

TUGAS AKHIR - MO141326

STUDI ANALITIS, NUMERIK DAN EKSPERIMEN OLAH GERAK STRUKTUR SPAR DAN DINAMIKA TEGANGAN SISTEM TAMBAT TIPE TAUT PADA KONDISI KEGAGALAN TALI TAMBAT

NAUFAL DIAZ ADITIA NRP. 4313 100 079

Dosen Pembimbing : Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. Ir. Murdjito, M.Sc. Eng.

DEPARTEMEN TEKNIK KELAUTAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER Surabaya 60111 2017

FINAL PROJECT - MO141326

ANALYTICAL, NUMERICAL AND EXPERIMENTAL STUDY OF SPAR MOTION AND MOORING TENSION ON DAMAGED MOORING LINE

NAUFAL DIAZ ADITIA NRP. 4313 100 079

Supervisors : Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. Ir. Murdjito, M.Sc. Eng.

OCEAN ENGINEERING DEPARTMENT FACULTY OF MARINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER Surabaya 60111 2017

STUDI ANALITIS, NUMERIK DAN EKSPERIMEN OLAH GERAK STRUKTUR SPAR DAN DINAMIKA TEGANGAN SISTEM TAMBAT TIPE *TAUT* PADA KONDISI KEGAGALAN TALI TAMBAT

LEMBAR PENGESAHAN TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Program Studi S-1 Departemen Teknik Kelautan Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember

Oleh :

NAUFAL DIAZ ADITIA

NRP. 4313 100 079

Disetujui oleh : 1. Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D..... (Pembimbing 1) 010 2. Ir. Murdjito, M.Sc., Eng. (Pembimbing 2) 3. Ir. Mas Murtedjo, M.Eng.(Penguji) 4. Agro Wisudawan, S.T., M.T.....(Penguji)

SURABAYA, JULI 2017

iii

Studi Analitis, Numerik dan Eksperimen Olah Gerak Struktur SPAR dan Dinamika Tegangan Sistem Tambat Tipe *Taut* pada Kondisi Kegagalan Tali Tambat

Nama	: Naufal Diaz Aditia
NRP	: 4313 100 079
Jurusan	: Teknik Kelautan FTK ITS
Dosen Pembimbing	: Prof. Ir. Eko Budi Djatmiko, M.Sc. Ph.D
	. Ir. Murdjito, M.Sc

ABSTRAK

SPAR (Single Point Anchor Reservoir) merupakan struktur lepas pantai berbentuk silinder yang berfungsi untuk melakukan pengeboran, produksi, pemrosesan dan penyimpanan minyak bumi. Untuk menjaga SPAR tetap pada posisi awal yang direncanakan, dibutuhkan tali tambat yang dihubungkan ke jangkar dasar laut. Namun tingkat kegagalan sistem tali tambat dari segala jenis industri cukup tinggi. Data menunjukan telah terjadi 107 kecelakaan dari tahun 1997 sampai dengan 2012. Pada penelitian ini akan dilakukan analisa dinamika gerakan struktur dan tegangan tali yang terjadi ketika accidental limit state dengan menggunakan tiga metode yaitu analitis, numerik dan eksperimen. Analisa kondisi accidental pada penelitian ini menggunakan perangkat lunak OrcaFlex 9.2a. Kondisi accidental di sini maksudnya kondisi di mana tali tambat terputus pada titik fairlead. Terdapat kondisi accidental 1 dan accidental 2. Kondisi accidental 1 di mana line 1 terputus didapatkan tegangan tertinggi terjadi pada line 4. Kemudian line 4 terputus karena tegangan melebihi MBL, sehingga line 2 dan line 3 mengalami penurunan tegangan hingga menjadi 0 ton. Kondisi accidental 2 di mana line 2 diputus didapatkan hasil tegangan tertinggi terjadi pada line 1 dengan nilai maksimum pada saat trancient sebesar 1354,70 ton dan saat berada pada posisi kestabilan baru tegangan tali sebesar 862,92 ton

Kata kunci : SPAR, tension, mooring, accidental

Analitical, Numerical and Experimental Study of SPAR Motion and Mooring Tension on Damaged Mooring Line

Name	: Naufal Diaz Aditia
NRP	: 4313 100 079
Department	: Teknik Kelautan FTK ITS
Supervisor	: Prof. Ir. Eko Budi Djatmiko, M.Sc. Ph.D
	. Ir. Murdjito, M.Sc

ABSTRACT

SPAR (Single Point Anchor Reservoir) is an offshore floating structure which has cylindrical shape. SPAR has several functions that are drilling, production, processing and as a storage of crude oil. SPAR needs mooring to stay on the designed position. But in the last two decades, so many mooring accidents happened in this industry. There were 107 accidents from 1997 to 2012. Mooring accident leads the structure motion and the other mooring line tension to unstable condition. In this research dynamical motion of the SPAR and mooring tension due to accidental condition will be analyzed. There are three methods will be used in this research to analyze free floating condition and tethered condition, they are analitic, numeric and experiment. Analysis of mooring tension in the accidental condition using sea-keeping software. Accidental condition in this research is condition where one of the mooring line broken. There are two accidental conditions with different broken line. When line 1 broken, tension of line 4 is bigger than the other lines. Afterward tension of line 4 increase over MBL then line 4 collapsed, with the result that line 2 and 3 turn to loose that has no tension or 0 ton tension. In the condition where line 2 is broken, line 1 has the biggest tension that is 1354,70 ton at transient and maximum tension at new condition is 862,92 ton.

Keyword : SPAR, tension, mooring, accidental

KATA PENGANTAR

Dengan menyebut nama Allah SWT yang Maha Pengasih lagi Maha Penyayang, dengan ini penulis panjatkan puji dan syukur atas kehadirat-Nya yang telah melimpahkan rahmat-Nya kepada penulis sehingga penulis dapat menyelesaikan laporan tugas akhir dengan judul "Studi Analitis, Numerik dan Eksperimen Olah Gerak Struktur SPAR dan Dinamika Tegangan Sistem Tambat Tipe *Taut* pada Kondisi Kegagalan Tali Tambat".

Adapun laporan tugas akhir tentang menghitung olah gerak SPAR dan tegangan tali tambat ini telah penulis usahakan semaksimal mungkin dan tentunya dengan bantuan dari banyak pihak, sehingga dapat memperlancar proses pembuatan laporan tugas akhir ini. Oleh sebab itu, penulis juga ingin menyampaikan rasa terima kasih yang sebesar-besarnya kepada semua pihak yang telah membantu penulis dalam pembuatan laporan tugas akhir ini.

Akhirnya penyusun mengharapkan semoga dari laporan tugas akhir ini dapat diambil manfaat sebanyak-banyaknya sehingga dapat memberikan inspirasi terhadap pembaca. Selain itu kritik dan saran dari Anda, penulis tunggu untuk mengembangkan penelitian pada dinamika gerakan dan tegangan nantinya.

Surabaya, 2017

Naufal Diaz Aditia

UCAPAN TERIMAKASIH

Dalam penyusunan dan penulisan skripsi ini tidak terlepas dari bantuan, bimbingan serta dukungan dari berbagai pihak. Oleh karena itu dalam kesempatan ini penulis dengan senang hati menyampaikan terimakasih kepada yang terhormat:

- 1. Bapak Prof. Ir. Eko Budi Djatmiko, M.Sc selaku pembimbing 1 yang telah memberi bimbingan dalam menyelesaikan penelitian tugas akhir ini.
- 2. Bapak Ir. Murdjito, M.Sc selaku pembimbing 2 yang telah memberi bimbingan dalam menyelesaikan penelitian tugas akhir ini.
- 3. Bapak Condro dan Bapak Rudi yang telah membantu melaksanakan eksperimen di Laboratorium Hidrodinamika FTK ITS.
- 4. Anggota Tim SPAR yang telah membantu dan bekerja sama dari nol dalam melaksanakan penelitian tugas akhir ini.
- 5. Anggota pengurus Laboratorium Hidrodinamika ITS 2016/2017 yang telah membantu menjaga kebersihan laboratorium untuk tempat menyelesaikan penelitian tugas akhir ini.
- 6. Keluarga Wahyudi yang telah membantu doa dan materil dalam menyelesaikan penelitian tugas akhir ini.
- 7. Valtameri yang telah berjuang bersama dan berbagi rasa dalam menempuh tugas akhir.

Semoga Allah SWT memberikan balasan yang berlipat ganda kepada semuanya atas segala bentuk bantuannya kepada penulis dalam menyelesaikan tugas akhir ini.

DAFTAR ISI

HALAMAN	N JUDUL i	
LEMBAR PENGESAHANiii		
ABSTRAK		
ABSTRACT		
KATA PEN	GANTAR ix	
UCAPAN TERIMAKASIH xi		
DAFTAR IS	SI xiii	
BAB I	xxiii	
PENDAHU	LUAN	
1.1. LA	TAR BELAKANG 1	
1.2. PE	RUMUSAN MASALAH5	
1.3. TU	JJUAN PENELITIAN	
1.4. MA	ANFAAT 6	
1.5. BA	ATASAN MASALAH 6	
1.6. SIS	STEMATIKA PENULISAN 6	
BAB II		
TINJAUAN	PUSTAKA DAN DASAR TEORI9	
2.1. TI	NJAUAN PUSTAKA9	
2.2. DA	ASAR TEORI	
2.2.1.	Teori Permodelan	
2.2.2.	Gerak Bangunan Apung13	
2.2.3.	Beban Hidrodinamika14	
2.2.4.	Gaya Eksitasi 15	
2.2.5.	Gaya Reaksi 16	

2.2.6.	Persamaan Gerak	
2.2.7.	RAO	20
2.2.8.	Sistem Tambat	21
BAB III		23
METODOI	LOGI PENELITIAN	23
3.1. D	AGRAM ALIR	23
3.2. PI	ENJELASAN DIAGRAM ALIR	26
3.2.2.	Studi Literatur dan Pengumpulan Data	
3.2.2.	Permodelan Kondisi	27
3.2.3.	Permodelan Eksperimen dan Numerik	27
3.2.4.	Persiapan Model Fisik dan Parameter Hidrostatik	27
3.2.5.	Rancang Model dan Sistem Tambat	
3.2.6.	Distribusi Massa dan Parameter Tali Tambat	29
3.2.7.	Rancang Instrumen	
3.2.8.	Perhitungan Gerak Analitis, Numeris dan Eksperimen	
3.2.9.	Derhitungen Tegengen Numeris den Eksperimen	
	Fernitungan Tegangan Numens dan Eksperimen	
3.3. TI	MELINE	
3.3. TI BAB IV	MELINE	
3.3. TI BAB IV ANALISIS	DAN PEMBAHASAN	
3.3. TI BAB IV ANALISIS 4.1. PI	DAN PEMBAHASAN	
3.3. TI BAB IV ANALISIS 4.1. PH 4.1.1.	DAN PEMBAHASAN EMODELAN STRUKTUR Pemodelan Numerik	
3.3. TI BAB IV ANALISIS 4.1. PH 4.1.1. 4.1.2.	Perintungan Tegangan Numeris dan Eksperinten MELINE DAN PEMBAHASAN EMODELAN STRUKTUR Pemodelan Numerik Pemodelan Eksperimen	
3.3. TI BAB IV ANALISIS 4.1. PH 4.1.1. 4.1.2. 4.2. PH	MELINE DAN PEMBAHASAN EMODELAN STRUKTUR Pemodelan Numerik Pemodelan Eksperimen	
3.3. TI BAB IV ANALISIS 4.1. PI 4.1.1. 4.1.2. 4.2. PI 4.3. V.	MELINE MELINE DAN PEMBAHASAN EMODELAN STRUKTUR Pemodelan Numerik Pemodelan Eksperimen EMODELAN TALI TAMBAT	
3.3. TI BAB IV ANALISIS 4.1. PH 4.1.1. 4.1.2. 4.2. PH 4.3. V. 4.3.1.	MELINE MELINE DAN PEMBAHASAN EMODELAN STRUKTUR Pemodelan Numerik Pemodelan Eksperimen EMODELAN TALI TAMBAT ALIDASI MODEL Validasi Model Numerik	

4.4. IN	STRUMEN PENGUKURAN	55
4.4.1.	Kalibrasi Gyroscope	56
4.4.2.	Kalibrasi Image Processing	60
4.4.3.	Kalibrasi Load Cell	64
4.5. RA	AO TERAPUNG BEBAS	73
4.5.1.	Metode Analitis	73
4.5.2.	Metode Numeris	80
4.5.3.	Metode Eksperimen	82
4.5.4.P	erbandingan RAO Metode Analitis, Numeris dan Eksperimen	89
4.6. RA	AO TERTAMBAT	90
4.6.1.	Kekakuan Tali Tambat	90
4.6.2.	Metode Analitis	96
4.6.3.	Metode Numeris	98
4.6.4.	Metode Eksperimen	101
4.6.5.	Perbandingan RAO Tertambat Metode Analitis, Numeris dan	
Eksperi	imen	107
4.7. TE	EGANGAN TALI	110
4.7.1.	Metode Numeris	111
4.7.2.	Metode Eksperimen	113
4.7.3.	Perbandingan RAO Tegangan Tertambat Metode Analitis, Nur	neris
dan Eks	sperimen	119
4.8. TE	GANGAN TALI KONDISI ACCIDENTAL	122
4.8.1.	Kondisi Accidental	122
4.8.2.	Pemodelan	123
4.8.3.	Analisa Tegangan	124
4.8.4.	Tegangan Terbesar	124

BAB V		
KESIM	PULAN DAN SARAN	
5.1.	KESIMPULAN	
5.2.	SARAN	
DAFTA	AR PUSTAKA	
LAMPI	RAN	

DAFTAR GAMBAR

Gambar 1.1. SPAR tipe <i>classic</i> (a), <i>truss</i> (b) dan <i>cell</i> (c). (Kumar, 2015)
Gambar 1.2. SPAR tipe <i>cell-truss</i> . (Zhang, et al., 2008)
Gambar 1.3. Presentase penyebab kegagalan tali tambat. (Carra, et al., 2015) 4
Gambar 1.4. SPAR model milik JIP. (Joint Industry Project, 1995) 4
Gambar 1.5. Konfigurasi model SPAR hasil modifikasi 5
Gambar 2.1. Enam Mode Gerakan Bangunan Apung. (Perez & Sanguinetti,
2006)
Gambar 2.2. Beban hidrodinamika pada struktur
Gambar 2.4. Catenary Mooring. (Team MORE, 2012)
Gambar 2.5. Taut Elastic Mooring. (Team MORE, 2012)
Gambar 3.1. Diagram Alir Pengerjaan
Gambar 3.2. Rancang instrumen
Gambar 4.1. Tampak isometri model numerik
Gambar 4.2. Tampak isometri model numerik dengan <i>meshing</i>
Gambar 4.3. Tampak atas model numerik dengan <i>meshing</i>
Gambar 4.4. Tampak depan model numerik dengan <i>meshing</i>
Gambar 4.5. Tampak depan model fisik (a), Tampak geladak (b) dan Fairlead
model (c)
Gambar 4.7. Desain pemberat dan ulir
Gambar 4.9. Bahan tali tambat
Gambar 4.10. Skenario tes pendulum kondisi 1 untuk perhitungan radius girasi.
Gambar 4.11. Tes pendulum kondisi 1 52

Gambar 4.12. Skenario tes pendulum kondisi 2 untuk perhitungan radius girasi.
Gambar 4.13. Tes pendulum kondisi 2
Gambar 4.14. Instrumen gyroscope
Gambar 4.15 geladak dan busur
Gambar 4.16. <i>Gyroscope</i> pada geladak model fisik
Gambar 4.17. Keluaran Arduino pada sudut 0° searah jarum jam
Gambar 4.18. <i>Gyroscope</i> dan geladak saat proses kalibrasi
Gambar 4.19. Keluaran Arduino dengan sudut yang dibentuk
Gambar 4.20. Sketsa model fisik dalam Image Processing
Gambar 4.21. Kamera dan bola yang ditinjau
Gambar 4.22. Konfigurasi geladak dengan objek yang ditinjau
Gambar 4.23. Webcam Logitech c270 dengan lensa <i>fixed focus</i>
Gambar 4.24. Model fisik dengan bola merah yang digunakan dalam analisa
gerak model menggunakan <i>image processing</i> 63
Gambar 4.25. Background image yang digunakan sebagai gambar acuan
Gambar 4.26. Keluaran datalog dari data <i>frame</i> yang dihasilkan
Gambar 4.27. Keluaran grafik dari data <i>frame</i> yang dihasilkan untuk gerakan
heave dan surge64
Gambar 4.28. Konfigurasi Load Cell (A), HX711 (B) dan Arduino UNO (C)
(Layad Circuit, 2010)
Gambar 4.29. Instrumen <i>Load Cell</i> dan arah beban
Gambar 4.30. Keempat Load Cell yang digunakan
Gambar 4.31. Beban Kalibrasi 1000 g (A), 500 g (B), 200 g (C), 100 g (D)
dan 50 g (E)
Gambar 4.32. Grafik kalibrasi <i>Load Cell</i> 1
Gambar 4.33. Grafik kalibrasi <i>Load Cell</i> 2

Gambar 4.34. Grafik kalibrasi <i>Load Cell</i> 3.	71
Gambar 4.35. Grafik kalibrasi Load Cell 3	72
Gambar 4.36. Grafik RAO surge analitis	75
Gambar 4.37. Grafik RAO <i>heave</i> analitis	77
Gambar 4.38. Grafik RAO <i>pitch</i> analitis	80
Gambar 4.39. Grafik RAO surge numerik.	81
Gambar 4.40. Grafik RAO <i>heave</i> numerik	81
Gambar 4.41. Grafik RAO <i>pitch</i> numeris	82
Gambar 4.42. Konfigurasi tali penahan <i>drift</i>	82
Gambar 4.43. Model SPAR kondisi terapung bebas	83
Gambar 4.45. Kode eksperimen.	83
Gambar 4.46. Time history instrumen image processing untuk gerakan surge	2 84
Gambar 4.47. Time history instrumen image processing untuk gerakan heave	284
Gambar 4.48. Time History instrumen gyroscope untuk gerakan pitch	85
Gambar 4.49. Grafik RAO surge hasil eksperimen	86
Gambar 4.50. Grafik RAO <i>heave</i> hasil eksperimen.	87
Gambar 4.51. Grafik RAO <i>pitch</i> hasil eksperimen.	88
Gambar 4.52. Perbandingan RAO surge secara analitis, numeris dan eksperin	men.
	89
Gambar 4.53. Perbandingan RAO heave secara analitis, numeris dan eksperi	men.
	89
Gambar 4.54. Perbandingan RAO <i>pitch</i> secara analitis, numeris dan eksperir	nen. 90
Gambar 4.55. Konfigurasi SPAR	92
Gambar 4.56. Parameter geometris tali tambat. (Al-Solihat dan Nahon 2015) 93
Gambar 4.57. Titik bayangan (Jain 1980)	, 95 95
Gambar 4.58. RAO Surge tertambat metode analitis	96
Sumour neof ferro Surge tertainout metode unuffitib.	

Gambar 4.59. RAO <i>heave</i> tertambat metode analitis
Gambar 4.60. RAO <i>Pitch</i> tertambat metode analitis
Gambar 4.61. Kondisi tertambat dalam MOSES98
Gambar 4.62. RAO <i>surge</i> tertambat metode numerik
Gambar 4.63. RAO <i>heave</i> tertambat metode numerik
Gambar 4.64. RAO <i>pitch</i> tertambat metode numerik
Gambar 4.65. Konfigurasi eksperimen model fisik tertambat
Gambar 4.66. Ekseperimen SPAR Tertambat101
Gambar 4.67. <i>Time history</i> instrumen <i>image processing</i> untuk gerakan <i>heave</i> tertambat
Gambar 4.68. <i>Time history</i> instrumen <i>image processing</i> untuk gerakan <i>surge</i> tertambat
Gambar 4.69. <i>Time History</i> instrumen <i>gyroscope</i> untuk gerakan <i>pitch</i> tertambat.
Gambar 4.70. Grafik RAO surge tertambat eksperimen
Gambar 4.71. Grafik RAO <i>heave</i> tertambat eksperimen
Gambar 4.72. Grafik RAO <i>pitch</i> tertambat eksperimen
Gambar 4.73. Perbandingan RAO <i>surge</i> tertambat metode analitis, metode numeris dan eksperimen
Gambar 4.74. Perbandingan RAO <i>heave</i> tertambat secara analitis, numeris dan eksperimen
Gambar 4.75. Perbandingan RAO <i>pitch</i> tertambat secara analitis, numeris dan eksperimen
Gambar 4.76. Posisi <i>Line</i> I, II, II dan IV111
Gambar 4.77. Kondisi <i>Load Cell</i> dalam air111
Gambar 4.78. Permodelan tali tambat dengan menggunakan MOSES EDITOR.

Gambar 4.79. RAO Tension tali tambat I dan IV metode numerik
Gambar 4.80. RAO Tension tali tambat II dan III metode numerik 113
Gambar 4.81. <i>Time history</i> instrumen <i>load cell</i> tali tambat 1 114
Gambar 4.82. <i>Time History</i> instrumen <i>load cell</i> tali tambat 3 115
Gambar 4.83. <i>Time history</i> instrumen <i>load cell</i> tali tambat 4 115
Gambar 4.84. Grafik RAO tegangan tali tambat <i>load cell</i> 1 hasil eksperimen. 116
Gambar 4.85. Grafik RAO tegangan tali tambat <i>load cell</i> 3 hasil eksperimen. 117
Gambar 4.86. Grafik RAO tegangan tali tambat <i>load cell</i> 4 hasil eksperimen. 119
Gambar 4.87. Perbandingan RAO <i>Tension line</i> I tertambat metode numeris dan eksperimen
Gambar 4.88. Perbandingan RAO <i>Tension line</i> II tertambat metode numeris dan eksperimen
Gambar 4.89. Perbandingan RAO <i>Tension line</i> III tertambat metode numeris dan eksperimen
Gambar 4.90. Perbandingan RAO <i>Tension line</i> IV tertambat metode numeris dan eksperimen
Gambar 4.91. Skenario kondisi accidental 123
Gambar 4.92. Model numerik tampak atas pada OrcaFlex 9.2a 123
Gambar 4.93. Model numerik kondisi accidental 1 125
Gambar 4.94. Grafik tegangan line 1 kondisi accidental 1 125
Gambar 4.95. Grafik tegangan line 2 kondisi accidental 1 126
Gambar 4.96. Grafik tegangan line 3 kondisi accidental 1 126
Gambar 4.97. Grafik tegangan line 4 kondisi accidental 1 126
Gambar 4.98. Model numerik kondisi accidental 2 127
Gambar 4.94. Grafik tegangan line 1 kondisi accidental 2 128
Gambar 4.95. Grafik tegangan line 2 kondisi accidental 2 128
Gambar 4.96. Grafik tegangan line 3 kondisi accidental 2 128

DAFTAR TABEL

Tabel 2.1. Faktor skala dalam model Froude. (Cakhrabarti, 1994)12
Tabel 2.1. Faktor skala dalam model Froude. (Lanjutan) (Cakhrabarti, 1994) 13
Tabel 3.1. Data Mini SPAR. (Joint Industry Project, 1995)
Tabel 3.2. Data Towing Tank Laboratorium Hidrodinamika FTK ITS. (Jaelani,
2008)
Tabel 3.3. Properties tali tambat dari Mini SPAR. (Joint Industry Project, 1995)29
Tabel 3.4. Rincian tahapan pengerjaan penelitian
Tabel 4.1. Data dimensi struktur SPAR. (Joint Industry Project, 1995) 37
Tabel 4.2. Distribusi massa SPAR. (Joint Industry Project, 1995) 39
Tabel 4.3. Hasil penskalaan model SPAR sesuai dengan hukum Fraude. 40
Tabel 4.4. Hasil pengukuran berat material
Tabel 4.5. Perhitungan momen inersia massa PVC. 43
Tabel 4.6. Perhitungan momen inersia massa Blok A
Tabel 4.7. Perhitungan momen inersia massa Blok B
Tabel 4.8. Perhitungan momen inersia massa <i>topside</i>
Tabel 4.9. Perhitungan momen inersia massa ulir
Tabel 4.10 . Posisi pusat massa dari setiap material yang dipakai
Tabel 4.11. Pusat massa model. 46
Tabel 4.12. Radius girasi model. 46
Tabel 4.13. Perbandingan distribusi massa hasil skala dengan hasil perhitungan.
Tabel 4.14 . Properti mooring line wire rope. 47
Tabel 4.15. Spesifikasi tali tambat eksperimen. 48
Tabel 4.16. Spesifikasi tali tambat model fisik. 49

Tabel 4.17. Per	bandingan kekakuan prototype dengan data kekakuan wire rope	
acuan	5	50
Tabel 4.18. Dat	ta properties tali tambat yang digunakan pada model fisik5	50
Tabel 4.19. Per	bandingan dan validasi model numerik dengan data5	50
Tabel 4.19. Per	bandingan dan validasi model numerik dengan data. (Lanjutan).5	51
Tabel 4.20. Ukt	uran – ukuran yang digunakan pada pendulum tes5	53
Tabel 4.20. Ukt	uran – ukuran yang digunakan pada pendulum tes. (Lanjutan)5	54
Tabel 4.21. Per	iode dan frekuensi gerak pendulum model fisik kondisi 1 dan 2.5	54
Tabel 4.22. Val	lidasi model fisik5	55
Tabel 4.23. Kal	librasi searah jarum jam5	59
Tabel 4.24. Kal	librasi berlawanan jarum jam5	59
Tabel 4.25. Per	samaan <i>trendline</i> Arduino	50
Tabel 4.26. Dat	ta kalibrasi <i>load cell</i> 1 percobaan 16	57
Tabel 4.27. Dat	ta kalibrasi <i>load cell</i> 1 percobaan 26	58
Tabel 4.28. Dat	ta kalibrasi <i>load cell</i> 2 percobaan 1	59
Tabel 4.29. Dat	ta kalibrasi <i>load cell</i> 2 percobaan 26	59
Tabel 4.30. Dat	ta kalibrasi <i>load cell</i> 3 percobaan 17	70
Tabel 4.31. Dat	ta kalibrasi <i>load cell</i> 3 percobaan 27	70
Tabel 4.33. Dat	ta kalibrasi <i>load cell</i> 4 Percobaan 27	71
Tabel 4.34. Per	samaan Kalibrasi Keluaran Load Cell dengan Beban	12
Tabel 4.35. Per	bandingan <i>displacement</i> dari hasil data, analitik dan numerik7	13
Tabel 4.36. Para	ameter Perhitungan RAO7	14
Tabel 4.37. Para	ameter Perhitungan RAO <i>Heave</i>	16
Tabel 4.37. Para	rameter Perhitungan RAO Heave. (Lanjutan)	77
Tabel 4.38. Para	rameter Perhitungan RAO <i>Pitch</i> 7	79
Tabel 4.39. Res	spon gerak dan RAO gerakan <i>surge</i> hasil eksperimen	35

Tabel 4.40. Respon gerak dan RAO gerakan heave hasil eksperimen	86
Tabel 4.40. Respon gerak dan RAO gerakan heave hasil eksperimen. (Lanjutan))
	87
Tabel 4.41. Respon gerak dan RAO gerakan pitch hasil eksperimen.	88
Tabel 4.42. Perhitungan Pre Tension dan Panjang Akibat Pre-Tension.	91
Tabel 4.43. Sudut sebar tali.	91
Tabel 4.44. Kekakuan surge.	92
Tabel 4.45. Konfigurasi Sudut Tanah-Tali.	93
Tabel 4.46. Kekakuan Karakteristik.	94
Tabel 4.47. Kekakuan mode gerak heave.	94
Tabel 4.47. Kekakuan mode gerak heave. (Lanjutan)	95
Tabel 4.48. Kekakuan mode gerak <i>pitch.</i>	96
Tabel 4.49. Respon gerak dan RAO gerakan surge hasil eksperimen kondisi	
tertambat1	.04
Tabel 4.50. Respon gerak dan RAO gerakan heave hasil eksperimen kondisi	
tertambat 1	.05
Tabel 4.51. Respon gerak dan RAO gerakan pitch hasil eksperimen. 1	.06
Tabel 4.51. Respon gerak dan RAO gerakan pitch hasil eksperimen. (Lanjutan)	
	.07
Tabel 4.52. Perbandingan RAO surge tertambat	.08
Tabel 4.53. Perbandingan RAO heave tertambat. 1	.09
Tabel 4.54. Perbandingan RAO <i>pitch</i> tertambat. 1	.10
Tabel 4.55. Tension Force maksimum tiap tali tambat pada MOSES. 1	.12
Tabel 4.56. Data load cell 1 hasil eksperimen	.15
Tabel 4.56. Data load cell 1 hasil eksperimen. (Lanjutan)	.16
Tabel 4.57. Data load cell 3 hasil eksperimen	17

Tabel 4.58. Respon tegangan dan RAO tegangan tali tambat load cell 4 hasil
eksperimen118
Tabel 4.58. Respon tegangan dan RAO tegangan tali tambat load cell 4 hasil
eksperimen. (Lanjutan)118
Tabel 4.59. Perbandingan Tension Line I. 120
Tabel 4.60. Perbandingan Tension Line II. 120
Tabel 4.61. Perbandingan Tension Line III. 121
Tabel 4.62. Perbandingan Tension Line IV. 122
Tabel 4.63. Hasil analisa tegangan kondisi accidental 1
Tabel 4.64. Hasil analisa tegangan kondisi accidental 2

BAB I PENDAHULUAN

1.1. LATAR BELAKANG

Perkembangan jumlah penduduk saat ini meningkat sangat pesat. Hal ini berbanding lurus dengan perkembangan kebutuhan energi. Hingga abad 21 manusia masih banyak menggunakan energi berupa minyak dan gas bumi. Minyak dan gas bumi masih menjadi pilihan utama karena energi baru dan terbarukan masih dianggap sangat mahal. Oleh karena itu, teknologi pemanfaatan minyak dan gas bumi juga semakin berkembang. Hal ini menjadi konsekuensi logis dari tantangan yang semakin sulit dalam mendapatkan sumber minyak dan gas bumi. Eksplorasi sumber minyak dan gas bumi beralih ke perairan laut yang lebih dalam karena mulai tidak produktifnya sumur minyak dan gas bumi di perairan dangkal.

Teknologi eksplorasi sumber minyak dan gas bumi di lepas pantai dapat menggunakan beberapa tipe struktur yaitu tipe struktur lepas pantai terpancang, struktur lepas pantai lentur dan struktur lepas pantai terapung. Struktur lepas pantai terpancang tidak lagi efisien untuk kondisi laut yang lebih dalam. Hal itu dikarenakan struktur lepas pantai terpancang membutuhkan rangka baja dari permukaan laut hingga dasar laut sehingga membutuhkan biaya yang besar jika struktur terpancang dilokasikan di perairan laut dalam. Perusahaan membutuhkan teknologi yang lebih hemat biaya.

Teknologi SPAR *Platform* dianggap lebih efektif biaya dan fleksibel dalam pengeboran, produksi, pemrosesan dan penyimpanan minyak dan gas bumi di laut dalam (Islam, et al., 2011). SPAR dalam konteks ini terdiri dari vertikal silinder yang memiliki daya apung untuk menopang fasilitas tetap di atas permukaan air (Joint Industry Project, 1995). SPAR merupakan struktur yang unik karena memiliki karakteristik titik apung yang berada di atas titik berat sehingga tidak akan terbalik (Sinsabvarodom & Widjaja, 2016).

