
1.1 Latar Belakang	
1.2 Rumusan Masalah	2
1.3 Tujuan	2
1.4 Ruang Lingkup	
1.5 Manfaat	3
BAB 2 TINJAUAN PUSTAKA	
2.1 Kereta Api	
2.1.1 Definisi	
2.1.2 Kelembagaan	
2.1.3 Klasifikasi	
2.2 Stasiun Surabaya Kota	
2.3 Air Limbah Domestik	
2.3.1 Definisi	
2.3.2 Karakteristik	
2.3.2.1. Sumber	
2.3.2.2. Komposisi	
2.3.2.3. Kualitas	
2.3.2.4 Kuantitas	
2.3.3 Baku Mutu	
2.4 Teori Pengelolaan Air Limbah	
2.4.1 Sumber	
2.4.2 Penampungan	
2.4.2.1 Tempat dan Dimensi Penampungan	. 14
2.4.2.2 Faktor yang Berpengaruh dalam Pendesainan	
2.4.2.3 Material Penyusun	
2.4.3 Pengurasan	
2.4.3.1 Gravitasi	
2.4.3.2 Pompa	
2.4.4 Penyaluran	. 17

2.4.4.1	Langsung	17
2.4.4.2	Wadah Sementara	17
2.4.4.3	Pipa	18
2.4.5	Pengolahan	
2.4.5.1	Jenis Pengolahan	22
2.4.5.2	Proses Pengolahan	
2.4.5.3	Bangunan Pengolahan Terpadu	24
BAB 3 METOI	DE PĔRENCANĂAN	35
3.1 Umu	m	35
3.2 Pen	gambilan Data	38
3.2.1	Studi Pustaka	39
3.2.2	Survey	40
3.2.2.1	Wawancara	
3.2.2.2	Pengamatan Langsung	41
3.2.2.3	Dokumentasi	
3.2.3	Pengambilan Sampel	
	golahan Data	
3.4 Pere	encanaan Sistem dan Bangunan	44
	ARAN UMUM DAN ALTERNATIF PENGEL	
	nber Air Limbah	
4.1.1	Stasiun Surabaya Kota	
4.1.1.1	9	
4.1.1.2		
4.1.1.3	3	
4.1.1.4	3	
4.1.2	Kereta	
	litas Air Limbah	
	gelolaan Air Limbah	61
4.3.1	Umum	
4.3.1.1		
4.3.1.2		
4.3.2	Pengelola dan Kelembagaan	65
	NATIF PENGELOLAAN	
	rnatif Pengelolaan	
5.1.1	Umum	
5.1.1.1		
5.1.1.2	Pengurasan	71
5.1.1.3	B Penyaluran	71

5.1.1.4 Pengolahan	
5.1.2 Pengelola dan Kelembagaan	72
5.2 Pemilihan Alternatif Pengelolaan	73
5.2.1 Penampungan	73
5.2.2 Pengurasan	74
5.2.3 Penyaluran	75
5.2.4 Pengolahan	75
BAB 6 DETAIL ENGINEERING DESIGN PENGELO	
TERPADU AIR LIMBAH KERETA API	
6.1 Debit Kebutuhan Air Bersih	
6.1.1 Stasiun	
6.1.2 Kereta Api	
6.2 Debit Air Limbah	
6.2.1 Stasiun	
6.2.2 Kereta	
6.3 DED Bangunan	
6.3.1 Penampungan	
6.3.1.1 Sistem	
6.3.1.2 Desain	
6.3.1.3 Dimensi	
6.3.2 Pengurasan	
6.3.2.1 Sistem Pengurasan	131
6.3.2.2 Debit Pengurasan	134
6.3.3 Penyaluran	141
6.3.3.1 Pembagian Segmen Pipa	141
6.3.3.2 Dimensi Pipa	142
6.3.3.3 Penanaman Pipa dan Profil Hidrolis	153
6.3.4 Pengolahan	
6.3.4.1 Grease Trap	
6.3.4.2 Zona Septik	
6.3.4.3 ABR Kompartemen	
6.4 Profil Hidrolis	195
BAB 7 OPERASI DAN PEMELIHARAAN	
7.1 Kelembagaan	
7.2 Operasi	
7.2.1 Unit Toilet	
7.2.2 Unit Penampungan	
7.2.3 Unit Pengurasan dan Penyaluran	
7.2.4 Unit Pengolahan	205

7.3 Pemeliharaan	205
BAB 8 BILL OFF QUANTITY DAN RENCANA ANG	GARAN
BIAYA	207
8.1 Kontruksi	207
8.1.1 Penampungan	207
8.1.2 Pengurasan	211
8.1.3 Penyaluran	214
8.1.4 Pengolahan	219
8.2 Operasi dan Pemeliharaan	220
BAB 9 KESIMPULAN DAN SARAN	223
9.1 Kesimpulan	223
9.2 Saran	224
LAMPIRAN	225
DAFTAR PUSTAKA	235
BIOGRAFI PENULIS	237

DAFTAR GAMBAR

Gambar 2.1 Lokomotif Sumber: Kaskus	. 5
Gambar 2.2 Kereta Penumpang Sumber: Kaskus	. 5
Gambar 2.3 Gerbong Sumber: Kaskus	. 5
Gambar 2.4 Peta Jalur Jalan Rel Kereta Api di Pulau Jawa	
Gambar 2.5 Bagan Organisasi PT KAI sumber : Annual Report	
PT KAI 2014	. 7
Gambar 2.6 Peta Staisun Suraba Kota	. 8
Gambar 2.7 Komposisi Umum Air Limbah	10
Gambar 2.8 Grafik Hydraulics Elements for Circular Sewers	18
Gambar 2. 9 Tampak potongan melintang Anaerobic Bio Filter.	24
Gambar 2.10 Kurva perbandingan COD dan HRT pada AB2	25
Gambar 2.11 Potongan Memanjang Anaerobic Baffled Reacto. 2	
Gambar 2.12 Proses pada Rotating Biological Contractor	29
Gambar 3.1 Kerangka Acuan Pelaksanaan Perencanaan (A) 3	36
Gambar 3.2 Kerangka Acuan Pelaksanaan Perencanaan (B) 3	37
Gambar 3.3 Kerangka Acuan Pelaksanaan Perencanaan (C)	38
Gambar 3.4 Wawancara pada Petugas Kebersihan Kereta Api. 4	41
Gambar 3.5 Pengukuran GPS untuk Ketinggian di Toilet Stasiur	1
Surabaya Kota4	
Gambar 3.6 Pengambilan Sampel Air Limbah Kereta	
Gambar 4.1 Denah Stasiun Surabaya Kota	49
Gambar 4. 2 Denah Stasiun Lama, Stasiun Surabaya Kota	
Gambar 4. 3 Denah Stasiun baru, Stasiun Surabaya Kota	
Gambar 4. 4 Jalur Kereta Api Stasiun Surabaya Kota	
Gambar 4. 5 Layout Toilet Kereta Ekonomi (a), Kereta Bisnis (b)	
dan Kereta Eksekutif (c)	55
Gambar 4. 6 Bagan Alir Pengelolaan Air Limbah Bersumber dar	İ
Stasiun	₆ 2
Gambar 4. 7 (a) Toilet Pegawai Stasiun yang Memiki Tangki	
Septik dan Tidak Memiliki Tangki Septik (a) toilet pegawai PT KA	
dan (b) toilet pengunjung	
Gambar 4. 8 Bagan Alir Pengelolaan Air Limbah Bersumber dar	
Kereta	
Gambar 4. 9 TRL	35
Gambar 4. 10 Bagan Alir Lembaga Pengelola Air Limbah	
Bersumber dari Stasiun	36

Gambar 4. 11 Bagan Alir Lembaga Pengelola Air Limbah	
Bersumber dari Kereta.	67
Gambar 4. 12 Bagan Alir Sedot Tinja	68
Gambar 6. 1 Denah Penampungan Tipikal Kecil	
Gambar 6. 2 Tampak A Penampungan Tipikal Kecil	113
Gambar 6. 3 Tampak B Penampungan Tipikal Kecil	115
Gambar 6. 4 Denah Penampungan Tipikal Besar	117
Gambar 6. 5 Tampak A Penampungan Tipikal Besar	119
Gambar 6. 6 Tampak B Penampungan Tipikal Besar	121
Gambar 6. 7 Tampak C Penampungan Tipikal Semua Tipikall	
Gambar 6. 8 Tampak D Penampungan Semua Tipikal	
Gambar 6. 9 Potongan E-E TPAL Semua Tipikal	127
Gambar 6. 10 Potongan F-F TPAL Semua Tipikal	129
Gambar 6. 11 Denah Tempat Pengurasan	
Gambar 6. 12 Detail Tempat Pengurasan	
Gambar 6. 13 Grafik Nilai d/D	
Gambar 6. 14 Denah Penyaluran	
Gambar 6. 15 Detail Junction Penyaluran	
Gambar 6. 16 Potongan Tipikal Penyaluran	
Gambar 6. 17 Denah Bangunan Pengolahan	
Gambar 6. 18 Potongan Bangunan Pengolahan	
Gambar 6. 19 Denah dan Potongan Bangunan Grease Trap	
Gambar 6. 20 Potongan Bangunan Grease Trap	
Gambar 6. 21 Denah Bangunan Zona Septik	
Gambar 6. 22 Potongan A-A Bangunan Zona Septik	
Gambar 6. 23 Potongan B-B Bangunan Zona Septik	
Gambar 6. 24 Potongan C-C Bangunan Zona Septik	187
Gambar 6. 25 Denah dan Potongan Bangunan Zona	
Kompartemen	
Gambar 6. 26 Potongan Bangunan Zona Kompartemen	
Gambar 6. 27 Penempatan Bangunan Pengolahan pada Loka	
	193
Gambar 6. 28 Profil Hidrolis I	
Gambar 6. 29 Profil Hidrolis II	199
Gambar 7. 1 Kelembagaan Pengelola	202

DAFTAR TABEL

Tabel 2. 1 Komposisi dan Konsentrasi Air Limbah Domestik	. 10
Tabel 2. 2 Baku Mutu Air Limbah Domestik sesuai Pergub Jaw	a
Timur No 72 Tahun 2013	
Tabel 2.3 Slope Minimum Berdasarkan Diameter Pipa	. 20
Tabel 2.4 Ketinggian Galian Berdasarkan Dimensi Pipa	. 21
Tabel 2.5 Spread Sheet Perhitungan ABR	.30
Tabel 4.1 Pengunjung Stasiun Surabaya 2016 dan	. 46
Tabel 4.2 Data Pegawai di Stasiun Surabaya Kota 2016	. 49
Tabel 4.3 Data Kereta Api yang Parkir di Stasiun Surabaya	
Gubeng	. 52
Tabel 4. 4 Data Kereta Api yang Parkir di Stasiun Surabaya Ko	ota
	. 53
Tabel 4. 5 Data Rangkaian Kereta Api	. 54
Tabel 4. 6 Data Kedatangan Kereta Api Kondisi Normal dan	
Puncak	
Tabel 4. 7 Petugas dalam Rangkaian Kereta Api	. 57
Tabel 4. 8 Kapasitas Air Bersih Kereta dan Pengisiannya dalar	
Sekali Perjalanan	
Tabel 4. 9 Kualitas Air Limbah Kereta Api	
Tabel 5. 1 Kualitas Air Limbah Kereta yang Akan Diolah	
Tabel 5. 2 Alternatif Kelembagaan Pengelola Air Limbah Kereta	
Api	
Tabel 6. 1 Kebutuhan Air Bersih Stasiun	
Tabel 6. 2 Kebutuhan Air Bersih Rangkaian Kereta	
Tabel 6. 3 Debit Air Limbah Kereta Api	
Tabel 6. 5 Dimensi Bangunan Penampungan Air Limbah Keret	
Tabel 6. 6 Stasiun yang Memiliki Tempat Pengisian Air di Pula	
Jawa	
Tabel 6. 7 Jumlah dan Lokasi Pengursan setiap Kereta Api	101
Surabaya	132
Tabel 6. 8 Pembagian Segmen Pipa Penyaluran	
Tabel 6. 9 Debit Puncak Air Limbah	
Tabel 6. 10 Debit Air Limbah pada Setiap Segmen Pipa	
Tabel 6. 11 Elevasi dan Penanaman Pipa Penyaluran	

Tabel 6. 12 Profil Hidrolis I	195
Tabel 6. 13 Profil Hidrolis II	196
Tabel 8. 1 Kebutuhan Kontruksi TPAL	207
Tabel 8. 2 BOQ Pekerjaan Las (per cm)	208
Tabel 8. 3 RAB 1 Buah TPAL Tipikal Kecil	209
Tabel 8. 4 RAB 1 Buah TPAL Tipikal Besar (B)	209
Tabel 8. 5 Total Biaya Investasi TPAL	210
Tabel 8. 6 Kebutuhan dan/atau Kegiatan Kontruksi Pengura	san
	211
Tabel 8. 7 BOQ Kontruksi Pengurasan	211
Tabel 8. 8 RAB Pengurasan	214
Tabel 8. 9 Kegiatan dan/atau Kebutuhan Kontruksi Penyalui	an :
-	214
Tabel 8. 10 BOQ Kontruksi Penyaluran	215
Tabel 8. 11 RAB Kontruksi Penyaluran	218
Tabel 8. 12 Kebutuhan dan/atau Kegiatan Kontruksi Pengola	ahan
	219
Tabel 8. 13 BOQ Pekerjaan Pengangkutan Tanah (per m³)	219
Tabel 8. 14 RAB Bangunan Pengolahan	
Tabel 8. 15 RAB Operasi dan Pemeliharaan dalam satu Tah	

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Kereta api merupakan salah satu moda transportasi darat yang banyak dipilih masyarakat saat ini. Jumlah konsumen pengguna jasa kereta api pada tahun 2014 meningkat sekitar 26% menjadi 280 juta penumpang (PT KAI 2014) dibandingkan tahun sebelumnya. Moda transportasi kereta api banyak dipilih masyarakat Indonesia karena harganya lebih ekonomis dibanding moda transportasi lainnya. Selain ekonomis, kereta api juga memiliki kelebihan dalam hal waktu tempuh. Waktu tempuh perjalan kereta api lebih cepat dibanding moda transportasi darat lainnya.

Meningkatnya konsumen kereta api harus diimbangi dengan berbagai pelayanan yang baik pula khususnya dalam hal sanitasi. Kereta api menghasilkan air limbah domestik cukup banyak. Bukan hanya kereta, stasiun juga menghasilkan air limbah domestik yang sama banyaknya. Namun dalam pengelolaannya masih dibuang ke badan jalan rel. Hal ini dapat mencemari tanah, air tanah, dan air permukaan di sekitar rel kereta.

Sungai di Indonesia banyak sekali mengalami pencemaran dari limbah. Di Jakarta sungai mengalami pencemaran cukup parah. Dimana 70% pencemaran tersebut diakibatkan oleh limbah domestik (Kompas, 2011). Begitupun Surabaya, sungai mengalami pencemaran 65% diakibatkan oleh limbah domestik (Kompas 2015). Selain pada sungai, air tanahpun dapat tercemari oleh limbah domestik seperti di Kabupaten Sleman. Pencemaran tersebut ditujukan oleh peningkatan bakteri E. Coli dari 47,63% pada 2012 menjadi 51,21 persen pada 2013 (Repubika, 2013).

Selain menyebabkan pencemaran pembuangan air limbah domestik secara tidak tepat dapat menyebabkan berbagai penyakit. Maka dari itu diperlukan perencanaan pengelolaan air limbah secara terpadu dan efisien. Perencanaan ini meliputi perencanaan di dalam kereta api dan stasiun. Berangkat dari hal tersebut penulis membuat proposal tugas akhir dengan judul Perencanaan Pengelolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota.

1.2 Rumusan Masalah

Perencanaan ini memiliki berbagai rumusan masalah yang akan dibahas yaitu :

- Tidak adanya sistem pengelolaan limbah secara terpadu di dalam kereta api hingga stasiun.
- Konstruksi toilet kereta masih belum mencukupi produksi air limbah.
- 3. Pencemaran air, air tanah, dan air permukaan di sekitar bantaran rel kereta api akibat pembuangan air limbah domestik sembarangan (melebihi baku mutu).

1.3 Tujuan

Tujuan dari perencanaan ini adalah:

- 1. Merencanakan pengelolaan air limbah secara terpadu mulai dari kereta api hingga stasiun.
- 2. Mendesain sistem dan pengelolan air limbah di kereta api.
- 3. Mendesain sistem dan pengelolan air limbah di stasiun.

1.4 Ruang Lingkup

Ruang lingkup perencanaan pengelolaan terpadu air limbah kereta api ini meliputi hal-hal berikut:

- 1. Sasaran air limbah adalah air limbah domestik stasiun dan kereta api.
- 2. Sumber air limbah perencanaan adalah air limbah toilet kereta penumpang, toilet kereta makan, dan toilet stasiun

- 3. Kontruksi tempat penampungan tidak merubah desain eksisting kereta.
- 4. Data karakteristik air limbah berdasarkan data sekunder air limbah domestik tercampur.
- Sasaran kereta api merupakan kereta api yang akhir pemberangkatan di Stasiun Surabaya Gubeng dan Surabaya Kota.
- 6. Lokasi pengolahan limbah pada Stasiun Surabaya Kota.
- 7. Lokasi pengolahan memanfaatkan lahan yang sudah ada.

1.5 Manfaat

Manfaat dari kegiatan perencanaan ini adalah :

- Penurunan pencemaran lingkungan di sekitar bantaran jalan rel
- 2. Percontohan sistem dan desain pengelolaan air limbah pada kereta api mulai penampungan, pengurasan, penyaluran, dan pengolahan.
- 3. Peningkatan pelayanan kereta api khususnya dalam hal sanitasi.

Halaman ini sengaja dikosongkan

BAB 2 TINJAUAN PUSTAKA

2.1 Kereta Api

2.1.1 Definisi

Menurut UU Nomor 23 tahun 2007 tentang Perkeretaapian, Kereta api adalah sarana perkeretaapian dengan tenaga gerak, baik berjalan sendiri maupun dirangkaikan dengan sarana perkeretaapian lainnya, yang akan ataupun sedang bergerak di jalan rel yang terkait dengan perjalanan kereta api.

Gambar 2.1 Lokomotif Sumber: Kaskus

Gambar 2.2 Kereta Penumpang Sumber: Kaskus

Gambar 2.3 Gerbong Sumber: Kaskus

Kereta api merupakan salah satu moda transportasi darat yang terdiri dari rangkaian mesin yang terdiri dari lokomotif

(Gambar 2.1), kereta (Gambar 2.2) dan/atau gerbong (Gambar 2.3). Lokomotif merupakan hulu dari rangkaian kereta api yang berisi ruang kendali, mesin penggerak, dan tangki bahan bakar. Lokomotif berfungsi sabagai mesin penggerak dari kereta api yang dikendalikan oleh seorang masinis kereta api. Lokomotif biasa dirangkaikan dengan kereta ataupun gerbong. Kereta dan gerbong memiliki fungsi yang berbeda. Kereta digunakan sebagai ruangan penumpang pada kereta angkutan penumpang sedangkan gerbong digunakan untuk barang baik pada kereta api barang (kargo) ataupun kereta angkutan penumpang.

Gambar 2.4 Peta Jalur Jalan Rel Kereta Api di Pulau Jawa Sumber : www.kereta-api.co.id

Kereta api memiliki jalur perjalanan yang berbeda dengan moda transportasi darat lainnya. Kereta api memiliki jalur perjalanan dan sistem lalu lintas sendiri; dimana jalur perjalanan kereta api dinamakan jalan rel. Jalan rel menghubungkan berbagai tempat jarak dekat ataupun jauh melalui fasilitas stasiun. Jalan rel membentuk jaringan yang saling terhubung seperti pada Gambar 2.4.

2.1.2 Kelembagaan

PT Kereta Api Indonesia (Persero) yang lebih dikenal dengan nama akronimnya KAI merupakan Badan Usaha Milik Negara yang bergerak pada jasa pelayanan transportasi perkeretaapian. PT KA memiliki beberapa anak perusahaan diantaranya Reska Multi Usaha, Railink, Commuter Jabodetabek, Pariwisata, Logistik, dan Properti Manajemen. Selain itu, dalam memenuhi pelayanan, PT KAI membagi wilayah pelayanannya kedalam 13 daerah operasi. Wilayah pelayanan tersebut terbagi atas 9 Daerah Operasi (DAOP) yang

melayani Pulau Jawa serta 3 Divisi Regional (DIVRE) dan 2 SUB DIVRE yang melayani Pulau Sumatera (PT KAI, 2014).

Secara umum PT KAI membagi struktur keorganisasiannya kedalam beberapa bagian yaitu Komersial dan IT, Operasi, Pengelolaan Prasarana, Pengelolaan Sarana, Keselamatan dan Keamanan, SDM dan Umum, Logistik dan Pengembangan, Aset Tanah dan Bangunan, serta Keuangan (Gambar 2.5). Stuktur tersebut juga diadopsi di tingkat DAOP dan DIVRE.

Gambar 2.5 Bagan Organisasi PT KAI sumber: Annual Report PT KAI 2014

2.1.3 Klasifikasi

Kereta api secara umum terbagi kedalam dua jenis angkutan yaitu angkutan barang dan angkutan penumpang. Masing-masing dibedakan menurut objek yang diangkut. Hal tersebut mempengaruhi bentuk dan sarana didalamnya.

Kereta pengangkut barang, gerbong mimiliki bentuk yang berbeda sesuai barang yang diangkutnya. Gerbong dibedakan kedalam empat jenis yaitu gerbong datar, gerbong tertutup, gerbong terbuka dan gerbong tangki. Masing-masing jenis gerbong diperuntukkan untuk jenis barang yang berbeda.

Gerbong datar digunakan untuk petikemas dan paletisasi. Gerbong terbuka digunakan untuk batubara, pasir besi, pasir kwarsa, hasil tambang, bahan baku curah balast, dan batu kricak. Gerbong tertutup digunakan untuk barang retail, produk pabrik yang terpaket dalam kardus, barang potongan, semen dalam kantong, bahan serbuk/ powder dalam kantong, gula, dan pupuk. Gerbong tangki digunakan untuk bahan bakar minyak (BBM), semua jenis bahan bakar cair, aspalt, bahan kimia cair yang tidak korosif, CPO, minyak goreng, air mineral, tepung, powder kimia, semen powder, kapur powder, dan semua bahan kimia berbentuk serbuk atau klinker.

Gerbong yang biasa dirangkaikan dengan lokomotif saja adalah gerbong datar, gerbong terbuka, dan gerbong tangka. Sedangkan gerbong tertutup biasa dirangkaikan dengan kereta angkutan penumpang dengan posisi paling belakang.

2.2 Stasiun Surabaya Kota

Stasiun Surabaya Kota merupakan salah satu stasiun tua di Kota Surabaya. Stasiun ini berada di bawah DAOP VIII Surabaya. Stasiun Surabaya Kota berada di tengah-tengah antara dua stasiun pusat di Surabaya yaitu Stasiun Gubeng dan Stasiun Pasa Turi. Kendati bukan stasiun pusat, Stasiun Surabaya Kota menjadi stasiun pemarkiran kereta yang awal keberangkatannya dari Stasiun Surabaya Gubeng dan Staisun Surabaya Kota. Oleh sebab itu Stasiun Surabaya Kota menjadi salah satu stasiun penting yang ada di Surabaya.

Gambar 2.6 Peta Staisun Suraba Kota Sumber: www.google.com/maps

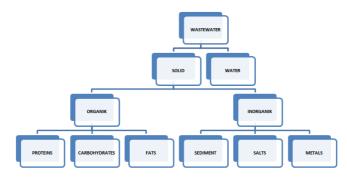
2.3 Air Limbah Domestik

2.3.1 Definisi

Menurut Peraturan Menteri Lingkungan Hidup Nomor 5 tahun 2014 tentang Baku Mutu Air Limbah, air limbah adalah sisa dari suatu usaha dan/atau kegiatan yang berwujud cair. Air limbah domestik adalah air limbah yang berasal dari usaha dan/atau kegiatan pemukiman, rumah makan, perkantoran, perniagaan, apartemen dan asrama. Jadi air limbah domestik kereta dan stasiun adalah air limbah yang dihasilkan oleh kegiatan seperti rumah tangga yang dilakukan di kereta api dan stasiun.

Air limbah domestik secara umum dapat terbagi ke dalam dua jenis yaitu *Black Water* dan *Grey Water. Black Water* merupakan air limbah domestik yang berasal dari buangan WC (kegiatan kakus) sedangkan *Grey Water* berasal dari kegiatan non kakus seperti mandi, cuci, dapur, dan kegiatan lain. Begitupun pada kereta dan stasiun, *Black Water* berasal dari kegiatan kakus toilet kereta dan toilet stasiun sedangkan Grey Water berasal dari kegiatan non kakus kereta dan stasiun.

2.3.2 Karakteristik


2.3.2.1. Sumber

Sumber air limbah domestik kereta api berasal dari buangan kamar mandi kereta dan kereta makan. Sumber kegiatan penghasil air limbah kamar mandi berasal dari aktifitas penumpang baik berupa kegiatan mandi, buang air kecil dan besar, wudhu, cuci muka, cuci tangan, serta kegiatan lain yang menggunakan kamar mandi.

2.3.2.2. Komposisi

Secara umum, air limbah terdiri dari 99,9% air sedangkan sisanya 0,1 % berupa zat padat. Zat padat pada air limbah terdiri dari berbagai penyusun. Penyusun berupa

zat padat pada air limbah 70% merupakan zat organik berupa protein, karbohidrat, dan lemak; sedangkan 30% merupakan zat anorganik berupa endapan pasir, garam, serta logam (Tebbut, 1998).

Gambar 2.7 Komposisi Umum Air Limbah

Air limbah domestik memiliki komposisi yang tidak jauh berbeda dengan air limbah pada umumnya. Air limbah domestik memiliki perbandingan komposisi padatan dan air yang berbeda. Air limbah domestik terdiri padatan tersuspensi berupa faeces dan sisa makanan, partikel koloid maupun terlarut berupa urin, senyawa kimia berupa sabun dan detergen, minyak, dan lemak. Berikut tabel komposisi dan konsentrasi air limbah domestik.

Tabel 2. 1 Komposisi dan Konsentrasi Air Limbah Domestik

Parameter	Konsentrasi
BOD	100-300 mg/L
COD	160-500 mg/L
Padatan Total	200-1000 mg/L
Padatan Tersuspensi	100-500 mg/L
Padatan Terlarut	100-500 mg/L

Parameter	Konsentrasi
Nitrogen	5-86 mg/L
Phosphor	2-10 mg/L
Minyak dan Lemak	0-40 mg/L

Sumber: Wisjnuprapto, 2007

2.3.2.3. Kualitas

1. Fisik

Karakteristik air limbah secara fisik dapat di lihat dari beberapa hal diantaranya adalah partikel, warna, bau, dan suhu. Partikel air limbah biasanya terdiri campuran bahan padat dan cari. Bahan pada tersebut terdiri dari bahan padat tak terlarut atau bahan padat yang terapung serta senyawa – senyawa yang larut dalam air. Kandungan bahan padat yang terlarut dalam suatu limbah didapat dengan cara mengeringkan serta menimbang residu yang didapat dari pengeringan.

Warna adalah ciri kualitatif yang dapat dipakai untuk mengkaji kondisi umum air limbah. Jika warnanya coklat muda, maka umur air kurang dari 6 jam. Warna abu – abu muda sampai setengah tua merupakan tanda bahwa air limbah sedang mengalami pembusukanatau telah ada dalam sistem pengumpul untuk beberapa lama. Bila warnanya abu – abu tua atau hitam, air limbah sudah membusuk setelah mengalami pembusukan oleh bakteri dengan kondisi anaerobik.

Penentuan bau menjadi semakin penting bila masyarakat sangat mempunyai kepentingan langsung atas terjadinya operasi yang baik pada sarana pengolahan air limbah. Senyawa utama yang berbau adalah hidrogen sulfida, senyawa – senyawa lain seperti indol skatol, cadaverin dan mercaptan yang terbentuk pada kondisi anaerobik dan menyebabkan bau yang sangat merangsang dari pada bau hidrogen sulfida.

Suhu air limbah biasanya lebih tinggi dari pada air bersih karena adanya tambahan air hangat dari pemakaian perkotaan. Suhu air limbah biasanya bervariasi dari musim ke musim, dan juga tergantung pada letak geografisnya.

2. Kimia

Selain pengukuran kualitas BOD, COD dan TOC pengujian kimia yang utama adalah yang bersangkutan dengan Amonia bebas, Nitrogen organik, Nitrit, Nitrat, Fosfor organik dan Fosfor anorganik. Nitrogen dan fosfor sangat penting karena kedua nutrien ini telah sangat umum diidentifikasikan sebagai bahan untuk pertumbuhan gulma air. Pengujian – pengujian lain seperti Klorida, Sulfat, pH serta alkalinitas diperlukan untuk mengkaji dapat tidaknya air limbah yang sudah diolah dipakai kembali serta untuk mengendalikan berbagai proses pengolahan.

Biologi

Karakteristik limbah secara biologis biasanya mengandung berbagai bakteri ataupun mahluk hidup kecil lainnya yang dapat bertahan dalam kondisi tertentu. Bakteri tersebut ada yang bersifat positif adapula yang bersifat negatif. Bakteri yang biasa ada dalam air limbah khususnya limbah domestik adalah *E. Coli*.

2.3.2.4 Kuantitas

Kuantitas air limbah kereta api berasal dari jamban pada kereta. Selain itu, kuantitas air limbah juga ditambah dengan pembuangan jamban di dalam stasiun sehingga kuantitas limbah merupakan penjumlahan dari air limbah kereta dan air limbah staisun. Kuantitas air limbah dalam perhitungannya akan berbeda dengan air limbah kereta dan stasiun.

Air limbah kereta berasal dari air bersih kereta, urin, dan faeces penumpang. Keseluruhan air bersih kereta akan

menjadi air limbah. Ini disebabkan air bersih didalam kereta digunakan secara keselurahan dan akan terbuang.

2.3.3 Baku Mutu

Setiap Air limbah memiliki baku mutu dan parameter berbeda tergantung jenis dan sumber limbah. Begitupun air limbah domestik memiliki baku mutu dan parameter tersendiri. Baku mutu ini menunjukkan batas kadar paling rendah dan/atau tinggi dari suatu parameter yang berada pada air limbah domestik sehinga air limbah tersebut dapat dibuang ke lingkungan dengan aman. Apabila air limbah masih memiliki parameter dengan konsentrasi yang melebihi baku mutu maka harus terlebih dahulu diolah hingga berada mencukupi baku mutu agar dapat dibuang ke lingkungan.

Baku mutu air limbah mengacu pada Pergub Jawa Timur No 72 Tahun 2013 seperti pada tabel 2.3. Parameter yang diatur dalam baku mutu air limbah domestik tersebut berupa pH, BOD_5 , COD, TSS serta minyak dan lemak. Masing-masing parameter memiliki konsentrasi baku mutu yang berbeda seperti pH 6-9, BOD 30 mg/L, COD 50 mg/L, TSS 100 mg/L, minyak dan lemak 10 mg/L (Tabel 2.3).

Tabel 2. 2 Baku Mutu Air Limbah Domestik sesuai Pergub Jawa Timur No 72 Tahun 2013

Parameter	Kadar Maksimum (mg/l)
BOD5	30
COD	50
TSS	50
Minyak dan Lemak	10
рН	6-9

Sumber: Pergub No 72 Tahun 2013

2.4 Teori Pengelolaan Air Limbah

2.4.1 **Sumber**

Sumber air limbah berasal dari kereta dan stasiun. Sumber air limbah pada kereta adalah kegiatan sanitasi penumpang di toilet. Sedangkan di stasiun adalah kegiatan sanitasi di toilet dari pengunjung stasiun, pegawai stasiun, kantin, dan petugas kebersihan perushaan vendor.

2.4.2 Penampungan

limbah Pengelolaan air biasanya diawali dengan pengelolaan setempat seperti tangka septik atau jenis lainnya. Tangka septik tersebut berfungsi sebagai tempat penampungan sekaligus pengolahan air limbah sebelum dibuang lingkungan. Namun berbeda dengan sumber bergerak seperti alat transportasi khususnya kereta api. Pada pesawat biasanya awal hanyalah tempat penampungan tanpa pengolahan. Ini disebabkan tidak mungkinnya bangunan pengolahan pada badan pesawat ditinjau dari efektifitas dan desainnya. Sama halnya dengan kereta api yang memiliki lahan yang cukup sempit sehingga tidak memungkinkan untuk membuat penampungan sekaligus pengolahan.

Tempat penampungan air limbah ini berupa wadah yang berfungsi sebagai tempat sementara penampungan limbah sebelum diolah atau disalurkan ke tempat pengolahan. Tempat penampungan air limbah ini banyak digunakan pada transportasi bergerak jarak jauh dengan waktu tempuh waktu yang lama lebih dari 3 jam.

2.4.2.1 Tempat dan Dimensi Penampungan

Tempat penampungan air limbah terletak di bagian bawah kereta api. Sehingga proses pengaliran dari sumber atau toilet hanya dengan gravitasi ke dalam tempat penampungan.

Tempat penampungan didesain kecil dan efektif sehingga dimensi tempat penampungan di pengaruhi oleh periode pengurasan dalam sekali perjalan. Selain itu, dimensi tempat penampungan juga dipengaruhi oleh ketersediaan tempat kosong pada bagian bawah kereta api. Bagian kosong inilah yang nantinya akan diberikan tempat penampungan.

Dimensi penampungan dapat dihitung dari perkalian debit dalam satu hari dibagi dengan rencana periode pengurasan. Berikut rumus tempat penampungan.

Volume =
$$\frac{\text{Debit Limbah} \times \text{td}}{\text{Periode Pengurasan}} \dots 1$$

2.4.2.2 Faktor yang Berpengaruh dalam Pendesainan

Faktor yang dapat mempengaruhi pendesainan tempat penampungan antara lain ketersediaan lahan (tempat kosong), keseimbangan kereta, getaran, kecepatan, pengereman, periode pengurasan, dan sistem pengurasan.

2.4.2.3 Material Penyusun

Material atau bahan tempat penampungan disesuaikan dengan karakteristik limbah. Bahan harus tahan terhadap korosi yang disebabkan oleh air limbah. Bahan juga harus dapat menahan volume yang cukup besar. Selain karena karakteristik dan volume limbah, bahan juga harus tahan getaran.

2.4.3 Pengurasan

Sistem pengelolaan air limbah yang berbeda dari biasanya mengakibatkan tempat penampungan berfungsi hanya sebatas untuk menampung sementara. Air limbah pada tempat penampungan tersebut nantinya harus dipindah ketempat pengolah. Pengurasan adalah salah satu cara memindahakan air limbah ke tempat pengolahan sebelum masuk kedalam bangunan atau pipa penyaluran.

Secara umum pengurasan dapat dilakukan dengan membuka saluran pembuangan tempat penampungan. Namun secara teknis sistem pengurasan dapat dijelaskan dengan 2 cara yaitu gravitasi dan pompa. Masing-masing cara memiliki kelebihan dan kekurangan masing-masing. Pemilihan kedua cara tersebut disesuaikan dengan kebutuhan nantinya.

2.4.3.1 Gravitasi

Sistem pengurasan dengan metoda gravitasi merupakan sistem pengurasan yang sangat murah namun memerlukan waktu yang relative lama. Sistem pengurasan tersebut tidak memerlukan bangunan khusus hanya alat bantu penghubung antara tempat penampungan dengan penyaluran. Sehingga alat yang dibutuhkan pada sistem pengurasan hanyalah alat bantu penghubung berupa pipa atau selang dengan diameter tertentu.

Kelebihan sistem pengurasan dengan gravitasi adalah dalam biaya dan operasi. Biaya penggunaan pengurasan dengan gravitasi lebih murah. Operasinyapun begitu mudah sehingga tidak terlalu membutuhkan orang yang berkemampuan khusus dalam pengoprasiannya.

Dimensi lubang untuk pengurasan dalam
$$\frac{A}{t_{pengurasan}} = \frac{Volume}{V_{aliran}} \qquad 2$$

$$D = \sqrt{\frac{4 \times Volume \times t_{pengurasan}}{V_{aliran}}} \qquad 3$$

2.4.3.2 Pompa

Sistem pengurasan dengan metoda pompa merupakan sistem pengurasan dengan alat bantu penyedot berupa pompa. Pompa ini dihubungkan dengan tempat pengurasan dan penyaluran. Sistem pengurasan dengan menggunakan pompa memiliki kelebihan dalam waktu pengurasan. Waktu yang diperlukan relative singkat namun membutuhkan biaya yang cukup besar untuk pembelian dan pemeliharaan pompa. Operatornyapun harus memiliki kemampuan khusus tentang perpompaan.

Debit pemompaan (Q)=
$$\frac{\text{volume ground reservoir}}{\text{waktu pemompaan}}$$
 4

Q=v x
$$\frac{1}{4} \pi x D^2$$
 5

$$D = \left(\frac{4 \times Q}{\pi \times V}\right)^{0.5} \qquad \dots 6$$

$$Vcek = \frac{Q}{A} \qquad 7$$

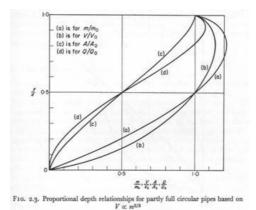
2.4.4 Penyaluran

Sistem penyaluran air limbah pada kereta api disesuaikan dengan kondisi lapangan dan biaya. Oleh karena itu, penyaluran air limbah kereta api akan sedikit berbeda dengan penyaluran air limbah seperti biasanya baik industri maupun permukiman. Model penyaluran akan sedikit berbeda dari biasanya.

2.4.4.1 Langsung

Penyaluran langsung hanya menggunakan media penyalur yang pendek antara outlet penampung dengan inlet pengolahan. Penyaluran langsung biasanya berupa selang dipasang dioutlet penampungan vana yang dihubungkan dengan inlet penampungan limbah. air Penyaluran langsung sebenarnya sama dengan metode sistem pengurasan. Penggunaan sistem penyaluran langsung dapat dikatakan pengelolaan air limbah tanpa penyaluran.

2.4.4.2 Wadah Sementara


Penyaluran dengan wadah sementara dapat dilustrasikan seperti truk tinja. Penyaluran ini menggunakan wadah semntara tidak berupa pipa namun berupa wadah berdimensi cukup besar sesuai debit limbah yang ada. Sistem seperti ini sering digunakan pada pengelolaan air limbah

domestik pesawat terbang. Namun dalam kereta api, sistem ini akan sangat susah karena jalur mobilisasinya terbatas dan sempit sehingga akan memperlambat proses pengelolaan.

2.4.4.3 Pipa

Perhitungan dimensi pipa penyaluran air limbah didasarkan pada kebutuhan sampai pada akhir periode desain yang direncanakan. Batasan-batasan yang dijadikan pedoman dalam merencanakan diameter saluran air limbah: - Vmaks dalam pipa tidak melebihi 2,5 m/dt.

- Vmin dalam pipa tidak kurang dari 0,3 m/dt (pada saat Qminimum).
- Tinggi renang minimum 50 mm (pada saat Qmin).
- Tinggi renang pada saat Qmaks antara 60% sampai 80% dari diameter pipa.
- Nilai d/D ditentukan berdasarkan pada grafik perbandingan Qmin/Qfull atau juga dapat digunakan nilai d/D antara 0,6-0,8

Gambar 2.8 Grafik Hydraulics Elements for Circular Sewers Sumber: Metcalf and Eddy, 1981

Persamaan yang akan digunakan antara lain:

Persamaan Luas penampang:

$$A = \frac{1}{4} \times \pi \times D^2 \qquad \dots 8$$

Persamaan debit penuh:

$$Q_{\text{full}} = \frac{Q_{\text{peak}}}{Q_{\text{peak}}/Q_{\text{full}}} \qquad \dots 9$$

- Persamaan kecepatan penuh:

$$V_{\text{full}} = \frac{1}{n} \times S^{\frac{1}{2}} \times 0,397 \times D^{\frac{2}{3}}$$
 10

$$V_{\text{full}} = \frac{Q_{\text{full}}}{A_{\text{full}}} \qquad \dots 11$$

dimana

$$Q = \frac{0.312}{n} \times D^{\frac{8}{3}} \times S^{\frac{1}{2}}$$
 12

Persamaan diameter minimum :

$$d = D \times d/D$$
 13

dimana: D = diameter yang dipakai (mm)

Persamaan kecepatan minimum

$$V_{min} = V_{full} \times \frac{V_{min}}{V_{full}}$$
 14

Untuk kondisi medan yang relatif datar, dibutuhkan penanaman jaringan pipa dengan kemiringan minimal yang dapat memberikan kecepatan pengaliran dengan daya pembilasan sendiri dengan nilai kekasaran *manning*, n= 0,013 dan n= 0,015. Berikut ini tabel 2.3, yang berisi *slope minimum* berdasarkan diameter pipa:

Tabel 2.3 Slope Minimum Berdasarkan Diameter Pipa

Diameter Pipa (mm)	Diameter Pipa (inch)	n = 0,013	n = 0,015
200	8	0,0033	0,0044
250	10	0,0025	0,0033
300	12	0,0019	0,0026
375	15	0,0014	0,0019
450	18	0,0011	0,0015
525	21	0,0009	0,0012
600	24	0,0008	0,0010
675	27	0,0007	0,0009
750	30	0,0006	0,0008
900	36	0,0004	0,0006

Sumber: Metcalf and Eddy, 1981

Penempatan saluran air limbah perlu dipertimbangkan dengan keadaan lapangan, keamanan jaringan sistem itu sendiri, dan pengaruhnya terhadap jaringan pipa air minum yang telah ada maupun dalam perencanaan. Kedalaman penanaman pipa minimal harus disesuaikan dengan kelas jalan yang dilewati saluran, jenis tanah, lokasi bangunan yang akan menggunakan fasilitas air limbah, kekuatan saluran, dan diameter saluran. Secara umum kedalaman minimum saluran adalah 1 meter, sedangkan kedalaman maksimum adalah 7 meter. Jika penanaman lebih dari 7 meter digunakan pompa. Angka kedalaman minimum ini dimaksudkan untuk mengurangi kerusakan pipa akibat tekanan dari atas yang terlalu besar terhadap pipa, sedangkan kedalaman maksimum ditetapkan untuk mempermudah perawatan terhadap pipa dan juga mengurangi kerusakan karena faktor alam.

Beberapa hal yang perlu diperhatikan dalam penempatan saluran adalah :

- Pipa service dipasang di belakang rumah, sedang pipa lainnya dipasang ditepi jalan untuk kemungkinan pengaliran bila ada perbaikan.

 Apabila pada saat pemasangan bertemu dengan jaringan air minum yang ada atau yang direncanakan, maka saluran air limbah harus diletakkan 0,5 meter di bawah pipa air minum.

Perumusan yang digunakan untuk penanaman saluran adalah sebagai berikut :

Keadaan awal: Elevasi atas pipa (m) = elevasi tanah awal – 15 kedalaman awal pipa 16 Elevasi dasar pipa (m) = elevasi atas pipa keadaan awal – diameter pipa 17 Kedalaman penanaman pipa (m) = elevasi tanah awal – elevasi dasar pipa keadaan awal – pondasi pasir bawah pipa Keadaan akhir: Elevasi atas pipa (m) = elevasi tanah awal -.... 18 headloss Headloss (m) = panjang pipa x slope pipa 19 20 Elevasi dasar pipa (m) = elevasi atas pipa keadaan akhir - diameter pipa 21 Kedalaman penanaman pipa (m) = elevasi tanah akhir – elevasi dasar pipa keadaan akhir – pondasi pasir bawah pipa

Berikut adalah tabel yang menyajikan ketentuan pondasi pasir bawah berdasarkan diameter pipa:

Tabel 2.4 Ketinggian Galian Berdasarkan Dimensi Pipa

D (mm)	a (m)	b (m)	c (m)
100-350	1	0,15	0,15
350-500	1,2	0,15	0,15
500-1000	1,5	0,2	0,2

Sumber: Departemen Pekerjaan Umum

dimana: a= Tanah urug b= Pasir urug

c= Pasir bawah pipa

2.4.5 Pengolahan

Pengolahan Limbah secara umum dapat dilakukan secara setempat dan terpusat. Pengolahan air limbah pada kereta api jelas lebih dipilih secara terpusat dibandingkan setempat. Dengan sistem setempat maka akan memerlukan banyak biaya dalam setiap harinya untuk memindahkan air limbah ke IPLT.

2.4.5.1 Jenis Pengolahan

Pengolahan limbah secara umum dapat dikatgorikan kedalam pengolahan fisika, kimia, dan biologis.

1. Pengolahan Fisika

Pada umumnya pengolahan fisik digunakan pada pengolahan awal. Pengolahan untuk mempermudah tahapan selanjutnya. Pengolahan fisik seperti penyaringan, pengendapan, dan lain-lain. Pengolahan fisik ini biasa digunakan pada partikel pencemar yang berukuran besar dan mudah untuk di rekayasa secara fisik.

2. Pengolahan Kimia

Pengolahan kimia biasa digunakan untuk pencemar dengan ukuran cukup kecil seperti berbentuk koloid. Pengolahan jenis ini dilakukan untuk beerbagai kandungan pencemar yang susah mengendap seperti koloid, logam berat, dan lain-lain. Pengolah ini menggunakan reaksi kimia untuk merubah fungsi atau sistem dari partikel tersebut. Ada berbagai pengolahn kimia seperti netralisasi, pertukaran ion dan lainya.

3. Pengolahan Biologis

Pengolahn biologis adalah pengolahn yang paling murah. Pengolahan ini dapat dilakukan pada pencemar yang biodegradable. Namun pengolahn bilogi biasanya memerlukan waktu yang cukup lama. Beberapa contoh pengolahan biologis adalah filtrasi membaran.

2.4.5.2 Proses Pengolahan

Proses pengolahan limbah secara umum terdiri dari pengolahan awal, pengolahan primer, pengolahan skeunder, pengolahan akhir, dan pengolahan lanjutan. Masing-masing pengolahan memiliki tugas dan fungsi yang berbeda. Penggunaan proses pengolahn juga disesuaikan dengan jenis limbah dan rencana hasil akhir air limbah. Limbah dengan ukuran partikel kecil tidak perlu memakai pengolahan awal, langsung pengolahan primer.

1. Pengolahan Awal

Tujuan utama dari tahap ini adalah usaha untuk melindungi alat-alat yang ada pada instalasi pengolahan air limbah. Pada tahap ini dilakukan penyaringan, penghancuran atau pemisahan air dari partikel-partikel yang dapat merusak alat-alat pengolahan air limba, seperti pasir, kayu, sampah, plastik dan lain-lain.

2. Pengolahan Primer

Tujuan pengolahan yang dilakukan pada tahap ini adalah menghilangkan partikelartikel padat organik dan organik melalui proses fisika, yakni sedimentasi dan flotasi. Sehingga partikel padat akan mengendap (disebut sludge) sedangkan partikel lemak dan minyak akan berada di atas / permukaan (disebut grease).

3. Pengolahan Sekunder

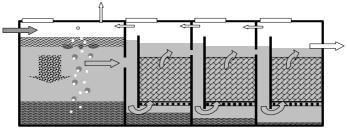
Pada tahap ini air limbah diberi mikroorganisme dengan tujuan untuk menghancurkan atau menghilangkan material organik yang masih ada pada air limbah. Tiga buah pendekatan yang umum digunakan pada tahap ini adalah fixed film, suspended film dan lagoon sistem.

4. Pengolahan Akhir

Fokus dari pengolahan akhir (*Final Treatment*) adalah menghilangkan organisme penyebab penyakit yang ada pada

air. Hal ini dapat dilakukan dengan cara menambahkan khlorin ataupun dengan menggunakan sinar ultraviolet.

5. Pengolahan Lanjutan

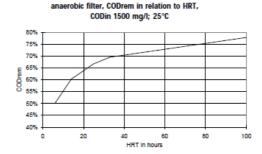

Pengolahan lanjutan diperlukan untuk membuat komposisi air limbah sesuai dengan yang dikehendaki. Misalnya untuk menghilangkan kandungan fosfor ataupun amonia dari air limbah.

2.4.5.3 Bangunan Pengolahan Terpadu

Bangunan pengolahan terpadu adalah bangunan pengolahan yang terdiri dari berbagai proses pengolah yang telah dibahas sebelumnya. Bangunan ini sudah terdri dari berbagai tahap mulai dari tahap awal hingga tahap akhir. Bangunan ini memiliki kriteria kondisi limbah tertentu yang dapat diolah sehingga perlu pemilihan lebih lanjut.

1. Anaerobic Bio Filter (ABF)

Unit ini dilengkapi filter media untuk tempat berkembangnya koloni bakteri membentuk film (lendir) akibat fermentasi oleh enzim bakteri terhadap bahan organik yang ada didalam limbah. Film ini akan menebal sehingga menutupi aliran air limbah dicelah diantara media filter tsb. sehingga perlu pencucian berkala terhadap media, misalnya dengan metoda back washing. Media yang digunakan bisa dari kerikil, bola-bola plastik atau tutup botol pelasik dengan diameter antara (5-15) cm. Aliran dapat dilakukan dari atas atau dari bawah.



