

TUGAS AKHIR - TE 141599

DESAIN DAN IMPLEMENTASI KONVERTER NON-ISOLATED DC-DC BIDIRECTIONAL DOUBLE BOOST DENGAN COUPLED INDUCTOR UNTUK APLIKASI PHOTOVOLTAIC

Alifi Yuli Setyanto NRP 2213100160

Dosen Pembimbing Heri Suryoatmojo, S.T., M.T., Ph.D. Suwito, S.T., M.T.

DEPARTEMEN TEKNIK ELEKTRO Fakultas Teknologi Elektro Institut Teknologi Sepuluh Nopember Surabaya 2017

FINAL PROJECT - TE 141599

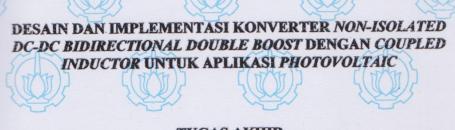
DESIGN AND IMPLEMENTATION BIDIRECTIONAL DOUBLE BOOST CONVERTER DC-DC WITH COUPLED INDUCTOR FOR PHOTOVOLTAIC APLICATION

Alifi Yuli Setyanto NRP 2213100160

Advisors Heri Suryoatmojo, S.T., M.T., Ph.D. Suwito, S.T., M.T.

DEPARTMENT OF ELECTRICAL ENGINEERING Faculty of Electrical Technology Institut Teknologi Sepuluh Nopember Surabaya 2017

PERNYATAAN KEASLIAN TUGAS AKHIR


Dengan ini saya menyatakan bahwa isi sebagian maupun keseluruhan Tugas Akhir saya dengan judul "Desain Dan Implementasi Konverter Non-Isolated Dc-Dc Bidirectional Double Boost Dengan Coupled Inductor Untuk Aplikasi Photovoltaic" adalah benar-benar hasil karya intelektual mandiri, diselesaikan tanpa menggunakan bahan-bahan yang tidak diizinkan dan bukan karya pihak lain yang saya akui sebagai karya sendiri.

Semua referensi yang dikutip maupun dirujuk telah ditulis secara lengkap pada daftar pustaka. Apabila ternyata pernyataan ini tidak benar, saya bersedia menerima sanksi sesuai peraturan yang berlaku.

Surabaya, 19 Juli 2017

Alifi Yuli Setyanto NRP. 2213100160

TUGAS AKHIR

Diajukan untuk Memenuhi Sebagian Persyaratan Untuk Memperoleh Gelar Sarjana Teknik Pada

> Bidang Teknik Sistem Tenaga Departemen Teknik Elektro Institut Teknologi Sepuluh Nopember

> > Menyetujui:

Dosen Pembimbing I

Dosen Pembimbing II

Heri Suryoatmojo, S.T., M.T., Ph.D. NIP. 198006032006041003

Suwito, S.T., M.T. NIP. 198101052005011004

SURABAYA JULI, 2017

TEKNIK ELEKTRO

DESAIN DAN IMPLEMENTASI KONVERTER NON-ISOLATED DC-DC BIDIRECTIONAL DOUBLE BOOST DENGAN COUPLED INDUCTOR UNTUK APLIKASI PHOTOVOLTAIC

Alifi Yuli Setyanto 2213100160

Dosen Pembimbing 1 : Heri Suryoatmojo, S.T., M.T., Ph.D.

Dosen Pembimbing 2 : Suwito, S.T., M.T.

ABSTRAK

Salah satu sumber energi baru terbarukan yang mempunyai potensi untuk dikembangkan adalah *photovoltaic* (PV). Namun, PV tidak dapat memberikan daya yang cukup ketika beban naik atau terjadi *partial sharding* pada permukaan PV. Untuk itulah, dibutuhkan energi cadangan yang mampu mem-*backup* energi dari PV. Biasanya energi cadangan tersebut menggunakan baterai, tetapi baterai memiliki kapasitas yang terbatas. Sehingga diperlukan baterai yang terhubung dengan konverter *bidirectional*, dengan ini memungkinkan untuk berlangsungnya operasi *charge* dan *discharge* sesuai dengan kebutuhan sistem.

Namun konverter *bidirectional* konvensional tidak mampu mengatasi tegangan Bus DC yang sangat tinggi. Maka dari itu pada Tugas Akhir ini akan disimulasikan dan diimplementasikan mengenai konverter *bidirectional double boost* dengan *coupled inductor*. Pada pengujian ini, konverter mampu mengkonversi tegangan DC 24 Volt menjadi tegangan DC 200 Volt saat mode *discharging*, serta mampu mengkonversi tegangan DC 200 Volt menjadi tegangan DC 24 Volt.

Kata Kunci: Photovoltaic, Bidirectional converter, Bus DC, Coupled inductor.

Halaman ini sengaja dikosongkan

DESIGN AND IMPLEMENTATION BIDIRECTIONAL DOUBLE BOOST CONVERTER DC-DC WITH COUPLED INDUCTOR FOR PHOTOVOLTAIC APLICATION

Alifi Yuli Setyanto 2213100160

1st Advisor: Heri Suryoatmojo, S.T., M.T., Ph.D.

2nd Advisor: Suwito, S.T., M.T.

ABSTRACT

One of the new renewable energy sources that has the potential to be developed is photovoltaic (PV). However, PV can not provide sufficient power when the load rises or partial sharding occurs on the PV surface. For that, it takes backup energy that is able to backup energy from PV. Usually the backup energy uses batteries, but the battery has a limited capacity. It is therefore necessary that the battery is connected to the bidirectional converter, thus allowing for the operation of the charge and discharge operation in accordance with the system requirements.

However conventional bidirectional converters are unable to cope with very high DC Bus voltages. Therefore in this Final Project will be simulated and implemented on bidirectional double boost converter with coupled inductor. In this test, the converter is able to convert 24 Volt DC voltage to 200 Volt DC voltage when discharging mode, and able to convert DC Voltage 200 Volts into 24 Volt DC voltage.

Key Words: Photovoltaic, Bidirectional converter, Bus DC, Coupled

inductor.

Halaman ini sengaja dikosongkan

KATA PENGANTAR

Puji syukur kehadirat Tuhan Yang Maha Esa atas rahmat, taufik, dan hidgayah-Nya, sehingga tugas akhir ini dapat terselesaikan dengan baik. Melalui kegiatan ini, penulis dapat menyelesaikan tugas akhir yang bersifat penelitian ilmiah selama satu semester sebagai aplikasi ilmu serta persyaratan menyelesaikan pendidikan Sarjana pada Studi Teknik Sistem Tenaga, Jurusan Teknik, Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember.

Buku tugas akhir ini dapat terselesaikan atas bantuan banyak pihak. Oleh karena itu, penulis mengucapkan terima kasih kepada:

- 1. Allah SWT yang selalu memberikan kesehatan dan pertolongan dalam menjalani tugas akhir ini.
- Nabi Muhammad SAW dan para sahabat beserta para alim ulama yang telah menyebarkan islam hingga pada generasi saya sehingga berkontribusi besar dalam membentuk diri saya menjadi pribadi yang berusaha taat kepada perintah Allah SWT.
- 3. Bapak saya Sugiono, Ibu saya Puji Lestari, adik saya Dian Rachmawati Utami dan Hanin Kamila, serta seluruh keluarga besar yang telah banyak memberikan dorongan.
- 4. Bapak Heri Suryoatmojo, S.T., M.T., Ph.D. dan Bapak Suwito, S.T., M.T. selaku dosen pembimbing yang telah banyak memberikan masukan serta arahan sehingga buku tugas akhir ini dapat diselesaikan dengan baik.
- 5. Dosen-dosen Departemen Teknik Elektro ITS yang telah memberikan ilmu yang bermanfaat bagi penulisan tugas akhir
- 6. Seluruh asisten Laboratorium Konversi Energi Listrik yang selalu memberikan semangat dan doa serta bantuan dalam penyelesaian tugas akhir ini.
- Teman satu kontrakan saya Wahyu Tri Wibowo dan Wahyu Prihartorpo selaku teman satu kontrakan saya yang telah memberikan semangat dan doa serta bantuan dalam penyelesaian tugas akhir ini.
- 8. Sahabat saya Ramadhan Abdul Ghaffar dan Dewi Nur Cahyaningsih yang telah memberikan semangat dan doa dalam penyelesaian tugas akhir ini.
- 9. Teman-teman Departemen Kominfo HIMATEKTRO ITS yang telah memberikan semangat, doa, dan bantuan dalam pengerjaan penelitian Tugas Akhir ini.

10. Teman-teman satu angkatan e-53 yang telah menemani saya selama menjalani perkuliahan di jurusan Elektro ITS Surabaya.

Penulis pun memohon atas segala kekurangan pada Tugas Akhir ini. Semoga tugas akhir ini dapat memberikan informasi dan manfaat bagi mahasiswa Departemen Teknik Elektro ITS pada khususnya dan seluruh pembaca pada umumnya.

Surabaya, Juli 2017

Penulis

DAFTAR ISI

ABSTR	AK	i
	ACT	
KATA P	PENGANTAR	v
DAFTA:	R ISI	vii
DAFTA:	R GAMBAR	xi
DAFTA:	R TABEL	xiii
BAB 1 P	PENDAHULUAN	
1.1	Latar Belakang	1
1.2	Perumusan Masalah	2
1.3	Tujuan	2
1.4	Batasan Masalah	2
1.5	Metodologi	3
1.6	Sistematika Penulisan	4
1.7	Relevansi	
BAB 2 K	KONVERTER <i>NON-ISOLATED</i> DC-DC <i>BIDIK</i>	RECTIONAL
DOUBL	E BOOST DENGAN COUPLED INDUCTOR U	NTUK
APLIKA	ASI PHOTOVOLTAIC	
2.1	Konverter DC-DC Bidirectional Konvensional	7
2.1.	.1 Mode Discharging	9
2.1.	.2 Mode Charging	
2.2	Coupled Inductor	10
2.3	Konverter Non-Isolated DC-DC Bidirectional D	Oouble Boost
Denga	an Coupled Inductor	12
2.3	.1 Mode Discharging	14
2.3	.2 Mode Charging	20
2.3	.3 Penurunan Parameter Komponen	27
BAB 3 D	DESAIN, SIMULASI, DAN IMPLEMENTASI	
3.1	Desain Konverter Non-Isolated Dc-Dc Bidirecti	onal Double
Boost	Dengan Coupled Inductor	32
3.1.	.1 Penentuan Duty Cycle	32
3.1.	.2 Penentuan Nilai Beban	33
3.1.	.3 Penentuan Nilai Coupled Inductor	34
3.1.	· · · - · · · · · · · · · · · · · · · ·	36
3.1.	.5 Penentuan Dioda dan MOSFET	37
3.2	Simulasi	37
3.2	.1 Simulasi Mode Discharging	38
3.2	.2 Simulasi Mode Charging	41

3.3	Implementasi Konverter Bidirectional Double Boost	44
BAB 4	HASIL PENGUJIAN DAN ANALISIS DATA	
4.1	Pengujian Sinyal PWM dan Pensaklaran	47
4.2	Pengujian Coupled Inductor	50
4.3	Pengujian Dioda	52
4.4	Pengujian Efisiensi Konverter	53
BAB 5]	PENUTUP	
5.1	Kesimpulan	57
5.2	Saran	57
DAFTA	AR PUSTAKA	59
LAMPI	TRAN	61
RIWAY	YAT HIDUP	65

TABLE OF CONTENTS

ABSTRA	ACT (BAHASA)	i
ABSTRA	ACT	iii
	CE	
	OF CONTENTS	
	F FIGURES	
	F TABLES	xiii
CHAPT	ER 1 INTRODUCTION	
1.1	Background	1
1.2	Problems	2
1.3	Purpose	2
1.4	Scope of Problems	2
1.5	Methodology	3
1.6	Writing Systematics	4
1.7	Relevance	4
CHAPT	ER 2 BIDIRECTIONAL DOUBLE BOOST CONVI	ERTER
DC-DC	WITH COUPLED INDUCTOR FOR PHOTOVOLT	FAIC
APLICA	ATION	
2.1	Conventional Bidirectional DC-DC Converter	7
2.1.	.1 Discharging Mode	9
2.1.	2 Charging Mode	9
2.2	Coupled Inductor	
2.3	Non-Isolated DC-DC Bidirectional Double Boost Con	nverter
with C	Coupled Inductor	12
2.3.	.1 Discharging Mode	14
2.3.	.2 Charging Mode	20
2.3.	3 Differentiation of Component Parameter	27
CHAPT	ER 3 DESIGN, SIMULATION, AND	
IMPLEN	MENTATION	
3.1	Design of Non-Isolated Dc-Dc Bidirectional Double l	Boost
Conve	erter with Coupled Inductor	32
3.1.	.1 Determination of Duty Cycle	32
3.1.	.2 Determination of Resistor	33
3.1.	.3 Determination of Coupled Inductor	34
3.1.	<u> •</u>	
3.1.	<u> -</u>	
3.2	Simulation	
3.2.	.1 Simulation of Discharging Mode	38

3.2	2.2 Simulation of Charging Mode	41
3.3	Implementation	44
CHAP	FER 4 EXPERIMENT RESULT AND DATA	ANALYSIS
4.1	Testing of PWM and Switching	47
4.2	Testing of Coupled Inductor	50
4.3	Testing of Dioda	52
4.4	Testing of Efficiency	
CHAP	TER 5 APPENDIX	
5.1	Conclussion	57
5.2	Advice	57
REFER	RENCES	59
ATTA(CHMENT	61
BIOGR	RAPHY	65

