

TUGAS AKHIR - TE 141599

PENGURANGAN RUGI DAYA DENGAN REKONFIGURASI DAN PENEMPATAN KAPASITOR MEMPERTIMBANGKAN KONTINGENSI MENGGUNAKAN METODE BINARY INTEGER PROGRAMMING DAN PARTICLE SWARM OPTIMIZATION Nasrullah Akbar Isnan NRP 2213106063

Dosen Pembimbing Prof. Ir. Ontoseno Penangsang, M.Sc, Ph.D. Dedet Candra Riawan, ST., M.Eng., Ph.D.

JURUSAN TEKNIK ELEKTRO Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2016

FINAL PROJECT - TE 141599

LOSS POWER REDUCING BY RECONFIGURATION AND CAPACITOR PLACEMENT FOR CONTINGENCY EFFECT USE BINARY INTERGER PROGRAMMING AND PARTICLE SWARM

Nasrullah Akbar Isnan NRP 2213106063

Advisor

Prof. Ir. Ontoseno Penangsang, M.Sc, Ph.D. Dedet Candra Riawan, ST., M.Eng., Ph.D.

ELECTRICAL ENGINEERING DEPARTMENT Faculty of Industrial Technology Sepuluh Nopember Institute of Technology Surabaya 2016

PENGURANGAN RUGI DAYA DENGAN REKONFIGURASI DAN PENEMPATAN KAPASITOR MEMPERTIMBANGKAN KONTINGENSI MENGGUNAKAN METODE BINARY INTEGER PROGRAMMING DAN PARTICLE SWARM OPTIMIZATION

TUGAS AKHIR

Diajukan untuk Memenuhi Sebagian Persyaratan Untuk Memperoleh Gelar Sarjana Teknik Pada Bidang Studi Teknik Sistem Tenaga Jurusan Teknik Elektro Institut Teknologi Sepuluh Nopember

Menyetujui:

Dosen Pembimbing I

Julia Pram

Prof. Ir. Ontoseno Penangsang, M.Sc., Ph.D.

NIP. 194907151974121001

Dosen Pembimbing II

25-61-16

Dedet Candra Riawan, ST., M.Eng., Ph.D.

NIP. 197311192000031001

SURABAYA IANUARI, 2016

Pengurangan Rugi Daya dengan Rekonfigurasi dan Penempatan Kapasitor mempertimbangkan Kontingensi Menggunakan Metode Binary Integer Programming dan Particle Swarm Optimization

Nasrullah Akbar Isnan 2213 106 063

Dosen Pembimbing I: Prof. Ir. Ontoseno Penangsang, M.Sc, Ph.D. Dosen Pembimbing II: Dedet Candra Riawan, ST., M.Eng., Ph.D.

ABSTRAK

Sistem distribusi merupakan bagian dari sistem tenaga listrik untuk menyalurkan tenaga listrik dari sistem transmisi ke konsumen. Saat ini permintaan daya listrik semakin meningkat sehingga penyaluran tenaga listrik akan semakin bertambah luas yang berakibat jaringan tegangan menengah dan tegangan rendah yang digunakan juga akan semakin bertambah panjang. Penambahan panjangnya saluran jaringan distribusi ini akan mengakibatkan penambahan rugi daya yang dihasilkan dan dapat berpontensi terjadinya kontingensi.

Rekonfigurasi dilakukan dengan cara mengubah status ON/OFF dari tie switch dan sectionalizing switch. Dengan mengubah status switch, kita mendapatkan suatu konfigurasi jaringan yang tepat jika terjadi masalah kontingensi. Dengan menggunakan metode Binary Integer Programming kita mendapat konfigurasi paling optimal. Jika setelah rekonfigurasi terdapat nilai profil tegangan diluar standart (±5%) diperlukan kapasitor bank untuk mengurangi kerugian daya dan meningkatkan level tegangan. Dengan menggunakan metode Particle Swarm Optimization diharapkan mendapatkan lokasi dan nilai kapasitor yang optimal guna untuk mengurangi rugi daya akibat terjadinya kontingensi.

Kata Kunci : Binary Integer Programming, Jaringan Distribusi Listrik, Particle Swarm Optimization, Rugi daya, Kontingensi

Loss Power Reducing By Reconfiguration And Capacitor Placement For Contingency Effect Use Binary Interger Programming And Particle Swarm Optimization

Nasrullah Akbar Isnan 2213 106 063

advisor I: Prof. Ir. Ontoseno Penangsang, M.Sc, Ph.D. advisor II: Dedet Candra Riawan, ST., M.Eng., Ph.D.

ABSTRAK

The distribution system is part of the power system to deliver electricity from the transmission system to the consumer. Currently the demand for electric power has increased so electricity power distribution will result in increasingly network size of medium voltage and low voltage is used also will be growing longer. The addition of the length of channel distribution network will result in additional power losses are generated and can be equally harmful occurrence of a contingency.

Reconfiguration is done by changing the status of ON / OFF of the switches and sectionalizing tie switch. By changing the switch status, we get a proper network configuration in case of problems contingency. By using the method Binary Integer Programming we got the most optimal configuration. If there is a value after the reconfiguration of the voltage profile under standard (± 5%), resulting in a large power loss value then the required capacitor banks to reduce energy losses and improve voltage level. By using Particle Swarm Optimization method is expected to get the location and optimal capacitor value in order to reduce power loss due to the occurrence of a contingency.

Keyword : Binary Integer Programming, Electricity Distribution Networks, Particle Swarm Optimization, power loss, Contingency

KATA PENGANTAR

Puji syukur alhamdulillah penulis panjatkan kehadirat Allah SWT atas rahmat, taufik dan hidayah-Nya, sehingga penyusunan tugas akhir dengan judul "Pengurangan Rugi Daya dengan Rekonfigurasi dan Penempatan Kapasitor Mempertimbangkan Kontingensi Menggunakan metode *Binary Integer Programming* dan *Particle Swarm Optimization*." dapat diselesaikan dengan baik.

Penulis menyadari bahwa selama proses penyusunan tugas akhir ini mengalami kendala-kendala, namun berkat nasihat, bimbingan, bantuan dari berbagai pihak dan berkah dari Allah SWT sehingga semua kendala yang ada dapat diatasi oleh penulis.

Dalam kesempatan ini penulis ingin menyampaikan ucapan terima kasih kepada :

- 1. Ayah, ibu dan seluruh keluarga yang selalu mendukung penulis dalam meyelesaikan studi.
- 2. Prof. Ir. Ontoseno Penangsang, M.Sc, PhD dan Dedet Candra Riawan ST., M.Eng., Ph.D. sebagai dosen pembimbing yang telah memberikan bimbingan, motivasi, arahan dan saran-saran yang sangat berharga kepada penulis dalam menyusun tugas akhir.
- 3. Keluarga Lab. B103, Tim 4, serta keluarga besar LJ gasal 2013.
- 4. Seluruh dosen yang telah memberikan ilmunya selama studi, karyawan, dan keluarga besar Jurusan Teknik Elektro ITS.

Dengan segala kerendahan hati penulis menyadari terdapat banyak kekurangan, sehingga penulis mengharapkan kritik dan saran demi kesempurnaan tugas akhir ini dari semua pihak.

Surabaya, Desember 2015
Penulis

DAFTAR ISI

ABST	RAK	i
ABST	RACT	iii
KATA	A PEN <mark>GAN</mark> TAR	v
DAFT	'AR ISI	vii
DAFT	AR GAMBAR	ix
DAFT	'AR TABEL	xi
BAB I	PENDAHULUAN	1
	Latar Belakang	
	Permasalahan	
	Tujuan	
1.4	Metodologi	3
	Sistemtika Pembahasan	
1.6	Relevansi dan Manfaat	4
BAB	II SISTEM DISTRIBUSI, REKONFIGURASI	DAN
	KAPASITOR UNTUK MENGURANGI RUGI DAYA	5
2.1	Sistem Distribusi Tenaga Listrik[3]	5
	2.1.1 Sistem Jaringan Distribusi Radial	6
	2.1.2 Rekonfigurasi Pada Sistem Distribusi Radial	8
	Kapasitor Bank[6]	
2.3	Binary Integer Programming[9]	10
2.4	Particle Swarm Optimization	11
BAB	III PERANCANGAN SISTEM DISTRIBUSI	20kV
	SURABAYA, BINARY INTEGER PROGRAMMING	DAN
	PARTICLE SWARM OPTIMIZATION	13
3.1	Sistem Distribusi 20 kV di Surabaya	13
	3.1.1 Penyulang Tunjungan	
	3.1.2 Penyulang Ometraco	15
	3.1.3 Penyulang Basuki Rahmat	
	3.1.4 Penyulang Kaliasin	
	3.1.5 Penyulang Tegalsari.	
3.2	Perancangan Program Binary Integer Programming	25
3.3	Peracangan program Particle Swarm Optimization	26
	V SIMULASI DAN ANALISA	
	Pemodelan Jaringan Distribusi 20 kV Surabaya	
4.2	Studi Kasus dan Hasil Analisa	34
	4.2.1 Studi kasus ke-1	35
	4.2.2 Studi kasus ke-2	46

4.2.3 Studi kasus ke-3BAB V PENUTUP	
5.1 Kesimpulan	63
5.2 SaranDAFTAR PUSTAKA	63
LAMPIRAN	

DAFTAR GAMBAR

Gambar 2.1 Jaringan distribusi radial pohon	7
Gambar 2.2 Jaringan distribusi radial dengan tie dan switch pemis	sah
<u>(</u>	8
Gambar 2.3 Model percabangan yang terhubung antara bus p dan	q9
Gambar 2.4 Skema percabangan pada BIP	
Gambar 3.1 Single line diagram penyulang Tunjungan	
Gambar 3.2 Single line diagram penyulang Ometraco	
Gambar 3.3 Single line diagram penyulang Basuki Rahmat	
Gambar 3.4 Single line diagram penyulang Kaliasin	
Gambar 3.5 Single line diagram penyulang Tegalsari	
Gambar 3.6 Flowchart metode Binary Integer Programming	
Gambar 3.7 Flowchart metode Binary Integer Programming	
Gambar 3.8 Flowchart metode Binary Integer Programming	
(Lanjutan)	. 27
Gambar 4.1 Single line diagram penyulang Tunjungan dengan	
sectional switch	. 30
Gambar 4.2 Single line diagram penyulang Ometraco dengan	26
sectional switch	. 31
Gambar 4.3 Single line diagram penyulang Tegalsari dengan	
sectional switch	. 32
Gambar 4.4 Single line diagram penyulang Kaliasin dengan	
sectional switch	. 33
Gambar 4.5 Single line diagram penyulang Basuki Rahmat denga	
sectional switch	34
Gambar 4.6 Single line diagram penyulang Tegalsari setelah	(7)
direkonfigurasi	46
Gambar 4.7 Single line diagram penyulang Tegalsari setelah	
direkonfigurasi dan penambahan kapasitor	48
Gambar 4.8 Grafik perbandingan rugi daya setelah rekonfigurasi	
dan setelah rekonfigurasi+penampahan kapasitor kasus ke-2	51
Gambar 4.9 Single line diagram penyulang Basuki Rahmat setela	
direkonfigurasi	. 55
Gambar 4.10 Single line diagram penyulang Tegalsari setelah	
direkonfigurasi	. 56
Gambar 4.11 Single line diagram penyulang Ometraco setelah	
direkonfigurasi	. 58

DAFTAR TABEL

Tabel 3.1 Data impedansi saluran penyulang Tunjungan
Tabel 3.2 Data beban penyulang Tunjungan
Tabel 3.3 Data impedansi saluran penyulang Ometraco
Tabel 3.4 Data beban penyulang Ometraco
Tabel 3.5 Data impedansi saluran penyulang Basuki Rahmat 18
Tabel 3.6 Data beban penyulang Basuki Rahmat
Tabel 3.7 Data impedansi saluran penyulang Kaliasin
Tabel 3.8 Data beban penyulang Kaliasin
Tabel 3.9 Data impedansi saluran penyulang Tegalsari
Tabel 3.10 Data beban penyulang Tegalsari
Tabel 4.1 Studi kasus simulasi
Tabel 4.2 Data impedansi saluran penyulang Tunjungan kasus 135
Tabel 4.3 Data beban penyulang Tunjungan kasus 1
Tabel 4.4 Hasil aliran daya penyulang Tunjungan kasus 1 36
Tabel 4.5 Data impedansi saluran penyulang Ometraco kasus 1 37
Tabel 4.6 Data beban penyulang Ometraco kasus 1
Tabel 4.7 Hasil aliran daya penyulang Ometraco kasus 1
Tabel 4.8 Data impedansi saluran penyulang Basuki Rahmat kasus 1
<u> </u>
Tabel 4.9 Data beban penyulang Basuki Rahmat kasus 1
Tabel 4.10 Hasil aliran daya penyulang Basuki Rahmat kasus 1 40
Tabel 4.11 Data impedansi saluran penyulang Kaliasin kasus 1 42
Tabel 4.12 Data beban penyulang Kaliasin kasus 1
Tabel 4.13 Hasil aliran daya penyulang Kaliasin kasus 1
Tabel 4.14 Data impedansi saluran penyulang Tegalsari kasus 143
Tabel 4.15 Data beban penyulang Tegalsari kasus 1
Tabel 4.16 Hasil aliran daya penyulang Tegalsari kasus 1
Tabel 4.17 Hasil aliran daya penyulang Tegalsari setelah
rekonfigurasi pada kasus 2
Tabel 4.18 Hasil aliran daya penyulang Tegalsari setelah
rekonfigurasi dan penempatan kapasitor pada kasus 2
Tabel 4.19 Perbandingan rugi daya penyulang Tegalsari setelah
rekonfigurasi dan setelah rekonfigurasi + penempatan kapasitor 50
Tabel 4.20 Data impedansi saluran penyulang Basuki Rahmat pada
kasus 3
Tabel 4.21 Data beban penyulang Basuki Rahmat pada kasus 3 52

rekonfigur Tabel 4.26	asi pada ka Hasil alira	sus 3 n daya penyu	lang Ometra	co setelah	
Tabel 4.27	Perbanding	gan <mark>rugi d</mark> aya	penyulang (asus <mark>3</mark> Ometraco setelal npatan kapasitor	1

BAB I PENDAHULUAN

1.1 Latar Belakang

Sistem distribusi merupakan bagian dari sistem tenaga listrik untuk menyalurkan tenaga listrik dari sistem transmisi ke konsumen. Saat ini permintaan daya listrik semakin meningkat sehingga penyaluran tenaga listirk akan semakin bertambah luas yang berakibat jaringan tegangan menengah dan tegangan rendah yang digunakan juga akan semakin bertambah panjang. Penambahan panjangnya saluran jaringan distribusi ini akan mengakibatkan penambahan rugi daya yang dihasilkan dan dapat berpontensi terjadinya kontingensi. Kontingensi adalah suatu kejadian yang tidak diinginkan dan dapat berupa beban lebih pada penyulang, terputusnya saluran ataupun rusaknya transformator [2]. Jika keadaan tersebut tidak dicepat ditangani maka akan mengakibatkan penurunan keandalan sistem tenaga listrik serta dapat merusak peralatan sistem tenaga yang bersangkutan.