Gambar 2. 9 Tampak potongan melintang *Anaerobic Bio Filter* Sumber :Sasse, 1998

Dimensi dihitung berdasarkan:

- Beban organic yaitu (4-5) kg COD /m3.hari
- Volume organik dhitung berdasarkan waktu detensi (1,5-2) hari
- Jika menggunakan perkiraan kasar dapat dihitung volume (pori dan massa) organic filter (0,5-1) m3/kapita
- Luas pemukaan media 150-300 m2/m3 media.
- Beban hidrolik maksimum 3.4 m3/m2.hari.

Dalam mendasain ABF, terlebih dahulu ditentukan besar reduksi COD air limbah tersebut untuk mencari *hidrolic retention time* (HRT). HRT didapat dari hasil plot titik pada grafik HRT seperti gambar 2.10.

Gambar 2.10 Kurva perbandingan COD dan HRT pada AB Sumber :Sasse, 1998

Berikut contoh perhitungan untuk ABF

$$\frac{S_t}{S_o} = e^{\frac{-KD}{Q_l^n}} \qquad 22$$

Dimana: St = BOD effluent

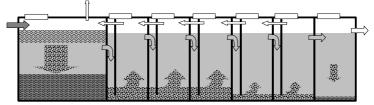
So= BOD Influen

K = Konstanta laju biodegradasi

D = Kedalaman media, m QI = Beban hidrolik, m3/hari

n = konstanta filtrasi

2. Upflow Anaerobic Sludge Blanket (UASB)


Unit ini menstimulasi pembentukan selimut lumpur yang terbentuk di tengah kompartemen oleh partikel dan mengendapkan partikel yang dibawa aliran ke atas. Dengan kecepatan aliran naik yang perlahan, maka partikel yang semula akan mengendap akan terbawa ke atas, tetapi aliran juga tidak terlalu lambat karena tetap dapat mengendapkan partikel di dasar.

Jadi pengaturan aliran konstan dalam organi mutlak diperlukan, maka dibutuhkan pelengkap unit sistem buffer untuk penampungan sementara fluktuasi debit yang masuk sebelum didistribusikan ke kompartemen UASB. Disamping itu diperlukan pengaturan input flow yang merata dalam tanki yang menjamin kecepatan aliran setiap titik aliran masuk dari dasar kompartemen. Sebagai pegangan untuk menilai perencanaan biasanya hydrolic loading ditetapkan pada 20 m3/m2 .hari atau dengan kecepatan aliran konstan ke atas sebesar 0,83 m/jam. Waktu detensi (6-8) jam. Penggunaan UASB ini biasanya dipakai pada konsentrasi BOD di atas 1.000 mg/l, yang umumnya digunakan oleh kompartemen dengan beban organic tinggi. Jika beban organic rendah,maka akan sukar untuk membentuk sludge blanket.

3. Anaerobic Baffled Reactor (ABR)

ABR merupakan sistem pengolahan biologis secara biorektor berpenyekat. anaerob. dalam Pertumbuhan tersuspensi lebih menguntungkan dibanding pertumbuhan melekat karena tidak membutuhkan media pendukung serta tidak mudah tersumbat. ABR merupakan perkembangan lanjutan dari UASB yang pasang secara seri, namun tidak memakai granule dalam operasinya sehingga memerlukan (Movahedyan, periode start-up lebih pendek Serangkaian sekat vertikal dipasang dalam ABR membuat limbah cair mengalir secara under and over dari inlet menuju outlet, sehingga terjadi kontak antara limbah cair dengan

biomassa aktif. Profil kosentrasi senyawa organik bervariasi sepanjang ABR sehingga menghasilkan pertumbuhan populasi mikroorganisme berbeda pada masing-masing kompartemen tergantung pada kondisi lingkungan spesifik yang dihasilkan oleh senyawa hasil penguraian. Bakteri dalam bioreaktor mengapung dan mengendap sesuai karakteristik aliran dan gas yang dihasilkan, tetapi bergerak secara horisontal ke ujung reaktor secara perlahan sehingga meningkatkan cell retentation time. Limbah cair berkontak dengan biomassa aktif selama mengalir dalam reaktor, sehingga efluen terbebas dari padatan biologis (biological solids). Konfigurasi tersebut mampu menunjukkan tingkat penyisihan COD yang tinggi.

Gambar 2.11 Potongan Memanjang *Anaerobic Baffled Reacto* Sumber :Sasse, 1998

Kelebihan-kelebihan utama ABR adalah:

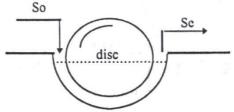
- a. ABR mampu memisahkan proses asidogenesis dan metanogenesis secara longitudinal yang memungkinkan reaktor memiliki sistem dua fase, tanpa adanya masalah pengendalian dan biaya tinggi.
- b. Desainnya sederhana, tidak memerlukan pengaduk mekanis, biaya konstruksi relatif murah, biomassa tidak memerlukan karakteristik pengendapan tertentu, lumpur yang dihasilkan rendah, SRT tinggi dicapai tanpa media pendukung serta tidak memerlukan sistem pemisahan gas (Bell, 2002). Peningkatan volume limbah cair tidak masalah, bahkan memungkinkan operasional intermitten, selain itu ABR stabil terhadap adanya beban kejut hidrolik dan organik (hyhraulic and organik shock loading) selain itu konfigurasi ABR melindungi biomassa dari senyawa toksik dalam influen.

c. Selain itu pola hidrodinamik ABR dapat mereduksi terbuangnya bakteri (bacterial washout) dan mampu menjaga biomassa tanpa penggunaan fixed media. Pemisahan dua fase menyebabkan peningkatan perlindungan terhadap senyawa toksik dan memiliki ketahanan terhadap perubahan parameter lingkungan seperti pH, temperatur dan beban organik.

Sedangkan kelemahan dari desain reaktor bersekat adalah bioreaktor harus dibangun cukup rendah untuk mempertahankan aliran ke atas (*upflow*) cairan maupun gas.

HRT=V/O 24

Selain itu ABR dapat menggunakan metode spread sheet (Sasse, 1998) seperti dalam tabel 2.5.


4. Rotating Biological Contactor (RBC)

Rotating Biological Contactor (RBC) terdiri dari suatu seri disc (piringan) berbentuk lingkaran yang terbuat dari bahan polysterene atau polyvinyle chloride. Piringan tersebut disusun vertikal dengan menghubungkan satu sama lain dengan satu sumbu. Dengan cara ini disc dapat berputar. Sebagian 40% disc tersebut tercelup dalam air limbah yang diolah.

Biofilm akan tumbuh dan menempel pada permukaan disc dalam bentuk lendir. Pada saat berputar bagian disc yang tercelup air akan mengadsorp/menguraikan zat organik yang terlarut dalam air. Pada saat kontak dengan udara biomass akan mengadsorp oksigen, sehingga akan tercapai kondisi aerobik. Berputarnya piringan juga merupakan mekanisme untuk mempertahankan biomassa dalam keadaan tersuspensi. Biomassa yang berlebih akan terbawa keluar dan diendapkan pada bak sedimentasi II.

RBC juga dapat digunakan sebagai pengolahan untuk menurunkan amonia dengan proses nitrifikasi. Sistem yang lengkap terdiri dari dua atau lebih susunan disc (shaft) yang dipasang secara paralel dan multi stage.

Dengan mengetahui harga BOD influent, dan $k_{(1/2)a}$, serta memasukkan harga hidrolik loading dari kriteria disain, maka efisiensi pengolahan dapat dihitung.

Gambar 2.12 Proses pada Rotating Biological Contractor Bell, 2002

Untuk keperluan desain, perhitungan efisiensi dapat dihitung dengan formula vang diturunkan dengan persamaan kesetimbangan massa berikut ini.

Asumsi bahwa terjadi reaksi orde ke ½ (penetrasi partial), pada kondisi pengaduk sempurna, dan steady state, maka kesetimbangan massa akan diperoleh:

$$Q(So - Se) = k_{(1/2)a} ASe^{1/2}$$
 25

dan efisiensi pengolahan:

$$E = (So - Se)/So \qquad \dots 26$$

Penggabungan persamaan tersebut diatas menjadi $Q So E = k_{(1/2)a} ASe^{1/2}$ 27

atau

$$Se = \left| \frac{QSoE}{k_{(1/2)a}A} \right|^2 \qquad \dots 28$$

Persamaan efisiensi (E) dapat ditulis sebagai berikut: Se = So(1 - E) 29

Tabel 2.5 Spread Sheet Perhitungan ABR

				,		,					
	Α	В	С	D	E	F	G	Н	I	J	K
1			General	spread sh	eet for ba	ffled septi	c tank with	n integrate	d settler		
	Daily waste water	time most of waste water	max peak flow	COD	BOD5	COD/B OD	settleab le SS/CO	Lowest digeste	desludg ing	HRT in settler (no settler HRT	COD Remov al rate in
2	flow	flow	perhour	inflow	inflow	ratio	D ratio	r temp.	interval	=0)	settler
3	average	given	max	given	given	calcul	given	given	chosen	chosen	calculat e
4	m³/day	h	m³/h	mg/l	mg/l	ratio	mg/l	С	months	h	%
5											
6											
7					tr	etment da	ta				
	BOD ₅ removal rate in	_	to baffled	COD/B OD ₅ ratio after	factor to calculate COD removal rate of baffled			COD rem, 25, COD	theor rem rate acc. Tofacto	COD rem rate baffle	COD
8	settler	rea	ctor	settler	reactor 1500				r	only	out
9	calcul	COD	BOD ₅	calcul	calculated accorfing to graphs			aphs	calcul	calcul	calcul
10	%	mg/l	mg/l	mg/l/m g/l	f- overloa	f- strengt	f-tempt	f-HRT	%	%	mg/l

	Α	В	С	D	E	F	G	Н	I	J	К
					d	h					
11											
12											
13				dimensior	of settler	•			baff	led septic	tank
14	Total COD rem.rate	total BOD ₅ rem.rat e	BOD₅ out	measur chosen	nasonry rements acc. To I volume	sludge accum. rate	length of settler	length of settler	max upflow velocity	number of upflow chamb ers	depth at outlet
15	calcul	calcul	calcul	width	depth	calcul	calcul	chosen	chosen	chosen	chosen
16	%	%	mg/l	m	m	I/g COD	m³	m	m/h	No	m
17											
18											
19			dimen	sion of ba	ffled septi	c tank			st	astus and	gp
20	area of lenght of single chambers should upflow not exceed half chamb depth er width of chamber		actual upflow velocity	width of downflo w shaft	actual volume of baffled reactor	actual total HRT	org.loa d (BOD₅)	biogas (ass CH4 70%; 50% dissolv ed)			

	Α	В	С	D	Е	F	G	Н	I	J	К
21	calcul	chosen	calcul	calcul	chosen	calcul	chosen	calcul	calcul	calcul	calcul
22	m	m	m²	m	m	m/h	m	m³	h	kg/m³.d	m³/d
23											

Sumber : Sasse,1998

atau

$$Se + E So - So = 0 \qquad \dots 30$$

$$\left| \frac{QSoE}{k_{(1/2)a}A} \right|^2 + ESo - So = 0$$
 31

 $Q/A = H_L$ (hidrolik),

sehingga:

$$\left| \frac{H_L So}{k_{(1/2)a}} \right|^2 E^2 + E So - So = 0$$
 32

Dengan:

So = BOD influent (g/m^3)

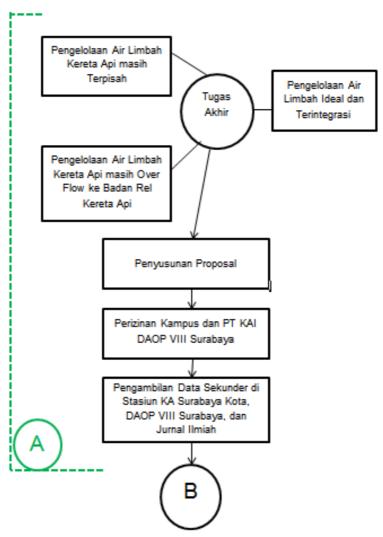
Kriteria Desain RBC

- Beban organik untuk piringan 20 gr BOD/ m2 luas piringan.hari
- Jarak antar piringan (3-5) cm
- Diameter Piringan (1,5-3) m
- Waktu detensi dalam bak (2-4) jam
- Kedalaman bak piringan bergantung tinggi bagian piringan misal untuk piringan diameter 3m maka kedalam air dalam
- Kebutuhan listrik untuk rotor 8-10 Kw.jam/(orang.tahun)
- Produksi lumpur (0,4-0,5) kg / kg penyisihan BOD

Halaman ini sengaja dikosongkan

BAB 3

METODE PERENCANAAN


3.1 Umum

Pelaksanaan perecanaan ini harus memiliki runtutan kegiatan yang tersistematis dari awal untuk memudahkan proses pelaksanaan. Secara umum metode perencanaan dilakukan mulai dari perencanaan ide, persiapan, pengumpulan data, analisa data, dan perencanaan sistem dan bangunan (Gambar 3.1). Semua tahapan tersebut akan dijelaskan secara beruntun pada subbab berikutnya. Hasil akhir dari perencanaan ini adalah Detail Engineering Design dari sistem perencanaan pengelolaan terpadu air limbah kereta api jarak jauh.

Persiapan merupakan tahap pertama dalam rangkaian kegiatan dalam pelaksanaan perencanaan. Hal tersebut dilaksanakan sebelum memulai pengumpulan dan pengolahan data; dan perencanaan sistem dan bangunan. Dalam tahap ini direncanakan kegiatan-kegiatan yang penting yang harus segera dilakukan untuk menunjang kegiatan tugas akhir dengan tujuan untuk mengefektifkan waktu dan pekerjaan. Tahap persiapan ini meliputi kegiatan-kegiatan sebagai berikut:

- a. Pembuatan proposal tugas akhir
- Perizinan pelaksanaan tugas akhir kepada Jurusan dan Instansi terkait dalam hal ini adalah PT Kereta Api Indonesia DAOP VIII Surabaya.

Pelaksanaan perencanaan ini diakhiri dengan penyusunan laporan tugas akhir. Penyusunan laporan tugas akhir merupakan tahap akhit pada pelaksanaan tugas akhir perencanaan. Tahap ini merupakan tahap penulisan hasil analisa dan perencanaan setiap kegiatan tugas akhir. Pada laporan tugas akhir ini juga ditulis berbagai kesimpulan hasil pelaksanaan dan saran kedepannya baik bagi instansi terkait, pemerintah, dan peneliti selanjutnya. Laporan tugas akhir ini juga sebagai tanda pelaksanaan tugas akhir telah selesai dilaksanakan.

Gambar 3.1 Kerangka Acuan Pelaksanaan Perencanaan (A)

Gambar 3.2 Kerangka Acuan Pelaksanaan Perencanaan (B)

Gambar 3.3 Kerangka Acuan Pelaksanaan Perencanaan (C)

3.2 Pengambilan Data

Pengambilan data dilakukan sesuai dengan tahap yang telah direncanakan akhir dalam proposal tugas perencanaan. Pengambilan data disesuaikan dengan sumber dan objek data vang dibutuhkan. Sumber data berasal dari buku-buku pengelolaan air limbah; jurnal-jurnal terbaru pengelolaan air limbah; kumpulan tugas akhir pengelolaan air limbah; publikasi ilmiah tentang kereta api dan pengelolaan air limbah; buku dan laporan Daerah Operasi (DAOP) VIII Surabaya; buku dan laporan Stasiun Surabaya Kota; buku dan laporan dari intasi pemerintah Kota Surabaya; dan data dari website-website resmi.

Sumber dan objek data yang berbeda mengakibatkan proses pengambilan data juga harus beragam. Pada perencanaan ini pengambilan data dilakukan mengunakan tiga metoda yaitu studi pustaka, survey, dan pengambilan sampel. Ketiga metoda tersebut merupakan hasil pengelompokan sumber dan objek data pada tahap proposal.

3.2.1 Studi Pustaka

Studi pustaka dilakukan untuk mencari data yang sudah diterbitkan pada khalayak umum baik berupa penelitian, laporan, buku, ataupun publikasi ilmiah lain. Studi pustaka ini mengambil data berupa teori perencanaan air limbah serta data pendukung tambahan perencanaan.

Studi pustaka teori perencanaan dilakukan mulai pada proses penyusunan proposal hingga laporan perencanaan ini selesai. Ada tiga tahap studi pustaka yang dilakukan yaitu studi pustaka teori perencanaan berasal dari jurnal, buku, tugas akhir dan publikasi ilmiah lain; studi pustaka perkeretaapian berasal dari publikasi PT KAI; serta studi pustaka data pendukung berasal dari lembaga pemerintahan Kota Surabaya, website lembaga pemerintah Kota Surabaya, Website PT KAI, dan website resmi lain.

Studi pustaka teori perencanaan lebih berfokus pada jurnal-jurnal, kumpulan tugas akhir, dan publikasi ilmiah pengelolaan air limbah terbaru dan teori pengelolaan air limbah yang mendasar. Kriteria jurnal yang dicaripun harus memiliki tengang waktu yang tidak terlalu jauh dengan waktu perencanaan yaitu sekitar 10 tahun. Hal ini dilakukan untuk menyesuaikan dengan temuan terbaru. Berbeda dengan teori pengelolaan air limbah, lebih terfokus pada buku-buku yang menjelaskan pengelolaan air limbah tanpa batasan waktu tertentu.

Tahap kedua studi pustaka yang dilakukan adalah studi pustaka perkeretaapian. Studi pustaka ini lebih berfokus pada Laporan PT KAI yang terpublikasi dan tidak terpublikasi. Laporan PT KAI yang menjadi objek studi pustaka berupa laporan tahunan, laporan keberlanjutan, profil perusahaan, laporan harian stasiun, dan dokumentasi stasiun.

Tahap-tahap yang sudah dilakukan masih mengalami kekurangan data sehingga ditambah tahap ketiga yaitu studi pustaka data pedukung. Studi pustaka ini dilakukan untuk mencari data pendukung untuk mentupi kebutuhan data

perencanaan. Data ini bersumber dari buku dan laporan instanti pemerintah; dan website-website resmi.

3.2.2 Survey

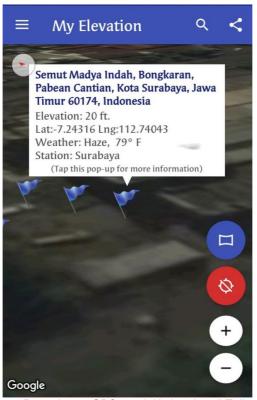
Metoda pengambilan data yang dilakukan selain studi pustaka adalah survey. Survey ini dilakukan untuk mencari data yang ada dilapangan secara langsung. Survey ini dilakukan dengan tiga cara yaitu wawancara, pengamatan langsung, dan dokumentasi.

3.2.2.1 Wawancara

Wawancara dilakukan untuk mencari data berhubungan dengan kereta dan stasiun. Wawancara ini dilakukan dilingkungan Stasiun Surabaya Kota. Wawancara ini bersumber dari petugas restorasi kereta, kebersihan kereta, dan kebersihan stasiun.

Pada proposal direncanakan wawancara pada petugas sedot tinja, namun petugas sedot tinja dirasa sudah tidak perlu karena data yang didapat sudah dipastikan tidak sesuai untuk perencanaan. Ini disebabkan sedot tinja melakukan penyedotan langsung dari pengumpulan dengan periode waktu 3 bulan sekali. Sehingga debit sedot tinja tidak dapat dijadikan acuan untuk debit air limbah.

Wawancara dilakukan terhadap restorasi kereta api berisi tentang pengelolaan air limbah restorasi selama perjalanan dan kelembagaan petugas restorasi; terhadap petugas kebersihan kereta api tentang pengelolaan air limbah kereta selama perjalanan dan stasiun, pengelolaan air bersih, dan kelembagaan petugas (Gambar 3.4); serta terhadap petugas kebersihan stasiun tentang pengelolaan air limbah stasiun. Contoh list pertanyaan wawancara untuk ketiga sumber terdapat pada Lampiran I.


Gambar 3.4 Wawancara pada Petugas Kebersihan Kereta Api

3.2.2.2 Pengamatan Langsung

Pengamatan langsung ini hanya berupa pengambilan data ketinggian beberapa tempat khususnya lokasi sumber air limbah. Pengambilan data ini digunakan untuk penyaluran dari sumber limbah ke pengolahan limbah. Pengukuran ketinggian ini menggunakan aplikasi GPS berbasis android berupa My Elevation (Gambar 3.5).

3.2.2.3 Dokumentasi

Dokumentasi hanya pengambilan gambar proses pengambilan data. Dokumntasi ini dilakukan untuk melengkapi data perencaanan serta aktifitas perencanaan. Dokumentasi ini hanya berupa photo dan penyimpanan data yang didapat.

Gambar 3.5 Pengukuran GPS untuk Ketinggian di Toilet Stasiun Surabaya Kota

3.2.3 Pengambilan Sampel

Pengambilan sampel dilakukan distasiun. Sampel yang diambil hanya berupa air limbah kereta dari beberapa kereta dengan kelas yang berbeda. Kelas kereta api yang diambil sampel limbahnya adalah kereta kelas eksekutif, bisnis, ekonomi, dan kereta lokal.

Pengambilan sampel dilakukan dengan menggunakan ember. Hal ini dilakukan karena sulitanya pengambilan air

limbah. Pengambilan air limbah harus dilakukan dibawah bangunan kereta. Jarak antara saluran air limbah dengan tanah atau jalan pun begitu pendek sehingga memerlukan cara tertentu untuk proses pengambilannya. (Gambar 3.6)

Gambar 3.6 Pengambilan Sampel Air Limbah Kereta

Proses pengambilan sampel pertama adalah menyiapkan ember di bawah saluran penampungan air limbah. Setelah itu, saluran dibuka. Air limbah yang sudah tertuang ke dalam ember dimasukan ke dalam jerigen dan botol air mineral menggunakan corong plastik.

3.3 Pengolahan Data

Tahap analisa data merupakan analisa data dari tahap pengumpulan data. Metoda analisa yang digunakan adalah analisa deskriptif, analisa labolatorium, perhitungan rumus, dan anlisa ekonomis. Metoda-metoda tersebut digunakan sesuai data yang didapat.

Analisa deskriptif, perhitungan rumus, dan analisa ekonomis dilakukan oleh perencana dari data yang sudah didapat pada tahap pengumpulan data sedangkan analisa labolatorium dilakukan oleh Labolatorium Menejemen Kualitas Lingkungan Jurusan Teknik Lingkungan FTSP ITS Surabaya. Hasil masingmasing analisa dapat dilihat pada bab-bab selanjutnya pada

laporan perencanaan ini. Untuk hasil analisa deskriptif dan labolatorium akan dipaparkan pada bab 4 sedangkan hasil perhitungan rumus dan analisa ekonomis akan dipaparkan pada bab 6 dan 8.

3.4 Perencanaan Sistem dan Bangunan

Perencanaan sistem dan bangunan ini merupakan inti perencanaan. Ini adalah hasil analisa perhitungan rumus dari data yang didapat kemudian ditambahkan gambar dari hasil perhitungan rumus tersebut. Perencanaan sistem dan bangunan ini meliputi pemilihan sistem dan bangunan serta perencanaan sistem dan bangunan. Kedua hal tersebut akan dibahas dalam bab 6.

BAB 4

GAMBARAN UMUM DAN ALTERNATIF PENGELOLAAN

4.1 Sumber Air Limbah

Sumber air limbah dalam perencanaan pengelolaan terpadu air limbah kereta api di Stasiun Surabaya Kota ini terdiri dari dua tipe sumber yang berbeda yaitu bergerak dan tidak bergerak. Sumber air limbah tidak bergerak berasal dari toilet stasiun. Limbah ini berasal dari kegiatan rumah tangga (non pencucian kereta) di stasiun. Sumber air limbah bergerak berasal dari rangkaian kereta api yang berjalan menuju stasiun Surabaya Kota.

4.1.1 Stasiun Surabaya Kota

Stasiun Surabaya Kota menjadi tempat parkir semua kereta yang pemberhentian akhirnya Stasiun Gubeng. Selain untuk tempat parkir kereta, Stasiun Surabaya Kota juga digunakan untuk stasiun awal keberangkatan beberapa kereta lokal yang mengarah ke selatan dan timur seperti tujuan banyuwangi, malang, blitar, dan kertosono.

4.1.1.1 Geografi dan Iklim

Stasiun Surabaya Kota merupakan salah satu stasiun tertua dan terbesar di Kota Surabaya. Stasiun ini terletak di kelurahan Bongkaran, Pabean Cantikan, Surabaya. Secara geografis stasiun ini berada pada -7.24316, 112.74043 pada ketinggian rata-rata tanah adalah <u>+</u> 6 m. Lokasi stasiun sangat dekat dengan salah satu sungai besar di Kota Surabaya yaitu Kali Mas.

Kondisi hujan di kawasan Stasiun tersebut memiliki kondisi dengan kondisi kecamatan pabean cantikan pada umumnya. Menurut Statistik Daerah Kecamatan Pabean Cantikan 2013 hujan sering terjadi hanya pada bulan Nopember hingga April. Wilayah tersebut juga mengalami

krisis hujan pada bulan Mei hingga Oktober. Kelembapan wilayah stasiun juga tidak jauh berbeda dengan kondisi kelembapan kecamatan Pabean Cantikan. Kelembapan wilayah stasiun sekitar 64-79 % (BPS Kota Surabaya, 2013).

4.1.1.2 Pengunjung Stasiun

Pengunjung stasiun Semut hampir sepenuhnya merupakan penumpang kereta lokal. Pengunjung ini tercatat di loket pembelian karcis stasiun seperti dalam tabel 4.1. menunjukan data pengunjung mengalami fluktuasi yang sangat dinamis dalam tiap harinya untuk kurun waktu januarifebruari (tabel 4.1). Dalam tabel 4.1, pengunjung paling tinggi mencapai 1716 orang perhari sedangkan terendah adalah 551 orang perhari. Rata-rata pengunjung di stasiun berjumlah 1035 orang perhari. Namun

Tabel 4.1 Pengunjung Stasiun Surabaya 2016 dan

Pengunjung Stasiun Surabaya Kota 2016								
Bulan	Tanggal	Hari	Banyak Pengunjung					
	1	Jum'at	1162	Orang				
	2	Sabtu	1000	Orang				
	3	Minggu	1166	Orang				
	4	Senin	1162	Orang				
	5	Selasa	963	Orang				
	6	Rabu	984	Orang				
	7	Kamis	1165	Orang				
Jan	8	Jum'at	1145	Orang				
Januari	9	Sabtu	980	Orang				
	10	Minggu	773	Orang				
	11	Senin	1210	Orang				
	12	Selasa	1209	Orang				
	13	Rabu	937	Orang				
	14	Kamis	1152	Orang				
	15	Jum'at	1028	Orang				
	16	Sabtu	1000	Orang				

Pengunjung Stasiun Surabaya Kota 2016							
Bulan	Tanggal	Hari	Banyak	Pengunjung			
	17	Minggu	777	Orang			
	18	Senin	956	Orang			
	19	Selasa	839	Orang			
	20	Rabu	898	Orang			
	21	Kamis	964	Orang			
	22	Jum'at	1236	Orang			
	23	Sabtu	856	Orang			
	24	Minggu	845	Orang			
	25	Senin	1056	Orang			
	26	Selasa	883	Orang			
	27	Rabu	823	Orang			
	28	Kamis	1145	Orang			
	29	Jum'at	1152	Orang			
	30	Sabtu	1232	Orang			
	31	Minggu	1489	Orang			
	1	Senin	1507	Orang			
	2	Selasa	1716	Orang			
	3	Rabu	1282	Orang			
	4	Kamis	1152	Orang			
	5	Jum'at	1208	Orang			
	6	Sabtu	904	Orang			
	7	Minggu	804	Orang			
Fe	8	Senin	696	Orang			
Februar	9	Selasa	1033	Orang			
ari	10	Rabu	1326	Orang			
	11	Kamis	935	Orang			
	12	Jum'at	877	Orang			
	13	Sabtu	910	Orang			
	14	Minggu	551	Orang			
	15	Senin	772	Orang			
	16	Selasa	1157	Orang			
	17	Rabu	1006	Orang			

Pe	Pengunjung Stasiun Surabaya Kota 2016								
Bulan	Tanggal	Hari	Banyak Pengunjung						
	18	Kamis	1423	Orang					
	19	Jum'at	984	Orang					
	20	Sabtu	1086	Orang					
	21	Minggu	763	Orang					
	22	Senin	1090	Orang					
	23	Selasa	931	Orang					
	24	Rabu	914	Orang					
	25	Kamis	999	Orang					
	26	Jum'at	1187	Orang					
	27	Sabtu	909	Orang					
	28	Minggu	795	Orang					
	29	Senin	994	Orang					

Sumber: Stasiun Surabaya Kota, 2016

4.1.1.3 Pegawai Stasiun

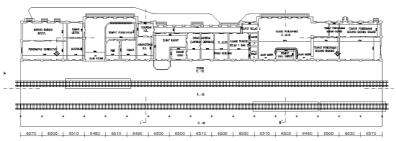
Stasiun Semut merupakan stasiun besar yang memiliki banyak pegawai dan karyawan yang bertugas. Di tempat tersebut terdapat beberapa pegawai dan karyawan yang memiliki instansi berbeda. Pembagian instansi tersebut dibedakan menurut lokasi kerjanya. Pegawai PT KAI merupakan pegawai stasiun dan kereta api yang dibawah naungan DAOP VIII PT KAI. Jumlah pegawai PT KAI berjumlah 63 orang. Selain Pegawai PT KAI, ada juga pegawai perusahaan vendor kebersihan dan penjaga kantin yang berjumlah masing masing 130 dan 22 orang.

Stasiun Surabaya Kota juga dijadikan tempat sebagai tempat pencucian kereta dan pusat parkir kereta. Hal tersebut menyebabkan aktitas di stasiun sangat komplek sehingga pegawai PT KAI yang dialokasikan di stasiun ini cukup banyak yaitu 63 orang (Tabel 4.2).Selain pegawai PT KAI, di stasiun juga terdapat pegawai perusahaan vendor kebersihan kereta berjumalah 130 orang dan penjaga kantin 22 orang (Tabel 4.2).

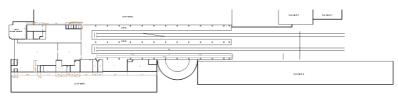
Tabel 4.2 Data Pegawai di Stasiun Surabaya Kota 2016

No	Komponen	Jumlah	
1	Pegawai PT KAI	63	Orang
2	Pegawai Perusahaan Vendor Kebersihan	130	Orang
3	Pegawai Kantin	22	Orang
	Total	215	Orang

Sumber : Stasiun Surabaya Kota, 2016 dan Data Primer


4.1.1.4 Pengunaan Lahan

Total lahan Stasiun Surabaya Kota mencapai 40000 m² dengan luas lahan terbangun 3480 m² (databudaya.net, 2016). Total lahan tersebut belum termasuk pertokoan yang disewakan (Gambar 4.1). Lahan terbangun berupa loket, kantor. ruang tunggu, toilet. kantin. ruang keberangkatan, menara kontrol. musola, ruang tunggu petugas kebersihan, dan ruang tunggu pegawai PT KAI. Stasiun semut memiliki 2 bangunan stasiun utama yaitu stasiun lama dan baru. Pada gambar 4.1 stasiun lama diberi tanda lingkaran merah sedangkan stasiun baru diberi tanda lingkaran biru.


Gambar 4.1 Denah Stasiun Surabaya Kota

Stasiun lama merupakan bangunan stasiun yang telah dibangun semenjak tahun 1878. Stasiun lama pada bulan maret 2016 mengalami proses pemugaran sehingga tidak digunakan untuk kegiatan perkeretaapian. Stasiun lama seperti gambar 4.2 memiliki desain yang tidak jauh berbeda dengan stasiun-stasiun biasanya. Stasiun lama memiliki satu bangunan toilet.

Gambar 4. 2 Denah Stasiun Lama, Stasiun Surabaya Kota Sumber : DAOP VIII Surabaya, 2016

Stasiun baru merupakan bangunan stasiun yang sampai saat ini digunakan sebagai bangunan utama pelayanan kereta api di Stasiun Surabaya Kota. Stasiun baru ini berada di sebelah barat stasiun lama. Stasiun baru lebih dekat jaraknya dengan sungai. Pada bangunan ini terdapat 4 toilet yaitu dua toilet pengunjung, dan 2 toilet pegawai (Gambar 4.3).

Gambar 4. 3 Denah Stasiun baru, Stasiun Surabaya Kota Sumber : DAOP VIII Surabaya, 2016

Selain bangunan stasiun, ada juga lahan kosong berisi jalur kereta api untuk naik turun penumpang serta jalur kereta api untuk pencucian. Masing-masing jalur memiliki jalur yang bercabang. Jalur utama untuk naik turun penumpang terdapat dua jalur seperti dalam gambar 4.4.

Gambar 4. 4 Jalur Kereta Api Stasiun Surabaya Kota Sumber : DAOP VIII Surabaya, 2016

Stasiun Surabaya Kota memiliki saluran air hujan (drainase) disepnajang stasiun. Saluran ini dapat mengalirakan air hujan di dalam stasiun menuju sungai. Beberapa drainase dibuat melintang memotong jalur rel. Bentuk saluran drainase ada yang terbuka ada juga yang tertutup.

Stasiun Surabaya Kota juga memiliki lahan kosong diluar stasiun. Lahan-lahan kosong ini dapat digunakan untuk perencanaan kedepannya. Lahan-lahan kosong tersebut saat ini dijadikan jalan untuk keluar masuk kendaraaan pertokoan. Lahan tersebut memiliki luas yang tidak besar.

4.1.2 Kereta

4.1.2.1 Klasifikasi Kereta

Kereta yang diparkir di stasiun Surabaya Kota adalah merupakan kereta yang stasiun pemberhentian terahirnya Stasiun Gubeng serta beberapa kereta lokal yang pemberhentian terakhirnya Stasiun Surabaya Kota. Setiap rangkaian kereta api terdiri dari beberapa kereta, lokomotif, serta gerbong yang berbeda-beda. Jumlah rangkain ini bisa berubah sewaktu-waktu sesuai intruksi dari bagian Operasi DAOP VIII.

Rangkaian kereta api yang pemberhentian akhirnya stasiun Surabaya Gubeng hampir semua melayani penumpang antar provinsi. Ada 8 rangkaian kereta api yang beroperasi melayani penumpang, dari kedelapan kereta tersebut hanya satu kereta yang melayani penumpang anatar kota. Kedelapan rangkaian kereta api tersebut adalah Gaya Baru Malam dan Bangunkarta tujuan Jakarta; Pasundan, Argo Wilis, Turangga, dan Mutiara Selatan tujuan Bandung; Sancaka tujuan Yogyakarta; serta Mutiara Timur tujuan Banyuwangi (Tabel 4.3).

Tabel 4.3 Data Kereta Api yang Parkir di Stasiun Surabaya Gubeng

No	Nama Rangkaian Kereta Api	Tujuan	Stasiun Awal Keberangkatan		
1	Gaya Baru Malam	Jakarta	Stasiun Pasar Senen Jakarta		
2	Pasundan	Bandung	Stasiun Kiara Condong Bandung		
3	Bangunkarta	Jakarta	Stasiun Gambir Jakarta		
4	Turangga	Bandung	Stasiun Bandung		
5	Argowilis	Bandung	Stasiun Bandung		
6	Mutiara Selatan	Bandung	Stasiun Bandung		
7	Sancaka	Jogyakarta	Stasiun Tugu Jogjakarta		
8	Mutiara Timur	Banyuwangi	Stasiun Banyuwangi Baru		

Sumber : Stasiun Surabaya Kota, 2016

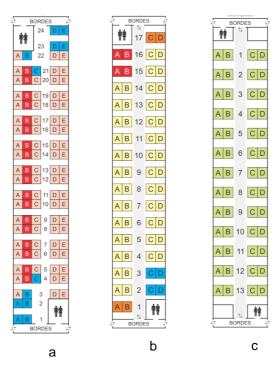
Di Stasiun Surabaya Kota sendiri menjadi tempat pemberhentian untuk beberapa rangkaian kereta api lokal. Ada 5 rangkian kereta yang berhenti di stasiun ini. Semua kereta tersebut hanya melayani antar kota dalam provinsi seperti Rapih Dhoho tujuan Blitar via Kertosono; Penataran tujuan Blitar via Malang; Tumapel tujuan Malang; KRD Kertosono tujuan Kertosono; dan Probowangi tujuan Banyuwangi (Tabel 4.4).

Tabel 4. 4 Data Kereta Api yang Parkir di Stasiun Surabaya Kota

No	Nama Rangkaian Kereta Api	Tujuan	Stasiun Awal Keberangkatan
1	Rapih Dhoho	Blitar	Stasiun Blitar
2	Penataran	Blitar	Stasiun Blitar
3	Tumapel	Malang	Stasiun Malang
4	KRD Kertosono	Kertosono	Stasiun Kertosono
5	Probowangi	Banyuwangi	Stasiun Banyuwangi Baru

Sumber: Stasiun Surabaya Kota, 2016

Semua kereta yang terparkir di Stasiun Surabaya Kota memiliki katagori kelas yang berbeda. Kelas ini membedakan pelayanan dan jumlah penumpang maksimal dalam kereta. Dalam gambar 4.5 kereta kelas ekonomi memiliki kapasitas 106 penumpang; kereta kelas bisnis memiliki kapasitas 64 penumpang; dan kereta kelas eksekutif memiliki kapasitas 52 penumpang. Setiap rangkaian kereta api memiliki kelas yang berbeda bahkan dalam satu rangkaian kereta api dapat memiliki 2 kelas kereta. Kereta yang termasuk dalam katagori kelas ekonomi adalah rangkian kereta api Rapih Dhoho, Penataran, Tumapel, KRD Kertosono, Probowangi, Gaya Baru Malam, Pasundan. Kereta yang termasuk dalam katagori kelas bisnis adalah rangkaian kereta api Mutiara Selatan, sebagain rangkaian kereta api Sancaka, dan sebagian rangkian kereta api Mutiara Timur. Kereta yang termasuk dalam katagori kelas eksekutif adalah rangkaian kereta api Bangunkarta, Turangga, dan Argowilis serta


rangkian kereta api Sancaka dan Mutiara Timur. Katagori masing-masing kelas rangkian kereta api dapat dilihat pada tabel 4.5.

Tabel 4. 5 Data Rangkaian Kereta Api

No	Nama Kereta Api	Jumlah Kereta dalam Satu Rangkaian (termasuk satu lokomotif)						
	Kereta Api	Ekonomi	Bisnis	Eksekutif	Restorasi	Gerbong		
1	Dhoho	6			1	0		
2	Penataran	6			1	0		
3	Tumapel (Penataran)	6			1	0		
4	KRD Kertosono	6			1	0		
5	Probowangi	6			1	1		
6	Gaya Baru Malam	8			1	1		
7	Pasundan	8			1	1		
8	Bangunkarta			8	1	2		
9	Turangga			8	1	2		
10	Argowilis			8	1	2		
11	Mutiara Selatan		8		1	2		
12	Sancaka		3	5	1	1		
13	Mutiara		4	4	1	1		

No	Nama Korota Api	Jumlah Kereta dalam Satu Rangkaian (termasuk satu lokomotif)					
	Kereta Api	Ekonomi	Bisnis	Eksekutif	Restorasi	Gerbong	
	Timur						

Sumber: Stasiun Surabaya Kota, 2016

Gambar 4. 5 Layout Toilet Kereta Ekonomi (a), Kereta Bisnis (b), dan Kereta Eksekutif (c) Sumber : Kaskus

4.1.2.2 Jumlah Kedatangan dan Petugas Kereta

Kereta api juga memiliki jumlah kedatangan yang berbeda. Jadwal kedatangan ini dipengaruhi jarak, semakin

jauh jarak tempuhnya makin sedikit jadwal kedatangannya. Dhoho dan Penataran dalam sehari memiliki jadwal kedatangan 4 kali; KRD Kertosono, Sancaka dan Mutiara Timur dalam sehari memiliki jadwal kedatangan 2 kali; Tumapel, Probowangi, Gaya Baru Malam, Pasundan, Bangunkarta, Turangga, Argo Wilis, dan Mutiara Selatan dalam sehari memiliki jadwal kedatangan 1 kali. Jumlah kedatangan tersebut berlaku untuk kondisi normal. Jumlah kedatangan kereta api akan berbeda pada kondisi puncak. Kondisi puncak ini biasa terjadi pada lebaran. Beberapa rangkaian kereta api mengalami pertambahan jadwal seperti Pasundan, Gaya Baru Malam, Probowangi dan Sancaka (Tabel 4.6).

Tabel 4. 6 Data Kedatangan Kereta Api Kondisi Normal dan Puncak

No	Nama Kereta	Normal	Puncak
1	Dhoho	4 Kali	4 Kali
2	Penataran	4 Kali	4 Kali
3	Tumapel (Penataran)	1 Kali	1 Kali
4	KRD Kertosono	2 Kali	2 Kali
5	Probowangi	1 Kali	2 Kali
6	Gaya Baru Malam	1 Kali	2 Kali
7	Pasundan	1 Kali	2 Kali
8	Bangunkarta	1 Kali	1 Kali
9	Turangga	1 Kali	1 Kali
10	Argowilis	1 Kali	1 Kali
11	Mutiara Selatan	1 Kali	1 Kali

No	Nama Kereta	Normal	Puncak	
12	Sancaka	2 Kali	3 Kali	
13	Mutiara Timur	2 Kali	2 Kali	

Sumber: Stasiun Surabaya Kota, 2016

Petugas dalam rangkian kereta api masing-masing berbeda tergantung kelas dan jumlah rangkaiannya. Dalam setiap rangkian kereta api diisi oleh petugas kebersihan, teknisi, petugas restorasi, polisi khusus kereta api (polsuska). dan kondektur. Pengaturan jumlah petugas kebersihan, teknisi, petugas restorasi, polsuska, dan kondektur memiliki ketentuan masing-masing. Untuk jumlah teknisi, petugas restorasi, polsuska, dan kondektur memiliki jumlah yang tetap walaupun jumlah rangkaian kereta api berbeda yaitu teknisi berjumlah 1 orang, petugas restorasi berjumlah 4 orang, polsuska berjumlah 2 orang, dan kondektur berjumlah 3 orang (Tabel 4.7). Jumlah petugas kebersihan ditentukan oleh banyaknya kereta. Seorang petugas kebersihan bertugas untuk dua kereta sehingga apabila rangkaian kereta api berjumlah 8 kereta terdapat 4 petugas kebersihan (Tabel 4.7). Apabila rangkain kereta berjumlah ganjil maka petugas kebersihan digenapkan misal kereta berjumlah 7 maka petugas kebersihan berjumlah 4 petugas.

Tabel 4. 7 Petugas dalam Rangkaian Kereta Api

No	Nama Kereta Api	OTC dan Teknisi	Kondektu r	Polsusk a	Restora si	Jumlah (orang)	
1	Dhoho	4	3	2	4	15	
2	Penataran	4	3	2	4	15	
3	Tumapel	4	3	2	4	15	

No	Nama Kereta Api	OTC dan Teknisi	Kondektu r	Polsusk a	Restora si	Jumlah (orang)
	(Penataran)					
4	KRD Kertosono	4	3	2	4	15
5	Probowangi	4	3	2	4	15
6	Gaya Baru Malam	5	3	2	4	16
7	Pasundan	5	3	2	4	16
8	Bangunkarta	5	3	2	4	16
9	Turangga	5	3	2	4	16
10	Argowilis	5	3	2	4	16
11	Mutiara Selatan	5	3	2	4	16
12	Sancaka	5	3	2	4	16
13	Mutiara Timur	5	3	2	4	16

Sumber: Data Primer 2016

4.1.2.3 Pengisian Air bersih

Pembagian kelas kereta bukan hanya mempengaruhi jumlah kapasitas penumpang, tapi juga mempengaruhi jumlah kapasitas air bersih yang disediakan. Kelas ekonomi dan bisnis dalam satu kereta memiliki kapasitas air bersih

sebanyak 400 L dan kelas ekskutif memiliki kapasitas air bersih sebanyak 1000 L, sedangkan kereta makan memiliki kapasitas 200 L (Tabel 4.8). Jumlah kapasitas air bersih kereta makan tidak akan berubah walaupun kelas kereta berbeda. Pengisian air bersih dalam sekali perjalanan juga akan berbeda bergantung pada jarak tempuh seperti Dhoho akan berberbeda pengisiannya dengan Gaya Baru Malam (Tabel 4.8). Kereta Api Dhoho mengalami pengisian air bersih sebanyak 2 kali dalam sekali perjalanan sedangkan Kereta Api Gaya Baru Malam mengalami pengisian air bersih sebanyak 3 kali dalam sekali perjalanan.

Tabel 4. 8 Kapasitas Air Bersih Kereta dan Pengisiannya dalam Sekali Perjalanan

	Nama Kereta Api	. Orjaic	Donaici			
No		Ekon omi	Bisn is	Ekse kutif	Mak an	Pengisi an Air
1	Dhoho	400			200	2
2	Penataran	400			200	2
3	Tumapel (Penataran)	400			200	2
4	KRD Kertosono	400			200	1
5	Probowangi	400			200	2
6	Gaya Baru Malam	400			200	3
7	Pasundan	400			200	3
8	Bangunkarta			1000	200	2
9	Turangga			1000	200	2

	Nama Kereta Api	Kereta				Pengisi
No		Ekon omi	Bisn is	Ekse kutif	Mak an	an Air
10	Argowilis			1000	200	2
11	Mutiara Selatan		400		200	2
12	Sancaka		400	1000	200	1
13	Mutiara Timur		400	1000	200	2

Sumber: Data Primer, 2016 dan Website PT KAI, 2016

4.2 Kualitas Air Limbah

Kualitas air limbah kereta api berasal dari black water dan gray water yang tercampur di tangki penampungan. Secara umum kualitas air limbah kereta berasal dari kegiatan sanitasi di toilet berupa faeces, urine, dan cuci tangan (sabun dan air). Kualitas air limbah kereta didapat menggunakan proses dianalisa di Labolatorium Menejemen Kualitas Lingkungan.

Tabel 4. 9 Kualitas Air Limbah Kereta Api

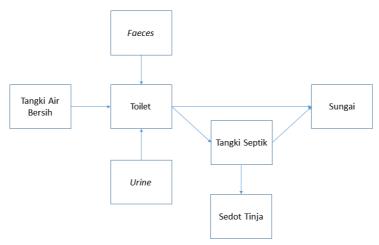
No	Parameter	Satuan	Baku Mutu	Nama KA		
				Gaya Baru Malam	Dhoho	Turangga
1	рН	-	6-9	8,20	7,60	7,70
2	TSS	mg/L	50	510	830	780
3	COD	Mg/L O ₂	50	515	682	628
4	BOD	Mg/L O ₂	30	320	420	380

No	Parameter	Satuan	Baku Mutu	Nama KA		
				Gaya Barı Malam	Dhoho	Turangga
	Minyak dan Lemak	Mg/L	10	58	80	480

Sumber: Labolatorium Kualitas Lingkungan, 2016 dan SK Gub. Jatim No 72 Tahun 2013

Kereta api yang dipilih pada tabel 4.9 mewakili semua kelas kereta api. Kereta ekonomi diwakili oleh KA Gaya Baru Malam dan Dhoho, kereta bisnis diwakili oleh KA Mutiara Selatan, dan kereta eksekutif diwakili oleh KA Turangga. Masing-masing kereta memiliki kualitas air limbah yang berbeda. Namun dari keempat KA tersebut, KA Mutiara Selatan tidak dapat digunakan karena kualitas sampel rusak. Hal tersebut mengakibatkan hanya yang dapat diambil tiga KA parameter air limbahnya. Pengambilan parameter ini diambil hasil nilai terbesar. Berikut nilai kualitas air limbah terbesar yaitu pH bernilai 8,20 (KA Gaya Baru Malam), TSS bernilai 830 mg/L (KA Dhoho), COD bernilai 682 mg/L O₂ (KA Dhoho), BOD bernilai 420 mg/L O₂ (KA Dhoho), dan minyak lemak bernilai 480 mg/L (KA Turangga).

4.3 Pengelolaan Air Limbah


4.3.1 Umum

Pengelolaan air limbah kereta api di Stasiun Surabaya Kota secara umum dilakukan secara terpisah. Air limbah yang bersumber dari kereta dikelola sendiri, begitupun air limbah stasiun dikelola sendiri.

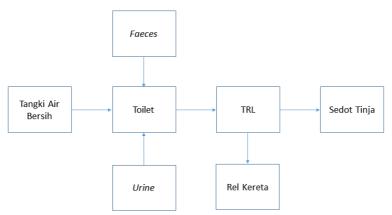
4311 Stasiun

Sumber air limbah di stasiun bersumber dari toilet stasiun. Toilet stasiun seperti dalam sub-bab sebelumnya berjumlah 6 toilet. Keenam toilet tersebut memiliki

pengelolaan yang berbeda (Gambar 4.6). Ada toilet yang dikelola dengan memakai tangki septik dan ada juga tanpa pengelolaan atau langsung dibuang ke sungai.

