

SKRIPSI

ADSORPSI GAS CH4 PADA ZEOLIT-A DAN ZEOLIT AKARBON DARI ABU DASAR

RANDY YUSUF KURNIAWAN NRP 1413100075

Dosen Pembimbing Nurul Widiastuti, S.Si, M.Si, Ph. D

JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2017

SCRIPT

\mathbf{CH}_4 GAS ADSORPTION IN ZEOLITE-A AND ZEOLITE ACARBON FROM BOTTOM ASH

RANDY YUSUF KURNIAWAN NRP 1413100075

Lecturer advisor Nurul Widiastuti, S.Si, M.Si, Ph. D

CHEMISTRY DEPARTMENT FACULTY OF MATHEMATICS DAN SCIENCES INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2017

ADSORPSI GAS CH4PADA ZEOLIT-A DAN ZEOLIT A-KARBON DARI ABU DASAR

SKRIPSI

Disusun sebagai syarat untuk melaksanakan Tugas Akhir di Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember, Surabaya

Disusun oleh:

RANDY YUSUF KURNIAWAN NRP 1413100075

JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2017

LEMBAR PENGESAHAN

ADSORPSI GAS CH4 PADA ZEOLIT-A DAN ZEOLIT A-KARBON DARI ABU DASAR

SKRIPSI Oleh:

RANDY YUSUF KURNIAWAN

NRP 1413 100 075

Surabaya, 18 Januari 2017 Dosen Pembimbing,

<u>Nurul Widiastuti, S.Si, M.Si, Ph.D</u> NIP. 19710425 199412 2 001

Mengetahui: SI Ketua Jurusan Kimia JURUSAN Prof. Dr. Didik Prasetyoko, M.Sc. NIP. 19710616 199703 1 002

Bismillahirrohmanirrohim Karya ini kupersembahkan untuk Kedua orang tua, adikku, kakek dan nenek, serta keluargaku

ADSORPSI GAS CH4 PADA ZEOLIT-A DAN ZEOLIT A-KARBON DARI ABU DASAR

: Randy Yusuf Kurniawan
: 1413 100 075
: Kimia FMIPA-ITS
: Nurul Widiastuti, M.Si, Ph.D.

Abstrak

Penelitian ini bertujuan untuk menentukan kapasitas adsorpsi gas CH₄ pada zeolit-A dan zeolit A-karbon yang disintesis dari abu dasar. Sintesis zeolit- A dan zeolit A-karbon dari abu dasar dilakukan dengan metode peleburan. Zeolit-A disintesis dengan perlakuan peleburan abu dasar dengan NaOH pada suhu 750°C dalam atmosfer udara, sementara zeolit A-karbon dilakukan dalam atmosfer N₂. Hasil peleburan kemudian ditambahkan air demineralisasi dan larutan aluminat untuk mengatur rasio molar Si/Al 1,926 sebelum dilakukan yang dihasilkan proses hidrotermal. Padatan dikarakterisasi X-Ray Diffraction (XRD), menggunakan Scanning Electron Microscope (SEM), Adsorpsi-Desorpsi N₂ (BET) dan Fourier Tranform Infrared (FTIR). Hasil karakterisasi menunjukkan bahwa zeolit-A memiliki kristalinitas yang tinggi, sementara zeolit Adihasilkan produk lain seperti zeolit HS dan sisa karbon. Nilai luas permukaan zeolit-A adalah 75,245 m²/g sedangkan zeolit A-karbon adalah 14,755 m²/g. Pengukuran adsorpsi gas CH_4 secara gravimetri untuk sampel zeolit A-karbon, zeolit-A dan pembanding zeolit-A bahan murni berturut-turut adalah 22,15%, 10,55% dan 8,25%. Data adsorpsi gas CH₄ pada zeolit A-karbon dan zeolit-A mengikuti model kinetika orde dua semu, sedangkan pada zeolit-A yang disintesis dari bahan murni mengikuti model kinetika difusi intrapartikel.

Kata kunci : Abu dasar, Zeolit-A, Zeolit A-karbon, Peleburan, Adsorpsi gas CH₄.

CH₄ GAS ADSORPTION IN ZEOLITE-A AND ZEOLITE A-CARBON FROM BOTTOM ASH

Name NRP Department Advisor Lecturer : Randy Yusuf Kurniawan

: 1413 100 075

: Chemistry FMIPA- ITS

: Nurul Widiastuti, M.Si, Ph.D.

Abstract

This study aims to determine the CH₄ gas adsorption capacity in zeolite-A and zeolite A-carbon which is synthesized from bottom ash. Synthesis zeolit-A and zeolite A-carbon from bottom ash carried by the fusion method. Synthesis of zeolite A-uncarbon was prepared by NaOH fusion treatment at 750°C in air atmosphere while zeolite A-carbon was conducted in a N₂. The fused product was dissolved in demineralized water and aluminat solution was added to adjust SiO₂/Al₂O₃ molar ratio gel 1,926 prior hydrothermal process. The synthesis results was characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), N₂ Adsorption-Desorption (BET) and Fourier Tranfosm Infrared (FTIR). The results showed that the zeolite-A has a high crystallinity, while the zeolite A-carbon produced other products such as zeolite HS and carbon. Value zeolite-A surface area is $75,245 \text{ m}^2/\text{g}$ while the zeolite A-carbon is 14,755 m^2/g . CH₄ gas adsorption measurements by gravimetry on a sample of zeolite A-carbon, zeolite-A and comparative zeolite-A pure substance are respectively 22.15%, 10.55% and 8.25%. CH₄ gas adsorption data on zeolite A-carbon and zeolite-A following the two pseudo-order kinetics model, while the zeolite-A is synthesized from pure material following the intraparticle diffusion kinetics model.

Key word : Bottom ash, Zeolite-A, Zeolite A-carbon, Fusion, CH_4 adsorption.

KATA PENGANTAR

Alhamdulillahirobbil'alamin. Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa atas rahmat dan hidayah-Nya sehingga naskah tugas akhir yang berjudul "Adsorpsi gas CH₄ pada Zeolit-A dan Zeolit A-Karbon dari Abu Dasar"dapat diselesaikan dengan baik. Dalam kesempatan ini penulis mengucapkan terima kasih kepada pihak-pihak yang mendukung atas terselesaikannya tulisan ini, yaitu:

- 1. Nurul Widiastuti, S.Si, M.Si, Ph.D. selaku dosen pembimbing yang telah memberikan bimbingan dan pengarahan dalam proses penyelesaian naskah ini.
- 2. Prof. Dr. Didik Prasetyoko, S.Si, M.Sc selaku ketua jurusan kimia yang telah memberikan fasilitas sehingga naskah ini dapat diselesaikan.
- 3. Lukman Atmaja, Ph.D selaku dosen wali atas pengarahan dalam pengambilan mata kuliah.
- 4. Ayah, ibu, adik, kakek dan nenek atas doa dan dukungan yang selalu diberikan.
- 5. Semua pihak yang telah membantu yang tidak mungkin saya sebutkan satu persatu.

Penulis menyadari bahwa penulisan naskah ini masih jauh dari kesempurnaan. Penulis menerima kritik dan saran yang membangun dari pembaca untuk meningkatkan kualitas dan perbaikan lebih lanjut.

Surabaya, 18 Januari 2017

Penulis

DAFTAR ISI

LE	MBAR PENGESAHAN	IV
AB	STRAK	VI
AB	STRACT	VII
KA	TA PENGANTAR	VIII
DA	FTAR ISI	IX
DA	FTAR GAMBAR	XII
DA	FTAR TABEL	XIV
DA	FTAR LAMPIRAN	XVI
BA	В І	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	
1.3	Batasan Penelitian	4
1.4	Tujuan Penelitian	5
1.5	Manfaat Penelitian	5
BA	В П	7
2.1	Gas Alam	7
2.2	Teknologi Penyimpanan Gas Alam	8
2.3	Material untuk Adsorpsi Gas Alam	9
2.4	Abu Dasar Batubara	13
2.5	Zeolit-A	15
2.6	Sintesis Zeolit-A dari Abu Dasar	
2.7	Mekanisme Reaksi Pembentukan Zeolit	
2.8	Mekanisme Adsorpsi pada Zeolit	
2.9	Karakterisasi	
	2.9.1 X-Ray Flourescence (XRF)	23
	2.9.2 Inductively Coupled Plasma Atomic Spectrosco	py (ICP-
	AES)	24

	2.9.3 Difraksi Sinar X (XRD)	26
	2.9.4 Scanning Electron Microscopy (SEM)	29
	2.9.5 Luas Permukaan Zeolit (BET)	31
	2.9.6 Fourier Transformasi Infrared (FTIR)	33
2.10) Pengukuran Adsorpsi gas CH ₄ secara Gravimetri	34
2.11	Studi Kinetika Adsorpsi Gas	36
	2.11.1 Model Kinetika Orde Pertama Pseudo Lagergren	37
	2.11.2 Model Kinetika Orde Kedua Pseudo Ho	37
	2.11.3 Model Difusi Intrapartikel	38
BA	B 111	40
3.1	Alat dan Bahan	40
	3.1.1 Alat	40
	3.1.2 Bahan	40
3.2	Prosedur Penelitian	40
	3.2.1 Identifikasi Komposisi Kimia dan Fasa Mineral dari	Abu
	Dasar	40
	3.2.2 Pemisahan Fe pada Abu Dasar Batubara	41
	3.2.3 Pemisahan Ca pada Abu Dasar Batubara	41
	3.2.4 Sintesis Zeolit A Bahan Murni	41
	3.2.5 Sintesis Zeolit-A dari Abu Dasar Tanpa Karbon	42
	3.2.6 Sintesis Zeolit A-karbon	42
3.3	Karakterisasi	43
3.4	Penentuan Kapasitas Adsorpsi Gas Metana	44
3.5	Penentuan Kinetika Adsorpsi Gas Metana	44
BA	B IV	45
4.1	Preparasi Si dan Al dari Abu Dasar	45
4.2	Sintesis Zeolit	56
4.3	Karakteristik Pori Zeolit-A dari Abu Dasar	62
4.5	Pengujian Kapasitas Adsorpsi Gas Metana	66
4.6	Penentuan Model Kinetika Adsorpsi	71
	4.6.1 Model Orde Satu Semu Pseudo Lagergren	71

	4.6.2 Model Orde Dua Semu Pseudo Ho	72
	4.6.3 Model Difusi Intrapartikel	73
4.7	Hasil Analisis Spektroskopi Inframerah (FTIR) pa	da Zeolit-A
	dari Abu Dasar setelah Proses Adsorpsi	75
BAI	3 V	80
5.1	Kesimpulan	80
5.2	Saran	
DAI	FTAR PUSTAKA	
LAN	MPIRAN	97

DAFTAR GAMBAR

Gambar 2.1	Rangka zeolit yang terbentuk dari 4 ikatan atom
	O dengan 1 atom Si
Gambar 2.2	Unit dasar pembangun primer zeolit
Gambar 2.3	Struktur kerangka zeolit
Gambar 2.4	Mekanisme sintesis zeolit dari abu dasar
Gambar 2.5	Prinsip kerja sederhana ICP-AES
Gambar 2.6	Prinsip kerja XRD
Gambar 2.7	Difraktogram padatan hasil leburan atmosfer
	udara dan atmosfer N ₂ (suhu 750°C)
Gambar 2.8	Difraktogram Zeolit-A hasil sintesis dari
	ekstrak peleburan abu dasar
Gambar 2.9	Komponen alat SEM
Gambar 2.10	Morfologi dari zeolit-A yang disintesis dengan
	(a) bebas karbon (b) mempertahankan
	kandungan karbon dari peleburan abu dasar
Gambar 2.11	Pendekatan adsorpsi isotermal BET
Gambar 2.12	Grafik BET
Gambar 2.13	Spektra FTIR pada Zeolit-A
Gambar 2.14	Rangkaian proses adsorpsi gas metana secara
	gravimetri
Gambar 4.1	Difraktogram abu dasar sebelum pemisahan Fe
	dan Ca (a) setelah pemisahan Fe dan Ca (b)
Gambar 4.2	Difraktogram padatan hasil leburan abu dasar
	yang dibandingkan dengan abu dasar sebelum
	peleburan
Gambar 4.3	Padatan hasil sintesis zeolit A-karbon (a) zeolit-
	A dari abu dasar (b)
Gambar 4.4	Difraktogram zeolit-A murni (a) zeolit-A dari
	abu dasar (b) zeolit A-karbon (c)
Gambar 4.5	Mikrograf SEM pada zeolit-A dari abu dasar (a)
	zeolit A-karbon (b)
Gambar 4.6	Grafik Adsorpsi-Desorpsi N2 pada zeolit-A dari
	abu dasar (a) zeolit A-karbon
	(b)
Gambar 47	Grafik adsorpsi gas CH, subu 30°C pada zeolit-

	A murni (a) zeolit-A dari abu dasar (b) zeolit A-	
	karbon (c)	
Gambar 4.8	Grafik orde satu semu ketiga zeolit	
Gambar 4.9	Grafik orde dua semu ketiga zeolit	
Gambar 4.10	Grafik difusi intrapartikel ketiga zeolit	
Gambar 4.11	Spektra FTIR pada zeolit-A dari abu dasar (a)	
	zeolit A-karbon (b) sebelum dan setelah	
	adsorpsi	
Gambar A1	Bagan Skema Kerja	
Gambar A2	Skema Kerja identifikasi komposisi kimia abu	
	dasar	
Gambar A3	Skema Kerja pemisahan kandungan Fe pada	
	abu dasar	
Gambar A4	Skema Kerja pemisahan kandungan Ca pada	
	abu dasar	
Gambar A5	Skema Kerja sintesis zeolit-A bahan murni	
Gambar F1	Difraktogram Abu Dasar sebelum pemisahan	
	Fe dan Ca	
Gambar F.2	Difraktogram Abu Dasar setelah Pemisahan Fe	
	dan Ca	
Gambar F.3	Difraktogram Padatan Leburan abu dasar dalam	
	atmosfer N ₂	
Gambar F.4	Difraktogram Padatan Leburan abu dasar dalam	
	atmosfer udara	
Gambar F.5	Difraktogram Zeolit-A murni	
Gambar F.6	Difraktogram Zeolit-A dari abu dasar	
Gambar F.7	Difraktogram ZeolitA-karbon	
Gambar G.1	Data hasil pengujian adsorpsi-desorpsi N ₂	
	Zeolit-A dari abu dasar	
Gambar G.2	Grafik Isotermal pengujian adsorpsi-desorpsi	
	N ₂ pada Zeolit-A dari abu dasar	
Gambar G.3	Data hasil pengujian adsorpsi-desorpsi N ₂	
	Zeolit A-karbon	
Gambar G.4	Grafik Isotermal pengujian adsorpsi-desorpsi	
	N ₂ pada Zeolit A-karbon	
Gambar I.1	Plot Orde satu semu Pseudo Lagergren	
Gambar I.2	Plot Orde dua semu Pseudo Ho	
Gambar I.3	Plot Difusi Intrapartikel	

DAFTAR TABEL

Tabel 2.1	Perbandingan polutan yang dihasilkan dari	0
Tabal 2.2	Danan bakar Iosii	8
Tabel 2.2	Perbandingan metode peyimpanan gas alam	10
Tabel 2.5	Perbandingan material adsorpsi gas metana	10
Tabel 2.4	Material penyusun zeolit dari limban dan banan	1.1
T 1 1 2 5	alam	11
Tabel 2.5	Material yang digunakan dalam pembentukan Karbon Aktif	13
Tabel 2.6	Komposisi kimia abu dasar	15
Tabel 2.7	Perbandingan kapasitas adsorpsi gas CH ₄ pada	
1400120	beberapa material	35
Tabel 4.1	Hasil analisis komponen kimia abu dasar	45
Tabel 4.2	Hasil analisis komponen kimia abu dasar	
	setelah pemisahan Fe dan Ca	47
Tabel 4.3	Hasil pengurangan massa abu dasar setelah	
	peleburan	50
Tabel 4.4	Hasil analisis konsentrasi ekstrak leburan	
	menggunakan ICP-AES	54
Tabel 4.5	Massa zeolit yang dihasilkan untuk setiap	
	variasi zeolit-A dari abu dasar	61
Tabel 4.7	Perbandingan karakteristik pori material hasil	
	sintesis dengan material lainnya untuk adsorpsi	
	gas CH ₄	65
Tabel 4.7	Perbandingan kapasitas adsorpsi gas CH ₄	
	material hasil sintesis dengan material lainnya	69
Tabel 4.8	Parameter setiap model kinetika adsorpsi	75
Tabel F.1	Data hasil XRD Abu Dasar sebelum Pemisahan	
	Fe dan Ca	119
Tabel F.2	Data hasil XRD Abu Dasar setelah Pemisahan	
	Fe dan Ca	120
Tabel F.3	Data hasil XRD Padatan Leburan abu dasar	
	dalam atmosfer N ₂	121

Tabel F.4	Data hasil XRD Padatan Leburan abu dasar dalam atmosfer udara	102
Tabal E 5	Data hagil VBD Zaalit A mumi	123
Tabel F.J	Data hasil XPD Zeolit A dari abu dagar	123
Tabel F.0	Data hasil XDD Zeolit A harbon	127
Tabel F./	Varasitas adaemai CIL dalam zaalit A dari	129
Tabel H.I	Kapasitas adsorpsi CH_4 daiam zeolit-A dari	125
T-1-1110	Danan murni	133
Tabel H.2	Kapasitas adsorpsi CH_4 dalam zeolit-A 1 idak	13/
Tabel H.3	Kapasitas adsorpsi CH_4 dalam zeolit A-karbon	138
Tabel I.I	Perhitungan Kinetika orde pertama semu	
	Pseudo Lagergren untuk sampel zeolit-A dari	
	bahan kimia murni	140
Tabel I.2	Perhitungan Kinetika orde pertama semu	
	Pseudo Lagergren untuk sampel zeolit-A dari	
	abu dasar	142
Tabel I.3	Perhitungan Kinetika orde pertama semu	
	Pseudo Lagergren untuk sampel zeolit A-	
	karbon	143
Tabel I.4	Perhitungan Kinetika orde kedua semu Pseudo	
	Ho untuk sampel zeolit-A dari bahan kimia	
	murni	146
Tabel I.5	Perhitungan Kinetika orde kedua semu Pseudo	
	Ho untuk sampel zeolit-A dari abu dasar	148
Tabel I.6	Perhitungan Kinetika orde kedua semu Pseudo	
	Lagergren untuk sampel zeolit A-karbon	149
Tabel I.7	Perhitungan Kinetika difusi intrapartikel untuk	
	sampel zeolit-A dari bahan kimia murni	152
Tabel I.8	Perhitungan Kinetika difusi intrapartikel untuk	
	sampel zeolit-A dari abu dasar	154
Tabel I.9	Perhitungan Kinetika difusi intrapartikel untuk	_
	sampel zeolit A-karbon	155
	г	

DAFTAR LAMPIRAN

Lampiran A	Skema Kerja	97
Lampiran B	Perhitungan Larutan Sintesis Zeolit-A	107
Lampiran C	Perhitungan Penambahan Larutan NaAlO ₂ pada	
	Ekstrak Abu Dasar	110
Lampiran D	Perhitungan Kristalinitas Hasil Padatan	115
Lampiran E	Data Pola Difraksi Joint Committe on Powder	
_	Diffraction Standards (JCPDS)	116
Lampiran F	Data dan Grafik Hasil Analisis XRD	117
Lampiran G	Data dan Grafik Adsorpsi-Desorpsi N ₂	131
Lampiran H	Data dan Grafik Adsorpsi gas CH ₄	135
Lampiran I	Data dan Grafik Kinetika Adsorpsi gas	
_	CH ₄	140

BAB I PENDAHULUAN

1.1 Latar Belakang

Gas alam merupakan campuran hidrokarbon ringan yang terbentuk secara alami dan bercampur dengan beberapa senyawa non-hidrokarbon. Komposisi gas alam terbesar adalah gas metana (CH_4) sebesar 55-98% dengan sisanya seperti gas etana (C_2H_4) sebesar 0,02-12%, propana (C_3H_8) dan butana (C_4H_{10}) yang kurang dari 5% serta komponen gas pengotor lainnya seperti air, N₂, H₂S, dan CO₂ dengan jumlah yang bervariasi sesuai dengan sumber gas alam (Solar, 2010). Sebagai komponen utama pada gas alam, gas metana merupakan komponen penting karena memiliki nilai kalori yang cukup tinggi, sehingga berpotensi untuk menjadi bahan bakar. (Polpraset, 2007). Selain itu, gas ini juga memiliki kadar polutan yang lebih rendah jika dibandingkan bahan bakar yang berasal dari batubara dan minyak bumi (Solar, 2010). Namun, berbagai impuritas yang terdapat pada gas alam dapat menimbulkan kadar polutan yang berlebih serta menurunkan nilai kalori dan kepadatan energi yang dihasilkan. Oleh karena itu, diperlukan upaya untuk meningkatkan kemurnian gas metana salah satunya dengan melakukan penyimpanan gas alam tersebut (Salmasi 2013).

Teknologi penyimpanan gas alam seperti teknologi LNG (Liquified Natural Gas), teknologi CNG (Compressed Natural Gas), dan teknologi ANG (Adsorbed Natural Gas) dikembangkan untuk mengatasi permasalahan densitas gas alam yang rendah, (Bastos-Neto, 2005). Teknologi ANG lebih banyak digunakan saat ini karena biaya operasionalnya yang lebih murah dan tidak membutuhkan tekanan yang besar. Kendala yang dihadapi dalam teknologi ANG adalah kemampuan adsorben menyerap gas alam masih lebih sedikit apabila dibandingkan dengan teknologi CNG untuk ukuran tangki yang sama (Cahya, 2013). Oleh karena itu, pengembangan material adsorben terus dilakukan untuk meningkatkan kapasitas adsorpsi gas alam agar sesuai dengan standar kapasitas penyimpanan volumetrik menurut DOE (US Department of Energy) yang sebesar 180 v/v (Nelson, 1993; Kumar, 2011; dan Ginzburg, 2006).

Material yang sering digunakan untuk proses adsorpsi gas metana meliputi Mobil Composition of Matter No.41 (MCM-41) (Glover dkk., 2008), karbon aktif (Yi dkk., 2013), Zeolitic Imidazolate Framework (ZIF-8) (Hertag dkk., 2011), Metal Organik Framework-199 (Nik dkk., 2012), dan zeolit (Tonkovich, 2009). Dari beberapa material adsorben tersebut, zeolit memiliki keunggulan diantaranya tidak memerlukan tekanan yang besar dan kristal zeolit yang terbentuk akan lebih stabil apabila dibandingkan dengan material karbon aktif dan MOF. Zeolit juga memiliki selektivitas 3-5 kali lebih besar daripada material karbon aktif untuk penyerapan gas CH₄/CO₂. Sedangkan di antara berbagai jenis material zeolit, zeolit-A memiliki kemampuan adsorpsi yang lebih besar yakni sebesar 8 mmol CH₄/kg apabila dibandingkan dengan kemampuan adsorpsi zeolit-X yang sebesar 1,24 mmol CH₄/kg dan kemampuan adsorpsi zeolit-Y yang sebesar 5 mmol CH₄/kg (Mofarahi dan Gholipour, 2014 dan Grande dkk.. 2013).

Selain zeolit-A, adsorben yang cukup efektif dalam mengadorp gas metana adalah karbon, walaupun memiliki kekurangan yaitu memerlukan tekanan yang cukup besar (Yi dkk., 2013). Sebagaian besar material adsorben tersebut merupakan material sintetik yang memberikan kerugian biaya karena bahan sintesis yang cukup mahal. Penelitian pengembangan material adsorben dari bahan yang memiliki nilai ekonomis rendah masih sangat minim jumlahnya. Beberapa material dari alam maupun limbah yang digunakan untuk bahan awal pembuatan zeolit diantaranya sekam padi (Fuadi dkk., 2012). abu layang batubara (Jumaeri dkk., 2007), kaolin (Juniantoro dkk., 2010) dan abu dasar batubara (Yuli, 2009). Material-material tersebut mengandung komponen yang diperlukan dalam penyusunan kerangka dasar material adsorben seperti zeolit. Namun, dari beberapa material tersebut, abu dasar batubara memiliki komponen yang cukup menarik karena mengandung sisa karbon yang tidak ditemukan pada material lainnya. Sisa karbon tersebut terbentuk secara langsung pada saat abu dasar batubara dihasilkan, tidak seperti karbon lainnya yang disintesis melalui beberapa tahapan dari suatu bahan organik.

Abu dasar batubara merupakan salah satu residu pembakaran batubara yang dihasilkan oleh PLTU yang memiliki densitas yang lebih berat dibandingkan abu layang, sehingga umumnya terkumpul 2

pada tangki penampung. Residu ini mengandung silikon (Si) 24,10 %, aluminium (Al) 6,80%, besi (Fe) 33,59 %, kalsium (Ca) 26,30% dan karbon (C) total sekitar 11,2% berat (Yanti, 2009). Kandungan Si dan Al dalam abu dasar ditemukan dalam fasa amorf dan kristalin. Unsur-unsur kimia tersebut merupakan komponen penyusun zeolit sehingga dengan proses tertentu, abu dasar dapat dimanfaatkan sebagai bahan penyusun zeolit atau mesoporous aluminosilikat lainnya (Tanaka, 2002).

Pembuatan zeolit dari abu layang telah banyak dilaporkan. Berbagai jenis zeolit yang disintesis dari abu layang diantaranya adalah zeolit-X dan zeolit-A (Chang dkk, 2000 dan Molina Poole, 2004), zeolit-P dan Hidroksi-Sodalit (Berkgaut dan Singer, 1996), Zeolit Na-A (Querol dkk, 2002), Zeolit K-H (Mimura dkk, 2001). Kandungan SiO₂ dan Al₂O₃ yang tinggi pada abu layang dibandingkan abu dasar membuat zeolit banyak disintesis dari bahan abu layang. Selain itu, abu dasar juga mengandung sisa karbon yang cukup tinggi, serta pengotor lainnya seperti oksida-oksida dari besi, kalsium dan sisa karbon. Faktor-faktor tersebut menjadikan tantangan dalam mensintesis zeolit dari abu dasar, sehingga membuat penelitian pengembangan abu dasar masih sangat rendah dibandingkan abu layang karena kandungan berbagai pengotor tersebut dapat mengganggu proses sintesis zeolit. Menurut Alfathoni (2002) sifat karbon yang memiliki daya serap yang tinggi, menyebabkan karbon akan menyerap larutan basa jika karbon tersebut dilarutkan dalam basa (NaOH), sehingga konsentrasi larutan basa akan berkurang. Berkurangnya konsentrasi basa ini, akan mengurangi kemampuan untuk melarutkan Si dan Al yang terkandung dalam abu dasar.

Disisi lain, karbon juga merupakan salah satu adsorben gas yang cukup baik (Yi dkk., 2013). Adsorben karbon aktif pada umumnya disintesis dari bahan-bahan organik yang berpotensi untuk menghasilkan karbon murni yang selanjutnya dilakukan aktivasi Pada abu dasar batubara, karbon yang terbentuk bercampur dengan material lainnya yaitu silika (SiO₂) dan alumina (Al₂O₃) yang merupakan komponen dasar dalam pembuatan zeolit (Yanti, 2009). Kandungan tersebut sangat potensial dalam pengembangan jenis adsorben gas yang dihasilkan. Oleh karena itu, dalam penelitian ini disintesis zeolit A-karbon untuk mengetahui pengaruh karbon terhadap zeolit yang terbentuk dan peranannya sebagai adsorben gas metana yang akan dibandingkan dengan zeolit-A tanpa adanya karbon.

Zeolit-A atau yang dikenal dengan zeolit Linde Tipe A (LTA) merupakan zeolit sintesis dengan rasio Si/Al rendah dan memiliki rumus empiris Na₁₂[(SiO₂)₁₂(AlO₂)₁₂].27H₂O (Smart, 1993). Struktur pori tiga dimensi zeolit A saling tegak lurus pada masing-masing arah dimensi x,y dan z dengan diameter minimum 11,4 Å. Kristal yang sangat teratur dengan rongga yang berhubungan ke arah yang cukup luas membuat zeolit memiliki luas permukaan yang besar. Hal ini membuat zeolit sangat berpotensi sebagai adsorben (Querol dkk., 2002). Selain itu, Zeolit-A merupakan tipe zeolit dengan kadar silika yang rendah memiliki sifat basa, sehingga selektif terhadap beberapa jenis gas seperti gas alam.

Zeolit-A umumnya dapat disintesis dengan memasukkan gel aluminosilikat ke dalam reaktor hidrotermal untuk proses kristalisasi. Variasi waktu dan suhu hidrotermal yang digunakan antara lain 24 jam pada suhu 60°C (Huang dkk., 2001), 24 jam pada suhu 90°C (Wang dkk., 2014), 3 jam pada suhu 100°C (Bayati dkk., 2008) atau 12 jam pada suhu 100°C (Yang dkk., 2009 dan Yanti, 2009). Dari beberapa perlakukan hidrotermal tersebut, nilai kristalinitas tertinggi didapatkan pada kondisi sintesis selama 12 jam, sehingga pada penelitian ini waktu dan suhu hidrotermal yang digunakan adalah selama 12 jam dan 100°C.

Pada penelitian ini, akan dilakukan sintesis zeolit A dan zeolit A-karbon untuk mengetahui pengaruh penambahan karbon terhadap kapasitas adsorpsi gas metana serta karakter dari zeolit yang terbentuk.

1.2 Rumusan Masalah

Permasalahan dalam penelitian ini, belum diketahui kapasitas adsorpsi gas CH_4 pada zeolit-A dan zeolit A-karbon abu dasar yang dibandingkan dengan zeolit yang disintesis dari bahan murni.

1.3 Batasan Penelitian

Zeolit-A disintesis dari abu dasar dengan penghilangan karbon dan tanpa penghilangan karbon. Selanjutnya, uji kapasitas

penyerapan gas CH_4 dilakukan terhadap material zeolit-A dari abu dasar dan dibandingkan dengan zeolit-A dari bahan murni untuk mengetahui kapasitas adsorpsi gas metana dari zeolit-A tersebut.

1.4 Tujuan Penelitian

Penelitian ini bertujuan untuk menentukan kapasitas adsorpsi gas CH₄ pada zeolit-A dan zeolit A-karbon dari abu dasar dan dibandingkan dengan zeolit-A dari bahan kimia murni.

1.5 Manfaat Penelitian

Hasil penelitian ini dapat memberi alternatif cara memanfaatkan limbah abu dasar dari Pembangkit Listrik Tenaga Uap (PLTU) menjadi zeolit dan zeolit karbon yang salah satunya dapat digunakan sebagai adsorben gas CH₄.

"Halaman ini sengaja dikosongkan"

BAB II TINJAUAN PUSTAKA

2.1 Gas Alam

Gas alam merupakan campuran hidrokarbon ringan yang terbentuk secara alami dan bercampur dengan beberapa senyawa non-hidrokarbon. Gas alam dalam keadaan murni memiliki beberapa sifat seperti mudah terbakar, tidak berwarna, tidak berbau, nyala suhu tinggi, lebih ringan daripada udara, dan nilai kalor yang tinggi (Febijanto, 2010 dan Kelkar, 2008). Gas alam dapat ditemukan di dekat ladang minyak bumi, ladang gas bumi, dan tambang batu bara (Rojey dkk., 1997 dan Abidin, 2010). Komposisi gas alam terbesar adalah gas metana (CH₄) sebesar 55-98% dengan sisanya seperti gas etana (C_2H_4) sebesar 0.02-12%, propana (C_3H_8) dan butana (C_4H_{10}) yang kurang dari 5% serta komponen gas pengotor seperti air, N₂, H₂S, dan CO₂ dengan jumlah yang bervariasi (Solar, 2010). Dari beberapa kandungan yang terdapat pada gas alam tersebut, metana (CH₄) merupakan komposisi yang penting karena memiliki nilai kalori yang tinggi sehingga dapat digunakan sebagai bahan bakar (Polpraset, 2007).

Metana yang terkandung dalam gas alam adalah salah satu energi alternatif pengganti bahan bakar fosil berbentuk gas yang yang banyak digunakan sebagai bahan bakar maupun bahan baku dalam suatu industri, oleh karena itu distribusi gas alam merupakan bagian yang penting dalam menunjang kegiatan industri saat ini (Asip, 2013). Konsumsi gas metana akan terus meningkat dan mencapai kenaikan sebesar 6-7% per tahun selama proyeksi tahun 2015-2025 (Kementerian Energi dan Sumber Daya Mineral, 2014). Penggunaan gas alam memiliki keuntungan apabila dibandingkan dengan bahan bakar fosil yakni pembakaran yang bersih dan menghasilkan polutan yang dihasilkan lebih sedikit sehingga lebih ramah lingkungan (Pandu dkk., 2014; dan Hartanto, 2011). Perbandingan polutan yang dihasilkan dari bahan bakar fosil (kg polutan per TJ konsumsi energi) ditampilkan pada Tabel 2.1.