Rekonfigurasi jarigan dan penempatan kapasitor bank adalah salah satu cara untuk mengurangi rugi daya akibat adanya kontingensi. konfigurasi jaringan dengan cara mengoperasikan sectionalizing switches/LBS yang terdapat pada jaringan distribusi dan penambahan kapasitor bank pada penyulang dapat menghasilkan rugi daya yang paling minimal dan meningkatkan keandalan sistem distribusi tenaga listrik sehingga efisiensi daya yang disalurkan dan pelayanan daya pada konsumen meningkat.

Untuk pemilihan konfigurasi pada jaringan distribusi salah satu caranya dapat menggunakan metode *Binary Integer Progamming* (BIP) dan untuk penentuan lokasi dan besar kapasitor bank yang dibutuhkan dengan menggunakan metode *Particle Swarm Optimization* (PSO).

1.2 Permasalahan

Masalah yang dibahas pada tugas akhir ini adalah cara mengatasi kontingensi secara cepat dan tepat dengan merekonfigurasi penyulang dan penempatan kapasitor bank pada sistem distribusi 20 kV di Surabaya Utara untuk mencari rugi daya yang optimal.

Karena ruang lingkup permasalahan yang sangat luas, maka dalam penulisan tugas akhir ini memiliki batasan masalah antara lain

- 1. Dalam tugas akhir ini, simulasi dilakukan dengan menggunakan software matlab R2010a.
- 2. Evaluasi yang dilakukan yaitu mengenai rekonfigurasi jaring dan penempatan kapasitor bank pada jaringan distribusi 20kV di 5 penyulang di Surabaya Utara untuk mengatasi kontingensi.
- 3. Dalam tugas akhir ini kontingensi yang dimaksud adalah beban lebih pada salah satu penyulang dan terputusnya salah satu penyulang.
- 4. Rugi rugi daya yang dihitung adalah rugi rugi daya nyata.
- 5. Penentuan jumlah dan kapasitas kapasitor yang digunakan ditentukan sendiri oleh pengguna program.
- Menggunakan metode Binary Interger Programming dan Particle Swarm Opimization yang dilakukan dengan cara bertahap.

1.3 Tujuan

Tujuan dari pembuatan Tugas Akhir ini adalah:

- 1. Menganilisa rekonfigurasi jaringan distribusi dan penempatan kapasitor bank yang optimal dengam mempertimbangkan adanya kontingensi pada jaringan distribusi untuk mengurangi rugi daya.
- 2. Membandingkan pengaruh yang terjadi dalam sistem jaringan distribusi saat terjadi kontingensi, setelah rekonfigurasi jaringan dan setelah penempatan kapasitor bank.
- 3. Menerapkan metode *Binary Integer Programming* dan *Particle Swarm Optimization* dalam analisa aliran daya sistem distribusi akiba pengaruh adanya kontingensi.
- 4. Mempelajari cara pembuatan program rekonfigurasi jaringan dan penembahan kapasitor bank pada sistem distribusi 20 kV untuk mencari konfigurasi dan lokasi kapasitor yang optimal dengan kerugian daya minimal.

1.4 Metodologi

Penulisan dan penyusunan Tugas Akhir ini menggunakan metodologi sebagai berikut:

- 1. Studi literatur
 Penulis mempelajari literatur mengenai rekonfigurasi jaringan distribusi, penempatan kapasitor, dan optimasi aliran daya untuk mengurangi rugi daya.
- 2. Pengumpulan Data
 Pada awal pengerjaan tugas akhir ini dikumpulkan data-data dalam melakukan analisis data berupa *single line diagram*, data beban (P dan Q), serta impedansi saluran pada tiap penyulang. Semua data diinputkan dalam program *power flow* menggunakan *software matlab R2010a*.
- 3. Simulasi
 Data yang diperoleh kemudian diolah dalam bentuk simulasi untuk mengetahui konfigurasi jaringan distribusi & penempatan kapasitor yang cocok dengan rugi daya paling minimum dengan menggunakan software matlab R2010a.
- 4. Analisa Data

 Dari simulasi dan pemodelan didapatkan data rugi daya dan kemudian dilakukan analisa terhadap hasil tersebut.
- 5. Penulisan Buku Tugas Akhir Penulisan laporan adalah rangkuman kesimpulan akhir dari beberapa rangkaian metodologi diatas untuk menggambarkan hasil serta analisa dan simulasi yang telah dilakukan.

1.5 Sistemtika Pembahasan

Sistematika pembahasan dalam Tugas Akhir ini terdiri atas lima bab dengan uraian sebagai berikut :

- 1. BAB 1 : Pendahuluan
 Bab ini membahas tentang penjelasan mengenai latar belakang,
 permasalahan, tujuan, metodologi, sistematika pembahasan,
 dan relevansi.
- 2. BAB 2: Dasar Sistem Tenaga Listrik
 Bab ini secara garis besar membahas tentang dasar sistem
 tenaga listrik khususnya jaringan distribusi dan analisa aliran
 daya sebagai dasar dalam pengerjaan Tugas Akhir ini.
- 3. BAB 3: Sistem Distribusi 20 KV di Surabaya Utara, Binary Integer Programming dan Particle Swarm Optimization

Bab ini membahas sistem distribusi 20 kV di Surabaya, menampilkan data dan single line diagram sistem distribusi 20 kV, *Binary Integer Programming* dan *Particle Swarm Optimization* untuk memecahkan permasalahan kontingensi di jaringan distribusi radial.

- 4. BAB 4: Simulasi dan Analisis
 Bab ini membahas tentang hasil rekonfigurasi penyulang dengan program *Binary Integer Programming* serta membahas hasil setelah pemasangan kapasitor bank untuk mencari rugi daya yang paling minimal.
- 5. BAB 5 : Penutup
 Bab ini berisi tentang kesimpulan dan saran dari hasil analisis
 penyelesaian kasus kontingensi dengan merekonfigurasi
 penyulang dan penempatan kapasitor bank yang telah diperoleh
 melalui simulasi.

1.6 Relevansi dan Manfaat

Hasil yang diperoleh dari Tugas Akhir ini diharapkan dapat memberikan manfaat sebagai berikut :

- 1. Dapat dijadikan sebagai acuan untuk menentukan konfigurasi jaring distribusi dengan optimal.
- 2. Dapat dijadikan sebagai acuan untuk menentukan letak dan besar kapasitor saat tegangan belum memenuhi syarat setelah direkonfigurasi.
- 3. Mendapat hasil rugi daya yang optimal dari metode Binary Integer Programming dan Particle Swarm Optimization.
- 4. Dapat menjadi referensi bagi mahasiswa lain yang hendak mengambil masalah yang serupa untuk tugas akhir.
- 5. Dapat menjadi referensi penelitian untuk mengembangkan metode optimasi yang lebih handal.

BABII

SISTEM DISTRIBUSI, REKONFIGURASI DAN KAPASITOR UNTUK MENGURANGI RUGI DAYA

2.1 Sistem Distribusi Tenaga Listrik[3]

Sistem distribusi merupakan bagian dari sistem tenaga listrik yang berguna untuk menyalurkan tenaga listrik dari sumber daya yang besar agar sampai ke konsumen. Sistem distribusi memiliki peranan yaitu menyalurkan dan mendistribusikan tenaga listrik ke masingmasing beban atau pelanggan dengan cara mengubah tenaga listrik yang didistribusikan menjadi tegangan yang dikehendaki, karena kedudukan sistem distribusi ada pada bagian paling akhir dari keseluruhan sistem tenaga listrik [4].

Hal hal yang harus diperhatikan pada pendistribusian tenaga listrik sampai ke pelanggan yaitu :

- 1. Regulasi tegangan Variasi tegangan pelayanan (tegangan terminal konsumen) harus pada batas-batas yang diijinkan yaitu ± 5%
- 2. Kontinuitas pelayanan dan pengamanan
 Terjadinya pemadaman energi listrik dapat merugikan
 pelanggan dan jika terjadi gangguan harus dapat diatasi dengan
 cepat dan tepat. Hal ini dapat tercapai apabila memiliki
 konfigurasi sistem dan pengamanan sistem yang handal.
- 3. Efisiensi sistem distribusi energi listrik
 Pemilihan peralatan dan pengoperasian yang lebih baik dapat
 menekan serendah mungkin rugi teknis dan juga dapat
 menekan rugi non teknis dengan mencegah pencurian dan
 kesalahan pengukuran.
- 4. Fleksibilitas terhadap penambahan beban Sistem distribusi harus dapat menangani penambahan beban yang ada karena saat ini permintaan energi listrik semakin naik.

Berdasarkan tingkan tegangan distribusinya sistem distribusi dapat diklasifikasikan menjadi dua bagian sistem, yaitu :

- Sistem distribusi Primer
- Sistem distribusi sekunder

Sistem distribusi primer merupakan bagian dari sistem distribusi yang berfungsi untuk menyalurkan dan mendistribusikan tenaga listrik dari pusat suplai daya (Gardu Induk) ke pusat-pusat beban (Gardu

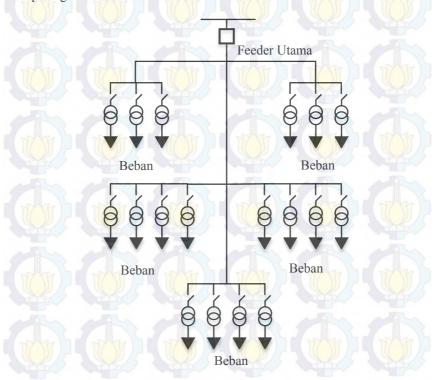
Distribusi). Sistem distribusi primer secara umum terpasang sepanjang daerah yang dialiri tenaga listrik dengan membentuk jaringan atau penyulang-penyulang sampai ke pusat beban paling akhir. Tingkat tegangan yang digunakan pada sistem distribusi primer adalah meliputi tegangan menengah 6 kV atau 20 kV, oleh karena itu sistem distribusi ini sering disebut dengan sistem distribusi tegangan menengah.

Sistem distribusi sekunder merupakan bagian dari sistem distribusi tenaga listrik yang berfungsi menyalurkan dan mendistribusikan tenaga listrik secara langsung dari Gardu Induk ke masing-masing konsumen, seperti untuk mensuplai tenaga listrik pada daerah perumahan kecil, penerangan jalan maupun industri-industri kecil yang menggunakan tegangan rendah 0.4 kV atau 380/220 V, oleh karena itu sistem distribusi ini sering disebut dengan sistem distribusi tegangan rendah.

Ada beberapa bentuk sistem jaringan yang umum dipergunakan untuk menyalurkan dan mendistribusikan tenaga listrik, yaitu :

- 1. Sistem jaringan distribusi radial.
- 2. Sistem jaringan distribusi mesh.
- 3. Sistem jaringan distribusi spindle.
- 4. Sistem jaringan distribusi ring.

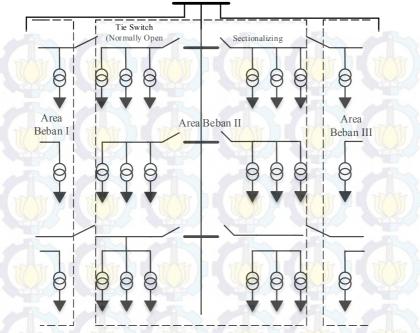
2.1.1 Sistem Jaringan Distribusi Radial


Sistem radial adalah sistem yang paling mudah dalam pengontrolannya dan paling sederhana oleh karena itu sistem radial ini sering digunakan. Sistem ini tersusun dari saluran yang ditarik dari titik sumber dan akan dicabangkan ke beban. Ada beberapa tiper distribusi radial yaitu:

- 1. Distribusi radial pohon
- 2. Distribusi radial dengan tie dan switch pemisah
- 3. Distribusi radial dengan pembagi fasa area
- 4. Distribusi radial dengan pusat beban

2.1.1.1 Distribusi Radial Pohon

Sistem jaringan radial pohon ini merupakan bentuk yang paling dasar dari sistem jaringan radial. Saluran utama (main feeder) ditarik dari suatu Gardu Induk sesuai dengan kebutuhan, kemudian dicabangkan melalui saluran cabang (lateral feeder), selanjutnya dicabangkan lagi melalui saluran anak cabang (sub lateral feeder). Ukuran dari masing – masing saluran tergantung dari kerapatan arus


yang ditanggung. *Main feeder* merupakan saluran yang dialiri arus terbesar, selanjutnya arus ini mengecil pada tiap cabang tergantung dari besar beban. Bentuk sistem jaringan distribusi radial pohon dapat dilihat pada gambar di bawah ini :

Gambar 2.1 Jaringan distribusi radial pohon

2.1.1.2 Distribusi Radial dengan Tie dan Switch Pemisah

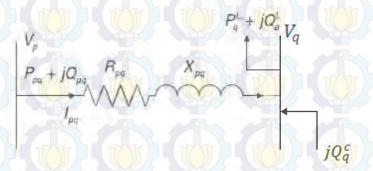
Sistem distribusi radial dengan tie dan switch pemisah merupakan sistem pengembangan dari sistem radial pohon, dengan tujuan meningkatkan keandalan sistem ssat terjadi gangguan maka feeder yang terganggu akan dilokalisir sedangkan area yang semula dilayani feeder tersebut, pelayanannya dialihkan pada feeder yang normal atau yang tidak terganggu. Sistem radial dengan tie dan switch pemisah dapat dilihat pada gambar dibawah ini.