Gambar 4. 6 Bagan Alir Pengelolaan Air Limbah Bersumber dari Stasiun

Toilet yang dikelola dengan tangki septik hanya berjumlah 1 lokasi dari keenam lokasi toilet. Toilet tersebut merupakan salah satu toilet untuk pegawai stasiun (Gambar 4.7a). tersebutmulai dari toilet kemudian masuk ke tangki septik. Overflow dari tangki septik masuk ked sungai. Sedangkan untuk sisa toilet lainnya (Gambar 4.7b dan 4.7c), air limbah secara langsung dibuang ke sungai. Pengelolaan air limbah stasiun dilakukan pegawai PT KAI.


a b

Gambar 4. 7 (a) Toilet Pegawai Stasiun yang Memiki Tangki Septik dan Tidak Memiliki Tangki Septik (a) toilet pegawai PT KAI dan (b) toilet pengunjung

4.3.1.2 Kereta

Air limbah kereta api yang bersumber dari blackwater dan greywater kereta dari toilet ditampung

kedalam tangki penampungan yang disebut TRL. Setelah ditampung kemudian TRL tersebut disedot oleh petugas sedot tinja (Gambar 4.8).

Gambar 4. 8 Bagan Alir Pengelolaan Air Limbah Bersumber dari Kereta

Air bersih yang berada dalam tangki air bersih masuk ke toilet. Air bersih di toilet bercampur dengan faeces, urine, dan surfaktan menjadi air limbah tercampur. Air limbah tersebut kemudian ditampung.

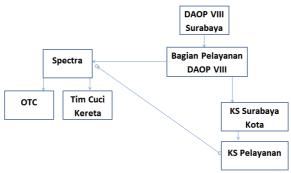
Penampungan air limbah kereta menggunakan alat bernama TRL. TRL merupakan tangki septik berupa tangki dengan 3 kompartemen utama. Kompartemen pertama berupa zona settling, kompartemen kedua berupa filter dengan bio ball, dan kompartemen ketiga berupa filter arang (Gambar 4.9). TRL ini memiliki dimensi 0,5 m x 0,5 m x 1,0 m.

Gambar 4, 9 TRL

Air limbah yang ditampung selama perjalanan mengalami *overflow* jatuh ke rel kereta selama perjalanan. Ini disebabkan karena TRL dikuras dalam kurun waktu 3 bulan sekali. Pengurasan TRL dilakukan 3 bulan sekali oleh petugas sedot tinja.

4.3.2 Pengelola dan Kelembagaan

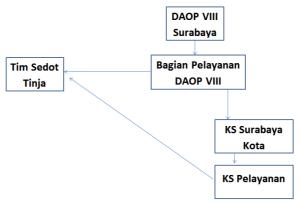
Pengelolaan air limbah di stasiun surabaya kota dilakukan secara terpisah dan dilakukan oleh beberapa institusi yang berbeda institusi berbeda. Perbedaan institusi pengelolaan ini terletak pada sumber asal limbah. Air limbah bersumber dari stasiun dikelola oleh pegawai stasiun, sedangkan air limbah bersumber dari kereta dikelola oleh semua DAOP VIII Surabaya dibantu pihak ketiga.


Pengelolaan air limbah bersumber dari stasiun dilakukan oleh pihak stasiun. Dalam lingkaran stasiun terdapat pegawai PT KAI dimana semua pegawai dibawahi oleh Kepala Stasiun (KS). KS tersebut memimpin dan mengkoordinasikan segala kegiatan dan aktifitas di stasiun. KS membawahi beberapa KS bagian salah satunya KS Pelayanan (Gambar 4.10). Pengelolaan air limbah di stasiun berada pada ranah kerja KS Pelayanan.

Pengelolaan air limbah stasiun dilakukan dibawah pimpinan KS Pelayanan. Secara teknis seluruh pengelolaan air limbah dilakukan oleh para petugas kebersihan yang dipimpin KS Pelayanan. Petugas kebersihan ini mengelola toilet dan kebersihan stasiun. Pengelolaan yang dilakukan petugas kebersihan ini hingga air limbah masuk ke sungai dan tangki septik. Sedangkan untuk pengurasan atau penyedotan tinja dilakukan oleh pihak ketiga. Pihak ketiga ini tidak memiliki perjanjian kontrak khusus dengan pihak stasiun.

Gambar 4. 10 Bagan Alir Lembaga Pengelola Air Limbah Bersumber dari Stasiun

Berbeda dengan pengelolaan air limbah stasiun, pengelolaan air limbah kereta berada langsung pada garis pimpian DAOP VIII Surabaya di bawah bagian Manajer Pelayanan (Gambar 4.11). Manajer Pelayanan DAOP VIII Surabaya melakukan pengelolaan dengan bantuan pihak ketiga yaitu perusahaan vendor kebersihan kereta ini yaitu Spectra.



Gambar 4. 11 Bagan Alir Lembaga Pengelola Air Limbah Bersumber dari Kereta.

Spectra memiliki dua tugas utama dalam pengelolaan air limbah kereta yaitu pengelolaan saat perjalanan dan saat terparkir di stasiun. Tim pengelolaan saat perjalanan disebut tim On Train Cleaning (OTC) sedangkan tim pengelola saat kereta terparkir disebut tim cuci kereta.

OTC melakukan pengelolaan terhadap sarana sanitasi di kereta selama perjalan, mulai dari pengisian air bersih dan perawatan toilet. Mereka bertanggung jawab terhadap suplai air bersih dan kebersihan toilet selama perjalanan. Tim cuci kereta dalam pengelolaan tidak melakukan pengelolaan yang secara langsung berhubungan dengan limbah, hanya mereka bertanggung jawab terhadap suplai air bersih kereta ketika akan berangkat dan perawatan TRL.

Pengelolaan air limbah kereta seperti sebelumnya selain menggunakan TRL, juga ada sedot tinja. Sedot tinja tersebut dilakukan 3 bulan sekali oleh perusahan vendor sedot tinja. Perusahaan ini secara langsung bermitra dengan pihak Manajer Pelayanan DAOP VIII Surabaya (Gambar 4.12).

Gambar 4. 12 Bagan Alir Sedot Tinja.

Posisi pihak stasiun terhadap perusahaan vendor kebersihan kereta dan sedot tinja kereta adalah hanya sebatas pengawas sehingga KS Pelayanan Stasiun Surabaya Kota tidak memiliki wewenang secara langsung terhadap kedua perushaan vendor tersebut. Pihak KS Pelayanan Stasiun Surabaya Kota harus berkoordinasi dengan Manajer Pelayanan DAOP VIII Surabaya terlebih dahulu ketika ingin melakukan sesuatu terhadap kedua perusahaan vendor tersebut.

Secara umum pengelolaan air limbah kereta ditangani oleh manajer pelayanan DAOP VIII Surabaya untuk Stasiun Surabaya Kota. Namun dalam pelaksanaannya dibantu oleh 3 pihak yaitu pegawai stasiun untuk pengelolaan air limbah stasiun, perusahaan vendor kebersihan kereta untuk pengelolaan air limbah kereta saat perjalanan dan di stasiun, dan perusahaan vendor sedot tinja untuk pengelolaan air limbah berupa sedot tinja.

BAB 5

ALTERNATIF PENGELOLAAN

5.1 Alternatif Pengelolaan

5.1.1 Umum

Alternatif pengelolaan air limbah kereta api secara umum dapat ditentukan dari debit air limbah dan kualitas air limbah. Kedua hal tersebut akan mempengaruhi apa yang harus dilakukan dalam mengelola air limbah tersebut. Alternatif pengelolaan umum ini ditinjau berdasarkan metode pengelolaan dari mulai perlakuan yang harus dilakukan terhadap limbah pada saat perjalanan hingga air limbah dapat dikembalikan ke lingkungan sesuai dengan baku mutu lingkungan.

Sumber air limbah pada perencanaan ini bersumber dari dua sumber yang berbeda yaitu sumber bergerak dan dan sumber tidak bergerak. Sumber bergerak berasal dari kereta api sedangkan tidak bergerak bersumber dari toilet stasiun.

Sumber bergerak tidak memungkinkan untuk diolah diperjalanan. Oleh karena itu memerlukan penampungan sementara. Penampungan ini berfungsi untuk menampung air limbah selama perjalanan untuk kapasitas tertentu. Penampungan tersebut nanatinya akan dikuras lalu disalurkan kedalam pengolahan.

5.1.1.1 Penampungan

Penampungan merupakan tahap pertama dalam pengelolaan air limbah keretap api. Penampungan ini bertujuan menampung air limbah kedalam tempat khusus. Penampungan ini bertujuan agar air limbah tidak masuk kelingkungan tanpa diolah.

Penampungan air limbah dilakukan hanya untuk air limbah bersumber dari kereta. Hal ini disebabkan air limbah bersumber dari stasiun akan langsung masuk kedalam

pengolahan tanpa masuk kedalam penampungan. Penampungan air limbah ini disimpan di kereta bagian bawah.

Tangki septik atau TRL yang sudah ada saat ini pada kereta belum memenuhi untuk debit dan waktu detensinya sehingga tangki septik secara teoritis tidak dapat mengolah langsung di tempat. Perbandingan tersebut didapat dari perbandingan BOD/COD dengan waktu detensi. Maka dari itu, tangki septik dirubah menjadi hanya tempat penampungan.

Penampungan air limbah bukan hanya sekedar tempat, namun juga sistem dan metode penampungan. Halhal tersebut sangat diperlukan untuk memudahkan proses pengelolaan. Oleh karena itu, dalam penentuan alternatif penampungan diperlukan Alternatif ini disesuaikan dengan debit air limbah, waktu yang dibutuhkan, luas lahan kosong, serta sistem dan metode penampungan.

Alternatif penampungan sesuai dengan debit air limbah, waktu yang dibutuhkan, luas lahan kosong, serta sistem dan metode penampungan; direncakan tiga penampungan dengan sistem dan metode yang berbeda. Ketiga alternatif tersebut adalah

- 1. Penampungan air limbah kereta untuk satu hari. Tempat penampungan ini akan menampung air limbah kereta selama satu hari baik itu memiliki jadwal kedatangan sekali atau lebih dari sekali.
- Penampungan air limbah kereta untuk satu perjalanan. Tempat penampungan ini akan menampung air limbah hanya untuk satu kali perjalanan sehingga kereta yang memiliki jadwal kedatangan lebih dari sekali akan mengalami proses pengosongan tempat penampungan sebelum melakukan perjalan kedua dan selanjutnya.
- 3. Penampungan air limbah kereta dalam sekali perjalanan dua kali pengurasan.

5.1.1.2 Pengurasan

Pengurasan merupakan tahap kedua dalam pengelolaan air limbah kereta api. Pengurasan dilakukan hanya untuk air limbah bersumber dari kereta karena air limbah tersebut yang mengalami proses penampungan.

Alternatif pengurasan disesuaikan dengan waktu yang dibutuhkan, debit, banyaknya alat penguras, serta sistemnya. Secara umu alternatif pengurasan tempat penampungan air limbah memiliki dua alternatif:

- 1. Pompa
- Gravitasi

5.1.1.3 Penyaluran

Penyaluran air limbah merupakan tahap ketiga dalam pengelolaan air limbah kereta api. Berbeda dengan dua tahap sebelumnya, tahap penyaluran ini dilakukan untuk air limbah dari kereta dan stasiun. Alternatif penyaluran air limbah pada perencanaan ini terapat dua alternatif yaitu:

- 1. Tercampur antara air limbah kereta dan stasiun
- 2. Terpisah masing-masing sumber air limbah memiliki penyaluran sendiri.

5.1.1.4 Pengolahan

Pengolahan air limbah kereta api harus disesuaikan dengan kualitas air limbah baik stasiun maupun kereta. kualitas air limbah tersebut dapat menentukan metode apa yang sesuai untuk mengolahanya.

Kualitas air limbah kereta pada sub bab sebelumnya dibahas memiliki nilai sangat besar dibandingkan dengan baku mutu air limbah domestik. Data dari tabel 4.10 menunujakan kadar COD dan BOD sangat tinggi sehingga diperlukan pengelolahan anaerobik. Jadi Alternatif pengolahan

sesuai kualitas air limbah diatas adalah Anaerobic Baffleed Reactor dan Biological Contractor.

Tabel 5. 1 Kualitas Air Limbah Kereta yang Akan Diolah

No	Parameter	Satuan	Baku Mutu	Hasil Analisa
1	рН	-	6-9	8,20
2	TSS	mg/L	50	830
3	COD	Mg/L O ₂	50	682
4	BOD	Mg/L O ₂	30	420
	Minyak dan Lemak	Mg/L	10	480

Sumber: Labolatorium Kualitas Lingkungan, 2016

5.1.2 Pengelola dan Kelembagaan

Pengelola dalam pengelolaan air limbah kereta api ini di tentukan berdasarkan jumlah bagian yang harus dikelola. Halhal yang perlu dikelola yaitu pengelola air limbah di sumber dan penampungan, pengelola pengurasan dan penyaluran, pengelolaan bangunan pengelolahan.

Tabel 5. 2 Alternatif Kelembagaan Pengelola Air Limbah Kereta Api

No	Bagian Dikelola	Jumlah Orang	Petugas	
1	Air limbah di stasiun	Sesuai jumlah toilet	Pegawai PT KAI bagian kebersihan stasiun (dibawah KS Pelayanan)	
2	Air limbah di kereta dan penampungan (saat perjalanan)	Sesuai jumlah rangkain kereta	Pegawai kebersihan perusahaan vendor khususnya OTC (pihak ketiga bekerja	

No	Bagian Dikelola	Jumlah Orang	Petugas	
			sama dengan pelayanan DAOP)	
3	Penampungan (parkir), pengurasan dan penyaluran	Sesuai jumlah penampungan yang dikuras	Pegawai kebersihan perusahaan vendor khususnya tim cuci kereta (pihak ketiga bekerja sama dengan pelayanan DAOP)	
4	Bangunan pengolahan	Sesuai jumlah bangunan pengolahan	Sanitarian dibawah KS Pelayanan Stasiun	

5.2 Pemilihan Alternatif Pengelolaan

Pemilihan alternatif pengelolaan terpadu air limbah kereta api meliputi penampungan, pengurasan, penyaluran, pengolahan, dan kelembagaan.

5.2.1 Penampungan

Bangunan penampungan air limbah di kereta api menyesuaikan dengan lahan yang tersedia dan kemungkinan untuk melakukannya. Dari ketiga alternatif yang diajukan alternatif pertama yaitu menampung air limbah dalam sehari memungkinkan hanya untuk beberapa kereta khususnya kereta yang memiliki jadwal keberangkatan atau kedatangan sekali dalam sehari. Untuk kereta api yang memiliki jadwal keberangkatan lebih dari sekali akan sangat menyulitkan karena memiliki debit limbah yang sangat besar juga.

Alternatif kedua menampung air limbah hanya untuk sekali perjalanan bisa digunakan untuk semua kereta api dengan jadwal keberangkatan baik sedikit maupun banyak. Hanya yang akan jadi masalah adalah pengosongan tangki penampungan untuk beberapa kereta memerlukan waktu yang cepat sehingga perlu merekayasa proses pengurasannya. Selain itu beberapa kereta memiliki volume limbah sangat besar sehingga tidak memungkinkan untuk dibuat penampungan yang sesuai.

Alternatif yang ketiga penampungan adalah menampung untuk satu kali perjalanan tapi proses pengosongan atau pengurasannya dilaksanakan dua kali atau lebih di stasiunstasiun besar. Hal tersebut cukup susah, namun apabila terdapat SOP dan Manjemen yang baik dapat dilakukan dengan mudah tanpa mengurangi kualitas layanan.

Dari ketiga alasan diatas, penampungan yang lebih mudah untuk dilakukan adalah alternatif ketiga yaitu menampung air limbah dengan pengurasan lebih dari sekali dan dilakukan distasiun-stasiun besar yang dilewatinya. Tempat penampungan ini akan menampung air limbah untuk satu kloter pengisian air bersih sehingga ketika kereta mengisi air bersih juga dilakukan pengurasan air limbah secara bersamaan.

5.2.2 Pengurasan

Sistem pengurasan dilihat dari berbagai aspek mulai dari debit, waktu pengurasan, dan metode pengurasan. Dalam perencanaan ini metode pengurasan yang dipilih menggunakan sistem gravitasi tanpa bantuan pompa. Hal ini dipilih karena tempat penampungan dengan tempat pengolahan memiliki perbedaan tinggi.

Pengurasan dilakukan dengan sistem gravitasi memanfaatkan beda tinggi tempat penampungan dengan tempat pengolahan. Beda tinggi ini dapat memberikan waktu yang cukup singkat dalam proses pengurasan walaupun tanpa pompa. Sehingga operasi dan pemeliharaanya lebih mudah dan murah namun dengan waktu yang cukup singkat.

5.2.3 Penyaluran

Penyaluran pada perencanaan ini akan menggunakan perencanaan tercampur sehingga air limbah kereta api dan stasiun berada pada satu pipa. Hal ini dipilih untuk mempermudah kontruksi dan meminimalisir biaya. Selain itu, percampuran limbah juga berguna dalam proses pengolahan nantinya.

Sistem penyaluran menggunakan sistem shallow sewer. Hal ini digunakan karena daerah pelayanan cukup kecil hanya sebatas stasiun saja. Alhasil diamter pipa kecil sekitar 10-20 cm. Namun untuk penyaluran yang melayani pengurasan akan lebih dari 20 cm.

5.2.4 Pengolahan

Sistem pengolahan harus berdasarkan konsentrasi kadar parameter air limbah. Konsentrasi parameter air limbah kereta api seperti dalam sub bab sebelumnya mengandung COD dan BOD yang sangat besar. Besarnya kadar pencemar akan mengakibatkan dimensi pengolahan semakin Pengolahan anaerobik dipilih karena lebih mudah, murah, serta mudah memodifikasi luas bangunannya (diperdalam bangunannya). Pengolahan aerobik akan lebih sulit dan mahal dalam pengoperasiannya karena membutuhkan oksigen yang banyak.

ABR dan RBC walaupun kedua-duanya anaerobik, dalam pengoperasiannya lebih mudah dan murah ABR. Sehingga bangunan pengolahan yang dipilih adalah ABR dengan tiga bangunan ruang utama yaitu *grease trap*, zona septik, dan zona kompartemen. Masing-masing ruang memiliki fungsi tersendiri. *Grease trap* berfungsi untuk menurunkan lemak dan minyak. Hal ini dilakukan karena kadar lemak dan minyak pada kualitas air limbah cukup besar. Zona septik digunakan untuk menurunkan total solid yang nantinya akan jadi lumpur. Sedangkan kompartemen digunakan untuk menurunkan BOD dan COD.

Halaman ini sengaja dikosongkan

BAB 6

DETAIL ENGINEERING DESIGN PENGELOLAAN TERPADU AIR LIMBAH KERETA API

6.1 Debit Kebutuhan Air Bersih

Debit kebutuhan air bersih didapat dari kebutuhan air bersih stasiun dan kereta. Masing-masing kebutuhan air bersih bergantung pada sumber penghasil air limbah. Kebutuhan air bersih stasiun diperuntukkan bagi penghuni stasiun baik pegawai, penjaga kantin, maupun pengunjung sedangkan untuk kereta diperuntukkan bagi petugas dan penumpang di dalam kereta api selama perjalanan.

6.1.1 Stasiun

Kebutuhan air bersih stasiun bergantung pada kebutuhan air bersih masing-masing penghuni stasiun dan pengunjung stasiun. Penghuni stasiun terdiri dari pegawai PT KAI, pegawai perusahaan vendor kebersihan, penjaga kantin, dan pengunjung stasiun. Masing-masing mempunyai perhitungan kebutuhan air bersih yang berbeda sesuai standar masing-masing.

Kebutuhan air bersih pegawai PT KAI dan pegawai perusahaan vendor kebersihan (Qab_{ST1}) memiliki perhitungan dan standar yang sama karena keduanya memiliki kondisi kerja yang sama. Pegawai ini dalam SNI 03 7065 2005 tentang Plambing masuk kedalam kategori pemakaian air dingin sesuai penggunaan gedung dengan objek gedung adalah kantor sehingga memiliki kebutuhan air bersih minimal 50 liter/pegawai.hari. Sehingga jumlah pegawai dikali dengan standar pemakaian air bersih berikut perhitungannya

$$Qab_{ST1}$$
=jumlah pegawai×kebutuhan air bersih
$$Qab_{ST1}$$
=(63+130) $\frac{pegawai}{hari}$ ×50 $\frac{liter}{pegawai}$

$$Qab_{ST1} = 9650 \frac{liter}{hari}$$

Jadi kebutuhan air bersih untuk pegawai adalah 9650 liter/hari.

Perhitungan kebutuhan air bersih pengunjung stasiun (Qab_{ST2}) pun memiliki sumber standar yang sama hanya katagorinya yang berbeda. Pengunjung stasiun dimasukkan kedalam kategori pemakaian air dingin sesuai pengunaan gedung dengan objek gedung stasiun. Sehingga kebutuhan air bersih total tinggal dikalikan dengan 3 liter/pengunjung. Pengunjung stasiun dalam perhitungan kebutuhan air bersih digunakan pengunjung puncak. Hal ini dilakukan untuk mengantisipasi kebutuhan puncak air bersih untuk pengunjung. Berikutperhitungan air bersih pengunjung

Jadi kebutuhan air bersih untuk pengunjung stasiun adalah 5148 liter/hari.

Berbeda dengan pegawai dan pengunjung, kebutuhan air bersih untuk penjaga kantin (Qab $_{\rm ST3}$) memiliki sumber standar sendiri. Penjaga kantin ini dimasukkan ke dalam katagori gedung Toserba/Toko Pengecer. Dalam SNI 03 7065 2005 standar memiliki satuan liter/m2 sedangkan data yang ada adalah jumlah pegawai sehingga diperlukan standar yang lain yang masih berkaitan. Dalam Morimura, 222, disebutkan bahwa pemakaian air dingin untuk toserba toko pengecer adalah 50 liter/pegawai

Jadi kebutuahn air bersih untuk penjaga kantin addalah 880 liter/hari.

Kebutuhan air bersih total stasiun (Qab_{ST}) merupakan pertambahan dari kebutuhan air bersih pegawai (Qab_{ST1}), pengunjung (Qab_{ST2}), dan penjaga kantin (Qab_{ST3}). Berikut perhitungan kebutuhan air bersih stasiun total tanpa pencucian kereta.

$$\begin{aligned} &\text{Qab}_{\text{ST}}\text{=}\text{Qab}_{1}\text{+}\text{Qab}_{2}\text{+}\text{Qab}_{3}\\ &\text{Qab}_{\text{ST}}\text{=}5148\frac{\text{liter}}{\text{hari}}\text{+}9650\frac{\text{liter}}{\text{hari}}\text{+}880\frac{\text{liter}}{\text{hari}}\\ &\text{Qab}_{\text{ST}}\text{=}15678\frac{\text{liter}}{\text{hari}}\end{aligned}$$

Jadi kebutuhan air bersih stasiun total adalah 15678 liter/hari. Hasil lengkap dapat dilihat pada Tabel 6.1.

Tabel 6. 1 Kebutuhan Air Bersih Stasiun

No	Unit Pegawai	Jumlah Pegawai	Kebutuhan Air (Liter/hari)	
			Perorang	Total
1	Pegawai	193	50	9650
2	Pengunjung	1716	3	5148
3	Kantin	22	40	880
Total				15678

6.1.2 Kereta Api

Kebutuhan air bersih pada kereta api dipengaruhi oleh kapasitas air bersih dan pengisian kembali air bersih (tanpa pencucian kereta). Masing-masing kelas kereta memiliki kapasitas air bersih yang berbeda. Kereta ekonomi memiliki kapasitas air bersih 400 Liter dalam sekali pengisian; kereta bisnis memiliki kapasitas air bersih 400 liter dalam sekali pengisian; kereta eksekutif memiliki kapasitas air bersih 1000 liter dalam sekali pengisian; sedangkan kereta makan memiliki kapasitas air bersih sebanyak 200 liter dalam sekali pengisian. Begitupun pengisian air bersih memiliki kapastias pengisian yang berbeda sesuai dengan tabel 4.8 pada bab 4.

Hal tersebut mengakibatkan setiap rangkian kereta api memiliki kebutuhan air bersih yang sangat beragam. Kebutuhan air bersih kereta dapat dihitung dengan cara mengalikan kapasitas air bersih dengan kali pengisian air sedangkan untuk rangkaian kereta api dihitung dari kebutuhan air bersih kereta dikali banyaknya kereta. Berikut perhitungan kebutuhan air bersih setiap rangkaian kereta api.

- KA Rapih Dhoho

KA Rapih Dhoho terdiri dari lokomotif, 6 kereta ekonomi dan 1 kereta amakan. Lokomotif tidak memiliki tandon air bersih. KA Rapih Dhoho melakukan pengisian air bersih selama perjalanan sebanyak 1 kali.

Kebutuhan air bersih satu kereta Rapih Dhoho (Qab_{KE} Dhoho) dapat dihitung dengan mengalikan kapasitas air bersih kereta ekonomi (Qab_{KE}) dengan kali pengisian ($N_{pengisian}$ Dhoho). Berikut perhitungan kebutuhan air bersih untuk satu kereta pada rangkaian KA Rapih Dhoho.

$$Qab_{KE\ Dhoho} = Qab_{KE} \times N_{pengisian} Dhoho$$
 $Qab_{KE\ Dhoho} = 400 \times 1$
 $Qab_{KE\ Dhoho} = 400 \frac{liter}{perjalanan}$

Jadi satu kereta Rapih Dhoho memiliki kebutuhan air bersih untuk sekali perjalanan adalah 400 liter/perjalanan.

Kereta makan pada setiap kereta hanya memiliki satu kereta makan termasuk KA Rapih Dhoho. Untuk menghitung jumlah kebutuhan air bersih kereta makan (Qab_{KM Dhoho}) pada KA Rapih Dhoho diperlukan data kebutuhan air bersih kereta makan (Qab_{KM}) dan kali pengisian air bersih dalam sekali perjalanan.

$$\begin{aligned} \text{Qab}_{\text{KM Dhoho}} = & \text{Qab}_{\text{KM}} \times \text{N}_{\text{pengisian}} \\ & \text{Qab}_{\text{KM Dhoho}} = & 200 \times 1 \\ & \text{Qab}_{\text{KM Dhoho}} = & 200 \frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

Jadi kebutuhan air bersih untuk kereta makan pada rangkaian KA Rapih Dhoho adalah 200 liter/perjalanan.

Setelah debit kereta dan kereta makan diketahui, kemudian dapat dihitung debit air bersih satu rangkain kereta dalam sekali perjalanan. Berikut perhitungan debit air bersih KA Dhoho dalam sekali perjalanan (Qab_{KA Dhoho}).

$$\begin{aligned} \text{Qab}_{\text{KA Dhoho}} = & (\text{Qab}_{\text{KE Dhoho}} \times \text{N}_{\text{KE Dhoho}}) + (\text{Qab}_{\text{KM Dhoho}} \times \text{N}_{\text{KM Dhoho}}) \\ & \text{Qab}_{\text{KA Dhoho}} = & (400 \times 6) + (200 \times 1) \\ & \text{Qab}_{\text{KA Dhoho}} = & 2600 \frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

Jadi kebutuhan air bersih untuk KA Dhoho dalam sekali perjalanan adalah 2600 liter/perjalanan.

Debit air bersih KA Dhoho dapat diketahui dengan mengalikan debit perpejalanan dikali jumlah perjalanan (N_A KA). Pada Tabel 4.6 KA Dhoho pada kondisi biasa dan puncak melakukan 4 kali perjalanan dalam sehari. Berikut perhitungan debit KA Dhoho dalam sehari.

$$Qab_{KA\ Dhoho} = Qab_{KA\ Dhoho} \times N_A KA\ Dhoho}$$

$$Qab_{KA\ Dhoho} = 2600 \times 4$$

$$Qab_{KA\ Dhoho} = 10400 \frac{liter}{hari}$$

Jadi debit air bersih KA Dhoho dalam sehari baik hari biasa maupun puncak adalah 10400 liter/hari.

KA Pentaran

$$\begin{aligned} &\text{Qab}_{\text{KE Penataran}} \text{=} \text{Qab}_{\text{KE}} \times \text{N}_{\text{pengisian}} \\ &\text{Qab}_{\text{KE Penataran}} \text{=} 400 \times 1 \\ &\text{Qab}_{\text{KE Penataran}} \text{=} 400 \frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

$$Qab_{KM\ Penataran} = 200 \frac{liter}{perjalanan}$$

$$\begin{aligned} \text{Qab}_{\text{KA Penataran}} = & (\text{Qab}_{\text{KE Penataran}} \times \text{N}_{\text{KE Penataran}}) \\ & + (\text{Qab}_{\text{KM Penataran}} \times \text{N}_{\text{KM Penataran}}) \\ & \text{Qab}_{\text{KA Penataran}} = & (400 \times 6) + (200 \times 1) \\ & \text{Qab}_{\text{KA Penataran}} = & 2600 \frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

Qab_{KA Penataran} = Qab_{KA Penataran}
$$\times N_A$$
KA Penataran
Qab_{KA Penataran} = 2600×4
Qab_{KA Penataran} = $10400 \frac{\text{liter}}{\text{hari}}$

Jadi debit air bersih KA Penataran dalam sehari baik hari biasa maupun puncak adalah 10400 liter/hari.

- KA Tumapel

$$\begin{aligned} \text{Qab}_{\text{KE Tumapel}} = & \text{Qab}_{\text{KE}} \times \text{N}_{\text{pengisian}} \\ & \text{Qab}_{\text{KE Tumapel}} = & 400 \times 1 \\ & \text{Qab}_{\text{KE Tumapel}} = & 400 \frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

$$\begin{aligned} \text{Qab}_{\text{KM Tumapel}} = & \text{Qab}_{\text{KM}} \times \text{N}_{\text{pengisian}} \\ & \text{Qab}_{\text{KM Tumapel}} = & 200 \times 1 \\ & \text{Qab}_{\text{KM Tumapel}} = & 200 \frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

$$\begin{aligned} \text{Qab}_{\text{KA Tumapel}} = & \left(\text{Qab}_{\text{KE Tumapel}} \times \text{N}_{\text{KE Tumapel}} \right) \\ & + \left(\text{Qab}_{\text{KM Tumapel}} \times \text{N}_{\text{KM Tumapel}} \right) \\ & \text{Qab}_{\text{KA Tumapel}} = & \left(400 \times 6 \right) + \left(200 \times 1 \right) \\ & \text{Qab}_{\text{KA Tumapel}} = & 2600 \frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

Qab_{KA Tumapel}=Qab_{KA Tumapel}×
$$N_A$$
KA Tumapel
Qab_{KA Tumapel}= 2600×1
Qab_{KA Tumapel}= $2600 \frac{\text{liter}}{\text{hari}}$

Jadi debit air bersih KA Tumapel dalam sehari baik hari biasa maupun puncak adalah 2600 liter/hari.

- KRD Kertosono

$$\begin{array}{c} \text{Qab}_{\text{KE KRD}} \text{=} \text{Qab}_{\text{KE}} \times \text{N}_{\text{pengisian}} \\ \text{Qab}_{\text{KE KRD}} \text{=} 400 \times 1 \\ \text{Qab}_{\text{KE KRD}} \text{=} 400 \frac{\text{liter}}{\text{perjalanan}} \end{array}$$

$$\begin{array}{c} \text{Qab}_{\text{KM KRD}}\text{=}\text{Qab}_{\text{KM}}\text{\times}\text{N}_{\text{pengisian}} \\ \text{Qab}_{\text{KM KRD}}\text{=}200\text{\times}1 \\ \text{Qab}_{\text{KM KRD}}\text{=}200 \frac{\text{liter}}{\text{perjalanan}} \end{array}$$

$$\begin{aligned} \text{Qab}_{\text{KA KRD}} = & (\text{Qab}_{\text{KE KRD}} \times \text{N}_{\text{KE KRD}}) + (\text{Qab}_{\text{KM KRD}} \times \text{N}_{\text{KM KRD}}) \\ & \text{Qab}_{\text{KA KRD}} = & (400 \times 6) + (200 \times 1) \\ & \text{liter} \\ & \text{Qab}_{\text{KA KRD}} = & 2600 \frac{\text{liter}}{\text{perjalanan}} \\ & \text{Qab}_{\text{KA KRD}} = & \text{Qab}_{\text{KA KRD}} \times \text{N}_{\text{A}} \text{KA KRD} \\ & \text{Qab}_{\text{KA KRD}} = & 2600 \times 2 \\ & \text{Qab}_{\text{KA KRD}} = & 5200 \frac{\text{liter}}{\text{hari}} \end{aligned}$$

Jadi debit air bersih KA KRD Kertosono dalam sehari baik hari biasa maupun puncak adalah 5200 liter/hari.

- KA Probowangi

$$\begin{aligned} &\text{Qab}_{\text{KE Probowangi}} = &\text{Qab}_{\text{KE}} \times N_{\text{pengisian}} \\ &\text{Qab}_{\text{KE Probowangi}} = &400 \times 2 \\ &\text{Qab}_{\text{KE Probowangi}} = &800 \frac{\text{liter}}{\text{perjalanan}} \\ &\text{Qab}_{\text{KM Probowangi}} = &\text{Qab}_{\text{KM}} \times N_{\text{pengisian}} \\ &\text{Qab}_{\text{KM Probowangi}} = &200 \times 2 \\ &\text{Qab}_{\text{KM Probowangi}} = &400 \frac{\text{liter}}{\text{perjalanan}} \\ &\text{Qab}_{\text{KA Probowangi}} = &(\text{Qab}_{\text{KE Probowangi}} \times N_{\text{KE Probowangi}}) \\ &+ &(\text{Qab}_{\text{KM Probowangi}} \times N_{\text{KM Probowangi}}) \end{aligned}$$

$$\begin{aligned} &\text{Qab}_{\text{KA Probowangi}} = (800 \times 6) + (400 \times 1) \\ &\text{Qab}_{\text{KA Probowangi}} = 5200 \frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

Jadi debit air bersih KA Probowangi dalam sehari untuk hari biasa adalah 5200 liter/hari sedangkan pada kondisi puncak adalah 10400 liter/hari.

- Gaya Baru Malam

$$\begin{array}{c} {\rm Qab_{KE~GBM}=Qab_{KE}\times N_{pengisian}}\\ {\rm Qab_{KE~GBM}=400\times3}\\ {\rm Qab_{KE~GBM}=1200} \frac{\rm liter}{\rm perjalanan} \end{array}$$

$$\begin{array}{c} \text{Qab}_{\text{KM GBM}} = \text{Qab}_{\text{KM}} \times \text{N}_{\text{pengisian}} \\ \text{Qab}_{\text{KM GBM}} = 200 \times 3 \\ \text{Qab}_{\text{KM GBM}} = 600 \frac{\text{liter}}{\text{perjalanan}} \end{array}$$

$$\begin{aligned} \text{Qab}_{\text{KA GBM}} = & (\text{Qab}_{\text{KE GBM}} \times \text{N}_{\text{KE GBM}}) + (\text{Qab}_{\text{KM GBM}} \times \text{N}_{\text{KM GBM}}) \\ & \text{Qab}_{\text{KA GBM}} = & (1200 \times 8) + (600 \times 1) \\ & \text{Qab}_{\text{KA GBM}} = & 10200 \frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

$$Qab_{KA GBM} = Qab_{KA GBM} \times N_A KA GBM$$

 $Qab_{KA GBM} = 10200 \times 2$
 $Qab_{KA GBM} = 20400 \frac{liter}{hari}$

Jadi debit air bersih KA Gaya Baru Malam dalam sehari dalam kondisi biasa adalah 10200 liter/hari sedangkan kondisi puncak adalah 20400 liter/hari.

- KA Pasundan

$$\begin{aligned} \text{Qab}_{\text{KA Pasundan}} = & (\text{Qab}_{\text{KE Pasundan}} \times \text{N}_{\text{KE Pasundan}}) + (\text{Qab}_{\text{KM Pasundan}} \times \text{N}_{\text{KM Pasundan}}) \\ & \text{Qab}_{\text{KA Pasundan}} = & (1200 \times 8) + (600 \times 1) \\ & \text{Qab}_{\text{KA Pasundan}} = & 10200 \frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

$$\begin{aligned} \text{Qab}_{\text{KA Pasundan}} = & \text{Qab}_{\text{KA Pasundan}} \times \text{N}_{A \text{ KA Pasundan}} \\ & \text{Qab}_{\text{KA Pasundan}} = & 10200 \times 2 \\ & \text{Qab}_{\text{KA Pasundan}} = & 20400 \frac{\text{liter}}{\text{hari}} \end{aligned}$$

Jadi debit air bersih KA Pasundan dalam sehari pada kondisi biasa adalah 10200 liter/hari sedangkan pada kondisi puncak adalah 20400 liter/hari.

KA Bangunkarta

$$\begin{aligned} &\text{Qab}_{\text{KX Bangunkarta}}\text{=}\text{Qab}_{\text{KX}}\text{\times}N_{\text{pengisian}}\\ &\text{Qab}_{\text{KX Bangunkarta}}\text{=}1000\text{\times}2\\ &\text{Qab}_{\text{KX Bangunkarta}}\text{=}2000\frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

$$\begin{aligned} \text{Qab}_{\text{KM Bangunkarta}} = & \text{Qab}_{\text{KM}} \times \text{N}_{\text{pengisian}} \\ & \text{Qab}_{\text{KM Bangunkarta}} = & 200 \times 2 \\ & \text{Qab}_{\text{KM Bangunkarta}} = & 400 \\ & \text{perjalanan} \end{aligned}$$

$$\begin{array}{c} + \left(\mathsf{Qab_{KM~Bangunkarta}} \times \mathsf{N_{KM~Bangunkarta}} \right) \\ \mathsf{Qab_{KA~Bangunkarta}} = (2000 \times 8) + (400 \times 1) \\ \mathsf{Qab_{KA~Bangunkarta}} = 16400 \frac{\mathsf{liter}}{\mathsf{perjalanan}} \end{array}$$

$$Qab_{KA\;Bangunkarta} = Qab_{KA\;Bangunkarta} \times N_{A\;KA\;Bangunkerta}$$

$$Qab_{KA\;Bangunkarta} = 16400 \times 1$$

$$Qab_{KA\;Bangunkarta} = 16400 \frac{\text{liter}}{\text{hari}}$$

Jadi debit air bersih KA Bangunkarta dalam sehari baik kondisi biasa maupun puncak adalah 16400 liter/hari.

- KA Turangga

$$\begin{aligned} &\text{Qab}_{\text{KX}} \quad &\text{Turangga} = &\text{Qab}_{\text{KX}} \times &\text{N}_{\text{pengisian}} \\ &\text{Qab}_{\text{KX}} \quad &\text{Turangga} = &1000 \times 2 \\ &\text{Qab}_{\text{KX}} \quad &\text{Turangga} = &2000 \frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

$$\begin{aligned} \text{Qab}_{\text{KM Turangga}} = & \text{Qab}_{\text{KM}} \times \text{N}_{\text{pengisian}} \\ & \text{Qab}_{\text{KM Turangga}} = & 200 \times 2 \\ & \text{Qab}_{\text{KM Turangga}} = & 400 \frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

$$\begin{aligned} \text{Qab}_{\text{KA Turangga}} = & \left(\text{Qab}_{\text{KX Turangga}} \times \text{N}_{\text{KX Turangga}} \right) + \left(\text{Qab}_{\text{KM Turangga}} \times \text{N}_{\text{KM Turangga}} \right) \\ & \text{Qab}_{\text{KA Turangga}} = & \left(2000 \times 8 \right) + \left(400 \times 1 \right) \\ & \text{Qab}_{\text{KA Turangga}} = & 16400 \frac{\text{liter}}{\text{perialanan}} \end{aligned}$$

$$Qab_{KA Turangga} = Qab_{KA Turangga} \times N_{A KA Turangga}$$

$$Qab_{KA Turangga} = 16400 \times 1$$

$$Qab_{KA Turangga} = 16400 \frac{liter}{hari}$$

Jadi debit air bersih KA Turangga dalam sehari adalah 16400 liter/hari.

KA Argo Wilis

$$\begin{array}{c} {\rm Qab_{KM}} \ _{\rm AW} = {\rm Qab_{KM}} \times N_{\rm pengisian} \\ {\rm Qab_{KM}} \ _{\rm AW} = 200 \times 2 \\ {\rm Qab_{KM}} \ _{\rm AW} = 400 \frac{liter}{perjalanan} \end{array}$$

$$\begin{aligned} \text{Qab}_{\text{KA AW}} = & (\text{Qab}_{\text{KX AW}} \times \text{N}_{\text{KX AW}}) + (\text{Qab}_{\text{KM AW}} \times \text{N}_{\text{KM AW}}) \\ & \text{Qab}_{\text{KA AW}} = & (2000 \times 8) + (400 \times 1) \\ & \text{Qab}_{\text{KA AW}} = & 16400 \frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

$$Qab_{KA AW} = Qab_{KA AW} \times N_{A AW}$$

$$Qab_{KA AW} = 16400 \times 1$$

$$Qab_{KA AW} = 16400 \frac{liter}{hari}$$

Jadi debit air bersih KA Argo Wilis dalam sehari baik kondisi biasa maupun puncak adalah 16400 liter/hari.

KA Mutiara Selatan

$$\begin{array}{c} {\rm Qab_{KB\ MS}}{=}{\rm Qab_{KB}}{\times}{\rm N_{pengisian}} \\ {\rm Qab_{KB\ MS}}{=}400{\times}2 \\ {\rm Qab_{KB\ MS}}{=}800 \\ \hline {\rm perjalanan} \end{array}$$

$$\begin{array}{c} {\rm Qab_{KM~MS}=Qab_{KM}\times N_{pengisian}} \\ {\rm Qab_{KM~MS}=200\times 2} \\ {\rm Qab_{KM~MS}=400} \\ \hline {\rm Perjalanan} \end{array}$$

$$Qab_{KA\ MS} = (Qab_{KB\ MS} \times N_{KB\ MS}) + (Qab_{KM\ MS} \times N_{KM\ MS})$$

$$Qab_{KA\ MS} = (800 \times 8) + (400 \times 1)$$

$$Qab_{KA\ MS} = 6800 \frac{liter}{perjalanan}$$

$$Qab_{KA\ MS} = Qab_{KA\ MS} \times N_{A\ MS}$$

$$Qab_{KA\ MS} = 6800 \times 1$$

$$Qab_{KA\ MS} = 6800 \frac{\text{liter}}{\text{hari}}$$

Jadi debit air bersih KA Mutiara Selatan dalam sehari adalah 6800 liter/hari.

- KA Sancaka

$$\begin{aligned} \text{Qab}_{\text{KB Sancaka}} = & \text{Qab}_{\text{KB}} \times \text{N}_{\text{pengisian}} \\ & \text{Qab}_{\text{KB Sancaka}} = & 400 \times 1 \\ & \text{Qab}_{\text{KB Sancaka}} = & 400 \\ & \text{perjalanan} \end{aligned}$$

$$\begin{aligned} \text{Qab}_{\text{KX Sancaka}} = & \text{Qab}_{\text{KX}} \times \text{N}_{\text{pengisian}} \\ & \text{Qab}_{\text{KX Sancaka}} = & 1000 \\ & \text{Qab}_{\text{KX Sancaka}} = & 1000 \\ \end{aligned} \underbrace{\begin{aligned} \text{liter} \\ \text{perjalanan} \end{aligned}}$$

$$\begin{aligned} \text{Qab}_{\text{KM Sancaka}} = & \text{Qab}_{\text{KM}} \times \text{N}_{\text{pengisian}} \\ & \text{Qab}_{\text{KM Sancaka}} = & 200 \times 1 \\ & \text{Qab}_{\text{KM Sancaka}} = & 200 \frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

$$\begin{aligned} \text{Qab}_{\text{KA Sancaka}} = & (\text{Qab}_{\text{KB Sancaka}} \times \text{N}_{\text{KB Sancaka}}) + (\text{Qab}_{\text{KX Sancaka}} \times \text{N}_{\text{KX Sancaka}}) \\ & + (\text{Qab}_{\text{KM Sancaka}} \times \text{N}_{\text{KM Sancaka}}) \\ & \text{Qab}_{\text{KA Sancaka}} = & (400 \times 3) + (1000 \times 5) + (200 \times 1) \\ & \text{Qab}_{\text{KA Sancaka}} = & 6400 \frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

Jadi debit air bersih KA Sancaka dalam sehari pada kondisi biasa adalah 12800 liter/hari sedangkan kondisi puncak adalah 19200 liter/hari.

- KA Mutiara Timur

$$\begin{aligned} &\text{Qab}_{\text{KB MT}}\text{=}\text{Qab}_{\text{KB}}\text{\times}\text{N}_{\text{pengisian}}\\ &\text{Qab}_{\text{KB MT}}\text{=}400\text{\times}2\\ &\text{Qab}_{\text{KB MT}}\text{=}800\frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

$$\begin{array}{c} {\rm Qab_{KX~MT}}{=}{\rm Qab_{KX}}{\times}{\rm N_{pengisian}} \\ {\rm Qab_{KX~MT}}{=}1000{\times}2 \\ {\rm Qab_{KX~MT}}{=}2000 \frac{{\rm liter}}{{\rm perjalanan}} \end{array}$$

$$\begin{array}{c} {\sf Qab_{KM\ MT}} \! = \! {\sf Qab_{KM}} \! \times \! N_{\sf pengisian} \\ {\sf Qab_{KM\ MT}} \! = \! 200 \! \times \! 2 \\ {\sf Qab_{KM\ MT}} \! = \! 400 \frac{\mathsf{liter}}{\mathsf{perjalanan}} \end{array}$$

$$\begin{aligned} \text{Qab}_{\text{KA MT}} = & (\text{Qab}_{\text{KB MT}} \times \text{N}_{\text{KB MT}}) + (\text{Qab}_{\text{KX MT}} \times \text{N}_{\text{KX MT}}) \\ & + (\text{Qab}_{\text{KM MT}} \times \text{N}_{\text{KM MT}}) \\ & \text{Qab}_{\text{KA MT}} = & (800 \times 4) + (2000 \times 4) + (400 \times 1) \\ & \text{Qab}_{\text{KA MT}} = & 11600 \frac{\text{liter}}{\text{perjalanan}} \end{aligned}$$

$$Qab_{KA\ Dhoho} = Qab_{KA\ Dhoho} \times N_A KA\ Dhoho}$$
 $Qab_{KA\ Dhoho} = 11600 \times 2$

$$Qab_{KA\ Dhoho} = 23200 \frac{liter}{hari}$$

Jadi debit air bersih KA Mutiara Timur dalam sehari adalah 23200 liter/hari.

Hasil perhitungan lengkap debit kebutuhan air bersih masing-masing kereta dapat dilihat pada Tabel 6.2.

Tabel 6. 2 Kebutuhan Air Bersih Rangkaian Kereta

No	Nama Rangkaian	Kereta (Liter/perjalanan)				Rangkaian KA (Liter/hari)		
	_	Ekonomi	Bisnis	Eksekutif	Makan	Rata-rata	Puncak	
1	KA Dhoho	400			200	10400	10400	
2	KA Penataran	400			200	10400	10400	
3	KA Tumapel	400			200	2600	2600	
4	KRD Kertosono	400			200	5200	5200	
5	KA Probowangi	800			400	5200	10400	
6	KA Gaya Baru Malam	1200			600	10200	20400	
7	KA Pasundan	1200			600	10200	20400	
8	KA Bangunkarta			2000	400	16400	16400	
9	KA Turangga			2000	400	16400	16400	
10	KA Argowilis			2000	400	16400	16400	
11	KA Mutiara Selatan		800		400	6800	6800	
12	KA Sancaka		400	1000	200	12800	19200	
13	KA Mutiara Timur		800	2000	400	23200	23200	
		Total				146200	178200	

Sumber : Hasil Perhitungan

6.2 Debit Air Limbah

Debit air limbah yang dihasilkan bergantung kuantitas masing-masing komponen. Untuk air limbah stasiun bergantung pada jumlah pengunjung, pegawai, dan penjaga kantin. sedangkan untuk air limbah kereta api bergantung pada kapasitas tangki air, jumlah keberangkatan, dan pengisian air dalam perjalan.

6.2.1 Stasiun

Debit air limbah merupakan 80% dari kebutuhan air bersih. Kebutuhan air bersih stasiun pada Tabel 6.1 sebanyak 15678 liter/hari. Air limbah yang dihitung hanya air limbah domestik tanpa pencucian kereta. Berikut perhitungan air limbah stasiun

Qal_{ST}=Qal_{ST}×80% Qal_{ST}=15678×80% Qal_{ST}=12542,4 liter/hari

Jadi debit air limbah stasiun semut total sebanyak 12542,4 liter/hari

6.2.2 Kereta

Air limbah kereta api dipengaruhi oleh jumlah penumpang, kapasitas air bersih, jumlah pengisian air bersih, jumlah kedatangan. Perhitungan air limbah kereta api akan berbedabeda tergantung kereta api yang dihitung. Hal ini disebabkan kereta api memiliki jumlah rangkaian jumlah penumpang, kapasitas air bersih, jumlah pengisian air bersih, jumlah kedatangan yang berbeda antar kereta api.

Air limbah kereta api berasal dari 100% dari kebutuhan air bersih kereta. ini disebabkan air bersih akan terbuang semua menjadi air limbah tanpa ada yang terserap. Bahkan air limbah tersebut ditambah oleh air limbah yang dihasilkan tiap penumpang dan petugas yang berasal dari urine dan faeces. Setiap orang dalam sehari menghasilkan urine dan faeces.

