

TUGAS AKHIR - TE 141599

OPERASI OPTIMAL SISTEM TENAGA LISTRIK MEMPERTIMBANGKAN KESTABILAN TRANSIEN MENGGUNAKAN OPPOSITIONAL KRILL HERD ALGORITHM

Gilang Hari Pratomo NRP 2215105003

Dosen Pembimbing Prof. Dr. Ir. Adi Soeprijanto, MT. Ir. Ni Ketut Aryani, MT.

DEPARTEMEN TEKNIK ELEKTRO Fakultas Teknologi Elektro Institut Teknologi Sepuluh Nopember Surabaya 2017

FINAL PROJECT - TE 141599

TRANSIENT STABILITY CONSTRAINED OPTIMAL POWER FLOW USING OPPOSITIONAL KRILL HERD ALGORITHM

Gilang Hari Pratomo NRP 2215105003

Supervisors Prof. Dr. Ir. Adi Soeprijanto, MT. Ir. Ni Ketut Aryani, MT.

DEPARTMENT OF ELECTRICAL ENGINEERING Faculty Of Electrical Technology Institut Teknologi Sepuluh Nopember Surabaya 2017

PERNYATAAN KEASLIAN TUGAS AKHIR

Dengan ini saya menyatakan bahwa isi sebagian maupun keseluruhan Tugas Akhir saya dengan judul "Operasi Optimal Sistem Tenaga Listrik Mempertimbangkan Kestabilan Transien Menggunak an *Oppositional Krill Herd Algorithm*" adalah benar benar hasil karya intelektual mandiri, diselesaikan tanpa menggunakan bahan-bahan yang tidak diijinkan dan bukan merupakan karya pihak lain yang saya akui sebagai karya sendiri.

Semua referensi yang dikutip maupun dirujuk telah ditulis secara lengkap pada daftar pustaka.

Apabila ternyata pernyataan ini tidak benar, saya bersedia menerima sanksi sesuai peraturan yang berlaku.

Surabaya, Juli 2017

Gilang Hari Pratomo 2215105003

OPERASI OPTIMAL SISTEM TENAGA LISTRIK MEMPERTIMBANGKAN KESTABILAN TRANSIEN MENGGUNAKAN OPPOSITIONAL KRILL HERD ALGORITHM

TUGAS AKHIR Diajukan Guna Memenuhi Sebagian Persyaratan Untuk Memperoleh Gelar Sarjana Teknik Pada Bidang Studi Teknik Sistem Tenaga Departemen Teknik Elektro Institut Teknologi Sepuluh Nopember

Theyro

Prof. Dr. Ir. Adi Soeprijanto MIT. NIP. 19640405 199002/1 001.4 NIP. 19650901 199103 2 002

COMIN ELENTING

SURABAYA Juli, 2017

tut ologi dub Nopember

Operasi Optimal Sistem Tenaga Listrik Mempertimbangkan Kestabilan Transien Menggunakan Oppositional Krill Herd Algorithm

Gilang Hari Pratomo 2215105003

Dosen Pembimbing I	: Prof. Dr. Ir. Adi Soeprijanto, MT.
Dosen Pembimbing II	: Ir. Ni Ketut Aryani, MT.

Abstrak :

Transient Stability Constrained Optimal Power Flow (TSCOPF) adalah analisa untuk mencari daya optimum pada setiap unit pembangkit dengan mempertimbangkan faktor keamanan sistem. Pertambahan kebutuhan tenaga listrik yang tidak sebanding dengan pertumbuhan infrastruktur tenaga listrik menyebabkan sistem beroperasi lebih dekat pada batas kestabilan.

TSCOPF menggabungkan *Optimal Power Flow* (OPF) dan *Transient Stability Assessment* (TSA). Pada suatu sistem dengan biaya pembangkitan yang paling murah karena sudah menggunakan analisa OPF, belum tentu ketika dilakukan pengujian kontingensi sistem tetap stabil. TSA diperlukan untuk memastikan sistem tetap stabil setelah ada gangguan. TSA menggunakan metode *Time Domain Simulation* (TDS) dan *Center of Inertia* (COI). Generator pada sistem dimodelkan secara multimesin dan dilihat kurva ayunan sudut rotor menggunakan TDS. Stabil atau tidak stabilnya sistem dilihat dari sudut rotor menggunakan COI.

Pemecahan masalah TSCOPF ini menggunakan *Oppositional Krill Herd Algorithm* (OKHA). OKHA mensimulasikan sifat dari kawanan Krill merespon terhadap perubahan biologis dan lingkungan. Sistem yang digunakan menggunakan 6 generator IEEE 30 bus dan 10 generator sistem Jawa Bali 500kV 29 bus. Dari hasil simulasi menggunakan OKHA menunjukan keandalan dan keefektifan permasalahan optimasi yang tidak linear seperti TSCOPF.

Kata Kunci: Transient Stability Constrained Optimal Power Flow, Optimal Power Flow, Time Domain Simulation, Center of Inertia, Oppositional Krill Herd Algorithm.

Halaman ini sengaja dikosongkan

Transient Stability Constrained Optimal Power Flow using Oppositional Krill Herd Algortihm

Gilang Hari Pratomo 2215105003

Dosen Pembimbing I	: Prof. Dr. Ir. Adi Soeprijanto, MT.
Dosen Pembimbing II	: Ir. Ni Ketut Aryani, MT.

Abstract :

Transient Stability Constrained Optimal Power Flow (TSCOPF) is an analysis to find the optimum power in each generating unit by considering the system security factor. The rapid increase of electricity demand which not followed by growth of electricity infrastructure causing power system tend to operate closer to the stability boundaries.

TSCOPF combines Optimal Power Flow (OPF) and Transient Stability Assessment (TSA). System stability is undetermined when system with cheapest generation cost which have optimized with OPF analysis, being subjected with contingencies test. TSA is required to ensure the system remains stable after interruption. TSA uses Time Domain Simulation (TDS) and Center of Inertia (COI) methods. The generator on the system is modeled with multimachine and generator respon in the form rotor angle is beeing calculated using TDS. Instability of the system determined using COI.

Oppositonal Krill Herd Algorithm is being used to solved TSCOPF problem. OKHA stimulates the herding behavior of krill swarms responding to biological and environmental changes. The system used 6 generator IEEE 30 bus and 10 generator Jawa Bali 500 kV system. From the simulation result using OKHA shows the robustness and effectiveness on non linear optimization problems such as TSCOPF.

Keywords : Transient Stability Constrained Optimal Power Flow, Optimal Power Flow, Time Domain Simulation, Center of Inertia, Oppositional Krill Herd Algorithm. Halaman ini sengaja dikosongkan

KATA PENGANTAR

Salam Sejahtera,

Puji syukur kehadirat Tuhan Yang Maha Esa karena berkat kasih karunia dan hikmatNya penulis dapat menyelesaikan Laporan Tugas Akhir yang berjudul "**Operasi Optimal Sistem Tenaga Listrik Mempertimbangkan Kestabilan Transien Menggunakan Oppositional Krill Herd Algorithm**".

Adapun dalam proses penyusunan Laporan Tugas Akhir ini penulis memperoleh bantuan dan bimbingan serta banyak dukungan dari berbagai pihak. Oleh karena itu, penulis mengucapkan terima kasih yang sebesar-besarnya kepada :

- 1. Bapak Prof. Dr. Ir. Adi Soeprijanto, MT. selaku dosen pembimbing I atas bimbingan dan ilmu yang sangat banyak dalam pengerjaan dan penyelesaian Tugas Akhir ini.
- 2. Ibu Ir. Ni Ketut Aryani, MT. selaku dosen pembimbing II atas bimbingan dan ilmu yang sangat banyak dalam pengerjaan dan penyelesaian Tugas Akhir ini.
- 3. Keluarga Penulis, Bapak Hartono, Ibu Budi Murwani dan Sonia Ayu P. atas motivasi dan doa tiada henti.
- 4. Segenap dosen jurusan teknik elektro ITS, khususnya dosen bidang teknik sistem tenaga yang telah memberi ilmu pelajaran, kritik, dan masukan selama masa perkuliahan penulis.
- 5. Teman-teman penulis yaitu Aji Istanto, Fitri Ozy, Adinda, Bagus, Febri yang senantiasa memberi dukungan, doa, maupun bantuan lainnya kepada penulis.
- 6. Mas Deni Ashari dan Mbak Rohmanita, dan Pak Omen yang memberikan solusi dalam penyelesaian masalah tugas akhir.
- 7. Teman-teman penulis yaitu Gio, Apri, Luthfi, Imam Tantowi, Boni, PSSL B103 2014 dan 2015 yang senantiasa memberi dukungan, doa, maupun bantuan lainnya kepada penulis.
- 8. Teman-teman jurusan teknik elektro ITS angkatan LJ 2015 yang telah memberi dukungan dan semangat dalam penyelesaian laporan ini.

- 9. Rekan-rekan satu bidang teknik tenaga yang senantiasa berdiskusi dan berbagi ilmu selama pengerjaan Tugas Akhir ini.
- 10. Semua pihak yang telah membantu yang tidak dapat penulis sebutkan satu per satu.

Walaupun jauh dari sempurna harapan saya semoga Tugas Akhir ini dapat memberikan manfaat dan menambah wawasan bagi rekan-rekan sedisiplin ilmu. Penulis juga memohon maaf atas kekurangan yang ada pada laporan ini.

Surabaya, Juni 2017

Penulis

DAFTAR ISI

JUDUL	i
PERNYATAAN KEASLIAN TUGAS AKHIR	iii
PENGESAHAN	v
ABSTRACT	vii
ABSTRAK	ix
KATA PENGANTAR	xi
DAFTAR IS I	xiii
DAFTAR GAMBAR	xvi

BAB 1	PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Permasalahan	2
1.3	Tujuan Tugas Akhir	2
1.4	Batasan Tugas Akhir	3
1.5	Metodologi Tugas Akhir	3
1.6	Sistematika Laporan	4
1.7	Relevansi	5

BAB 2 ANALISA ALIRAN DAYA OPTIMUM DAN DASAR KES TAB ILAN SIS TEM TENA GA LISTRIK

	KES TAB ILAN SIS TEM TENA GA LISTRIK	7
2.1	Sistem Tenaga Listrik	7
	2.1.1 Pembangkitan	7
	2.1.2 Transmisi dan Distribusi	7
	2.1.3 Beban	8
2.2	Studi Aliran Daya	8
	2.2.1 Persamaan Aliran Daya	9
2.3	Metode Newton Raphson	10
2.4	Optimal Power Flow	13
	2.4.1 Batasan – Batasan OPF	14
2.5	Dasar Kestabilan Sistem Tenaga Listrik	15
2.6	Swing Equation [10]	17
2.7	Permodelan Generator Sinkron	20
2.8	Sistem Multimesin	21

2.9	Stabilitas Transien Multimesin	
2.10	Metode Optimasi Krill Herd Algorithm	
	2.10.1 Oppostion Based Learning	
	2.10.2 Algorit ma Krill Herd	
	2.10.3 Diagram Alir Oppositional Krill Herd Algorithm	

BAB 3 PENERAPAN ALIRAN DAYA OPTIMUM MEMPERTIMBANGKAN KESTABILAN TRANSIEN 3.1 3.2 3.3 3.4 3.4.1 Inisiasi awal......41 Penentuan Opposite Population41 3.4.2 Analisa Aliran Daya, TSA, dan evaluasi fitness41 3.4.3 3.4.4 Perhitungan Pergerakan Individu Krill......42 3.4.5 Opposition Based Generation Jumping45 3.4.6

BAB 4	SIMU	JLAS I DAN ANALIS IS	49
4.1	Hasil	simulasi dan analisa TSCOPF menggunakan metode	
	OKH	A pada IEEE 30 bus	. 49
	4.1.1	Simulasi TSCOPF – OKHA pada IEEE 30bus	.50
	4.1.2	Analisa Biaya TSCOPF – OKHA pada IEEE 30bus	.55
	4.1.3	Analisa Performa OKHA pada IEEE 30bus	.55
	4.1.4	Analisa Fault Clearing Time (FCT), Critical Clearing	
		Time (CCT), dan kestabilan transien	.56
4.2	Hasil	simulasi dan analisa TSCOPF menggunakan metode	
	OKH	A pada Jawa Bali 500 kV	. 57
	4.2.1	Simulasi TSCOPF – OKHA pada Jawa Bali 500kV	.58
	4.2.2	Analisa Biaya TSCOPF – OKHA pada Jawa Bali 500k	V
			.63
	4.2.3	Analisa Critical Clearing Time (CCT) dan Kestabilan	
		Transien pada Jawa Bali 500kV	.63

BAB 5	PENUTUP	65
5.1	Kesimpulan	65
5.2	Saran	66

LAMPIRAN	1 Konfigurasi Jaringan 500kVSistem Jawa BaliA-1
LAMPIRAN	2 Data kapasitas dan fungsi biaya per unitA-3
LAMPIRAN	3 Data Dinamik Generator

DAFTAR GAMBAR

Gambar	2.1	Permodelan Bus secara umum	9
Gambar	2.2	Sebuah mesin yang dihungkan dengan bus infinite	0
Gambar	2.3	Representasi Sistem untuk Analisa Stabilitas Transien2	3
Gambar	2.4	Algorit ma Krill Herd2	7
Gambar	2.5	Diagram Alir Oppositional Krill Herd2	8
Gambar	3.1	Sistem IEEE 30bus2	9
Gambar	3.2	Sistem Jawa Bali 500kV 20163	3
Gambar	3.3	Respon sudut rotor terhadap gangguan transien	8
Gambar	3.4	Respon sudut rotor terhadap gangguan transien	8
Gambar	3.5	Diagram Alir Uji Stabilias Transien4	0
Gambar	3.6	Diagram Alir OKHA untuk menyelesaikan TSCOPF4	7
Gambar	4.1	Grafik Konvergensi PSO, KHA, dan OKHA5	1
Gambar	4.2	Perbandingan Biaya Pembangkitan dengan Jumlah	
		Individu Analisa TSCOPF dengan OKHA5	1
Gambar	4.3	Perbandingan Populasi dengan Biaya Pembangkitan dan	
		Waktu Komputasi5	2
Gambar	4.4	Perbandingan Fault Clearing Time dengan Biaya	
		Pembangkitan	2
Gambar	4.5	Tegangan Bus IEEE 30 bus Kasus TSCOPF5	3
Gambar	4.6	Kurva Sudut Rotor Generator pada Sistem IEEE 30 untuk	
		Kasus Mula, dengan Fault Clearing Time 0.5 detik5	4
Gambar	4.7	Kurva Sudut Rotor Generator pada Sistem IEEE 30 untuk	
		Kasus TSCOPF, dengan Fault Clearing Time 0.5 detik5	4
Gambar	4.8	Tegangan Bus Jawa Bali 500kV Kasus TSCOPF6	1
Gambar	4.9	Perbandingan Pembangkitan Jawa Bali 500kV:	
		Pembangkitan Maksimum, Pembangkitan inisial,	
		Pembangkitan setelah TSCOPF	1
Gambar	4.1	0 Sudut rotor generator pada sistem Jamali 500kV untuk	
		kasus OPF dasar, dengan fault clearing time 155 ms6	2
Gambar	4.1	1 Sudut rotor generator pada sistem Jamali 500kV untuk	
		kasus TSCOPF, dengan fault clearing time 155 ms	2

DAFTAR TABEL

Tabel	3.1	Data Bus dan Beban Sistem IEEE 30 bus	.30
Tabel	3.2	Data Saluran Sistem IEEE 30bus	.31
Tabel	3.3	Data Kemampuan Pembangkit Sistem IEEE 30 Bus	.32
Tabel	3.4	Data Dinamik Pembangkit Sistem IEEE 30 Bus	.32
Tabel	3.5	Data Bus dan Beban Sistem Jawa Bali 500kV	.34
Tabel	3.6	Data Saluran Sistem Jawa Bali 500kV	.35
Tabel	3.7	Data Kemampuan Pembangkit Sistem Jawa Bali 500kV	.36
Tabel	3.8	Data Dinamik Pembangkit Sistem Jawa Bali 500kV	.36
Tabel	3.9	Index Kontingensi Saluran Transmisi 500kV Jawa Bali	.37
Tabel	4.1	Solusi Terbaik OPF IEEE 30bus	.50
Tabel	4.2	Solusi Terbaik TSCOPF IEEE 30bus	.50
Tabel	4.3	Perbandingan CCT antar kasus	.52
Tabel	4.4	Perbandingan Aliran Daya yang mengalir Pada Saluran	.53
Tabel	4.5	Solusi Tegangan Terbaik OPF dan TSCOPF	.58
Tabel	4.6	Solusi Daya Aktif Terbaik OPF dan TSCOPF	.58
Tabel	4.7	' Perbandingan Biaya Pembangkitan awal Jawa Bali dengan	
		biaya setelah dilaku kan OPF	.59
Tabel	4.8	Biaya Pembangkitan Jawa Bali dengan Analisa TSCOPF	.59
Tabel	4.9	Perbandingan CCT pada Saluran Cibinong - Bekasi	.59
Tabel	4.1	0 Aliran Daya Saluran Jawa Bali 500kV awal dan setelah	
		analisa TSCOPF	.60

Halaman ini sengaja dikosongkan

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Kebutuhan tenaga listrik di seluruh negara diprediksikan mengalami peningkatan sebesar 67% selama periode 2011 sampai 2035 dengan pangsa terbesar dari sektor industri sebesar 41% [1]. Untuk memenuhi kebutuhan tenaga listrik yang meningkat maka diperlukan infrastruktur pembangkit listrik yang memadahi dan mengacu pada prinsip ekonomi. Dalam arti yang lain, selain pembangkit harus memenuhi daya yang dibutuhkan konsumen, pembangkit juga berkewajiban meminimalkan total biaya pembangkitan. Ketika sistem tenaga interkoneksi mengambil peranan untuk meningkatkan keandalan sistem tenaga listrik maka fasilitas pendukung sistem tenaga listrik dituntut beroperasi dalam kondisi optimal. Stabilitas sistem tenaga listrik baru dikenali pada tahun 1920 dan didefinisikan sebagai sifat dari sistem tenaga listrik yang akan tetap berada di kondisi setimbang setelah mengalami gangguan [2]. Salah satu contoh permasalahan kestabilan adalah kejadian kehilangan sinkronisasi generator yang terjadi pada tanggal 12 Mei 2014 yang menyebabkan pemadaman [3]. Gangguan besar seperti putusnya saluran transmisi maupun lepasnya pembangkit dan beban yang besar dapat menimbulkan gangguan stabilitas khususnya gangguan stabilitas transien.