Gambar 2.2 Jaringan distribusi radial dengan tie dan switch pemisah

2.1.2 Rekonfigurasi Pada Sistem Distribusi Radial

Sistem distribusi disuplai dari Gardu Induk (GI) yang terbagi menjadi beberapa penyulang/feeder menuju ke pelanggan listrik. Umumnya tipe penyulang yang digunakan adalah radial dimana antara penyulang yang satu dengan yang lainnya dapat dihubungkan dengan mengoperasikan section switch. Section switch dengan posisi terbuka pada kondisi normal ini sangat berperan untuk proses rekonfigurasi jaringan sistem sehingga profil tegangan dan rugi daya dapat dikurangi. Jika suatu penyulang mengalami gangguan, daerah yang padam sementara dapat disuplai kembali secara cepat dengan membuat konfigurasi jaringan baru dengan mengoperasikan beberapa section switch. Dalam jaringan distribusi tenaga listrik, mengubah status section switch dari normaly open (NO) ke normaly closed (NC) atau sebaliknya meruapakan perubahan struktur topologi dari jaringan distribusi. Dalam

operasi sistem tenaga listrik rekonfigurasi bertujuan untuk mengurangi rugi daya sehingga kualitas tegangan listrik menjadi lebih baik.


Semakin panjang suatu jaringan, maka konduktor yang digunakan untuk menghubungkan sumber listrik dengan beban (konsumen) juga akan semakin panjang. Semakin panjang konduktor maka nilai resistansi akan semakin besar sehingga menyebabkan nilai rugi daya pada saluran akan semakin bertambah. Karena nilai rugi daya bergantung pada hasil perkalian antara kuadrat arus yang mengalir pada penghantar, dengan nilai resistansi penghantar.

2.2 Kapasitor Bank[6]

Kapasitor Bank digunakan secara luas pada sistem distribusi perbaikan faktor daya dan pengaturan tegangan pada *feeder*. Pada saluran distribusi, kapasitor bank berguna untuk mengkompensasi rugirugi *I*²*R* dan memastikan tegangan tetap terjaga.

Beban yang bersifat induktif akan menyerap daya reaktif, yang kemudian akan dapat menimbulkan jatuh tegangan di sisi penerima. Dengan melakukan pemasangan kapasitor bank, beban akan medapatkan suplai daya reaktif. Kompensasi yang dilakukan oleh kapasitor bank, akan dapat mengurangi penyerapan daya reaktif sistem oleh beban. Dengan demikian jatuh tegangan dan rugi daya dapat dikurangi.

Dengan pemasangan kapasitor bank, nilai arus induktif yang mengalir ke saluran akan berkurang sebab beban mendapatkan suplai daya reaktif dari komponen kapasitor bank. Berikut adalah persamaan untuk pemasangan kapasitor dapat mengurangi rugi daya.

Gambar 2.3 Model percabangan yang terhubung antara bus p dan q

Nilai arus dari percabangan yang terhubung antara bus p dan q sebelum penambahan kapasitor adalah

$$I_{pq} = \sqrt{\frac{P_q^{L^2} + Q_q^{L^2}}{V_q^2}} \tag{2.1}$$

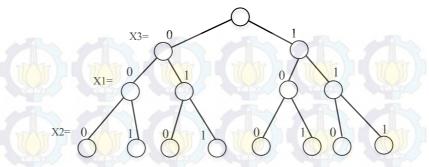
Sehingga Nilai rugi daya pada cabang pq sebelum penambahan kapasitor adalah

$$P_{losses} = I_{pq}^2 . R_{pq} (2.2)$$

Nilai arus dari percabangan yang terhubung antara bus p dan q setelah penambahan kapasitor adalah

$$I'_{pq} = \sqrt{\frac{P_q^{L^2} + (Q_q^L - Q_q^C)^2}{V_q^2}}$$
 (2.3)

Besar nilai kapasitas kapasitor yang dipasang memiliki konstrain


$$Q_q^C < Q_q^L \tag{2.4}$$

Sehingga Nilai rugi daya pada cabang pq setelah penambahan kapasitor adalah

$$P'_{losses} = I'^{2}_{pq} \cdot R_{pq} \tag{2.5}$$

2.3 Binary Integer Programming[9]

Binary Integer Programming adalah sebuah metode yang digunakan untuk mendapatkan suatu solusi dari permasalahan. Solusi yang dihasilkan oleh metode Binary Integer Programming adalah suatu vektor yang biner atau bernilai 0 dan 1. Binary Integer Programming mengacu pada konsep branch and bound.

Gambar 2.4 Skema percabangan pada BIP

Algoritma branching atau percabangan ini akan melakukan proses dalam bentuk cabang atau pohon. Pada tahap ini, algoritma akan memilih variabel xj=0 untuk satu cabang dan xj=1 untuk cabang yang lainnya. Hal ini akan membagi permasalahan menjadi sub-permasalahan yang lebih kecil seperti yang terlihat pada Gambar 3.6.

Setelah diperoleh sub-sub permasalahan maka perlu diketahui suatu bound atau batasan yang menunjukkan seberapa bagus penyelesaian yang mungkin untuk fingsi tersebut. Seiring dengan bertambahnya percabangan yang dicari, algoritma ini akan memperbarui batas minimum dan batas maksimum. Batasan ini yang menjadikan alasan untuk tidak meneruskan percabangan yang tidak diperlukan karena memberikan hasil yang kurang optimal.

Metode Binary Integer Programming pada Tugas Akhir ini digunakan untuk mendapatkan rekonfigurasi jaringan yang optimal dengan cara merubah status tie switch dan section switch pada sistem distribusi radial.

2.4 Particle Swarm Optimization

Particle Swarm Optimization diperkenalkan [1] pada tahun 1995. Algoritma PSO meniru perilaku kawanan burung yang terbang bersamasama. Perilaku sosial terdiri dari tindakan individu dan pengaruh dari individu-individu lain dalam suatu kelompok. Setiap individu atau partikel berperilaku secara terdistribusi dengan cara menggunakan kecerdasannya sendiri dan juga dipengaruhi perilaku kelompok kolektifnya. Dengan demikian, jika satu partikel atau seekor burung menemukan jalan yang tepat atau pendek menuju ke sumber makanan,

sisa kelompok yang lain juga akan dapat segera mengikuti jalan tersebut meskipun lokasi mereka jauh di kelompok tersebut[7].

Beberapa istilah umum yang digunakan dalam metode *Particle Swarm Optimizaton* dapat didefinisikan sebagai berikut:

- Swarm: populasi dari suatu algoritma.
- 2. **Particle**: anggota (individu) pada suatu *swarm*. Setiap *particle* mempresentasikan suatu solusi yang berpotensi pada permasalahan yang diselesaikan. Posisi dari suatu *Particle* adalah ditentukan oleh representasi solusi saat ini.
- 3. **Pbest (Personal Best)**: posisi **Pbest** suatu **particle** yang menunjukkan posisi **particle** yang dipersiapkan untuk mendapatkan suatu solusi yang terbaik.
- 4. Gbest (Global Best): posisi terbaik particle pada swarm atau posisi terbaik diantara Pbest yang ada.
- 5. **Velocity**: kecepatan atau vector yang menggerakkan proses optimasi yang menentukkan arah dimana suatu *particle* diperlukan untuk berpindah agar memperbaiki posisi semula.

Metode *Particle Swarm Optimization* pada Tugas Akhir ini digunakan menentukan lokasi dan kapasitas kapasitor yang optimal untuk mengurangi rugi daya pada sistem distribusi radial.

BAB III

PERANCANGAN SISTEM DISTRIBUSI 20Kv SURABAYA, BINARY INTEGER PROGRAMMING DAN PARTICLE SWARM OPTIMIZATION

3.1 Sistem Distribusi 20 kV di Surabaya

Pada pengerjaan Tugas Akhir ini menggunakan lima penyulang (feeder) di sistem distribusi 20 kV Surabaya yaitu :

- 1. GI Simpang
 - Penyulang Tunjungan
 - Penyulang Ometraco
- 2. GI Kupang
 - Penyulang Basuki Rahmat
 - Penyulang Kaliasin
 - Penyulang Tegalsari

Berikut ini adalah data-data penunjang dari beberapa penyulang yang akan digunakan dalam pengerjaan Tugas Akhir ini.

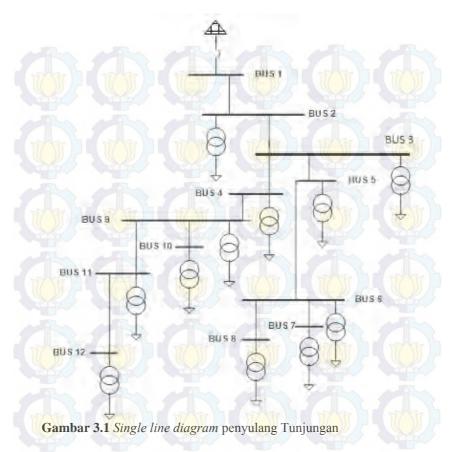
3.1.1 Penyulang Tunjungan

Pada penyulang Tunjungan terdiri dari data gambar konfigurasi jaringan, impedansi saluran serta data beban. Data impedansi saluran dan data beban pada penyulang Tunjungan dapat dilihat pada Tabel 3.1 dan Tabel 3.2

Tabel 3.1 Data impedansi saluran penyulang Tunjungan

	Saluran		Impedansi		
	Bus	Bus	Impe	cuansi	
_	Dus	Dus	R (ohm)	X (ohm)	
١	1	2	0,265	0,13	
	2	3	0,265	0,13	
	3	4	0,265	0,13	
	3	5	0,265	0,13	
	5	6	0,265	0,13	
	6	7	0,265	0,13	
/	6	8	0,265	0,13	
~	4	9	0,53	0,26	
	9	10	0,265	0,13	

Lanjutan Tabel 3.1 Data impedansi saluran penyulang Tunjungan


Salı	ıran	Impedansi	
Bus	Bus		
Dus		R (ohm)	X (ohm)
9	11	0,265	0,13
11	12	0,265	0,13

Tabel 3.2 Data beban penyulang Tunjungan

BUS	D	aya
BUS	P (MW)	Q(MVAR)
2	0,2387	0,0322
3	0,254	0,07
4	0,0612	0,0178
5	0,1	0,025
6	0,524	0,355
7	0,2099	0,0573
8	0,0393	0,0421
9	0,601	0,13
10	0,2304	0,2062
11	0,0691	0,0171
12	0,2951	0,2339

Tabel 3.1 dan Tabel 3.2 menunjukkan data yang ada pada penyulang Tunjungan meliputi data impedansi setiap saluran dan data beban. Data tersebut akan digunakan untuk mensimulasikan program rekonfigurasi menggunakan *Binary Integer Programming* dan penempatan kapasitor menggunakan *Particle Swarm Optimization*.

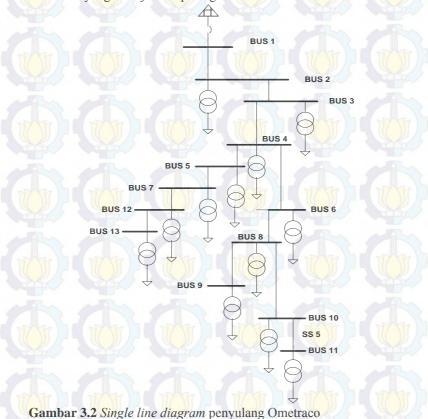
Berikut ini adalah *single line diagram* pada penyulang Tunjungan yang ditunjukkan pada gambar di bawah ini.