Terdapat empat jenis SPAR *platform* yaitu tipe *classic*, tipe *cell* dan tipe *cell-truss* (Islam, et al., 2012). Tipe *classic* memiliki *hard tank* berbentuk silinder dengan tanki ballast berada pada bagian bawah struktur. Sedangkan struktur *truss* pada tipe *truss* yang terdiri dari empat kaki orthogonal dengan *X-brace* pada tiap kaki serta *heave plates* yang berfungsi untuk menambah kekakuan struktur. Pada bagian bawah struktur *truss* terdapat *soft tank* yang berfungsi sebagai tanki ballast. Kemudian untuk tipe *cell* memiliki silinder bagian tengah dengan diameter lebih besar daripada silinder bagian luar. Silinder bagian luar memiliki panjang yang berbeda-beda, pada bagian bawah silinder yang lebih panjang terdapat *soft tank* seperti pada tipe *truss* yang berfunsi untuk tanki ballast. Sedangkan yang terakhir tipe *cell-truss* SPAR merupakan gabungan antara tipe *truss* dan tipe *cell*, yang mengambil keunggulan dari dua tipe tersebut.

Gambar 1.1. SPAR tipe *classic* (a), *truss* (b) dan *cell* (c). (Kumar, 2015)

Gambar 1.2. SPAR tipe *cell-truss*. (Zhang, et al., 2008)

Awalnya SPAR digunakan sebagai *marker buoy* dan alat ukur data oceanografi yang dinamakan FLIP (*Floating Instrument Platform*) dibangun pada tahun 1961. Kemudian seiring waktu fungsi SPAR berkembang menjadi tempat penyimpanan minyak mentah dan *offloading platform* di *North Sea* yang dinamakan *The Brent Spar*. Semakin berkembangnya kebutuhan pengeboran dan produksi minyak dan gas di perairan laut dalam, maka fungsi SPAR berubah menjadi *platform* multi fungsi yaitu dapat melakukan pengeboran, produksi, pemrosesan dan penyimpanan minyak dan gas bumi. SPAR dengan fungsi produksi yang pertama adalah *Neptune SPAR* milik Oryx (sekarang Anadarko). Neptune SPAR memiliki tipe *classic* yang dihubungkan pada enam titik tali tambat. Selain itu SPAR *platform* juga mulai dikembangkan untuk fasilitas turbin angin lepas pantai (Karimiad, 2011).

Tujuan penggunaan sistem tambat adalah untuk menjaga struktur terapung tetap pada posisi yang direncanakan. Biasanya tali tambat berupa *heavy chain, steel wire ropes* dan/atau *synthetic polyester ropes* yang dihubungkan ke jangkar di dasar laut (Stendal, 2015). Tingkat kegagalan sistem tali tambat dari segala industry ini cukup tinggi. Drori (2015) mencatat telah terjadi 107 kecelakaan tali tambat pada 73 fasilitas dari segala industry antara tahun 1997 sampai dengan 2012. Disebutkan bahwa dari 107 kecelakaan 51 kejadian diantaranya adalah kegagalan satu tali tambat. Kecelakaan tali tambat dapat disebabkan beberapa faktor, dari hasil survey

yang dilakukan Carra et al (2015) disebutkan bahwa 20% kecelakaan tali tambat disebabkan oleh kelelahan material, 17% disebabkan oleh *deployment*, dan 11% disebabkan oleh korosi.

Gambar 1.3. Presentase penyebab kegagalan tali tambat. (Carra, et al., 2015)

Pada penelitian ini akan dilakukan analisa tentang gerakan SPAR dan tegangan yang terjadi akibat kegagalan tali tambat di mana salah satu tali tambat terputus. Analisa gerakan dan tegangan dibutuhkan untuk mengetahui kondisi yang terjadi paska terjadinya kecelakaan. Konfigurasi model yang digunakan mengacu pada eksperimen SPAR milik JIP yang dilakukan penskalaan ulang menyesuaikan kondisi Laboratorium Hidrodinamika FTK ITS. SPAR milik JIP ini memiliki tipe *classic* dengan empat titik tali tambat.

Gambar 1.4. SPAR model milik JIP. (Joint Industry Project, 1995)

Gambar 1.5. Konfigurasi model SPAR hasil modifikasi.

Penelitian ini bertujuan untuk mengetahui kondisi gerakan struktur dan tegangan tali tambat paska kecelakaan tali tambat. Putusnya tali tambat pada lokasi yang berbeda akan mengakibatkan respon gerakan struktur dan tegangan tali tambat yang berbeda.

1.2. PERUMUSAN MASALAH

- 1. Berapa respon gerakan (*surge, heave dan pitch*) pada *SPAR* kondisi terapung bebas?
- 2. Berapa respon gerakan (*surge, heave dan pitch*) dan tegangan tali maksimum pada *SPAR* kondisi tertambat?
- 3. Berapa tegangan tali maksimum pada SPAR kondisi accidental?

1.3. TUJUAN PENELITIAN

- 1. Mengetahui respon gerakan (*surge, heave dan pitch*) pada *SPAR* kondisi terapung bebas.
- 2. Mengetahui respon gerakan (*surge, heave dan pitch*) dan tegangan tali maksimum pada *SPAR* kondisi tertambat.
- 3. Mengetahui tegangan tali maksimum pada SPAR kondisi accidental.

1.4. MANFAAT

Manfaat yang diharapkan adalah penelitian ini digunakan sebagai salah satu acuan dan pertimbangan dalam analisa *accidental limit state* pada *classic* SPAR dengan empat tali tambat.

1.5. BATASAN MASALAH

Berikut merupakan batasan masalah dalam penelitian ini.

- 1. Permodelan struktur dilakukan dengan permodelan fisik dan numerik.
- 2. Analisa dilakukan pada mini SPAR model dari JIP.
- 3. Permodelan fisik struktur dilakukan di Laboraturium Hidrodinamika FTK ITS dengan kedalaman *towing tank* \pm 2 meter.
- 4. Gelombang yang digunakan pada permodelan adalan gelombang reguler.
- 5. Teori gelombang yang digunakan adalah teori gelombang Airy.
- 6. Gerakan struktur yang ditinjau adalah *surge, heave* dan *pitch*.
- 7. Gerak SPAR merupakan gerak uncoupled.
- 8. Beban yang diperhitungkan hanya beban gelombang.
- 9. Tali tambat berjumlah empat buah dan simetris.
- 10. Arah gelombang yang ditinjau adalah dari depan (head seas).
- 11. Efek hidrodinamika dari substruktur tidak diperhitungkan.
- 12. Interaksi sistem tambat dengan tanah diabaikan.
- Kondisi *accidental* hanya dianalisa pada frekuensi natural tali dan arah pembebanan 0°.

1.6. SISTEMATIKA PENULISAN

BAB I PENDAHULUAN

Bab ini menjelaskan tentang kondisi dan masalah yang melatarbelakangi penelitian sehingga penting untuk dilakukan, perumusan masalah, tujuan penelitian, manfaat penelitian, batasan masalah dari penelitian ini, serta sistematika laporan yang akan disusun.

BAB II DASAR TEORI

Bab ini menjelaskan dasar-dasar teori yang digunakan dan akan menjadi acuan dalam penelitian ini, persamaan-persamaan, serta kode yang digunakan dalam penelitian ini.

BAB III METODOLOGI DAN PERCOBAAN

Bab ini menjelaskan metode atau cara kerja yang digunakan percobaan dan permodelan, urutan analisis yang dilakukan unuk menyelesaikan permasalahan dan melakukan validasi dalam penelitian ini, beserta pembahasan data.

BAB IV ANALISA HASIL DAN PEMBAHASAN

Bab ini menjelaskan tentang pemodelan struktur dengan menggunakan software yang mendukung serta berisi analisis yang dilakukan dalam penelitian ini, pengolahan dan serta membahas hasil yang telah didapat dari eksperimen.

BAB V KESIMPULAN DAN SARAN

Bab ini menjelaskan tentang kesimpulan yang didapatkan dari hasil uji coba dan permodelan sesuai perumusan dan batasan masalah, analisa penelitian serta posisi hasil penelitian ini dengan hasil penelitian sebelumnya. Dalam bab ini juga disampaikan saran-saran sebagai pertimbangan untuk keperluan penelitian selanjutnya. Halaman ini sengaja dikosongkan

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

2.1. TINJAUAN PUSTAKA

Pengujian model classic SPAR sudah dilakukan oleh Joint Industry Project (1995) dan Chen et al (2001). Joint Industry Project (1995) melakukan pengujian gerakan dua model SPAR, Consortium SPAR dan Mini SPAR yang memiliki sarat air lebih dangkal, dengan kesimpulan SPAR yang memiliki sarat air lebih dangkal merespon gerakan pitch lebih besar daripada SPAR dengan sarat air yang dalam. Sedangkan Chen et al (2001) menemukan semakin dalam perairan semakin besar damping tali tambat mengurangi respon gerakan surge dan pitch pada SPAR. Agarwal dan Jain (2003) melakukan analisa perilaku SPAR pada gelombang regular dan didapatkan perubahan rasio redaman struktur tidak bepengaruh pada gerak surge dan pitch, namun berefek pada gerak heave secara signifikan. Zhang et al (2007) juga melakukan pengujian model SPAR, pengujian dilakukan dengan menggunakan gabungan dari tipe *truss* dan tipe *cell* yang kemudian dinamakan cell-truss SPAR. Keuntungan dari cell-truss SPAR memiliki respon gerak heave yang baik dan memudahkan saat konstruksi dan instalasi karena konsep cell-nya. Montasir et al (2008) dan Kurian et al (2012) membandingkan respon gerakan SPAR tipe classic dengan tipe truss di bawah pengaruh gelombang dan arus, kemudian didapatkan tipe truss memiliki respon yang lebih baik. Struktur tipe SPAR juga diadaptasi untuk pembuatan turbin angin terapung karena dianggap baik dalam mengatasi kondisi lingkungan yang ekstrim seperti di North Sea (Karimiad, 2011). Sudhakar dan Nallayarasu (2011) melakukan eksperimen fisik SPAR tipe *classic* dengan memvariasikan *pre-tension* tali tambat dan didapatkan setiap peningkatan pre-tension akan mengurangi puncak dari gerak heave. Islam et al (2011) menganalisa SPAR milik JIP dengan empat titik tali tambat untuk perairan Malaysia dan didapatkan respon gerak yang paling dominan adalah surge sementara untuk respon gerak pitch-nya sangat kecil. Islam et al (2012) melanjutkan studinya tentang SPAR di perairan Malaysia dan

didapatkan SPAR tepat untuk perairan Malaysia karena dianggap efisien dan efektif biaya. Sementara Feng et al (2012) dan Mohammed et al (2012) melakukan analisa SPAR tipe *truss* dengan pengaruh terputusnya beberapa tali tambat, hasilnya adalah gerakan *surge* lebih signifikan berubah daripada gerak *heave* dan *pitch* yang relatif konstan. Kurian et al (2013) dan Ng et al (2014) melakukan analisa SPAR tipe *classic* pada pengaruh *short crested wave* dan didapatkan nilai RAO perlahan berkurang seiring dengan nilai frekuensi gelombang yang meningkat.

2.2. DASAR TEORI

2.2.1. Teori Permodelan

Dalam melakukan pemodelan perlu diperhatikan agar model dapat merepresentasikan perilaku geometri struktur, aliran fluida dan interaksi antara keduanya. Oleh karena itu, harus dicari kesamaan dalam geometri, kinematika fluida, dan dinamika dari struktur yang dikenai oleh fluida di sekitarnya (Munson, 2009).

1. Kesamaan Geometri

Model yang akan dibuat harus memiliki kesamaan bentuk, tetapi bisa berbeda dimensi. Model yang dibuat disesuaikan dengan suatu faktor skala, sehingga sebanding dengan prototipe yang dijadikan acuan. Rasio skala tersebut dapat diasumsikan dengan rasio skala konstan diantara dimensi model dan prototipe. Jika seluruh bentuk dan dimensi model sebanding dengan prototipe, maka dapat dikatakan keduanya sama secara geometri. Rasio ini selanjutnya akan digunakan sebagai faktor skala untuk model yang didefinisikan sebagai λ .

$$\frac{l_p}{l_m} = a \tag{2.1}$$

dengan,

$$l_p$$
 = dimensi prototype (diameter/panjang/dll)
 l_m = dimensi model (diameter/panjang/dll)
 a = rasio skala
2. Kesamaan Kinematik

Rasio dari kecepatan dan percepatan yang digunakan dalam model harus dijaga agar tetap konstan. Rasio dari kecepatan pada prototipe dengan kecepatan model yang bersesuaian harus konstan. Hal ini berlaku pada seluruh kecepatan termasuk kecepatan partikel fluida, angin, *towing*, model pada arah tertentu. Sama seperti sebelumnya, rasio dari percepatan model harus sama dengan prototipe, tetapi dengan rasio yang berbeda dengan kecepatan. Ketika percepatan dan kecepatan model sudah sama dengan prototipe, maka keduanya dapat dikatakan memiliki kesamaan kinematik.

3. Kesamaan Hidrodinamik

Hukum skala dalam kesamaan hidrodinamik ditentukan oleh rasio dari gaya. Ada beberapa hukum skala dalam kesamaan hidrodinamik berdasarkan masalah interaksi struktur dengan fluida. Kesamaan dinamik antara model dan prototipe didapatkan dengan memenuhi hukum kesamaan tersebut. Dalam kebanyakan kasus, hanya satu dari beberapa hukum skala tersebut yang dapat memenuhi model struktur. Oleh karena itu, hal penting yang perlu dipahami adalah proses fisik yang dialami oleh struktur. Kemudian memilih hukum skala yang paling penting yang mengatur proses tersebut.

4. Hukum Model Froude

Bilangan froude didefinisikan sebagai perbandingan antara gaya inersia terhadap gaya gravitasi yang dihasilkan oleh benda pada suatu medium. Bilangan froude didefinisikan dengan persamaan,

$$Fr = \frac{u^2}{(gD)} \tag{2.2}$$

Model froude harus memenuhi hubungan,

$$\frac{u_p^2}{(gD_p)} = \frac{u_m^2}{(gD_m)}$$
(2.3)

Dengan mengasumsikan faktor skala kesamaan geometri adalah λ , hubungan antara model dengan prototipe untuk bermacam parameter dapat diperoleh. Tabel berikut merupakan faktor skala dari variabelvariabel yang umum digunakan dan memenuhi persyaratan model Froude.

VARIABLE	UNIT	SCALE	REMARKS					
		FACTOR						
<u>GEOMETRY</u>								
Length	L	λ	Any Characteristic dimension of					
			the object					
Area	L^2	λ^2	Surface area or projected area on a					
			plane					
Volume	L^3	λ^3	For any portion of the object					
Angle	None	1	e.g., between members or solid					
			angle					
Radius of Gyration	L	λ	Measured from a fixed point					
Moment of Inertia	L^4	λ^4						
Area								
Moment of Inertia	ML^2	λ^5	Taken about fixed point					
Mass								
Center of Gravity	L	λ	Measured from a reference point					
	KINE	MATICS & I	DYNAMICS					
Time	Т	$\lambda^{1/2}$	Same reference point (e.g., starting					
			time) is considered as zero time					
Acceleration	LT ⁻²	1	Rate of change of velocity					
Velocity	LT^{-1}	$\lambda^{1/2}$	Rate of change of displacement					
Displacement	L	λ	Position at rest is considered as					
			zero					
Spring Constant	<i>MT</i> -2	λ^2	Force per unit length of extension					
(Linear)								

Tabel 2.1. Faktor skala dalam model Froude. (Cakhrabarti, 1994)

VARIABLE	UNIT	SCALE FACTOR	REMARKS
Damping Coefficient	MT^{-1}	$\lambda^{5/2}$	Resistance (viscous) against
			oscillation
Damping Factor	None	1	Ration of damping and critical
			damping coefficient
Natural Period	Т	$\lambda^{1/2}$	Period at which inertia force =
			restoring force

Tabel 2.1. Faktor skala dalam model Froude. (Lanjutan) (Cakhrabarti, 1994)

2.2.2. Gerak Bangunan Apung

SPAR termasuk dalam jenis bangunan apung, bangunan apung pada umumnya bergerak dalam enam derajat kebebasan (Journee & Massie, 2001). Gerak bangunan apung dibagi menjadi dua kelompok yaitu gerak translasi dan gerak rotasi. Gerak-gerak tersebut adalah:

1. Gerakan translasional

Gerakan translasional adalah gerakan yang searah dengan arah sumbu. Gerakan translasional terdiri dari

- *Surging* : gerakan translasi pada arah sumbu x
- *Swaying* : gerakan translasi pada arah sumbu y
- *Heaving* : gerakan translasi pada arah sumbu z
- 2. Gerakan rotasional

Gerakan rotasional adalah gerakan yang membentuk sudut terhadap sumbu, gerakan rotasional ini terdiri dari :

- *Rolling* : gerakan rotasional terhadap sumbu x
- *Pitching* : gerakan rotasional terhadap sumbu y
- *Yawing* : gerakan rotasional terhadap sumbu z

Gambar 2.1. Enam Mode Gerakan Bangunan Apung. (Perez & Sanguinetti, 2006)

2.2.3. Beban Hidrodinamika

Semua struktur yang berada di air akan menerima beban hidrodinamika. Beban hidrodinamika yang diterima oleh struktur terapung dapat dibagi ke dalam dua sub-masalah (Faltinsen, 1990) yaitu:

- 1. Gaya dan momen yang diterima struktur terapung saat benda ditahan untuk berosilasi sewaktu gelombang mengenai struktur. Beban ini disebut sebagai beban akibat eksitasi gelombang. Beban ini secara umum disebut gaya eksitasi yang terdiri dari gaya tekanan (*Froude Krylov Force*) dan gaya difraksi.
- 2. Gaya dan momen yang diterima struktur terapung saat struktur digetarkan sesuai dengan frekuensi gelombang yang direncanakan. Beban hidrodinamika ini secara umum disebut gaya reaksi yang terdiri dari beban massa tambah, beban redaman dan beban kekakuan.

Gambar 2.2. Beban hidrodinamika pada struktur.

Sub-masalah 1 dan 2 tersebut dapat dihubungkan secara linear sehingga gaya hidrodinamika total pada struktur terapung merupakan penjumlahan sub-masalah 1 dan sub-masalah 2.

2.2.4. Gaya Eksitasi

Gaya eksitasi yang diterima struktur terjadi akibat adanya distribusi tekanan yang tidak merata dari gelombang. Dampak dari tekanan yang tidak merata ini disebut sebagai gaya Froude-Krylof (Faltinsen, 1990). Selain itu, pada struktur dengan ukuran besar keberadaan strukur juga akan mempengaruhi perubahan distribusi tekanan yang disebut gaya difraksi (Journee & Massie, 2001).

Persamaan gaya Froude-Kyrlov :

$$F_{FK_i} = \int p \, n_i \, dA \tag{2.4}$$

Distribusi tekanan gelombang di laut dalam untuk struktur didapat dengan menggabungkan persamaan potensial gelombang dengan persamaan Bernoulli. Sedangkan gaya difraksi pada struktur terapung perlu dilakukan peninjauan syarat batas dari setiap kasus dan memerlukan pendekatan matematis yang kompleks (Faltinsen, 1990).

$$p = \rho g \zeta_0 e^{kz} \sin(\omega t - kx) \tag{2.5}$$

dengan,

ρ	=	massa jenis air sekitar struktur
g	=	percepatan gravitasi
ζ_0	=	amplitudo gelombang
k	=	angka gelombang
Ζ	=	posisi di sumbu vertikal, dengan nilai 0 di permukaan air
ω	=	percepatan sudut gelombang
t	=	waktu

2.2.5. Gaya Reaksi

Gaya reaksi terdiri dari beban massa tambah, beban redaman dan beban kekakuan. Penjelasannya sebagai berikut :

a. Massa tambah (m_a)

Efek penambahan massa diakibatkan ikut bergeraknya fluida di sekitar benda (Newman, 1977). Ikut bergeraknya fluida tersebut memperbesar energi kinetik, sehingga diperlukan gaya eksternal. Gaya tersebut jika dibagi dengan percepatan benda, maka akan menghasilkan komponen massa. Massa inilah yang dianggap sebagai massa tambah (Sarpkaya, 2010). Massa tambah bergantung terhadap bentuk dan mode gerak benda.

$$F_a = a_i \ddot{\xi}_i \tag{2.6}$$

dengan,

i = mode gerak struktur dengan

1 (surge), 2 (sway), 3 (heave), 4 (roll), 5 (pitch) dan 6 (yaw)

a = koefisien massa tambah

 $\ddot{\xi}$ = respon percepatan gerak struktur

Gambar 2.3. Persamaan massa tambah untuk bentuk silinder. (Sarpkaya,

2010)

b. Redaman (c)

Redaman merupakan dampak yang didapat akibat adanya disipasi energi dari struktur (Newman, 1977). Redaman akan membuat struktur kehilangan energi kinetiknya. Jika struktur digetarkan di air yang tenang, maka energi kinetik struktur semakin lama semakin mengecil, hal inilah yang disebut sebagai redaman. Sama seperti massa tambah, nilai redaman bergantung dari bentuk benda dan mode gerak benda. Nilai koefisien redaman dapat dicari dengan analisa numeris (Cakhrabarti, 1994).

$$F_c = c_i \dot{\xi}_i \tag{2.7}$$

dengan,

i = mode gerak struktur dengan

1 (surge), 2 (sway), 3 (heave), 4 (roll), 5 (pitch) dan 6 (yaw)

c = koefisien redaman

 $\dot{\xi}$ = respon kecepatan gerak struktur

c. Kekakuan (k)

Ketika struktur terapung bergerak di permukaan air tenang, struktur tersebut mempunyai kekakuan untuk kembali ke posisi semula. Kekakuan tersebut didapat dari gaya reaksi yang berfungsi untuk mengembalikan posisi benda yang disebut gaya pengembali. Fenomena ini hanya terjadi pada tiga mode gerak struktur. Mode gerak tersebut adalah gerak *heave*, *pitch* dan *roll* (Djatmiko, 2012). Gaya ini dipengaruhi oleh karakter hidrostatik struktur.

$$F_c = c_i \xi_i \tag{2.8}$$

dengan,

i = mode gerak struktur dengan

1 (surge), 2 (sway), 3 (heave), 4 (roll), 5 (pitch) dan 6 (yaw)

k = koefisien redaman

 ξ = respon posisi gerak struktur

Nilai c dari *heave* (c_3) ,*roll* (c_4) dan *pitch* (c_5) adalah sebagai berikut

$$c_3 = \rho g A_{wp} \tag{2.9}$$

$$c_4 = \rho g V \overline{GM_T} \tag{2.10}$$

$$c_5 = \rho g V \overline{GM_L} \tag{2.11}$$

dengan,

 ρ = massa jenis air sekitar struktur

g = percepatan gravitasi struktur

 A_{wp} = luas permukaan di garis air

V = volume displacement struktur

 $\overline{GM_T}$ = jarak metacenter melintang

 $\overline{GM_L}$ = jarak metacenter memanjang

2.2.6. Persamaan Gerak

Analisa gerak bangunan apung dapat menggunakan hukum II Newton yaitu :

$$\sum F = m_i \ddot{\xi}_i \tag{2.12}$$

dengan,

i = mode gerak struktur dengan

1 (surge), 2 (sway), 3 (heave), 4 (roll), 5 (pitch) dan 6 (yaw)

 $\sum F$ = resultan gaya

m = massa struktur

 $\ddot{\xi}$ = percepatan struktur

Resultan gaya untuk benda terapung merupakan pengurangan gaya aksi dengan gaya reaksi. Gaya aksi dalam penelitian ini disebut juga gaya eksitasi.

$$\sum F = F_{eksitasi} - F_{reaksi}$$
(2.13)

Dengan memasukkan pengertian gaya eksitasi dan reaksi pada struktur terapung yang terkena gelombang, maka persamaan 2.10 dapat dikembangkan menjadi :

$$\sum F = F_{eksitasi} - (F_a + F_b + F_c)$$
(2.14)

dengan,

 $\sum F$ = resultan gaya

 F_a = gaya inersia

 F_b = gaya redaman

 F_c = gaya pengembali

Dengan memasukkan persamaan 2.3, 2.4 dan 2.5 ke persamaan 2.10; 2.11 maka didapatkan :

$$m_i \ddot{\xi}_i = F_{eks} - (a_i \ddot{\xi}_i + b_i \dot{\xi}_i + c_i \xi_i)$$
(2.15)

$$(m_i + a_i)\ddot{\xi}_i + b_i\dot{\xi}_i + c_i\xi_i = F_{eks}$$
(2.16)

dengan,

i = mode gerak struktur dengan

1 (surge), 2 (sway), 3 (heave), 4 (roll), 5 (pitch) dan 6 (yaw)

 F_{eks} = gaya eksitasi gelombang

m = massa struktur

a = koefisien massa tambah

- $\ddot{\xi}$ = respon percepatan gerak struktur
- c = nilai redaman sistem
- $\dot{\xi}$ = respon kecepatan gerak struktur
- k = kekakuan struktur

 ξ = respon posisis gerak struktur

Persamaan (2.13) merupakan persamaan yang tidak memperhatikan gerak kopel bangunan. Dalam pengertian itu, setiap mode gerak tidak mempengaruhi gerak benda yang lain. Di sisi lain, gerak kopel adalah persamaan gerak yang setiap mode geraknya bisa saling mempengaruhi mode gerak yang lainnya.

Pada kasus bangunan apung tertambat menggunakan persamaan gerak (Chen, et al., 2001)

$$\sum_{m=1}^{M} \sum_{j=1}^{6} \left[-\omega^2 \left(\delta_{nm} m_{jk}^{nm} + m_{ajk}^{nm} \right) - i\omega c_{jk}^{nm} + \delta_{nm} k_{jk} + k_{jk}^{*nm} \right]$$

$$= F_j^n$$
(2.17)

dengan,

 $n = 1, 2, 3, \dots, M$ menunjukan jumlah n^{th} struktur,

 δ_{nm} = simbol Kronecker delta, mempunyai nilai 0 jika $n \neq m$ dan

 ma_{jk}^{nm} = matrik massa tambah untuk bangunan m^{th} akibat gerak bangunan sendiri (n = m), dan matriks massa tambah bangunan m^{th} akibat bangunan n^{th} $(n \neq m)$,

 c_{jk}^{nm} = matrik redaman hidrodinamika untuk bangunan m^{th} akibat gerak bangunan sendiri (n = m), dan matriks redaman hidrodinamika m^{th} akibat bangunan n^{th} saat (n \neq m),

 k_{jk}^{*nm} = matrik kekakuan untuk bangunan mth akibat gerak bangunan sendiri (n = m), dan matriks kekakuan m^{th} akibat bangunan n^{th} saat (n \neq m),

 \mathbf{F}_{i}^{n} = matriks gaya eksitasi pada bangunan n^{th} .

2.2.7. RAO

Response Amplitude Operator (RAO) merupakan hubungan antara amplitudo respon dengan amplitudo gelombang (ζrespon/ζgelombang). Amplitudo respon bisa berupa gerakan, tegangan, maupun getaran. RAO untuk gerakan translasi (*surge, sway, heave*) merupakan perbandingan langsung antara amplitudo gerakan struktur dengan amplitudo gelombang insiden (keduanya dalam satuan elevasi panjang). RAO dapat dicari dengan persamaan 2.16 (Journee & Massie, 2001).

$$RAO(\omega) = \left(\frac{Amplitudo \ Respon \ Gerakan}{Amplitudo \ Gelombang}\right) = \left(\frac{\zeta_{k0}}{\zeta_0}\right)$$
(2.18)

dengan :

 ζ_{k0} = amplitudo struktur (m)

 ζ_0 = amplitudo gelombang (m)

Sedangkan untuk RAO untuk gerakan rotasi (*roll, pitch, yaw*) merupakan perbandingan antara amplitudo gerakan rotasi (dalam radian) dengan kemiringan gelombang, yakni yang merupakan perkalian antara angka gelombang dengan amplitudo gelombang insiden (Journee & Massie, 2001).

$$RAO(\omega) = \frac{\zeta_{k0}}{K_w \zeta_0} = \frac{\zeta_{k0}}{\left(\frac{\omega^2}{g}\right)\zeta_0}$$
(2.19)

dengan :

 ζ_{k0} = amplitudo struktur (m)

 ζ_0 = amplitudo gelombang (m)

 k_w = angka gelombang (rad/m)

 ω = frekuensi gelombang (rad/m)

g = percepatan gravitasi (m/s²)

2.2.8. Sistem Tambat

Sistem tambat pada struktur terapung lepas pantai seperti SPAR, TLP, FPSO dan sebagainya, berfungsi untuk menjaga posisi struktur tetap berada pada posisi yang direncanakan ketika beroperasi (Stendal, 2015). Secara garis besar, konfigurasi sistem tambat pada SPAR biasanya menggunakan jenis tambat menyebar (*spread mooring*) yang terdiri dari beberapa titik penambatan dengan tipe *catenary mooring* atau *taut mooring*. Sistem tambat pada umumnya terangkai dari sejumlah tali yang berupa *chain, wire*, atau *synthetic rope* (Stendal, 2015). Bagian atas tali dipasang pada badan struktur terapung di titik-titik yang berbeda, sedangkan bagian bawah tali ditambatkan ke dasar laut. Gaya tarik yang terjadi pada kabel tergantung dari berat kabel, properti elastisitasnya sendiri dan sistem tambatnya.

Tipe dari sistem tali tambat pada struktur bangunan apung lepas pantai khususnya SPAR adalah sebagai berikut :

a. Catenary Mooring

Tipe ini tidak memiliki tegangan pada talinya, tipe ini memberikan celah pada struktur untuk bergeser dengan jarak yang ditentukan. Kemudian pada tipe ini gaya pengembali dihasilkan oleh berat tali tambat sendiri. Tipe penambatan ini memiliki tali horisontal yang lebih panjang daripada tali vertikal sehingga tipe ini efektif dalam mencahan beban horizontal (Team MORE, 2012).

Gambar 2.4. Catenary Mooring. (Team MORE, 2012)

b. Taut Elastic Mooring

Tali yang digunakan pada tipe ini berupa *synthetic fiber ropes* di mana material ini memiliki daya apung netral sehingga dapat dipasang dengan lurus tanpa terpengaruh beratnya dan tergantung pada elastisitas material untuk menyediakan kelenturan yang dibutuhkan. Fitur ini efektif untuk dijadikan desain fleksible tambat (Team MORE, 2012).

Gambar 2.5. Taut Elastic Mooring. (Team MORE, 2012)

BAB III

METODOLOGI PENELITIAN

3.1. DIAGRAM ALIR

Alur pengerjaan penelitian ini dapat dijelaskan menggunakan diagram alir, berikut penjelasannya :

Gambar 3.1. Diagram Alir Pengerjaan.

3.2. PENJELASAN DIAGRAM ALIR

3.2.2. Studi Literatur dan Pengumpulan Data

Penelitian ini dimulai dengan mempelajari literatur-literatur yang berhubungan dengan analisa gerak SPAR dan tegangan tali tambat dengan metode analitis, numerik dan eksperimen serta mengumpulkan data-data primer dan sekunder yang dibutuhkan dalam topik penelitian ini. SPAR yang diadaptasi dalam penelitian ini mengacu pada Mini SPAR dari laporan *Spar Model Test Joint Industry Project*. Tentunya model dimodifikasi dan diskala ulang agar sesuai dengan kemampuan Laboratorium Hidrodinamika FTK ITS. Modifikasi yang dilakukan adalah penggunaan material untuk pembuatan model serta konfigurasi massa untuk validasi titik berat dan radius girasi model agar sesuai dengan Mini SPAR. Berikut data-data yang didapatkan untuk penelitian ini :

Description	Quantity	Unit						
Hull								
Diameter	16.00	m						
Draft	135.03	m						
Length	154.23	m						
Fairlead Depth	12.74	m						
Deck								
Length	50.29	m						
Width	50.29	m						
Height	19.57	m						
<u>Mass</u>	Distribution							
Weight	29.246	ton						
KG	62.03	m						
Pitch Gyradius	61.48	m						
Roll Gyradius	61.48	m						

Tabel 3.1. Data Mini SPAR. (Joint Industry Project, 1995)

Deskripsi	Kuantitas	Satuan
Panjang	50	m
Lebar	3	m
Kedalaman (penuh)	2	m
Kedalaman (operasi)	1.8	m
Temperatur	27	°C

Tabel 3.2. Data Towing Tank Laboratorium Hidrodinamika FTK ITS. (Jaelani,2008)

3.2.2. Permodelan Kondisi

Langkah selanjutnya adalah memodelkan Mini Spar. Langkah ini terdiri dari dua kondisi pemodelan yaitu kondisi terapung bebas dan kondisi tertambat. Kedua kondisi tersebut nantinya akan dianalisis melalui pemodelan eksperimen dan numerik.