Polutan	Gas Alam	Minyak Bumi	Batubara
СО	40	33	208
CO_2	117	164	208
Sulfur dioksida	0,3	430	731
Merkuri	0	0,007	0,016
Nitrogen oksida	43	142	359
(NOx)			

Tabel 2.1 Perbandingan Polutan yang dihasilkan dari Bahan Bakar Fosil (kg polutan per J konsumsi energi) (Beer, 2013)

Berdasarkan Tabel 2.1, gas alam memiliki nilai emisi polusi yang cukup rendah jika dibandingkan dengan sumber energi lainnya seperti minyak bumi dan batubara. Polutan-polutan lainnya yang muncul selain gas CO_2 dan CO timbul akibat adanya impuritas yang terdapat pada gas alam, sehingga kemurnian dari metana (CH₄) terhadap impuritas tersebut sangat diperlukan karena sangat berpengaruh terhadap nilai kalori serta kadar polutan yang dihasilkan. Oleh karena itu, diperlukan suatu metode yang sesuai dalam proses penyimpanan gas metana dalam suatu gas alam.

2.2 Teknik Penyimpanan Gas Alam

Gas alam merupakan energi alternatif dengan kandungan utamanya gas metana yang memiliki panas gravimetrik sebesar 55,5 MJ/kg dan hampir sebanding dengan panas pembakaran bensin yang sebesar 44,5 MJ/kg (Vasiliev, dkk., 2000 dan Mattranga, 1992). Gas alam secara umum lebih unggul dibandingkan bahan bakar fosil kecuali dalam teknik penyimpanan yang hanya memiliki 0,12% densitas volumetrik energi bahan bakar fosil (Alson, dkk., 1989, Talu, 1992; Menon, 1998; dan Cahya, 2013). Untuk mengatasi permasalahan tersebut, teknologi penyimpanan gas alam yakni (Liquified Natural Gas), teknologi CNG teknologi LNG (Compressed Natural Gas), dan teknologi ANG (Adsorbed Natural Gas) dikembangkan (Bastos, dkk., 2005; Mota, 2008; dan Remick, 1985). Berdasarkan Tabel 2.2, teknologi ANG ditinjau sebagai teknologi yang menjanjikan sebagai teknologi penyimpanan gas alam karena biaya operasional yang lebih murah dan tekanan yang digunakan tidak terlalu besar. Dalam sistem adsorpsi tersebut,

tentunya pemilihan jenis adsorben merupakan parameter penting (Hamidi, 2011).

Metode	Kelebihan	Kekurangan
Penyimpanan		
LNG (Liquified Natural Gas)	-Gas alam cair memiliki nilai densitas volumetri yang cukup besar yakni 600 kali lebih besar dari gas alam atau sekitar 72% dari nilai densitas volumetrik pada bensin (Crancknell, dkk., 1993; Pandu, dkk, 2014; Putri, dkk., 2013)	-Gas alam cair disimpan sebagai cairan mendidih pada suhu kriogenik - 161 °C pada tekanan dibawah 10-20 bar (Kumar, 2011)
CNG (Compressed Natural Gas)	-Densitas volumetrik maksimum sebesar 230 kali gas alam atau sekitar 26% dari densitas volumetrik bensin (Elliot, dkk., 1986)	-Gas alam terkompresi beroperasi pada tekanan tinggi yakni 3-240 atm (Elliot, dkk., 1986).
ANG (Adsorbed Natural Gas)	-Biaya operasional murah (Mota, 2008 dan Pratama, 2014) -Mampu menyimpan densitas dari energi volumetrik hingga 80% (Sun, dkk., 2009).	-Kemampuan adsorben untuk menyerap gas alam masih lebih sedikit dibandingkan dengan teknologi CNG untuk ukuran tangki yang sama (Cahya, 2013).

Tabel 2.2 Perbandingan Metode Penyimpanan Gas Alam

2.3 Material untuk Adsorpsi Gas Alam

Seperti yang telah dibahas pada subbab 2.2, metode adsorpsi merupakan metode yang sesuai dalam proses purifikasi gas alam.

Pemilihan adsorben yang tepat merupakan titik penting dalam proses adsorpsi gas metana tersebut dan berikut beberapa material berpori yang pada penelitian sebelumnya digunakan sebagai adsorben gas metana (CH₄) yang disajikan pada Tabel 2.3

Material	Karakter Adsorpsi				Pustaka	
	Diameter	Volume	Suhu	Tekanan	Kapasitas	
	(nm)	pori	$(^{\circ}C)$	(bar)	(mmol/g)	
		(cm^3/g)				
MCM-41	0,3-0,4	0,713	25	1	0,19	(Glover
						dkk., 2008)
Karbon	0,2-0,4	0,814	25	10	12,5	(Sadasivam
Aktif						dkk., 2015;
						Yi, dkk.,
						2013; Najibi
						dkk., 2006;
						dan Grande
						dkk., 2013)
ZIF-8	0,34	0,66	25	1	0,10	(Hertag
						dkk., 2011;
						Stallmach
						dkk., 2015)
MOF-199	0,35	0,54	35	5	9,15	(Nik dkk.,
						2012)
Zeolit A	0,5	0,32	0,3	1	8	(Li dkk.,
(Si/Al≤2)						2013;
						Magee,
						2014;
						Ghorai
						dkk., 2006;
						Tonkovich,
						2009)
Zeolit X	0,75	0,29	30	1	1,24	(Bao dkk.,
(Si/Al≤2)						2011)
Zeolit Y	1,6	0,304	30	1	5	(Kamarudin,
$(2 \leq Si/Al \leq 5)$						2008)

Tabel 2.3 Perbandingan Material Adsorpsi Gas Metana

Pada Tabel 2.3 tersebut dapat terlihat, material-material yang digunakan dalam mengadsorpsi gas alam tersebut antara lain MCM-41 (Glover, dkk.,2008), karbon aktif (Yi dkk., 2013), ZIF-8 (Hertag dkk., 2011), MOF-199 (Nik dkk., 2012), dan zeolit (Tonkovich, 2009). Adsorpsi pada MOF terjadi secara kimia sehingga membutuhkan energi tinggi untuk melepaskan ikatan dan tekanan yang relatif lebih tinggi (Liu dkk., 2012). Oleh karena itu, zeolit-A merupakan adsorben paling sesuai untuk menyerap gas metana. Dengan tekanan yang rendah, proses adsorpsi desorpsi secara fisika akan lebih mudah. Zeolit-A juga memiliki selektivitas 3–5 kali lebih besar daripada material karbon aktif untuk penyerapan gas CH_4/CO_2 (Mofarahi dan Gholipour, 2014; Mitchell, 2014; dan Grande, dkk., 2013).

Hampir sebagian besar zeolit-A yang digunakan merupakan material sintetik yang memiliki kerugian biaya sintesis yang cukup tinggi serta menghasilkan limbah kimia yang berbahaya, oleh karena itu perlu dilakukan inovasi pembuatan zeolit menggunakan bahanbahan yang memiliki nilai ekonomis yang rendah namun memiliki sifat dan karakter yang mirip bahkan melebihi dari zeolit sintetik. Dalam beberapa tahun terakhir, beberapa penelitian pengembangan pembuatan zeolit dari bahan limbah masih sangat minim, karena tidak semua limbah dapat berpotensi sebagai bahan dasar pembuatan zeolit tersebut. Beberapa penelitian pembuatan zeolit dari bahan limbah maupun bahan alam dapat ditunjukkan pada Tabel 2.4

Jenis	Material	Kandungan	Pustaka
Zeolit	penyusun zeolit	material penyusun	
	1 2	zeolit	
Zeolit-A	Sekam Padi	Si, Al	(Fuadi dkk.,
			2012)
Zeolit-A	Kaolin	Si, Al	(Putra dkk.,
			2014)
Zeolit-A	Abu Dasar	Si, Al dan Karbon	(Yuli, 2009)
Zeolit-A	Abu Layang	Si, Al	(Jumaeri dkk.,
			2007)

Tabel 2.4 Material penyusun zeolit dari limbah dan bahan alam

Pada Tabel 2.4, sebagian besar material yang dapat digunakan sebagai prekursor dalam pembentukan zeolit merupakan material yang memiliki kandungan Si dan Al. Hal tersebut dapat memberikan informasi bahwa dalam menentukan jenis material limbah maupun bahan alam yang dapat digunakan sebagai bahan pembentuk zeolit, material tersebut haruslah mengandung Si dan Al yang merupakan komponen dasar penyusun kerangka zeolit. Namun, yang menjadi keunikan dari keempat bahan penyusun limbah tersebut adalah abu dasar batubara yang dihasilkan dari limbah pembakaran PLTU, selain memiliki kandungan Si dan Al, juga mengandung sisa karbon yang dapat menjadikan potensi lainnya untuk membuat modifikasi zeolit dengan memberikan peran karbon didalam zeolit yang terbentuk menjadi zeolit A-karbon (Yanti, 2009).

Zeolit-zeolit sintetik maupun yang disintesis dari bahan alam dan limbah pada umumnya tidak pernah menambahkan karbon dalam prosesnya karena bahan awal penyusun zeolit rata-rata tidak mempunyai kandungan karbon serta karbon dianggap sebagai komponen yang dapat mengganggu proses sintesis yang berakibat pada menurunnya kristalinitas dan kinerja dari zeolit yang dihasilkan sehingga kandungan karbon sebagian besar dihilangkan untuk mendapatkan produk zeolit yang dengan tingkat kemurnian tinggi (Londar, 2010).

Disisi lain, karbon aktif juga merupakan jenis adsorben gas metana yang baik yang ditunjukkan dengan nilai kapasitas adsorpsi terbesar dibandingkan material lainnya, walaupun memiliki kekurangan yaitu tekanan yang diperlukan cukup besar (Yi dkk., 2013). Tidak seperti zeolit, adsorben karbon aktif telah banyak disintesis dari bahan alam maupun limbah karena sebagian besar bahan tersebut mengandung komponen organik yang berpotensi untuk menghasilkan karbon melalui proses yang cukup mudah. Beberapa penelitian mengenai pembuatan karbon aktif dari bahan alam dan limbah dapat ditunjukkan pada Tabel 2.5

Sebagian besar karbon aktif tersebut disintesis melalui beberapa tahapan sehingga dihasilkan karbon murni yang kemudian dilakukan aktivasi. Berbagai penelitian pembuatan karbon aktif tersebut menunjukkan bahwa sebagain besar diaplikasikan untuk adsorben gas seperti gas CO_2 dan CH_4 . Hal tersebut menunjukkan bahwa sifat karbon terhadap gas seperti CH_4 memiliki spesifikasi sehingga 12

banyak penelitian adsorpsi pada karbon yang mengarah kepada jenis adsorbat gas metana. Namun, penelitian yang menggunakan karbon secara langsung dari bahan awal layaknya pada abu dasar batubara masih sangat minim terlebih penelitian karbon yang dipadukan dengan material adsorben seperti zeolit (Yanti, 2009), sehingga dari hal tersebut, jenis limbah yang dihasilkan oleh PLTU ini menjadi potensi besar untuk dilakukan penelitian mengenai pengembangan material adsorben gas khususnya adsorben gas metana.

Material pembentuk	Aplikasi	Pustaka
karbon aktif		
Limbah kayu	Adsorben pewarna cair	(Sivakumar
Balsamodendrum	_	dkk., 2012)
Caudatum		
Limbah Ampas Tebu	Adsorben gas H ₂	(Amiliyah,
		2012)
Gambut	Adsorben gas CO ₂ dan	(Himeno
	CH_4	dkk., 2005)
Kulit Kelapa	Adsorben gas CO ₂ dan	(Himeno
	CH_4	dkk., 2005)
Arang	Adsorben gas CO ₂ dan	(Himeno
	CH_4	dkk., 2005)
Batubara Mesir	Pemurnian Air	(Elkady dkk.,
		2015)
Limbah Botol Plastik	Adsorben gas CO ₂ dan	(Adibfar
(Polyetilen Tereftalat)	CH_4	dkk., 2014)
Limbah Kulit Buah	Adsorben gas CO, CO ₂ ,	(Jaya, 2014)
Kakao	NO _x	
Limbah Biji Kopi	Adsorben gas CH ₄	(Kemp dkk.,
		2015)

Tabel 2.5 Material yang digunakan dalam pembentukan karbon aktif

2.4 Abu Dasar Batubara

Pembakaran batubara sebagai sumber energi pada PLTU akan menghasilkan residu padat berupa abu sisa pembakaran. Berdasarkan jenisnya, abu sisa pembakaran ini dibedakan menjadi dua macam yaitu abu fraksi ringan yang dikenal dengan abu layang (*fly ash*) dan abu fraksi berat yang dikenal dengan abu dasar (*bottomash*). Abu dasar merupakan hasil proses pembakaran batubara yang jatuh pada dasar tungku pembakar (*boiler*) dan terkumpul pada penampung debu (*ash hopper*) karena terlalu berat untuk dibawa oleh gas buang (Prijatama dan Sumarnadi, 1996). Jumlah abu dasar hanya sekitar 10-20% dari total abu batubara yang dihasilkan. Abu dasar dapat dikategorikan menjadi *dry bottom ash* dan *wet bottom ash*. Debu yang berada dalam keadaan padatan dasar tungku disebut *dry bottom ash*. sedangkan debu yang berada dalam keadaan cair ketika jatuh dalam air yang berada pada *ash hopper* dimana didalam air tersebut debu yang berada dalam keadaan mencair tersebut akan mengkristal dan membentuk butiran-butiran yang disebut *wet bottom ash*.

Sifat-sifat, khususnya sifat kimia, abu dasar secara umum mirip dengan abu layang.Perbedaan utama hanya terletak pada bentuk fisik dan komposisi kimianya. Abu dasar umumnya berwarna gelap dan memiliki ukuran partikel yang bervariasi mulai ukuran pasir hingga kerakal (pebble). Hal ini dikarenakan pembakaran yang terjadi pada abu dasar belum cukup sempurna, sehingga masih tersisa batubara yang belum terbakar, sedangkan abu layang pada umumnya berwarna coklat (Sun dkk., 2008).

Secara kimia, abu batubara dari tempat yang berbeda mempunyai komposisi yang berbeda juga. Hal ini sangat erat kaitannya dengan asal batubara yang digunakan dan dalam banyak kasus berhubungan dengan proses pembakaran batubara tersebut didalam tungku pembakaran yang digunakan pada pembangkit listrik tenaga batubara. Komposisi kimia abu dasar didominasi oleh silika (SiO₂), alumina (Al₂O₃), kalsium oksida (CaO), dan oksida lainnya. Abu dasar jika dibandingkan dengan abu layangmengandung kadar sisa karbon (C) yang lebih tinggi (Prijatama dan Sumarnadi, 1996). Komposisi abu dasar dari analisa menggunakan XRF menurut Yanti (2009) dapat dilihat pada Tabel 2.6

Rendahnya kandungan SiO₂ dan Al₂O₃ pada abu dasar jika dibandingkan pada abu layang serta masih adanya kandungan karbon yang tidak terbakar pada abu dasar, menjadikan rendahnya minat untuk dilakukan penelitian dalam memanfaatkan abu dasar menjadi zeolit. Berdasarkan studi literatur yang dilakukan, zeolit lebih banyak disintesis menggunakan abu layang sebagai bahan dasar. Namun, 14

kandungan silika (SiO_2) dan alumina (Al_2O_3) pada abu dasar merupakan bahan dalam penyusun zeolit walaupun memiliki jumlah yang relatif sedikit, sehingga pada penelitian ini, abu dasar akan dirubah menjadi zeolit yang kemudian dimanfaatkan sebagai bahan adsorben gas CH₄. Dengan mengubahnya menjadi zeolit, maka kandungan Si dan Al dalam abu dasar tidak akan berbahaya lagi karena akan berubah menjadi material berpori dan tingkat selektifitas yang cukup tinggi (Mofarahi dan Gholipour, 2014 dan Grande dkk., 2013).

Komponen	Mol	Komponen	Mol		
(% berat)	komponen	(% berat)	komponen		
	tiap 100 g		tiap 100 g		
Si (24,10)	0,861	S (0,76)	0,024		
Al (6,80)	0,252	Mn (0,32)	0,006		
Fe (33,59)	0,600	Cr (0,098)	0,002		
Ca (26,30)	0,658	Ni (0,055)	0,001		
Mg (3,60)	0,150	V (0,050)	0,001		
K (0,58)	0,015	Ti (12,10)	0,253		
C total = 11,12%					

Tabel 2.6 Komposisi Kimia Abu Dasar (Yanti, 2009)

2.5 Zeolit-A

Zeolit merupakan kristal aluminosilikat yang mengandung pori-pori dan rongga-rongga berskala molekular dengan rentang ukuran dari 3Å hingga 15Å. Kerangka zeolit disusun dari satuan-satuan tetrahedral $[SiO_4]^{2-}$ dan $[AIO_4]^{5-}$ dengan atom oksigen sebagai penghubung antara atom silicon dan aluminium yang digabungkan secara tiga dimensi, ditunjukkan sebagai TO₄, T=Si atau Al. Penggabungan satuan tetrahedron satu dengan lainnya terjadi adanya pemakaian bersama satu atom oksigen oleh dua tetrahedral yang ditunjukkan pada Gambar 2.1

Tetrahedral $[AlO_4]^{5-}$ bermuatan negatif, maka zeolit alam dan zeolit sintesis memerlukan kation logam alkali (Na⁺, K⁺) dan atau alkali tanah (Ca²⁺, Ba²⁺) sebagai pusat penyeimbang muatan untuk menjaga kenetralan muatan zeolit (Smart, 1993).

Gambar 2.1 Rangka Zeolit yang terbentuk dari ikatan 4 atom O dengan 1 atom Si (Bell, 2001)

Tetrahedron TO₄ (T=Si atau Al) merupakan unit pembangun primer (*primary building units*, PBU) yang dapat digabungkan dengan berbagai cara untuk membentuk unit pembangun sekunder (*secondary building units*, SBU). Contohnya struktur cincin-4 (dibangun oleh 4 unit TO₄), ganda cincin-4 (dibangun oleh ganda cincin-4) dan sebagainya. Penomoran SBU dihubungkan dengan jumlah ikatan tetrahedron TO₄.

Dalam setiap jenis SBU, atom T ditunjukkan sebagai titik dan berada diakhir garis atau berada di penjuru tetrahedron, sedangkan atom O ditunjukkan sebagai garis dan berada di tengah-tengah garis antara dua titik T yang dapat ditunjukkan pada Gambar 2.2. Unit pembangun sekunder ini boleh berikatan dengan beberapa cara untuk membangun struktur baru yang akan menghasilkan kerangka zeolit. Setiap bangunan baru mempunyai ukuran pori yang berbeda, tergantung dari SBU yang bergabung. Penggabungan 24 tetrahedron silika dan alumina akan membentuk dua bentuk muka yaitu tetragon dan heksagon.

Rumus umun yang didefinisikan oleh *International Union* of Pure and Applied Chemistry (IUPAC) untuk zeolit adalah

$M_{x/m}[(AlO_2)_x(SiO_2)_y]$. WH₂O

Kation M dengan valensi m menetralkan muatan negatif pada kerangka aluminosilikat, x dan y adalah bilangan tetrahedral 16 $[AlO_4]^{5-}$ dan $[SiO_4]^{4-}$ dan w adalah bilangan mol molekul air yang dapat dihilangkan dengan pemanasan tanpa mengakibatkan perubahan dalam struktur kerangka zeolit tersebut. Umumnya bilangan perbandingan y/x adalah antara 1 sampai 5, tetapi dapat mencapai 10 sampai 100 untuk zeolit dengan kandungan silika yang tinggi (Breck, 1974).

Gambar 2.2 Unit Dasar Pembangun Primer Zeolit (Las, 2006)

Dalam zeolit perbandingan Si/Al minimum adalah 1, dengan setiap atom aluminium berikatan dengan empat atom silikon yang dihubungkan oleh atom oksigen. Oleh karena itu tidak ada ikatan Al-O-Al dalam struktur, melainkan ikatan Al-O-Si dan Si-O-Si yang bersifat stabil. Selain itu, kandungan aluminium juga berkaitan dengan sifat keasaman zeolit. Kehadiran $[AIO_4]^{5-}$ menyebabkan kerangka zeolit bermuatan negatif. Terdapat dua macam bentuk keasaman yaitu Bronsted dan Lewis. Keasaman Bronsted merupakan ion hidrogen yang menyeimbangkan muatan negatif dalam kerangka zeolit akibat kehadiran $[AIO_4]^{5-}$. Penambahan air pada kristal zeolit bila bereaksi dengan kation Al akan membentuk gugus asam Al-OH sehingga air akan keluar dan terbentuk ion Al³⁺yang terkoordinasi, dan menghasilkan asam Lewis yang bersifat kuat (Smart, 1993).

Secara umum, zeolit mempunyai kemampuan untuk menyerap, menukar ion, dan menjadi katalis, sehingga mineral ini dapat dimanfaatkan dalam berbagai bidang (Zulfa, 2011). Dari beberapa aplikasi zeolit tersebut, sebagian besar zeolit digunakan sebagai material penukar ion dan adsorben karena kemampuannya mengadsorpsi pada tekanan yang rendah serta adanya kation penetral yang dapat dipertukarkan. Bentuk kristal yang terbentuk pada zeolit memiliki keteraturan yang tinggi dengan rongga yang saling berhubungan sehingga menjadikan luas permukaan zeolit semakin besar, oleh karena itu zeolit sangat baik jika digunakan sebagai adsorben. Selain itu, kemampuan adsorpsi pada zeolit ditentukan oleh beberapa faktor lainnya seperti tingkat kebasaan, distribusi ukuran pori dan rasio Si/Al. Kapasitas adsorpsi dan selektifitas zeolit akan meningkat dengan menurunnya rasio Si/Al. Hal ini disebabkan oleh meningkatnya muatan listrik dalam pori zeolit yang dipengaruhi oleh meningkatnya jumlah pusat muatan pada permukaan zeolit. sifat kebasaan zeolit akan meningkat dengan Selain itu, meningkatnya kandungan ion Al³⁺ yang disebabkan meningkatnya jumlah kation yang diperlukan untuk menetralkan zeolit (Adriany, 2011). Oleh sebab itu, zeolit bersifat selektif terhadap molekulmolekul yang bersifat asam lemah seperti gas CH₄ yang terdapat pda gas alam. Seperti yang telah dijelaskan dalam subbab 2.2 bahwa salah satu jenis zeolit yang bersifat selektif terhadap gas alam adalah zeolit-A.

Zeolit-A merupakan zeolit sintetis berkadar silika rendah dengan struktur kristal berbentuk kubus dengan delapan tetrahedral (empat buah cincin rangkap) dan sebuah oktahedron dengan 24 tetrahedral sebagai sangkar β seperti yang ditunjukkan oleh Gambar 2.3.

Gambar 2.3 Struktur kerangka zeolit-A (Smart dan Moore, 1993)

Zeolit-A dikenal dengan zeolit Linde Tipe A (LTA) dan memiliki rumus empiris $Na_{12}[(SiO_2)_{12}(AIO_2)_{12}].27H_2O$ (Smart, 1993) Zeolit ini memiliki kandungan alumina yang tinggi serta permuakaan muatan negatif yang kuat akibat struktur tetrahedral dari $[AIO_4]^{5-}$. 18 Zeolit-A mempunyai struktur pori tiga dimensi dengan pori yang saling tegak lurus pada masing-masing arah dimensi x,y dan z. Zeolit-A mempunyai rongga yang lebih besar dengan diameter minimum sebesar 11,4 Å. Rongga yang besar tersebut digunakan sebagai tempat untuk reaksi molekul yang spesifik dengan diameter kinetik molekul yang lebih kecil (Querol dkk., 2002). Unit selnya berukuran a=24,61Å (Oonkhanond dan Molina, 2004). Karena pengaruh rasio Si/Al yang rendah, zeolit A memiliki sifat sebagai berikut: tidak stabil pada pH asam, bersifat hidrofobik, dan mempunyai sifat adsorpsi yang optimum. Tidak hanya itu, kadar silika yang rendah menyebabkan zeolit-A memiliki konsentrasi kation yang tinggi dan bersifat basa sehingga mempunyai selektivitas terhadap gas CH₄ yang bersifat asam lemah (Scoot, 2003).

Secara konvensional, zeolit disintesis dari reaktan-reaktan seperti natrium aluminat (*water glass*) atau silika koloid, natrium aluminat, aluminium koloid dan natrium atau kalium hidroksida. Komposisi reaktan akan berpengaruh pada struktur zeolit yang terbentuk, juga sifat dan tingkat kemurniannya. Reaktan ini bercampur dalam jumlah tertentu dan membentuk gel yang homogen melalui proses kondensasi. Kemudian, larutan gel aluminosilikat dikristalisasi secara hidrotermal dalam autoklaf pada suhu dan waktu tertentu. Produk zeolit dengan struktur tertentu akan terbentuk pada suhu antara 100-350°C (Mullin dkk., 2001 dan Barrer, 1982).

Zeolit-A umumnya memiliki komposisi molar $Na_2O:Al_2O_3:$ SiO₂:H₂O = 3,165:1:1,926: 128 (Kugbe, dkk., 2009 dan Thompson, 1982). Pada awalnya, sumber silika dan sumber alumina diaduk secara konstan selama 12 jam. Setelah itu, gel aluminosilikat yang terbentuk dimasukkan ke dalam reaktor teflon hidrotermal. Berdasarkan penelitian yang telah dilakukan, waktu dan suhu hidrotermal yang digunakan antara 24 jam pada suhu 60°C (Huang dan Havenga, 2001), 24 jam pada suhu 90°C (Wang dkk., 2014), 3 jam pada suhu 100°C (Bayati dkk., 2008) atau 15 jam pada suhu 100°C (Yang dkk., 2009 dan Yanti, 2009). Pada penelitian ini, zeolit-A disintesis menggunakan suhu hidrotermal sebesar 100°C selama 12 jam sesuai dengan penelitian yang telah dilakukan oleh Yanti (2009).

2.6 Sintesis Zeolit-A dari Abu Dasar

Mineral awal pembuatan zeolit adalah material yang mengandung silika dan alumina. Abu sisa pembakaran batubara pada PLTU merupakan salah satu material yang mengandung kadar silika yang cukup tinggi sehingga berpotensi sebagai bahan pembuatan zeolit. Selama ini, penelitian dalam pembuatan zeolit dari abu sisa pembakaran batubara PLTU umumnya dilakukan pada abu layang. Selain kandungan Si yang lebih tinggi pada abu layang, adanya kandungan sisa karbon pada abu dasar dapat mengganggu dalam proses sintesis zeolit, membuat minimnya penelitian mengenai pengolahan abu dasar sebagai bahan baku dalam pembuatan zeolit.

Masih minimnya penelitian mengenai pengolahan abu dasar tersebut membuat proses sintesis zeolit abu dasar selalu mengikuti prosedur yang dilakukan untuk mensintesis zeolit dari abu layang. Pada umumnya, sintesis zeolit dari abu layang tidak akan menghasilkan kemurnian satu jenis zeolit yang tinggi namun akan terbentuk beberapa jenis zeolit lainnya atau masih adanya kandungan abu layang yang tersisa seperti mullit dan kuarsa. Sebaliknya abu layang yang sama akan menghasilkan jenis zeolit yang bervariasi pada kondisi sintesis yang berbeda (Chandrasekar, 2007).

Abu dasar mengandung kadar Si dan Al yang cukup tinggi walaupun kadarnya tidak sebesar pada abu layang. Kandungan Si dan Al tersebut merupakan bahan baku dalam pembuatan zeolit. Penelitian pembuatan zeolit-A dari abu dasar dengan beberapa metode telah dilakukan sebelumnya. Salah satu dari metode tersebut yang berhasil menghasilkan zeolit-A dengan kemurnian tinggi adalah metode peleburan alkali yang diikuti dengan hidrotermal (Yanti, 2009). Pada penelitian tersebut dilakukan dua keadaan yaitu dalam atmosfir udara dan dalam atmosfir N₂. Perbedaan padatan yang didapat pada peleburan abu dasar dalam atmosfer udara dan atmosfir N₂ hanyalah pada kandungan karbon yang masih dapat dipertahankan pada peleburan yang dilakukan dalam atmosfer N₂ yaitu 2,31% (Yanti, 2009).

Ekstrak leburan kemudian dipergunakan dalam pembuatan gel. Rasio molar SiO $_2/Al_2O_3$ gel dikontrol melalui penambahan sumber Al. Penambahan Al diperlukan untuk memperkecil rasio molar gel karena kelarutan Al dalam ekstrak leburan lebih kecil dari kelarutan
Si, sehingga ekstrak leburan memiliki rasio molar SiO_2/Al_2O_3 besar yaitu 34,48.Preparasi gel untuk sintesis zeolit A pada penelitian ini diatur pada rasio molar gel SiO_2/Al_2O_3 1,926 dimana rasio molar 1,926 merupakan kondisi yang sesuai untuk sintesis zeolit-A.

Pada peneliltian ini, akan dilakukan sintesis zeolit A abu dasar dengan metode yang sama yang dilakukan oleh Yanti (2009). Zeolit-A dari abu dasar akan dilakukan variasi dengan mempertahankan kandungan karbon dalam abu dasar dan menghilangkan kandungan karbon. Untuk membandingkan hasil yang diperoleh dari proses sintesis zeolit-A menggunakan abu dasar maka disintesis zeolit-A dengan bahan murni.

2.7 Mekanisme Reaksi Pembentukan Zeolit

Mekanisme sintesis zeolit dari abu dasar meliputi tiga tahap yaitu: (1) Pelarutan Aluminium dan silika dari abu layang, (2) Deposisi gel aluminosilika pada permukaan abu layang batubara, (3) Kristalisasi zeolit dari gel aluminosilikat (Muramaya dkk, 2002). Al dan Si pada abu dasar diperoleh dari fasa amorf, kuarsa dan mullit.Fasa amorf memiliki sifat tidak stabil karena itu paling mudah larut.Kuarsa lebih stabil dibanding mullit sehingga lebih mudah larut daripada mullit, sedangkan mullit merupakan fasa paling stabil sehingga sukar untuk larut (Barrer, 1982; Querl dkk., 1999 dan Murayana dkk, 2002).

Kristal yang terbentuk akan bersifat makin stabil sesuai aturan Ostwald. Dalam aturan Ostwald tersebut, proses transformasi polimorf dari elemen suatu senyawa, polimorf pertama yang dibentuk dari fasa uap, liquid, atau cairan larutan yang cenderung memiliki tingkat kestabilan yang kecil akan berlanjut untuk digantikan polimorf yang memiliki kestabilan yang cukup tinggi (Barrer, 1982). Jika suatu larutan silikat dan aluminat direaksikan, maka dihasilkan produk mula-mula yang bersifat kurang stabil secara termodinamika yaitu gel aluminosilikat. Kemudian fasa metastabil ini akan berlanjut berubah menjadi fasa kristalin yang bersifat lebih stabil. Urutan Mekanisme sintesis zeolit dari abu dasar yang diusulkan oleh Murayana (2002) dapat ditunjukkan pada Gambar 2.4

Gambar 2.4 Mekanisme sintesis zeolit dari abu dasar

Mekanisme Sintesis zeolit dari abu dasar yang meliputi proses pelarutan reaktan, nukleasi dan pertumbuhan kristal. Proses nukleasi terjadi dari spesi prekursor yang terlarut. Pertumbuhan kristal pada inti melibatkan polimerisasi kondensasi spesi terlarut ke dalam permukaan bagian yang tumbuh. Proses nukleasi tersebut terdapat pada fasa larutan yang kemudian akan berubah menjadi hidrogel (Elliot, 1986).

2.8 Mekanisme Adsorpsi pada Zeolit

Sifat zeolit sebagai adsorben dan penyaring molekul, dimungkinkan karena struktur zeolit yang berongga, sehingga membuat zeolit mampu menyerap sejumlah besar molekul yang berukuran lebih kecil atau sesuai dengan ukuran rongganya. Selain itu, kristal zeolit yang telah terdehidrasi merupakan merupakan adsorben yang selektif dan mempunyai efektivitas adsorpsi yang cukup tinggi.

Zeolit yang terdehidrasi akan mempunyai struktur pori terbuka dengan internal surface area yang cukup besar sehingga kemampuan mengadsorp molekul selain air semakin tinggi. Ukuran pori ini menentukan ukuran molekul yang dapat teradsorp. Sifat ini menjadikan zeolit mempunyai kemampuan penyaringan yang sangat spesifik yang dapat digunakan untuk proses pemisahan dan pemurnian. Zeolit yang digunakan sebagai penyaring molekular tidak menunjukkan perubahan yang cukup besar pada struktur kerangka dasar pada dehidrasi walaupun kation berpindah menuju posisi dengan koordinasi lebih rendah (Zulfa, 2011).

Kemampuan zeolit aktif untuk mengadsorp gas ditentukan oleh ukuran diameter saluran rongga yang berkisar antara 2,5 Å sampai 4,3 Å (tergantung pada jenis zeolit). Pada ukuran saluran rongga tertentu, memungkinkan zeolit untuk mengadorp beberapa

jenis gas seperti ammonia, hidrogen sulfida, karbon dioksida, sulfur dioksida, uap air, oksigen, nitrogen, metana, dan lainnya (Barrer, 1978).

2.9 Karakterisasi

Karakterisasi abu dasar dilakukan menggunakan X-ray Flourescence (XRF), Fixed Carbon ASTM D 3172-13 dan ICP-AES untuk ekstrak abu dasar. Sementara, karakterisasi padatan zeolit A dilakukan dengan menggunakan Difraksi Sinar-X atau X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM),) dan analisis adsorpsi gas.