3.1.2 Penyulang Ometraco

Pada penyulang Ometraco terdiri dari data gambar konfigurasi jaringan, impedansi saluran serta data beban. Data impedansi saluran dan data beban pada penyulang Ometraco dapat dilihat pada Tabel 3.3 dan Tabel 3.4

Tabel 3.3 Data impedansi saluran penyulang Ometraco

Salı	ıran	Turno donoi		
Bus	Bus	Impedansi		
Dus	Dus	R (ohm)	X (ohm)	
W/T	2	2/5 71	0,491	
2	3	0,265	0,13	
3	4	0,048	0,234	
4	5	0,265	0,13	
4	6	0,286	0,14	
5	7	0,265	0,13	
6	8	0,265	0,13	
8	9	0,265	0,13	
8	10	0,265	0,13	
10	11	0,265	0,13	
7	12	0,265	0,13	
12	13	0,265	0,13	


Tabel 3.4 Data beban penyulang Ometraco

BUS	D	aya
BUS	P (MW)	Q(MVAR)
2	0,0807	0,0197
3	0,0225	0,0046
4	0,599	0,0197
5	0,026	0,0043
6	0,0411	0,0077
7	0,57	0,108
8	0,354	0,072
9	0,686	0,185
10	0,0497	0,0092
11	0,3287	0,0948
12	0,121	0,0203
13	0,1209	0,0257

Tabel 3.3 dan Tabel 3.4 menunjukkan data yang ada pada penyulang Ometraco meliputi data impedansi setiap saluran dan data beban. Data tersebut akan digunakan untuk mensimulasikan program

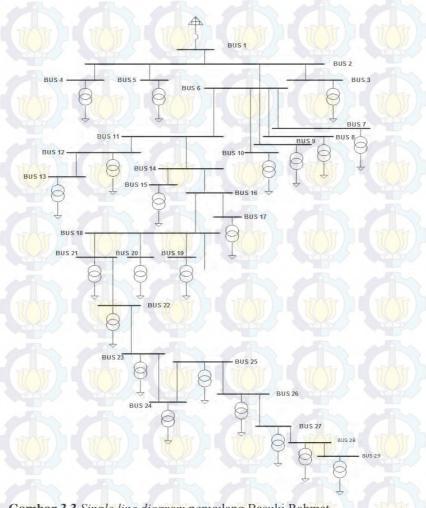
rekonfigurasi menggunakan *Binary Integer Programming* dan penempatan kapasitor menggunakan *Particle Swarm Optimization*.

Berikut ini adalah *single line diagram* pada penyulang Ometraco yang ditunjukkan pada gambar di bawah ini.

3.1.3 Penyulang Basuki Rahmat

Pada penyulang Basuki Rahmat terdiri dari data gambar konfigurasi jaringan, impedansi saluran serta data beban. Data impedansi saluran dan data beban pada penyulang Basuki Rahmat dapat dilihat pada Tabel 3.5 dan Tabel 3.6

Tabel 3.5 Data impedansi saluran penyulang Basuki Rahmat


Sal	uran		ng Basuki F
A Add		Impe	dansi
Bus	Bus	R (ohm)	X (ohm)
	2	1,489	0,731
2	3	0,265	0,13
2	4	0,066	0,033
2	5	0,062	0,031
2	6	0,265	0,13
6	7	0,133	0,065
6	8	0,133	0,065
6	9	0,133	0,065
6	10	0,133	0,065
6	11	0,265	0,13
11	12	0,133	0,065
12	13	0,133	0,065
11	14	0,795	0,39
14	15	0,133	0,065
14	16	0,344	0,169
16	17	0,133	0,065
16	18	0,167	0,082
18	19	0,133	0,065
18	20	0,133	0,065
18	21	0,265	0,13
21	22	0,311	0,153
22	23	0,066	0,033
23	24	0,138	0,068
24	25	0,265	0,13
25	26	0,066	0,039
26	27	0,116	0,069
27	28	0,12	0,058
27	29	0,265	0,13

Tabel 3.6 Data beban penyulang Basuki Rahmat

BUS	Daya	
воз	P (MW)	Q(MVAR)
2	0	0
3	0,0951	0,0238
4	0,0099	0,0014
5	0,0128	0,0026
6	0	0
7	0,111	0,0158
8	0,198	0,0282
9	0,0216	0,0044
10	0,0088	0,0032
11	0	0
12	0,009	0,0018
13	0,151	0,0379
14	0	0
15	0,0021	0,0004
16	0	0
17	0,104	0,0148
18	0	0
19	0,0223	0,0056
20	0,0347	0,0049
21	0,0285	0,0094
22	0,0499	0,0071
23	0,0431	0,0088
24	0,0257	0,0037
25	0,0297	0,0042
26	0,0291	0,0041
27	0,0098	0,0014
28	0,0116	0,0029
29	0,0342	0,048

Tabel 3.5 dan Tabel 3.6 menunjukkan data yang ada pada penyulang Basuki Rahmat meliputi data impedansi setiap saluran dan data beban. Data tersebut akan digunakan untuk mensimulasikan program rekonfigurasi menggunakan *Binary Integer Programming* dan penempatan kapasitor menggunakan *Particle Swarm Optimization*.

Berikut ini adalah single line diagram pada penyulang Basuki Rahmat yang ditunjukkan pada gambar di bawah ini.

Gambar 3.3 Single line diagram penyulang Basuki Rahmat

3.1.4 Penyulang Kaliasin

Pada penyulang Kaliasin terdiri dari data gambar konfigurasi jaringan, impedansi saluran serta data beban. Data impedansi saluran dan data beban pada penyulang Kaliasin dapat dilihat pada Tabel 3.7 dan Tabel 3.8.

Tabel 3.7 Data impedansi saluran penyulang Kaliasin

Saluran		т 1 '	
Bus	Bus	Impedansi	
Dus		R (ohm)	X (ohm)
1	2	2,65	1,3
2	3	0,053	0,026
2	4	0,663	0,333
4	5	0,103	0,051
4	6	0,105	0,052
5	7	0,138	0,068
7	8	0,61	0,299
7	9	0,14	0,069
9	10	0,53	0,53


Tabel 3.8 Data beban penyulang Kaliasin

BUS	Daya		
DUS	P (MW)	Q(MVAR)	
2	0	0	
3	0,399	0,241	
4	0	0	
5	0,517	0,324	
6	0,229	0,153	
7	0	0	
8	0,424	0,249	
9	0	0	
10	0,109	0,0272	

Tabel 3.7 dan Tabel 3.8 menunjukkan data yang ada pada penyulang Kaliasin meliputi data impedansi setiap saluran dan data beban. Data tersebut akan digunakan untuk mensimulasikan program

rekonfigurasi menggunakan *Binary Integer Programming* dar penempatan kapasitor menggunakan *Particle Swarm Optimization*.

Berikut ini adalah *single line diagram* pada penyulang kaliasin yang ditunjukkan pada gambar di bawah ini.

Gambar 3.4 Single line diagram penyulang Kaliasin

3.1.5 Penyulang Tegalsari

Pada penyulang Kaliasin terdiri dari data gambar konfigurasi jaringan, impedansi saluran serta data beban. Data impedansi saluran dan data beban pada penyulang Tegalsari dapat dilihat pada Tabel 3.9 dan Tabel 3.10.

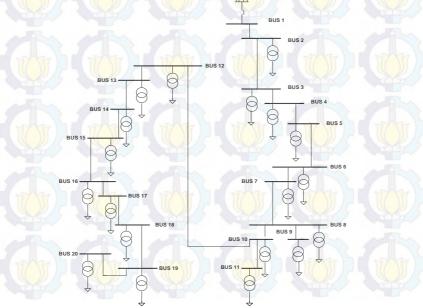
Tabel 3.9 Data impedansi saluran penyulang Tegalsari

Saluran		T. Marie	
Bus	Bus	Impedansi	
Dus	Dus	R (ohm)	X (ohm)
11	2	0,134	0,066
2	3	1,494	0,242
3	4	0,217	0,106
4	5	0,101	0,05

Lanjutan Tabel 3.9 Data impedansi saluran penyulang Tegalsari

		dansi salura	iii peiiyulai
	uran	Impedansi	
Bus	Bus	R (ohm)	X (ohm)
5	6	0,403	0,197
6	7	0,127	0,063
7	8	0,559	0,274
8	9	0,133	0,065
8	10	0,546	0,268
10	11	0,717	0,352
10	12	1,502	0,737
12	13	0,66	0,324
13	14	0,083	0,041
14	15	0,643	0,315
15	16	0,089	0,043
16	17	0,171	0,084
17	18	0,265	0,13
18	19	0,06	0,029
19	20	0,089	0,044

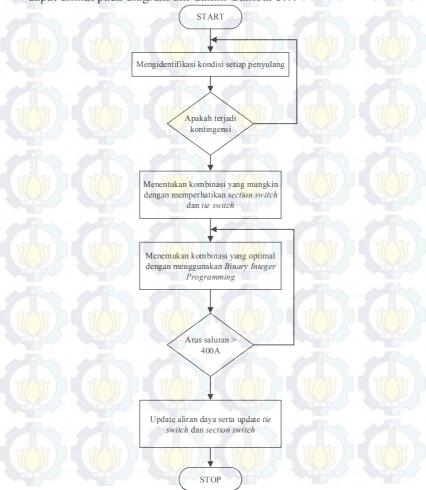
Tabel 3.10 Data beban penyulang Tegalsari


BUS	Daya	
	P (MW)	Q(MVAR)
2	0,0317	0,0092
3	0,0337	0,0048
4	0,0256	0,0058
5	0,002	0,0002
6	0,0099	0,0014
7	0,0256	0,0042
8	0,0134	0,0038
9	0,0217	0,0079
10	0,0062	0,0012
11	0,108	0,0219
12	0,0236	0,0015
13	0,0218	0,0031
14	0,0096	0,0034
15	0,0297	0,0042

Lanjutan Tabel 3.10 Data beban penyulang Tegalsari

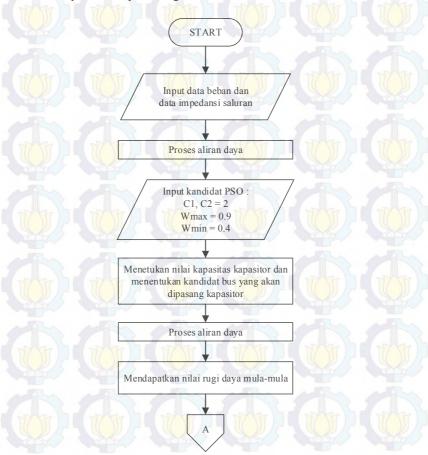
BUS	Daya		
DUS	P (MW)	Q(MVAR)	
16	0,0211	0,0066	
17	0,0333	0,0083	
18	0,0012	0,0017	
19	0,0524	0,0075	
20	0,0095	0,0028	

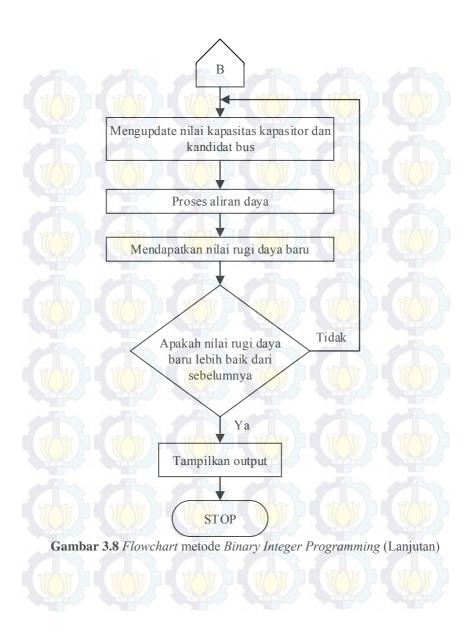
Tabel 3.9 dan Tabel 3.10 menunjukkan data yang ada pada penyulang Tegalsari meliputi data impedansi setiap saluran dan data beban. Data tersebut akan digunakan untuk mensimulasikan program rekonfigurasi menggunakan Binary Integer Programming dan penempatan kapasitor menggunakan Particle Swarm Optimization.


Berikut ini adalah *single line diagram* pada penyulang Tegalsari yang ditunjukkan pada gambar di bawah ini.

Gambar 3.5 Single line diagram penyulang Tegalsari

3.2 Perancangan Program Binary Integer Programming


Perancangan program simulasi optimasi ini menggunakan software MATLAB 7.8 (R2010a) dengan metode *Binary Integer Programming*. Metode ini digunakan untuk mencari rekonfigurasi yang paling optimal. Secara umum prosedur pembuatan program simulasi dapat dilihat pada diagram alir dalam Gambar 3.7.

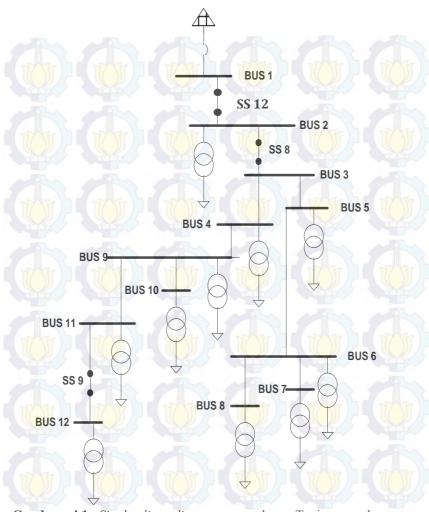

Gambar 3.6 Flowchart metode Binary Integer Programming

3.3 Peracangan program Particle Swarm Optimization

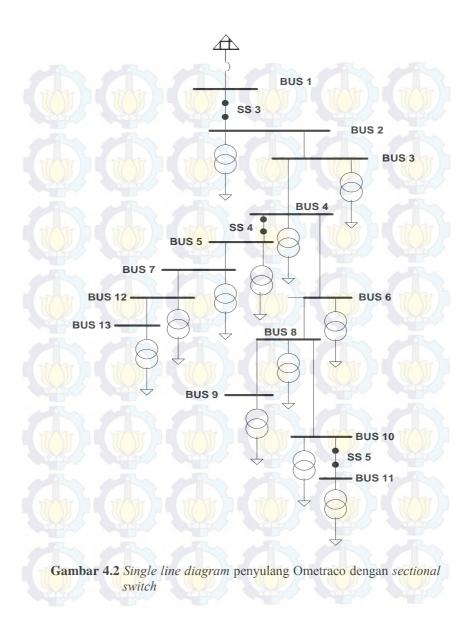
Perancangan program simulasi optimasi ini menggunakan software MATLAB 7.8 (R2010a) dengan metode *particle swarm optimization*. Program simulasi ini dirancang dalam 3 tahap utama, yaitu tahap pertama menentukan kondisi awal sistem, tahap kedua optimasi nilai kapasitor bank, dan tahap ketiga menampilkan kondisi setelah penempatan kapasitor bank. Secara umum prosedur pembuatan program simulasi dapat dilihat pada diagram alir dalam Gambar 3.8