Transient Stability Constraint Optimal Power Flow (TSCOPF) adalah sebuah metode untuk mencari daya optimum pada setiap unit pembangkit dengan mempertimbangkan kestabilan transien. Optimal Power Flow (OPF) adalah metode mencari nilai pembangkitan yang optimum dengan biaya pembangkitan yang ekonomis dan juga memperhatikan besarnya kapasitas dan jaringan mana yang dipakai untuk menyalurkan daya. Analisa aliran daya yang optimal dengan mempertimbangkan stabilitas transien adalah metode preventif yang digunakan untuk mengamankan sistem tenaga listrik sebelum terjadi gangguan. Dengan penjadwalan setiap unit pembangkit yang tepat maka biava operasi pembangkitan dapat ditekan dan secara umum meningkatkan tingkat keandalan dan tingkat keamanan sistem. Diharapkan dengan metode ini ketika sebuah sistem tenga listrik diberikan kontingensi tertentu maka pembangkit tidak hanya stabil namun juga beroperasi dengan biaya seminimal mungkin.

Pada tugas akhir ini, dibahas permasalahan OPF dengan batasan kestabilan transien dengan melakukan uji kontingensi pada bus tertentu. Metode analisa transien yang dilakukan untuk mengetahui apakah suatu pembangkit stabil atau tidak adalah dengan menggunakan *Time Domain Simulation (TDS)*. Sedangkan pengotimalan tiap unit pembangkit dengan mempertimbangkan generator stabil atau tidak menggunakan metode *Oppositional Krill Herd Algorithm (OKHA)*. Metode optimasi OKHA merupakan pengembangan metode *Krill Herd Algorithm (KHA)* yang dikembangkan oleh Gandomi dan Alavi [4]. KHA adalah metode optimasi yang terinspirasi dari kejadian ilmiah berupa pergerakan *krill* untuk mencari makan. Untuk meningkatkan konvergensi dan hasil simulasi, dikembangkan pada KHA.

1.2 Permasalahan

Permasalahan yang diselesaikan pada tugas akhir ini adalah Optimal Power Flow (OPF) dengan mempertimbangkan batasan kestabilan transien dengan pengujian kontingensi pada saluran tertentu dengan menggunakan Oppositional Krill Herd Algorithm (OKHA). Batasan – batasan seperti equality constraint dan inequality constraint diterapkan pada penyelesaian optimasi ini. Selanjutnya yaitu menentukan daya dari masing – masing unit pembangkit sehingga biaya pembangkitan minimal dan generator dilihat dari sudut rotornya tetap stabil jika terjadi kontingensi pada saluran.

1.3 Tujuan Tugas Akhir

Tujuan penyusunan Tugas Akhir ini dimaksudkan untuk:

- 1. Mengetahui pengaruh penambahan batasan kestabilan transien terhadap output daya pembangkit dan total biaya pembangkit dengan melakukan uji kontingensi pada saluran tertentu.
- 2. Memodifikasi metode optimasi KHA dengan mengadopsi metode oppositional based learning guna membentuk metode optimasi yang memiliki nilai konvergensi lebih baik dan cepat.
- 3. Menentukan daya keluaran pada setiap unit pembangkit agar biaya pembangkitan seminimal mungkin dan stabil jika terjadi gangguan pada saluran tertentu yang mempengaruhi kestabilan transien.

1.4 Batasan Tugas Akhir

Untuk menyelesaikan permasalahan pada tugas akhir ini, maka ada beberapa asumsi dengan batasan-batasan sebagai berikut :

- 1. Sistem transmisi diasumsikan model saluran transmisi pendek.
- 2. Perhitungan aliran daya menggunakan aliran daya newton raphson.
- 3. Sistem yang digunakan adalah IEEE 30 bus dan Jawa Bali 500kV berdasarkan data dari PLN P2B 2015 2016.
- 4. Permodelan generator sinkron menggunakan *classical generator* dan generator yang ada pada sistem dimodelkan secara *multi machine*. Sedangkan beban dimodelkan *constant impedance*.
- 5. Analisa kestabilan transien tidak memodelkan pengaruh dari governor dan sistem eksitasi.
- 6. Simulasi sudut rotor berbasis waktu didasarkan pada Power System Toolbox yaitu toolbox yang dikembangkan oleh Hadi Saadat.
- 7. Pemilihan saluran yang dikontingensi pada Jawa Bali tidak berdasarkan index kontingensi namun pada saluran yang dialiri daya mendekati batas kapasitas saluran.

1.5 Metodologi Tugas Akhir

Metode yang digunakan dalam penelitian tugas akhir ini adalah sebagai berikut :

1. Studi literatur

Literatur utama menggunakan paper, jurnal, hasil *conference*, standar IEEE, acuan Keputusan Menteri, Peraturan Menteri dan *text book*. Literatur yang lain dapat berasal dari manual perangkat lunak dari *Power World* dan outline pelatihan seperti dari Portland General Electric. Studi literatur bertujuan mengumpulkan teori – teori pendukung seperti metode aliran daya optimal, reduksi jaringan dan kestabilan transien, dan metode optimasi dan perancangan perangkat lunak menggunakan software MATLAB.

2. Pengumpulan data

Data yang digunakan meliputi data generator, bus, beban, dan saluran. Detail dari generator berupa besar pembangkitan minimum dan maksimum, biaya pembangkitan setiap kWh, parameter generator seperti konstanta inersia maupun reaktansi transien. Data kontingensi yang mungkin terjadi dan besar *critical clearing time*. Data bus berupa nomor bus, tipe bus, dan serta tegangan bus. Data saluran terdiri atas resistansi, reaktansi, dan kapasitas saluran. Data tersebut digunakan untuk memodelkan dari sistem yang ada dilapangan untuk dilakukan analisa dan simulasi menggunakan MATLAB.

3. Perancangan perangkat lunak

Membuat program untuk melakukan perhitungan OPF dengan batasan kestabilan transien. Analisa kestabilan suatu generator dilihat dari sudut rotornya menggunakan program berbasis *Time Domain Simulation*. Metode pengoptimalan setiap unit pembangkit untuk memperoleh biaya pembangkitan minimum dengan batasan kestabilan transien menggunakan *Oppositional Krill Herd Algorithm*.

4. Simulasi dan analisis

Simulasi dilakukan dengan menggunakan plant IEEE 30 bus dengan penambahan karakteristik generator dan biaya pembangkitan per unit generator. Selain itu simulasi juga dilakukan pada plant Jawa Bali 500kV tahun 2016. Untuk menganalisa dan validasi dilakukan beberapa tes kontingensi dan digunakan beberapa metode optimasi.

5. Penulisan buku

Hasil Tugas Akhir yang telah dilakukan dilaporkan dalam bentuk laporan tugas akhir dan publikasi *paper*. Laporan berisi penjabaran metode dan kesimpulan dari Tugas Akhir.

1.6 Sistematika Laporan

Guna menguraikan penjelasan secara detail, tugas akhir ini disusun dalam suatu sistematika sebagai berikut:

Bab 1: PENDAHULUAN

Bab ini membahas mengenai latar belakang, tujuan Tugas Akhir, permasalahan, batas masalah, metode penelitian, sistematika penulisan dan relevansi dari Tugas Akhir.

Bab 2: ANALISA ALIRAN DAYA OPTIMUM DAN DASAR KESTABILAN SISTEM TENAGA LISTRIK Bab ini berisi dasar teori yang menjelaskan teori pendukung berkaitan dengan kestabilan transien, reduksi jaringan, permodelan *Multi Machine, Optimal Power Flow,* dan *Oppositional Krill Herd Algorithm (OKHA).*

Bab 3: PENERAPAN ALIRAN DAYA OPTIMUM MEMPERTIMBANGKAN KESTABILAN TRANSIEN MENGGUNAKAN OKHA

Bab ini berisi Penerapan metode *Oppositional Krill Herd Algorithm* pada *Optimal Power Flow* dengan mempertimbangkan kestabilan transien yang dilakukan pada plant IEEE 30 bus dan sistem Jawa Bali 500kV.

Bab 4: SIMULASI DAN ANALISA

Analisa performa hasil *Optimal Power Flow* mempertimbangkan kestabilan transien menggunakan OKHA dibandingkan dengan metode lainnya.

Bab 5: PENUTUP

Kesimpulan dan saran dari hasil simulasi dan analisa OPF dengan mempertimbangkan kestabilan transien menggunakan metode OKHA.

1.7 Relevansi

Hasil yang diperoleh dari Tugas Akhir ini diharapkan dapat memberikan manfaat berikut :

- 1. Dapat memberikan manfaat perkembangan sistem tenaga listik khususnya dalam operasi optimum terkait masalah *Optimal Power Flow* dengan mempertimbangkan stabilitas transien dengan pemberian kontingensi pada saluran tertentu.
- 2. Sebagai pertimbangan pengaturan besar nilai pembangkitan sistem Jawa Bali yang aman sebagai upaya preventif terhadap gangguan stabilitas transien.
- 3. Menjadi referensi bagi penelitian lain yang memiliki topik berkaitan dengan Tugas Akhir ini.

Halaman ini sengaja dikosongkan

BAB 2

ANALISA ALIRAN DAYA OPTIMUM DAN DASAR KESTABILAN SISTEM TENAGA LISTRIK

2.1 Sistem Tenaga Listrik

Sistem tenaga listrik secara umum digunakan untuk menyalurkan daya dari pembangkit menuju beban. Sistem biasanya terdiri dari tiga bagian yaitu sistem pembangkit, transmisi, distribusi, dan beban. Sistem pembangkit terdiri dari beberapa unit generator sinkron yang berfungsi membangkitkan daya aktif dan reaktif. Unit pembangkit ini selain terletak di sumber potensial yang ada di alam, seperti PLTA Saguling dan Cirata, namun juga dekat pelabuhan atau pantai seperti PLTGU Gresik dan PLTU Paiton. Letak pembangkit yang terletak jauh dengan sumber beban maka dibutuhkan sistem transmisi dan distribusi.

2.1.1 Pembangkitan

Salah satu komponen yang utama dalam sistem tenaga listrik adalah generator tiga fasa atau biasanya disebut generator sinkron. Generator sinkron memiliki dua medan putar yang berputar bersama – sama. Medan yang satu diproduksi oleh rotor yang berputar pada kecepatan sinkron dan dieksitasi oleh arus searah. Medan yang lain diproduksi oleh gulungan stator oleh karena arus tiga fasa yang mengalir pada jangkar.

Sumber dari daya mekanik, biasanya disebut *prime mover*, bisa didapat dari turbin hidraulik di air terjun atau bendungan, turbin uap yang energinya berasal dari pembakaran batu bara atau gas, atau turbin gas yang berasal dari mesin bakar. Sekolompok unit pembangkit bisa berbeda metode pembangkitannya tergantung jenis bahan bakar yang dipakai. Hal ini menyebabkan harga pembangkitan bisa bervariasi.

2.1.2 Transmsisi dan Distribusi

Tujuan dari jaringan transmisi adalah menyalurkan daya listrik dari pembangkit yang terletak pada daerah tertentu menuju sistem distribusi yang akan menyalurkan langsung ke beban. Sebelum adanya sistem interkoneksi suatu daerah disuplai oleh pembangkit yang ada daerah itu juga. Namun sekarang suatu daerah yang tidak dapat menyediakan pembangkit sendiri maka untuk memenuhi kebutuhan beban maka suplai didapatkan dari pembangkit yang terletak dari daerah lain. Sistem penyaluran daya antar daerah ini disebut sistem interkoneksi. Jika sistem transmisi memiliki basis tegangan tinggi, maka sistem distribusi memiliki basis tegangan menengah dan rendah. Sistem distribusi sendiri berfungsi menghubungkan dari sistem transmisi langsung menuju ke beban. Sistem distribusi memiliki karakteristik jaringan radial dan penyula tunggal yang berbeda dengan sistem transmisi yang berbentuk *loop* dan biasanya memiliki lebih dari satu penyula.

2.1.3 Beban

Beban pada sistem tenaga listrik terbagi menjadi menjadi beban industri, komersial, dan residensial. Beban industri yang besar dapat disuplai dari sistem transmisi. Sedangkan untuk beban – beban yang kecil dapat dilayani melalui jaringan distribusi. Beban industri berupa beban komposit dimana beban paling banyak berupa motor. Sedangkan beban komersil dan residensial paling banyak berupa penerangan, pemanas, dan pendingin.

2.2 Studi Aliran Daya

Sistem tenaga listrik yang handal harus memenuhi beberapa kriteria antara lain daya pembangkitan mampu menopang kebutuhan beban dan rugi – rugi yang terjadi, tegangan dan *powerfactor* dalam batas nominal, generator beroperasi pada batas daya aktif dan reaktifnya dan saluran transmisi dan transformator tidak kelebihan beban. Untuk memenuhi kriteria di atas maka diperlukan suatu studi yang dinamakan studi aliran daya. Analisa ini menghitung besar tegangan dan sudut di setiap bus pada kondisi seimbang dan kondisi tunak. Selain itu analisa aliran daya menghitung aliran daya aktif dan reaktif yang mengalir di setiap peralatan yang terhubung dengan bus termasuk rugi – rugi. Namun tujuan utama dari studi aliran daya ini adalah untuk memastikan apakah dengan sistem tenaga listrik yang ada apakah memenuhi kebutuhan beban. Studi ini menjadi dasar untuk studi sistem tenaga listrik yang lain seperti kestabilan transien dan studi kontingensi.

2.2.1 Persamaan Aliran Daya

Dimodelkan satu bus dengan adanya beberapa penyulang dapat terlihat di gambar 2.1. Impedansi saluran transmisi sudah diubah dalam bentuk per unit admitansi dalam base MVA yang sama.

Gambar 2.1 Permodelan Bus secara umum

Menurut hukum KCL yang diterapkan pada bus ini maka didapat persamaan:

$$I_{i} = y_{i0}V_{i} + y_{i1}(V_{i} - V_{1}) + y_{i2}(V_{i} - V_{2}) + \dots + y_{in}(V_{i} - V_{n})$$
(2.1)

Dari persamaan (2.1) didapat total arus yang masuk ke dalam bus dalam bentuk persamaan menjadi:

$$I_1 = V_i \sum_{j=0}^n y_{ij} - \sum_{j=1}^n y_{ij} V_j \qquad j \neq 1$$
 (2.2)

Daya aktif dan reaktif pada bus i adalah:

$$P_i + jQ_i = V_i I_i^* \tag{2.3}$$

$$I_i = \frac{P_i - jQ_i}{v_i^*} \tag{2.4}$$

Persamaan (2.4) disubstitusikan dengan persamaan (2.2) menjadi:

$$\frac{P_i - jQ_i}{V_i^*} = V_i \sum_{j=0}^n y_{ij} - \sum_{j=1}^n y_{ij} V_j \qquad j \neq 1$$
(2.5)

Dari persamaan diatas, formulasi dari permasalahan aliran daya dinyatakan secara matematis berupa persamaan aljabar nonlinear yang harus diselasaikan dengan metode iterasi.

2.3 Metode Newton Raphson

Untuk jenis bus pada sistem tenaga secara umum seperti pada gambar 2.1, persamaan dapat ditulis ulang dalam bentuk matrix admitansi bus seperti berikut:

$$I_i = \sum_{j=1}^{n} Y_{ij} V_j$$
 (2.6)

Diubah dalam bentuk polar menjadi:

$$I_i = \sum_{j=1}^n |Y_{ij}| |V_j| \ge \theta_{ij} + \delta_j$$
(2.7)

Daya aktif dan reaktif pada bus i adalah:

$$P_i - jQ_i = V_i^* I_i \tag{2.8}$$

Substitusidari persamaan (2.7) untuk (2.8):

$$P_i - jQ_i = |V_i| \angle - \delta_i \sum_{j=1}^n |Y_{ij}| |V_j| \angle \theta_{ij} + \angle \delta_j$$
(2.9)

Memisahkan bagian nyata dan imajiner menjadi:

$$P_{i} = \sum_{j=1}^{n} |V_{i}| |V_{i}| |Y_{ij}| cos(\theta_{ij} - \delta_{i} + \delta_{j})$$
(2.10)

$$Q_{i} = -\sum_{j=1}^{n} |V_{i}| |V_{i}| |Y_{ij}| sin(\theta_{ij} - \delta_{i} + \delta_{j})$$
(2.11)

Setiap bus beban memiliki dua persamaan yaitu persamaan (2.10) dan (2.11), sedangkan PV bus hanya memilki satu persamaan yaitu (2.10).

