

TUGAS AKHIR - TL 141584

# OPTIMASI GEOMETRI *TUBE TORSION BAR* SUSPENSION UNIT PANSER ANOA 6X6 PT. PINDAD DENGAN METODE ELEMEN HINGGA

ILMI MAYUNI BUMI NRP. 2713 100 136

Dosen Pembimbing : Budi Agung Kurniawan, S.T., M.Sc Lukman Noerochim, S.T., M.Sc.Eng., PhD

DEPARTEMEN TEKNIK MATERIAL Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2017



TUGAS AKHIR - TL141584

# OPTIMASI GEOMETRI *TUBE TORSION BAR* SUSPENSION UNIT PANSER ANOA 6X6 PT. PINDAD DENGAN METODE ELEMEN HINGGA

Ilmi Mayuni Bumi NRP 2713 100 136

Dosen Pembimbing : Budi Agung Kurniawan, S.T., M.Sc Lukman Noerochim, S.T., M.Sc.Eng., PhD

DEPARTEMEN TEKNIK MATERIAL Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2017



FINAL PROJECT - TL141584

# GEOMETRY OPTIMIZATION OF *TORSION BAR TUBE SUSPENSION UNIT* OF ARMOURED PERSONNEL CARRIER (APC) ANOA 6X6 PT. PINDAD USING FINITE ELEMENT METHOD

Ilmi Mayuni Bumi NRP 2713 100 136

Advisor Lecturer : Budi Agung, S.T., M.Sc Lukman N., S.T., M.Sc.Eng., PhD

MATERIALS ENGINEERING DEPARTEMENT Faculty of Industrial Technology Institut Teknologi Sepuluh Nopember Surabaya 2017

#### LEMBAR PENGESAHAN

# OPTIMASI GEOMETRI *TUBE TORSION BAR* SUSPENSION UNIT PANSER ANOA 6X6 PT. PINDAD DENGAN METODE ELEMEN HINGGA

#### **TUGAS AKHIR**

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik Pada

Bidang Studi Korosi dan Analisis Kegagalan Program Studi S-1 Departemen Teknik Material Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

> Oleh : ILMI MAYUNI BUMI NRP. 2713100136

Disetujui oleh Dosen Pembimbing Tugas Akhir :

1. Budi Agung Kurniawan, S.T., M.Sc. (Pembimbing 1)

2. Lukman N, ST., M.Sc.Eng., PhD., (Pembimbing 2)

Surabaya Juli 2017

#### OPTIMASI GEOMETRI *TUBE TORSION BAR* SUSPESION UNIT PANSER ANOA 6X6 PT. PINDAD DENGAN METODE ELEMEN HINGGA

| Nama       | : Ilmi Mayuni Bumi               |  |
|------------|----------------------------------|--|
| NRP        | : 2713100136                     |  |
| Jurusan    | : Teknik Material                |  |
| Pembimbing | : Budi Agung, S.T., M.Sc         |  |
|            | Lukman N., S.T., M.Sc.Eng., PhD. |  |

#### Abstrak

Komponen tube torsion bar pada sistem suspensi Panser Anoa 6x6 mendapat perhatian lebih untuk diteliti karena pernah ditemukan kegagalan pada komponen ini. Torsion bar vang terdiri dari shaft dan tube ini berfungsi untuk mengembalikan ban ke posisi semula setelah mengalami guncangan vertikal. Material vang digunakan pada komponen torsion bar adalah DIN 42CrMo4. Pada penelitian ini, dilakukan anilisis statis dengan metode elemen hingga menggunakan perangkat lunak Autodesk Inventor untuk mengevaluasi desain tube agar dapat mengurangi potensi kegagalan. Hasil simulasi menunjukkan bahwa distribusi tegangan tertinggi pada desain tube saat ini terletak di area spline dengan tegangan sebesar 787,7 MPa. Tegangan ini melebihi batas kekuatan yield material sehingga dilakukan optimasi geometri pada komponen. Desain tube modifikasi mampu mengurangi tegangan kritis namun belum signifikan, dimana pada desain modifikasi radius fillet tegangan tertinggi berkurang sebesar 1.2%, pada desain modifikasi diameter dalam berkurang sebesar 2.3%, dan berkurang hingga 6.16% pada desain modifikasi kombinasi.

Kata kunci : panser, torsion bar, analisis elemen hingga, optimasi geometri

#### GEOMETRY OPTIMIZATION OF TORSION BAR TUBE SUSPESION UNIT OF ARMOURED PERSONNEL CARRIER (APC) ANOA 6X6 PT. PINDAD USING FINITE ELEMENT METHOD

| Name       | : Ilmi Mayuni Bumi               |
|------------|----------------------------------|
| NRP        | : 2713100136                     |
| Department | : Materials Engineeirng          |
| Advisor    | : Budi Agung, S.T., M.Sc         |
|            | Lukman N., S.T., M.Sc.Eng., PhD. |

#### Abstract

The torsion bar tube component in the suspension system of Panser Anoa 6x6 is considered to be studied further due to findings of failure at the component. A torsion bar consists of two component elements, which are shaft and tube, aimed to return the tire to its original position after experiencing vertical shocks. The material used for this torsion bar components is DIN 42CrMo4. In this study, a static analysis using finite element method with Autodesk Inventor software is conducted to evaluate the tube design in order to decrease the failure potentials. The simulation result showed the highest stress found on the current tube design is located in spline area as big as 787,7 MPa. This amount of stress exceeds the threshold of its material yield strength, so that a geometry optimization on the tube component is necessary. The modified tube designs could decrease the highest stress but not vet significant. Where in the modified design of fillet radius, the highest stress is decreased as much as 1.2%, and decreased as much as 2,3% in the modified design of inner diameter. While in the modified design of the fillet radius and inner diameter combination, the highest stress is decreased up to 6,16%.

# Keywords : panzer, APC, torsion bar, finite element analysis, geometry optimization

(This page intentionally left blank)

#### KATA PENGANTAR

Puji syukur Alhamdulillah, penulis diberi kesempatan untuk menyelesaikan tugas akhir ini. Tugas Akhir sebagai amanat wajib terakhir mahasiswa Departemen Teknik Material, Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember (ITS). Penulis telah menyelesaikan Laporan Tugas Akhir yang berjudul "**Optimasi Geometri** *Tube Torsion Bar Suspension Unit* Panser Anoa 6x6 PT. PINDAD dengan Metode Elemen Hingga". Bahwa selama pengerjaan tugas akhir ini, tidak lepas dari dukungan banyak pihak. Sehingga penulis ingin berterima kasih kepada semua pihak yang telah mendukung, khususnya:

- 1. Allah SWT, yang selalu menjadi alasan utama dalam pengambilan keputusan apapun. Rupanya Allah telah menyiapkan jalur penyelesaian tugas akhir ini bahkan sejak sebelum memilih topik. Skenario yang *brilliant*, Allahuakbar.
- 2. Orang tua, yang secara sabar memberi dukungan moral maupun finansial selama pengerjaan Tugas Akhir dengan mobilitas Bandung-Surabaya yang cukup tinggi ini.
- 3. Bapak Budi Agung Kurniawan, S.T., M.Sc, sebagai Pembimbing I tugas akhir ini yang secara profesional telah membimbing, dan secara personal telah meninggalkan banyak nilai kehidupan. Betapa gaya berpikirnya yang fleksibel telah banyak mempengaruhi saya.
- 4. Bapak Lukman N., S.T., M.Sc.Eng., Ph.D, sebagai Pembimbing II tugas akhir, juga sebagai dosen pada subjek-subjek mata kuliah terkait tugas akhir ini selama saya kuliah, dengan telaten dan sabar telah menyampaikan banyak ilmu.
- 5. Bapak Zeri Aruman dan Bapak Ucu, yang telah menerima saya dengan sangat bersahabat untuk turut mengenal industri militer PT. PINDAD melalui Tugas Akhir ini.

- 6. Nurul Laila, sahabat sejati yang meninggalkan jejak mendalam berupa ibadah sunnah serta optimisme dalam memandang hidup, termasuk memandang tugas akhir yang *horror* ini.
- Maulana Malik, bagian dari kisah perjalanan kuliah, teman main biola, teman main billiard, teman bikin organisasi, teman apa lagi? Terima kasih sudah terus mengasihi hingga tugas akhir ini rampung dan seterusnya.
- 8. Sandy Oktavian, sensei Instruktur Autodesk yang telah mengenalkan saya pada dunia *3D modelling* bahkan jauh sebelum saya secara celaka memilih topik tugas akhir ini. Orang yang paling bertanggung jawab atas skill *engineering design* dan *FEA* saya di Inventor. Dunia perlu tahu.
- 9. Galih Bangga, *PhD student* di Jerman sana yang sudah meladeni dengan sabar telpon siang bolong dengan pertanyaan-pertanyaan bodoh dari saya, telah mengenalkan saya pada macam-macam teori yang hakiki.
- 10. Surya Sudirja, kawan yang bergelut dengan studi penerbangan-nya di Stuttgart sana, secara acak datang bak bidadari melalui *snapgram* malam membawa secercah panduan standar DIN dan Von Mises *insights*, banyak sekali membantu pengerjaan tugas akhir ini.

Penulis menyadari bahwa terdapat banyak kekurangan selama pembuatan laporan ini. Masukan dan kritik akan selalu disambut dengan baik. Penulis berharap agar Tugas Akhir ini dapat bermanfaat bagi peradaban.

Surabaya, Juli 2017

Penulis, Ilmi Mayuni Bumi



# DAFTAR ISI

| HALAMAN JUDULi                        |
|---------------------------------------|
| LEMBAR PENGESAHANv                    |
| KATA PENGANTARvii                     |
| ABSTRAKix                             |
| ABSTRACTxi                            |
| DAFTAR ISIxiii                        |
| DAFTAR GAMBAR xiv                     |
| DAFTAR TABELxxi                       |
|                                       |
| BAB I PENDAHULUAN1                    |
| 1.1 Latar Belakang1                   |
| 1.2 Perumusan Masalah2                |
| 1.3 Batasan Masalah2                  |
| 1.4 Tujuan                            |
| 1.5 Manfaat Penelitian                |
| BAB II TINJAUAN PUSTAKA               |
| 2.1 Panser Anoa 6x65                  |
| 2.2 Sistem Suspensi                   |
| 2.2.1 Klasifikasi Suspensi9           |
| 2.2.2 Jenis-jenis Pegas Suspensi10    |
| 2.3 Sistem Suspensi Panser Anoa 6x613 |
| 2.4 Batang Torsi (Torsion Bar)16      |
| 2.5 Poros                             |



| 2.5.1 Tegangan Pada Poros                    | 17 |
|----------------------------------------------|----|
| 2.5.2 Desain Poros                           |    |
| 2.5.3 Kontak Poros: Spline Coupling          | 18 |
| 2.6 Material yang Digunakan                  | 19 |
| 2.7 Konsep Dasar Torsi                       | 19 |
| 2.8 Teori Energi Distorsi (von Mises-Hencky) | 20 |
| 2.9 Metode Elemen Hingga                     | 25 |
| 2.10 Penelitian Sebelumnya                   | 29 |
| 2.11 Autodesk Inventor Professional          |    |

| BAB III METODOLOGI PENELITIAN               |    |
|---------------------------------------------|----|
| 3.1 Diagram Alir Penelitian                 |    |
| 3.2 Materi Penelitian                       |    |
| 3.2.1 Objek Penilitian                      |    |
| 3.2.2 Material Objek Penelitian             |    |
| 3.2.3 Peralatan Penilitian                  |    |
| 3.3 Permodelan dengan Autodesk Inventor Pro |    |
| 3.3.1 Pemodelan Tube                        | 40 |
| 3.3.2 Material Properties                   |    |
| 3.3.3 Assembly                              | 40 |
| 3.3.4 Meshing                               | 40 |
| 3.3.5 Analisis Tegangan                     | 41 |
| 3.4 Rancangan Penelitian                    |    |
|                                             |    |



| BAB IV ANALISIS DATA DAN PEMBAHASAN<br>4.1 Analisis Data Statis | <b>43</b><br>43 |
|-----------------------------------------------------------------|-----------------|
| 4.1.1 Analisis Data Statis Saat ini                             | 50              |
| 4.1.2 Analisis Data Statis Desain Modifikasi                    | 55              |
| 4.1.2.1 Modifikasi Radius Fillet                                | 55              |
| 4.1.2.2 Modifikasi Diameter Dalam                               | 59              |
| 4.1.2.3 Modifikasi Kombinasi                                    | 64              |
| 4.2 Pembahasan                                                  | 68              |
| 4.2.1 Evaluasi Faktor Penyebab Kegagalan                        | 68              |
| 4.2.2 Evaluasi Desain Modifikasi                                | 70              |

| BAB V KESIMPULAN DAN SARAN | 75    |
|----------------------------|-------|
| 5.1 Kesimpulan             | 75    |
| 5.1 Saran                  | 76    |
| DAFTAR PUSTAKA             | xxiii |
| LAMPIRAN                   | XXV   |
| BIODATA PENULIS            | xxix  |





Laporan Tugas Akhir Departemen Teknik Material FTI – ITS

# DAFTAR GAMBAR

| Gambar 2. 1 Panser Anoa 6x6                               | 5   |
|-----------------------------------------------------------|-----|
| Gambar 2. 2 Rangka Panser Anoa 6x6                        | 7   |
| Gambar 2. 3 Pegas Daun                                    | 11  |
| Gambar 2. 4 Pegas Koil                                    | 12  |
| Gambar 2. 5 Pegas Batang Torsi (Torsion Bar)              | 12  |
| Gambar 2. 6 Pegas Hidropneumatis                          | 13  |
| Gambar 2. 7 Sistem Suspensi Panser Anoa 6x6               | 14  |
| Gambar 2. 8 Beban Torsi                                   | 20  |
| Gambar 2. 9 Energi Regangan yang tersimpan pada Elemen    |     |
| terdefleksi                                               | 21  |
| Gambar 2. 10 Grafik representasi TED dalam keadaan tegang | gan |
|                                                           | 23  |
| Gambar 2. 11 Elemen Persegi Empat Sederhana untuk         |     |
| Menjelaskan Analisis metode Elemen Hingga                 | 26  |
| Gambar 2. 12 Elemen yang Lazim Digunakan pada Analisis I  | FEM |
|                                                           | 27  |
| Gambar 2. 13 Terminologi Metode Elemen Hingga             | 28  |
| Gambar 2. 14 Hasil meshing                                | 29  |
| Gambar 3. 1 Diagram Alir Penelitian                       | 33  |
| Gambar 3. 2 Gambar Skema Tube (Sumber: PT. PINDAD)        | 34  |
| Gambar 3. 3 Gambar Skema Shaft (Sumber: PT. PINDAD)       | 35  |
| Gambar 3. 4 Gambar 3D Tube                                | 36  |
| Gambar 3. 5 Gambar 3D Shaft                               | 37  |
| Gambar 3. 6 Gambar 3D Torsion Bar dalam mode half-view.   | 37  |
| Gambar 3. 7 Diagram alir pemodelan menggunakan software   |     |
| Autodesk Inventor Pro                                     | 39  |
| Gambar 3. 8 Hasil Meshing Tube                            | 41  |
| Gambar 4. 1 Gambar Tiga Dimensi Tube                      | 43  |
| Gambar 4. 2 Gambar Tiga Dimensi Shaft                     | 44  |
| Gambar 4. 3 Gambar Tiga Dimensi Torsion Bar mesh          | 45  |
| Gambar 4. 4 Gambar Area Tube dengan Fixed-constraint      | 46  |