DAFTAR GAMBAR

Gambar 2.1	Sistem	Photovoltaic	dengan	konverter	DC-DC
	Bidirecti	onal			8
Gambar 2.2	Konverte	er DC-DC bidir	ectional kon	vensional	8
Gambar 2.3	Rangkaia	an konverter <i>bid</i>	directional n	node <i>boost</i>	9
Gambar 2.4	Rangkaia	an konverter <i>bid</i>	directional n	node <i>buck</i>	10
Gambar 2.5	Rangkaia	an ekuivalen $\it co$	upled induct	or	10
Gambar 2.6		lan <i>coupled inc</i>			
Gambar 2.7		rasi <i>non-isolat</i>			
		ngan <i>coupled ir</i>			
Gambar 2.8	Konfigu	rasi konverter	non-isolated	DC-DC bid	lirectional
	double b	oost dengan co	oupled induc	tor dengan	induktansi
Gambar 2.9		ging mode oper			
		ging mode oper			
		ging mode oper			
		ging mode oper			
		ging mode oper			
		ging mode oper			
Gambar 2.15		gelombang ka			
		ing			
		g mode operasi			
		g mode operasi			
		g mode operasi			
		g mode operasi			
		g mode operasi			
Gambar 2.21		gelombang ka			
		?			
Gambar 3.1		blok rangkaia			
Gambar 3.2		imulasi konver			
Gambar 3.3		imulasi konver			
Gambar 3.4		gelombang pe			
		ing			
Gambar 3.5	Gelomba	ang arus ir	iduktor $ m I_{LF}$	$_{ m K}$ dan $ m I_{ m L}$	_{.M} mode
		ing			
Gambar 3.6		ang tegangan			
	discharg	ing			41

Gambar 3.7	Bentuk gelombang pensaklaran pada MOSFET di mode
	<i>charging</i>
Gambar 3.8	Gelombang arus induktor I _{LK} dan I _{LM} mode <i>charging</i> 43
Gambar 3.9	Gelombang tegangan dan arus pada dioda (D ₄) mode charging
Gambar 3.10	Implementasi konverter bidirectional
Gambar 4.1	Bentuk sinyal penskalaran MOSFET mode
	discharging47
Gambar 4.2	Bentuk sinyal penskalaran MOSFET mode charging 48
Gambar 4.3	Bentuk sinyal pensaklaran pada semua switch dalam mode
	<i>charging.</i>
Gambar 4.4	Bentuk gelombang arus pada induktor primer (LP) mode
	discharging50
Gambar 4.5	Bentuk gelombang arus pada induktor primer (LP) mode
	<i>charging.</i> 51
Gambar 4.6	Bentuk gelombang arus dioda (D ₄) mode discharging 52
Gambar 4.7	Bentuk gelombang arus dioda (D ₄) mode charging 53
Gambar 4.8	Grafik efisiensi konverter mode discharging 54
Gambar 4.9	Grafik efisiensi konverter mode charging

DAFTAR TABEL

Tabel 3.1	Spesifikasi desain awal konverter bidirectional double
	boost32
Tabel 3.2	Parameter Kopel Induktor36
Tabel 3.3	Parameter komponen berdasarkan hasil perhitungan 37
Tabel 4.1	Efisiensi konverter bidrectional double boost mode
	discharging54
Tabel 4.1	Efisiensi konverter bidrectional double boost mode
	charging55

Halaman ini sengaja dikosongkan

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Semakin tingginya kegiatan industri, mengakibatkan semakin meningkatnya kebutuhan akan sumber energi. Di Indonesia pun masih menghadapi persoalan dala mencapai target pembangunan bidang energi. Ketergantungan terhadap energi fosil, terutama minyak bumi dalam pemenuhan konsumsi di dalam negeri masih tinggi, yaitu sebesar 96% (minyak bumi 48%, gas 18%, dan batubara 30%) dari total konsumsi energi nasional [1]. Maka dari itu diperlukan pemanfaatan energi baru terbarukan yang dapat mengganti sumber energi fosil.

Salah satu sumber energi baru terbarukan yang mempunyai potensi untuk dikembangkan di Indonesia adalah *photovoltaic* (PV). Namun, PV tidak dapat memberikan daya yang cukup ketika beban naik atau terjadi *partial shading* pada permukaan PV [2]. Untuk itulah, dibutuhkan energi cadangan yang mampu mem-*backup* energi dari PV. Biasanya energi cadangan tersebut menggunakan baterai, tetapi baterai memiliki kapasitas yang terbatas. Sehingga diperlukan baterai yang terhubung dengan konverter *bidirectional*, dengan ini memungkinkan untuk berlangsungnya operasi *charge* dan *discharge* sesuai dengan kebutuhan sistem.

Pada umumnya, konverter *bidirectional* dapat dibagi menjadi tipe *isolated* dan tipe *non-isolated*. Sebuah konverter termasuk dalam tipe *isolated* apabila input dan output-nya tidak memiliki hubungan listrik. Namun, jika antara input dan outputnya memiliki hubungan listrik maka termasuk dalam tipe *non-isolated* [3]. Konverter *non-isolated* memiliki keuntungan dibandingkan konverter *isolated* meliputi: kinerja operasi yang lebih efektif dan rangkaian yang lebih sederhaan karena membutuhkan komponen yang lebih sedikit.

Sudah banyak metode konverter non-isolated bidirectional DC-DC yang dipelajari dan diimplementasikan, seperti contohnya adalah bidirectional forward-flyback/flyback DC-DC converter yang sangat ringkas dan biaya yang murah. Namun hanya dapat digunakan untuk tegangan rendah saja karena tingginya voltage stress dan induktansi bocor. Konverter ini juga menggunakan banyak komponen aktif, yang tidak hanya meningkatkan biaya namun juga meningkatkan kerumitan dalam pengaturan konverter tersebut. Konverter yang lainnya adalah

single-stage cascaded bidirectional dc-dc converter yang memiliki peningkatan tegangan dua kali. Namun, komponen aktifnya menyebabkan arus yang tinggi dan rugi kontak [2].

Untuk mengurangi kekurangan tersebut, penulis mencoba untuk menggunakan topologi konverter *non-isolated DC-DC bidirectional double boost* dengan *coupled inductor*. Konverter yang diusulkan mampu meningkatkan tegangan hingga dua kali lipat. Dengan penggunaan *coupled inductor* maka dapat diperoleh rasio peningkatan tegangan yang tinggi [2].

1.2 Perumusan Masalah

Permasalahan yang akan dibahas dalam Penelitian ini adalah mendesain dan mengimplementasikan suatu konverter *non-isolated DC-DC bidirectional double boost* dengan *coupled inductor* untuk aplikasi *photovoltaic*.

1.3 Tujuan

Tujuan penulisan Penelitian ini adalah:

- 1. Mengetahui hal-hal yang berkaitan dengan konverter nonisolated DC-DC bidirectional double boost dengan coupled inductor.
- 2. Mendesain dan mengimplementasikan konverter *non-isolated* DC-DC bidirectional double boost dengan coupled inductor.
- 3. Menganalisis dan membandingkan hasil implementasi konverter non-isolated DC-DC bidirectional double boost dengan coupled inductor dengan hasil dari desain simulasi.

1.4 Batasan Masalah

Batasan masalah pada Penelitian ini adalah:

- 1. Implementasi alat hanya dilakukan untuk rangkaian konverternya saja.
- 2. Implementasi alat disesuaikan dengan komponen-komponen yang terdapat pada pasaran dan peralatan di laboratorium konversi energi listrik.
- 3. Pengujian alat menggunakan sumber tegangan DC yang terdapat pada laboratorium konversi energi listrik.

4. Semua analisis dan perhitungan dilakukan dalam kondisi *steady state*.

1.5 Metodologi

Metodologi yang digunakan pada penelitan ini adalah sebagai berikut:

1. Studi Literatur

Studi literatur perlu dilakukan untuk memperoleh gambaran umum tentang penelitian yang pernah dilakukan. Studi literatur dilakukan dengan cara mencari bahan bacaan yang diperoleh dari jurnal ilmiah, buku, maupun dari laporan penelitian ilmiah yang berhubungan dengan penelitian ini. Literatur yang dipelajari adalah mengenai konverter *bidirectional*, *coupled inductor*, parameter yang ada pada jurnal, dan buku-buku perpustakaan.

2. Pemodelan dan Simulasi

Setelah mendapatkan literatur yang munjang, penulis akan melakukan pemodelan. konverter *non-isolated DC-DC bidirectional double boost* dengan *coupled inductor*.dilakukan dengan cara menghitung besaran-besaran parameter yang diperlukan. Lalu dilakukan simulasi dengan software PSIM sehingga dapat dipastikan bahwa konverter yang akan dibuat dapat bekerja sesuai dengan yang diharapkan.

3. Pengimplementasian Alat

Pada tahap ini dilakukan pembuatan konverter *non-isolated DC-DC bidirectional double boost* dengan *coupled inductor* berdasarkan desain dan simulasi yang telah dibuat. Pembelian komponen juga dilakukan pada tahap ini. Komponen yang digunakan yaitu sumber DC, Induktor, Kapasitor, Dioda, Arduino, MOSFET,dan Driver MOSFET.

4. Pengujian Alat dan Analisis Data

Dalam tahap ini dilakukan pengujian dan juga pengukuran seperti tegangan dan arus pada alat yang dirangkai. Konverter akan diuji dengan menghubungkan ke beban resistif.

5. Kesimpulan dan Pembuatan Laporan

Memberikan kesimpulan yang dapat diambil berdasarkan dari hasil analisa data yang telah didapatkan. Semua hasil yang telah dikerjakan ditulis menjadi sebuah buku Tugas Akhir.

1.6 Sistematika Penulisan

Sistematika penulisan laporan Tugas Akhir ini terbagi atas lima bagian dan masing-masing bab terurai sebagai berikut:

BAB 1 Pendahuluan

Bab ini berisi penjelasan tentang latar belakang, permasalahan, tujuan, metodologi, sistematika penulisan, dan relevansi Tugas Akhir ini

BAB 2 Dasar Teori

Bab ini berisi teori penunjang yang membahas tentang konverter bidirectional konvensional, coupled inductor, dan konverter non-isolated DC-DC bidirectional double boost.

BAB 3 Desain, Simulasi, dan Implementasi

Bab ini berisi mengenai konverter *non-isolated DC-DC* bidirectional double boost dengan coupled inductor yang berupa penurunan rumus untuk mencari nilai parameter rangkaian, simulasi dengan menggunakan software PSIM, dan implementasi konverter non-isolated DC-DC bidirectional double boost dengan coupled inductor.

BAB 4 Pengujian dan Analisis Data

Bab ini berisi pembahasan mengenai analisa dari hasil simulasi dan pengujian alat terhadap hasil pengujian konverter *non-isolated DC-DC bidirectional double boost* dengan *coupled inductor*.

BAB 5 Kesimpulan dan Saran

Bab ini berisi kesimpulan dari analisis yang dilakukan dan berisi tentang saran untuk pengembangan selanjutnya.

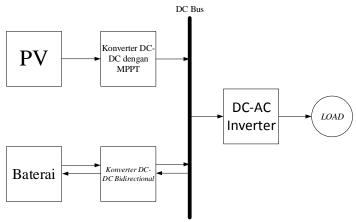
1.7 Relevansi

Hasil yang diperoleh dari pelaksanaan Tugas Akhir diharapkan dapat memberikan manfaat, antara lain:

- 1. Menjadi referensi untuk penelitian dan pengembangan konverter khususnya mengenai konverter *non-isolated DC-DC bidirectional double boost* dengan *coupled inductor*:
- 2. Menjadi referensi untuk pengembangan sistem energi terbarukan.
- 3. Menjadi referensi untuk mahasiswa yang akan mengambil Tugas Akhir dengan topik yang serupa dan mengembangkannya.

Halaman ini sengaja dikosongkan

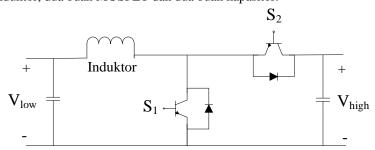
BAB 2


KONVERTER NON-ISOLATED DC-DC BIDIRECTIONAL DOUBLE BOOST DENGAN COUPLED INDUCTOR UNTUK APLIKASI PHOTOVOLTAIC

2.1 Konverter DC-DC *Bidirectional* Konvensional

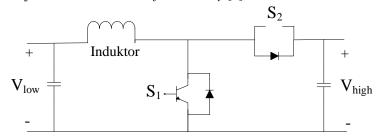
Konverter DC-DC adalah peralatan yang digunakan untuk mengkonversi sumber tegangan DC dengan tegangan yang berbeda, tegangan yang dikonversi pun bisa dinaikkan atau diturunkan tergantung topologi konverter yang digunakan [4]. Pada konverter DC-DC biasa seperti konverter *buck* dan *boost* tidak memiliki kemampuan untuk mengalirkan daya secara *bidirectional*(dua arah). Hal ini disebabkan adanya komponen dioda pada topologi tersebut, yang mencegah aliran arus *reverse*. Pada umunya, konverter satu arah (*unidirectional*) dapat dirubah menjadi konverter *bidirectional* dengan mengganti dioda tersebut dengan komponen *switching* seperti MOSFET.

Terdapat dua jenis konverter DC-DC bidirectional yaitu tipe isolated dan non-isolated. Konverter isolated memiliki sistem switching dan biaya yang lebih besar dibandingkan konverter non-isolated, namun memiliki kelebihan di sisi keamanannya. Sedangkan konverter non-isolated memiliki sistem yang lebih sederhana dan tidak memerlukan biaya yang besar.


Aplikasi konverter *bidirectional* banyak digunakan pada *renewable energy* misalkan seperti *photovoltaic* (PV). Seperti yang kita tahu, permasalahan utama dari PV adalah aliran daya yang tidak bisa terus menerus (kontinyu). Sehingga dibutuhkan penyimpanan energi (*energy storage*) yang bisa mengalirkan daya saat dibutuhkan. Untuk menghubungkan antara PV dengan *energy storage* seperti baterai digunakanlah konverter *bidirectional*.

Gambar 2.1 Sistem Photovoltaic dengan konverter DC-DC Bidirectional

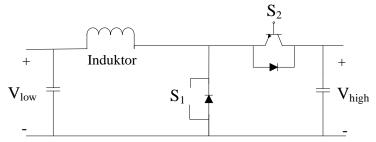
Gambar 2.1 diatas menunjukkan aliran daya untuk sistem *photovoltaic* dengan menggunakan konverter bidirectional. Saat PV memiliki daya keluaran yang lebih dari yang dibutuhkan beban, maka aliran dayanya akan mengalir dari PV menuju konverter lalu ke DC bus. DC bus mengalirkan daya tersebut ke beban dan juga ke baterai. Pada kondisi ini baterai mengalami kondisi *charging*. Lalu saat PV tidak memiliki daya keluaran yang cukup untuk men*suply* beban, maka baterai akan *discharge* dan mengalirkan daya menuju beban.