Berdasarkan persamaan di atas maka dapat dijabarkan menurut deret Taylor menjadi:

$$\begin{bmatrix} \Delta P_{2}^{(k)} \\ \Delta P_{2}^{(k)} \\ \Delta Q_{2}^{(k)} \\ \Delta Q_{n}^{(k)} \end{bmatrix} = \begin{bmatrix} \frac{\partial P_{2}^{(k)}}{\partial \delta_{2}} & \frac{\partial P_{2}^{(k)}}{\partial \delta_{n}} & \frac{\partial P_{2}^{(k)}}{\partial [V_{2}]} & \frac{\partial P_{2}^{(k)}}{\partial [V_{n}]} \\ \frac{\partial P_{n}^{(k)}}{\partial \delta_{2}} & \frac{\partial P_{n}^{(k)}}{\partial \delta_{n}} & \frac{\partial P_{n}^{(k)}}{\partial [V_{2}]} & \frac{\partial P_{n}^{(k)}}{\partial [V_{n}]} \\ \frac{\partial Q_{2}^{(k)}}{\partial \delta_{2}} & \frac{\partial Q_{2}^{(k)}}{\partial \delta_{n}} & \frac{\partial Q_{2}^{(k)}}{\partial [V_{2}]} & \frac{\partial Q_{2}^{(k)}}{\partial [V_{n}]} \\ \frac{\partial Q_{n}^{(k)}}{\partial \delta_{2}} & \frac{\partial Q_{n}^{(k)}}{\partial \delta_{n}} & \frac{\partial Q_{n}^{(k)}}{\partial [V_{2}]} & \frac{\partial Q_{n}^{(k)}}{\partial [V_{n}]} \end{bmatrix} \begin{bmatrix} \Delta \delta_{2}^{(k)} \\ \frac{\Delta \delta_{n}^{(k)}}{\partial [V_{2}^{(k)}]} \\ \Delta [V_{n}^{(k)}] \end{bmatrix}$$
(2.12)

Persamaaan di atas diasumsikan, bus satu sebagai *slack bus*. Matrix Jacobian memberikan hubungan yang linear antara perubahan pada sudut tegangan dan besar tegangan dengan perubahan daya aktif dan reaktif. Elemen dari matrix Jacobian adalah turunan sebagian dari persamaan (2.10) dan (2.11), dievaluasi terhadap perubahan sudut dan besar tegangan. Sederhananya dapat ditulis menjadi:

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J_1 & J_2 \\ J_3 & J_4 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta | V | \end{bmatrix}$$
(2.13)

Untuk elemen J1

$$\frac{\partial P_i}{\partial \delta_i} = \sum_{j \neq 1} |V_i| |V_j| |Y_{ij}| \sin(\theta_{ij} - \delta_i + \delta_j)$$
(2.14)

$$\frac{\partial P_i}{\partial \delta_i} = -|V_i| |V_j| |Y_{ij}| \sin(\theta_{ij} - \delta_i + \delta_j) \quad j \neq 1$$
(2.15)

Untuk elemen J_2

$$\frac{\partial P_i}{\partial |V_i|} = 2|V_i||Y_{ii}|\cos\theta_{ii} + \sum_{j \neq 1} |V_j||Y_{ij}|\cos(\theta_{ij} - \delta_i + \delta_j) \quad (2.16)$$
$$\frac{\partial P_i}{\partial |V_j|} = |V_i||Y_{ij}|\cos(\theta_{ij} - \delta_i + \delta_j) \quad j \neq 1 \quad (2.17)$$

Untuk elemen J₃

$$\frac{\partial Q_i}{\partial \delta_i} = \sum_{j \neq 1} |V_i| |V_j| |Y_{ij}| \cos(\theta_{ij} - \delta_i + \delta_j)$$
(2.18)

$$\frac{\partial Q_i}{\partial \delta_i} = -|V_i| |V_j| |Y_{ij}| \cos(\theta_{ij} - \delta_i + \delta_j) \quad j \neq 1$$
(2.19)

Untuk elemen J₄

$$\frac{\partial Q_i}{\partial |V_i|} = -2|V_i||Y_{ii}|\sin\theta_{ii} - \sum_{j\neq 1} |V_j||Y_{ij}|\sin(\theta_{ij} - \delta_i + \delta_j) \quad (2.16)$$

$$\frac{\partial Q_i}{\partial |V_i|} = -2|V_i||Y_{ii}|\sin\theta_{ii} - \sum_{j\neq 1} |V_j||Y_{ij}|\sin(\theta_{ij} - \delta_i + \delta_j) \quad (2.16)$$

$$\frac{\partial Q_i}{\partial |V_j|} = -|V_i| |Y_{ij}| \sin(\theta_{ij} - \delta_i + \delta_j) \quad j \neq 1$$
(2.17)

Nilai $\Delta P_i^{(k)}$ dan $\Delta Q_i^{(k)}$ adalah perbedaan antara nilai yang dimasukan dengan nilai yang dihitung , yang diketahui sebagai *power* residual, yang dapat ditulis sebagai:

$$\Delta P_i^{(k)} = P_i^{sch} - \Delta P_i^{(k)} \tag{2.18}$$

$$\Delta Q_i^{(k)} = Q_i^{sch} - \Delta Q_i^{(k)} \tag{2.19}$$

Nilai estimasi tegangan bus yang baru adalah:

$$\delta_i^{(k+1)} = \delta_i^{(k)} + \Delta \delta_i^{(k)} \tag{2.20}$$

$$\left|V_{i}^{(k+1)}\right| = \left|V_{i}^{(k)}\right| + \Delta \left|V_{i}^{(k)}\right|$$
(2.21)

Proses iterasi akan berhenti jika selisih *power residuals* kurang dari nilai yang disebutkan dalam akurasi dan dapat dinyatakan sebagai berikut:

$$\left|\Delta P_{i}^{(k)}\right| \leq \epsilon \tag{2.22}$$

$$\left|\Delta Q_{i}^{(k)}\right| \leq \epsilon \tag{2.23}$$

Arus pada saluran dinyatakan sebagai berikut:

$$I_{ij} = y_{ij} (V_i - V_j) + y_{i0} V_i$$
 (2.24)

Daya komplek S_{ij} dari bus i ke bus j dan S_{ji} dari bus j ke bus i dinyatakan sebagai berikut:

$$S_{ij} = V_i I_{ij}^*$$
 (2.25)

2.4 **Optimal Power Flow**

Optimal Power Flow adalah suatu metode yang menggabukan perhitungan *Economic Dispatch* (ED) dan perhitungan analisa aliran daya. ED sendiri adalah perhitungan mencari biaya pembangkitan termurah dari beberapa generator yang dibatasi daya pembangkitan minimal dan maksimalnya. Formula batasan persamaan ED dinyatakan sebagai:

$$P_{total\ load} + P_{total\ loss} - \sum_{x=1}^{Ng} P_{gx} = 0$$
 (2.26)

Dimana N_g adalah jumlah generator dan x adalah generator. ED mengabaikan detail dari jaringan dan menggabungkan efek dari jaringan tersebut menjadi rugi – rugi daya dan kebutuhan total beban. Hasilnya ED mengabaikan pembebanan saluran transmisi dan tegangan pada tiap bus. OPF adalah kelanjutan dari ED dimana ED dan aliran daya dihitung secara simultan, sehingga biaya pebangkitan yang dperoleh sudah mempertimbangkan kapasitas penyaluran dan tegangan tiap bus.

Tujuan utama dari OPF adalah meminimalkan biaya pembangkitan dimana memenuhi fungsi persamaan dan pertidaksamaan, secara matematis dapat dituliskan:

$$Min f(u) \tag{2.27}$$

 $terhadap \ g(u) = 0 \tag{2.28}$

 $h(u) \le 0 \tag{2.29}$

Fungsi obyektif dari OPF dapat ditulis sebagai berikut:

$$f(u) = C_T = \sum_{x=1}^{N_G} \left(ax P_{gx}^2 + bx P_{gx} + cx \right)$$
(2.30)

Dimana parameter u mengandung fungsi biaya pembangkitan, batas daya aktif dan daya reaktif minimal dan maksimal generator, dan parameter yang tetap pada saluran transmisi. C_T adalah total biaya

pembangkitan, ax, bx, cx, adalah koefisien biaya pembangkitan generator.

 P_{gx} adalah besar pembangkitan daya akif dari generator x, N_{g} adalah jumlah bus generator.

2.4.1 Batasan – Batasan OPF

Permasalahan OPF memiliki dua macam *constraint* yaitu *constraint* pertidaksamaan dan persamaan. Batasan – batasan ini harus dipenuhi oleh OPF. Berikut batasan – batasan pada OPF:

$$P_{G_{x}} - P_{D_{x}} - \sum_{\substack{y=1\\N_{p}}}^{N_{B}} V_{x} V_{y} (G_{xy} \cos \delta_{xy} + B_{xy} \sin \delta_{xy}) = 0 \quad (2.31)$$

$$Q_{G_{x}} - Q_{D_{x}} - \sum_{y=1}^{N_{B}} V_{x} V_{y} (G_{xy} \cos \delta_{xy} - B_{xy} \sin \delta_{xy}) = 0 \qquad (2.32)$$

Dimana V_x , V_y adalah tegangan pada bus x dan bus y, P_{Gx} dan Q_{Gx} adalah daya aktif dan daya reaktif, masing – masing pada generator x, P_{Dx} dan Q_{Dx} adalah beban aktif dan reaktif pada bus x. G_{xy} , B_{xy} , δ_{xy} , masing – masing adalah konduktansi, suseptansi, dan perbedaan tegangan fasa antara bus x dan bus y. N_B adalah jumlah bus.

2. Inequality Constraint

Tegangan generator, keluaran daya aktif dan daya reaktif dari bus x, harus berada pada batas atas dan batas bawahnya masing – masing. Untuk generator *constraint* dapat dirumuskan sebagai berikut:

$$V_{Gx}^{min} \le V_{Gx} \le V_{Gx}^{max} \tag{2.33}$$

$$P_{Gx}^{min} \le P_{Gx} \le P_{Gx}^{max} \tag{2.34}$$

$$Q_{Gx}^{\min} \le Q_{Gx} \le Q_{Gx}^{\max} \tag{2.35}$$

Dimana V_{Gx}^{min} , V_{Gx}^{max} , adalah tegangan generator minimum dan maksimum masing – masing dari bus x. P_{Gx}^{min} , P_{Gx}^{max} adalah daya aktif minimum dan maksimum dari bus x. Q_{Gx}^{min} , Q_{Gx}^{max} adalah daya reaktif minimum dan maksimum dari bus x.

Pengaturan tap transformer dibatasi oleh batas atas dan batas bawah transformer, tergantung dari spesifikasi transformator.

$$T_x^{\min} \le T_x \le T_x^{\max} \tag{2.36}$$

Dimana T_x^{min} , T_x^{max} adalah masing – masing minimum dan maksimum pengaturan batas tap dari transformer x.

Pengaturan batas keamanan seperti pembebanan saluran transmisi dan tegangan pada bus beban dapat dinyatakan sebagai berikut:

$$V_{Lx}^{min} \le V_{Lx} \le V_{Lx}^{max} \tag{2.37}$$

$$S_{Lx} \le S_{Lx}^{max} \tag{2.38}$$

Dimana V_{Lx}^{min} , V_{Lx}^{max} adalah tegangan pada bus beban maximum dan minimum pada bus x. S_{Lx} , S_{Lx}^{max} adalah aliran daya komplek dan aliran daya maksimum saluran transmisi.

2.5 Dasar Kestabilan Sistem Tenaga Listrik

Stabilitas sistem tenaga telah disadari sebagai masalah yang penting sejak tahun 1920. Banyak kejadian pemadaman yang diakibatkan oleh tidak stabilnya sistem tenaga menggambarkan betapa pentingnya fenomena ini. Dilihat dari segi sejarah kestabilan transien menjadi pertimbangan dalam sistem tenaga listrik. Hal tersebut menjadi bertambah penting karena bertambahnya saluran terinterkoneksi, penggunaan teknologi dan kontrol, dan bertambahnya operasi yang membebani peralatan untuk bekeria mendekati batasnya. Oleh karena kondisi tersebut timbul fenomena ketidakstabilan dalam bentuk ketidak stabilan tegangan, ketidakstabilan frekuensi, dan osilasi antar daerah yang sekarang menjadi permasalahan yang memerlukan perhatian lebih. Kestabilan sistem tenaga listrik dapat didefinisikan sebagai kemampuan dari sistem tenaga listrik dengan kondisi awal yang stabil akan memperoleh titik operasi yang setara setelah mengalami gangguan fisik, dengan nilai tertentu masih dalam batas, sehingga secara praktis seluruh sistem masih utuh [6].

Klasifikasi dari kestabilan sistem tenaga listrik ini didasari pada faktor kejadian di alam yang, ukuran dari gangguan, peralatan, proses, dan jangka waktu. Berdasar faktor tersebut maka stabilitas diklasifikasi menjadi tiga bentuk yaitu:

1. Kestabilan sudut rotor

2. Kestabilan tegangan

3. Kestabilan frekuensi

Kestabilan sudut rotor diartikan sebagai kemampuan mesin mesin sinkron dari sistem tenaga listrik yang terinterkoneksi untuk tetap dalam kondisi sinkron setelah mengalami sebuah gangguan. Kestabilan sebuah mesin sinkron dalam suatu sistem tergantung dari kemampuan mesin untuk mempertahankan ataupun memulihkan keseimbangan antara torsi medan elektromagnet dan torsi mekanik. Ketidakstabilan dapat berupa bertambahnya sudut ayunan dari beberapa generator yang berakibat pada lepasnya sinkronisasi terhadap generator yang lain.

Kestabilan tegangan diartikan sebagai kemampuan sistem tenaga listrik untuk menjaga tegangan stabil dalam arti masih dalam batas toleransi pada semua bus setelah diberikan gangguan dengan diketahui kondisi operasi awal dalam kondisi stabil. Kestabilan tergantung dari kemampuan untuk menjaga dan memulihkan keseimbangan antara permintaan beban dengan penyedia beban. Ketidakstabilan dapat terjadi dalam bentuk naik dan turunnya tegangan secara terus menerus. Akibat dari ketidakstabilan tegangan adalah kehilangan beban dari sebuah area, pemutusan dari saluran transmisi atau elemen yang lain oleh karena bekerjanya sistem proteksi.

Kestabilan frekuensi mengacu pada kemampuan sistem tenaga listrik untuk menjaga frekuensi tetap mantap dari sistem yang kacau yang menyebabkan ketidakseimbangan antara pembangkitan dan beban. Kestabilan ini tergantung pada kemampuan menjaga dan memulih kan keseimbangan antara pembangkitan dan beban dengan memulih kan keseimbangan beban yang tidak disengaja. Ketidakstabilan dapat berdampak dalam bentuk ayunan frekuensi terus – menerus yang berakibat pada putusnya unit pembangkit atau beban.

Kestabilan sudut rotor lebih umum disebut dengan kestabilan transien yang dapat dihubungkan sebagai kemampuan sistem tenaga listrik untuk menjaga kestabilan ketika mengalami sebuah gangguan seperti hubung singkat pada saluran transmisi. Respon dari sistem melibatkan sudut rotor dari generator dan dipengaruhi oleh hubungan sudut daya yang nonlinear. Kestabilan transien tergantung pada sistem operasi awalan dari sebuah sistem dan tingkat keparahan gangguan. Ketidakstabilan biasanya dalam bentuk pemisahan sudut secara tidak tetap akibat kurangnya torsi sinkronisasi yang termanifestasi sebagai *first swing instability*. Bagaimanapun pada sistem tenaga listrik yang besar, ketidakstabilan mungkin tidak saja terjadi pada ayunan pertama. Ketidakstabilan adalah hasil dari superposisi dari ayunan antar area dan
ayunan dari pembangkit lokal yang menyebabkan deviasi yang besar dari sudut rotor melebihi ayunan pertama [2].

2.6 Swing Equation [10]

Pada saat kondisi normal, posisi relative dari sumbu rotor dan arah dari resultan magnet adalah tetap. Sudut diantara keduanya disebut sudut daya atau sudu torsi. Ketika terjadi gangguan, rotor akan bergerak melambat atau cepat tergantung dari mmf celah udara dan permulaan gerak relative. Persamaan yang menyebutkan pergerakan relative ini disebut *swing equation*. Jika, periode osilasi, rotor akan kembali mengunci pada kecepatan sinkron, dan generator akan mempertahankan kestabilannya. Jika gangguan tidak melibatkan perubahan apapun terhadap daya, rotor akan kembali ke posisi mula. Namun jika perubahan melibatkan perubahan pada besar pembangkitan, beban, maupun kondisi jaringan, rotor akan beroperasi pada sudut daya relative yang baru untuk mensinkronkan medan putar.