Gambar 4. 5 Gambar Area Tube dengan applied Torsional Load Gambar 4. 6 Data Visual Patahan Puntiran pada Tube Gambar 4. 8 Konfigurasi torsion bar spring pada Panser Anoa Gambar 4. 9 Distribusi Tegangan Von Mises satuan MPa Gambar 4. 10 Distribusi Tegangan Von Mises satuan MPa Gambar 4. 11 Distribusi Tegangan Von Mises satuan MPa Pembebanan Statis 0,5T<sub>max</sub> Desain Tube Saat Ini ......51 Gambar 4. 12 Distribusi Tegangan Von Mises satuan MPa Gambar 4. 13 Distribusi Tegangan Von Mises satuan MPa Gambar 4. 14 Distribusi Tegangan Von Mises satuan MPa Gambar 4. 15 Penampakan Visual Patahan Area Spline Tube Gambar 4. 16 Distribusi Tegangan Von Mises pada Tube Panser Gambar 4 17 Desain *Tube* Saat ini dan Area Modifikasi 55 Gambar 4 18 Area Modifikasi Radius Fillet 20 mm 56 Gambar 4. 19 Distribusi Tegangan Von Mises satuan MPa Pembebanan Statis 0,2T<sub>max</sub> Desain Modifikasi Radius Fillet......56 Gambar 4. 20 Distribusi Tegangan Von Mises satuan MPa Pembebanan Statis 0.4T<sub>max</sub> Desain Modifikasi Radius Fillet......57 Gambar 4. 21 Distribusi Tegangan Von Mises satuan MPa Pembebanan Statis 0,5T<sub>max</sub> Desain Modifikasi Radius Fillet......57 Gambar 4. 22 Distribusi Tegangan Von Mises satuan MPa Pembebanan Statis 0,6T<sub>max</sub> Desain Modifikasi Radius Fillet......58



| Gambar 4. 23 Distribusi Tegangan Von Mises satuan MPa<br>Pembebanan Statis 0,8T <sub>max</sub> Desain Modifikasi Radius Fillet58<br>Gambar 4. 24 Distribusi Tegangan Von Mises satuan MPa<br>Pembebanan Statis 0,2T <sub>max</sub> Desain Modifikasi Radius Fillet59<br>Gambar 4. 25 Desain <i>Tube</i> Saat Ini dan Area Modifikasi60 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gambar 4. 26 Desain <i>Tube</i> Modifikasi Diameter Dalam 56 mm                                                                                                                                                                                                                                                                        |
| Gambar 4. 27 Distribusi Tagangan Van Mises satuan MPa                                                                                                                                                                                                                                                                                  |
| Dambahanan Statia 0.2T — Dagain Tuha Madifikagi Diamatar                                                                                                                                                                                                                                                                               |
| Delam 61                                                                                                                                                                                                                                                                                                                               |
| Gambar 4, 28 Distribusi Tegangan Von Mises satuan MPa                                                                                                                                                                                                                                                                                  |
| Dambahanan Statis 0.4T Desain Tuba Modifikasi Diameter                                                                                                                                                                                                                                                                                 |
| Dalam 61                                                                                                                                                                                                                                                                                                                               |
| Gambar 4, 29 Distribusi Tegangan Von Mises satuan MPa                                                                                                                                                                                                                                                                                  |
| Pambabanan Statis 0 5T Desain <i>Tuba</i> Modifikasi Diameter                                                                                                                                                                                                                                                                          |
| Dalam 62                                                                                                                                                                                                                                                                                                                               |
| Gambar 4, 30 Distribusi Tegangan Von Mises satuan MPa                                                                                                                                                                                                                                                                                  |
| Pembehanan Statis 0.6T Desain <i>Tuba</i> Modifikasi Diameter                                                                                                                                                                                                                                                                          |
| Dalam 62                                                                                                                                                                                                                                                                                                                               |
| Gambar 4, 31 Distribusi Tegangan Von Mises satuan MPa                                                                                                                                                                                                                                                                                  |
| Pembehanan Statis 0.8T Desain <i>Tube</i> Modifikasi Diameter                                                                                                                                                                                                                                                                          |
| Dalam 63                                                                                                                                                                                                                                                                                                                               |
| Gambar 4, 32 Distribusi Tegangan Von Mises satuan MPa                                                                                                                                                                                                                                                                                  |
| Pembehanan Statis T Desain <i>Tube</i> Modifikasi Diameter Dalam                                                                                                                                                                                                                                                                       |
| 63                                                                                                                                                                                                                                                                                                                                     |
| Gambar 4 33 Distribusi Tegangan Von Mises satuan MPa                                                                                                                                                                                                                                                                                   |
| Pembebanan Statis T <sub>max</sub> Desain <i>Tube</i> Modifikasi Diameter Dalam                                                                                                                                                                                                                                                        |
| (Mode 2 Titik)                                                                                                                                                                                                                                                                                                                         |
| Gambar 4. 34 Distribusi Tegangan Von Mises Satuan MPa                                                                                                                                                                                                                                                                                  |
| Pembebanan Statis $0.2T_{max}$ Desain <i>Tube</i> Modifikasi Kombinasi                                                                                                                                                                                                                                                                 |
| Diameter dan Radius Fillet                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                        |



| Gambar 4. 35 Distribusi Tegangan Von Mises Satuan MPa                         |
|-------------------------------------------------------------------------------|
| Pembebanan Statis 0,4T <sub>max</sub> Desain Tube Modifikasi Kombinasi        |
| Diameter dan Radius Fillet                                                    |
| Gambar 4. 36 Distribusi Tegangan Von Mises Satuan MPa                         |
| Pembebanan Statis 0,5T <sub>max</sub> Desain <i>Tube</i> Modifikasi Kombinasi |
| Diameter dan Radius Fillet                                                    |
| Gambar 4. 37 Distribusi Tegangan Von Mises Satuan MPa                         |
| Pembebanan Statis 0,6T <sub>max</sub> Desain Tube Modifikasi Kombinasi        |
| Diameter dan Radius Fillet                                                    |
| Gambar 4. 38 Distribusi Tegangan Von Mises Satuan MPa                         |
| Pembebanan Statis 0,8T <sub>max</sub> Desain Tube Modifikasi Kombinasi        |
| Diameter dan Radius Fillet                                                    |
| Gambar 4. 39 Distribusi Tegangan Von Mises Satuan MPa                         |
| Pembebanan Statis T <sub>max</sub> Desain Tube Modifikasi Kombinasi           |
| Diameter dan Radius Fillet                                                    |
| Gambar 4. 40 Distribusi Tegangan Von Mises Satuan MPa                         |
| Pembebanan Statis T <sub>max</sub> Desain Tube Modifikasi Kombinasi           |
| Diameter dan Radius Fillet (Mode 5 Titik)68                                   |
|                                                                               |



# DAFTAR TABEL

| Tabel 2. 1 General Specifications Panser Anoa 6x6    5            |
|-------------------------------------------------------------------|
| Tabel 3. 1 Komposisi Kimia Sesuai DIN 42CrMo4 (Lucefin, 2012)     |
|                                                                   |
| Tabel 3. 2 Sifat Mekanik Sesuai DIN 42CrMo4 (Lucefin, 2012).38    |
| Tabel 3. 3 Spesifikasi Mekanik Sesuai PT. PINDAD                  |
| Tabel 3. 4 Tabel Rancangan Penelitian    42                       |
| Tabel 4. 1 Data Hasil Simulasi Desain Saat Ini50                  |
| Tabel 4. 2 Data Hasil Simulasi Desain Modifikasi Radius Filler 58 |
| Tabel 4. 3 Data Hasil Simulasi Desain Modifikasi Diameter Dalam   |
|                                                                   |
| Tabel 4. 4 Data Hasil Simulasi Desain Modifikasi Diameter Dalam   |
| dan Radius64                                                      |
| Tabel 4. 5 Data Komparasi Tegangan Von Mises dalam MPa Hasil      |
| Simulasi Desain Saat Ini dan Modifikasi71                         |
| Tabel 4. 6 Data Komparasi Segmen Lokasi Tegangan Kritis Von       |
| Mises Hasil Simulasi Desain Saat Ini dan Modifikasi71             |
|                                                                   |



Laporan Tugas Akhir Departemen Teknik Material FTI – ITS

#### **BIODATA PENULIS**



Lahir di Bandung 22 Januari 1995, Penulis yang bernama lengkap Ilmi Mayuni Bumi ini merupakan bungsu dari 3 bersaudara. Menempuh pendidikan formal sejak Sekolah Dasar hingga SMA (Madrasah Aliyah Negeri) di Bandung, dengan satu tahun masa pertukaran pelajar di Kantonsschule Hottingen, Zurich-Swiss. Studi sarjana pun ditempuhnya di

Departemen Teknik Material ITS. Selama berkuliah, penulis pernah aktif bekerja part-time sebagai jurnalis ITS. Pengalaman keorganisasiannya meliputi BEM ITS, Nano World Indonesia, dan Indocor SC ITS. Terbilang sebagai mahasiswa hiperaktif, selama berkuliah penulis mengikuti beberapa program pengembangan diri ekstra kampus seperti XL Future Leaders, Young Leaders for Indonesia, dan Astra 1<sup>st</sup> Scholarship & Development Program. Hingga pembuatan tugas akhir ini selesai, penulis telah aktif terlibat dalam beberapa proyek pemerintah maupun NGO. Dari segi bidang keilmuan teknik, penulis terlibat aktif dalam beberapa karya tulis ilmiah, diantaranya: "Study in Enhancing Nickel Production in Sulawesi-Indonesia through The Independence of Technology and The Triple Helix Approach", "The Effect of Energy Storages on Small Signal Stability of a Power System", dan tugas akhir ini sendiri sebagai amanat sekaligus kewajiban penulis sebagai mahasiswa Teknik Material FTI - ITS.

Email: ilmibumi@gmail.com



# BAB I PENDAHULUAN

#### 1.1 Latar Belakang

PT. PINDAD (Persero) merupakan perusahaan industri manufaktur Indonesia yang bergerak dalam bidang produk militer dan produk komersial. Setiap produk diharapkan selalu berkembangan menuju versi yang lebih baik, tak terkecuali produk andalan PT. PINDAD seperti Panser Anoa. Sebuah tantangan pengembangan datang dari produk andalan ini. Ditemukannya patahan pada salah satu komponen di bagian sistem suspensi (*suspension system*) Panser Anoa 6x6 menarik perhatian untuk diteliti. Setiap kendaraan memang pasti memiliki sistem suspensi, termasuk kendaraan khusus militer seperti panser anoa ini. Sistem suspensi sendiri merupakan mekanisme pada suatu otomotif yang berfungsi untuk meredam goncangan-goncangan yang terjadi ketika kendaraan melaju.

Secara spesifik, komponen yang mengalami kegagalan ini adalah komponen *tube* pada *torsion bar suspension unit*. *Torsion bar* merupakan salah satu jenis pegas yang terdiri dari dua komponen, yaitu *shaft* dan *tube* yang terbuat dari material baja. *Torsion bar* ini terpaut pada *drive link rod* di salah satu ujungnya yang menyebabkan ia mengalami beban puntir, dan difiks pada salah satu ujungnya dengan *stop link rod* yang terhubung langsung ke axle suspensi. Komponen *tube* yang mengalami kegagalan ini secara teknis berusaha meredam puntiran yang bersumber dari ujung *shaft*, dimana ujung *shaft* lainnya terpaut dengan *tube* oleh *spline* atau gigi. Pada area pertemuan antara *shaft* dan *tube* inilah, area *tube* ditemukan mengalami kegagalan berupa patahan.

Guna mendapatkan hasil penelitian yang baik atas fenomena kegagalan yang terjadi pada salah satu komponen sistem suspensi panser anoa ini, dilakukan simulasi pemodelan terhadap *tube torsion bar suspension unit* dalam mode operasi pembebanan



statis. Dengan komponen *shaft* yang turut digambar dan di*assembly* atau digabungkan dengan *tube* sesuai kenyataan, sehingga pemodelan yang disimulasikan menyerupai aslinya.

Dengan menggunakan konsep Metode Elemen Hingga atau *Finite Element Method* (FEM) dengan aplikasi Inventor Autodesk Professional, diharapkan dapat diketahui distribusi tegangan yang terjadi pada komponen *tube* di *torsion bar suspension unit* sehingga dapat dilakukan upaya optimasi geometri untuk meningkatkan performa *tube*.

#### 1.2 Perumusan Masalah

Permasalahan yang dibahas dalam penilitan tugas akhir ini adalah sebagai berikut :

- 1. Bagaimana distribusi tegangan pada *tube torsion bar suspension unit* Panser Anoa 6x6 yang mengakibatkan kegagalan pada komponen tersebut?
- 2. Bagaimana performa geometri *tube torsion bar suspension unit* Panser Anoa 6x6 hasil modifikasi?

#### 1.3 Batasan Masalah

Beberapa batasan masalah dan asumsi yang digunakan agar penelitian dapat berjalan dengan baik adalah :

- Komponen *tube torsion bar suspension unit* Panser Anoa 6x6 memiliki komposisi material dan sifat mekanik yang homogen
- 2. Posisi pemasangan diasumsikan sudah sesuai prosedur



## 1.4 Tujuan

Adapun tujuan yang dilaksanakan pada penelitian ini adalah:

- 1. Menganalisis distribusi tegangan pada *tube torsion bar suspension unit* Panser Anoa 6x6 yang mengakibatkan kegagalan pada komponen tersebut dengan Metode Elemen Hingga
- 2. Menganalisis performa geometri *tube torsion bar suspension unit* Panser Anoa 6x6 hasil modifikasi dengan Metode Elemen Hingga.

# 1.5 Manfaat Penelitian

Penelitian ini diharapkan dapat menjadi arena pembelajaran penulis dalam menggunakan keilmuan teknik material yang telah dipelajari untuk selanjutnya menjadi sebuah bentuk kontribusi pengembangan di bidang ilmu material. Selain itu, adanya penelitian ini diharapkan menjadi referensi pencegahan terjadinya kegagalan serupa di kemudian hari, serta menjadi sarana sinergitas industri dengan perguruan tinggi dalam memecahkan permasalahan di riil di lapangan.



(Halaman Ini Sengaja Dikosongkan)

**BAB I PENDAHULUAN** 



# BAB II TINJAUAN PUSTAKA

# 2.1 Panser Anoa 6x6

Panser Anoa 6x6 merupakan salah satu produk kendaraan khusus yang diproduksi oleh PT.PINDAD, penampakan dapat dilihat pada Gambar 2.1. Pada penelitian ini, panser tank dengan ban berjumlah 6 buah yang menjadi objek dengan detail gambar rangka dapat dilihat pada Gambar 2.2. Spesifikasi umum Panser Anoa 6x6 ini dimuat pada Tabel 2.1.



Gambar 2.1 Panser Anoa 6x6 (Dokumentasi PT. PINDAD)



| General   | Crew              | 12 persons                        |
|-----------|-------------------|-----------------------------------|
|           | Configuration     | 6 x 6 WD                          |
|           | Curb Weight       | $\pm 13,000 \ kg$                 |
|           | GCW               | $\pm 14,500  kg$                  |
|           | Power to weight   | $\geq 20$ Hp/ton                  |
|           | ratio             |                                   |
|           | Dimesion (LxWxH)  | $\pm$ 6,000 x 2,500 x2,170 (Hull) |
|           | тт                | ± 6,000 x 2,500 x 2,500 (copula)  |
|           | Wheel Base        | $\pm$ 1,510 mm                    |
|           | Ground Clearance  | $\pm 400 mm$                      |
|           | Angle of Approach | 45'/45'                           |
|           | Engine            | Renault Dxi7, Euro3               |
|           | -                 | Diesel Engine Inline 6 Cylinder   |
|           |                   | 320 HP at 2.300 rpm               |
|           |                   | Turbo Charger Water Cooler        |
|           | Transmission      | Automatic ZF 6HP502 S;            |
|           |                   | 6 forward / 1 reverse             |
|           | Engine Cooling    | Hydraulic Drive Cooling Fan       |
|           | System            |                                   |
| Technical | Body Hull         | Monocoque                         |
|           |                   | Armoured Steel                    |
|           |                   | Armoured Glass                    |
|           | Suspension        | Independent Modular with          |
|           |                   | Torsion Bar                       |
|           | Steering System   | Mechanical Hydraulic              |
|           |                   | Power Steering; 2 Axle, front &   |
|           |                   | middle                            |
|           | Wheel & Tyre      | 14.00 – R20 Runflat Insert        |
|           | Brake System      | Hydropneumatic Control Disk       |
|           |                   | Brake                             |
|           | Communication     | Intercom Set + AM / FM Radio      |
|           |                   | (Hopping & Enkripsi)              |

#### Tabel 2.1 Specifications Panser Anoa 6x6 (Dokumen PT.PINDAD)

# BAB II TINJAUAN PUSTAKA





Gambar 2.2 Rangka Panser Anoa 6x6 (a) Tampak Depan , (b) Samping Kiri, (c) Atas, dan (d) Samping Kanan (Dokumentasi PT. PINDAD)



#### 2.2 Sistem Suspensi

Sistem suspensi berperan untuk mendukung berat kendaraan dalam mengisolasi tubuh kendaraan dari goncangangoncangan ketika berkendara, juga untuk mempertahankan gaya traksi antara ban dan permukaan jalan. Tujuan dari sistem suspensi ini adalah untuk meningkatkan kenyamanan berkendara, kontrol jalan, dan stabilitas kendaraan. Mendesain sistem suspensi kendaraan selalu meniadi hal vang menantang untuk mempertahankan tingginya standar berkendara, penanganan, dan control tubuh kendaraan secara bersamaan dalam berbagai kondisi berkendara. (Vishal, 2016)

Pada prinsipnya, dinamika kendaraan yang menjadi perhitungan suatu sistem suspensi terklasifikasi kedalam tiga prinsip penting-jalan isolasi. Pertama adalah *road isolation* atau kemampuan mobil untuk menyerap/mengisolasi *shock* akibat goncangan dengan tujuan agar penumpang tidak terganggu saat berpergian diatas jalan kasar. Solusi pada sistem suspensi untuk jenis isolasi ini adalah dengan menyerap energi dari jalan yang kasar yang menyebabkan isolasi dalam mobil.

Kedua adalah *Road Holding* atau sejauh mana mobil mempertahankan kontak dengan permukaan jalan di berbagai jenis perubahan dengan tujuan untuk menjaga ban kontak dengan tanah, karena itu adalah gesekan antara ban dan jalan yang mempengaruhi kemampuan mobil untuk mengarahkan, rem, dan mempercepat laju mobil. Solusi pada sistem suspensi untuk fenomena ini adalah meminimalkan pengalihan mobil berat dari sisi ke sisi dan depan ke belakang, karena hal ini mengurangi berat transfer cengkeraman ban di jalan.