2.9.1 X-Ray Flourescence (XRF)

Metode XRF secara luas digunakan untuk menentukan komposisi unsur suatu material padatan, dimana sampel akan diradiasikan dengan sinar X sehingga atom-atom akan berflouresensi. Mekanismenya yaitu apabila terjadi eksitasi sinar X primer yang berasal dari tabung X Ray atau sumber radioaktif yang mengenai sampel, sinar X dapat diabsorpsi atau dihamburkan oleh material. Selama proses ini, bila sinar X primer memiliki cukup energi, elektron akan berpindah dari kulit yang dalam yang menimbulkan suatu kekosongan. Kekosongan ini menghasilkan keadaan atom yang tidak stabil. Apabila atom kembali pada keadaan stabil, elektron dari kulit luat akan berpindah ke kulit yang lebih dalam dan proses ini menghasilkan energi sinar X tertentu dan berbeda antara dua energi ikatan pada kulit tersebut. Emisi sinar X dihasilkan dari proses yang disebut X-Ray Flourescence (XRF). Pada deteksi dan analisa emisi sinar X disebut analisa XRF. Pada umumnya kulit K dan kulit L terlebat pada deteksi XRF. Jenis spektrum X-Ray dari sampel yang diradiasi akan menggambarkan puncak-puncak pada intensitas yang berbeda (Michael, 2005).

Analisa menggunakan XRF memiliki beberapa keunggulan diantaranya berjalan cepat, tidak destruktif, dan merupakan metode penentuan analisis secara kualitatif maupun kuantitatif pada suatu material padatan. Untuk analisa kualitatif, spektrofotometer menggunakan model scanning dengan cara memutar jangkuan 2θ secara teratur, umumnya antara 10° hingga 145° .

Pada penelitian ini, XRF digunakan untuk menentukan kandungan unsur yang terdapat dalam abu dasar. Abu dasar merupakan bahan utama yang digunakan dalam sintesis zeolit A, sehingga kandungan yang terdapat dalam abu dasar harus memiliki prosentase yang sesuai dengan standar dalam pembuatan zeolit A guna mendukung keberhasilan selama proses sintesis. Oleh karena itu, sangat penting untuk mengetahui kandungan-kandungan utama yang terdapat dalam abu dasar. Hasil pengukuran komposisi kimia abu dasar tersebut dapat ditampilkan pada Tabel 4.1 dan Tabel 4.2

2.9.2 Inductively Coupled Plasma Atomic Spectroscopy (ICP-AES)

Inductively Coupled Plasma Atomic Spectroscopy (ICP-AES) merupakan instrumen yang digunakan untuk menganalisa kadar unsur-unsur logam dari suatu sampel dengan metode spektrofotometer emisi yang memanfaatkan plasma sebagai sumber atomisasi atau eksitasi. Sebagian besar plasma beroperasi dengan gas Argon atau helium murni untuk terjadinya proses pembakaran dengan suhu berkisar 600 hingga 10.000 K. Prinsip kerja dari ICP-AES adalah sampel diberikan suhu yang sangat tinggi dari plasma argon yang menyebabkan terpecahnya sampel menjadi bentuk atomatom vang kemudian akan diionisasi dan dieksitasikan. Saat elektron dalam ion tersebut kembali ke tingkat energi yang lebih rendah, maka akan memancarkan cahaya dengan panjang gelombang tertentu. Panjang gelombang yang dipancarkan tersebut berfungsi sebagai "sidik jari"dalam unsur tersebut. Dengan adanya data berupa panjang gelombang tersebut, maka dapat diketahui jenis unsur tersebut serta nilai konsentrasinya (Dwinata dkk., 2013). Prinsip kerja sederhana dari ICP-AES tersebut dapat ditunjukkan pada Gambar 2.5.

Instrumen ICP-AES terdiri dari beberapa bagian yaitu tempat sampel, nebulizer yang berfungsi mengubah sampel cair menjadi bentuk aerosol, pompa peristaltik, *spray chamber* (bilik semprot), torch plasma, medan magnet, generator RF, variasi optik spektrometer, difraksi kisi dan detektor.

Gambar 2.5 Prinsip Kerja Sederhana ICP-AES (Dwinata dkk., 2013)

Prosedur pengujian suatu sampel menggunakan ICP-AES diawali dengan memasukkan sampel cair ke dalam plasma argon menuju nebulizer yang akan mengubah sampel cair menjadi aerosol (kabut). Kemudian sampel dalam fasa aerosol tersebut akan diatomisasi dan akan memancarkan spektrum dari energi yang dihasilkan melalui proses tumbukan antar atom. Spektrum tersebut akan terurai menjadi panjang geombang tertentu dan nilainya dapat ditentukan dengan dialirkan menuju spektrometer. Intensitas dari spektrum garis yang dihasilkan diukur menggunakan semikonduktor CID.

Berbagai jenis bahan yang dapat dianalisa menggunakan ICP-AES meliputi logam ringan, baja, gelas, keramik, air murni dan air limbah, minyak, perovskit, jenis oksida zirconium mineral, batubara, bijih-bijih batuan, campuran berbagai oksida, logam non ferro dan lain-lain.

Kelebihan pengujian sampel menggunakan ICP-AES adalah instrumen ini dapat mendeteksi keberadaan beberapa kation dan anion, dapat menentukan keberadaan dari beberapa unsur secara bersamaan serta dapat mengukur konsentrasi sampel dalam waktu yang relatif cepat dan hanya menggunakan jumlah sampel yang sedikit \pm 5ml (Philip, 2013).

Pada penelitian ini, ICP-AES digunakan untuk menentukan konsentrasi unsur Si, Al serta Na yang terkandung dalam ekstrak hasil leburan abu dasar baik leburan dalam atmosfer N₂ maupun atmosfer udara.Hasil pengujian ICP-AES digunakan dalam menentukan berapa banyak Al dari luar yang yang harus

ditambahkan agar didapatkan perbandingan yang sesuai dalam pembentukan zeolit A.

2.9.3 Difraksi Sinar X (XRD)

XRD merupakan metode analisa kualitatif yang digunakan untuk mengetahui jenis mineral yang terbentuk dan kristalinitasnya dengan prinsip kerjanya yang ditunjukkan pada Gambar 2.6. Kristalinitas dari suatu sampel dapat dilihat dari tampilan pada difraktogramnya. Difraktogram yang memiliki pola pemisahan puncak-puncak yang jelas dengan ketajaman vang tinggi menunjukkan kristalinitas yang baik. Munculnya puncak-puncak pada tempat yang sama menunjukkan kemiripan kristalinitas dari suatu sampel. Intensitas relatif merupakan suatu parameter yang menunjukkan banyaknya bidang kristal yang terukur. Misalnya pada 20 memiliki intensitas yang relatif inggi, maka pada sudut tersebut terdapat banyak bidang kristal yang sama.

Gambar 2.6 Prinsip Kerja XRD (Cullity & Stock, 2001).

Prinsip kerja dari XRD ini adalah sinar-X dilewatkan melalui sampel suatu zat, lalu akan berinteraksi dengan atom dalam sampel tersebut untuk menghasilkan hamburan cahaya. Sinar X dihasilkan dari tumbukan antara elektron kecepatan tinggi dengan logam target. sinar X yang dihamburkan tersebut ada yang saling menghilangkan karena fasanya berbeda dan ada juga yang saling menguatkan karena fasanya sama dan merupakan berkas difraksi. Ketika sinar-X dihamburkan oleh suatu zat dengan keteraturan seperti kristal, maka akan dihasilkan difaktogram karena memiliki kesamaan panjang 26 gelombang dengan sinar-X (Alfaruqi, 2008).

Gambar 2.7 menunjukkan hasil analisa menggunakan XRD pada leburan abu dasar dalam tahap preparasi awal zeolit-A.

Gambar 2.7 Difraktogram padatan hasil peleburan Abu Dasar pada atmosfir udara dan atmosfir N₂ (Suhu 750°C selama 1 Jam) (1= Natrium Silikat, 2= Natrium Alumina Silikat, Q = Kuarsa; M = Mulit; Hm = Hematite ; Ks = Calsite)(Yanti, 2009)

Keterangan gambar 1 merupakan difraktogram bahan awal (abu dasar) dan Gambar keterangan gambar 2 dan 3 merupakan difraktogram padatan hasil peleburan abu dasar dalam atmosfir udara dan dalam atmosfir N₂. Kedua padatan leburan menunjukkan pola difraksi yang sama yaitu adanya garam natrium silkat dan natrium aluminasilikat. Dengan demikian, peleburan baik dalam atmosfir udara maupun dalam atmosfir N₂menghasilkan produk yang sama. Perbedaan padatan yang didapat pada peleburan abu dasar dalam atmosfer udara dan atmosfir N₂ hanyalah pada kandungan karbon yang masih dapat dipertahankan pada proses sintesis menggunakan atmosfer N₂ (Said, 2008).

Pada penelitian ini, XRD digunakan sebagai media untuk menentukan kristalinitas serta karakteristik struktur padatan dari zeolit-A yang diasilkan, baik zeolit yang disintesis menggunakan bahan murni maupun dari abu dasar dengan mempertahankan kandungan karbon dan menghilangkan kandungan karbon tersebut. Contoh pola pengujian menggunakan XRD pada material zeolit-A yang terbentuk dari bahan murni yang dibandingkan dengan zeolit-A dari abu dasar berkarbon dapat ditampilkan pada Gambar 2.7.Pada difraktogram tersebut, zeolit-A yang disintesis dari abu dasar dengan mempertahankan kandungan karbon, memiliki tingkat kemurnian yang sama dengan zeolit-A murni namun tingkat kristalinitasnya lebih rendah yang ditandai puncak-puncak dengan intensitas yang rendah. Kristalinitas yang rendah ini disebabkan oleh adanya kandungan karbon yang masih terdapat dalam zeolit tersebut serta masih adanya kandungan pengotor lainnya seperti hidroksi sodalit dan kalsit (Londar, 2010).

Gambar 2.8 Difraktogram Zeolit-A hasil sintesis dari ekstrak peleburan abu dasar. (A=Zeolit-A, HS=Hidroksi-Sodalit, Ks=Kalsit).

2.9.4 Scanning Electron Microscopy (SEM)

SEM merupakan salah satu jenis mikroskop yang digunakan untuk menentukan mikrostruktur padatan seperti morfologi, komposisi dan informasi kristalografi permukaan dari suatu sampel (Mukhopadhyay dan Gupta, 2013). SEM bekerja dengan cara menembakkan elektron pada sampel sehingga muncul beberapa sinyal yang kemudian terdeteksi sehingga dari sinyal tersebut diperoleh topografi dan komposisi dari permukaan sampel (McMullan D., 1995). Tipe-tipe sinyal yang diproduksi oleh SEM dapat berupa *secondary electron* (SE), *back-scattered electron* (BSE), dan sinar X.Foto yang dihasilkan terdiri dari ribuan titik dengan berbagai intensitas dan gradasi gelap terang pada permukaan sebagai topografi gambar (Gedde, 1995). Komponen alat dari SEM ditunjukkan pada Gambar 2.8

Gambar 2.9 Komponen Alat SEM (Gedde dkk., 1995)

Spektroskopi *Energy-Dispersive X-ray* (EDX) adalah salah satu detektor yang digunakan pada SEM yang berfungsi untuk mengetahui komposisi kimia dari sampel yang diuji. EDX bekerja dengan memanfaatkan spektrum sinar-X yang dipancarkan oleh sampel. Analisa EDX, dilakukan dengan menembakkan partikel

bermuatan berenergi tinggi seperti elektron, proton atau sinar-X pada sampel yang sedang di analisa. Sinar yang ditembakkan tersebut akan mengakibatkan elektron pada kulit atom akan terlepas sehingga terbentuk lubang elektron. Elektron yang memiliki energi lebih tinggi dan berasal dari kulit luar atom akan mengisi kekosongan tersebut. Perpindahan elektron dari energi yang lebih tinggi ke energi yang lebih rendah menyebabkan munculnya pelepasan energi dalam bentuk sinar-X.Sinar-X yang diemisikan dari fenomena tersebut kemudian ditangkap oleh detektor (Goldstein, 2003).Sinar-X yang diemisikan pada tiap unsur berbeda-beda sesuai dengan energi dan panjang gelombangnya. Oleh karena itu, SEM-EDX dapat menganalisis peta unsur pada permukaan sampel (Al, 2009). Hasil karakterisasi EDX berupa spektrum yang memberikan informasi mengenai komposisi kimia dari sampel yang dianalisa (Goldstein, 2003).

Gambar 2.10 Morfologi dari Zeolit A yang disintesis dengan a) bebas karbon b) mempertahankan kandungan karbon dari peleburan abu dasar (Londar, 2010).

Berdasarkan penelitian yang telah dilakukan oleh Londar (2010), analisa morfologi zeolit-A hasil sintesis pada skala mikro dapat diamati menggunakan Scanning Electron Microscopy (SEM). Gambar 2.10 merupakan gambar mikrograf SEM zeolit-A bebas karbon (a) dan zeolit-A dengan karbon (b). Analisa menggunakan SEM menunjukkan bahwa zeolit A bebas karbon yang disintesis malalui proses hidrotermal selama 12 jam, memberikan bentuk kubus yang cukup baik dengan kecacatan kristal yang cukup rendah. Kristal kubus tersebut memiliki distribusi ukuran partikel 3-4 µm

(Yaping dkk, 2008). Sementara, pada zeolit A berkarbon, terlihat masih adanya fase hidroksi-sodalit dalam bentuk kristal non kubus menyerupai bola. Walaupun difraktogram pada pengujian XRD yang ditunjukkan pada Gambar 2.7 memberikan hasil kemurnian yang tinggi pada zeolit-A dengan karbon, namun masih terdapat kecacatan bentuk kubus yang teramati pada SEM jika dibandingkan dengan zeolit-A bebas karbon.

2.9.5 Luas Permukaan Zeolit (BET)

BET merupakan singkatan dari nama-nama ilmuwan yang menemukan teori luas permukaan pada suatu material, yaitu Brunauer, Emmet dan Taller Teori BET (Brunauer-Emmet-Teller) merupakan teori yang menjelaskan adsorbsi fisik molekul gas pada permukaan padat. BET digunakan untuk karakterisasi permukaan suatu material yang meliputi surface area (SA, m²/g), diameter pori (D) serta volume pori (Vpr,cc/gr). Teori BET dalam peneltian ini, selain digunakan untuk mengetahui sifat permukaan pori yang terbentuk, dapat juga menjelaskan mengenai proses adsorpsi yang terjadi pada lapisan atas adsorbat sehingga membentuk lapisan adsorbat monolayer. Keseluruhan proses adsorpsi dapat digambarkan sebagai berikut :

- a.Penempelan molekul pada permukaan padatan (adsorben) membentuk lapisan monolayer.
- b.Penempelan molekul lain pada lapisan monolayer, sehingga membentuk lapisan multilayer

Mekanisme adsorpsi isotermal BET dapat ditunjukkan pada Gambar 2.11

Gambar 2.11 Pendekatan adsorpsi isotermal BET

Gambar 2.11 menunjukkan bahwa melalui pendekatan tersebut, lapisan adsorbat akan terbentuk sampai tekanan uapnya mendekati tekanan uap dari gas yang teradsorpsi. Adapun persamaan BET dapat dituliskan sebagai berikut :

$$\frac{1}{V\left[\left(\frac{Po}{P}\right)-1\right]} = \frac{c-1}{Vm.c} \left(\frac{P}{Po}\right) + \frac{1}{Vm.c}$$
(2.2)

dimana p dan po adalah kesetimbangan dan tekanan jenuh adsorbat pada suhu adsorbsi, v adalah jumlah gas yang teradsorb dalam satuan volume, vm adalah jumlah gas yang teradsorb dalam monolayer, dan C adalah konstanta BET. Dimana c dapat dinyatakan dengan :

$$C = \exp(\frac{E1 - E2}{RT})$$
(2.3)

dimana E1 adalah panas adsorbsi lapisan pertama dan EL adalah panas adsorbsi lapisan kedua.

Gambar 2.12 Grafik BET

Dari persamaan adsorbsi isotherm (2.2) dapat dibuat suatu grafik linier dengan 1/v [(po/p)-1] sebagai sumbu y dan p/p_o sebagai sumbu x dengan data yang dimasukkan sesuai hasil eksperimen. Pernyataan berikut dapat dijelaskan melalui grafik yang digambarkan pada Gambar 2.12. Nilai A (kemiringan) dan I (intersep pada sumbu y) digunakan untuk menghitung kuantitas gas yang terserap pada lapisan monolayer (vm) (Brunauer dkk., 1938).

2.9.6 Fourier Transformasi Infrared (FTIR)

Penggunaan spektroskopi inframerah umumnya digunakan untuk mendeteksi adanya gugus fungsi pada suatu senyawa organik maupun anorganik. Absorpsi inframerah didasarkan pada kenaikan energi vibrasi saat suatu sampel diberikan berkas radiasi IR. Sampel akan mengabsorpsi radiasi pada frekuensi yang sesuai dengan frekuensi vibrasional. Spektrofotometer IR akan mengukur frekuensi dari radiasi yang terabsorp. Identifikasi senyawa dapat dilakukan karena perbedaan struktur kimia pada material yang dianalisa akan memberikan vibrasi karakteristik dan menghasilkan spektra FTIR yaitu pada daerah sidik jari untuk tiap-tiap material (Sibilia, 1996). Standar spektra IR dari zeolit-A dapat ditunjukkan pada Gambar 2.13

Gambar 2.13 Spektra FTIR Zeolit-A (Rayalu dkk., 2005)

Karakteristik spektra FTIR pada zeolit-A yaitu adanya pita pada daerah panjang gelombang 464 cm⁻¹ yang menunjukkan vibrasi bending untuk ikatan T-O, 660 cm⁻¹ menunjukkan vibrasi simetri untuk ikatan T-O dan 1000-15000 cm⁻¹ yang menunjukkan vibrasi asimetrik dari ikatan T-O dimana T merupakan wujud dari Si atau Al.

Pada penelitian ini, FTIR digunakan untuk mengetahui mekanisme adsorpsi pada zeolit yang terbentuk melalui identifikasi gugus fungsi yang terdapat pada zeolit-A baik sebelum dilakukan

adsorpsi maupun setelah dilakukan proses adsorpsi. Data yang didapatkan dari pengukuran FTIR akan mendukung proses kinetika dan mekanisme proses adsorpsi secara keseluruhan.

2.10 Pengukuran Adsorpsi gas CH4 secara Gravimetri

Metode Gravimetri digunakan untuk karakteristik pori-pori adsorben, mengukur persamaan adsorpsi gas, dan adsorpsi kinetik. Pengukuran adsorpsi isotermal yang dapat dilakukan menggunakan meode gravimetri antara lain: massa yang terserap pada adsorben, tekanan gas dan temperatur (Keller dkk., 2005). Preparasi sampel dilakukan dengan cara *degassing* sampel untuk mendapatkan massa kering sampel, temperatur, tekanan, dan waktu untuk mendapatkan data pengujian yang bersifat valid. Pengujian menggunakan metode gravimetri bersifat kompleks, karena harus dilakukan menggunakan Instrumen TGA dengan tingkat keakurasian yang cukup tinggi (Husin, 2012). Secara umum, skema proses adsorpsi gas CH_4 secara gravimetrik ditunjukkan pada Gambar 2.14

Gambar 2.14 Rangkaian Proses Adsorpsi Gas Metana secara Gravimetri.

Kapasitas adsorpsi gas metana dalam zeolit A dapat diukur secara gravimetri melalui pengukuran massa sampel setiap perubahan waktu. Preparasi sampel sebelum pengujian adalah dengan proses degassing untuk mendapatkan masssa kering sampel (Keller dan Staudt, 2005). Pengukuran yang dilakukan dinyatakan dalam % berat sesuai persamaan berikut ini:

% berat =
$$\frac{mt}{m}$$
 x100% (2.1)

Dimana m_t adalah massa sampel saat adsorpsi pada waktu t sedangkan m adalah massa sampel awal. Perangkat pengukuran adsorpsi secara gravimetri dirangkai sendiri yang terdiri dari timbangan analitik, tabung furnace, pompa vakum, mass flow control (MFC), sampel holder dan tabung gas CH₄.

Hasil Pengukuran kapasitas adsorpsi gas metana pada beberapa material dapat ditunjukkan pada Tabel 2.7.

Fabel	2.7	Perbandingan	kapasitas	adsorpsi	gas	CH_4	pada
beberapa material			erial				

Material	Suhu	Kapasitas	Pustaka			
	Adsorpsi	Adsorpsi				
	(°C)	CH_4				
		(%berat)				
Zeolit-	25	44,93	(Liu dkk.,			
LTA			2012)			
Zeolit-	25	5,2	(Liu dkk.,			
MFI			2012)			
Zeolit-	25	10,61	(Liu dkk.,			
MOR			2012)			
Zeolit-	25	8,2	(Zhang			
CaX			dkk., 1991)			
Zeolit-β	25	1,5	(Antoniuou			
			dkk., 2014)			
Karbon	0	30	(Zhou dkk.,			
nanotube			2005)			
Karbon	25	8,0	(Antoniuou			
tertemplat			dkk., 2014)			
zeolit						

Liu dkk (2012) menjelaskan bahwa banyaknya adsorbat pada permukaan zeolit LTA memiliki nilai paling besar jika dibandingkan dengan material lainnya seperti MFI dan MOF pada keadaan yang sama. Suhu merupakan parameter utama dalam proses fisisorpsi. Pada suhu tinggi saat proses degassing terjadi pembukaan rongga pori zeolit kemudian pada suhu ruang molekul akan melepaskan kelebihan tekanan dan membuat gas terperangkap dalam pori. Peristiwa penurunan kapasitas adsorpsi pada pertambahan suhu juga berkaitan dengan studi termodinamika adsorpsi gas dimana kuantitas termodinamika yang digunakan adalah isosterik entalpi adsorpsi (Δ Hads), entropi adsorpsi (Δ Sads), kapasitas penyerapan (na), dan energi bebas adsorpsi (Δ Gads) (Stadie dkk., 2013).

Nilai dari isosterik entalpi adsorpsi adalah karakteristik termodinamik yang menyediakan pengukuran langsung untuk kekuatan ikat antara molekul adsorbat dan permukaan adsorben. Nilai entalpi adsorpsi yang semakin tinggi akan membuat kapasitas adsorpsinya juga semakin tinggi. Besarnya nilai entalpi ini dapat dihitung berdasarkan persamaan van't Hoff pada Persamaan 2.2.

$$\frac{\Delta H}{RT^2} = -\left(\frac{\partial lnP}{\partial T}\right)p \tag{2.2}$$

Nilai ΔH merupakan isosterik entalpi adsorpsi (kJ/mol), T merupakan suhu (K), P merupakan tekanan saat kesetimbangan (bar), q menunjukkan kesetimbangan kapasitas adsorpsi dan R merupakan tetapan gas dengan nilai 8,314 J mol⁻¹K⁻¹. Berdasarkan persamaan di atas dapat disimpulkan bahwa suhu adsorpsi berbanding terbalik dengan nilai entalpi adsorpsi.Hal inilah yang menyebabkan semakin suhu tinggi.maka nilai kapasitas adsorpsi semakin rendah (Monemtabary dkk., 2013).

2.11 Studi Kinetika Adsorpsi Gas

Studi Kinetika Adsorpsi merupakan salah satu parameter penting dalam menentukan efektifitas adsorpsi suatu material terhadap suatu adsorbat (Holle dkk., 2013). Studi kinetika ini akan membahas mengenai kecepatan selama proses adosrpsi yang terjadi pada suatu material dimana dalam penelitian ini digunakan untuk mengentahui kecepatan proses adsorpsi yang terjadi pada material zeolit-A terhadap CH₄ sebagai adsorbatnya.

Kinetika adsorpsi tersebut dapat ditentukan melalui beberapa pendekatan model kinetika yaitu model persamaan laju orde pertama Pseudo Lagergren, persamaan laju orde kedua Pseudo Ho, dan persamaan difusi intrapartikel yang secara keseluruhan dapat dijabarkan sebagai berikut.

2.10.1 Model Kinetika Orde Pertama Pseudo Lagergren

Model kinetika orde pertama Pseudo Lagergren merupakan teori kinetika adsorpsi yang dikemukakan oleh Lagergren pada tahun 1989. Adapun model kinetika ini dapat dinyatakan dalam bentuk persamaan berikut :

$$n (q_e-q_t) = ln q_e - Kf .T$$
 (2.3)

Dimana qe adalah kapasitas adsorpsi pada saat kesetimbangan, qt adalah kapasitas adsorpsi pada waktu t, kf adalah konstanta lahu orde pertama Pseudo Lagergren yang ditentukan melalui plot antara ln (q_e-q_t) terhadap waktu (t) pada persamaan (2.3) (Plazinski dkk., 2009).

2.10.2 Model Kinetika Orde Kedua Pseudo Ho

Model kinetika orde kedua Pseudo Ho dapat dituliskan sebagai berikut :

$$\frac{dq_t}{dt} = ks(q_e - q_t)^2 \tag{2.4}$$

Dimana *ks* merupakan konstanta laju reaksi Pseudo Ho orde kedua. Inetgrasi persamaan (2.4) pada rentang batas qt=o pada t=o dan qt=qt pada waktu t akan menghasilkan persamaan berikut :

$$\frac{t}{q_t} = \frac{1}{Ks q_e^2} + \frac{1}{q_e} T$$
(2.5)

Laju penyerapan mula-mula (h), pada t=0 dapat dinyatakan sebagai berikut :

$$h=Ks q_e^2$$
(2.6)

sehingga persamaan (2.5) dapat disusun ulang menjadi :

$$q_{t} = \frac{1}{1/h + (1/q_{e})t}$$
(2.7)

Nilai q_e dapat diperoleh dari slope pada aturan t/qt versus t, dan h diperoleh dari intersepnya sehingga nilai *k*s dapat ditentukan berdasarkan perhitungan tersebut (Plazinski dkk., 2009).

2.10.3 Model Difusi Intrapartikel

Model kinetik Difusi Intrapartikel dapat dinyatakan sebagai berikut :

$$q_t = k_d t^{1/2} + C$$
 (2.8)

dimana k_1 merupakan konstanta laju difusi intrapartikel sedangkan C adalah intersep. Plot antara qt dengan t^{1/2} akan memberikan garis lurus serta koefisien determinasi R² (Yakout dkk., 2010).

"Halaman ini sengaja dikosongkan"

BAB III METODOLOGI PENELITIAN

3.1 Alat dan Bahan

3.1.1 Alat

Alat-alat yang digunakan dalam penelitian ini antara lain adalah seperangkat alat gelas seperti labu ukur dan beaker glas; pipet tetes, pipet ukur, gelas polipropilena (PP), corong Buchner, reaktor hidrotermal, seperangkat hot plate, neraca analitis, oven dan pengaduk magnetik. Karakterisasi material ini dilakukan menggunakanX-Ray Flourescence (XRF), Fixed Carbon ASTM D 3172-13, Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Adsorpsi-Desorpsi N₂ (BET) dan Fourier Transform Infarred (FTIR).

3.1.2 Bahan

Bahan yang digunakan dalam penelitian ini adalah abu dasar (*bottom ash*) batubara, *magnet ferrit*, HCl 12M, air demineralisasi, padatan natrium aluminat (NaAlO₂) (*sigma Aldrich*), larutan natrium silikat (NaSiO₃), pelet NaOH (99% p.a), gas N₂ Ultra High Purity (UHP) (99,99% N₂) dan gas metana Ultra High Purity (UHP) (99,99% CH₄).

3.2 Prosedur Penelitian

3.2.1 Identifikasi Komposisi Kimia dan Fasa Mineral dari Abu Dasar

Penelitian ini diawali dengan penentuan komposisi kimia dari abu dasar (*bottom ash*). Abu dasar yang akan diidentifikasi, terlebih dahulu diayak dengan ukuran 60 mesh untuk memperoleh pratikel abu dasar yang halus dan seragam. Abu dasar yang halus ini kemudian dipanaskan pada suhu 110°C selama 3 jam untuk menghilangkan kandungan air yang terdapat dalam abu dasar tersebut kemudian dibiarkan menjadi dingin dalam desikator. Selanjutnya abu dasar dianalisa menggunakan *X-ray Flourescence*

(XRF) dan *X-Ray Diffraction* (XRD) untuk menentukan komposisi unsur-unsur kimianya serta fasa mineral dari abu dasar.

3.2.2 Pemisahan Fe pada Abu Dasar Batubara

Pemisahan kandungan besi (Fe) pada abu dasar batubara pada penelitian ini, dilakukan menggunakan magnet ferrit.Abu dasar diletakkan dalam bejana yang cukup luas, kemudian magnet ferrit diletakkan pada bagian atas abu dasar. Abu dasar harus diaduk terus menerus agar proses pemisahan kadar Fe dapat merata pada seluruh bagian abu dasar.

3.2.3 Pemisahan Ca pada Abu Dasar Batubara

Pemisahan logam Ca pada abu dasar batubara pada penelitian ini, dilakukan menurut penelitian yang dilakukan oleh Chareonpanic dkk (2011). Abu dasar bebas Fe ditimbang sebesar 5 gram dan dimasukkan dalam larutan HCl 12 M sebanyak 150 ml. Campuran tersebut kemudian diaduk secara terus menerus selama 4 jam pada suhu 100°-110°C untuk memaksimalkan proses pemisahan. Campuran difiltrasi dan dikeringkan pada suhu 105°C selama 1 jam.

3.2.4 Sintesis Zeolit-A Bahan Murni

Sintesis zeolit-A dalam penelitian ini dilakukan dengan perbandingan komposisi molar 3,165 Na₂O: 1 Al₂O₃: 1,926 SiO₂: 128 H₂O. Tahap pertama dilakukan dengan melarutkan pelet NaOH dalam air demineralisasi. Larutan NaOH yang terbentuk dibagi menjadi dua bagian (A dan B) ke dalam dua gelas polipropilena yang berbeda. Larutan NaOH A dicampur dengan padatan NaAlO₂ sedangkan larutan NaOH B dengan larutan NaSiO₃. Kedua larutan tersebut diaduk secara terpisah dengan kecepatan konstan selama kurang lebih 10 menit pada suhu ruang.Kemudian, kedua larutan dicampur dan diaduk kembali selama 12 jam.

Tahapan selanjutnya adalah larutan prekursor zeolit Adimasukkan dalam reaktor hidrotermal (stainless steel autoclave) selama 15 jam pada suhu 100°C. Padatan disaring dan dicuci dengan air demineralisasi berulang kali hingga pH filtratnya mencapai sekitar 9. Setelah itu, padatan hasil sintesis dikeringkan dalam oven dengan suhu 100°C selama 12 jam dan diikuti dengan pendinginan dalam desikator hingga mencapai suhu kamar.

3.2.5 Sintesis Zeolit-A dari Abu Dasar Tanpa Karbon

Sintesis Zeolit-A dari abu dasar tanpa karbon dilakukan menurut metode yang dilaporkan oleh Yanti (2009). Metode tersebut diawali dengan proses ekstraksi Si dan Al yang terkandung dalam abu dasar. Abu dasar batubara dan NaOH yang sudah digerus dicampurkan dengan perbandingan massa NaOH/Abu dasar =1,2 kedalam krusibel *stainless steel* hingga rata dan didiamkan selama 30 menit. Campuran kemudian dipanaskan pada suhu 750°C selama 1 jam dalam *muffle furnace*. Setelah peleburan campuran didinginkan, digerus dan dibuat suspensi dengan penambahan 12 ml/g air demineralisasi, campuran hasil peleburan diikuti oleh pengadukan dengan laju sekitar 500 rpm dan pemeraman (*aging*) selama 2 jam dalam botol polietilen pada suhu kamar. Campuran yang telah diperam, selanjutnya disaring dan diambil ekstrak supernatannya sebagai larutan sumber Si dan Al.

Ekstrak tersebut kemudian dibuat *slurry* berkomposisi molar relatif Al₂O₃:1,926 SiO₂ dengan penambahan larutan NaAlO₂-NaOH sebagai sumber Al untuk mengatur rasio molar Si/Al yang sesuai untuk mengatur rasio molar Si/Al yang sesuai untuk sintesis zeolit Na-A. Campuran (*slurry*) dimasukkan dalam *autoklaf stainless steel* yang tertutup rapat untuk kristalisasi hidrotermal pada suhu 100°C selama 12 jam. Setelah perlakuan hidrotermal, padatan hasil kristalisasi dipisahkan dari filtratnya, dicuci dengan air demineralisasi sampai pH 9-10, dan dikeringkan pada suhu 105°C selama 24 jam kemudian ditimbang.

3.2.6 Sintesis Zeolit A-karbon

Abu dasar batubara dan NaOH yang sudah digerus dicampurkan dengan perbandingan massa NaOH/Abu dasar =1,2 kedalam krusibel *stainless steel*. Krusibel tersebut kemudian diletakkan di dalam reaktor kuarsa dan dimasukkan ke dalam *tube furnace* untuk melebur campuran abu dasar dengan NaOH didiamkan selama 30 menit. Selanjutnya gas N₂ UHP dialirkan ke dalam reaktor dan *tube furnace* diatur pada suhu 750°C (Miyake

dkk, 2007). Proses peleburan dilakukan selama 4 jam pada suhu tersebut dengan aliran gas N_2 selama proses. Kontrol suhu dimulai sebelum pemanasan sampai suhunya kembali ke suhu ruang setelah proses pemanasan dihentikan. Setelah peleburan campuran didinginkan, digerus dan dibuat suspensi dengan penambahan 12 ml/g air demineral, campuran hasil peleburan diikuti oleh pengadukan dengan laju sekitar 500 rpm dan pemeraman (*aging*) selama 2 jam dalam botol polietilen pada suhu kamar. Selanjutnya campuran yang telah diperam, disaring dan diambil ekstrak supernatannya sebagai larutan sumber Si dan Al.