Untuk mengetahui dampak dari perubahan sudut daya maka perlu memodelkan generator sinkron. Suatu generator sinkron membangkitkan torsi elektromekanis dinotasikan dengan T_e dan berputar pada kecepatan sinkron ω_{sm} . Jika T_m adalah torsi mekanik penggerak, maka dalam kondisi tunak dengan rugi – rugi diabaikan, maka didapatkan persamaan:

$$T_m = T_e \tag{2.39}$$

Berpindahnya dari keadaan tunak oleh karena gangguan menyebabkan rotor mengalami percepatan $(T_m > T_e)$ maupun perlambatan $(T_m < T_e)$ yang dinotasikan T_a . Sehingga T_a dapat dinyatakan sebagai berikut:J

$$T_a = T_m - T_e \tag{2.40}$$

Jika J adalah momen inersia dari *prime mover* dan generator, dengan mengabaikan gesekan dan torsi peredaman, dari hukum rotasi dapat dinyatakan:

$$J\frac{d^{2}\theta_{m}}{dt^{2}} = T_{a} = T_{m} - T_{e}$$
(2.41)

Dimana θ_m adalah perpindahan sudut dari rotor terhadap sudut referensi tetap pada stator. Untuk mengukur posisi sudut rotor dengan referensi medan putar sinkron (δ_m) , maka referensi harus diubah dari referensi tetap stator dengan referensi medan putar sinkron yang dapat dinyatakan sebagai berikut:

$$\theta_m = \omega_s t + \delta_m \tag{2.42}$$

Jika besar perpindahan posisi sudut rotor diturunkan terhadap waktu maka didapat kecepatan sudut rotor yang dapat dinyatakan sebagai berikut:

$$\omega_m = \frac{d\theta_m}{dt} = \omega_s + \frac{d\delta_m}{dt}$$
(2.42)

Jika diturunkan sekali lagi terhadap waktu dengan kecepatan sinkron adalah konstan, maka didapat percepatan sudut rotor yang dapat dinyatakan sebagai berikut:

$$\frac{d^2\theta_m}{dt^2} = \frac{d^2\delta_m}{dt^2}$$
(2.42)

Persamaan (2.42) disubstitusikan ke dalam persamaan (2.41) menjadi:

$$J\frac{d^2\delta_m}{dt^2} = T_m - T_e \tag{2.43}$$

$$J\omega_m \frac{d^2 \delta_m}{dt^2} = \omega_m T_m - \omega_m T_e \qquad (2.44)$$

$$J\omega_m \frac{d^2 \delta_m}{dt^2} = P_m - P_e \tag{2.45}$$

Besaran $J\omega_m$ dapat disebut konstanta inersia (M) dan dinotasikan sebagai M. Jika dihubungkan dengan energi kinetik yang ada pada massa yang berputar maka dapat ditulis:

$$W_k = \frac{1}{2} J \omega_m^2 = \frac{1}{2} M \omega_m$$
 (2.46)

Meskipun M disebut sebagai inersia konstanta, akan tetapi tidak akan selamanya tetap pada kondisi nyata ketika kecepatan rotor melenceng dari kecepatan sinkron. Namun karena ω_m tidak mengalami perubahan yang terlalu besar sebelum sistem mengalami ketidakstabilan, maka M dievaluasi pada saat kecepatan sinkron dan diasumsikan tetap konstan, dan dinyatakan sebagai berikut:

$$M = \frac{2W_k}{\omega_{sm}} \tag{2.46}$$

Swing equation jika dibawa dihubungkan dengan konstanta inersia menjadi:

$$M\frac{d^2\delta_m}{dt^2} = P_m - P_e \tag{2.47}$$

Jika menulis *swing equation* dihubungkan dengan sudut daya elektrik δ dan p sebagai jumlah *pole* dari generator sinkron maka dapat dinyatakan:

$$\delta = \frac{p}{2}\delta_m \tag{2.48}$$

Swing equation jika dibawa kedalam sudut daya elektrik menjadi:

$$\frac{2}{p}M\frac{d^2\delta}{dt^2} = P_m - P_e \tag{2.49}$$

Analisa sistem tenaga menggunakan satuan per unit, sehingga swing equation juga harus dibawa ke dalam satuan per unit. Persamaan (2.49) dibagi dengan MVA base (S_B) , dan mensubstitusikan M yang didapat dari (2.46) maka didapat persamaan:

$$\frac{2}{p}\frac{2W_{k}}{\omega_{sm}S_{B}}\frac{d^{2}\delta}{dt^{2}} = \frac{P_{m}}{S_{B}} - \frac{P_{e}}{S_{B}}$$
(2.50)

$$H = \frac{W_k}{S_R} \tag{2.51}$$

Dimana notasi H adalah konstanta inersia dalam satuan perunit. W_k adalah energi kinetik dalam satuan mega joule pada saat mesin berputar pada kecepatan nominal dan S_B adalah rating mesin dalam MVA. Subsitusi H pada persamaan (2.51) pada persamaan (2.50) maka didapat persamaan:

$$\frac{2}{p}\frac{2H}{\omega_{sm}}\frac{d^2\delta}{dt^2} = P_{m(pu)} - P_{e(pu)}$$
(2.50)

Dimana $P_{m(pu)}$ dan $P_{e(pu)}$ adalah masing – masing daya mekanik dalam satuan per unit dan daya elektrik dalam satuan per unit. Jika persamaan di atas dinyatakan dalam bentuk kecepatan sudut elektrik (ω_s) maka menjadi:

$$\frac{2H}{\omega_{\rm s}}\frac{d^2\delta}{dt^2} = P_{m(pu)} - P_{e(pu)} \tag{2.51}$$

2.7 Permodelan Generator Sinkron

Sebuah generator sinkron dapat dimodelkan dengan sebuah tegangan sumber yang konstan dibelakang reaktansi mesin. Jenis permodelan generator yang paling sederhana untuk analisa stabilitas transien adalah *classical model*, dimana sifat salien diabaikan, dan mesin direpresentasikan dengan tegangan konstan (E') dibelakang reaktansi transien *direct axis* (Xd'). Sebuah generator dihubungkan dengan grid melalui sebuah transmisi maka dapat dimodelkan seperti gambar berikut:

Gambar 2.2 Sebuah mesin yang dihungkan dengan bus infinite

Permodelan yang sama dapat digunakan untuk kondisi transien dan subtransien. Model transien terdiri dari reaktansi transien dan tegangan, dimana diasumsikan konstan selama durasi analisa transien. Permodelan transien elektromagnet dari mesin ini dapat diasumsikan valid untuk waktu mula dan dapat digunakan untuk mengestimasi stabilitas ayunan pertama dari mesin sinkron [7].

Dengan permodelan menggunakan *infinite bus* maka tegangan dan frekuensi pada bus dianggap konstan. Hal ini disebabkan daya yang disuplai atau dikonsumsi oleh bus tidak berpengaruh terhadap karakteristik generator. Permodelan generator mempegaruhi akurasi dari hasil analisa kestabilan transien. Contoh permodelan generator yang mendekati kondisi fisik nyata generator di lapangan adalah permodelan generator salient pole (GENSAL) dan permodelan generator dengan round rotor (GENROU) [8].

Untuk melihat pengaruh generator sinkron dari sistem yang mengalami gangguan kestabilan transien, maka generator dapat dimodelkan menjadi dua cara yaitu sistem multimesin dan sistem *single machine infinite bus (SMIB)*. Permodelan SMIB berarti memodelkan seluruh generator menjadi satu generator dan terhubung dengan *infinite* bus. Sedangkan permodelan multimesin berarti memodelkan generator sendiri – sendiri atau menjadikan sekumpulan generator yang *coherent* menjadi kelompok – kelompok generator.

2.8 Sistem Multimesin

Permasalahan multimesin dapat ditulis sama dengan sistem satu mesin yang terhubung dengan bus infinite. Untuk mengurangi kerumitan dari analisa stabilitas transien. Beberapa asumsi digunakan untuk mengurangi kerumitan dari analisa stabilitas transien antara lain:

- Masing masing mesin sinkron direpresentasikan sebagai sumber tegangan konstan yang terletak di belakang dari reaktansi transien sumbu langsung (*direct axis*). Representasi ini mengabaikan efek dari saliensi dan mengasumsikan nilai flux yang konstan.
- Pengaruh dari governor diabaikan dan daya masukan diasumsikan tetap selama periode simulasi.
- Penggunaan tegangan bus pra gangguan, semua beban diubah menjadi admitansi yang setara terhadap *ground* dan diasumsikan konstan.
- Daya redam diabaikan.

- Sudut rotor mekanik dari masing masing mesin bertemu dengan sudut tegangan dibelakang reaktansi mesin.
- Mesin yang berada pada gardu yang sama berayun bersama dan dapat dikatakan *coherent*. Sekelompok mesin yang *coherent* direpresentasikan sebagai satu mesin yang setara.

Untuk menyelesaikan masalah analisa kestabilan transien adalah dengan cara menyelesaikan aliran daya awal dan menentukan tegangan bus mula dan sudut fasa. Arus pada mesin sebelum terjadi gangguan dapat dinyatakan sebagai berikut:

$$I_{i} = \frac{S_{i}^{*}}{V_{i}^{*}} = \frac{P_{i} - jQ_{i}}{V_{i}^{*}} \quad i = 1, 2, \dots, m$$
(2.52)

Dimana m adalah jumlah generator, V_i^* adalah tegangan pada terminal pada generator i, P_i dan Q_i adalah daya aktif dan reaktif sebuah generator. Parameter yang diketahui ditentukan dari solusi aliran daya mula. Resistansi jangkar dari generator biasanya diabaikan dan tegangan dibelakang reaktansi transien dapat dinyatakan sebagai berikut:

$$E'_{i} = V_{i} + jX'_{d}I_{i}$$
(2.53)

Jika beban diubah menjadi admitansi *equivalent* dengan menggunakan persamaan (2.53) maka dapat dinyakan sebagai berikut:

$$y_{i0} = \frac{S_i^*}{|V_i|^2} = \frac{P_i - jQ_i}{|V_i|^2}$$
(2.54)

Untuk memasukan tegangan dibekang reaktansi transien, bus m ditambahkan pada n bus pada jaringan sistem. Jaringan yang setara dengan semua beban dikonversi menjadi admitansi dapat dianalogikan seperti gambar di bawah [9].

Gambar 2.3 Representasi Sistem untuk Analisa Stabilitas Transien

Titik n+1, n+2, sampai n+m adalah bus bayangan dari dalam mesin. Persamaan tegangan pada sistem tersebur dapat dinyatakan sebagai berikut:

$$\begin{bmatrix} I_{1} \\ I_{n+1} \\ I_{n+m} \end{bmatrix} = \begin{bmatrix} Y_{11} Y_{1n} \\ Y_{n1} Y_{nn} \\ Y_{(n+1)1} Y_{(n+1)n} \\ Y_{(n+m)1} Y_{(n+m)n} \end{bmatrix} \begin{bmatrix} Y_{1(n+1)} Y_{1(n+m)} \\ Y_{n(n+1)} Y_{n(n+m)} \\ Y_{n(n+1)} Y_{n(n+m)} \\ Y_{(n+m)(n+1)} Y_{(n+m)(n+m)} \end{bmatrix} \begin{bmatrix} V_{1} \\ V_{n} \\ E'_{n+1} \\ E'_{n+m} \end{bmatrix}$$
(2.55)

Atau dapat ditulis dengan persamaan sebagai berikut:

$$I_{bus} = Y_{bus} V_{bus} \tag{2.56}$$

Dimana I_{bus} adalah vektor arus yang masuk ke dalam bus, dan V_{bus} adalah vektor tegangan bus yang diukur dari titik referensi. Elemen diagonal dari bus admitansi adalah penjumlahan admitansi yang terhubung dengan bus tersebut, dan elemen bukan diagonal adalah setara dengan negative admitansi bus yang terhubung dengan titik tersebut. Perbedaan dengan aliran daya normal adalah tambahan titik untuk memasukan tegangan mesin dibelakang reaktansi transien. Elemen diagonal juga dimodifikasi untuk menambahkan admitansi beban.

Untuk menyederhankan analisa, semua titik selain titik di dalam mesin dieleminasi. Untuk menghilangkan bus beban, bus matrix admitansi seperti pada (2.55) dipartisi sehingga sejumlah n bus yang dihilangkan dapat direpresentasikan baris n atas. Tidak adanya arus yang memasuki bus beban, arus pada baris ke n dapat dianggap nol. Arus pada generator dinotasikan dengan vektor I_m , tegangan pada generator dan beban dapat direpresentasikan sebagai E'_m dan V_n . Persamaan tersebut dapat ditulis menjadi:

$$\begin{bmatrix} 0\\I_m \end{bmatrix} = \begin{bmatrix} Y_{nn} & Y_{nm}\\Y_{nm}^t & Y_{mm} \end{bmatrix} \begin{bmatrix} V_n\\E'_m \end{bmatrix}$$
(2.57)

Proses eleminasi vektor tegangan V_n :

$$0 = Y_{nn}V_n + Y_{nm}E'_m (2.58)$$

$$I_m = Y_{nm}^{t} V_n + Y_{mm} E'_m (2.59)$$

Dari persamaan (2.58) dapat dinyatakan:

$$V_n = (-Y_{nn})^{-1} Y_{nm} E'_m (2.60)$$

Disubstitusikan ke dalam persamaan (2.59) menjadi:

$$I_m = [Y_{mm} - Y_{nm}^t Y_{nn}^{-1} Y_{nm}] E'_m$$
(2.61)

$$I_m = Y_{bus}^{red} E'_m \tag{2.62}$$

Matrix bus admitansi reduksi memiliki dimensi (m x m), dimana m adalah jumlah generator. Daya keluaran elektrik dari masing – masing mesin dapat dinyatakan dalam istilah tegangan internal mesin adalah:

$$S_{ei}^* = E_i'^* I_i (2.63)$$

$$P_{ei} = \mathscr{R}[E_i^{\prime*}I_i] \tag{2.64}$$

Dimana arus yang mengalir dinyatakan sebagai:

$$I_i = \sum_{j=1}^m E_j'^* Y_{ij}$$
(2.65)

Jika persamaan (2.64) dinyatakan dalam bentuk polar dengan $E_i^{\prime*} = |E_i^{\prime*}| \angle \delta_i$ dan $Y_{ij} = |Y_{ij}| \angle \theta_{ij}$, dan disubstitusikan dengan I_i pada persamaan (2.65) maka menjadi :

$$P_{ei} = \sum_{j=1}^{m} |E_i'| |E_j'| |Y_{ij}| \cos(\theta_{ij} - \delta_i + \delta_j)$$
(2.66)

Persamaan diatas sama dengan persaan aliran daya (2.10). Sebelum terjadi gangguan, ada kesetaraan antara masukan daya mekanik dan keluaran daya elektrik dan dapat dinyatakan sebagai berikut:

$$P_{mi} = \sum_{j=1}^{m} |E'_{i}| |E'_{j}| |Y_{ij}| \cos(\theta_{ij} - \delta_{i} + \delta_{j})$$
(2.67)

2.9 Stabilitas Transien Multimesin

Analisa stabilitas transien klasik didasarkan pada gangguan hubung singkat tiga fasa pada suatu bus. Gangguan tiga fasa pada bus k pada jaringan menyebabkan $V_k = 0$. Hal ini disimulasikan dengan menghilangkan baris dan kolom ke k dari matrix admitansi bus sebelum gangguan. Selain itu menambahkan matrik admitansi Y_{ik} ke matrix admitansi Y_{ii} untuk semua bus i yang terhubung ke bus k. Matrix admitansi yang baru dikurangi dengan menghilangkan semua titik kecuali titik generator internal. Tegangan eksitasi generator selama gangguan dan setelah gangguan diasumsikan nilainya tetap. Daya elektrik dari generator ke i dalam istilah matrix admitansi baru yang telah direduksi diperoleh dari persamaan (2.66).

Persamaan ayunan dengan redaman sistem diabaikan, seperti pada persamaan (2.51) untuk mesin i dapat dinyatakan seperti berikut:

$$\frac{2H_i}{\omega_s}\frac{d^2\delta_i}{dt^2} = P_{mi} - \sum_{j=1}^m |E_i'| |E_j'| |Y_{ij}| \cos(\theta_{ij} - \delta_i + \delta_j) \quad (2.68)$$

Dimana Y_{ij} adalah matrix admitansi bus reduksi gangguan, dan H_i adalah konstanta inersia mesin i yang dinyatakan pada MVA base (S_B). Jika H_{Gi} adalah konstanta inersia pada mesin i yang dinyatakan pada base mesin, maka konstanta inersia perlu dirubah dan dapat dinyatakan sebagai berikut:

$$H_i = \frac{S_{Gi}}{S_R} H_{Gi} \tag{2.69}$$

Daya elektrik dari generator i pada saat gangguan dan mentransformasi persamaan (2.68) menjadi permodelan *state variable* menjadi:

$$\frac{d^2\delta_i}{dt^2} = \Delta\omega_i \qquad i = 1, \dots, m \tag{2.70}$$

$$\frac{d\Delta\omega_i}{dt^2} = \frac{\omega_s}{2H_i} \left(P_m - P_e^f \right) \tag{2.71}$$

Diatas ada dua buah persamaan untuk masing – masing generator, dengan sudut daya mula δ_{0i} dan $\Delta \omega_{oi} = 0$. Metode untuk menghitung persamaan diferensial diatas menggunakan metode Range Kutta. Ketika gangguan pada jaringan hilang, maka melibatkan penghilangan saluran yang terjadi gangguan, matrix admitansi bus dihitung kembali untuk merepresentasikan gangguan pada jaringan. Matrix admitansi bus reduksi setelah gangguan dievaluasi dan daya elektrik setelah gangguan pada generator i dinyatakan dengan P_i^{pf} yang sudah dinyatakan dengan persamaan (2.66). Menggunakan daya setelah gangguan, simulasi dilanjutkan untuk menentukan kestabilan dari sistem.

2.10 Metode Optimasi Krill Herd Algorithm

Krill Herd Algorithm (KHA) adalah sebuah optimasi baru metaheuristik kecerdasan berkelompok berdasarkan untuk memecahkan masalah optimasi. Hal ini didasarkan pada perilaku menggiring kawanan krill dalam menanggapi proses biologis dan lingkungan. Telah pertama kali diperkenalkan oleh Gandomi dan Alavi pada tahun 2012. Dalam optimasi ini algoritma, fungsi tujuan untuk gerakan krill merupakan koombinasi posisi makanan dan kepadatan kawanan tertinggi. KHA mengulangi pelaksanaan tiga gerakan dan mengikuti arah pencarian yang meningkatkan nilai fungsi tujuan. Tiga gerakan ini adalah:

- 1. Movement induced,
- 2. Foraging activity,
- 3. Random diffusion.

2.10.1 Oppostion Based Learning

Opposition based learning (OBL), pada dasarnya, strategi mesin kecerdasan yang diungkapkan oleh Tizhoosh. Menganggap individu saat ini dan individu yang berlawanan secara bersamaan dalam rangka untuk mendapatkan yang lebih baik pendekatan pada saat yang sama untuk solusi calon saat ini. Telah juga membuktikan bahwa solusi kandidat yang berlawanan memiliki kesempatan yang lebih besar untuk lebih dekat

dengan solusi optimum global dari solusi calon acak. Jadi, konsep OBL dapat digunakan untuk meningkatkan kinerja dari algoritma berdasar populasi. Konsep OBL umum telah, berhasil, diterapkan di DE, GA, ACO, SA, PSO, fuzzy set, BBO dan sebagainya.

Opposition based generation jumping, jika jenis yang sama dari pendekatan (seperti yang disebutkan di atas) diterapkan dengan populasi saat ini, proses evolusi keseluruhan dapat terpaksa melompat ke solusi calon baru yang lebih cocok dari yang ada sekarang. Berdasarkan tingkat jumping (J_R) , setelah mengikuti induksi, tindakan mencari makan dan proses acak difusi KHA, populasi baru dihasilkan dan populasi berlawanan dihitung. Dari perbandingan ini, individu-individu terbaik dipilih.