Ketiga adalah *concerning* atau kemampuan mobil untuk melewati lintasan melengkung dengan tujuan untuk meminimalkan goncangan tubuh yang terjadi karena gaya sentrifugal mendorong keluar pad amobil dari pusat gravitasi saat menikung, sehingga mengangkat satu sisi mobil. Solusi pada sistem suspensi untuk fenomena ini adalah dengan mentransfer berat mobil selama



menikung dari sisi tinggi monil ke sisi yang rendah. (Buntarto, 2015)

#### 2.2.1 Klasifikasi Suspensi

## a. Suspensi Rigid

Pada suspense rigid, antara roda kanan dan kiri dihubungkan dengan satu buah poros. Sehingga pada suatu saaat roda sebeah )kanan atau kiri) terangkat karena permukaan jalan yang tidak rata, maka kondisi atau keuddukan monil pun akan ikut berubah menjadi miring. Pada umumnya suspense rigid dipasang pada moil beban berat, misalnya pada container, truk, bus dan lanlain. Dikarenakan suspense rigid dipasang pada mobil berat maka biasanya menggunakan pegas daun yang dianggap lebih kokoh apabila hanya dipasang pegas coil. Namun tentu belum terlihat kokoh apabila hanya dipasang pegas coil saja. Maka untuk menambah kekuatannya, perlu ditambah dengan kompone lain, seperti lengan control batang *stabilizer* dan batang menyilang. Pada suspense tipe rigid ini, roda kiri dan roda kanan dihubungkan oleh axle tunggal.

b. Suspensi Model Bebas (Independent)

Pada suspensi mode bebas, antara roda kanan dengan roda kiri tidak berhubungan secara langsung pada axel tunggal. Suspensi model ini digunakan pada truk kecil dan mobil Penggunaan model bebas pada roda penumpang. depan dikarenakan kinerja roda depan dan belakang berbeda, yakni dapat membelok. Ketika mobil melewati jalan yang bergelombang, rodaroda menerima gaya dari permukaan jalan. Gaya ini akan digunakan untuk mencegah roda-roda untuk bergoyang, bergerak secara berlebihan, ataupun mengubah keimiringan roda. Pada suspense model bebas atau independen ini, masing-masing roda kiri dan kanan bergerak bebas tanpa sling mempengaruhi. Jenisjenis model suspensi ini meliputi jenis Mac Pherson, Wishbone, Semi-Tailing Arm, Strut Dua Link, Double Wishbone with Coil, dan Double Wishbone with Torsion Bar



c. Suspensi Model Hidrolastic dan Hidrogas

Sistem suspensi hidrogas dikembangkan oleh Moulton Development Ltd. Pada sistem suspense ini tabung suspense depan dan belakang saling berhuungan menggunakan pipa hidroik. Jika salah satu rodanya terbentur jalan tidak rata, tenaga hidrolis yang menyerap benturan akan membagi kekuatan yang sama pada roda belakang. Sistem Hidrogas cenderung terlalu lemah bila salah satu roda sajayang mengalami berbenturan, tetapi terasa kuat bila mobil elompatdan melewati permukaan yang bergelombang.

d. Suspensi Model Hidropneumatik

Pada suspensi tipe ini digunakan tekanan gas nitrogen sebagai pegas yang lebut dan terletak di ruang metal yang tertutup rapat serta disekat (dipisahkan) dengan selaput diafragma (mebran) karet yang lembut.

e. Suspensi Udara (Air Suspension)

Teknologi suspensi udara atau yang biasa dikenal *Air Suspension* telah digunakan di dunia transportasi bus baik di pulau Jawa maupun diluar pulau Jawa. Terutama saat kemunculan chasis kelas premium. Suspensi udara dinilai memiliki tingkat kenyamanan yang lebih prima dibandingkan degan suspensi sebelumnya yaitu *lift spring* atau biasa dikenal denga per daun.

## 2.2.2 Jenis-jenis Pegas Suspensi

Dari berbagai macam suspensi yang telah disebutkan sebelumnya, terdiri atas beberapa komponen dan tiap-tiap komponen memiliki fungsi dan kegunaan sendiri. Adapun komponen sistem suspensi beserta fungsi-fungsinya mliputi

Pegas berfungsi untuk menghilangkan getaran chassis dan body mobil yang ditimbulkan oleh benturan jalan dengan roda. Selain itu juga menjamin roda tetap menapak pada jalan. Pemegasan pada mobil dihasilkan oleh ban pegas suspensi dan pegas tempat duduk. Adapun jenis-jenis pegas meliputi:

a. Pegas Daun



Pegas daun sebagaimana dapat dilihat pada Gambar 2.3 terbuat dari baja campuran dengan perlakuan panas (heat treatment). Pegas daun memegang sumbu roda dengan baud U. Pada umumnya pegas daun digunakan pada truk dan mobil komersial, karena konstruksinya yang sederhana namun menopang beban yang cukup berat. Selain konstruksi pegas daun seperti ini, masih ada lagi konstruksi lain yakni pegas daun ganda. Konstruksinya selain pegas utama yang letaknya dibawah, diatasnya ditambah lagi dengan pegas daun. Biasanya model ini digunakan pada mobil berbeban sangat berat. Pegas daun biasanya menjadi disusun berbentuk elips untuk mempertinggi elastisitasnya. Susunannya dimuai dari yang terpendek dibawah, makin keatas makin panjang pelatnya. Biasanya pegas daun terdiri atas tiga sampai sepuluh lembar pelat baja yang tebalnya antara 3-6 mm. Fungsi pegas daun antara lain; meneruskan gerakan beban mobil dari rangka ke rumah axle roda, menahan gaya tekan yang berubah-ubah dan mengakibatkan daya perlawanan yang berubahubah pula (gaya pemasangan).



Gambar 2.3 Pegas Daun (Buntarto, 2015)

#### b. Pegas Koil

Pegas koil sebagaimana dapat dilihat pada Gambar 2.4 dibuat dari baja campuran dengan perlakuan panas kemudian dibentuk menjadi bentuk gabungan. Jenis ini biasanya digunakan pada mobil penumpang untuk memberi kenyamanan dalam perjalanan. Fungsi pegas koil meliputi; meredam pemegasan dengan arah tegak lurus dan menyerap getaran yang diterima roda.




Gambar 2.4 Pegas Koil (Buntarto, 2015)

c. Pegas Batang Torsi (Torsion Bar)

Pegas batang torsi sebagaimana dapat dilihat pada Gambar 2.5 berbentuk seperti pipa pegas yang panjang yang dibuat dari batang baja elastis. Ujung pegas dipasang pada lengan suspensi atas. Ujung pegas yang lain dipasang pada rangka mobil. Saat roda menerima benturan, maka lengan suspensi akan memuntirkan batang torsi. Karena gaya ini, batang torsi akan beraksi melawan puntiran sehingga terjadilah peredaman.



Gambar 2.5 Pegas Batang Torsi (Buntarto, 2015)



d. Pegas Hidropneumatis (*Hydropneumatic*)

Pegas hidropneumatis sebagaimana dapat dilihat pada Gambar 2.6 pada sistemnya menggunakan *belt* atau *camshaft driven pump* dari mesinnya untuk memberi tekanan udara pada *special hydraulic fluid* yang mana akan memberi tenaga pada rem, suspensi, dan kekuatan daya setir. Pada fenomenanya dapat pula memberi tenaga pada beberapa komponen fitur lain seperti kopling, nyala lampu, dan bahkan jendela. Pada pegas jenis ini, gas yang digunakan untuk dikurung dan dikompresi adalah gas nitrogen karena jenis gas ini tidak memiliki kecenderungan untuk korosi. Kelebihan pegas ini adalah memiliki elastisitas yang tinggi dan dapat mengatur tinggi bebas mobil. (Buntarto, 2015)



Gambar 2.6 Pegas Hidropneumatis (Buntarto, 2015)

## 2.3 Sistem Suspensi Panser Anoa 6x6

Kendaraan khusus militer Panser Anoa 6x6 pada semua serinya memiliki sistem suspensi yang sama, yaitu sistem suspensi independen model *single wishbone* dengan pegas batang torsi (*torsion bar*) sebanyak tiga *axle*, dengan setiap satu *axle*-nya untuk dua ban sebagaimana dapat dilihat pada Gambar 2.7.





(b) Gambar 2.7 Sistem Suspensi Panser Anoa 6x6 (Dokumen PT. PINDAD)

Pada sistem suspensi panser seperti dapat dilihat di Gambar 2.7(a), terdapat beberapa komponen utama yang meliputi suspension arm, torsion bar, rubber stop, pivot, axle drive, shock absorber, caliper, hub reduction, dan retaining cable. Dari segi



fungsi, *suspension arm* berfungsi sebagai *swing* atau bingkai pengayun roda yang terhubung langsung dengan *pivot*, *caliper*, dan *hub reduction*. Dimana *torsion bar* yang terdiri dari *shaft* dan *tube* ini berfungsi sebagai pegas, *rubber stop* sebagai pembatas atas, *pivot* sebagai persendian gerak berbelok, *axle drive* sebagai penyambung tenaga dari mesin ke roda. Lalu *shock absorber* berfungsi untuk menahan goncangan agar tetap halus, *caliper* sebagai cakram untuk rem, *hub reduction* sebagai pengantung *axle* sistem suspensi ke *body* panser.

Secara kronologis, ketika panser anoa berjalan, *suspension arm* menjadi bingkai ayunan roda. Pergerakan roda panser berasal dari energi yang ditransfer dari *engine* lalu ke transmisi, berlanjut ke *transfer box, propeller*, hingga ke *axle drive* yang selanjutnya putaran roda dipengaruhi oleh pengaturan *hub reduction* sesuai perlakuan *driver* yang mengoperasikan panser. Ketika laju panser anoa ingin dihentikan, maka *caliper* mewakili fungsi rem cakramnya.

Pada sistem suspensi ini, manuver daya belok panser diwakili fungsinya oleh komponen *pivot*. Sedangkan kehalusan naik-turunnya panser dan guncangan diredam oleh *shock absorber*, dengan maksimum guncangan teratas diatur oleh *rubber stop* dimana sudut paling minimum ban ke paling maksimumnya adalah 24°. Namun fleksibilitas ban untuk kembali ke posisi awal setelah terguncang diatur oleh pegas yang dalam sistem panser anoa ini adalah *torsion bar*. *Torsian bar* ini terdiri dari dua komponen, yaitu *shaft* dan *tube*. Seperti dapat dilihat pada Gambar 2.7 (b), komponen yang berwarna hitam adalah *torsion bar* yang pada *shaft*-nya terhubung dengan *drive link rod* dan *tube*-nya terhubung dengan *stop link rod*. Dimana ketika pergerakan maksimum roda yang sejauh 24° tersebut akan memutar *shaft* sejauh 18° pada porosnya dikarenakan *drive link rod* yang terhubung dengan *suspension arm*. Putaran *shaft* tersebut diredam oleh *tube* yang



difiks oleh *stop link rod*, yang mana hubungan *shaft* dengan *tube* ini *fit* dengan *spline*.

## 2.4 Batang Torsi (Torsion Bar)

Batang torsi digunakan sebagai salah satu komponen pada suspensi. Jenis pegas ini menawarkan kemudahan pengaturan dalam tingginya mengendara yang bergantung pada berat kendaraan. Secara esensi, batang torsi adalah batang metal yang berfungsi sebagai pegas. Pada satu ujungnya, bagian dari batang torsi (tube) difiks/ditahan secara erat pada satu posisi di bagian chassis atau bingkai kendaraan. Sedangkan ujung lain dari batang torsi terpaut pada axle sistem suspensinya, atau poros, tergantung pada spesifikasi kendaraan. Ketika kendaraan melaju, gaya-gaya yang dihasilkan dari gerakan kendaraan melahirkan torsi pada bar yang berputar sepanjang axis-nya. Pada dasarnya batang torsi ini akan menangkal atau menetralkan efek gerak putar torsi dan mengembalikannya kembali ke posisi normal. Dalam penangkalan gerak putar ini, suspensi mengkondisikan kadar pertahanan tertentu terhadap gaya-gaya yang dihasilkan dari pergerakan kendaraan. Pertahanan ini adalah prinsip utama dari sebuah sistem suspensi batang torsi. (Vishal, 2016)

### 2.5 Poros

Poros adalah suatu elemen mesin yang berputar untuk meneruskan tenaga dari sumber tenaga ke bagian mesin lain nya. Tenaga di transmisikan pada poros melalui gaya tangensial dan torsi yang kemudian akan disalurkan pada berbagai komponen mesin lain nya, untuk menyalurkan tenaga ini biasa nya melalui gear atau pulley. (Khurmi & Gupta, 2005)

Poros merupakan salah satu bagian yang terpenting dari setiap mesin. Hampir semua mesin meneruskan tenaga bersama – sama dengan putaran utama dalam transmisi seperti itu dipegang oleh poros. Dalam aplikasinya perlu diperhatikan beberapa hal dalam merencanakan sebuah poros diantaranya adalah :



1. Kekuatan Poros

Suatu poros transmisi dapat mengalami beban puntir atau lentur gabungan antara puntir dan lentur. Juga ada poros yang mendapat beban tarik atau tekan seperti poros baling-baling kapal atau turbin.

2. Kekakuan Poros

Meskipun sebuah poros mempunyai kekuatan yang cukup tinggi tetapi jika lenturan atau defleksi puntirnya terlalu besar akan mengakibatkan ketidaktelitian, atau menimbulkan getaran dan suara.

3. Putaran Kritis

Bila putaran suatu mesin dinaikkan maka pada suatu harga putaran tertentu dapatterjadi getaran yang luar biasa besarnya. Putaran ini disebut dengan putaran kritis.

4. Korosi

Bahan-bahan tahan korosi harus dipilih untuk propeler dan pompa bila terjadi kontak dengan media yang korosif. Demikian pula untuk poros yang terancam kavitasi dan poros mesin yang sering berhenti lama. (Awali, 2013)

## 2.5.1 Tegangan Pada Poros

Pada poros ada beberapa jenis tegangan yang bekerja, dibawah ini dijelaskan tegangan-tegangan yang bekerja pada poros

- Shear stress karena adanya torsi
- *Bending stress (tensile/compressive)* gaya akibat adanya gear ataupun pulley dan juga akibat berat dari poros itu sendiri
- Tegangan kombinasi dari torsi dan bending.

Pada poros mesin yang berputar biasanya terjadi *torsional bending* dimana beban bending bekerja pada poros yang berputar. (Khurmi & Gupta, 2005)



### 2.5.2 Desain Poros

Desain poros bisa didasarkan oleh dua hal yaitu (1)kekuatan serta (2)kekakuan dan rigiditas, pada desain poros berbasis kekuatan kasus-kasus dibawah ini biasa nya diperhatikan:

- Poros yang di desain untuk menerima torsi
- Poros yang di desain untuk menerima momen bending
- Poros yang di desain untuk menerima kombinasi tegangan dari torsi dan momen bending
- Poros yang di desain untuk menerima beban axial yang dikombinasikan dengan torsi dan momen bending. (Khurmi & Gupta, 2005)

## 2.5.3 Kontak Poros: Spline Coupling

Spline couplings pada aplikasinya melibatkan torsi tinggi. Variasi kelenturan gigi-gigi pada spline couplings berefek pada tidak serentaknya keterlibatan semua gigi sehingga beberapa gigi membawa porsi sebagian besar beban dari total beban. Variasi kelenturan gigi ini bermakna, bahwa pasangan gigi pertama yang terlibat akan membawa beban lebih besar dan mengalami gagal lebih dulu. Temuan ini telah mempengaruhi dunia industri praktis untuk mendesain *spline* pada kisaran kriteria 25-50% gigi spline couling yang akan terlibat dan membawa beban, dimana itu diasumsikan tidak terdistribusi secara seragam.

Penelitian pada keterlibatan gigi ini adalah bagian dari study yang masih berjalan disponsori oleh industri, dengan objektif untuk menjelaskan secara akurat serta meningkatkan keterlibatan gigi pada kontak poros agar terjadi peningkatan kapasitas beban dan daya tahan.

Pada kontak poros, torsi ditransfer dari *shaft* ke *hub* seperti pengapit dari gigi-gigi yang terlibat. *Spline* memiliki gigi-gigi presisi yang terspasi secara seragam di seluruh lingkar *shaft*. Sebab mengapa kapasitas beban meningkat secara signifikan jika dibandingkan dengan tipe *keyway coupling* biasa. Menurut teori,



semua gigi yang terlibat pada waktu yang sama membawa beban yang sama antara semua pasangan gigi (Robins, 2008).

## 2.6 Material yang Digunakan

Dalam melakukan pemilihan material untuk poros, harus diperhatikan beberapa hal. Kriteria sifat-sifat material yang penting untuk mendapatkan poros yang baik adalah sebagai berikut:

- Harus mempunyai kekuatan yang tinggi
- Harus mempunyai sifat mampu mesin yang baik
- Mempunyai fkctor sensitivitas terhadap takikan yang rendah
- Mempunyai sifat heat treatmen yang baik
- Mempunyai ketahanan aus yang baik (Khurmi & Gupta, 2005)

### 2.7 Konsep Dasar Torsi

Komponen mekanis yang mentransmisikan daya selalu dalam kondisi menerima beban. Beban yang bekerja bisa berupa beban bending atau torsi atau kombinasi keduanya. Ketika anggota mesin diberi beban yang sama dan berlawanan yang bekerja dalam bidang sejajar (atau torsi atau momen putar), maka komponen mesin tersebut dikatakan mengalami torsi. Komponen yang paling sering menerima 2 jenis beban ini adalah poros. Karakteristik beban torsi adalah adanya kopel pada permukaan poros yang berpusat pada sumbu penampang lingkaran. Tegangan yang muncul karena torsi disebut "*torsional shear stress*".