Menurut penelitian setiap hari orang menghasilkan 0,1 liter faeces dan 1,5 liter urine. Setiap kelas kereta memiliki jumlah penumpang dan petugas yang berbeda yang berbeda. Kereta ekonomi memiliki jumlah penumpang sebanyak 106 orang; kereta bisnis memiliki jumlah penumpang sebanyak 64 orang; Kereta eksekutif memiliki jumlah penumpang sebanyak 52 orang; serta kereta makan memiliki jumlah pegawai sebanyak 16 orang kecuali KA Rapih Dhoho, KA Penataran, KA Tumapel, KRD Kertosono, dan KA Probowangi memiliki jumlah pegawai sebanyak 15 orang.

Air limbah kereta dihitung berurutan mulai dari perkereta, perkereta makan, sekali perjalan dan perhari. Perhitungan debit secara bertingkat ini akan digunakan untuk perencanaan bangunan pada bab selanjutnya.

- KA Dhoho

Debit air limbah dihitung bertingkat mulai dari kereta, kereta makan, dan rangkaian. Debit air limbah kereta ekonomi KA Dhoho (Qal_{KE Dhoho}) dapat dihitung dari 100% kebutuhan air bersih kereta ekonomi ditambah jumlah total air limbah (urine dan faeces) penumpang. Berikut perhitungan air limbah kereta ekonomi dengan jumlah penumpang ($N_{penumpang KE}$) 106 orang.

$$\begin{aligned} \text{Qal}_{\text{KE Dhoho}} = & \text{Qab}_{\text{KE Dhoho}} + \left(1,6 \times \text{N}_{\text{Penumpang}} KE\right) \\ & \text{Qal}_{\text{KE Dhoho}} = & 400 + \left(1,6 \times 106\right) \\ & Qal_{KE Dhoho} = & 569,6 \frac{Liter}{perjalanan} \end{aligned}$$

Jadi debit air limbah kereta KA Dhoho adalah 569,6 liter/kereta.

Debit air limbah kereta makan dihitung dari kebutuhan air bersih kereta makan ditambah air limbah petugas. Berikut perhitungan air limbah kereta makan dengan jumlah petugas sebanyak 15 orang.

$$Qal_{KM\ Dhoho} = Qab_{KM\ Dhoho} + (1,6 \times N_{Penumpang}KM)$$

 $Qal_{KM\ Dhoho} = 200 + (1,6 \times 15)$

$$Qal_{KM\ Dhoho} = 224 \frac{Liter}{perjalanan}$$

Jadi debit air limbah kereta makan KA Dhoho 224 liter/kereta.

Debit air limbah KA Rapih Dhoho dihitung dari total air limbah kereta ekonomi dan total air limbah kereta makan. Jumlah kereta ekonomi dan kereta makan pada KA Rapih Dhoho masing-masing adalah 6 dan 1 buah. Berikut perhitungan debit air limbah KA Rapih Dhoho dalam satu kali perjalanan.

$$\begin{aligned} Qal_{KA\,Dhoho} &= (Qal_{KE\,Dhoho} \times N_{KE\,Dhoho}) \\ &+ (Qal_{KM\,Dhoho} \times N_{KM\,Dhoho}) \\ Qal_{KA\,Dhoho} &= (969,6 \times 6) + (424 \times 1) \\ Qal_{KA\,Dhoho} &= 6241,6 \frac{liter}{perjalanan} \end{aligned}$$

Jadi debit air limbah rangkaian KA Dhoho dalam sekali perjalanan adalah 6235,2 liter/perjalanan.

KA Rapih Dhoho sendiri dalam sehari baik dalam keadaan biasa maupun puncak melakukan perjalanan sebanyak 4 kali. Berikut perhitungan debit puncak KA Rapih Dhoho.

$$Qal_{KA\,Dhoho} = Qal_{KA\,Dhoho} \times N_{A\,KA\,Dhoho}$$

 $Qal_{KA\,Dhoho} = 6241,6 \times 4$
 $Qal_{KA\,Dhoho} = 24966,4 \frac{liter}{hari}$

Jadi debit air limbah KA Rapih Dhoho baik kondisi biasa maupun puncak adalah 24966,4 Liter/hari.

KA Penataran

$$Qal_{KE\ Penataran} = Qab_{KE\ Penataran} + (1,6 \times N_{Penumpang}KE)$$

$$Qal_{KE\ Penataran} = 800 + (1,6 \times 106)$$

$$Qal_{KE\ Penataran} = 969,6 \frac{Liter}{perjalanan}$$

$$\begin{aligned} \text{Qal}_{\text{KM Penataran}} = & \text{Qab}_{\text{KM Penataran}} + \left(1,6 \times \text{N}_{\text{Penumpang}} KM\right) \\ & \text{Qal}_{\text{KM Penataran}} = & 400 + \left(1,6 \times 15\right) \\ & Qal_{KM \text{ Penataran}} = & 424 \frac{Liter}{perjalanan} \end{aligned}$$

$$\begin{aligned} Qal_{\mathit{KA}\,\mathsf{Penataran}} &= (Qal_{\mathit{KE}\,\mathsf{Penataran}} \times N_{\mathit{KE}\,\mathsf{Penataran}}) \\ &\quad + (Qal_{\mathit{KM}\,\mathsf{Penataran}} \times N_{\mathit{KM}\,\mathsf{Penataran}}) \\ Qal_{\mathit{KA}\,\mathsf{Penataran}} &= (969,6\times6) + (424\times1) \\ Qal_{\mathit{KA}\,\mathsf{Penataran}} &= 6241,6 \frac{liter}{perjalanan} \end{aligned}$$

$$Qal_{KA\,Penataran} = Qal_{KA\,Penataran} \times N_{A\,KA\,Penataran}$$
 $Qal_{KA\,Penataran} = 6241,6 \times 4$
 $Qal_{KA\,Penataran} = 24966,4 \frac{liter}{hari}$

Jadi debit air limbah KA Penataran baik kondisi biasa maupun puncak adalah 24966,4 Liter/hari.

KA Tumapel

$$Qal_{KE \ Tumapel} = Qab_{KE \ Tumapel} + (1,6 \times N_{Penumpang} KE)$$

$$Qal_{KE \ Tumapel} = 800 + (1,6 \times 106)$$

$$Qal_{KE \ Tumapel} = 969,6 \frac{Liter}{perjalanan}$$

$$\begin{aligned} \text{Qal}_{\text{KM Tumapel}} = & \text{Qab}_{\text{KM Tumapel}} + \left(1,6 \times \text{N}_{\text{Penumpang}} KM\right) \\ & \text{Qal}_{\text{KM Tumapel}} = & 400 + \left(1,6 \times 15\right) \\ & Qal_{KM \text{Tumapel}} = & 424 \frac{Liter}{perjalanan} \end{aligned}$$

$$\begin{aligned} Qal_{\mathit{KA}\,\mathsf{Tumapel}} &= \left(Qal_{\mathit{KE}\,\mathsf{Tumapel}} \times N_{\mathit{KE}\,\mathsf{Tumapel}}\right) \\ &+ \left(Qal_{\mathit{KM}\,\mathsf{Tumapel}} \times N_{\mathit{KM}\,\mathsf{Tumapel}}\right) \\ Qal_{\mathit{KA}\,\mathsf{Tumapel}} &= (969.6 \times 6) + (424 \times 1) \\ Qal_{\mathit{KA}\,\mathsf{Tumapel}} &= 6241.6 \frac{liter}{perjalanan} \end{aligned}$$

$$Qal_{KA\,Tumapel} = Qal_{KA\,Tumapel} \times N_{A\,KA\,Tumapel}$$
 $Qal_{KA\,Tumapel} = 6241,6 \times 1$
 $Qal_{KA\,Tumapel} = 6241,6 \frac{liter}{hari}$

Jadi debit air limbah KA Tumapel baik kondisi biasa maupun puncak adalah 6241,6 Liter/hari.

- KRD Kertosono

$$Qal_{KE KRD} = Qab_{KE KRD} + (1,6 \times N_{Penumpang} KE)$$

$$Qal_{KE KRD} = 400 + (1,6 \times 106)$$

$$Qal_{KE KRD} = 569,6 \frac{Liter}{perjalanan}$$

$$\begin{aligned} \text{Qal}_{\text{KM KRD}} = & \text{Qab}_{\text{KM KRD}} + \left(1,6 \times \text{N}_{\text{Penumpang}} KM\right) \\ & \text{Qal}_{\text{KM KRD}} = 200 + \left(1,6 \times 15\right) \\ & Qal_{KM \text{ KRD}} = 224 \frac{Liter}{perjalanan} \end{aligned}$$

$$\begin{aligned} Qal_{KA\;KRD} &= (Qal_{KE\;KRD} \times N_{KE\;KRD}) + (Qal_{KM\;KRD} \times N_{KM\;KRD}) \\ Qal_{KA\;KRD} &= (569,6 \times 6) + (224 \times 1) \\ Qal_{KA\;KRD} &= 3641,6 \frac{liter}{perjalanan} \end{aligned}$$

$$\begin{aligned} Qal_{KA\ KRD} &= Qal_{KA\ KRD} \times N_{A\ KA\ KRD} \\ Qal_{KA\ KRD} &= 3641,6 \times 2 \\ Qal_{KA\ KRD} &= 7283,2 \frac{liter}{hari} \end{aligned}$$

Jadi debit air limbah KA KRD Kertosono baik kondisi biasa maupun puncak adalah 7283,2 Liter/hari.

- KA Probowangi

$$Qal_{KE\ Probowangi} = Qab_{KE\ Probowangi} + (1,6 \times N_{Penumpang}KE)$$

$$Qal_{KE\ Probowangi} = 800 + (1,6 \times 106)$$

$$Qal_{KE\ Probowangi} = 969,6 \frac{Liter}{perjalanan}$$

$$\begin{aligned} \text{Qal}_{\text{KM Probowangi}} = & \text{Qab}_{\text{KM Probowangi}} + (1,6 \times \text{N}_{\text{Penumpang}} KM) \\ & \text{Qal}_{\text{KM Probowangi}} = & 400 + (1,6 \times 15) \\ & Qal_{\text{KM Probowangi}} = & 424 \frac{Liter}{perjalanan} \end{aligned}$$

$$\begin{aligned} Qal_{\mathit{KA}\,\mathsf{Probowangi}} &= \left(Qal_{\mathit{KE}\,\mathsf{Probowangi}} \times N_{\mathit{KE}\,\mathsf{Probowangi}}\right) \\ &+ \left(Qal_{\mathit{KM}\,\mathsf{Probowangi}} \times N_{\mathit{KM}\,\mathsf{Probowangi}}\right) \\ Qal_{\mathit{KA}\,\mathsf{Probowangi}} &= (969.6 \times 6) + (424 \times 1) \\ Qal_{\mathit{KA}\,\mathsf{Probowangi}} &= 6241.6 \frac{liter}{perialanan} \end{aligned}$$

$$Qal_{KA\ Probowangi} = Qal_{KA\ Probowangi} imes N_{A\ KA\ Probowangi}$$
 $Qal_{KA\ Probowangi} = 6241,6 imes 2$
 $Qal_{KA\ Probowangi} = 12483,2 \frac{liter}{hari}$

Jadi debit air limbah KA Probowangi pada kondisi biasa adalah 6241,6 Liter/hari sedangkan pada kondisi puncak adalah 12483,2 Liter/hari.

- KA Gaya Baru Malam

$$\begin{aligned} \operatorname{Qal_{KE\,GBM}} = \operatorname{Qab_{KE\,GBM}} + \left(1,6 \times \operatorname{N_{Penumpang}}KE\right) \\ \operatorname{Qal_{KE\,GBM}} = 1200 + \left(1,6 \times 106\right) \\ \operatorname{Qal_{KE\,GBM}} = 1369,6 \frac{Liter}{perjalanan} \end{aligned}$$

$$\operatorname{Qal_{KM\,GBM}} = \operatorname{Qab_{KM\,GBM}} + \left(1,6 \times \operatorname{N_{Penumpang}}KM\right) \\ \operatorname{Qal_{KM\,GBM}} = 600 + \left(1,6 \times 16\right) \\ \operatorname{Qal_{KM\,GBM}} = 625,6 \frac{Liter}{perjalanan} \end{aligned}$$

$$\operatorname{Qal_{KM\,GBM}} = \left(2al_{KE\,GBM} \times N_{KE\,GBM}\right) + \left(2al_{KM\,GBM} \times N_{KM\,GBM}\right) \\ \operatorname{Qal_{KA\,GBM}} = \left(1369,6 \times 8\right) + \left(625,6 \times 1\right) \\ \operatorname{Qal_{KA\,GBM}} = 11582,4 \frac{liter}{perjalanan} \\ \operatorname{Qal_{KA\,GBM}} = \operatorname{Qal_{KA\,GBM}} \times N_{A\,KA\,GBM} \end{aligned}$$

$$Qal_{KA \text{ GBM}} = 11582,4 \times 4$$

 $Qal_{KA \text{ GBM}} = 23164,8 \frac{liter}{hari}$

Jadi debit air limbah KA Gaya Baru Malam baik kondisi biasa maupun puncak adalah 23164,8 Liter/hari.

- KA Pasundan

$$Qal_{KE\ Pasundan} = Qab_{KE\ Pasundan} + (1,6 \times N_{Penumpang}KE)$$

$$Qal_{KE\ Pasundan} = 1200 + (1,6 \times 106)$$

$$Qal_{KE\ Pasundan} = 1369,6 \frac{Liter}{perjalanan}$$

$$Qal_{KM \, Pasundan} = Qab_{KM \, Pasundan} + (1,6 \times N_{Penumpang} KM)$$

$$Qal_{KM \, Pasundan} = 400 + (1,6 \times 16)$$

$$Qal_{KM \, Pasundan} = 625,6 \frac{Liter}{perjalanan}$$

$$\begin{aligned} Qal_{\mathit{KA}\,\mathsf{Pasundan}} &= (Qal_{\mathit{KE}\,\mathsf{Pasundan}} \times N_{\mathit{KE}\,\mathsf{Pasundan}}) \\ &+ (Qal_{\mathit{KM}\,\mathsf{Pasundan}} \times N_{\mathit{KM}\,\mathsf{Pasundan}}) \\ Qal_{\mathit{KA}\,\mathsf{Pasundan}} &= (1369,6 \times 8) + (625,6 \times 1) \\ Qal_{\mathit{KA}\,\mathsf{Pasundan}} &= 11582,4 \frac{liter}{perjalanan} \end{aligned}$$

$$Qal_{KA\ Dhoho} = Qal_{KA\ Dhoho} \times N_{A\ KA\ Dhoho}$$
 $Qal_{KA\ Dhoho} = 11582,4 \times 2$ $Qal_{KA\ Dhoho} = 23164,8,4 \frac{liter}{hari}$

Jadi debit air limbah KA Pasundan baik kondisi biasa maupun puncak adalah 23164,8 Liter/hari.

- KA Bangunkarta

$$Qal_{KX Bangunkarta} = Qab_{KX Bangunkarta} + (1,6 \times N_{Penumpang} KX)$$

 $Qal_{KX Bangunkarta} = 2000 + (1,6 \times 52)$

$$Qal_{\mathit{KX}} \, {}_{\mathsf{Bangunkarta}} = 2083,2 \frac{\mathit{Liter}}{\mathit{perjalanan}}$$

$$\begin{aligned} \text{Qal}_{\text{KM Bangunkarta}} = & \text{Qab}_{\text{KM Bangunkarta}} + \left(1,6 \times \text{N}_{\text{Penumpang}} KM\right) \\ & \text{Qal}_{\text{KM Bangunkarta}} = & 400 + \left(1,6 \times 16\right) \\ & Qal_{\text{KM Bangunkarta}} = & 425,6 \frac{Liter}{perjalanan} \end{aligned}$$

$$\begin{aligned} Qal_{\mathit{KA}\,\mathsf{Bangunkarta}} &= \left(Qal_{\mathit{KX}\,\mathsf{Bangunkarta}} \times N_{\mathit{KX}\,\mathsf{Bangunkarta}}\right) \\ &+ \left(Qal_{\mathit{KM}\,\mathsf{Bangunkarta}} \times N_{\mathit{KM}\,\mathsf{Bangunkarta}}\right) \\ Qal_{\mathit{KA}\,\mathsf{Bangunkarta}} &= (2083,2\times8) + (425,6\times1) \\ Qal_{\mathit{KA}\,\mathsf{Bangunkarta}} &= 17091,2 \frac{liter}{perjalanan} \end{aligned}$$

Jadi debit air limbah rangkaian KA Bangunkarta dalam sekali perjalanan adalah 17091,2 liter/perjalanan.

KA Bangunkarta sendiri dalam sehari baik dalam keadaan biasa maupun puncak melakukan perjalanan sebanyak 1 kali. Jadi debit air limbah KA Bangunkarta baik kondisi biasa maupun puncak adalah 17091,2 Liter/hari.

KA Turangga

$$\begin{aligned} \text{Qal}_{\text{KX Turangga}} = & \text{Qab}_{\text{KX Turangga}} + \left(1,6 \times \text{N}_{\text{Penumpang}} KX\right) \\ & \text{Qal}_{\text{KX Turangga}} = & 2000 + \left(1,6 \times 52\right) \\ & Qal_{KX \text{Turangga}} = & 2083,2 \frac{Liter}{perjalanan} \end{aligned}$$

$$Qal_{KM Turangga} = Qab_{KM Turangga} + (1,6 \times N_{Penumpang}KM)$$

$$Qal_{KM Turangga} = 400 + (1,6 \times 16)$$

$$Qal_{KM Turangga} = 425,6 \frac{Liter}{nerialanan}$$

$$\begin{aligned} Qal_{\mathit{KA}\,\mathsf{Turangga}} &= \left(Qal_{\mathit{KX}\,\mathsf{Turangga}} \times N_{\mathit{KX}\,\mathsf{Turangga}}\right) \\ &+ \left(Qal_{\mathit{KM}\,\mathsf{Turangga}} \times N_{\mathit{KM}\,\mathsf{Turangga}}\right) \\ Qal_{\mathit{KA}\,\mathsf{Turangga}} &= (2083,2) + (425,6 \times 1) \end{aligned}$$

$$Qal_{KA \, Turangga} = 17091,2 \frac{liter}{perjalanan}$$

Jadi debit air limbah rangkaian KA Turangga dalam sekali perjalanan adalah 17091,2 liter/perjalanan.

KA Turangga sendiri dalam sehari baik dalam keadaan biasa maupun puncak melakukan perjalanan sebanyak 1 kali. Jadi debit air limbah KA Turangga baik kondisi biasa maupun puncak adalah 17091,2 Liter/hari.

KA Argo Wilis

$$Qal_{KX AW} = Qab_{KX AW} + (1,6 \times N_{Penumpang} KX)$$

$$Qal_{KX AW} = 2000 + (1,6 \times 52)$$

$$Qal_{KX AW} = 2083,2 \frac{Liter}{perjalanan}$$

$$\begin{aligned} \text{Qal}_{\text{KM AW}} = & \text{Qab}_{\text{KM AW}} + \left(1,6 \times \text{N}_{\text{Penumpang}} KM\right) \\ & \text{Qal}_{\text{KM AW}} = 400 + \left(1,6 \times 16\right) \\ & Qal_{KM AW} = 425,6 \frac{Liter}{perjalanan} \end{aligned}$$

$$\begin{aligned} Qal_{KA\,AW} &= (Qal_{KX\,AW} \times N_{KX\,AW}) + (Qal_{KM\,AW} \times N_{KM\,AW}) \\ Qal_{KA\,AW} &= (2083,2 \times 8) + (425,6 \times 1) \\ Qal_{KA\,AW} &= 17091,2 \frac{liter}{perjalanan} \end{aligned}$$

Jadi debit air limbah rangkaian KA Dhoho dalam sekali perjalanan adalah 17091,2 liter/perjalanan.

KA Argo Wilis sendiri dalam sehari baik dalam keadaan biasa maupun puncak melakukan perjalanan sebanyak 1 kali. Jadi debit air limbah KA Argo Wilis baik kondisi biasa maupun puncak adalah 17091,2 Liter/hari.

KA Mutiara Selatan

$$Qal_{KB MS} = Qab_{KB MS} + (1.6 \times N_{Penumpang} KB)$$

 $Qal_{KB MS} = 800 + (1.6 \times 64)$

$$Qal_{KB\; \mathsf{MS}} = 902,4 \frac{Liter}{perjalanan}$$

$$\begin{aligned} \text{Qal}_{\text{KM MS}} = & \text{Qab}_{\text{KM MS}} + (1,6 \times \text{N}_{\text{Penumpang}} KM) \\ & \text{Qal}_{\text{KM MS}} = 400 + (1,6 \times 16) \\ & Qal_{\text{KM MS}} = 425,6 \frac{Liter}{perjalanan} \end{aligned}$$

$$\begin{aligned} Qal_{KA\,\text{MS}} &= (Qal_{KE\,\text{MS}} \times N_{KE\,\text{MS}}) + (Qal_{KM\,\text{MS}} \times N_{KM\,\text{MS}}) \\ Qal_{KA\,\text{MS}} &= (902.4 \times 6) + (425.6 \times 1) \\ Qal_{KA\,\text{MS}} &= 7644.8 \frac{liter}{perjalanan} \end{aligned}$$

Jadi debit air limbah rangkaian KA Mutiara Selatan dalam sekali perjalanan adalah 7644,8 liter/perjalanan.

KA Mutiara Selatan sendiri dalam sehari baik dalam keadaan biasa maupun puncak melakukan perjalanan sebanyak 1 kali. Jadi debit air limbah KA Mutiara Selatan baik kondisi biasa maupun puncak adalah 7644,8 Liter/hari.

KA Sancaka

$$\begin{aligned} \text{Qal}_{\text{KB Sancaka}} = & \text{Qab}_{\text{KB Sancaka}} + \left(1,6 \times \text{N}_{\text{Penumpang}}KB\right) \\ & \text{Qal}_{\text{KB Sancaka}} = & 400 + \left(1,6 \times 64\right) \\ & Qal_{\text{KB Sancaka}} = & 502,4 \frac{Liter}{perjalanan} \end{aligned}$$

$$\begin{aligned} \text{Qal}_{\text{KX Sancaka}} = & \text{Qab}_{\text{KX Sancaka}} + \left(1,6 \times \text{N}_{\text{Penumpang}} KX\right) \\ & \text{Qal}_{\text{KX Sancaka}} = & 1000 + \left(1,6 \times 52\right) \\ & Qal_{\text{KX Sancaka}} = & 1083,2 \frac{Liter}{perjalanan} \end{aligned}$$

$$\begin{aligned} \text{Qal}_{\text{KM Sancaka}} = & \text{Qab}_{\text{KM Sancaka}} + \left(1,6 \times \text{N}_{\text{Penumpang}}KM\right) \\ & \text{Qal}_{\text{KM Sancaka}} = & 200 + \left(1,6 \times 16\right) \\ & Qal_{KM \text{Sancaka}} = & 225,6 \frac{Liter}{perjalanan} \end{aligned}$$

$$\begin{aligned} Qal_{\mathit{KA}\, \mathsf{Sancaka}} &= (Qal_{\mathsf{KB}\, \mathsf{Sancaka}} \times N_{\mathsf{KB}\, \mathsf{Sancaka}}) \\ &+ (Qal_{\mathsf{KX}\, \mathsf{Sancaka}} \times N_{\mathsf{KX}\, \mathsf{Sancaka}}) \\ &+ (Qal_{\mathsf{KM}\, \mathsf{Sancaka}} \times N_{\mathsf{KM}\, \mathsf{Sancaka}}) \\ &+ (Qal_{\mathit{KM}\, \mathsf{Sancaka}} \times N_{\mathit{KM}\, \mathsf{Sancaka}}) \\ Qal_{\mathit{KA}\, \mathsf{Sancaka}} &= (502,4 \times 3) + (1083,2 \times 5) + (225,6 \times 1) \\ Qal_{\mathit{KA}\, \mathsf{Sancaka}} &= 7148,8 \frac{liter}{perjalanan} \end{aligned}$$

$$Qal_{KA \, Sancaka} = Qal_{KA \, Sancaka} \times N_{A \, KA \, Sancaka}$$
 $Qal_{KA \, Sancaka} = 7148,8 \times 3$
 $Qal_{KA \, Sancaka} = 21446,4 \frac{liter}{hari}$

Jadi debit air limbah KA Sancaka saat kondisi biasa adalah 14297,6 Liter/hari sedangkan saat kondisi puncak adalah 21446,4 Liter/hari.

- KA Mutiara Timur

$$Qal_{KB MT} = Qab_{KB MT} + (1,6 \times N_{Penumpang} KB)$$

$$Qal_{KB MT} = 800 + (1,6 \times 64)$$

$$Qal_{KB MT} = 902,4 \frac{Liter}{perjalanan}$$

$$\begin{aligned} \text{Qal}_{\text{KX MT}} = & \text{Qab}_{\text{KX MT}} + \left(1,6 \times \text{N}_{\text{Penumpang}} KX\right) \\ & \text{Qal}_{\text{KX MT}} = & 2000 + \left(1,6 \times 52\right) \\ & \textit{Qal}_{\text{KX MT}} = & 2083,2 \frac{\textit{Liter}}{\textit{perjalanan}} \end{aligned}$$

$$Qal_{KM MT} = Qab_{KM MT} + (1,6 \times N_{Penumpang}KM)$$

$$Qal_{KM MT} = 400 + (1,6 \times 15)$$

$$Qal_{KM MT} = 425,6 \frac{Liter}{perjalanan}$$

$$\begin{aligned} Qal_{KA \ \text{MT}} &= (Qal_{KB \ \text{MT}} \times N_{KB \ \text{MT}}) + (Qal_{KX \ \text{MT}} \times N_{KX \ \text{MT}}) \\ &\quad + (Qal_{KM \ \text{MT}} \times N_{KM \ \text{MT}}) \\ &\quad Qal_{KA \ \text{MT}} &= (2083, 2 \times 6) + (425, 6 \times 1) \end{aligned}$$

$$Qal_{KA\,MT} = Qal_{KA\,MT} \times N_{A\,KA\,MT}$$

$$Qal_{KAMT} = 12368 \times 2$$

$$Qal_{KAMT} = 24736 \frac{liter}{hari}$$

 $Qal_{\mathit{KAMT}} = 24736 \frac{liter}{hari}$ Jadi debit air limbah KA Mutiara Timur baik kondisi biasa maupun puncak adalah 24736 Liter/hari.

Hasil perhitungan lengkap dapat dilihat pada Tabel 6.3.

Tabel 6. 3 Debit Air Limbah Kereta Api

No	Nama	Ke	ereta (Lite	Rangkaian KA (Liter/hari)			
	Rangkaian	Ekonomi	Bisnis	Eksekutif	Makan	Rata- rata	Puncak
1	KA Dhoho	969,6			424	24966	24966,4
2	KA Penataran	969,6			424	24966	24966,4
3	KA Tumapel	969,6			424	6241,6	6241,6
4	KRD Kertosono	569,6			224	7283,2	7283,2
5	KA Probowangi	969,6			424	6241,6	12483,2
6	KA Gaya Baru Malam	1369,6			625,6	11582	23164,8
7	KA Pasundan	1369,6			625,6	11582	23164,8
8	KA Bangunkarta			2083,2	425,6	17091	17091,2
9	KA Turangga			2083,2	425,6	17091	17091,2
10	KA Argowilis			2083,2	425,6	17091	17091,2
11	KA Mutiara Selatan		902,4		425,6	7644,8	7644,8
12	KA Sancaka		502,4	1083,2	225,6	14298	21446,4
13	KA Mutiara Timur		902,4	2083,2	425,6	24736	24736
		Tota	al			190814	227371

Sumber: Hasil Perhitungan

6.3 DED Bangunan

6.3.1 Penampungan

6.3.1.1 Sistem

Sistem penampungan air limbah kereta api dalam bab sebelumnya yang dipilih adalah menampung air limbah dengan pengurasan lebih dari sekali pengurasan. Pengurasan tersebut dilakukan di stasiun-stasiun besar yang terdapat pos pengisian air. Sehingga penampungan akan berbentuk kecil. Penampungan tersebut dipengaruhi oleh jumlah penumpang dan kali pengurasan.

Penampungan dibuat sistem bersekat. Sekat ini dibuat dengan jumlah yang berbeda-beda sesuai kapasitasnya. Sekat-sekat tersebut menyerupai UASB dengan alira *up-down*. Hal ini dilakukan untuk mengantisipasi pergerakan fluida selama kereta berjalan. Sekat ini menghindari tekanan berlebih pada satu sisi ketika kereta bergerak sehingga beban dapat tertahan dan terbagi pada setiap tempat dan sekat.

Penampungan ini disimpan dibawah kereta dengan beberapa besi penyangga. Ruang kosong yang tersedia pada kereta hanya berada di bagian bawah dengan lahan yang cukup terbatas. Penampungan dibuat untuk satu toilet sehingga untuk satu kereta dengan dua toilet berarti memiliki dua tempat penampungan. Penampungan disimpan di kanan kiri kereta sama seperti toilet.

Tempat penampungan diberi ketebalan berbeda antara sekat, plat atas, plat bawah dan plat samping. Saat kereta akan melaju fluida bergerak kearah berlawanan sehinga semua volume akan menekan ke arah belakang. Hal ini dapat menyebabkan tekanan berlebih pada bangunan penampung sehingga diperlukan ketebalan yang cukup besar untuk menahan tekanan. Begitupun ketika kereta berhenti, berbelok baik kekanan maupun kekiri. Sekat ini selain berguna untuk mebagi tekanan ke bagian belakang, depan, dan

samping bangunan, tapi juga untuk membagi tekanan kebagian bawah bangunan.

Bahan yang digunakan untuk tempat penampung seperti dalam bab sebelumnya yaitu menggunakan stainless steel. stainless steel ini merupakan materi yang tahan karat dan kuat dalam menahan beban. Ketebalan stainless stail yang digunakan untuk samping, depan dan belakang bangunan adalah dalam bangunan ini adalah 5 mm sedangkan untuk sekat-sekat dalam bangunan adalah 3 mm.

Penampungan air tersebut terletak di bawah kereta. kondisi tempat penampungan ini tergantung dengan ditahan lempengan besi. Ini disebabkan lahan yang tersedia dalam desain kereta api hanya di bagian bawah kereta.

6.3.1.2 Desain

Tempat penampungan didesain menjadi dua untuk masing-masing kereta. Pembagian tersebut disesuaikan dengan jumlah toilet sehingga kereta makan memiliki tempat penampungan hanya satu. Pembagian tempat penampungan tersebut bertujuan untuk tetap menjaga keseimbangan kereta selama perjalanan.

Sesuai dengan perhitungan pada bab sebelumnya, ada beberapa kereta dengan kelas yang sama memiliki debit limbah yang sama. Hal ini dapat dijadikan acuan dalam proses pendesainan untuk membuat desain secara tipikal untuk beberapa kereta. Tipikal yang akan direncakan berdasarkan nilai debit sehingga tipikal desainnya tidak akan jauh berbeda.

Tabel 6. 4 Volume Air Limbah Kereta dan Penampungan

		Kali	Volume Air	Tipikal	
No	Kereta	Pengu rasan	Liter/ kereta. perjalanan	Penam pungan	Penam pungan
1	Kereta Ekonomi KA Dhoho	2	969,6	242,4	Kecil (K)
2	Kereta Makan KA Dhoho	2	424	212,0	Kecil (K)

		Kali	Volume Air	Tipikal	
No	Kereta	Pengu rasan	Liter/ kereta. perjalanan	Penam pungan	Penam pungan
3	Kereta Ekonomi KA Penataran	2	969,6	242,4	Kecil (K)
4	Kereta Makan KA Penataran	2	424	212,0	Kecil (K)
5	Kereta Ekonomi Tumapel	2	969,6	242,4	Kecil (K)
6	Kereta Makan Tumapel	2	424	212,0	Kecil (K)
7	Kereta Ekonomi KRD Kertosono	1	569,6	284,8	Besar (B)
8	Kereta Makan KRD Kertosono	1	224	224,0	Kecil (K)
9	Kereta Ekonomi Probowangi	3	969,6	161,6	Kecil (K)
10	Kereta Makan Probowangi	3	424	141,3	Kecil (K)
11	Kereta Ekonomi Gaya Baru Malam	3	1369,6	228,3	Kecil (K)
12	Kereta Makan Gaya Baru Malam	3	625,6	208,5	Kecil (K)
13	Kereta Ekonomi Pasundan	3	1369,6	228,3	Kecil (K)
14	Kereta Makan Pasundan	3	625,6	208,5	Kecil (K)
15	Kereta Eksekutif Bangunkarta	3	2083,2	347,2	Besar (B)
16	Kereta Makan Bangunkarta	3	425,6	141,9	Kecil (K)
17	Kereta Eksekutif Turangga	3	2083,2	347,2	Besar (B)
18	Kereta Makan Turangga	3	425,6	141,9	Kecil (K)
19	Kereta Eksekutif Argowilis	3	2083,2	347,2	Besar (B)
20	Kereta Makan	3	425,6	141,9	Kecil (K)

		Kali	Volume Air	Tipikal	
No	Kereta	Kereta Pengu Liter/ rasan kereta. perjalanan		Penam pungan	Penam pungan
	Argowilis				
21	Kereta Bisnis Mutiara Selatan	3	902,4	150,4	Kecil (K)
22	Kereta Makan Mutiara Selatan	3	425,6	141,9	Kecil (K)
23	Kereta Bisnis Sancaka	2	502,4	125,6	Kecil (K)
24	Kereta Eksekutif Sancaka	2	1083,2	270,8	Besar (B)
25	Kereta Makan Sancaka	2	225,6	112,8	Kecil (K)
26	Kereta Bisnis Mutiara Timur	3	902,4	150,4	Kecil (K)
27	Kereta Eksekutif Mutiara Timur	3	2083,2	347,2	Besar (B)
28	Kereta Makan Mutiara Timur	3	425,6	141,9	Kecil (K)

Sumber : Data primer 2016 dan hasil perhitungan

Pada Tabel 6.4 dapat diketahui ada beberapa variasi debit air limbah diantaranya debit 141,9 liter/perjalanan, debit 150,4 liter/perjalanan, debit 208,5 liter/perjalanan, debit 212 liter/perjalanan, debit 224 liter/perjalanan dan debit 228,3 liter/perjalanan masuk kedalam tipikal kecil (K); dan debit 270,8 liter/perjalanan, 284,8 liter/perjalanan, dan debit 347,2 liter/perjalanan masuk kedalam tipikal besar (B);

6.3.1.3 Dimensi

Dimensi penampungan dibuat kedalam beberapa bagian sesuai pengkatagorian Tabel 6.4. pada tabel tersebut dimensi penampungan dibagi ke dalam beberapa tipikal yaitu tipikal kecil, sedang, besar, dan besar sekali. Dimensi penampungan dihitung dari debit yang paling besar pada kisaran debit tipikalnya masing-masing.

- Tipikal Kecil (K)

Tempat penampungan air limbah kereta tipikal kecil seperti dalam Tabel 6.4 berlaku untuk semua kereta ekonomi, bisnis, dan makan kecuali kereta ekonomi KRD Kertosono. Berikut perhitungan volume tempat penampungan tipikal kecil

$$V_{tK} = 242.4 \ liter \approx 0.243 \ m^3$$

Jadi volume tempat penampungan kereta ekonomi tipikal kecil untuk satu tempat penampungan adalah 0,243 m³.

Tinggi volume penampungan direncakan adalah 0,5 m. Angka tersebut diambil karena jarang bagian bawah kereta dengan rel adalah 0,9 m. Lebar tempat penampungan direncakan adalah 0,5 m. Sehingga panjang tempat penampungan dapat dicari dari volume yang didapat.

$$p_{t K} = \frac{V_{t K}}{l_{t K} \times t_{t K}}$$

$$p_{t K} = \frac{0.243 m^{3}}{0.5 m \times 0.5 m}$$

$$p_{t K} = 1 m$$

Jadi lebar, tinggi, dan panjang tempat penampungan masing-masing adalah adalah 0,5 m, 0,5 m, dan 1 m.

Tempat penampungan dibuat sekat-sekat dengan jarak lebar (panjang bangunan) 0,25 m. Sehingga dalam 1 m panjang bangunan terdapat 2 sekat. Masing-masing sekat memili tebal 0,003 m. Selain sekat, tebal lapisan sisi bangunan juga memiliki tebal 0,005 m. Sehingga panjang total bangunan dapat di jumlahkan sebagai berikut.

$$\begin{aligned} p_{t\,K} \, total &= \left(\left(\frac{p_{t\,K}}{0,25\,m} - 1 \right) \times w \, sekat \right) + \left(2 \times w \, bangunan \right) + p_{t\,K} \\ p_{t\,K} \, total &= \left(\left(\frac{0,98\,m}{0,25\,m} - 1 \right) \times 0,003\,m \right) + \left(2 \times 0,005\,m \right) + 1\,m \\ p_{t\,K} \, total &= 0,009\,m + 0,010\,m + 1\,m \\ p_{t\,K} \, total &= 1,019\,m \end{aligned}$$

Jadi panjang total bangunan penampungan tipikal kecil adalah 1,019 m.

Bukan hanya panjang bangunan, lebar bangunan juga memiliki sisi-sisi tebal 0,005 m sehingga lebar bangunan total ditambah dengan 2 kali tebal bangunan. Berikut perhitungan lebar total bangunan.

$$l_{tK}$$
 total = $(2 \times l \ bangunan) + l_{tK}$
 l_{tK} total = $(2 \times 0,005 \ m) + 0.5 \ m$
 l_{tK} total = $0.51 \ m$

Jadi lebar total bangunan penampungan tipikal kecil adalah 0,51 m.

Begitupun tinggi bangunan. Tinggi bangunan di tambah dengan tebal bawah dan atas bangunan penampung. Tebal atas bangunan adalah 0,003 m sedangkan tebal bawah bangunan adalah 0,005 m. Pengambilan angka ketebalan yang berbed ini disebabkan bagian atas dan bagian bawah memiliki beban berat yang berbeda. Bagian bawah tempat penampungan menahan beban berat lebih besar sehingga lebih tebal. Selain penambahan tebal plat atas bawah tempat penampungan, bangunan jugamemiliki free board 0,018 m, pipa inlet 0,089 dan tutup penguras dengan tinggi 0,07 m. Berikut perhitungan tinggi total.

$$t_{t\,K}$$
 total = alas + atap + $t_{t\,K}$ + pipa inlet + fb + penguras $t_{t\,K}$ total = 0,005 m + 0,003 m + 0,5 m + 0,089 + 0,018 m + 0,07 m

$$t_{t K}total = 0,735 m$$

Jadi tinggi total bangunan penampungan tipikal kecil (K) adalah 0,731 m (Gambar 6.1, Gambar 6.2, dan Gambar 6.3).

- Tipikal Besar (B)

Tempat penampungan air limbah kereta tipikal besar seperti dalam Tabel 6.4 berlaku untuk kereta ekonomi KRD dan semua kereta eksekutif. Berikut perhitungan volume tempat penampungan tipikal besar.

$$V_{tB} = 347.2 \ liter \approx 0.348 \ m^3$$

Tinggi volume penampungan direncakan adalah 0,5 m. Angka tersebut diambil karena jarang bagian bawah kereta dengan rel adalah 0,9 m. Lebar tempat penampungan

direncakan adalah 0,5 m. Sehingga panjang tempat penampungan dapat dicari dari volume yang didapat.

$$p_{tB} = \frac{V_{tB}}{l_{tB} \times t_{tB}}$$

$$p_{tB} = \frac{0.348 \text{ m}^3}{0.5 \text{ m} \times 0.5 \text{ m}}$$

$$p_{tB} = 1.5 \text{ m}$$

Jadi lebar, tinggi, dan panjang tempat penampungan masing-masing adalah adalah 0,5 m, 0,5 m, dan 1,5 m.

Tempat penampungan dibuat sekat-sekat dengan jarak lebar (panjang bangunan) 0,3 m. Sehingga dalam 1,5 m panjang bangunan terdapat 5 sekat. Masing-masing sekat memili tebal 0,003 m. Selain sekat, tebal lapisan sisi bangunan juga memiliki tebal 0,005 m. Sehingga panjang total bangunan dapat di jumlahkan sebagai berikut.

$$\begin{aligned} p_{t\,B}total &= \left(\left(\frac{p_{t\,B}}{0.25\,m} - 1 \right) \times l\,sekat \right) + (2 \times l\,bangunan) + p_{t\,B} \\ p_{t\,B}total &= \left(\left(\frac{1.5\,m}{0.25\,m} - 1 \right) \times 0.003\,m \right) + (2 \times 0.005\,m) + 1.5\,m \\ p_{t\,B}total &= 0.015\,m + 0.010\,m + 1.5\,m \\ p_{t\,B}\,total &= 1.525\,m \end{aligned}$$

Jadi panjang total bangunan penampungan tipikal besar adalah 1,525 m.

Bukan hanya panjang bangunan, lebar bangunan juga memiliki sisi-sisi tebal 0,005 m sehingga lebar bangunan total ditambah dengan 2 kali tebal bangunan. Berikut perhitungan lebar total bangunan.

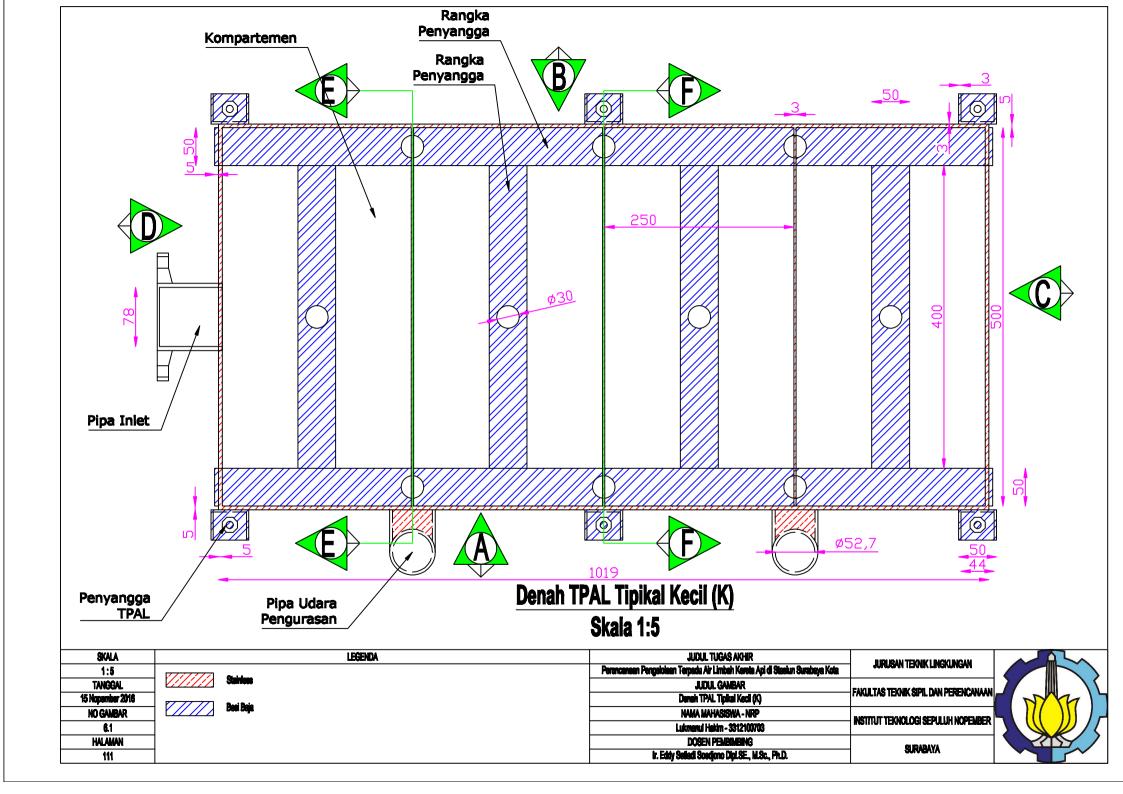
$$l_{tB}total = (2 \times l \ bangunan) + l_{tB}$$

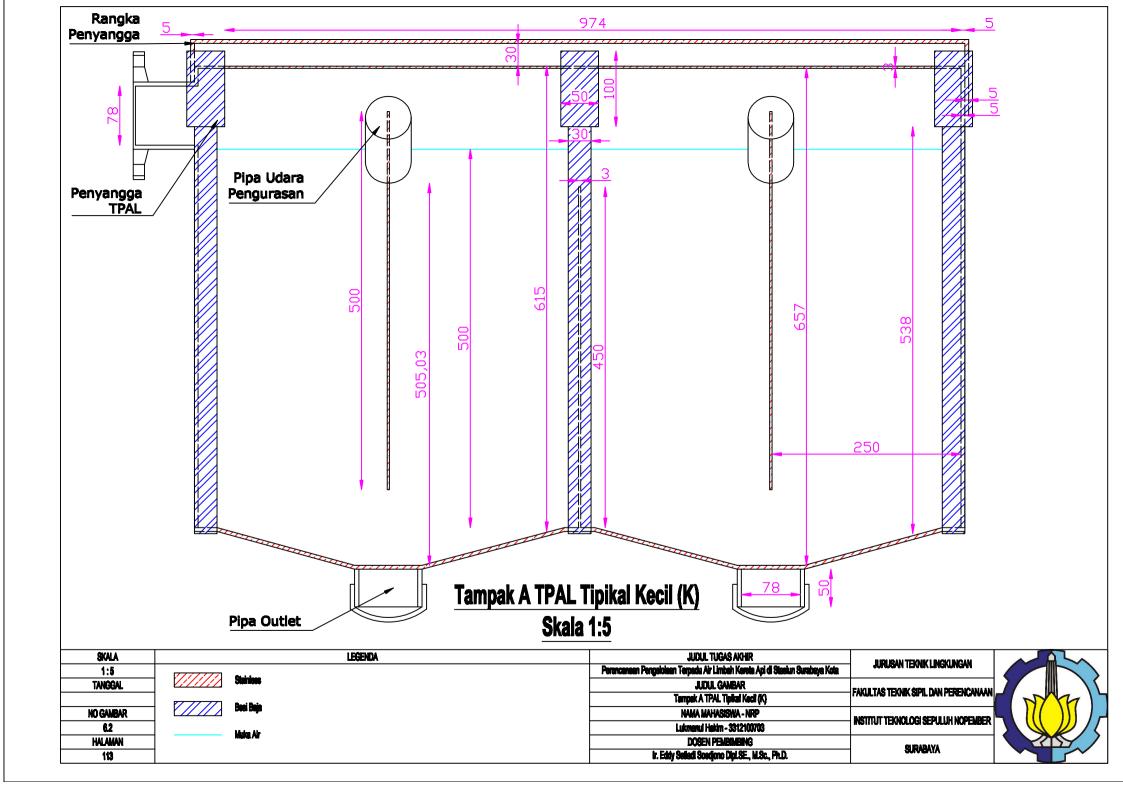
 $l_{tB}total = (2 \times 0.005 \ m) + 0.5 \ m$
 $l_{tB}total = 0.51 \ m$

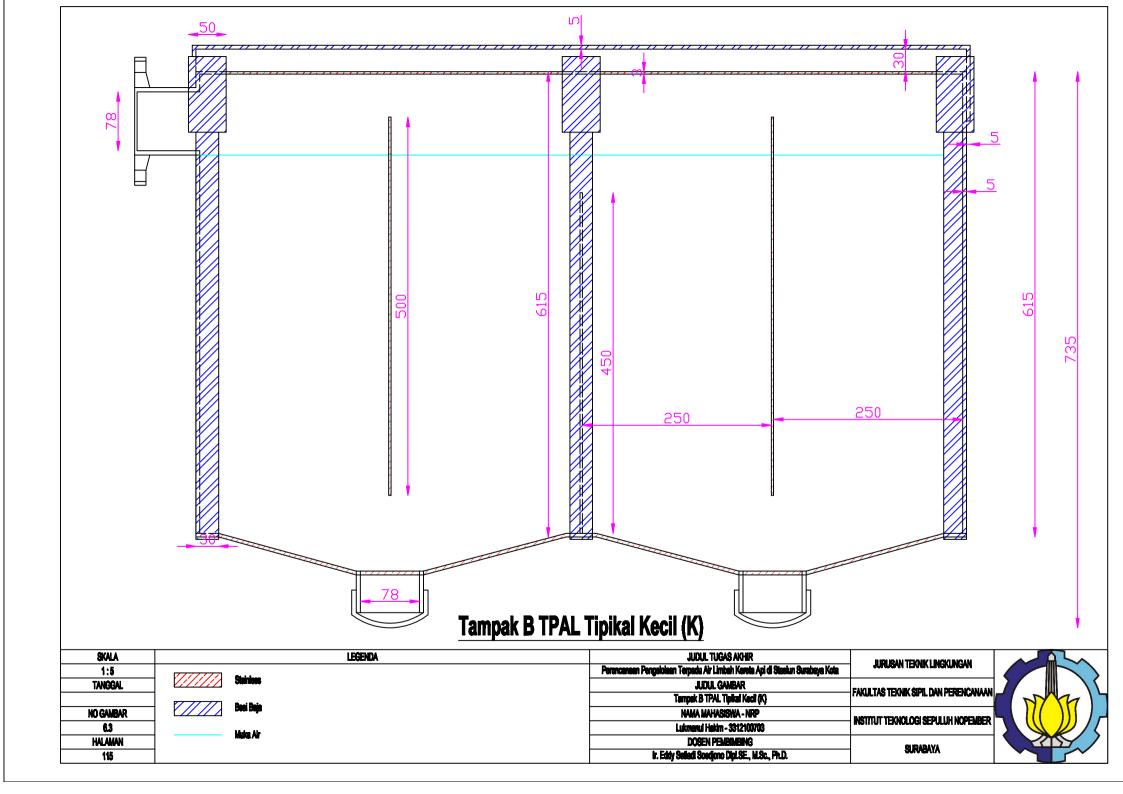
Jadi lebar total bangunan penampungan tipikal besar adalah 0,51 m.