3.2.3. Permodelan Eksperimen dan Numerik

Langkah selanjutnya adalah melakukan pemodelan fisik dan numerik. Permodelan fisik dilakukan di bengkel Laboratorium Hidrodinamika FTK ITS sedangkan permodelan numerik menggunakan perangkat lunak Bentley MOSES.

3.2.4. Persiapan Model Fisik dan Parameter Hidrostatik

1. Persiapan Model Fisik

Tahap ini meliputi penskalaan model dari segi geometri prototipe, kinematik, dan hidrodinamik sistem. Penskalaan Geometri dilakukan dengan menyesuaikan kondisi Laboratorium Hidrodinamika serta material model yang tersedia di pasaran. Selain itu pada tahap penskalaan hidrodinamik, digunakan Hukum Model Froude karena hanya terbatas memperhatikan gaya inersia dan gravitasi. Pada tahap ini juga dilakukan pembuatan desain dengan perangkat lunak AutoCAD. 2. Parameter Hidrostatik

Parameter hidrostatik dilakukan untuk mengetahui sifat-sifat badan bangunan terapung yang terendam di dalam air. Parameter tersebut dibutuhkan untuk input pemodelan numerik pada perangkat lunak Bentley MOSES. Validasi model perlu dilakukan ketika melakukan pemodelan dalam metode numerik dan eksperimen. Error yang disyaratkan agar model menjadi valid adalah 5% terhadap data. Parameter-parameter yang perlu dilakukan validasi adalah :

- a. Displacement
- b. Posisi titik berat (*Centre of Gravity*) sumbu x (LCG), sumbu y (TCG) dan sumbu z (VCG)
- c. Jari-jari girasi sumbu x (Rx), sumbu y (Ry) dan sumbu z (Rz)
- d. Jari-jari metacenter melintang (BM_T)
- e. Jari-jari metacenter memanjang (BM_L)
- f. Tinggi metacenter melintang (GM_T)
- g. Tinggi metacenter memanjang (GM_L)

Pada uji eksperimen kali ini data yang didapat adalah *displacement*, VCG, Rx dan Ry sehingga validasi hanya dilakukan pada keempat poin tersebut.

3.2.5. Rancang Model dan Sistem Tambat

Rancang model dan sistem tambat menggunakan material yang ada dipasaran sekitar Surabaya. Pembuatan lambung SPAR menggunakan tabung PVC dengan diameter 5 inchi, kemudian lambung ditutup dengan akrilik pada bagian bawah dan bagian geladak. Pengaturan titik berat dilakukan dengan penambahan pemberat berupa besi dengan ukuran, berat dan lokasi yang disesuaikan. Sementara untuk tali tambat menggunakan material senar pancing. Jangkar yang digunakan dibuat dari beton cor dan besi yang dibentuk sedemikian rupa. Keterangan gambar dapat dilihat dilampiran.

3.2.6. Distribusi Massa dan Parameter Tali Tambat

Distribusi massa di sini yaitu model perlu divalidasi dengan letak titik berat dan radius girasi yang sesuai dengan Mini SPAR. Validasi dilakukan dengan mengikat model secara vertikal kemudian diayun untuk mendapatkan periode 1, kemudian diberi pemberat dan diayun kembali untuk mendapatkan periode 2. Setelah didapatkan periode 1 dan 2 dapat dicari periode dan letak titik berat model.

Parameter sistem tambat yang digunakan antara lain kekakuan tali tambat, posisi tambat, sudut tambat dan *pre-tension* tali tambat. Berikut ini merupakan penjelasan dari tiap parameter sistem tambat yang digunakan.

1. Kekakuan tali tambat

Kekakuan tali tambat dipengaruhi oleh properties dari material yang digunakan. Modulus elastisitas material mempengaruhi kekakuan tali tambat yang digunakan. Semakin besar kekakuannya, semakin besar pula periode natural dari struktur. Data properties tali tambat dari Mini SPAR dapat dilihat di Tabel 3-4.

Tabel 3.3. Properties tali tambat dari Mini SPAR. (Joint IndustryProject, 1995)

Properties tali tambat dari prototype			
Diameter luar (in)	0.0625		
Kekakuan (lbs/in)	0.0726		
Pre-tension (lbs)	2.600		

2. Posisi Fairlead

Fairlead berfungsi untuk menghubungkan tali tambat dengan model. Posisi tambat pada model yang dianalisa adalah 10,1 cm dari sarat air; 97,1 cm dari *keel*; dan 48,28 cm dari titik berat model.

3. Sudut Fairlead

Sudut *fairlead* dari tali tambat yang digunakan pada analisa model ini adalah sebesar 30 derajat. Sudut ini didapatkan ketika tali diatur dalam

keadaan batas tegang. Batas tegang yang dimaksud adalah tali tambat lurus (tidak melengkung) dan tidak merubah sarat.

4. Pre-tension

Pre-tension atau tegangan tali awal yang digunakan dalam model SPAR ini di atur dalam keadaan batas tegangan yang tidak merubah sarat air.

3.2.7. Rancang Instrumen

Penelitian ini menganalisa gerakan struktur dan tegangan tali tambat, oleh karena itu dibutuhkan alat ukur yang dapat menghitung gerakan struktur dan tali tambat. Pada eksperimen ini digunakan instrumen yang disebut *gyroscope* untuk mengukur gerak rotasi model, *image processing* mengukur gerak translasi model dan *load cell* untuk mengukur tegangan tali tambat. Penjelasan ketiga alat ukur dijelaskan di bawah ini :

1. *Gyroscope*

Gyroscope mengukur gerak rotasi pada struktur. Alat ini diletakkan di geladak pada posisi tegak lurus dengan titik berat model. Alat ini dapat mengukur gerakan tiap satuan waktu yang ditentukan. Alat ini dikalibrasi dengan cara memposisikan semua sumbu (x, y, z).

2. Load cell

Alat ini diletakkan dijangkar pada dasar kolam, kemudian dihubungkan dengan tali tambat. Setiap tarikan yang terjadi pada tali tambat akan terekam pada *load cell*. Alat ini dapat mengukur tarikan tiap satuan waktu yang ditentukan. Alat ini dikalibrasi dengan cara memberi beban tertentu (misal: 1 kg) kemudian nilai yang terekam pada *load cell* sama dengan 1 kg.

Gambar 3.2. Rancang instrumen.

3. Image Processing

Instrumen *image processing* merupaka alat berbasis C++ dengan cara kerja merekam gerakan objek dengan memasukkan video. *Image processing* memproses video dengan memisahkan video tersebut menjadi tiap *frame*. Pada tiap *frame* terdapat piksel tersebut yang direkam oleh *image processing* menjadi ordinat x dan y. Piksel adalah unsur gambar atau representasi sebuah titik terkecil dalam sebuah gambar grafis yang dihitung per inci. Kemudian ordinat x digunakan untuk mengukur gerak *heave*, sedangkan ordinat y digunakan untuk mengukur gerak *surge*.

3.2.8. Perhitungan Gerak Analitis, Numeris dan Eksperimen

1. Perhitungan Gerak Metode Analitis

Dalam metode analitis, perhitungan gaya beban dilakukan dengan perhitungan gaya Froude Krylov. Gaya ini kemudian akan diolah menjadi respon gerak. Perhitungan dilakukan pada kondisi *free floating* dan kondisi tertambat. Perhitungan sebatas menghitung mode gerak *surge, heave* dan *pitch*. Keluaran dari perhitugan gerak secara analitik adalah diagram RAO *surge, heave* dan *pitch* baik dalam kondisi *free floating* dan tertambat.

- 2. Perhitungan Gerak Metode Numeris
 - a. Prototipe SPAR dari data penelitian JIP dimodelkan sesuai dengan dimensi yang ada menggunakan perangkat lunak MOSES. Kemudian, model di bagi menjadi elemen-elemen kecil menggunakan metode difraksi. Proses ini dilakukan pada MOSES file tipe (dot)dat yang khusus digunakan untuk memodelkan struktur yang dianalisa.
 - b. Setelah itu, data *properties* dari struktur dimasukkan pada file tipe (dot)cif untuk analisa model yang telah dibuat pada file (dot)dat. Secara analitis, dalam menganalisa perilaku gerak suatu benda digunakan prinsip hukum newton III yaitu gaya aksi = gaya reaksi atau dalam bentuk persamaan dapat dituliskan sebagai berikut, $m\ddot{u} + c\dot{u} + ku = F_{wave}$.
 - c. Displacement merupakan massa dari struktur ditambah dengan massa tambah struktur itu sendiri. Data yang diperlukan untuk mendapatkan besar dari displacement struktur itu sendiri adalah nilai dari titik berat struktur, sarat struktur dan radius girasi struktur.
 - d. Gaya redaman dari struktur dapat diperoleh dari input perintah Tanaka pada MOSES yang mendefinisikan faktor pengali untuk redaman yang disebabkan "*eddy making*". Formulasi yang digunakan untuk gaya redaman Tanaka ini dijelaskan oleh Schmidke (1978).
 - e. Gaya kekakuan dipengaruhi oleh gerak *heave*, *pitch* dan *roll* pada kondisi *free floating*. Pada MOSES untuk analisa gaya kekakuan ini disesuaikan dari sarat struktur (mempengaruhi volume dan *water plane area*) dan juga titik berat struktur.
 - f. Gaya gelombang didapatkan dari masukan frekuensi/periode gelombang yang ditinjau dimana untuk periode gelombang di laut sendiri berkisar antara 3-20 detik.
 - g. MOSES akan memberikan keluaran hasil analisa berupa RAO struktur dalam keadaan *free floating* untuk tiap gerakan translasi

(*surge*, *sway*, *heave*) dan rotasi (*roll*, *pitch*, *yaw*) yang terjadi untuk tiap frekuensi gelombang dan arah gelombang yang ditinjau.

- 3. Perhitungan Gerak Metode Eksperimen
 - a. *Gyroscope* diletakkan di geladak dengan posisi tegak lurus titik berat model untuk mengukur gerakan *pitch*.
 - b. Model yang sudah divalidasi diletakkan di lokasi yang sudah direncanakan pada *towing tank*. Persiapan eksperimen di *towing tank* ini perlu memperhatikan ketenangan air untuk mengurangi faktor-faktor yang tidak dibutuhkan agar perhitungan dapat dianggap valid.
 - c. Dalam kondisi *free floating* juga dipasang tali penahan *drift* (*loose rope*) untuk mengakomodir gerak *drift* dari struktur akibat gelombang.
 - d. Kemudian dilakukan evaluasi apakah model sudah berada di lokasi yang direncanakan atau belum dan pastikan juga air dalam *towing tank* sudah cukup tenang untuk dilakukan *run* gelombang.
 - e. Setelah semua dipastikan sesuai dengan syarat uji *run* gelombang, maka eksperimen dapat dimulai. Jika belum sesuai, maka perlu dilakukan *setup* ulang.
 - f. Uji *run* gelombang dilakukan dalam beberapa variasi periode gelombang. Periode gelombang yang digunakan adalah 0,4 detik 1,3 detik.
 - g. Hasil pengukuran akan disajikan dalam bentuk grafik RAO gerak.

3.2.9. Perhitungan Tegangan Numeris dan Eksperimen

- 1. Perhitungan Tegangan Metode Numeris
 - a. Prinsip utama digunakannya sistem tambat pada struktur adalah untuk menambahkan kekakuan pada sistem struktur tersebut sehingga dapat memperkecil gerakan yang terjadi baik itu translasi maupun rotasi ketika terkena beban dari luar.
 - b. Sistem tambat pada perangkat lunak MOSES dapat di masukan pada file (dot)cif dengan menggunakan perintah MEDIT. Perintah MEDIT ini digunakan untuk memasukan koordinat dari tali tambat yang dipasang pada struktur, tipe dari tali tambat yang digunakan

taut mooring, diameter tali tambat, kedalaman perairan, panjang tali tambat, diameter *buoyancy* dan berat tali tambat per satuan panjang, lokasi dari jangkar di dasar laut, dan juga sudut tali tambat.

- c. Pre-tension tali tambat dapat dimasukkan pada MOSES dengan menggunakan perintah -A_TENSION untuk tiap tali tambat yang ditinjau.
- d. MOSES akan memberikan keluaran hasil analisa berupa *Response Amplitude Operator* (RAO) struktur dalam keadaan tertambat untuk tiap gerakan translasi (*surge*, *sway*, *heave*) dan rotasi (*roll*, *pitch*, *yaw*) yang terjadi untuk tiap frekuensi gelombang dan arah gelombang yang ditinjau.
- 2. Perhitungan Tegangan Metode Eksperimen
 - a. Jangkar diletakkan di dasar kolam untuk mengikat tali tambat agar mendekati kondisi asli di lepas pantai yang diikatkan di dasar laut. Jangkar dilengkapi dengan *load cell* untuk mengukur tegangan tali.
 - b. Pengaturan posisi jangkar dengan menggerakkan *load cell* mendekati atau menjauhi model struktur.
 - c. Pengaturan *pre-tension* dilakukan dengan menarik tali sehingga mempunyai *pre-tension* yang direncanakan.
 - d. Dilakukan evaluasi apakah setup model sudah sesuai dengan rencana atau belum. Jika belum sesuai dengan rencana penelitian, maka perlu dilakukan setup kembali. Jika sudah sesuai dengan rencana, maka eksperimen dapat dimulai.
 - e. Selama eksperimen output dari *load cell* akan diamati untuk perhitungan gerak struktur dan tegangan tali
 - f. Variasi yang dilakukan adalah salah satu tali tambat diputus tanpa merubah lokasi *load cell* pada jangkar dan lokasi *fairlead*. Variasi ini dilakukan dengan memutus salah satu tali tambat saat uji *running* gelombang. Uji *run* gelombang dilakukan pada setiap salah satu tali tambat yang direncanakan untuk diputus. Jadi misalkan saat uji *run* gelombang pertama, tali tambat A diputus kemudian keluar hasil pengukuran. Setelah data hasil pengukuran didapatkan tali tambat A

dihubungkan kembali ke posisi semula, kemudian *run* gelombang dilakukan kembali. Lalu tali tambat B diputus dan seterusnya sampai dengan semua tali tambat yang direncanakan diuji.

- g. Uji *run* gelombang dilakukan dalam beberapa variasi periode gelombang Pada saat *running* perlu diperhatikan dan diukur sejauh apa gerakan model dan seberapa besar tegangan tali tambat yang terjadi. Pada perhitungan eksperimen ini model ditinjau dalam tiga gerakan yaitu *heave, pitch* dan *surge*.
- h. Perhitungan tegangan tali tambat tersebut menggunakan *load cell* yang mana hasil pengukurannya dalam satuan voltase yang kemudian dikonversikan menjadi satuan tegangan. Hasil perhitungan disajikan dalam bentuk grafik RAO tegangan.

3.3. TIMELINE

Penelitian ini direncanakan membutuhkan waktu lima bulan dengan tahapan pengerjaan sebagai berikut :

Ma	Verinter	Bulan I		Bulan I Bulan II Bulan III		Bulan IV				Bulan V											
140	Kegiatan		п	ш	IV	Ι	п	ш	IV	Ι	п	ш	IV	Ι	Π	ш	IV	Ι	Π	ш	IV
1	Studi Literatur dan																				
1	Pengumpulan Data																				
2	Permodelan Eksperimen																				
2	Persiapan Model Fisik																				
3	Permodelan Numerik																				
4	Rancang Model dan																				
-	Sistem Tambat																				
5	Rancang Instrumen																				
6	Perhitungan Gerak																				
	Analitis																				
	Numerik																				
	Eksperimen																				
7	Perhitungan Tegangan																				
	Analitis																				
	Numerik																				
	Eksperimen																				
8	Penyusunan Laporan																				

 Tabel 3.4. Rincian tahapan pengerjaan penelitian.

Halaman ini sengaja dikosongkan

BAB IV

ANALISIS DAN PEMBAHASAN

4.1. PEMODELAN STRUKTUR

4.1.1. Pemodelan Numerik

Perhitungan numerik dilakukan dengan menggunakan perangkat lunak MOSES Editor 7. Langkah yang perlu dilakukan adalah memberi perintah membuat lingkaran di file ekstensi .dat MOSES (LAMPIRAN). Tabel 4.1 menampilkan dimensi dari SPAR yang digunakan untuk pemodelan numerik. Data SPAR diambil dari Mini SPAR *Joint Industry Project* (1995). Model yang dibuat di MOSES di-*meshing* dengan ukuran *panel* maksimal sebesar 3.5 m. Model numerik yang sudah di-*meshing* terlihat di Gambar 4.1, Gambar 4.2 dan Gambar 4.3.

Deskripsi	Prototype
Diameter (m)	16.00
Sarat (m)	135.03
Tinggi (m)	154.23
Posisi Fairlead (m)	12.74
Panjang Geladak (m)	50.29
Lebar Geladak (m)	50.29

 Tabel 4.1. Data dimensi struktur SPAR. (Joint Industry Project, 1995)

Gambar 4.1. Tampak isometri model numerik.

Gambar 4.2. Tampak isometri model numerik dengan meshing.

Gambar 4.3. Tampak atas model numerik dengan meshing.

Gambar 4.4. Tampak depan model numerik dengan meshing.

Pemodelan dengan menggunakan MOSES juga dilakukan dengan memasukan sarat dan radius girasi. Bagian struktur (Gambar 4.2 dan 4.4) yang berwarna hijau tua menunjukkan bagian di bawah air, sedangkan yang berwarna hijau muda merupakan bagian tidak di atas air. Radius girasi SPAR dimasukkan ke dalam MOSES sesuai dengan Tabel 4.2.

Deskripsi	Prototype					
Massa Total (ton)	26531.52					
Keel to Gravity (m)	62.02					
Radius Girasi YY (m)	61.47					
Radius Girasi XX (m)	61.47					

Tabel 4.2. Distribusi massa SPAR. (Joint Industry Project, 1995)

4.1.2. Pemodelan Eksperimen

Dalam melakukan studi eksperimen, SPAR dimodelkan menggunakan skala 1:125. Proses penskalaan yang dilakukan mengikuti aturan Froude sesuai Tabel 4.3.

Deskripsi	Prototype	Faktor skala	Model			
Massa (kg)	26531524.910	□3	13.584			
Diameter (m)	16.000		0.128			
Sarat (m)	135.010		1.080			
Panjang (m)	154.210		1.234			
Keel to Gravity (m)	62.022		0.496			
Radius Girasi YY (m)	61.470		0.492			
Radius Girasi XX (m)	61.470		0.492			
Deriodo golombong (s)	40, 35, 30, 25,	□ 1/2	3.6, 3.1, 2.7, 2.2,			
renoue gerombang (s)	20, 10, 5.5		1.8, 0.9, 0.5			

Tabel 4.3. Hasil penskalaan model SPAR sesuai dengan hukum Fraude.

Dimensi dari *prototype* dan model fisik dapat dilihat di Tabel 4.1. PVC digunakan sebagai lambung, akrilik sebagai geladak dan kait sebagai *fairlead*. Perakitan model dilakukan di Laboratorium Hidrodinamika FTK ITS. PVC 5" digunakan untuk menyesuaikan ukuran diameter dari model. Pipa tersebut kemudian dipotong sesuai dengan tinggi lambung. Bagian bawah dari PVC ditutup dengan akrilik. Akrilik pada bagian bawah ditempel ke PVC menggunakan lem lalu diberi dempul untuk menghindari kebocoran. Untuk memastikan tidak adanya kebocoran pada model, dilakukan tes terapung selama 24 jam di *towing tank*. Model yang sudah jadi kemudian dicat dengan warna kuning dan hijau bertujuan agar warna model kontras dengan warna air seperti Gambar 4.5.

Setelah dimensi utama dari model fisik sudah terpenuhi, distribusi massa dari model fisik juga dimodelkan. Distribusi massa dari SPAR terdapat pada Tabel 4.2. Di dalam lambung model fisik diberi besi ulir dan silinder untuk untuk mengatur distribusi beban dari model fisik dapat dilihat pada Gambar 4.6.

Gambar 4.5. Tampak depan model fisik (a), Tampak geladak (b) dan *Fairlead* model (c).

Gambar 4.6. Pemberat dan ulir di dalam lambung model fisik.

Langkah-langkah yang dilakukan untuk mendapatkan distribusi massa yang diinginkan adalah sebagai berikut:

1. Menghitung massa total yang digunakan material model. Setiap material model yang dipakai ditimbanguntuk mendapatkan massa total dari struktur. Pengukuran dilakukan di Laboratorium Mekanika Tanah, hasil pengukuran didapat pada Tabel 4.4.

Ba	igian	Tebal (cm)	Berat (g)	Jumlah	Total (g)
	Ballast 1	2	1628.49	1	1628.49
	Ballast 2	2	1623.09	1	1623.09
Blok A	Ballast 3	2.5	2094.09	1	2094.09
	Ballast 4	1	663.59	1	663.59
	Сар	0.3	47.46	1	47.46
	Ballast 5	2.5	2096.69	1	2096.69
Blok B	Ballast 6	0.8	465.99	1	466.00
	Ballast 7	0.5	179.49	1	179.49
То	pside	0.3	599.50	1	599.50
	Ulir		352.09	1	352.09
Tambahan	Pipa	-	4087.53	1	4087.53
	Penyambung	-		1	0
	Mur	-		2	0
		Total			13838.01

Tabel 4.4. Hasil pengukuran berat material.

2. Distribusi beban untuk pemenuhan radius girasi. Setiap material yang dipakai dihitung momen inersia massanya. Momen inersia massa masing-masing material kemudian digabungkan untuk dicari momen inersia massa total. Momen inersia massa total yang didapat akan dihitung menjadi radius girasi model fisik. Momen inersia massa dari material tergantung pada masa benda dan bentuk material. Untuk mempermudah perhitungan, model dibagi menjadi beberapa bagian diantaranya PVC, blok A, blok B, *topside* dan ulir.

Gambar 4.7. Desain pemberat dan ulir.

Perhitungan dari setiap blok adalah:

a. PVC (Silinder Berongga)

Persamaan 4.1 merupakan persamaan momen inersia massa dari silinder berongga relatif terhadap pusat massanya dengan I_{ox} merupakan momen inersia massa gerakan roll, I_{oy} merupakan momen inersia massa gerakan *pitch*, *m* merupakan masa benda, *r* merupakan radius silinder dan *l* merupakan panjang silinder.

$$Iox = Ioy = \frac{1}{12} m (6r^2 + l^2)$$
(4.1)

PVC mempunyai ukuran massa 4088 g, diameter 12.8 cm dan panjang 123.4 cm. Tabel 4.5 menampilkan hasil perhitungan momen inersia masa dari PVC (Silinder berrongga).

 Tabel 4.5. Perhitungan momen inersia massa PVC.

Komponen	Berat (g)	<i>Iox</i> (g.cm ²)	<i>Ioy</i> (g.cm ²)
PVC	4087.53	5287070.00	5287070.00

b. Blok A (Lingkaran Pejal)

Blok A terdiri dari material-material yang berbentuk silinder pejal. Persamaan 4.2 digunakan untuk menghitung momen inersia massa dari silinder pejal relatif terhadap pusat massanya dengan I_{ox} merupakan momen inersia massa gerakan *roll*, I_{oy} merupakan momen inersia massa gerakan *pitch*, *m* merupakan masa benda, *r* merupakan radius silinder dan *l* merupakan panjang silinder.

$$lox = loy = \frac{1}{12} m \left(3r^2 + l^2\right)$$
(4.2)

Blok A terdiri dari pemberat berbahan besi dan *cap* berbahan akrilik. Ukuran dan hasil perhitungan material-material di blok A terlampir di Tabel 4.6.

Komponen	Berat (g)	Iox (g.cm ²)	<i>Ioy</i> (g.cm ²)
Ballast 1	1628.49	16446.05	16446.05
Ballast 2	1623.09	16391.52	16391.52
Ballast 3	2094.09	20624.60	20624.60
Ballast 4	663.59	6825.99	6825.99
Cap	47.46	471.32	471.32

Tabel 4.6. Perhitungan momen inersia massa Blok A

c. Blok B

Blok B terdiri dari material-material yang berbentuk silinder pejal, sehingga persamaan yang digunakan sama dengan perhitungan blok A (Persamaan 4.2). Blok B hanya terdiri dari pemberat berbahan besi. Ukuran dan hasil perhitungan material-material di blok B terlampir di Tabel 4.7.

Komponen	Berat (g)	<i>Iox</i> (g.cm ²)	<i>Ioy</i> (g.cm ²)
Ballast 5	2096.7	20748.49	20748.49
Ballast 6	465.99	4556.90	4556.90
Ballast 7	179.49	1756.57	1756.57

Tabel 4.7. Perhitungan momen inersia massa Blok B.

d. Topside

Topside terdiri dari geladak berbahan akrilik. Bentuk dari geladak merupakan balok dengan panjang 40 cm, lebar 40 cm dan tebal 0.3 cm. Persamaan 4.3 digunakan untuk menghitung momen inersia massa dari topside relatif terhadap pusat massanya dengan *I*_{ox}

merupakan momen inersia massa gerakan *roll*, I_{oy} merupakan momen inersia massa gerakan *pitch*, *m* merupakan masa benda, *p* merupakan panjang balok, *l* merupakan lebar balok dan *t* merupakan tebal balok.

$$Iox = \frac{1}{12} m \left(l^2 + t^2 \right)$$
(4.3a)

$$loy = \frac{1}{12} m \left(p^2 + t^2 \right)$$
(4.3b)

Hasil perhitungan momen inersia massa dari *topside* ditampilkan dalam Tabel 4.8.

Table 4.6. I crintungan momen mersia massa <i>topside</i> .			
Komponen	Berat (g)	<i>Iox</i> (g.cm ²)	<i>Ioy</i> (g.cm ²)
Geladak	599.5	79937.8	79937.8

 Tabel 4.8.
 Perhitungan momen inersia massa topside.

e. Ulir

Pemberat akan dimasukkan ke dalam ulir. Ulir merupakan baut yang terbuat dari besi yang mempunyai panjang 1.3 m dengan diameter 8 mm. Karena berbentuk silinder pejal maka Persamaan 4.2 dipakai untuk menghitung momen inersia masa dari ulir. Hasil perhitungan momen inersia massa dari ulir ditampilkan dalam Tabel 4.9.

 Tabel 4.9.
 Perhitungan momen inersia massa ulir.

Komponen	Berat (g)	<i>Iox</i> (g.cm ²)	<i>Ioy</i> (g.cm ²)
Ulir	352.09	495873.99	495873.99

Setelah momen inersia massa dari setiap material diketahui, perhitungan momen inersia massa total terhadap pusat masa dilakukan. Langkah pertama untuk mencari momen inersia total tersebut adalah dengan mencari pusat masa dari benda terlebih dahulu. Tabel 4.10 menunjukan posisi material dengan sumbu 0 di x (centerline), y (midship) dan z (keel). Tabulasi perhitungan pusat masa dapat dilihat di LAMPIRAN. Tabel 4.11 merupakan hasil perhitungan pusat masa model.

Ba	gian	LCG (cm)	TCG (cm)	VCG (cm)	Berat (g)
	Ballast 1	0.00	0.00	6.50	1628.5
	Ballast 2	0.00	0.00	4.50	1623.1
Blok A	Ballast 3	0.00	0.00	3.00	2094.1
	Ballast 4	0.00	0.00	1.25	663.59
	Cap	0.00	0.00	0.15	47.46
	Ballast 5	0.00	0.00	109.75	2096.70
Blok B	Ballast 6	0.00	0.00	111.40	465.99
	Ballast 7	0.00	0.00	112.05	179.49
То	pside	0.00	0.00	123.55	599.50
Tambahan	Ulir	0.00	0.00	65.30	352.09
	Pipa	0.00	0.00	61.70	4087.53
Total			13838.01		

Tabel 4.10. Posisi pusat massa dari setiap material yang dipakai.

Tabel 4.11. Pusat massa model.

LCG (cm)	TCG (cm)	VCG (cm)
0.00	0.00	49.01

Setelah pusat massa dari model diketahui, momen inersia massa relatif terhadap pusat masa dapat dicari. Tabulasi dari perhitungan momen inersia massa terhadap pusat masa terdapat di LAMPIRAN. Radius girasi dapat dicari dengan momen inersia masa yang diketahui, sesuai dengan Persamaan 4.4. Tabel 4.12 menampilkan hasil radius girasi dari model.

$$Jari - jari girasi = \sqrt{\frac{Inersia massa total gerak yang ditinjau}{massa total model}}$$
(4.4)

Rxx (cm)	Ryy (cm)
48.47	48.47
Tabel 4.11 dan Tabel 4.12 merupakan nilai target dari pusat massa dan radius girasi dari model fisik. Setelah model dibuat, nilai-nilai tersebut perlu divalidasi pada model yang sudah jadi. Tabel 4.13 di bawah ini merupakan perbandingan dari distribusi massa hasil skala dengan nilai target hasil perhitungan.

	0			U	1 0
Deskrinsi	Ter	get	Model Fisik		Frror (%)
	Besaran	Satuan	Besaran	Satuan	
Massa Total	13.58	kg	13.838	kg	1.89 %
Keel to Gravity (KG)	49.60	cm	49.01	cm	1.19%
Radius pitch	49.20	cm	48.47	cm	1.48%
Radius roll	49.20	cm	48.47	cm	1.48%

Tabel 4.13. Perbandingan distribusi massa hasil skala dengan hasil perhitungan.

4.2. PEMODELAN TALI TAMBAT

Tali tambat yang digunakan dalam studi eksperimen ini mengacu pada tali tambat pada katalog dari Balmoral Marine (2010) yang berisi properties *mooring equipment* seperti jangkar, rantai, *wire rope* dan lain-lain yang digunakan dalam industri lepas pantai. Pada studi eksperimen ini, data tali tambat yang dijadikan acuan adalah tali *wire rope* dengan data kekakuan. Dari data di Gambar 4.8, properties *wire rope* yang digunakan adalah *wire rope* dengan kekakuan sebesar 1175 MN. Properties dari *wire rope* yang digunakan dijelaskan pada Tabel 4.14.

Deskripsi	Jumlah
Diameter (mm)	115
Masa jenis udara (kg/m)	65
Masa jenis air (kg/m)	55
MBF (kN)	11760
Kekakuan (MN)	1175

Tabel 4.14. Properti mooring line wire rope.

Gambar 4.8. Katalog properties wire rope.

Tali tambat yang sudah ditentukan kemudian diskala menjadi dimensi eksperimen. Bahan yang digunakan di sini adalah senar pancing, dapat dilihat pada Gambar 4.9, yang menggunakan bahan nilon, dengan properties yang dijelaskan pada Tabel 4.15.

Deskripsi	Model Fisik (nilon)		
Modulus elastisitas (N/m ²)	200000000		
Diameter tali (mm)	0,62		
Luas Tali (mm ²)	0,3019		
Panjang Tali (m)	1,8		

Tabel 4.15. Spesifikasi tali tambat eksperimen.

Gambar 4.9. Bahan tali tambat.

Kemudian, penskalaan dilakukan kembali pada senar pancing sesuai dengan skala model untuk mendapatkan spesifikasi tali tambat yang digunakan pada model fisik. Skala model yang digunakan adalah 1:125, maka dari hasil skala didapatkan properties tali tambat model fisik dijelaskan pada Tabel 4.16.