Bentuk rangkaian konverter DC-DC *bidirectional* konvensional dapat dilihat seperti pada Gambar 2.2. Konverter ini menggunakan satu induktor, dua buah MOSFET dan dua buah kapasitor.

Gambar 2.2 Konverter DC-DC bidirectional konvensional

2.1.1 Mode Discharging

Pada mode *discharging* seperti yang ditunjukkan pada Gambar 2.3. Rangkaian konverter *bidirectional* konvensional mode *discharging* ditunjukkan pada Gambar 2.3. Pada mode ini konverter *bidirectional* akan bekerja seperti konverter *boost* biasa. S1(*switch* 1) menjadi *switch* utama dalam mode ini dan mendapat sinyal masukan dari kontroler, sedangkan S2(*switch* 2) dapat dioperasikan permanen off atau *open* karena yang bekerja adalah *internal diode fast recovery* [5].

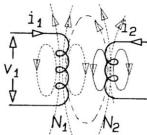

Gambar 2.3 Rangkaian konverter bidirectional mode discharging

Untuk input tegangan pada mode ini berasal dari Vlow (*Low Voltage*) pada sisi baterai sedangkan output tegangan pada sisi Vhigh (*High Voltage*). Hubungan antara sisi *low-voltage* dengan *high-voltage* di mode *boost* dapat dituliskan seperti pada persamaan (2.1) [5].

$$V_{H} = \frac{1}{1-D} V_{L}$$
 (2.1)

2.1.2 Mode Charging

Pada mode *charging* seperti yang ditunjukkan pada Gambar 2.4. Rangkaian konverter *bidirectional* mode *charging* ditunjukkan pada Gambar 2.3. Pada mode ini konverter *bidirectional* akan bekerja seperti konverter *buck* biasa. Berkebalikan dengan mode *discharging*, di mode ini S2 menjadi *switch* utama dan mendapat sinyal masukan dari kontroler, sedangkan S1 dapat dioperasikan permanen off atau *open* karena yang bekerja adalah *internal diode fast recovery* [5].


Gambar 2.4 Rangkaian konverter bidirectional mode charging

Untuk input tegangan pada mode ini berasal dari VHigh sedangkan output tegangan pada sisi VLow. Hubungan antara sisi *high-voltage* dan *low-voltage* di mode *buck* dapat dituliskan seperti pada persamaan (2.2) [5].

$$V_L = V_H \times D \tag{2.2}$$

2.2 Coupled Inductor

Induktor merupakan komponen pasif yang dapat menyimpan energi magnet dalam satuan Henry (H). *Coupled inductor* merupakan dua buah induktor yang dibelit pada satu inti yang sama dan saling mempengaruhi. Secara teori kondisi ini disebut dengan *mutual inductance* (induktansi magnetisasi). *Mutual inductance* dapat terbentuk apabila ada dua konduktor atau lebih yang saling berdekatan dan dialiri arus, sehingga membangkitkan fluks magnet yang akan menginduksikan tegangan pada induktor lainnya. Aliran fluks magnet pada *coupled inductor* dapat dilihat pada Gambar 2.5.

Gambar 2.5 Rangkaian ekuivalen coupled inductor

Apabila ada arus yang mengalir pada induktor satu (L_1) , maka akan terbangkit dua buah fluks magnetik yaitu fluks yang melingkupi L_1 disimbolkan dengan φ_{11} dan fluks yang mempengaruhi L_2 disimbolkan dengan φ_{12} . Analisis ini juga berlaku apabila ada arus yang mengalir pada L_2 , akan muncul fluks magnetik pada L_2 yang disimbolkan φ_{22} dan fluks yang mempengaruhi induktor L_1 yang disimbolkan φ_{21} . Hubungan antara tegangan yang terinduksi pada masing masing induktor dapat dituliskan sebagai berikut :

$$V_{L_1} = N_1 \frac{d\phi_{11}}{dt} + N_1 \frac{d\phi_{12}}{dt}$$
 (2.3)

$$V_{L_2} = N_2 \frac{d\phi_{21}}{dt} + N_2 \frac{d\phi_{22}}{dt} \tag{2.4}$$

Pada persamaan diatas, N_1 adalah jumlah belitan pada induktor L_1 dan N_2 adalah jumlah belitan pada induktor L_2 . V_{L_1} merupakan tegangan pada induktor L_1 dan V_{L_2} merupakan tegangan pada induktor L_2 . Persamaan tegangan diatas dapat dituliskan dalam bentuk :

$$V_{L_1} = L_1 \frac{di_1}{dt} + L_{12} \frac{di_2}{dt}$$
 (2.5)

$$V_{L_2} = L_{21} \frac{di_1}{dt} + L_2 \frac{di_2}{dt}$$
 (2.6)

Coupled inductor dapat dimodelkan dengan transformator ideal yang dirangkai paralel dengan L_M dan di seri dengan induktor bocor L_{k1} . Sedangkan pada induktor L_2 juga terdapat induktor bocor L_{K2} .

Gambar 2.6 Permodelan coupled inductor

Gambar 2.6 merupakan pemodelan dari *coupled inductor*. Hubungan antara induktansi magnetisasi, induktansi bocor, dan perbandingan belitan primer sekunder dapat dituliskan sebagai berikut:

$$L_{M} = \frac{N_{1}}{N_{2}} \sqrt{L_{11}L_{22} - L_{leak12}L_{22}}$$
 (2.7)

Atau

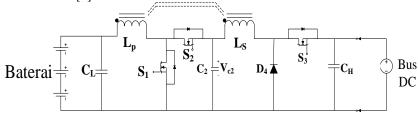
$$L_{M} = \frac{N_{1}}{N_{2}} \sqrt{L_{11}L_{22} - L_{leak21}L_{11}}$$
 (2.8)

Sedangkan k merupakan koefisien kopling dari *coupled inductor*. Koefisien kopling merepresentasikan kerapatan dari *coupled inductor*. Nilai koefisien kopling selalu diantara nilai 0 dan 1, atau 0 < k < 1 [6].

$$k = \frac{L_{12}}{\sqrt{L_{11}L_{22}}} \tag{2.9}$$

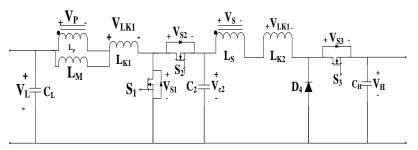
Nilai L₁₂ dapat dicari dengan

$$L_{12} = L_M \frac{N_2}{N_1} \tag{2.10}$$


Jika nilai k=0 maka tidak ada daya yang ditransfer karena induktor-induktor tersebut tidak saling berhubungan secara magnetik. Sedangkan jika nilai k=1 maka seluruh daya dari salah satu induktor ditransfer ke induktor lain dan tidak ada arus bocor pada induktor tersebut.

Topologi *coupled inductor* memiliki beberapa manfaat seperti mengurangi *losses* inti dan belitan serta memperbaiki ripple arus masukan dan arus induktor itu sendiri [7].

2.3 Konverter Non-Isolated DC-DC Bidirectional Double Boost Dengan Coupled Inductor


Konverter *Non-Isolated DC-DC Bidirectional Double Boost* merupakan modifikasi dari konverter *bidirectional* konvensional yang ditambahkan dengan penggunaan *coupled inductor*. Dengan adanya *coupled inductor* maka konverter ini dapat menghasilkan rasio konversi

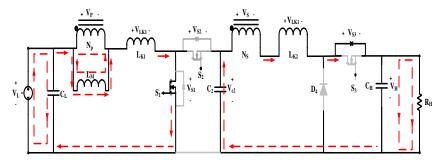
tegangan yang lebih tinggi dibandingkan dengan konverter *bidirectional* konvensional [2].

Gambar 2.7 Konfigurasi *non-isolated DC-DC bidirectional double boost* dengan *coupled inductor*

Gambar 2.7 merupakan konfigurasi Konverter *Non-Isolated DC-DC Bidirectional Double Boost* dengan *coupled inductor*. Terlihat pada konfigurasi diatas bahwa konverter terdiri dari tiga buah saklar (S₁, S₂, dan S₃), *coupled inductor*, kapasitor (C₂), dan dioda. Kemudian pada sisi baterai terdapat kapasitor C_L untuk mengurangi *ripple* tegangan, begitu pula pada sisi Bus DC juga diberikan kapasitor C_H.

Gambar 2.8 Konfigurasi konverter *non-isolated DC-DC bidirectional double boost* dengan *coupled inductor* dengan induktansi bocor

Gambar 2.8 menunjukkan Konfigurasi konverter *non-isolated DC-DC bidirectional double boost* dengan *coupled inductor* dengan induktansi bocor, dimana V_L merupakan tegangan di sisi *low voltage* dan V_H merupakan tegangan di sisi *high voltage*. Lalu dilakukan analisa pada konverter tersebut. Analisa konverter ini berdasarkan beberapa asumsi yaitu [2]:

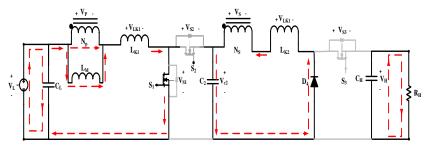

1. Semua komponen adalah ideal

- Kapasitor C_L, C₂, dan C_H sangat besar dan tegangan dapat diasumsikan konstan
- 3. Induktansi magnetisasi L_M pada *coupled inductor* sangat besar, dan konverter beroperasi pada *continous conduction mode* (CCM).
- 4. Konverter dianalisa pada mode *discharging* dan mode *charging* saat kondisi tunak (*steady state*)

2.3.1 Mode Discharging

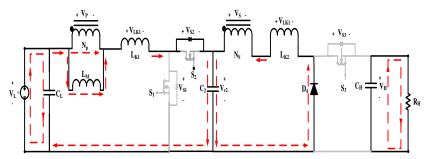
Mode ini menggunakan switch S_1 sebagai switch utama, lalu switch S_2 dan S_3 dimatikan selama mode *discharging*. Di sisi *high voltage*, *bus dc* digantikan dengan beban R_H . Konverter dianalisa pada saat kondisi tunak (*steady state*).

2.3.1.1 Analisis Kondisi Tunak Mode Discharging

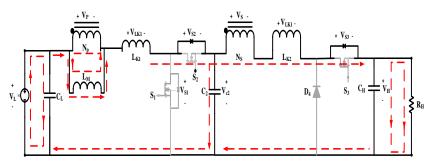

Gambar 2.9 Discharging mode operasi I (t₀-t₁)

Gambar 2.9 diatas merupakan operasi mode I dari konverter. Pada saat $(t_0$ - t_1), switch S_1 konduksi dan dioda di D_{S3} (dioda internal pada S_3) kondisi on. Aliran arus sesuai dengan gambar diatas. Energi yang tersimpan pada induktansi bocor L_{K2} dilepaskan menuju kapasitor C_2 , dan arus induktansi bocor pada sisi sekunder I_{LK2} dan arus S_3 (I_{S3}) semakin lama akan semakin menurun. Tegangan baterai V_L melepaskan energi ke induktansi bocor primer L_{K1} . Sehingga arus pada I_{LK1} akan semakin meningkat. Arus induktansi magnetik pada I_{LM} adalah

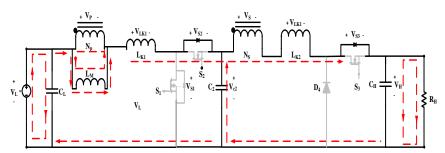
$$I_{LM} = I_{LK1} + nI_{LK2}$$
 (2.11)


$$\begin{array}{c} Dimana \\ n = \frac{N_S}{N_P} \end{array} \eqno(2.12)$$

 N_S merupakan banyaknya belitan di sisi sekunder dan N_P merupakan banyaknya belitan di sisi primer. Mode ini berakhir ketika arus I_{S3} menjadi nol dan dioda D_{S3} mati.

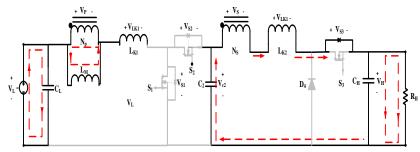

Gambar 2.10 Discharging mode operasi II (t₁-t₂)

Pada mode operasi II ini S_1 dalam kondisi on dan D_4 dalam kondisi *forward bias*. Aliran arus pada mode ini dapat dilihat di Gambar 2.10. V_L mengisi energi ke induktansi magnetik L_M dan induktansi bocor L_{K1} . Arus induktansi magnetik I_{LM} dan arus induktansi bocor I_{LK1} semakin lama akan meningkat. Disini V_L juga mengalirkan energi ke C_2 melalui belitan sekunder induktor N_S dan D_4 . Sehingga nilai pada kapasitor C_2 akan sama dengan nV_L . Mode ini berakhir saat switch S_1 dalam kondisi off.


Gambar 2.11 Discharging mode operasi III (t₂-t₃)

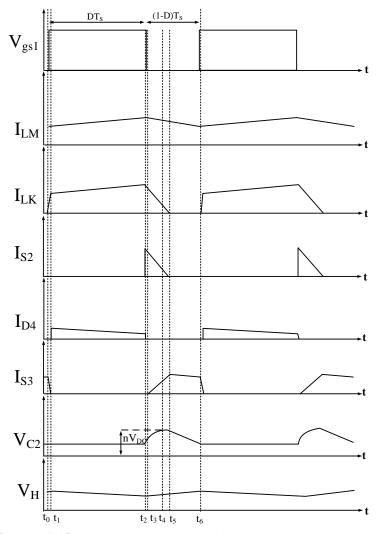
Pada mode operasi III ini S_1 dan dioda switch S_3 (D_{S3}) dalam kondisi off, serta D_{S2} dalam kondisi forward bias. Aliran arus pada mode ini dapat dilihat di Gambar 2.11. Energi yang ada pada induktansi bocor L_{K1} dan L_{K2} dialirkan menuju kapasitor C_2 melewati D_{S2} dan D_4 . Mode ini berakhir ketika arus I_{LK2} bernilai nol dan D_4 kondisi off.