Zeolit disintesis dari campuran (*slurry*) dengan komposisi molar Al₂O₃:1,926 SiO₂ (Robson, 2001) yang diperoleh dengan penambahan larutan NaAl₂O-NaOH sebagai sumber Al untuk mengatur rasio molar yang sesuai untuk sintesis zeolit Na-A. Residu hasil penyaringan yang disimpan ditambahkan kembali pada campuran (*slurry*) dengan tujuan agar sisa karbon pada abu dasar dapat dipertahankan pada proses berikutnya yaitu pada perlakukan hidrotermal. Selanjutnya pembuatan zeolit dilakukan dengan cara yang sama dengan prosedur 3.2.5.

3.3 Karakterisasi

Karakterisasi dalam penelitian ini meliputi XRF, Fixed Carbon ASTM D 3172-13, ICP-AES, XRD dan SEM. Karakterisasi menggunakan X-Ray Flourescence (XRF) digunakan untuk menentukan kandungan unsur dalam abu dasar. Analisa Fixed Carbon dengan metode standar ASTM D 3172-13 digunakan untuk menentukan kandungan karbon total dalam sampel abu dasar. Difraksi sinar-X (XRD) digunakan untuk menganalisa fasa mineral dari abu dasar serta menentukan fasa kristal dari zeolit-A murni yang dibandingkan dengan fasa kristal dari zeolit-A dari abu dasar baik pada zeolit A-karbon maupun tanpa karbon. Karakterisasi SEM digunakan untuk mengetahui bentuk morfologi kristal zeolit-A murni dan zeolit-A dari abu dasar baik yang berkarbon ataupun tidak berkarbon. Sementara BET digunakan untuk menentukan luas permukaan dan karakteristik pori dari zeolit-A yang disintesis dari abu dasar

3.4 Penentuan Kapasitas Adsorpsi Gas Metana

Pengujian kapasitas penyerapan gas metana dilakukan pada sampel zeolit-A baik yang disintesis dari bahan murni maupun zeolit-A yang disintesis dari abu dasar dengan karbon dan tanpa karbon. Tahap pertama adalah proses *degassing* yang dimulai dengan pengeringan sampel. Sampel sebanyak 1 gram dikeringkan dalam oven selama 2 jam pada suhu 105°C. Sampel yang telah kering diambil sebanyak 0,5 gram dan dimasukkan ke dalam sampel holder yang telah steril. Sampel kemudian di-degas dalam kondisi vakum menggunakan *tubular furnace* pada suhu 350°C selama 3 jam.

Setelah proses *degassing* selesai, *furnace* dimatikan dan suhu sistem dibiarkan hingga mencapai suhu ruang ($\pm 30^{\circ}$ C). Berat sampel sebagai berat awal (m_o) dicatat setelah massa sampel konstan. Langkah selanjutnya, *mass flow controller* (MFC) dinyalakan dan dipanaskan selama satu jam.Setelah satu jam, MFC dibiarkan sampai stabil dan menunjukkan angka nol. Knop tabung gas CH₄ dibuka hingga gas dapat mengalir secara perlahan dan dikontrol laju alirnya sebesar 20 mL/menit.Pengamatan dilakukan setiap 5 menit terhadap perubahan berat sebagai berat akhir setelah adsorpsi (m_t) selama 100 menit.

3.5 Penentuan Kinetika Adsorpsi Gas Metana

Hasil yang didapatkan dari pengujian kapasitas adsorpsi gas metana digunakan untuk menentukan aspek kinetika dari adsorpsi gas metana tersebut. Berbagai pendekatan teori persamaan dalam menentukan model kinetika adsorpsi tersebut adalah persamaan orde pertama Pseudo Lagergren, persamaan orde kedua Pesudo Ho, persamaan Elovich, dan persamaan difusi intrapartikel. Persamaan yang digunakan dituliskan dalam Bab 2.

BAB IV HASIL DAN PEMBAHASAN

Pada bagian hasil dan pembahasan akan dijelaskan tentang hasil sintesis zeolit-A dan zeolit A-karbon dari abu dasar dan kemampuannya untuk mengadsorpsi gas CH₄ yang dibandingkan dengan zeolit-A berbahan dasar murni. Penelitian ini menggunakan beberapa instrumen pendukung seperti XRD, SEM, FTIR dan BET untuk dapat menjelaskan hasil penelitian. Hasil sintesis zeolit-A kemudian diuji kapasitas adsorpsi terhadap gas metana secara gravimetri. Hasil adsorpsi digunakan untuk menentukan kinetika adsorpsi gas metana.

4.1 Preparasi Si dan Al dari Abu Dasar

Penelitian ini diawali dengan penentuan komposisi kimia dari abu dasar dengan menggunakan Instrumen *X-Ray Flourescence* (XRF). Penentuan komposisi kimia yang terkandung dalam abu dasar sangat penting karena dapat diketahui prosentase kandungan berat Si dan Al dalam abu dasar yang merupakan komponen utama dalam pembuatan zeolit. Hasil analisa abu dasar dengan *X-Ray Flourescence* (XRF) dapat ditunjukkan pada Tabel 4.1

Komponen	Komponen (%	Komponen	Komponen (%
	berat)		berat)
Al	5,5	Fe	49,40
Si	13,2	Ni	0,23
S	0,59	Cu	0,14
K	1,2	Zn	0,22
Ca	25,5	Sr	0,53
Ti	1,43	Ba	0,63
V	0,04	Eu	0,50
Cr	0,098	Re	0,33
Mn	0,46	Hg	0,43

Tabel 4.1 Hasil analisis komposisi kimia abu dasar

Berdasarkan hasil analisa menggunakan X-Ray Flourescence (XRF) tersebut, abu dasar memiliki kandungan Si dan Al dalam

bentuk oksidanya yang cukup tinggi yaitu 13,2 % dan 5,5 %. Adanya kandungan Si dan Al tersebut membuat abu dasar dapat dijadikan sebagai bahan dalam pembuatan zeolit. Nilai kandungan Si dan Al tersebut digunakan dalam menentukan rasio Si/Al dimana nilai rasio tersebut akan mempengaruhi jenis zeolit yang terbentuk. Nilai rasio berat Si/Al pada abu dasar tersebut adalah sebesar 2,4. Rasio Si/Al yang cukup rendah cocok untuk digunakan dalam mensintesis zeolit dengan nilai Si rendah seperti Zeolit-A.

Selain Si dan Al, kandungan yang mendominasi dalam abu dasar adalah Fe dan Ca. Penelitian sebelumnya yang dilakukan oleh Yanti (2009), hasil XRF pada abu dasar juga memberikan hasil yang sama yaitu Fe dan Ca merupakan kandungan utama dalam abu dasar bahkan melebihi nilai kandungan dari Si dan Al. Namun, secara umum kandungan Si dan Al pada abu dasar memiliki nilai yang cukup tinggi walaupun bukan kandungan yang memiliki nilai prosentase paling tinggi, sehingga dalam penelitian kali ini abu dasar masih dapat digunakan sebagai bahan awal dalam mensintesis zeolit A dengan memperhatikan nilai rasio Si/Al. Adanya kandungan Ca dan Fe cukup tinggi dapat mengganggu dalam proses sintesis zeolit, sehingga Ca dan Fe harus dipisahkan terlebih dahulu sebelum proses sintesis zeolit berlangsung menggunakan magnet ferrit dan HCl 12 M. Hasil pemisahan, dilakukan analisa kembali menggunakan X-Rav Flourescence (XRF) untuk menentukan nilai kandungan Ca dan Fe setelah proses pemisahan. Hasil analisa tersebut dapat ditunjukkan pada Tabel 4.2

Pada Tabel 4.2 tersebut, dapat terlihat bahwa proses pemisahan Fe dan Ca mampu menurunkan kandungan Fe pada abu dasar sebesar 25,90% dan kandungan Ca sebesar 14,40%. Penurunan komposisi tersebut menunjukkan bahwa Ca dalam fasa *kalsit* (CaCO₃) dan kalsium oksida (CaO) telah bereaksi dengan HCl membentuk CaCl₂ yang mudah larut dalam air. Kandungan Fe yang masih tersisa dalam abu dasar juga ikut bereaksi dengan larutan HCl membentuk FeCl₃. Reaksi logam-logam oksida pada abu dasar tersebut dapat dilihat pada persamaan berikut :

- $CaCO_3(s) + 2 HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$ (4.1)
- $CaO(s)+HCl(aq) \rightarrow CaCl_2(aq) +H_2O(l) \text{ (wolf dkk, 2005)}$ (4.2)
- $Fe_2O_3(s) + HCl(aq) \rightarrow 2FeCl_3(aq) + 3H_2O(l) (Brady, 1998)$ (4.3)

Komponen	Komponen (%	Komponen	Komponen (%		
Romponen	herat)	Romponen	herat)		
	eerat)		oerat)		
Al	3,2	Fe	23,50		
Si	37,1	Ni	1,46		
S	0,59	Cu	0,17		
K	2,0	Zn	0,24		
Ca	11,1	Sr	0,50		
Ti	1,41	Ba	0,73		
V	0,04	Eu	0,40		
Cr	0,08	Re	0,30		
Mn	0,44	Hg	0,41		
C total = 2, 62%					

Tabel 4.2 Hasil analisis komposisi kimia abu dasar setelah pemisahan Fe dan Ca

Komponen kimia lainnya yang terkandung dalam abu dasar yang merupakan pembeda dengan abu layang adalah adanya sisa karbon. Kandungan sisa karbon tersebut ditentukan menggunakan Fixed Carbon ASTM D 3172-13 dalam bentuk prosentase berat total dari karbon dalam abu dasar. Hasil pengukuran tersebut menunjukkan bahwa jumlah sisa karbon dalam bahan awal (abu dasar) adalah sebesar 2,62%. Kandungan sisa karbon tersebut dapat mengganggu proses terbentuknya zeolit karena menurunkan efektifitas dari Si dan Al dalam perubahan menjadi zeolit (Jha dkk., 2008). Namun, karbon juga merupakan salah satu jenis adsorben, sehingga keberadaan sisa karbon tersebut dapat memberikan nilai lebih karena dapat menghasilkan zeolit A-karbon sebagai adsorben yang bersifat multifungsi. Untuk menentukan pengaruh dari karbon tersebut, maka dalam penelitian ini dilakukan dua perlakuan dalam mensintesis zeolit dari abu dasar yaitu dengan mempertahankan kandungan karbon abu dasar melalui peleburan dengan atmosfer N₂ dan menghilangkan kandungan karbon abu dasar melalui peleburan dengan atmosfer udara.

Fasa mineral dari abu dasar awal dan abu dasar setelah dilakukan pemisahan Fe dan Ca dianalisa menggunakan XRD dengan sumber radiasi Cu K α yang dapat ditunjukkan pada Gambar 4.1.

Gambar 4.1 Difraktogram abu dasar sebelum pemisahan Fe dan Ca (a) setelah pemisahan Fe dan Ca (b)

Difraktogram abu dasar yang tampak pada Gambar 4.1 menunjukkan komponen mineral utama dari abu dasar baik sebelum dilakukan pemisahan Fe dan Ca (a) maupun setelah dilakukan pemisahan Fe dan Ca (b) adalah oksida-oksida dari silika dan besi yang berada dalam fasa kristalin meliputi mineral kuarsa (SiO₂) yang ditunjukkan oleh pola difraksi pada daerah 2θ = 20,95°; 26,72°; 50,20°; 55,48°; 68,47° (PDF 46-1045) dan Hematite (Fe₂O₃) pada daerah 2θ = 35,66° dan 35,73° (PDF 33-664). Selain itu juga ditemukan fasa lain yaitu kalsit (CaCO₃) yang terletak pada 2θ = 29,50° (PDF 47-1743). Fasa kristalin merupakan fasa yang lebih mudah untuk larut menjadi garam aluminat silikat dan garam silikat, sehingga dapat meningkatkan kelarutan Si dan Al yang terkandung dalam abu dasar. Pengubahan fasa kristal menjadi garam yang mudah

larut tersebut dapat dilakukan melalui proses peleburan (Molina dan Poole, 2004). Selain fasa kristalin, abu dasar juga memiliki fasa amorf yang ditunjukkan oleh adanya gundukan (*hump*) pada daerah $2\theta = 20^{\circ}-40^{\circ}$.

Fasa amorf memiliki kelarutan yang lebih tinggi dalam larutan alkali dibandingkan fasa kristalin dari kuarsa dan mullit, sehingga fasa amorf memiliki peranan penting dalam pembentukan zeolit (Inada dkk., 2005). Fasa amorf pada abu layang batubara terdiri dari SiO_2 dan Al_2O_3 yang merupakan sumber dari Si dan Al yang diperlukan dalam proses sintesis zeolit. Oleh sebab itu, dengan adanya fasa amorf tersebut diharapkan terjadi peningkatan kelarutan Si dan Al, sehingga kerangka zeolit akan terbentuk dalam intensitas yang lebih banyak.

Perbedaan diantara kedua abu dasar adalah abu dasar setelah dilakukan pemisahan Fe dan Ca (b) memiliki pola puncak-puncak difraksi dari kuarsa yang cukup banyak dengan intensitas yang lebih tinggi jika dibandingkan pada abu dasar sebelum dilakukan pemisahan Fe dan Ca, Selain itu puncak difraksi dari komponen mineral seperti Hematite juga berkurang setelah dilakukan proses pemisahan Fe dan Ca serta mulai munculnya fasa mullit yang tidak ditemukan pada abu dasar sebelum dilakukan pemisahan Karena jumlah kandungan Al yang cukup kecil. Hal ini menunjukkan bahwa proses pemisahan Fe dan Ca dengan magnet ferrit dan larutan HCl pekat mampu mengurangi kandungan Fe₂O₃ dan CaO dalam bentuk hematit dan kalsit yang dapat mengganggu dalam proses sintesis zeolit.

Sebelum sintesis zeolit dilakukan, maka terlebih dahulu dilakukan ekstraksi Si dan Al dalam abu dasar dengan metode seperti yang telah dilaporkan oleh Yanti (2009), yaitu melalui proses peleburan abu dasar dengan alkali (NaOH) pada suhu tinggi. Proses peleburan dilakukan dengan tujuan mengaktivasi komponen utama Si dan Al pada abu dasar menjadi fasa mineral yang mudah larut yaitu natrium silikat dan amorf aluminasilikat.

Berdasarkan penelitian sebelumnya yang dilakukan oleh Shigemoto dan Hayashi (1993), Ojha dkk (2004), Rios dkk (2009) dan Rayalu dkk (2005), proses ekstraksi Si dan Al dalam abu layang dalam pembuatan zeolit dapat dilakukan dengan peleburan dalam atmosfer udara. Namun, proses ekstraksi dalam atmosfer udara akan menghilangkan kandungan karbon yang terdapat pada abu dasar sehingga dalam penelitian ini, untuk mengetahui pengaruh kandungan karbon terhadap proses pembentukan zeolit serta karakteristiknya sebagai adsorben, maka proses peleburan dilakukan dengan 2 keadaan yaitu dalam atmosfer N_2 dan atmosfer udara. Dengan proses peleburan dalam suhu tinggi, hal tersebut dapat memudahkan terurainya kandungan kuarsa dan mullit menjadi garam yang mudah larut. Hal yang membedakan diantara kedua perlakuan peleburan tersebut hanyalah adanya kandungan sisa karbon yang tetap dipertahankan pada peleburan dalam atmosfer N_2 .

Padatan hasil leburan abu dasar dalam atmosfer N_2 memiliki ciri fisik berwarna hitam yang menandakan bahwa masih adanya kandungan karbon yang terdapat pada padatan hasil leburan tersebut. Sedangkan pada padatan hasil leburan dengan atmosfer udara memiliki ciri fisik berwarna kuning kecoklatan yang menandakan bahwa kandungan karbon dalam abu dasar telah hilang selama proses peleburan berlangsung, sehingga didapatkan hasil leburan bebas karbon. Selain perbedaan warna, juga didapatkan adanya pengurangan massa dari masing-masing hasil leburan yang dapat dilihat pada Tabel 4.3

No.	Komponen	Massa	Pengurangan	Prosentase
		(gram)	massa	pengurangan
				massa
1.	Abu dasar +	22,2209	-	-
	NaOH (awal)			
2.	Padatan hasil	19,1055	3,1154	14,02%
	leburan			
	(atmosfer N ₂)			
3.	Padatan hasil	17,5600	4,6609	20,98%
	leburan			
	(atmosfer			
	udara)			

Tabel 4.3 Hasil pengurangan massa abu dasar setelah peleburan

Pada Tabel 4.3 terlihat bahwa pada peleburan abu dasar dengan atmosfer N_2 terjadi penurunan massa yang lebih kecil

dibandingkan pada hasil leburan dalam atmosfer udara yaitu sebesar 14,02%. Hal ini menandakan bahwa peleburan dengan atmosfer N_2 dapat mempertahankan kandungan karbon dalam abu dasar walaupun masih ada sebagian kecil yang lepas selama proses peleburan. Dengan masih adanya kandungan karbon tersebut, maka diharapkan zeolit yang akan dihasilkan adalah zeolit A-karbon multifungsi. Pada proses peleburan dengan atmosfer udara, kandungan karbon dalam abu dasar akan mudah lepas dan membentuk hasil samping berupa gas CO_2 , sehingga dari proses inilah akan dihasilkan zeolit tanpa karbon.

Selain kandungan karbon, komponen mineral dalam abu dasar setelah proses peleburan juga dianalisa menggunakan XRD yang hasilnya ditunjukkan pada Gambar 4.2. Pada difraktogram tersebut, menunjukkan adanya perbedaan dengan difraktogram dari abu dasar sebelum dilakukan proses peleburan yaitu dengan hilangnya puncak-puncak dari hematit dan kalsit. Hal ini dikarenakan proses peleburan pada suhu tinggi membuat hematit dan kalsit akan hilang. Selain itu, puncak-puncak fasa kristalin lainnya seperti kuarsa dan mullit sebagian besar juga ikut menghilang. Hal ini menunjukkan bahwa kuarsa dan mullit tersebut telah bereaksi dengan NaOH dan diaktivasi menghasilkan garam natrium silikat (PDF 16-0818) dan garam alumina silikat (PDF 33-1203). Selain fasa kristalin tersebut, fasa amorf dari aluminasilikat juga ditemukan dalam intensitas yang lebih banyak jika dibandingkan dengan abu dasar sebelum dilakukan peleburan. Hal ini membuktikan bahwa proses peleburan pada suhu tinggi merupakan metode yang efektif dalam mengekstrak kandungan Si dan Al dalam abu dasar menjadi garam yang mudah larut.

Pada difraktogram tersebut, menunjukkan adanya perbedaan dengan difraktogram dari abu dasar sebelum dilakukan proses peleburan yaitu dengan hilangnya puncak-puncak dari hematit dan kalsit. Hal ini dikarenakan proses peleburan pada suhu tinggi membuat hematit dan kalsit akan hilang. Selain itu, puncak-puncak fasa kristalin lainnya seperti kuarsa dan mullit sebagian besar juga ikut menghilang. Hal ini menunjukkan bahwa kuarsa dan mullit tersebut telah bereaksi dengan NaOH dan diaktivasi menghasilkan garam natrium silikat (PDF 16-0818) dan garam alumina silikat (PDF 33-1203).

Gambar 4.2 Difraktogram padatan abu dasar hasil leburan yang dibandingkan dengan abu dasar sebelum peleburan (1= Natrium Silikat, 2= Natrium Alumina Silikat, Q = Kuarsa; M = Mulit; Hm = Hematite ; Ks = Calsite)

Selain fasa kristalin tersebut, fasa amorf dari aluminasilikat juga ditemukan dalam intensitas yang lebih banyak jika dibandingkan dengan abu dasar sebelum dilakukan peleburan. Hal ini membuktikan bahwa proses peleburan pada suhu tinggi merupakan metode yang efektif dalam mengekstrak kandungan Si dan Al dalam abu dasar menjadi garam yang mudah larut.

Difraktogram tersebut juga menunjukkan bahwa kedua padatan hasil peleburan memiliki mayoritas komposisi yang sama yaitu garam antrium silikat dan natrium alumina silikat dengan adanya pola puncak-puncak difraksi yang sama. Dengan demikian proses peleburan baik dalam atmosfer udara maupun atmosfer N_2 menghasilkan produk yang sama. Perbedaannya adalah pada hasil

leburan dalam atmosfer N₂ masih adanya kandungan karbon yang tetap dapat dipertahankan. Selain itu, hasil difraksi pada peleburan dalam atmosfer udara masih ditemukan puncak-puncak kuarsa walaupun dengan intensitas yang kecil yang memberikan informasi bahwa lamanya proses peleburan berpengaruh terhadap peleburan kuarsa dalam abu dasar menjadi garam mudah larut yaitu natrium sililkat dan natrium alumina silikat. Peleburan abu dasar dalam atmosfer N₂ dilakukan selama 4 jam. Waktu peleburan ini lebih lama jika dibandingkan peleburan dalam atmosfer udara yang hanya memerlukan waktu peleburan sekitar 1 jam. Hal tersebut membuat padatan peleburan dalam atmosfer N2 memiliki pola difraksi dari garam natrium silikat dan alumina silikat yang cukup banyak dengan intensitas yang tinggi sementara pada peleburan dalam atmosfer udara memiliki pola difraksi dengan intensitas rendah dan masih ditemukannya puncak-puncak kuarsa yang menunjukkan masih terdapat sebagian kecil kuarsa yang belum bereaksi dengan NaOH secara sempurna membentuk garam natrium silikat dan alumina silikat.

Penelitian sebelumnya yang dilakukan oleh Chang dan Shih (1998), Molina dan Poole (2004), Rios dkk. (2009), Yaping (2008) dan Chunfeng dkk (2009), melaporkan bahwa proses peleburan abu layang menggunakan NaOH dengan suhu tinggi dapat mengubah fasa kuarsa yang sulit untuk larut menjadi garam natrium silikat dan amorf aluminasilikat yang mudah larut. Kemudian Murniati (2009) melakukan proses peleburan abu dasar dengan NaOH dengan perbandingan Abu Dasar/NaOH sebesar 1,0 pada suhu tinggi, memberikan hasil bahwa proses peleburan merupakan cara yang cukup efektif dalam mengubah mineral silika dan alumina menjadi natrium silikat dan natrium aluminat yang reaktif. Melalui proses peleburan tersebut akan dihasilkan komponen natrium silikat dan natrium aluminasilikat yang merupakan komponen utama dalam pembentukan zeolit.

Setelah didapatkan hasil berupa natrium silikat dan natrium aluminasilikat dari proses peleburan, kemudian dilakukan proses ekstraksi dari padatan hasil leburan untuk mendapatkan komponen Si dan Al yang terlarut. Proses ekstraksi pada penelitian ini dilakukan dengan mencampurkan padatan hasil leburan yang telah digerus dengan air demineralisasi sebanyak 12 ml/gram. Campuran tersebut kemudian diaduk dan diperam selama 2 jam pada suhu kamar agar mendapatkan campuran yang bersifat homogen. Reaksi padatan hasil peleburan abu dasar dalam air destilasi adalah sebagai berikut :

$$\begin{array}{ll} Na_2SiO_{3(s)} + H_2O_{(aq)} & \rightarrow & Na_2SiO_{3(aq)} \\ Na_2AlSiO_{4(s)} + H_2O_{(aq)} & \rightarrow & Na_2Al(OH)_{4(aq)} \end{array}$$

Setelah dilakukan pemeraman selama 2 jam, campuran tersebut disaring dan dihasilkan filtrat rata-rata sebesar 200 ml dimana hasil filtrat ini tidak sama dengan volume awal air demineralisasi yang dimasukkan untuk proses ekstraksi karena sejumlah air demineralisasi tersebut terserap pada padatan hasil leburan.

Filtrat yang didapatkan kemudian diuji menggunakan ICP-AES untuk mengetahui kadar komponen Si, Al serta Na yang terkandung pada filtrat yang berguna untuk menentukan jumlah rasio Si/Al sebagai pertimbangan dasar dalam pembuatan zeolit dari prekursor ekstrak padatan leburan abu dasar tersebut. Hasil analisa kandungan komponen Si, Al serta Na dengan menggunakan ICP-AES dapat ditunjukkan pada Tabel 4.4

Tabel 4.4 Hasil analisis konsentrasi ekstrak leburan menggunakan ICP-AES

No.	Komponen Uji	Si (ppm)	Al (ppm)	Na (ppm)
1.	Ekstrak Peleburan N ₂	4160,3	82,06	5833,3
2.	Ekstrak Peleburan	3155,7	35,19	5830,3
	Udara			

Berdasarkan hasil ICP-AES yang tertera pada Tabel 4.4 , nilai kelarutan Al cenderung lebih kecil dibandingkan dengan Si baik pada peleburan dalam atmosfer udara maupun N_2 . Hal ini dikarenakan nilai kelarutan Al yang lebih rendah dibandingkan Si dalam larutan alkali, sehingga Al lebih banyak tertahan didalam endapan residu hasil ekstrak. Sementara itu, hasil tersebut juga menunjukkan bahwa kandungan Si, Al serta Na dalam perlakuan leburan dengan atmosfer N_2 lebih tinggi dibandingkan leburan dengan atmosfer udara. Perbedaan ini diakibatkan karena adanya perbedaan waktu pemanasan pada saat peleburan. Peleburan dengan atmosfer N_2 memiliki waktu pemanasan yang lebih lama dibandingkan pada peleburan dengan atmosfer udara, peleburan dengan atmosfer N_2 akan menghasilkan proses peleburan yang lebih maksimal dibandingkan dengan perlakuan pada atmosfer udara. Dengan demikian, lamanya peleburan juga menentukan besarnya nilai kandungan Si, Al dan Na yang akan terekstrak dari padatan hasil leburan.

Hasil kelarutan komponen Si, Al dan Na dari ekstrak peleburan abu dasar dalam atmosfer udara juga pernah dilaporkan oleh Wahyuni (2010) yaitu 5835,4 ppm, 271 ppm dan 25053,3 ppm. Jika dibandingkan dengan hasil yang diperoleh dalam penelitian ini, kelarutan komponen Si dan Al yang didapatkan memiliki nilai yang lebih rendah. Hal tersebut berkorelasi dengan nilai yang didapatkan pada pengujian awal menggunakan XRF yang tertera pada Tabel 4.2 yang menunjukkan bahwa bahan awal (abu dasar) yang digunakan memiliki kandungan Si dan Al yang cukup rendah. Dengan nilai kelarutan Si dan Al yang cukup rendah, menyebabkan tingginya nilai kelarutan Na yang berasal dari NaOH, hal ini disebabkan oleh hanya sebagian kecil Na yang bereaksi dengan komponen Si dan Al yang terkandung dalam abu dasar membentuk garam natrium silikat dan aluminatsilikat.

Ekstrak leburan tersebut kemudian digunakan sebagai bahan pembuatan gel. Nilai rasio SiO₂/Al₂O₃ dikontrol melalui penambahan larutan NaAlO₂-NaOH (Lampiran C) sebagai sumber Al eksternal karena nilai kelarutan Al dalam ekstrak cukup kecil. Penambahan sumber Al tersebut bertujuan untuk memperkecil nilai rasio molar gel. Besarnya rasio molar dalam penelitian ini diatur sesuai dengan penelitian yang dilaporkan oleh Robson (2001) yang mensintesis zeolit-A dengan rasio molar gel SiO₂/Al₂O₃ sebesar 1,926. Perbandingan molar SiO₂/Al₂O₃ itulah yang paling menentukan apakah zeolit A dapat terbentuk atau tidak.

Penelitian sebelumnya yang dilakukan oleh Font dkk. (2009) berhasil mensintesis zeolit A dari ekstrak abu layang dengan rasio molar SiO_2/Al_2O3 sebesar 2, sedangkan Meta dkk. (2011) mensintesis zeolit A murni dari ekstrak abu layang dengan rasio molar SiO_2/Al_2O_3 sebesar 1,80.

 $Penambahan\ larutan\ NaAlO_2\text{-}NaOH\ tersebut\ menghasilkan\ pasta\ aluminosilikat.\ Residu\ ekstrak\ leburan\ dalam\ atmosfer\ N_2$

kemudian ditambahkan kedalam pasta aluminosilikat yang terbentuk agar kandungan karbon dapat dipertahankan dalam preparasi sintesis zeolit sehingga dihasilkan zeolit A-karbon. Sedangkan untuk residu leburan dalam atmosfer udara, tidak perlu ditambahkan dalam preparasi sintesis zeolit agar nantinya dihasilkan zeolit tidak berkarbon. Pasta aluminasilikat pada kondisi peleburan atmosfer N₂ memiliki ciri berwarna hitam karena adanya campuran dari residu padatan leburan tersebut. sedangkan untuk kondisi atmosfer udara dihasilkan gel berwarna putih layaknya mensintesis zeolit-A dari bahan murni. Ion aluminat dan ion silikat akan mengalami kondensasi dalam proses pembentukan pasta aluminosilikat tersebut dan digunakan sebagai prekursor pembuatan zeolit.

4.2 Sintesis Zeolit-A

Zeolit-A dalam penelitian ini disintesis dari dua jenis prekursor yaitu dari bahan murni/sintetik dan abu dasar. Sintesis zeolit-A dengan bahan murni dalam penelitian ini dilakukan untuk membandingkan kemampuan adsorpsi dari zeolit-A yang disintesis dari abu dasar terhadap zeolit-A yang disintesis dengan bahan murni tersebut. Proses sintesis zeolit-A dengan bahan murni dilakukan sesuai komposisi yang dilaporkan oleh Kugbe dkk (2009), dengan perbandingan komposisi molar 3,165 Na₂O: 1 Al₂O₃: 1,926 SiO₂: 128 H₂O. Menurut Ojha dkk (2004) dan Manurung dkk (2011), reaksi yang terjadi selama proses kristalisasi pada sintesis zeolit A ditunjukkan oleh Persamaan 4.4

Hasil proses hidrotermal berupa padatan putih dan larutan supernatan yang berwarna bening. Nilai derajat keasaman padatan zeolit-A hasil proses hidrotermal adalah 14 yang mengindikasikan bahwa zeolit-A telah terbentuk, karena prekursor utama yakni
$Al(OH)^{4-}$ terbentuk pada pH > 6 dan anion Si(OH)^{4-} terbentuk pada pH > 12 (Handayani, 2012).

Sementara itu, proses pembentukan zeolit dari prekursor peleburan abu dasar dilakukan melalui metode hidrotermal dalam autoklaf *stainless steel* pada kondisi suhu 100°C selama 12 jam. Pemilihan waktu selama 12 jam dimaksudkan agar lamanya waktu hidrotermal proses sintesis zeolit A baik dari bahan murni ataupun abu dasar memiliki varian waktu yang sama, sehingga nantinya dapat dibandingkan perbedaan kemampuan adsorpsi hanya berdasarkan jenis prekursor dan pengaruh kandungan karbon dalam abu dasar. Selain itu, menurut penelitian yang dilakukan oleh Sari (2008) menjelaskan zeolit-A dengan kristalinitas tinggi dari bahan alam berupa ekstrak abu layang dapat disintesis dengan waktu hidrotermal selama 12 jam dalam suhu 100°C.

Jenis zeolit yang terbentuk dari proses kristalinitas ion-ion aluminat dan silikat bergantung pada komposisi dari pereaksinya. Komposisi yang digunakan dalam penelitian ini mengikuti komposisi yang dilakukan oleh Robson (2011) yaitu dengan perbandingan molar SiO₂/Al₂O₃ sebesar 1,926. Namun komposisi molar dari kedua jenis ekstrak peleburan abu dasar berdasarkan hasil ICP-AES yang ditunjukkan pada Tabel 4.4 menunjukkan masih kurang dari rasio yang disarankan oleh Robson (2011), sehingga perlu ditambahkan larutan NaAlO2-NaOH sebelum dilakukan proses hidrotermal guna memperkecil dan mengatur rasio molar dari SiO₂/Al₂O₃. Melalui larutan Na-aluminat tersebut. penambahan maka didapatkan perbandingan rasio molar SiO₂/Al₂O₃ sebesar 1,926, sehingga dapat mempermudah dalam pembentukan zeolit-A. Hollman dkk. (1999) menyebutkan bahwa zeolit murni dari prekursor abu layang akan lebih mudah disintesis dengan penambahan Al dari sumber lain.