Deskripsi	Model Fisik (nilon)			
Modulus elastisitas (N/m ²)	25000000000			
Diameter tali (mm)	77,50			
Luas Tali (mm ²)	4717,30			
Panjang Tali (m)	225			

Tabel 4.16. Spesifikasi tali tambat model fisik.

Dari Tabel 4.16 di atas, kekakuan tali dapat dihitung dengan Persamaan 4.5.

$$K = E X A$$

$$K = 250.000 MN/m^2 X 0,00472 m^2$$

$$K = 1.179,32 MN$$
(4.5)

Validasi dilakukan dengan membandingkan kekakuan *wire rope* yang ada pada katalog Balmoral Marine (2010) dengan senar. Perbandingan keduanya terlampir pada Tabel 4.17.

Kekakuan prototype	Kekakuan dari katalog	Error
(MN)	(MN)	(%)
1179,32	1175	0,37

 Tabel 4.17. Perbandingan kekakuan prototype dengan data kekakuan wire rope

 acuan

Dari perbandingan kekakuan pada Tabel 4.17, didapatkan persentase error yang terjadi sebesar 0,368 % memenuhi syarat dari validasi (<5%). Sehingga untuk analisa eksperimen, numerik dan analitis data properties tali tambat ditunjukkan pada Tabel 4.18.

 Tabel 4.18. Data properties tali tambat yang digunakan pada model fisik.

Deskripsi	Model fisik	Prototype	Satuan
Panjang	1,8	225	m
Diameter	0,62	115	mm
Axial Stiffness (EA)	603,814	1,175,000,000	Ν
MBF	222,41	11,760,000	Ν

4.3. VALIDASI MODEL

4.3.1. Validasi Model Numerik

Model yang dibuat di MOSES dapat dilihat parameter hidrostatisnya dan distribusi massanya. Parameter ini yang akan digunakan untuk memvalidasi model fisik, sehingga bisa dilakukan analisa. Pada penelitian ini batas maksimum error yang diijinkan adalah 5 %. Tabel 4.19 menampilkan perbandingan antara model numerik dan data. Berdasar Tabel 4.19 maka model numerik yang dibuat di MOSES bisa dilanjutkan untuk analisa gerak dan tali tambat.

Tabel 4.19. Perbandingan dan validasi model numerik dengan data.

Deskripsi	Prototype	Model Numerik	Error (%)
Diameter (m)	16.00	16.00	0.00
Draft (m)	135.03	135.03	0.00

Deskripsi	Prototype	Model Numerik	Error (%)
Length (m)	154.23	154.23	0.00
Fairlead depth (m)	12.74	12.74	0.00
Weight (kg)	26531524.91	27117650	2.21
KG (m)	62.03	62.03	0.00
Roll Gyrasi (m)	61.48	61.48	0.00
Pitch Gyrasi (m)	61.48	61.48	0.00
Mooring Diameter (mm)		115	
Mooring Stiffness (MN)		1175	

 Tabel 4.19. Perbandingan dan validasi model numerik dengan data. (Lanjutan)

4.3.2. Validasi Model Eksperimen

Setalah melakukan proses perencanaan, model fisik yang sudah dibuat dilakukan validasi. Validasi diperlukan karena pada pembuatan, selain material utama yang dipakai, pada model juga terdapat material pendukung seperti lem, dempul, resin dan sebagainya. Proses ini dilakukan sebagai berikut:

1. Massa Total

Perhitungan massa total dilakukan dengan melihat sarat yang dimiliki struktur ketika keadaan terapung. Berdasar pengamatan yang didapat sarat model fisik sebesar 108.5 cm. Dengan sarat dan diameter lambung yang diketahui, maka berat model dapat dihitung sebagai perkalian antara volume tercelup dan massa jenis air, sehingga didapat displacement model sebesar 13.90 kg.

2. Jarak KG dan Radius Girasi

Jarak KG dan radius girasi pada struktur dihitung dengan melakukan tes pendulum pada struktur. Tes pendulum merupakan tes mengayunkan model dan menghitung periode dari ayunan struktur. Tes dilakukan dengan dua kondisi, kondisi 1 merupakan kondisi model tanpa massa tambahan, sedangkan kondisi 2 merupakan kondisi model dan pemberat pada jarak tertentu. Pemberat yang dipakai merupakan plastisin yang telah dihitung beratnya di Laboratorium Mekanika Tanah Teknik Kelautan. Pada setiap kondisi dicatat periode ayunannya. Periode yang didapat kemudian digunakan untuk mencari KG dan radius girasi. Skenario tes pendulum untuk kondisi 1 dan kondisi 2 dapat dilihat pada Gambar 4.10 dan Gambar 4.11. Ukuran-ukuran yang dipakai untuk tes pendulum terdapat pada Tabel 4.22 berikut ini.

Gambar 4.10. Skenario tes pendulum kondisi 1 untuk perhitungan radius girasi.

Gambar 4.11. Tes pendulum kondisi 1.

Gambar 4.12. Skenario tes pendulum kondisi 2 untuk perhitungan radius girasi.

Gambar 4.13. Tes pendulum kondisi 2.

Tabel 4.20. Ukuran – ukuran yang digunakan pada pendulum tes
--

Deksripsi	Jumlah	Satuan
Berat Model (m)	13.90	kg
Percepatan gravitasi (g)	9.81	m/s ²

Deksripsi	Jumlah	Satuan
Jarak massa tambah (a)	0.153	m (dari titik pusat model)
Berat massa tambah (m)	1.52	kg
Panjang tali (L)	2.36	m
Panjang tali terhadap jarak massa tambah (r)	2.37	m

Tabel 4.20. Ukuran – ukuran yang digunakan pada pendulum tes. (Lanjutan)

Tes pendulum dilakukan sebanyak 50 kali. Hasil pengukuran dari periode gerak pendulum model fisik pada kondisi 1 dan kondisi 2 disajikan dalam LAMPIRAN. Rata-rata periode yang didapat ditampilkan dalam Tabel 4.21.

Tabel 4.21. Periode dan frekuensi gerak pendulum model fisik kondisi 1 dan 2.

Deskripsi	Jumlah	Satuan
Periode gerak tanpa massa tambah (To)	3.502	detik
Periode gerak dengan masa tambah (T ₁)	3.540	detik
Frekuensi tanpa massa tambah (D)	1.794	rad/s
Frekuensi dengan massa tambah (]1)	1.775	rad/s

Dari data-data pada Tabel 4.21 dapat ditentukan jarak dari titik tumpuan tali ke titik berat model (h) dengan menggunakan persamaan 4.7.

$$h = \frac{2m(r^2\omega_1^2 - Lg)}{\left[1 - \left(\frac{\omega_1}{\omega_0}\right)^2\right]Mg}$$

$$h = 2.964 m$$
(4.7)

Dari hasil perhitungan diatas, dapat diketahui titik berat model adalah sebagai berikut :

KG = 50.25 cm dari keel

Dari hasil perhitungan di atas, dapat ditentukan momen inersia massa gerak *pitch* dan *roll* model fisik terhadap titik gantung dengan Persamaan 4.8.

$$I_{44} = I_{55} = \frac{mgh}{\omega_o^2}$$

$$I_{44} = I_{55} = 125.58 \ kg. m^2$$
(4.8)

Kemudian dapat ditentukan momen inersia massa gerak *pitch* dan *roll* model relatif terhadap titik berat dengan Persamaan 4.9.

$$I_m = I - mh^2$$

$$I_m = 3.47 \ kgm^2 \tag{4.9}$$

Nilai momen inersia yang diketahui dapat digunakan untuk mencari radius girasi sesuai dengan Persamaan 4.10.

$$Radius \ girasi = \sqrt{\frac{I_m}{m}} \tag{4.10}$$

Radius girasi = 0.4993 m

Karena massa terdistribusi merata relatif terhadap sumbu z, maka radius girasi *pitch* dan *roll* adalah identik dengan nilai 49.93 cm.Tabel 4.22 menunjukkan perbandingan parameter model antara *prototype*, target dan model fisik. Model fisik valid apabila error yang terukur kurang dari 5%.

Deskripsi	Data		Konversi	Target		Achieved		Error
Diameter	16.00	m	125	12.80	cm	12.80	cm	0.0%
Sarat	135.03	m	125	108.00	cm	108.00	cm	0.0%
Panjang	154.23	m	125	123.4	cm	123.40	cm	0.0%
Fairlead	12.74	m	125	10.2	cm	10.20	cm	0.0%
Berat	26531524.91	kg	1953125	13.58	kg	13.90	kg	1.91%
KG	62.03	m	125	49.6	cm	50.25	cm	1.31%
Roll Gyrasi	61.48	m	125	49.2	cm	49.93	cm	1.48%
Pitch Girasi	61.48	m	125	49.2	cm	49.93	cm	1.48%

Tabel 4.22. Validasi model fisik.

4.4. INSTRUMEN PENGUKURAN

Pada studi eksperimen diperlukan instrumen untuk mengukur gerak dan tegangan tali dari model fisik. Pengukuran gerak menggunakan gyroscope

dan *image processing*, sedangkan pengukuran tegangan tali menggunakan instrumen *loadcell*. Sebelum dilakukan pengukuran, ketiga instrumen ini perlu dilakukan kalibrasi.

4.4.1. Kalibrasi Gyroscope

Gerak rotasional sumbu y (*pitch*) dari model SPAR diukur menggunakan *gyroscope*. Instrumen *gyroscope* yang digunakan adalah *gyroscope* MPU 6050 GY87. Instrumen ini mampu mengukur sudut yang dibentuk oleh MPU 6050. Pada MPU 6050 terdapat sumbu orientasi x, y dan z sebagai orientasi nilai yang dihasilkan keluaran dari MPU 6050. Tegangan yang sudah diamplifikasi akan diterima oleh *microcontroller* Arduino UNO untuk kemudian ditransfer ke laptop dalam angka-angka digital. Instrumen *gyroscope* (Gambar 4.14) diletakkan pada bagian geladak (Gambar 4.15) pada model fisik yang berbentuk persegi dengan bahan akrilik.

Gambar 4.14. Instrumen gyroscope.

Gambar 4.15 geladak dan busur.

Gerakan *pitch* dari SPAR diukur dengan menggunakan gyroscope. Untuk program pembacaan *gyroscope* menggunakan *library* yang tersedia di internet dengan modifikasi minor untuk *data logging* ke excel. Program ini menghasilkan keluaran berupa angka-angka dengan format sebagai berikut:

DATA, TIME, <WAKTU>, <YAW>, <FILTERED YAW>, <PITCH>, <FILTERED PITCH>, <ROLL>, <FILTERED ROLL>, <LC1>, <LC2>, <LC3>, <LC4>.

Kalibrasi *gyroscope* dilakukan untuk menyesuaikan nilai keluaran dari sensor dengan nilai sudut yang terjadi (Gambar 4.16). Angka yang perlu dilihat dari keluaran gyroscope adalah angka pada <FR> (*Filtered Roll*) (Gambar 4.17). Kalibrasi dilakukan dengan mengukur sudut 0°, 10°, 30°, 40°, 50°, dan 60° di atas meja dengan bantuan busur (Gambar 4.18). Proses ini dilakukan dengan dua arah pengukuran yaitu searah dan berlawanan jarum jam relatif terhadap *gyroscope*.

Gambar 4.16. *Gyroscope* pada geladak model fisik.

```
😳 COM4 (Arduino/Genuino Uno)
```

DATA, TIME, 89317, 49.20, 49.21, -1.85, -1.85, 0.6	,0.60,	0.00,0.00,0.02,0.00
DATA, TIME, 89405, 49.20, 49.21, -1.85, -1.85, 0.6	,0.60,	0.00,0.00,0.02,0.00
DATA, TIME, 89493, 49.20, 49.21, -1.85, -1.85, 0.6	,0.60,	0.00,0.00,0.03,0.00
DATA, TIME, 89592, 49.19, 49.21, -1.85, -1.85, 0.6	,0.60,	0.00,0.00,0.02,0.00
DATA, TIME, 89668, 49.19, 49.20, -1.85, -1.85, 0.6	,0.60,	0.00,0.00,0.02,0.00
DATA, TIME, 89756, 49.19, 49.20, -1.85, -1.85, 0.6	,0.60,	0.00,0.00,0.03,0.00
DATA, TIME, 89844, 49.19, 49.20, -1.85, -1.85, 0.6	,0.60,	0.00,0.00,0.03,0.00
DATA, TIME, 89932, 49.19, 49.20, -1.85, -1.85, 0.6	,0.61,	0.00,0.00,0.03,0.00
DATA, TIME, 90020, 49.19, 49.20, -1.85, -1.85, 0.6	,0.61,	0.00,0.00,0.03,0.00

Gambar 4.17. Keluaran Arduino pada sudut 0° searah jarum jam.

Gambar 4.18. Gyroscope dan geladak saat proses kalibrasi.

Tabel 4.23 menunjukkan sudut yang dibuat dengan hasil keluaran gyroscope saat gyroscope diputar searah jarum jam. Tabel 4.23

menunjukkan sudut yang dibuat dengan hasil keluaran gyroscope diputar berlawanan arah jarum jam.

Sudut (deg)	Keluaran Gyroscope (satuan)
Suuur (ucg)	Refutitul Gyloscope (sutual)
0°	-0.37
10°	-10.38
20°	-20.14
30°	-30.05
40°	-40.18
50°	-50.61
60°	-60.20

Tabel 1 22 Kalibrasi saarah jarum jar

Sudut (deg)	Output Giro (satuan)	
0°	0.60	
10°	10.20	
20°	20.42	
30°	30.75	
40°	40.44	
50°	50.05	
60°	60.30	

Tabel 4.24. Kalibrasi berlawanan jarum jam.

Tabel 4.23 dan Tabel 4.24 dapat dibuat grafik seperti Gambar 4.19. Berdasarkan hasil kalibrasi gyroscope yang dilakukan, keluaran yang dihasilkan oleh Arduino mempunyai persamaan sesuai Tabel 4.25. Hal ini menunjukkkan keluaran yang dikeluarkan merupakan sudut yang dibentuk dengan nilai positif menunjukkan berlawanan jarum jam dan negatif searah jarum jam. Kalibrasi dilakukan antara sudut 0° hingga 60° searah dan berlawanan arah jarum jam karena gerakan SPAR diasumsikan tidak akan bergerak pitch lebih dari 60°. Selain itu, validasi dilakukan dengan interval sudut sebesar 10° sehingga dapat diketahui apakah sensor dapat membaca mendekati hasil sebenarnya. Keluaran yang dihasilkan memiliki

hubungan secara linier yang dapat disimpulkan bahwa sensor terkalibrasi untuk digunakan pada studi eksperimen kali ini.

KELUARAN ARDUINO DAN SUDUT YANG DIBENTUK

Gambar 4.19. Keluaran Arduino dengan sudut yang dibentuk.

Tabel 4.25. I ersamaan <i>trenautte</i> Andumo.		
Deskripsi	Persamaan	
Searah Jarum Jam	y=1.00x-0.45	
Berlawanan Arah Jarum Jam	y=1.00x+0.27	

Tabel 4.25. Persamaan trendline Arduino.

4.4.2. Kalibrasi Image Processing

Digital image processing adalah proses pengolahan gambar dua dimensi oleh perangkat komputer. Digital image processing merupakan proses pengambilan atribut-atribut pada gambar. Pada penelitian ini, Digital image Processing dimanfaatkan untuk pendeteksian objek pada video yang digunakan untuk merekam gerakan translasi naik-turun (*heave*) dan kanan-kiri (*surge*) yang terjadi pada objek berupa model SPAR yang mengapung di dalam air dan terkena gelombang dengan variasi periode gelombang. Dalam proses representasi dan pemodelan, kuantitas dan karakter dari *pixel* menggambarkan suatu objek. *Pixel* merupakan satuan titik kecil yang menyusun sebuah gambar. Setiap *pixel* pada gambar menyimpan informasi warna. Banyaknya *pixel* yang menyusun suatu gambar tergantung pada resolusi gambar.

Pada penelitian ini, dipasang tiga buah bola berwarna merah pada model fisik yang terapung di air yang digunakan untuk merekam gerak pada objek. Warna merah dipilih untuk mendapatkan kontras warna pada gambar yang direkam. Selain itu bentuk lingkaran juga lebih mudah dibedakan oleh program. Objek yang ditinjau adalah bola yang berada di titik pusat model sedangkan bola yang diletakkan di ujung model digunakan untuk perhitungan skala *pixel* dan validasi data yang dihasilkan. Proses *image processing* ini dilakukan dengan menggunakan satu buah kamera webcam logitech C270 yang merekam gambar kemudian diolah menggunakan bantuan perangkat lunak visual basic C++.

Gambar 4.20. Sketsa model fisik dalam Image Processing.

Gambar 4.21. Kamera dan bola yang ditinjau.

Gambar 4.22. Konfigurasi geladak dengan objek yang ditinjau.

Langkah-langkah yang digunakan dalam menganalisa *image processing* ini adalah sebagai berikut:

1. Input Video

Input video dilakukan dengan menggunakan kamera *real time* yang menggunakan lensa *fixed focus*. Kamera yang digunakan adalah webcam logitech c270 dengan kualitas gambar 3 MP dan *high definition video* HD 720p.

Gambar 4.23. Webcam Logitech c270 dengan lensa fixed focus.

2. Pemisahan Frame

Langkah selanjutnya, perlu dilakukan konversi dari data *input video real time* yang direkam menjadi kumpulan data *frame* menggunakan bantuan perangkat lunak *visual basic* C++ dengan sistem operasi berbasis Linux. Kombinasi dari data-data *frame* dinamakan video. Setiap video mempunyai banyak jumlah *frame*, data ini nantinya yang akan diambil dan diolah untuk analisa gerakan pada model.

3. Current image dan background image

Setelah mengkonversi video menjadi data *frame*, Gambar *frame* pertama yang dihasilkan dinamakan *background image* sedangkan untuk gambar selain gambar pertama dinamakan *current images*.

4. Background substraction

Background substraction artinya pada tahap ini dilakukan pengurangan dari *current image* dan *background image*. *Current image* diperbarui setiap waktu perekaman sedangkan untuk *background image* tetap konstan menggunakan gambar pada *frame* awal. Dengan menggunakan teknik ini dapat diketahui besar perpindahan objek.

Gambar 4.24 merupakan contoh uji *image processing* yang dilakukan untuk merekam gerakan. Warna merah akan ditangkap oleh sistem *image processing* seperti pada Gambar 4.25. Keluaran dari gerakan yang terjadi dapat dilihat pada Gambar 4.26 dan 4.27.

Gambar 4.24. Model fisik dengan bola merah yang digunakan dalam analisa gerak model menggunakan *image processing*.

Gambar 4.26. Keluaran datalog dari data frame yang dihasilkan.

Gambar 4.27. Keluaran grafik dari data *frame* yang dihasilkan untuk gerakan *heave* dan *surge*.

4.4.3. Kalibrasi *Load Cell*

Tegangan tali diukur menggunakan instrumen *Load Cell*. Instrumen ini memanfaatkan *strain-gauge* yang terpasang pada *load cell*. Jika *load cell* mengalami tarikan maka *strain-gauge* akan mengalami perubahan bentuk. Perubahan bentuk ini akan menghasilkan perubahan tegangan. Tegangan ini kemudian diamplifikasi menggunakan modul elektronik HX711 agar

dapat terbaca. Tegangan yang sudah diamplifikasi akan diterima oleh *microcontroller* Arduino UNO untuk kemudian ditransfer ke laptop dalam bentuk angka-angka digital.

Gambar 4.28. Konfigurasi *Load Cell* (A), HX711 (B) dan Arduino UNO (C) (Layad Circuit, 2010)

Pada studi eksperimen, 4 *load cell* digunakan untuk mengukur tegangan tali dari 4 tali tambat, sehingga diperlukan 4 HX711 (*amplifier*) dan 4 *channel* dari 1 Arduino UNO. Arduino merupakan *platform open source* sehingga program dapat diunduh dengan mudah. Untuk pembacaan *load cell* digunakan program milik Jeff Rowberg (2012) dengan modifikasi minor untuk *data logging* ke excel. Program ini akan menampilkan angka-angka dengan format sebagai berikut:

DATA, TIME, <WAKTU>, <YAW>, <COMPUTED YAW>, <PITCH>, <COMPUTED PITCH>, <ROLL>, <COMPUTED ROLL>, <LC1>, <LC2>, <LC3>, <LC4>

Instrumen *load cell* yang digunakan pada studi eksperimen ini *adalah load cell* dengan kapasitas beban maksimum 5kg. *Load Cell* akan berfungsi jika beban mempunyai arah sesuai arah kerja *load cell* (Gambar 4.29). Eksperimen ini menggunakan 4 buah *load cell* (Gambar 4.30).

Gambar 4.29. Instrumen Load Cell dan arah beban.

Untuk keperluan kalibrasi *Load Cell*, angka yang perlu dilihat adalah angka pada kolom <LC1> (*Load Cell 1*), <LC2> (*Load Cell 2*), <LC3> (*Load Cell 3*), dan <LC4> (*Load Cell 4*). Angka digital yang ditampilkan oleh laptop perlu dikalibrasi sehingga dapat diketahui nilai yang sesungguhnya. Kalibrasi dilakukan dengan menimbang beberapa beban terukur sehingga dapat dicari regresi linear dari nilai-nilai yang keluar. Pada kalibrasi ini digunakan 5 buah beban, 1000 gram, 500 gram, 200 gram, 100 gram dan 50 gram (Gambar 4.31). Beban yang digunakan untuk pengukuran merupakan besi timbangan yang ada dipasaran. Besi timbangan juga sudah diukur ulang di Laboratorium Mekanika Tanah menggunakan timbangan elektronik dan menunjukkan nilai ± 1 gram.

Gambar 4.30. Keempat Load Cell yang digunakan.

Besi timbangan ditali dan digantungkan di sisi pengukuran *load cell*. Pada layar akan terlihat keluaran angka. Kemudian, setelah diberikan beban,

angka yang muncul tersebut diolah untuk dicari regresi linear kalibrasi *load cell*. Setiap *load cell* akan diuji 2 kali untuk menemukan persamaan regresi linear dari setiap *load cell*.

Gambar 4.31. Beban Kalibrasi 1000 g (A), 500 g (B), 200 g (C), 100 g (D) dan 50 g (E).

Data yang ditunjukan dari proses kalibrasi dengan 5 timbangan pada setiap *load cell* dengan 2 percobaan yang berbeda.

• Load Cell 1

Tabel 4.26. Data kalibrasi *load cell* 1 percobaan 1.

Beban (g)	Output
1000	126.9
500	62.4
200	23.6
100	10.7
50	4.3
0	0

Beban (g)	Output
1000	127.7
500	63.7
200	24.3
100	11.0
50	4.5
0	0

Tabel 4.27. Data kalibrasi *load cell* 1 percobaan 2.

Data pada Tabel 4.26 dan Tabel 4.27 kemudian di-plot menjadi Gambar 4.32. Gambar 4.32 menunjukkan Load Cell 1 mempunyai persamaan linier. sehingga bisa digunakan dengan koreksi berdasar persamaan regresi linearnya.

LOAD CELL 1

Gambar 4.32. Grafik kalibrasi Load Cell 1.

• Load Cell 2

Tabel 4.28. Data kalibrasi *load cell* 2 percobaan 1.

Beban (g)	Output
1000	188.4
500	95.1
200	37.95
100	18.5
50	9.4
0	0

Tabel 4.29. Data kalibrasi *load cell* 2 percobaan 2.

Gambar 4.33. Grafik kalibrasi Load Cell 2.

Data pada Tabel 4.28 dan Tabel 4.29 kemudian di-*plot* menjadi Gambar 4.33. Gambar 4.33 menunjukkan Load Cell 2 mempunyai persamaan linier sehingga bisa digunakan dengan koreksi berdasar persamaan regresi linearnya.

• Load Cell 3

Beban (g)	Output
1000	187.9
500	94.3
200	37.1
100	18.1
50	8.7
0	0

Tabel 4.30. Data kalibrasi *load cell* 3 percobaan 1.

Tabel 4.31. Data kalibrasi *load cell* 3 percobaan 2.

Beban (g)	Output
1000	190.0
500	94.8
200	37.7
100	18.6
50	9.1
0	0

Data pada Tabel 4.30 dan Tabel 4.31 kemudian di-*plot* menjadi Gambar 4.34. Gambar 4.34 menunjukkan *Load Cell* 3 mempunyai persamaan linier sehingga bisa digunakan dengan koreksi berdasar persamaan regresi linearnya.

• Load Cell 4

Tabel 4.32. Data kalibrasi load cell 4 percobaan 1.

Beban (g)	Output
1000	187.5
500	93.8
200	37.4
100	18.5
50	9.4
0	0

Tabel 4.33. Data kalibrasi *load cell* 4 Percobaan 2.

Beban (g)	Output
1000	184.8
500	92.2
200	36.6
100	18.1
50	8.8
0	0

Data pada Tabel 4.32 dan Tabel 4.33 kemudian di-*plot* menjadi Gambar 4.35. Gambar 4.35 menunjukkan *Load Cell* 4 mempunyai persamaan linier sehingga bisa digunakan dengan koreksi berdasar persamaan regresi linearnya.

LOAD CELL 4

Gambar 4.35. Grafik kalibrasi Load Cell 3

Persamaan yang digunakan untuk mengkalibrasi keluaran *load cell* ditampilkan dalam Tabel 4.34.

Taber 4.54. I ersamaan Kanorasi Kerdaran Load Cen dengan Deban.		
Komponen	Persamaan	
Load Cell 1	y = 7.72 X - 12.12	
Load Cell 2	y = 5.28 X - 0.17	
Load Cell 3	y = 5.26 X + 1.51	
Load Cell 4	y = 5.40 X + 1.61	

Tabel 4.34. Persamaan Kalibrasi Keluaran Load Cell dengan Beban.

4.5. RAO TERAPUNG BEBAS

4.5.1. Metode Analitis

4.5.1.1. Mode Gerak Surge

Gerak Surge dari sebuah SPAR dapat dihitung secara analitis dengan menghitung *mass displacement* dari SPAR pada sarat yang direncanakan. Kemudian, parameter-parameter dinamis benda juga dicari seperti massa tambah, redaman dan kekakuan struktur. Setelah semua diketahui, respon gerak bangunan apung dapat dikalkulasi.

1. Perhitungan displacement

Displacement prototype berdiameter (*D*) 16 m yang tercelup dengan sarat (*T*) 135,03 m di laut dengan massa jenis (ρ) 1.025 kg/m³ dapat dihitung dengan menggunakan Persamaan 4.11

$$\Delta = \frac{1}{4}\pi D^2 T \rho g \tag{4.11}$$

Tabel 4.35. menampilkan hasil perhitungan *displacement* dan perbandingannya dengan data JIP dan analisa numerik (MOSES).

 Tabel 4.35. Perbandingan displacement dari hasil data, analitik dan numerik.

Deskripsi	Data	Analitik	Error	Numerik	Error
Massa (kg)	26531524.91	27834342.56	4.91%	27117650	2.21%

2. Massa Tambah

Massa tambah dari mode gerak *surge* untuk bentuk silinder berdasarkan Sarpkaya (2010) ditampilkan dalam Persamaan 4.12 dengan massa jenis (ρ) 1.025 kg/m³ dan *c* radius silinder 8 m. Hasil perhitungan terlampir di Tabel 4.38.

$$m_a = \rho \pi c^2 \tag{4.12}$$

3. Kekakuan

Pada mode gerak *surge*, benda terapung tidak mempunyai kekakuan, sehingga kekakuan mode gerak *surge* adalah 0

4. Redaman

Pada studi analitis kali ini, redaman (*redaman*) dari struktur pada mode gerak surge merupakan 0 untuk penyederhanaan perhitungan.

5. Gaya Eksitasi

Perhitungan gaya eksitasi gelombang menggunakan perhitungan Morrison seperti Persamaan 4.13. Bangunan SPAR berbentuk silinder dengan radius (R) sebesar 8 m, koefisien Morrison (Cm) bernilai 1, panjang silinder tercelutp (d) bernilai 108 m.

 $F_e = (1 + C_m)\rho \pi R^2 \zeta_0 g (1 - e^{-kd}) \cos(kx - \omega t)$ (4.13) 6. RAO

Parameter-parameter dinamis dari sistem terapung yang sudah diketahui dapat dilihat di Tabel 4.36.

Deskripsi	Besaran	Satuan
Displacement (m)	27834342.56	kg
Masa Tambah (ma)	206140.00	Kg/m
Kekakuan (k)	0	N/m
Redaman (b)	0	Ns/m

Tabel 4.36. Parameter Perhitungan RAO.

Persamaan 4.14 merupakan persamaan respon gerak bangunan. Nilai respon gerak bangunan apung akan sama dengan RAO jika dalam perhitungan amplitudo gelombang adalah 1 m.

$$\zeta_{x0} = \frac{F_e}{\sqrt{\{k_x - (m + a_x)\omega^2\}^2 + (b_x\omega)^2}}$$
(4.14)

Tabulasi perhitungan RAO dapat dilihat di LAMPIRAN dengan sumbu absis sebagai frekuensi gelombang dan koordinat sebagai RAO. Gambar 4.36 menampilkan grafik RAO untuk gerak *surge*.

Gambar 4.36. Grafik RAO surge analitis

4.5.1.2. Mode Gerak Heave

Pada mode gerak *heave* parameter dinamisnya berbeda, yaitu massa tambah, kekakuan benda, redaman dan gaya eksitasinya.

1. Perhitungan displacement

Displacement SPAR dalam mode gerak *heave* sama dengan dalam mode gerak *surge* sehingga, nilai *displacement* yang digunakan seperti Tabel 4.37.

2. Massa Tambah

Massa tambah dari mode gerak *heave* untuk bentuk silinder berdasarkan Sarpkaya (2010) ditampilkan dalam persamaan 4.15, dengan massa jenis (ρ) 1.025 kg/m³ dan *c* radius silinder 8 m. Namun, pada kasus SPAR permukaan yang tercelup merupakan setengah bagian, sehingga massa tambah SPAR menjadi 1/2 ma. Hasil perhitungan terlampir di Tabel 4.37.

$$m_a = \frac{8}{3}\rho c^3 \tag{4.15}$$

3. Kekakuan

Pada mode gerak *heave* kekakuan struktur dapat dihitung dengan persamaan 4.16, dengan massa jenis (ρ) 1.025 kg/m³, percepatan gravitasi (g) 9.81 m/s² dan A_w merupakan luas bidang air (*Water Plane Area*, WPA). SPAR mempunyai luas bidang air berbentuk lingkaran sehingga besar kekakuan gerak *heave* dilampirkan dalam Tabel 4.37.

$$k_{33} = \rho g A_w \tag{4.16}$$

4. Redaman

Pada studi analitis kali ini, redaman dari struktur pada mode gerak *heave* digunakan nilai 0 untuk penyederhanaan perhitungan. Nilai redaman 0 akan menghasilkan nilai tak terhingga pada frekuensi naturalnya. Untuk menyiasati hal tersebut, pada saat melakukan tabulasi, frekuensi tabulasinya tidak pas saat frekuensi natural benda. Hasil yang didapat menunjukkan tendensi yang sama dengan perhitungan numerik MOSES.

5. Gaya Eksitasi

Menurut Journee (2001) gaya eksitasi gelombang pada silinder dalam mode gerak *heave* ditampilkan dalam Persamaan 4.17. Dengan *k* angka gelombang, *c* kekakuan benda pada mode gerak *heave*, *a* massa tambah benda. *b* koefisien redaman sistem dan ω sebagai frekuensi.

$$\frac{F_a}{\zeta_a} = e^{-kT} \sqrt{\{c - a\omega^2\}^2 + \{b\omega\}^2}$$
(4.17)

6. RAO

Parameter-parameter dinamis dari sistem terapung untuk mode gerak *heave* terdapat dalam Tabel 4.37.

DeskripsiBesaranSatuanDisplacement (m)27834342.56kgMasa Tambah (ma)699995.77kg

 Tabel 4.37. Parameter Perhitungan RAO Heave.