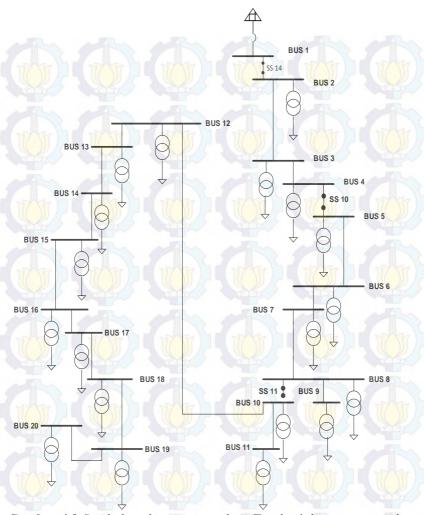
Gambar 3.7 Flowchart metode Binary Integer Programming

BAB IV SIMULASI DAN ANALISA

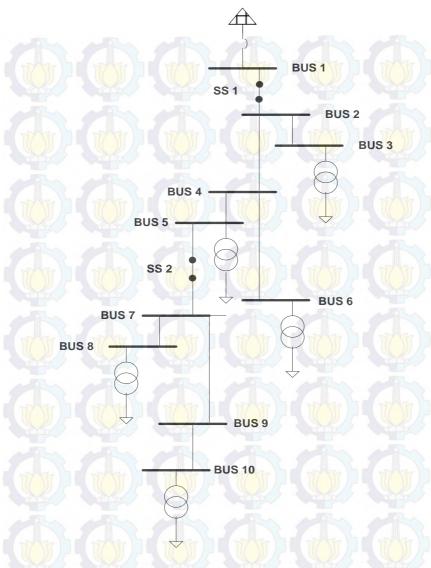

4.1 Pemodelan Jaringan Distribusi 20 kV Surabaya

Pada bab IV ini, akan dibahas mengenai simulasi dan analisa dengan menggunakan MATLAB pada penyulang distribusi 20 kV Surabaya saat terjadi kontingensi. Kontingensi yang dimaksud adalah salah satu penyulang mengalami trip dan penambahan beban pada salah satu penyulang sehingga menjadi *overload*. Penyulang yang akan dianalisis yaitu

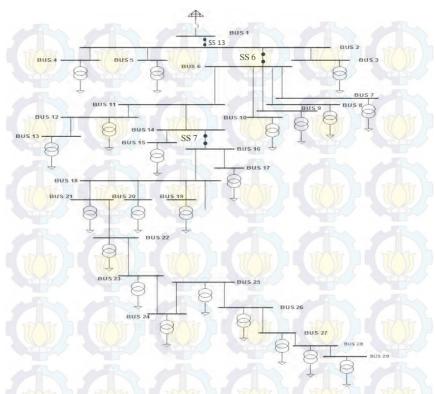

- a. GI Simpang
 - Penyulang Tunjungan
 - Penyulang Ometraco
- b. GI Kupang
 - Penyulang Basuki Rahmat
 - Penyulang Kaliasin
 - Penyulang Tegalsari


Penyulang yang digunakan pada Tugas Akhir ini adalah penyulang di Surabaya yang telah ditambahkan dengan sectional switch dan tie switch sehingga penyulang tersebut dapat disimulasikan untuk mengatasi kontingensi pada salah satu penyulang.

Sectional switch digunakan untuk membagi penyulang menjadi tiap-tiap daerah sehingga mempermudah dalam penentuan konfigurasi baru saat terjadi kontingensi. Sectional switch juga digunakan sebagai fault isolation sehingga daerah yang mengalami gangguan tidak memberikan dampak pada daerah yang yang tidak mengalami gangguan. Sedangkan tie switch berfungsi untuk memindahkan beban penyulang yang mengalami kontingensi ke penyulang lain agar masalah kontingensi dapat diatasi dengan tepat. Single line diagram untuk penyulang yang telah ditambahkan sectional switch ditunjukkan pada Gambar 4.1, 4.2, 4.3, 4.4, dan 4.5



Gambar 4.1 Single line diagram penyulang Tunjungan dengan sectional switch



Gambar 4.3 Single line diagram penyulang Tegalsari dengan sectional switch

Gambar 4.4 Single line diagram penyulang Kaliasin dengan sectional switch

Gambar 4.5 Single line diagram penyulang Basuki Rahmat dengan sectional switch

4.2 Studi Kasus dan Hasil Analisa

Untuk mensimulasikan jaringan distribusi 20 kV Surabaya karena adanya kontingensi diperlukan studi kasus untuk mempermudah analisa yaitu

Tabel 4.1 Studi kasus simulasi

Case	Keterangan
((1))	Semua penyulang pada keadaan normal
2	Penyulang kaliasin mengalami trip
3	Penyulang Basuki Rahmat mengalami overload

4.2.1 Studi kasus ke-1

Pada studi kasus ke-1, disimulasikan aliran daya pada semua penyulang dengan keadaan normal yang digunakan sebagai acuan dalam menganalisis setiap penyulang saat terjadi kontingensi.

4.2.1.1 Penyulang Tunjungan

Untuk mensimulasikan aliran daya pada penyulang Tunjungan diperlukan data impedansi saluran dan data beban yang ditunjukkan pada Tabel 4.2 dan Tabel 4.3.

Tabel 4.2 Data impedansi saluran penyulang Tunjungan kasus 1

Salı	ıran	Imno	donai
Bus	Bus	Impe	dansi
Dus	Dus	R (ohm)	X (ohm)
1	2	0,265	0,13
2	3	0,265	0,13
3	4	0,265	0,13
3	5	0,265	0,13
5	6	0,265	0,13
6	7	0,265	0,13
6	8	0,265	0,13
4	9	0,53	0,26
9	10	0,265	0,13
9	11	0,265	0,13
11	12	0,265	0,13

Tabel 4.3 Data beban penyulang Tunjungan kasus 1

BUS	Ι	Daya
воз	P (kW)	Q(kVAR)
2	0,2387	0,0322
3	0,254	0,07
4	0,0612	0,0178
5	0,1	0,025
6	0,524	0,355
7	0,2099	0,0573
8	0,0393	0,0421
9	0,601	0,13

Lanjutan Tabel 4.3 Data beban penyulang Tunjungan kasus 1

DHC	Ι	Daya
BUS	P (kW)	Q(kVAR)
10	0,2304	0,2062
11	0,0691	0,0171
12	0,2951	0,2339

Dengan menggunakan perhitungan aliran daya dengan menggunakan *software* MATLAB didapatkan hasil yang ditunjukkan pada Tabel 4.4.

Tabel 4.4 Hasil aliran daya penyulang Tunjungan kasus 1

Bus	Tegangan	Bra	nch	Arus	Losses
Dus	(kV)	Dari Bus	Ke Bus	(Amp)	(kW)
1	20,00000	1	2	144,79	5,56
2	19,95728	2	3	133,28	4,71
- 3	19,91794	3	4	70,25	1,31
4	19,89721	3	5	50,08	0,66
5	19,90318	5	6	45,09	0,54
6	19,88990	6	7	10,94	0,03
7	19,88673	6	7 8	2,90	0
8	19,88911	4	9	67,09	2,39
9	19,85760	9	10	15,57	0,06
10	19,85317	9	11	22,29	0,13
- 11	19,85109	11	12	18,97	0,10
12	19,84562	T	otal rugi day	ya	15,48

Dari hasil simulasi di atas, didapat bahwa total rugi-rugi daya sebesar 15.48 kW. Rugi daya ini terhitung kecil karena tegangan tiap bus masih dalam standart yang telah ditentukkan (>19 kV) dan arus yang melalui saluran juga masih berada dalam standart yang telah ditentukan (<400 A).

4.2.1.2 Penyulang Ometraco

Untuk mensimulasikan aliran daya pada penyulang Ometraco diperlukan data impedansi saluran dan data beban yang ditunjukkan pada Tabel 4.5 dan Tabel 4.6.

Tabel 4.5 Data impedansi saluran penyulang Ometraco kasus 1

	ıran		ng Ometrae
Bus	Bus	Impe	edansi
Dus	Dus	R (ohm)	X (ohm)
7	2		0,491
2	3	0,265	0,13
3	4	0,048	0,234
4	5	0,265	0,13
4	6	0,286	0,14
5	7	0,265	0,13
6	8	0,265	0,13
8	9	0,265	0,13
8	10	0,265	0,13
10	11	0,265	0,13
7	12	0,265	0,13
12	13	0,265	0,13

Tabel 4.6 Data beban penyulang Ometraco kasus 1

BUS	D	aya
воз	P (MW)	Q(MVAR)
2	0,0807	0,0197
3	0,0225	0,0046
4	0,599	0,0197
5	0,026	0,0043
6	0,0411	0,0077
7	0,57	0,108
8	0,354	0,072
9	0,686	0,185
10	0,0497	0,0092
11/	0,3287	0,0948
12	0,121	0,0203
13	0,1209	0,0257

Dengan menggunakan perhitungan aliran daya dengan menggunakan software MATLAB didapatkan hasil yang ditunjukkan pada Tabel 4.7.

Tabel 4.7 Hasil aliran daya penyulang Ometraco kasus 1

Bus	Tegangan	Brai	nch	Arus	Losses
Dus	(kV)	Dari Bus	Ke Bus	(Amp)	(kW)
1	20,00000	1	2	154,63	23,91
2	19,83373	2	3	150,45	6,00
3	19,79089	3	4	149,29	1,07
4	19,77733	4	5	43,17	0,49
5	19,76504	4	6	76,32	1,67
6	19,75355	5	7	41,84	0,46
7	19,75314	6	8	74,20	1,46
8	19,73211	8	9	36,03	0,34
9	19,72167	8	10	19,90	0,10
10	19,72634	10	11	17,35	0,08
11	19,72130	7	12	12,47	0,04
12	19,74959	12	13	6,26	0,01
13	19,74780	T	otal rugi day	/a	35,64

Dari hasil simulasi di atas, didapat bahwa total rugi-rugi daya sebesar 35,64 kW. Rugi daya ini terhitung kecil karena tegangan tiap bus masih dalam standart yang telah ditentukkan (>19 kV) dan arus yang melalui saluran juga masih berada dalam standart yang telah ditentukan(<400 A).

4.2.1.3 Penyulang Basuki Rahmat

Untuk mensimulasikan aliran daya pada penyulang Basuki Rahmat diperlukan data impedansi saluran dan data beban yang ditunjukkan pada Tabel 4.8 dan Tabel 4.9.

Tabel 4.8 Data impedansi saluran penyulang Basuki Rahmat kasus 1

	Salı	ıran	I	domai
	Bus	Bus	Impe	dansi
	Dus	Dus	R (ohm)	X (ohm)
I	7	2	1,489	0,731
ſ	2	3	0,265	0,13
	2	4	0,066	0,033
	2	5	0,062	0,031

Lanjutan Tabel 4.8 Data impedansi penyulang Basuki Rahmat kasus 1

	ıran	Impe	dansi
Bus	Bus	R (ohm)	X (ohm)
2	6	0,265	0,13
6	7	0,133	0,065
6	8	0,133	0,065
-6	9	0,133	0,065
6	10	0,133	0,065
6	11	0,265	0,13
11	12	0,133	0,065
12	13	0,133	0,065
11	14	0,795	0,39
14	15	0,133	0,065
14	16	0,344	0,169
16	17	0,133	0,065
16	18	0,167	0,082
18	19	0,133	0,065
18	20	0,133	0,065
18	21	0,265	0,13
21	22	0,311	0,153
22	23	0,066	0,033
23	24	0,138	0,068
24	25	0,265	0,13
25	26	0,066	0,039
26	27	0,116	0,069
27	28	0,12	0,058
27	29	0,265	0,13

Tabel 4.9 Data beban penyulang Basuki Rahmat kasus 1

BUS	D	aya
BUS	P (MW)	Q(MVAR)
2	0	0
3	0,0951	0,0238
4	0,0099	0,0014
5	0,0128	0,0026
6	0	0

Lanjutan Tabel 4.9 Data beban penyulang Basuki Rahmat kasus 1

Duc		aya
BUS	P (MW)	Q(MVAR)
7	0,111	0,0158
8	0,198	0,0282
9	0,0216	0,0044
10	0,0088	0,0032
11	0	0
12	0,009	0,0018
13	0,151	0,0379
14	0	0
15	0,0021	0,0004
16	0	0
17	0,104	0,0148
18	0	0
19	0,0223	0,0056
20	0,0347	0,0049
21	0,0285	0,0094
22	0,0499	0,0071
23	0,0431	0,0088
24	0,0257	0,0037
25	0,0297	0,0042
26	0,0291	0,0041
27	0,0098	0,0014
28	0,0116	0,0029
29	0,0342	0,048

Dengan menggunakan perhitungan aliran daya dengan menggunakan software MATLAB didapatkan hasil yang ditunjukkan pada Tabel 4.10.