Pada penelitian ini dilakukan proses sintesis dua jenis zeolit-A dari prekursor peleburan abu dasar yaitu zeolit-A dan zeolit Akarbon. Pembuatan zeolit A-karbon dilakukan dengan prekursor berupa filtrat ekstrak leburan abu dasar dalam atmosfer N_2 yang ditambahkan larutan Na-Aluminat dan padatan hasil leburan. Sementara zeolit-A disintesis dengan mencampurkan filtrat ekstrak leburan dalam atmosfer udara dengan larutan Na-aluminat, hanya saja padatan hasil leburan tidak ikut dicampurkan seperti yang dilakukan pada zeolit A-karbon, agar dihasilkan zeolit tanpa karbon. Pada akhir proses hidrotermal, didapatkan padatan hasil sintesis berwarna hitam keabu-abuan untuk ekstrak leburan N_2 dan padatan berwarna putih pada ekstrak leburan udara dengan filtrat berwarna kuning. Perbedaan fisik diantara kedua padatan hasil sintesis dapat ditunjukkan pada Gambar 4.3

Gambar 4.3 Padatan Hasil sintesis, (a) Zeolit A-karbon (a) dan (b) Zeolit-A

Ketiga padatan hasil sintesis pada perlakuan hidrotermal baik dari prekursor ekstrak leburan abu dasar maupun bahan murni dikarakterisasi menggunakan XRD untuk mengetahui struktur kristal zeolit yang terbentuk. Gambar 4.4 merupakan difraktogram dari padatan yang disintesis dari bahan murni (a) dan ekstrak leburan abu dasar dalam atmosfer udara (b) serta atmosfer N₂ (c). Hasil difraktogram tersebut kemudian dicocokkan dengan Powder Diffraction File (PDF) vang diperoleh dari Data Base Joint Committee on Powder Diffraction Standart (JCPDS) 1971 No.226 tentang standar zeolit-A. Berdasarkan hasil difraktogram yang dibandingkan dengan standar, maka pola XRD dari ketiga padatan yang disintesis menunjukkan puncak-puncak dari zeolit-A. Zeolit-A dengan kristalinitas tinggi didapatkan dari zeolit berbahan murni yaitu 99,68% sementara untuk zeolit dari abu dasar nilai kristalinitas 88.64% untuk zeolit-A dari abu dasar dan 62.52% untuk zeolit Akarbon. Zeolit A-karbon memiliki nilai kristalinitas terendah karena pada zeolit A-karbon juga ditemukan fasa lain dari zeolit selain zeolit-A vaitu zeolit hidroksi-sodalit yang muncul pada daerah 2θ = 13,9, 26,54 dan 34,58 (PDF 31-1271). Zeolit-A yang terbentuk dari ekstrak abu dasar baik dalam atmosfer udara maupun atmosfer N2

merupakan tipe zeolit Linde Tipe-A (LTA) dengan rumus $[Na_{96}(AlO_2)_{96}(SiO_2)_{96}.216H_2O]$. Jenis zeolit yang terbentuk serupa dengan zeolit-A dari abu dasar yang disintesis melalui proses hidrotermal yang pernah dilaporkan oleh Yanti (2009).

Gambar 4.4 Difraktogram Zeolit-A bahan murni (a) Zeolit-A (b) Zeolit A-karbon (c)

Pada Gambar 4.4 perbandingan antara pola difraksi zeolit-A dengan zeolit A-karbon yaitu zeolit-A memiliki tingkat kristalinitas yang lebih tinggi jika dibandingkan dengan zeolit A-karbon. Intensitas zeolit-A yang lebih tinggi ini menunjukkan bahwa zeolit-A yang disintesis dari ekstrak leburan atmosfer udara dapat memberikan hasil dengan kemurnian yang lebih tinggi jika dibandingkan dengan zeolit-A yang disintesis dari ekstrak leburan pada atmosfer N₂. Hal tersebut dikarenakan pada zeolit A-karbon, proses dicampurkannya kembali padatan hasil ekstrak yang mengandung sisa karbon dapat menghalangi proses pembentukan zeolit karena sisa karbon akan menghambat proses pelarutan Si dan Al akibat adanya pengurangan konsentrasi basa NaOH yang sangat diperlukan dalam pembentukan zeolit. Menurut Alfathoni (2002), karbon memiliki sifat luas permukaan yang besar, sehingga karbon memiliki daya serap yang tinggi.

Pada penelitian sebelumnya yang dilakukan oleh Chang dan Shih (1998) melaporkan bahwa zeolit yang diperoleh dari ekstrak abu layang lebih murni jika dibandingkan dengan zeolit yang disintesis melalui penambahan padatan hasil ekstrak. Zeolit yang dibentuk dengan mencampurkan kembali padatan hasil ekstrak akan bereaksi dengan kandungan lain dari sisa padatan yang tidak bereaksi, sehingga akan dihasilkan fasa lain yang dapat menurunkan kemurnian zeolit. Selain itu, Yanti (2009) juga melaporkan bahwa sintesis zeolit-A dari abu dasar dengan kemurnian yang tinggi dapat diperoleh dari ekstrak leburan pada atmosfer udara. Sementara zeolit-A yang disintesis dari ekstrak leburan abu dasar dalam atmosfer N₂ akan memberikan hasil kemurnian yang rendah karena akan dihasilkan fasa lain akibat penambahan padatan hasil ekstrak.

Secara kuantitaif, banyaknya zeolit-A yang dihasilkan dari ekstrak leburan atmosfer udara memiliki nilai yang lebih rendah jika dibandingkan dengan zeolit-A yang disintesis dari ekstrak leburan atmosfer N₂ walaupun zeolit-A dari ekstrak leburan atmosfer udara memiliki nilai kristalinitas yang cukup tinggi. Hal tersebut disebabkan rendahnya kandungan Al dalam ekstrak leburan, sehingga penambahan larutan aluminat juga cukup kecil. Hal tersebut berdampak pada rendahnya padatan zeolit yang dihasilkan dari ekstrak leburan atmosfer udara. Sementara itu, zeolit-A yang disintesis dari ekstrak leburan N₂, adanya perlakuan penambahan padatan hasil kembali ekstrak tentunya hal tersebut akan meningkatkan kuantitas dari jumlah zeolit yang dihasilkan walaupun penambahan tersebut menyebabkan terbentuknya fasa lain seperti zeolit hidroksi-sodalit (HS) dan sisa karbon. Massa zeolit-A yang dihasilkan untuk masing-masing perlakuan dapat ditunjukkan pada Tabel 4.5

No.	Komponen	Volume	Massa NaAlO ₂	Massa yang		
		ekstrak	yang	dihasilkan		
		(ml)	ditambahkan	(gram)		
			(gram)			
1.	Zeolit-A Tidak	200	2,352	5,7859		
	Berkarbon					
2	Zeolit-A	200	3,088	13,8779		
	Berkarbon					

Tabel 4.5 Massa zeolit yang dihasilkan untuk setiap jenis variasi zeolit-A dari Abu Dasar

Pada penelitian yang dilakukan oleh Wahyuni (2010) penambahan kembali residu padatan hasil ekstrak dapat memperbesar kuantitas zeolit-A yang terbentuk dalam aplikasinya sebagai adsorben. Penggunaan ekstrak saja dalam pembuatan zeolit menghasilkan zeolit-A dengan kemurniaan yang tinggi, namun kuantitasnya sangat sedikit, sehingga dibutuhkan biaya yang cukup mahal jika zeolit-A yang terbentuk akan digunakan sebagai adsorben. Dalam penentuan morfologi serta bentuk kristal dari zeolit yang telah disintesis, dilakukan analisa menggunakan Scanning Elektron Mikroskopi (SEM). Hasil analisa menggunakan SEM tersebut ditunjukkan pada Gambar 4.5 (a),(b). Kristalintas yang cukup tinggi dari zeolit-A dikarenakan tidak adanya komponen lainnya yang ikut bereaksi selama proses sintesis berlangsung karena sintesis hanya dilakukan 100% berasal dari ekstrak leburan. Sementara itu, mikrograf SEM pada zeolit A-karbon menunjukkan kristalinitas yang rendah dan disertai dengan pembentukan fasa kristal lain yaitu hidroksi-sodalit dengan bentuk bola dan menyerupai bunga. Penambahan sisa padatan hasil ekstrak, membuat terbentuknya fasa kristal lain selain zeolit-A, sehingga kristalinitasnya cukup rendah jika dibandingkan zeolit-A. Dengan demikian, pembuatan zeolit-A dari ekstrak leburan udara menghasilkan zeolit dengan kemurnian yang lebih tinggi jika dibandingkan dengan zeolit A-karbon. Kemurnian tersebut dihasilkan karena penggunaan 100% ekstrak dalam pembuatan zeolit tanpa penambahan residu hasil ekstrak.

Gambar 4.5 (a) Mikrograf SEM Zeolit-A (b) Zeolit A-karbon (A=Zeolit-A, HS=Hidroksi Sodalit)

4.3 Karakteristik Pori Zeolit-A dari Abu Dasar

Analisis adsorpsi gas N_2 dilakukan untuk mengetahui luas permukaan serta karakteristik spesifik pori pada zeolit-A yang telah disintesis dari abu dasar baik zeolit-A maupun zeolit A-karbon. Hasil analisis adsorpsi-desorpsi N_2 tersebut digunakan untuk menunjukkan secara kualitatif mekanisme adsorpsi yang terjadi pada zeolit-A dari abu dasar. Grafik hasil analisis adsorpsi-desorpsi N_2 ditunjukkan pada Gambar 4.6

Gambar 4.6 Grafik Adsorpsi-Desorpsi N₂ pada zeolit-A (a) zeolit Akarbon (b)

Gambar 4.6 menunjukkan bahwa tipe isotermal zeolit-A dari abu dasar adalah tipe I, sedangkan pada zeolit A-karbon adalah tipe IV dan tipe I. Grafik isotermal tipe I ditandai dengan adanya sejumlah besar dari adsorpsi gas N₂ pada tekanan yang relatif rendah (P/Po<0,3) yang menunjukkan bahwa zeolit-A dari abu dasar memiliki karakteristik pori berukuran mikro (mikropori) (Deng dkk., 2010). Banyaknya gas N₂ yang dapat teradsorp pada rentang tekanan relatif (P/P_o) 0,1-0,3 mengindikasikan bahwa adsorbat telah membentuk monolayer pada permukaan zeolit-A dari abu dasar. Sementara, ketika perbedaan tekanan meningkat (P/Po=0,7) terjadi penurunan adsorpsi gas N₂ akibat lapisan pori internal zeolit-A tidak dapat lagi terisi oleh adsorbat (suzuki, 1986). Pada saat tekanan mencapai 1 atm, material zeolit-A sudah tidak mampu secara keseluruhan untuk mengad
sorp gas N2, sehingga tidak terjadi peningkatan kembali kapasitas adsorp
si gas N_2 .

Untuk material zeolit A-karbon, tipe isotermal yang terjadi adalah tipe IV yang ditandai dengan adanya loop histerisis. Loop histerisis tersebut menandakan bahwa adanya pengisian adsorbat pada pori-non mikropori yang dihubungkan dengan adanya kondensasi kapiler pada pori berukuran meso yang dapat terbentuk pada permukaan pori. Dengan adanya kondesasi kapiler tersebut, pada saat dilakukan proses desorpsi, maka adsorbat tidak akan lepas secara keseluruhan layaknya isotermal tipe I. Namun, sebagian adsorbat yang masih menempel pada permukaan adsorben tersebut menyebabkan terbentuknya loop histerisis (Suzuki, 1986).

Kemudian, tingginya gas N_2 yang teradsorp yang terjadi pada tekanan rendah (P/Po< 0,3), menandakan karakteristik dari mikropori yang dimiliki oleh zeolit-A. Zeolit A-karbon merupakan campuran antara zeolit-A dengan karbon, sehingga proses adsorpsi isotermal yang terjadi merupakan isotermal campuran antara tipe IV yang berasal dari pori meso karbon, serta tipe I yang berasal dari pori mikro zeolit-A.

Luas permukaan zeolit-A dari abu dasar ditentukan menggunakan adsorpsi-desorpsi N2 melalui metode BET (Brunaeur-Emmet-Teller). Zeolit-A dari abu dasar yang disintesis dalam penelitian ini, digunakan sebagai adsorben gas CH₄, sehingga nilai luas permukaan porinya perlu dibandingkan dengan material lainnya baik yang digunakan sebagai adsorben gas CH₄ maupun material zeolit-A lainnya. Perbandingan tersebut disajikan dalam Tabel 4.6 Pada Tabel 4.6, zeolit A-karbon memiliki nilai luas permukaan yang lebih kecil jika dibandingkan zeolit-A, bahkan luas permukaan tersebut nilainya lebih kecil jika dibandingkan dengan zeolit NaA dan CaA. Namun, hasil tersebut masih lebih tinggi jika dibandingkan dengan zeolit-A dari bahan alam lainnya yaitu sekam padi yang hanya memiliki luas permukaan 3 m²/g. Volume mikropori total pada zeolit-A juga lebih tinggi jika dibandingkan zeolit A-karbon yang mengindikasikan bahwa zeolit A-karbon didominasi oleh pori berukuran meso yang ditandai dengan diameter pori berukuran 3 nm. Namun, memiliki diameter pori yang lebih besar jika dibandingkan zeolit-A, walaupun zeolit ini memiliki nilai luas permukaan serta volume yang lebih kecil.

Comment.	J	TT - 1	V-1	D:			
Sampel	Luas	Volume	Volume	Diameter			
	permukaan	Total	Pori Total	pori rata-			
	(m^2/g)	mikropori	(cm^3/g)	rata (nm)			
		(cm^3/g)					
Zeolit-A dari							
Zeolit A-	75,245	0,038	0,038	2,024			
tanpa karbon							
Zeolit A-	14,755	0,005	0,011	3,059			
karbon							
Zeolit-A							
Zeolit Na-A	32	-	-	-			
(Du, 2007)							
Zeolit KA	32	-	-	-			
(Du, 2007)							
Zeolit-A	3	-	-	_			
dari sekam							
padi (Fuadi,							
2012)							
Material Lainnya							
Zeolit YZ	59	0.018	0.083	1.732			
(Sakisci		- ,	- ,	· · ·			
2015)							
Zeolit 5HYZ	242	0,079	0,111	0,758			
(Sakisci,		,	,	,			
2015)							

Tabel 4.6 Perbandingan karakteristik pori material hasil sintesis dengan material lainnya untuk adsorpsi gas CH₄

Pori berukuran meso tersebut dapat berasal dari karbon. Pori yang terdapat pada karbon terbagi atas 3 jenis yaitu makropori, mesopori dan mikropori. Pori berukuran meso pada karbon umumnya memiliki nilai luas permukaan pada rentang 1-100 m²/gram, Dari data luas permukaan yang didapatkan pada Tabel 4.6, maka dapat diindikasikan bahwa karbon yang dicampurkan dalam zeolit-A adalah karbon berukuran meso.

Nilai luas permukaan yang kecil pada zeolit A-karbon disebabkan oleh rendahnya nilai karbon yang terdapat pada bahan awal abu dasar yang ditunjukkan oleh hasil pengujian ASTM D-3172-13 (Tabel 4.2), serta rendahnya nilai kristalinitas dari zeolit yang dihasilkan akibat terbentuknya fasa lain seperti hidroksi sodalit yang dapat menutupi permukaan dari zeolit yang terbentuk. Yates (1968) menjelaskan bahwa material yang dibentuk dari silika dan alumina, jika terdapat material lain yang bersifat amorf bergabung dengan material tersebut, maka hal tersebut menyebabkan tertutupnya pori kecil hingga pada bagian luar kristal. Hal tersebut dapat memungkinkan bahwa luas permukaan akan menurun karena adanya pembatasan akses kedalam bagian internal kristal zeolit yang terbentuk.

Pada material lainnya seperti Zeolit YZ dan HYZ yang digunakan sebagai adsorben gas CH_4 memiliki luas permukaan yang lebih tinggi dibandingkan zeolit A-karbon. Selain itu, volume mikropori total juga lebih tinggi jika dibandingkan zeolit-A yang menandakan bahwa zeolit YZ dan HYZ tersusun atas mikropori dengan diamater pori rata-rata antara 0,7-1,7 nm. Hasil perbandingan karateristik pori antara zeolit-A dari abu dasar dengan material lainnya sebagai adsorben gas CH_4 dapat memberikan gambaran bahwa luas permukaan, volume total mikropori merupakan faktor yang dapat mempengaruhi kapasitas adsorpsi gas metana.

4.5 Pengujian Kapasitas Adsorpsi Gas Metana

Hasil sintesis zeolit-A baik dari bahan murni ataupun abu dasar dalam penelitian ini dilakukan untuk aplikasi adsorpsi gas metana. Sampel yang dianalisis adalah sampel zeolit-A murni, zeolit-A dan zeolit A-karbon. Proses pengukuran kapasitas adsorpsi dilakukan dengan metode gravimetri pada suhu dan tekanan ruang. Pengamatan dilakukan dengan mencatat persentase berat per menit ketika gas metana dialirkan selama 30 menit. Persentase berat dihitung dari selisih perubahan massa sampel awal dan sesudah dialiri gas metana. Hasil pengujian kapasitas adsorpsi gas metana dapat ditunjukkan pada Gambar 4.7

Gambar 4.7 Grafik Adsorpsi Gas CH₄ suhu 30°C pada zeolit-A murni (a) zeolit-A (b) zeolit A-karbon (c)

Gambar 4.7 menunjukkan pola adsorpsi pada ketiga jenis zeolit-A yang telah berhasil disintesis. Ketiga jenis zeolit-A menunjukkan kesamaan pola yaitu adanya kenaikan kapasitas adsorpsi gas metana dalam setiap menitnya hingga mencapai titik tertentu gas metana yang terdasorp bersifat konstan. Kenaikan kurva menunjukkan adanya pengisian pori pada zeolit-A, sedangkan kurva yang konstan menunjukkan pori zeolit-A pada ketiga material telah jenuh dan telah penuh terisi oleh gas metana, akibatnya, tidak mampu lagi mengadsorp gas metana.

Zeolit-A yang disintesis dengan bahan kimia murni memiliki nilai kapasitas yang lebih rendah jika dibandingkan dengan kedua jenis zeolit-A yang disintesis dari prekursor abu dasar yaitu hanya sekitar 8,25% kapasitas gas metana yang dapat terdasorp. Pola adsorpsi pada zeolit ini cenderung lebih cepat konstan jika dibandingkan dengan zeolit dari abu dsasar, yang ditunjukkan dengan adanya penurunan kapasitas adsorpsi pada menit ke-10, 11 dan 18. Sementara itu, pada menit ke-27 hingga menit ke-30 zeolit-A dari bahan kimia murni mulai menunjukkan batas maksimal kapasitas adsorpsinya terhadap gas metana dengan adanya nilai kapasitas yang cenderung konstan.

Zeolit-A yang disintesis dari abu dasar cenderung memiliki pola yang sama yaitu pada menit ke-20 hingga menit ke-25 nilai kapasitas adsorpsinya masih mengalami peningkatan walaupun peningkatan kapasitas tersebut memiliki prosentase yang cukup rendah. Sementara itu, zeolit A-karbon menunjukkan nilai kapasitas adsorpsi yang paling besar dari ketiga jenis zeolit yaitu 22,15%. Pola adsorpsi pada zeolit A-karbon juga menunjukkan adanya kenaikan yang signifikan jika dibandingkan zeolit-A maupun pembanding zeolit-A dari bahan murni. Sedangkan untuk zeolit-A dari abu dasar menunjukkan nilai kapasitas adsorpsi gas metana sebesar 10.55% dengan pola adsorpsi yang mirip dengan zeolit-A dari bahan kimia murni yaitu adanya penurunan nilai kapasitas adsorpsi pada menit ke-18 dan pola adsorpsi cenderung konstan pada menit ke-27 hingga menit ke-30. Adanya penurunan nilai kapasitas adsorpsi tersebut dimungkinkan terjadi karena gas metana mengisi pori berukuran mikro. Pori berukuran meso ini memiliki ukuran yang lebih besar apabila dibandingkan dengan diameter kinetik molekul metana sebesar 0,38 nm. Akibatnya gas metana yang telah teradsorpsi dapat dengan mudah terdesorpsi.

Pada hasil kapasitas adsorpsi tersebut dapat terlihat, dengan penambahan kembali residu hasil ekstrak yang mengandung karbon sebesar 2,62% dari hasil pengujian XRF, maka campuran zeolit Akarbon yang dihasilkan mampu meningkatkan kapasitas adsorpsi dua kali lebih besar pada suhu dan tekanan yang sama jika dibandingkan dengan zeolit-A tanpa penambahan karbon walaupun berasal dari ekstrak abu dasar yang sama. Hal tersebut mengindikasikan bahwa adanya kandungan karbon memberikan peran ganda pada zeolit sebagai adsorben, sehingga dihasilkan adsorben zeolit yang memiliki kapasitas adsorpsi yang lebih besar.

Zeolit-A dari abu dasar maupun bahan murni yang dihasilkan dalam penelitian ini, memiliki kapasitas adsorpsi gas metana yang jauh lebih kecil dibandingkan material berpori pada penelitianpenelitian sebelumnya dan ditunjukkan pada Tabel 4.7. 68

Material	Suhu Adsorpsi (⁰ c)	Kapasitas adsorpsi gas CH ₄ (%Berat)					
Material hasil sintesis dari penelitian							
Zeolit-A dari bahan	30	8,25					
Kimia Murni							
Zeolit-A	30	10,55					
Zeolit A-karbon	30	22,15					
Material pada referensi							
Zeolit-LTA (Liu	25	44,93					
dkk., 2012)							
Zeolit-CaX (Zhang	25	8,2					
dkk., 1991)							
Zeolit-β (Antoniou	25	1,5					
dkk., 2014)							
Zeolit-MFI (Liu	25	5,2					
dkk., 2012)							
Zeolit-MOR (Liu	25	10,61					
dkk., 2012)							
Karbon tertemplat	25	3,0					
zeolit (KTZ)							
(Antoniou dkk.,							
2014)							
Karbon nanotube	25	10					
(Zhou dkk., 2005)							

Tabel 4.7 Perbandingan kapasitas adsorpsi gas CH₄ material hasil sintesis dengan material lainnya

Dari hasil penelitian yang dilakukan oleh Liu dkk (2012) didapatkan bahwa banyaknya adsorbat gas metana yang dapat teradsorp pada permukaan zeolit memiliki urutan LTA>MOR>MFI pada kondisi yang sama dan juga bahkan lebih tinggi daripada material adsorben dari jenis karbon. Namun, kapasitas adsorpsi yang dihasilkan pada zeolit-A pada penelitian ini memiliki nilai lebih rendah apabila dibandingkan zeolit-LTA pada referensi yang ada karena terdapat perbedaan suhu adsorpsi. Suhu merupakan parameter utama dalam proses fisisorpsi. Adanya kenaikan suhu menyebabkan

interaksi gaya Van Der Waals antara adsorben dengan adsorbat akan melemah, karena molekul CH₄ bergerak lebih cepat, sehingga interaksi antara permukaan adsorben dengan molekul adsorbat semakin rendah. Peristiwa penurunan kapasitas adsorpsi pada pertambahan suhu juga berkaitan dengan studi termodinamika adsorpsi gas dimana kuantitas termodinamika yang digunakan adalah isosterik entalpi adsorpsi (ΔH_{ads}), entropi adsorpsi (ΔS_{ads}), kapasitas penyerapan (na), dan energi bebas adsorpsi (ΔG_{ads}) (Stadie, dkk., 2013).

Nilai dari isosterik entalpi adsorpsi adalah karakteristik termodinamik yang menyediakan pengukuran langsung untuk kekuatan ikat antara molekul adsorbat dan permukaan adsorben. Nilai entalpi adsorpsi yang semakin tinggi akan membuat kapasitas adsorpsinya juga semakin tinggi. Besarnya nilai entalpi ini dapat dihitung berdasarkan persamaan van't Hoff pada Persamaan 4.5

$$\frac{\Delta H}{RT^2} = -\left(\frac{\delta \ln P}{\delta T}\right)q\tag{4.5}$$

Nilai ΔH merupakan isosterik entalpi adsorpsi (kJ/mol), T merupakan suhu (K), P merupakan tekanan saat kesetimbangan (bar), q menunjukkan kesetimbangan kapasitas adsorpsi dan R merupakan tetapan gas dengan nilai 8,314 J mol⁻¹ K⁻¹. Berdasarkan persamaan di atas dapat disimpulkan bahwa suhu adsorpsi berbanding terbalik dengan nilai entalpi adsorpsi. Hal inilah yang menyebabkan semakin suhu tinggi, nilai kapasitas adsorpsi semakin rendah (Monemtabary dkk., 2013).

Pada penelitian yang dilakukan oleh Himeno dkk. (2005) didapatkan bahwa beberapa jenis bahan pembentukan karbon aktif juga akan memberikan nilai isosterik yang berbeda pada karbon aktif yang dihasilkan. Untuk karbon aktif yang terbentuk dari material awal seperti batubara, memiliki karakteristik berupa nilai entalpi yang rendah yaitu 16,1 kJ/mol pada suhu 298 K. Nilai entalpi ini merupakan nilai terendah jika dibandingkan dengan karbon yang dihasilkan dari kulit kelapa dan arang. Selain itu, karbon yang dihasilkan dari pengolahan batubara juga memberikan nilai luas permukaan serta volume yang kecil. Walaupun memiliki karakteristik yang cukup rendah dibandingkan karbon lainnya, 70 karbon dari pengolahan batubara seperti abu dasar tetap memberikan kinerjanya sebagai adsorben gas seperti metana.

Karbon didalam campuran zeolit tersebut merupakan material amorf yang memiliki ciri daya serap yang tinggi, oleh karena itu karbon juga merupakan salah satu jenis adsorben gas yang cukup baik (Alfathoni, 2011). Dengan adanya penambahan karbon didalam campuran zeolit tersebut, membuat zeolit bersifat sebagai adsorben multifungsi karena karbon tersebut juga memberikan perannya sebagai adsorben untuk mengadsorpsi gas metana. Akibatnya nilai kapasitas adsorpsinya lebih besar jika dibandingkan pada zeolit-A yang tanpa adanya penambahan karbon, walaupun memiliki nilai kristalinitas dan luas permukaan yang kecil. Jaya (2014) menyebutkan bahwa adsorben karbon aktif yang disintesis dari bahan alam memiliki daya adsorpsi yang besar dan mampu menyerap gas-gas seperti NO, NOx dan CO hingga 50% berat.

4.6 Penentuan Model Kinetika Adsorpsi

Penentuan kinetika adsorpsi dari gas CH₄ sangat penting dilakukan dalam sistem eksperimen. Model kinetika yang digunakan didasarkan pada sampel yang diamati. Banyak penelitian yang telah mempelajari kinetika adsorpsi gas pada zat padat. Kebanyakan peneliti menggunakan model orde satu semu, orde dua semu dan difusi intra-partikel (Zamora dkk., 2013; Khalili dkk., 2013; Widiastuti, 2011). Oleh karena itu, pada penelitian ini digunakan model-model tersebut untuk mencocokkan dengan data eksperimen. Model-model kinetik yang diusulkan akan mampu menjelaskan proses dan mekanisme adsorpsi, yang tergantung pada sifat fisika maupun kimia dari adsorben, serta untuk mempelajari proses transport gas dalam adsorben.

4.6.1 Model Orde Satu Semu Pseudo Lagergren

Model orde satu semu digunakan untuk menganalisis data hasil eksperimen untuk kinetika orde satu semu. Reaksi orde satu semu merupakan turunan dari orde dua. Pada model kinetika ini, asumsi yang digunakan adalah salah satu reaktan memiliki konsentrasi jauh lebih besar dibandingkan dengan konsentrasi reaktan yang lain (Chang, 2005).

Gambar 4.8 Grafik Orde Satu Semu Ketiga Zeolit

Dari asumsi tersebut, maka laju reaksi orde dua seolah tampak menjadi orde satu. Oleh karena itu, munculah kata semu pada reaksi orde ini karena seolah-olah salah satu reaktannya tidak mengalami perubahan. Plot dari data adsorpsi yang diperoleh untuk model orde satu semu dapat dilihat pada Gambar 4.8

4.6.2 Model Orde Dua Semu Pseudo Ho

Model kinetika ini didasarkan pada kapasitas adsorpsi kesetimbangan, dengan asumsi kapasitas adsorpsi selalu proporsional dengan banyaknya sisi aktif yang dimiliki oleh suatu adsorben (Ho, 1999). Reaksi Orde dua merupakan turunan dari orde satu. Berdasarkan dari data adsorpsi yang diperoleh, maka dapat diplot grafik model kinetika orde dua semu yang dapat ditunjukkan pada Gambar 4.9. Pada data yang ditampilkan pada Tabel 4.8 dapat terlihat untuk model orde dua semu, nilai kapasitas adsorpsi yang cukup tinggi pada saat kesetimbangan tinggi dimiliki oleh zeolit A yang disintesis dari prekursor abu dasar, bahkan zeolit A-karbon merupakan jenis zeolit yang memiliki nilai kapasitas tertinggi diantara kedua jenis zeolit lainnya.

Hal tersebut menunjukkan bahwa zeolit-A dengan tambahan karbon dari abu dasar dapat meningkatkan kapasitas adsorpsi gas metana pada saat kesetimbangan. Kemudian, hal itu juga didukung dari besarnya nilai konstanta laju untuk model kinetika orde kedua semu (k_s). Nilai k_s paling kecil terdapat pada sampel zeolit A-karbon yang menunjukkan bahwa laju adsorpsi untuk sampel tersebut lebih cepat jika dibandingkan dengan kedua sampel zeolit-A lainnya. Kecepatan adsorpsi yang tinggi tersebut disebabkan adanya kandungan karbon sehingga dapat mengadsorp gas metana lebih banyak dalam waktu yang sama.

4.6.3 Model Difusi Intrapartikel

Model kinetika dapat diperoleh dengan memplotkan data q_t (kapasitas adsorpsi gas CH₄ pada waktu t dalam satuan mmol/g) terhadap nilai $t^{1/2}$. Plot data adsorpsi akan menghasilkan grafik seperti yang ditunjukkan pada Gambar 4.10. Berdasarkan dari grafik tersebut, dapat terlihat terdapat dua jenis tahapan adsorpsi, yaitu garis pertama adalah adsorpsi permukaan eksternal atau difusi makropori sedangkan garis kedua adalah adsorpsi permukaan internal atau difusi makropori terjadi secara cepat kemudian melambat saat terjadi proses adsorpsi pada permukaan internal adsorben (Khalil, 2013; Widiastuti,

2013; Zamora, 2013). Beberapa parameter yang penting dari setiap model kinetika adsorpsi dapat ditunjukkan pada Tabel 4.8. Berdasarkan pada Tabel 4.8, dapat dipreoleh bahwa adsorpsi gas CH_4 pada material zeolit-A dari bahan murni mengikuti model kinetika difusi intrapartikel karena nilai R^2 yang paling besar.

Gambar 4.10 Grafik Difusi Intrapartikel Ketiga Zeolit

Hal tersebut mengindikasikan bahwa gas metana yang masuk kedalam pori zeolit melalui 2 tahap yaitu difusi eksternal melalui pori meso, kemudian difusi internal melalui pori mikro. Sementara untuk zeolit-A yang disintesis dari abu dasar yaitu zeolit-A dan zeolit A-karbon mengikuti model kinetika adsorpsi orde dua semu. Hal ini dapat diartikan bahwa beberapa sisi aktif dapat ditempati oleh gas CH₄ pada zeolit-A yang disintesis dari abu dasar, sehingga kapasitas adsorpsi pada zeolit-A dari abu dasar memiliki nilai yang proporsional terhadap jumlah sisi aktif tersebut (Ho, 1999). Gunawan (2014) melaporkan bahwa material karbon tertemplat zeolit (KTZ) memiliki nilai q_e terhadap adsorpsi CO₂ yang cukup besar untuk model kinetika orde dua semu yaitu 0,248 mmol/g. Hal tersebut menunjukkan bahwa karbon yang ditambahkan pada material zeolit-A dapat meningkatkan kapasitas adsorpsi zeolit-A terhadap gas metana.

Sampel	Model Kinetika	Parameter		
		k _f	q e	\mathbf{R}^2
Zeolit-A Bahan	Orde Satu Semu	0,002	0,085	1E-06
Murni	Pseudo Lagergren			
Zeolit-A dari abu		-0,041	0,1263	0,0436
dasar				
Zeolit A-karbon		0,0163	0,1210	0,0113
		k _s	q _e	\mathbf{R}^2
Zeolit-A Bahan	Orde Dua Semu	0,4891	0,2967	0,9604
Murni	Pseudo Ho			
Zeolit-A dari abu		0,5256	0,3894	0,9762
dasar				
Zeolit A-karbon		0,1231	0,9761	0,9902
		k _d	С	\mathbf{R}^2
Zeolit-A Bahan	Difusi	0,0450	0,0157	0,9631
Murni	Intrapartikel			
Zeolit-A dari abu		0,0603	0,0412	0,9116
dasar				
Zeolit A-karbon		0,0537	0,2192	0,8747

Tabel 4.8 Parameter setiap model kinetika adsorpsi

Dimana:

- $k_f = konstanta laju orde satu semu (menit⁻¹)$
- q_e = kapasitas adsorpsi pada saat kesetimbangan (mmol/g)
- $k_s = konstanta \ laju \ orde \ dua \ semu \ (mmol/g)$
- k_d = konstanta laju difusi intrapartikel (mmol.g⁻¹.menit^{-1/2})
- C = Intersep yang menyatakan ketebalan batas lapisan

4.7 Hasil Analisis Spektroskopi Inframerah (FTIR) pada Zeolit-A dari Abu Dasar setelah Proses Adsorpsi

Analisis menggunakan spektroskopi Inframerah dilakukan untuk mengidentifikasi mekanisme proses adsorpsi pada zeolit-A

dari abu dasar melalui gugus fungsi yang ada dengan membandingkan puncak-puncak FTIR zeolit baik sebelum dilakukan proses adsorpsi maupun setelah dilakukan adsorpsi. Analisa dilakukan dengan metode pellet menggunakan KBr.