2.10.2 Algoritma Krill Herd

Step 1 Step 2	Inisiasi dari parameter algoritma. Tergantung dari ukuran populasi, set populasi inisiasi yang mungkin dibangkitkan dan dapat diekspresikan oleh
	$X^{N_p} = \begin{bmatrix} X_{g_1}^1, & X_{g_2}^1, \dots, & X_{g_p}^1, & \dots & X_{g_n}^1 \\ X_{g_1}^2, & X_{g_2}^2, \dots, & X_{g_{p_r}}^2, & \dots, & X_{g_3}^2 \\ X_{g_1}^p, & X_{g_2}^p, & \dots, & X_{g_3}^p, & \dots, & X_{g_n}^p \end{bmatrix}$
Step 3	Menentukan nilai fitness dari masing - masing
	individu menggunakan <i>position update</i> .
Step 4	Evaluasi gerak yang disebabkan oleh individu krill
	yang lainnya, gerak mencari makan dan gerakan acak difusi.
Step 5	Modifikasi posisi setiap individu krill menggunakan
	position update.
Step 6	Implementasi proses <i>crossover</i> dan mutasi untuk
I	memodifikasi posisimasing – masing individu krill.
Step 7	Berhenti jika jumlah maksimum iterasi tercepai bila
r .	belum ulang dari step 2

Gambar 2.4 Algoritma Krill Herd

2.10.3Diagram Alir Oppositional Krill Herd Algorithm

Gambar 2.5 Diagram Alir Oppositional Krill Herd

Perbedaan metode OKHA dengan KHA yaitu pada OKHA terdapat modifikasi populasi pada saat inisiasi berdasar *Opposed Based Learning* dan akhir dari proses mutasi dan crossover dengan metode *generation jumping*.

BAB 3

PENERAPAN ALIRAN DAYA OPTIMUM MEMPERTIMBANGKAN KESTABILAN TRANSIEN MENGGUNAKAN OKHA

3.1 Sistem IEEE 30 Bus

Pengujian aliran daya optimal dengan mempertimbangkan stailitas transien pada tugas akhir ini meggunakan dua buah sistem uji yaitu sistem uji IEEE 30 bus dan sistem Jawa Bali 2016. Data yang diperlukan dalam analisa ini adalah data bus, data saluran, batas kemampuan pembangkit, fungsi biaya pemangkit, dan karakteristik dinamik pembangkit. Data – data tersebut dapat dilihat pada tabel 3.1 sampai 3.4.

Gambar 3.1 Sistem IEEE 30bus

Nomer	L D	Beb	Beban		
Bus	Jenis Bus	MW	MVAR		
1	Slack	0	0		
2	Generator	21.7	12.7		
3	Beban	2.4	1.2		
4	Beban	7.6	1.6		
5	Beban	0	0		
6	Beban	0	0		
7	Beban	22.8	10.9		
8	Beban	30	30		
9	Beban	0	0		
10	Beban	5.8	2		
11	Beban	0	0		
12	Beban	11.2	7.5		
13	Generator	0	0		
14	Beban	6.2	1.6		
15	Beban	8.2	2.5		
16	Beban	3.5	1.8		
17	Beban	9	5.8		
18	Beban	3.2	0.9		
19	Beban	9.5	3.4		
20	Beban	2.2	0.7		
21	Beban	17.5	11.2		
22	Generator	0	0		
23	Generator	3.2	1.6		
24	Beban	8.7	6.7		
25	Beban	0	0		
26	Beban	3.5	2.3		
27	Generator	0	0		
28	Beban	0	0		
29	Beban	2.4	0.9		
30	Beban	10.6	1.9		

 Tabel
 3.1 Data Bus dan Beban Sistem IEEE
 30 bus

Dari	Ke	B (mu)	V(mi)	B(mu)	Batas
Bus	Bus	rx(pu)	A(pu)	D(hn)	(MVA)
1	2	0.02	0.06	0.03	130
1	3	0.05	0.19	0.02	130
2	4	0.06	0.17	0.02	65
3	4	0.01	0.04	0	130
2	5	0.05	0.2	0.02	130
2	6	0.06	0.18	0.02	65
4	6	0.01	0.04	0	90
5	7	0.05	0.12	0.01	70
6	7	0.03	0.08	0.01	130
6	8	0.01	0.04	0	32
6	9	0	0.21	0	65
6	10	0	0.56	0	32
9	11	0	0.21	0	65
9	10	0	0.11	0	65
4	12	0	0.26	0	65
12	13	0	0.14	0	65
12	14	0.12	0.26	0	32
12	15	0.07	0.13	0	32
12	16	0.09	0.2	0	32
14	15	0.22	0.2	0	16
16	17	0.08	0.19	0	16
15	18	0.11	0.22	0	16
18	19	0.06	0.13	0	16
19	20	0.03	0.07	0	32
10	20	0.09	0.21	0	32
10	17	0.03	0.08	0	32
10	21	0.03	0.07	0	32
10	22	0.07	0.15	0	32
21	22	0.01	0.02	0	32
15	23	0.1	0.2	0	16

 Tabel
 3.2 Data Saluran Sistem IEEE
 30bus

Dari Bus	Ke Bus	R(pu)	X(pu)	B(pu)	Batas (MVA)
22	24	0.12	0.18	0	16
23	24	0.13	0.27	0	16
24	25	0.19	0.33	0	16
25	26	0.25	0.38	0	16
25	27	0.11	0.21	0	16
28	27	0	0.4	0	65
27	29	0.22	0.42	0	16
27	30	0.32	0.6	0	16
29	30	0.24	0.45	0	16
8	28	0.06	0.2	0.02	32
6	28	0.02	0.06	0.01	32

 Tabel 3.2 Data Saluran Sistem IEEE 30 Bus (lanjutan)

Tabel 3.3 Data Kemampuan Pembangkit Sistem IEEE 30 Bus

Dombongkit	Labori	Dunin	Damour	Fungsi	Biaya (\$/N	(Wh)
Pennoangkit	Lokasi	rmm	Pinax	a	b	с
1	1	0	80	0.02	2	0
2	2	0	80	0.0175	1.75	0
3	13	0	40	0.025	3	0
4	22	0	50	0.0625	1	0
5	23	0	30	0.025	3	0
6	27	0	55	0.00834	3.25	0

 Tabel
 3.4 Data Dinamik
 Pembangkit
 Sistem IEEE
 30 Bus

Pembangkit	Lokasi	Ra(pu)	Xd'(pu)	H(sec)
1	1	0	0.185	4.13
2	2	0	0.116	5.078
3	13	0	0.231	1.52
4	22	0	0.231	1.52
5	23	0	0.2035	1.2
6	27	0	0.2035	1.2

3.2 Sistem Jawa Bali 500 kV

Pada tugas akhir ini setelah analisa TSCOPF dijalankan pada sistem 30 bus IEEE, analisa dicoba pada sistem Jawa Bali 500kV. Data pembebanan dan pembangkitan diambil pada tanggal 14 Maret 2016 pada pukul 7 malam. Analisa TSCOPF pada Jawa Bali 500kV dimodelkan dengan 10 pembangkit dan 29 bus yang ditampilkan pada gambar 3.2.

Gambar 3.2 Sistem Jawa Bali 500kV 2016

Pembangkit – pembangkit yang terpasang antara lain pembangkit Suralaya, pembangkit Muara Tawar, pembangkit Cirata, pembangkit Saguling, pembangkit Tanjung Jati, pembangkit Gresik, pembangkit Paiton, pembangkit Grati, pembangkit Suralaya Baru, pembangkit dan pembangkit Cilacap. Pada permodelan ini pembangkit Suralaya dianggap sebagai pembangkit *slack*. Data yang diperlukan untuk analisa TSCOPF Jawa Bali 2016 adalah data bus, data saluran, batas kemampuan pembangkit, fungsi biaya pemangkit, karakteristik dinamik pembangkit, index kontingensi. Data – data tersebut dapat dilihat pada tabel 3.5 sampai 3.9.

Nomer	lomer Lonia Pus Beban		
Bus	Jenis Bus	MW	MVAR
1	Slack	75	73
2	Beban	332	141
3	Beban	0	0
4	Beban	863	-82
5	Beban	354	182
6	Beban	529	111
7	Beban	1196	9
8	Generator	0	0
9	Beban	1041	449
10	Generator	620	207
11	Generator	0	0
12	Beban	505	242
13	Beban	126	41
14	Beban	638	427
15	Generator	180	98
16	Beban	1151	263
17	Generator	287	-80
18	Beban	533	-29
19	Beban	295	110
20	Beban	697	221
21	Beban	623	175
22	Generator	894	212
23	Generator	562	261
24	Beban	198	78
25	Beban	704	203
26	Generator	45	-26
27	Beban	24	-4
28	Generator	0	0
29	Beban	0	0

 Tabel
 3.5 Data Bus dan Beban Sistem Jawa Bali 500kV

Dari Bus	Ke Bus	R(pu)	X(pu)	B(pu)	Batas (MVA)
1	25	0.000735535	0.0070667	0	3429
1	26	0.00001465	0.0001408	0	1715
2	1	0.000125299	0.0014018	0	4157
2	5	0.001313332	0.0146926	0.007061142	2078
3	4	0.000302636	0.0033857	0	2078
4	18	0.00006942	0.0006669	0	3429
5	8	0.00062116	0.0059678	0	1715
5	18	0.00018248	0.0017532	0	3429
6	7	0.000197365	0.0018962	0	1715
6	8	0.00056256	0.0054048	0	1715
7	5	0.000444188	0.0042675	0	1715
8	9	0.000564412	0.0054226	0	3429
9	10	0.000547992	0.0052648	0	3429
10	11	0.000294946	0.0028337	0	4157
11	5	0.000822276	0.009199	0.008841946	4157
11	12	0.00039156	0.0043805	0	3429
13	12	0.001398196	0.0134332	0.01285827	1715
13	27	0.00101296	0.009732	0	1715
14	13	0.0026956	0.025898	0.024789624	2078
14	15	0.001353392	0.0151407	0.007276522	3429
14	16	0.002979224	0.0286229	0.007264438	2078
16	23	0.000797276	0.0089193	0	3429
16	24	0.000597497	0.0057405	0	1715
17	16	0.000280108	0.0026911	0	4157
19	18	0.00280618	0.0313934	0.030228874	4157
19	29	0.001390108	0.0155515	0	3429
20	14	0.000903612	0.0086815	0	2078
20	21	0.00205318	0.0229694	0	4157
22	21	0.00205318	0.0229694	0	4157

 Tabel
 3.6 Data Saluran Sistem Jawa Bali 500kV

Dari	Ke	D (mu)	V(mu)	B (mu)	Batas
Bus	Bus	K (pu)	A(pu)	D(pu)	(MVA)
22	23	0.000882145	0.0098688	0	3429
24	14	0.002347961	0.0225581	0	1715
25	4	0.000595845	0.0057246	0	3429
27	12	0.000385471	0.0037034	0	2078
28	29	0.000276963	0.0030985	0	4157
29	20	0.001667072	0.01865	0	4157

Tabel 3.6 Data Saluran Sistem Jawa Bali 500kV (lanjutan)

Tabel 3.7 Data Kemampuan Pembangkit Sistem Jawa Bali 500kV

Dombonalit	Pmin	Dmov	Fung	si Biaya (Rp/N	/IWh)
Tempangkit	1 11111	т шах	а	b	с
1	1703	3400	-5.9750	217489.64	14694279
2	100	655	-68.9566	846284.88	-6331774
3	100	630	0	12000.00	0
4	350	700	0	8000.00	0
5	1221	2640	-4.52489	180049.56	23364062
6	100	450	-104.2682	541230.78	1606854
7	1954	4710	-9.5738	214752.93	-3073490
8	320	795.6	-1880.6658	2050538.96	1333089
9	100	800	104.8615	75808.64	25066694
10	100	1200	-102.8358	270106.50	148119

Tabel 3.8 Data Dinamik Pembangkit Sistem Jawa Bali 500kV

Pembangkit	Lokasi	Ra(pu)	Xd'(pu)	H(sec)
1	1	0	0.297	5.19
2	8	0	0.297	1.82
3	10	0	0.274	2.86
4	11	0	0.302	1.64
5	15	0	0.2588	3.2
6	17	0	0.297	2.54
7	22	0	0.297	4.42
8	23	0	0.297	2.76
9	26	0	0.297	5.19
10	28	0	0.297	2.54

No. Saluran	Saluran	Contingency Index
15 - 14	Tanjung jati Ungaran	71.6552
22 - 23	Paiton - Grati	0.0008163
22 - 21	Paiton - Kediri	0.000561
23 - 16	Grati - Surabaya Barat	0.0002372
6 - 8	Cawang - Muara Tawar	0.0000031
13 - 14	Mandirancan - Ungaran	0.0000025
5 - 7	Cibinong - Bekasi	0.0000023
12 - 13	Bandung selatan - Mandirancan	0.0000019
16 - 24	Surabaya Barat - Ngimbang	0.0000007
14 - 16	Ungaran - Surabaya Barat	0.0000004

 Tabel
 3.9
 Index Kontingensi Saluran Transmisi 500kV
 Jawa Bali [20]

3.3 Pengujian Kestabilan Transien

Stabilitas transien dapat dihubungkan dengan kemampuan sistem tenaga listrik untuk menjaga sistem berada dalam kondisi sinkron ketika diberikan gangguan. Gangguan yang dimaksud adalah gangguan besar seperti putusnya saluran transmisi atau lepasnya suatu pembangkit besar. Hasilnya sistem akan merespon pergerakan dari sudut rotor yang besar dan tiba – tiba karena dipengaruhi dari ketidaklinearan hubungan sudut daya dari mesin – mesin sinkron.

Ketidakstabilan diterjemahkan sebagai bentuk simpangan yang tidak tetap pada sudut rotor akibat kurangnya torsi untuk menyeimbangkan. Periode analisa transien biasanya 3 – 5 detik tergantung dari gangguan [7]. Simpangan ini dapat dilihat dari hasil analisa simulasi berbasis waktu berupa kurva ayunan dari mesin – mesin. Dari hasil tersebut dapat didefinsikan apakah suatu sistem stabil atau tidak. Kurva ayunan adalah hasil plot dari sudut rotor ataupun kecepatan rotor terhadap waktu. Jika kurva dari mesin diplotkan kepada sumbu yang sama maka dapat diamati kestabilan dari sebuah sistem. Apabila bentuk kurva ayunan tersebut menyebar seperti pada gambar 3.3 maka dapat dikatakan tidak stabil, namun apabila menetap pada nilai tunak yang baru maka bisa dikatakan stabil [11]. Osilasi sudut rotor generator pada gambar 3.4 menunjukan sistem stabil walaupun tidak teredam. Hal ini

disebabkan permodelan generator berupa generator klasik dan tidak dimodelkannya peredaman sistem.

Gambar 3.3 Respon sudut rotor terhadap gangguan transien (tidak stabil)

Gambar 3.4 Respon sudut rotor terhadap gangguan transien (stabil)

Persamaan ayunan memperlihatkan arah dari simulasi berbasis waktu, yang dari hasil persamaan tersebut didapat respon dinamik dari state variabel ($\delta_i \, dan \, \omega_i$). Hasil turunan berupa sudut rotor dapat digunakan untuk menentukan Center Of Inertia (COI) dari sudut – sudut rotor [12]. Dan dapat mempresentasikan kestabilan dari sistem. Sudut yang setara dengan pusat inersia suatu daerah dapat dinyatakan sebagai berikut:

$$\delta_{colj} = \frac{1}{M_j} \sum_{\substack{i=1\\N}}^{N_g} M_i \delta_i \tag{3.1}$$

$$M_j = \sum_{i=1}^{N} M_i \tag{3.2}$$

Dimana δ_{cOIj} dan M_j adalah sudut rotor yang setara inersia mesin suatu daerah dan jumlah inersia total dari area j, dimana M_i dan δ_i dapat dinotasikan sebagai momen inersia dan sudut rotor dari mesin i daerah j. Kriteria sederhana untuk menentukan dari kestabilan transien dinyatakan dari penyimpangan sudut rotor terhadap COI, dan oleh karena itu batasan pertidaksamaan dari kestabilan transien dinyatakan sebagai:

$$|\delta_i - \delta_{COI}|_{max} \le \delta_{max} \tag{3.3}$$

Dimana $|\delta_i - \delta_{COI}|_{max}$ mewakilkan deviasi maksimum dari generator ke i terhadap COI dan δ_{max} adalah sudut rotor maksimum yang diijinkan. Sehingga untuk menentukan kestabilan suatu sistem, jika salah satu sudut rotor suatu generator menyimpang dari COI setelah gangguan dihilangkan lebih besar dari 180^o maka kestabilan transien suatu sistem bisa dikatakan tidak stabil. Namun jika sudut rotor dari semua mesin masih dalam keadaan seimbang dan masih dalam batas toleransi maka dapat dikatakan suatu sistem stabil.

Gambar 3.5 Diagram Alir Uji Stabilias Transien

3.4 Penerapan TSCOPF menggunakan OKHA

Metode penyelesaian yang digunakan dalam tugas akhir ini adalah algoritma *Oppositional Krill Herd Algorithm*. Metode ini bertujuan mencari nilai *fitness* minimum dari fungsi tujuan yaitu biaya pembangkitan dengan memperhatikan batasan – batasan sistem termasuk batasan kestabilan transien.