Tabel 4.10 Hasil aliran daya penyulang Basuki Rahmat kasus 1

Bus	Tegangan	Branch		Arus	Losses
Dus	(kV)	Dari Bus	Ke Bus	(Amp)	(kW)
1	20,00000		2	121,10	21,84
2	19,79918	2	3	4,95	0,01

Lanjutan Tabel 4.10 Hasil aliran daya penyulang Basuki Rahmat kasus l

Bus	Tegangan	Brai	nch	Arus	Losses
Dus	(kV)	Dari Bus	Ke Bus	(Amp)	(kW)
3	19,79775	2	4	1,16	0
4	19,79909	2	5	0,66	0,00
5	19,79913	2	6	114,51	3,47
6	19,76540	6	7	5,67	0
7	19,76460	6	8	10,12	0,01
8	19,76397	6	9	1,12	0
9	19,76524	6	10	40,13	0,21
10	19,75969	6	11	59,79	0,95
11	19,74776	11	12	25,82	0,09
12	19,74395	12	13	7,89	0,01
13	19,74280	11	14	34,19	0,93
14	19,71765	14	15	1,08	0
15	19,71750	14	16	33,12	0,38
16	19,70502	16	17	5,33	0
17	19,70427	16	18	27,93	0,13
18	19,69984	18	19	1,17	0
19	19,69967	18	20	1,78	0
20	19,69959	18	21	25,06	0,17
21	19,69244	21	22	23,55	0,17
22	19,68428	22	23	21,11	0,03
23	19,68273	23	24	18,96	0,05
24	19,67981	24	25	17,72	0,08
25	19,67459	25	26	16,32	0,02
26	19,67334	26	27	14,96	0,03
27	19,67132	27	28	0,61	0
28	19,67124	27	29	3,00	0
29	19,67055	T	otal rugi day		28,58

Dari hasil simulasi di atas, didapat bahwa total rugi-rugi daya sebesar 28.58 kW. Rugi daya ini terhitung kecil karena tegangan tiap bus masih dalam standart yang telah ditentukkan (>19 kV) dan arus

yang melalui saluran juga masih berada dalam standart yang telah ditentukan(<400 A).

4.2.1.4 Penyulang Kaliasin

Untuk mensimulasikan aliran daya pada penyulang Kaliasin diperlukan data impedansi saluran dan data beban yang ditunjukkan pada Tabel 4.11 dan Tabel 4.12.

Tabel 4.11 Data impedansi saluran penyulang Kaliasin kasus 1

Saluran		Impodonci		
Bus	Bus	Impedansi		
Dus	Dus	R (ohm)	X (ohm)	
1	2	2,65	1,3	
2	3	0,053	0,026	
2	4	0,663	0,333	
4	5	0,103	0,051	
4	6	0,105	0,052	
5	7	0,138	0,068	
W7 /	8	0,61	0,299	
7	9	0,14	0,069	
9	10	0,53	0,53	

Tabel 4.12 Data beban penyulang Kaliasin kasus 1

BUS	D	aya
воз	P (kW)	Q(kVAR)
2	0	0
3	0,399	0,241
4	0	0
5	0,517	0,324
6	0,229	0,153
7 7	0	0
8	0,424	0,249
9	0	0
10	0,109	0,0272

Dengan menggunakan perhitungan aliran daya dengan menggunakan *software* MATLAB didapatkan hasil yang ditunjukkan pada Tabel 4.13.

Tabel 4.13 Hasil aliran daya penyulang Kaliasin kasus 1

Bus	Tegangan	Brai	Branch		Losses
Dus	(kV)	Dari Bus	Ke Bus	(Amp)	(kW)
1	20,00000	1	2	99,24	26,10
2	19,70798	2	3	23,65	0,03
3	19,70659	2	4	75,58	3,79
4	19,65203	4	5	61,60	0,39
5	19,64496	4	6	14,02	0,02
6	19,65040	5	7	30,59	0,13
7	19,64025	7	8	25,06	0,38
8	19,62328	7	9	5,72	0
9	19,63938	9	10	5,72	0,02
10	19,63570	T	otal rugi day	ya	30,86

Dari hasil simulasi di atas, didapat bahwa total rugi-rugi daya sebesar 30.86 kW. Rugi daya ini terhitung kecil karena tegangan tiap bus masih dalam standart yang telah ditentukkan (>19 kV) dan arus yang melalui saluran juga masih berada dalam standart yang telah ditentukan(<400 A).

4.2.1.5 Penyulang Tegalsari

Untuk mensimulasikan aliran daya pada penyulang Tegalsari diperlukan data impedansi saluran dan data beban yang ditunjukkan pada Tabel 4.14 dan Tabel 4.15.

Tabel 4.14 Data impedansi saluran penyulang Tegalsari kasus 1

_	Saluran		Impedansi			
	Bus	Bus	impedansi			
		Dus	R (ohm)	X (ohm)		
/	ζ I.	2	0,134	0,066		
	2	3	1,494	0,242		
١	3	4	0,217	0,106		
١	4	5	0,101	0,05		
	5	6	0,403	0,197		
	6	7	0,127	0,063		
	7	8	0,559	0,274		

Lanjutan Tabel 4.14 Data impedansi penyulang Tegalsari kasus 1

Saluran		Impodonci		
Bus	us Bus	Impedansi		
	Dus	R (ohm)	X (ohm)	
8	9	0,133	0,065	
8	10	0,546	0,268	
10	11	0,717	0,352	
10	12	1,502	0,737	
12	13	0,66	0,324	
13	14	0,083	0,041	
14	15	0,643	0,315	
15	16	0,089	0,043	
16	17	0,171	0,084	
17	18	0,265	0,13	
18	19	0,06	0,029	
19	20	0,089	0,044	

Tabel 4.15 Data beban penyulang Tegalsari kasus 1

BUS	D	aya
воз	P (MW)	Q(MVAR)
2	0,0317	0,0092
3	0,0337	0,0048
4	0,0256	0,0058
5	0,002	0,0002
6	0,0099	0,0014
7	0,0256	0,0042
8	0,0134	0,0038
9	0,0217	0,0079
10	0,0062	0,0012
11	0,108	0,0219
12	0,0236	0,0015
13	0,0218	0,0031
14	0,0096	0,0034
15	0,0297	0,0042
16	0,0211	0,0066
17	0,0333	0,0083
18	0,0012	0,0017

Lanjutan Tabel 4.15 Data beban penyulang Tegalsari kasus 1

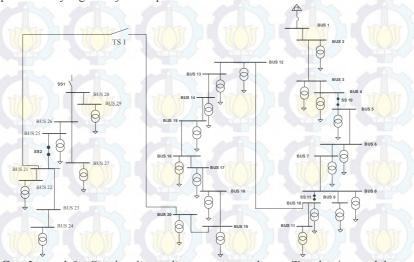
DITE	Daya		
BUS	P (MW)	Q(MVAR)	
19	0,0524	0,0075	
20	0,0095	0,0028	

Dengan menggunakan perhitungan aliran daya dengan menggunakan software MATLAB didapatkan hasil yang ditunjukkan pada Tabel 4.16.

Tabel 4.16 Hasil aliran daya penyulang Tegalsari kasus 1

Bus	Tegangan	Brai	nch	Arus	Losses
Dus	(kV)	Dari Bus	Ke Bus	(Amp)	(kW)
	20,00000	1	2	24,61	0,08
2	19,99644	2	3	22,96	0,79
3	19,96172	3	4	21,26	0,10
4	19,95674	4	5-	19,94	0,04
5	19,95457	5	6	19,84	0,16
6	19,94595	6	7	19,34	0,05
7	19,94329	7	8	18,04	0,18
8	19,93241	8	9-	1,16	
9	19,93224	8	10	16,20	0,14
10	19,92289	10	11	5,53	0,02
11	19,91861	10	12	10,35	0,16
12	19,90617	12	13-	9,17	0,06
13	19,89963	13	14	8,07	0,01
14	19,89891	14	15	7,56	0,04
15	19,89366	15	16	6,06	
16	19,89307	16	17-	4,95	
17	19,89216	17	18	3,23	
18	19,89124	18	19	3,15	AP.
19	19,89104	19	20	0,50	
20	19,89099	T	ot <mark>al rug</mark> i day	a (())//-	1,83

Dari hasil simulasi di atas, didapat bahwa total rugi-rugi daya sebesar 1.83 kW. Rugi daya ini terhitung kecil karena tegangan tiap bus masih dalam standart yang telah ditentukkan (>19 kV) dan arus yang

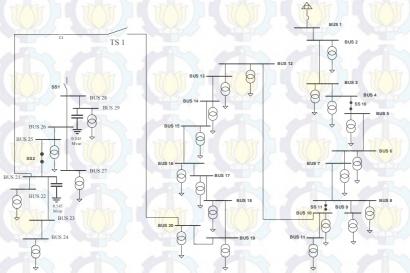

melalui saluran juga masih berada dalam standart yang telah ditentukan(<400 A).

4.2.2 Studi kasus ke-2

Pada kasus ke-2, disimulasikan terjadinya kontingensi yaitu Penyulang kaliasin mengalami trip sehingga semua beban yang ditanggung oleh penyulang Kaliasin mengalami pemadaman listrik sehingga beban pada penyulang Kaliasin harus dialihkan ke penyulang lain agar kontinyuitas penyaluran daya tetap terjaga.

Dalam simulasi yang dijalankan, pertama merekonfigurasi jaringan agar beban penyulang Kaliasin dapat ditanggung oleh penyulang yang lain dengan cara mengubah status ON/OFF sectional switch dan tie switch yang ada pada penyulang. Pencarian konfigurasi dalam studi kasus ke-2 menggunakan metode Binary Integer Programming.

Setelah program *Binary Integer Programming* dijalankan terpilih konfigurasi baru yaitu beban kaliasin ditanggung oleh penyulang Tegalsari atau saat SS2 OFF dan TS1 ON seperti terlihat pada Gambar 4.6. Sehingga aliran daya pada penyulang Kaliasin mengalami perubahan yang ditunjukkan pada Tabel 4.17



Gambar 4.6 Single line diagram penyulang Tegalsari setelah direkonfigurasi

Tabel 4.17 Hasil aliran daya penyulang Tegalsari setelah rekonfigurasi pada kasus 2____

Bus	Tegangan	Brai	nch	Arus	Losses
Dus	(kV)	Dari Bus	Ke Bus	(Amp)	(kW)
1	20,00000	1	2	127,58	2,18
2	19,98094	2	3	125,95	23,7
3	19,79956	3	4	124,33	3,35
4	19,76954	4	5	123,05	1,53
5	19,75568	5	6	122,95	6,09
6	19,70055	6	7	122,47	1,9
7	19,68319	7	8	121,22	8,21
8	19,60776	8	9	1,18	0_
9	19,60759	8	10	119,36	7,78
10	19,5352	10	- 11	5,64	0,02
11	19,53084	10	12	113,66	19,4
12	19,34527	12	13	112,56	8,36
13	19,26263	13	14	111,49	1,03
14	19,25233	14	15	110,97	7,92
15	19,17301	15	16	109,52	1,07
16	19,16222	16	17	108,39	2,01
17	19,14161	17	18	106,67	3,02
18	19,11021	18	19	106,57	0,68
19	19,10313	19	20	104,01	0,96
20	19,09283	20	21	103,5	16,61
21	18,86301	21	22	26,09	0,42
22	18,84534	21	23	5,96	0
23	18,8621	23	24	5,96	0,02
24	18,85828	21	25	71,73	0,71
25	18,85204	25	26	39,36	0,16
26	18,84754	26	27	14,61	0,02
27	18,84584	26	28	24,76	0,41
28	18,82922	28	29	24,76	0,03
29	18,82777	T	otal rugi day	va San	117,60

Dari hasil rekonfigurasi dengan menutupnya TS 1 dan membukanya SS 2 mendapatkan nilai rugi daya sebesar 117,60 kW. Rugi daya ini terhitung belum optimal karena terdapat tegangan bus yang kurang dari standart (<19kV) sehingga perlu dioptimalkan lagi dengan cara pemberian kapasitor dengan menggunakan metode *particle swarm optimization*. Hasil dari simulasi, konfigurasi dan penambahan kapasitor dapat dilihat pada Gambar 4.7 dan hasil aliran daya nya dapat dilihat pada Tabel 4.18

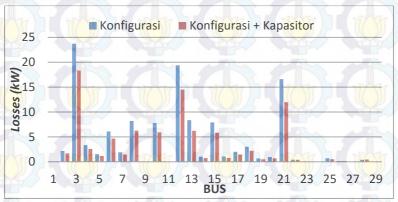
Gambar 4.7 *Single line diagram* penyulang Tegalsari setelah direkonfigurasi dan penambahan kapasitor

Tabel 4.18 Hasil aliran daya penyulang Tegalsari setelah rekonfigurasi dan penempatan kapasitor pada kasus 2

Bus		Branch		Arus	Losses
Dus	(kV)	Dari Bus	Ke Bus	(Amp)	(kW)
1	20,0000	1	2	112,36	1,69
2	19,9847	2	3	110,76	18,33
3	19,8188	3	4	109,06	2,58
4	19,7950	4	5	107,76	1,17

Lanjutan Tabel 4.18 Hasil aliran daya penyulang Tegalsari setelah rekonfigurasi dan penempatan kapasitor pada kasus 2

Bus	Tegangan	Brai		Arus	Losses
Dus	(kV)	Dari Bus	Ke Bus	(Amp)	(kW)
5	19,7841	5	6	10766	4,67
6	19,7405	6	7	107,16	1,46
7	19,7268	7	8	105,86	6,26
8	19,6674	8	9	1,17	0
9	19,6673	8	10	104,07	5,91
10	19,6106	10	11	5,62	0,02
11	19,6063	10	12	98,26	14,5
12	19,4642	12	13	97,05	6,22
13	19,4008	13	14	95,93	0,76
14	19,3929	14	15	95,44	5,86
15	19,3323	15	16	93,91	0,78
16	19,3241	16	17	92,83	1,47
17	19,3085	17	18	91,12	2,2
18	19,2848	18	19	91,06	0,50
19	19,2794	19	20	88,36	0,69
20	19,2718	20	21	87,87	11,97
21	19,1437	21	22	25,71	0,4
22	19,1263	21	23	5,87	0
23	19,1428	23	24	5,87	0,02
24	19,1390	21	25	60,55	0,51
25	19,1348	25	26	33,78	0,15
26	19,1319	26	27	14,40	0,02
27	19,1302	26	28	26,23	0,46
28	19,1233	28	29	26,23	0,04
29	19,1226	T	otal rugi day	a	88,62


Hasil yang didapatkan setelah rekonfigurasi dan penambahan kapsitor pada bus 29 dan bus 21 dengan besar 0.545 MVAR dan 0.545 MVAR adalah 88.63 kW dan tegangan tiap bus telah mencapai nilai standart (>19 kV) dan arus yang melalui saluran juga masih berada dalam standart yang telah ditentukan(<400 A). Sehingga rekonfigurasi

dan penempatan kapasitor yang dilakukan telah berhasil membuat sistem tersebut menjadi optimal.