Gambar 4.11 Spektra FTIR pada zeolit-A dari abu dasar (a dan b) zeolit A-karbon (c dan d) sebelum adsorpsi dan setelah adsorpsi

Gambar 4.11 menunjukkan spektra IR dari zeolit-A dari abu dasar baik sebelum dilakukan adsorpsi maupun setelah adsorpsi yang direkam pada bilangan gelombang 400-1400 cm⁻¹ yang merupakan spektra khas untuk zeolit-A. Pada zeolit-A sebelum proses adsorpsi, terdapat pita yang teramati pada bilangan gelombang 457,14 cm⁻¹ yang menunjukkan vibrasi tekuk dari (Si-O-Si) atau (O-Si-O), 663,53 cm⁻¹ menunjukkan vibrasi ulur simetri dari (Si-O-Al) dan 983,73 cm⁻¹ yang menunjukkan vibrasi ulur asimetri dari (Si-O-Al). Hasil ini sama dengan hasil yang dilaporkan oleh Rayalu (1999) yang

melakukan pengujian IR terhadap zeolit-A dan diperoleh hasil adanya spektra IR pada daerah bilangan gelombang 454 cm⁻¹ yang menunjukkan vibrasi tekuk dari (Si-O-Si) atau (O-Si-O), 660 cm⁻¹ menunjukkan vibrasi ulur simetri (Si-O-Al) dan 1000-1500 cm⁻¹ yang menunjukkan vibrasi ulur asimetri dari (Si-O-Al).

Kemudian hasil FTIR sampel zeolit-A setelah dilakukan proses adsorpsi menunjukkan adanya pergeseran pita pada daerah bilangan gelombang 663,53 cm⁻¹ menjadi 665,46 cm⁻¹ dan 983,73 cm⁻¹ bergeser menjadi 997,23 cm⁻¹ sementara untuk pita pada daerah 457,14 cm⁻¹ tidak mengalami pergeseran. Hal tersebut memberikan indikasi bahwa selama proses adsorpsi, gas CH₄ bereaksi dengan bagian Si-O-Al dari zeolit sementara bagian Si-O-Si tidak berinteraksi dengan adsorbat. Hal ini dikarenakan pada bagian Si-O-Al merupakan situs yang dinetralkan dengan kation Na⁺, sehingga gas CH₄ akan berinteraksi dengan Na⁺ membentuk Na⁺-CH₄ (Montanari, 2008).

Pada penelitian yang dilakukan oleh Kamarudin dkk (2008) dilaporkan bahwa spektra Inframerah yang didapatkan pada beberapa jenis zeolit seperti NaX, NaY dan zeolit beta, digunakan untuk mengadsorpsi gas metana menunjukkan adanya pergeseran pita menuju ke daerah panjang gelombang yang lebih rendah. Fenomena tersebut mengindikasikan bahwa terdapat interaksi antara gas metana dengan zeolit tersebut walaupun interaksi tersebut bersifat lemah. Hal tersebut juga menunjukkan bahwa dengan interaksi yang lemah, maka proses desorpsi akan mudah terjadi dengan adanya kenaikan suhu.

Spektra IR pada zeolit A-karbon sebelum dilakukan proses adsorpsi, terdapat pita pada daerah 457,14 cm⁻¹ yang menunjukkan vibrasi tekuk dari (Si-O-Si). Sedangkan pita pada daerah 680,89 cm⁻¹ menunjukkan vibrasi simetri (Si-O-Al) pada sodalit. Taylor (1976) juga melaporkan hasil yang sama untuk analisa IR pada sodalit alami yaitu adanya pita serapan pada rentang 637-749 cm⁻¹ yang menunjukkan vibrasi simetri dari (Si-O-Al). Sementara itu, vibrasi asimetri dari (Si-O-Al) terdeteksi pada daerah 1001,09 cm⁻¹, walaupun dengan intensitas yang sangat kecil. Hal ini disebabkan adanya fasa lain seperti karbon yang dapat menghalangi ikatan-ikatan yang terdapat dalam komponen zeolit seperti (Si-O-Al) untuk terdeteksi saat dilakukan pengujian IR. Hasil tersebut memiliki pola yang sama dengan penelitian sebelumnya yang dilakukan oleh Swaidan (2011) yang mensintesis karbon aktif dari limbah pohon kurma melaporkan bahwa hasil spektra IR pada karbon aktif yang telah disintesis tidak menunjukkan adanya pita serapan pada rentang bilangan gelombang 430-1600 cm⁻¹, sehingga tidak adanya pita serapan pada daerah 1000 cm⁻¹ yang dihasilkan dalam penelitian ini menunjukkan karakter dari karbon yang tercampur dalam zeolit-A.

Pada zeolit A-karbon setelah dilakukan proses adsorpsi menunjukkan hasil yang berbeda yaitu pita pada daerah 985,66 cm⁻¹ mulai muncul dengan intensitas kuat yang menandakan adanya vibrasi ulur asimetri dari (Si-O-Al) dan daerah 663,53 cm⁻¹ yang dari (Si-O-Al). menunjukkan vibrasi ulur simetri Hal itu. menunjukkan bahwa zeolit A-karbon yang terbentuk pada saat sebelum dilakukan adsorpsi, fasa lain yang terbentuk seperti hidroksi sodalit dan karbon menghalangi zeolit-A pada bagian vibrasi (Si-O-Al), sehingga pita pada daerah serapan tersebut muncul dengan intensitas yang rendah. Pada saat setelah dilakukan adsorpsi, karena CH₄ berinteraksi dengan bagian (Si-O-Al) pada zeolit, maka puncak ini mulai muncul dan menandakan bahwa zeolit A-karbon juga terdiri dari bagian zeolit A yang lengkap baik (Si-O-Si) maupun (Si-O-Al).

"Halaman ini sengaja dikosongkan"

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

penelitian yang Berdasarkan telah dilakukan dapat disimpulkan bahwa zeolit A-karbon dari abu dasar berhasil disintesis melalui proses peleburan dalam atmosfer N2 sedangkan zeolit-A disintesis dari peleburan dalam atmosfer udara yang dilanjutkan dengan proses hidrotermal pada suhu 100°C. Zeolit-A dari abu dasar kemudian dilakukan pengujian kapasitas adsorpsi gas CH₄ yang dibandingkan dengan zeolit-A berbahan kimia murni dan didapatkan kapasitas adsorpsi berturut-turut untuk zeolit A-karbon, zeolit-A dari abu dasar dan zeolit-A murni adalah 22,15%, 10,55% dan 8,25%. Hasil kapasitas adsorpsi yang diperoleh kemudian digunakan untuk menentukan model kinetika adsorpsi masing-masing zeolit-A yang terbentuk dan diperoleh bahwa zeolit-A yang disintesis dari abu dasar baik zeolit A-karbon maupun zeolit-A dari abu dasar mengikuti model orde dua semu dengan derajat penentuan (R²) sebesar 0.9902 dan 0.9762, sementara untuk zeolit-A vang disintesis dengan bahan murni mengkuti model difusi intrapartikel dengan derajat penentuan (\mathbf{R}^2) sebesar 0.9631. Kapasitas adsorpsi kesetimbangan (qe) untuk zeolit A-karbon, zeolit-A dari abu dasar dan zeolit-A murni berturut turut adalah 0,5805, 0,3322 dan 0,2442.

5.2 Saran

Kapasitas adsorpsi yang dihasilkan masih cukup rendah dari data referensi yang ada, sehingga perlu dilakukan optimasi parameter lain untuk penyerapan gas metana seperti kondisi suhu adsorpsi dan tekanan adsorpsi. Kemudian perlu dilakukan variasi mengenai waktu hidrotermal dan jenis gas lain yang diadsorpsi selain CH₄ agar didapatkan data yang lebih lengkap mengenai kondisi optimum sintesis serta jenis gas yang paling sesuai untuk diadsorpsi pada material zeolit-A yang disintesis dari abu dasar tersebut. "Halaman ini sengaja dikosongkan"

DAFTAR PUSTAKA

- Abidin, Zainal. 2010. "Analisis Potensi Penggunaan Bahan Bakar Gas Alam". *Skripsi*, Universitas Indonesia.
- Adibfar, M., Kaghazchi, T., Asasian, N., Soleimani, M. 2014. "Conversion of Poly(Ethylene Terephthalate) Waste into Activated Carbon: Chemical Activation and Characterization". *Chemical Engineering Technology Research Article*, 37, hal 979-986.
- Adriany, R. 2011. "Faktor-Faktor yang Mempengaruhi Kapasitas Adsorpsi CO₂ pada Zeolit". *Pusat Penelitian dan Pengembangan Teknologi Minyak dan Gas Bumi*, 9, hal 76-82
- Alfaruqi, Hilmy. M. 2008. "Pengaruh Konsentrasi Hidrogen Klorida (HCl) dan Temperatur Perlakuan Hidrotermal Terhadap Kristanilitas Material Mesopori Silika SBA-15". Tugas Akhir, Departemen Teknik Metalurgi, Universitas Indonesia.
- Alfathoni, G. 2002. "Produksi Karbon Aktif dengan Lampiran Kelayakan Ekonomi". *Proposal Kerjasama*, PT. Buana Petrolindo Nusantara, Yogyakarta.
- Alson, J.A., Adler, J.M., dan Baines, T.M. 1989. "Alternative Transportation Fuel". New York: John Wiley Publisher.
- Amiliyah, Alif R. 2012. "Karbon Aktif dari Tempurung Kelapa dengan Aktivasi KOH untuk Adsorpsi Hidrogen". Skripsi, Jurusan Kimia-FMIPA ITS, Surabaya.
- Antoniou, M.K., Diamanti, E.K., Enotiadis, A., Policicchio, A., dan Agostino, A. 2014. "Methane storage in zeolite-like carbon materials". *Microporous and Mesoporous Materials*, 188, hal 16–22.

- Asip, F. 2013. "Adsorbsi H₂S pada Gas Alam menggunakan Membran Keramik dengan Metode Titrasi Iodometri". *Jurnal Teknik Kimia*, 19.
- Atkins, P., Overton, T., Rourke, J. dan Weller M. 2010. "Inorganic Chemistry". W.H.Freeman and Company, New York.
- Bao, Z., Yu, L., Ren, Q., Lu, X., dan Deng, S. 2011. "Adsorption of CO₂ dan CH₄ on a Magnesium-based Metal Organic Framework". *Colloid and Interface Science*, hal.11-14.
- Bayati, B., Babaluo, A.A., dan Karimi, R. 2008. "Hydotermal Synthesis of Nanostructure NaA Zeolite: The Effect of Synthesis Parameters on Zeolite Seed Size and Crystallinity". *Journal of the European Ceramic Society*, 28, hal 2653-2657.
- Barrer, R.M. 1978. "Zeolite and Clay Minerals as Adsorbents and Catalysis.". *Academic Press*: London.
- Barrer, R.M. 1982. "Hydrothermal Chemistry of Zeolites". *Academic Press*, London.
- Bastos-Neto, M. 2005. "A Theoretical and Experimental Study of Charge and Discharge Cycles in a Storage Vessel for Adsorbed Natural Gas. Adsorption", 11, hal 147-157.
- Bell,R.G.2001."What are Zeolite?"<u>http://www.bza.org/zeolites.html</u>. Tanggal 25 Juni 2016.
- Beer,J.2013."Potential for Industrial Energy-Efficiency Improvement in Long Term". *Springer*: Kluwer Academic Publisher.
- Bishai, H., Takaishi, T., dan Saito, F. 2014. "Synthesis of Molecular Sieves from Natural Kaolin: 1. Synthesis of NaA type zeolite". *Chemical Engineering Technologhy*, 74, hal. 358-363.
- Breck, D.W. 1974. "Zeolite Molecular Sieves : Structure, Chemistry and Use". Wiley, New York.

- Bonenfant, Danielle., Kharuone, Mourad, Niquitte Patrick. 2008. "Advances in Principal Factor Influencing Carbon Dioxide Adsorbsion on Zeolites". *STEPPE École de Technologie Supérieure*, Département de Génie de la Construction, 1100, Notre Dame Ouest, Montréal, QC, H3C 1K3, Canada.
- Berkgaut, V. dan Singer, A. 1996. "High Capacity Cation Exchange by Hydrothermal Zeolitization of Coal Fly Ash". *Applied Clay Science*, 10, hal 369-378.
- Cahya, Andy. 2013. "Pengaruh Luas Permukaan dan Lebar Pori Karbon Aktif pada Sistem Adsorbed Natural Gas (ANG)". *Tesis*, Universitas Gajah Mada.
- Chandrasekhar, G., et al., 2007. "Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash", *Microporous and Mesoporous Materials*, 111, hal 455–462.
- Chang, H. dan Shih, W. 2000. "Synthesis of Zeolite A and X from fly ash and Their Ion Exchange Behaviour With Cobalt Ion". *Industrial Engineering Chemical Research*, 39, hal 4185-4191.
- Chang, Raymond. 2005. "Physical Chemistry for the Biosciences. Sausalito". California: University Science Books.
- Cracknell, R.F., Gordon, P., dan Gubbins, K.E. 1993. "Influence of Pore Geometry on the Design of Microporous Materials for Methane Storage". J. Phys. Chem, 97, hal 494-499.
- Cullity, B. D. dan Stock, S. R. 2001. "Elements of X-Ray Diffraction", Addison-Wesley, New York.
- Du, X., Wu, E. 2007. "Porosity of Microporous Zeolites A, X and ZSM-5 Studied by Small Angle X-Ray Scattering ang Nitrogen Adsorption". *Journal of Physics and Chemistry of Solids*. 68, hal 1692-1699.

- Dwinata, R., Hermawan, R., Labbani, A. 2013. "Operasional Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES)". *Makalah Kimia Instrumen*, Universitas Hasanuddin.
- Elkady, M.E., Hussein, M.M., Salama, M.M. 2015. "Synthesis and Characterization of Nano-activated Carbon from El-Maghara Coal, Sinai, Egypt, to be Utilized for Wastewater Purification". *American Journal of Applied Chemistry*, 3, hal 1-7.
- Elliott, D. dan Topaloglu, T. 1986. "Development of New Adsorbent Material for The Storage of Natural Gas On- Board Vehicles". *Conference Paper*, Institute of Gas Technology, Vancouver.
- Fuadi, AM., Musthofa, M., Harismah, K., Haryanto, Hidayati N. 2012. "Pembuatan Zeolit Sintetis dari Sekam Padi". Simposium Nasional RAPI XI FT UMS, hal K55-K62
- Gedde, U.W. 1995. "Polymer Physics 1st ed". *Chapman & Hall*. London.
- Ghorai, P.K., Sluiter, M., Yashonath, S., dan Kawazoe, Y. 2006. "Intermolecular Potential for Methane in Zeolite A and Y: Adsorption Isotherm and Related Properties". *Solid State Science*, 8, hal. 248-258.
- Glover, T.G., Dunne, K.I., Davis, R.J., dan LeVan, M.D. 2008. "Carbon-silica composite adsorbent: Characterization and Adsorption of Light Gases". *Microporous and Mesoporous*, 111, hal. 1-11.
- Goldstein, J. 2003. "Scanning Electron Microscopy and X-Ray Microanalysis:Third Edition". US: Springer.
- Grande, C.A., Blom, R., Moller, A., dan Mollmer, J. 2013. "Highpressure separation of CH₄/CO₂ using Activated Carbon". *Chemical Engineering Science*, 89, 10-20.

- Fatakh, I. 2008. "Media Edukasi untuk semua:Batubara". www.BeritaIptek.com.
- Handayani, R.F. 2012. "Sintesis ZSM-5 Menggunakan Prekursor Zeolit Nano Kluster : Pengaruh Waktu Hidrotermal". Proseding *Skripsi*. Surabaya : KIMIA ITS.
- Hartanto, A., Susanti, V., Subekti, R.A., Saputra, H.M., Rijanto, E., dan Hapid, A. 2011. "Program Konversi dari BBM ke BBG untuk Kendaraan". Pusat Penelitian Tenaga Listrik dan Mekatronik, Bandung.
- Hertag, L., Bux, H., Caro, J., Chmelik, C., Remsungnen, T., Knauth, M., dan Fritzsche, S. 2011. "Diffusion of CH₄ and H₂ in ZIF-8". *Membrane Science*, 377, hal. 36-41.
- Himeno, S., Komatsu T., Fujita, S. 2005. "High-Pressure Adsorption Equilibria of Methane and Carbon Dioxide on Several Activated Carbons". *Journal of Chemical Engineering*, 50, hal 369-376.
- Ho Y.S. dan McKay G. 1999. "Pseudo-Second Order Model For Sorption Processes". *Process Biochemistry*. 34, hal 451-465.
- Holle, R.B., Audy, D. Wuntu., Meiske S. 2013. "Kinetika Adsorpsi Gas Benzen pada Karbon Aktif Tempurung Kelapa". Jurnal MIPA UNSRAT, hal 100-104.
- Hollman, G.G., Steenbruggen, G. dan Jurkovicova, M.J. 1999. "A Two-Step Process for The Synthesis of Zeolites from Coal Fly Ash". *Fuel*, 78, hal 1225-1230.
- Huang, Y., dan Havenga, E.A. 2001. "Why Do Zeolites with LTA Structure Undergo Reversible Amorphization Under Pressure". *Chemical Physics Letters*, 345, hal 65-71.
- Husin, A.M. 2012. "Adsorpsi dan Desorpsi Gas Metana pada Bejana Bertekanan (Vessel) dengan Kenaikan Tekanan secara Bertahap". *Skripsi*, Universitas Indonesia.

- Inada, M., Tsujimoto, H., Eguchi, Y., Enomoto, E., Hojo, J. 2005. "Microwave-Assisted Zeolite Synthesis From Coal Fly Ash in Hydrothermal Process". *Fuel*, 84, hal 1482-1486.
- Irani, Khosna. 2009. "Modifikasi Permukaan Abu Layang menggunakan NaOH dan Aplikasinya untuk Geopolimer Sifat Fisik dan Mekanik". *Tesis S2* KIMIA FMIPA ITS.
- Jankowska, H., Swiatkowski, A. dan Choma J. 1991. "Active Carbon". Wydawnicta Naukuwo-Technichze, Polandia.
- Jaya, T.F. 2014. "Adsorpsi Emisi Gas CO, NO dan NOx menggunakan Karbon Aktif dari Limbah Kulit Buah Kakao (*Theobroma Cacao L.*) pada Kendaraan Bermotor Roda Empat". *Skripi*, Universitas Hasanuddin, Makassar.
- Jumaeri, W., Astuti, Lestari, W.T.P. 2007. "Preparasi dan Karakterisasi Zeolit dari Abu Layang Batubara secara Alkali Hidrotermal". *Jurnal Reaktor*. 11, hal 38-44
- Juniantoro, E.F., Hartanto D., Prasetyoko, D. 2014. "Sintesis Zeolit dari Kaolin secara Langsung: Pengaruh Suhu dan Waktu Kristalisasi". *Jurnal Sains dan Seni POMITS*. 2, hal 1-8.
- Kamaruddin, K.S.N., Chieng, Y.Y., Hamdan, H., dan Mat, H. 2008. "Methane Adsorption Characteristics of Copper Oxide Modified NaY Zeolite Adsorbents". ASM. Sci. J, 4, hal 29.
- Kamarudin, K.S.N., Yuan, C.Y., Hamdan, H., Mat, H. 2008. "FTIR Spectroscopy of Methane Adsorption on Zeolites". *Journal of Chemical and Natural Resources Engineering Special Edition*, hal 31-39.
- Keller, Jürgen. dan Staudt, Reiner. 2005. "Gas Adsorption Equilibria: Experimental Methods and Adsorptive Isotherms". New York: Springer Science and Business Media.

- Kementerian Energi dan Sumber Daya Mineral. 2014. "Peta Jalan Kebijakan Gas Bumi Nasional 2014-2030". Kementerian ESDM, Jakarta.
- Kementerian Lingkungan Hidup, 2006. "Pengelolaan Bahan dan Limbah Berbahaya dan Beracun, <u>www.Lingkunganhidup.com.</u>
- Kemp, C.K, Baek, S.B., Lee, G.W, Meyyapan, M., Kim, K.S. 2015" Activated Carbon Derived from Waste Coffee Ground". 26, hal 1-5.
- Khalili S., Ghoreyshi A.A. dan Jahanshahi M. 2013. "Carbon Dioxide Caprtured by Multi-walled Carbon Nanotube and Activated Charcoal: A Comparative Study". *Scientific Paper*, 19. hal 153-164.
- Kompilasi Tin Kajian Batubara Nasional, Kelompok Kajian Kebijakan Mineral dan Batubara Pusat Litbang Teknologi Mineral dan Batubara. 2006. "Batubara Indonesia". <u>http://www</u>. Esdm.go.id.
- Kugbe, J., Matsue, N., dan Henmi, T. 2009. "Synthesis of Linde type A zeolite–goethite nanocomposite as an adsorbent for cationic and anionic pollutants". Journal of Hazardous Materials, 164, hal 929–935.
- Kumar, A. 2011. "Adsorption Of Methane On Activated Carbon By Volumetric Method". Rourkela: Department Of Chemical Engineering National Institute Of Technology.
- Kurniati, E., 2008. "Pemanfaatan Cangkang Kelapa Sawit sebagai Arang Aktif". *Penelitian Ilmu Teknik*, UPN.
- Las, T. 2006. "Potensi Zeolit untuk Mengolah Limbah Industri dan Radioaktif". *PTLR*, Batam, hal 1-8.
- Li, Y., Yi, H., Tang, X., Li, F., dan Yuan, Q. 2013. "Adsorption Separation of CO₂/CH₄ Gas Mixture on the Commercial Zeolites

at Atmospheric Pressure". *Chemical Engineering Journal*, 229, hal 50-56.

- Liu, X., Sun, W., Fan, Z., dan Zhang, L. 2012. "Adsorption of methane on several zeolites by Monte Carlo method". Advanced Materials Research, 512, hal. 1353-1357.
- Londar, E., Hamzah, F., Nurul, W. 2010." Pengaruh Karbon Terhadap Pembentukan Zeolit dari Abu Dasar dengan Metode Hidrotermal langsung" *Jurnal Kimia ITS*, FMIPA ITS, hal 1-13.
- Magee, H. Melissa. 2014. "Nitrogen Gas Adsorption in Zeolite 13X and 5A". *Thesis* Chemical Engineering Walla University.
- Martin A., Suryawan, B., Alhamid, I.M., Nasrudin. 2010. "Adsorpsi Isotermal CO bertekanan tinggi pada karbon aktif dengan metode volumetrik". *Jurnal Teknologi Makara UI*, 14, hal 128-132.
- Matranga, K.R., Stella, A., Myers, A.L., dan Glandt, E.D. 1992. "Porous materials for methane storage". *Sep. Sci.Technol*, 27, hal 1825.
- McMullan D. 1995. "Scanning electron microscopy 1928–1965". Scannin, 17, hal 175-185.
- Menon, V.C. dan Komarneni, S. 1998. "Porous Adsorbents for Vehicular Natural Gas Storage: A review". J.Porous Mater, 5, hal 43–58.
- Mimura, H., Yokota K., Akiba, K., dan Onodera, Y. 2001. "Alkali Hydrothermal Synthesis of Zeolites from Coal Fly Ash and Their Uptake Properties of Cesium Ion", *Journal of Nuclear Science* and Technology, 38, hal 766-772
- Mitchell, Lucas. 2014. "Adsorption of Light Gases and Gas Mixtures on Zeolite and Nanoporous Carbons". *Disertasi*, Chemical Engineering, Vanderbilt University USA.

- Mofarahi, M., dan Gholipour, F. 2014. "Gas Adsorption Separation of CO₂/CH₄ system using Zeolite 5A". *Microporous and Mesoporous Materials*, 200, hal 1-10.
- Molina, A. dan Poole, C. 2004. "A Comparative Study Using Two Methods To Produce Zeolit from Fly Ash". *Mineral Engineering*, 17, hal 167-173.
- Monemtabary, A., Niasar, M.S., Johanshahi, M., dan Ghoreyshi, A.A. 2013. "Equilibrium and Thermodynamic Studies of Methane Adsorption on Multi-Walled Carbon Nanotube." *Journal of Energy and Environment*, 4, hal 17-2.
- Montanari, T., Salla, I., Busca, G. 2008. "Ádsorption of CO on LTA Zeolite Adsorbents: An IR Investigatio". *Journal of Microporous and Mesoporous Materials*, 109, hal 216-222.
- Mota, J.B.P. 1999. "Impact of Gas Composition on Natural Gas Storage by Adsorption". *AIChE Journal*, 55, hal 90-98.
- Mullin, J.W. 2001. "Crystallization fourth ed". Butterworth Heinemann: Oxford.
- Murayana, N., Yanamoto, H., Shibata, J. 2002. "Zeolite Synthesis from Coal Fly Ash by Hydrotermal Reaction Using Various Alkali". *Int. J. Miner Process*, 64, hal 1-17.
- NOAA, 2015. "National Oceanic and Atmosphere Administration". [Online] Tersedia di: <u>http://www.noaanews.noaa.gov/</u>, diakses tanggal 11 Juni 2016.
- Nik, O.G., Chen, X.Y., dan Kaliaguine, S. 2012. "Functionalized Metal Organic Framework-Polyimide Mixed Matrix Membranes for CO₂/CH₄ Separation". *Membrane Science*, 413-414, hal 48-56.

- Nikmah, Syukuri R. A., 2009, "Sintesis Zeolit A dari abu dasar bebas sisa karbon dari PLTU PT. IPMOMI dengan metode hidrotermal langsung", Kimia FMIPA ITS, Surabaya.
- Ojha, K., Pranadhan, N.C, Samanta, A.N. 2004. "Zeolite from Fly Ash : Synthesis and Characterization". *Departement of Chemical Engineering*, Indian of Technology, 21, hal 555-564.
- Pandu, M.R., Priharnanto, W., dan Wibawa, G. 2014. "Regasification of LNG (Liquefied Natural Gas)". *Jurnal Teknik POMITS*, 3, hal 2301-9271.
- Philip, 2013. "Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES)". *Textbook*. Philip Innovation Services.
- Plazinski, W., Rudzinski W., Plazinski A. 2009. "Theoritcal Models of Sorption Kinetics Including A Surface Reaction Mechenism". *Review*, hal 5-8.
- Polprasert, C. 2007."Organic Waste Recycling -Technology and Management (3rd edition)". *IWA Publishing*, London
- Prijatama, H. dan Sumarnadi, E.T., 1996. "Mengubah Limbah menjadi Rupiah: Pemanfaatan limbah Abu Batubara PLTU". *Prosiding Pemaparan Hasil Litbang Ilmu Pengetahuan Teknik*, Bandung.
- Putra, P.R., Akbar, F., Zultiniar. 2014. "Sintesis Zeolit-A dari Kaolin Menggunakan Proses Peleburan dengan Variasi Perbandingan Volume Reaktan". Skripsi, Universitas Riau.
- Putri, P.A., Hajar, S.S., Wibawa, G., dan Winarsih. 2013. "Plant Design of Cluster LNG (Liquified Natural Gas) in Bukit Tua Well, Gresik". Jurnal Teknik POMITS, 2, hal 2337-3539.
- Querol, X., Moreno, N., Umana, J.C., Alastuey, A., Hernandez, E., Loprz-Soler, A dan Plana, F. 2002. "Synthesis of Zeolite from

Coal Fly Ash: An Overview". *International Journal of Coal Geology Acta*, 50, hal 413-423.

- Rayalu, S.S., Udhoji, D. S., Meshram, S. U., Naidu, R. R., Devota, S. 1999. "Estimation of Crystallity in Fly Ash-Based Zeolite-A Using XRD and IR Spectroscopy". National Env Eng Res Institut, Nagpur, India.
- Rayalu, S.S., Udhoji, J.S., Meshram, S.U., Naldu, R.R., dan Evotta, S. 2005. "Estimation of Crystallinity in Fly Ash-Based Zeolite A Using XRD and IR Spectroscopy". *Research Communications Current Science*, 89, hal 2147-2151.
- Remick, R.J. dan Tiller, A.J. 1985. "Advanced Methods for Low Pressure Storage of CNG". *Conference on Non-Petroleum Vehicular Fuels*, Arlington VA.
- Rios, C.A., William, C.D., Robert, C.L. 2009. "A Comparative Study of Two Method for The Synthesis of Fly Ash-Based Sodium and Potassium Type Zeolites". *Fuel*, 88, hal 1403-1416.
- Robson, H. 2001. "Verifield Synthesis of Zeolitic Material". *Elsevier Science*, B.V.
- Rojey, A., Jaffret, C., Durand, B., Jullian, S., dan Valais, M. 1997. "Natural Gases". *Fundamentals and Non-Renewable Resource*, 1, hal 281-381.
- Sabilia, P. 1996. "Guide to Material Characterization and Chemical Analysis, Second Edition". *John Willey-VCH*, New York.
- Said, N.F, Nurul, W. 2008. "Adsorpsi Cu(II) pada Zeolit A yang Disintesis dari Abu Dasar Batubara PT IPMOMI PAITON". *Jurnal Zeolit Indonesia*, 7, hal 1-11.
- Sakisci, M. 2015. "Study of Thermal and CH₄ Adsorption Properties". *Journal Thermal Analysis Calarim*, 122, hal 611-620.
- Salmasi, M. Fatemi, S., Doroudin R.M.2013. "Study of Carbon dioxide and Methane Equilibrium Adsorption on Silicoaluminophospate-34 zeotype and T-type zeolite as adsorbent". *Journal of Environement*, 10, hal 1067-1074.
- Scott M. Auerbach, Kathleen A.Corrado, Prabir K. Dutta. 2003. "Handbook of Zeolite Science and Technology". *HandBook*. New York.
- Shigemoto, N., Hayashi, H., Miyaura, K. 1993. "Selective Formation of Na-X Zeolite from Coal Fly Ash by Fusion with Sodium Hydroxide Prior to Hydrothermal Reaction". *Journal of Matter Science*, 28, hal 4781-4786.
- Sivakumar, B., Kannan, C., Karthikeyan, S. 2012. "Preparation and Characterization of Activated Carbon Prepared from *Balsamedendron Caudatum* Wood Waste Through Various Activation Processes". *Rasayan Journal of Chemistry*, 5, hal 321-327.
- Siregar, P., Salit, M.S., Rahman, M.Z.A, dan Dahlan, K.Z.H. 2011. "Thermogravimetric Analysis (TGA) and Differential Scanning Calometric (DSC) Analysis of Pineapple Leaf Fibre (PALF) Reinforced High Impact Polystyrene (HIPS) Composites". *Pertanika Journal Science and Technology*, 19, hal 161-170.
- Smart, L., and Moore, E. 1993. "Solid State Chemistry: An Introduction". London: Chapman & Hall University.
- Smill, Vaclav. 2015. "Natural Gas: Fuel for 21st Centuries". United Kingdom: John Wiley and Sons Ltd.

- Solar, C., Blanco, G.A., Vallone, A., Sapag, K. 2010. "Adsorption of Methane in Porous Materials as the Basis for the Storage Natural Gas". Universidad Nacional de San Luis, Argentina.
- Stadie, N.P., Murialdo, M., dam Ahn, C.C. 2013. "Annomalous Isosteric Enthalphy of Adsorption Methane on Zeolite-Templated Carbon". *Journal of the American Society*, 135, hal 990-993.
- Stallmach, F., Pusch, A., Splith, T., Horch, C., dan Merker, S. 2015. "NMR Relaxation and Diffusion Studies of Methane and Carbon Dioxide in Nanoporous ZIF-8 and ZSM-58". *Microporous and Mesoporous Materials*, 205, hal 36-39.
- Sun, W., Qu, Y., Yu, Q., Ni,J. 2008. "Adsorption of Organic Pollutans from Coking and Papermaking Wastewaters by Bottom Ash". *Journal of Hazardous Materials*. 154, hal 595-601.
- Suraidah, Chusnul. 2009. "Adsorpsi NOx pada Zeolit NaY yang dibuat dari Sekam Padi, Cu-NaY, dan CuO/NaY", *Thesis*, Institut Teknologi Sepuluh Nopember Surabaya
- Suzuki, I., Oki, S., Namba, S. 1986. "Determination of External Surface Area of Zeolites". *Journal of Catalysis*, 100, hal 219-227
- Swaidan, M. Hassan., Ahmad A. 2011. "Synthesis and Characterization of Activated Carbon from Saudi Arabian Dates Tree's Fronds Wastes". *International Conference on Chemical*, *Biological and Environmental Engineering*. 20, hal 25-31.
- Talu, O. 1992. "An Overview of Adsorptive Storage of Natural Gas". Proceeding of International Conference on Fundamental of Adsorption, 15, hal 655-662.
- Tanaka, H.et al. 2002. 'Formation of Na-A and Na-X Zeolites from waste solution in conversion of aol fly ash to zeolites". *Material Research Buletin*, 37, hal 1873-1884.