3.4.1 Inisiasi awal

Yaitu berupa inisiasi populasi dan inisiasi variabel mula. Setiap individu krill memilki beberapa variabel yang menentukan *fitness* dari individu krill tersebut. Variabel tersebut berupa pembangkitan aktif generator, tegangan generator pada bus, seting tap trafo, dan daya inject reaktif. Besar variabel ini masih diantara batas yang ditentukan pada (2.330 dan (2.36). Parameter – parameter inisiasi berupa:

•	Jumlah populasi	= 50
•	Iterasi maksimal	= 100
•	Foraging Motion	= 0.01
•	Diffusion number	= 0.005
•	Induced Move	= 0.5

3.4.2 Penentuan Opposite Population

Dari setiap variabel yang ada disetiap individu krill maka dapat dibentuk matrix nilai maksimal dan nilai minimal yaitu matrix U_M dan V_m . Hasil pembangkitan matrix nilai variabel berdasarkan proses acak namun masih berada dalam batas maksimum U_m dan batas minimum V_m dapat dinotasikan dengan nama P_m . Dari nilai tersebut maka dapat dinyatakan opposite population (P_m^*) :

$$P_m^* = U_m + V_m - P_m (3.4)$$

3.4.3 Analisa Aliran Daya, TSA, dan evaluasi fitness

Untuk nilai masing – masing individu pada OKHA, perhitungan aliran daya dilakukan dan nilai *fitness* dihitung dari masing – masing individu. Kemudian nilai *fitness* ditambah dengan penyimpangan variabel kontrol terhadap biaya pembangkitan sebagai hasil analisa aliran daya. Sebagai hasilnya nilai *fitness* dari masing – masing individu krill dinyatakan sebagai berikut:

$$f(x,u) = f_i + K_V \sum_{i=1}^{N_{PQ}} (V_i - V_i^{lim})^2 + K_Q \sum_{i=1}^{N_G} (Q_{gi} - Q_{gi}^{lim})^2 + K_P (P_{slack} - P_{slack}^{lim})^2 + K_T$$
(3.5)

Dengan V_i^{lim} , Q_{gi}^{lim} , P_{slack}^{lim} , K_T didefinisikan sebagai:

$$V_i^{lim} = \begin{cases} V_i^{max}; V_i > V_i^{max} \\ V_i^{min}; V_i < V_i^{min} \end{cases}$$
(3.6)

$$Q_i^{lim} = \begin{cases} Q_{gi}^{max}; Q_{gi} > Q_{gi}^{max} \\ Q_{gi}^{min}; Q_{gi} < Q_{gi}^{min} \end{cases}$$
(3.7)

$$P_{slack}^{lim} = \begin{cases} P_{slack}^{max}; P_{slack} > P_{slack}^{max} \\ P_{slack}^{min}; P_{slack} < P_{slack}^{min} \end{cases}$$
(3.8)

$$K_{T} = \begin{cases} 10^{10}; |\delta_{i} - \delta_{COI}|_{max} > \delta_{max} \\ 0; |\delta_{i} - \delta_{COI}|_{max} < \delta_{max} \end{cases}$$
(3.9)

Dimana f(x, u) adalah nilai *fitness* dari individu ke x, dan iterasi ke u. N_{PQ} menunjukan jumlah bus beban. V_i^{lim} , Q_{gi}^{lim} dan , P_{slack}^{lim} menyatakan batas atas atau batas bawah dari variabel terkait. K_V , K_Q , K_P , dan K_T adalah beban pinalti dari daya keluaran *slack bus*, keluaran daya dari daya reaktif bus generator, magnitud tegangan, dan batas kestabilan transien.

3.4.4 Perhitungan Pergerakan Individu Krill

Teknik dasar KHA dapat dimodelkan dengan Lagrang pada sebuah dimensi ke – n, yang dinyatakan dengan:

$$\frac{du_p}{dt} = W_p^{new} + W_{F_p}^{new} + W_{D_p}^{new}$$
(3.10)

Dimana W_p^{new} adalah pergerakan yang diinduksi oleh individu krill yang lain, $W_{F_p}^{new}$ adalah foraging motion dan $W_{D_p}^{new}$ adalah physical difussion dari individu krill.

Movement Induced

Pada proses ini, masing – masing individu *krill* akan menjaga kepadatan populasi selama kecepatan darri masing – masing individu dipengaruhi oleh individu yang lain. Arah dari pergerakan yang terinduksi (ψ_p) dievaluasi oleh pendekatan dari tiga efek yang bernama *local effect, target effect,* dan *repulsive effect.* Untuk masing – masing individu *krill* (p), pergerakan ini dapat dinyatakan sebagai berikut:

$$W_{p}^{new} = \psi_{p} W_{p}^{max} + u_{W} W_{p}^{old}$$
(3.11)
$$\psi_{p} = \sum_{q=1}^{n_{s}} \left[\frac{v_{p} - v_{q}}{v_{w} - v_{b}} \times \frac{u_{p} - u_{q}}{|u_{p} - u_{q}| + rand(0,1)} \right]$$
$$+ 2 \left[rand(0,1) + \frac{z}{z_{max}} \right] v_{p}^{best} X_{p}^{best}$$
(3.12)

Dimana W_p^{max} adalah pergerakan induksi maksimum, u_W adalah beban inersia pada pergerakan induksi yang berada pada jangkauan [0,1], W_p^{old} adalah pergerakan induksi sebelumnya dari individu krill ke p, v_w dan v_b adalah nilai *fitness* dari individu ke p dan ke q. Variabel n_s adalah jumlah individu krill, Z dan Z_{max} adalah besar iterasi yang sedang terjadi dan besar iterasi maksimal, u mewakilkan posisi dari krill.

Untuk mentukan jarak di antara individu *krill* dan tetangganya, digunakan sebuah parameter bernama *sensing distance* (D_s) . Paramater tersebut dapat dinyatakan sebagai berikut:

$$D_s = \frac{1}{5N_p} \sum_{k=1}^{N_p} |u_p - u_k|$$
(3.13)

Dimana N_p adalah jumlah individu krill, u_p dan u_k adalah posisi krill ke p dan ke k. Jika jarak diantara dua individu krill memilki nilai kurang dari *sensing distance*, maka dua individu tersebut dapat dinyatakan sebagai tetangga.

Foraging activity

Pergerakan ini didasarkan pada dua faktor yaitu lokasi makanan sekarang dan yang kedua berisi tentang lokasi makanan sebelumnya. Kecepatan *foraging* untuk individu *krill* dapat dinyatakan sebagai berikut:

$$W_{F_p}^{new} = 0.02 \times \left[2 \times \left(1 - \frac{z}{z_{max}} \right) \times v_p \times \frac{\sum_{k=1}^{n_s} \frac{u_k}{v_k}}{\sum_{k=1}^{n_s} \frac{u_k}{v_k}} + v_p^{best} \times X_p^{best} \right] + u_{w_p} \times W_{Fp}^{old}$$
(3.14)

Dimana u_{w_p} adalah beban inersia dari pergerakan *foraging*, $W_{F_p}^{new}$ dan $W_{F_p}^{old}$ adalah nilai pergerakan *foraging* yang baru dan lama dari individu *krill* ke p.

Random Diffusion

Proses difusi secara acak untuk individu *krill* bertujuan untuk meningkatkan kepadatan populasi *krill*. Proses itu dapat dinyatakan sebagai berikut:

$$W_{D_p}^{new} = \propto \times W_{D_p}^{max} \tag{3.15}$$

Dimana $W_{D_p}^{max}$ adalah kecepatan proses difusi dan \propto arah vektor acak yang bernilai diantara [-1, 1].

3.4.5 Pemutakhiran Posisi

Pada proses ini, individu *krill* akan mengubah posisi semula ke posisi yang lebih baik berdasarkan *induction motion, foraging motion,* dan *random diffusion motion*. Berdasarkan tiga pergerakan di atas, pemutakhiran individu *krill* ke k dapat dinyatakan sebagai:

$$u_{p}^{new} = u_{p}^{new} + \left(W_{p}^{new} + W_{F_{p}}^{new} + W_{D_{p}}^{new}\right) \times P_{c} \sum_{q=1}^{n_{d}} \left(U_{q} - L_{q}\right) (3.16)$$

Dimana n_d adalah jumlah variabel, U_q dan L_q adalah batas atas dan batas bawah dari variabel ke q. P_c adalah konstanta posisi dengan nilai diantara [0,2]. Untuk mempercepat performansi atas proses optimasi dan mempercepat konvergensi maka proses *crossover* dan *mutation* dimasukan dalam proses OKHA.

Crossover

Proses *crossover* dikontrol oleh parameter disebut probabilitas *crossover* (CR). Untuk memutakhirkan posisi *krill*, masing – masing individu berinteraksi dengan *krill* yang lain. Pada proses ini, komponen ke q dari individu ke p dapat dinyatakan sebagai berikut:

$$U_{p,q} = \begin{cases} U_{k,q} \ jika \ rand \ \leq \ CR \\ U_{p,q} \ jika \ rand \ < \ CR \end{cases} dimana \ k = 1, 2, \dots, N_p \quad (3.17)$$
$$CR = 0.2 \ v_p^{best} \qquad (3.18)$$

Mutasi

Proses mutasi, dikontrol oleh parameter disebut probabilitas mutasi (MR). Proses ini dinyatakan sebagai berikut:

$$U_{p,q} = U_{best,q} + \gamma (U_{m,q} - U_{n,q})$$
 (3.19)

Dimana $U_{best,q}$ adalah global best vector, $U_{m,q}$ dan $U_{n,q}$ adalah dua vektor acak dan γ adalah angka skalar diantara 0 dan 1. Nilai modifikasi $U_{p,q}$ dapat dihitung dengan formula sebagai berikut :

$$U_{p,q}^{mod} = \begin{cases} u_{p,q}^{new} \ jika \ rand \ \leq MR \\ u_{p,q} \ jika \ rand \ > MR \end{cases}$$
(3.20)

3.4.6 Opposition Based Generation Jumping

Setelah pemutakhiran posisi, dilakukan pembangkitan populasi oposisi sama seperti proses di awal. Jika proses ini dilakukan pada populasi setelah dimutakhirkan maka proses evolusi ini akan dipaksa melompat ke kandidat solusi yang baru yang lebih baik dibanding populasi mula. Berdasarkan *jumping rate* (J_R), setelah proses induksi, *foraging*, dan *random diffusion*, populasi yang baru dibangkitkan dan

populasi oposisi dihitung. Dari perbandingan ini, individu yang memilik i *fitness* yang paling baik itu yang dipilih. Pada setiap pembangkitan, ruang pencarian dipersempit untuk menghitung titik oposisi dimana dinyatakan sebagai berikut:

$$OP_{m,n} = Min_n^p + Max_n^p - P_{m,n}$$
(3.21)

$$m = 1, 2, ..., N_n \, dan \, n = 1, 2, ..., d$$

Dimana $[Min_n^p, Max_n^p]$ adalah matrix interval dari parameter parameter yang ada dari setiap individu *krill* yang sudah mengalami pemutakhiran posisi. Dengan interval yang lebih kecil dari $[u_n, v_n]$ maka diharapkan individu yang terbangkit memiki *fitness* yang lebih baik.

Gambar 3.6 Diagram Alir OKHA untuk menyelesaikan TSCOPF

Halaman ini sengaja dikosongkan

BAB 4 SIMULASI DAN ANALISIS

4.1 Hasil simulasi dan analisa TSCOPF menggunakan metode OKHA pada IEEE 30 bus

Sistem uji coba pertama menggunakan IEEE 30 bus dengan diagram satu garis yang ditunjukan pada gambar 3.1, sedangkan data bus dan data saluran berasal dari referensi [16]. Parameter generator berupa konstanta inersia dan reaktansi transien diambil dari referensi [17]. Batas bawah dan batas atas tegangan diatur pada 0.95p.u. dan 1.05 p.u. Kasus kontingensi yang digunakan pada pengujian ini menggunakan gangguan tiga fasa di saluran 2 - 5 dekat dengan bus 2. Sehingga besar hubung singkat diasumsikan sama antara hubung singkat di saluran dekat bus 2 dan di bus dua. Waktu pemutusan saluran diambil pada waktu 0.5 detik setelah gangguan. Waktu total simulasi adalah 5 detik dengan step time sebesar 10ms.

Pada kasus ini digunakan beberapa kasus simulasi. Pada kondisi dimana pembangkit belum dilakukan awal simulasi dilakukan penjadwalan pembangkit.Pada simulasi OPF dilakukan penjadwalan pembangkit untuk mendapatkan biaya termurah dengan memperbaiki batasan yang ada. Batasan tersebut bisa berupa tegangan sistem, kapasitas pembangkit, dan kapasitas saluran. Simulasi OPF dilakukan dengan metode matematis vaitu *quadratic programming* dengan menggunakan Matpower dan metode heuristik OKHA. Simulasi TSCOPF dilakukan dengan penjadwalan pembangkit seperti pada OPF dengan tambahan batasan kestabilan transien dengan pengujian kontingensi pada saluran tertentu. Metode yang digunakan pada simulasi TSCOPF menggunakan PSO, KHA, dan OKHA. Hasil dari simulasi ini akan dibandingkan dengan hasil simulasi TSCOPF yang telah dilakukan pada penelitian sebelumnya dengan menggunakan metode Genetic Algorithm [13], Evolutionary Programming incorporating Neural Network [14], dan Artificial Bee Colony [15]. Hasil simulasi yang ditunjukan pada tabel 4.1 dibandingkan dan dilihat relevansinya dengan penelitian yang telah dilakukan.

4.1.1 Simulasi TSCOPF – OKHA pada IEEE 30bus

	OPF		
Metode	LP	OKHA	
Pg1 (MW)	41.54	43.226	
Pg2(MW)	55.4	54.789	
Pg13 (MW)	16.2	19.379	
Pg22 (MW)	22.74	24.130	
Pg23 (MW)	16.27	17.342	
Pg27 (MW)	39.91	32.665	
Vg1 (p.u.)	0.982	1.038	
Vg2 (p.u.)	0.979	1.039	
Vg13 (p.u.)	1.064	1.033	
Vg22 (p.u.)	1.016	1.002	
Vg23 (p.u.)	1.026	1.011	
Vg27 (p.u.)	1.069	0.998	
Biaya (\$/hr)	576.89	574.430713	

 Tabel
 4.1 Solusi Terbaik OPF IEEE
 30bus

Tabel 4.2 Solusi Terbaik TSCOPF IEEE 30bus

	TSCOPF					
Metode	GA [13]	EPNN [14]	ABC [15]	PSO	KHA	OKHA
Pg1 (MW)	41.88	48.95	42.65	43.031	44.155	43.221
Pg2 (MW)	56.38	38.41	60.15	56.188	54.109	55.861
Pg13 (MW)	22.94	23.34	17.96	18.356	17.196	17.484
Pg22 (MW)	37.63	24.65	24.68	22.143	22.617	23.518
Pg23 (MW)	16.7	17.61	15	16.601	17.033	17.166
Pg27 (MW)	16.53	38.99	31.64	35.431	36.564	34.363
Vg1 (p.u.)	n.a.	n.a.	n.a.	1.011	1.028	1.016
Vg2 (p.u.)	n.a.	n.a.	n.a.	1.004	1.025	1.016
Vg13 (p.u.)	n.a.	n.a.	n.a.	1.025	1.035	1.050
Vg22 (p.u.)	n.a.	n.a.	n.a.	1.013	0.989	1.011
Vg23 (p.u.)	n.a.	n.a.	n.a.	1.016	0.998	1.018
Vg27 (p.u.)	n.a.	n.a.	n.a.	1.030	1.025	1.023
Biaya (\$/hr)	585.62	585.12	576.755	575.750	575.133	574.743

Gambar 4.1 Grafik Konvergensi PSO, KHA, dan OKHA

Gambar 4.2 Perbandingan Biaya Pembangkitan dengan Jumlah Individu Analisa TSCOPF dengan OKHA

Gambar 4.3 Perbandingan Populasi dengan Biaya Pembangkitan dan Waktu Komputasi

Tabel	4.3	Perbandingan	CCT	antar kasus
-------	-----	--------------	-----	-------------

Kasus	Waktu
Fault Clearing Time (ms)	500
CCT dari kondisi awal (ms)	497
CCT dari solusi base OPF (ms)	474
CCT dari solusi TSCOPF (ms)	503

Gambar 4.4 Perbandingan *Fault Clearing Time* dengan Biaya Pembangkitan

Gambar 4.5 Tegangan Bus IEEE 30 bus Kasus TSCOPF

ranci	 1 CIU	munigan <i>i</i>	iman Day	a yang	, mengam	1 ada Salatan		
Galuman	Kapasitas	MUA Malo	MVA	Salura	Kapasitas	MVA	MVA	
Saluran	(MVA)	WIVA Mula	TSCOPF	n	(MVA)	Mula	TSCOPF	
1-2	130	12.02	24.321	15-18	16	9.196	7.935	
1-3	130	15.632	20.922	18-19	16	5.877	4.534	
2-4	65	16.897	19.656	19-20	32	5.258	5.647	
3-4	130	13.301	18.33	10-20	32	7.508	8.06	
2-5	130	14.536	15.366	10-17	32	8.693	7.731	
2-6	65	21.602	23.449	10-21	32	11.889	7.644	
4-6	90	25.235	22.666	10-22	32	9.282	7.152	
5-7	70	14.987	15.74	21-22	32	30.318	27.741	
6-7	130	9.828	9.039	15-23	16	10.253	10.445	
6-8	65	34.825	34.079	22-24	16	8.095	6.038	
6-9	65	6.697	8.36	23-24	16	7.141	5.078	
6-10	32	3.827	4.777	24-25	16	4.24	7.947	
9-11	65	0	0	25-26	16	4.266	4.263	
9-10	65	6.747	8.411	25-27	16	7.469	11.215	
4-12	65	2.63	12.61	28-27	65	8.631	12.527	
12-13	65	38.142	30.725	27-29	16	6.399	6.39	
12-14	32	5.459	5.344	27-30	16	7.317	7.306	
12-15	32	9.536	7.668	29-30	16	3.734	3.732	
12-16	32	9.264	7.138	8-28	32	8.074	8.77	
14-15	16	1.167	1.517	6-28	32	2.814	5.198	
16-17	16	6.052	3.258					

 Tabel
 4.4 Perbandingan Aliran Daya yang mengalir Pada Saluran

Gambar 4.6 Kurva Sudut Rotor Generator pada Sistem IEEE 30 untuk Kasus Mula, dengan *Fault Clearing Time* 0.5 detik

Gambar 4.7 Kurva Sudut Rotor Generator pada Sistem IEEE 30 untuk Kasus TSCOPF, dengan *Fault Clearing Time* 0.5 detik

4.1.2 Analisa Biaya TSCOPF – OKHA pada IEEE 30bus

Pada tabel 4.1 dan 4.2 tampak hasil simulasi OPF dan TSCOPF, dimana tidak ada generator yang melebihi batas pembangkitannya maupun melanggar batas minimal dan maksimal tegangan bus. Pembeda dari hasil simulasi dengan beberapa metode tersebut adalah biaya pembangkitan. Untuk kasus OPF dasar, biaya pembangkitan termurah dihasilkan menggunakan metode OKHA yaitu sebesar \$574.43 / hari. Hasil simulasi OPF divalidasi oleh metode matematis quadratic programming (QP) yang nilai pembangkitannya tidak jauh dari nilai tersebut yaitu \$576.89 / hari. Sedangkan pada TSCOPF urutan metode dengan biaya termahal ke termurah adalah GA, EPNN, ABC, PSO, KHA, dan OKHA. Hasil pembangkitan termurah TSCOPF pada IEEE 30 bus menggunakan OKHA dengan biaya sebesar \$574.743 / hari.Sedan gkan biaya pembangkitan termahal TSCOPF adalah \$585.62 / hari. Namun walaupun menggunakan metode OKHA untuk kasus TSCOPF masih lebih mahal \$0.31 dibanding metode OKHA untuk kasus OPF. Namun biaya pembangkitan TSCOPF yang termurah masih lebih mahal \$0.31 dibanding harga pembangkitan OPF yang termurah. Harga pembangkitan TSCOPF lebih mahal disebabkan nilai ekonomis dari sistem operasi yang dikorbankan untuk meningkatkan performa kestabilan sistem.