Gambar 2.12 *Discharging* mode operasi IV (t₃-t₄)


Pada mode operasi IV, S_1 dalam kondisi off dan D_{S2} serta D_{S3} dalam konidisi on. Aliran arus pada mode ini dapat dilihat di Gambar 2.12. Energi yang ada pada V_L , L_M , dan L_{K1} dilepaskan menuju C_2 melewati D_{S2} . Setelah itu sebagian dari energi L_M ditransfer menuju C_H dan beban R_H lewat belitan sekunder dari *coupled inductor*. Mode ini berakhir ketika tegangan yang ada pada C_2 sama dengan nV_L .

Gambar 2.13 Discharging mode operasi V (t₄-t₅)

Pada mode operasi V, S_1 dalam kondisi off dan D_{S2} serta D_{S3} dalam konidisi on. Aliran arus pada mode ini dapat dilihat di Gambar 2.13. Energi yang ada pada L_M dilepaskan menuju C_H lewat *coupled*


inductor dan D_{S3} . Arus pada induktansi magnetik I_{LM} semakin lama akan semakin berkurang, dan energi yang tersimpan di C_2 ditransfer menuju C_H dan beban R_H . Mode ini berakhir ketika arus I_{LK1} sama dengan nol.

Gambar 2.14 *Discharging* mode operasi VI (t₅-t₆)

Pada mode operasi VI, S_1 dan D_{S2} dalam kondisi off, dan D_{S3} dalam kondisi on. Aliran arus pada mode ini dapat dilihat di Gambar 2.14. Energi yang ada pada L_M dilepaskan menuju C_H dan R_H melalui belitan sekunder *coupled inductor* dan D_{S3} . Energi yang tersimpan di C_2 juga ditransfer menuju C_H dan R_H . Mode ini berakhir saat S_1 menjadi on saat t_6 .

Gambar 2.15 menunjukkan bentuk gelombang karakteristik dari konverter non-isolated DC-DC bidirectional double boost dengan coupled inductor pada mode operasi discharging. Gelombang karakteristik dibagi menjadi enam mode operasi

Gambar 2.15 Bentuk gelombang karakteristik konverter pada saat *discharging*

2.3.1.2 Penurunan Persamaan Rasio Konversi Mode Discharging

Penuruan persamaan rasio konversi dianalisis saat kondisi saklar tertutup (switch S_1 on) dan saat kondisi saklar terbuka (S_1 off). Analisis dengan metode *inductor volt-second balance* pada induktansi magnetisasi L_M .

$$\int_0^T V_{L_M} dt = 0 \tag{2.13}$$

$$\int_{0}^{DT} V_{L_{M(on)}} dt + \int_{DT}^{T} V_{L_{M(off)}} dt = 0$$
 (2.14)

Untuk memudahkan perhitungan, karena tegangan pada kedua induktansi bocor (L_{K1} dan L_{K2}) sangat kecil maka pada analisis diabaikan. Pada saat S_1 kondisi on, mode operasi II, sumber V_L melepas energinya ke induktansi magnetik L_M . Berdasarkan Gambar 2.10 dilakukan analisis dengan menerapkan analisa loop tertutup sesuai prinsip *Khirchoff Voltage Law* (KVL), sehingga:

$$-V_L + V_{L_{M(nn)}} = 0$$
 (2.15)

$$V_{L_{M(\alpha)}} = V_{L} \tag{2.16}$$

Saat switch S_1 kondisi off, dalam mode IV dan VI, induktansi magnetik melepaskan energi menuju beban $R_{\rm H}$ sehingga dapat dituliskan :

$$V_{L_{M(off)}} = \frac{1}{n} (nV_L - V_H)$$
 (2.17)

Dengan melakukan substitusi persamaan 2.16 dan 2.17 ke persamaan 2.14 diperoleh :

$$\int_0^{DT} V_L dt + \int_{DT}^T \frac{1}{n} (nV_L - V_H) dt = 0$$
 (2.18)

$$V_{L}(DT-0) + \left\{ \frac{1}{n} (nV_{L}-V_{H}) \right\} (T-DT) = 0$$
 (2.19)

$$V_LDT + (V_L - \frac{V_H}{n})(1-D)T = 0$$
 (2.20)

Lakukan pembagian pada persamaan 2.20 dengan T, sehingga akan didapatkan persamaan sebagai berikut :

$$V_LD+(V_L-\frac{V_H}{r})(1-D)=0$$
 (2.21)

Dengan melakukan proses distribusi matematika pada persamaan 2.21. didapatkan persamaan sebagai berikut :

$$V_{L}D + V_{L} - V_{L}D - \frac{V_{H}}{n} + \frac{V_{H}}{n}D = 0$$
 (2.22)

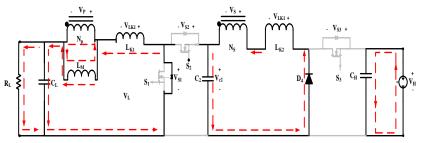
$$V_{L} - \frac{V_{H}}{n} + \frac{V_{H}}{n} D = 0$$
 (2.23)

Dengan memindahruaskan $\frac{V_H}{n}$ dan $\frac{V_H}{n}D$ ke ruas kanan, maka akan didapatkan persamaan sebagai berikut :

$$V_{L} = \frac{V_{H}}{n} - \frac{V_{H}}{n} D \tag{2.24}$$

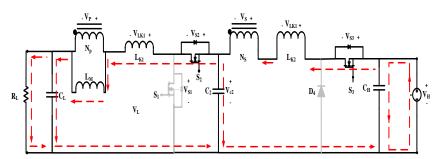
$$V_{L}=V_{H}\left(\frac{1}{n}-\frac{1}{n}D\right) \tag{2.25}$$

Dengan melakukan distribusi matematika pada persamaan 2.25, akan diperoleh nilai gain dari konverter. Dimana gain saat discharging adalah tegangan $high\ voltage(V_H)$ dibagi dengan tegangan $low\ voltage(V_L)$.

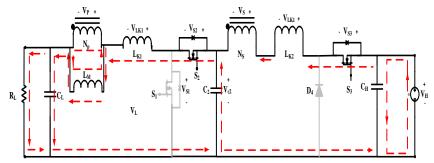

$$\frac{V_{H}}{V_{L}} = \frac{1}{\left(\frac{1}{n} - \frac{1}{n}D\right)}$$
 (2.26)

$$\frac{V_{H}}{V_{L}} = \frac{n}{1-D}$$
 (2.27)

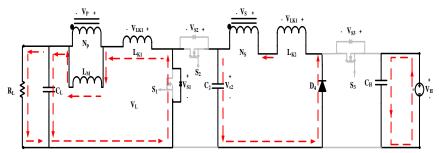
2.3.2 Mode Charging


Pada mode *charging*, switch S_2 dan S_3 dikontrol secara bersamaan, dan S_1 dalam kondisi off. Di sisi *low voltage*, *bus dc* digantikan dengan beban R_L .

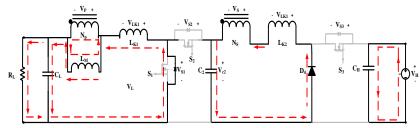
2.3.2.1 Analisa Kondisi Tunak Mode Charging


Gambar 2.16 Charging mode operasi I (t₀-t₁)

Gambar 2.16 diatas merupakan operasi mode I dari konverter. Pada saat (t_0 - t_1), dioda D_{S1} dalam kondisi on. Aliran arus sesuai dengan gambar diatas. Induktor magnetisasi melepaskan energi ke kapasitor C_L dan beban R_L . Sehingga arus magnetisasi I_{LM} semakin lama semakin berkurang. Energi yang tersimpan pada induktansi bocor L_{K2} di*recycle* ke kapasitor C_2 . Mode ini berakhir ketika arus I_{D4} berkurang hingga bernilai nol.

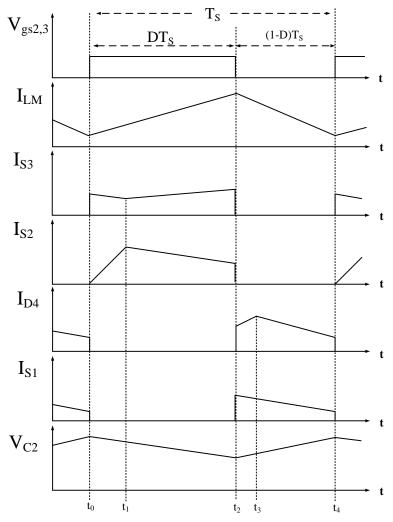

Gambar 2.17 *Charging* mode operasi II (t_1-t_2)

Pada mode operasi II ini S_2 dan S_3 kondisi on dan D_4 dalam kondisi *reverse bias*. Aliran arus pada mode ini dapat dilihat di Gambar 2.17. Tegangan V_H akan mengisi induktansi magnetisasi L_M , sehingga arus I_{LM} semakin lama akan meningkat. V_H juga melepaskan energi menuju C_2 , C_L , dan R_L . Mode ini berakhir ketika energi yang tersimpan di C_2 dilepaskan menuju R_L .


Gambar 2.18 *Charging* mode operasi III (t₂-t₃)

Pada mode operasi III ini S_2 dan S_3 dalam kondisi on, serta D_{S1} dan D_4 dalam kondisi off. Aliran arus pada mode ini dapat dilihat di Gambar 2.18. Sumber tegangan V_H dan kapasitor C_2 melepaskan energi menuju L_M , C_L , dan beban R_L . Sehingga arus pada I_{LM} semakin lama akan meningkat. Mode ini berakhir ketika S_2 dan S_3 dalam kondisi off.

Gambar 2.19 Charging mode operasi IV (t₃-t₄)


Pada mode operasi IV, S_2 dan S_3 dalam kondisi off dan D_{S1} dalam kondisi on. Aliran arus pada mode ini dapat dilihat di Gambar 2.19. Energi yang ada pada L_{K1} akan mengalir menuju C_L melalui D_{S1} , sedangkan energi yang ada pada L_{K2} akan mengalir menuju C_2 melalui D_4 . Mode ini berakhir ketika energi yang tersimpan pada L_{K2} bernilai nol.

Gambar 2.20 Charging mode operasi V (t₄-t₅)

Pada mode operasi V, S_2 dan S_3 dalam konidisi off dan D_{S1} dalam kondisi on. Aliran arus pada mode ini dapat dilihat di Gambar 2.20. Induktansi magnetisasi tidak hanya melepaskan energinya menuju C_L dan R_L tapi juga mentransfer energi menuju C_2 melalui belitan sekunder N_S dan D_4 . Sehingga arus induktansi magnetisasi I_{LM} akan semakin berkurang.

Gambar 2.21 menunjukkan bentuk gelombang karakteristik dari konverter non-isolated DC-DC bidirectional double boost dengan coupled inductor pada mode operasi charging. Gelombang karakteristik dibagi menjadi enam mode operasi.

Gambar 2.21 Bentuk gelombang karakteristik konverter pada saat *charging*

2.3.2.2 Penurunan Persamaan Rasio Konversi Mode Charging

Sama halnya dengan mode *discharging*, tegangan kedua induktansi bocor (V_{LK1} dan V_{LK2}) diabaikan. Analisis dilakukan saat switch S_2 dan S_3 pada kondisi on yaitu pada mode III. Berdasarkan Gambar 2.18 dilakukan analisis loop KVL. Sehingga didapatkan :

$$V_s + V_{L_{M(on)}} + V_L - V_H = 0$$
 (2.28)

 V_S merupakan tegangan di belitan sekunder yang mempunya nilai sama dengan $nV_{L_{M(on)}}$. Maka persamaan 2.28 dapat diganti menjadi :

$$nV_{L_{M(on)}} + V_{L_{M(on)}} + V_{L} - V_{H} = 0$$
 (2.29)

Dengan memindahkan V_{L} dan V_{H} ke ruas kanan, didapatkan :

$$nV_{L_{M(on)}} + V_{L_{M(on)}} = V_{H} - V_{L}$$
 (2.30)

$$V_{L_{M(on)}}(n+1) = V_{H} - V_{L}$$
 (2.31)

Sehingga didapatkan persamaan tegangan induktansi magnetik pada kondisi on yaitu

$$V_{L_{M(on)}} = \frac{V_{H} \cdot V_{L}}{(n+1)}$$
 (2.32)

Selanjutnya dianalisis ketika switch S_2 dan S_3 dalam kondisi off, analisis ini dilakukan saat mode V. Dilakukan analisis pada loop yang melewati induktansi magnetik L_M , sehingga didapatkan:

$$V_{L_{M(off)}} + V_{L} = 0 (2.33)$$

Dengan memindahkan V_L ke sisi kanan maka diperoleh :

$$V_{L_{M(off)}} = -V_{L} \tag{2.34}$$

Setelah didapatkan persamaan induktansi magnetik di kondisi switch on dan switch off, dilakukan analisis dengan metode *inductor voltsecond balance* seperti pada mode *discharging*. Substitusikan persamaan 2.32 dan 2.34 ke persamaan 2.14.

$$\int_{0}^{DT} \frac{V_{H} \cdot V_{L}}{(n+1)} dt + \int_{DT}^{T} \cdot V_{L} dt = 0$$
 (2.35)

Setelah dilakukan pengintegralan pada persamaan 2.35, maka didapatkan :

$$\left(\frac{V_{H}-V_{L}}{(n+1)}\right)$$
 (DT-0)+ (-V_L)(T-DT)=0 (2.36)

$$\left(\frac{V_{H}-V_{L}}{(n+1)}\right)$$
DT+ $(-V_{L})(1-D)$ T=0 (2.37)

Pada persamaan 2.37 dilakukan pembagian dengan T, sehingga didapatkan :

$$\left(\frac{V_{H}-V_{L}}{(n+1)}\right)D+(-V_{L})(1-D)=0$$
 (2.38)

Setelah didapatkan persamaan 2.38, dilakukan operasi distribusi matematika seperti berikut :

$$\frac{V_{H}D-V_{L}D}{(n+1)}-V_{L}+V_{L}D=0$$
 (2.39)

Dengan mengalikan persamaan diatas dengan (n+1) akan diperoleh persamaan sebagai berikut :

$$V_{H}D-V_{L}D-V_{L}(n+1)+V_{L}D(n+1)=0$$
 (2.40)

$$V_{H}D-V_{L}D-V_{L}n-V_{L}+V_{L}Dn+V_{L}D=0$$
(2.41)

$$V_{H}D-V_{L}n-V_{L}+V_{L}Dn=0 (2.42)$$

Dengan memindahkan V_HD ke ruas sisi kanan, maka diperoleh:

$$-V_{L}n-V_{L}+V_{L}Dn=-V_{H}D (2.43)$$

$$V_{L}(-n-1+Dn) = -V_{H}D$$
 (2.44)

Dengan melakukan operasi matematika pada persamaan 2.44, akan diperoleh nilai gain dari konverter. Dimana gain saat charging adalah tegangan $low\ voltage(V_L)$ dibagi dengan tegangan $high\ voltage$ (V_H) .

$$\frac{V_{L}}{V_{H}} = \frac{-D}{(-n-1+Dn)}$$
 (2.45)

Atau dapat dituliskan:

$$\frac{V_{L}}{V_{H}} = \frac{D}{n+1-Dn}$$
 (2.46)

2.3.3 Penurunan Parameter Komponen

Berdasarkan Gambar 2.8, rangkaian konverter DC-DC bidirectional double boost memiliki beberapa parameter, seperti kapasitor filter (C_L dan C_H), induktor pada sisi low voltage (L_1), induktor pada sisi high voltage (L_2), kapasitor C_2 , dan beban resistif (R_L dan R_H). Konverter ini mampu beroperasi dalam mode discharging dan charging, maka nilai komponen akan sama ketika kedua mode tersebut. Maka diperlukan perhitungan yang tepat untuk menentukan parameter-parameter untuk mendesain konverter.