- Taylor, D., Henderson, B.M C. 1976. "Infrared Spectra of Anhydrous Members of Sodalite Family". Spectrochimica Acta, 33A, hal 283-290.
- Thompson, R., Huber P., dan Lee, Y. 1982. "Analysis of the growth of molecular sieve zeolite NaA in a batch precipitation system". *J. Cryst. Gr*, 56, hal 711–722.
- Tonkovich, Anna Lee. 2009. "Extension-Upgrading Methane using Ultra-Fast Thermal Swing Adsorption". *Skripsi*, Ohio University.
- Vasiliev, L.L. 2000. "Adsorbed Natural Gas Storage and Transportation Vessels". *International Journal of Thermal Sciences*, 39, hal 1047-1055.
- Wahyuni, S., Widiastuti, N. 2010. "Adsorpsi Ion Logam Zn(II) pada Zeolit A yang Disintesis dari Abu Dasar Batubara PT IPMOMI PAITON dengan Metode Batch". *Proseding Tugas Akhir*, Kimia FMIPA ITS.
- Wang, J.Q., Huang, Y., dan Pan, Y. 2014. "Hydrothermal synthesis of high purity zeolite A from natural kaolin without calcination". *Microporous and Mesoporous Materials*, 199, hal 50-56.
- West, A. R. 1989. "Solid State Chemistry and Its Application". John Willey & Sons, New York.
- Whyman, G. 1996. "Mesopore generation by organosilane surfactant during LTA zeolite crystallization, investigated by high-resolution SEM and Monte Carlo simulation". *Solid State Sciences*, 13, hal 750–756.
- Widiastuti N., Wu H., Ang H. M., Zhang D. 2011. "Removal of ammonium from greywater using natural zeolite". *Desalination*, 277, hal 15-23.
- Yang, H., Cheng, H., Du, H., Hawkins, R., Craig, F., Rin, Z., Omotoso, O., Munoz, V., Mikula, R. 2009. "Incorporating

platinum precursors a NaA-zeolite synthesis mixture promoting the formation of nanosized zeolite". *Microporous and Mesoporous Materials*, 177, hal 33-40.

- Yanti, Y. 2009. "Sintesis Zeolit A dan Zeolit Karbon Aktif dari Abu Dasar PLTU Paiton dengan Metode Peleburan". *Tesis Megister*, Institut Teknologi Sepuluh Nopember, Surabaya.
- Yaping, Y., Xiaoqiang, Z., Weilan, Q., Mingwen, W. 2008. "Synthesis of Pure Zeolites from Supersaturated Silicon and Aluminium Alkali Extracts from Fused Coal Fly Ash". *Fuel*, 87, hal 1880-1886.
- Yates, C. J. D. 1968. "Studies on the Surface area of Zeolites, as determined by Physical Adsorption and X-Ray Crystallography". *Canadian Journal of Chemsitry*, 46, hal 1695-1701.
- Yi, H., Li, F., Ning, P., Tang, X., Peng, J., Li, P., dan Deng, H. 2013. "Adsorption Separation of CO₂, CH₄, and N₂ on Microwave Activated Carbon". *Chemical Engineering Journal*, 215-216, hal. 635-642.
- Zhang, S.Y., Talu, O., dan Hayhurst, D.T. 1991. "High pressure adsorption of methane in zeolite NaX, MgX, CaX, SrX, and BaX". *The journal of Physical Chemistry*, 95, hal 1722-1726.
- Zhou, L.; Sun, Y.; Yang, Z.; dan Zhou, Y. 2005. "Hydrogen and methane sorption in dry and water-loaded multiwall carbon nanotubes". *Journal Colloid Interface Science*, 289, hal 347–351.
- Zulfa, A. 2011. "Uji Adsorpsi Gas Karbon Monoksida (CO) menggunakan zeolit Alam Malang dan Lampung". *Skripsi*, Universitas Indonesia.

1. Identifikasi Komposisi Kimia Abu Dasar Batubara

Gambar A2. Skema kerja identifikasi komposisi kimia abu dasar

2. Pemisahan kandungan Fe pada Abu Dasar

dasar

3. Pemisahan kandungan Ca pada Abu Dasar Batubara

Gambar A4. Skema kerja pemisahan kandungan Ca pada abu dasar

4. Sintesis Zeolit A dengan Bahan Murni

Gambar A5. Skena kerja sintesis zeolit-A bahan murni

Gambar A6. Skema kerja ekstraksi Si dan Al abu dasar dengan peleburan pada atmosfer udara

Gambar A7. Skema kerja ekstraksi Si dan Al abu dasar dengan peleburan pada atmosfer N₂

102

7. Analisis Kandungan Si, Al dan Na pada hasil Ekstrak

Gambar A8. Skema kerja analisa kandungan Si, Al dan Na ekstrak leburan atmosfer udara dan N₂ menggunakan ICP-AES

8. Sintesis Zeolit-A

Gambar A9. Skema kerja sintesis zeolit-A dari abu dasar

9. Sintesis Zeolit A-karbon

Gambar A10. Skema kerja sintesis zeolit A-Karbon

10. Pengujian Kapasitas Adsorpsi CH₄

Zeolit A

Zeolit A-tanpa karbon

Zeolit A-karbon

- dioven selama 2 jam dengan suhu 105°C
- didinginkan suhu ruang
- dimasukkan ke dalam desikator
- diambil ±0,5 gram
- dimasukkan ke dalam sampel holder
- *degassing* pada suhu 300°C selama 3 jam
- dilakukan vakum dengan pompa
- didinginkan hingga suhu ruang (29°C)
- dinyalakan MFC hingga menunjukkan angka nol
- dialirkan gas CH₄ selama 30 menit dengan laju alir 20 mL/menit
- diamati perubahan massa tiap 1 menit

Zeolit-A bahan Murni+CH₄

Zeolit A-Tanpa Karbon+CH₄

Zeolit A-karbon+CH₄

Gambar A11. Skema kerja pengujian kapasitas adsorspi gas CH₄

LAMPIRAN B PERHITUNGAN LARUTAN SINTESIS ZEOLIT A

1. Bahan

Bahan yang digunakan untuk sintesis zeolit-A adalah :

- Abu Dasar Batubara
- NaAlO₂
- Na₂SiO₃
- H₂O
- NaOH
- Air demineralisasi

2. Prosentase Komposisi Bahan

NaAlO₂ terdiri dari

 $Al_2O_3=53\%$

 $Na_2O = 42,5\%$

 $Fe_2O_3 = 0,05\%$ (diabaikan)

Na₂SiO₃ terdiri dari

 $Na_2O = 17,75\%$ $SiO_2 = 34,25\%$ $H_2O = 48\%$

3. Perhitungan Komposisi Bahan untuk Sintesis Zeolit-A dari Bahan Murni

Rasio komposisi molar bahan yang digunakan untuk sintesis zeolit-A yaitu: 3,165 Na₂O : Al_2O_3 : 1,926 SiO₂ : 128 H₂O

a) Massa NaAlO₂ yang diperlukan :

Massa $Al_2O_3 = n \times Mr$

= 1 mol x 101,96 gram/mol = 101,96 gram

Prosentase Al₂O₃ dalam NaAlO₂ adalah 53%, maka:

Massa NaAlO₂ = massa Al₂O₃
=
$$101.96$$
 gram
53%
= 192,3774 gram

b) Massa Na₂SiO₃ yang diperlukan

Massa SiO₂ = n x Mr = 1,926 mol x 60,09 gram/mol = 115,56 gram Prosentase SiO₂ dalam Na₂SiO₃ = 34,25%, maka gram Na₂SiO₃ yang harus diambil adalah: Massa Na₂SiO₃ = massa SiO₂ $\overline{34,25\%}$ = $\underline{115,56 \text{ gram}}$ $\overline{34,25\%}$ = 337,4015 gram

c) Massa H₂O yang diperlukan

Massa $H_2O = n x Mr$ = 128 mol x 18 gram/ mol = 2304 gram Prosentase H_2O dalam Na₂SiO₃ adalah 48% maka : Massa $H_2O = 48\% x$ massa Na₂SiO₃ = 48% x 337,4015 gram = 161,9527 gram Sehingga gram H_2O yang harus diambil adalah Massa $H_2O = 2304$ gram - 161,9527 gram = 2142,0437 gram d) Massa NaOH yang diperlukan Prosentase Na O dalam Na AlO, adalah 42.5% maka

 $\begin{array}{l} Prosentase \ Na_2O \ dalam \ NaAlO_2 \ adalah \ 42,5\% \ maka \\ Massa \ Na_2O = 42,5\% \ x \ massa \ NaAlO_2 \end{array}$

= 42,5% x 192,3774 gram = 81,7604 gram = 81,7604 gram Mol Na₂O 62 gram/mol = 1,3187 molProsentase Na₂O dalam Na₂SiO₃ adalah 17,75% Massa Na₂O = 17,75% x massa Na₂SiO₃ = 17,75% x 337,4015 = 59,8888 gram Mol NaO = 59,8888 gram 62 gram/mol = 0.9659 molTotal mol Na₂O dari NaAlO₂ dan Na₂SiO₃ = 1,3187 mol + 0.9659 mol= 2,2837 molMaka penambahan mol Na₂O yang dibutuhkan = 3.165 mol - 2.2837 mol= 0.8813 mol

Karena sumber Na₂O yang digunakan adalah NaOH, maka mol Na₂O yang ditambahkan 2 kali mol NaOH. Sehingga, massa NaOH yang harus ditambahkan adalah:

Mol NaOH	$= 2 \ge 0.8813 \mod 10^{-10}$
	= 1,7626 mol
Massa NaOH	= 1,7626 mol x 40 gram/mol
	= 70,5040 gram

Berdasarkan perhitungan yang telah dilakukan, massa bahan yang digunakan untuk sintesis zeolit-A masing-masing sebanyak :

NaAlO ₂	= 192,3774 gram
Na ₂ SiO ₃	= 337,4015 gram
H_2O	= 2142,0427 gram
NaOH	= 70,5040 gram

Namun, pada penelitian ini digunakan massa yang lebih kecil sebanyak ¹/₄ resep dari perhitungan massa, sehingga didapatkan komposisi massa bahan sebagai berikut :

NaAlO ₂	= 7,6951 gram
Na ₂ SiO ₃	= 13,4961 gram
H_2O	= 85,6817 gram
NaOH	= 2,8202 gram

LAMPIRAN C PERHITUNGAN PENAMBAHAN LARUTAN NaAlO₂ pada EKSTRAK ABU DASAR

Diketahui Konsentrasi Si, Al dan Na dari pengukuran menggunakan ICP-AES adalah sebagai berikut :

- Ekstrak peleburan dalam atmosfer Udara
 - Si =3155,7 ppm
 - Al =35,19 ppm
 - Na =5830,3 ppm
- Ekstrak peleburan dalam atmosfer N₂
 - Si =4160,3 ppm
 - Al =82,06 ppm
 - Na =5833,3 ppm

Perhitungan Molar pada Ekstrak hasil Peleburan dalam Atmosfer Udara

 $\bigstar mmol Si = [Si] x volume filtrat$

$$\overrightarrow{Ar Si}$$
mmol Si =
$$\overrightarrow{3155,7 \text{ ppm x } 0,2 \text{ L}}$$

$$28 \text{ gr/mol}$$
mmol Si = 22,54 mmol
maka mmol SiO₂ adalah :
mmol SiO₂=1 x 22,54 mmol
=22,54 mmol

 $\text{mmol Al} = \underline{[Al] \text{ x volume filtrat}} \\ \text{Ar Al} \\ \text{mmol Al} = \underline{35,19 \text{ ppm x } 0,2 \text{ L}} \\ \underline{26,98 \text{ gr/mol}} \\ \text{mmol Al} = 0,26 \text{ mmol} \\ \text{maka mmol Al}_2\text{O}_3 \text{ adalah} : \\ \text{mmol Al}_2\text{O}_3 = 0,5 \text{ x } 0,26 \text{ mmol} \\ =0,13 \text{ mmol}$

 $\bigstar mmol Na = [Na] x volume filtrat$

$$\overline{Ar Na}$$
mmol Na =
$$\overline{\frac{5830,3 \text{ ppm x } 0,2 \text{ L}}{23 \text{ gr/mol}}}$$
mmol Na = 50,69 mmol
maka mmol Na₂O adalah :
mmol Na₂O =0,5 x 50,69 mmol
=25,35 mmol

Penambahan NaAlO₂ dalam larutan 22,5 ml larutan NaOH 1,67 M adalah sebagai berikut :

 Massa NaOH yang diperlukan untuk membuat larutan NaOH 1,67M sebanyak 22,5 ml :

Massa NaOH = <u>1,67 M x 40 gr/mol x 22,5ml</u> 1000

Massa NaOH = 1,503 gram \checkmark Al₂O₃ total adalah

> $SiO_2/Al_2O_3 = 1,926$ maka : Al_2O_3 = SiO₂ 1,926 = 22,54 mmol Al_2O_3 1,926 = 11,70 mmol Al_2O_3 Maka banyaknya Al₂O₃ yang ditambahkan : Al_2O_3 yang ditambahkan =11,70 mmol-0,26 mmol =11,44 mmol Al_2O_3 yang ditambahkan =11,44 mmol x Mr Al_2O_3 = 11,44 x 101,96 mg/mmol =1166,422 mg =1,166 gram

✓ Banyaknya NaAlO₂ yang ditambahkan adalah : NaAlO₂ terdiri dari 50% Al₂O₃ dan 45% Na₂O maka :

 $NaAlO_{2} = \frac{100}{50} \times massa Al_{2}O_{3}$ $NaAlO_{2} = \frac{100}{50} \times 1,166 \text{ gram}$ $NaAlO_{2} = 2,332 \text{ gram}$

Mol Na₂O tambahan :

• Dari NaAlO₂ = 0, 45x 2,332 gram

=1,0494 gram :62 gram.mol⁻¹ =0,017 mol

• Dari Larutan = (0,5)x (1,67 Mx 22,5 ml)

Maka didapatkan perhitungan perbandingan molar sebagai berikut :

Mol Total		Perbandingan Molar terhadap	
		Al_2O_3	
Al_2O_3	0,0117	1	
SiO ₂	0,02254	1,926	
Na ₂ O	0,06	5,128	

Perhitungan Molar pada Ekstrak hasil Peleburan dalam atmosfer $N_{\rm 2}$

 $\bigstar mmol Si = [Si] x volume filtrat$

 $mmol Si = \frac{Ar Si}{4160,3 \text{ ppm x } 0,2 \text{ L}}$ mmol Si = 29,72 mmol

maka mmol SiO₂ adalah : mmol SiO_{2 =}1 x 29,72 mmol =29,72 mmol

mmol Al = [Al] x volume filtratAr Almmol Al = <u>82,06 ppm x 0,2 L</u><u>26,98 gr/mol</u>mmol Al = 0,61 mmolmaka mmol Al₂O₃ adalah :mmol Al₂O₃ =0,5 x 0,61 mmol=0,305 mmol

mmol Na = [Na] x volume filtratAr Na $mmol Na = <math display="block"> \frac{5833,3 \text{ ppm x } 0,2 \text{ L}}{23 \text{ gr/mol}}$ mmol Na = 50,72 mmol maka mmol Na₂O adalah : mmol Na₂O =0,5 x 50,72 mmol =25,36 mmol

Penambahan NaAlO $_2$ dalam larutan 22,5 ml larutan NaOH 1,67 M adalah sebagai berikut :

 Massa NaOH yang diperlukan untuk membuat larutan NaOH 1,67 M sebanyak 22,5 ml :

$$Massa NaOH = \frac{1,67 \text{ M x 40 gr/mol x 22,5ml}}{1000}$$

Massa NaOH = 1,503 gram

✓ Al_2O_3 total adalah

 $SiO_2/Al_2O_3 = 1,926$ maka : $Al_2O_3 = \underline{SiO_2}$

1.926 = <u>29,72 mm</u>ol Al_2O_3 1.926 Al_2O_3 = 15.43 mmolMaka banyaknya Al₂O₃ yang ditambahkan : Al₂O₃ yang ditambahkan =15,43 mmol-0,305 mmol =15,13 mmol Al_2O_3 yang ditambahkan =11,44 mmol x Mr Al_2O_3 = 15,13 x 101,96 mg/mmol =1542,65 mg =1,543 gram Banyaknya NaAlO₂ ditambahkan \checkmark vang adalah NaAlO₂ terdiri dari 50% Al₂O₃ dan 45% Na₂O maka : $NaAlO_2 = \frac{100}{50} x massa Al_2O_3$ NaAlO₂ = $\frac{100}{50}$ x 1,543 gram $NaAlO_2 = 3,086$ gram Mol Na₂O tambahan : Dari NaAlO₂ = 0, 45x 3,086 gram =1,387 gram :62 gram.mol⁻¹ =0,022 mol Dari Larutan = (0,5)x (1,67 Mx 22,5 ml)=0,018 mol Mol Na₂O total : = (0,025 mol+0,022 mol+0,017 mol)= 0.064 mol

:

Maka didapatkan perhitungan perbandingan molar sebagai berikut :

Tabel C2	Perhandingan	Molar pada	ekstrak le	buran atmos	fer N ₂
1 aber C2.	i ci banungan	willing paula	chouar ic	ouran annos	101 112

	U	
Mol Total		Perbandingan Molar terhadap
		Al_2O_3
Al_2O_3	0,0154	1
SiO ₂	0,02972	1,926
Na ₂ O	0,064	4,156

LAMPIRAN D PERHITUNGAN KRISTALINITAS HASIL PADATAN

✤ Prosentase kristalinitas relatif dihitung dengan membandingkan intensitas puncak-puncak khas zeolit A dari abu dasar terhadap puncak-puncak zeolit-A yang disintesis dari bahan murni :

% kristalinitas relatif =

 $\frac{\Sigma \text{ intensitas relatif zeolit A dari abu dasar x 100\%}{\Sigma \text{ intensitas relatif zeolit-A}}$

Tabel D1. Perhitungan kristinilitas dari zeolit A yang disintesis dari abu dasar terhadap zeolit-A komersil (Rayalu, 2005)

No.	20	Intensitas	Intesitas	Intesitas	Intesitas
		Zeolit-A	Zeolit-	Zeolit-A	Zeolit A-
		standar	А	dari abu	karbon
			murni	dasar	
1.	7,21	73,9	86,41	69,07	100
2.	10,25	58,1	71,90	46,38	-
3.	12,49	47,1	43,12	39,28	22,43
4.	16,13	37,2	32,57	-	39,98
5.	21,68	57,6	49,12	53,40	75,40
6.	24,01	95,8	79,21	89,29	-
7.	26,09	25,9	21,84	26,19	30,19
8.	27,13	80,3	83,47	78,39	-
9.	29,95	100	100	100	80,53
10.	34,16	60,9	67,15	62,45	49,58
	Σ	636,8	634,79	564,45	398,11
Kris	talinitas	100%	99,68%	88,64%	62,52%

LAMPIRAN E DATA POLA DIFRAKSI JOINT COMMITTEE on POWDER DIFFRACTION STANDARDS (JCPDS)

1. JCPDS SiO₂ (PDF 46-1045)

VERSION:	4			
COMMENT :	quartz (JCPDS 46	5-1045) B	OS from
K0 :	38.0000			
KOP :	5.4000	0		
SYMMETRY:	: HEXAGON	AL		
A :	4.91344			
C:	5.40524			
ALPHAT :	0.00	0000		
DIHKL :	4.2550	16.	1.00	0.00
0.00				
DIHKL:	3.3435	100.	1.00	0.00
1.00				
DIHKL:	2.4569	9.	1.00	1.00
0.00				
DIHKL:	2.2815	8.	1.00	0.00
2.00				
DIHKL:	2.2361	4.	1.00	1.00
1.00				
DIHKL:	2.1277	6.	2.00	0.00
0.00				
DIHKL:	1.8180	13.	1.00	1.00
2.00				
DIHKL:	1.5415	9.	2.00	1.00
1.00				
DIHKL:	1.3821	6.	2.00	1.00
2.00				
DIHKL:	1.3750	7.	2.00	0.00
3.00				

2. JCPDS Fe₂O₃ (PDF 33-664)

VERSION:	4			
COMMENT :	Fe203	Hematite	(JCPDS	33-664, EOS
not confi	(nmed)			
K0:	231.0	000		
KOP :	4.00	0000		
SYMMETRY:	HEXAG	SONAL.		
A:	5.0356	5		
C:	13.748	39		
ALPHAT :	0.	000000		
DIHKL:	3.6840) 30.	0.00	1.00
2.00				
DIHKL:	2.7000) 100.	1.00	0.00
4.00				
DIHKL:	2.5190) 70.	1.00	1.00
0.00				
DIHKL:	2.2920) 3.	0.00	0.00
6.00				
DIHKL:	2.2070	20.	1.00	1.00
3.00				
DIHKL:	2.0779) 3.	2.00	0.00
2.00				
DIHKL:	1.8406	5 40.	0.00	2.00
4.00				
DIHKL:	1.6941	45.	1.00	1.00
6.00				
DIHKL:	1.6367	7 1.	2.00	1.00
1.00				
DIHKL:	1.6033	\$ 5.	1.00	2.00
2.00				
DIHKL:	1.5992	2 10.	0.00	1.00
8.00				
DIHKL:	1.4859	30.	2.00	1.00
4.00				

3. JCPDS Al₂O₃ (PDF 46-1212)

VERSION: 4 COMMENT: Al2O3 corundum (JCPDS 46-1212. EOS) 254.000К0 : . KOP : 4.30000 SYMMETRY: HEXAGONAL А: 4.75870 12.9929 C: ALPHAT : 0.000000 3.4797 DIHKL: 45. 0.00 1.00 2.001.00 DIHKL: 2.5508100.0.004.0021. DIHKL: 2.3795 1.001.00 0.0066. DIHKL: 2.0853 1.00 1.00 3.00DIHKU: 1.740134. 0.002.004.001.6016 89. 1.00 1.00 DIHKL: 6.00DIHKL: 1.5110 14. 0.00 1.00 8.00 2.001.404523. 1.00DIHKL: 4.00DIHKL: 1.3737 27. 3.000.000.001.2392 29. DIHKL: 1.00 0.0010.00 1.2343 12... 1.00 DIHKL: 1.009.00 9. DIHKL: 1.0990 0.00 2.0010.00

LAMPIRAN F DATA DAN GRAFIK HASIL ANALISIS XRD

1. Abu Dasar sebelum dilakukan Pemisahan Fe dan Ca

Gambar F1. Difraktogram Abu Dasar sebelum Pemisahan Fe dan Ca

Tabel F1	. Data	hasil	XRD	Abu	Dasar	sebelum	Pemisahan
----------	--------	-------	-----	-----	-------	---------	-----------

Pos.	Height	FWHM	d-spacing	Rel.Int.
[°2Th.]	[cts]	Left	[Å]	[%]
		[°2Th.]		
20.9531	42.50	0.2007	4.23980	8.28
26.7274	512.99	0.0502	3.33549	100.00
29.5029	52.82	0.2676	3.02771	10.30
33.4127	35.66	0.8029	2.68183	6.95
35.7318	52.30	0.6691	2.51291	10.19
50.2002	24.58	0.4015	1.81739	4.79
55.4830	33.44	0.2007	1.65621	6.52
68.4717	29.98	0.2676	1.37031	5.84

2. Abu Dasar setelah Pemisahan Fe dan Ca

Gambar F2. Difraktogram Abu Dasar setelah Pemisahan Fe dan Ca

Pos.	Height	FWHM	d-spacing	Rel. Int.
[°2Th.]	[cts]	Left	[Å]	[%]
		[°2Th.]		
21.0223	44.27	0.2007	4.22600	5.58
26.6252	439.65	0.0502	3.34807	55.37
26.8517	444.36	0.0836	3.32033	55.97
29.9259	46.84	0.3346	2.98588	5.90
35.2866	52.18	0.2676	2.54359	6.57
36.5287	793.96	0.0612	2.45786	100.00
36.6348	406.05	0.0612	2.45708	51.14
39.4614	17.60	0.4896	2.28169	2.22
42.5466	57.71	0.3264	2.12310	7.27
44.7119	21.83	0.4896	2.07519	2.75
50.1929	49.85	0.4080	1.81613	6.28
54.8721	69.07	0.1020	1.67181	8.70

55.0700	58.07	0.1224	1.66627	7.31
59.9710	579.39	0.0816	1.54127	72.98
60.1357	291.37	0.0612	1.54127	36.70
68.1355	22.37	0.8160	1.37511	2.82
75.5605	14.63	0.4896	1.25735	1.84
77.6387	121.33	0.1020	1.22881	15.28

3. Padatan hasil Leburan dalam Atmosfer N2

-

Gambar F3. Difraktogram Padatan leburan abu dasar dalam atmosfer N_2

Tabel F3.	Data hasil XRD	Padatan	leburan	abu	dasar	dalam
	atmosfer N ₂					

Pos.	Height	FWHM Left	d-spacing	Rel. Int.
[°2Th.]	[cts]	[°2Th.]	[Å]	[%]
10.5170	8.68	0.8029	8.41180	2.59
16.8744	114.97	0.1004	5.25428	34.31
18.5767	20.54	0.3346	4.77648	6.13
20.9676	12.98	0.8029	4.23691	3.87

23.3731	18.35	0.8029	3.80602	5.48
24.9971	81.95	0.2342	3.56231	24.46
27.6301	31.48	0.5353	3.22853	9.39
29.3980	335.07	0.1171	3.03828	100.00
30.1355	142.52	0.1673	2.96559	42.53
31.7529	105.17	0.1004	2.81812	31.39
33.1105	55.69	0.2007	2.70562	16.62
34.2113	128.96	0.1673	2.62103	38.49
34.8105	274.49	0.1338	2.57728	81.92
35.3223	182.22	0.2676	2.54110	54.38
36.5640	62.62	0.1338	2.45761	18.69
37.2412	158.40	0.2007	2.41446	47.27
38.0273	102.11	0.2342	2.36634	30.47
39.9123	60.14	0.3346	2.25882	17.95
41.4208	63.98	0.4684	2.17998	19.09
44.6931	45.56	0.2676	2.02768	13.60
45.4279	43.77	0.4015	1.99657	13.06
46.8662	30.45	0.5353	1.93860	9.09
48.0675	74.03	0.1338	1.89292	22.09
49.5760	22.72	0.3346	1.83880	6.78
52.0578	68.85	0.2342	1.75682	20.55
53.5794	15.76	0.4015	1.71047	4.70
54.7189	23.84	0.4015	1.67751	7.11
56.4091	16.93	0.4015	1.63120	5.05
60.5653	3.06	0.8029	1.52883	0.91
64.2340	27.90	0.2007	1.45008	8.33
65.7013	53.73	0.2342	1.42121	16.04

4. Padatan hasil Leburan dalam Atmosfer Udara

Gambar F4. Difraktogram Padatan leburan abu dasar dalam atmosfer Udara

Tabel F4.	Data hasil XRD	Padatan	leburan	abu	dasar	dalam

Pos.	Height	FWHM Left	d-spacing	Rel. Int.
[°2Th.]	[cts]	[°2Th.]	[Å]	[%]
16.7880	43.06	0.0502	5.28113	25.49
21.2369	48.37	0.1004	4.18378	28.62
22.0172	168.97	0.0669	4.03723	47.70
24.5242	41.54	0.0669	3.62992	24.58
25.4976	116.26	0.0836	3.49350	68.81
26.4868	67.45	0.1004	3.34524	39.92
28.0786	14.71	0.4015	3.17798	8.70
28.6656	45.60	0.1004	3.11422	26.99
30.4665	83.77	0.2342	2.93412	49.58
33.4939	60.37	0.1004	2.67551	35.73
34.0624	157.36	0.1673	2.63215	100.00

34.8646	123.30	0.2342	2.57341	72.97
35.5486	60.69	0.2007	2.52544	35.92
38.1910	79.05	0.1673	2.35657	46.78
40.1995	22.61	0.5353	2.24334	13.38
41.7703	54.37	0.2007	2.16254	32.18
44.6551	22.81	0.4015	2.02931	13.50
46.7118	40.55	0.3346	1.94464	24.00
48.4621	28.65	0.4015	1.87842	16.96
50.5737	18.99	0.2342	1.81484	11.24
53.9880	19.46	0.3346	1.69848	11.52
59.5974	80.60	0.0816	1.54004	43.41

5. Zeolit-A dari bahan Kimia Murni

Gambar F5. Difraktogram Zeolit-A murni

	Tabel I	F5. Data hasil XRD	Zeolit-A murni	
Pos.	Height	FWHM Left	d-spacing	Rel. Int.
[°2Th.]	[cts]	[°2Th.]	[Å]	[%]
5.2534	141.27	0.5353	16.82217	11.94
7.2060	1058.12	0.1673	12.21697	86.41
10.2047	850.89	0.1004	8.66856	71.90
12.4873	510.26	0.1171	7.07735	43.12
16.1302	409.08	0.1171	5.48487	32.57
17.6745	25.99	0.2007	5.01821	2.20
20.4530	130.29	0.2007	4.34233	11.01
21.6768	581.33	0.1506	4.08312	49.12
22.9319	58.07	0.1338	3.87823	4.91
24.0967	937.43	0.2007	3.69334	79.21
26.1292	282.13	0.1840	3.41048	23.84
27.1291	987.80	0.2007	3.28345	83.47
29.0994	47.42	0.2007	3.06877	4.01

_					
	29.9992	1183.42	0.2509	2.97584	100.00
	30.9229	208.57	0.2007	2.89185	17.62
	32.6161	243.85	0.2007	2.74549	20.61
	33.4904	85.31	0.2342	2.67579	7.21
	34.1998	794.65	0.2007	2.61892	67.15
	35.7850	97.75	0.2007	2.50930	8.26
	36.6092	114.41	0.0669	2.45467	9.67
	38.0678	68.03	0.2676	2.36391	5.75
	39.5232	26.84	0.2007	2.28016	2.27
	40.2313	67.86	0.1673	2.24164	5.73
	41.5567	144.64	0.1004	2.17316	12.22
	42.2590	97.07	0.2342	2.13865	8.20
	42.9191	82.65	0.1338	2.10728	6.98
	43.5715	73.25	0.1673	2.07723	6.19
	44.2323	222.00	0.0669	2.04772	18.76
	44.9012	24.72	0.2007	2.01876	2.09
	47.3717	126.78	0.2007	1.91908	10.71
	47.9995	97.57	0.0669	1.89544	8.24
	49.1986	26.56	0.2007	1.85201	2.24
	49.7891	63.48	0.2676	1.83142	5.36
	52.0839	34.40	0.1673	1.75600	2.91
	52.6774	240.50	0.1506	1.73761	20.32
	53.2388	38.64	0.2007	1.72061	3.27
	54.3755	131.85	0.1004	1.68729	11.14
	54.8130	26.95	0.2342	1.67486	2.28
	56.5054	71.22	0.1673	1.62865	6.02
	57.5461	90.74	0.3011	1.60164	7.67
	58.6588	89.11	0.2342	1.57389	7.53
	60.2279	29.49	0.1673	1.53658	2.49
	60.7396	32.58	0.1338	1.52486	2.75
	61.3037	21.13	0.2676	1.51217	1.79
	62.8296	45.57	0.2007	1.47907	3.85
	63.3273	25.45	0.2007	1.46864	2.15
	64.2008	20.88	0.2007	1.45075	1.76
	65.2952	73.90	0.1338	1.42906	6.24

6. Zeolit-A dari abu dasar

Gambar F6. Difraktogram Zeolit-A dari abu dasar

	Tabel F6. Data hasil XRD Zeolit-A dari abu dasar				
Pos.	Height	FWHM Left	d-spacing	Rel. Int.	
[°2Th.]	[cts]	[°2Th.]	[Å]	[%]	
5.5038	117.43	0.8029	16.05743	11.59	
7.2248	699.91	0.1171	12.11851	69.07	
10.2476	470.01	0.2007	8.59883	46.38	
12.5134	398.02	0.1673	7.06269	39.28	
16.2102	266.48	0.2175	5.46806	26.30	
17.7153	41.18	0.2676	5.00675	4.06	
20.4833	93.10	0.1673	4.33597	9.19	
21.6886	541.15	0.1673	4.08278	53.40	
22.9152	32.78	0.2007	3.88102	3.23	
24.0137	904.80	0.1338	3.69984	89.29	
26.1013	265.39	0.0836	3.39998	26.19	
27.1109	794.31	0.1840	3.27732	78.39	
28.2035	99.86	0.2676	3.16419	9.86	
29.9953	1013.31	0.2175	2.97551	100.00	
30.9043	192.47	0.2007	2.89354	18.99	