Deskripsi	Besaran	Satuan
Kekakuan (k)	2022233.43	N/m
Redaman (b)	0	Ns/m

Tabel 4.37. Parameter Perhitungan RAO Heave. (Lanjutan)

Persamaan 4.18 merupakan persamaan respon gerak bangunan. Nilai respon gerak bangunan apung akan sama dengan RAO jika dalam perhitungan amplitudo gelombang adalah 1 m.

$$\zeta_{x0} = \frac{F_e}{\sqrt{\{k_x - (m + a_x)\omega^2\}^2 + (b_x\omega)^2}}$$
(4.18)

Tabulasi perhitungan RAO dapat dilihat di LAMPIRAN dengan sumbu absis sebagai frekuensi gelombang dan oordinat sebagai RAO. Gambar 4.37 menampilkan grafik RAO untuk gerak *heave* SPAR.

Gambar 4.37. Grafik RAO heave analitis.

4.5.1.3. Mode Gerak Pitch

Pada mode gerak *pitch* parameter dinamisnya berbeda, yaitu massa tambah, kekakuan benda, redaman dan gaya eksitasinya.

1. Perhitungan displacement

Displacement SPAR dalam mode gerak *pitch* sama dengan dalam mode gerak *surge* maupun *heave* sehingga, nilai *displacement* yang digunakan seperti Tabel 4.38.

2. Momen inersia massa tambah

Momen inersia massa tambah dari SPAR dapat menggunakan rumus momen inersia massa pada sebuah silinder yang tercelup pada persamaan 4.19, dengan massa jenis (ρ) 1.025 kg/m³, *R* merupakan radius SPAR sebesar 8 m dan *l* merupakan panjang SPAR sebesar 154.2 m.

$$I_a = \rho \pi R^2 l (l/2)^2 \tag{4.19}$$

3. Kekakuan

Pada mode gerak *pitch* kekakuan struktur dapat dihitung dengan Persamaan 4.20, dengan massa jenis (ρ) 1.025 kg/m³, percepatan gravitasi (g) 9.81 m/s² dan GM_L merupakan jarak titik *metacenter* SPAR dengan titik berat SPAR yaitu sebesar 5.6 m. SPAR mempunyai luas bidang air berbentuk lingkaran sehingga besar kekakuan gerak *pitch* dilampirkan dalam Tabel 4.38.

$$k_{33} = \rho g \nabla \overline{GM_L} \tag{4.20}$$

4. Redaman

Pada studi analitis kali ini, *redaman* dari struktur pada mode gerak *pitch* digunakan nilai 0 untuk penyederhanaan perhitungan. Nilai redaman 0 akan menghasilkan nilai tak terhingga pada frekuensi naturalnya. Untuk menyiasati hal tersebut, pada saat melakukan tabulasi, frekuensi tabulasinya tidak pas saat frekuensi natural benda. Hasil yang didapat menunjukkan tendensi yang sama dengan perhitungan numerik MOSES.

5. Momen Gaya

SPAR mengalami gerakan *pitch* diakibatkan adanya momen gaya. Sehingga persamaan momen gaya pada SPAR untuk gerakan *pitch* dapat dilihat pada Persamaan 4.21.

$$M = (1 + C_M)\rho\pi R_1^2 \zeta_0 \omega^2 \cos(kx_c - \omega t) \int e^{kz} dz \qquad (4.21)$$

6. RAO

Parameter-parameter dinamis dari sistem terapung untuk mode gerak *pitch* terdapat dalam Tabel 4.38.

Deskripsi	Besaran	Satuan
Displacement (m)	27834342.56	kg
Momen inersia tambah (Ia)	168322693.5	ton.m ²
Kekakuan (k)	2E+06	KN.m
Redaman (b)	0	Ns/m

Tabel 4.38. Parameter Perhitungan RAO Pitch.

Persamaan 4.22 merupakan persamaan respon gerak bangunan. Nilai respon gerak bangunan apung akan sama dengan RAO jika dalam perhitungan amplitudo gelombang adalah 1 m.

$$\zeta_{\theta} = \frac{M/k}{\sqrt{\left\{1 - \left(\frac{\omega}{\omega_n}\right)^2\right\}^2 + 2b_f \left(\frac{\omega}{\omega_n}\right)^2}}$$
(4.22)

Tabulasi perhitungan RAO dapat dilihat di LAMPIRAN dengan sumbu absis sebagai frekuensi gelombang dan ordinat sebagai RAO. Gambar 4.38 menampilkan grafik RAO untuk gerak *pitch* SPAR.

Gambar 4.38. Grafik RAO pitch analitis.

4.5.2. Metode Numeris

Perhitungan numeris dari gerak bangunan apung di kondisi terapung bebas dilakukan dengan menggunakan perangkat lunak MOSES dari Bentley. Model yang sudah dibuat akan dianalisis menggunakan teori *3D Panel Diffraction*. Parameter yang dimasukkan dalam perangkat lunak adalah distribusi massa dari SPAR berupa *Center of Gravity* dan Radius Girasi.

4.5.2.1. Mode Gerak Surge

Gambar 4.39 menunjukkan RAO mode gerak *surge* dari SPAR. Pada mode gerak *surge* tidak ditemukan pembesaran nilai RAO akibat adanya resonansi. Hal ini terjadi karena gerak surge dari bangunan apung tidak memiliki kekakuan. Arah gelombang 0 deg memberikan respon gerak bangunan pada mode *surge* yang terbesar.

Gambar 4.39. Grafik RAO surge numerik.

4.5.2.2. Mode Gerak *Heave*

Gambar 4.40. menunjukkan RAO mode gerak *heave* dari SPAR. Arah gelombang tidak mempengaruhi nilai RAO secara signifikan, hal ini disebabkan bentuk lambung yang berupa silinder.

Gambar 4.40. Grafik RAO heave numerik.

4.5.2.3. Mode Gerak Pitch

Gambar 4.41 menunjukkan RAO mode gerak *pitch* dari. Arah gelombang 0 deg memberikan respon gerak bangunan pada mode *pitch* yang terbesar.

Gambar 4.41. Grafik RAO pitch numeris.

4.5.3. Metode Eksperimen

Analisa eksperimen dilakukan di Laboratorium Hidrodinamika FTK ITS. Model eksperimen SPAR diletakkan di kolam dengan dimensi panjang 100 m, kedalaman 1.8 dan lebar 3 m. Pada kondisi terapung bebas SPAR diletakkan dengan konfigurasi seperti pada Gambar 4.42.

Gambar 4.42. Konfigurasi tali penahan drift.
Dua tali penahan *drift* digunakan untuk menjaga posisi dari struktur sehingga sesuai dengan arah yang diinginkan. Tali penahan *drift* dipasang renggang, hal ini dipasang sedemikian hingga agar tali tidak mempengaruhi gerak struktur, namun apabila *drifting* mampu menggeser model maka tali ini akan menahannya.

Model akan dikenai gelombang yang berasal dari *wave maker*. Variasi gelombang yang terjadi adalah variasi periode gelombang, sedangkan besar tinggi gelombang konstan yaitu 5 cm. Penentuan periode gelombang ditentukan dengan terlebih dulu melakukan penskalaan periode gelombang lingkungan menjadi periode gelombang eksperimen.

Gambar 4.43. Model SPAR kondisi terapung bebas.

Setiap eksperimen mempunyai identitas eksperimen masing-masing. Kode eksperimen digunakan untuk setiap kondisi seperti pada Gambar 4.45.

Gambar 4.45. Kode eksperimen.

Respon dari benda yang terkena gelombang akan dicatat dengan instrumen *image processing* dan *gyroscope*. *Image processing* akan mencatat mode gerak *surge* dan *heave* sedangkan *gyroscope* akan mencatat gerak *pitch* struktur. Gambar 4.46 , 4.47 dan 4.48 di bawah ini merupakan salah satu contoh dari *time history* keluaran instrumen.

Gambar 4.46. *Time history* instrumen *image processing* untuk gerakan *surge*.

Gambar 4.47. *Time history* instrumen *image processing* untuk gerakan *heave*.

Gambar 4.48. Time History instrumen gyroscope untuk gerakan pitch.

4.5.3.1. Mode Gerak Surge

Analisa dilakukan dengan merata-rata respon yang terjadi untuk melihat respon gerak setiap variasi periode. RAO merupakan perbandingan antara amplitudo respon gerak dengan amplitudo gelombang. Tabel 4.39 menunjukkan respon gerak dan periode respon struktur dari setiap gerakan beserta RAO dan perbandingan periode respon dan periode gelombang.

No.	Kode	Respon Gerak (cm)	Respon Periode (s)	RAO (cm/cm)	Perbandingan Periode
1	FFH1a	1.0692	3.75	0.4277	0.96
2	FFH1b	1.6833	2.7273	0.6733	0.99
3	FFH1c	1.55	2.222	0.62	0.99
4	FFH1d	1.3833	2.00	0.5553	0.9
5	FFH1e	0,5308	1,00	0.2123	0,9
6	FFH1f	2.333	3.0769	0.9333	1.0075
7	FFH1g	0.433	0.47	0.1667	1.06

Tabel 4.39. Respon gerak dan RAO gerakan surge hasil eksperimen.

Kolom RAO pada Tabel 4.39 dapat di-*plot* untuk membuat suatu grafik RAO dari gerak *surge* yang disajikan pada Gambar 4.49 berikut ini.

Gambar 4.49. Grafik RAO surge hasil eksperimen

4.5.3.2. Mode Gerak Heave

Setiap *time history* pada gerak *heave* dianalisa tinggi respon dan periode respon dari gerak yang terjadi. Analisa dilakukan dengan merata-rata respon yang terjadi untuk melihat respon gerak setiap variasi periode. RAO merupakan perbandingan antara amplitudo respon gerak dengan amplitudo gelombang. Tabel 4.40 menunjukkan respon gerak dan periode respon struktur dari setiap gerakan beserta RAO dan perbandingan periode respon dan periode gelombang.

No.	Kode	Respon Gerak	Respon Periode	RAO	Perbandingan Periode
1	FFH1a	1.083	3.6363	0.433	0.98
2	FFH1b	2.617	2.72	1.047	0.99
3	FFH1c	9.915	2.22	3.996	0.99

Tabel 4.40. Respon gerak dan RAO gerakan *heave* hasil eksperimen.

No.	Kode	Respon Gerak	Respon Periode	RAO	Perbandingan Periode
4	FFH1d	2.85	1.8181	1.14	0.99
5	FFH1e	0.614	1.00	0.246	0.9
6	FFH1f	1.8	3.00	0.72	1.033
7	FFH1g	0.528	0.56	0.21	0.9

Tabel 4.40. Respon gerak dan RAO gerakan *heave* hasil eksperimen. (Lanjutan)

Kolom RAO pada Tabel 4.40 dapat di-*plot* untuk membuat suatu grafik RAO dari gerak *heave* seperti pada Gambar 4.50 berikut:

Gambar 4.50. Grafik RAO heave hasil eksperimen.

4.5.3.3. Mode Gerak Pitch

Setiap *time history* pada gerak *pitch* dianalisa tinggi respon dan periode respon dari gerak yang terjadi. Analisa dilakukan dengan merata-rata respon yang terjadi untuk melihat respon gerak setiap variasi periode. RAO merupakan perbandingan antara amplitudo respon gerak dengan amplitudo gelombang. Tabel 4.41 menunjukkan respon gerak dan periode respon struktur dari setiap gerakan beserta RAO dan perbandingan periode respon dan periode gelombang.

No	Kode	Respon	Respon	RAO	Perbandingan
190.		Gerak	Periode	(deg/cm)	Periode
1	FFH1a	0.074	3.316	0.030	0.947
2	FFH1b	0.339	2.926	0.136	1.084
3	FFH1c	1.021	2.089	0.479	0.950
4	FFH1d	0.641	1.890	0.256	1.050
5	FFH1e	0.327	0.956	0.131	1.062
6	FFH1f	0.391	3.203	0.156	1.033
7	FFH1g	0.026	0.465	0.012	0.931

Tabel 4.41. Respon gerak dan RAO gerakan pitch hasil eksperimen.

Kolom RAO pada Tabel 4.41 dapat di-*plot* untuk membuat suatu grafik RAO dari gerak pitch seperti yang disajikan pada Gambar 4.51. berikut ini.

Gambar 4.51. Grafik RAO *pitch* hasil eksperimen.

4.5.4. Perbandingan RAO Metode Analitis, Numeris dan Eksperimen

Gambar 4.52, 4.53 dan 4.54 menunjukkan perbandingan RAO terapung bebas pada arah datang gelombang 0 derajat dengan metode analitis, numeris dan eksperimen untuk tiap gerakan *surge*, *heave* dan *pitch* yang terjadi.

Gambar 4.52. Perbandingan RAO surge secara analitis, numeris dan eksperimen.

Gambar 4.53. Perbandingan RAO *heave* secara analitis, numeris dan eksperimen.

Gambar 4.54. Perbandingan RAO *pitch* secara analitis, numeris dan eksperimen.

4.6. RAO TERTAMBAT

4.6.1. Kekakuan Tali Tambat

Pada bangunan tertambat kekakuan hidrostatis benda akan ditambahkan dengan kekakuan tali tambat. Pada kekakuan hidrostatis, mode gerak yang memiliki kekakuan hanya gerak *heave*, *roll* dan *pitch*. Namun dengan adanya kekakuan tali tambat, ke enam mode gerak (*surge*, *sway*, *heave*, *roll*, *pitch* dan yaw) memiliki kekakuan baru. Pada Tugas Akhir ini, konfigurasi tali tambat merupakan jenis taut dan perhitungan kekakuan *surge* diselesaikan menggunakan Faltinsen (1990), kekakuan *heave* diselesaikan menggunakan Al-Solihat dan Nahon (2015) dan kekakuan *pitch* menggunakan Jain (1980). Kondisi taut mempunyai kekakuan karakteristik sesuai dengan Persamaan 4.23, dengan *E* sebagai modulus elastis tali, *A* sebagai luas penampang tali dan *Lo* sebagai panjang tali kondisi tak terenggang. Perhitungan Persamaan 4.23 dilakukan dengan data berdasar Tabel 4.18.

$$k_{I} = \frac{EA}{L_{o}}$$

$$k_{I} = \frac{11175000000}{225}$$

$$k_{I} = 5222222.222 N/m$$
(4.23)

Pada kondisi *taut*, tali juga memiliki *pre-tension*, yang akan merubah panjang tali sesuai dengan Persamaan 4.24, dengan *Lo* sebagai panjang tali tak terenggang, *T* sebagai pretension, *E* modulus elastisitas dan *A* sebagai luas penampang. Tabel 4.42 menunjukkan nilai *pre-tension* dan panjang yang terjadi.

$$L = L_o (1 + \frac{T}{EA}) \tag{4.24}$$

 Tabel 4.42. Perhitungan Pre Tension dan Panjang Akibat Pre-Tension.

Deskripsi	Jumlah
Tegangan (N)	904874.4
Panjang (m)	225.173

4.6.1.1. Kekakuan Surge

Kekakuan *surge* dapat dicari dengan menggunakan Persamaan 4.25, dengan k_i sebagai kekakuan parametrik, *N* sebagai jumlah tali dan β sebagai sudut sebar tali tambat (Gambar 4.55). Sudut sebar dapat dilihat pada Tabel 4.43. Persamaan 4.25 menunjukkan bahwa kekakuan *surge* total merupakan penjumlahan dari kekakuan tiap tali. Hasil perhitungan kekakuan tiap tali dapat dilihat di Tabel 4.47.

Sudut Sebar Tali (deg)					
β1	45				
β2	135				
β3	225				
β4	315				

Tabel 4.43. Sudut sebar tali

Gambar 4.55. Konfigurasi SPAR.

$$C_{11} = \sum_{i=1}^{N} k_i \cos^2 \beta_i$$
 (4.25)

Tabel 4.44. Kekakuan surge.

	K11	
LineA	2611111.11	N/m
LineB	2611111.11	N/m
LineC	2611111.11	N/m
LineD	2611111.11	N/m
K11	1044444 44	N/m
(TOTAL)	1011111111	1,7,111

4.6.1.2. Kekakuan *Heave*

Al-Solihat dan Nahon (2015) menentukan konfigurasi kekakuan tali dengan menggunakan Gambar 4.56. Konfigurasi tali tambat pada SPAR kali ini memiliki bentuk sesuai dengan Gambar 4.55. Parameter geometri dari kondisi SPAR ditampilkan pada Tabel 4.43 dan Tabel 4.45. Setiap tali memiliki kekakuan karakteristik sesuai dengan persamaan 4.26, dengan *H* sebagai gaya horizontal, *V* gaya

Vertikal, *l* jarak horizontal *fairlead* dengan *anchor* dan *h* sebagai tinggi (Gambar 4.56).

Gambar 4.56. Parameter geometris tali tambat. (Al-Solihat dan Nahon, 2015)

Sudut Tanah-Line					
(deg)					
α1	60				
α2	60				
α3	60				
α4	60				

Tabel 4.4	5. Koi	nfigurasi	Sudut	Tana	h-Tali.

$$\boldsymbol{K}^{p} = \begin{bmatrix} K_{11}^{p} & K_{12}^{p} \\ K_{21}^{p} & K_{22}^{p} \end{bmatrix} = \begin{bmatrix} \frac{\partial H}{\partial l} & \frac{\partial H}{\partial h} \\ \frac{\partial V}{\partial l} & \frac{\partial V}{\partial h} \end{bmatrix}$$
(4.26)

Konfigurasi *Taut Mooring* juga memiliki pendekatan Al-Solihat dan Nahon (2015) seperti Persamaan 4.27 (a-e).

$$H = T \cos \alpha \tag{4.27a}$$

$$V = T \sin \alpha \tag{4.27b}$$

$$l = L \cos \alpha \tag{4.27c}$$

$$h = L \sin \alpha \tag{4.27d}$$

Persamaan 4.26 diturunkan oleh Al-Solihat &Nahon (2015) sehingga menghasilkan Persamaan 4.28.

$$\frac{\partial H}{\partial l} = \cos^2 \alpha \, K_I + \frac{T}{L} \sin^2 \alpha \tag{4.28a}$$

$$\frac{\partial V}{\partial h} = \sin^2 \alpha \ K_I + \frac{T}{L} \cos^2 \alpha \tag{4.28b}$$

$$\frac{\partial H}{\partial h} = \frac{\partial V}{\partial l} = \cos\alpha \sin\alpha \left[K_I - \frac{T}{L} \right]$$
(4.28c)

Dengan data pada Tabel 4.18 maka karakteristik kekakuan pada setiap tali dilampirkan pada Tabel 4.46.

	k^{p}_{11} (N/m)	k^{p}_{22} (N/m)	k^{p}_{12} (N/m)			
Line A	1308569.48	3917671.31	2259548.46			
Line B	1308569.48	3917671.31	2259548.46			
Line C	1308569.48	3917671.31	2259548.46			
Line D	1308569.48	3917671.31	2259548.46			

Tabel 4.46. Kekakuan Karakteristik.

Al-Solihat &Nahon (2015) menentukan untuk gerakan *heave* dapat diselesaikan menggunakan Persamaan 4.29.

$$K_{33} = K_{22}^p \tag{4.29}$$

Setiap tali memberi kekakuan tambahan pada setiap mode gerak, sehingga kekakuan total merupakan penjumlahan dari kekakuan mode gerak pada setiap tali, sesuai dengan Persamaan 4.30. Kekakuan total tali tambat *heave* dapat dilihat di Tabel 4.47.

$$\boldsymbol{K}_{m} = \sum_{i=1}^{N} \left[\boldsymbol{K}_{m}^{(i)} \right]$$
(4.30)

 Tabel 4.47. Kekakuan mode gerak heave.

• •

Deskripsi	k33	Unit
LineA	3917671.31	N/m
LineB	3917671.31	N/m
LineC	3917671.31	N/m
LineD	3917671.31	N/m

Deskripsi	k33	Unit
K33		N/m
(TOTAL)	15670685.24	19/111

Tabel 4.47. Kekakuan mode gerak *heave*. (Lanjutan)

4.6.1.3. Kekakuan Pitch

Jain (1980) membuat persamaan simplifikasi untuk mencari kekakuan benda tertambat. Hal ini dilakukan dengan memberi titik tambat bayangan, seperti pada Gambar 4.57. Persamaan 4.31 merupakan hasil penurunan untuk gerak *pitch* dengan *To* sebagai *pre-tension* sumbu x, *X* jarak radius *fairlead* dengan anchor, *Y* sebagai kedalaman, *L'* sebagai panjang baru, dan *l* sebagai panjang bayangan.

$$k_{55} = T_o \left[w \left(\frac{T_B L' - T_A l}{T_A - T_B} \right) \left\{ \frac{X}{T_o} - \left(\frac{T_B L' - T_A l}{T_A T_B} \right) \right\} - \frac{T_o^2 Y}{T_A T_B} \right]^{-1}$$
(4.31)

Ta dan *Tb* merupakan tegangan tali di titik A dan titik B dengan Persamaan 4.32. dan 4.33. Perhitungan kekakuan tali tambat dapat dilihat di Tabel 4.51.

$$T_A = T_o \left[1 + \left(\frac{wL'}{T_o}\right)^2 \right]^{1/2} \tag{4.32}$$

$$T_B = T_o \left[1 + \left(\frac{wl}{T_o}\right)^2 \right]^{1/2} \tag{4.33}$$

Gambar 4.57. Titik bayangan. (Jain, 1980)

Deskripsi	K55	Unit
Line 1	5765049068.151	N
Line 2	5765049068.151	N
Line 3	5765049068.151	N
Line 4	5765049068.151	N
K55 Total	23060196272.604	N

Tabel 4.48. Kekakuan mode gerak *pitch*.

4.6.2. Metode Analitis

4.6.2.1. Mode Gerak Surge

Tabel 4.44 menunjukkan kekakuan tiap tali tambat beserta kekakuan total mode gerak *surge*. Dengan menggunakan metode yang sama seperti kondisi terapung bebas, maka RAO dari *surge* tertambat dihitung dengan metode analitis. Tabulasi perhitungan dapat dilihat di LAMPIRAN. Gambar 4.58 merupakan grafik RAO *surge*. RAO tertinggi dari *surge* tertambat secara analitis sebesar 5.796 m/m pada frekuensi 0.43 rad/s.

Gambar 4.58. RAO Surge tertambat metode analitis.

4.6.2.2. Mode Gerak *Heave*

Kekakuan total merupakan penjumlahan dari kekakuan *heave* setiap tali tambat. Tabel 4.47 menunjukkan kekakuan tiap tali tambat beserta kekakuan total. Dengan menggunakan metode yang sama

seperti kondisi terapung bebas, maka RAO dari *heave* tertambat dengan metode analitis dapat dihitung. Tabulasi perhitungan dapat dilihat di LAMPIRAN. Gambar 4.59 merupakan grafik RAO *Heave* tertambat. RAO tertinggi dari *surge* tertambat secara analitis sebesar 0.083 m/m pada frekuensi 0.16 rad/s.

Gambar 4.59. RAO *heave* tertambat metode analitis.

4.6.2.3. Mode Gerak Pitch

Kekakuan total merupakan penjumlahan dari kekakuan *pitch* setiap tali tambat. Tabel 4.48 menunjukkan kekakuan tiap tali tambat beserta kekakuan total mode gerak *pitch*. Dengan menggunakan metode yang sama seperti sub-bab, maka RAO dari *pitch* tertambat dengan metode analitis. Tabulasi perhitungan dapat dilihat di LAMPIRAN. Gambar 4.60. merupakan grafik RAO *pitch* tertambat. RAO tertinggi dari *surge* tertambat secara analitis sebesar 4.138 deg/m pada frekuensi 0.39 rad/s.

Gambar 4.60. RAO *Pitch* tertambat metode analitis.

4.6.3. Metode Numeris

Perhitungan numeris dari gerak bangunan apung di kondisi tertambat dilakukan dengan menggunakan perangkat lunak MOSES dari Bentley. Model yang sudah dibuat akan dianalisis menggunakan teori *3D Panel Diffraction*. Metode yang digunakan mirip dengan kondisi terapung bebas, tetapi dengan penambahan tali tambat dan parameternya. Dalam analisa numeris dilakukan perhitungan dari arah datang gelombang 0 derajat.

Gambar 4.61. Kondisi tertambat dalam MOSES

4.6.3.1. Mode Gerak Surge

Gambar 4.62 menunjukkan RAO mode gerak *surge* dari SPAR dengan arah datang gelombang 0 derajat. Hasil dari perhitungan perangkat lunak MOSES terdapat pada LAMPIRAN. RAO tertinggi dari *surge* tertambat secara numeris sebesar 5.053 m/m pada frekuensi 0.35 rad/s.

RAO SURGE TERTAMBAT

Gambar 4.62. RAO *surge* tertambat metode numerik.

4.6.3.2. Mode Gerak Heave

Gambar 4.63 menunjukkan RAO mode gerak *heave* dari SPAR dengan arah datang gelombang 0 derajat. Hasil dari perhitungan perangkat lunak MOSES terdapat pada LAMPIRAN. RAO tertinggi dari *heave* tertambat secara numeris sebesar 0.091 m/m pada frekuensi 0.16 rad/s.

Gambar 4.63. RAO *heave* tertambat metode numerik.

4.6.3.3. Mode Gerak Pitch

Gamba 4.64 menunjukkan RAO mode gerak *pitch* dari SPAR dengan arah datang gelombang 0 derajat. Hasil dari perhitungan perangkat lunak MOSES terdapat pada LAMPIRAN. RAO tertinggi dari *pitch* tertambat secara numeris sebesar 7.344 deg/m pada frekuensi 0.35 rad/s.

Gambar 4.64. RAO *pitch* tertambat metode numerik.

4.6.4. Metode Eksperimen

Analisa eksperimen dilakukan di Laboratorium Hidrodinamika FTK ITS. Model fisik diletakkan di kolam dengan dimensi panjang 100 m, kedalamann 1.8 dan lebar 3 m. Pada kondisi tertambat model fisik diletakkan dengan konfigurasi seperti pada Gambar 4.65. SPAR dalam kondisi tertambat di laboratorium Hidrodinamika ITS ditunjukkan pada gambar 4.66.

Gambar 4.65. Konfigurasi eksperimen model fisik tertambat.

Gambar 4.66. Ekseperimen SPAR Tertambat

Tali tambat yang digunakan sebanyak empat buah yang diatur dengan panjang yang sama dan tali dipasang dalam kondisi *taut*. Tali tambat

dihubungkan pada *load cell* yang berada pada jangkar yang telah berada di dasar kolam untuk mencatat tegangan tali yang terjadi.

Model akan dikenai gelombang yang berasal dari *wave maker*. Model akan dikenai 9 gelombang dengan karakteristik seperti pada Tabel 4.49. Variasi gelombang yang terjadi adalah variasi periode gelombang, sedangkan tinggi gelombang konstan. Penentuan periode gelombang ditentukan dengan terlebih dulu melakukan penskalaan periode gelombang lingkungan menjadi periode gelombang eksperimen.

Respon dari benda yang terkena gelombang akan dicatat dengan instrumen *image processing* dan *gyroscope*. *Image processing* akan mencatat mode gerak *surge* dan *heave* sedangkan *gyroscope* akan mencatat gerak *pitch* struktur. Gambar 4.67, 4.68 dan 4.69 merupakan salah satu contoh dari *time history* hasil dari instrumen. Seluruh hasil dari percobaan ada di LAMPIRAN.

Gambar 4.67. *Time history* instrumen *image processing* untuk gerakan *heave* tertambat.

Gambar 4.68. *Time history* instrumen *image processing* untuk gerakan *surge* tertambat.

Gambar 4.69. *Time History* instrumen gyroscope untuk gerakan pitch tertambat.

4.6.4.1. Mode Gerak Surge

Setiap *time history* pada gerak *surge* dianalisa tinggi respon dan periode respon dari gerak yang terjadi. Analisa dilakukan dengan merata-rata respon yang terjadi untuk melihat respon gerak setiap variasi periode. RAO merupakan perbandingan antara amplitudo respon gerak dengan amplitudo gelombang. Periode respon dibandingkan dengan periode gelombang datang. Tabel 4.49 menunjukkan hasil eksperimen yang dilakukan pada mode gerak *surge*.

No.	Kodo	No Kodo	Respon	Respon	RAO	Perbandingan
	Koue	Gerak (cm)	Periode (s)	(cm/cm)	Periode	
1	TT1	1.49	3.33	0.60	1.08	
2	TT2	1.02	3.33	0.41	1.07	
3	TT3	0.75	2.86	0.30	1.06	
4	TT4	0.52	2.22	0.21	1.01	
5	TT5	2.66	2.00	1.07	1.11	
6	TT6	5.98	1.67	2.39	1.04	
7	TT7	4.53	1.43	1.81	1.02	
8	TT8	2.52	1.25	1.01	1.04	
9	TT9	1.19	0.83	0.48	1.08	

 Tabel 4.49. Respon gerak dan RAO gerakan surge hasil eksperimen kondisi

 tortombot

Kolom RAO pada Tabel 4.50 dapat di-*plot* untuk membuat suatu grafik RAO dari gerak *surge* model tertambat yang disajikan pada Gambar 4.70. RAO tertinggi dari *surge* tertambat secara eksperimen sebesar 2.390 m/m pada frekuensi 0.35 rad/s.

RAO Surge Tertambat

Gambar 4.70. Grafik RAO surge tertambat eksperimen.

4.6.4.2. Mode Gerak Heave

Setiap *time history* pada gerak *heave* dianalisa tinggi respon dan periode respon dari gerak yang terjadi. Analisa dilakukan dengan

merata-rata respon yang terjadi untuk melihat respon gerak setiap variasi periode. RAO merupakan perbandingan antara amplitudo respon gerak dengan amplitudo gelombang. Tabel 4.50 menunjukkan respon gerak dan periode respon struktur dari setiap gerakan beserta RAO model dalam kondisi tertambat dan perbandingan periode respon dan periode gelombang.

Kolom RAO pada Tabel 4.50 dapat di-*plot* untuk membuat suatu grafik RAO dari gerak *surge* model tertambat yang disajikan pada gambar 4.71. RAO tertinggi dari *heave* tertambat secara eksperimen sebesar 0.069 m/m pada frekuensi 0.16 rad/s.

 Tabel 4.50. Respon gerak dan RAO gerakan heave hasil eksperimen kondisi tertambat.

No.	KODE	Respon Gerak (cm)	Respon Periode (s)	RAO (cm/cm)	Perbandingan Periode
1	TT1	0,348	3,75	0,069	1,04
2	TT2	0,163	3,38	0,065	1,09
3	TT3	0,154	2,86	0,062	1.06
4	TT4	0,142	2,19	0,056	1,00
5	TT5	0,135	1,79	0,054	1,00
6	TT6	0,174	1,59	0,069	1,00
7	TT7	0,168	1,58	0,067	1,13
8	TT8	0,123	1,48	0,049	1,14
9	TT9	0,019	0,83	0,008	1,084

Gambar 4.71. Grafik RAO heave tertambat eksperimen.

4.6.4.3. Mode Gerak *Pitch*

Analisa dilakukan dengan merata-rata respon yang terjadi untuk melihat respon gerak setiap variasi periode. RAO merupakan perbandingan antara amplitudo respon gerak dengan amplitudo gelombang. Tabel 4.51 menunjukkan respon gerak dan periode respon struktur dari setiap gerakan beserta RAO model dalam kondisi tertambat dan perbandingan periode respon dan periode gelombang.

Kolom RAO pada Tabel 4.51 dapat di-*plot* untuk membuat suatu grafik RAO dari gerak *surge* model tertambat yang disajikan pada gambar 4.72. RAO tertinggi dari *pitch* tertambat secara eksperimen sebesar 0.985 deg/m pada frekuensi 0.16 rad/s, namun di frekuensi 0.35 rad/s juga terdapat RAO cukup tinggi sebesar 0.740.