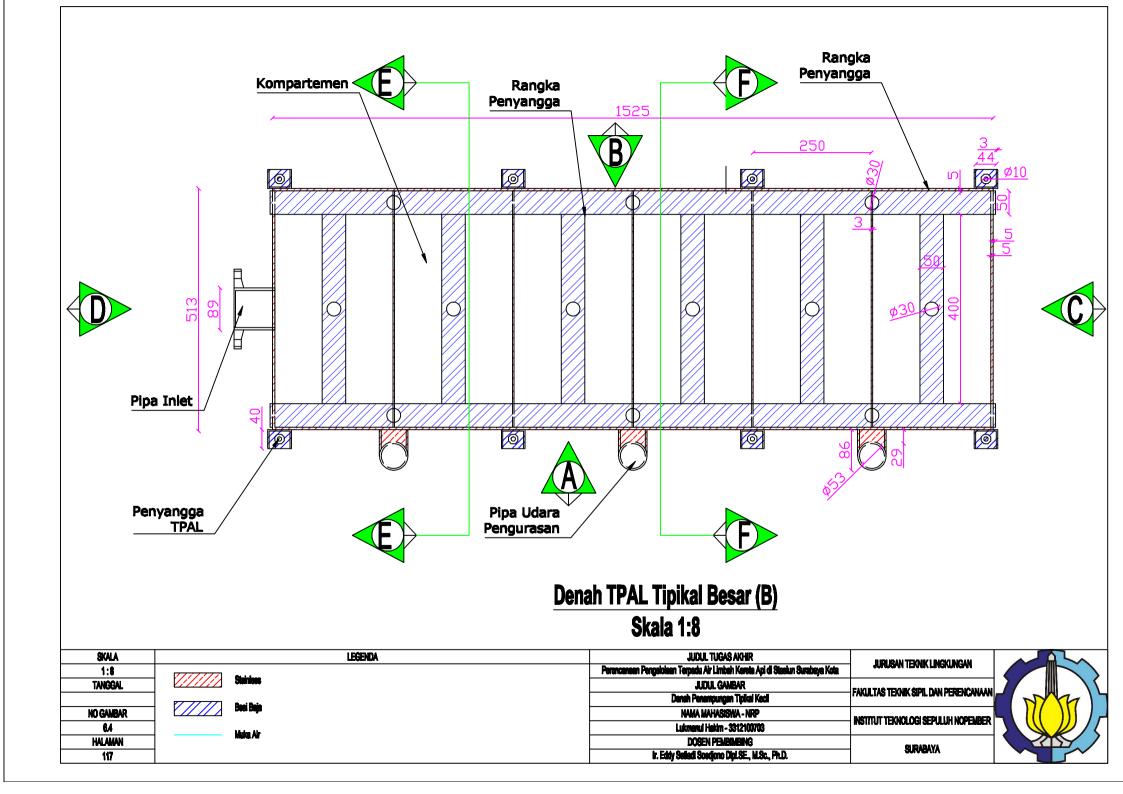
Begitupun tinggi bangunan. Tinggi bangunan di tambah dengan tebal bawah dan atas bangunan penampung. Tebal

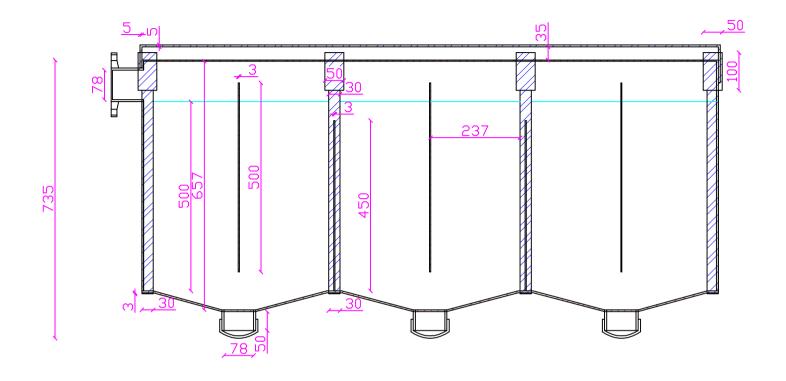
atas bangunan adalah 0,003 m sedangkan tebal bawah bangunan adalah 0,005 m. Pengambilan angka ketebalan yang berbed ini disebabkan bagian atas dan bagian bawah memiliki beban berat yang berbeda. Bagian bawah tempat penampungan menahan beban berat lebih besar sehingga lebih tebal. Selain penambahan tebal plat atas bawah tempat penampungan, bangunan jugamemiliki free board 0,018 m, pipa inlet 0,089 dan tutup penguras dengan tinggi 0,07 m. Berikut perhitungan tinggi total.

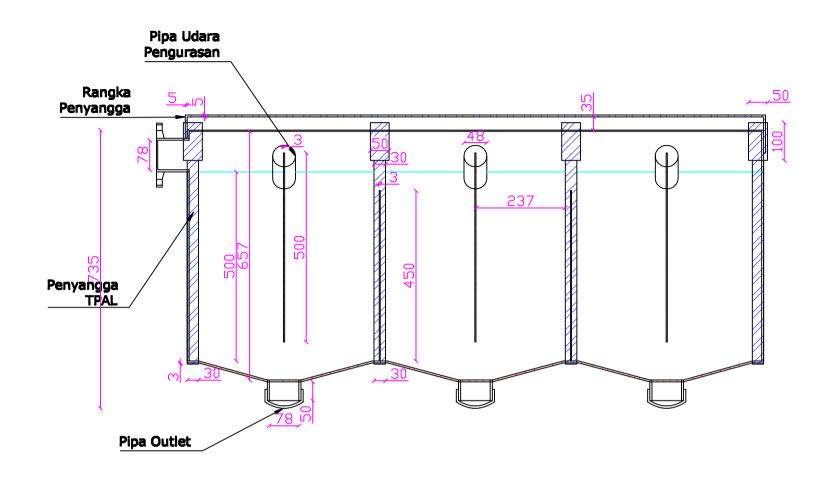

 $t_{t\,B}total = alas + atap + t_{t\,B} + pipa\ inlet + fb + penguras$ $t_{t\,B}total = 0,005\ m + 0,003\ m + 0,5\ m + 0,089 + 0,018\ m + 0,07\ m$ $t_{t\,B}total = 0,735\ m$

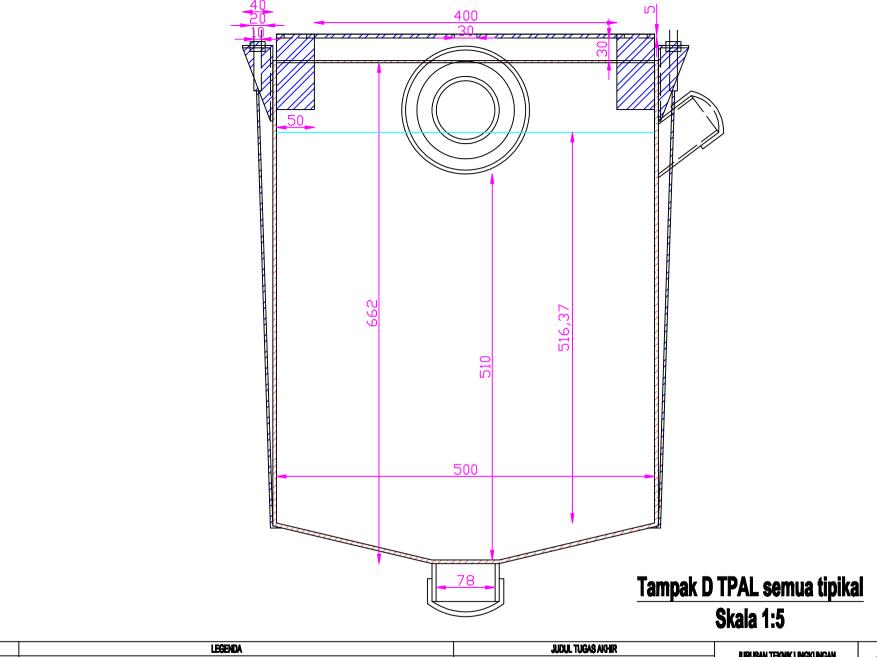

Jadi tinggi total bangunan penampungan tipikal besar adalah 0,735 m. Berikut gambar bangunan penampungan tipikal besar (Gambar 6.4, Gambar 6.5, Gambar 6.6, Gambar 6.7, Gambar 6.8, Gambar 6.9, dan Gambar 6.10).


Tabel 6. 5 Dimensi Bangunan Penampungan Air Limbah Kereta

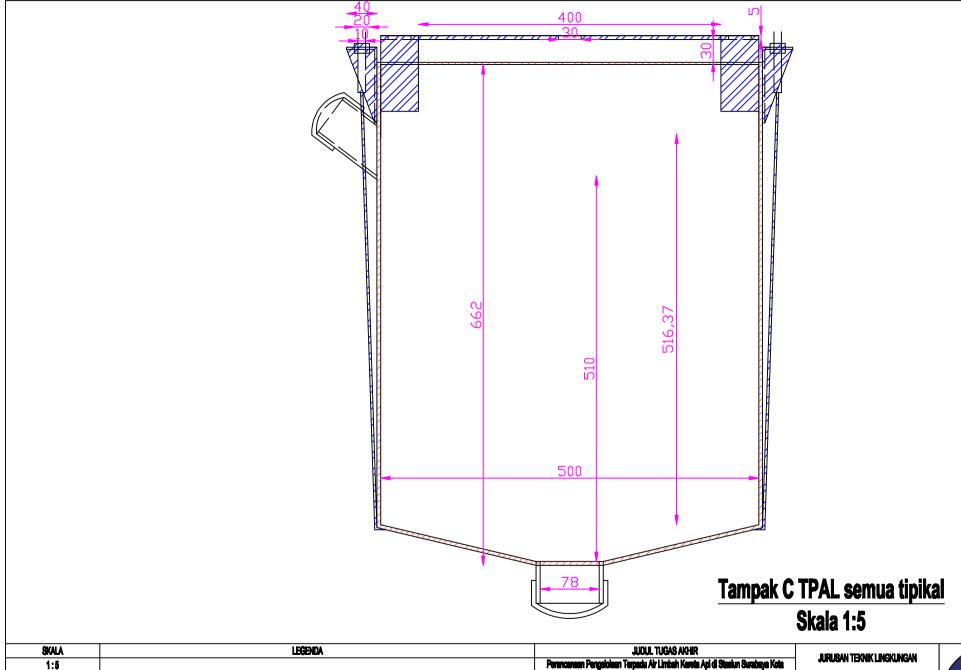

No	Jenis Tempat	Debit Penampu	Dimensi Bangunan (m)		Dimensi Total Bangunan (m)			Tot al	
NO	Penampu ngan	ngan (m³)	Lebar	Panjan g	Tinggi	Lebar	Panjang	Tinggi	(bu ah)
1	Tipikal Kecil (K)	0,243	0,5	1	0,5	0,51	1,019	0,735	120
2	Tipikal Besar (B)	0,348	0,5	1,5	0,5	0,51	1,525	0,735	54


Sumber : Hasil Perhitungan

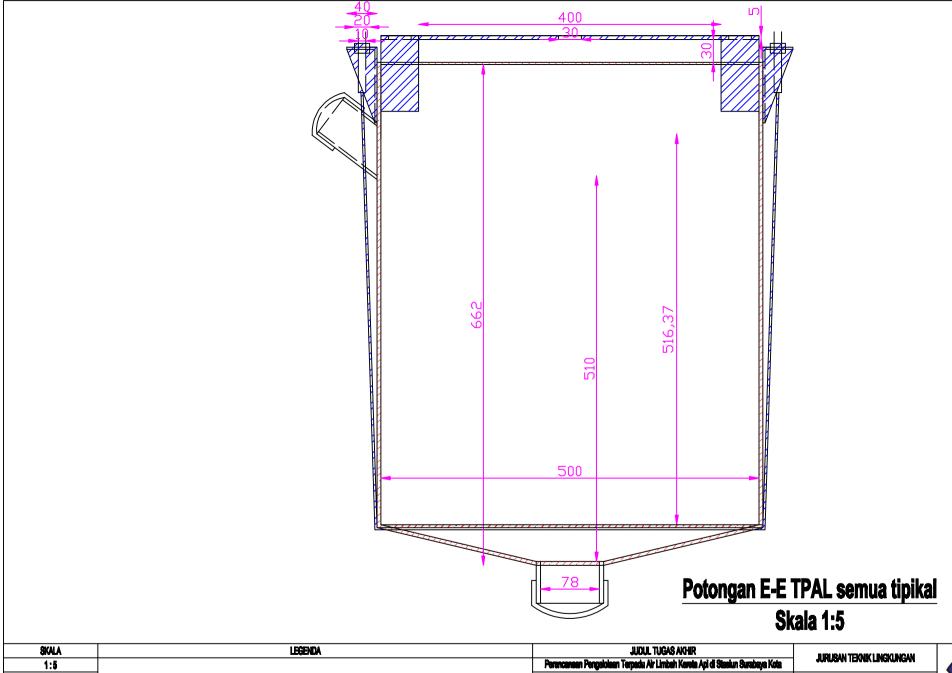



Tampak B TPAL Tipikal Besar (B) Skala 1:10

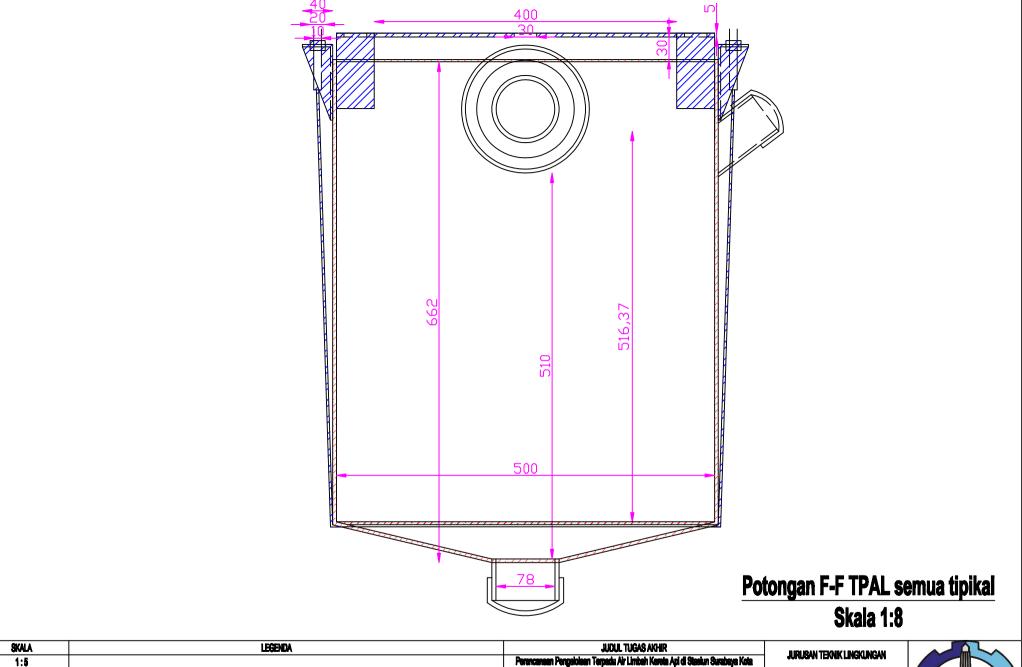
SKALA	LEGENDA	JUDUL TUGAS AKHIR	JURUSAN TEKNIK LINGKUNGAN		
1:10		Perencanaan Pengelolaan Terpadu Air Limbeh Kereta Api di Staelun Surabaya Kota.	SOURCE I I I I I I I I I I I I I I I I I I I		
TANGGAL.		JUDUL GAMBAR	FAKULTAS TEKNIK SIPIL DAN PERENCANAAN		MN.
		Deneh Penempungan Tipikal Kecil	TANGLING IENIK SIFILDAN PERENGANANI	W W	1
NO GAMBAR		NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER		1)
6.6		Lukmenul Heikim - 3312100703	- INSTITUTI TEXNOLOGI SEPULUN NOPENBER	\mathcal{L}	עש
HALAMAN		DÔSEN PEMBIMBING	SURABAYA	1	MY
121		ir. Eddy Setladi Soedjono Dipi.SE., M.Sc., Ph.D.	SUIVENIA		


Tampak A TPAL Tipikal Besar (B) Skala 1:10

SKALA	LEGENDA	JUDUL TUGAS AKHIR	JURUSAN TEKNIK LINGKUNGAN	
1:10		Perencanaan Pengelolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota	JURUSHN I ENNIK LINGKUNGAN	4
TANGGAL		JUDUL GAMBAR	FAKULTAS TEKNIK SIPIL DAN PERENCANAAN	1
		Densh Penampungan Tipikal Kecil	TANGLIAS IEMIK SIFIL DAN PERENGAWAN	
NO GAMBAR		NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	4
6.5		Lukmenul Hakim - 3312100703	INSTITUT TEMOLOGI SEPULUN NOPEMBER	
HALAMAN		DOŞEN PEMBIMBING	SURABAYA	1
119		Ir. Eddy Seiledi Soedjono Dipi.SE., M.Sc., Ph.D.	GUVENIA	



SKALA	LEÇENDA	JUDUL TUĞAS AKHIR	JURUSAN TEKNIK LINGKUNGAN	
1:5		Perencanaan Pengelolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota	JURUSHN IENNIK LINGKUNGHN	
TANGGAL		JUDUL GAMBAR	FAKULTAS TEKNIK SIPIL DAN PERENCANAAN	
		Tempek D TPAL Tiplical Kecil (K)	PANULIAS IEMIK SIFILDAN PERENCANAN	WY
NO GAMBAR		NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	
6.7		Lukmenul Hakim - 3312100703	Maillot IEMotodiaePoton NoPEMBER	
HALAMAN		DOSEN PEMBING	SURABAYA	
123		Ir. Eddy Sedadi Scedjono Dipl.SE., M.Sc., Ph.D.	GUIVENIA	



SKALA	LEÇENDA	JUDUL TUĞAŞ AKHIR	JURUSAN TEKNIK LINGKUNGAN	
1:5		Perencanaan Pengelolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota	JUNUSIAN IEWAN TIMOVONOMA	
TANGGAL		JUDUL GAMBAR	- FAKULTAS TEKNIK SIPIL DAN PERENCANAAN	
		Tampak C TPAL Tiplical Kecil (K)	TANGLING IEMIK SIFIL DAN PERENGANAN	W W
NO GAMBAR		NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	
6.8		Lukmenul Hakim - 3312100703	INSTITUT TEXNOLOGI SEPULUN NOPEMBER	
HALAMAN		DOSEN PENEMBING	SURABAYA	
125		ir. Eddy Sededi Soedjono Dipl.SE., M.Sc., Ph.D.	GUIVENIA	

SKALA	LEĢENDA	JUDUL TUĞAS AKHIR	JURUSAN TEKNIK LINGKUNGAN	
1:5		Perencanaan Pengelolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota	SURGAN IEMIN LINGNUNGAN	
TANGGAL		JUDUL GAMBAR	FAKULTAS TEKNIK SIPIL DAN PERENCANAAN	
		Densh Penempungan Tipikal Kecil	TANGLIAS IEMIN SIFIL DAN PERENGANAN	- WY
NO GAMBAR		NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	
6.9		Lukmenul Hakim - 3312100703	INSTITUT TERMOLOGI SEPULUN NOPEMBER	
HALAMAN		DOSEN PEMBINGI	SURABAYA	
127		Ir. Eddy Sededi Soedjono Dipl.SE., M.Sc., Ph.D.	GUIVENIA	

SKALA	LEGENDA	JUDUL TUGAS AKHIR	JURUSAN TEKNIK LINGKUNGAN	
1:5		Perencanaan Pengelolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota	SOURCE I ENVIR LINGUUMENN	
TANGGAL		JUDUL GAMBAR	 FAKULTAS TEKNIK SIPIL DAN PERENCANAAN	
		Densh Penampungan Tipikal Kecil	FAMILIAS IEMIKSIPILDAN PENENGAWAN	W W
NO GAMBAR		NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	
6.10		Lukmanul Hakim - 3312100703	Mailloi IEMOLOGISEPOLOR NOPEMBER	
HALAMAN		DÖŞEN PEMBINBING	SURABAYA	
129		tr. Eddy Setladi Soedjono Dipl.SE., M.Sc., Ph.D.	GUIVENIA	
		• • • •		

6.3.2 Pengurasan

Pengelolaan tahap kedua dalam perencanaan pengelolaan air limbah kereta api adalah pengurasan. Pengurasan dilakukan distasiun menggunakan metode gravitasi sesuai hasil pemilihan alternatif pengelolaan pada bab sebelumnya. Pengurasan menggunakan selang elastis langsung terhubung dengan tahap penyaluran.

Tabel 6. 6 Stasiun yang Memiliki Tempat Pengisian Air di Pulau Jawa

NO	NAMA	PENGELOLA
1	Rangkasbitung, Jakartakota, Gambir, Pasar Senen, Bogor,Bekasi, Cikampek	Daop 1 Jakarta
2	Purwakarta, Bandung, Kiaracondong, Tasikmalaya, Banjar	Daop 2 Bandung
3	Cirebon, Cirebon perujakan	Daop 3 Cirebon
4	Tegal, Semarangponcol, Semarangtawang, Cepu, Bojonegoro	Daop 4 Semarang
5	Purwokerto, Kroya, Kutoarjo	Daop 5 Purwokerto
6	Yogyakarta, lempuyangan, Solobalapan	Daop 6 Yogyakarta
7	Madiun, Kertosono, Kediri,	Daop 7 Madiun
8	Surabayagubeng, Surabaya Pasarturi, Malang, Blitar	Daop 8 Surabaya
9	Banyuwangi Baru, Jember, Probolinggo,	Daop 9 Jember

Sumber: www.kereta-api.co.id, 2016

6.3.2.1 Sistem Pengurasan

Pengurasan dilakukan dengam sistem gravitasi tanpa bantuan pompa. Pengurasan dilakukan di beberapa stasiun khususnya stasiun yang memiliki pengisian air (Tabel 6.6). Jumlah kali pengurasan berbeda-berbeda tergantung kelas, pengisian air, dan tempat penampungan. Setiap lokasi pengurasan memiliki jarak waktu tempuh lebih dari 3 jam sehingga proses pengurasan akan efektif (Tabel 6.7).

Tabel 6. 7 Jumlah dan Lokasi Pengursan setiap Kereta Api Surabaya

			engursan setiap Kei Lokasi Pe	-
No	Kereta	Kali Pengurasan	Ke Surabaya	Dari Surabaya
1	KA Dhoho	2	Kertosono dan Surabaya	Kertosono dan Blitar
2	KA Penataran	2	Pasuran dan Surabaya	Pasurauan dan Blitar
3	KA Tumapel	2	Pasuran dan Surabaya	Pasurauan dan Malang
4	KRD Kertosono	1	Surabaya	Kertosono
5	KA Probowangi	3	Jember, Probolinggo, dan Surabaya	Probolinggo, Jember, dan Banyuwangi
6	KA Gaya Baru Malam	3	Yogyakarta, Madiun, dan Surabaya	Yogyakarta, Cirebon, dan Jakarta
7	KA Pasundan	3	Yogyakarta, Madiun, dan Surabay	Yogyakarta, Banjar, dan Bandung
8	KA Bangunkarta	3	Semarang, Madiun, dan Surabaya	Madiun, Semarang, dan Jakarta

		Kali	Lokasi Pe	ngurasan
No	Kereta	Pengurasan	Ke Surabaya	Dari Surabaya
9	KA Turangga	3	Yogyakarta, Madiun, dan Surabay	Yogyakarta, Banjar, dan Bandung
10	KA Argowilis	3	Yogyakarta, Madiun, dan Surabay	Yogyakarta, Banjar, dan Bandung
11	KA Mutiara Selatan	3	Yogyakarta, Madiun, dan Surabay	Yogyakarta, Banjar, dan Bandung
12	KA Sancaka	2	Madiun dan Surabaya	Madiun dan Yogyakarta
13	KA Mutiara Timur	3	Jember, Probolinggo, dan Surabaya	Probolinggo, Jember, dan Banyuwangi

Sumber: Hasil Perencanaan

Pengurasan pada stasiun-stasiun dilakukan pada jalur kedatangan. Oleh karena itu pipa pengurasan terletak persis dibawah atau disamping kereta berhenti. Proses pengurasan di stasiun-stasiun dilakukan ketika proses naikturun penumpang dan/atau pengisian air berlangsung. Hal ini dilakukan untuk meminimalisir waktu berhenti kereta api.

Berbeda dengan stasiun-stasiun, Pengurasan tempat penampungan di stasiun surabaya kota di lakukan di dua rel paling pinggir tempat pencucian kereta seperti pada Gambar 6.15. pengurasan dilakukan dengan menfaatkan gravitasi dan perbedaan ketinggian antara tanah dan penampungan. Penampungan kereta berada pada ketinggian 0,2 m diatas permukaan rel kereta.

Pengurasan dilakukan pada setiap kereta dengan menggunakan dua buah selang penguras. Kedua selang penguras disimpan sesuai tempat penampungan. Dimana pada panjang kereta 20,5 meter terdapat dua selang pengurasan diujung depan dan ujung belakang. Penyimpanan kedua selang tersebut bertujuan agar selang bisa sampai pada tempat penampungan.

Panjang rata-rata jalur rel kereta pencucian memiliki panjang sekitar 246 meter. Dengan kondisi itu, penyimpanan selang disimpan dibagi menjadi 12 tempat atau area dengan masing-masing dua selang. Banyak selang yang digunakan untuk pengurasan dengan 12 area pengurasan adalah 24 selang.

Selang untuk pengurasan direncakan tidak seperti selang biasa, selang yang digunakan adalah selang elastis sehingga mudah digunakan. Selang tersebut berukuran sesuai dengan pipa penguras yaitu 75 milimeter.

6.3.2.2 Debit Pengurasan

Untuk menghitung debit pengurasan dapat dengan rumus mekanika fluida. Dimana debit akan dipengaruhi oleh ketinggian air dalam tempat penampungan (h), kecepatan aliran (v), dan gravitasi. Debit pengurasan berasal dari kompartemen masing-masing penampungan. Dua kompartemen dijadikan satu bagian dalam tahap pengurasan sehingga volume untuk satu pengurasan didapat dari perhitungan dua kompartemen. Debit pengurasan harus memenuhi debit rata-rata, puncak dan minimum. Ketiga hal tersebut dibutuhkan untuk mendesain penyaluran.

Debit rata-rata dihitung menggunakan pehitunga normal dari penampungan tipikal sedang dengan dimensi panjang x lebar x tinggi masing-masing adalah 0,5 m x 0,5 m. Untuk mendapat debit terlebih dahulu dicari kecepatan aliran air untuk debit rata-rata. Berikut perhitungan kecepatan pengurasan debit rata-rata

$$v = \sqrt{2 \times g \times h}$$
$$v = \sqrt{2 \times 9.8 \times 0.5}$$

$$v = 3,1305 \, m/s$$

Jadi kecepatan aliran pada tempat penampungan dengan ketinggian air 0,5 m dari pipa pengurasan adalah 3,04 m/s

Debit dapat dihitung dengan kecepatan dan luas permukaan pipa pengurasan. Dimana pipa pengurasan memiliki diameter 75 mm. Berikut perhitungan debit rata-rata pengurasan

$$Q_k rata = v \times As$$

$$Q_k rata = 3,1305 \times \left(\frac{1}{4} \times \pi \times d^2\right)$$

$$Q_k rata = 3,1305 \times 0,00442$$

$$Q_k rata = 0,013836 m^3/s$$

Jadi debit rata-rata pengurasan adalah 0,013836 m³/s.

Berbeda dengan debit rata-rata, debit puncak dihitung dari ketinggian kompartemen dari ketinggian total penampungan yaitu 0,547 m. Berikut perhitungan kecepatan pengurasan debit puncak

$$v = \sqrt{2 \times g \times h}$$

$$v = \sqrt{2 \times 9.8 \times 0.547}$$

$$v = 3.2473 \text{ m/s}$$

Jadi kecepatan aliran pada tempat penampungan dengan ketinggian air 0,547 m dari pipa pengurasan adalah 3,2473 m/s.

Debit dapat dihitung dengan kecepatan dan luas permukaan pipa pengurasan. Dimana pipa pengurasan memiliki diameter 75 mm. Berikut perhitungan debit puncak pengurasan.

$$Q_k \ puncak = v \times As$$

$$Q_k \ puncak = 3,2473 \times \left(\frac{1}{4} \times \pi \times d^2\right)$$

$$Q_k \ puncak = 3,2473 \times 0,00442$$

$$Q_k \ puncak = 0,014352 \ m^3/s$$

Jadi debit puncak pengurasan adalah 0,014771 m³/s.

Debit minimum dihitung dari penambahan tinggi penampungan yaitu 0,047 m. Berikut perhitungan kecepatan pengurasan debit minimum

$$v = \sqrt{2 \times g \times h}$$

$$v = \sqrt{2 \times 9.8 \times 0.047}$$

 $v = 0.9598 \, m/s$

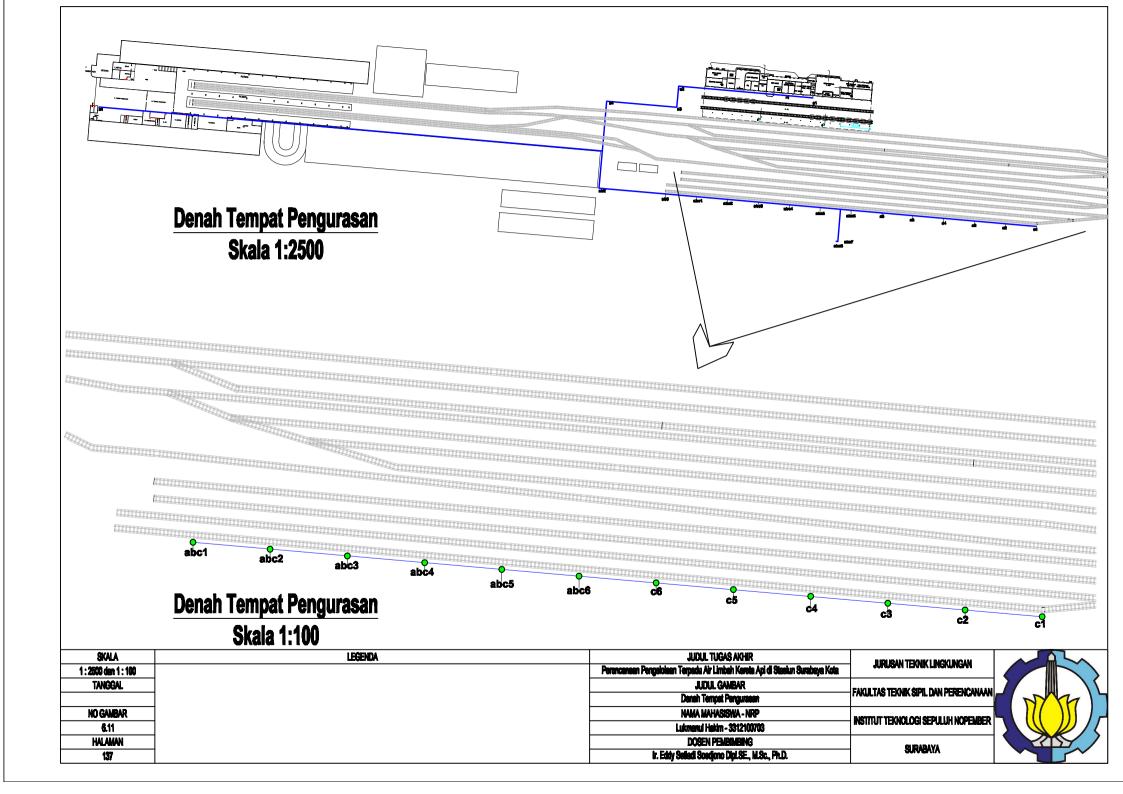
Jadi kecepatan aliran pada tempat penampungan dengan ketinggian air 0,047 m dari pipa pengurasan adalah 0,9598 m/s.

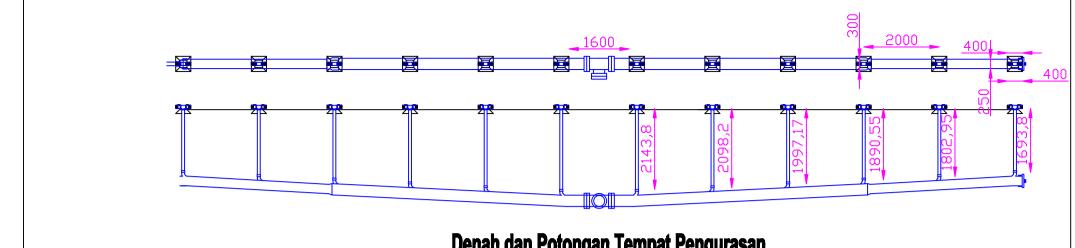
Debit dapat dihitung dengan kecepatan dan luas permukaan pipa pengurasan. Dimana pipa pengurasan memiliki diameter 75 mm. Berikut perhitungan debit minimal pengurasan

$$Q_k \min = v \times As$$

$$Q_k \min = 0.9598 \times \left(\frac{1}{4} \times \pi \times d^2\right)$$

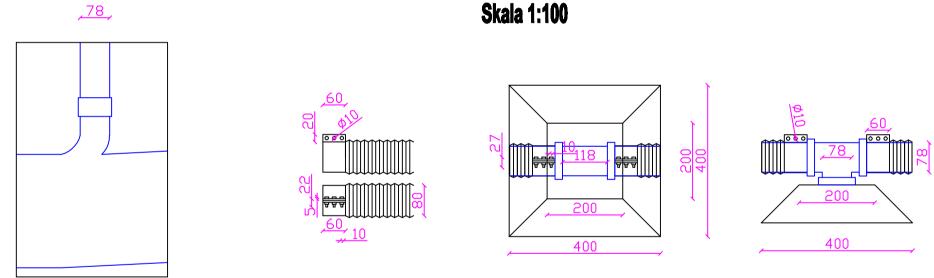
$$Q_k \min = 0.9598 \times 0.00442$$


$$Q_k \min = 0.004242 \text{ m}^3/\text{s}$$


Jadi debit rata-rata pengurasan adalah 0,004242 m³/s.
Dalam menghitung waktu pada pengurusan

$$t = \frac{V}{Q}$$

$$t = \frac{0,2735}{0,004242}$$
$$t = 65 detik$$


Jadi untuk satu kereta dengan penampungan tipikal besar memerlukan waktu sekitar 4 menit 20 detik.

Denah dan Potongan Tempat Pengurasan

Skala 1:100

Detail Tempat Pengurasan Skala 1:10

SKALA	LEÇENDA	JUDUL TUĞAŞ AKHIR	JURUSAN TEKNIK LINGKUNGAN			L
1 : 100 dan 1 : 10		Perencanaan Pengelolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota	SOURCE I LEWIN THROUGHOW			
TANGGAL		JUDUL GAMBAR	FAKULTAS TEKNIK SIPIL DAN PERENCANAAN		Ш	
		Deneh Poingen den Dotall Pengurasan	PANULING IENIK SIFILUMI PERENGANAMI	7	Y	4
NO GAMBAR		NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER			11
6.12		Lukmenul Hekim - 3312100703	Maillot texhologi sepuluh hupelibek	70	1	ע
HALAMAN		DOSEN PEMBINBING	CUDADAVA		21 5	S
130		Ir. Eddy Seliedi Soedjono Dipl.SE., M.St., Ph.D.	SURABAYA			

6.3.3 Penyaluran

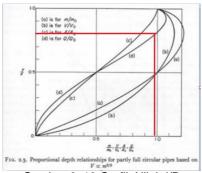
Sistem penyaluran air limbah pada perencanaan ini menggunakan sistem shallow sewer. Pemilihan sistem ini dikarenakan wilayah pelayanan hanyalah untuk stasiun sehingga cakupan dan produksi air limbahpun tidak terlalu besar.

6.3.3.1 Pembagian Segmen Pipa

Sistem penyaluran air limbah pada perencanaan ini dimulai dari ujung selang pengurasan. Penyaluran ini berfungsi melanjutkan perjalanan aliran air limbah dari pengurasan menuju tempat pengolahan. Selian itu, penyaluran juga berfungsi menyalurakan air limbah dari toilet stasiun surabaya.

Dalam tahap perencanaan penyaluran, dibagi segmen-segmen untuk mempermudah dalam menentukan diamter pipa dalam setiap segmen sehingga biaya lebih murah dan lebih efisien. Pembagian segmen tersebut disesuaikan dengan stasiun dan sistem pengurasan yang telah didesain sebelumnya. Berikut tabel pembagian segmen pipa pada sistem penyaluran.

Tabel 6. 8 Pembagian Segmen Pipa Penyaluran


No	Jalur Pipa	L pipa (m)	Sumber
1	a1-a2	89	Toilet Stasiun baru
2	a2-a3	14	-
3	a3-a4	46,6	-
4	a4-ab1	33	-
5	b1-b2	48	Toilet Stasiun lama
6	b2-ab1	286	
7	ab1-ab2	24,6	-
8	ab2-ab3	44,3	-

No	Jalur Pipa	L pipa (m)	Sumber
9	ab3-abc1	20	Pengurasan area 12
10	abc1-abc2	20	Pengurasan area 11
11	abc2-abc3	20	Pengurasan area 10
12	abc3-abc4	20	Pengurasan area 9
13	abc4-abc5	20	Pengurasan area 8
14	abc5-abc6	20	Pengurasan area 7
15	c1-c2	20	Pengurasan area 1
16	c2-c3	20	Pengurasan area 2
17	c3-c4	20	Pengurasan area 3
18	c4-c5	20	Pengurasan area 4
19	c5-c6	20	Pengurasan area 5
20	c6-abc6	20	Pengurasan area 6
21	abc6-abc7	22	-
22	abc7-abc8	5	-

Sumber: Hasil Perhitungan dan Perencanaan

6.3.3.2 Dimensi Pipa

Dimensi pipa pada perencanaan penyaluran ini dilakukan sesuai dengan segmen pipa yang telah dibuat. segmen pipa tersebut bergantung pada sumber air limbah yang masuk. Secara umum dimensi pipa direncanakan memakai pipa PVC dengan nilai n = 0,015 dan perbandingan diamter pipa dengan diamter renang (d/D) untuk setiap segmen adalah 0,8 sehingga memiliki nilai Qpeak/Qfull = 0,975 seperti grafik pada Gambar 6.13. Berikut perhitungan dimensi pipa masing-masing segmen.

Gambar 6. 13 Grafik Nilai d/D Sumber : Hasil perhitungan

- Jalur a1-a2

Jalur a1-a2 merupakan jalur rencana penyaluran air limbah untuk stasiun baru. Stasiun baru ini belum beroperasi namun setelah beroperasi akan menjadi tempat utama naik turun penumpang kereta. maka dari itu perhitungan air limbah berasal dari kegiatan stasiun yaitu penumpang, pegawai PT KAI, dan penjaga kantin. Ketiga elemen sumber air limbah stasiun tersebut memiliki perhitungan air limbah sendiri-sendir baik debit rata-rata, puncak, maupun minimum

Tabel 6 9 Debit Puncak Air Limbah

No	Komponen	Debit rata- rata
1	Pegawai KAI	0,00005833
2	Pegawai perusahaan vendor kebersihan	0,00012037
3	Penjaga Kantin	0,00000815
4	Pengunjung	0,00002875
	Total	0,00021775

Sumber: Hasil Pehitungan

Pada bab sebelumnya diterangkan bahwa (tabel 5.4 no 1, no 3, dan no 4) diketahui debit puncak berjumlah

0,00021775 . Ketinggian kontur di stasiun Surabaya Kota begitu landai sehingga slope harus dibuat. Slope pada perencanaan segmen a1-a2 ini dibuat sebesar 0,005 m/m. Berikut perhitungan diameter pipanya.

$$Qfull_{a1-a2} = \frac{Qpeak_{a1-a2}}{\left(\frac{Qpeak_{a1-a2}}{Qfull_{a1-a2}}\right)}$$

$$Qfull_{a1-a2} = \frac{0,000218}{(0,975)}$$

$$Qfull_{a1-a2} = 0,000223$$

$$D_{a1-a2} = \left(\frac{Qfull_{a1-a2} \times n}{0,3117 \times S^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

$$D_{a1-a2} = \left(\frac{0,000223 \times 0,015}{0,3117 \times 0,005^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

$$D_{a1-a2} = 0,037 m$$

Jadi diameter pipanya adalah 0,037 m atau diambil diameter pesar sebesar 0,100 m.

Jalur a2-a3

Jalur a2-a3 merupakan jalur lanjutan dari a1-a2. Segmen ini tidak mengalami pertambahan air limbah sehingga diamternya tetap sama seperti segmen sebelumnya yaitu 0,100 m.

Jalur a3-a4

Jalur a3-a4 merupakan jalur lanjutan dari a2-a3. Segmen ini tidak mengalami pertambahan air limbah sehingga diamternya tetap sama seperti segmen sebelumnya yaitu 0.100 m.

Jalur a4-ab1

Jalur a4-ab1 merupakan jalur lanjutan dari a3-a4. Segmen ini tidak mengalami pertambahan air limbah sehingga diamternya tetap sama seperti segmen sebelumnya yaitu 0,1 m.

Jalur b1-b2

Jalur b1-b2 merupakan jalur rencana penyaluran air limbah untuk stasiun lama. Perhitungan diameter pipa air limbah ini sesuai dengan pehitungan segmen a1-a2. Sumber air limbah berasal dari kegiatan stasiun yaitu penumpang, pegawai PT KAI, dan penjaga kantin. Ketiga elemen sumber air limbah stasiun tersebut memiliki perhitungan air limbah sendiri-sendiri baik debit rata-rata, puncak, maupun minimum

Pada bab sebelumnya diterangkan bahwa seperti tabel 5.4 diketahui debit puncak berjumlah 0,00021775. Ketinggian kontur di stasiun Surabaya Kota begitu landai sehingga slope harus dibuat. Slope pada perencanaan segmen b-ab1 ini dibuat sebesar 0,0025 m/m. Berikut perhitungan diameter pipanya.

$$Qfull_{b-ab1} = \frac{Qpeak_{b-ab1}}{\left(\frac{Qpeak_{b-ab1}}{Qfull_{b-ab1}}\right)}$$

$$Qfull_{b-ab1} = \frac{0,000218}{(0,975)}$$

$$Qfull_{b-ab1} = 0,000223$$

$$D_{b-ab1} = \left(\frac{Qfull_{b-ab1} \times n}{0,3117 \times S^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

$$D_{b-ab1} = \left(\frac{0,000223 \times 0,015}{0,3117 \times 0,0025^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

$$D_{b-ab1} = 0.042 m$$

Jadi diameter pipanya adalah 0,042 m atau diambil diameter pesar sebesar 0,10 m untuk segmen b-ab

Jalur b2-ab1

Jalur b2-ab1 merupakan jalur lanjutan dari b1-b2. Segmen ini tidak mengalami pertambahan air limbah sehingga dimeternya tetap sama seperti segmen sebelumnya yaitu 0,100 m.

- Jalur ab1-ab2

Jalur ab1-ab2 merupakan jalur gabungan pertemuan antara a4 dan b sehingga debit yang dihasilkanpun merupakan penjumlahan antara jalur a4-ab1 dan b-ab1. Berikut debit puncak jalu ab1-ab2.

$$Qpeak_{ab1-ab2} = Qpeak_{a1-a2} + Qpeak_{b-ab1}$$

 $Qpeak_{ab1-ab2} = 0,000218 + 0,000218$
 $Qpeak_{ab1-ab2} = 0,000436$

Slope pada perencanaan segmen ab1-ab2 ini dibuat sebesar 0,005 m/m. Berikut perhitungan diameter pipanya.

$$Qfull_{ab1-ab2} = \frac{Qpeak_{ab1-ab2}}{\left(\frac{Qpeak_{ab1-ab2}}{Qfull_{ab1-ab2}}\right)}$$

$$Qfull_{ab1-ab2} = \frac{0,000436}{(0,975)}$$

$$Qfull_{ab1-ab2} = 0,000447$$

$$D_{ab1-ab2} = \left(\frac{Qfull_{ab1-ab2} \times n}{0,3117 \times S^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

$$D_{ab1-ab2} = \left(\frac{0,000447 \times 0,015}{0,3117 \times 0,005^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

$$D_{ab1-ab2} = 0,048 m$$

Jadi diameter pipanya adalah 0,048 m atau diambil diameter pesar sebesar 0,10 m untuk segmen ab1-ab2.

Jalur ab2-ab3

Jalur ab2-ab3 merupakan jalur lanjutan dari ab1-ab2. Segmen ini tidak mengalami pertambahan air limbah sehingga dimeternya tetap sama seperti segmen sebelumnya yaitu 0,100 m.

Jalur ab3-abc1

Jalur ab3-abc1 merupakan jalur gabungan pertemuan antara ab3 dan pengurasan area 12 sehingga debit yang

dihasilkanpun merupakan penjumlahan antara jalur ab2-ab3 dan area pengurasan 12. Berikut debit puncak jalu ab3-abc1.

$$Qpeak_{ab3-abc1} = Qpeak_{ab2-ab3} + (Q_kpeak \times 2)$$

 $Qpeak_{ab3-abc1} = 0,000436 + (0,014352 \times 2)$
 $Qpeak_{ab3-abc1} = 0,029140$

Slope pada perencanaan segmen abc1-abc2 ini dibuat sebesar 0,005 m/m. Ini diambil karena kecepatan aliran cukup besar karena terkonesi dengan pengurasan. Berikut perhitungan diameter pipanya.

$$\begin{split} Qfull_{ab3-abc1} &= \frac{Qpeak_{ab3-abc1}}{\left(\frac{Qpeak_{ab3-abc1}}{Qfull_{ab3-abc1}}\right)} \\ Qfull_{ab3-abc1} &= \frac{0,029140}{(0,975)} \\ Qfull_{ab3-abc1} &= 0,029887 \\ D_{abc1-abc2} &= \left(\frac{Qfull_{ab3-abc1} \times n}{0,3117 \times S^{\frac{1}{2}}}\right)^{\frac{3}{8}} \\ D_{abc1-abc2} &= \left(\frac{0,030131 \times 0,015}{0,3117 \times 0,005^{\frac{1}{2}}}\right)^{\frac{3}{8}} \end{split}$$

Jadi diameter pipanya adalah 0,250 m atau diambil diameter pesar sebesar 0,250 m untuk segmen ab3-abc1.

Jalur abc1-abc2

Jalur abc1-abc2 merupakan jalur gabungan pertemuan antara abc1 dan pengurasan area 11. Pengurasan dilakukan selang seling setiap pos pengurasan karena pengerjaan dua kerata (4 penampungan) dilakukan oleh satu orang. Hal ini menybabkan debit pada jalur ini tidak bertambah sehinga dimensinya sama yaitu 0,250 m.

Jalur abc2-abc3

Jalur abc2-abc3 merupakan jalur terusan setelah abc1-abc2 dengan ditambah pengurasan area 10 sehingga debit yang dihasilkanpun merupakan penjumlahan antara jalur abc1-abc2 dan area pengurasan 10. Berikut debit puncak jalur abc2-abc3.

$$Qpeak_{abc2-abc3} = Qpeak_{abc1-abc2} + (Q_kpeak \times 2)$$

 $Qpeak_{abc2-abc3} = 0.029140 + (0.014352 \times 2)$
 $Qpeak_{abc3-abc4} = 0.057844$

Slope pada perencanaan segmen abc2-abc3 ini dibuat sebesar 0,005 m/m. Ini diambil karena kecepatan aliran cukup besar karena terkoneksi dengan pengurasan. Berikut perhitungan diameter pipanya.

$$Qfull_{abc2-abc3} = \frac{Qpeak_{abc2-abc3}}{\frac{Qpeak_{abc2-abc3}}{Qfull_{abc2-abc3}}}$$

$$Qfull_{abc2-abc3} = \frac{0,057844}{(0,975)}$$

$$Qfull_{abc2-abc3} = 0,059327$$

$$D_{abc2-abc3} = \left(\frac{Qfull_{abc2-abc3} \times n}{0,3117 \times S^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

$$D_{abc2-abc3} = \left(\frac{0,059327 \times 0,015}{0,3117 \times 0,005^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

$$D_{abc2-abc3} = 0.300 m$$

Jadi diameter pipanya adalah 0,300 m atau diambil diameter pesar sebesar 0,300 m untuk segmen abc2-abc3

Jalur abc3-abc4

Jalur abc3-abc4 merupakan jalur gabungan pertemuan antara abc3 dan pengurasan area 9. Pengurasan dilakukan selang seling setiap pos pengurasan karena pengerjaan dua kerata (4 penampungan) dilakukan oleh satu orang. Hal ini

menybabkan debit pada jalur ini tidak bertambah sehinga dimensinya sama yaitu 0,300 m.