Pada saat mode $\textit{discharging}\xspace$ terdapat beban R_H yang dapat ditentukan dengan rumus :

$$R_{\rm H} = \frac{V_{\rm H}^2}{P_{\rm H}} \tag{2.47}$$

Dengan menggunakan prinsip yang sama, nilai beban $R_{\rm L}$ dapat ditentukan sebagai berikut :

$$R_{L} = \frac{V_{L}^{2}}{P_{L}} \tag{2.48}$$

Dimana P_H adalah daya pada sisi *high voltage*, dan P_L merupakan daya pada sisi *low voltage*. Diasumsikan bahwa semua komponen ideal sehingga besarnya nilai daya sisi *low voltage* (P_L) sama dengan daya sisi *high voltage* (P_H).

$$P_{L}=P_{H} \tag{2.49}$$

$$V_{L}I_{L} = \frac{V_{H}^{2}}{R_{H}}$$
 (2.50)

Pada persamaan diatas, I_L merupakan arus sisi $low\ voltage$ dan R_H adalah beban pada sisi $high\ voltage$. Berikutnya adalah analisis untuk menghitung induktor. Karena nilai induktor saat discharging maupun charging adalah sama, maka analisis hanya perlu dilakukan saat discharging. Pada saat mode discharging, ketika S_1 dalam kondisi on, arus yang melewati induktansi magnetik sama dengan arus $low\ voltage$ $(I_L = I_{LM})$. Sehingga diperoleh:

$$I_{LM} = \frac{V_{H}^{2}}{R_{H}V_{L}}$$
 (2.51)

Nilai V_H/V_L pada persamaan 2.51 sama dengan *gain* pada mode *discharging*, sehingga persamaan 2.27 dapat disubstitusikan ke persamaan 2.51. Sehingga diperoleh :

$$I_{LM} = \frac{n}{1-D} \frac{V_H}{R_H}$$
 (2.52)

Pada mode *discharging* seperti yang sudah diketahui pada persamaan 2.16 bahwa :

$$V_L = V_{L_{AM}} \tag{2.53}$$

$$V_{L} = L_{M} \frac{\Delta I}{\Delta t}$$
 (2.54)

Dimana ΔI merupakan *ripple* arus dan pada saat switch S_1 kondisi on nilai Δt sama dengan DT. Maka akan diperoleh persamaan sebagai berikut:

$$V_{L} = L_{M} \frac{\Delta I}{DT}$$
 (2.55)

Sehingga didapatkan persamaan ripple arusnya adalah

$$\Delta I = \frac{V_L DT}{L_M}$$
 (2.56)

Dari persamaan ripple 2.56 juga dapat diperoleh:

$$L_{M} = \frac{V_{L} DT}{\Lambda I}$$
 (2.57)

Untuk arus minimum dan maksimum yang melewati induktor L_M , maka persamaan 2.52 ditambahkan dengan persamaan ripple arus 2.56. Sehingga:

$$I_{L_{M(max)}} = \frac{n}{1 - D} \frac{V_{H}}{R_{H}} + \frac{V_{L} DT}{L_{M}}$$
 (2.58)

$$I_{L_{M(min)}} = \frac{n}{1-D} \frac{V_{H}}{R_{H}} - \frac{V_{L}}{L_{M}}$$
 (2.59)

Agar pada mode *discharging* konverter bekerja pada kondisi *Continous Conduction Mode* (CCM) maka arus minimum $(I_{L_{M(min)}})$ harus lebih besar dari nol, sehingga :

$$I_{L_{M(min)}} > 0$$
 (2.60)

Substitusikan persamaan 2.59 ke dalam persamaan 2.60, maka didapatkan persamaan :

$$\frac{n}{1-D}\frac{V_H}{R_H} - \frac{V_L DT}{L_{M(discharge)}} > 0$$
 (2.61)

$$L_{M(min)} > \frac{(V_L R_H DT) - (V_L D R_H DT)}{nV_H}$$
 (2.62)

Untuk menghitung nilai kapasitor pada sisi $high\ voltage\ (C_H)$ dengan cara menggunakan persamaan dasar jumlah muatan yang tersimpan dalam kapasitor. Analisis dilakukan saat mode discharging, ketika S_1 dalam kondisi on.

$$\Delta Q = \Delta V_{H}. C_{H} \tag{2.63}$$

$$I_{H}\Delta t_{on} = \Delta V_{H}.C_{H} \tag{2.64}$$

$$\frac{V_{H}}{R_{H}}DT = \Delta V_{H}.C_{H}$$
 (2.65)

Dengan operasi matematika dan memindahkan C_L ke sisi kanan, didapatkan :

$$C_{H} = \frac{V_{H}.DT}{R_{H}AV_{H}}$$
 (2.66)

Dimana ΔV_H merupakan:

$$\Delta V_{H} = V_{max} - V_{min} \tag{2.67}$$

$$V_{\text{max}} = V_{\text{H}} + \frac{\text{(\(\%ripple\)})x V_{\text{H}}}{2}$$
 (2.68)

$$V_{\min} = V_{H} - \frac{(\% \text{ripple}) \times V_{H}}{2}$$
 (2.69)

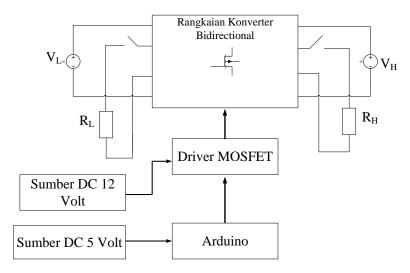
Kapasitor C_2 merupakan kapasitor pentransfer tegangan. Karena nilai tegangan kapasitor V_{C2} sama dengan tegangan kapasitor V_{CH} maka :

$$C_{\rm H} = C_2 = \frac{V_{\rm H.DT}}{R_{\rm H} \, \Delta V_{\rm H}}$$
 (2.70)

Ketika switch S₁ dalam kondisi off, maka:

$$\Delta Q = \Delta V_L. C_L \tag{2.71}$$

$$I_{L}\Delta t_{off} = \Delta V_{L}.C_{L} \tag{2.72}$$


$$\frac{V_L}{R_L}DT = \Delta V_L.C_L \tag{2.73}$$

Dengan operasi matematika dan memindahkan C_L ke sisi kanan, didapatkan :

$$C_{L} = \frac{V_{L} \cdot D T}{R_{L} \Delta V_{L}} \tag{2.74}$$

BAB 3 DESAIN, SIMULASI, DAN IMPLEMENTASI

Pada bab 3 ini akan dibahas mengenai proses desain, simulasi, dan implementasi konverter *non-isolated dc-dc bidirectional double boost* dengan *coupled inductor*. Proses menentukan desain konverter *non-isolated dc-dc bidirectional double boost* berdasarkan rumus parameter yang telah dibahas pada bab 2 .Setelah mengetahui semua nilai parameter, rangkaian konverter ini disiimulasikan untuk memastikan bahwa konverter dapat bekerja sesuai yang diharapkan. Hasil dari desain dan simulasi ini kemudian digunakan sebagai dasar implementasi *boost converter*. Berikut ini adalah diagram blok dari konverter *non-isolated dc-dc bidirectional double boost*:

Gambar 3.1 Diagram blok rangkaian konverter bidirectional double boost

Seperti yang terlihat pada Gambar 3.1 diatas, konverter *bidirectional* diberi tegangan di sisi *low voltage* dan *high voltage*. Namun dalam pengujian, salah satu sisinya akan diganti dengan beban resistif R. Digunakan Arduino Nano untuk menghasilkan sinyal PWM sebagai

driver MOSFET. Arduino membutuhkan sumber tegangan sebesar 5 volt. *Driver* MOSFET juga memerlukan sumber tegangan sebesar 12 volt.

3.1 Desain Konverter Non-Isolated Dc-Dc Bidirectional Double Boost Dengan Coupled Inductor

Proses pertama adalah menentukan parameter awal dari konverter. Parameter-parameter awal ini dijadikan sebagai acuan dalam mendesain konverter. Desain awal ini juga harus ditinjau dari peralatan pengujian yang ada di laboratorium serta ketersediaan di pasaran agar memudahkan dalam implementasi ini. Tabel 3.1 dibawah ini merupakan tabel parameter awal konverter.

Tabel 3.1 Spesifikasi desain awal konverter *bidirectional double boost*

No.	Parameter	Nilai
1.	Daya Low Voltage	100 Watt
2.	Daya High Voltage	100 Watt
3.	Tegangan Sisi Low	24 Volt
	$Voltage (V_L)$	
4.	Tegangan Sisi <i>High</i>	200 Volt
	Voltage (V _H)	
5.	N	4
6.	Frekuensi Pensaklaran	62,5 kHz
7.	Ripple Tegangan C _H	0,01%
8.	Ripple Tegangan C _L	0,6%
9.	Ripple I _{LM}	10%

Untuk desain konverter ini, tegangan *low voltage* (V_L) ditentukan sebesar 24 V dengan daya 100 watt. Sedangkan pada sisi tegangan *high voltage* (V_H) ditetapkan 200 volt dengan daya 100 watt. Nilai N merupakan perbandingan antara belitan primer (N_P) dan belitan sekunder (N_S) pada *coupled inductor*, ditentukan 4 untuk meningkatkan rasio konversi yang lebih tinggi.

3.1.1 Penentuan *Duty Cycle*

Seperti yang sudah ditentukan pada tabel 3.1, bahwa tegangan *low voltage* konverter adalah 24 V dan tegangan *high voltage* adalah 200 V. Dari kedua nilai ini dapat ditentukan *duty cycle* yang harus digunakan saat mode *discharging* dan *charging*. Pada mode *discharging* sudah

diketahui persamaan *gain* konverter (persamaan 2.27), sehingga *duty cycle* saat mode *discharging* adalah:

$$\frac{200}{24} = \frac{4}{1-D}$$

$$D = 1 - \frac{24x4}{200}$$

$$D = 0.52$$

Jadi *duty cycle* yang ditentukan pada desain konverter saat mode *discharging* adalah sebesar 52%. Kemudian ditentukan pula nilai *duty cycle* saat mode *charging*. Dilakukan substitusi parameter-parameter awal yang ditentukan ke dalam persamaan 2.46, sehingga:

$$\frac{24}{200} = \frac{D}{4+1-D_4}$$

$$200D = 96 + 24 - 96D$$

$$296D = 120$$

$$D = 0.405$$

Jadi *duty cycle* yang ditentukan saat konverter mode *charging* adalah sebesar 40,5%. Kedua *duty cycle* tersebut beroperasi pada frekuensi pensaklaran sebesar 62,5 kHz. Kemudian *duty cycle* dan frekuensi tersebut digunakan untuk membuat sinyal PWM dengan arduino.

3.1.2 Penentuan Nilai Beban

Langkah selanjutnya adalah menentukan beban yang digunakan. Pada mode *discharging* tegangan output berada pada sisi *high voltage*, sehingga tegangan outputnya sama dengan tegangan *high voltage* ($V_{\rm H}$) yaitu 200 Volt dengan daya sebesar 100 watt. Nilai-nilai ini disubstitusi ke persamaan 2.47, maka :

$$R_{\rm H} = \frac{200^2}{100}$$

$$R_H = 400 \text{ ohm}$$

Sedangkan pada mode *charging*, tegangan outputnya sama dengan tegangan *low voltage* (V_L) yaitu 24 Volt dengan daya 100 watt. Dengan mensubstitusikan nilai tersebut ke persamaan 2.48, diperoleh :

$$R_{L} = \frac{24^2}{100}$$

$$R_1 = 5,76 \text{ ohm}$$

Penggunaan beban resistif juga digunakan untuk menghilangkan tegangan kapasitor setelah konverter dioperasikan agar aman apabila tersentuh manusia

3.1.3 Penentuan Nilai Coupled Inductor

Karena konverter ini beroperasi pada mode operasi CCM maka nilai arus yang mengalir pada induktor harus lebih besar dari nol, sesuai dengan persamaan 2.62. Sehingga nilai induktansi magnetisasi $L_{\rm M}$ minimal adalah sebagai berikut :

$$L_{M(\;min)} = \frac{(24x400x0,52) \cdot (24x0,52x400x0,52)}{62500x4x200} = 47,923\;\mu H$$

Jadi nilai induktansi magnetik L_M harus lebih besar dari 47,932 μ H agar konverter dapat bekerja pada mode CCM. Lalu dilakukan analisis untuk arus yang mengalir pada induktor dengan menggunakan persamaan 2.52. Sehingga :

$$I_{LM} = \frac{4}{1-0.52} \frac{200}{400} = 4{,}167 \text{ A}$$

Sesuai dengan tabel 3.1, bahwa *ripple* arus pada induktor adalah sebesar 10% dari arus yang mengalir, maka didapatkan :

$$\Delta I_{LM} = 0.1 \text{ x } 4.167 = 0.4167 \text{ A}$$

Untuk menentukan nilai induktansi magnetik $L_{\rm M}$, dengan mensubstitusikan parameter yang diketahui ke dalam persamaan 2.57. Maka didapatkan :

$$L_{\rm M} = \frac{24 \times 0.52}{62500 \times 0.4167} = 479.19 \ \mu {\rm H}$$

Untuk mendapatkan nilai induktansi magnetisasi yang mendekati 479,19 μH dilakukan dengan melilitkan kawat tembaga ke inti induktor. Jenis kawat yang digunakan adalah jenis kawat AWG dengan diameter kawar sebesar 0,3mm. Kemampuan hantar kawat AWG dengan diameter 0,3 mm adalah 0,226 ampere dengan frekuensi maksimum 27 kHz .