4.1.3 Analisa Performa OKHA pada IEEE 30bus

Pada gambar 4.1 menunjukan konvergensi dari metode PSO, KHA, dan OKHA. Metode OKHA memiliki konvergensi yang cukup bagus dibandingkan KHA dan PSO. Pada metode OKHA memang terdapat lonjakan pada iterasi awal sampai iterasi ke 20, namun dapat teredam setelah iterasi ke 20. Hubungan populasi terhadap konvergensi dapat dilihat pada gambar 4.2. Semakin banyak individu yang dibangkitkan maka konvergensi yang dihasilkan semakin baik. Hal tersebut ditunjukan dengan individu berjumlah 80 dan 100 sudah konvergen pada iterasi ke 10. Sedangkan untuk individu yang berjumlah 20 memang rata – rata konvergensi terhadap iterasi cukup baik namun terdapat lonjakan pada iterasi akhir dan solusi globalnya masih mahal dibanding dengan populasi yang berjumlah lebih banyak. Semakin banyak individu yang dibangkitkan maka waktu komputasi yang dilakukan akan semakin lama. Untuk populasi dengan jumlah individu 100 memiliki lama waktu komputasi 1204 detik. Sedangkan pada populasi dengan jumlah individu 60 memilki waktu komputasi 708 detik.

Dari gambar 4.5 dapat dilihat jumlah individu untuk mendapatkan solusi global terbaik dengan waktu yang relatif cepat yaitu berkisar 40 - 60 individu.

4.1.4 Analisa Fault Clearing Time (FCT), Critical Clearing Time (CCT), dan kestabilan transien

Fault Clearing Time adalah waktu operasi *circuit breaker* untuk membuka, sehingga pada saluran yang mengalami gangguan dapat diisolasi. Besar FCT sendiri berpengaruh pada kebutuhan seting koordinasi. Semakin lama FCT berarti semakain fleksibel suatu CB dilakukan koordinasi proteksi. Pengaruh dari lama FCT terhadap biaya diperlihatkan pada gambar 4.5. FCT disimulasikan pada detik ke 0.18, 0.2, 0.3, 0.4, dan 0.5. Ketika FCT diset 0.5 detik maka solusi yang didapat dari analisa TSCOPF lebih mahal dibanding FCT yang dipasang 0.18 detik dengan beda \$0.45. Biaya pembangkitan (\$/jam) menunjukan kecenderungan lebih mahal ketika FCTnya naik. Hal ini disebabkan nilai ekonomis yang dikorbankan, sehingga generator yang memiliki fungsi biaya murah namun tidak stabil oleh karena saluran atau pembangkitnya mendekati batas, terpaksa besar pembangkitan dialihkan ke generator yang memiliki fungsi biaya yang mahal.

Critical Clearing Time diartikan sebagai waktu kritis circuit breaker (CB) terbuka, dimana lama dan cepatnya CB terbuka menjadi batas kestabilan dan ketidakstabilan sistem. Besar CCT pada setiap kasus dimulai dari kasus mula, OPF, dan TSCOPF dapat dilihat pada tabel 4.3. Besar tegangan pada tiap - tiap bus besar aliran daya yang mengalir pada saluran dapat dilihat pada gambar 4.6 dan tabel 4.4. Sebuah sistem dikatakan stabil terhadap gangguan kontingensi dapat dilihat dari sudut ayunan rotor generator. Gambar respon sistem terhadap gangguan yang menyebabkan putusnya saluran dalam bentuk kurva sudut rotor dapat terlihat pada gambar 4.7 dan gambar 4.8. Gambar 4.7 menunjukan respon sistem awal sebelum dilakukan TSCOPF. Sedangkan gambar 4.8 menunjukan respon sistem setelah dilakukan TSCOPF. Hasil respon sudut rotor pada saat CB membuka pada detik ke 0.5 dengan sistem mula menunjukan bahwa generator tidak stabil. Ketidakstabilan ini dilihat dari sudut rotor generator 2 yang memisah dari sudut rotor generator yang lain dan tidak kembali menyatu. Gambar 4.9 menunjukan sudut rotor yang tidak menyebar dan sudut rotor berayun pada sumbu yang sama setelah dilakukan analisa TSCOPF. Hal itu menunjukan kestabilan sistem setelah dilakukan kontingensi. Sudut rotor tidak meredam dan terus berayun

tanpa mengalami peredaman ke suatu nilai, disebabkan permodelan generator berupa generator klasik dan tidak dimodelkan peredaman sistem.

4.2 Hasil simulasi dan analisa TSCOPF menggunakan metode OKHA pada Jawa Bali 500 kV

Sistem kedua yang digunakan untuk menguji analisa TSCOPF adalah sistem Jawa Bali 29 bus 10 generator yang dengan diagram satu garis yang ditunjuk pada gambar 3.2. Data pembebanan pada sistem interkoneksi Jawa Bali diperoleh dari data lapangan melalui PT. PLN (Persero) P2B Jawa Bali yaitu menggunakan data pembebanan pada waktu beban puncak tanggal 14 Maret 2016 jam 19.00. Data fungsi biaya diambil dari fungsi biaya tiap generator yang telah dikomposit. Data permodelan generator mengambil dari referensi [18] dengan mengambil data konstanta inersia dan reaktansi transien. Kasus kontingensi dilakukan pada saluran antara bus Bekasi dan bus Cibinong berdasarkan referensi analisa perhitungan CCT pada sistem Jawa Bali 500kV [19]. Index kontingensi pada suatu saluran adalah nilai yang menunjukan saluran yang berbahaya atau paling aman terhadap keamanan operasi sistem tenaga listrik apabila terjadi gangguan pada saluran tersebut. Index ini digunakan hanya untuk mendukung analisa dan mengambil kesimpulan. Index kontingensi sistem Jawa Bali didapat dari referensi Power Load Performance Index [20]. Waktu FCT pada saluran antara bus Cibinong dan bus Bekasi adalah 0.122 detik, dengan waktu total simulasi 5 detik. Batas atas dan batas bawah sistem sebesar 0.95 dan 1.05 diambil dari peraturan menteri energi dan sumber daya mineral tentang aturan jaringan sistem tenaga listrik Jawa Madura Bali tahun 2007 [21].

Tabel 4.5	Solusi Tegan	gan Terbaik	OPF dan TS	COPF					
	Bass OBE		TSCOPF						
	Dase OFF	PSO	KHA	OKHA					
Vg1	0.950	1.050	0.993	0.950					
Vg8	0.950	1.050	0.981	0.950					
Vg10	0.952	1.050	0.980	0.950					
Vg11	0.955	1.048	0.980	0.950					
Vg15	1.045	1.011	0.984	1.036					
Vg17	1.050	0.986	0.988	1.040					
Vg22	1.050	0.988	0.980	1.050					
Vg23	1.050	0.983	0.984	1.047					
Vg26	0.950	1.050	0.993	0.950					
Vg28	1.013	1.036	0.950	1.050					

4.2.1 Simulasi TSCOPF - OKHA pada Jawa Bali 500kV

Tabel 4.6 Solusi Daya Aktif Terbaik OPF dan TSCOPF

	Rose ODE	TSCOPF							
	Dase OFF	PSO		OKHA					
Pg1	1686.6116	2015.9922	2326.0873	1700.9196					
Pg8	982.0000	982.2760	983.4887	982.0000					
Pg10	1008.0000	865.3078	1003.0511	1008.0000					
Pg11	700.0000	625.8350	699.9977	700.0000					
Pg15	1415.5106	2053.8458	1728.0342	1960.0864					
Pg17	211.0026	406.2972	526.9991	211.0000					
Pg22	4714.0000	3534.7117	3456.2772	3801.5546					
Pg23	185.0000	448.1698	185.0026	185.0000					
Pg26	424.7785	732.1074	400.1396	780.0000					
Pg28	1199.9886	843.5821	1190.0449	1200.0000					

No bus	Pembangkit	Bia	aya Pembangkitan awal	Base OPF		
1	Suralaya	Rp	548,807,079.07	Rp	364,517,734.68	
8	Muara Tawar	Rp	387,465,807.83	Rp	758,223,466.31	
10	Cirata	Rp	150,083,240.60	Rp	12,096,000.00	
11	Saguling	Rp	775,026,942.78	Rp	5,600,000.00	
15	Tanjung Jati	Rp	546,088,665.54	Rp	269,159,712.28	
17	Gresik	Rp	352,015,761.00	Rp	111,165,732.46	
22	Paiton	Rp	109,993,291.15	Rp	796,524,592.06	
23	Grati	Rp	81,268,580.30	Rp	316,317,009.16	
26	New Suralaya	Rp	5,535,440.00	Rp	76,189,451.34	
28	Cilacap	Rp	4,152,000.00	Rp	176,192,012.03	
Total Pembangkitan		Rp	2,960,436,808.28	Rp	2,885,985,710.32	

Tabel4.7 Perbandingan Biaya Pembangkitan awal Jawa Bali denganbiaya setelah dilakukan OPF

Tabel	4.8 Biaya	Pembangkitan	Jawa Bali	dengan A	nalisa TSCOPF
	2				

No huo	Domb on a leit		TSCOPF								
No bus	rembangkit	PSO			KHA	OKHA					
1	Suralaya	Rp	428,867,579.48	Rp	488,264,849.44	Rp	367,339,959.06				
8	Muara Tawar	Rp	758,419,649.69	Rp	759,281,540.67	Rp	758,223,466.31				
10	Cirata	Rp	10,383,693.00	Rp	12,036,613.08	Rp	12,096,000.00				
11	Saguling	Rp	5,006,680.32	Rp	5,599,981.68	Rp	5,600,000.00				
15	Tanjung Jati	Rp	374,070,788.43	Rp	320,984,055.84	Rp	358,892,380.55				
17	Gresik	Rp	204,295,056.37	Rp	257,876,782.22	Rp	111,164,424.74				
22	Paiton	Rp	636,399,247.47	Rp	624,804,862.40	Rp	674,962,564.07				
23	Grati	Rp	542,579,401.47	Rp	316,320,531.35	Rp	316,317,009.16				
26	New Suralaya	Rp	136,770,571.95	Rp	72,190,293.37	Rp	147,995,175.32				
28	Cilacap	Rp	154,823,962.35	Rp	175,950,128.32	Rp	176,192,278.37				
Total Pembangkitan		Rp	3,251,616,630.52	Rp	3,033,309,638.37	Rp	2,928,783,257.57				

Tabel 4.9 Perbandingan CCT pada Saluran Cibinong - Bekasi

Kasus	Waktu
Fault Clearing Time (ms)	155
CCT dari kondisi awal (ms)	155
CCT dari solusi base OPF (ms)	138
CCT dari solusi TSCOPF (ms)	203

No	Nomo Columon	Vanasitas	Aliran daya	Aliran daya	
Saluran		Kapasitas	awal	setalah TSCOPF	
1-25	Suralaya-New Balaraja	3429.460599	1716.157	1318.476	
1-26	Suralaya-New Suralaya	1714.730299	412.214	738.966	
2-1	Cilegon-Suralaya	4156.921938	1485.428	1074.684	
2-5	Cilegon-Cibonong	2078.460969	1123.274	785.282	
4-18	Gandul-Depok	3429.460599	434.81	503.691	
5-8	Cibinong-Muaratawar	1714.730299	375.414	1050.854	
5-18	Cibinong-Depok	3429.460599	438.084	378.606	
6-7	Cawang-Bekasi	1714.730299	146.4	541.994	
6-8	Cawang-Muaratawar	1714.730299	555.819	964.489	
7-5	Depok-Cibonong	1714.730299	1181.578	1086.483	
8-9	Muaratawar-Cibatu	3429.460599	329.376	2065.106	
9-10	Cibatu-Cirata	3429.460599	854.25	1802.156	
10-11	Cirata-Saguling	4156.921938	1112.173	477.984	
11-5	Saguling-Cibonong	4156.921938	520.556	1556.59	
11-12	Saguling-Bandung Selatan	3429.460599	1040.351	1222.981	
13-12	Mandirancan-Bandung Selatan	1714.730299	724.907	837.734	
13-27	Mandirancan-New Ujung Berung	1714.730299	732.501	844.773	
14-13	Ungaran-Mandirancan	2078.460969	732.047	1786.145	
14-15	Ungaran-Tanjung Jati	3429.460599	1952.786	1801.279	
14-16	Ungaran-Surabaya Barat	2078.460969	371.828	833.997	
16-23	Surabaya Barat - Grati	3429.460599	2045.679	1679.17	
16-24	Surabaya Barat - Ngimbang	1714.730299	543.551	944.181	
17-16	Gresik-Surabaya Barat	4156.921938	492.533	2816.742	
19-18	Tasikmalaya-Depok	4156.921938	834.14	1097.519	
19-29	Tasikmalaya-Kesugihan	3429.460599	1115.447	1389.84	
20-14	Pedan-Ungaran	2078.460969	452.767	154.339	
20-21	Pedan-Kediri	4156.921938	650.164	516.527	
22-21	Paiton-Kediri	4156.921938	1512.663	1147.946	
22-23	Paiton-Grati	3429.460599	2315.375	1872.627	
24-14	Ngimbang-Ungaran	1714.730299	333.643	823.055	
25-4	New Balaraja - Gandul	3429.460599	973.764	767.992	
27-12	New Ujung Berung - Bandung Selatan	2078.460969	708.352	826.078	
28-29	Cilacap-Kesugihan	4156.921938	532.864	1462.772	
29-20	Kesugihan - Pedan	4156.921938	652.234	155.349	

Gambar 4.8 Tegangan Bus Jawa Bali 500kV Kasus TSCOPF

Gambar 4.9 Perbandingan Pembangkitan Jawa Bali 500kV: Pembangkitan Maksimum, Pembangkitan inisial, Pembangkitan setelah TSCOPF

Gambar 4.10 Sudut rotor generator pada sistem Jamali 500kV untuk kasus OPF dasar, dengan *fault clearing time 155 ms*

Gambar 4.11 Sudut rotor generator pada sistem Jamali 500kV untuk kasus TSCOPF, dengan *fault clearing time 155 ms*

4.2.2 Analisa Biaya TSCOPF – OKHA pada Jawa Bali 500kV

Pada tabel 4.5 dan 4.6 menunjukan tegangan pada bus generator dan daya yang harus dibangkitkan, dari hasil analisa OPF dan TSCOPF. Solusi yang dihasilkan baik tegangan bus generator maupun daya pembangkitan tidak ada yang melebihi kapasitas. Aliran dava yang mengalir pada saluran baik pada kasus mula maupun setelah TSCOPF tertera pada tabel 4.10. Besar aliran daya yang mengalir pada saluran tidak ada yang melebihi kapasitas saluran. Untuk kasus OPF dasar maka besar biaya pembangkitan adalah Rp.2.885.985.710. Biaya pembangkitan dengan analisa TSCOPF paling murah menggunakan metode OKHA dengan nilai sebesar Rp.2.928.783.257. Urutan metode heuristik dengan biaya pembangkitan dari yang paling murah adalah OKHA, KHA, dan PSO. Biaya pembangkitan TSCOPF lebih mahal daripada OPF dengan selisih Rp. 42.797.547. Hal ini disebabkan oleh nilai ekonomis dari sistem operasi dikorbankan untuk meningkatkan performa kestabilan sistem.

4.2.3 Analisa Critical Clearing Time (CCT) dan Kestabilan Transien pada Jawa Bali 500kV

Critical Clearing Time yang didapat dari hasil simulasi menunjukan kondisi awal dan OPF masih lebih rendah dibanding dengan CCT dari solusi TSCOPF. Hasil tersebut dapat dilihat dari tabel 4.9. Kurva sudut rotor setelah diberikan gangguan di saluran Bekasi – Cibinong dekat bus Cibinong dapat dilihat pada gambar 4.10 dan gambar 4.11. Pada gambar 4.10 menunjukan kurva sudut rotor pada sistem yang hanya dilakukan analisa OPF. Sedangkan gambar 4.11 adalah kurva sudut rotor pada sistem yang sudah dilakukan analisa OPF dengan batasan kestabilan transien. Pada gambar 4.10 menunjukan ketidakstabilan sudut rotor yang ditandai dengan sudut rotor yang menyebar. Berbeda pada gambar 4.11 dimana kondisi sistem dikatakan stabil oleh karena kurva sudut rotor generator berayun pada sumbu yang sama. Hal ini dapat diartikan ketika dilakukan analisa aliran daya belum tentu sistemmenjadi stabil apabila terjadi kontingensi.

Analisa TSCOPF adalah metode preventif yaitu mencegah terjadinya ketidakstabilan sudut rotor apabila terjadi gangguan. Namun dengan TSCOPF, nilai ekonomis dikorbankan sehingga biaya pembangkitan menjadi lebih mahal. Hal ini disebabkan pengalihan daya saluran dan pembebanan yang berbahaya menuju saluran atau pembangkit yang lebih stabil atau aman. Dilihat dari rangking index kontingensi Jawa Bali tiga urutan teratas adalah saluran Tanjung Jati – Ungaran, Paiton – Grati, dan Paiton – Kediri. Bisa dilihat pada tabel aliran daya saluran Jawa Bali adanya penurunan aliran daya pada saluran yang terindeks kritis yaitu Ungaran – Tanjung Jati (14-15) sebesar 151.507 MVA, Paiton – Grati (22-23) sebesar 442.748 MVA, dan Paiton – Kediri sebesar 364.717 MVA. Hal ini berpengaruh juga pada penurunan daya pembangkitan generator tertentu yaitu pada pembangkit di Tanjung Jati, Paiton, dan Grati.