Gambar 2.8 Beban Torsi (Gupta, 2005)

Jika sebuah poros mendapatkan torsi, maka seluruh bagian penampang poros mulai dari pusat sumbu sampai permukaan akan mengalami tegangan geser torsi *(torsional shear stress)*. Tegangan geser torsi maksimum pada permukaan luar poros dapat diperoleh dari berikut:

| $\frac{\tau}{r} = \frac{T}{J} = \frac{C.\theta}{l} \qquad (2-1)$ |
|------------------------------------------------------------------|
| Dimana                                                           |
| t = Torsional shear stress di bagian permukaan (max)             |
| r = Radius poros                                                 |
| T = torsi atau momen puntir                                      |
| J = polar moment of inertia,                                     |
| C = Modulus kekakuan bahan poros                                 |
| l = panjang poros                                                |
| $\theta$ = sudut puntiran pada panjang l (radian)                |
| Sedangkan daya yang ditransmisikan sebesar                       |
| P = (2(phi)nT) / 60(2-2)                                         |
| Dimana n adalah putaran dalam rpm, P dalam watt.                 |
|                                                                  |

# 2.8 Teori Energi Distorsi (von Mises-Hencky)

Teori kegagalan ini diperkenalkan oleh Huber (1904) dan kemudian disempurnakan melalui kontribusi Von Mises dan Hencky. Teori ini menyatakan bahwa "Kegagalan diprediksi terjadi pada keadaan tegangan multiaksial bilamana energi distorsi per unit volume sama atau lebih besar dari energi distorsi per unit



volume pada saat terjadinya kegagalan dalam pengujian tegangan uniaksial sederhana terhadap specimen dari material yang sama".

Energi regangan akibat distorsi (berkaitan dengan perubahan bentuk) per unit volume,  $U_d$  adalah energi regangan total per unit volume, U dikurangi energi regangan akibat beban hidrostatik (berkaitan dengan perubahan volume) per unit volume,  $U_h$ 

 $U_d = U - U_h$  .....(2.3)

Energi regangan total per unit volume, U adalah luas dibawah kurva tegangan-regangan gambar 2.9



Gambar 2.9 Energi Regangan yang tersimpan pada Elemen terdefleksi (Hutton, 2004)

$$U = \frac{1}{2} (\sigma_1 \varepsilon_1 + \sigma_2 \varepsilon_2 + \sigma_3 \varepsilon_3) \dots (2.4)$$
$$U = \frac{1}{2E} [\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 2\nu (\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_1 \sigma_3)] \dots (2.5)$$

Dimana :

$$\varepsilon_1 = \frac{1}{E} \left( \sigma_1 - \nu \sigma_2 - \nu \sigma_3 \right) \dots (2.6)$$

Tegangan utama terdiri atas komponen hidrostatik ( $\sigma_h$ ) dan distorsi ( $\sigma_{id}$ )

Sehingga :

$$\sigma_1 + \sigma_2 + \sigma_2 = 3\sigma_h + (\sigma_{1d} + \sigma_{2d} + \sigma_{3d}) \dots (2.10)$$

Komponen hidrostatik tegangan ,  $\sigma_h$  terjadi hanya akibat perubahan volumrtrik ( $\sigma_{id}$ ) = 0

Energy regangan hidrostatik,  $U_h$  didapatkan dengan mensubstitusi  $\sigma_h$  pada persamaan

$$U_{h} = \frac{(1-2\nu)}{E} \left[ \sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3} - 2\nu \left( \sigma_{1}\sigma_{2} + \sigma_{2}\sigma_{3} + \sigma_{1}\sigma_{3} \right) \right] (2.15)$$

Sehingga :



$$\begin{aligned} U_d &= \frac{1}{2E} \left[ \sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 2\nu \left( \sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_1 \sigma_3 \right) \right] \dots (2.48) \\ &- \frac{(1-2\nu)}{E} \left[ \sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 2\nu \left( \sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_1 \sigma_3 \right) \right] \dots (2.17) \\ U_d &= \frac{1+\nu}{3E} \left[ \sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 2\nu \left( \sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_1 \sigma_3 \right) \right] \dots (2.18) \end{aligned}$$

Pendekatan kriteria kegagalan dilakukan dengan membandingkan energi distorsi per unit volume pada persamaan dengan energi distorsi saat terjadi kegagalan pada uji tarik.





Tegangan efektif Von Mises ( $\sigma$ ') didefinisikan sebagai tegangan tarik uniaksial yang dapat menghasilkan energi distorsi



yang sama dengan yang dihasilkan oleh kombinasi tegangan yang bekerja (Gambar 2.8).

Atau :

untuk kasus dua dimensi ( $\sigma_2 = 0$ )

$$\sigma' = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2} \dots (2.24)$$

Kegagalan akan terjadi bila :

Untuk geseran murni  $\sigma 1 = \tau = \sigma_3 \, dan \, \sigma_2 = 0$ 

$$S_y^2 = \sigma_1^2 + \sigma_1 \sigma_1 + \sigma_1^2 = 3 \sigma_1^2 = 3 \tau_{max}^2$$
 .....(2.26)

dari persamaan diatas didefinisikan kekuatan yield terhadap geser  $(S_{ys})$  dari material ulet adalah fraksi dari kekuatan yield yang didapat dari uji tarik  $(S_y)$ 

$$S_{ys} = 0.577 S_y$$
 .....(2.28)



## 2.9 Metode Elemen Hingga

Metode elemen hingga adaah metode numerik yang diunakan untuk menyelesaikan permasalahan teknik dan problem matematis dari suatu gejala phisis. Tipe masalah teknis dan matematis phisis yang dapat diselesaikan dengan metode elemen hingga terbagi menjadi dua kelompok, yaitu kelompok analisis struktur dan kelompok masalah-masalah non struktur. Tipe-tipe permasalahan struktur meliputi:

a. Analisis tegangan/stress

- b. Buckling
- c. Analisis getaran

Problem non struktur yang dapat diselesaikan dengan metode ini meliputi:

- a. Perpindahan panas dan massa
- b. Mekanika fluida
- c. Distribusi dari potensial listrik dan potensial magnet

Penyelesaian analisis dari suatu persamaan diferensial suatu geometri yang kompleks pembebanan yang rumit tidak mudah diperoleh. Formulasi dari metode elemen hingga dapat digunakan untuk mengatasi permasalahan ini. Metode ini akan melakukan pendekatan terhadap harga-harga yang tidak diketahui pada setiap titik secara diskrit. Dimulai dengan pemodelan dari suatu benda dengan membagi-membagi dalam bagian yang kecil secara keseluruhan masih mempunyai sifat yang sam adengan benda utuh sebelum terbagi dalam bagian yang kecil (diskritasi) (Helmi, 2013). Analisis elemen hingga dikembangkan dari metode matriks untuk analisis struktur dan ditunjang oleh computer digital yang memungkinkan diselesaikannya system dengan rausan persamaan simultan. Konsep yang disederhanakan dapat dilihat pada gambar dibawah ini



Laporan Tugas Akhir Departemen Teknik Material FTI – ITS

Gambar 2.11 Elemen Persegi Empat Sederhana untuk Menjelaskan Analisis Metode Elemen Hingga (Dieter, 1993)

Setiap node memiliki satu derajat kebebasan bila bergeser sejauh  $U_1$  dan  $U_2$ . Persamaan yang menyatakan hubungan antara gaya yang bekerja pada node dan pergeseran yang diakibatkannya adalah sebagai berikut:

 $P_1 = K_{11}U_1 + K_{12}U_2$ (2.29)

 $K_{21}U_1 + K_{22}U_2$  (2.30)

Koefisien kekakuan K<sub>ij</sub> dihitung dengan program komputer berdarkan sifat elastik bahan dan geometri elemen hingga dengan bentuk matriksnya adalah

Bila kedua elemen tadi digabungkan menjadi suatu konstruksi, dapat digunakan prinsip superposisi untuk menetukan kekauan struktur dua elemen tadi.



Suatu kontruksi tiga dimensi akan mengakibatkan bertambahnya jumlah persamaan simultan; tetapi dengan memanfaatkan elem tingkat tinggi dan computer yang lebih cepat, soal-soal tersebut dapat diselesaikan dengan metode elemen hingga. Pada gambar tampak beberapa elemen yang digunakan dalam analisis metode elemen hingga (a) Elemen dua dimensi paling sederhana, (b) Segitiga dengan enam node, (c) Elemen kuadrilateral, (d) Elemen cincin berdimensi satu, (e) Elemen segitiga berdimensi dua, (f) Segitiga isoparametrik, (g)Tetrahedron, (h) Heksahedron.



Gambar 2.12 Elemen yang Lazim Digunakan pada Analisis Metode Elemen Hingga (Sumber: Dieter,1993)

Penyelesaian Elemen hingga mencakup perhitungan matriks kekakuan untuk setiap elemen dalam struktur. Elemen tersebut kemudian dirakit membentuk matriks kekakuan [K] untuk seluruh konstruksi.

 $\{P\} = [K] \{u\}$  .....(2.33) Secara umum teknis dan terminology finite element analysis digambarkan pada gambar 2.18. Gambar mewakili volume suatu



material yang sudah diketahui properties fisiknya. Volume mewakilkan domain boundary yang akan dihasilkan. Untuk singkatnya diasumsikan dengan kasus 2-dimensi  $\emptyset(x, y)$  untuk menentuka setiap titik P (x,y)



Gambar 2.13 Terminologi Metode Elemen Hingga

(a) domain 2-dimensi dari daerah variable  $\emptyset(x, y)$  (b) 3 node finite elemen didefinisikan dalam satu daerah (c) elemen tambahan yang menunjukkan finite elemen mesh (Hutton, 2004)

Jika nilai dari daerah variabel dikomputasikan hanya pada node dan dilakukan interpolasi ada nodal value . Untuk tiga - node segitiga dapat didiskripsikan pada persamaan berikut ini :

 $\emptyset(x, y) = N_1(x, y) \emptyset_1 + N_2(x, y) \emptyset_2 + N_3(x, y) \emptyset_3....(2.34)$ Dimana  $\emptyset_1 \ \emptyset_2 \ \emptyset_3$  merupakan nilai dari daerah variable pada node dengan  $N_1 N_2 N_3$  adalah nilai fungsi interpolasi atau shape fungtions. Sebagai contoh penyelesaian permasalahan dengan menggunakan meode finite elemen ditunjukkan pada gambar 2.19 yang meggambarkan persegi panjang dengan lubang dibagian tengah. Diasumsikan persegi panjang memiliki tebal yang konstan



pada arah z. Hasil meshing menunjukkan bentuk yang bermacammacam (triangles dan quadrilaterals) dan ukuran yang berbedabeda.



Gambar 2.14 Hasil meshing (Dieter, 1993)

## 2.10 Penelitian Sebelumnya

Nimas Faradyta (2016) melakukan penelitian mengenai "Optimasi Geometri Split Ring Screen Wash Pump - PLTGU PT. PJB UP Gresik dengan Metode Elemen Hingga" menjelaskan bagaimana perubahan geometri dapat mempengaruhi besar tegangan yang mampu ditoleransi oleh sebuah komponen. Pada penilitian ini, dilakukan simulasi pada komponen intermediate joint dengan desain geometri sesungguhnya dan desain geometri modifikasi. Proses gambar tiga dimensi geometri hasil intermediate joint ini dilakukan dengan menggunakan software Autodesk Inventor Professional. Sedangkan simulasi permodelan untuk analisis distribusi tegangan dilakukan dengan menggunakan software ANSYS. Dilakukan perbandingan tegangan tertinggi antara desain geomteri awal dan hasil modifikasi, ditemukan bahwa desain komponen intermediate joint hasil modifikasi mampu mentoleransi tegangan yang lebih tinggi dari desain awal sebesar 2 MPa (Nimas, 2016).

Toni Prahasto (2012) melakukan penelitian mengenai "Optimasi Geometri Rotating Disk Guna Minimisasi Tegangan



Geser Maksimum dan Tegangan Von Mises", dalam penelitiannya mempertimbangkan radius, berat, dan ketebalan sebagai salah satu parameter pembuatan *rotating disk*. Proses optimasi dilakukan secara numerik yang ditampilkan dalam bentuk kurva isomerit dengan berbagai variasi variabel desain. Hasil optimasi berupa tegangan geser maksimum optimal sebesar 1445 psi dan tegangan Von Mises optimal sebesar 2548 psi (Toni, 2012).

Dian Aprilia Dwiyanti (2017) melakukan penelitian mengenai "Rancang Bangun Cup Holder pada Proses Deep Drawing Pembuatan Selongsong Peluru Kaliber 20 mm". Penelitiannya ini melibatkan tiga tahapan utama meliputi tahap perancangan & pembuatan mekanisme yang meliputi gambar desain, simulasi kekuatan komponen, dan manufaktur hasil desain. Pengerjaan gambar desain dan simulasi dengan finite element menggunakan software Autodesk Inventor. Dilakukan perhitungan dan simulasi tegangan Von Mises, dibandingkan hasil perhitungan manual dan simulasi software Inventor. Hasilnya terdapat perbedaan tipis, dimana tegangan maksimal yang ditunjukkan software berada pada angka 0,3 MPa sedangkan hasil manual menunjukkan 0,3067 MPa. Pada defleksi maksimal yang ditunjukkan software Inventor adalah sebesar 0,004111 mm, sedangkan hasil perhitungan manual menunjukkan 0,00406 mm. (Dian, 2017).

J.O Almen (1951) melakukan evaluasi pada karakteristik tegangan dan patahan pada *torsion bar springs* di sistem suspensi kendaraan militer. Angka kekerasan pada material torsion bar yang diteliti adalah HRC 49 dengan keuletan yang rendah. Kegagalan *fatigue* pada kendaraan militer telah dielaah sebagai kegagalan *torsional fatigue* yang disebabkan oleh *tensile yielding* (Almen, 1951).

AM Heyes (1998) meneliti mengenai "Automotive Component Failure", dimana salah satu komponen otomotif yang diteliti pada penilitian ini adalah torsion bar karena dikategorikan sebagai salah satu komponen dengan keamanan kritis. Pada kasus



penilitian ini, sebuah *torsion bar* ditemukan mengalami kegagalan setelah melewati 100.000 km. Material yang digunakan pada *torsion bar* ini adalah AISI 5150. Pada proses investigasi temuan kegagalan ini, kekerasan patahan diketahui 508 HV30 dimana *ultimate tensile strength* maksimumnya adalah 1740 MPa. Hasilnya, penyebab kegagalan pada *torsion bar* ini disinyalir karena pertumbuhan patahan *fatigue* kecil dari cacat kecil(Heyes, 1998).

Vikas V Layasangi (2016) melakukan penelitian mengenai "Analysis of Torsion Bar of Light Motor Vehicle Car Using Alternative Material". Pada penelitian ini, torsion bar dinilai sebagai bagian dari vehicle yang menerima tegangan sangat tinggi, sehingga dilakukan percobaan menggunakan material komposit. Hasil daripada penelitian ini adalah torsion bar dengan material alternative menghasilkan maximum angle of twist ( $\theta$ =12°) dengan efisiensi yang lebih tinggi jika dibandingkan dengan steel torsion bar konvensional (Vikas, 2016).

### 2.11 Autodesk Inventor Professional

Inventor Professional 3D CAD *software* merupakan salah satu produk dari Autodesk yang dirancang sebagai program untuk desain mekanik tiga dimensi, dokkumentasi, dan simulasi produk desain. *Digital Prototyping* merupakan salah satu alat untuk membantu pengguna dalam mendesain dan memvalidasi suatu produk teknik sebelum benar-benar dimanufaktur agar produk yang dihasilkan lebih baik dengan proses yang lebih cepat. *Stress analysis* atau Analisis tegangan dapat membantu pengguna dalam menemukan alternative desain terbaik sebagai sebuah part atau *assembly*.

Dalam analisis tegangan, terdapat dua jenis simulasi. Pertama adalah analisis statis atau *static analysis* yang mengevaluasi kondisi pembebanan struktural. Kedua adalah modal analisis atau *modal analysis* dapat mengevaluasi mode-mode frekuensi natural



termasuk pergerakan komponen kaku. Setelah membuat sebuah simulasi dan mengatur parameter yang ingin dievaluasi, simulasi pun dilangsungkan. Sebuah simulasi membuat kasus-kasus, menampilkan permodelan geometris, menampilkan deteksi kontak otomatis, menghasilkan mesh, dan menyelesaikan model untuk setiap titik data.

Setelah simulasi, pengguna dapat mengevaluasi hasilnya dalam bentuk grafis. Simulasi menghasilkan seperangkat hasil Finite Element Analysis (FEA) untuk semua kombinasi parameter yang telah didefinisikan sebelumnya.