Besar arus yang mengalir pada *coupled inductor* sisi primer sama dengan nilai arus konverter pada sisi *low voltage* yang didesain untuk beban 100 Watt. Maka besar arus yang mengalir ditentukan sebagai berikut [6]

$$I_L = \frac{P_L}{V_I} = \frac{100}{24} = 4,167A$$

$$I_{Lmax}$$
=120% x 4,167=5A

Perancangan arus induktor dibuat 120% dari arus nominal karena mempertimbangkan factor *ripple* pada arus induktor [6]. Maka jumlah split kawat induktor dapat ditentukan dengan cara sebagai berikut.

$$n_{kawat} = \frac{I_{max \text{ coupled}}}{I_{max \text{ kawat}}} = \frac{5A}{0.45} = 11,111 \approx 12$$

Jadi jumlah kawat yang digunakan yaitu 12 buah kawat. Setelah dilakukan pelilitan kawat di inti induktor, maka diukur parameter-parameter yang dibutuhkan. Induktansi sisi primer L_{11} merupakan nilai induktansi ketika sisi sekunder dibiarkan open. Sementara L_{22} merupakan nilai induktansi sisi primer ketika sisi primer dibiarkan open. Untuk menghitung L_{K12} yang merupakan induktansi bocor primer pada saat sisi sekunder dihubungsingkatkan, begitu pula nilai L_{K21} yang merupakan induktansi bocor sisi sekunder saat sisi primer dihubungsingkatkan.

Tabel 3.2 Parameter Kopel Induktor

Parameter	Nilai
L_{11}	494,8 H
L_{22}	7,302 mH
L _{Leak12}	1,6 uH
L _{Leak21}	29,8 uH

Sehingga dapat diketahui induktansi magnetisasi $L_{\rm M}$ dengan memasukkan ke persamaan 2.7, maka :

$$L_{\rm M} = \frac{12}{48} \sqrt{(494.8 \times 7302) \cdot (1.6 \times 7302)}$$

$$L_{M}$$
= 474,43 µh

Karena nilai induktansi magnetisasi yang didapatkan lebih besar dari $L_{M(min)}$, maka induktor akan beroperasi dalam keadaan CCM.

3.1.4 Penentuan Nilai Kapasitor

Pada rangkaian konverter dapat diketahui ada tiga buah kapasitor yaitu C_L , C_2 , dan C_H . Untuk C_H , desain *ripple* tegangan yang diinginkan adalah sebesar 0,01%. Dengan memasukkan parameter yang diketahui ke persamaan 2.66.

$$C_H = \frac{200 \times 0.52}{62500 \times 400 \times 0.0428} = 97 \mu F$$

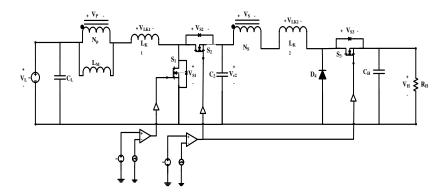
Karena nilai C_2 sama dengan C_H , maka nilainya juga 97 μF . Berikutnya untuk menentukan nilai kapasitor C_L dengan desain *ripple* tegangan sebesar 0,6%. Dimasukkan ke persamaan 2.74, maka

$$C_L = \frac{24x0,52}{62500x5,76x0,288} = 94\mu F$$

Nilai nilai kapasitor yang sudah didapatkan akan didesuaikan dengan yang ada pada pasaran. Oleh karena itu, dalam implementasi nanti akan diambil nilai kapasitor yang mendekati dan nilai tegangan yang sedikit lebih besar dari tegangan perhitungan kapasitor.

3.1.5 Penentuan Dioda dan MOSFET

Diode yang digunakan adalah diode MUR1560 yang memiliki kemampuan blocking voltage 600 volt. MOSFET yang digunakan adalah jenis IRFP4332 yang mampu menghantarkan arus mencapai 20 A dan tegangan drain-source maksimum sebesar 500 volt. Tegangan sumber pada MOSFET sebesar 12 volt DC. Driver MOSFET yang digunakan adalah jenis FOD3182 dengan tegangan sumber 12 volt DC.

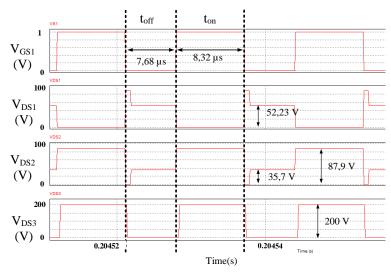

Berdasarkan perhitungan hasil desain, maka komponen-komponen yang diperlukan adalah sebagai berikut :

Tabel 3.3 Parameter komponen berdasarkan hasil perhitungan

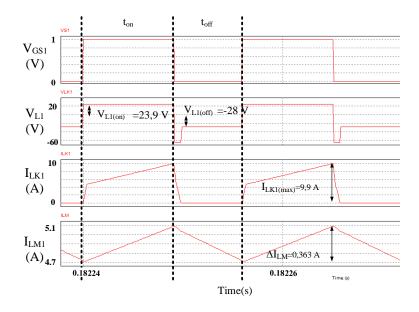
No.	Komponen	Nilai
1.	Tegangan Sumber V _L	24 Volt
2.	Tegangan Sumber V _H	200 Volts
3.	Daya	100 Watt
4.	Frekuensi switching	62,5 kHz
5.	Beban R _L	5,76 ohm
6.	Beban R _H	400 ohm
7.	Kapasitor C _L	97 μF
8.	Kapasitor C ₂	97 μF
9.	Kapasitor C _H	94 μF
10.	Coupled inductor (L _M)	479,19 μΗ
11.	Dioda	MUR1560
12.	MOSFET	IRFP332

3.2 Simulasi

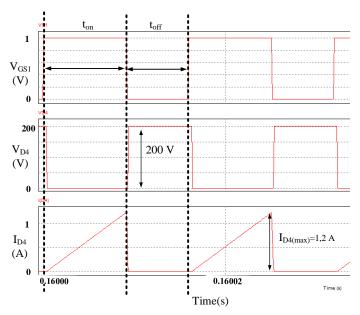
Simulasi dilakukan dengan menggunakan nilai parameter yang telah didesain dengan tujuan untuk memastikan bahwa konverter bekerja sesuai dengan desain. Simulasi rangkaian *boost converter* dilakukan dengan skema rangkaian pada Gambar 3.2 dan Gambar 3.3.


Gambar 3.2 Skema simulasi konverter saat mode discharging.

Gambar 3.3 Skema simulasi konverter saat mode *charging*.


3.2.1 Simulasi Mode Discharging

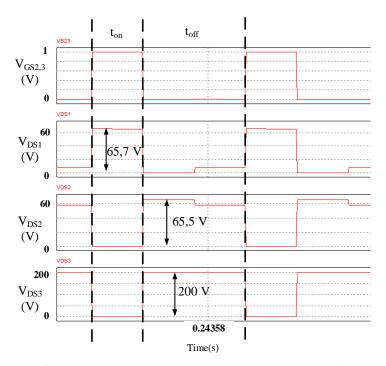
Seperti yang terlihat pada Gambar 3.2, pada mode *discharging* diberikan sumber tegangan de pada sisi *low voltage* sedangkan pada sisi *high voltage* diberikan beban R_H.


Gambar 3.4 Bentuk gelombang pensaklaran pada MOSFET mode discharging

Tegangan *low voltage* pada simulasi dibuat konstan yaitu sebesar 24 Volt DC dan tegangan *output* pada sisi *high voltage* sebesar 400 Volt DC dengan daya 100 Watt. Nilai *duty cycle* pada PWM yaitu sebesar 52% dan frekuensi 62500 Hz. Gambar 3.9 diatas menunjukkan proses *switching* yang terjadi pada MOSFET. Saat MOSFETdalam kondisi konduksi maka maka tegangan V_{DS1} akan bernilai nol. Hal ini menunjukkan ada arus yang mengalir melewati mosfet tersebut. Sedangkan pada Switch S_2 dan Switch S_3 muncul tegangan yang menunjukkan bahwa Dioda D_{s2} dan dioda D_{s3} dalam kondisi *reverse bias*. Sedangkan pada saat *switch* S_1 off maka akan muncul tegangan V_{DS1} . Kemudian Dioda D_{s2} dan dioda D_{s3} dalam kondisi *forward bias*.

 $\textbf{Gambar 3.5} \; \textbf{Gelombang arus induktor} \; I_{LK} \, \text{dan} \; I_{LM} \; \text{mode} \; \textit{discharging}$

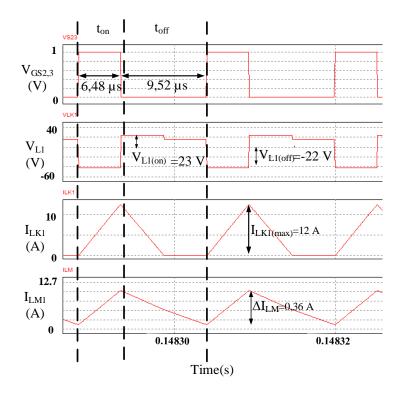
Gambar 3.5 menunjukkan bentuk gelombang arus pada induktor bocor dan induktor magnetisasi. Dari data diatas besar nilai rata-rata arus I_{Lk} yaitu 3,96 A dan memiliki nilai $I_{LK(max)}$ sama dengan 9,9 A dan nilai rata-rata I_{Lm} yaitu 4,037 A. Saat switch S_1 dalam kondisi on, maka $coupled\ inductor$ akan menyimpan energi. Kemudian ketika switch S_1 kondisi off, maka induktor akan melepaskan energi.



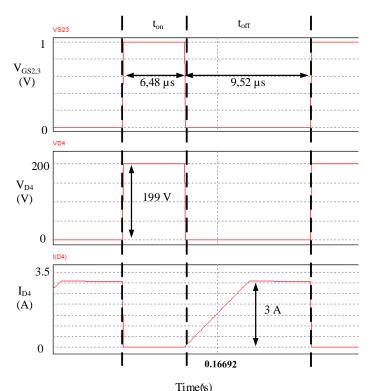
 $\begin{tabular}{lll} \textbf{Gambar 3.6} & \textbf{Gelombang tegangan dan arus pada dioda } (D_4) & \textbf{mode } \\ \textit{discharging} & \end{tabular}$

Seperti yang terlihat pada grafik, saat *switch* S_1 konduksi, maka nilai tegangan dioda bernilai nol karena dioda berada pada mode *forward bias*. Kemudian saat *switch* S_1 kondisi off maka muncul tegangan dioda sebesar 200 volt, pada saat ini dioda berada dalam kondisi *reverse bias*. Arus dioda maksimum adalah 1,2 A.

3.2.2 Simulasi Mode Charging


Seperti yang terlihat pada Gambar 3.3, pada mode *charging* diberikan sumber tegangan de pada sisi *high voltage* sedangkan pada sisi *low voltage* diberikan beban R_L .

Gambar 3.7 Bentuk gelombang pensaklaran pada MOSFET di mode *charging*

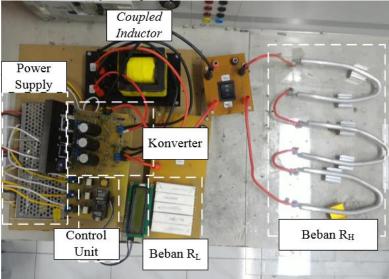

Tegangan *high voltage* pada simulasi dibuat konstan yaitu sebesar 200 Volt DC dan tegangan *output* pada sisi *low voltage* sebesar 24 Volt DC dengan daya 100 Watt. Nilai *duty cycle* pada PWM yaitu sebesar 40,5% dan frekuensi 62500 Hz. Gambar 3.7 diatas menunjukkan proses *switching* yang terjadi pada MOSFET.

Saat MOSFET *switch* S_2 dan S_3 dalam kondisi konduksi maka maka tegangan V_{DS2} dan V_{DS3} akan bernilai nol. Hal ini menunjukkan ada arus yang mengalir melewati mosfet tersebut. Sedangkan pada Switch S_1 muncul tegangan yang menunjukkan bahwa Dioda D_{s1} dalam kondisi *reverse bias*. Sedangkan pada saat *switch* S_2 dan S_3 off maka akan muncul tegangan V_{DS2} dan V_{DS3} . Kemudian Dioda D_{s2} dan dioda D_{s3} dalam kondisi *reverse bias*.

 $\textbf{Gambar 3.8} \ \ \text{Gelombang arus induktor} \ \ I_{LK} \ \text{dan} \ \ I_{LM} \ \text{mode} \ \ \textit{charging}$

Gambar 3.8 menunjukkan bentuk gelombang arus pada induktor bocor dan induktor magnetisasi. Dari data diatas besar nilai rata-rata arus $I_{Lk}\,$ yaitu 4,2 A dan nilai $I_{Lm}\,$ yaitu 12 A. Berkebalikan dengan mode discharge, saat switch S_3 dan S_4 dalam kondisi on, maka coupled inductor akan melepaskan energi. Kemudian ketika switch kedua switch dalam kondisi off, maka induktor akan menyimpan energi.