No.	Kode	Respon	Respon	RAO	Perbandingan
		Gerak (cm)	Periode (s)	(deg/cm)	Periode
1	TT1	2,464	3,88	0,985	1,08
2	TT2	1,231	3,88	0,492	1,25
3	TT3	1,096	2,74	0,438	1,01

Tabel 4.51. Respon gerak dan RAO gerakan pitch hasil eksperimen.

		0		I · · · · · · · · · · · · · · · · · · ·	Fi i (i Jiii)
No.	Kode	Respon Gerak (cm)	Respon Periode (s)	RAO (deg/cm)	Perbandingan Periode
4	TT4	1,233	2,33	0,493	1,06
5	TT5	1,452	1,86	0,581	1,03
6	TT6	1,851	1,66	0,74	1,04
7	TT7	0,73	1,45	0,292	1,04
8	TT8	0,582	1,33	0,233	1,02
9	TT9	0,403	0,93	0,161	1,03

Tabel 4.51. Respon gerak dan RAO gerakan pitch hasil eksperimen. (Lanjutan)

Gambar 4.72. Grafik RAO *pitch* tertambat eksperimen.

4.6.5. Perbandingan RAO Tertambat Metode Analitis, Numeris dan Eksperimen

Gambar 4.73, 4.74 dan 4.75 menunjukkan perbandingan RAO terapung bebas pada arah datang gelombang 0 derajat dengan metode analits, numeris dan eksperimen untuk tiap gerakan *surge*, *heave* dan *pitch* yang terjadi.

Gambar 4.73. Perbandingan RAO *surge* tertambat metode analitis, metode numeris dan eksperimen.

Tabel 4.52 menunjukan perbandingan RAO *surge* dari setiap metode perhitugnan yang dilakukan. Metode numeris dan metode eksperimen menunjukkan posisi frekuensi natural yang sama, 0.35 rad/s. RAO terbesar terjadi di perhitungan analitis sebesar 5.796 m/m.

Metode	Frekuensi (rad/s)	RAO Terbesar (m/m)	
Analitis	0.43	5.796	
Numeris	0.35	5.053	
Eksperimen	0.35	2.390	

Tabel 4.52. Perbandingan RAO surge tertambat.

Gambar 4.74. Perbandingan RAO *heave* tertambat secara analitis, numeris dan eksperimen.

Gerak *heave* tertambat terbesar dari setiap metode analisa ditampilkan dalam Tabel 4.53. Metode analitis menghasilkan nilai RAO paling tinggi dengan frekuensi di 0.16 rad/s. 3 metode memiliki nilai RAO terbesar di frekuensi yang sama, dengan RAO *surge* analitis sebesar 0.083 m/m numeris sebesar 0.091 m/m dan eksperimen sebesar 0.069 m/m.

Metode	Frekuensi (rad/s)	RAO Terbesar (m/m)	
Analitis	0.16	0.083	
Numeris	0.16	0.091	
Eksperimen	0.16	0.069	

Tabel 4.53. Perbandingan RAO heave tertambat.

Gambar 4.75. Perbandingan RAO *pitch* tertambat secara analitis, numeris dan eksperimen.

Gerak *pitch* terbesar dari setiap metode analisa ditampilkan dalam Tabel 4.54. Metode numeris menghasilkan nilai RAO paling tinggi sebesar 7.344 deg/m dengan frekuensi di 0.35 rad/s Metode numeris dan eksperimen memiliki nilai RAO terbesar di frekuensi yang sama di 0.35 rad/s , dengan RAO *pitch* analitis sebesar 4.138 deg/m dan eksperimen sebesar 0.740 deg/m.

Metode	Frekuensi (rad/s)	RAO Terbesar (deg/m)	
Analitis	0.39	4.138	
Numeris	0.35	7.344	
Eksperimen	0.35	0.740	

Tabel 4.54. Perbandingan RAO *pitch* tertambat.

4.7. TEGANGAN TALI

Tali tambat pada struktur akan mengalami gaya tarik yang besarnya berosilasi sesuai dengan gaya gelombang yang terjadi. Besar gaya tegangan tali yang terjadi diukur dengan menggunakan dua metode yaitu metode numeris dan metode eksperimen. Tegangan tali yang diukur menggunakan metode numeris dilakukan dengan bantuan perangkat lunak MOSES EDITOR 7, sedangkan untuk metode eksperimen tegangan tali diukur menggunakan instrumen *load cell* yang mampu mencatat gaya tarik yang

terjadi pada tali tambat. Properties tali tambat yang digunakan mengacu pada Tabel 4.18. Gambar 4.76 merupakan posisi tali tambat yang digunakan pada model baik untuk metode numeris maupun metode eksperimen. Gambar 4.77 merupakan *load cell* yang berada di dasar air kolam uji Laboratorium Hidrodinamika ITS.

Gambar 4.76. Posisi Line I, II, II dan IV.

Gambar 4.77. Kondisi Load Cell dalam air

4.7.1. Metode Numeris

Tegangan tali yang terjadi pada struktur dianalisa menggunakan bantuan perangkat lunak MOSES EDITOR 7. Properties tali tambat yang ada pada Gambar 4.8 dan Tabel 4.18 dimasukkan pada program MOSES EDITOR sehingga dihasilkan respon tegangan tali yang terjadi dalam bentuk RAO *Tension Force Mooring Line*. Gambar 4.78 berikut ini merupakan

permodelan dari tali tambat yang digunakan pada model dengan menggunakan MOSES EDITOR. Gambar 4.79 dan 4.80 menunjukkan grafik hasil RAO *Tension Force* dari tiap tali tambat yang digunakan. Dari grafik dapat dilihat bahwa *Tension Force* yang terjadi pada tali tambat I dan tali tambat IV besarnya sama, sedangkan tali tambat II besarnya sama dengan tali tambat III namun lebih kecil dari tali tambat I dan IV. Tabel 4.55 menunjukkan tegangan maksimum pada tiap tali tambat dari hasil MOSES EDITOR.

Tabel 4.55. *Tension Force* maksimum tiap tali tambat pada MOSES.

Deskripsi	Frequency (rad/s)	Tension Force (ton)
Mooring Line 1	0.349	282.87
Mooring Line 2	0.349	280.17
Mooring Line 3	0.349	280.17
Mooring Line 4	0.349	282.87

Gambar 4.78. Permodelan tali tambat dengan menggunakan MOSES EDITOR.

Gambar 4.79. RAO Tension tali tambat I dan IV metode numerik.

Gambar 4.80. RAO Tension tali tambat II dan III metode numerik.

4.7.2. Metode Eksperimen

Analisa eksperimen dilakukan di Laboratorium Hidrodinamika FTK ITS. Model fisik diletakkan di kolam dengan dimensi panjang 100 m, kedalamann 1.8 m dan lebar 3 m. Pada kondisi tertambat model fisik diletakkan dengan konfigurasi seperti pada Gambar 4.76 dengan menggunakan empat buah tali tambat. *Load Cell* dengan kapasitas beban tarik 5 kg digunakan pada tiap tali tambat yang dipasang pada model fisik. Model fisik akan diberi beban gelombang dengan arah 0 derajat yang berasal dari *wave maker* dan diberi beban 9 gelombang dengan karakteristik seperti pada Tabel 4.56. Variasi gelombang yang terjadi adalah variasi periode gelombang, sedangkan besar tinggi gelombang Respon tegangan tali tambat yang terjadi akibat beban konstan. gelombang akan dicatat dengan instrumen load cell. Gambar 4.81, 4.82, 4.83 merupakan salah satu contoh dari time history hasil dari instrumen load cell. Seluruh hasil dari percobaan ada di LAMPIRAN. Akan tetapi, pada tali tambat 2 load cell mengalami kerusakan sehingga menghasilkan data yang tidak akurat dan tidak dapat digunakan. Namun, hal ini tidak menjadi masalah karena tali tambat 2 dan tali tambat 3 yang letaknya simetri akan menghasilkan respon tegangan yang sama sehingga dapat diwakilkan dengan menggunakan hasil data pada load cell tali tambat 3.

Gambar 4.81. Time history instrumen load cell tali tambat 1.

load Cell 3 TT3 (T =
$$2.7$$
 s A = 2.5 cm)

114

Gambar 4.82. *Time History* instrumen *load cell* tali tambat 3.

Gambar 4.83. Time history instrumen load cell tali tambat 4.

4.7.2.1. Load Cell 1

Setiap *time history* pada tension tali tambat *load cell* 1 dianalisa tinggi respon dan periode respon dengan merata-rata dari tegangan yang terjadi. RAO tegangan merupakan perbandingan amplitudo respon tension tali tambat dengan amplitudo gelombang. Tabel 4.60 menunjukkan respon tegangan tali tambat dan periode respon tali tambat dari setiap gerakan beserta RAO *tension force* tali tambat dan periode respon dengan periode gelombang.

No.	Kode	Respon Tension (gr)	Respon Periode (s)	RAO Tension (ton/m)	Perbandingan Periode
1	TT1	27,456	3,88	168,34	1,08
2	TT2	24,08	3,32	147,64	1,07
3	TT3	22,607	2,91	138,61	1,08
4	TT4	19,226	2,33	117,88	1,06
5	TT5	25,727	1,86	157,74	1,03
6	TT6	45,808	1,52	280,86	1,05

Tabel 4.56. Data *load cell* 1 hasil eksperimen.

No.	Kode	Respon Tension (gr)	Respon Periode (s)	RAO Tension (ton/m)	Perbandingan Periode
7	TT7	20,12	1,37	123,36	0,98
8	TT8	17,501	1,42	107,30	1,09
9	TT9	5,527	0,85	33,89	1,05

Tabel 4.56. Data *load cell* 1 hasil eksperimen. (Lanjutan)

Kolom RAO pada Tabel 4.60 dapat di-*plot* untuk membuat suatu grafik RAO dari tegangan tali tambat *Line* I yang disajikan pada Gambar 4.84.

RAO TENSION LINE I

Gambar 4.84. Grafik RAO tegangan tali tambat load cell 1 hasil eksperimen.

4.7.2.2. Load Cell 2

Load Cell 2 yang terpasang pada jangkar mengalami kerusakan saat pengambilan data, sehingga tidak terdapat data yang dapat dianalisa. Namun, representasi *load cell* 2 dapat diwakilkan oleh *load cell* 3, karena konfigurasi yang simetris.

4.7.2.3. Load Cell 3

Setiap *time history* pada tension tali tambat *load cell* 3 dianalisa tinggi respon dan periode respon dari tegangan yang terjadi. RAO *tension force* merupakan perbandingan antara amplitudo respon tension tali tambat dengan amplitudo gelombang. Tabel 4.57

menunjukkan respon tegangan tali tambat dan periode respon tali tambat dari setiap gerakan beserta RAO tension force tali tambat dan perbandingan periode respon dengan periode gelombang.

No.	Kode	Respon Tension (gr)	Respon Periode (s)	RAO Tension (ton/m)	Perbandingan Periode
1	TT1	13,91	3,88	85,287	1,08
2	TT2	10,179	3,56	62,409	1,15
3	TT3	9,574	2,91	58,702	1,08
4	TT4	9,379	2,33	57,502	1,06
5	TT5	10,02	1,86	61,44	1,03
6	TT6	21,633	1,52	132,636	1,05
7	TT7	8,322	1,55	51,026	1,11
8	TT8	7,017	1,42	43,025	1,09
9	TT9	1,129	0,85	6,92	1,05

Tabel 4.57. Data load cell 3 hasil eksperimen.

Kolom RAO pada Tabel 4.57 dapat di-plot untuk membuat suatu grafik RAO dari tegangan tali tambat 3 yang disajikan pada gambar 4.85.

RAO TENSION LINE III

Gambar 4.85. Grafik RAO tegangan tali tambat *load cell* 3 hasil eksperimen.

4.7.2.4. Load Cell 4

Setiap *time history* pada tegangan tali tambat *load cell* 4 dianalisa tinggi respon dan periode respon dengan merata-rata dari tegangan yang terjadi. RAO *tension force* merupakan perbandingan antara amplitudo respon tegangan tali tambat dengan amplitudo gelombang. Tabel 4.58 menunjukkan respon tegangan tali tambat dan periode respon tali tambat dari setiap gerakan beserta RAO *tension force* tali tambat dan periode respon dengan periode gelombang.

 Tabel 4.58. Respon tegangan dan RAO tegangan tali tambat load cell 4 hasil eksperimen.

No.	Kode	Respon Tension (gr)	Respon Periode (s)	RAO Tension (ton/m)	Perbandingan Periode
1	TT1	24,45	3,88	149,91	1,08
2	TT2	23,598	3,05	144,683	0,98
3	TT3	22,491	2,91	137,901	1,08
4	TT4	18,181	2,33	111,472	1,06
5	TT5	29,88	1,86	183,199	1,03

Tabel 4.58. Respon tegangan dan RAO tegangan tali tambat load cell 4 hasileksperimen. (Lanjutan)

No.	Kode	Respon Tension (gr)	Respon Periode (s)	RAO Tension (ton/m)	Perbandingan Periode
6	TT6	42,584	1,52	261,090	1,05
7	TT7	20,817	1,45	127,634	1,04
8	TT8	17,869	1,42	109,558	1,09
9	TT9	4,043	0,85	24,791	1,05

Kolom RAO pada Tabel 4.58 dapat di*-plot* untuk membuat suatu grafik RAO dari tegangan tali tambat 4 yang disajikan pada gambar 4.86.

4.7.3. Perbandingan RAO Tegangan Tertambat Metode Analitis, Numeris dan Eksperimen

Gambar 4.87-4.90 menunjukkan perbandingan RAO Tali Tambat dari metode numerik dan metode eksperimen dari setiap *line* dengan arah gelombang 0 derajat.

Gambar 4.87. Perbandingan RAO *Tension line* I tertambat metode numeris dan eksperimen.

Tegangan tali pada *Line* I dengan metode numerik dan eksperimen ditampilkan pada Tabel 4.59. Metode numeris menghasilkan RAO yang

lebih besar (282.86 ton) daripada RAO eksperimen (280.863 ton). Namun, keduanya berada di frekuensi yang sama yaitu 0.349 rad/s.

Metode Frekuensi (rad/s)		RAO Terbesar (ton/m)	
Numeris	0.349	282.860	
Eksperimen	0.349	280.863	

 Tabel 4.59.
 Perbandingan Tension Line I.

Gambar 4.88. Perbandingan RAO *Tension line* II tertambat metode numeris dan eksperimen.

Tegangan tali pada *Line* II dengan metode numerik dan eksperimen ditampilkan pada Tabel 4.60. Pada *Line* II, *load cell* mengalami kerusakan sehingga tidak ada data yang dapat dianalisa. Metode numeris menghasilkan RAO sebesar 280.180 ton di frekuensi yang sama yaitu 0.349 rad/s.

Tabel 4.60. Perbandingan Tension Line II.

Metode	Frekuensi (rad/s)	RAO Terbesar (ton/m)
Numeris	0.349	280.180
Eksperimen	-	-

Gambar 4.89. Perbandingan RAO *Tension line* III tertambat metode numeris dan eksperimen.

Tegangan tali pada *Line* III dengan metode numerik dan eksperimen ditampilkan pada Tabel 4.61. Metode numeris menghasilkan RAO yang lebih besar (280.170 ton) daripada RAO eksperimen (132.636 ton). Namun, keduanya berada di frekuensi yang sama yaitu 0.349 rad/s.

Metode	Frekuensi (rad/s)	RAO Terbesar (ton/m)
Numeris	0.349	280.170
Eksperimen	0.349	132.636

Tabel 4.61. Perbandingan Tension Line III.

Gambar 4.90. Perbandingan RAO *Tension line* IV tertambat metode numeris dan eksperimen.

Tegangan tali pada *Line* IV dengan metode numerik dan eksperimen ditampilkan pada Tabel 4.62. Metode numeris menghasilkan RAO yang lebih besar (280.17 ton) daripada RAO eksperimen (132.636 ton). Namun, keduanya berada di frekuensi yang sama yaitu 0.349 rad/s.

Tabe	Laber 4.02. I croandingan Tension Line IV.				
Metode	Frekuensi (rad/s)	RAO Terbesar (ton/m)			
Numeris	0.349	280.170			
Eksperimen	0.349	132.636			

Tabel 4.62. Perbandingan Tension Line IV.

4.8. TEGANGAN TALI KONDISI ACCIDENTAL

4.8.1. Kondisi Accidental

Penelitian ini bertujuan untuk membandingkan tegangan tali tambat struktur kondisi intact dan kondisi accidental. Pada kondisi intact didapatkan hasil RAO tegangan yang memiliki tren yang sama antara metode numerik dan metode eksperimen, sehingga metode eksperimen pada penelitian ini dapat dianggap valid. Maka pada analisa tegangan tali kondisi accidental hanya dilakukan analisa dengan metode numerik saja. Hasil analisa RAO gerakan struktur pada kondisi terapung bebas digunakan sebagai masukan dalam perangkat lunak OrcaFlex.

Pada penelitian ini kondisi *accidental* yang dimaksud adalah kondisi di mana salah satu tali tambat terputus. Pada model terdapat empat tali, sehingga masih tersisa 3 tali yang masih terpasang jika salah satu tali terputus. Dari 3 tali yang tersisa dihitung tali mana yang mengalami tegangan terbesar. Kondisi *accidental* pada penelitian ini dibagi menjadi dua karena hanya terdapat 4 tali dan simetri posisinya. Kondisi *accidental* dibagi menjadi kondisi *accidental* 1 dan kondisi *accidental* 2 yang keduanya diberi beban gelombang pada arah 0°.

Gambar 4.91. Skenario kondisi accidental.

4.8.2. Pemodelan

Kondisi *accidental* dianalisa dengan menggunakan perangkat lunak berbasis *time domain*, sehingga pada penelitian ini dilakukan dengan perangkat lunak OrcaFlex 9.2a. Struktur dan tali tambat dimodelkan seperti pada Gambar 4.92. Kemudian diberi beban pada arah x positif atau 0° .

Gambar 4.92. Model numerik tampak atas pada OrcaFlex 9.2a.

4.8.3. Analisa Tegangan

Yang perlu diperhatikan pada tali yang diputus adalah periode natural tali. Sebelumnya pada analisa tegangan tali kondisi *intact* didapatkan frekuensi natural untuk semua tali terjadi pada frekuensi 0,35 rad/s. Sehingga pada analisa kondisi *accidental* ini hanya menguji tali saat frekuensi natural saja. Karena line 1 dan line 2 yang diputus perlu dilihat pada detik keberapa tali mengalami tegangan terbesar, kemudian pada detik tersebut tali direncanakan untuk diputus. Untuk mendapatkan detik tersebut model diuji pada kondisi *intact* di OrcaFlex.

4.8.3.1. Kondisi Accidental 1

Dapat dilihat pada Gambar 4.92 line 1 diputus pada kondisi *accidental* 1. Dari analisa sebelumnya didapatkan frekuensi natural line 1 sebesar 0,35 rad/s. Hasil uji tegangan pada kondisi *intact* didapatkan line 1 pada detik ke 696,5181 mengalami tegangan maksimum sebesar 939,6351 ton. Kemudian model numerik diuji kembali dengan memasukkan perintah pemutusan tali pada detik ke 696,5181. Uji gelombang dilakukan dalam 3000 detik.

4.8.3.2. Kondisi Accidental 2

Dapat dilihat pada Gambar 4.92 line 2 diputus pada kondisi *accidental* 2. Dari analisa sebelumnya didapatkan frekuensi natural line 2 sebesar 0,35 rad/s. Hasil uji tegangan pada kondisi *intact* didapatkan line 2 pada detik ke 866,65 mengalami tegangan maksimum sebesar 846,5881 ton. Kemudian model numerik diuji kembali dengan memasukkan perintah pemutusan tali pada detik ke 866,65. Uji gelombang dilakukan dalam 3000 detik.

4.8.4. Tegangan Terbesar

Menurut API RP 2 SK tentang *station keeping system for floating structure* disebutkan bahwa tegangan tali maksimum adalah hasil penjumlahan dari tegangan rata-rata, tegangan maksimum pada frekuensi rendah dan tegangan pada signifikan frekuensi gelombang atau dapat ditunjukkan pada Persamaan 4.34.

$$T_{max} = T_{mean} + T_{lfmax} + T_{wfsig} \tag{4.34}$$

Hasil analisa tegangan tali pada kondisi intact sebelumnya dapat dihitung tegangan tali maximum.

$$T_{max} = 328.2 + 559.7 + 328.2$$

 $T_{max} = 1215.7 \text{ ton}$

4.8.4.1. Kondisi Accidental 1

Model numerik setelah terjadi *accident* kondisi 1 dapat dilihat pada Gambar 4.93.

Gambar 4.93. Model numerik kondisi accidental 1.

Hasil grafik tegangan tali untuk masing-masing line dapat dilihat pada Gambar 4.94, 4.95, 4.96 dan 4.97.

Gambar 4.94. Grafik tegangan line 1 kondisi accidental 1.

Gambar 4.95. Grafik tegangan line 2 kondisi accidental 1.

Gambar 4.96. Grafik tegangan line 3 kondisi accidental 1.

Gambar 4.97. Grafik tegangan line 4 kondisi *accidental* 1.

	Intact		Trancient	Posisi	Akhir
ACC1	Avg (ton)	Max (ton)	Max (ton)	Avg (ton)	Max (ton)
Line 1	328.2	813.7	0.0	0.0	0.0
Line 2	275.7	733.2	1173.2	0.0	0.0
Line 3	275.7	733.2	183.5	0.0	0.0
Line 4	328.2	813.7	1260.5	0.0	0.0

Tabel 4.63. Hasil analisa tegangan kondisi accidental 1.

Kondisi accidental 1 didapatkan tegangan tertinggi terjadi pada line 4. Kemudian line 4 ikut terputus karena melebihi tegangan tali maksimum menurut API RP 2 SK, sehingga line 2 dan 3 mengalami penurunan tegangan hingga menjadi 0 ton. Hasil tegangan dapat dilihat pada Tabel 4.63.

4.8.4.2. Kondisi Accidental 2

Model numerik setelah terjadi *accident* kondisi 2 dapat dilihat pada Gambar 4.98.

Gambar 4.98. Model numerik kondisi accidental 2.

Hasil grafik tegangan tali untuk masing-masing line dapat dilihat pada Gambar 4.99, 4.100, 4.101 dan 4.102.

Gambar 4.94. Grafik tegangan line 1 kondisi accidental 2.

Gambar 4.95. Grafik tegangan line 2 kondisi accidental 2.

Gambar 4.96. Grafik tegangan line 3 kondisi *accidental* 2.

Gambar 4.97. Grafik tegangan line 4 kondisi accidental 2.

	Intact		Trancient	Posisi	Akhir
ACC 2	Avg (ton)	Max (ton)	Max (ton)	Avg (ton)	Max (ton)
Line 1	328.2	813.7	1185.0	559.7	1135.9
Line 2	275.7	733.2	0	0	0
Line 3	275.7	733.2	1059.6	513.3	748.7
Line 4	328.2	813.7	246.1	33.0	100.9

 Tabel 4.64. Hasil analisa tegangan kondisi accidental 2.

Halaman ini sengaja dikosongkan

BAB V

KESIMPULAN DAN SARAN

5.1. KESIMPULAN

Kesimpulan yang dapat diambil dari penelitian ini adalah:

- Analisa gerakan pada kondisi terapung bebas menghasilkan mode gerak heave paling signifikan. Didapatkan resonansi terjadi pada periode 25 detik dengan nilai RAO puncak rata-rata dari ketiga metode sebesar 4,23 m/m. Mode gerak surge memiliki nilai RAO puncak rata-rata 1,01 m/m pada frekuensi 0,16 rad/s, sedangkan mode gerak pitch memiliki nilai 0,33 deg/m pada frekuensi 0,16 rad/s.
- 2. Analisa gerakan pada kondisi tertambat menghasilkan mode gerak surge mengalami kenaikan besar gerakan dan pergeseran frekuensi natural. frekuensi natural mode gerak surge bergeser menjadi 0,35 rad/s dengan nilai RAO puncak rata-rata 4,41 m/m. Mode gerak *heave* turun signifikan menjadi 0,08 m/m pada frekuensi 0,16 rad/s, sedangkan mode gerak *pitch* memiliki nilai RAO puncak rata-rata 4,07 m/m pada frekuensi 0,35.
- 3. Analisa tegangan tali pada kondisi tertambat menghasilkan resonansi pada frekuensi 0,35 rad/s untuk semua tali. Tegangan tertinggi terjadi pada line 1 dan 4 yang berada di posisi depan dari arah laju gelombang dengan RAO tegangan sebesar 283,0 ton/m. Sedangkan tali bagian belakang yaitu line 2 dan 3 memiliki tegangan yang lebih kecil, nilai RAO tegangannya sebesar 280,0 ton/m. Hasil tegangan sama dikarenakan posisi tali simetris.
- 4. Analisa tegangan tali pada kondisi *accidental* menghasilkan tegangan tali maksimum pada bagian depan dari arah gelombang datang. Kemudian untuk line yang memiliki posisi simetri dengan tali yang diputus mengalami penurunan tegangan yang signifikan. Terjadi ketidak stabilan setelah terjadi *accident*. Maksimum tegangan untuk kondisi *accidental* 1 sebesar 1132,3 ton, sedangkan untuk kondisi *accidental* 2 sebesar 1135,9 ton.

5.2. SARAN

Berikut adalah saran untuk peneliti selanjutnya.

- 1. SPAR yang digunakan sebagai objek penelitian diubah dengan jenis terbaru yaitu *Truss* SPAR atau *Cell-Truss* SPAR.
- 2. Pengujian beban arus perlu dilakukan karena SPAR dengan struktur yang panjang ke bawah air sangat terpengaruh oleh arus.
- 3. Variasi konfigurasi tali tambat untuk kondisi accidental.

DAFTAR PUSTAKA

- Agarwal, A. K., and A. K. Jain. "Dynamic Behavior of Offshore Spar Platforms Under Regular Sea Waves." *International Journal of Ocean Engineering*, *USA 30* 4 (2012): 487-516.
- Carra, C., A. Phadke, D. Laskowski, K. T. Ma, R. Gordon, and G. Kusinski. DeepStar mooring study to form basis of new API RP. 2015. http://www.offshore-mag.com/articles/print/volume-75/issue-9/engineering-construction-installation/deepstar-mooring-study-to-formbasis-of-new-api-rp.html (accessed February Monday, 2017).
- Chakrabarti, Subrata K. . *Hydrodynamics of Offshore Structure* . Dorchester: Computational Mechanics Publications , 1994.
- Chakrabarti, Subrata K. *Offshore Engineering Volume 1*. Plainfield: Elsevier, 2005.
- —. Offshore Structure Modeling. Plainvile: Elsevier, 1994.
- Chen, Xiaohong, Jun Zhang, and Wei Ma. "On dynamic coupling effects between a spar and its mooring lines." *Ocean Engineering* 28 (2001): 863-887.
- Djatmiko, Eko Budi. *Perilaku dan Operabilitas Bangunan Laut di atas Gelombang Acak*. Surabaya: ITS Press, 2012.
- Drori, Guy. Underlying Causes of Mooring Lines Failures Across the Industry. London: British Petroleum, 2015.
- Duan, Fei, Zhiqiang Hu, and J. M. Niedzwecki. "Model test investigation of a spar floating wind turbine." *Marine Structures*, 2016: 76-96.
- Faltinsen, O. M. Sea Loads on Ships and Offshore Structures. Cambridge: University of Cambridge, 1990.
- Islam, A.B.M. Saiful, Mohammed Jameel, Mohd Zamin Jumaat, and Firas A. Salman. "Review of offshore energy in Malaysia and floating Spar platform for sustainable exploration." *Renewable and Sustainable Energy Reviews* (Elsevier), 2012: 6268-6284.
- Islam, A.B.M. Saiful, Mohammed Jameel, Mohd. Zamin Jumaat, and S. M. Shirazi. "Spar Platform at Deep Water Region in Malaysian Sea." *Physical Scieces Volume* 6, 2011: 6872-6881.
- Jaelani, Arif. Kajian Eksperimental Perbandingan Pengaruh Sistem Tambat Taut dan Catenary Terhadap Gerakan SPAR Tipe Klasik akibat Beban Gelombang. Surabaya: Institut Teknologi Sepuluh Nopember, 2008.
- Joint Industry Project. Spar Model Test Joint Industry Project. Irvine: Deep Oil Technology, 1995.

- Journee, J.M.J, and W.W. Massie. *Offshore Hydromechanics*. 1st. Delft : TU Delft, 2001.
- Karimiad, Madjid. Stochastic Dynamic Response Analysis of Spar-Type Wind Turbines with Catenary or Taut Mooring Systems. Trondheim: Norwegian University of Science and Technology, 2011.
- Koo, Bonjun, Kostas Lambrakos, Andrew J. Goupee, and Richard W. Kimball.
 "Model Test for A Floating Wind Turbine on Three Different Floaters." 31st International Confrence on Ocean, Offshore and Artic Engineering OMAE 2012. Rio de Janeiro: ASME, 2012. 1-11.
- Kumar, Abhishek. "Offshore Platforms." *slideshare.com.* March 9, 2015. http://www.slideshare.net/ABHISHEKKUMAR790/offshore-platformsshortened (accessed February 10, 2017).
- Kurian, V.J, C.Y Ng, and M.S Liew. A Study on Motion Responses of Classic Spar Platforms Subjected to Short Crested Waves. Tronoh: IEEE, 2013.
- Kurian, V.J, S.N.A Tuhaijan, and M.S Liew. *Dynamic Responses of Spar acted upon by Random Wave and Current*. Tronoh: IEEE, 2012.
- Mansouri, Roozbeh, and Hassan Hadidi. "Comprehensive Study on the Linear Hydrodynamic Analysis of a Truss Spar in Random Waves." *International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering*, 2009.
- Marine, Balmoral. *Marine Equipment Handbook*. United Kingdom: Balmoral Group Ltd., 2004.
- Martin, Heather Rae. *Development of a Scale Model Wind Turbine for Testing of Offshore Floating Wind Turbine Systems*. Maine: The University of Maine, 2009.
- Mohamed, M.A.W, O.A Montasir, V.J Kurian, and M.S Liew. "Effects of Mooring Line Failure on the Wave Frequency Responses of Truss Spar Platforms." Rhodes: ISOPE, 2012.
- Munson, Arthur. "A Study on the Importance of and Time Spent on Different Modeling Steps." *SIGKDD Explorations* 13, no. 2 (2009): 65-71.
- Newman, J. N. Marine Hydrodynamics. USA: MIT, 1977.
- Ng, C.Y, V.J Kurian, and M.S Liew. "Dynamic Responses of Classic Spar Platform: Short Crested Waves vs. Long Crested Waves." *Applied Mechanics and Materials* 567 (2014): 235-240.
- Perez, Nelson A., and Carlos, F.O Sanguinetti. "Scale Model Tests of a Fishing Vessel in Roll Motion Parametric Resonance." *Sintesis Tecnologica* 3 (2006): 33-37.

- Rho, Jun B., and Hang S. Choi. "An Experimental Study For Mooring Effects on the Stability of SPAR Platform." *Proceedings of the Thirteenth (2003) International Offshore and Polar Engineering Conference*. Honolulu: The International Society of Offshore and Polar Engineers, 2003.
- Sarpkaya, Turgut "Sarp". *Wave Forces on Offshore Structures*. Cambridge: Cambridge University Press, 2010.
- Sarpkaya, Turgut. *Wave Forces on Offshore Structures*. New York: Cambridge University Press, 2010.
- Sinsabvarodom, Chana, and Joko H. Widjaja. "The Innovative Hybrid Cell-Truss Spar Buoy Platform for Moderate Water Depth." *Ocean Engineering 113*, 2016: 90-100.
- Stendal, Lars Christian. Analysis Methods for Mooring Systems with focus on Accidental Limit State. Trondheim: Norwegian University of Science and Technology, 2015.
- Sudhakar, S., and S. Nallayarasu. "Influence of Heave Plate On Hydrodynamic Response of SPAR." *30th International Confrence on Ocean, Offshore and Arctic Engineering OMAE 2011.* Rotterdam: ASME, 2011.
- Team MORE. *Mooring Types*. 2012. http://www.esru.strath.ac.uk/EandE/Web_sites/11-12/MORE/mooring/types.html (accessed February Sunday, 2017).
- Zhang, Fan, Jian-min Yang, Run-pei Li, and Gang Chen. "Coupling Eeffects for Cell-Truss Spar Platform: Comparison of Frequency- and Time- Domain Aanalyses with Model Tests*." *Journal of Hydrodynamics*, 2008: 424-432.