# BAB III METODOLOGI PENELITIAN

## 3.1 Diagram Alir Penelitian

Diagram alir pada penelitian tugas akhir ini adalah sebagai berikut:





### 3.2 Materi Penelitian

## 3.2.1 Objek Penelitian

Objek penelitian ini adalah desain dari *tube torsion bar suspension unit* (selanjutnya disebut *tube*) yang dapat dilihat pada gambar 3.2.



Gambar 3.2 Gambar Skema Tube (Sumber: PT. PINDAD)

## **BAB III METODOLOGI PENELITIAN**



Dengan *torsion shaft* (selanjutnya disebut *shaft*) sebagai komponen *support* dalam melakukan permodelan yang dapat dilihat pada gambar 3.3 untuk selanjutnya digambar menggunakan *3D modelling software* menjadi komponen tiga dimensi.



Gambar 3.3 Gambar Skema Shaft (Sumber: PT. PINDAD)

Adapun bentuk tampilan tiga dimensi dari dua komponen tersebut dapat dilihat pada gambar 3.4 dan 3.5, dengan konfigurasi penggabungan kedua komponen (*torsion bar*) tersebut dalam mode *half-view* dapat dilihat pada gambar 3.6.





**(b)** 

Gambar 3.4 Gambar 3D Tube (a) Full view, (b) Half View

## **BAB III METODOLOGI PENELITIAN**



Laporan Tugas Akhir Departemen Teknik Material FTI – ITS



Gambar 3.5 Gambar 3D Shaft



\*\*\*

Gambar 3.6 Gambar 3D Torsion Bar dalam mode half-view

### 3.2.2 Material Objek Penelitian

Material yang digunakan pada komponen *tube* adalah 42CrMo4 dengan spesifikasi sesuai standar DIN terlampir pada



Tabel 3.1 dan Tabel 3.2, dan spesifikasi diketahui dari PT. PINDAD pada Tabel 3.3.

Tabel 3. 1 Komposisi Kimia Sesuai DIN 42CrMo4 (Lucefin,

|            | 2012) |       |
|------------|-------|-------|
| Unsur      | % Min | % Max |
| Carbon     | 0,38  | 0,45  |
| Manganese  | 0,60  | 0,90  |
| Phosporus  | -     | 0,025 |
| Sulfur     | -     | 0,035 |
| Silicon    | -     | 0,40  |
| Chromium   | 0,90  | 1,20  |
| Molybdenum | 0,15  | 0,30  |

 Tabel 3. 2 Sifat Mekanik Sesuai DIN 42CrMo4 (Lucefin, 2012)

| Sifat Mekanik    | 42CrMo4                |  |
|------------------|------------------------|--|
| Yield Strength   | 750 MPa                |  |
| Tensile Strength | 1200 MPa               |  |
| Young's Modulus  | 210 Gpa                |  |
| Shear Modulus    | 80 GPa                 |  |
| Poisson's Ratio  | 0,3                    |  |
| Density          | $7,85 \text{ kg/dm}^3$ |  |
|                  |                        |  |

 Tabel 3. 3
 Spesifikasi Mekanik Sesuai PT. PINDAD

| Sifat Mekanik    | 42CrMo4       |  |
|------------------|---------------|--|
| Hardness (HRC)   | 45-46         |  |
| Tensile Strength | 1320-1470 MPa |  |

## 3.2.3 Peralatan Penelitian

Peralatan yang digunakan dalam penelitian tugas akhir ini adalah Autodesk Inventor Professional, yang merupakan sebuah

## **BAB III METODOLOGI PENELITIAN**



*software* berbasis *3D Modelling* dan metode elemen hingga yang memiliki kemampuan untuk mendesain tiga dimensi serta

# 3.3 Pemodelan dengan Autodesk Inventor Professional

Adapun diagram alir pemodelan *Tube* dengan menggunakan Autodesk Inventor Professional dapat dilihat pada gambar 3.6 :



Gambar 3.7 Diagram alir pemodelan menggunakan software Autodesk Inventor Professional



### 3.3.1 Pemodelan Tube

Desain utama pada penelitian ini yaitu desain *Tube* yang digambar sesuai gambar 2D, diproses untuk menjadi 3D menggunakan *software* Autodesk Inventor Professional. Adapun desain untuk mendukung proses simulasi menjadi lebih nyata adalah desain *Shaft* sesuai gambar 2D yang diproses untuk menjadi sebuah gambar 3D.

### **3.3.2** Material Properties

Pada penelitian ini dilakukan input data material 42CrMo4 sebagai bahan penyusun *Tube* begitupun *Shaft*, data sifat mekanik material pada tabel 3.2 diinput kedalam data linear isotropik.

## 3.3.3 Assembly

Part Tube dan Part Shaft digabungkan sebagaimana pada keadaan riil sistem suspensi Panser Anoa 6x6. Untuk selanjutnya dilakukan pembebanan torsi guna mengatahui distribusi tegangan pada Tube. Pembebanan dilakukan dengan menginput besar momen punter yang telah dikalkulasi sesuai dengan beban pada kenyataan, dengan kondisi sebagian tubuh Tube di-fix sebagaimana keadaan riil sistem suspensi Panser Anoa 6x6.

## 3.3.4 Meshing

Metode meshing yang digunakan pada desain *tube* adalah metode *free mesh*, berikut merupakan gambar hasil meshing model dari komponen poros dengan geometri awal, terlihat pada gambar 3.7. Pada proses meshing ini menghasilkan 13935 elemen yang tersebar pada seluruh bagian poros.



Laporan Tugas Akhir Departemen Teknik Material FTI – ITS



### Gambar 3.8 Hasil Meshing *Tube*

### 3.3.5 Analisis Tegangan

Analisis Tegangan atau *Stress Analysis* adalah suatu analisis yang digunakan untuk mengetahui persebaran tegangan pada suatu struktur dalam satu keadaan tertentu. Secara umum, tahapan proses analisis tegangan ini meliputi:

- 1. *Set expectations,* mengestimasi karakteristis fisik dengan model konseptual
- 2. *Preprocessing*, untuk mendefinisikan material dan batasanbatasan kondisi (*loads and constraints*), serta kondisi kontak spesifik atau *mesh preferences*
- 3. *Solving Run*, simulasi untuk memecahkan fenomena matematis dan menghasilkan solusi. Hasil dicapai dengan membagi komponen kedalam elemen-elemen yang lebih kecil. Simulasi ini mampu memprediksi karakteristik sistem fisik secara menyeluruh dengan memecahkan beberapa persamaan algebra secara serentak
- 4. Post-processing, menampilkan dan mengevaluasi hasil



- 5. *Review expectations*, merupakan studi dari hasil simulasi dan fase masukan pengembangan pada proses simulasi
- 6. *Conclusion (Improve Inputs)*, kesimpulan hasil apakah memenuhi ekspektasi sesuai estimasi karakteristik yang telah diinput. **Pada** bagian ini, dapat dilakukan modifikasi dengan input lain untuk mengembangan hasilnya. Modifikasi dapat dilakukan dengan mereduksi kopleksitas geometris, meniadakan geometri yang diragukan, mengganti beban atau pembatas, mengganti tipe analisa, dan lain-lain.

### 3.4 Rancangan Penelitian

Di penelitian ini akan dilakukan analisis hasil distribusi tegangan pada desain *tube*, untuk selanjutnya dianalisis area struktur yang berpotensi menimbulkan kegagalan sebagaimana terjadi di lapangan. Pada analisis sebaran tegangan, didukung dengan data visual patahan puntir yang terjadi pada *tube* untuk menambah khazanah wawasan dalam menganalisis, penampakan visual dapat dilihat pada gambar 3.7.

Lokasi struktur yang dianggap kritis dicatat sebagai dasaran modifikasi yang perlu dilakukan. Modifikasi yang dilakukan kemudian disimulasikan kembali untuk dianalisis distribusi tegangannya dengan rancangan sebagaimana pada tabel 3.3 berikut.

|                      | Load (Nm) | σ <sub>Von Mises</sub><br>(MPa) | Segmen Lokasi |
|----------------------|-----------|---------------------------------|---------------|
| Desain<br>Awal       |           |                                 |               |
| Desain<br>Modifikasi |           |                                 |               |

Tabel 3.4 Tabel Rancangan Penelitian



## BAB IV ANALISIS DATA DAN PEMBAHASAN

#### 4.1 Analisis Data Statis

Analisis statis dilakukan untuk melihat distribusi tegangan yang terjadi, mengetahui lokasi kritis, dan tegangan tertinggi. Informasi tersebut dapat diketahui dengan melakukan simulasi statis pada desain komponen yang diteliti, yaitu *tube*.

Nilai tegangan tertinggi yang diketahui kemudian dievaluasi dengan membandingkannya terhadap kriteria keamanan desain dari material komponen. Kriteria keamanan desain *tube* sebagai fungsi *spring* pada sistem suspensi adalah tegangan luluhnya, yaitu 750 MPa (DIN EN 10083-3, 2007).

Sebelum melakukan simulasi statis, dilakukan terlebih dahulu pembuatan desain tiga dimensi dari gambar komponen yang akan disimulasikan. Sebagaimana telah dijelaskan pada bagian tinjauan pustaka, komponen *torsion bar* yang terdiri dari *shaft* dan *tube* berfungsi sebagai pegas pada sistem suspensi Panser Anoa 6x6.



-

#### Gambar 4.1 Gambar Tiga Dimensi Tube

Sehingga pada tahap awal, dibuatlah desain komponen tube dalam bentuk tiga dimensi seperti bisa dilihat pada Gambar 4.1 dengan menggunakan *software* Autodesk Inventor Professional. Agar simulasi yang berlangsung sesuai dengan



kenyataan konfigurasi pegas *torsion bar* sesungguhnya, dibuat pula desain komponen *shaft* dalam bentuk tiga dimensi sebagaimana dapat dilihat pada Gambar 4.2 berikut.



Gambar 4.2 Gambar Tiga Dimensi Shaft

*Torsion bar* bekerja dengan *shaft* yang memuntir dan *tube* pada posisi fiks diam menahan puntiran, dimana kerja *shaft* dan *tube* dihubungkan oleh kontak *spline*. Pada konfigurasinya, puntiran *shaft* terjadi bergantung pada gerakan vertikal ban ketika panser bergerak, terhubung oleh *drive link rod*. Sedangkan *tube* yang diam ditahan oleh *stop link rod*, dimana kedua *link rod* ini terhubung dengan *suspension arm*.

Gambar tiga dimensi *torsion bar* yang disimulasikan dapat dilihat pada Gambar 4.3. Simulasi statis dilakukan dengan *meshing* terlebih dahulu komponen objek, sebagaimana terlihat pada Gambar 4.3, dimana komponen terbagi kedalam 62058 elemen dan 130556 titik. Setelah itu, dilakukan pengaturan *contacts* dan *constraints*, dimana kontak *shaft* dan *tube* yang telah dipindahkan kedalam bentuk *assembly* (gabungan) dideteksi oleh sistem Autodesk Inventor Stress Analysis secara otomatis. Sedangkan pengaturan *constraints* terdapat satu area pada *tube* yang di-fiks, sebagaimana tampak pada Gambar 4.4.



Nodes :130556 Elements 62068



Gambar 4.3 Gambar Tiga Dimensi *Torsion Bar* yang terdiri dari (a)*Tube* dan *Shaft* setelah digabungkan dan di-*mesh*, (b) *Overview tube*, dan (c) *overview shaft* 

## BAB IV ANALISIS DATA DAN PEMBAHASAN

Laporan Tugas Akhir Departemen Teknik Material FTI – ITS





Gambar 4.4 Gambar Area Tube dengan Fixed-constraint

Setelah pengaturan kontak dan batasan-batasan, dilakukan *input load* yang dalam kasus ini adalah *torsional load* atau pembebanan puntir. Pembebanan dilakukan pada satu ujung *shaft* yang pada kenyataannya terhubung dengan *drive link rod*, ditunjukkan dalam Gambar 4.5.





Gambar 4.5 Gambar Area Tube dengan applied Torsional Load

### BAB IV ANALISIS DATA DAN PEMBAHASAN



Selanjutnya simulasi statis dapat dilakukan sedemikian sesuai dengan *contacts, constraints*, dan *input load* yang telah diatur serupa dengan kenyataan.

Berdasarkan data primer di PT. PINDAD, kegagalan berupa patahan tidak terjadi di seluruh tubuh *tube*, melainkan di sebagian area sebagaimana ditunjukkan pada Gambar 4.6.

Sehingga pada analisis simulasi ini, dilakukan pembagian segmen area yang menjadi kemungkinan letak lokasi kritis. Lokasi kritis tersebut selanjutnya dapat menjadi data pembahasan mengenai kegagalan yang terjadi agar dapat dilakukan upaya optimasi geometri sesuai dengan distribusi tegangan yang terjadi. Segmentasi dibagi kedalam 4 area sebagaimana ditunjukkan pada Gambar 4.7.



Gambar 4.6 Data Visual Patahan Puntiran pada *Tube* (dokumentasi PT. PINDAD)




Gambar 4.7 Segmentasi Dimensi Tube mode half-view

Sistem kerja *torsion bar* sendiri sebagaimana telah dijelaskan pada bagian tinjauan pustaka, bahwa *shaft* memutar dan *tube* pada kondisi fiks menahan puntiran agar shaft dapat kembali ke titik semula menyesuaikan keadaan posisi ban sebagaimana dijelaskan pada Gambar 4.8. Sehingga pada penelitian ini, dilakukan pembebanan torsi yang sesuai dengan keadaan konfigurasi *torsion bar* pada Panser Anoa 6x6 ini.





Gambar 4.8 Konfigurasi *torsion bar spring* pada Panser Anoa 6x6 (Dokumen PT. PINDAD)

Pada simulasi statis ini, dilakukan enam nilai pembebanan berbeda yang di-*input* mewakili enam kondisi kerja *torsion bar*. Keenam pembebanan tersebut meliputi  $0,2T_{max}$ ,  $0,4T_{max}$ ,  $0,5T_{max}$ ,  $0,6T_{max}$ ,  $0,8T_{max}$ , dan  $T_{max}$ . Dimana  $T_{max}$  adalah kondisi beban puntir tertinggi yang dialami *shaft* ketika ban mengalami guncangan paling maksimum yaitu 24° (Gambar 4.8) sehingga berefek pada memuntirnya *shaft* sejauh 18° dari posisi konfigurasi awal sejak pemasangan. Sedangkan  $0,5T_{max}$  adalah kondisi saat ban



tegak lurus yaitu ketika panser dalam keadaan *full load* 15.000 kg namun tidak bergerak. Berdasarkan perhitungan terlampir bersama laporan ini, beban  $T_{max}$  adalah sebesar 15053,3 Nm.

## 4.1.1 Analisis Data Statis Desain Saat ini Tabel 4.1 Data Hasil Simulasi Desain Saat Ini

| Load (Nm)            | σ <sub>Von Mises</sub> (MPa) | Segmen Lokasi |
|----------------------|------------------------------|---------------|
| 0,2T <sub>max</sub>  | 157,5                        | 4             |
| $0,4T_{max}$         | 315,1                        | 4             |
| 0,5 T <sub>max</sub> | 388,6                        | 4             |
| 0,6 T <sub>max</sub> | 472,6                        | 4             |
| 0,8T <sub>max</sub>  | 630,1                        | 4             |
| T <sub>max</sub>     | 787,7                        | 4             |



**Gambar 4.9** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,2T<sub>max</sub> Desain *Tube* Saat Ini



Laporan Tugas Akhir Departemen Teknik Material FTI – ITS



**Gambar 4.10** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,4T<sub>max</sub> Desain *Tube* Saat Ini



**Gambar 4.11** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,5T<sub>max</sub> Desain *Tube* Saat Ini

Laporan Tugas Akhir Departemen Teknik Material FTI – ITS





**Gambar 4.12** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,6T<sub>max</sub> Desain *Tube* Saat Ini



**Gambar 4.13** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,8T<sub>max</sub> Desain *Tube* Saat Ini



Laporan Tugas Akhir Departemen Teknik Material FTI – ITS



**Gambar 4.14** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis T<sub>max</sub> Desain *Tube* Saat Ini

Analisis elemen hingga dalam melihat distribusi tegangan pada *tube* yang ditujukan untuk mengkaji tegangan kritis dan lokasi kritis ini dibandingkan dengan data visual patahan yang riil terjadi di lapangan.



Gambar 4.15 Penampakan Visual Patahan Area Spline Tube (Dokumentasi PT. PINDAD)



Mengkaji data penampakan visual patahan secara makroskopis pada area *spline tube* sebagaimana dapat dilihat pada Gambar 4.15, terdapat *chevrons* di area yang ditunjuk oleh panah biru. Sedangkan titik *initial crack* terletak di area yang ditunjuk oleh panah hitam.

Retak mulai terjadi di titik dimana terjadi tegangan tinggi dan menjalar secara gradual melalui bahan apabila beban terus berulang (Gere, 1990).

Hasil simulasi elemen hingga pada *tube* Panser Anoa 6x6 menunjukkan lokasi tegangan kritis terletak di area *spline tube* sebagaimana ditunjukkan oleh panah pada Gambar 4.16.



