Penentuan Indikator Remunerasi Berdasarkan Persepsi Dosen Di Lingkungan FMIPA ITS Dengan Structural Equation Modeling Partial Least Square (SEM-PLS) Dan PLS Prediction-Oriented Segmentation (PLS-POS)

Monika, Ade Vreyyuning (2017) Penentuan Indikator Remunerasi Berdasarkan Persepsi Dosen Di Lingkungan FMIPA ITS Dengan Structural Equation Modeling Partial Least Square (SEM-PLS) Dan PLS Prediction-Oriented Segmentation (PLS-POS). Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[img]
Preview
Text
1313100058-Undergraduate-Theses.pdf - Published Version

Download (6MB) | Preview

Abstract

Remunerasi adalah jumlah total kompensasi yang diberikan kepada pegawai sebagai penghargaan atas kinerja yang dilakukan. ITS saat ini telah menerapkan remunerasi yang diberikan kepada dosen atas kinerja yang dilakukan. Permasalahan yang terjadi adalah ketika dosen memiliki kinerja melebihi batas maksimum yang telah ditentukan, maka kelebihan dari batas maksimum tersebut tidak mendapatkan penghargaan. Oleh karena itu, penelitian ini dilakukan untuk menentukan indikator remunerasi berdasarkan persepsi dosen di lingkungan FMIPA ITS dengan menggunakan analisis Structural Equation Modeling Partial Least Square (SEM-PLS) serta PLS Prediction-Oriented Segmentation (PLS-POS) yang digunakan untuk mengelompokkan dosen terhadap remunerasi berdasarkan persepsi dosen. Variabel laten yang digunakan yaitu variabel kinerja, remunerasi, motivasi berprestasi, karakteristik lingkungan kerja, dan transfer pelatihan. Data yang digunakan dalam penelitian ini merupakan data primer dengan melakukan survei terhadap dosen di FMIPA. Hasil analisis SEM-PLS menunjukkan bahwa R2 variabel kinerja sebesar 56,5% dan R2 remunerasi sebesar 37,7%. Pengelompokkan dengan PLS-POS menghasilkan tiga kelas segmen. Segmen 1 terdiri dari 28 dosen, segmen 2 terdiri dari 47 dosen, dan segmen 3 terdiri dari 22 dosen dengan besar pengaruh antar variabel laten yang berbeda. ======================================================================================= Remuneration is defined as the total amount of compensation given to employees as a reward for their respective performances. ITS is currently applying the remuneration policy which is granted based on the performances of lecturers. Regarding this case, a problem arises when lecturers have performed beyond the maximum limit which has been determined, then the excess performances which exceed the maximum limit will not be awarded. Therefore, this study isintentionally conducted to determine the indicators of remuneration which is based on the perception of lecturers in FMIPA(Faculty of Mathematics and Natural Sciences) ITS by using the analysis of Structural Equation Modeling Partial Least Square (SEM-PLS) and PLS Prediction-Oriented Segmentation (PLS-POS) that is used to classify the lecturers towards remuneration based on the perception of lecturers. Latent variables used are performance variable, remuneration, achievement motivation, characteristics of the working environment, and training transfer. The data in this research are primary data which are gained by surveying the lecturers in FMIPA. SEM-PLS analysis results indicate that the R2 of performance variable is 56.5% and R2 of remuneration is amounted as 37.7%. The classification by PLS-POS generates three segmented-classes. Segment 1 consists of 28 lecturers, segment 2 consists of 47 lecturers, and segment 3 consists of 22 lecturers with a great difference of influence among the stated latent variables.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Dosen di FMIPA; PLS-POS; Remunerasi; SEM-PLS; Lecturers in FMIPA
Subjects: H Social Sciences > HA Statistics
Q Science > QA Mathematics > QA278 Cluster Analysis. Multivariate analysis. Correspondence analysis (Statistics)
Divisions: Faculty of Mathematics and Science > Statistics > 49201-(S1) Undergraduate Thesis
Depositing User: - ADE VREYYUNING MONIKA
Date Deposited: 20 Apr 2017 02:29
Last Modified: 08 Mar 2019 07:06
URI: https://repository.its.ac.id/id/eprint/3769

Actions (login required)

View Item View Item