Jalur abc4-abc5

Jalur abc4-abc5 merupakan jalur gabungan pertemuan antara abc4 dan pengurasan area 8. Pengurasan dilakukan selang seling setiap pos pengurasan karena pengerjaan dua kerata (4 penampungan) dilakukan oleh satu orang. Hal ini menybabkan debit pada jalur ini tidak bertambah sehinga dimensinya sama yaitu 0,300 m.

Jalur abc5-abc6

Jalur abc5-abc6 merupakan jalur gabungan pertemuan antara abc5 dan pengurasan area 7. Pengurasan dilakukan selang seling setiap pos pengurasan karena pengerjaan dua kerata (4 penampungan) dilakukan oleh satu orang. Hal ini menybabkan debit pada jalur ini tidak bertambah sehinga dimensinya sama yaitu 0,300 m.

Jalur c1-c2

Jalur c1-c2 merupakan jalur tersendiri yang bersumber dari area pengurasan 1. Debit puncak jalur ini berasal debit pengurasan area 1.

Berikut debit puncak jalur c1-c2.

$$Qpeak_{c1-c2} = (Q_k peak \times 2)$$

 $Qpeak_{c1-c2} = (0,014532 \times 2)$
 $Qpeak_{c1-c2} = 0,028704$

Slope pada perencanaan segmen c1-c2 ini dibuat sebesar 0,005 m/m. Ini diambil karena kecepatan aliran cukup besar karena terkoneksi dengan pengurasan. Berikut perhitungan diameter pipanya.

$$Qfull_{c1-c2} = \frac{Qpeak_{c1-c2}}{\left(\frac{Qpeak_{c1-c2}}{Qfull_{c1-c2}}\right)}$$

$$Qfull_{c1-c2} = \frac{0.028943}{(0.975)}$$

$$Qfull_{c1-c2} = 0.029440$$

$$D_{c1-c2} = \left(\frac{Qfull_{c1-c2} \times n}{0.3117 \times S^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

$$D_{c1-c2} = \left(\frac{0.029440 \times 0.015}{0.3117 \times 0.005^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

$$D_{c1-c2} = 0.231 m$$

Jadi diameter pipanya adalah 0,213 m atau diambil diameter pesar sebesar 0,250 m untuk segmen c1-c2.

Jalur c2-c3

Jalur c2-c3 merupakan jalur gabungan pertemuan antara c1 dan pengurasan area 2. Pengurasan dilakukan selang seling setiap pos pengurasan karena pengerjaan dua kerata (4 penampungan) dilakukan oleh satu orang. Hal ini menybabkan debit pada jalur ini tidak bertambah sehinga dimensinya sama yaitu 0,250 m dengan slope sebesar 0,005 m/m.

- Jalur c3-c4

Jalur c3-c4 merupakan jalur terusan dari jalur c2-c3 dimana debit puncak berasal dari area pengurasan 3 dengan debit puncak c2-c3. Berikut debit puncak jalur c3-c4.

$$Qpeak_{c3-c4} = (Q_k peak \times 2) + Qpeak_{c2-c3}$$

 $Qpeak_{c3-c4} = (0.014352 \times 2) + 0.028704$
 $Qpeak_{c3-c4} = 0.057408$

Slope pada perencanaan segmen c3-c4 ini dibuat sebesar 0,005 m/m. Ini diambil karena kecepatan aliran cukup besar karena terkoneksi dengan pengurasan. Berikut perhitungan diameter pipanya.

$$Qfull_{c3-c4} = rac{Qpeak_{c3-c4}}{\left(rac{Qpeak_{c3-c4}}{Qfull_{c1-c2}}
ight)}$$
 $Qfull_{c3-c4} = rac{0.057408}{(0.975)}$
 $Qfull_{c3-c4} = 0.058880$

$$D_{c3-c4} = \left(\frac{Qfull_{c3-c4} \times n}{0.3117 \times S^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

$$D_{c3-c4} = \left(\frac{0.089054 \times 0.015}{0.3117 \times 0.005^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

$$D_{c3-c4} = 0.299 \text{ m}$$

Jadi diameter pipanya adalah 0,299 m atau diambil diameter pesar sebesar 0,300 m untuk segmen c3-c4.

Jalur c4-c5

Jalur c4-c5 merupakan jalur gabungan pertemuan antara c3 dan pengurasan area 4. Pengurasan dilakukan selang seling setiap pos pengurasan karena pengerjaan dua kerata (4 penampungan) dilakukan oleh satu orang. Hal ini menybabkan debit pada jalur ini tidak bertambah sehinga dimensinya sama yaitu 0,300 m dengan slope sebesar 0,005 m/m.

Jalur c5-c6

Jalur c5-c6 merupakan jalur gabungan pertemuan antara c4 dan pengurasan area 5. Pengurasan dilakukan selang seling setiap pos pengurasan karena pengerjaan dua kerata (4 penampungan) dilakukan oleh satu orang. Hal ini menybabkan debit pada jalur ini tidak bertambah sehinga dimensinya sama yaitu 0,300 m dengan slope sebesar 0,005 m/m.

Jalur c6-abc6

Jalur c6-abc6 merupakan jalur gabungan pertemuan antara c5 dan pengurasan area 6. Pengurasan dilakukan selang seling setiap pos pengurasan karena pengerjaan dua kerata (4 penampungan) dilakukan oleh satu orang. Hal ini menybabkan debit pada jalur ini tidak bertambah sehinga dimensinya sama yaitu 0,300 m dengan slope sebesar 0,005 m/m.

Jalur abc6-abc7

Jalur abcc6-abc7 merupakan jalur gabungan antara c6 dan abc6 sehingga debit puncak berasal dari penjumlahan debit puncak keduanya. Berikut debit puncak jalur abc6-abc7.

$$Qpeak_{abc6-abc7} = Qpeak_{abc5-abc6} + Qpeak_{c6-abc6}$$

 $Qpeak_{abc6-abc7} = 0,057844 + 0,057408$
 $Qpeak_{abc6-abc7} = 0,115252$

Slope pada perencanaan segmen abc6-abc7 ini dibuat sebesar 0,005 m/m. Ini diambil karena kecepatan aliran cukup besar karena terkoneksi dengan pengurasan. Berikut perhitungan diameter pipanya.

$$Qfull_{abc6-abc7} = \frac{Qpeak_{abc6-abc7}}{\left(\frac{Qpeak_{abc6-abc7}}{Qfull_{abc6-abc7}}\right)}$$

$$Qfull_{abc6-abc7} = \frac{0,115252}{(0,975)}$$

$$Qfull_{abc6-abc7} = 0,118207$$

$$D_{abc6-abc7} = \left(\frac{Qfull_{abc6-abc7} \times n}{0,3117 \times S^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

$$D_{abc6-abc7} = \left(\frac{0,356664 \times 0,015}{0,3117 \times 0,005^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

$$D_{abc6-abc7} = 0,389 m$$

Jadi diameter pipanya adalah 0,389 m atau diambil diameter pesar sebesar 0,400 m untuk segmen abc6-abc7.

Jalur abc7-abc8

Jalur abc7-abc8 merupakan jalur lanjutan dari abc6-abc7. Segmen ini tidak mengalami pertambahan air limbah sehingga diamternya tetap sama seperti segmen sebelumnya yaitu 0,400 m dengan slope sebesar 0,005 m/m. Perhitungan debit air limbah gabung setiap segmen pipa dapat dilihat dalam tabel 6.10.

6.3.3.3 Penanaman Pipa dan Profil Hidrolis

Penanaman pipa terletak pada slope medan dengan pompa digunakan apabila penanaman pipa mencapai 7 meter sebagai batas air tanah atau elevasi dasar saluran bernilai negatif. Berikut contoh perhitungan untuk jalur a1-a2.

Elevasi tanah awal = 6 m

Elevasi tanah akhir = 6 m

Panjang pipa (L) = 89 m

Slope saluran (s) = 0,005 m

Beda elevasi =L x Slope = $89 \times 0,005 = 0,445 \text{ m}$

Diameter pipa = 60 mm

Kedalaman awal = 0.5 m

- Elevasi Atas pipa

Keadaan awal = elevasi muka tanah awal - kedalaman awal

$$= 6 - 0.5 = 5.5 \text{ m}$$

Keadaan akhir = keadaan awal atas pipa – beda elevasi

$$= 5.5 - 0.445 = 5.06 \text{ m}$$

- Elevasi bawah pipa

Keadaan awal = keadaan awal atas pipa - diameter

$$= 5.5 - 0.1 = 5.4 \text{ m}$$

Keadaan akhir = Keadaan awal bawah pipa – beda elevasi

$$= 5.4 - 0.445 = 4.96 \text{ m}$$

- Kedalaman penanaman

Keadaan awal = elvasi tanah awal – elevasi awal bawah pipa – pondasi pasir bawah

$$= 6 - 5,40 - 0,15 = 0,75 \text{ m}$$

Keadaan akhir = elvasi tanah akhir - elevasi akhir bawah pipa - pondasi pasir bawah

$$= 6 - 4.96 - 0.15 = 1.2 \text{ m}$$

Tabel lengkap perhitungan elevasi dan penanaman dapat dilihat pada Tabel 6.11 dan Tabel 6.12. begitupun gambarnya dapat dilihat pada Gambar 6.19, Gambar 6.20, Gambar 6.21, dan Gambar 6.22.

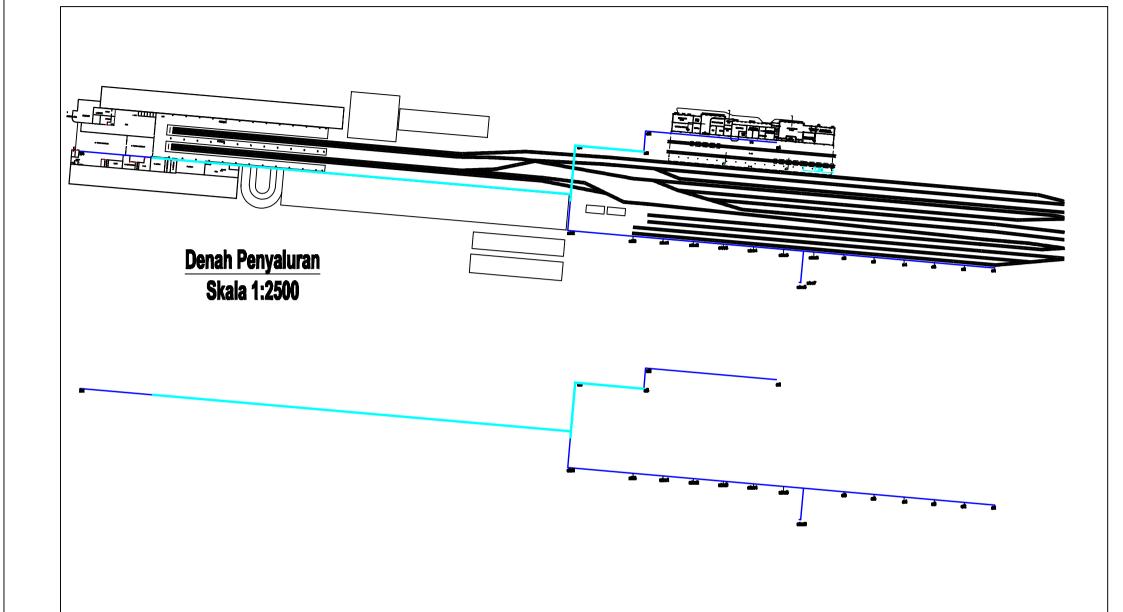
Secara umum, penanaman pipa pada semua titik galian dimulai dari permukaan tanah (6 mdpl) kecuali beberapa titik yaitu a3-a4, a4-ab1, b2-ab1, dan ab1-ab2 . Titiktitik tersebut memiliki fasilitas drainase ekisiting yang memiliki kedalaman 70-80 cm dengan lebar 50 cm dari permukaan tanah. Sehingga penanaman pipa pada jalur tesebut hanya memanfaatkan saluran tersebut.

Tabel 6. 10 Debit Air Limbah pada Setiap Segmen Pipa

No	Jalur	nina		Q Peak	d/D	Q Peak/	Q Full	n	D		D asang		
140	Pipa	(m)	Awal (m)	Akhir (m)	Rancang	(m³/s)		Q Full	m³/s		m	mm	m
1	a1-a2	89	5,50	5,41	0,001	0,000218	0,8	0,975	0,000223	0,015	0,050	100	0,1
2	a2-a3	14	5,41	5,40	0,001	0,000218	0,8	0,975	0,000223	0,015	0,050	100	0,1
3	a3-a4	46,6	5,40	5,35	0,001	0,000218	0,8	0,975	0,000223	0,015	0,050	100	0,1
4	a4-ab1	33	5,35	5,32	0,001	0,000218	0,8	0,975	0,000223	0,015	0,050	100	0,1
5	b1-b2	48	5,49	5,47	0,0005	0,000218	0,8	0,975	0,000223	0,015	0,057	100	0,1
6	b2-ab1	286	5,47	5,32	0,0005	0,000218	0,8	0,975	0,000223	0,015	0,057	100	0,1
7	ab1-ab2	24,6	5,32	5,19	0,005	0,000436	0,8	0,975	0,000447	0,015	0,048	100	0,1
8	ab2-ab3	44,3	5,19	4,97	0,005	0,000436	0,8	0,975	0,000447	0,015	0,048	100	0,1
9	ab3- abc1	20	4,97	4,87	0,005	0,029140	0,8	0,975	0,029887	0,015	0,232	250	0,25
10	abc1- abc2	20	4,87	4,77	0,005	0,029140	0,8	0,975	0,029887	0,015	0,232	250	0,25
11	abc2- abc3	20	4,77	4,67	0,005	0,057844	0,8	0,975	0,059327	0,015	0,300	250	0,25
12	abc3- abc4	20	4,67	4,57	0,005	0,057844	0,8	0,975	0,059327	0,015	0,300	300	0,3
13	abc4- abc5	20	4,57	4,47	0,005	0,057844	0,8	0,975	0,059327	0,015	0,300	300	0,3
14	abc5- abc6	20	4,47	4,37	0,005	0,057844	0,8	0,975	0,059327	0,015	0,300	300	0,3

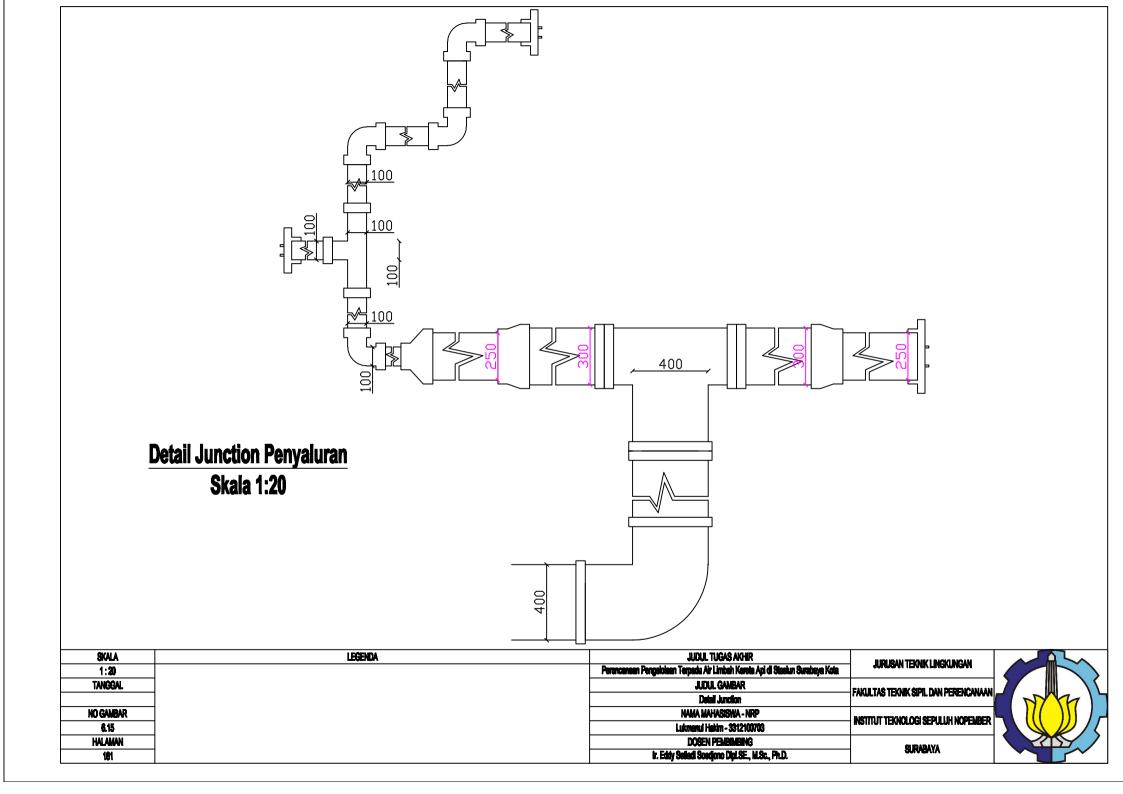
No	Jalur	L		vasi cang	Slope Q Peak d/D	Q Peak/	Q Full	n	D		D asang		
NO	Pipa	pipa (m)	Awal (m)	Akhir (m)	Rancang	(m³/s)		Q Full	m³/s	11	m	mm	m
15	c1-c2	20	4,97	4,87	0,005	0,028704	0,8	0,975	0,029440	0,015	0,231	250	0,25
16	c2-c3	20	4,87	4,77	0,005	0,028704	0,8	0,975	0,029440	0,015	0,231	250	0,25
17	c3-c4	20	4,77	4,67	0,005	0,057408	0,8	0,975	0,058880	0,015	0,299	300	0,3
18	c4-c5	20	4,67	4,57	0,005	0,057408	0,8	0,975	0,058880	0,015	0,299	300	0,3
19	c5-c6	20	4,57	4,47	0,005	0,057408	0,8	0,975	0,058880	0,015	0,299	300	0,3
20	c6-abc6	20	4,47	4,37	0,005	0,057408	0,8	0,975	0,058880	0,015	0,299	300	0,3
21	abc6- abc7	22	4,37	4,26	0,005	0,115252	0,8	0,975	0,118207	0,015	0,389	400	0,4
22	abc7- abc8	5	4,26	4,24	0,005	0,115252	0,8	0,975	0,118207	0,015	0,389	400	0,4

Sumber: Hasil Perhitungan

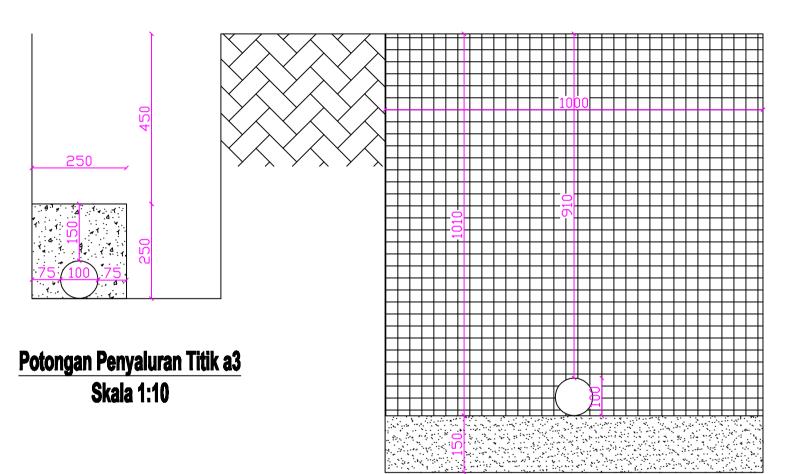

Tabel 6. 11 Elevasi dan Penanaman Pipa Penyaluran

No	Jalur Pipa	Diameter		Diameter		L pipa (m)	_	_	_	_	_	_	Slope Pipa	Head loss	_	vasi nah		si Atas pa	_	vasi h Pipa	Pondasi Pasir	Penar	laman naman pa
	Гіра	mm	m	гіра	1055		Awal (m)	Akhir (m)	Awal (m)	Akhir (m)	Awal (m)	Akhir (m)	Bawah	Awal (m)	Akhir (m)								
1	a1-a2	100	0,10	89	0,001	0,089	6	6	5,50	5,41	5,40	5,31	0,15	0,75	0,84								
2	a2-a3	100	0,10	14	0,001	0,014	6	6	5,41	5,40	5,31	5,30	0,15	0,84	0,85								

No	Jalur Pipa	Diameter		L pipa	Slope	Head	Elevasi Tanah		Elevasi Atas Pipa		Elevasi Bawah Pipa		Pondasi Pasir	Kedalaman Penanaman Pipa	
		mm	m	(m)	Pipa	loss	Awal (m)	Akhir (m)	Awal (m)	Akhir (m)	Awal (m)	Akhir (m)	Bawah	Awal (m)	Akhir (m)
3	a3-a4	100	0,10	46,6	0,001	0,047	5,3	5,25	5,40	5,35	5,30	5,25	0,15	0,15	0,15
4	a4-ab1	100	0,10	33	0,001	0,033	5,25	5,3	5,35	5,32	5,25	5,22	0,15	0,15	0,23
5	b1-b2	100	0,10	48	0,0005	0,024	6	6	5,49	5,47	5,39	5,37	0,15	0,76	0,78
6	b2-ab1	100	0,10	286	0,0005	0,143	5,2	5,25	5,47	5,32	5,37	5,22	1,15	0,98	1,18
7	ab1-ab2	100	0,10	24,6	0,005	0,123	5,25	5,3	5,32	5,19	5,22	5,09	0,15	0,18	0,36
8	ab2-ab3	100	0,10	44,3	0,005	0,222	6	6	5,19	4,97	5,09	4,87	0,15	1,06	1,28
9	ab3- abc1	250	0,25	20	0,005	0,100	6	6	4,97	4,87	4,72	4,62	0,15	1,43	1,53
10	abc1- abc2	250	0,25	20	0,005	0,100	6	6	4,87	4,77	4,62	4,52	0,15	1,53	1,63
11	abc2- abc3	250	0,25	20	0,005	0,100	6	6	4,77	4,67	4,52	4,42	0,15	1,63	1,73
12	abc3- abc4	300	0,30	20	0,005	0,100	6	6	4,67	4,57	4,37	4,27	0,15	1,78	1,88
13	abc4- abc5	300	0,30	20	0,005	0,100	6	6	4,57	4,47	4,27	4,17	0,15	1,88	1,98
14	abc5- abc6	300	0,30	20	0,005	0,100	6	6	4,47	4,37	4,17	4,07	0,15	1,98	2,08
15	c1-c2	250	0,25	20	0,005	0,100	6	6	4,97	4,87	4,72	4,62	0,15	1,43	1,53
16	c2-c3	250	0,25	20	0,005	0,100	6	6	4,87	4,77	4,62	4,52	0,15	1,53	1,63


No	Jalur Pipa	Diameter		L pipa	L Slope		Elevasi Tanah		Elevasi Atas Pipa		Elevasi Bawah Pipa		Pondasi Pasir	Kedalaman Penanaman Pipa	
		mm	m	(m)	Pipa	loss	Awal (m)	Akhir (m)	Awal (m)	Akhir (m)	Awal (m)	Akhir (m)	Bawah	Awal (m)	Akhir (m)
17	c3-c4	300	0,30	20	0,005	0,100	6	6	4,77	4,67	4,47	4,37	0,15	1,68	1,78
18	c4-c5	300	0,30	20	0,005	0,100	6	6	4,67	4,57	4,37	4,27	0,15	1,78	1,88
19	c5-c6	300	0,30	20	0,005	0,100	6	6	4,57	4,47	4,27	4,17	0,15	1,88	1,98
20	c6-abc6	300	0,30	20	0,005	0,100	6	6	4,47	4,37	4,17	4,07	0,15	1,98	2,08
21	abc6- abc7	400	0,40	22	0,005	0,110	6	6	4,37	4,26	3,97	3,86	0,15	2,18	2,29
22	abc7- abc8	400	0,40	5	0,005	0,025	6	6	4,26	4,24	3,86	3,84	0,15	2,29	2,31

Sumber: Hasil Perhitungan



SKALA	LEGENDA	JUDUL TUGAS AKHIR	JURUSAN TEKNIK LINGKUNGAN	
1:2500		Perencanaan Pengelolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota	JUNUSHN I ENNIK LINGKUNGAN	
TANGGAL		JUDUL GAMBAR	FAKULTAS TEKNIK SIPIL DAN PERENCANAAN	
		Denah Penyakuan	FAMILIAS IEMIK SIFIL DAN PERENCANAN	
NO GAMBAR		NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	4
8.14		Lukmenul Hakim - 3312100703	Mailloi IEMOLOGI SEPOLUN NOPEMBER	
HALAMAN		DÖŞEN PEMBINBING	SURABAYA	
159		tr. Eddy Setladi Soedjono Dipl.SE., M.Sc., Ph.D.	OUVENIA	
			-	

500

Potongan Penyaluran Titik ab1 Skala 1:10

SKALA	LEGENDA	JUDUL TUGAS AKHIR	JURUSAN TEKNIK LINGKUNGAN	
1:10		Perencanaan Pengalolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota	SOLOGIA IEMIN TILOUNGAA	
TANGGAL		JUDUL GAMBAR	FAKULTAS TEKNIK SIPIL DAN PERENCANAAN	
15 Nopember 2015		Polongen Tipikal Penyaluran	TANGLIAS IEMIK SIFIL DAN PERENGANAN	- WY
NO GAMBAR		NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	
6.16		Lukmanul Hakim - 3312100703	Maillot IEMotodiaePoton NoPEMBER	
HALAMAN		DÖŞEN PEMBIMBING	SURABAYA	1
163		ir. Eddy Sedadi Soedjono Dipl.SE., M.Sc., Ph.D.	GUVENIA	

6.3.4 Pengolahan

Pengolahan air limbah kereta api yang terpilih pada bab sebelumnya adalah menggunakan *Anaerobic Baffled Reactor* (ABR). ABR ini digunakan karena kualitas air limbah memiliki nilai COD dan BOD yang cukup tingg. Selain itu lahan di areal stasiun cukup terbatas sehingga dipilih alat dapat menggunakan lahan yang tidak terlalu besar.

Pada pemilihan alternatif pengolahan dijelaskan pemakaian ABR dengan 3 ruang utama yaitu grease trap, zona septik, dan kompartemen. Perhitungan dimensi masing-masing bangunan memiliki cara perhitungan berbeda. Grease trap dihitung dari debit pengurasan sedangkan zona septik dan kompartemen volume limbah dari total penampungan.

6.3.4.1 Grease Trap

Bangunan ini digunakan untuk mengurangi kadar lemak dan minyak pada air limbah. Secara alami kadar lemak telah mengalami delusi pada proses pengurasan. Walaupun seperti perlu direncakan grase trap untuk menangani permasalah ini.

Grease trap dibuat berbentuk kolam dengan td kecil. Td kecil ini supaya pada kolam grease trap tidak terjadi pengendapan lumpur. Selain itu juga, berfungsi sebagai bak pengumpul untuk mengatasi shock loading akibat aliran yang besar.

- Perhitungan Dimensi Kolam

Grease trap berupa kolam dimana td direncanakan adalah 5 menit. Berikut perhitungan dimensinya

$$V_{GT} = Q_k \ puncak \times td$$

 $V_{GT} = 0.014352 \times 5 \times 60$
 $V_{GT} = 4.31 \ m^3$

Jadi volume bangunan grease trap adalah 4,31 m³.

Setelah didapat volumenya, kemudian dihitung panjang dan lebar dimensi grease trap dimana kedalaman direncanakan 1,1 m. Panajang dan lebar grase trap direncanakan sama. Berikut perhitungannya

$$p_{GT} = l_{GT} = \sqrt{\frac{V_{GT}}{h_{GT}}}$$
 $p_{GT} = l_{GT} = \sqrt{\frac{4,31}{1,1}}$

 $p_{GT}=l_{GT}=1,978\approx 2~m$

Jadi panjang dan lebarnya adalah 2 meter.

Inlet dan Outlet

Inlet disesuaikan dengan diamter pipa pada penyaluran. Pipa penyaluran terahir yang masuk ke bangunan pengolahan memiliki diameter 40 cm sehingga inlet grease trap memiliki diameter yang sama.

Outlet grease trap direncanakan berbentuk kecil untuk mengurangi shock loading pada bangunan selanjutnya. Selain itu ini bertujuan untuk meratakan aliran air. Dimana kecepatan aliran air dari saluran adalah 0,9598 m/s (kecepatan minimal) dengan debit saluran 0,11525 m³/s (debit puncak pengurasan). Berikut perhitungannya.

$$A_sOutlet_{GT} = rac{Debit\ Saluran}{v}$$

$$A_sOutlet_{GT} = rac{0.11525}{0.9598}$$

$$A_sOutlet_{GT} = 0.12008\ m^2$$

Jadi luasan outlet adalah 0,12008 m²

Rencana diameter pipa outletnya 15 cm sehingga banyak pipa dapat dihitung sebagai berikut.

$$N_s = \frac{A_s \, Saluran}{A_s \, Pipa \, Saluran}$$

$$N_s = \frac{0,12008}{\frac{1}{4} \times \frac{22}{7} \times 0,15^2}$$

$$N_s = 6.8$$

Pipa outletnya berjumlah 7 dengan diamter 15 cm

6.3.4.2 Zona Septik

Sumber air limbah berasal dari stasiun dan kereta api. air limbah stasiun memiliki debit puncak sebesar 12,542 m³/hari sedangkan kereta api memiliki debit pengurasan total sebesar 48 m³/hari. Sehingga debit air limbah total dapat dihitung melalui penjumlah kedua sumber tersebut. Berikut perhitungan debit air limbah total.

$$Q_{septik} = \mathsf{Qal}_{\mathsf{ST}} + \mathsf{Qal}_{penampungan} Total$$
 $Q_{septik} = 12,542 + \left((120 \times 0,243) + (54 \times 0,348) \right)$
 $Q_{septik} = 60,5 \frac{m^3}{hari}$

Jadi debit air limbah total untuk ABR adalah 60,5 m³/hari.

Karakteristik air limbah stasiun dan kereta api yang akan diolah adalah memiliki kondisi paling buruk pada bab sebelumnya yaitu pH sebesar 8,2, TSS sebesar 830 mg/l, COD sebesar 682 mg/l, BOD sebesar 420 mg/l, dan minyak lemak sebesar 480 mg/l. Data tersebut akan digunakan pada pengolahan ABR.

Perhitungan dimensi zona septik direncanakan mengikuti sedimentasi sehingga memiliki removal COD dan BOD 40 % serta TSS 60%

- Dimensi

Pada rencanaan ini tangki septik direncanakan memiliki waktu waktu detensi selama 2 hari.

$$V_{septik} = Q_{septik} \times td$$

 $V_{septik} = 60.5 \times 2$
 $V_{septik} = 121 \text{ m}^3$

Jadi volume zona septik adalah 121 m³.

Direncanakan tinggi bangunan 3,5 m. Kedalaman ini untuk menjaga proses anaerobik. Direncanakan panjang dan lebar zona septik sama panjang. Berikut perhitungannya

$$A_{s \, septik} = \frac{V_{septik}}{t_{septik}}$$

$$A_{s\,septik} = \frac{121}{3,5}$$

$$A_{s\,septik} = 34,6 \, m$$

$$l_{septik} = p_{septik} = \sqrt{A_s}$$

$$l_{septik} = p_{septik} = \sqrt{34,6}$$

$$l_{septik} = p_{septik} = 5,9 \, m$$

Jadi zona septik memiliki dimensi panjang dan lebar sebesar 5,9 m serta kedalaman 3,5 m. Lalu dicek volume aktualnya

$$V_{cek} = p \times l \times t$$

$$V_{cek} = 5.9 \times 5.9 \times 3.5$$

$$V_{cek} = 122 \text{ m}^3$$

Jadi volume aktual zona septik adalah 121 m³.

- Removal Pencemar

Pencemar yang dapat diremoval berupa BOD, COD, dan TSS. Masing masing memiliki removal yang berbeda BOD dan COD sebesar 40% sedangkan TSS 60% berikut perhitungannya besar removal pada zona septik.

TSS

$$\begin{split} \mathit{MTSS} &= \mathit{TSS} \times \mathit{Q}_{\mathit{al tot}} \; \mathit{perhari} \\ \mathit{MTSS} &= 830 \times 60,5 \\ \mathit{MTSS} &= 50,2 \frac{kg}{hari} \end{split}$$

COD

$$MCOD = COD \times Q_{al \ tot} \ perhari$$

 $MCOD = 682 \times 60,5$
 $MCOD = 41,3 \frac{kg}{hari}$

BOD

$$MBOD = BOD \times Q_{al \ tot} \ perhari$$

 $MBOD = 420 \times 60,5$
 $MBOD = 25,4 \frac{kg}{hari}$

Eff TSS

$$Eff TSS = 60\% \times MTSS$$

 $Eff TSS = 30,12 \frac{kg}{hgri}$

Eff BOD

$$Eff\ BOD = 40\% \times MBOD$$

$$Eff\ BOD = 10,16 \frac{kg}{hari}$$

$$Eff\ COD = 40\% \times MCOD$$

Eff COD

$$Eff\ COD = 40\% \times MCO$$

$$Eff\ COD = 16.5 \frac{kg}{hari}$$

Ruang Lumpur

Ruang lumpur dihitung dari jumlah lumpur yang dihasilkan dimana koefisien yield pada kondisi anaerobik = 0,03 kg TSS/kg COD, kadar lumpur 6%, dan berat jenis lumpur 1,03 kg/L. Sedangkan rencana pengurasan adalah 4 tahun. Berikut perhitungannya.

Berat Endapan COD

Endapan
$$COD = Yield \times Eff\ COD$$

Endapan $COD = 0.03 \times 16.5$
Endapan $COD = 0.5 \frac{kg}{hari}$

Berat Endapan TSS

Endapan TSS = Yield × Eff COD
Endapan TSS =
$$0.03 \times 30.12$$

Endapan TSS = $0.9 \frac{kg}{hari}$

Jumlah lumpur yang diproduksi merupakan pertambahan antara endapan COD dan TSS.

$$Jumlah\ Lumpur = Endapan\ COD + Endapan\ TSS$$

$$Jumlah\ Lumpur = 0.5 + 0.9$$

$$Jumlah\ Lumpur = 1.4 \frac{kg}{hari}$$

$$Vol\ Lumpur = \frac{Jumlah\ Lumpur}{Kadar\ Lumpur \times berat\ jenis\ lumpur}$$

$$Vol\ Lumpur = \frac{1.4}{6\% \times 1.03}$$

$$Vol\ Lumpur = 22.64 \frac{liter}{hari}$$

Jadi debit lumpur yang dihasilkan dalam sehari adalah 22,64 liter/hari.

Kemudian dihitung volume lumpur dengan pengurasan 4 tahuh (1460 hari) sekali. Berikut perhitungannya

$$Dimensi\ Lumpur = Vol\ Lumpur \times Waktu\ Kuras$$

Dimensi Lumpur =
$$27.6 \times 1460$$

Dimensi Lumpur = 33.05 m^3

$$t = \frac{As = 34,81}{Dimensi Lumpur}$$
$$t = \frac{\frac{As}{33,05}}{34,81}$$
$$t = 0.95 m$$

Ruang Settling dan Stabilisasi

$$t = t septik - t lumpur$$

 $t = 3.5 - 0.95$
 $t = 2.55$

Vol setling dan Stab = $t \times As$ Vol setling dan Stab = $2,35 \times 34,81$ Vol setling dan Stab = $81,6 \text{ m}^3$

BOD in	111,4616	kg/hari
BOD III	420	mg/l
BOD out	66,87697	kg/hari
BOD out	252	mg/l
COD in	180,9924	kg/hari
COD IN	682	mg/l
COD out	108,5955	kg/hari
COD out	409,2	mg/l
TSS in	220,2694	kg/hari
133 111	830	mg/l
TSS out	88,10775	kg/hari
133 OUI	332	mg/l

Inlet dan Outlet

Inlet sesuai dengan outlet grease trap sedangkan outlet berupa celah memanjang dengan tinggi 15 cm dan panjang sesuai lebar zona septik yaitu 5,9 m.

6.3.4.3 ABR Kompartemen

- Dimensi Bangunan

Pada rencanaan kompartemen direncanakan memiliki waktu waktu detensi selama 5 hari dengan debit sama sama seperti debit zona septik yaitu 60,5 m³/hari. Berikut perhitungan volume

$$Volume = Q_{ABR} \times td$$

 $Volume = 60,5 \times 5$
 $Volume = 302,5 \text{ m}^3$

Jadi volume kompartemen total adalah 302,5 m³.

Direncanakan tinggi dan lebar bangunan sama seperti bangunan zona septik yaitu masing-masing 3,5 m dan 5,9 m. Sehingga panjang totalnya dapat dihitung sebagai berikut

$$p = \frac{V}{A_{cross}}$$

$$p = \frac{302,5}{3,5 \times 5,9}$$

$$p = 14,7 m$$

Rencana Kompartemen 5

$$P Kompartemen_s = \frac{14,7}{5}$$

$$P Kompartemen_s = 2,94 \approx 3 m$$

Jadi dimensi panjang, lebar, dan tinggi masing-masing kompartemen adalah 3 m, 5,9 m dan 3,5 m. Selain itu, Dimensi ruang up direncanakan panjang, lebar dan tinggi adalah 0,5 m, 5,9 m, dan 3,5 m.

- Inlet Outlet

Dimana kecepatan aliran air dari saluran adalah 0,9598 m/s (kecepatan minimal) dengan debit saluran 0,11525 m³/s (debit puncak pengurasan). Berikut perhitungannya.

$$A_sOutlet_{GT} = rac{Debit\ Saluran}{v}$$
 $A_sOutlet_{GT} = rac{0.11525}{0.9598}$
 $A_sOutlet_{GT} = 0.12008\ m^2$

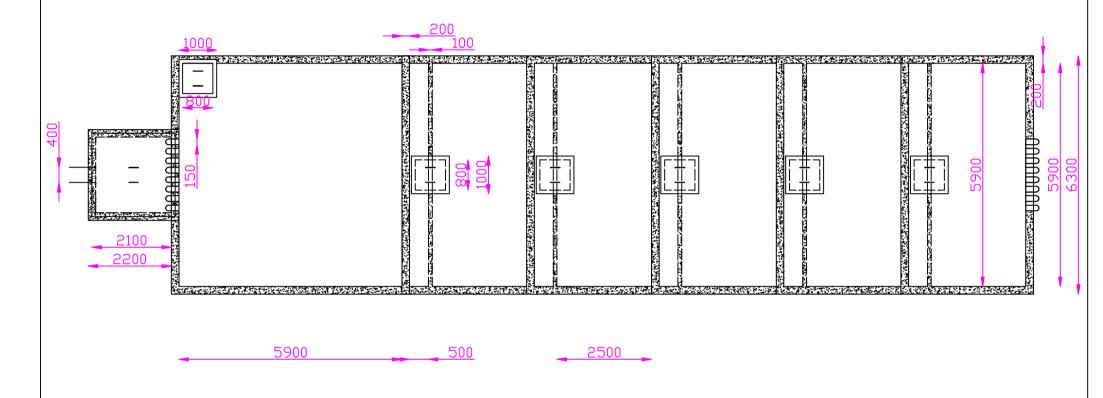
Jadi luasan outlet adalah 0,12008 m²

Rencana diameter pipa outletnya 15 cm sehingga banyak pipa dapat dihitung sebagai berikut.

pai berikut.

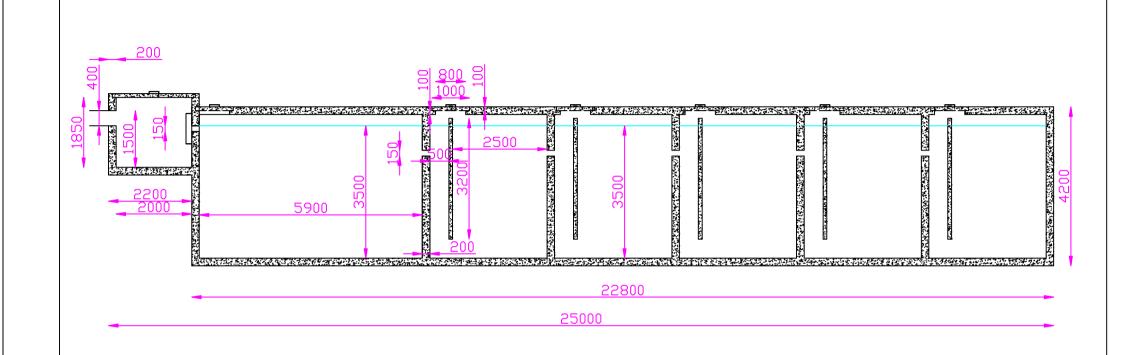
$$N_s = \frac{A_s \ Saluran}{A_s \ Pipa \ Saluran}$$

$$N_s = \frac{0,12008}{\frac{1}{4} \times \frac{22}{7} \times 0,15^2}$$

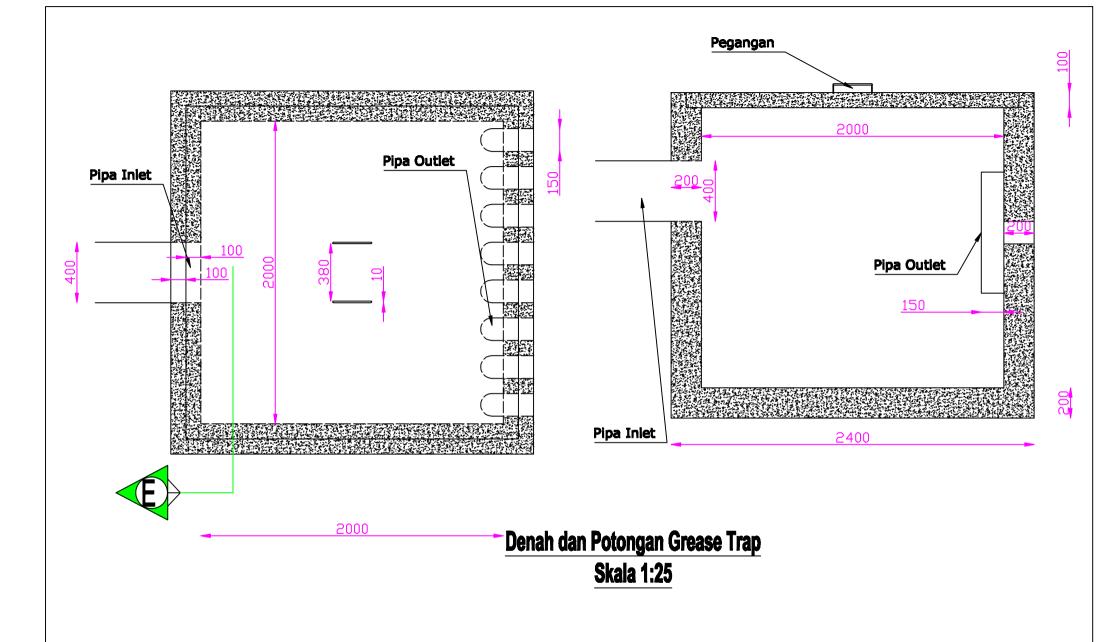

$$N_s = 6,8$$

Pipa outletnya berjumlah 7 dengan diamter 15 cm.

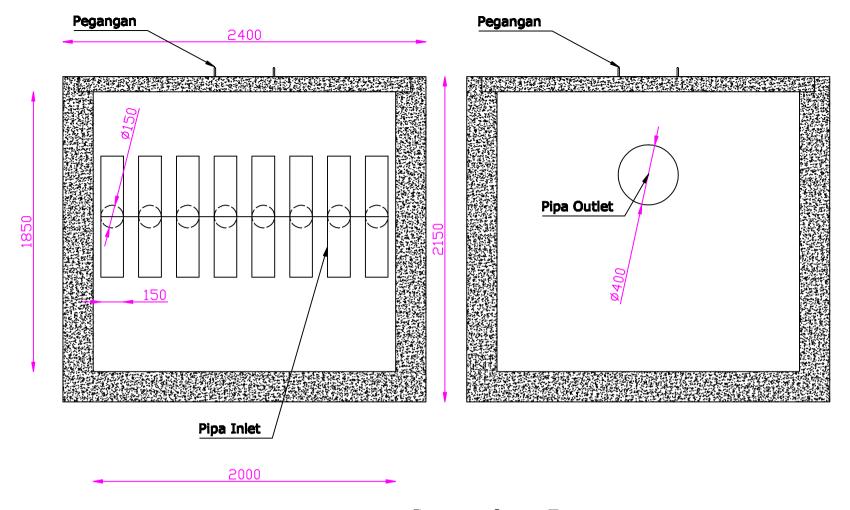
- Efisiensi


F// T00	000/	
Eff TSS	80%	
	16,06731	
eff BOD	90%	
	13,72013	
Eff COD	90%	
	22,27888	
BOD in	15,24459	kg/hari
	252	mg/l
BOD out	1,524459	kg/hari
	25,2	mg/l
COD in	24,75431	kg/hari
	409,2	mg/l
COD out	2,475431	kg/hari
	40,92	mg/l
TSS in	20,08414	kg/hari
	332	mg/l
TSS out	4,016828	kg/hari
	66,4	mg/l

Jadi kualitas efluent air limbah dari ABR adalah BOD 25 mg/L, COD 40 mg/L, dan TSS 66,4 mg/L.