Halaman ini sengaja dikosongkan

LAMPIRAN A

LAMPIRAN TABULASI DISTRIBUSI MASSA

(TITIK BERAT DAN GIRASI)

Data Spar

ID	12.80000256	cm
OD	14.00000256	cm
Draft	108.0076406	cm
Length	123.3676437	cm
Fairlead Depth	10.19124013	cm
Length	40	cm
Width	40	cm
Height	15.65257456	cm
Depth A	731.4287177	cm
Depth B	182.8571794	cm
KG	49.61768611	cm
Pitch Radius	49.17639079	cm
Roll Radius	49.17639079	cm

Data Lab		
Υ=	1	g/cm ³

Displasemen teori		
$\Delta = \nu \nabla$		
- / ·		
Δ=	13898.38934	g

Model

Pre-initial design					
		Tebal			
Ba	gian	(cm)	Berat (g)	Jumlah	Total (g)
	Ballast 1	2	1628.489876	1	1628.489876
	Ballast 2	2	1623.089876	1	1623.089876
Blok A	Ballast 3	2.5	2094.089876	1	2094.089876
	Ballast 4	1	663.5898755	1	663.5898755
	Сар	0.3	47.46	1	47.46
	Ballast 1	2.5	2096.689876	1	2096.689876
Blok B	Ballast 2	0.8	465.9898755	1	465.9898755
	Ballast 3	0.5	179.4898755	1	179.4898755
Topside		0.3	599.5	1	599.5
	Ulir (130 cm)		352.0898755	1	352.0898755
Tambahan	Pipa	-	4087.53	1	4087.529853
	Penyambung	-		1	0
	Mur	-		2	0
	Tota	al			13838.0131

1. Blok A

Bagian	Tebal (cm)	VCG from keel (cm)	Massa (g)	Momen (g.cm)
Ballast 1	2	6.8	1628.489876	11073.73115
Ballast 2	2	4.8	1623.089876	7790.831403
Ballast 4	1	3.3	2094.089876	6910.496589
Ballast 3	2.5	1.6	663.5898755	1028.564307
Сар	0.3	0.2	47.46423964	7.119635947
	Total		6056.723742	26810.74309

Pengeceka	an			
Error	=	Model-Te	eori	100%
		Teori	×	100%
	=	-0.4%	memenuhi	

2. Blok B				
Bagian	Tebal (cm)	VCG from keel (cm)	Massa (g)	Momen (g.cm)
Ballast 7	0.5	112.1	179.4898755	20111.84055
Ballast 6	0.8	111.4	465.9898755	51911.27213
Ballast 5	2.5	109.8	2096.689876	230111.7138
	Total		2742.169627	302134.8265
VCG Blok B=	Momen massa massa	- =	110.1809398	cm dari keel
3 Tambahan				

э.	Tannyanan	

Bagian	Tebal (cm)	VCG from keel (cm)	Massa (g)	Momen (g.cm)
Ulir (130 cm)	-	65.3	352.0898755	22991.46887
Pipa	-	61.7	4087.53	252200.5919
Topside	0.3	123.55	599.5	74068.225
	Total		5039.119729	349260.2858

VCG tambahan= Momen massa 69.3097812 cm dari keel = massa

4. Total					
Bagian	Tebal (cm)	VCG from keel (cm)	Massa	Momer	1
Blok A	-	4.4	6056.723742	26810.743	309
Blok B	-	110.2	2742.169627	302134.82	265
Tambahan	-	69.3	5039.119729	349260.28	358
	Total		13838.0131	678205.85	554
VCG total=	Momen massa massa	=	49.01034929	cm dari ke	eel
Pengecekan					
Error	= .	Mode Te	eori	X	100%
	=	-1.2%	memer	luni	

Perhitungan Radius girasi model

. Blok A								
Bagian	Tebal (cm)	VCG from keel (cm)	LCG (cm)	TCG (cm)	Diameter (cm)	Massa (g)	lox (g.cm)	loy (g.cm)
Ballast 1	2	6.5	0	0	12.5	1628.4899	16446.0514	16446.0514
Ballast 2	2	4.5	0	0	12.5	1623.0899	16391.51702	16391.51702
Ballast 3	1	3.0	0	0	12.5	2094.0899	20624.60393	20624.60393
Ballast 4	2.5	1.3	0	0	12.5	663.58988	6825.989605	6825.989605
Cap	0.3	0.2	0	0	12.6	47.46424	471.3198997	471.3198997

2. Blok B								
Bagian	Tebal (cm)	VCG from keel (cm)	LCG (cm)	TCG (cm)	Diameter (cm)	Massa (g)	lox (g.cm)	loy (g.cm)
Ballast 7	0.5	112.05	0	0	12.5	179.48988	1756.570188	1756.570188
Ballast 6	0.8	111.4	0	0	12.5	465.98988	4556.895577	4556.895577
Ballast 5	2.5	109.75	0	0	12.5	2096.6899	20748.49356	20748.49356

3. Tambahan								
Bagian	Tebal (cm)	VCG from keel	LCG (cm)	TCG (cm)	Ukuran (cm)	Massa (g)	lox (g.cm)	loy (g.cm)
Ulir (130 cm)	0.8	65.3	0	0	1	352.08988	495873.9916	495873.9916
Pipa	123.4	61.7	0	0	14	4087.5299	5287070.0	5287069.989
Topside	0.3	123.55	0	0	40	599.5	79937.82958	79937.82958

4. Total														
Ва	gian	LCG (cm)	TCG (cm)	VCG from keel (cm)	Ditinjau dari COG (cm)	Massa (g)	lox (g.cm)	loy (g.cm)	y ² +z ²	x ² +z ²	w*(y ² +z ²)	w*(x ² +z ²)	lx (g.cm)	ly (g.cm)
	Ballast 1	0.00	0.00	6.50	-42.51	1628.49	16446.05	16446.05	1807.13	1807.13	2942892.58	2942892.58	2959338.63	2959338.63
	Ballast 2	0.00	0.00	4.50	-44.51	1623.09	16391.52	16391.52	1981.17	1981.17	3215618.91	3215618.91	3232010.42	3232010.42
Blok A	Ballast 3	0.00	0.00	3.00	-46.01	2094.09	20624.60	20624.60	2116.95	2116.95	4433088.26	4433088.26	4453712.86	4453712.86
	Ballast 4	0.00	0.00	1.25	-47.76	663.59	6825.99	6825.99	2281.05	2281.05	1513682.33	1513682.33	1520508.32	1520508.32
	Сар	0.00	0.00	0.15	-48.86	47.46	471.32	471.32	2387.33	2387.33	113312.98	113312.98	113784.30	113784.30
	Ballast 1	0.00	0.00	112.05	63.04	179.49	1756.57	1756.57	3974.00	3974.00	713292.33	713292.33	715048.90	715048.90
Blok B	Ballast 2	0.00	0.00	111.40	62.39	465.99	4556.90	4556.90	3892.47	3892.47	1813850.92	1813850.92	1818407.81	1818407.81
	Ballast 3	0.00	0.00	109.75	60.74	2096.69	20748.49	20748.49	3689.31	3689.31	7735328.79	7735328.79	7756077.29	7756077.29
	Ulir (130 cm)	0.00	0.00	65.30	16.29	352.09	495873.99	495873.99	265.35	265.35	93428.01	93428.01	589302.00	589302.00
Tambahan	Pipa	0.00	0.00	61.70	12.69	4087.53	5287069.99	5287069.99	161.03	161.03	658203.63	658203.63	5945273.62	5945273.62
	Topside	0.00	0.00	123.55	74.54	599.50	79937.83	79937.83	5556.16	5556.16	3330917.64	3330917.64	3410855.47	3410855.47
Total									32514319.61	32514319.6				

5. Jari Jari Girasi						
	Rxx=	48.47306334	cm			
	Ryy=	48.47306334	cm			
6. Check						

Err Rxx=	-1.43%	memenuhi
Err Ryy=	-1.43%	memenuhi

LAMPIRAN B

PENGUKURAN PERIODE GERAK PENDULUM MODEL SPAR

		La cata da bata da		La catala de la cata
No. 11 - 14 -	Nidel tanpa be	eban tambanan	Wodel dengan be	ban tambanan
No uji coba	Periode sepulun getaran (s)	periode satu getaran (s)	Periode sepulun getaran (s)	periode satu getaran (s)
1	34.918	3.492	35.131	3.513
2	35.063	3.506	35.226	3.523
3	34.958	3.496	35.159	3.516
4	34.727	3.4/3	35.231	3.523
5	34.973	3.497	35.058	3.506
6	35.037	3.504	35.236	3.524
/	34.882	3.488	35.026	3.503
8	34.800	3.480	35.148	3.515
9	35.160	3.516	35.330	3.533
10	35.220	3.522	35.530	3.553
11	34.746	3.475	35.460	3.546
12	34.858	3.486	35.040	3.504
13	35.150	3.515	36.110	3.611
14	34.896	3.490	35.117	3.512
15	35.510	3.551	35.200	3.520
16	35.000	3.500	36.030	3.603
17	34.880	3.488	35.120	3.512
18	35.060	3.506	36.020	3.602
19	35.180	3.518	35.970	3.597
20	34.850	3.485	35.132	3.513
21	34.910	3.491	35.760	3.576
22	35.240	3.524	35.920	3.592
23	35.310	3.531	35.570	3.557
24	35.030	3.503	35.183	3.518
25	35.140	3.514	35.390	3.539
26	34.900	3.490	35.790	3.579
27	35.271	3.527	35.370	3.537
28	34.970	3.497	36.080	3.608
29	35.130	3.513	35.105	3.511
30	35.038	3.504	35.191	3.519
31	35.220	3.522	35.084	3.508
32	34.910	3.491	35.135	3.514
33	34.852	3.485	35.650	3.565
34	34.678	3.468	36.120	3.612
35	34.960	3.496	34.960	3.496
36	35.110	3.511	35.450	3.545
37	35.070	3.507	36.050	3.605
38	35.210	3.521	35.820	3.582
39	35.102	3.510	35.660	3.566
40	34.940	3.494	35.790	3.579
41	34.810	3.481	35.150	3.515
42	35.012	3.501	35.380	3.538
43	35.111	3.511	35.250	3.525
44	34.938	3.494	35.143	3.514
45	34.900	3.490	35.117	3.512
46	34.985	3.499	35.252	3.525
47	35.109	3.511	35.252	3.525
48	35.131	3.513	35.049	3.505
49	34.995	3.500	35.038	3.504
50	35.158	3.516	35.025	3.503

LAMPIRAN C

ANALITIS SURGE FREE FLOATING

HULL CHARACTERISTICS

	Full Scale	Satuan
Diameter	16.00	m
Draft	135.03	m
Length	154.23	m
Fairlead Depth	12.74	m

Density	1025.00	Kg/m3
Massa	27834342.56	kg
Added Mass	27834342.56	Kg/m
Massa total	55668685.11	kg
WPA	201.11	M2
Surge Stiffness	0	0
Natural Freq	0	0

Т	ω (rad/s)	k	Fa	RAO
40	0.16	0.002515	1164633	0.848
35	0.18	0.003285	1448995	0.808
30	0.21	0.004471	1833155	0.751
25.00	0.25	0.006439	2349047	0.668
20.00	0.31	0.010061	3004819	0.547
19.00	0.33	0.011148	3146730	0.517
18.00	0.35	0.012421	3288510	0.485
17.00	0.37	0.013925	3427465	0.451
16.00	0.39	0.01572	3560267	0.415
15.00	0.42	0.017886	3683043	0.377
14.50	0.43	0.019141	3739372	0.358
14.00	0.45	0.020532	3791636	0.338
13.50	0.47	0.022081	3839355	0.318
13.00	0.48	0.023812	3882110	0.299
12.50	0.50	0.025756	3919578	0.279
12.00	0.52	0.027947	3951561	0.259
11.00	0.57	0.033259	3999122	0.220
10.50	0.60	0.036502	4015201	0.201
10.00	0.63	0.040243	4026808	0.183
9.50	0.66	0.044591	4034649	0.166
9.00	0.70	0.049683	4039531	0.149
8.50	0.74	0.0557	4042276	0.133
8.00	0.79	0.06288	4043636	0.118
7.50	0.84	0.071543	4044209	0.104
7.00	0.90	0.082129	4044405	0.090

Т	ω (rad/s)	k	Fa	RAO
6.50	0.97	0.09525	4044456	0.078
6.00	1.05	0.111786	4044466	0.066
5.50	1.14	0.133035	4044467	0.056
5.00	1.26	0.160972	4044467	0.046
4.50	1.40	0.198731	4044467	0.037
4.00	1.57	0.251519	4044467	0.029
3.00	2.09	0.447145	4044467	0.017

ANALITIS HEAVE TERTAMBAT

HULL CHARACTERISTICS

	Full Scale	Model
Diameter	16.00	m
Draft	135.03	m
Length	154.23	m
Fairlead		
Depth	12.74	m

Density	1025.00	Kg/m3
Massa	27834342.56	kg
Added Mass	699995.77	kg
Massa total	28534338.32	kg
WPA	201.11	M2
Heave		
Stiffness	2022233.434	N/m
Natural Freq	0.26621452	Rad/s

Т	ω (rad/s)	k	Α	В	Fa	RAO
40	0.16	0.00251519	0.71204	2004961.7	1427619	1.083
35	0.18	0.003285146	0.64173	1999674.5	1283259	1.164
30	0.21	0.004471448	0.54675	1991528.2	1088868	1.413
25.00	0.25	0.006438886	0.41919	1978017.9	829174.8	3.772
20.00	0.31	0.010060759	0.25705	1953146.6	502064.7	0.632
19.00	0.33	0.011147655	0.22197	1945682.9	431876.9	0.393
18.00	0.35	0.01242069	0.18691	1936941.1	362036.2	0.249
17.00	0.37	0.013924926	0.15255	1926611.5	293913.5	0.157
16.00	0.39	0.015719936	0.11972	1914285.3	229176.7	0.096
15.00	0.42	0.017885793	0.08936	1899412.4	169736.2	0.057
14.50	0.43	0.019140564	0.07544	1890796	142632.6	0.043
14.00	0.45	0.020532161	0.06251	1881239.9	117601.6	0.032
13.50	0.47	0.022081226	0.05071	1870602.6	94866.19	0.023
13.00	0.48	0.023812447	0.04014	1858714.3	74614.24	0.016
12.50	0.50	0.025755543	0.03088	1845371.2	56983.26	0.011
12.00	0.52	0.027946552	0.02297	1830325.6	42044.43	0.007
11.00	0.57	0.033258707	0.01121	1793847.3	20111.96	0.003
10.50	0.60	0.036501619	0.00724	1771578.3	12819.2	0.002
10.00	0.63	0.040243035	0.00437	1745886.2	7622.812	0.001
9.50	0.66	0.044590621	0.00243	1716031.5	4165.593	0.000
9.00	0.70	0.04968276	0.00122	1681064	2051.76	0.000
8.50	0.74	0.055699703	0.00054	1639745.9	888.133	0.000
8.00	0.79	0.062879743	0.00021	1590440.9	326.7177	0.000
7.50	0.84	0.071543174	0.00006	1530949.4	97.62967	0.000
7.00	0.90	0.082128643	0.00002	1458259.5	22.26952	0.000

Т	ω (rad/s)	k	Α	В	Fa	RAO
6.50	0.97	0.095249788	0.00000	1368157.1	3.552812	0.000
6.00	1.05	0.111786209	0.00000	1254602.2	0.349322	0.000
5.50	1.14	0.133034827	0.00000	1108688.8	0.017518	0.000
5.00	1.26	0.160972141	0.00000	916844.43	0.000333	0.000
4.50	1.40	0.198731038	0.00000	657555.65	1.46E-06	0.000
4.00	1.57	0.25151897	0.00000	295063.11	5.25E-10	0.000
3.00	2.09	0.447144836	0.00000	1048291.6	6.3E-21	0.000

ANALITIS PITCH FREE FLOATING

HULL CHARACTERISTICS

	Full Scale	Satuan
Diameter	16.00	m
Draft	135.03	m
Length	154.23	m
Fairlead Depth	12.74	m

Density	1025.00	Kg/m3
massa	27828127.19	kg
Momen inersia massa	105178192100.4950	Kg m2
Momen inersia massa		
tambah	63106915260	Kg m2
momen inelrsia total	168285107360.79	Kg m2
Pitch Stiffness	1529619959	N m
Natural Freq	0.095338635	Rad/s

Т	ω (rad/s)	k	Fa	Ма	RAO analitis	RAO analitis(Θ/m)
40	0.16	0.00251519	-4043456	10823807	0.0041	0.2365
35	0.18	0.003285146	-4043456	15148371	0.0039	0.2229
30	0.21	0.004471448	-4043456	22422849	0.0038	0.2195
25.00	0.25	0.006438886	-4043456	35565381	0.0039	0.2239
20.00	0.31	0.010060759	-4043456	61036444	0.0040	0.2319
19.00	0.33	0.011147655	-4043456	68621963	0.0041	0.2330
18.00	0.35	0.01242069	-4043456	77341900	0.0041	0.2335
17.00	0.37	0.013924926	-4043456	87342108	0.0041	0.2332
16.00	0.39	0.015719936	-4043456	98759629	0.0040	0.2317
15.00	0.42	0.017885793	-4043456	1.12E+08	0.0040	0.2286
14.50	0.43	0.019140564	-4043456	1.19E+08	0.0039	0.2263
14.00	0.45	0.020532161	-4043456	1.26E+08	0.0039	0.2234
13.50	0.47	0.022081226	-4043456	1.34E+08	0.0038	0.2199
13.00	0.48	0.023812447	-4043456	1.42E+08	0.0038	0.2157
12.50	0.50	0.025755543	-4043456	1.51E+08	0.0037	0.2107
12.00	0.52	0.027946552	-4043456	1.6E+08	0.0036	0.2049
11.00	0.57	0.033258707	-4043456	1.78E+08	0.0033	0.1908
10.50	0.60	0.036501619	-4043456	1.87E+08	0.0032	0.1824
10.00	0.63	0.040243035	-4043456	1.96E+08	0.0030	0.1732
9.50	0.66	0.044590621	-4043456	2.05E+08	0.0028	0.1632
9.00	0.70	0.04968276	-4043456	2.14E+08	0.0027	0.1525
8.50	0.74	0.055699703	-4043456	2.23E+08	0.0025	0.1411
8.00	0.79	0.062879743	-4043456	2.31E+08	0.0023	0.1294
7.50	0.84	0.071543174	-4043456	2.39E+08	0.0020	0.1173
7.00	0.90	0.082128643	-4043456	2.46E+08	0.0018	0.1051
6.50	0.97	0.095249788	-4043456	2.53E+08	0.0016	0.0930
6.00	1.05	0.111786209	-4043456	2.59E+08	0.0014	0.0811
5.50	1.14	0.133034827	-4043456	2.65E+08	0.0012	0.0696
5.00	1.26	0.160972141	-4043456	2.7E+08	0.0010	0.0586
4.50	1.40	0.198731038	-4043456	2.75E+08	0.0008	0.0482
4.00	1.57	0.25151897	-4043456	2.79E+08	0.0007	0.0387
3.00	2.09	0.447144836	-4043456	2.86E+08	0.0004	0.0223

LAMPIRAN D

ANALITIS SURGE TERTAMBAT

$$C_{11} = \sum_{i=1}^{N} k_i \cos^2 \varphi_i$$

Data Mooring

Lo	225	m
EA	1175000000	Ν
EA/Lo (ki)	5548996.458	N/m

Sudut Sebar-Line

β1	45.000	deg
β2	135.000	deg
β3	225.000	deg
β4	315.000	deg

	Full	
	Scale	
Line 1	2774498	N/m
Line 2	2774498	N/m
Line 3	2774498	N/m
Line 4	2774498	N/m
K11	11097993	N/m

Perhitungan Surge Tertambat

m	27834342.56	kg	(massa)
ma	27834342.56	kg	(massa tambah)
kh	0.00	N/m	(kekakuan hidrostatik)
km	11097992.92	N/m	(kekakuan mooring)
K	11097992.92	N/m	(kekakuan total)
b	0.00	Ns/m	(damping)

Т	ω	Fa	RAO (m/m)
(s)	(rad/s)	(N)	Analitis
40.000	0.157	1164632.646	0.120
35.000	0.180	1448994.995	0.156
30.000	0.209	1833154.510	0.212
25.000	0.251	2349047.384	0.310
20.000	0.314	3004819.384	0.536
19.000	0.331	3146729.761	0.628
18.000	0.349	3288510.259	0.762
17.000	0.370	3427464.764	0.981
16.000	0.393	3560266.549	1.417
15.000	0.419	3683043.252	2.768
14.500	0.433	3739371.745	5.796
14.000	0.460	3791635.873	5.564
13.500	0.465	3839354.800	3.996
13.000	0.483	3882110.123	2.037
12.500	0.503	3919577.682	1.321
12.000	0.524	3951561.383	0.949
11.000	0.571	3999121.792	0.566
10.500	0.598	4015200.974	0.454
10.000	0.628	4026808.092	0.370
9.500	0.661	4034649.097	0.304
9.000	0.698	4039530.543	0.252
8.500	0.739	4042276.269	0.209
8.000	0.785	4043636.029	0.174
7.500	0.838	4044208.949	0.145
7.000	0.898	4044405.103	0.120
6.500	0.967	4044456.364	0.099
6.000	1.047	4044465.741	0.081
5.500	1.142	4044466.803	0.066
5.000	1.257	4044466.866	0.053
4.500	1.396	4044466.867	0.042
4.000	1.571	4044466.867	0.032
3.000	2.094	4044466.867	0.017

ANALITIS HEAVE TERTAMBAT

Data Mooring

Lo	225	m
EA	1175000000	Ν
EA/Lo	5548996.458	N/m
Т	904874.400	Ν
L	211.173	m

Sudut Tanah-Line

α1	60.000	deg
α2	60.000	deg
α3	60.000	deg
α4	60.000	deg

Sudut Sebar-Line

β1	45.000	deg
β2	135.000	deg
β3	225.000	deg
β4	315.000	deg

	kp11 (N/m)	kp22 (N/m)	kp12 (N/m)
LineA	1390451.634	4162814.85	2400936.973
LineB	1390451.634	4162814.85	2400936.973
LineC	1390451.634	4162814.85	2400936.973
LineD	1390451.634	4162814.85	2400936.973

	k33	
LineA	4162815	N/m
LineB	4162815	N/m
LineC	4162815	N/m
LineD	4162815	N/m
K33	16651259	N/m
(TOTAL)		

Perhitungan Heave Tertambat

m	27834342.56	kg	(massa)
ma	27834342.56	kg	(massa tambah)
kh	2022233.434	N/m	(kekakuan hidrostatik)
km	16651259.40	N/m	(kekakuan mooring)
K	18673492.83	N/m	(kekakuan total)
b	0.00	Ns/m	(damping)

Т	ω	Fa	RAO (m/m)
(s)	(rad/s)	(N)	Analitis
40.000	0.157	1427619	0.079
35.000	0.180	1283259	0.072
30.000	0.209	1088868	0.063
25.000	0.251	829174.8	0.049
20.000	0.314	502064.7	0.032
19.000	0.331	431876.9	0.028
18.000	0.349	362036.2	0.024
17.000	0.370	293913.5	0.020
16.000	0.393	229176.7	0.016
15.000	0.419	169736.2	0.012
14.500	0.433	142632.6	0.011
14.000	0.449	117601.6	0.009
13.500	0.465	94866.19	0.008
13.000	0.483	74614.24	0.006
12.500	0.503	56983.26	0.005
12.000	0.524	42044.43	0.004
11.000	0.571	20111.96	0.002
10.500	0.598	12819.2	0.002
10.000	0.628	7622.812	0.001
9.500	0.661	4165.593	0.001
9.000	0.698	2051.76	0.000
8.500	0.739	888.133	0.000
8.000	0.785	326.7177	0.000
7.500	0.838	97.62967	0.000
7.000	0.898	22.26952	0.000
6.500	0.967	3.552812	0.000
6.000	1.047	0.349322	0.000
5.500	1.142	0.017518	0.000
5.000	1.257	0.000333	0.000
4.500	1.396	1.46E-06	0.000
4.000	1.571	5.25E-10	0.000
3.000	2.094	6.3E-21	0.000
ANALITIS PITCH TERTAMBAT

Rho	55
W	539.55
Y	200
Tb	904874.4
L	211.75
Theta	60
	1.047197551
То	452437.2
1	1452.403332
xb	1104.329058
yb	838.5454545
ya	1038.545455
L'	1679.378397
L	226.9750657
xa	1211.576404
Х	107.2473455
Та	1012784.4
А	450.8857644
В	5.30912E-05
М	0.000183952
R	44.67260752

K55

	1355	
Line 1	5765049068.151	Ν
Line 2	5765049068.151	Ν
Line 3	5765049068.151	Ν
Line 4	5765049068.151	Ν
K11 Total	23060196272.604	Ν

Perhitungan Pitch Tertambat

	Perhitungan Pitch Tertam	oat
Ι	105201683462.20	kg m ²
Ia	63121010077.32	kg m ²
kh	1529619959.06	N/m
km	23060196272.60	N/m
K	24589816231.67	N/m
b	0.00	N s/m

Т	ω	Ma	RAO (deg/m)
(s)	(rad/s)	(N m)	Analitis
40.000	0.157	10828130.788	0.030

35.000	0.180	15154062.849	0.045
30.000	0.209	22430662.855	0.075
25.000	0.251	35576710.654	0.146
20.000	0.314	61054039.927	0.439
19.000	0.331	68641354.617	0.636
18.000	0.349	77363333.066	1.086
17.000	0.370	87365863.851	3.136
16.000	0.393	98786020.651	4.138
15.000	0.419	111731150.755	1.295
14.500	0.433	118793419.567	0.970
14.000	0.449	126247068.051	0.777
13.500	0.465	134081042.158	0.647
13.000	0.483	142274490.027	0.553
12.500	0.503	150795141.063	0.482
12.000	0.524	159597951.285	0.424
11.000	0.571	177802031.225	0.336
10.500	0.598	187046868.816	0.300
10.000	0.628	196265271.147	0.269
9.500	0.661	205359118.525	0.240
9.000	0.698	214231850.468	0.214
8.500	0.739	222795346.322	0.189
8.000	0.785	230976220.754	0.167
7.500	0.838	238719905.110	0.146
7.000	0.898	245991210.017	0.127
6.500	0.967	252771208.633	0.109
6.000	1.047	259051841.772	0.093
5.500	1.142	264830576.046	0.078
5.000	1.257	270106876.262	0.064
4.500	1.396	274880675.525	0.052
4.000	1.571	279151969.692	0.041
3.000	2.094	286187042.439	0.023

LAMPIRAN E NUMERIS FREE FLOATING

WELCOME TO MOSES Version 07.10.01.11

This Program is licensed for the exclusive use of Institut Teknologi SepuluhSura										
Copying of this program or use by anyone other										
than an employee of the above firm without										
written consent of Bentley Systems is strictly										
prohibited										
Default License Suite: MOSES Automatic Elevation										
>&device -oecho no										
>&title SPAR (3DDiff By MOSES)										
>&default -depth 500 -spgwater 1.0										
>inmodel										
Time To perform Inmodel : CP= 0.22										
>&instate -condition spar 135.0264 0 0										
>&picture iso										
>&picture top										
>&picture side										
>&picture bow										
>&weight -compute 62.029848 61.47816 61.47816 61.47816										
>&equi										
+++ CURRENT SYSTEM CONFIGURATION +++										

Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified Location and Net Force at Body Origin

	Body	Х	Y	ΖI	RX RY	r RZ	
 SPAR	Location	0.00	0.00	 -135.03	0.00	0.00	 0.00
	N Force	0.00	0.00	-0.00	0	0	0

Equilibrium Converged in 1 Iterations >&status +++ BUOYANCY AND WEIGHT FOR SPAR+++

Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified Results Are Reported In Body System

Draft = 135.03 Roll Angle = 0.00 Pitch Angle = 0.00

Wet Radii Of Gyration About CG

K-X = 61.48 K-Y = 61.48 K-Z = 61.48

GMT = 5.60 GML = 5.60

/-- Center of Gravity ---/ Sounding % Full Weight ---X--- ---Y--- ---Z--- ------Name ----- Part SPAR -----LOAD_GRO 27148.66 0.00 0.00 62.03 ------ ------ ------ ------ ------Total 27148.66 0.00 0.00 62.03 Buoyancy 27148.66 -0.00 0.00 67.51 >Hydrodynamics >&PARA -M_DIST 3.5 >&picture iso -type mesh -detail >G_pressure spar pkt1 -heading 0 22.5 45 -period 40 35 30 25 20 19 18 17 16 \ 15 14.5 14 13.5 13 12.5 12 11 10.5 10 9.5 9 8.5 8 7.5 7 6.5 6 5.5 5 4.543 Setting Pressure Name for SPAR to PKT1 _____ Mesh Refined: Number of Basic Panels 17 - Panels Used 640 Time to Generate 640 Panels For S : CP= 0.05 Time For 3D Diff. 640 Panels, Freq. 1 : CP= 0.69 Time For 3D Diff. 640 Panels, Freq. 2 : CP= 0.53 Time For 3D Diff. 640 Panels, Freq. 3 : CP= 0.49 Time For 3D Diff. 640 Panels, Freq. 4 : CP= 0.51 Time For 3D Diff. 640 Panels, Freq. 5 : CP= 0.77 Time For 3D Diff. 640 Panels, Freq. 6 : CP= 0.70 Time For 3D Diff. 640 Panels, Freq. 7 : CP= 0.61 Time For 3D Diff. 640 Panels, Freq. 8 : CP= 0.43 Time For 3D Diff. 640 Panels, Freq. 9 : CP= 0.54 Time For 3D Diff. 640 Panels, Freq. 10 : CP= 0.40 Time For 3D Diff. 640 Panels, Freg. 11 : CP= 0.42 Time For 3D Diff. 640 Panels, Freq. 12 : CP= 0.48 Time For 3D Diff. 640 Panels, Freq. 13 : CP= 0.38 Time For 3D Diff. 640 Panels, Freq. 14 : CP= 0.38 Time For 3D Diff. 640 Panels, Freq. 15 : CP= 0.50 Time For 3D Diff. 640 Panels, Freq. 16 : CP= 0.49 Time For 3D Diff. 640 Panels, Freq. 17 : CP= 0.39 : CP= Time For 3D Diff. 640 Panels, Freq. 18 0.37 Time For 3D Diff. 640 Panels, Freq. 19 : CP= 0.38 Time For 3D Diff. 640 Panels, Freq. 20 : CP= 0.39 Time For 3D Diff. 640 Panels, Freq. 21 : CP= 0.37 Time For 3D Diff. 640 Panels, Freq. 22 : CP= 0.36 Panels, Freq. 23 Time For 3D Diff. 640 : CP= 0.39 Time For 3D Diff. 640 Panels, Freq. 24 : CP= 0.39 Time For 3D Diff. 640 Panels, Freq. 25 : CP= 0.37 Time For 3D Diff. 640 Panels, Freq. 26 : CP= 0.39 : CP= Time For 3D Diff. 640 Panels, Freq. 27 0.36 Time For 3D Diff. 640 Panels, Freq. 28 : CP= 0.40 Time For 3D Diff. 640 Panels, Freq. 29 : CP= 0.37 Time For 3D Diff. 640 Panels, Freq. 30 : CP= 0.44 Time For 3D Diff. 640 Panels, Freq. 31 : CP= 0.59 Time For 3D Diff. 640 Panels, Freq. 32 : CP= 1.35