BAB 5 PENUTUP

5.1 Kesimpulan

Dari hasil simulasi dan analisis penggunaan metode *oppositional* krill herd algorithm pada studi kasus transient constraint optimal power flow pada sistem IEEE 30 bus dan sistem interkoneksi Jawa Bali 500 kV 29 bus 10 mesin diperoleh kesimpulan sebagai berikut:

- 1. Hasil pengujian menunjukan bahwa metode OKHA adalah metode yang paling optimal untuk menyelesaikan masalah TSCOPF. Dilihat dari biaya pembangkitan maka metode OKHA adalah metode yang paling murah dibanding dengan metode yang lain seperti PSO dan ABC.
- 2. Nilai CCT yang didapatkan dari pengujian OPF lebih kecil dibanding nilai CCT yang didapat pada pengujian TSCOPF. Hal ini bisa dilihat dari CCT solusi TSCOPF IEEE 30 bus sebesar 503ms, sedangkan pada pengujian OPF dasar sebesar 474 ms. Hal yang sama dilihat dari sistem Jawa Bali 500kV 29 bus dimana nilai CCT pengujian TSCOPF lebih besar daripada nilai CCT dengan pengujian OPF dengan selisih 65ms.
- 3. TSCOPF adalah usaha preventif mencegah ketidakstabilan dengan mengatur jadwal pembangkitan. Ketika kebutuhan FCT meningkat dan menjadi kritis, maka diikuti dengan biaya pembangkitan yang naik. Dari sistem IEEE 30 bus terjadi peningkatan biaya pembangkitan sebesar 0.45\$ untuk kenaikan FCT sebesar 320ms.
- 4. Pada pembebanan dengan menggunakan sistem IEEE 30 bus, pengujian TSCOPF dengan beberapa kali percobaan menghasilkan total biaya optimal senilai \$574,743 / jam atau lebih mahal \$0.312 dibanding pengujian menggunakan OPF. Hal yang sama terjadi pada sistem Jawa Bali 500kV dimana solusi TSCOPF lebih mahal Rp.42.797.547 dibanding solusi OPF. Hal ini terjadi karena nilai ekonomis dari sistem operasi dikorbankan untuk meningkatkan performa kestabilan sistem yang ditunjukan dengan respon sudut rotor yang stabil pada saat uji kontingensi.

5.2 Saran

Saran yang dapat diberikan untuk perbaikan dan pengembangan tugas akhir kedepan adalah sebagai berikut:

- 1. Untuk menambah akurasi dari analisa kestabilan transien terutama setelah ayunan pertama maka perlu dimodelkan efek governor dan sistem eksitasi.
- 2. Untuk penelitian selanjutnya dapat menggunakan metode heuristik yang lebih baik konvergensinya dan waktu komputasi yang lebih cepat.
- 3. Untuk penelitian selanjutnya fungsi obyektif dapat ditambah dengan menggunakan batasan deviasi tegangan maupun meminimalkan rugi rugi saluran.
- 4. Perlu dipertimbangkan saluran dengan index kontingensi tertinggi dipakai sebagai saluran yang mengalami gangguan untuk mengakuratkan hasil analisa TSCOPF.

DAFTAR PUSTAKA

- [1] Dewan Energi Nasional Republik Indonesia, Outlook Energi Indonesia 2014, Jakarta, 2014.
- [2] P.Kundur, Power System Stability and Control, New York: Mc Graw Hill, 1994.
- [3] Sofia, M., "PLTU Pacitan Gangguan, Listrik di Jakarta dan Tangerang Padam", <URL: http://metro.news.viva.co.id/news/read/503832-pltu-pacitangangguan-listrik-di-jakarta-dan-tangerang-padam>, 12 Mei 2014.
- [4] A.H. Gandomi, A.H. Alavi, "Krill herd : a New Bio-Inspired Optimization Algorithm", Commun Nonlinear Sci Numer Simulat, vol 17, pp. 4831-4845, 2012.
- [5] S.Rahnamayan, H.R. Tizhoosh, "Opposition-Based Differential Evolution (ODE) with Variable Jumping Rate", Foundations of Computational Intelligence, 2007.
- [6] Kundur P, Paserba J, Ajjarapu V, "Definition and Classification of Power System Stability", IEEE Transactions on Power Systems, vol 19, no.2, 2004.
- [7] IEEE Power Engineering Society,"IEEE Guide for Synchronous Generator Modeling Practices and Applications in Power Systems Stability Analyses", New York: The Institute of Electrical and Electronics Engineers, 2003.
- [8] J. Overbye Thomas, "Quick Start for Using Power World Simulator with Transient Stability", Illinois: Power World Corporation.
- [9] Peter W. Sauer, M.A. Pai, "Power System Dynamics and Stability", New Jersey : Prentice Hall, 1998.
- [10] Hadi Saadat, "Power System Analysis Third Edition", USA : PSA Publishings, 2010.
- [11] IEEE Power Engineering Society,"IEEE Recommended Pratice for Industrial and Commercial Power Sytems Analysis", Institute of Electrical and Electronics Engineers, 1998.
- [12] Izzri,N., Wahab,A., Mohamed.A., "Area based COI referenced rotor angle index for stability assessment and control of power systems', Hindawi Publishing Corporation, Abstract and Applied Analysis, Volume 2012.
- [13] N. Mo, Z.Y. Zou, K.W. Chan, T.Y.G.Pong,"Transient Stability Constrained Optimar Power Flow using Particle Swarm

Optimization", IET Generation, Transmission & Distribution on Power Vol 23, pp. 719 - 728, 2008.

- [15] A. Kursat, K. Ulas, "Solution of Transient Stability Constrained Optimal Power Flow using Artificial Bee Colony Algorithm", Turkish Journal of Electrical Engineering and Computer Sciences, Vol 21, pp 360 - 372, 2013.
- [16] R. Zimmerman, D. Gan, MATPOWER: A MATLAB Power System Simulation, http://www.pserc.cornell.edu/matpower/.2011
- [17] University of Cyprus, "Dynamic IEEE test systems : IEEE 30 Bus modified test system", http:// http://www.kios.ucy.ac.cy/ testsystems/index.php/dynamic-ieee-test-systems/ieee-30-busmodified-test-system
- [18] R. Duanaputri,"Optimisasi Parameter PSS Berbasis Multi Mesin Menggunakan Modified Differential Evolution (MDE) Pada Sistem Jawa Bali 500 kV" Jurusan Teknik Elektro FTI-ITS, Surabaya,2017.
- [19] I. Budi Sulistiawati, A. Priyadi, Ony Asrarul Qudsi, "Critical Clearing Time Prediction within various loads for transient stability assessment by means of the Extreme Learning Machine method", Electrical Power Energy Systems Vol 77, pp. 345-352, 2016.
- [20] L. Multa Putranto, J. Widya Perdana, "Contingency Analysis on 500Kv Jawa Bali Transmission Line System Based on Power Load Performance Index", Information Technology and Electrical Engineering (ICITEE), Yogyakarta, 2013.
- [21] Menteri ESDM, "PERMEN ESDM NO.3 tahun 2007 tentang Aturan Jaringan Sistem Tenaga Listrik Jawa Madura Bali", Jakarta, 2007.

LAMPIRAN 1 Konfigurasi Jaringan 500 kV Sistem Jawa Bali

LAMPIRAN 2 Data Kapasitas dan Fungsi Biaya per unit

1 Martin	Dat	a i cim	Jangki		Star	7 7 7	N NY		
	K	lapa <mark>sitas P</mark>	emban gki	t	Fung	Fungsi Biaya (Rp/MWh)			
Lokasi	Pmin (MW)	Pmax (MW)	Qmax (MVAR)	Qmin (MVAR)	al	ь			
Suralaya			2	-					
PLTU SRLYA #1	200.00	373.00	247.90	-45.00	-20.21265	196099.32	4926660.455		
PLTU SRLYA #2	200.00	373.00	247.90	-30.00	-20.21265	196099.32	4926660.455		
PLTU SRLYA #3	200.00	373.00	247.90	-30.00	-18.55877	195039.2	5093378.578		
PLTU SRLYA #4	200.00	373.00	247.90	-30.00	-12.986672	191366.26	5691968.419		
PLTU SRLYA #5	301.00	585.00	283.33	-220.41	-30.381426	218528.84	1621816.19		
PLTU SRLYA #6	301.00	585.00	283.33	-220.41	-30.381426	218528.84	1621816.19		
PLTU SRLYA #7	301.00	585.00	312.08	-220.41	-32.090267	220108.62	1265017.28		
Total	1703.00	3247.00	1870.34	-796.24					
		-			-				
New Suralaya			5						
PLTU SRLYA #8	400.00	780.00	377.78	-292.91	104.8615	75808.643	25066694.86		
Total	400.00	780.00	377.78	-292.91	milly		1 Jul		
		17/)/()		
Muara Ta <mark>war</mark>	177	111				IFT			
PLTGU MTWAR #1.0	89.60	220.00	94.00	-15.00	-1392.1355	966449.36	-7919221.927		
PLTGU MTWAR #1.1	58.40	140.00	69.26	-18.94	-1392.1355	966449.36	-7919221.927		
PLTGU MTWAR #1.2	58.40	140.00	69.26	-18.94	-1392.1355	966449.36	-7919221.927		
PLTGU MTWAR #1.3	58.40	140.00	69.26	-18.94	-1392.1355	966449.36	-7919221.927		
PLTGU MTWAR #2.1	58.40	145.00	69.26	-18.94	-1392.1355	966449.36	-7919221.927		
PLTGU MTWAR #2.2	58.40	145.00	69.26	-18.94	-1392.1355	966449.36	-7919221.927		
PLTGMRTWR #3.1	58.40	143.00	69.40	-19.00	-1392.1355	966449.36	-7919221.927		
PLTGMRTWR #3.2	58.40	143.00	69.40	-19.00	-1392.1355	966449.36	-7919221.927		
PLTG MRTWR #3.3	58.40	143.00	69.40	-19.00	-1392.1355	966449.36	-7919221.927		
PLTGMRTWR#4.1	58.40	143.00	69.40	-19.00	-1392.1355	966449.36	-7919221.927		
PLTGMRTWR #4.2	58.40	143.00	69.40	-19.00	-1392.1355	966449.36	-7919221.927		
PLTGMRTWR#4.3	58.40	143.00	69.40	-19.00	-1392.1355	_966449.36	-7919221.927		
PLTGUMTWAR #5.0	51.05	125.00	60.66	-16.61	-1392 1355	966449 36	-7919221 927		

			111		1	$\left(\int \right)$		
1	Cirata		U	WI			11	
2	PLTA CRATA #1	50.40	126.00	43.42	-40.00	2 A	12000	
	PLTA CRATA #2	50.40	126.00	43.42	-40.00		12000	
	PLTA CRATA #3	50.40	126.00	43.42	-40.00		12000	
	PLTA CRATA #4	50.40	126.00	43.42	-40.00		12000	
\geq	PLTA CRATA #5	50.40	126.00	43.42	-40.00		12000	
1	PLTA CRATA #6	50.40	126.00	43.42	-40.00		12000	
	PLTA CRATA #7	50.40	126.00	43.42	-40.00	1/ 1/	12000	1/
1	PLTA CRATA #8	50.40	126.00	43.42	-40.00		12000	
5	Total	403.20	1008.00	347.35	-320.00	XC		

A-3

121.33 885.15 2163.00 1038.67 -273.51

-33.22

-1392.1355

966449.36

-7919221.927

250.00

102.10

PLTGU MTWAR #5.1

Total

Data Pembangkitan Per Unit

1000	K	apasitas P	embangki	t	Fung	si Biaya (Rp	/MWh)
Lokasi	Pmin	Pmax	Qmax	Qmin	a	b	c
	(MW)	(MW)	(MVAR)	(MVAR)			
PLTU CLCAP #1	240	600	278	-220	-194.81171	260651.89	2002933.243
PLTU CLCAP#2	240	600	278	-220	-1886.0841	1013666.3	-75253812.52
Total	480	1200	556	-440			
	5 2	1 ch	RIS		SK	15 .	A She
Tanjung Jati		UT-	I/		T T	~	
PLTU TJATI #1	264	660	375	-200	-13.326532	176154.03	6688120.029
PLTU TJATI #2	264	660	375	-200	-11.024148	173995.98	7188722.715
PLTU TJATI #3	264	660	278.333	-107.667	-23.916665	184751.18	4802473.706
PLTU TJATI #4	264	660	278.333	-107.667	-25.164911	185855.01	4560462.51
Total	1056	2640	1306.7	-615.33	ANG	7	ANK
	0.13	11/			1()		
Grati		a	DA		a p	1	A W
PLTGU GRATI #1.0	64	160	120	-39.843	-4429.8452	1554114.4	19023370.4
PLTGU GRATI #1.1	40.3	100.75	65.862	-32.288	-4429.8452	1554114.4	19023370.4
PLTGU GRATI#1.2	40.3	100.75	65.862	-32.288	-4429.8452	1554114.4	19023370.4
PLTGU GRATI #1.3	40.3	100.75	65.862	-32,288	-4429.8452	1554114.4	19023370.4
Total	184.9	462.25	317.59	-136.71		15 1	
		h	7-11		- nH1		1
Gresik		11/			1/ 1/		
PLTU GRSIK #1	75.6	189	31	-16	-282.39023	518059.81	1344214.028
PLTU GRSIK #2	44.98	112.45	37	-20	-282.39023	518059.81	1344214.028
PLTU GRSIK #3	44.98	112.45	37	-20	-282.39023	518059.81	1344214.028
PLTU GRSIK #4	44.98	112.45	37	-20	-282.39023	518059.81	1344214.028
Total	210.54	526.35	142	-76	AL	~	~
						0	
Paiton			11				
PLTU PITON #1	160	400	247.898	-19.379	-338.04913	352915.46	-18326025.89
PLTU PITON #2	- 160	400	247.898	-19.379	-329.42806	347882.81	-17606507.74
PLTU PEC #3	326	814.0001	398.837	-93.919	1.7223743	151475.02	13190347.39
PLTU Jawa Power #5	244	610	282.515	-224.085	-59.257835	205761.44	-0.020049534
PLTU Jawa Power #6	244	610	282.515	-224.085	-59.257835	205761.44	-0.008979598
PLTU PEC #7	246	615	282.108	-225.922	-74.641586	215250.23	-0.018828373
PLTU PEC #8	246	615	282.108	-225.922	-74.641586	215250.23	0.016482998
PLTU PAITON #9	260	650	402.834	-238.779	-186.3287	298637.93	-15197989.57
Total	1886	4714	2426.7	-1271.5	DAL	7	ANK
		111			$\left(\left(\right) \right)$		
Saguling		a	DA		a p	1	a de la
PLTA SGLNG#1	70	175	49	-115.234	CTY Y	8000	
	70	175	42.542	-115.234		8000	
PLTA SGLNG#2	/0			-			
PLTA SGLNG#2 PLTA SGLNG#3	70	175	42.542	-115.234		8000	
PLTA SGLNG #2 PLTA SGLNG #3 PLTA SGLNG #4	70 70 70	175 175	42.542 42.542	-115.234		8000	

A-4

LAMPIRAN 3 Data Dinamik Generator

A	~	A	2		2-		A		1	P		A
Pembangkit	Xd(pu)	Xd'(pu)	H	Td0(pu)	Ks(pu)	Ts(pu)	Ka	Ta	Ke	Te	Kf	Tf
Suralaya	2,19	0,297	5,19	9,45	20	2	400	0,05	15	0,07	20	0,2
Muaratawar	2,12	0,297	1,82	9,45	20	2	100	0,02	12	0,01	20	0,2
Cirata	0,88	0,274	2,86	9,99	18	3	100	0,04	11	0,01	20	0,2
Saguling	0,93	0,303	1,64	8	18	3	100	0,02	9	0,01	20	0,1
Tanjungjati	16,393	0,2588	3,2	4,57	20	2	100	0,05	12	0,01	18	0,1
Gresik	2,12	0,297	2,54	9,45	20	3	300	0,04	H	0,02	17	0,1
Paiton	2,19	0,297	4,42	9,45	20	2	400	0,05	14	0,07	20	0,2
Grati	2,12	0,297	2,76	9,45	20	7 2	100	0,04	10	0,01	12	0,2
New Sur <mark>alaya</mark>	2,12	0,297	2,76	9,45	20	2	100	0,04	10	0,01	12	0,2
Cilacap	2,12	0,297	2,76	9,45	20	2	100	0,04	10	0,01	12	0,2
	41		Y /		TY		RITY		T	TI /		25

A-5

RIWAYAT HIDUP

Penulis bernama Gilang Hari P, lahir di Surakarta pada tanggal 27 Desember 1991. Merupakan anak ke-1 dari 2 bersaudara. Sebelumnya menumpuh pendidikan diploma di Politeknik ATMI Surakarta program studi Mekatronika, dengan mengerjakan tugas akhir berjudul Perancangan dan Pembuatan Pengarah Sunpulse Water. Setelah lulus bekerja selama tiga tahun menjadi Instruktur di Politeknik Sugar Group Companies, Lampung. Penulis melanjutkan pendidikan Lintas Jalur sebagai Sarjana

Teknik di Fakultas Teknik Elektro, Institut Teknologi Sepuluh Nopember. Bekerja sama selama I tahun dengan Laboratorium Simulas i Sistem Tenaga sebagai Asisten. Selama Perkuliahan, Penulis telah berkontribusi dalam pengabdian masyarakat dalam pembuatan solar PV pump di SD Al Uswah Surabaya. Ketertarikan Bidang penelitian terkait aplikasi kecerdasan buatan, kestabilan sistem tenaga, dan analisa sistem tenaga.

A-5

Email : gilangharip@gmail.com No. HP : +6281238324474