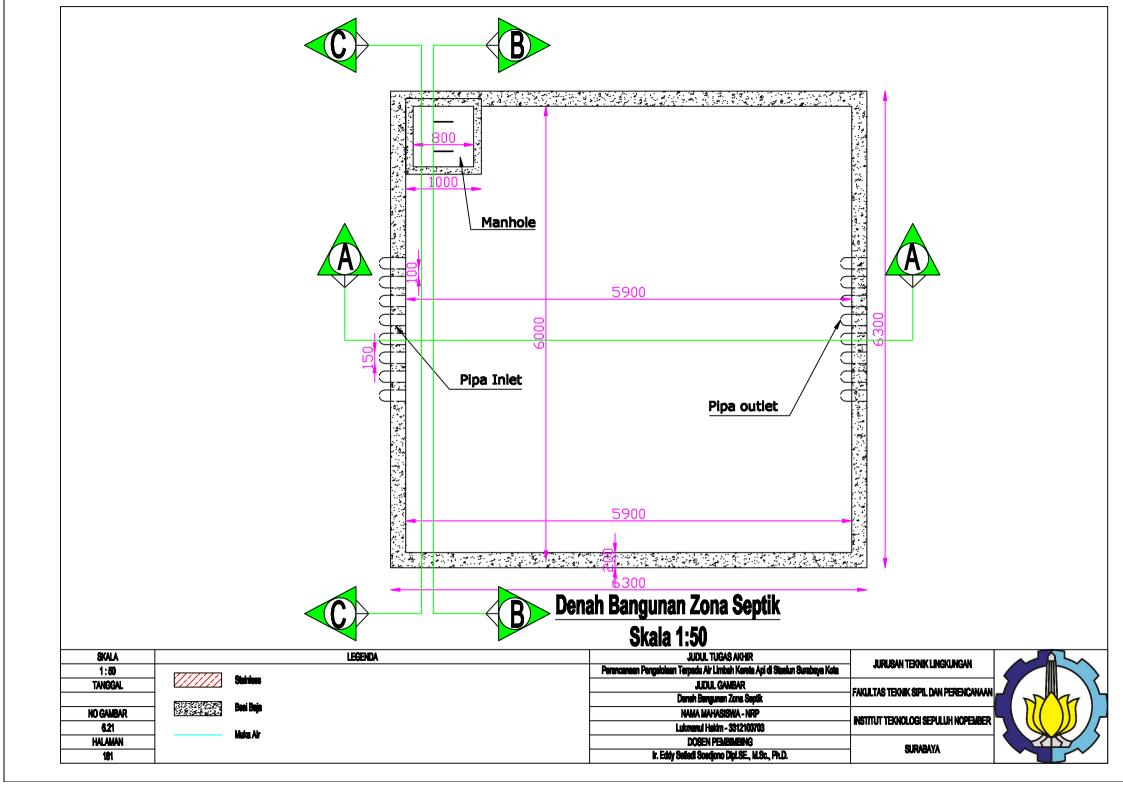

Denah Bangunan Pengolahan Skala 1:100

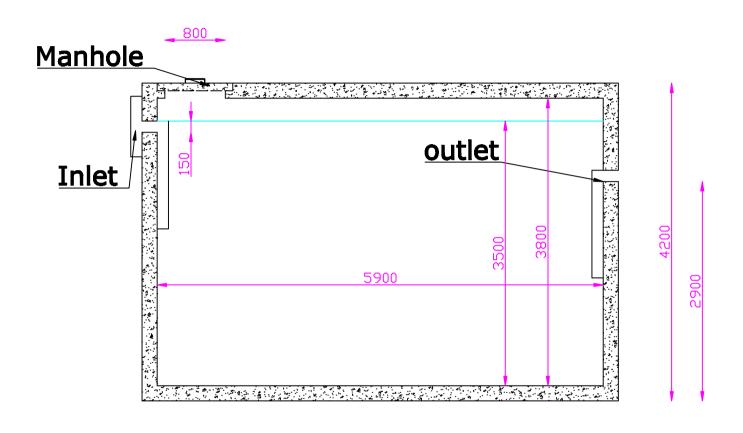
SKALA	LEGENDA	JUDUL TUGAS AKHIR	JURUSAN TEKNIK LINGKUNGAN	
1:100	7777777	Perencanaan Pengelolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota	SOURCEM I ENVIR LINGUORGIN	
TANGGAL	(/////) Stainless	JUDUL GAMBAR	FAKULTAS TEKNIK SIPIL DAN PERENCANAAN	
	Besi Bejo	Denah Bangunan Pengolahan	TANGLING IEMIK SIFIL DAN PERENGANAN	W W
NO GAMBAR		NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	
6.17	Milden Alle	Lukmenul Hekim - 3312100703	INSTITUT TEXNOLOGI SEPULUN NOPEMBER	
HALAMAN		DOŞEN PEMBIMBING	SURABAYA	
173		ir. Eddy Setladi Soedjono Dipl.SE., M.Sc., Ph.D.	SUIVENIA	



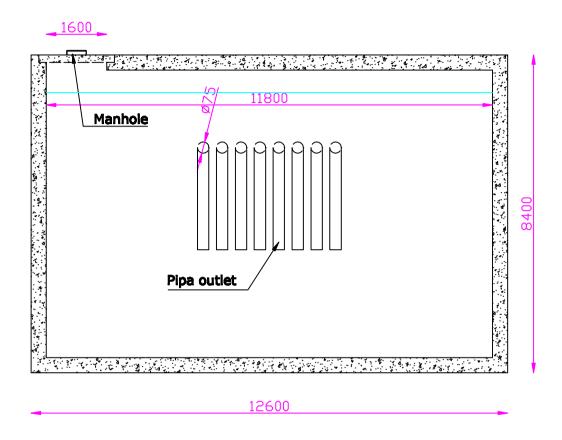
Potongan ABR Skala 1:100

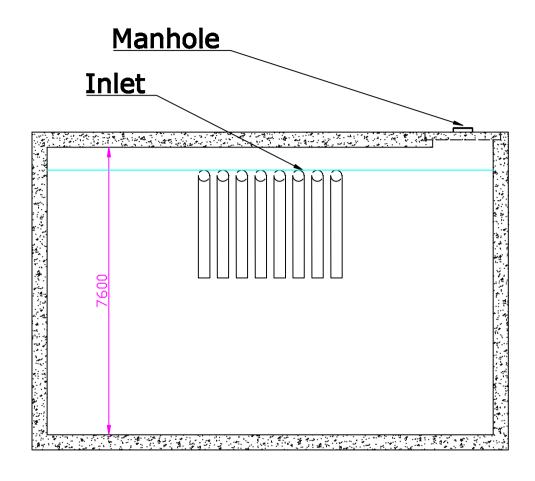
SKALA	LEGENDA	JUDUL TUGAS AKHIR	JURUSAN TEKNIK LINGKUNGAN	
1:100	7777777	Perencanaan Pengelolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota	SOURCEM I ENVIR LINGUORGIN	
TANGGAL	V///// Stainless	JUDUL GAMBAR	FAKULTAS TEKNIK SIPIL DAN PERENCANAAN	
	TOTAL CONTROL BALL	Potongen Bengunen Pengolehan	TANGLING IEMIK SIFIL DAN PERENGANAN	W W
NO GAMBAR	Besi Baja	NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	
6.18	Minim Air	Lukmenul Hekim - 3312100703	- INSTITUT TEXNOLOGI SEPULUT NUPERBER	
HALAMAN		DOŞEN PEMBINBING	SURABAYA	
175		ir. Eddy Sededi Soedjono Dipl.SE., M.Sc., Ph.D.	SUIVENIA	




SKALA	LEGENDA	JUDUL TUGAS AKHIR	JURUSAN TEKNIK LINGKUNGAN	
1:25	////// Mult	Perencanaan Pengelolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota	SOLOGIAL IEMIK ENGKONGAL	
TANGGAL	////// Stainless	JUDUL GAMBAR	FAKULTAS TEKNIK SIPIL DAN PERENCANAAN	
	Programme But But.	Deneh den Potongen Bengunen Greece Trap	FAMILIAS IEMIK SIFIL DAN FERENGANAAN	W W
NO GAMBAR	Besi Bejo	NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	
6.19		Lukmanul Hakim - 3312100703	INSTITUT TEXNOLOGI SEPOLUT NOPEMBER	
HALAMAN	- INDAE AN	DOŞEN PEMBINBING	SURABAYA	
177		tr. Edity Setladi Soedjono Dipl.SE., M.Sc., Ph.D.	SUIVENIA	

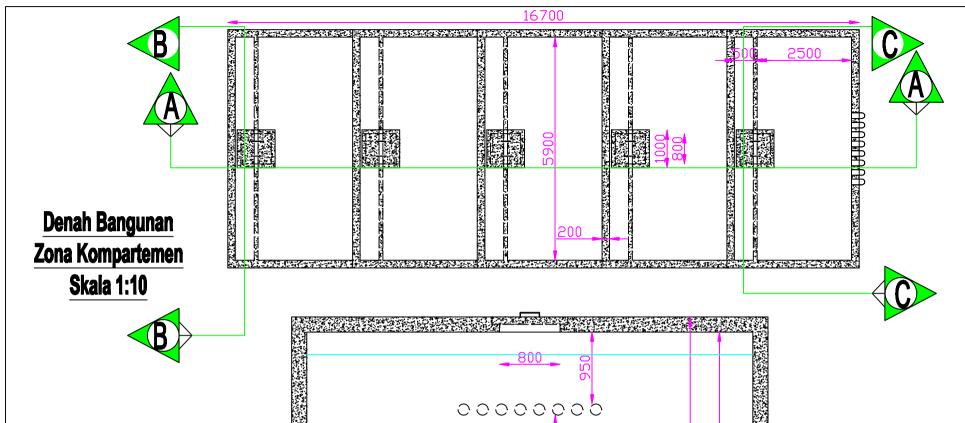
Potongan Grease Trap Skala 1:25

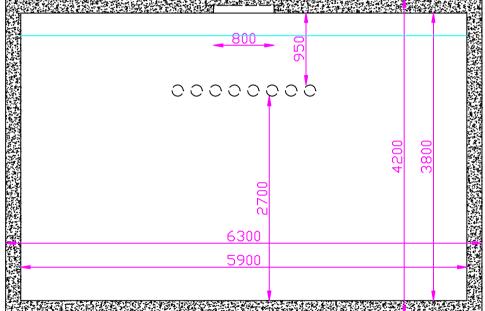

SKALA	LEĢENDA	JUDUL TUGAS AKHIR	JURUSAN TEKNIK LINGKUNGAN	
1:25	[777777] Male	Perencanaan Pengelolaan Terpadu Air Limbah Kereta Api di Staelun Surabaya Kota	JUNUSHNI IENNIK LINGKUNGAN	
TANGGAL	///// Stainless	JUDUL GAMBAR	FAKULTAS TEKNIK SIPIL DAN PERENCANAAN	
	Beei Bejo Marka Air	Potongan Bangunan Grease Trap	WALLIAG TENNIK SIFIL DAN PENENGANAN	W W
NO GAMBAR		NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	
6.20		Lukmenul Hakim - 3312100703	INSTITUTI TEXNOLOGI SEPULUN NOPEIIBER	
HALAMAN		DOSEN PEMBINBING	SURABAYA	
179		ir. Eddy Setladi Soedjono Dipl.SE., M.Sc., Ph.D.	GUIVENIA	


Potongan A-A Bangunan Zona Septik Skala 1:50

		A17818 1144	
SKALA	LEGENDA	JUDUL TUGAS AKHIR	JURUSAN TEKNIK LINGKUNGAN
1:50		Perencanaan Pengelolaan Terpadu Air Limbeh Kereta Api di Stasiun Surabeya Kota	JUNGAN IEMIN LINGKUNGAN
TANGGAL		JUDUL GAMBAR	FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
		Potongen A-A Bengunen Zone Septik	PANGLIAS IEMIK SIPIL DAN PENENGAWAN
NO GAMBAR		NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER
6.22		Lukmenul Hekim - 3312100703	Maillot IEMotodiaePoton NoPEMBER
HALAMAN		DOSEN PEMBINBING	SURABAYA
183		ir. Eddy Sedadi Soedjono Dipl.SE., M.Sc., Ph.D.	GUVENIA

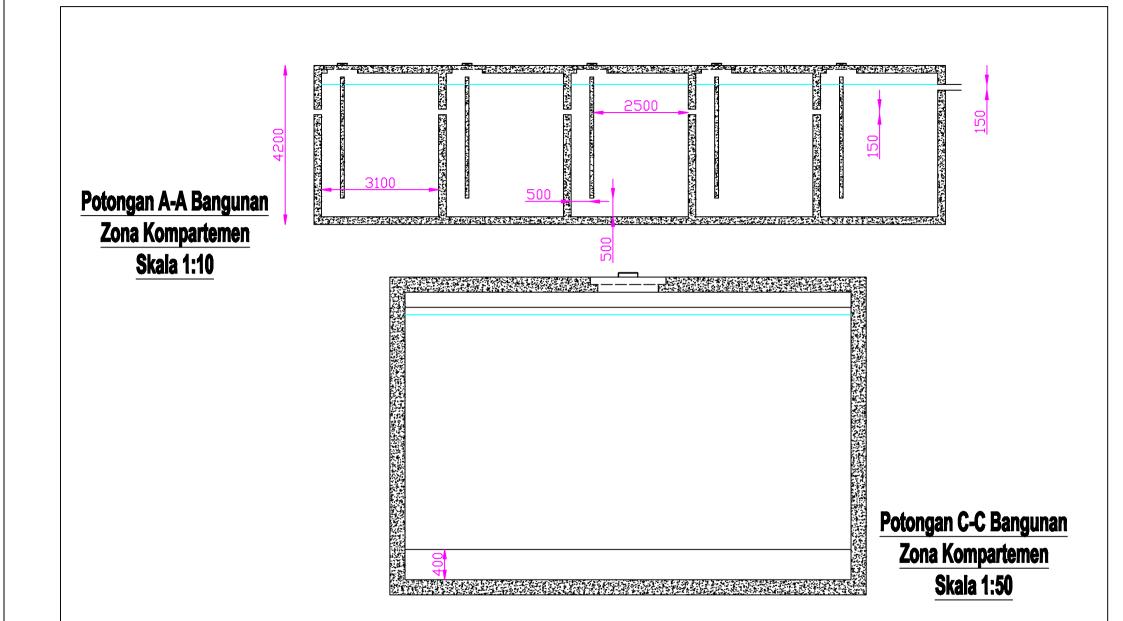
Potongan B-B Bangunan Zona Septik Skala 1:50

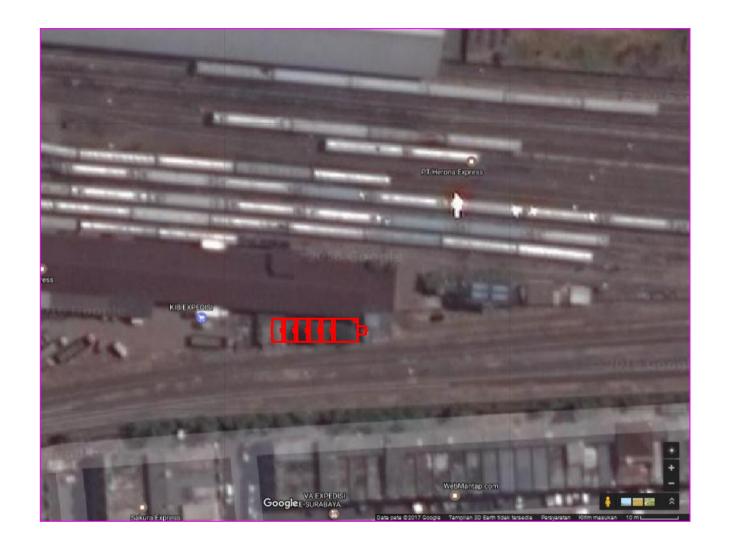

SKALA	LEGENDA	JUDUL TUGAS AKHIR	JURUSAN TEKNIK LINGKUNGAN	
1:50	////// Aut	Perencanaan Pengelolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota	SOURCEM I ENVIR LINGUORGIN	
TANGGAL	(///// Stainless	JUDUL GAMBAR	EAVI II TAG TEVAIR GIDII DAN DEDENGANAAN	
	PROVINCE BALLBALL	Potongen B-B Bengunen Zone Septik	FAKULTAS TEKNIK SIPIL DAN PERENCANAAN	W W
NO GAMBAR	Bed Bejo	NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	
623	Minim Air	Lukmenul Hekim - 3312100703	- INSTITUT TEXNOLOGI SEPULUT NUPERBER	
HALAMAN		DOSEN PEMBINBING	SURABAYA	
185		Ir. Eddy Sededi Soedjono Dipl.SE., M.Sc., Ph.D.	GUIVENIA	



Potongan C-C Bangunan Zona Septik **Skala 1:50**

SKALA	LEÇENDA	JUDUL TUGAS AKHIR	HIDI IDAN TEMANU I BAGAZI BAGAN		
1:10		Perencanaan Pengelolaan Terpadu Air Limbeh Kereta Api di Stasiun Surabaya Kota	- JURUSAN TEKNIK LINGKUNGAN		
TANGGAL		JUDUL GAMBAR	FAKULTAS TEKNIK SIPIL DAN PERENCANAAN		Ш
		Potongen C-C Bangunan Zona Sapilit	PANULIAS IEMIK SIFIL DAN PERENGAWAN		17Y
NO GAMBAR		NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	<u> </u>	$((\ \)$
6.24		Lukmenul Hakim - 3312100703	INSTITUT TEMOLOGI SEPULUN NOPEMBER		
HALAMAN		DOSEN PENEMBING	SURABAYA		2
187		Ir. Eddy Seifadi Soedjono Dipi.SE., M.Sc., Ph.D.	GUVENIA	~	L





Potongan B-B Bangunan Zona Kompartemen Skala 1:50

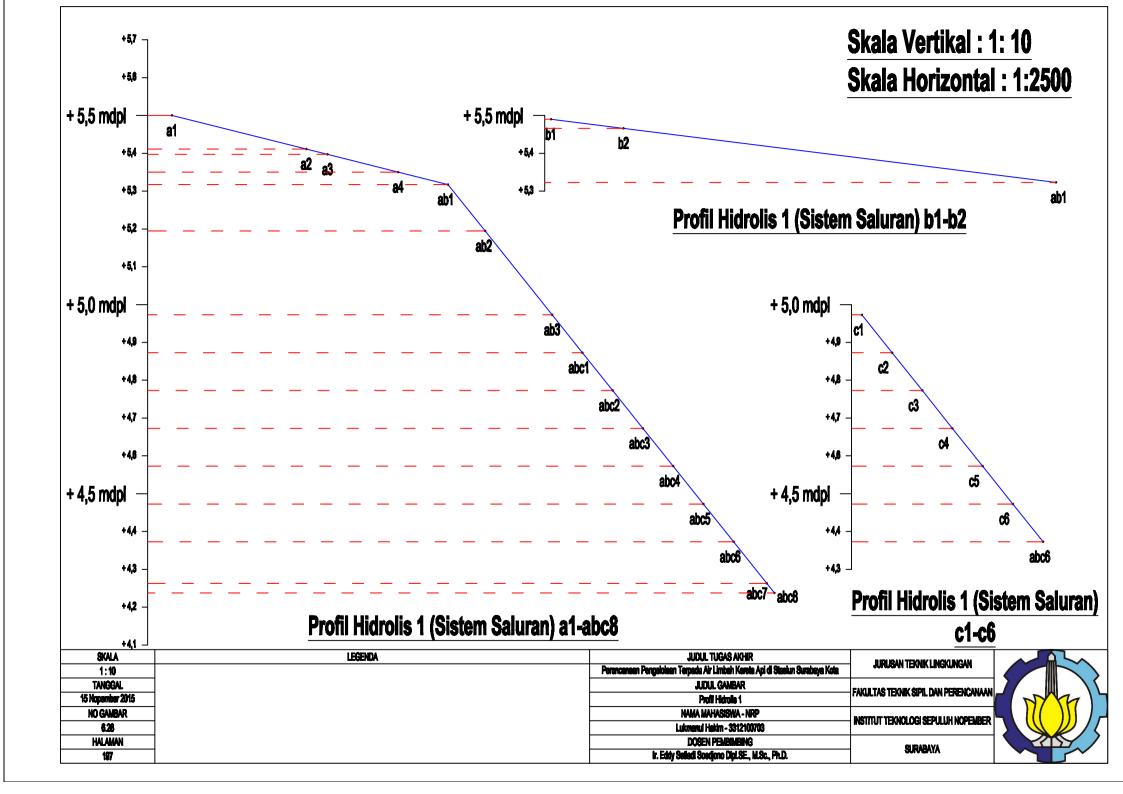

SKALA	LEGENDA	JUDUL TUGAS AKHIR	JURUSAN TEKNIK LINGKUNGAN	
1 : 10 dan 1:50	7777777 M .L.L	Perencanaan Pengalolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota	JUNDAN IEMIN LINGNONOM	
TANGGAL	C///// Stainless	JUDUL GAMBAR	FAKULTAS TEKNIK SIPIL DAN PERENCANAA	
	TOTAL CONTROL BALA	Denah dan Polongan Bangunan Zoana Kompartemen	TANGLING IEMIK SIFIL DAN PERENGANAN	NY W
NO GAMBAR	Book Baja	NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	
625		Lukmenul Heitim - 3312100703	- INSTITUT TEXNOLOGI SEPULUT NUPERBER	
HALAMAN		DOŞEN PEMBIMBING	SURABAYA	
189		ir. Eddy Setladi Soedjono Dipl.SE., M.Sc., Ph.D.	SUIVENIA	

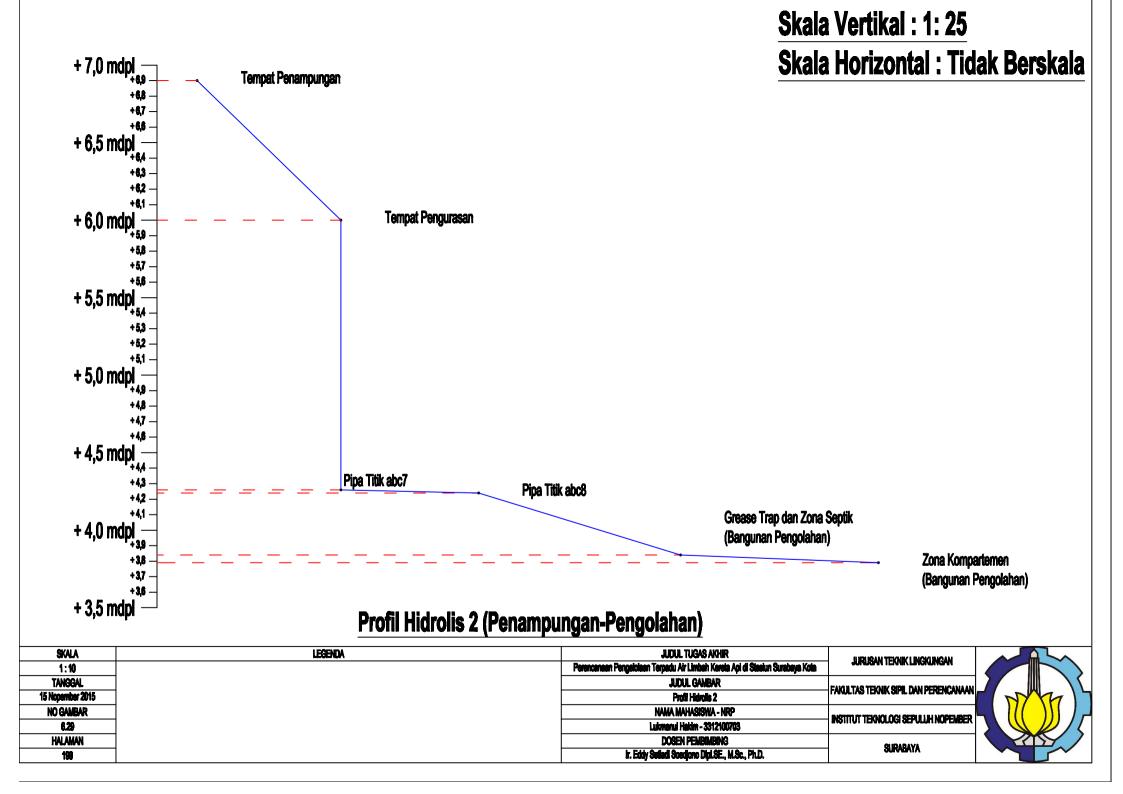
SKALA	LEGENDA	JUDUL TUGAS AKHIR	JURUSAN TEKNIK LINGKUNGAN	
1:10	[////// Million	Perencanaan Pengelolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota	JUNUSHI IEMIN LINGNUNGHI	
TANGGAL	(/////) Stainless	JUDUL GAMBAR	FAKULTAS TEKNIK SIPIL DAN PERENCANAAN	
	TOTAL CONTROL BALL BALL	Polongan Bengunan Zona Komparlaman	PANULIAS IENNIK SIFILUMI PERENGANAM	MY W
NO GAMBAR	Bed Bejo	NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	
6.26		Lukmenul Hakim - 3312100703	INSTITUTI TEXNOLOGI SEPULUN NOPEIIBER	
HALAMAN		DOSEN PEMBING	SURABAYA	
191		Ir. Eddy Seifadi Soedjono Dipi.SE., M.Sc., Ph.D.	SUIVENIA	

SKALA	LEGENDA	JUDUL TUGAS AKHIR	JURUSAN TEKNIK LINGKUNGAN	
1:1000		Perencanaan Pengelolaan Terpadu Air Limbah Kereta Api di Stasiun Surabaya Kota	JURUSHNI IENNIK EINSKUNSKN] (
TANGGAL		JUDUL GAMBAR	FAKULTAS TEKNIK SIPIL DAN PERENCANAAN	1
		Penempatan Bangunan Pengdahan pada Lokasi	PANULIAS IEMIK SIFIL DAN PERENGANAAN	
NO GAMBAR		NAMA MAHASISWA - NRP	INSTITUT TEKNOLOGI SEPULUH NOPEMBER	Ц
6.27		Lukmenul Hakim - 3312100703	Maillot texhologiaerolon horeidek	
HALAMAN		DOSEN PEMBINGI	SURABAYA	1
193		Ir. Eddy Seliadi Soedjono Dipl.SE., M.Sc., Ph.D .	OUIVERIA	

6.4 Profil Hidrolis

Profil hidrolis pengelolaan pada perencanaan ini terbagi kedalam dua bagian pokok. Pertama bagian penyaluran dimana hulunya adalah toilet berahir di saluran terahir (a1-abc8) sedangkan yang kedua adalah penampungan hingga bangunan pengolahan. Berikut profil hidrolis pertama dan kedua.


Tabel 6. 12 Profil Hidrolis I


No	Titik	Headloss	Ketinggian
1	a1	0,089	5,500
2	a2	0,014	5,411
3	a3	0,047	5,397
4	a4	0,033	5,350
5	b1	0,024	5,490
6	b2	0,143	5,466
7	ab1	0,123	5,317
8	ab2	0,222	5,194
9	ab3	0,100	4,973
10	abc1	0,100	4,873
11	abc2	0,100	4,773
12	abc3	0,100	4,673
13	abc4	0,100	4,573
14	abc5	0,100	4,473
15	abc6	0,100	4,970
16	c1	0,100	4,870
17	c2	0,100	4,770
18	c3	0,100	4,670
19	c4	0,100	4,570
20	c5	0,100	4,470
21	c6	0,110	4,373

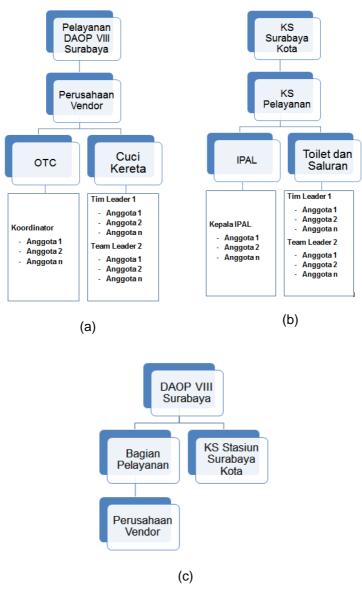
No	Titik	Headloss	Ketinggian
22	abc7	0,025	4,263
23	abc8		4,240

Tabel 6. 13 Profil Hidrolis II

No	Titik	Head loss (m)	Ketinggian (m)
1	Penampungan	0,9	6,9
2	Pengurasan	1,74	6
3	abc7	0,025	4,26
4	abc8	0,4	4,24
5	Bangunan Grease trap	0	3,84
6	Bangunan Zona Septik	0,05	3,84
7	Bangunan Zona Kompartemen		3,79

BAB 7 OPERASI DAN PEMELIHARAAN

7.1 Kelembagaan


Pelaksanaan pengelolaan air limbah kereta api secara terpadu sangat sulit dilaksanakan tanpa sinergitas berbagai lembaga didalamnya, apalagi kelembagaan kereta api sangat banyak sekali cabangnya. Kelembagaan pengelolaan ini perlu ditata rapi sehingga pelaksanaannya dapat dilakukan dengan mudah tanpa tumpang tindih pekerjaan. Secara keseluruhan kelembagaan yang akan dilibatkan pada pengelolaan air limbah ini dibagi kedalam dua katagori yaitu pengelolaan di kereta dan pengelolaan di stasiun.

Secara keseluruhan lembaga pengelolaan air limbah di kereta masih dilaksanakaan oleh perusahaan vendor yang bekerja sama dengan PT KAI. Perusahaan tersebut bertanggung jawab pada pengelolaan air limbah diatas kereta, penampungan, dan pengurasan. Sedangkan pengelolaan di stasiun dilakukan oleh petugas stasiun khususnya tim pelayanan stasiun Surabaya Kota. Tim pelayanan stasiun ini bertanggung jawab atas penyaluran dan pengolahan (Gambar 7.1).

7.2 Operasi

7.2.1 Unit Toilet

Operasi unit toilet pada perencanaan ini dilakukan di kereta dan stasiun. Masing-masing toilet perlakukaannya sama hanya saja, jumlah dan aksesoris toiletnya berbeda. Toilet kereta terdiri dari closet jongkok, wastafel, kran wastafel, kran spray, sabun cuci tangan, pipa elastis stainless, cermin, pegangan tangan, diniding, atap, alas (kasar), dan pintu. Semua barang-barang tersebut harus siap dioperasikan sebelum kereta berangkat dari stasiun pertama. Selama dalam perjalanan operasi toilet dilakukan oleh para penumpang. Petugas hanya

Gambar 7. 1 Kelembagaan Pengelola

mengecek kebersihan dalam kurun waktu tertentu sehingga toilet dalam kedaan bersih, harum, dan cukup air. Jumlah petugas kebersihan kereta diserahkan pada SOP pihak ketiga sehingga teknis dan pembagiannya diserahkan langsung pihak menejemen dari perusahan tersebut.

Berbeda dengan toilet kereta, toilet stasiun terdiri dari 5 toilet 2 toilet pegawai dan 3 toilet umum. Toilet pegawai terdapat dua jenis yaitu toilet bercloset jongkok dan bercloset duduk. Toilet dengan closet jongkok memiliki kasesoris berupa bak penampung air, gayung, ember, cermin, gantungan baju, kloset jongkok, dan kran; sedangkan toilet dengan closet duduk memiliki aksesoris berupa ember, gayung, kran spray, pipa fleksibel, cermin, dan gantungan baju. Toilet umum sama seperti toilet pegawai dengan closet jongkok hanya saja tidak memiliki bak penampung air, diganti dengan ember.

Operasi toilet distasiun digunakan oleh pengunjung mulai dari pagi hingga malam pada waktu pemberangkatan dan kedatangan kereta. toilet tersebut harus sudah disiapkan sejak jadwal keberangkatan kereta pertama dihari itu yaitu pukul 04.30. Toilet disiapkan jam 04.00 pagi sehingga siap dipakai. Oleh karena itu jumlah pegawai harus cukup banyak dengan sistem pembagian shift. Dengan jumlah toilet 5 toilet dengan jumlah kamar toiletnya yang cukup banyak maka diperlukan pegawai kebersihan sebanyak 5 orang. Toilet pegawai berjumlah 3 ditanggungjawabi oleh satu orang sedangkan 2 toilet umum ditanggung jawabi oleh 2 orang pertoilet. Terbagi kedalam 2 shift.

7.2.2 Unit Penampungan

Tempat Penampungan Air Limbah (TPAL) pada perencanaan ini memiliki 2 tipikal yaitu kecil (K) dan besar (B). Masing-masing penampungan dikhususkan untuk kereta yang berbeda. tipikal K digunakan untuk semua kereta makan, kereta ekonomi (kecuali KRD Kertosono), dan kereta bisnis; sedangkan tipikal B digunakan untuk semua kereta eksekutif dan KRD Kertosono.

Penampungan ini didesain sekecil mungkin namun cukup untuk menampung air limbah menuju stasiun besar terdekat (memiliki pos pengisian air bersih). Sebagi contoh kereta dengan awal keberangkatan bandung mengalami pengurasan empat kali dalam perjalanan sehingga volume penampungan volume total kereta selama perjalanan dibagi empat.

Selama perjalanan operasi penampungan hanya sebatas menampung air limbah tanpa perlu operasi ataupun campur tangan dalam operasinya. Namun selama perjalanan, OTC perlu untuk memeriksa kondisi tempat penampungan sehingga tidak terjadi kebocoran atau kerusakan lainnya. Laporan tersebut dilaporkan pada pihak pelayanan stasiun terahir kedatangan.

7.2.3 Unit Pengurasan dan Penyaluran

Dalam perencanaan ini pengurasan menggunakan sistem gravitasi. Selain itu pengurasan bukan hanya dilakukan di stasiun akhir tapi dibeberapa stasiun besar selama perjalanan seperti pada bab sebelumnya.

Operasi pengurasan pada stasiun saat perjalanan dilakukan dengan bekerja sama dengan petugas kebersihan stasiun. Oleh karena itu, di setiap stasiun besar harus siap beberapa petugas yang siap menguras air limbah kereta pada tempat penampungan. Alat pengurasan pada stasiun persinggah harus disimpan disekitar peron kedatang kereta sehingga ketika kereta berhenti tidak terlalu susah proses pengurasannya.

Pengurasan pada stasiun surabaya kota dilakukan pada jalur rel pencucian kereta. dimana kereta ketika datang langsung dilangsirkan ke dua jalur tersebut kemudian setelah masuk dan berhenti baru proses pengurasan dilakukan. Pengurasan pada stasiun terahir seperti ini dibebankan semua kepada OTC. Pengurasan bergantian dari tempat penampungan satu ke yang lainnya.

Berbeda dengan pengurasan, unit penyaluran operasinya lebih mudah dan ringan. Unit pengurasan setelah kontruksi,

tinggal dioperasikan tanpa perlu banyak campur tangan. Karena penyaluran hanya benyak perlu untuk dipelihara. Penyaluran ini dilakukan mulai dari toilet stasiun hingga bangunan pengolahan dan pengurasan hingga bangunan pengolahan.

7.2.4 Unit Pengolahan

Bangunan unit pengolahan pada perencanaan ini berupa ABR dengan susanan bangunan grease trap, tangki septik, dan kompartemen. Grease trap dilakukan pembersihan selama seminggu sekali. Pembersihan ini untuk mengangkat skum yang terbentuk pada grease trap. Zona septik beroperasi setiap hari, namun untuk pengurasan lumpur dilakukan selama 4 tahun sekali. Walaupun seperti itu pengecekan lumpur dilakukan berkala selama 2 bulan sekali pada zoba septik. Hal ini dilakukan untuk menanggulangi terjadinya pembentukan lumpur yang berlebih. Pengecakn dilakukan dengan memakai tongkat. Zona kompartemen operasinya sama halnya seperti zona septik yaitu dengan memeriksa selama 2 bulan sekali.

Selain pemeriksaan lumpur, unit pengolahan juga melakukan tes pada infulent dan efluent air limbah. Hal ini dilakukan selama 4 bulan sekali.

7.3 Pemeliharaan

Pemeliharaan unit penmpungan dilakukan dengan car pembersihan pembersihan total selama 6 bulan sekali. Hal ini dilakukan untuk mengurangi pengkaratan pada bangunan tersebut. Pemeliharaan dilakukan oleh Balai Yasa. Pemeliharaan tempat penampungan juga dilakukan setiap hari oleh semua elemen OTC. Hal ini karena OTC merupakan pemegang tanggung jawab penuh terhadap orpeasi penampungan. Pemeliharaan OTC hanya berupa pengecekan kondisi tempat penampungan secara fisik dan fungsi, ketika terjadi disfungsi atau kerusakan maka OTC menghubungi bagian kebersihan stasiun yang nantinya akan diteruskan ke Balai Yasa melalui DAOP VIII Surabaya.

Pemeliharaan unit pengurasan dilakukan oleh OTC bekerjasama dengan kebersihan kebersihan stasiun untuk stasiun non surbaya kota. Sedangkan untuk stasiun surabaya kota di tanggung jawab penuh oleh OTC. Pemeliharaan berupa pengecakn fisik dan fungsi peralatan pengurasan. Ketikapun ada yang rusak yang berhak menganti adalah bagian pelayanan stasiun. Berbeda dengan pengurasan, penyaluran ditangungjawbi langsung oleh bagian kebersihan. Pemeliharaanya hanya sebatas pengecekan kondisi pipa khususnya yang terlihat.

Pemeliharaan bangunan pengolahan hanya berupa pembersihan area sekitar bangunan dan banguan itu sendiri. Pemeliharaan dilakukan berupa pengecekan influent dan efluent bangunan selama 4 bulan sekali. Selain itu pembersihan skum dilakukan seminggu sekali, sedangkan pengurasan lumpur dialakukan 4 tahun sekali dengan periode pengecekan lumpur 2 bualan sekali.

BAB 8

BILL OFF QUANTITY DAN RENCANA ANGGARAN BIAYA

8.1 Kontruksi

8.1.1 Penampungan

Penampungan terdiri beberapa bagian yaitu kotak penampung dan sekat, penyangga, dan pipa (inlet, kuras, dan udara). Pekerjaan yang ada pada pembuatan penampungan diantaranya adalah las. Kotak penampung terdiri dari dinding, alas, tutup, dan sekat. Semuanya terbuat dari plat stainless. Ketebalan stainless pada bagian tutup dan sekat adalah 3 mm sedangkan dinding dan alas adalah 5 mm. Dengan stasinless pasaran yang dijual ukuran 1,22 x 2,44 m. Ukuran pasaran tidak sesuai dengan kebutuhan sehingga perlu pemotongan agar didapat ukuran yang diinginkan. Penyangga terdiri dari plat baja, baja selinder, mur. Plat baja dibentuk kubus dibelah diagonal dengan ukuran tertentu. Diperlukan proses las dan pemotongan agar didapat ukuran dan bentuk penyangga yang diinginkan. Sedangkan Pipa terbuat dari bahan besi dengan ukuran 3 inch baik itu pipa inlet, pipa kuras, maupun pipa udara. Daftar lengkap bahan dan pekerjaan dalam pembuatan penampungan secara lengkap dapat dilihat pada Tabel 8.1.

Tabel 8. 1 Kebutuhan Kontruksi TPAL

No	Bahan/Kegiatan	Satuan
1	Plat Stainless 3mm	m^2
5	Plat Stainless 5mm	m^2
6	Las	cm
7	Besi Baja tebal 3 mm	kg
9	Besi Baja tebal 5 mm	kg
10	Mur Baut Baja d in 1 cm	pcs
11	End Cap diameter 75 mm	Buah

No	Bahan/Kegiatan	Satuan
12	Flange d 3 inch	Buah

Pada Tabel 8.1 Pekerjaan yang dilakukan hanyalah Las. Hal ini dikarenakan bahan sudah bisa dipesan dengan potongan tertentu sehingga proses kontruksi hanya proses las saja. BOQ Las dari HSPK Surabaya tahun 2015 dapat dilihat pada Tabel 8.2. Setelah didapat BOQ kemudian dihitung RAB sesuai kebutuhannya seperti pada Tabel 8.3, Tabel 8.4, dan Tabel 8.5.

Tabel 8. 2 BOQ Pekerjaan Las (per cm)

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Bahan				
Electrode las	0,04	kg	38000	1520
BBM Subsidi Diesel	0,03	liter	7500	225
Minyak Pelumas	0,004	liter	28300	113,2
Jumlah				1858,2
Upah				
Mandor	0,0002	orang hari	120000	24
Kepala Tukang	0,0002	orang hari	110000	22
Tukang	0,002	orang hari	105000	210
Pembantu Tukang	0,004	orang hari	99000	396
Jumlah				652
Total				2510,2

Tabel 8. 3 RAB 1 Buah TPAL Tipikal Kecil

No	Bahan/Kegiatan	Satuan	Kebutuhan	Pasaran	Jumlah	Harga Satuan	Total Harga
1	Plat Stainless 3mm	m ²	1,4	2,9768	0,5	Rp1.884.960	Rp886.504
2	Plat Stainless 5mm	m ²	2,8	2,9768	1	Rp3.141.600	Rp2.955.012
3	Besi Baja tebal 3 mm	kg	735	70	24	Rp400.000	Rp4.200.000
4	Besi Baja tebal 5 mm	kg	437,5	70	6,25	Rp760.500	Rp4.753.125
5	Mur Baut Baja d in 1 cm	pcs	1	1	6	Rp1.781	Rp1.781
6	End Cap diameter 75 mm	Buah	2	1	2	Rp15.000	Rp30.000
7	Flange d 3 inch	Buah	1	1	1	Rp20.000	Rp20.000
8	Pemotongan	m	400	1	400	Rp10.000	Rp4.000.000
9	Las Pipa	cm	1570	1	1570	Rp2.510	Rp3.940.700
	Total						Rp20.787.122

Tabel 8. 4 RAB 1 Buah TPAL Tipikal Besar (B)

No	Bahan/Kegiatan	Satuan	Kebutuhan	Pasaran	Jumlah	Harga Satuan	Total Harga
	Plat Stainless 3mm	m ²	3,7	2,9768	1,25	Rp1.884.960	Rp2.342.902
	Plat Stainless 3mm	m ²	3,7	2,9768	1,25	Rp3.141.600	Rp3.904.837
;	Besi Baja tebal 3 mm	kg	3360	70	48	Rp400.000	Rp19.200.000

4	Besi Baja tebal 5 mm	kg	250	400	12,5	Rp760.500	Rp475.313
5	Mur Baut Baja d in 1 cm	pcs	1	1	12	Rp1.781	Rp1.781
6	End Cap diameter 75 mm	Buah	4	1	4	Rp15.000	Rp60.000
7	Flange d 3 inch	Buah	1	1	1	Rp20.000	Rp20.000
8	Pemotongan	m	500	1	500	Rp10.000	Rp5.000.000
9	Las Pipa	cm	1840	1	1840	Rp2.510	Rp4.618.400
Total						Rp35.623.233	

Tabel 8. 5 Total Biaya Investasi TPAL

No	Tipikal	Harga	Jumlah	Total
1	Kecil (K)	Rp20.787.122	120	Rp2.494.454.607
2	Besar (B)	Rp35.623.233	54	Rp1.923.654.601
	Total		174	Rp4.418.109.208

8.1.2 Pengurasan

Kontruksi pengurasan hanya berupa pipa fleksibel, pipa pvc, pembetonan, dan aksesoris pipa. Sedangkan galian hanya galian dilakukan pada tahap kontruksi penyaluran. Daftar lengkap bahan dan pekerjaan dalam kontruksi pengurasan secara lengkap dapat dilihat pada Tabel 8.6, Tabel 8.7, dan Tabel 8.8 (RAB).

Tabel 8. 6 Kebutuhan dan/atau Kegiatan Kontruksi Pengurasan

No	Bahan/Kegiatan	Satuan	Kebutuhan
1	Pipa Fleksibel 3,5"	m	480
2	Pipa PVC d 3"	m	57,082
3	Tee 3"	Buah	12
4	Large Radius Tee 3"	Buah	12
5	Pengunci	Buah	48
6	Beton	m3	0,3

Tabel 8. 7 BOQ Kontruksi Pengurasan

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Pekerjaan Beton K-100	m3			
Bahan:				
Semen PC 40 Kg	6.175	Zak	63	389,025.00
Pasir Cor/Beton	0.543125	M3	232,1	126,059.31
Batu Pecah Mesin 1/2 cm	0.52579	МЗ	466	245,017.89
Air Kerja	215	Liter	27	5,805.00
			Jumlah:	765,907.21
Upah:				
Mandor	0.083	Orang Hari	120	9,960.00
Kepala Tukang	0.028	Orang Hari	110	3,080.00

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Tukang	0.275	Orang Hari	105	28,875.00
Pembantu Tukang	1.65	Orang Hari	99	163,350.00
			Jumlah:	205,265.00
			Nilai HSPK :	971,172.21
Pekerjaan Bekisting Balok		m2		
Bahan:				
Paku Triplek/Eternit	0.4	Kg	22	8,800.00
Plywood Uk .122x244x9 mm	0.35	Lembar	93,6	32,760.00
Kayu Kamper Balok 4/6, 5/7	0.018	M3	6,400,000	115,200.00
Kayu Meranti Bekisting	0.04	M3	3,200,000	128,000.00
Minyak Bekisting	0.2	Liter	28,3	5,660.00
			Jumlah:	290,420.00
			Jumlah:	290,420.00
Upah:				
Mandor	0.033	Orang Hari	120	3,960.00
Kepala Tukang	0.033	Orang Hari	110	3,630.00
Tukang	0.33	Orang Hari	105	34,650.00
Pembantu Tukang	0.66	Orang Hari	99	65,340.00
			Jumlah:	107,580.00
			Nilai HSPK :	398,000.00
Pemasangan Pipa Air Kotor diameter 3'		m		
Bahan:				
Pipa Plastik PVC Tipe C Uk. 3 inchi Pj.4mtr	0.16	Batang	1,500,000.00	2,400.00

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Pipa Plastik PVC Tipe C Uk. 3 inchi Pj.4mtr	0.05	Batang	1,500,000.00	7,245.00
			Jumlah:	315,000.00
Upah:				
Mandor	0.0041	Orang Hari	120,000.00	492.00
Kepala Tukang	0.0135	Orang Hari	110,000.00	1,485.00
Tukang	0.135	Orang Hari	105,000.00	14,175.00
Pembantu Tukang	0.081	Orang Hari	99,000.00	8,019.00
			Jumlah:	24,171.00
			Nilai HSPK:	339,171.00
Pemasangan Pipa Air Kotor 3'	diameter	m		
Bahan:				
Pipa Plastik PVC Tipe C Uk. 3 inchi Pj.4mtr	0.3	Batang	69,000.00	20,700.00
Pipa Plastik PVC Tipe C Uk. 3 inchi Pj.4mtr	0.105	Batang	69,000.00	7,245.00
			Jumlah:	27,945.00
Upah:				
Mandor	0.0041	Orang Hari	120,000.00	492.00
Kepala Tukang	0.0135	Orang Hari	110,000.00	1,485.00
Tukang	0.135	Orang Hari	105,000.00	14,175.00
Pembantu Tukang	0.081	Orang Hari	99,000.00	8,019.00
			Jumlah:	24,171.00
			Nilai HSPK:	52,116.00

Tabel 8. 8 RAB Pengurasan

No	Bahan/Kegiatan	Satuan	Kebutuhan	Pasaran	Harga Satuan	Total Harga
1	Pekerjaan Beton K-100	m3	0,3	1	Rp971.172	Rp291.352
2	Pekerjaan Bekisting Balok	m2	1,92	1	Rp398.000	Rp764.160
3	Pemasangan Pipa Air Kotor diameter 3'	m	480	1	Rp339.171	Rp162.802.080
4	Pemasangan Pipa Air Kotor diameter 3,5'	m	57,082	1	Rp52.116	Rp2.974.886
5	Tee 3"	Buah	12	20	Rp14.995	Rp8.997
6	Large Radius Tee 3"	Buah	12	20	Rp21.670	Rp13.002
7	Pengunci	Buah	48	1	Rp12.000	Rp576.000
Total						Rp167.430.476

8.1.3 Penyaluran

Kontruksi pengurasan hanya berupa pipa, aksesoris pipa dan pembetonan. Selain itu pembuatan saluran dibutuhkan penggalian tanah untuk beberapa lokasi. Pipa disini terbuat dari PVC dengan ukuran 10 cm, 25 cm, 30 cm, 35 cm,dan 40 cm. Daftar lengkap bahan dan pekerjaan dalam kontruksi penyaluran secara lengkap dapat dilihat pada Tabel 8.8 dan Tabel 8.9 (RAB).

Tabel 8. 9 Kegiatan dan/atau Kebutuhan Kontruksi Penyaluran

No	Bahan/Kegiatan	Satuan	Kebutuhan
1	Pemasangan Pipa 4"	m	585,5
2	Pemasangan Pipa 10"	m	100
3	Pemasangan Pipa 12"	m	140
4	Pemasangan Pipa 16"	m	27
5	Elbow 4"	buah	4
6	Tee 4"	buah	1
7	Clean Out Cap	buah	2

No	Bahan/Kegiatan	Satuan	Kebutuhan
8	Increaser 4" x 10"	buah	1
9	Increaser 10" x 12"	buah	2
10	Tee 12" ke 16"	buah	1
11	Elbow 16"	buah	1
12	Gali Tanah	m3	611,4
13	Pengurugan Pasir	m3	114,7
14	Urug Tanah	m3	417,8
15	Beton	m3	85,3
16	Bekisting	m2	54,8

Tabel 8. 10 BOQ Kontruksi Penyaluran

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Pengurugan tanah kembali untuk kontruksi		m3		
Upah:				
Mandor	0.019	Orang Hari	120,000.00	2,280.00
Pembantu Tukang	0.102	Orang Hari	99,000.00	10,098.00
			Jumlah:	12,378.00
			Nilai HSPK :	12,378.01
Penggalian Tanah Biasa Konstruksi	Penggalian Tanah Biasa untuk Konstruksi			
Upah:				
Mandor	0.025	Orang Hari	120,000.00	3,000.00
Pembantu Tukang	0.75	Orang Hari	99,000.00	74,250.00
			Jumlah:	77,250.00
			Nilai HSPK :	77,250.00
Pengurugan Pasir (PADAT)		m3		
Bahan:				

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Pasir Urug	1.2	M3	143,500.00	172,200.00
Upah:			Jumlah:	172,200.00
Mandor	0.01	Orang Hari	120,000.00	1,200.00
Pembantu Tukang	0.3	Orang Hari	99,000.00	29,700.00
			Jumlah:	30,900.00
			Nilai HSPK :	203,100.00
Pemasangan Pipa Air K diameter 4' Bahan:	otor	m		
Pipa Plastik PVC Tipe C Uk. 4 inchi Pj.4mtr				
	0.3	Batang	89,000.00	26,700.00
Pipa Plastik PVC Tipe C Uk. 4 inchi Pj.4mtr	0.105	Batang	89,000.00	9,345.00
			Jumlah:	36,045.00
Upah:				
Mandor	0.0041	Orang Hari	120,000.00	492.00
Kepala Tukang	0.0135	Orang Hari	110,000.00	1,485.00
Tukang	0.135	Orang Hari	105,000.00	14,175.00
Pembantu Tukang	0.081	Orang Hari	99,000.00	8,019.00
			Jumlah:	24,171.00
			Nilai HSPK:	60,216.00
Pemasangan Pipa Air K diameter 10' Bahan:	otor	m		
Pipa Plastik PVC Tipe C Uk. 10 inchi Pj.4mtr				
	0.3	Batang	1,422,700.00	426,810.00
Pipa Plastik PVC Tipe C Uk. 10 inchi Pj.4mtr	0.105	Batang	1,422,700.01	149,383.50
			Jumlah:	576,193.00
Upah:				
Mandor	0.0041	Orang Hari	120,000.00	492.00

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Kepala Tukang	0.0135	Orang Hari	110,000.00	1,485.00
Tukang	0.135	Orang Hari	105,000.00	14,175.00
Pembantu Tukang	0.081	Orang Hari	99,000.00	8,019.00
			Jumlah:	24,171.00
			Nilai HSPK:	600,364.50
Pemasangan Pipa Air Ko diameter 12' Bahan:	otor	m		
Pipa Plastik PVC Tipe C Uk. 12 inchi Pj.4mtr				
	0.3	Batang	2,057,700.00	617,310.00
Pipa Plastik PVC Tipe C Uk. 12 inchi Pj.4mtr	0.105	Batang	2,057,700.01	216,058.50
			Jumlah:	833,368.50
Upah:				
Mandor	0.0041	Orang Hari	120,000.00	492.00
Kepala Tukang	0.0135	Orang Hari	110,000.00	1,485.00
Tukang	0.135	Orang Hari	105,000.00	14,175.00
Pembantu Tukang	0.081	Orang Hari	99,000.00	8,019.00
			Jumlah:	24,171.00
			Nilai HSPK:	857,539.50
Pemasangan Pipa Air Ko diameter 16' Bahan:	otor	m		
Pipa Plastik PVC Tipe C Uk. 16 inchi Pj.4mtr				
	0.3	Batang	1,557,200.00	467,160.00
Pipa Plastik PVC Tipe C Uk. 16 inchi Pj.4mtr	0.105	Batang	1,557,200.00	163,506.00
			Jumlah:	630,666.00
Upah:				
Mandor	0.0041	Orang Hari	120,000.00	492.00
Kepala Tukang	0.0135	Orang Hari	110,000.00	1,485.00

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Tukang	0.135 Or		105,000.00	14,175.00
Pembantu Tukang	ang 0.081		99,000.00	8,019.00
			Jumlah:	24,171.00
			Nilai HSPK:	654,837.00

Tabel 8. 11 RAB Kontruksi Penyaluran

No	Bahan/ Kegiatan	Satuan	Kebutuhan	Pasaran	Harga Satuan	Total Harga
1	Pemasangan Pipa 4"	m	585,5	1	Rp 60.216	Rp35.256.468
2	Pemasangan Pipa 10"	m	100	1	Rp 600.365	Rp60.036.450
3	Pemasangan Pipa 12"	m	140	1	Rp 857.540	Rp120.055.530
4	Pemasangan Pipa 16"	m	27	1	Rp 654.837	Rp17.680.599
5	Elbow 4"	buah	4	15	Rp 20.250	Rp5.400
6	Tee 4"	buah	1	8	Rp 26.085	Rp3.261
7	Clean Out Cap	buah	2	7	Rp 20.200	Rp5.771
8	Increaser 4" x 10"	buah	1	1	Rp 76.850	Rp76.850
9	Increaser 10" x 12"	buah	2	1	Rp 85.600	Rp171.200
10	Tee 12" ke 16"	buah	1	1	Rp 65.300	Rp65.300
11	Elbow 16"	buah	1	1	Rp 53.400	Rp53.400
12	Gali Tanah	m3	611,4	1	Rp 77.250	Rp47.230.650
13	Pengurugan Pasir	m3	114,7	1	Rp 203.100	Rp23.295.570
14	Urug Tanah	m3	417,8	1	Rp 12.378	Rp5.171.528
15	Beton	m3	85,3	1	Rp 971.172	Rp82.840.990
16	Bekisting	m2	438	1	Rp 398.000	Rp174.324.000
		Rp566.272.967				

8.1.4 Pengolahan

Kontruksi pengolahan beruba ABR dengan desain bersekat dimana dindingnya emiliki ketebalan 20 cm. Daftar lengkap bahan dan pekerjaan dalam kontruksi pengolahan secara lengkap dapat dilihat pada Tabel 8.10 dan Tabel 8.11 (RAB).