**Gambar 4.16** Distribusi Tegangan Von Mises pada Tube Panser Anoa 6x6 Pembebanan Statis T<sub>max</sub>

Perambatan retak pada suatu komponen terjadi jika tegangan maksimum pada ujung retakan berada di atas kekuatan material. Hal ini mengakibatkan peningkatan konsentrasi tegangan pada ujung retak (ASM Handbook Committee Volume 12, 2002).

Titik *initial crack* yang ditemukan pada data visual patahan dan lokasi tegangan kritis yang ditunjukkan pada hasil simulasi berada di area sama, yaitu area segmen 4 di kaki *spline tube*.



Hasil simulasi pada desain saat ini menunjukkan bahwa nilai tegangan yang bekerja melebihi ambang batas nilai *yield strength* material. Sehingga dilakukan modifikasi pada geometri *tube*, dengan memodifikasi radius *fillet*, diameter dalam, dan kombinasi keduanya.

## 4.1.2 Analisis Data Statis Desain Modifikasi

## 4.1.2.1 Modifikasi Radius Fillet

Pada *tube* desain saat ini, terdapat sudut yang berlokasi diantara transisi dinding dalam ruang *tube* menuju *area spline tube* yang ditunjukkan oleh lingkaran merah pada Gambar 4.17. Sudut dengan kemiringan sebesar 14° tersebut selanjutnya dimodifikasi dengan pemberian radius fillet sebesar 20 mm sebagaimana ditunjukkan pada area yagn dilingkari merah di Gambar 4.18.



Gambar 4.17 Desain Tube Saat Ini dan Area Modifikasi



Laporan Tugas Akhir Departemen Teknik Material FTI – ITS



Gambar 4.18 Area Modifikasi Radius Fillet 20 mm

| Tabel 4.2 Data Hasil Simulasi Desain Modifikasi Radius | Fillet |
|--------------------------------------------------------|--------|
|--------------------------------------------------------|--------|

| Load (Nm)            | σvon Mises (MPa) | Segmen Lokasi |
|----------------------|------------------|---------------|
| 0,2T <sub>max</sub>  | 155,5            | 4             |
| 0,4T <sub>max</sub>  | 311              | 4             |
| 0,5 T <sub>max</sub> | 388,7            | 4             |
| 0,6 T <sub>max</sub> | 466,5            | 4             |
| 0,8T <sub>max</sub>  | 622              | 4             |
| T <sub>max</sub>     | 777,5            | 4             |



**Gambar 4.19** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis  $0,2T_{max}$  Desain Modifikasi Radius Fillet



Laporan Tugas Akhir Departemen Teknik Material FTI – ITS



÷-2

**Gambar 4.21** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis  $0,5T_{max}$  Desain Modifikasi Radius Fillet

Laporan Tugas Akhir Departemen Teknik Material FTI – ITS





**Gambar 4.22** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,6T<sub>max</sub> Desain Modifikasi Radius Fillet



**Gambar 4.23** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,8T<sub>max</sub> Desain Modifikasi Radius Fillet



Laporan Tugas Akhir Departemen Teknik Material FTI – ITS



**Gambar 4.24** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis T<sub>max</sub> Desain Modifikasi Radius Fillet

#### 4.1.2.2 Modifikasi Diameter Dalam

Pada desain *tube* saat ini, ketebalan tube adalah 20 mm, dimana hal tersebut terdeskripsikan dengan desain diameter luar sebesar 78 mm dan diameter dalam 58 mm sebagaimana dapat dilihat pada area yang dilingkari di Gambar 4.25. Dengan melakukan modifikasi pada pengurangan diameter dalam sebesar 2 mm tanpa mengubah geometri lain, sehingga menjadi berdiameter 56 mm, ketebalan *tube* menjadi lebih tebal yaitu 22 mm. Desain *tube* modifikasi diameter dalam 56 mm dapat dilihat pada area yang berwarna biru di Gambar 4.26.

Laporan Tugas Akhir Departemen Teknik Material FTI – ITS





Gambar 4.25 Desain Tube Saat Ini dan Area Modifikasi



Gambar 4.26 Desain *Tube* Modifikasi Diameter Dalam 56 mm dalam Mode *Half-view* 

| Tabel 4.3 | Data | Hasil | Simulasi | Desain | Modifikasi | Diameter |
|-----------|------|-------|----------|--------|------------|----------|
| Dalam     |      |       |          |        |            |          |

| Load (Nm)            | σ <sub>kVon Mises</sub><br>(MPa) | Segmen Lokasi |
|----------------------|----------------------------------|---------------|
| 0,2T <sub>max</sub>  | 153,9                            | 1             |
| $0,4T_{max}$         | 307,8                            | 1             |
| 0,5 T <sub>max</sub> | 384,8                            | 1             |
| 0,6 T <sub>max</sub> | 461,8                            | 1             |
| 0,8T <sub>max</sub>  | 615,7                            | 1             |
| $T_{max}$            | 769,6                            | 1             |
|                      | (kritis)                         |               |
| T <sub>max</sub>     | 756,2                            | 4             |



Laporan Tugas Akhir Departemen Teknik Material FTI – ITS



**Gambar 4.27** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,2T<sub>max</sub> Desain *Tube* Modifikasi Diameter Dalam



**Gambar 4.28** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,4T<sub>max</sub> Desain *Tube* Modifikasi Diameter Dalam

Laporan Tugas Akhir Departemen Teknik Material FTI – ITS





**Gambar 4.29** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,5T<sub>max</sub> Desain *Tube* Modifikasi Diameter Dalam



**Gambar 4.30** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,6T<sub>max</sub> Desain *Tube* Modifikasi Diameter Dalam



Laporan Tugas Akhir Departemen Teknik Material FTI – ITS



**Gambar 4.31** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,8T<sub>max</sub> Desain *Tube* Modifikasi Diameter Dalam



**Gambar 4.32** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis T<sub>max</sub> Desain *Tube* Modifikasi Diameter Dalam

Laporan Tugas Akhir Departemen Teknik Material FTI – ITS





**Gambar 4.33** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis T<sub>max</sub> Desain *Tube* Modifikasi Diameter Dalam (Mode 2 Titik)

# 4.1.2.3 Modifikasi Kombinasi Diameter Dalam & Radius Fillet

Melakukan modifikasi pada pengurangan diameter dalam sebesar 2 mm, sehingga menjadi berdiameter 56 mm, ketebalan *tube* menjadi lebih tebal yaitu 22 mm. Serta modifikasi pada transisi dinding dalam ruang *tube* menuju *area spline tube* dengan radius fillet sebesar 20 mm.

Tabel 4.4 Data Hasil Simulasi Desain Modifikasi Diameter Dalam dan Radius

| Load (Nm)            | Load (Nm) σ <sub>Von Mises</sub> (MPa) |   |
|----------------------|----------------------------------------|---|
| $0,2T_{max}$         | 147,8                                  | 1 |
| $0,4T_{max}$         | 295,7                                  | 1 |
| 0,5 T <sub>max</sub> | 369,6                                  | 1 |
| 0,6 T <sub>max</sub> | 443,5                                  | 1 |
| $0,8T_{max}$         | 591,3                                  | 1 |
| T <sub>max</sub>     | 739,2 (kritis)                         | 1 |
| T <sub>max</sub>     | 704,4                                  | 4 |



Laporan Tugas Akhir Departemen Teknik Material FTI – ITS



**Gambar 4.34** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,2T<sub>max</sub> Desain *Tube* Modifikasi Kombinasi Diameter dan Radius Fillet



**Gambar 4.35** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,4T<sub>max</sub> Desain *Tube* Modifikasi Kombinasi Diameter dan Radius Fillet

Laporan Tugas Akhir Departemen Teknik Material FTI – ITS





**Gambar 4.36** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,5T<sub>max</sub> Desain *Tube* Modifikasi Kombinasi Diameter dan Radius Fillet



**Gambar 4.37** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,6T<sub>max</sub> Desain *Tube* Modifikasi Kombinasi Diameter dan Radius Fillet



Laporan Tugas Akhir Departemen Teknik Material FTI – ITS



**Gambar 4.38** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis 0,8T<sub>max</sub> Desain *Tube* Modifikasi Kombinasi Diameter dan Radius Fillet



**Gambar 4.39** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis T<sub>max</sub> Desain *Tube* Modifikasi Kombinasi Diameter dan Radius Fillet

Laporan Tugas Akhir Departemen Teknik Material FTI – ITS





**Gambar 4.40** Distribusi Tegangan Von Mises Satuan MPa Pembebanan Statis T<sub>max</sub> Desain *Tube* Modifikasi Kombinasi Diameter dan Radius Fillet (Mode 5 Titik)

#### 4.2 Pembahasan

#### 4.2.1 Evaluasi Faktor Penyebab Kegagalan

Kegagalan berupa patahan pada material terjadi karena adanya tegangan statik dan pada temperatur yang relatif rendah terhadap titik leleh dari suatu material. Tegangan yang terjadi pada material bisa merupakan tegangan tarik, tegangan kompresi, tegangan geser, ataupun torsi (Callister 2007).

*Tube* sebagai salah satu komponen *torsion bar spring* pada sistem suspensi Panser Anoa 6x6 PT. PINDAD mengalami kegagalan berupa patahan. Data primer dari PT. PINDAD pada fenomena kegagalan *tube* yang terjadi, tercatat bahwa total jumlah *tube* yang pernah mengalami kegagalan berkisar sebanyak 9 buah atau kurang dari 10. Sedangkan total *tube* yang terpasang adalah sebanyak 6x350 panser terproduksi. Sehingga rasio terjadinya kegagalan dari total *tube* yang terjadi ini tidak konsisten pada satu lokasi *tube* melainkan pernah terjadi di *axle* depan, tengah, dan belakang.



Tidak terdapat riwayat penuh dari semua *tube* yang mengalami kegagalan. Hasil wawancara kualitatif dengan Divisi Kendaraan Khusus PT. PINDAD, menerangkan bahwa dua buah *tube* diantaranya yang pernah mengalami kegagalan berada dalam kondisi panser diam sesaat setelah panser melalui kegiatan *off-road*. *Off-road* adalah kegiatan berkendara yang dilakukan di tanah atau permukaan yang kasar dan penuh guncangan (Cambridge Dictionary).

Mengacu pada konfigurasi *torsion bar* Panser Anoa 6x6 yang didesain untuk maksimum puntiran sejauh 18° ( $T_{max}$ ) sebagaimana ditunjukkan pada Gambar 4.8, titik maksimum tersebut akan tercapai ketika *rubber stop* mengenai *body* bagian bawah panser. *Rubber stop* akan mengenai *body* bawah panser ketika ban mengalami guncangan hebat setidaknya sebesar 55960 N atau setara beban sebesar 5710 kg. Perhitungan tersebut didapatkan melalui teori kesetimbangan torsi dengan pengkondisian konfigurasi *torsion bar* yang ada (Terlampir).

Sehingga keadaan pada saat *off-road* memungkinkan terjadi banyaknya guncangan berkali-kali, dimana pada hasil simulasi dengan puntiran maksimum menghasilkan tegangan Von Mises pada *tube* sebesar 787,7 MPa. Besar tegangan Von Mises pada hasil simulasi dengan hasil perhitungan Von Mises teoritis terdapat perbedaan nilai 0,6% dengan hasil sebesar 782,19 MPa.

Material yang digunakan torsion bar adalah DIN 42CrMo4 yang telah mengalami perlakuan panas berupa quenching dan tempering (+QT). Material ini memiliki yield strength sebesar 750 MPa dan tensile strength sebesar 1200 MPa (DIN EN 10083-3, 2007). Tegangan von mises yang dialami tube pada saat ban terguncang hingga rubber stop mengenai body bawah panser telah melebihi besar tegangan luluh (yield) material. Kegagalan akan terjadi bila tegangan von mises lebih dari sama dengan kekuatan yield dibagi dengan safety factor. Untuk kasus geseran murni, kekuatan yield terhadap geser dari material ulet adalah fraksi dari kekuatan yield yang didapat dari uji tarik, dimana



 $0.577 \text{ S}_{y}$  sama dengan harga  $\tau_{max}$  (Hutton, 2004). Harga  $\tau_{max}$  pada saat  $T_{max}$  adalah 451,6 MPa, sedangkan nilai 0,577 $S_{y}$  jika mengacu pada standar DIN spesifikasi komponen adalah 432,75 MPa. Terlihat bahwa  $\tau_{max}$  melebihi angka batas aman menurut teori Von Mises.

Sebanyak 38% kasus kegagalan pada komponen mesin diketahui karena kesalahan pemilihan material (Brooks, 2002). Mengacu pada DIN Standard untuk *Spring Steels*, salah satu jenis material yang secara spesifikasi didesain untuk *torsion bar* dengan kekuatan *yield* berkisar pada angka 1060 MPa adalah DIN Standard No. 1.8161. Material No. 1.8161 ini dikenal juga sebagai 58CrV4, yang mana dengan nilai kekerasan material HRC 38, *tensile strength* maksimum material adalah 1180 MPa. Material ini umum digunakan untuk *highly stressed laminated* dan *torsion bar springs*.

## 4.2.2 Evaluasi Desain Modifikasi

Desain mekanik dari suatu komponen mesin dapat menjadi salah satu faktor penyebab kegagalan pada komponen (Brooks, 2002). Untuk itu, dilakukan percobaan simulasi beberapa kondisi desain modifikasi berbeda meliputi modifikasi radius, modifikasi diameter dalam, serta modifikasi kombinasi radius dan diameter dalam.

Sesuai dengan evaluasi pada Desain Saat Ini (Gambar 4.16), konsentrasi tegangan tertinggi berada di area 4 (*spline tube*) dan sekitarnya. Sehingga sudut di area *spline* dan ketebalan *tube* menjadi perhatian untuk dilakukan modifikasi.

Untuk mengurangi efek konsentrasi tegangan, fillet biasa digunakan untuk memperlembut sudut di pojok dimana terjadi perubahan penampang. *Fillet* adalah permukaan cekung yang dibentuk apabila dua permukaan lain bertemu dengan tujuan untuk membundarkan suatu sudut yang semula tajam. Tanpa adanya *fillet*, faktor konsentrasi tegangan akan sangat besar. (Gere, 1990)



| Load<br>(Nm)     | σ <sub>kritis</sub><br>Desain<br>Dasar | σ <sub>kritis</sub> Desain<br>Modifikasi<br>Radius<br>Fillet | σ <sub>kritis</sub> Desain<br>Modifikasi<br>Diameter | σ <sub>kritis</sub> Desain<br>Modifikasi<br>Kombinasi |
|------------------|----------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| $0,2T_{max}$     | 157,5                                  | 155,5                                                        | 153,9                                                | 147,8                                                 |
| $0,4T_{max}$     | 315,1                                  | 311                                                          | 307,8                                                | 295,7                                                 |
| $0,5T_{max}$     | 388,6                                  | 388,7                                                        | 384,8                                                | 369,6                                                 |
| $0,6T_{max}$     | 472,6                                  | 466,5                                                        | 461,8                                                | 443,5                                                 |
| $0,8T_{max}$     | 630,1                                  | 622                                                          | 615,7                                                | 591,3                                                 |
| T <sub>max</sub> | 787,7                                  | 777,5                                                        | 769,6                                                | 739,2                                                 |

#### Tabel 4.5 Data Komparasi Tegangan Von Mises dalam MPa Hasil Simulasi Desain Saat Ini dan Desain Modifikasi

Data perbandingan hasil simulasi desain saat ini dan desain modifikasi dengan 6 variasi nilai *input load* dapat dilihat pada Tabel 4.5 dan Tabel 4.6.

Tabel 4.6 Data Komparasi Segmen Lokasi Tegangan Kritis Von Mises Hasil Simulasi Desain Saat Ini dan Desain Modifikasi

| Load<br>(Nm)         | σ <sub>kritis</sub><br>Desain<br>Dasar | σ <sub>kritis</sub><br>Desain<br>Modifikasi<br>Radius<br>Fillet | σ <sub>kritis</sub> Desain<br>Modifikasi<br>Diameter | σ <sub>kritis</sub> Desain<br>Modifikasi<br>Kombinasi |
|----------------------|----------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| $0,2T_{max}$         | 4                                      | 4                                                               | 1                                                    | 1                                                     |
| $0,4T_{max}$         | 4                                      | 4                                                               | 1                                                    | 1                                                     |
| 0,5 T <sub>max</sub> | 4                                      | 4                                                               | 1                                                    | 1                                                     |
| 0,6 T <sub>max</sub> | 4                                      | 4                                                               | 1                                                    | 1                                                     |
| $0,8T_{max}$         | 4                                      | 4                                                               | 1                                                    | 1                                                     |
| T <sub>max</sub>     | 4                                      | 4                                                               | 1                                                    | 1                                                     |



Sehingga pada opsi modifikasi geometri ini, dilakukan modifikasi radius fillet 20 mm pada transisi perubahan penampang dalam *tube* menuju penampang dalam *spline tube*. Hasil simulasi pada modifikasi radius ini menunjukkan pengurangan tegangan Von Mises yang terjadi pada *tube* sebesar 10,2 MPa pada *load input* T<sub>max</sub>, atau secara rata-rata mengurangi sebesar 1,2% sebagaimana ditunjukkan pada Tabel 4.5, dengan lokasi kritis di area yang sama yaitu segmen area 4 sebagaimana dapat dilihat pada Tabel 4.6.