32.6471	184.50	0.1338	2.74295	18.21
33.4333	138.05	0.1673	2.68023	13.62
34.1662	632.81	0.1338	2.61696	62.45
35.8666	102.71	0.1673	2.50378	10.14
36.6601	73.28	0.2342	2.45138	7.23
38.0944	59.65	0.2676	2.36232	5.89
40.1884	45.54	0.1673	2.24394	4.49
41.5916	124.47	0.2007	2.17142	12.28
42.2450	73.38	0.1004	2.13933	7.24
43.0468	56.19	0.2342	2.10133	5.55
43.5933	52.36	0.3011	2.07624	5.17
44.2667	146.69	0.3346	2.04621	14.48
46.1753	18.97	0.5353	1.96598	1.87
47.4640	94.13	0.3011	1.91557	9.29
48.0150	66.01	0.2342	1.89487	6.51
49.2182	22.48	0.2007	1.85132	2.22
49.8713	50.68	0.1338	1.82860	5.00
52.7092	198.03	0.1171	1.73664	19.54
53.2958	34.41	0.2007	1.71890	3.40
54.3966	107.76	0.2007	1.68669	10.63
56.5294	55.15	0.1673	1.62801	5.44
57.6555	85.04	0.3011	1.59886	8.39
58.7322	77.90	0.2007	1.57210	7.69
62.8824	39.41	0.2342	1.47796	3.89
64.3612	18.33	0.2007	1.44753	1.81
65.3118	55.82	0.1673	1.42874	5.51
65.9034	30.74	0.2007	1.41734	3.03
66.8499	90.72	0.2007	1.39955	8.95
68.7697	33.68	0.2007	1.36510	3.32
69.1883	99.55	0.1338	1.35786	9.82
7. Zeolit A-karbon

Gambar F7. Difraktogram Zeolit A-karbon

Pos.	Height	FWHM Left	d-spacing	Rel. Int.
[°2Th.]	[cts]	[°2Th.]	[Å]	[%]
6.1206	387.51	0.0669	14.44047	70.82
7.1958	547.18	0.1004	12.31925	100.00
10.1101	434.60	0.1338	8.74940	79.42
11.6673	123.80	0.1673	7.58493	22.63
12.4744	396.63	0.0836	7.12437	72.49
13.9039	301.67	0.1338	6.36942	55.13
15.3748	136.68	0.1338	5.76324	24.98
16.1296	218.77	0.1338	5.50198	39.98
17.6661	105.88	0.1338	5.02058	19.35
19.9989	94.99	0.1004	4.43990	17.36
20.3883	98.03	0.1338	4.35596	17.92
21.6912	412.57	0.1171	4.10465	75.40
23.2155	155.98	0.1338	3.83150	28.51

23.9301	478.11	0.1171	3.71867	87.38
24.2696	320.45	0.1004	3.66741	58.56
26.1080	165.17	0.1338	3.40934	30.19
26.5427	218.92	0.0669	3.35829	40.01
27.0654	380.79	0.1506	3.29460	69.59
27.6458	110.34	0.2007	3.22673	20.16
28.0777	192.72	0.2342	3.17807	35.22
29.1042	70.94	0.2007	3.06828	12.97
29.9000	440.64	0.1506	2.98841	80.53
30.8341	217.40	0.1506	2.89997	39.73
31.9379	91.85	0.1673	2.80222	16.79
32.5259	110.80	0.1338	2.75290	20.25
33.4271	112.30	0.3346	2.68071	20.52
34.1539	271.28	0.0836	2.62755	49.58
34.6252	146.78	0.2007	2.59065	26.82
35.7562	64.07	0.2007	2.51126	11.71
36.5129	62.92	0.1338	2.46093	11.50
37.2109	57.14	0.1673	2.41635	10.44
38.0188	48.76	0.2007	2.36684	8.91
39.4116	40.94	0.2007	2.28636	7.48
41.5133	68.86	0.1673	2.17533	12.58
42.1689	56.61	0.1338	2.14302	10.35
42.7937	91.61	0.2676	2.11317	16.74
44.1530	60.23	0.1338	2.05121	11.01
44.6543	34.60	0.1338	2.02935	6.32
47.2719	41.71	0.1004	1.92290	7.62
47.9235	27.71	0.2676	1.89827	5.06
49.9046	14.72	0.5353	1.82746	2.69
52.0099	36.56	0.1673	1.75833	6.68
52.5707	89.96	0.0836	1.74089	16.44
53.1498	26.54	0.2007	1.72328	4.85
54.2967	31.51	0.2676	1.68955	5.76
57.5597	25.46	0.1338	1.60130	4.65
58.1667	23.97	0.2007	1.58602	4.38
62.1443	13.88	0.2676	1.49373	2.54

LAMPIRAN G DATA DAN GRAFIK ADSORPSI-DESORPSI N₂

1.Data dan Grafik Adsorpsi-Desorpsi N2 pada Zeolit-A dari abu dasar

Summary Report

Surface Area

Single point surface area at P/Po = 0.268318682: 78.6183 m³/g

BET Surface Area: 75.2448 m²/g

Langmuir Surface Area: 103.0347 m²/g

t-Plot Micropore Area: 75.3938 m³/g

t-Plot External Surface Area: -0.1491 m²/g

BJH Adsorption cumulative surface area of pores between 1.7000 nm and 300.0000 nm diameter: 0.097 m²/g

BJH Desorption cumulative surface area of pores between 1.7000 nm and 300.0000 nm diameter: 0.2833 m³/g

Pore Volume

Single point adsorption total pore volume of pores less than 170.3915 nm diameter at P/Po = 0.988624757: 0.038070 cm²/g

t-Plot micropore volume: 0.038284 cm3/g

BJH Adsorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter: 0.000410 cm²/g

BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter: 0.001906 cm³/g

Pore Size

Adsorption average pore width (4V/A by BET): 2.02378 nm

BJH Adsorption average pore diameter (4V/A): 16.9157 nm

BJH Desorption average pore diameter (4V/A): 26.9093 nm

Freundlich

Qm C: 24.9646 ± 0.2282 cm3/g STP

m: -174.0943 ± 111.6148

Gambar G1. Data hasil Pengujian Adsorpsi-Desorpsi N₂ Zeolit-A dari abu dasar

Isotherm Linear Plot

Zeolit-A dari abu dasar

2. Data dan Grafik Adsorpsi-Desorpsi \mathbf{N}_2 pada Zeolit Akarbon

Summary Report

Surface Area

Single point surface area at P/Po = 0 268429776: 15 0578 m³/g

BET Surface Area: 14./551 mf/g

Langmuir Surface Area: 23.4171 m³/g

t Plot Micropore Area: 9.6853 m²/q

l-Piol External Surface Area. 5.0698 mº/g

BJH Adsorption cumulative surface area of pores between 1.7000 nm and 300.0000 nm diameter: 3.389 m//g

BJH Desorption cumulative surface area of pores between 1 7000 nm and 300 0000 nm diameter: 3 5911 m²/g

Pore Volume

Single point adsorption total pore volume of pores less than 157,0760 nm diameter at P/Po = 0.9876444141,0.011285 cm/g

t Plot micropore volume: 0.004908 cm²/q

BJH Adsorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter: 0.005565 cm³/g

BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter. 0.005549 cm²/g

Pore Size

Adsorption average pore width (4V/A by BET): 3.05933 nm

BJH Adsorption average pore diameter (4V/A). 6.5683 nm

BJH Desorption average pore diameter (4V/A): 6.1811 nm

Freundlich Qm·C: 3.0416 ± 0.1511 cmVg STP

m: 12.7647 \pm 3.2618

Gambar G3. Data hasil Pengujian Adsorpsi-Desorpsi N₂ Zeolit Aberkarbon

Isotherm Linear Plot

Gambar G4. Grafik isotermal Pengujian Adsorpsi-Desorpsi N₂ Zeolit-A dari abu dasar

LAMPIRAN H DATA DAN GRAFIK KAPASITAS ADSORPSI GAS CH4

1. Kapasitas adsorpsi CH₄ pada Zeolit-A Berbahan Kimia Murni

Aliran gas CO ₂	= 20 mL/menit
Suhu adsorpsi	= 30 °C
Massa holder	= 15,612 gram
Massa sampel (m ₀)	= 0,5405 gram
Tekanan luar	= 1 bar

Tabel H.1 Kapasitas Adsorpsi CH₄ dalam Zeolit-A dari Bahan Kimia Murni

t (menit)	Perubahan massa sampel pada menit ke-t (gram)	Kapasitas adsorpsi CO ₂ (% berat)
0	0.000000	0.000
1	0.011000	2.035
2	0.027000	4.995
3	0.031000	5.735
4	0.036000	6.660
5	0.041000	7.586
6	0.046000	8.513
7	0.048000	8.881
8	0.052000	9.620
9	0.054000	9.991
10	0.055000	10.176
11	0.056000	10.361
12	0.057000	10.547
13	0.056000	10.361

t (menit)	Massa sampel pada menit ke-t (gram)	Kapasitas adsorpsi CO ₂ (% berat)
14	0.057000	10.547
15	0.058000	10.731
16	0.059000	10.916
17	0.060000	11.100
18	0.063000	11.655
19	0.064000	11.840
20	0.066000	12.210
21	0.067000	12.396
22	0.069000	12.765
23	0.071000	13.136
24	0.074000	13.691
25	0.076000	14.061
26	0.076000	14.061
27	0.077000	14.246
28	0.078000	14.431
29	0.078000	14.431
30	0.078000	14.431

2. Kapasitas adsorpsi CH₄ pada Zeolit-A Tidak Berkarbon

Aliran gas CO ₂	= 20 mL/menit
Suhu adsorpsi	= 30 °C
Massa holder	= 15,612 gram
Massa sampel (m ₀)	= 0,5475 gram
Tekanan luar	= 1 bar

Tabel H.2 Kapasitas Adsorpsi CH₄ dalam Zeolit-A Tidak Berkarbon

t (menit)	Perubahan massa	Kapasitas adsorpsi	
(meme)	sampel pada	CO_2 (%	
	menit ke-t	berat)	
	(gram)	ŕ	
0	0.000000	0.000	
1	0.019000	3.508	
2	0.036000	6.647	
3	0.048000	8.863	
4	0.053000	9.785	
5	0.057000	10.524	
6	0.061000	11.263	
7	0.066000	12.186	
8	0.073000	13.478	
9	0.075000	13.848	
10	0.079000	14.586	
11	0.082000	15.140	
12	0.086000	15.879	
13	0.087000	16.064	
14	0.091000	16.802	
15	0.094000	17.356	
16	0.095000	17.541	
17	0.096000	17.725	
18	0.099000	18.279	
19	0.105000	19.387	
20	0.102000	18.833	
21	0.113000	20.864	
22	0.114000	21.049	
23	0.118000	21.787	
24	0.118000	21.787	
25	0.119000	21.972	
26	0.121000	22.341	
27	0.124000	22.895	
28	0.125000	23.080	

29	0.125000	23.080
30	0.125000	23.080

3. Kapasitas adsorpsi CH₄ pada Zeolit A-karbon

Aliran gas CO ₂	= 20 mL/menit
Suhu adsorpsi	= 30 °C
Massa holder	= 15,612 gram
Massa sampel (m ₀)	= 0,5475 gram
Tekanan luar	= 1 bar

Tabel H.3	Kapasitas A	Adsorpsi	CH ₄ dalam	Zeolit-A	Berkarbon
-----------	-------------	----------	-----------------------	----------	-----------

t (menit)	Perubahan massa sampel pada menit ke-t (gram)	Kapasitas adsorpsi CO ₂ (% berat)
0	0.000000	0.000
1	0.022000	4.018
2	0.041000	7.489
3	0.055000	10.046
4	0.062000	11.324
5	0.078000	14.247
6	0.083000	15.160
7	0.096000	17.534
8	0.107000	19.543
9	0.113000	20.639
10	0.122000	22.283
11	0.134000	24.475
12	0.139000	25.388
13	0.145000	26.484

14	0.151000	27.580
t (menit)	Massa sampel pada menit ke-t (gram)	Kapasitas adsorpsi CO ₂ (% berat)
15	0.158000	28.858
16	0.164000	29.954
17	0.171000	31.233
18	0.176000	32.146
19	0.183000	33.425
20	0.185000	33.790
21	0.193000	35.251
22	0.196000	35.799
23	0.197000	35.982
24	0.201000	36.712
25	0.204000	37.260
26	0.209000	38.174
27	0.212000	38.722
28	0.214000	39.087
29	0.217000	39.635
30	0.220000	40.183

LAMPIRAN I

DATA DAN GRAFIK KINETIKA ADSORPSI GAS CH4

1. Model Kinetika Orde Pertama Semu Pseudo Lagergren

Grafik model kinetika orde pertama semu pseudo lagergren dengan sumbu x adalah waktu (t) dan sumbu y berupa nilai ln (q_e-q_t) . Model kinetka orde pertama semu pseudo lagergren untuk ketiga jenis sampel dapat disajikan sebagai berikut.

I1. Model Kinetika Orde Pertama Semu Pseudo Lagergren untuk sampel zeolit-A dari bahan kimia murni

	ORDE SATU SEMU PSEUDO LAGERGREN			
Waktu (t)	q _e (mmol/gr)	q _t (mmol/gr)	$(\mathbf{q}_{e} - \mathbf{q}_{t})$	ln(q _e -q _t)
X				Y
0	0.244203177	0.000000000	0.244203177	-1.40975470
1	0.244203177	0.044036638	0.200166539	-1.60860556
2	0.244203177	0.064053292	0.180149885	-1.71396608
3	0.244203177	0.072059954	0.172143223	-1.75942846
4	0.244203177	0.128106585	0.116096592	-2.15333274
5	0.244203177	0.140116577	0.1040866	-2.26253203
6	0.244203177	0.144119908	0.100083269	-2.30175275
7	0.244203177	0.1561299	0.088073277	-2.42958611
8	0.244203177	0.152126569	0.092076608	-2.38513436

Tabel I.1Perhitungan Kinetika Orde Pertama Semu PseudoLagergren zeolit-A dari bahan kimia murni

9	0.244203177	0.148123239	0.096079939	-2.34257474
10	0.244203177	0.152126569	0.092076608	2.385134356
11	0.244203177	0.152126569	0.092076608	-2.38513436
12	0.244203177	0.172143223	0.072059954	-2.63025681
13	0.244203177	0.176146554	0.068056623	-2.68741523
14	0.244203177	0.188156546	0.056046631	-2.88157124
15	0.244203177	0.2081732	0.036029977	-3.32340399
16	0.244203177	0.200166539	0.044036638	-3.12273329
17	0.244203177	0.200166539	0.044036638	-3.12273329
18	0.244203177	0.212176531	0.032026646	-3.44118703
19	0.244203177	0.220183192	0.024019985	-3.72886910
20	0.244203177	0.224186523	0.020016654	-3.91119066
21	0.244203177	0.228189854	0.016013323	-4.13433420
22	0.244203177	0.228189854	0.016013323	-4.13433421
23	0.244203177	0.228189854	0.016013323	-4.13433421
24	0.244203177	0.232193185	0.012009992	-4.42201628
25	0.244203177	0.244203177	0.000000000	#NUM!
26	0.244203177	0.240199846	0.004003331	-5.52062857
27	0.244203177	0.244203177	0.000000000	#NUM!
28	0.244203177	0.244203177	0.000000000	#NUM!
29	0.244203177	0.244203177	0.000000000	#NUM!
30	0.244203177	0.244203177	0.000000000	#NUM!

I2. Model Kinetika Orde Pertama Semu Pseudo Lagergren untuk sampel zeolit-A dari abu dasar

Tabel I.2 Perhitungan Kinetika Orde Pertama Semu Pseudo Lagergren zeolit-A dari abu dasar

OR	ORDE SATU SEMU PSEUDO LAGERGREN				
Waktu	$\mathbf{q}_{\mathbf{e}}$	$\mathbf{q}_{\mathbf{t}}$	$(\mathbf{q}_{e} - \mathbf{q}_{t})$	ln(q _e -q _t)	
(t)	(mmol/gr)	(mmol/gr			
)			
X				Y	
0	0.3322764	0.0000000	0.3322765	-1.101787	
1	0.3322764	0.0680566	0.2642198	-1.330973	
2	0.3322764	0.1000832	0.2321931	-1.460185	
	0.3322764	0.1281065	0.2041698	-1.588802	
4	0.3322764	0.1721432	0.1601332	-1.831749	
5	0.3322764	0.1961632	0.1361132	-1.994268	
6	0.3322764	0.2121765	0.1200999	-2.119431	
7	0.3322764	0.2081732	0.1241032	-2.086641	
8	0.3322764	0.2201831	0.1120932	-2.188424	
9	0.3322764	0.2201831	0.1120932	-2.188424	
10	0.3322764	0.2281898	0.1040866	-2.262532	
11	0.3322764	0.2401998	0.0920766	-2.385134	
12	0.3322764	0.2722264	0.0600499	-2.812573	
13	0.3322764	0.2722264	0.0600499	-2.812577	
14	0.3322764	0.3162631	0.0160133	-4.134334	
15	0.3322764	0.3322764	0.0000000	#NUM!	
16	0.3322764	0.3242697	0.0080066	-4.827481	
17	0.3322764	0.3282731	0.0040033	-5.520628	

18	0.3322764	0.3282731	0.0040033	-5.520628
19	0.3322764	0.3082564	0.0240199	-3.728869
20	0.3322764	0.3122598	0.0200165	-3.911190
21	0.3322764	0.3082564	0.0240199	-3.728869
22	0.3322764	0.3122598	0.0200166	-3.911190
23	0.3322764	0.3122598	0.0200166	-3.911190
24	0.3322764	0.3242697	0.0080066	-4.827481
25	0.3322764	0.3227645	0.0000000	#NUM!
26	0.3322764	0.3282731	0.0040033	-5.520628
27	0.3322764	0.3282731	0.0040033	-5.520628
28	0.3322764	0.3322764	0.0000000	#NUM!
29	0.3322764	0.3322764	0.0000000	#NUM!
30	0.3322764	0.3322764	0.0000000	#NUM!

I3. Model Kinetika Orde Pertama Semu Pseudo Lagergren untuk sampel zeolit A- berkarbon

Tabel I.3 Perhitungan Kinetika Orde Pertama Semu Pseudo Lagergren zeolit A-karbon

	ORDE SATU SEMU PSEUDO LAGERGREN				
Waktu (t)	q _e (mmol/gr)	q _t (mmol/gr)	$(\mathbf{q}_{e} - \mathbf{q}_{t})$	ln(q _e -q _t)	
Х				Y	
0	0.580483	0.000000000	0.580482962	-0.54389482	
1	0.580483	0.092076608	0.488406354	-0.71660752	
2	0.580483	0.244203177	0.336279785	-1.08981177	
3	0.580483	0.300249808	0.280233154	-1.27213333	

-				
4	0.580483	0.348289777	0.232193185	-1.46018556
5	0.580483	0.384319754	0.196163208	-1.62880827
6	0.580483	0.412343069	0.168139892	-1.78295895
7	0.580483	0.436363054	0.144119908	-1.93710963
8	0.580483	0.472393031	0.108089931	-2.22479171
9	0.580483	0.476396362	0.104086600	-2.26253203
10	0.580483	0.476396362	0.104086600	-2.26253203
11	0.580483	0.488406354	0.092076608	-2.38513435
12	0.580483	0.492409685	0.088073277	-2.42958612
13	0.580483	0.516429669	0.064053292	-2.74803985
14	0.580483	0.512426339	0.068056623	-2.68741523
15	0.580483	0.516429669	0.064053292	-2.74803985
16	0.580483	0.524436331	0.056046631	-2.88157124
17	0.580483	0.524436331	0.056046631	-2.88157124
18	0.580483	0.524436331	0.056046631	-2.88157124
19	0.580483	0.524436331	0.056046631	-2.88157124
20	0.580483	0.540449654	0.040033308	-3.21804348
21	0.580483	0.544452985	0.036029977	-3.32340399
22	0,580483	0.576479631	0.004003331	-5.52062857
23	0.580483	0.564469639	0.016013323	-4.13433421
24	0.580483	0.588489623	-0.00800662	#NUM!
25	0.580483	0.584486293	-0.00400331	#NUM!
26	0.580483	0.584486293	-0.00400331	#NUM!
27	0.580483	0.580482962	0.00000000	#NUM!

28	0.580483	0.580482962	0.00000000	#NUM!
29	0.580483	0.580482962	0.00000000	#NUM!
30	0.580483	0.580482962	0.00000000	#NUM!

Berdasarkan pada perhitungan yang didapatkan pada Tabel I1-I3, maka diperoleh grafik model kinetika orde pertama semu pseudo lagergren untuk ketiga sampel zeolit-A sebagai berikut

Gambar I1. Plot Orde Satu Semu Pseudo Lagergren

Dimana berdasarkan persamaan 2.3 : ln (qe-qt) = ln qe- kf.t

• Zeolit-A Bahan Kimia Murni

Y=0,0002x-2,4646

ln qe = -2,4646Kf = 0,0002R² = 1E-06 • Zeolit-A dari abu dasar

Y=-0,041x-2,069

 $\begin{array}{ll} \ln qe &= -2,069 \\ Kf &= -0,041 \\ R^2 &= 0,0436 \end{array}$

Zeolit A-karbon

Y=0,0163x-2,1123

 $\begin{array}{ll} \ln qe &= -2,1123 \\ Kf &= 0,0163 \\ R^2 &= 0,0113 \end{array}$

2. Model Kinetika Orde Kedua Semu Pseudo Ho

Grafik model kinetika orde kedua semu pseudo Ho dengan sumbu x adalah waktu (t) dan sumbu y berupa nilai t/qt. Model kinetka orde kedua semu pseudo Ho untuk ketiga jenis sampel yang telah dialakukan pengujian kapasitas adsorpsi dapat disajikan sebagai berikut

I4. Model Kinetika Orde Kedua Semu Pseudo Ho untuk zeolit-A dari bahan kimia murni

Tabel I.4 Perhitungan Kinetika Orde Kedua Semu Pseudo Ho zeolit-A dari bahan kimia murni

ORDE KEDUA SEMU PSEUDO Ho				
Waktu (t)	q _t (mmol/gr)	t/q _t		
X		Y		
0	0.000000000	#DIV/0!		
1	0.044036638	22.70836364		
2	0.064053292	31.224		
3	0.072059954	41.632		

4	0.128106585	31.224
5	0.140116577	35.68457143
6	0.144119908	41.632
7	0.1561299	44.83446154
8	0.152126569	52.58778947
9	0.148123239	60.76021622
10	0.152126569	65.73473684
11	0.152126569	72.30821053
12	0.172143223	69.70939535
13	0.176146554	73.80218182
14	0.188156546	74.40612766
15	0.2081732	72.05538462
16	0.200166539	79.93344
17	0.200166539	84.92928
18	0.212176531	84.83501887
19	0.220183192	86.29178182
20	0.224186523	89.21142857
21	0.228189854	92.02863158
22	0.228189854	96.41094737
23	0.228189854	100.7932632
24	0.232193185	103.3622069
25	0.244203177	102.3737705
26	0.240199846	108.2432
27	0.244203177	110.5636721
28	0.244203177	114.658623

29	0.244203177	118.7535738
30	0.000000000	122.8485246

I5. Model Kinetika Orde Kedua Semu Pseudo Ho untuk zeolit-A dari abu dasar

Tabel I.5 Tabel Perhitungan Kinetika Orde Kedua Semu Pseudo HO zeolit-A dari abu dasar

ORDE KEDUA SEMU PSEUDO Ho			
Waktu (t)	q _t (mmol/gr)	t/q _t	
X	(Y	
0	0.0000000	#DIV/0!	
1	0.0680566	14.69364706	
2	0.1000832	19.98336	
3	0.1281065	23.418	
4	0.1721432	23.23646512	
5	0.1961632	25.48897959	
6	0.2121765	28.27833962	
7	0.2081732	33.62584615	
8	0.2201831	36.33338182	
9	0.2201831	40.87505455	
10	0.2281898	43.82315789	
11	0.2401998	45.7952	
12	0.2722264	44.08094118	
13	0.2722264	47.75435294	
14	0.3162631	44.26693671	

15	0.3322764	45.14313253
16	0.3242697	49.34162963
17	0.3282731	51.78614634
18	0.3282731	54.83239024
19	0.3082564	61.63698701
20	0.3122598	64.04923077
21	0.3082564	68.12509091
22	0.3122598	70.45415385
23	0.3122598	73.65661538
24	0.3242697	74.01244444
25	0.3227645	75.23855422
26	0.3282731	79.20234146
27	0.3282731	82.24858537
28	0.3322764	84.26718072
29	0.3322764	87.27672289
30	0.3322764	90.28626506

I6. Model Kinetika Orde Kedua Semu Pseudo Ho untuk zeolit A-karbon

Tabel I.6 Tabel Perhitungan Kinetika Orde Kedua Semu Pseudo Ho zeolit A-karbon

ORDE KEDUA SEMU PSEUDO			
	Ho		
Waktu	aktu q _t t/q _t		
(t)	(mmol/gr)		
X		Y	
0	0.00000000	#DIV/0!	

1	0.092076608	10.86052174
2	0.244203177	8.189901639
3	0.300249808	9.991680000
4	0.348289777	11.48468966
5	0.384319754	13.01000000
6	0.412343069	14.55099029
7	0.436363054	16.04168807
8	0.472393031	16.93505085
9	0.476396362	18.89183193
10	0.476396362	20.99092437
11	0.488406354	22.52222951
12	0.492409685	24.36995122
13	0.516429669	25.17283721
14	0.512426339	27.321
15	0.516429669	29.0455814
16	0.524436331	30.50894656
17	0.524436331	32.41575573
18	0.524436331	34.32256489
19	0.524436331	36.22937405
20	0.540449654	37.00622222
21	0.544452985	38.57082353
22	0.576479631	38.16266667
23	0.564469639	40.74621277
24	0.584896231	40.78236735
25	0.584486293	42.77260274

26	0.584486293	44.48350685
27	0.580482962	46.5129931
28	0.580482962	48.23569655
29	0.580482962	49.9584
30	0.580482962	51.68110345

Berdasarkan pada perhitungan yang didapatkan pada Tabel I4-I6, maka diperoleh grafik model kinetika orde kedua semu pseudo Ho dari ketiga sampel zeolit-A dapat ditunjukkan pada Gambar H2

Dimana berdasarkan persamaan 2.5 : $\frac{t}{t} = \frac{1}{t} + \frac{1}{T}T$

$$\frac{t}{qt} = \frac{1}{Ks \ qe^2} + \frac{1}{qe} T$$

Zeolit-A Bahan Kimia Murni			
Y=3,3699x+23,178 $1/qe=3,3699$ $q_e=0,2967$			
	$1/(ks.qe^2) = 23,178$	Ks=0,4891	
	$H = Ks. qe^2$	H=0,0349	

Zeolit-A dari abu dasar			
Y=2,5683x+12,547	1/qe = 2,5683	q _e =0,3894	
	$1/(ks.qe^2) = 12,547$	Ks=0,5256	
	$H = Ks. q_e$	H=0,0797	
Zeolit A-karbon			
Y=1,5423x+5,3098	$1/q_e = 1,5423$	$q_e = 0,6484$	
	$1/(ks.q_e^2) = 5,3098$	Ks=0,4480	
	$H = Ks. q_e^2$	H=0,1883	

3. Model Kinetika Difusi Intrapartikel

Grafik model kinetika difusi intrapartikel dengan sumbu x adalah waktu pangkat setengah $(t^{1/2})$ dan sumbu y berupa nilai dari qt. Model kinetika difusi intrapartikel untuk ketiga jenis sampel yang telah dialakukan pengujian kapasitas adsorpsi dapat disajikan sebagai berikut

I7. Model Kinetika Difusi Intrapartikel untuk sampel zeolit-A dari bahan kimia murni

Tabel I.7	Perhitungan	Kinetika	Difusi	Intrapartikel	zeolit-A
	dari bahan l	kimia mui	rni		

KINETIKA DIFUSI INTRAPARTIKEL			
Waktu	t ^{1/2}	$\mathbf{q}_{\mathbf{t}}$	
(t)		(mmol/g)	
	Χ	Y	
0	0.00000	0.000000000	
1	1,00000	0.044036638	
2	1,41421	0.064053292	
3	1,73205	0.072059954	
4	2,00000	0.128106585	
5	2,23607	0.140116577	

6	2,44949	0.144119908
7	2,64575	0.1561299
8	2,82843	0.152126569
9	3,00000	0.148123239
10	3,16228	0.152126569
11	3,31662	0.152126569
12	3,46410	0.172143223
13	3,60555	0.176146554
14	3,74166	0.188156546
15	3,87298	0.2081732
16	4,00000	0.200166539
17	4,12311	0.200166539
18	4,24264	0.212176531
19	4,35889	0.220183192
20	4,47214	0.224186523
21	4,58258	0.228189854
22	4,69042	0.228189854
23	4,79583	0.228189854
24	4,89898	0.232193185
25	5,00000	0.244203177
26	5,09902	0.240199846
27	5,19615	0.244203177
28	5,29150	0.244203177
29	5,38516	0.244203177
30	5,47723	0.000000000

I8. Model Kinetika Difusi Intrapartikel untuk sampel zeolit-A dari abu dasar

KINETIKA DIFUSI INTRAPARTIKEL			
Waktu (t)	t ^{1/2}	q _t (mmol/g)	
	X	Y	
0	0.00000	#DIV/0!	
1	1.00000	14.69364706	
2	1.41421	19.98336	
3	1.73205	23.418	
4	2.00000	23.23646512	
5	2.23607	25.48897959	
6	2.44949	28.27833962	
7	2.64575	33.62584615	
8	2.82843	36.33338182	
9	3.00000	40.87505455	
10	3.16228	43.82315789	
11	3.31662	45.7952	
12	3.46410	44.08094118	
13	3.6055	47.75435294	

3.74166

3.87298

4.00000

14 15

16

44.26693671

45.14313253 49.34162963

Tabel I.8 Perhitungan Kinetika Difusi Intrapartikel zeolit-A dari abu dasar

17	4.12311	51.78614634
18	4.24264	54.83239024
19	4.35889	61.63698701
20	4.47214	64.04923077
21	4.58258	68.12509091
22	4.69042	70.45415385
23	4,79583	73.65661538
24	4,89898	74.01244444
25	5.00000	75.23855422
26	5.09902	79.20234146
27	5.19615	82.24858537
28	5.29150	84.26718072
29	5.38516	87.27672289
30	5.47723	90.28626506

I9. Model Kinetika Difusi Intrapartikel untuk sampel zeolit A-karbon

Tabel I.9 Perhitungan Kinetika Difusi Intrapartikel zeolit Akarbon

KINETIKA DIFUSI INTRAPARTIKEL			
Waktu t ^{1/2} q _t			
(t)		(mmol/g)	
	Χ	Y	
0	0.00000	0	
1	1.00000	0.092076608	
2	1.41421	0.244203177	

3	1.73205	0.300249808
4	2.00000	0.348289777
5	2.23607	0.384319754
6	2.44949	0.412343069
7	2.64575	0.436363054
8	2.82843	0.472393031
9	3.00000	0.476396362
10	3.16228	0.476396362
11	3.31662	0.488406354
12	3.46410	0.492409685
13	3.6055	0.516429669
14	3.74166	0.512426339
15	3.87298	0.516429669
16	4.00000	0.524436331
17	4.12311	0.524436331
18	4.24264	0.524436331
19	4.35889	0.524436331
20	4.47214	0.540449654
21	4.58258	0.544452985
22	4.69042	0.576479631
23	4,79583	0.564469639
24	4,89898	0.588489623
25	5.00000	0.584486293
26	5.09902	0.584486293
27	5.19615	0.580482962

28	5.29150	0.580482962
29	5.38516	0.580482962
30	5.47723	0.580482962

Berdasarkan pada perhitungan yang didapatkan pada Tabel I7-I9, maka diperoleh grafik model kinetika difusi intrapartikel yang ditunjukkan pada Gambar I3.

Zeolit-A Bahan Kimia Murni			
Y=0,045x+0,0157	Kd= 0,045		
	C = 0,0157		
Zeolit-A dari abu dasar			
Y=0,0603x+0,0412	Kd = 0,0603		
	C = 0.0412		
Zeolit A-karbon			
Y=0,0944x+0,1287	Kd = 0,0944		
	C = 0,1287		

BIODATA PENULIS

Penulis dilahirkan di Surabaya, 27 Juli 1994 dan merupakan anak terakhir dari 3 bersaudara. Penulis telah menempuh pendidikan formal di TK Kartika V-91 Surabaya, SDN Sawunggaling VIII Surabaya, SMPN 16 Surabaya dan SMAN 6 Surabaya. Pada tahun 2013, penulis diterima di Jurusan Kimia FMIPA-ITS Surabaya melalui jalur SBMPTN dan terdaftar dengan NRP 1413 100 075. Pada tahun 2015, penulis pernah menjalani kerja praktik di PT. Ajinomoto Indonesia, Mojokerto Factory selama satu

bulan. Penulis juga aktif mengikuti berbagai perlombaan karya tulis ilmiah dengan beberapa penghargaan seperti Finalis Lomba Desain Poster Hari Gizi Nasional tahun 2014, mendapatkan medali perak pada PIMNAS XXIX 2016 Bidang Penelitian Eksakta dari DIKTI dengan judul penelitian "Sintesis dan Uji Toksisitas Senyawa Kompleks Turunan Imidazol dengan Variasi Logam Cu (II) dan Co (II) sebagai Senyawa Anti Kanker Baru" dan PKM-Karsa Cipta Didanai dengan judul"Electrical Water Purifier". Pada masa akhir studi, penulis mengambil bidang minat Kimia Material dan Energi di bawah bimbingan Ibu Nurul Widiastuti, Ph. D dengan penelitian mengenai adsorpsi gas CH₄ pada zeolit-A dan zeolit-A karbon dari abu dasar.

Email : randyyusuf16@yahoo.com Telp. : 085 730 533 810