Gambar 3.9 Gelombang tegangan dan arus pada dioda (D₄) mode *charging*


Seperti yang terlihat pada grafik, saat *switch* S₂ dan S₃ konduksi, maka nilai tegangan dioda muncul tegangan sebesar 199 volt karena dioda berada pada mode *reverse bias*. Kemudian saat *switch* S₂ dan S₃ konduksi maka tegangan dioda bernilai nol volt, pada saat ini dioda berada dalam kondisi *forward bias* dan mucul arus maksimum sebesar 3 Ampere dan nilai arus rata-ratanya adalah 1,68 A.

3.3 Implementasi Konverter Bidirectional Double Boost

Pada subbab ini akan dijelaskan mengenai komponen-komponen yang digunakan pada implementasi konverter *bidirectional* berdasarkan desain yang telah dilakukan dengan memperhatikan komponen yang bisa didapatkan di pasaran. Perancangan implementasi dapat dikelompokkan

menjadi beberapa bagian, yaitu bagian konverter, *coupled inductor*, dan *control unit* (terdiri dari Arduino dan optocopler). Implementasi konverter

bidirectional ditunjukkan pada gambar 3.7.

Gambar 3.10 Implementasi konverter bidirectional

Perbedaan desain dan implementasi terletak pada komponen yang digunakan. Dalam proses desain beberapa komponen dianggap ideal, sedangkan dalam kondisi aktual, tidak ditemukan komponen yang ideal. Setiap komponen yang digunakan pasti memiliki rugi daya yang menyebabkan daya pada sisi keluaran lebih rendah daripada daya pada sisi masukan.

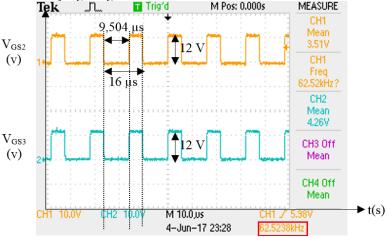

Halaman ini sengaja dikosongkan

BAB 4 HASIL PENGUJIAN DAN ANALISIS DATA

Pada bab ini akan dibahas mengenai hasil pengujian dan analisis hasil implementasi konverter *non-isolated dc-dc bidirectional double boost* dengan *coupled inductor*. Pengujian yang telah dilakukan diantaranya adalah pengujian sinyal PWM dan penyaklaran, pengujian arus dan tegangan pada *coupled inductor*, pengujian tegangan pada kapasitor dan dioda, pengujian efisiensi rangkaian konverter *non-isolated dc-dc bidirectional double boost* dengan *coupled inductor*. Semua pengujian dilakukan saat mode *discharging* dan mode *charging*.

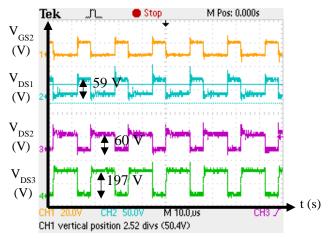
4.1 Pengujian Sinyal PWM dan Pensaklaran

Pengujian sinyal PWM dan pensaklaran bertujuan untuk mengetahui apakah sudah sesuai dengan perancangan dan simulasi. Pada penelitian ini frekuensi yang digunakan adalah 62,5 kHz. Pengamatan dilakukan pada sinyal kaki MOSFET sisi *gate-source* dan sisi *drain-source* dari ketiga MOSFET yang digunakan (S₁,S₂, dan S₃).



Gambar 4.1 Bentuk sinyal penskalaran MOSFET mode discharging

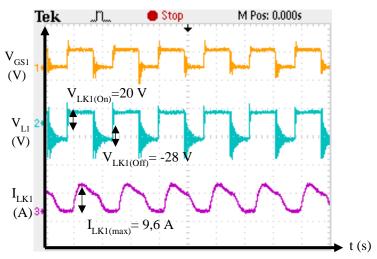
Gambar 4.1 menunjukkan bentuk penskalaran saat mode discharging. Seperti yang terlihat pada gambar, bahwa frekuensi pada


implementasi sebesar 62,5238 kHz, nilai ini sudah sama dengan nilai frekuensi desain sebesar 62,5kHz atau sebanding dengan nilai periode total adalah 16 $\mu s.$ Duty Cycle diatur pada nilai 0,52 sehingga akan didapatkan waktu t_{on} sama dengan 9,504 μs dan t_{off} sama dengan 6,496 $\mu s.$ Besarnya tegangan V_{GS1} bergantung pada tegangan supply pada driver MOSFET. Tegangan supply driver MOSFET yang digunakan saat implementasi adalah 12 volt, sehingga nilai dari V_{GS1} sama dengan 12 volt.

Pada saat V_{GS1} aktif , saat t_{on} , maka tegangan V_{DS} akan bernilai nol. Pada kondisi ini *switch* S_1 dalam kondisi konduksi. Seperti yang diketahui pada bab 2, bahwa pada mode *discharging switch* S_2 dan S_3 tidak dikontrol dengan PWM, tapi kita menggunakan dioda yang ada pada kedua *switch* tersebut (D_2 dan D_3). Pada grafik diketahui bahwa pada saat V_{GS1} aktif, timbul tegangan pada V_{DS2} dan V_{DS3} , ini menunjukkan bahwa kondisi dioda D_2 dan D_3 dalam kondisi *reverse bias*. Sebaliknya, saat tegangan V_{GS1} bernilai nol, maka tegangan di V_{DS2} dan V_{DS3} bernilai nol, hal ini menunjukkan bahwa dioda D_2 dan D_3 dalam kondisi *forward bias*. Untuk nilai tegangan maksimum yang didapatkan hampir mendekati dengan simulasi pada *software*. Dapat disimpulkan pengujian sinyal PWM dan pensaklaran telah mendekati dengan desain, simulasi, dan karakteristik yang diinginkan.

Gambar 4.2 Bentuk sinyal penskalaran MOSFET mode *charging*Gambar 4.2 menunjukkan bentuk penskalaran saat mode *charging*, pengujian dilakukan di sisi *gate-source* MOSFET switch S₂ dan

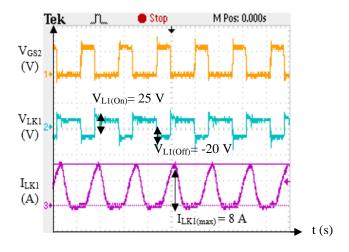
sisi *gate-source* switch S_3 . Seperti yang terlihat bahwa frekuensi pada mode *charging* juga sudah 62,52 kHz. Nilai ini sudah sama dengan nilai frekuensi desain sebesar 62,5kHz atau sebanding dengan nilai periode total adalah 16 μ s. *Duty Cycle* diatur pada nilai 0,405 sehingga akan didapatkan waktu t_{on} sama dengan 6,48 μ s dan t_{off} sama dengan 9,504 μ s. Besarnya tegangan V_{GS1} bergantung pada tegangan *supply* pada *driver* MOSFET. Tegangan *supply driver* MOSFET yang digunakan saat implementasi adalah 12 volt, sehingga nilai dari V_{GS1} sama dengan 12 volt.


Gambar 4.3 Bentuk sinyal pensaklaran pada semua *switch* dalam mode *charging*

Pada Gambar 4.3 diatas terlihat perbandingan antar grafik $V_{\rm GS2}$ dengan grafik $V_{\rm DS1}$, $V_{\rm DS2}$, dan $V_{\rm DS3}$. Pada saat $V_{\rm GS2}$ aktif, saat $t_{\rm on}$, maka tegagangan $V_{\rm DS2}$, dan $V_{\rm DS3}$ bernilai nol. Pada kondisi ini *switch* S_2 dan S_3 dalam kondisi konduksi. Berkebalikan dengan mode *discharging*, pada mode *charging switch* S_1 tidak dikontrol dengan PWM, tapi kita menggunakan dioda yang ada pada *switch* tersebut (D_1) . Terlihat pada grafik, bahwa saat $V_{\rm GS2}$ aktif, juga timbul tegangan pada $V_{\rm DS1}$ yang menunjukkan bahwa D_1 dalam kondisi *reverse bias*. Saat $V_{\rm GS2}$ bernilai nol, tegangan pada $V_{\rm DS1}$ juga bernilai nol, yang menunjukkan bahwa dioda dalam kondisi *forward bias*. Untuk bentuk gelombang pada masing-masing *switch* ini sudah sesuai dengan simulasi.

Pada implementasi, terlihat tegangan maksimum *switch* S_1 bernilai 59 volt, tegangan maksimum *switch* S_2 bernilai 60 volt, dan tegangan maksimum pada *switch* S_3 bernilai 197 volt. Terjadi perbedaan nilai antara simulasi dan implementasi, hal ini disebabkan karena adanya *drop* tegangan pada MOSFET dan dioda. Seperti yang diketahui bahwa komponen pada simulasi merupakan komponen ideal.

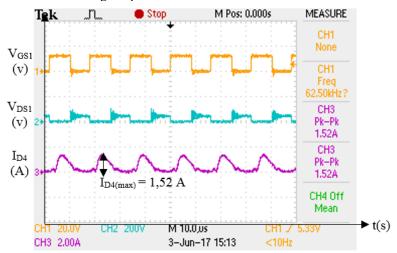
4.2 Pengujian Coupled Inductor


Pengujian pada *coupled inductor* dilakukan untuk melihat apakah sinyal dan nilai *coupled inductor* sudah sesuai dengan simulasi atau belum. Pada konverter ini tidak dapat dianalisis apakah konverter bekerja dalam mode operasi CCM atau DCM, dikarenakan tidak bisa melihat bentuk gelombang arus pada induktansi magnetisasi $L_{\rm M}$. Konverter dikatakan mampu bekerja dalam mode operasi CCM apabila nilai dari induktansi magnetisasi tidak kurang dari nilai $L_{\rm M}$ minimum atau selalu lebih besar dari nol.

Gambar 4.4 Bentuk gelombang arus pada induktor primer (L_P) mode discharging

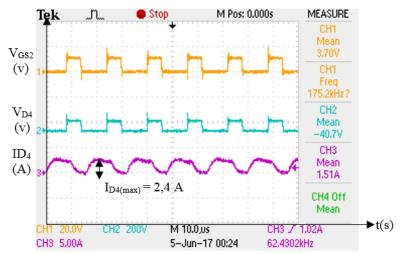
Gambar 4.3 diatas adalah bentuk gelombang arus induktansi bocor sisi primer I_{LK1} jika dibandingkan dengan grafik V_{GS1} . Seperti yang

terlihat pada gambar, saat saklar dalam keadaan konduksi maka *coupled inductor* L_1 akan mengalami *charging* sehingga nilai arusnya meningkat. Sedangkan ketika saklar dalam kondisi off, maka L_1 mengalami *discharging* arus akan menurun. Nilai puncak arus pada L_1 sebesar 9,6 A, sedangkan pada simulasi bernilai 9,9 A. Sehingga dapat disimpulkan bahwa karakteristik sinyal sudah sesuai dan nilai arus maksimum sudah mendekati dengan hasil simulasi.


Gambar 4.5 Bentuk gelombang arus pada induktor primer (L_P) mode *charging*

Gambar 4.4 diatas adalah bentuk gelombang arus induktansi bocor sisi sekunder I_{LK1} jika dibandingkan dengan grafik V_{GS2} . Seperti yang terlihat pada gambar, saat saklar dalam keadaan konduksi maka coupled inductor L_1 akan mengalami charging sehingga nilai arusnya meningkat. Sedangkan ketika saklar dalam kondisi off, maka L_1 mengalami discharging arus akan menurun. Nilai puncak arus pada L_1 sebesar 8 A, sedangkan pada simulasi bernilai 12 A. Untuk nilai tegangan induktor primer saat saklar dalam keadaan konduksi adalah 25 volt, sedangkan saat saklar dalam keadaan off nilai tegangan induktor primer sama dengan -20 volt. Dari hasil simulasi diketahui bahwa saat saklar konduksi tegangan induktor primer bernilai 23 volt dan saat saklar kondisi

off bernilai -22 volt. Sehingga dapat disimpulkan bahwa karakteristik sinyal sudah sesuai, dan nilai arus maksimum sudah mendekati dengan hasil simulasi. Faktor yang menyebabkan ketidaksamaan nilai adalah adanya ketidak idealan komponen.


4.3 Pengujian Dioda

Pengujian pada dioda D₄ dilakukan untuk melihat apakah sinyal dan nilai dioda sudah sesuai dengan simulasi atau belum. Dalam keadaan ideal dioda berfungsi seperti saklar.

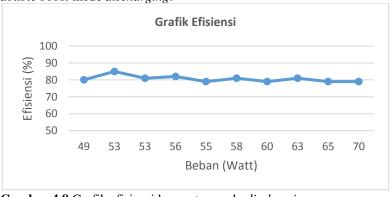
Gambar 4.6 Bentuk gelombang arus dioda (D₄) mode *discharging*.

Seperti yang terlihat pada Gambar 4.5 diatas, arus pada dioda D₄ dibandingkan dengan MOSFET V_{GS1}. Pada saat saklar dalam kondisi konduksi maka ada arus dioda yang bernilai 1,52 A, ini menunjukkan bahwa dioda dalam kondisi *forward bias*. Sedangkan saat switch kondisi off, maka dioda akan bernilai nol, yang menunjukkan bahwa dioda dalam kondisi *reverse bias*. Karakteristik gelombang diatas sudah sesuai dengan simulasi. Namun terjadi perbedaan nilai arus dioda, pada simulasi bernilai 1,2 A, faktor yang mengakibatkan perbedaan nilai arus yaitu ketidak idealan komponen saat implementasi.

Gambar 4.7 Bentuk gelombang arus dioda (D₄) mode *charging*.

Gambar 4.6 diatas menunjukkan bentuk gelombang arus pada dioda D₄ dibandingkan dengan tegangan *gate-source* dari *switch* 2. Pada saat *switch* dalam kondisi konduksi, ada arus yang melewati D₄, hal ini menunjukkan bahwa dioda dalam keadaan *forward bias*. Sedangkan saat *switch* dalam kondisi off, dioda D₄ bernilai nol. Nilai arus yang melewati dioda adalah 2,4 A, sedangkan pada simulasi bernilai 3 A. Bentuk gelombang pada implementasi sudah sama dengan hasil simulasi, namun ada perbedaan nilai pada dioda yang disebebkan karena adanya ketidakidealan komponen.