Tabel 4.19 Perbandingan rugi daya penyulang Tegalsari setelah rekonfigurasi dan setelah rekonfigurasi + penempatan kapasitor

Brai	nch	Rekonfigurasi	Rekonfigurasi + Kapasitor	Presentase Rugi Daya
Dari Bus	Ke Bus	Losses (kW)	Losses (kW)	(%)
1	2	2,18	1,69	22,47
2	3	23,7	18,33	22,65
3	4	3,35	2,58	22,98
4	5	1,53	1,17	23,52
5	6	6,09	4,67	23,31
6	7	1,9	1,46	23,15
7	8	8,21	6,26	23,75
8	9	0,00	0	0
8	10	7,78	5,91	24,03
10	11	0,02	0,02	0
10	12	19,4	14,5	25,25
12	13	8,36	6,22	25,59
13	14	1,03	0,76	26,21
14	15	7,92	5,86	26,01
15	16	1,07	0,78	27,10
16	17	2,01	1,47	26,86
17	18	3,02	2,2	27,15
18	19	0,68	0,50	26,47
19	20	0,96	0,69	28,12
20	21	16,61	11,97	27,93
21	22	0,42	0,4	4,76
21	23	0,00	0	0
23	24	0,02	0,02	0
21	25	0,71	0,51	28,16
25	26	0,16	0,15	6,25
26	27	0,02	0,02	0
26	28	0,41	0,41	0
28	29	0,03	0,03	0

Berikut ini adalah grafik perbandingan rugi daya setelah rekonfigurasi dan setelah rekonfigurasi + penambahan kapasitor .

Gambar 4.8 Grafik perbandingan rugi daya setelah rekonfigurasi dan setelah rekonfigurasi+penampahan kapasitor kasus ke-2

4.2.3 Studi kasus ke-3

Pada studi kasus ke-3, disimulasikan terjadinya kontingensi yaitu *overload* pada penyulang Basuki Rahmat. Untuk mengkondisikan penyulang Basuki Rahmat terjadi *overload* dilakukan penambahan nilai pembebanan pada penyulang Basuki Rahmat sampai arus pada salah saluran di atas 400 A. Data impedansi saluran dan data beban penyulang Basuki Rahmat pada kasus ke-3 dapat dilihat pada Tabel 4.20 dan Tabel 4.21.

Tabel 4.20 Data impedansi saluran penyulang Basuki Rahmat pada kasus 3

Saluran		Impodenci V		
Bus	Bus	Impedansi		
Dus	Dus	R (ohm)	X (ohm)	
1	2	1,489	0,731	
2	3	0,265	0,13	
_ 2	4	0,066	0,033	
2	5	0,062	0,031	
2	6	0,265	0,13	
6	7	0,133	0,065	

Lanjutan Tabel 4.20 Data impedansi saluran penyulang Basuki Rahmat pada kasus 3

Salı	ıran	Impe	dansi
Bus	Bus	-	dansi
Dus	Dus	R (ohm)	X (ohm)
6	8	0,133	0,065
6	9	0,133	0,065
6	10	0,133	0,065
6	11	0,265	0,13
11	12	0,133	0,065
12	13	0,133	0,065
11	14	0,795	0,39
14	15	0,133	0,065
14	16	0,344	0,169
16	17	0,133	0,065
16	18	0,167	0,082
18	19	0,133	0,065
18	20	0,133	0,065
18	21	0,265	0,13
21	22	0,311	0,153
22	23	0,066	0,033
23	24	0,138	0,068
24	25	0,265	0,13
25	26	0,066	0,039
26	27	0,116	0,069
27	28	0,12	0,058
27	29	0,265	0,13

Tabel 4.21 Data beban penyulang Basuki Rahmat pada kasus 3

BUS	Daya				
воз	P (MW)	Q(MVAR)			
2	0	0			
3	0,0951	0,0238			
4	0,0099	0,0014			
5	0,0128	0,0026			
6	0	0			
7	0,111	0,0158			

Lanjutan Tabel 4.21 Data beban penyulang Basuki Rahmat kasus 3

BUS	D	aya
воз	P (MW)	Q(MVAR)
8	0,198	0,0282
9	0,0216	0,0044
10	0,0088	0,0032
11	0	0
12	0,009	0,0018
13	0,151	0,0379
14	0	0
15	0,0021	0,0004
16	0	0
17/	0,104	0,0148
18	0	0
19	0,0223	0,0056
20	0,0347	0,0049
21	0,0285	0,0094
22	0,0499	0,0071
23	0,0431	0,0088
24	0,0257	0,0037
25	0,0297	0,0042
26	0,0291	0,0041
27	0,0098	0,0014
28	0,0116	0,0029
29	0,0342	0,048

Dari data impedansi saluran dan data beban penyulang Basuki Rahmat di atas didapat hasil aliran daya yang ditunjukan pada Tabel 4.22.

Tabel 4.22 Hasil aliran daya penyulang Basuki Rahmat kasus 3

Bus		Tegangan	Bra	nch	Arus	Losses	
	245	(kV)	Dari Bus	Ke Bus	(Amp)	(kW)	
	(())	20,00000	1	2	401,92	240,53	
	2	19,33364	2	3	19,61	0,10	
	3	19,32800	2	4	26,81	0,05	

Lanjutan Tabel 4.22 Hasil aliran daya penyulang Basuki Rahmat kasus3

Bus	Tegangan	Brai	nch	Arus	Losses (kW)
Dus	(kV)	Dari Bus	Ke Bus	(Amp)	
4	19,33170	2	5	21,65	0,03
5	19,33217	2	6	335,49	29,83
6	19,23474	6	7	13,71	0,02
7	19,23275	6	8	25,36	0,09
8	19,23104	6	9	11,46	0,02
9	19,23310	6	10	22,39	007
10	1923167	6	11	266,26	18,79
11	19,15661	117	12	71,57	0,68
12	19,14603	12	13	26,99	0,10
13	19,14230	11	14	194,95	30,22
14	18,98559	14	15	11,26	0,02
15	18,98398	14	16	183,79	11,62
16	18,91574	16	17	9,56	0,01
17	18,91450	16	18	176,17	5,18
18	18,88340	18	19	12,18	0,02
19	18,88163	18	20	18,56	0,05
20	18,88079	18	21	145,70	5,63
21	18,84080	21	22	129,77	5,24
22	18,79627	22	23	113,49	0,85
23	18,78797	23	24	100,34	1,39
24	18,77267	24	25	86,77	2,00
25	18,74719	25	26	71,21	0,33
26	18,74178	26	27	56,20	0,37
27	18,73422	27	28	16,67	0,03
28	18,73257	27	29	13,17	0,05
29	18,73046	T	otal rugi day	a	353,28

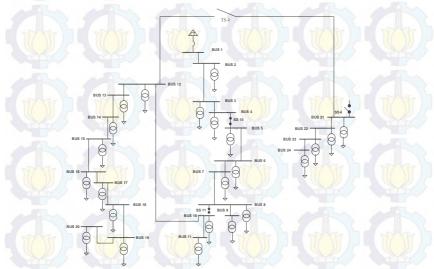
Dari hasil aliran daya di atas terdapat nilai arus yang melebihi dari 400 A sehingga penyulang Basuki Rahmat dapat dikatakan mengalami *overload*. Akibat terjadinya *overload* maka terdapat bus yang dibawah standart (< 19kV) dan nilai rugi daya yang besar dengan nilai 353.28 kW.

Dalam simulasi yang dijalankan, pertama merekonfigurasi jaringan agar sebagian beban dari penyulang Basuki Rahmat dapat ditanggung oleh penyulang yang lain dengan cara mengubah status ON/OFF sectional switch dan tie switch yang ada pada penyulang. Pencarian konfigurasi dalam studi kasus ke-3 menggunakan metode Binary Integer Programming.

Setelah program *Binary Integer Programming* dijalankan terpilih konfigurasi baru yaitu beban penyulang Basuki Rahmat ditanggung oleh penyulang Ometraco dan sebagian beban ometraco ditanggung oleh penyulang Tegalsari. Kejadian tersebut terjadi saat **TS3 ON**, **SS7 OFF**, **SS4 OFF** sehingga penyulang Tegalsari, Ometraco dan Basuki Rahmat mengalami perubahan. Konfigurasi baru dapat dilihat pada Gambar 4.9. Gambar 4.10 dan Gambar 4.11.

Gambar 4.9 Single line diagram penyulang Basuki Rahmat setelah direkonfigurasi

Dari rekonfigurasi baru didapat hasil aliran daya yang ditunjukan pada Tabel 4.23.

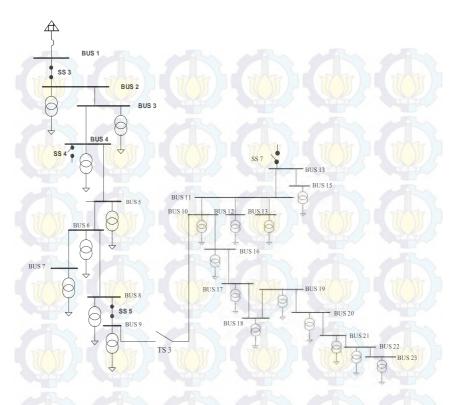

Tabel 4.23 Hasil aliran daya penyulang Basuki Rahmat setelah rekonfigurasi pada kasus 3

Bus	Tegangan	Branch		Arus	Losses
	(kV)	Dari Bus	Ke Bus	(Amp)	(kW)
1	20,00000	1	2	215,45	69,12
2	19,64303	2	3	19,31	0,10

Lanjutan Tabel 4.23 Hasil aliran daya penyulang Basuki Rahmat

setelah rekonfigurasi pada kasus 3

Bus	Tegangan	Brai	Branch		Losses	
	(kV)	Dari Bus	Ke Bus	(Amp)	(kW)	
3	19,63747	2	4	26,39	0,05	
4	19,64112	2	5	21,31	0,03	
5	19,64158	2	6	149,73	5,94	
6	19,59887	6	7	13,45	0,02	
7	19,59692	6	8	24,89	0,08	
8	19,59523	6	9	11,25	0,02	
9	19,59726	6	10	21,97	0,06	
10	19,59586	6	11	80,71	0,02	
11	19,57510	11	12	70,04	0,65	
12	19,56474	12	13	26,41	0,09	
13	19,56109	11	14	10,93	0,09	
14	19,56577	14	15	10,93	0,02	
15	19,56421	T	Total rugi daya			


Gambar 4.10 Single line diagram penyulang Tegalsari setelah direkonfigurasi

Dari rekonfigurasi baru didapat hasil aliran daya yang ditunjukan pada Tabel 4.24.

Tabel 4.24 Hasil aliran daya penyulang Tegalsari setelah rekonfigurasi

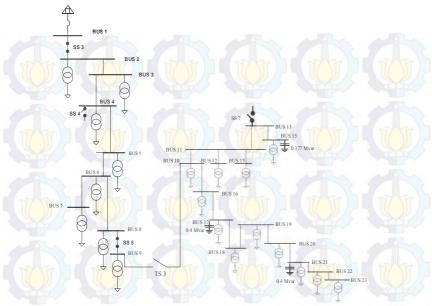
pada kasus 3

Bus	Tegangan			Arus	Losses
Dus	(kV)	Dari Bus	Ke Bus	(Amp)	(kW)
1	20,00000	I I	2	41,40	0,23
2	19,99402	2	3	39,75	2,36
3	19,93389	3	4	38,05	0,31
4	19,92500	4	5	36,73	0,14
5	19,92101	5	6	36,63	0,54
6	19,90512	6	7	36,13	0,17
7	19,90017	7	8	34,83	0,68
8	19,87920	8	9	1,16	
9	19,87903	8	10	32,98	0,59
10	19,85984	10	11	5,55	0,02
11	19,85555	10	12	27,11	1,10
12	19,81609	12	13	9,22	0,06
13	19,80952	13	14	8,11	0,01
14	19,80879	14	15	7,60	0,04
15	19,80352	15	16	6,09	
16	19,80293	16	17	4,98	
17	19,80201	17	18	3,24	
18	19,80109	18	19	3,17	
19	19,80089	19	20	0,50	
20	19,80084	12	21	16,72	0,43
21	19,78524	21	22	15,38	0,06
22	19,78086	22	23	12,45	0,04
23	19,77732	23	24	6,25	0,01
24	19,77553	T	otal rugi day		6,80

Gambar 4.11 Single line diagram penyulang Ometraco setelah direkonfigurasi

Dari rekonfigurasi baru didapat hasil aliran daya yang ditunjukan pada Tabel 4.25.