Secara teori, tegangan geser maksimum ( $\tau_{max}$ ) berbanding terbalik dengan momen inersia ( $I_p$ ). Semakin besar nilai  $I_p$ , semakin kecil tegangan geser yang terjadi. Nilai  $I_p$  berbanding lurus dengan diameter penampang komponen, yang mana pada kasus *tube*, secara geometri diameter (d) merepresentasikan ketebalan tabung. Bertambahnya ketebalan berefek pada bertambahnya luas area, sehingga tegangan lebih terdistribusi (Gere, 1990).

Sehingga pada opsi modifikasi geometri ini, dilakukan pengurangan diameter dalam ( $d_A$ ) tanpa mengubah geometri lain, yang berefek pada bertambahnya ketebalan *tube*. Diameter dalam dikurangi 2 mm menjadi 56 mm. Hasil modifikasi pada pengurangan diameter dalam ini menunjukkan pengurangan tegangan Von Mises yang terjadi pada *tube* sebesar 18,1 MPa pada *load input* T<sub>max</sub>, atau secara rata-rata sebesar 2,3% dengan lokasi kritis di area berbeda yaitu segmen area 1 (Tabel 4.6).

Pada dua modifikasi berbeda, menunjukkan penurunan tegangan yang dialami *tube*. Sehingga dilakukan modifikasi yang mengkombinasikan pengurangan diameter dalam dan perubahan sudut menjadi radius fillet. Hasil modifikasi kombinasi ini menunjukkan pengurangan tegangan Von Mises yang terjadi pada *tube* sebesar 48,5 MPa pada *load input*  $T_{max}$ , atau secara rata-rata sebesar 6,16% dengan lokasi kritis di segmen area 1 (Tabel 4.6).

Area modifikasi geometri ini dipilih dengan mempertimbangkan sisi ekonomi, dimana perubahan pada



diameter dalam dan sudut tidak berpengaruh pada desain *shaft* maupun *suspension arm*.

Setelah modifikasi, nilai tegangan masih mendekati nilai *yield strength* spesifikasi komponen. Dengan besar *shear stress* pada desain modifikasi kombinasi sebesar 426,77 MPa (Terlampir), mendekati angka batas kegagalan yang besarnya 432,75 MPa. Sehingga kondisi ini tetap kritis. Terlebih lagi, nilai kekerasan pada benda kerja 45-46 HRC jauh melebihi spesifikasi standar DIN 42CrMo4 yang memiliki kekerasan 37-38 HRC. Diduga perbedaan ini mengakibatkan penurunan keuletan komponen tersebut.



(Halaman ini sengaja dikosongkan)



## BAB V KESIMPULAN DAN SARAN

## 5.1 Kesimpulan

Berdasarakan uraian dari bab-bab sebelumnya, pada akhir laporan ini dapatlah ditarik beberapa kesimpulan berkaitan dengan analisis dan pembahasan terhadap fenomena kegagalan dan optimasi geometri pada *tube torsion bar suspension unit* sebagai berikut:

- 1. Distribusi tegangan tertinggi pada *tube torsion bar suspension unit* Panser Anoa 6x6 terletak pada area 4 yang merupakan area *spline* dengan besar tegangan sebesar 787,7 MPa. Lokasi kritis ini sesuai dengan lokasi temuan *initial crack* pada penampakan visual patahan *tube*.
- 2. Desain geometri *tube torsion bar suspension unit* Panser Anoa 6x6 hasil modifikasi mampu mengurangi tegangan kritis. Besaran pengurangan tegangan kritis masingmasing desain modifikasi meliputi,
  - Desain Modifikasi Radius Fillet secara rata-rata mampu mengurangi tegangan kritis sebesar 1,2%, dimana tegangan tertinggi berada di angka 777,5 MPa.
  - Desain Modifikasi Diameter Dalam secara ratarata mampu mengurangi tegangan kritis sebesar 2,3%, dimana tegangan tertinggi berada di angka 769,6 MPa.
  - Desain Modifikasi Kombinasi Radius Fillet dan Diameter Dalam secara rata-rata mampu mengurangi tegangan kritis sebesar 6,16%, dimana tegangan tertinggi berada di angka 739,2 MPa.



3. Lokasi kritis pada Desain Modifikasi Diameter Dalam dan Desain Modifikasi Kombinasi berpindah dari area 4 (*spline tube*) menjadi ke area 1 (*outer spline*). Hal ini menguntungkan dalam kemudahan mendeteksi potensi kegagalan secara visual karena berada di permukaan *tube*.

## 5.2 Saran

Beberapa saran yang diajukan penulis untuk masukan bagi PT. PINDAD serta penelitian selanjutnya, yaitu:

- 1. Fungsi *rubber stop* pada sistem suspensi Panser Anoa 6x6 PT. PINDAD dapat disempurnakan dengan penambahan komponen pegas koil pada posisi tersebut, atau penggantian tanpa mengubah desain *suspension arm* yang sudah ada. Penambahan pegas ini dapat mengurangi kejutan beban fluktuatif yang mengenai *torsion bar* sehingga menjadi lebih halus.
- 2. DIN 58CrV4 (Terlampir) bisa menjadi referensi material untuk komponen *torsion bar spring*, memiliki kekuatan yang lebih tinggi dengan kekerasan yang lebih rendah dari DIN 42CrMo4.
- 3. Penelitian dapat dilanjutkan dengan percobaan simulasi pada *spline tube teeths* yang dikurangi jumlah giginya, percobaan dengan standar *spline* yang memiliki radius diantara giginya, serta pemanjangan *tube* dan *shaft*.
- 4. Penetapan jadwal *Non Destructive Test (NDT)* pada komponen *torsion bar* perlu menjadi perhatian, agar potensi kegagalan dapat terdeteksi lebih dini terlebih dengan berpindahnya lokasi kritis ke area *outer spline* yang lebih mudah untuk diinspeksi.

#### **DAFTAR PUSTAKA**

\_\_\_\_. 2002. ASM Handbook Vol.19 Fatigue and Fracture. Material Park. Ohio. USA. ASM International.

- Almen, JO. 1951. *Torsional Fatigue Failure*. New York: Product Engineering, A McGraw-Hill Publication.
- Aprillia, Dian. 2017. Rancang Bangun Cup Holder pada Proses Deep Drawing Pembuatan Selongsong Peluru Kaliber 20 mm. Surabaya: Departemen Teknik mesin ITS
- Awali, A. J., 2013. *Analisa Kegagalan Poros Dengan Pendekatan Metode Elemen Hingga*. Metro: Jurusan Teknik Mesin Universitas Muhammadiyah Metro.
- Buntarto. 2015. Perawatan & Perbaikan Sistem Suspensi Mobil. Yogyakarta: Pustaka Baru Press.
- Brook, C. & Choudhury, A., 2002. Failure Analysis of Engineering Material. New York: McGraw Hills.
- Calister, William. 2007. Material Science and Engineering An Introduction. New York: John Wiley & Sons, Inc.
- Faradiyta, Nimas. 2016. Optimasi Geometri Split Ring Screen Wash Pump - PLTGU PT. PJB UP Gresik dengan Metode Elemen Hingga. Surabaya: Departemen Teknik Material ITS
- Heyes, AM. 1998. *Automotive Component Failure*. Auckland Park: Advanced Engineering and Testing Services, CSIR.
- Khurmi, R. & Gupta, J., 2005. Textbook of Machine Design. India: Eurasia Publishing House.

- Nishida, Shin-ichi. 1992. Failure Analysis in Engineering Apllication. Jordan Hill. Oxford. Butterworth-Heinemann Ltd.
- Prahasto, Toni. 2012. *Optimasi Geometri Rotating Disk Guna Minimasi Tegangan Geser Maksimum dan Tegangan Von Mises*. Semarang: Jurusan Teknik Mesin, Universitas Diponegoro.
- Robins, Robert R. 2008. *Tooth Engagement Evaluation of Involute Spline Couplings*. Provo: Department of Mechanical Engineering Brigham Young University.
- Tayade, V., Tikley, A., Ambilkar, K., Mendhe, P., Mungale, A., dan Pawade, A. 2016. "Torsion Bar Suspension System". International Journal for Engineering Applications and Technology. India: JDIET Yavatmal.
- Yalasangi, Vikas V dkk. 2016. Analysis of Torsion Bar of Light Motor vehicle Car using Alternative Material. Jaysingpur: Department of Mechanical Engineering, Dr. J. J. Magdum College of Engineering.

## LAMPIRAN

#### A. Perhitungan Beban Setiap Ban Panser

Mengacu pada LOPA (Layout & Passanger Arrangement), bagian kiri dan kanan tubuh otomotif harus didesain seimbang dengan toleransi tidak terlalu jauh jika terdesain sedikit berat sebelah. Namun evaluasi beban setiap ban pada kendaraan Panser Anoa 6x6 diperlukan sebagai bahan pertimbangan.

• Berat dalam kondisi kosong =  $\pm 12.000$  kg



Berat pada *axle* depan dan tengah dalam kondisi kosong
= 8610 kg



• Berat pada *axle* tengah dan belakang dalam kondisi kosong = 6570 kg



- Berat dalam kondisi beban penuh (+personil dan perangkat) (GVW) = 15.000 kg
- Perhitungan beban setiap *axle* pada keadaan kosong dengan berat total 13140 kg



• Perhitungan beban setiap *axle* pada keadaan penuh dengan berat total 15.000 kg (+1860 kg posisi setengah *axle* hingga belakang)



Sehingga, beban *axle* depan adalah 5950 kg, *axle* tengah 2660 kg, dan *axle* belakang 5770 kg.

• Perhitungan beban pada setiap ban dalam keadaan penuh (15000 kg)

Tubuh panser sebelah kanan menerima beban 300 kg lebih berat dari bagian sebelah kiri. Hal tersebut dikarenakan komponen *power pack* yang terdiri dari *cooling system* dan tangki panser berada di sepanjang ruas kanan. Dalam kalkulasi *full load*, ruas kanan memiliki beban 7650 sedangkan ruas kiri memiliki beban 7350 kg. Sehingga perbandingan beban ruas kiri dan ruas kanan adalah 49:51.

- Perhitungan ban depan kiri, (49/100) x (5950 kg) = 2915,5 kg
- Perhitungan ban depan kanan,  $(51/100) \times (5950 \text{ kg}) = 3034.5 \text{ kg}$
- Perhitungan ban tengah kiri,  $(49/100) \times (2660 \text{ kg}) = 1303,4 \text{ kg}$
- Perhitungan ban tengah kanan,

(51/100) x (2660 kg) = 1356,6 kg

- Perhitungan ban belakang kiri,  $(49/100) \times (5770 \text{ kg}) = 2827.3 \text{ kg}$
- Perhitungan ban belakang kanan,  $(51/100) \times (5770 \text{ kg}) = 2942,7 \text{ kg}$



• Center of Gravity Body Surface Panser Anoa 6x6



#### B.

#### Perhitungan Momen Puntir

Diketahui

- Panjang (L) *drive link rod* (penghubung sumber gerakan ke puntiran *shaft*) adalah 269 mm (0,269 m)
- Panjang *shaft* (Ls) adalah 906 mm = 0,0906 m
- Diameter *shaft* (ds) adalah 48,5 mm = 0,0485 m
- Beban ban saat tegak lurus yang menjadi objek perhitungan, m: 2827,3 kg ; ban maksimum = 5654,6
- Nilai percepatan gravitasi bumi: 9,807 m/s<sup>2</sup>
- Konfigurasi puntiran shaft terbagi kedalam tiga mode:


Ditanya:

Nilai momen puntir (T) pada saat,

- T<sub>max</sub> (Ban mengalami beban hingga 24°)
- 0,8T<sub>max</sub> (Ban mengalami beban hingga 19,2°)
- 0,6T<sub>max</sub> (Ban mengalami beban hingga 14,4°)
- 0,5T<sub>max</sub> (Ban mengalami beban hingga 12° ban tegak lurus, full load)
- 0,4T<sub>max</sub> (Ban mengalami beban hingga 9,6°)
- 0,2T<sub>max</sub> (Ban mengalami beban hingga 4,8°)

Dijawab

#### Pendekatan praktis;

 $\mathbf{T} = \mathbf{F} \mathbf{x} \mathbf{L} = \mathbf{m} \mathbf{x} \mathbf{g} \mathbf{x} \mathbf{L}$ 

T<sub>max</sub> (Ban mengalami beban hingga 24°)

 $T_{max} = m_{max} x g x L$ = (5654,6) x (9,807) x (0,269) = 14917,3 Nm

0,8T<sub>max</sub> (Ban mengalami beban hingga 19,2°)

 $\begin{array}{l} 0,8T_{max} = 0,8m_{max} \ x \ g \ x \ L \\ = (0,8)(5654,6) \ x \ (9,807) \ x \ (0,269) \\ = \ 11933,8 \ Nm \end{array}$ 

 $\begin{array}{l} \textbf{0,6T_{max} (Ban mengalami beban hingga 14,4°)} \\ 0,6T_{max} = 0,6m_{max} \ x \ g \ x \ L \\ = (0,6)(5654,6) \ x \ (9,807) \ x \ (0,269) \\ = \ 8950,38 \ Nm \end{array}$ 

 $0,5T_{max}$  (Ban mengalami beban hingga  $12^{\circ}$  – ban tegak lurus, full load)

 $\begin{array}{l} 0.5T_{max} = 0.5m_{max} \ x \ g \ x \ L \\ = (0.5)(5654.6) \ x \ (9.807) \ x \ (0.269) \\ = 7458.6 \ Nm \end{array}$ 

0,4T<sub>max</sub> (Ban mengalami beban hingga 9,6°)

 $\begin{array}{l} 0,4T_{max} = 0,4m_{max} \ x \ g \ x \ L \\ = (0,4)(5654,6) \ x \ (9,807) \ x \ (0,269) \\ = 5966,8 \ Nm \end{array}$ 

#### 0,2T<sub>max</sub> (Ban mengalami beban hingga 4,8°)

$$\begin{array}{l} 0,2T_{\max} = 0,2m_{\max} \ x \ g \ x \ L \\ = (0,2)(5654,6) \ x \ (9,807) \ x \ (0,269) \\ = \ 2983,4 \ Nm \end{array}$$

Pendekatan teoritis, kesetimbangan torsi ;

$$T=\frac{\phi G I p}{L}$$

Dimana :

$$Ip=\frac{\pi\,d^4}{32}$$

 $T_{max} (Ban mengalami beban hingga 24^{\circ})$  $T_{max} = \frac{(0,314 \, rad) \, (80 \, GPa) \, (5,43 \, x \, 10^8)}{(0,906 \, m)}$  $= 15053,3 \, \text{Nm}$ 

0,8T<sub>max</sub> (Ban mengalami beban hingga 19,2°)

 $\begin{array}{ll} 0,8T_{\text{max}} &= (0,8)(15053,3) \\ &= 12042,64 \ \text{Nm} \end{array}$ 

0,6T<sub>max</sub> (Ban mengalami beban hingga 14,4°)

 $0,6T_{max} = (0,6)(15053,3)$ = 9031,98 Nm

 $0,5T_{max}$  (Ban mengalami beban hingga  $12^{\circ}$  – ban tegak lurus, full load)

 $\begin{array}{ll} 0,5T_{max} &= (0,5)(15053,3) \\ &= 7526,65 \ \mathrm{Nm} \end{array}$ 

#### 0,4T<sub>max</sub> (Ban mengalami beban hingga 9,6°)

 $0,4T_{max} = (0,4)(15053,3) = 6021,32 \text{ Nm}$ 

#### 0,2T<sub>max</sub> (Ban mengalami beban hingga 4,8°)

 $0,2T_{max} = (0,2)(15053,3)$ = 3010,66 Nm

## C. Perhitungan Tegangan Geser

| Diketahui | : $T_{max} = 15053,5 \text{ Nm}$               |
|-----------|------------------------------------------------|
|           | $L_{tube} = 619 \text{ mm}$                    |
|           | $d_A = 55 \text{ mm}$                          |
|           | $d_b = 58 mm$                                  |
|           | $x = 92 \text{ mm} (\text{panjang area } d_A)$ |
| Ditanya   | : Berapa tegangan geser yang dialami tube?     |
| Dijawab   | :                                              |

$$\tau=\frac{16T}{\pi d^3}=\frac{5,1T}{d^3}$$

Dimana d adalah *mean diameter tube*,

$$d = d_A + \frac{d_B - d_A}{L} x$$
  
$$d = 55 + \frac{58 - 55}{619} (92) = 55,445 mm$$

au saat T<sub>max</sub>

$$\tau = \frac{(5,1)(15053,5)}{(0,0554)^3}$$
  
= 451,6 MPa

τ saat 0,8T<sub>max</sub>

$$\tau = \frac{(5,1)(12042,64)}{(0,0554)^3} = 361,28 \text{ MPa}$$

 $\tau$  saat 0,6T<sub>max</sub>

$$\tau = \frac{(5,1)(9031,98)}{(0,0554)^3}$$
  
= 270,96 MPa

 $\tau$  saat 0,5T<sub>max</sub>

$$\tau = \frac{(5,1)(7526,65)}{(0,0554)^3}$$
  
= 225,8 MPa

 $\tau$  saat 0,4T<sub>max</sub>

$$\tau = \frac{(5,1)(6021,32)}{(0,0554)^3}$$
  
= 180,64 MPa

 $\tau$  saat 0,2T<sub>max</sub>

$$\tau = \frac{(5,1)(3010,66)}{(0,0554)^3}$$
  
= 90,32 MPa

### D. Perhitungan Tegangan Von Mises

Diketahui:  $\tau$  saat  $T_{max} = 451,6$  MPaDitanya: Berapa nilai tegangan Von Mises pada tube?Dijawab:

### Von Mises kasus tiga dimensi,

$$\sigma' = \sqrt{\frac{(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2)}{2}}$$

σ' saat T<sub>max</sub>  
= 
$$\sqrt{\frac{(0-0)^2 + (0-0)^2 + (0-0)^2 + 6(451,6)^2 + 0 + 0)}{2}}$$
  
= 782,19 MPa

σ' saat 0,8T<sub>max</sub> =  $\sqrt{\frac{(0-0)^2 + (0-0)^2 + (0-0)^2 + 6(361,28)^2 + 0 + 0)}{2}}$ = 625,75 MPa

σ' saat 0,6T<sub>max</sub>

$$= \sqrt{\frac{(0-0)^2 + (0-0)^2 + (0-0)^2 + 6(270,96)^2 + 0 + 0)}{2}}$$
  
= 469,314 MPa

σ' saat 0,5T<sub>max</sub>

$$= \sqrt{\frac{(0-0)^2 + (0-0)^2 + (0-0)^2 + 6(225,8)^2 + 0 + 0)}{2}}$$
  
= 391,095 MPa

$$= \sqrt{\frac{(0-0)^2 + (0-0)^2 + (0-0)^2 + 6(180,64)^2 + 0 + 0)}{2}}$$
  
= 312,87 MPa

σ' saat 0,2T<sub>max</sub>  
= 
$$\sqrt{\frac{(0-0)^2 + (0-0)^2 + (0-0)^2 + 6(90,32)^2 + 0 + 0)}{2}}$$
  
= 156,438 MPa

## E. Perhitungan Tegangan Geser Desain Modifikasi

| : $\sigma'_{(kombinasi)}$ saat $T_{max} = 739,2$ MPa           |
|----------------------------------------------------------------|
| $\sigma'_{(diameter dalam)}$ saat T <sub>max</sub> = 769,9 MPa |
| $\sigma'_{(radius fillet)}$ saat $T_{max} = 777,5$ MPa         |
| : Berapa nilai tegangan geser maksimum?                        |
| :                                                              |
|                                                                |

$$\tau_{xy} = \sqrt{\frac{2(\sigma^2)}{6}}$$

 $\sigma'_{(kombinasi)}$  saat  $T_{max}$ 

$$\tau_{xy} = \sqrt{\frac{2(739,2^2)}{6}} = 426,77 \text{ MPa}$$

 $\sigma'_{(diameter \; dalam)} \; saat \; T_{max}$ 

$$\tau_{xy} = \sqrt{\frac{2(769,6^2)}{6}} = 444.33 \text{ MPa}$$

 $\sigma'_{(radius \ fillet)} \ saat \ T_{max}$ 

$$\tau_{xy} = \sqrt{\frac{2(777,5^2)}{6}} = 448,89 \text{ MPa}$$

# F. Material DIN 42CrMo4

| Saarstahl - 42CrMo4 - 42CrMoS4                              |                                                                                                                                                                                                            |                                                                                                                                                           |      |                                                                                                                  |      |                                                                       |                |                         |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------|----------------|-------------------------|--|
| Material No.:                                               | Former brand name: International steel grades:                                                                                                                                                             |                                                                                                                                                           |      |                                                                                                                  |      |                                                                       |                |                         |  |
| 1.7225                                                      | Mo40                                                                                                                                                                                                       | BS: 708M40, 709M40, 708442<br>AFNOR: 42CD4                                                                                                                |      |                                                                                                                  |      | 8442                                                                  |                |                         |  |
| 1.7227                                                      |                                                                                                                                                                                                            | SAE:                                                                                                                                                      | 41   | 4140H, 4140RH                                                                                                    |      |                                                                       |                |                         |  |
| Material group:                                             | Steel for quenching and tempering according to DIN EN 10083                                                                                                                                                |                                                                                                                                                           |      |                                                                                                                  |      |                                                                       |                |                         |  |
| Chemical                                                    | Steel                                                                                                                                                                                                      | С                                                                                                                                                         | SI   | Mn                                                                                                               | Cr   | Мо                                                                    | 5              | other                   |  |
| Composition:<br>(Typical analysis in %)                     | 42CrMo4                                                                                                                                                                                                    | 0,42                                                                                                                                                      | 0,25 | 0,75                                                                                                             | 1,10 | 0,22                                                                  | <0,035         | (Pb)                    |  |
|                                                             | 42CrMoS4                                                                                                                                                                                                   | 0,42                                                                                                                                                      | 0,25 | 0,75                                                                                                             | 1,10 | 0,22                                                                  | 0,020<br>0,035 | (Pb)                    |  |
| Application:                                                | Alloyed heat treatable steel with a typical tensile strength of 900 -<br>1200 N/mm <sup>2</sup> . For automotive and aircraft components with high<br>toughness as axle journals, gears, tyres, push rods. |                                                                                                                                                           |      |                                                                                                                  |      |                                                                       |                |                         |  |
| Hot forming and                                             | Forging or hot                                                                                                                                                                                             | 1100 - 850°C                                                                                                                                              |      |                                                                                                                  |      |                                                                       |                |                         |  |
| neat treatment:                                             | Normalising:                                                                                                                                                                                               | 850 - 880°C/air                                                                                                                                           |      |                                                                                                                  |      |                                                                       |                |                         |  |
|                                                             | Soft annealing                                                                                                                                                                                             | 680 - 720°C/fumace                                                                                                                                        |      |                                                                                                                  |      |                                                                       |                |                         |  |
|                                                             | Hardening:                                                                                                                                                                                                 | 820 - 860°C/oil, water                                                                                                                                    |      |                                                                                                                  |      |                                                                       |                |                         |  |
|                                                             | Tempering:                                                                                                                                                                                                 | 540 - 680°C/air                                                                                                                                           |      |                                                                                                                  |      |                                                                       |                |                         |  |
| Mechanical<br>Properties:                                   | Treated for co<br>Soft annealed                                                                                                                                                                            | -S: max. 255 HB<br>max. 241 HB                                                                                                                            |      |                                                                                                                  |      |                                                                       |                |                         |  |
|                                                             | Quenched and tempered, +QT:                                                                                                                                                                                |                                                                                                                                                           |      |                                                                                                                  |      |                                                                       |                |                         |  |
| Dlameter d [mm]                                             | < 16                                                                                                                                                                                                       | >16 - 4                                                                                                                                                   | 0    | >40 - 100                                                                                                        | >1   | 00 - 160                                                              | >160           | 0 - 250                 |  |
| Thickness t [mm]                                            | < 8                                                                                                                                                                                                        | 8 <t<20< td=""><td>J</td><td>20<t<60< td=""><td>60</td><td>)<t<100< td=""><td>100</td><td><t<160< td=""></t<160<></td></t<100<></td></t<60<></td></t<20<> | J    | 20 <t<60< td=""><td>60</td><td>)<t<100< td=""><td>100</td><td><t<160< td=""></t<160<></td></t<100<></td></t<60<> | 60   | ) <t<100< td=""><td>100</td><td><t<160< td=""></t<160<></td></t<100<> | 100            | <t<160< td=""></t<160<> |  |
| 0,2% proof stress<br>R <sub>p0,2</sub> [N/mm <sup>2</sup> ] | min. 900                                                                                                                                                                                                   | min. 75                                                                                                                                                   | 0    | min. 650                                                                                                         | m    | ıln. 550                                                              | mir            | n. 500                  |  |
| Tensile strength R <sub>m</sub> [N/mm²]                     | 1100 - 1300                                                                                                                                                                                                | 1000 - 12                                                                                                                                                 | 200  | 900 - 1100                                                                                                       | 8    | 00 - 950                                                              | 750            | 0 - 900                 |  |
| Fracture elongation A <sub>6</sub> [%]                      | min. 10                                                                                                                                                                                                    | min. 1                                                                                                                                                    | 1    | min. 12                                                                                                          | r    | nin. 13                                                               | mi             | n. 14                   |  |
| Reduction of area Z [%]                                     | min. 40                                                                                                                                                                                                    | min. 4                                                                                                                                                    | 5    | min. 50                                                                                                          | r    | nin. 50                                                               | mi             | n. 55                   |  |
| Notch Impact energy ISO-V [J]                               | min. 30                                                                                                                                                                                                    | min. 3                                                                                                                                                    | 5    | min. 35                                                                                                          | r    | nin. 35                                                               | mi             | n. 35                   |  |

# G. Material DIN 58CrV4

| Quality 58CrV4                     |                   |                   |                      |                    | Spring<br>Steel |            |                | TECHNICAL CA                    |                              |             |  |
|------------------------------------|-------------------|-------------------|----------------------|--------------------|-----------------|------------|----------------|---------------------------------|------------------------------|-------------|--|
| According to standards (DIN 17221) |                   |                   |                      |                    |                 |            |                | GRUPPO LUCEFIN<br>REVISION 2014 |                              |             |  |
| Number                             |                   |                   | 1.8161               |                    |                 |            |                |                                 | ALL RIGHTS RESERV            | VED LUCEFIN |  |
| Chemi                              | cal con           | position          |                      |                    |                 |            |                |                                 |                              |             |  |
| С%                                 | 8                 | i%                | Mn%                  | P%<br>max          | S%<br>max       | Cr%        | i i            | V%                              |                              |             |  |
| 0,55-0,6                           | 20,               | 15-0,40           | 0,70-1,10            | 0,035              | 0,035           | 0,90       | )-1,20         | 0,10-0,20                       |                              |             |  |
| Tempe                              | erature           | °C                |                      |                    |                 |            |                |                                 |                              |             |  |
| Hot-form                           | ning              | Normalizin        | ig Que               | nching             | Temperin        | 9          | Stress-        | relief                          | Soft annealing               | 9           |  |
|                                    | -                 | +N +Q             |                      |                    | +T              |            | annealing      |                                 | +A                           |             |  |
| 1050-85                            | 0                 | 850-880<br>air    | 830-<br>oil o        | 850 A              | 480-650<br>air  |            | 150-200<br>air |                                 | (HB max 248)                 |             |  |
| Anneali                            | ng                | Quenching         | a Tem                | pering I           | Natural st      | ate        | Pre-hea        | ting welding                    | Stress-relieving             |             |  |
| for the s                          | prings            | for the sprin     | ngs forti            | ne springs         | +U              |            |                | • •                             | after welding                |             |  |
| 680-720                            |                   | 820-850           | 430-                 | 500                |                 |            |                | not                             | allowed                      |             |  |
| furnace                            | cooling           | oil or polym      | ier air              |                    |                 |            | AC1            | AC3                             | Ms N                         | Af          |  |
| (HB max                            | « 248)            |                   |                      | (                  | (HB ~ 310       | )          |                |                                 |                              |             |  |
| Mecha                              | nical p           | roperties         |                      |                    |                 |            |                |                                 |                              |             |  |
| Hot-roll                           | ed mecha          | nical propertie   | es after QT. Sta     | hischlüssel 201    | 0               |            |                |                                 |                              |             |  |
| size                               |                   | Testing at r      | oom temperati        | re (longitudinal)  |                 |            |                |                                 |                              |             |  |
| mm                                 |                   | R                 | Rp 0.2               | A%                 | C%              | DVM        | Ky 1           | HB <sup>1</sup>                 | <sup>1</sup> for informatio  | n           |  |
| from                               | to                | N/mm <sup>2</sup> | N/mm <sup>2</sup> mi | n. min.            | min.            | J min.     | J min.         |                                 |                              |             |  |
|                                    | 16                | 1320-1570         | 1080                 | 7                  | 40              | 21         | 22             | 384-438                         |                              |             |  |
| 17                                 | 40                | 1180-1370         | 980                  | 8                  | 45              | 27         | 29             | 354-394                         |                              |             |  |
| 41                                 | 100               | 1080-1270         | 885                  | 10                 | 50              | 34         | 36             | 327-373                         |                              |             |  |
| 101                                | 160               | 980-1180          | 735                  | 12                 | 55              | 41         | 44             | 295-354                         |                              |             |  |
| 161                                | 250               | 980-1180          | 735                  | 12                 | 55              | 41         | 44             | 295-354                         |                              |             |  |
| Values f                           | or spring         | a according to    | Stahlschlüsse        | 12010              |                 |            |                |                                 |                              |             |  |
| size                               |                   | Testing at r      | oom temperati        | ure (longitudinal) |                 |            |                |                                 | <sup>1</sup> for information | n           |  |
| mm                                 |                   | R                 | Rp 0.2               | <b>A%</b>          | C%              | DVM        | Ky 1           | HB 1                            |                              |             |  |
|                                    | to                | N/mm <sup>2</sup> | N/mm <sup>2</sup> mi | n. min.            | min.            | J min.     | J min.         |                                 |                              |             |  |
| round                              | 50                | 1500-1700         | 1350                 | 6                  | 35              | 14         | 14             | 426-468                         |                              |             |  |
| flat                               | 30                | 1500-1700         | 1350                 | 6                  | 35              | 14         | 14             | 426-468                         |                              |             |  |
| Table of                           | f temperi         | ng values obta    | ained at room t      | emperature on R    | oun d of Ø      | 16 mm afte | r quenchin     | g at 840 °C in (                | oil                          |             |  |
| HB                                 |                   | 468               | 421                  | 384                | 353             | 315        | 271            |                                 |                              |             |  |
| HRC                                |                   | 49                | 45                   | 41                 | 38              | 33         | 28             |                                 |                              |             |  |
| R                                  | N/mm <sup>2</sup> | 1700              | 1480                 | 1320               | 1180            | 1040       | 900            |                                 |                              |             |  |
| Rp 0.2                             | N/mm <sup>2</sup> | 1600              | 1380                 | 1210               | 1060            | 920        | 780            |                                 |                              |             |  |
| C                                  | %                 | 36                | 40                   | 44                 | 50              | 56         | 62             |                                 |                              |             |  |
| Α                                  | %                 | 5                 | 8                    | 8                  | 9               | 9          | 10             |                                 |                              |             |  |
| Tem.                               | °C                | 400               | 450                  | 500                | 550             | 600        | 650            |                                 |                              |             |  |
| Hardena                            | ability valu      | es, for informa   | ation                |                    |                 |            |                |                                 |                              |             |  |
| distance                           | from que          | nched end         | -                    |                    |                 |            |                |                                 |                              |             |  |
| mm                                 | 2                 | 4                 | 8                    | 12                 | 16              | 20         | 28             | 32 3                            | 6 40                         | 50          |  |
| HRC                                | 64                | 63                | 62                   | 61                 | 61              | 60         | 56             | 53 5                            | 0 47                         | 42          |  |
| EUROP                              | E                 | TALIY             | CHINA                | GERMAN             | Y FR            | ANCE       | UK             | RUSS                            | SIA USA                      |             |  |
| EN                                 | -                 | UNI               | GB                   | DIN                | AFN             | IOR        | B.S.           | GOST                            | AISIS                        | AE          |  |
|                                    |                   |                   |                      | 58CrV4             | 580             | CV4        |                |                                 | 6158                         |             |  |

#### **BIODATA PENULIS**



Lahir di Bandung 22 Januari 1995, Penulis yang bernama lengkap Ilmi Mayuni Bumi ini merupakan bungsu dari 3 bersaudara. Menempuh pendidikan formal sejak Sekolah Dasar hingga SMA (Madrasah Aliyah Negeri) di Bandung, dengan satu tahun masa pertukaran pelajar di Kantonsschule Hottingen, Zurich-Swiss. Studi sarjana pun ditempuhnya di

Departemen Teknik Material ITS. Selama berkuliah, penulis pernah aktif bekerja part-time sebagai jurnalis ITS. Pengalaman keorganisasiannya meliputi BEM ITS, Nano World Indonesia, dan Indocor SC ITS. Terbilang sebagai mahasiswa hiperaktif, selama berkuliah penulis mengikuti beberapa program pengembangan diri ekstra kampus seperti XL Future Leaders, Young Leaders for Indonesia, dan Astra 1<sup>st</sup> Scholarship & Development Program. Hingga pembuatan tugas akhir ini selesai, penulis telah aktif terlibat dalam beberapa proyek pemerintah maupun NGO. Dari segi bidang keilmuan teknik, penulis terlibat aktif dalam beberapa karya tulis ilmiah, diantaranya: "Study in Enhancing Nickel Production in Sulawesi-Indonesia through The Independence of Technology and The Triple Helix Approach", "The Effect of Energy Storages on Small Signal Stability of a Power System", dan tugas akhir ini sendiri sebagai amanat sekaligus kewajiban penulis sebagai mahasiswa Teknik Material FTI - ITS.

Email: ilmibumi@gmail.com