Tabel 8. 12 Kebutuhan dan/atau Kegiatan Kontruksi Pengolahan

No	Bahan/Kegiatan	Satuan	Kebutuhan
1	Gali Tanah	m3	950
2	Beton	m3	270
3	Pembesian	kg	
4	Bekisting	m2	1534,12
5	Pengangkutan tanah	m3	950

Tabel 8. 13 BOQ Pekerjaan Pengangkutan Tanah (per m³)

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Penggalian Tanah denga	m3			
Sewa Peralatan:				
Sewa Dump Truk 5 Ton	0.067	Jam	66,100.00	4,428.70
Sewa Escavator 6m3	0.067	Jam	132,200.00	8,857.40
			Jumlah:	13,286.10
Upah:				
Mandor	0.007	Orang Hari	120,000.00	840.00
Pembantu Tukang	embantu Tukang 0.226		99,000.00	22,374.00
			Jumlah:	23,214.00
			Nilai HSPK :	36,500.10

Tabel 8. 14 RAB Bangunan Pengolahan

No	Bahan/Kegiatan	Satuan	Kebutuhan	Pasaran	Harga Satuan	Total Harga
1	Pekerjaan Beton K-100	m3	270	1	Rp971.172	Rp262.216.497
2	Pekerjaan Bekisting Balok	m2	1534	1	Rp398.000	Rp610.532.000
3	Pembesian	kg	27000	1	Rp14.498	Rp391.446.000
4	Gali Tanah	m3	950	1	Rp52.116	Rp49.510.200
5	Pengangkutan	m3	950	1	Rp14.995	Rp14.245.250
		Rp1.327.949.947				

8.2 Operasi dan Pemeliharaan

Operasi dan pemeliharaan hanya berupa biaya gaji serta bahan dan peralatan pada proses operasi dan pemeliharaan. Berikut RAB operasi pemilharaan dalam satu tahun.

Tabel 8. 15 RAB Operasi dan Pemeliharaan dalam satu Tahun

No	Kebutuhan	Jumlah	Harga Satuan	Harga	
1	Tenaga Kerja Pembersih stasiun	18	Rp 3.400.000	Rp	734.400.000
2	Tenaga OTC	104	Rp 3.800.000	Rp	395.200.000
3	Operasi toilet kereta	1	Rp 500.000	Rp	6.000.000
4	Operasi Toilet stasiun	1	Rp 2.000.000	Rp	24.000.000
5	Pemeliharaan penyaluran	1	Rp 500.000	Rp	6.000.000
6	Pemeliharaan pengurasan	1	Rp 4.000.000	Rp	48.000.000
7	Pemeliharaan	1	Rp10.000.000	Rp	120.000.000

No	Kebutuhan	Jumlah	Harga Satuan	Harga	
	penmpungan				
8	Pengecekan influent dan efluent	1	Rp 5.000.000	Rp	15.000.000
9	Pengurasan lumpur	1	Rp34.000.000	Rp	8.500.000
10	Biaya kebersihan area stasiun	1	Rp 500.000	Rp	6.000.000
11	Pengecekan scum	1	Rp 500.000	Rp	6.000.000
	To	Rp	1.369.100.000		

Halaman ini sengaja dikosongkan

BAB 8

BILL OFF QUANTITY DAN RENCANA ANGGARAN BIAYA

8.1 Kontruksi

8.1.1 Penampungan

Penampungan terdiri beberapa bagian yaitu kotak penampung dan sekat, penyangga, dan pipa (inlet, kuras, dan udara). Pekerjaan yang ada pada pembuatan penampungan diantaranya adalah las. Kotak penampung terdiri dari dinding, alas, tutup, dan sekat. Semuanya terbuat dari plat stainless. Ketebalan stainless pada bagian tutup dan sekat adalah 3 mm sedangkan dinding dan alas adalah 5 mm. Dengan stasinless pasaran yang dijual ukuran 1,22 x 2,44 m. Ukuran pasaran tidak sesuai dengan kebutuhan sehingga perlu pemotongan agar didapat ukuran yang diinginkan. Penyangga terdiri dari plat baja, baja selinder, mur. Plat baja dibentuk kubus dibelah diagonal dengan ukuran tertentu. Diperlukan proses las dan pemotongan agar didapat ukuran dan bentuk penyangga yang diinginkan. Sedangkan Pipa terbuat dari bahan besi dengan ukuran 3 inch baik itu pipa inlet, pipa kuras, maupun pipa udara. Daftar lengkap bahan dan pekerjaan dalam pembuatan penampungan secara lengkap dapat dilihat pada Tabel 8.1.

Tabel 8. 1 Kebutuhan Kontruksi TPAL

No	Bahan/Kegiatan	Satuan
1	Plat Stainless 3mm	m^2
5	Plat Stainless 5mm	m^2
6	Las	cm
7	Besi Baja tebal 3 mm	kg
9	Besi Baja tebal 5 mm	kg
10	Mur Baut Baja d in 1 cm	pcs
11	End Cap diameter 75 mm	Buah

No	Bahan/Kegiatan	Satuan
12	Flange d 3 inch	Buah

Pada Tabel 8.1 Pekerjaan yang dilakukan hanyalah Las. Hal ini dikarenakan bahan sudah bisa dipesan dengan potongan tertentu sehingga proses kontruksi hanya proses las saja. BOQ Las dari HSPK Surabaya tahun 2015 dapat dilihat pada Tabel 8.2. Setelah didapat BOQ kemudian dihitung RAB sesuai kebutuhannya seperti pada Tabel 8.3, Tabel 8.4, dan Tabel 8.5.

Tabel 8. 2 BOQ Pekerjaan Las (per cm)

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Bahan				
Electrode las	0,04	kg	38000	1520
BBM Subsidi Diesel	0,03	liter	7500	225
Minyak Pelumas	0,004	liter	28300	113,2
Jumlah				1858,2
Upah				
Mandor	0,0002	orang hari	120000	24
Kepala Tukang	0,0002	orang hari	110000	22
Tukang	0,002	orang hari	105000	210
Pembantu Tukang	0,004	orang hari	99000	396
Jumlah				652
Total				2510,2

Tabel 8. 3 RAB 1 Buah TPAL Tipikal Kecil

No	Bahan/Kegiatan	Satuan	Kebutuhan	Pasaran	Jumlah	Harga Satuan	Total Harga
1	Plat Stainless 3mm	m ²	1,4	2,9768	0,5	Rp1.884.960	Rp886.504
2	Plat Stainless 5mm	m ²	2,8	2,9768	1	Rp3.141.600	Rp2.955.012
3	Besi Baja tebal 3 mm	kg	735	70	24	Rp400.000	Rp4.200.000
4	Besi Baja tebal 5 mm	kg	437,5	70	6,25	Rp760.500	Rp4.753.125
5	Mur Baut Baja d in 1 cm	pcs	1	1	6	Rp1.781	Rp1.781
6	End Cap diameter 75 mm	Buah	2	1	2	Rp15.000	Rp30.000
7	Flange d 3 inch	Buah	1	1	1	Rp20.000	Rp20.000
8	Pemotongan	m	400	1	400	Rp10.000	Rp4.000.000
9	Las Pipa	cm	1570	1	1570	Rp2.510	Rp3.940.700
	Total						

Tabel 8. 4 RAB 1 Buah TPAL Tipikal Besar (B)

No	Bahan/Kegiatan	Satuan	Kebutuhan	Pasaran	Jumlah	Harga Satuan	Total Harga
1	Plat Stainless 3mm	m ²	3,7	2,9768	1,25	Rp1.884.960	Rp2.342.902
2	Plat Stainless 3mm	m ²	3,7	2,9768	1,25	Rp3.141.600	Rp3.904.837
3	Besi Baja tebal 3 mm	kg	3360	70	48	Rp400.000	Rp19.200.000

4	Besi Baja tebal 5 mm	kg	250	400	12,5	Rp760.500	Rp475.313
5	Mur Baut Baja d in 1 cm	pcs	1	1	12	Rp1.781	Rp1.781
6	End Cap diameter 75 mm	Buah	4	1	4	Rp15.000	Rp60.000
7	Flange d 3 inch	Buah	1	1	1	Rp20.000	Rp20.000
8	Pemotongan	m	500	1	500	Rp10.000	Rp5.000.000
9	Las Pipa	cm	1840	1	1840	Rp2.510	Rp4.618.400
Total							Rp35.623.233

Tabel 8. 5 Total Biaya Investasi TPAL

No	Tipikal	Harga	Jumlah	Total
1	Kecil (K)	Rp20.787.122	120	Rp2.494.454.607
2	Besar (B)	Rp35.623.233	54	Rp1.923.654.601
	Total		174	Rp4.418.109.208

8.1.2 Pengurasan

Kontruksi pengurasan hanya berupa pipa fleksibel, pipa pvc, pembetonan, dan aksesoris pipa. Sedangkan galian hanya galian dilakukan pada tahap kontruksi penyaluran. Daftar lengkap bahan dan pekerjaan dalam kontruksi pengurasan secara lengkap dapat dilihat pada Tabel 8.6, Tabel 8.7, dan Tabel 8.8 (RAB).

Tabel 8. 6 Kebutuhan dan/atau Kegiatan Kontruksi Pengurasan

No	Bahan/Kegiatan	Satuan	Kebutuhan
1	Pipa Fleksibel 3,5"	m	480
2	Pipa PVC d 3"	m	57,082
3	Tee 3"	Buah	12
4	Large Radius Tee 3"	Buah	12
5	Pengunci	Buah	48
6	Beton	m3	0,3

Tabel 8. 7 BOQ Kontruksi Pengurasan

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Pekerjaan Beton K-100	m3			
Bahan:				
Semen PC 40 Kg	6.175	Zak	63	389,025.00
Pasir Cor/Beton	0.543125	M3	232,1	126,059.31
Batu Pecah Mesin 1/2 cm	0.52579	МЗ	466	245,017.89
Air Kerja	215	Liter	27	5,805.00
			Jumlah:	765,907.21
Upah:				
Mandor	0.083	Orang Hari	120	9,960.00
Kepala Tukang	0.028	Orang Hari	110	3,080.00

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Tukang	0.275	Orang Hari	105	28,875.00
Pembantu Tukang	1.65	Orang Hari	99	163,350.00
			Jumlah:	205,265.00
			Nilai HSPK :	971,172.21
Pekerjaan Bekisting Balok		m2		
Bahan:				
Paku Triplek/Eternit	0.4	Kg	22	8,800.00
Plywood Uk .122x244x9 mm	0.35	Lembar	93,6	32,760.00
Kayu Kamper Balok 4/6, 5/7	0.018	M3	6,400,000	115,200.00
Kayu Meranti Bekisting	0.04	M3	3,200,000	128,000.00
Minyak Bekisting	0.2	Liter	28,3	5,660.00
			Jumlah:	290,420.00
			Jumlah:	290,420.00
Upah:				
Mandor	0.033	Orang Hari	120	3,960.00
Kepala Tukang	0.033	Orang Hari	110	3,630.00
Tukang	0.33	Orang Hari	105	34,650.00
Pembantu Tukang	0.66	Orang Hari	99	65,340.00
			Jumlah:	107,580.00
			Nilai HSPK :	398,000.00
Pemasangan Pipa Air Kotor diameter 3'		m		
Bahan:				
Pipa Plastik PVC Tipe C Uk. 3 inchi Pj.4mtr	0.16	Batang	1,500,000.00	2,400.00

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Pipa Plastik PVC Tipe C Uk. 3 inchi Pj.4mtr	0.05	Batang	1,500,000.00	7,245.00
			Jumlah:	315,000.00
Upah:				
Mandor	0.0041	Orang Hari	120,000.00	492.00
Kepala Tukang	0.0135	Orang Hari	110,000.00	1,485.00
Tukang	0.135	Orang Hari	105,000.00	14,175.00
Pembantu Tukang	0.081	Orang Hari	99,000.00	8,019.00
			Jumlah:	24,171.00
			Nilai HSPK:	339,171.00
Pemasangan Pipa Air Kotor 3'	diameter	m		
Bahan:				
Pipa Plastik PVC Tipe C Uk. 3 inchi Pj.4mtr	0.3	Batang	69,000.00	20,700.00
Pipa Plastik PVC Tipe C Uk. 3 inchi Pj.4mtr	0.105	Batang	69,000.00	7,245.00
			Jumlah:	27,945.00
Upah:				
Mandor	0.0041	Orang Hari	120,000.00	492.00
Kepala Tukang	0.0135	Orang Hari	110,000.00	1,485.00
Tukang	0.135	Orang Hari	105,000.00	14,175.00
Pembantu Tukang	0.081	Orang Hari	99,000.00	8,019.00
			Jumlah:	24,171.00
			Nilai HSPK:	52,116.00

Tabel 8. 8 RAB Pengurasan

No	Bahan/Kegiatan	Satuan	Kebutuhan	Pasaran	Harga Satuan	Total Harga
1	Pekerjaan Beton K-100	m3	0,3	1	Rp971.172	Rp291.352
2	Pekerjaan Bekisting Balok	m2	1,92	1	Rp398.000	Rp764.160
3	Pemasangan Pipa Air Kotor diameter 3'	m	480	1	Rp339.171	Rp162.802.080
4	Pemasangan Pipa Air Kotor diameter 3,5'	m	57,082	1	Rp52.116	Rp2.974.886
5	Tee 3"	Buah	12	20	Rp14.995	Rp8.997
6	Large Radius Tee 3"	Buah	12	20	Rp21.670	Rp13.002
7	Pengunci	Buah	48	1	Rp12.000	Rp576.000
		-	Total			Rp167.430.476

8.1.3 Penyaluran

Kontruksi pengurasan hanya berupa pipa, aksesoris pipa dan pembetonan. Selain itu pembuatan saluran dibutuhkan penggalian tanah untuk beberapa lokasi. Pipa disini terbuat dari PVC dengan ukuran 10 cm, 25 cm, 30 cm, 35 cm,dan 40 cm. Daftar lengkap bahan dan pekerjaan dalam kontruksi penyaluran secara lengkap dapat dilihat pada Tabel 8.8 dan Tabel 8.9 (RAB).

Tabel 8. 9 Kegiatan dan/atau Kebutuhan Kontruksi Penyaluran

No	Bahan/Kegiatan	Satuan	Kebutuhan
1	Pemasangan Pipa 4"	m	585,5
2	Pemasangan Pipa 10"	m	100
3	Pemasangan Pipa 12"	m	140
4	Pemasangan Pipa 16"	m	27
5	Elbow 4"	buah	4
6	Tee 4"	buah	1
7	Clean Out Cap	buah	2

No	Bahan/Kegiatan	Satuan	Kebutuhan
8	Increaser 4" x 10"	buah	1
9	Increaser 10" x 12"	buah	2
10	Tee 12" ke 16"	buah	1
11	Elbow 16"	buah	1
12	Gali Tanah	m3	611,4
13	Pengurugan Pasir	m3	114,7
14	Urug Tanah	m3	417,8
15	Beton	m3	85,3
16	Bekisting	m2	54,8

Tabel 8. 10 BOQ Kontruksi Penyaluran

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Pengurugan tanah kembali untuk kontruksi		m3		
Upah:				
Mandor	0.019	Orang Hari	120,000.00	2,280.00
Pembantu Tukang	0.102	Orang Hari	99,000.00	10,098.00
			Jumlah:	12,378.00
			Nilai HSPK :	12,378.01
Penggalian Tanah Biasa Konstruksi	untuk	m3		
Upah:				
Mandor	0.025	Orang Hari	120,000.00	3,000.00
Pembantu Tukang	0.75	Orang Hari	99,000.00	74,250.00
			Jumlah:	77,250.00
			Nilai HSPK :	77,250.00
Pengurugan Pasir (PADAT)		m3		
Bahan:				

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Pasir Urug	1.2	M3	143,500.00	172,200.00
Upah:			Jumlah:	172,200.00
Mandor	0.01	Orang Hari	120,000.00	1,200.00
Pembantu Tukang	0.3	Orang Hari	99,000.00	29,700.00
			Jumlah:	30,900.00
			Nilai HSPK :	203,100.00
Pemasangan Pipa Air K diameter 4' Bahan:	otor	m		
Pipa Plastik PVC Tipe C Uk. 4 inchi Pj.4mtr				
	0.3	Batang	89,000.00	26,700.00
Pipa Plastik PVC Tipe C Uk. 4 inchi Pj.4mtr	0.105	Batang	89,000.00	9,345.00
			Jumlah:	36,045.00
Upah:				
Mandor	0.0041	Orang Hari	120,000.00	492.00
Kepala Tukang	0.0135	Orang Hari	110,000.00	1,485.00
Tukang	0.135	Orang Hari	105,000.00	14,175.00
Pembantu Tukang	0.081	Orang Hari	99,000.00	8,019.00
			Jumlah:	24,171.00
			Nilai HSPK:	60,216.00
Pemasangan Pipa Air K diameter 10' Bahan:	otor	m		
Pipa Plastik PVC Tipe C Uk. 10 inchi Pj.4mtr				
	0.3	Batang	1,422,700.00	426,810.00
Pipa Plastik PVC Tipe C Uk. 10 inchi Pj.4mtr	0.105	Batang	1,422,700.01	149,383.50
			Jumlah:	576,193.00
Upah:				
Mandor	0.0041	Orang Hari	120,000.00	492.00

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Kepala Tukang	0.0135	Orang Hari	110,000.00	1,485.00
Tukang	0.135	Orang Hari	105,000.00	14,175.00
Pembantu Tukang	0.081	Orang Hari	99,000.00	8,019.00
			Jumlah:	24,171.00
			Nilai HSPK:	600,364.50
Pemasangan Pipa Air Ko diameter 12' Bahan:	otor	m		
Pipa Plastik PVC Tipe C Uk. 12 inchi Pj.4mtr				
	0.3	Batang	2,057,700.00	617,310.00
Pipa Plastik PVC Tipe C Uk. 12 inchi Pj.4mtr	0.105	Batang	2,057,700.01	216,058.50
			Jumlah:	833,368.50
Upah:				
Mandor	0.0041	Orang Hari	120,000.00	492.00
Kepala Tukang	0.0135	Orang Hari	110,000.00	1,485.00
Tukang	0.135	Orang Hari	105,000.00	14,175.00
Pembantu Tukang	0.081	Orang Hari	99,000.00	8,019.00
			Jumlah:	24,171.00
			Nilai HSPK:	857,539.50
Pemasangan Pipa Air Ko diameter 16' Bahan:	otor	m		
Pipa Plastik PVC Tipe C Uk. 16 inchi Pj.4mtr				
	0.3	Batang	1,557,200.00	467,160.00
Pipa Plastik PVC Tipe C Uk. 16 inchi Pj.4mtr	0.105	Batang	1,557,200.00	163,506.00
			Jumlah:	630,666.00
Upah:				
Mandor	0.0041	Orang Hari	120,000.00	492.00
Kepala Tukang	0.0135	Orang Hari	110,000.00	1,485.00

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Tukang	0.135	Orang Hari	105,000.00	14,175.00
Pembantu Tukang	0.081	Orang Hari	99,000.00	8,019.00
			Jumlah:	24,171.00
			Nilai HSPK:	654,837.00

Tabel 8. 11 RAB Kontruksi Penyaluran

No	Bahan/ Kegiatan	Satuan	Kebutuhan	Pasaran	Harga Satuan	Total Harga
1	Pemasangan Pipa 4"	m	585,5	1	Rp 60.216	Rp35.256.468
2	Pemasangan Pipa 10"	m	100	1	Rp 600.365	Rp60.036.450
3	Pemasangan Pipa 12"	m	140	1	Rp 857.540	Rp120.055.530
4	Pemasangan Pipa 16"	m	27	1	Rp 654.837	Rp17.680.599
5	Elbow 4"	buah	4	15	Rp 20.250	Rp5.400
6	Tee 4"	buah	1	8	Rp 26.085	Rp3.261
7	Clean Out Cap	buah	2	7	Rp 20.200	Rp5.771
8	Increaser 4" x 10"	buah	1	1	Rp 76.850	Rp76.850
9	Increaser 10" x 12"	buah	2	1	Rp 85.600	Rp171.200
10	Tee 12" ke 16"	buah	1	1	Rp 65.300	Rp65.300
11	Elbow 16"	buah	1	1	Rp 53.400	Rp53.400
12	Gali Tanah	m3	611,4	1	Rp 77.250	Rp47.230.650
13	Pengurugan Pasir	m3	114,7	1	Rp 203.100	Rp23.295.570
14	Urug Tanah	m3	417,8	1	Rp 12.378	Rp5.171.528
15	Beton	m3	85,3	1	Rp 971.172	Rp82.840.990
16	Bekisting	m2	438	1	Rp 398.000	Rp174.324.000
			Total			Rp566.272.967

8.1.4 Pengolahan

Kontruksi pengolahan beruba ABR dengan desain bersekat dimana dindingnya emiliki ketebalan 20 cm. Daftar lengkap bahan dan pekerjaan dalam kontruksi pengolahan secara lengkap dapat dilihat pada Tabel 8.10 dan Tabel 8.11 (RAB).

Tabel 8. 12 Kebutuhan dan/atau Kegiatan Kontruksi Pengolahan

No	Bahan/Kegiatan	Satuan	Kebutuhan
1	Gali Tanah	m3	950
2	Beton	m3	270
3	Pembesian	kg	
4	Bekisting	m2	1534,12
5	Pengangkutan tanah	m3	950

Tabel 8. 13 BOQ Pekerjaan Pengangkutan Tanah (per m³)

Uraian Kegiatan	Koefisien	Satuan	Harga Satuan	Harga
Penggalian Tanah denga	n Alat Berat	m3		
Sewa Peralatan:				
Sewa Dump Truk 5 Ton	0.067	Jam	66,100.00	4,428.70
Sewa Escavator 6m3	0.067	Jam	132,200.00	8,857.40
			Jumlah:	13,286.10
Upah:				
Mandor	0.007	Orang Hari	120,000.00	840.00
Pembantu Tukang	0.226	Orang Hari	99,000.00	22,374.00
			Jumlah:	23,214.00
			Nilai HSPK :	36,500.10

Tabel 8. 14 RAB Bangunan Pengolahan

No	Bahan/Kegiatan	Satuan	Kebutuhan	Pasaran	Harga Satuan	Total Harga
1	Pekerjaan Beton K-100	m3	270	1	Rp971.172	Rp262.216.497
2	Pekerjaan Bekisting Balok	m2	1534	1	Rp398.000	Rp610.532.000
3	Pembesian	kg	27000	1	Rp14.498	Rp391.446.000
4	Gali Tanah	m3	950	1	Rp52.116	Rp49.510.200
5	Pengangkutan	m3	950	1	Rp14.995	Rp14.245.250
			Rp1.327.949.947			

8.2 Operasi dan Pemeliharaan

Operasi dan pemeliharaan hanya berupa biaya gaji serta bahan dan peralatan pada proses operasi dan pemeliharaan. Berikut RAB operasi pemilharaan dalam satu tahun.

Tabel 8. 15 RAB Operasi dan Pemeliharaan dalam satu Tahun

No	Kebutuhan	Jumlah	Harga Satuan	Harga	
1	Tenaga Kerja Pembersih stasiun	18	Rp 3.400.000	Rp	734.400.000
2	Tenaga OTC	104	Rp 3.800.000	Rp	395.200.000
3	Operasi toilet kereta	1	Rp 500.000	Rp	6.000.000
4	Operasi Toilet stasiun	1	Rp 2.000.000	Rp	24.000.000
5	Pemeliharaan penyaluran	1	Rp 500.000	Rp	6.000.000
6	Pemeliharaan pengurasan	1	Rp 4.000.000	Rp	48.000.000
7	Pemeliharaan	1	Rp10.000.000	Rp	120.000.000

No	Kebutuhan	Jumlah	Harga Satuan	Harga	
	penmpungan				
8	Pengecekan influent dan efluent	1	Rp 5.000.000	Rp	15.000.000
9	Pengurasan lumpur	1	Rp34.000.000	Rp	8.500.000
10	Biaya kebersihan area stasiun	1	Rp 500.000	Rp	6.000.000
11	Pengecekan scum	1	Rp 500.000	Rp	6.000.000
	To	Rp	1.369.100.000		

Halaman ini sengaja dikosongkan

BAB 9 KESIMPULAN DAN SARAN

9.1 Kesimpulan

- 1. Perencanaan pengelolaan air limbah domestik kereta api dan stasiun surabaya kota dapat dilakukan dengan beberapa tahap pengelolaan yaitu penampungan, pengurasan, penyaluran dan pengolahan.
- 2. Sistem pengelolaan air limbah dikereta api dapat dilakukan dengan dua tahap yaitu penampungan dan pengurasan.

Penampungan terdiri dari dua tipikal penampungan yaitu kecil dengan volume 0,243 m³ dan besar dengan volume 0,348 m³. Tipikal Kecil untuk semua kereta makan, kereta ekonomi kecuali KRD Kertosono (KA Rapih Dhoho, KA Penataran, KA Tumapel, KA Probowangi, KA Gaya Baru Malam, dan KA Pasundan) dan kereta bisnis (KA Mutiara Selatan, KA Sancaka, dan KA Mutiara Timur); sedangkan tipikal besar untuk semua kereta eksekutif (KA Bangunkarta, KA Turangga, KA Argi Wilis, KA Sancaka, dan KA Mutiara Timur) dan KRD Kertosono.

Pengurasan dilakukan dengan sistem gravitasi menggunakan pipa fleksibel ukuran 3,5 inch yang dialirkan ke sistem penyaluran air limbah stasiun.

3. Pengelolaan air limbah domestik dari aktifitas stasiun terdiri dari dua tahapan yaitu penyaluran dan pengolahan.

Penyaluran air limbah dari stasiun maupun kereta (dari proses pengurasan) menggunakan sistem *shallow sewer* sepanjang 852,5 m dengan diameter pipa 4 inch, 10 inch, 12 inch, dan 16 inch. Kedalaman penanaman pipa berkisar antara 0,75 m hingga 2,31 m.

Pengolahan air limbah kereta api dan stasiun dapat menggunakan ABR dilengkapi dengan bangunan grease trap dengan dimensi 2 m x 2 m x 1,1 m; bangunan zona septik dengan dimensi 5,9 m x 3,5 m x 3,5 m; dan bangunan zona kompartemen sebanyak 5 kompartemen dengan

masing-masing dimensinya dengan dimensi 3 m \times 5,9 m \times 3,5 m.

9.2 Saran

Saran merupakan usulan atau rekomendasi untuk berbagai pihak diantaranya :

- Bangunan pengolahan air limbah mesti mulai direncanakan dalam waktu dekat ini untuk mengantisipasi peningkatan konsumen kereta khususnya di stasiun-stasiun besar yang menjadi awal dan akhir keberangkatan kereta.
- 2. Dengan kondisi lapangan yang ada sekarang, perlu direncanakan pengurasan di beberapa stasiun khsusunya di stasiun yang memiliki tempat pengisian air bersih.
- 3. Perlu dilakukan normalisasi saluran air hujan di wilayah Stasiun Surabaya Kota

LAMPIRAN

Lampiran I Surat Perizinan

Namor Lors pirate: 1 15/5064/1/0.8-2016

I furtiit bendel Feetball

Persetujuan Permohonan iljin Riset. (Revenue a nation)

Surabaya, 11 Januari 2016.

7th. Betas Jersoon Tolonik Lingburgen Institut Telinologi Sepuluh

Napember di

- Manuali & Surat Soudare No. 130/972.3.1.3/PN.68-03/2016 tanggal 8 Januari 2016 perhal Permohonan (Fe)
- 2. Schobungen dengen haf torsebut dieber, behave permoherent (En Riset di Lingbungen FT. Kereta Api Indonesia (Periana) Daerah Operasi 8 Surabaya pada dasernya dapat disetujui, atas name

**	907007	Nete	anne	Beliation Universities	Pursue Jacob	Aller
3	(4.190%)	teleand-later	Trimit (hyberger)	trates letrotaj istorio faporios	11-201	N 46 TH

- 3. Sehobungan dengan haf tersebut distan, kegisten yang dimeksud dapat di salukan di
 - iii. UPT: Stantum Desar S Surstraya Kota;
 - b. UPT. Dept Kweta Basar A Sidotepa).
 - c. Unusan Keretu Serabiyas
 - d. Unit Pelayanza Kobersthan Krints Api dan Tasilitas diatas Kereta;

dengan ketentuus sebagai harikut : -

- Akan Meretapatkan Birramgan selama Tiran Menggangga Kodinasan Lint Kerja;
- b. Apabila Membutuhkan Bahan Proktok, Biava Pangaparasian, Biava Aksensdari Dun-Atau Bayo Lorinyo Yong Scientarya, Maka Blaya Terseket Diatas Tidak Menjadi Beban PT. Kereta Api Indonesia (Parsers).
- E. Yang Bersangkutan Divusibkan Untuk Menyerahkan Lapotan Akhir Kagiatan Kopada PT. Kenita Api Indonesia (Persero) Diensh Operati 8 Satabaya.
- il. Monuture Selundi Peraturan dan/arou Katantuan Yang Berlaku Di Fanoahoon. Apatrila Kedapatan Melanggar Peratutan dan/atau Kelentuan Yang Berlaku di Personheux, Akon Dikanakan Sanksi Sesuai Peraturan Yang Berlaku di Penasahains.
- 4. Derokian setuk diketahul dan perhaturnya terima kasih.

Terrivature Vth :

- Manager Operani Daerah Operani 8 Surabuya.
- 2. Manager Felayanan Baerah Operasi 8 Surabaus:
- 2. Manager Sarana Daerah Operasi B Sarabaya;
- 4. Amier Manager UPT. Depo Keretu Benar A Szissopo;
- S. Attictor Managor UPT. Station Beaut B Surgicaça Naca.
- 6. Aunter Supervisor Unusan Kereta Surabaya:
- 7. Arsig:

KEMENTERIAN RISET, TEXNOLOGI, DAN PENDEJIKAN TINGGI INSTITUT TEKNOLOGI SEPULUH NOPEMBER FAKULTAS TEKNIK SPIL DAN PERENCANAAN

FAKULTAS TEKNIK SIPIL DAN PERENCANAAI JURUSAN TEKNIK LINGKUNGAN

Hartpus ITS Subside Surelege 90111 Tell: 101-0646695 Fax 001-0608067 PMSE 1224, 1236, 1752/2004-00006, Sa. of

Homor

: 0% % 7 /1T2.1.1.3/PNL08.02/2016

Porthal

: Permehonan ijin

Yth.

; Pimpinan Balai Yasa Gubeng Surabaya

1 4 DEC 2016

JL. Tapak Siring No.5

Surabaya Jawa Timur

Sehubungan dengan rencana mahasiswa kami untuk melaksanakan tugas akhir dengan judui Perencanaan Terpadu Air Limbah Kereta Api Di Staskun Surebaya Kota, maka dengan ini kami mohon ijin untuk mahasiswa kamit.

Name

: Lukmanul Hakim

NRF :

: 3312100703

mengharap dengan hormat agar mehasiswa tersebut mendapat kesempatan untuk melakukan wawancara dan konsultasi serta memperoleh data gambar desain bagian bawah keneta.

Atas bentuan dan perhetiannya, kami sampaikan terima kasih.

PIT, KARJIN JURUSAN,

P (No. 1960) 281994(3100) 4

Lampiran II Kualitas Air Limbah Kereta Api

LABORATORIUM KUALITAS LINGKUNGAN JURUSAN TEKNIK LINGKUNGAN FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER

> KAMPUS ITS SUKOLILO SURABAYA TELEPON (031)5948886, FAX. (031)5928387

DATA ANALISA LIMBAH CAIR

Dikirim Oleh Dikirim Tanggal

: Sdr. Lukmanul Hakim

Sampel Dari

08 April 2016 KA. Gaya Baru Malam

No. Laboratorium

: 100-0408/04/A/KL/2016

No	Parameter	Satuan	Baku Mutu Air Limbah Domestik*)	Hasil Analisa	Metode Analisa
1	pН		6-9	8,20	pHmeter
2	TSS	mg/L	50	510,00	Gravimetri
3	COD	mg/L O ₂	50	515,00	Reflux/Tetrimetri
4	BOD	mg/L O ₂	30	320,00	Winkler
5	Minyak & Lemak	mg/L	10	58,00	Gravimetri

Surabaya, 02 Mei 2016 Kepala Laboratorium Kualitas Lingkungan Jurusan Teknik Lingkungan FTSP ITS

Catatan:

*).SK. Gub. Jatim No. 72 Tahun 2013

- Laporan ini dibuat untuk cuplikan air yang diterima laboratorium kami

Prof. Dr. Ir. Nieke Karnaningroem, MSc. 1 NIP. 195501281985032001

LABORATORIUM KUALITAS LINGKUNGAN JURUSAN TEKNIK LINGKUNGAN FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER

KAMPUS ITS SUKOLILO SURABAYA TELEPON (031)5948886, FAX. (031)5928387

DATA ANALISA LIMBAH CAIR

Dikirim Oleh

: Sdr. Lukmanul Hakim

Dikirim Tanggal Sampel Dari

: 08 April 2016 KA. Doho

No. Laboratorium

: 100-0409/04/A/KL/2016

No	Parameter	Satuan	Baku Mutu Air Limbah Domestik*)	Hasil Analisa	Metode Analisa
1	pH		6-9	7,60	pHmeter
2	TSS	mg/L	50	830,00	Gravimetri
3	COD	mg/L O ₂	50	682,00	Reflux/Tetrimetr
4	BOD	mg/L O ₂	30	420,00	Winkler
5	Minyak & Lemak	mg/L	10	80,00	Gravimetri

Surabaya, 02 Mei 2016 Kepala Laboratorium Kualitas Lingkungan

Jurusan Teknik Lingkungan FTSP 1TS

*).SK. Gub. Jatim No. 72 Tahun 2013

- Laporan ini dibuat untuk cuplikan air yang diterima laboratorium kami

Prof. Dr. Ir. Nieke Karnaningroem, MSc 27

NIP. 195501281985032001

LABORATORIUM KUALITAS LINGKUNGAN JURUSAN TEKNIK LINGKUNGAN FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER

KAMPUS ITS SUKOLILO SURABAYA TELEPON (031):9948886, FAX. (031):5928387

DATA ANALISA LIMBAH CAIR

Dikirim Oleh Dikirim Tanggal Sdr. Lukmanul Hakim 25 April 2016

Sampel Dari No. Laboratorium

KA. Mutiara Selatan

fium : 100-0448/04/A/KL/2016

No	Parameter	Satuan	Baku Mutu Air Limbah Domestik*)	Hasil Analisa	Metode Analisa
1	pH		6-9	8,10	pHmeter
2	TSS	mg/L	50	920,00	Gravimetri
3	COD	mg/L O ₂	50	1.770,00	Reflux/Tetrimetr
4	BOD	mg/L O ₂	30	1.080,00	Winkler
5	Minyak & Lemak	mg/L	10	134,00	Gravimetri

Surabaya, 02 Mei 2016

Kepala Laboratorium Kualitas Lingkungan Jurusan Teknik Lingkungan FTSP ITS Catatan:

*) SK. Gub. Jatim No. 72 Tahun 2013

Laporan ini dibuat untuk cuplikan air yang diterima laboratorium kami

Prof. Dr. Ir. Nieke Karnaningroem, MSc / NIP 195501281985032001

LABORATORIUM KUALITAS LINGKUNGAN JURUSAN TEKNIK LINGKUNGAN FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER

KAMPUS ITS SUKOLILO SURABAYA TELEPON (031)5948886, FAX, (031)5928387

DATA ANALISA LIMBAH CAIR

Dikirim Oleh

: Sdr. Lukmanul Hakim

Dikirim Tanggal Sampel Dari : 25 April 2016 : KA. Turangga

No. Laboratorium

: 100-0449/04/A/KL/2016

No	Parameter	Satuan	Baku Mutu Air Limbah Domestik*)	Hasil Analisa	Metode Aralisa
1	pH	*	6 - 9	7,70	pHmeter
2	TSS	mg/L	50	780,00	Gravimetri
3	COD	mg/L O ₂	50	628,00	Reflux/Tetrimetri
4	BOD	mg/L O ₃	30	380,00	Winkler
5	Minyak & Lemak	mg/L	10	48,00	Gravimetri

Surabaya, 02 Mei 2016 Kepala Laboratorium Kualitas Lingkungan Jurusan Teknik Lingkungan FTSP ITS Catatan

*).SK. Gub. Jatim No. 72 Tahun 2013

 Laporan ini dibuat untuk cuplikan air yang diterima laboratorium kami

Prof. Dr. Ir. Nieke Karnaningroem, MSc. A NIP 195501281985032001

Lampiran III Berkas Berkas Tugas Akhir

JURUSAN TEKNIK LINGKUNGAN FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER

FORM FTA-03

KEGIATAN ASISTENSI TUGAS AKHIR

Nama

: Lukmanul Hakim

NRP

: 3312100703 Judul Tugas Akhir: Pengalolaan fir Limbah demestik bereta afi Florom, Tarah Jauh dan stasion sura baya kata

No	Tanggal	Keterangan Kegiatan / Pembahasan	Paref
1	25-11-206	Hersulfinhi Judici pen tensuka Togas dishir	T
2.	24-13-5012	Honselhus BABTI Meterde Honselhus Pengendulan darta	X
4	4-01-2016	Kossithis 608 1640 BAB II	A
4	Q-01-2016	- Unit service jewis KH -> IDAL Stavion KARO 4 Pengunjung (bumban stavion).	¥
5	ot -03-to	- Dough temporal air moreum per gerboord. L. bossephys purgumb lan tamper and waven cura	*
s.	uu-es-20%	unusultage permitan sustangengolahan	7
7.	19-11-20K	Honsethai Pra saminan	7
P.	25 2016	woman Assi eratrasi semenan tentang	7

23 Resember Surabaya, Dosen Pembimbing

JURUSAN TEKNIK LINGKUNGAN

FAKULTAS TEKNIK SIPIL DAN PERENCANAAN Kampus ITS Sukollo, Surabeya 50111 Telp: 031-5948886, Fax: 031-5928387

FORM FTA-04

FORMULIR PERBAIKAN LAPORAN TUGAS AKHIR

Nama Mahasiswa

: LUKMANUL HAKIM

NRP

3312100703

Judul

PERENCANAAN PENGELOLAAN TERPADU AIR LIMBAH

KERETA API DI STASIUN SURABAYA KOTA

No Saran Perbaikan (sesuai Form KTA-02)

Tanggapan / Perbaikan (bila perlu, sebutkan halaman)

1. Cen diameter pipa

2 Can hitungan Susa

dibetullean compartment Pertura Schagai Setling & digesting shouge

From Agrit

1 Debit Segundan The

2 Cross rel - Penanaman Pipa

Pm Alpan

1 Can dessin tangen penguntyol

2. Perhangan Pipu Penyaluran

Par Rahmat

1 of 2

18/12/2016 20:15

Form FTA-64	http://ensire.its.ac.id/worte/beykas/113/fla04
Dosen Pembimbing.	Mahasiswa Ybs. 09 Desember 2016
ir. Eddy Setladi Spedjono, Dipl.SE.M.Sc.Ph.D.	LUKMANUL HAKIM
2.672	08/12/2016 38:15

JURUSAN TEKNIK LINGKUNGAN PAKIN SAS TEKNIK SIPI. DAN PERENCANAAN ITO Kempen ITO Sukoliu, Surabaya 80111 Tele: 931-984898, Pac 911-9222187

		BERITA ACARA	
		UJIAN/SIDANG TUGAS AKHIR/TESIS*	
Pada			
	Hat, Tanggal Jam	: Ratio, 3 January 2017 : 06.95-10.00	
	Terrowi	TL 103	
totab	diaksanakan Lijan Tugi		
	Judul	j Peroncanaan Pengelolaan Terpedu Air Linkelt Kerete Api di TOEFI, = 433 Staniun Surabaya Kota.	
	Nama Hahasaya	: LUXMANUL HAKIM	
	Neg.	: 3312100703	
	Program Studi	: 8-1 Teinik Lingkungen	
	Bidang Tugas Akhir	Perencanoen / Paneltian / Studi Pustaka *	
	Tanta Tangan	= (Uliterium	
Bardo	parkan haali evaluasi pe	nguji. Funusiove tersebul dinyatakan	
		LULUS / YIDAK LULUS	
4		The section is a second section of the second section is a second section of the second section is a second second section sec	
(a)	Course Pers	Cerimpulan sidemone ruban 7 As	
\$ (42.)	ABSTRAK I	believed Ada.	
MAL.	Section of the sectio	State of ASE	
N .Z.	the product of	NAME OF STREET	
1.0	cele Vien as ob	to the second se	
V.i	Manual Manual	Maria	
- 6	www. powels	On Operbolic 1 Der 13/ sout	
1-1-1-0	on diperbak		
1001000			
Tim P	enguji:	Pentinbing.	
	Norna	(Tools Tangen)	
, 3	F Agus S.	Means	
	De Rochmod B	- P - / \ —	
- 40	11 7 57 11	C M PER CALLED MAN SER	

DAFTAR PUSTAKA

- Bell J., 2002. Treatment of Dye Wastewaters in The Anaerobic Baffled Reactor and Characterisation of The Associated Microbial Populations. Ph.D. Thesis, School of Chem. Eng., Univ. of Natal, Durban
- BPS Kota Surabaya, 2013. **Statistik Daerah Kecamatan Pabean Cantikan.** Surabaya : BPS Kota Surabaya.
- Data Kepegawaian Stasiun Surabaya Kota. **Arsip Stasiun Surabaya Kota.** JL. Stasiun 9, Kota Surabaya.
- Google.co.id/maps (Surabaya), 2016. 27 Maret.
- H. Movahedyan, A. Assadi, A. Parvaresh, Iran. J. Environ. Health. Sci. Eng., 2007, Vol. 4, No. 2, pp. 77-84, Performance Evaluation of Anaerobic Baffled Reactor Treating Wheat Flour Starch Industry Wastewater

Kaskus.co.id (Jakarta). 2010. 19 Januari.

Kaskus.co.id (Jakarta). 2011. 28 September.

Kompas.com (Jakarta). 2011. 25 April.

Kompas.com (Surabaya). 2015. 12 Juni.

- Metcalf and Eddy, Inc., 1981. Wastewater Engineering: Treatmentand Reuse 4rd Edition. McGraw Hill, New York.
- Muñoz, Ivan., Llorenç Milà i Canals., Roland Clift., Gabor Doka. 2007. A simple model to include human excretion and wastewater treatment in Life Cycle Assessment of food products. Guildford (Surrey), United Kingdom: Centre for Environmental Strategy, University of Surrey ISSN: 1464-8083.
- Noerbambang, Soufyan M dan Takeo Morimura. 1984. **Perancangan dan Pemeliharaan Sistem Plambing.** Jakarta : PT Pradnya Paramitha.

- Peraturan Gubernur Jawa Timur No 72 Tahun 2013 tentang Baku Mutu Air Limbah Bagi Industri dan/atau Kegiatan Usaha Lainnya
- Peraturan Menteri Lingkungan Hidup Nomor 5 tahun 2014 tentang Baku Mutu Air Limbah
- PT Kereta Api Indonesia (Persero). 2014. Company Profile PT Kereta Api Indonesia (Persero): Komitmen terhadap Inovasi dan Kualitas Pelayanan. Bandung: Public Relations PT Kereta Api Indonesia (Persero).
- PT Kereta Api Indonesia (Persero). 2014. Laporan Tahunan : Komitmen terhadap Inovasi dan Kualitas Pelayanan.
 Bandung : PT Kereta Api Indonesia (Persero).
- PT Kereta Api Indonesia (Persero). 2014. Laporan Berkelanjutan : Inovasi dan Tranformasi menuju Keberlanjutan. Bandung : PT Kereta Api Indonesia (Persero).
- Rancangan Perencanaan Stasiun Surabaya Kota. **Arsip DAOP VIII Surabaya**. Jl. Gubeng Mesjid Surabaya.
- Republika.co.id (Sleman). 2012. 22 Nopember.
- Sasse, Ludwig. 1998 **DEWATS Decentralised Wastewater Treatment in Developing Countries.** Bremen: BORDA.
- Statistik Loket Tiket Kereta Api Stasiun Surabaya Kota. Laporan Harian Loket Stasiun Surabaya Kota. JL. Stasiun 9, Kota Surabaya.
- Tebbut, T.H.Y., 1998. **Principles of Water Quality Control 5th edition.** Oxford :Butterworth Heinemann.
- Undang Undang No 23 Tahun 2007 tentang Perkeretaapian
- Wisjnuprapto, 2007. **Pengelolaan Limbah Industri : Bahan Pengajaran**. Bandung : TL ITB.
- HSPK Kota Surabaya Tahun 2015.

BIOGRAFI PENULIS

Penulis merupakan putera pertama dari pasangan Bapak Aam Abdul Salam dan Ibu Nurheni. Penulis dilahirkan di Kabupaten Cianjur pada hari kamis tanggal 09 Maret 1995. Penulis merupakan sulung dari empat bersaudara.

Penulis mengenyam jenjang pendidikan dasar dan menengah pertama di kota kelahirannya. Penulis menjadi siswa di MI Negeri 1 Cianjur pada tahun 2001-2007 dan MTs Negeri 6 Cianjur pada tahun 2007-2010. Setelah lulus pendidikan menengah pertama penulis

melanjutkan pendidikan menengah atas di luar kota kelahiran, yaitu di Kota Cimahi. Penulis menjadi siswa di MA Multiteknik Asih Putera Cimahi. Selama menempuh pendidikan menegah atas pada 2010-2012, penulis tergabung kedalam kelas akselerasi. Penulis kemudian melanjutkan pendidikan Strata 1 di Jurusan Teknik Lingkungan, Fakultas Teknik Sipil dan Perencanaan, ITS Surabaya pada tahun 2012 melalui Program Beasiswa Santri Berprestasi (PBSB) Kementrian Agama RI dan terdaftar dengan NRP 3312100703.

Semasa kuliah penulis aktif dalam berbagai kegiatan seperti pengabdian masyarakat, pelatihan, seminiar, workshop, dan focus group discussion. Penulis lebih banyak berkegitan dalam kegiatan bertemakan *management* dan lingkungan. Selain itu, Penulis pernah menjadi bagian beberapa organisasi seperti Pramuka ITS 2012-2015, Community of Santri Scholars of Manistry of Religius Affairs (CSSMoRA) ITS 2013-2017, Badan (BEM) ITS 2013/2014. Eksekutif Mahasiswa Himpunan Lingkungan (HMTL) 2014/2015, Mahasiswa Teknik CSSMoRA Nasional 2015/2016. Penulis dapat dihubungi via email di lukmanulhakim2010@hotmail.com.