Tabel 4.25 Hasil aliran daya penyulang Ometraco setelah rekonfigurasi pada kasus 3


Bus	Tegangan	Bra	nch	Arus	Losses	
Das	(kV)	Dari Bus	Ke Bus	(Amp)	(kW)	
1	20,00000	1	2	214,85	46,16	
2	19,76260	2	3	210,67	11,76	
3	19,70092	3	4	209,51	2,11	

Lanjutan Tabel 4.25 Hasil aliran daya penyulang Ometraco setelah

rekonfigurasi pada kasus 3

Bus	Tegangan (kV)	Branch		Arus	Losses
		Dari Bus	Ke Bus	(Amp)	(kW)
4	19,67557	4	5	209,48	12,55
5	19,60941	5	6	207,37	11,40
6	19,54870	6	7	3,63	0
7	19,54765	6	8	201,91	10,80
8	19,48957	8	9	199,35	10,53
9	19,43118	9	10	181,77	51,22
10	19,06204	10	11	37,79	0,38
11	19,05093	11	12	18,40	0,05
12	19,04834	11	13	12,07	0,02
13	19,04919	11	14	9,50	0,02
14	19,04939	14	15	9,50	0,01
15	19,04815	10	16	128,25	5,12
16	19,01802	16	17	112,16	0,83
17	19,00982	17	18	99,17	1,36
18	18,99470	18	19	85,75	1,95
19	18,96953	19	20	70,37	0,33
20	18,96418	20	21	55,54	0,36
21	18,95670	21	22	16,48	0,03
22	18,95508	21	23	13,02	0,04
23	18,95299	T	ota <mark>l rug</mark> i day		167,01

Dari hasil rekonfigurasi dengan menutupnya TS 3, membukanya SS 7 dan membukanya SS 4 mendapatkan nilai rugi daya sebesar 117,01 kW. Rugi daya ini terhitung belum optimal karena terdapat tegangan bus yang kurang dari standart (<19kV) sehingga perlu dioptimalkan lagi dengan cara pemberian kapasitor dengan menggunakan metode *particle swarm optimization*. Hasil dari simulasi, konfigurasi dan penambahan kapasitor dapat dilihat pada Gambar 4.12 dan hasil aliran daya nya dapat dilihat pada Tabel 4.18

Gambar 4.12 Single line diagram penyulang Ometraco setelah direkonfigurasi dan penambahan kapasitor

Tabel 4.26 Hasil aliran daya penyulang Ometraco setelah rekonfigurasi dan penambahan kapasitor pada kasus 3

Bus	Tegangan (kV)	Branch		Arus	Losses
		Dari Bus	Ke Bus	(Amp)	(kW)
1	20,00000	1	2	202,59	41,04
2	19,79301	2	3	198,47	10,44
3	19,73944	3	4	197,32	1,87
4	19,72828	4	5	197,30	11,13
5	19,67092	5	6	195,19	10,10
6	19,61841	6	7	3,62	0
7	19,61736	6	8	189,86	9,55
8	19,56750	8	7- 9	187,31	9,30
9	19,51735	9	10	170,43	45,03
10	19,25711	10	11	35,62	0,34

Lanjutan Tabel 4.26 Hasil aliran daya penyulang Ometraco setelah

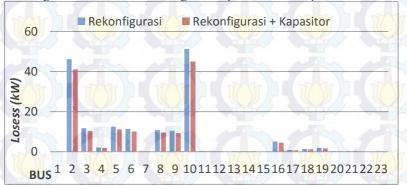
rekonfigurasi dan penambahan kapasitor pada kasus 3

Bus	Tegangan (kV)	Branch		Arus	Losses
		Dari Bus	Ke Bus	(Amp)	(kW)
11	19,24868	11	12	18,21	0,04
12	19,24611	11	13	11,95	0,02
13	19,24695	11	14	13,10	0,03
14	19,24875	14	15	13,10	0,02
15	19,24881	10	16	120,58	4,52
16	19,21993	16	17	105,17	0,73
17	19,21320	17	18	93,56	1,21
18	19,19966	18	19	80,05	1,70
19	19,17747	19	20	64,42	0,27
20	19,17299	20	21	49,11	0,28
21	19,16703	21	22	16,30	0,03
22	19,16543	21	23	12,87	0,04
23	19,16336	Total rugi daya			147,69

Hasil yang didapatkan setelah rekonfigurasi dan penambahan kapsitor pada bus 21, bus 17 dan bus 15 dengan besar 0.4 MVAR, 0.4 MVAR dan 0.377 MVAR adalah 147.69 kW dan tegangan tiap bus telah mencapai nilai standart (>19 kV) dan arus yang melalui saluran juga masih berada dalam standart yang telah ditentukan(<400 A). Sehingga rekonfigurasi dan penempatan kapasitor yang dilakukan telah berhasil membuat sistem tersebut menjadi optimal.

Tabel 4.27 Perbandingan rugi daya penyulang Ometraco setelah

rekonfigurasi dan setelah rekonfigurasi + penempatan kapasitor


Br	anch	Rekonfigurasi	Rekonfigurasi + Kapasitor	Presentase Rugi Daya
Dari Bus	Ke Bus	Losses (kW)	Losses (kW)	(%)
1	2	46,16	41,04	11,09
2	3	11,76	10,44	11,22
3	4	2,11	1,87	11,37
4	5	12,55	11,13	11,31
5	6	11,40	10,10	11,40

Lanjutan Tabel 4.27 Perbandingan rugi daya penyulang Ometraco setelah rekonfigurasi dan setelah rekonfigurasi + penambahan kapasitor

Branch		Rekonfigurasi	Rekonfigurasi + Kapasitor	Presentase Rugi Daya
Dari Bus	Ke Bus	Losses (kW)	Losses (kW)	(%)
6	7	0	0	0
6	8	10,80	9,55	11,57
8	9	10,53	9,30	11,68
9	10	51,22	45,03	12,08
10	11	0,38	0,34	10,52
11	12	0,05	0,04	20
11	13	0,02	0,02	0
11	14	0,02	0,02	0
14	15	0,01	0,01	0
10	16	5,12	4,52	11,71
16	17	0,83	0,73	12,04
17	18	1,36	1,21	11,02
18	19	1,95	1,70	12,82
19	20	0,33	0,27	18,18
20	21	0,36	0,28	22,22
21	22	0,03	0,03	0

Berikut ini adalah grafik perbandingan rugi daya setelah

rekonfigurasi dan setelah rekonfigurasi + penambahan kapasitor.

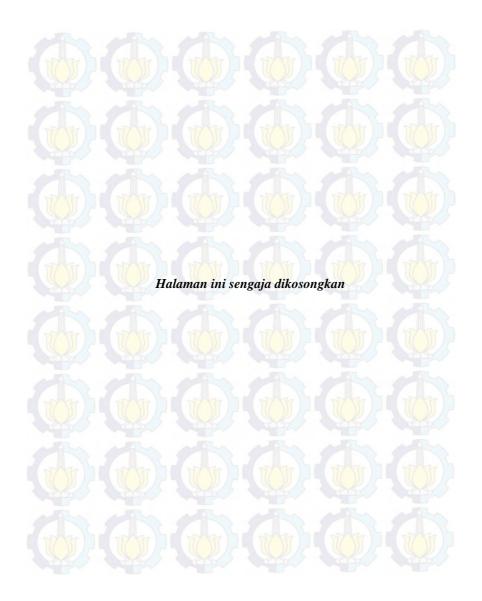
Gambar 4.13 Grafik perbandingan rugi daya setelah rekonfigurasi dan setelah rekonfigurasi+penambahan kapasitor kasus ke-3

BAB V PENUTUP

5.1 Kesimpulan

Berdasarkan hasil yang diperoleh dari simulasi dan analisa data pada tugas akhir ini, dapat diambil beberapa kesimpulan sebagai berikut:

- 1. Suatu kondisi yang diakibatkan oleh kontingensi dapat diatasi dengan melakukan rekonfigurasi dan penempatan kapasitor.
- 2. Berdasarkan hasil simulasi yang didapat bahwa bus-bus memiliki rugi minimal jika lakukan rekonfigurasi dan penambahan kapasitor, jika dibandingkan dengan rekonfigurasi saja.
- 3. Pada kasus ke-2 penyulang Kaliasin mengalami trip, setelah rekonfigurasi terpilih kombinasi yang menghubungkan beban penyulang Kaliasin ke penyulang Tegalsari yang mendapatkan rugi daya sebesar 117,60 kW dan tegangan bus terendah 18,82 kV (undervoltage). Setelah direkonfigurasi dan penambahan kapasitor rugi daya yang diperoleh 88,62 kW dan tegangan terendah 19,12 kV.
- 4. Pada kasus ke-3, penyulang Basuki Rahmat mengalami *overload*, setelah rekonfigurasi terpilih kombinasi yang menghubungkan sebagian beban penyulang Basuki Rahmat ke penyulang Ometraco yang mendapatkan rugi daya sebesar 167,01 kW dan tegangan bus terendah 18,95 kV (*undervoltage*). Setelah direkonfigurasi dan penambahan kapasitor rugi daya yang diperoleh 147,69 kW dan tegangan terendah 19,16 kV.


5.2 Saran

Saran yang dapat diberikan untuk perbaikan dan pengembangan tugas akhir ini adalah sebagai berikut :

- 1. Perlu adanya pengembangan program rekonfigurasi dan penempatan kapasitor agar memiliki tampilan yang lebih baik dan pengoprasian yang lebih sederhana.
- 2. Dapat dikembangkan sistem optimasi penempatan kapasitor dengan mempertimbangkan faktor-faktor lain misalnya faktor daya atau penggunaan switch kapasitor.

DAFTAR PUSTAKA

- [1] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In *Proceedings of the 1995 IEEE International Conference on Neural Networks*. IEEE Service Center, Piscataway, 1995.
- [2] Chen, C.S, Lin, C.H, Wu,C.J, and Kang M.S,"Feeder Reconfiguration for Distribution System Contingencies by Object Oriented Programming". IEEE, 2000
- [3] Prabandaru, Zainur Oktafian, "Optimasi Penentuan Letak Kapasitor dan Rekonfigurasi untuk Meminimalkan Kerugian Daya pada Jaringan Distribusi Radial Menggunakan *Genetic Algorithm*", Teknik Elektro ITS, Surabaya, 2015
- [4] Anam, Sjamsul.," Handout kuliah transmisi dan distribusi", 2012
- [5] Mira, Erviana, "Optimasi Penempatan dan Kapasitas Kapasitor Bank pada Sistem Distribusi Untuk Mereduksi Rugi Daya Menggunakan Particle Swarm Optimization", Teknik Elektro Universitas Diponegoro, Semarang, 2012
- [6] Nevanda, Gama Dwi, "Minimasi Deviasi Tegangan Menggunakan GA (Genetic Algorithm) sehingga Diperoleh Lokasi DG (Distributed Generation) dan Kapasitor yang Optimal Pada Jaringan Distribusi Radial Tiga Fasa", Teknik Elektro ITS, Surabaya, 2015
- [7] Budi, Santosa, "Tutorial Particle Swarm Optimization", Teknik Industri ITS, Surabaya.
- [8] Y.shi and R. C. Eberhart. Parameter selection in Particle swarm optimization. In V. W. Porto, N. Saravanan, D. Waagen, dan A. Eibe, editors, Proceedings of the Seventh Annual Conference on Evolutionary Programming, page 591600. Springer-Verlag, 1998.
- [9] Prasetiyo, Edwin Rozzaq," Rekonfigurasi Penyulang Akibat Kontingensi Pada Jaringan Distribusi dengan Metode *Binary Integer Programming*", Teknik Elektro ITS, Surabaya, 2014

Lampiran 1. Studi kasus ke-1 \triangle **Penyulang** TS 2 Penyulang Basuki Rahmat Tegalsari BUS 1 Penyulang SS 13 SS 14 BUS 1 SS 6 Tunjungan BUS 2 SS8 BUS 12 -BUS 3 BUS 5 BUS 4 BUS 15 BUS 9-BUS 10 BUS 16 **BUS 11** BUS 6 SS 9 SS 11 BUS 9 BUS 7 BUS 8 BUS 12 -BUS 26 BUS 27 TS₁ TS 3 BUS 1 SS 3 TS 4 **Penyulang** BUS 1 BUS 2 SS 1 Kaliasin BUS 3 BUS 2 BUS 3 BUS 4 BUS 4 -BUS 5 BUS 5 BUS 7 **BUS 12** BUS 6 SS 2 **BUS 13** BUS 6 BUS 8 BUS 7 BUS 8 BUS 9 Penyulang BUS 9 BUS 10 Ometraco SS 5 BUS 10 BUS 11

67

Lampiran 3. Studi kasus ke-3 **Penyulang** Δ TS 2 Penyulang Basuki Rahmat Tegalsari BUS 1 Penyulang SS 13 SS 14 BUS 1 SS 6 Tunjungan BUS 2 SS 8 BUS 12 -BUS 3 SS 7 BUS 5 BUS 4 BUS 15 BUS 9-BUS 10 BUS 16 **BUS 11** BUS 6 SS 9 SS 11 BUS 9 BUS 7 BUS 8 BUS 12 • BUS 26 BUS 27 TS 1 TS 3 BUS 1 SS 3 TS 4 **Penyulang** BUS 1 BUS 2 SS 1 Kaliasin BUS 3 BUS 2 BUS 4 SS 4 6 BUS 4 BUS 5 BUS 5 BUS 7 **BUS 12** BUS 6 SS 2 **BUS 13** BUS 6 BUS 8 BUS 8 BUS 9 Penyulang BUS 9 BUS 10 Ometraco SS 5 BUS 10 BUS 11 69

BIODATA PENULIS

Nasrullah Akbar Isnan terlahir sebagai anak kedua dari dua bersaudara di Pamekasan pada tanggal 01 Mei 1992. Penulis menyelesaikan pendidikan SMP Negeri 4 Surabaya pada tahun 2007, SMA Negeri 1 Surabaya pada tahun 2010. Praktikan telah menyelesaikan pendidikan Diploma dan memperoleh gelar Ahli madya (A.Md) dari kampus Institut Teknologi Sepuluh Nopember pada tahun 2013 dengan bidang keahlian Teknik Elektro Komputer Kontrol. Saat

ini penulis sedang melanjutkan pendidikan untuk mendapatkan gelar Strata 1, melalui program Lintas Jalur di Jurusan Teknik Elektro Institut Teknologi Sepuluh Nopember Surabaya dengan program studi Teknik Sistem Tenaga. Email: isnanjari@gmail.com