4.4 Pengujian Efisiensi Konverter


Pengujian ini dilakukan untuk mengetahui karakteristik efisiensi pada rangkaian konverter untuk daya *output* yang berbeda-beda. Pengujian ini dilakukan dengan memberi tegangan yang konstan saat beban diubah-ubah.Dengan perubahan beban tersebut didapatkan nilai daya *output* seperti pada tabel 4.1 dibawah. Pada mode *discharging* tegangan input ada pada sisi *low voltage* sebesar 24 volt. Sedangkan pada mode *charging*, tegangan input berada di sisi *high voltage* sebesar 200 volt. Untuk menghitung efisiensi dilakukan dengan cara membandingkan doya output dengan daya input pada konverter.

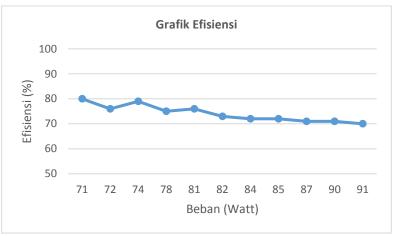
Tabel 4.1 Efisiensi konverter bidrectional double boost mode

discharging

Mode <i>Discharging</i>								
No.	Vin (V)	lin (A)	Pin (Watt)	Vout (V)	lout (A)	Pout (Watt)	Efisiensi	
1	24	2,56	61,44	183	0,27	49,41	80%	
2	24	2,61	62,64	183	0,29	53,07	85%	
3	24	2,7	64,8	182	0,29	52,78	81%	
4	24	2,82	67,68	180	0,31	55,8	82%	
5	24	2,9	69,6	178	0,31	55,18	79%	
6	24	3	72	177	0,33	58,41	81%	
7	24	3,12	74,88	175	0,34	59,5	79%	
8	24	3,21	77,04	174	0,36	62,64	81%	
9	24	3,41	81,84	171	0,38	64,98	79%	
10	24	3,69	88,56	167	0,42	70,14	79%	

Berikut adalah grafik efisiensi rangkaian konverter bidirectional *double boost* mode *discharging*:

Gambar 4.8 Grafik efisiensi konverter mode discharging.


Dari grafik yang tertera pada gambar 4.7 diatas dapat diketahui bahwa rangkaian konverter *double boost* saat mode *discharging* dapat bekerja optimal pada saat dibebani beban dengan daya antara 49 watt sampai 55 watt. Yang ditunjukan dengan nilai efisiensi yang cukup tinggi yaitu melebihi 80%. Seiring dengan peningkatan daya, efisiensi konverter cenderung menurun. Hal ini dikarenakan semakin besar daya yang diterapkan, maka arus yang mengalir akan semakin semakin besar. Sehingga rugi-rugi daya dan drop tegangan yang terjadi akan semakin besar.

Selanjutnya konverter diuji saat mode *charging*. Dengan tegangan input pada sisi *high voltage* bertegangan 200 volt. Berikut adalah grafik efisiensi konverter *bidirectional double boost* saat mode *charging*.

Tabel 4.2 Efisiensi konverter *bidrectional double boost* mode *charging*

Mode Charging								
No.	Vin (V)	lin (A)	Pin (Watt)	Vout (V)	lout (A)	Pout (Watt)	Efisiensi	
1	200	0,44	88	26,1	2,71	70,731	80%	
2	200	0,47	94	26,1	2,75	71,775	76%	
3	200	0,47	94	25,9	2,86	74,074	79%	
4	200	0,57	114	25,8	2,94	75,852	67%	
5	200	0,52	104	25,6	3,04	77,824	75%	
6	200	0,52	104	25,3	3,1	78,43	75%	
7	200	0,53	106	25,3	3,2	80,96	76%	
8	200	0,56	112	25	3,26	81,5	73%	
9	200	0,58	116	24,8	3,38	83,824	72%	
10	200	0,59	118	24,5	3,48	85,26	72%	
11	200	0,61	122	24,3	3,58	86,994	71%	
12	200	0,63	126	24,1	3,72	89,652	71%	

Berikut adalah grafik efisiensi rangkaian konverter bidirectional double boost mode charging:

Gambar 4.9 Grafik efisiensi konverter mode charging.

Dari grafik yang tertera pada gambar 4.8 diatas dapat diketahui bahwa rangkaian konverter *double boost* saat mode *charging* dapat bekerja optimal pada saat dibebani beban dengan daya antara 70 watt hingga 74 watt yang ditunjukan dengan nilai efisiensi 80%. Seiring dengan peningkatan daya, efisiensi konverter cenderung menurun. Hal ini dikarenakan semakin besar daya yang diterapkan, maka arus yang mengalir akan semakin semakin besar. Sehingga rugi-rugi daya dan drop tegangan yang terjadi akan semakin besar.

.

BAB 5 PENUTUP

Pada bab ini akan diuraikan beberapa kesimpulan dan saran dari serangkaian kegiatan penelitian yang dilakukan.

5.1 Kesimpulan

Berdasarkan pengujian yang telah dilakukan melalui simulasi dan implementasi konverter *bidirectional double boost* dengan *coupled inductor* dapat disimpulkan menjadi beberapa hal berikut:

- 1. Pada implementasi, saat konverter *bidirectional double boost* bekerja pada mode *discharging*, konverter mampu menaikkan tegangan dari 24 volt DC hingga menjadi 200 volt DC.
- 2. Pada implementasi, saat konverter *bidirectional double boost* bekerja pada mode *charging*, konverter mampu menurunkan tegangan dari 200 volt DC hingga menjadi 24 volt DC.
- 3. Efisiensi rata-rata konverter *bidirectional double boost* saat mode *charging* adalah 80% dan saat mode *discharging* adalah 81%.
- 4. Konverter *bidirectional double boost* dapat diimplementasikan ke sistem *photovoltaic* yang membutuhkan sistem energi cadangan.

5.2 Saran

Saran yang diberikan untuk pengembangan penilitian selanjutnya adalah:

- 1. Menggunakan komponen di pasaran yang memiliki efisiensi tinggi dan *losses* yang kecil.
- 2. Perlu dilakukan perhitungan *losses* pada masing-masing komponen.
- 3. Perlu adanya perbaikan dalam rancang bangun *coupled inductor* agar sesuai dengan hasil yang diinginkan.
- 4. Untuk kedepannya konverter ini dapat dihubungkan dengan *photovoltaic* agar dapat diketahui performasinya

DAFTAR PUSTAKA

- [1] Direktorat Jenderal Ketenagalistrikan Kementrian Energi dan Sumber Daya Mineral, Statistik Ketenagalistrikan 2013, Jakarta, 2013.
- [2] T.-J. Liang, "Analysis, Design, and Implementation of a Bidirectional Double-Boost DC-DC Converter," *IEEE*, vol. 50, no. 6, pp. 3955-3962, 2014.
- [3] L. Jiang, "A Novel Soft-Switching Bidirectional DC-DC Converter with Coupled Inductors," *IEEE*, vol. 49, no. 6, pp. 2730-2740, 2013.
- [4] M. Ashari, Sistem Konverter DC Desain Rangkaian Elektronika Daya, Surabaya: ITS Press, 2012.
- [5] K.-H. Chao, "Design and Implementation of a Bidirectional DC-DC Converter for Stand-Alone Photovoltaic Systems," *International Journal of Computer, Consumer and Control (IJ3C)*, vol. 2, no. 3, pp. 44-55, 2013.
- [6] L. R. Diana, "Practical Magnetic Design: Inductors and Coupled Inductors".
- [7] R. a. M. D. Jeba Sundari Newlin, "A Performance Comparison of Interleaved Boost Converter and Conventional Boost Converter for Renewable Energy Application," dalam *International Conference on Green High Performance Computing*, India, 2013.

LAMPIRAN

1. Tabel kawat tembaga AWG

AWG	Diameter [inches]	Diameter [mm]	Area [mm²]	Resistance [Ohms / 1000 ft]	Resistance [Ohms / km]	Max Current [A]	Max Frequency for 100% skin depth
1	0.2893	7.34822	42.4	0.1239	0.406392	119	325 Hz
2	0.2576	6.54304	33.6	0.1563	0.512664	94	410 Hz
3	0.2294	5.82676	26.7	0.197	0.64616	75	500 Hz
4	0.2043	5.18922	21.2	0.2485	0.81508	60	650 Hz
5	0.1819	4.62026	16.8	0.3133	1.027624	47	810 Hz
6	0.162	4.1148	13.3	0.3951	1.295928	37	1100 Hz
7	0.1443	3.66522	10.5	0.4982	1.634096	30	1300 Hz
8	0.1285	3.2639	8.37	0.6282	2.060496	24	1650 Hz
9	0.1144	2.90576	6.63	0.7921	2.598088	19	2050 Hz
10	0.1019	2.58826	5.26	0.9989	3.276392	15	2600 Hz
11	0.0907	2.30378	4.17	1.26	4.1328	12	3200 Hz
12	0.0808	2.05232	3.31	1.588	5.20864	9.3	4150 Hz
13	0.072	1.8288	2.62	2.003	6.56984	7.4	5300 Hz
14	0.0641	1.62814	2.08	2.525	8.282	5.9	6700 Hz
15	0.0571	1.45034	1.65	3.184	10.44352	4.7	8250 Hz
16	0.0508	1.29032	1.31	4.016	13.17248	3.7	11 k Hz
17	0.0453	1.15062	1.04	5.064	16.60992	2.9	13 k Hz
18	0.0403	1.02362	0.823	6.385	20.9428	2.3	17 kHz
19	0.0359	0.91186	0.653	8.051	26.40728	1.8	21 kHz
20	0.032	0.8128	0.518	10.15	33.292	1.5	27 kHz
21	0.0285	0.7239	0.41	12.8	41.984	1.2	33 kHz
22	0.0254	0.64516	0.326	16.14	52.9392	0.92	42 kHz
23	0.0226	0.57404	0.258	20.36	66.7808	0.729	53 kHz
24	0.0201	0.51054	0.205	25.67	84.1976	0.577	68 kHz
25	0.0179	0.45466	0.162	32.37	106.1736	0.457	85 kHz
26	0.0159	0.40386	0.129	40.81	133.8568	0.361	107 kHz
27	0.0142	0.36068	0.102	51.47	168.8216	0.288	130 kHz
28	0.0126	0.32004	0.081	64.9	212.872	0.226	170 kHz
29	0.0113	0.28702	0.0642	81.83	268.4024	0.182	210 kHz
30	0.01	0.254	0.0509	103.2	338.496	0.142	270 kHz
31	0.0089	0.22606	0.0404	130.1	426.728	0.113	340 kHz
32	0.008	0.2032	0.032	164.1	538.248	0.091	430 kHz
33	0.0071	0.18034	0.0254	206.9	678.632	0.072	540 kHz
34	0.0063	0.16002	0.0201	260.9	855.752	0.056	690 kHz
35	0.0056	0.14224	0.016	329	1079.12	0.044	870 kHz
36	0.005	0.127	0.0127	414.8	1360	0.035	1100 kHz
37	0.0045	0.1143	0.01	523.1	1715	0.0289	1350 kHz
38	0.004	0.1016	0.00797	659.6	2163	0.0228	1750 kHz
39	0.0035	0.0889	0.00632	831.8	2728	0.0175	2250 kHz
40	0.0031	0.07874	0.00501	1049	3440	0.0137	2900 kHz

2. Listing program arduino

```
#include <Wire.h>
#include <LCD.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal I2C lcd(0x27,2,1,0,4,5,6,7);
#define Button A3
#define PWMd 6
#define PWMc 5
int DutyCycle = 0;
int DCShow = 0;
int Flag = 0;
void setup() {
 // put your setup code here, to run once:
 lcd.begin(16,2);
 lcd.print("PWM");
 lcd.setBacklightPin(3,POSITIVE);
 lcd.setBacklight(HIGH);
 pinMode(Button, INPUT PULLUP);
 pinMode(PWMc, OUTPUT);
 pinMode(PWMd, OUTPUT);
 TCCR0B = TCCR0B \& 0b111111000 | 0x01;
}
void loop() {
 // put your main code here, to run repeatedly:
 if(digitalRead(Button)==LOW && Flag == 0) Flag = 1;
 if(digitalRead(Button)==HIGH && Flag == 1) Flag = 2;
 if(digitalRead(Button)==LOW && Flag == 3) Flag = 4;
 if(digitalRead(Button)==HIGH && Flag == 4) Flag = 5;
 if(Flag == 2)  {
  //DISCHARGE
```

```
DutyCycle = 133;
  analogWrite(PWMd, DutyCycle);
  analogWrite(PWMc, 0);
  lcd.setCursor(0,0);
  lcd.print("Discharge");
  lcd.setCursor(0,1);
  lcd.print("Duty Cycle : ");
  DCShow = map(DutyCycle, 0, 255, 0, 100);
  lcd.print(DCShow);
  lcd.print("%");
  Flag = 3;
 if(Flag == 5)  {
 //CHARGE
 DutyCycle = 103;
 analogWrite(PWMc, DutyCycle);
  analogWrite(PWMd, 0);
  lcd.setCursor(0,0);
  lcd.print("Charge ");
  lcd.setCursor(0,1);
  lcd.print("Duty Cycle : ");
  DCShow = map(DutyCycle, 0, 255, 0, 100);
  lcd.print(DCShow);
 lcd.print("%");
 Flag = 0;
 }
}
```

RIWAYAT HIDUP

Penulis buku Tugas Akhir dengan judul "Desain dan Implementasi Konverter Non-Isolated Dc-Dc Bidirectional Double Boost dengan Coupled Inductor untuk Aplikasi Photovoltaic" bernama lengkap Alifi Yuli Setyanto. Penulis yang akrab disapa Alifi lahir di Ambon pada tanggal 31 Juli 1995. Penulis telah menyelesaikan pendidikan tingkat dasar di SD Islam Al-Azhar 14 Semarang, tingkat menengah di SMP Islam Al-Azhar 14 Semarang,

pendidikan tingkat lanjut di SMA Negeri 3 Semarang dan pendidikan tingkat tinggi di Jurusan Teknik Elektro ITS;' aktif di organisasi Himpunan Mahasiswa Teknik Elektro departemen Kominfo. Penulis juga aktif menjadi asisten di Laboratorium Konversi Energi Listrik Teknik Elektro ITS.