Setting Drift Name for SPAR to PKT1 *** WARNING: Negative On Diagonal Of Damping _____ Time To Set Up Convolution For PKT1 : CP= 0.09 Time to Sum Pressures For 640 Panels on SPAR : CP= 0.01 >HYDR SUM >end_Hydrodynamics > >Freq_response >rao -speed 0 -iter 500 Time To Compute RAOs : CP= 0.04 >fp_std 1.704959E-5 1.724023E-7 62.02985 >EQU_SUM >matrices -file >end >exforce -file >end >end_freq_response > >&finish **MOSES Finished with 1 Warnings** -----CP Time 16.80 _____ 16.80 Total Units _____ ****** ***** *** MOSES *** * -----July 17, 2017 SPAR (3DDiff By MOSES) * Draft = 135.0 Meters Trim Angle = 0.00 Deg. GMT = 5.6 Meters * * Roll Gy. Radius = 61.5 Meters Pitch Gy. Radius = 61.5 Meters Yaw Gy. Radius = 61.5 Meters * * Heading Forward Speed = 0.00 Knots Linearization Based on 1/ = 0.00 Deg. 20 * ***** +++ MOTION RESPONSE OPERATORS+++ _____ Results are in Body System Of Point On Body SPAR At X = 0.0 Y = 0.0 Z = 62.0 Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified

ENCOUNTER Surge / Sway / Heave / Roll / Pitch / Yaw / ----- Wave Ampl. Wave Ampl. Wave Ampl. Wave Ampl. Wave Ampl. Wave Ampl. -/ -(Rad/Sec)- -(Sec)- Ampl. Phase Ampl. Phase Ampl. Phase Ampl. Phase Ampl. Phase Ampl. Phase 0.1571 40.00 0.946 90 0.000 0 1.109 0 0.000 0 0.231 90 0.000 0 0.1795 35.00 0.851 90 0.000 0 1.193 0 0.000 0 0.209 90 0.000 0 0.205 90 0.2094 30.00 0.758 90 0.000 0 1.454 0 0.000 0 0.000 0 0.2513 25.00 0.660 90 0.000 0 4.297 0 0.000 0 0.214 90 0.000 0 0.3142 20.00 0.536 90 0.000 0 0.583 -179 0.000 0 0.231 90 0.000 0 0.3307 19.00 0.506 90 0.000 0 0.365 -179 0.000 0 0.235 90 0.000 0 0.474 90 0.000 0 0.232 -178 0.000 0 0.237 90 0.3491 18.00 0.000 0 0.3696 17.00 0.440 90 0.000 0 0.146 -178 0.000 0 0.239 90 0.000 0 0 0.089 -178 0.000 0 0.240 90 0.3927 16.00 0.404 90 0.000 0.000 0 0.4189 15.00 0.366 90 0.000 0 0.052 -178 0.000 0 0.239 90 0.000 0 0.4333 14.50 0.347 90 0.000 0 0.039 -178 0.000 0 0.238 90 0.000 0 0.4488 14.00 0.000 0 0.029 -178 0.000 0 0.236 90 0.328 90 0.000 0 0.4654 13.50 0.308 90 0.000 0 0.021 -178 0.000 0 0.233 90 0.000 0 0 0.015 -177 0.000 0 0.230 90 0.4833 13.00 0.288 90 0.000 0.000 0 0.000 0 0.010 -177 0.000 0 0.226 90 0.5027 12.50 0.269 90 0.000 0 0.5236 12.00 0.249 90 0.000 0 0.006 -177 0.000 0 0.220 90 0.000 0 0.5712 11.00 0.211 89 0.000 0 0.002 -176 0.000 0 0.207 89 0.000 0 0.000 0 0.001 -175 0.000 0 0.199 89 0.5984 10.50 0.193 89 0.000 0 0.000 0 0.001 -175 0.000 0 0.190 88 0.6283 10.00 0.175 88 0.000 0 0.6614 9.50 0.158 88 0.000 0.000 0 0.000 0 0.179 88 0.000 0 0 0.6981 0.000 0.000 0 0.168 87 0.000 0 9.00 0.141 87 0.000 0 0 0.7392 8.50 0.125 86 0.000 0 0.000 0 0.000 0 0.155 86 0.000 0 0.110 85 0.000 0.000 0 0.141 85 0.000 0 0.7854 8.00 0.000 0 0 0.8378 7.50 0.094 83 0.000 0 0.000 0 0.000 0 0.126 83 0.000 0 0.8976 7.00 0.079 81 0.000 0.000 0.000 0 0.109 81 0.000 0 0 0 0.9666 6.50 0.064 79 0.000 0.000 0.000 0 0.091 79 0.000 0 0 0 1.0472 6.00 0.050 77 0.000 0 0.000 0 0.000 0 0.072 76 0.000 0 1.1424 5.50 0.036 75 0.000 0 0.000 0 0.000 0 0.054 75 0.000 0

1.2566 5.00 0.024 77 0.000 0 0.000 0 0.000 0 0.036 77 0.000 0 1.3963 4.50 0.015 84 0.000 0 0.000 0 0.000 0 0.023 84 0.000 0 1.5708 4.00 0.008 99 0.000 0 0.000 0 0.000 0 0.013 99 0.000 0 0.000 0 0.000 0 0.000 0 0.001 156 0.000 2.0944 3.00 0.001 157 0 Page 10 Licensee - Institut Teknologi SepuluhSura Rev 07.10.01.11 ***** * *** MOSES *** * -----July 17, 2017 SPAR (3DDiff By MOSES) * Draft = 135.0 Meters Trim Angle = 0.00 Deg. GMT = 5.6 Meters * * Roll Gy. Radius = 61.5 Meters Pitch Gy. Radius = 61.5 Meters Yaw Gy. Radius = 61.5 Meters * * Heading = 22.50 Deg. Forward Speed = 0.00 Knots Linearization Based on 1/20 * *

+++ MOTION RESPONSE OPERATORS+++

Results are in Body System

Of Point On Body SPAR At X = 0.0 Y = 0.0 Z = 62.0

Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified

EI		TER SI	urge /	/ Sw	vay /	Heave	/ Rol	1/	Pitch	/	Yaw /	
		Wave	Amp	l. Wa	ve Ar	npl. Wave	e Ampl.	Wa	ve Ampl.		Wave Am	pl.
					W	ave Ampl.						
Freque	ncy Perio	d /		-/ /		/ /	./ /	/	/	/	/	/
-(Rad/S	ec)(Sec)	- Amp	l. Ph	ase An	n pl.	Phase Amp	l. Phase	Am	pl. Phas	se /	Ampl. Ph	lase
					An	npl. Phase						
0.157	1 40.00	0.874	90	0.362	90	1.109 0	0.088	-89	0.213	90	0.000	0
0.179	5 35.00	0.786	90	0.326	90	1.193 0	0.080	-89	0.193	90	0.000	0
0.209	4 30.00	0.700	90	0.290	90	1.454 0	0.078	-89	0.189	90	0.000	0
0.251	3 25.00	0.610	90	0.253	90	4.297 0	0.082	-89	0.198	90	0.000	0
0.3142	20.00	0.495	90	0.205	90	0.583 -179	0.089	-89	0.214	90	0.000	0
0.3307	19.00	0.467	90	0.194	90	0.365 -179	0.090	-89	0.217	90	0.000	0
0.3491	18.00	0.438	90	0.181	90	0.232 -178	0.091	-89	0.219	90	0.000	0
0.3696	17.00	0.406	90	0.168	90	0.146 -178	0.092	-89	0.221	90	0.000	0
0.3927	16.00	0.373	90	0.154	90	0.089 -178	0.092	-89	0.222	90	0.000	0
0.4189	15.00	0.338	90	0.140	90	0.052 -178	0.091	-89	0.221	90	0.000	0
0.4333	14.50	0.321	90	0.133	90	0.039 -178	0.091	-89	0.220	90	0.000	0
0.4488	14.00	0.303	90	0.125	90	0.029 -178	0.090	-89	0.218	90	0.000	0
0.4654	13.50	0.285	90	0.118	90	0.021 -178	0.089	-89	0.215	90	0.000	0

0.4833	13.00	0.266	90	0.110	90	0.015	-177	0.088	-89	0.212	90	0.000	0
0.5027	12.50	0.248	90	0.103	90	0.010	-177	0.086	-89	0.208	90	0.000	0
0.5236	12.00	0.230	90	0.095	90	0.006	-177	0.084	-89	0.204	90	0.000	0
0.5712	11.00	0.195	89	0.081	89	0.002	-176	0.079	-90	0.191	. 89	0.000	0
0.5984	10.50	0.178	89	0.074	89	0.001	-175	0.076	-90	0.184	89	0.000	0
0.6283	10.00	0.162	88	0.067	88	0.001	-175	0.073	-91	0.175	88	0.000	0
0.6614	9.50	0.146	88	0.060	88	0.000	0	0.069	-91	0.166	88	0.000	0
0.6981	9.00	0.130	87	0.054	87	0.000	0	0.064	-92	0.155	87	0.000	0
0.7392	8.50	0.116	86	0.048	86	0.000	0	0.059	-93	0.143	86	0.000	0
0.7854	8.00	0.101	85	0.042	85	0.000	0	0.054	-94	0.130	85	0.000	0
0.8378	7.50	0.087	83	0.036	83	0.000	0	0.048	-96	0.116	83	0.000	0
0.8976	7.00	0.073	81	0.030	81	0.000	0	0.042	-98	0.101	81	0.000	0
0.9666	6.50	0.059	79	0.025	79	0.000	0	0.035	-100	0.085	79	0.000	0
1.0472	6.00	0.046	77	0.019	77	0.000	0	0.028	-103	0.067	76	0.000	0
1.1424	5.50	0.033	75	0.014	75	0.000	0	0.021	-104	0.050	75	0.000	0
1.2566	5.00	0.022	77	0.009	77	0.000	0	0.014	-102	0.034	77	0.000	0
1.3963	4.50	0.013	84	0.006	84	0.000	0	0.009	-95	0.021	84	0.000	0
1.5708	4.00	0.007	99	0.003	99	0.000	0	0.005	-80	0.012	99	0.000	0
2.0944	3.00	0.001	157	0.000	0	0.000	0	0.001	-23	0.001	156	0.000	0
Page 11	Licen	see - Insti	tut Te	eknologi	Sepu	luhSura	Rev	v 07.10.0)1.11				
******	*****	*****	****	*****	****	*****	****	*****	****	*****	*****	******	***
				*****	****	*****	****	*****					
	*				***	MOSES	***	:			*		
	*								July 1	7, 2017	*		
	*	SPAR (3	DDif	By MOS	ES)				•		:	k	
		*		•						*	:		
* Dra	aft	= 135.0	Mete	ers Tri	m Ar	ngle =	0.0	0 Deg.	GMT	:	= 5.6	Meters *	¢
* Roll	Gy. Rad	lius = 61	.5 Me	eters l	Pitch	Gy. Rad	ius =	61.5 Me	eters	Yaw Gy	. Rad	ius = 61	.5
						Weters '	P						

* Heading = 45.00 Deg. Forward Speed = 0.00 Knots Linearization Based on 1/20
*
*

+++ MOTION RESPONSE OPERATORS+++

Results are in Body System

Of Point On Body SPAR At X = 0.0 Y = 0.0 Z = 62.0

Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified

0.1571	40.00	0.669	90	0.669	90	1.109 0	0.163 -89	0.163 90	0.000	0
0.1795	35.00	0.602	90	0.602	90	1.193 0	0.148 -89	0.148 90	0.000	0
0.2094	30.00	0.536	90	0.536	90	1.454 0	0.145 -89	0.145 90	0.000	0
0.2513	25.00	0.467	90	0.467	90	4.297 0	0.151 -89	0.151 90	0.000	0
0.3142	20.00	0.379	90	0.379	90	0.583 -17	9 0.164 -89	0.164 90	0.000	0
0.3307	19.00	0.358	90	0.358	90	0.365 -17	9 0.166 -89	0.166 90	0.000	0
0.3491	18.00	0.335	90	0.335	90	0.232 -17	8 0.168 -89	0.168 90	0.000	0
0.3696	17.00	0.311	90	0.311	90	0.146 -17	8 0.169 -89	0.169 90	0.000	0
0.3927	16.00	0.285	90	0.285	90	0.089 -17	8 0.170 -89	0.170 90	0.000	0
0.4189	15.00	0.259	90	0.259	90	0.052 -17	8 0.169 -89	0.169 90	0.000	0
0.4333	14.50	0.245	90	0.245	90	0.039 -17	8 0.168 -89	0.168 90	0.000	0
0.4488	14.00	0.232	90	0.232	90	0.029 -17	8 0.167 -89	0.167 90	0.000	0
0.4654	13.50	0.218	90	0.218	90	0.021 -17	8 0.165 -89	0.165 90	0.000	0
0.4833	13.00	0.204	90	0.204	90	0.015 -17	7 0.162 -89	0.162 90	0.000	0
0.5027	12.50	0.190	90	0.190	90	0.010 -17	7 0.160 -89	0.160 90	0.000	0
0.5236	12.00	0.176	90	0.176	90	0.006 -17	7 0.156 -89	0.156 90	0.000	0
0.5712	11.00	0.149	89	0.149	89	0.002 -17	6 0.147 -90	0.147 89	0.000	0
0.5984	10.50	0.136	89	0.136	89	0.001 -17	5 0.141 -90	0.141 89	0.000	0
0.6283	10.00	0.124	88	0.124	88	0.001 -17	5 0.134 -91	0.134 88	0.000	0
0.6614	9.50	0.112	88	0.112	88	0.000 0	0.127 -91	0.127 88	0.000	0
0.6981	9.00	0.100	87	0.100	87	0.000 0	0.119 -92	0.119 87	0.000	0
0.7392	8.50	0.089	86	0.089	86	0.000 0	0.110 -93	0.110 86	0.000	0
0.7854	8.00	0.078	85	0.078	85	0.000 0	0.100 -94	0.100 85	0.000	0
0.8378	7.50	0.067	83	0.067	83	0.000 0	0.089 -96	0.089 83	0.000	0
0.8976	7.00	0.056	81	0.056	81	0.000 0	0.077 -98	0.077 81	0.000	0
0.9666	6.50	0.046	79	0.046	79	0.000 0	0.065 -100	0.065 79	0.000	0
1.0472	6.00	0.035	77	0.035	77	0.000 0	0.051 -103	0.051 76	0.000	0
1.1424	5.50	0.025	75	0.025	75	0.000 0	0.038 -104	0.038 75	0.000	0
1.2566	5.00	0.017	77	0.017	77	0.000 0	0.026 -102	0.026 77	0.000	0
1.3963	4.50	0.010	84	0.010	84	0.000 0	0.016 -95	0.016 84	0.000	0
1.5708	4.00	0.006	99	0.006	99	0.000 0	0.009 -80	0.009 99	0.000	0
2.0944	3.00	0.001	157	0.001	157	0.000 0	0.001 -23	0.001 156	0.000	0
Page 12	License	ee - Instit	tut Te	knologi	Sepu	luhSura R	ev 07.10.01.11			

LAMPIRAN F NUMERIS TERTAMBAT

WELCOME TO MOSES Version 07.10.01.11

_____ This Program is licensed for the exclusive use of Institut Teknologi SepuluhSura Copying of this program or use by anyone other than an employee of the above firm without written consent of Bentley Systems is strictly prohibited. **Default License Suite: MOSES Automatic Elevation** _____ >&dimen -remember -dimen meters m-tons >&device -oecho no >&title SPAR (3DDiff By MOSES) >&default -depth 226.8 -spgwater 1.025 >inmodel : CP= 0.30 **Time To perform Inmodel** >&instate -condition spar 135.0264 0 0 >&weight -compute SPAR 62.029848 61.47816 61.47816 30 >&equi +++ CURRENT SYSTEM CONFIGURATION +++ _____ Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified Location and Net Force at Body Origin X Y Z RX Body RY RZ SPAR Location 0.00 0.00 -135.03 0.00 0.00 0.00 N Force -0.00 0.00 -0.00 0 0 0 **Equilibrium Converged in 1 Iterations** >&status +++ BUOYANCY AND WEIGHT FOR SPAR+++ _____ Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified **Results Are Reported In Body System** Draft = 135.03 Roll Angle = 0.00 Pitch Angle = 0.00 Wet Radii Of Gyration About CG K-X = 61.48 K-Y = 61.48 K-Z = 30.00 GMT = 5.60 GML = 5.60 /-- Center of Gravity ---/ Sounding % Full Name Weight ---X--- ---Y--- ---Z--- -----Z-------- Part SPAR ------LOAD GRO 27117.65 0.00 0.00 62.03 ------ ------ ------ ------Total 27117.65 0.00 0.00 62.03 Buoyancy 27117.65 -0.00 0.00 67.51 > >medit >*A 5.6567 5.6567 122.29 >*B 5.6567 -5.6567 122.29 >*C -5.6567 5.6567 122.29 >*D -5.6567 -5.6567 122.29 >~wire b_cat 115 -depanchor 226.8 -refine 30 -len 225 -b_tension 1199.18 \ -wtplen 0.065 -buoydia 0 -EMODULUS 25492905.3244 >

>Connector IV -anc 45 126 ~wire *A

>Connector I -anc -45 126 ~wire *B >Connector III -anc 135 126 ~wire *C >Connector II -anc -135 126 ~wire *D >end >&connector @ -l tension 92.24 **Changing Length of Connector I Changing Length of Connector II** _____ **Changing Length of Connector III Changing Length of Connector IV** >&picture iso >&picture top >CONN DESIGN >TABLE I >REPORT >VLIST The Variables Available for Selection are: _____ 1 Horizontal Distance 5 Max T/Break 9 Hor. Pull On Anchor 2 Horiz. Force At Top 6 Critical Break **10 Line On Bottom** 3 DHDX 7 Critical Segment 11 Height Of 1st Conn. 4 Tension At Top 8 Vert Pull On Anchor 12 Load On 1st Conn. >PLOT 1 8 -rax 6 -NO >END >MOVE spar -line 0 200 50 >REPORT >VLIST The Variables Available for Selection are: _____ 6 Y Restoring Force 1 Excursion:SPAR 10 Max Ratio 2 Angle 7 Res.Restoring Force 11 Min Tension **3 X Excursion** 8 Max Tension 12 Min Horizontal **4 Y Excursion** 9 Max Horizontal 13 Min Ratio **5 X Restoring Force** >PLOT 1 7 -NO >END >END >&DCPTIME Time To End Mooring Design Time To End Mooring Design : CP= 0.25 >&weight -compute SPAR 62.029848 61.47816 61.47816 30 >&equi +++ CURRENT SYSTEM CONFIGURATION +++ Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified Location and Net Force at Body Origin Body Х Υ Ζ RX RY RZ 0.00 -135.03 SPAR Location 0.00 0.00 0.00 0.00 N Force -0.00 0.00 -0.00 0 0 0

Equilibrium Converged in 1 Iterations

>&status

>Hydrodynamics

>&PARA -M_DIST 3.5

>&picture iso -type mesh -detail

>G_pressure spar pkt1 -heading 0 22.5 45 -period 40 35 30 25 20 19 18 17 16 \

15 14.5 14 13.5 13 12.5 12 11 10.5 10 9.5 9 8.5 8 7.5 7 6.5 6 5.5 5 \

4.5 4 3

Setting Pressure Name for SPAR to PKT1

Mesh Refined: Number o	f Basic Panels 17 -	Panels I	Jsed 640
Time to Generate 640	Panels For S	: CP=	0.06
Time For 3D Diff. 640	Panels, Freq. 1	: CP=	11.07
Time For 3D Diff. 640	Panels, Freq. 2	: CP=	2.28
Time For 3D Diff. 640	Panels, Freq. 3	: CP=	0.87
Time For 3D Diff. 640	Panels, Freq. 4	: CP=	0.98
Time For 3D Diff. 640	Panels, Freq. 5	: CP=	0.61
Time For 3D Diff. 640	Panels, Freq. 6	: CP=	0.66
Time For 3D Diff. 640	Panels, Freq. 7	: CP=	4.43
Time For 3D Diff. 640	Panels, Freq. 8	: CP=	0.80
Time For 3D Diff. 640	Panels, Freq. 9	: CP=	1.47
Time For 3D Diff. 640	Panels, Freq. 10	: CP=	1.36
Time For 3D Diff. 640	Panels, Freq. 11	: CP=	1.23
Time For 3D Diff. 640	Panels, Freq. 12	: CP=	0.89
Time For 3D Diff. 640	Panels, Freq. 13	: CP=	0.81
Time For 3D Diff. 640	Panels, Freq. 14	: CP=	0.98
Time For 3D Diff. 640	Panels, Freq. 15	: CP=	0.96
Time For 3D Diff. 640	Panels, Freq. 16	: CP=	0.99
Time For 3D Diff. 640	Panels, Freq. 17	: CP=	0.59
Time For 3D Diff. 640	Panels, Freq. 18	: CP=	0.77
Time For 3D Diff. 640	Panels, Freq. 19	: CP=	0.77
Time For 3D Diff. 640	Panels, Freq. 20	: CP=	0.61
Time For 3D Diff. 640	Panels, Freq. 21	: CP=	0.70
Time For 3D Diff. 640	Panels, Freq. 22	: CP=	0.55
Time For 3D Diff. 640	Panels, Freq. 23	: CP=	0.57
Time For 3D Diff. 640	Panels, Freq. 24	: CP=	0.98
Time For 3D Diff. 640	Panels, Freq. 25	: CP=	0.44
Time For 3D Diff. 640	Panels, Freq. 26	: CP=	1.13
Time For 3D Diff. 640	Panels, Freq. 27	: CP=	0.57
Time For 3D Diff. 640	Panels, Freq. 28	: CP=	0.73
Time For 3D Diff. 640	Panels, Freq. 29	: CP=	0.45
Time For 3D Diff. 640	Panels, Freq. 30	: CP=	0.60
Time For 3D Diff. 640	Panels, Freq. 31	: CP=	0.83
Time For 3D Diff. 640	Panels, Freq. 32	: CP=	1.57
Setting Drift N	Name for SPAR to F	PKT1	
============		=====	
*** WARNING: Nega	ative On Diagonal (Of Damp	oing

Time To Set Up Convolution For PKT1 : CP= 0.08 Time to Sum Pressures For 640 Panels on SPAR : CP= 0.02 >HYDR_SUM >end_Hydrodynamics >Freq_response >rao -speed 0 -iter 500 Time To Compute RAOs : CP= 0.05 >fp_std 6.857014E-6 9.848904E-8 62.02985

>EQU_SUM

>matrices -file >end >exforce -file >end >fr cforce I >REPORT >vlist The Variables Available for Selection are: _____ 6 FY-Phase:I 1 Frequency 11 MY-Amp:l 2 Period 12 MY-Phase:I 7 FZ-Amp:l 3 FX-Amp:I 8 FZ-Phase:I 13 MZ-Amp:l 4 FX-Phase:I 9 MX-Amp:l 14 MZ-Phase:I 5 FY-Amp:l 10 MX-Phase:I >plot 1 7 -no >end >fr_cforce II >REPORT >vlist The Variables Available for Selection are: _____ 1 Frequency 6 FY-Phase:II 11 MY-Amp:II 2 Period 12 MY-Phase:II 7 FZ-Amp:II 3 FX-Amp:II 8 FZ-Phase:II 13 MZ-Amp:II 4 FX-Phase:II 9 MX-Amp:II 14 MZ-Phase:II 10 MX-Phase:II 5 FY-Amp:II >plot 17 -no >end >fr_cforce III >REPORT >vlist The Variables Available for Selection are: ------1 Frequency 6 FY-Phase:III 11 MY-Amp:III 2 Period 7 FZ-Amp:III 12 MY-Phase:III 3 FX-Amp:III 8 FZ-Phase:III 13 MZ-Amp:III 4 FX-Phase:III 14 MZ-Phase:III 9 MX-Amp:III 10 MX-Phase:III 5 FY-Amp:III >plot 1 7 -no >end >fr cforce IV >REPORT >vlist The Variables Available for Selection are: 1 Frequency 6 FY-Phase:IV 11 MY-Amp:IV 2 Period 7 FZ-Amp:IV 12 MY-Phase:IV 3 FX-Amp:IV 8 FZ-Phase:IV 13 MZ-Amp:IV 14 MZ-Phase:IV 4 FX-Phase:IV 9 MX-Amp:IV 5 FY-Amp:IV 10 MX-Phase:IV >plot 17 -no >end > >end_freq_response > >&finish

* *** MOSES *** -----July 16, 2017 SPAR (3DDiff By MOSES) * Draft = 135.0 Meters Trim Angle = 0.00 Deg. * Roll Gy. Radius = 61.5 Meters Pitch Gy. Radius = 61.5 Meters Yaw Gy. Radius = 30.0 Meters * * Heading = 0.00 Deg. Forward Speed = 0.00 Knots Linearization Based on 1/20 * * ********* +++ MOTION RESPONSE OPERATORS+++ _____ **Results are in Body System** Of Point On Body SPAR At X = 0.0 Y = 0.0 Z = 62.0 Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified ENCOUNTER Surge / Sway / Heave / Roll / Pitch / Yaw / _____ Wave Ampl. Wave Ampl. Wave Ampl. Wave Ampl. Wave Ampl. Wave Ampl. -----/ -(Rad/Sec)- -(Sec)- Ampl. Phase Ampl. Phase Ampl. Phase Ampl. Phase Ampl. Phase Ampl. Phase 0.1571 40.00 0.834 90 0.000 0 0.091 0 0.000 0 1.013 -89 0.000 0 0.1795 35.00 0.609 90 0.000 0 0.085 0 0.000 0 0.902 -89 0.000 0 0.2094 30.00 0.380 90 0.000 0 0.075 0 0.000 0 0.851 -89 0.000 0 0.2513 25.00 0.081 90 0.000 0 0.059 0 0.000 0 0.943 -89 0.000 0 0.3142 20.00 0.739 -90 0.000 0 0.037 0 0.000 0 1.625 -90 0.000 0 0.000 0 0.032 0 0.000 0 2.415 -91 0.3307 19.00 1.392 -91 0.000 0 0.3491 18.00 5.053 -96 0.000 0 0.027 0 0.000 0 7.344 -96 0.000 0 0.3696 17.00 4.176 96 0.000 0 0.022 1 0.000 0 5.310 96 0.000 0

0.3927	16.00	1.584	93	0.000 0	0.018	1	0.000	0	1.828	93
				0.000	0			-		
0.4189	15.00	0.957	92	0.000 0 0.000	0.013 0	1	0.000	0	1.044	92
0.4333	14.50	0.804	92	0.000 0	0.011	1	0.000	0	0.858	92
			• -	0.000	0	-		•		-
0.4488	14.00	0.688	91	0.000 0	0.010	1	0.000	0	0.724	91
				0.000	0					
0.4654	13.50	0.597	91	0.000 0	0.008	1	0.000	0	0.624	91
				0.000	0					
0.4833	13.00	0.512	91	0.000 0	0.007	2	0.000	0	0.540	91
				0.000	0					
0.5027	12.50	0.451	91	0.000 0	0.005	2	0.000	0	0.477	91
				0.000	0					
0.5236	12.00	0.398	91	0.000 0	0.004	2	0.000	0	0.425	91
				0.000	0					
0.5712	11.00	0.303	91	0.000 0	0.002	3	0.000	0	0.341	91
				0.000	0					
0.5984	10.50	0.268	90	0.000 0	0.002	4	0.000	0	0.308	90
				0.000	0					
0.6283	10.00	0.236	90	0.000 0	0.001	4	0.000	0	0.278	90
				0.000	0					
0.6614	9.50	0.207	89	0.000 0	0.001	5	0.000	0	0.250	89
				0.000	0					
0.6981	9.00	0.181	89	0.000 0	0.000	0	0.000	0	0.224	89
				0.000	0					
0.7392	8.50	0.156	88	0.000 0	0.000	0	0.000	0	0.200	88
				0.000	0					
0.7854	8.00	0.134	86	0.000 0	0.013 -:	170	0.000	0	0.176	86
				0.000	0					
0.8378	7.50	0.113	85	0.000 0	0.000	0	0.000	0	0.153	85
				0.000	0					
0.8976	7.00	0.094	83	0.000 0	0.000	0	0.000	0	0.130	83
				0.000	0					
0.9666	6.50	0.075	80	0.000 0	0.000	0	0.000	0	0.106	80
				0.000	0					
1.0472	6.00	0.057	78	0.000 0	0.000	0	0.000	0	0.083	78
				0.000	0					
1.1424	5.50	0.041	76	0.000 0	0.000	0	0.000	0	0.060	76
				0.000	0	-		-		
1.2566	5.00	0.027	78	0.000 0	0.000	0	0.000	0	0.041	78
				0.000	0	-		-		
1.3963	4.50	0.016	84	0.000 0	0.000	0	0.000	0	0.025	84
				0.000	0	-		-		- •
1.5708	4,00	0.009	98	0.000 0	0.000	0	0.000	0	0.014	98
				0.000	0	-		-		
2.0944	3.00	0.001	155	0.000 0	0.000	0	0.000	0	0.002	154
				0.000	0	•		-		
					-					

*** MOSES *** July 16, 2017 -----SPAR (3DDiff By MOSES) * = 135.0 Meters Trim Angle = 0.00 Deg. * Draft * * Roll Gy. Radius = 61.5 Meters Pitch Gy. Radius = 61.5 Meters Yaw Gy. Radius = 30.0 Meters * * Heading = 0.00 Deg. Forward Speed = 0.00 Knots Linearization Based on 1/ 20 * * * ************* ***** +++ CONNECTOR FORCE RESPONSE OPERATORS+++ _____

===

Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified

For The Element I

ENCOL	JNTER	FX /		FY /	FZ	:/	MX /	,	MY /	' N	/ XN
		Wave	Amp	l. Wav	ve Am	pl. W	/ave /	Ampl.	Wa	ive Amp	ol.
			Wav	ve Ampl.	Wa	ave Amp	l.				
Frequency	Period	/	/	/	//-		//		//-		//-
						/					
-(Rad/Se	ec)(Sec	c)- Amp	l. Pł	nase Am	npl. P	hase A	mpl.	Phase	Am	npl. Pha	ase
	, ,	•	Amp	l. Phase	Am	pl. Pha	se .			•	
			•			•					
0.1571	40.00	16.35	-89	16.26	90	52.62	48	0.00	0	0.00	0
				0.0	0 0						
0.1795	35.00	24.01	-89	23.88	90	47.72	46	0.00	0	0.00	0
				0.0	0 0						
0.2094	30.00	36.41	-89	36.23	90	43.65	48	0.00	0	0.00	0
				0.0	0 0						
0.2513	25.00	64.47	-89	64.14	90	42.95	57	0.00	0	0.00	0
				0.0	0 0						
0.3142	20.00	173.33	-90	172.45	89	64.23	76	0.00	0	0.00	0
				0.0	0 0						
0.3307	19.00	278.41	-91	277.00	88	93.85	81	0.00	0	0.00	0
				0.0	0 0						
0.3491	18.00	904.42	-96	899.84	83	282.86	81	0.00	0	0.00	0
				0.0	0 0						
0.3696	17.00	690.95	96	687.46	-83	204.45	-80	0.00	0	0.00	0
				0.0	0 0						
0.3927	16.00	248.27	93	247.01	-86	70.59	-81	0.00	0	0.00	0
				0.0	0 0						
0.4189	15.00	145.52	92	144.78	-87	40.42	-80	0.00	0	0.00	0
				0.0	0 0						

0.4333	14.50	120.82	92	120.21 -87	33.23	3 -80	0.00	0	0.00	0
0.4488	14.00	102.61	91	102.09 -88	28.02	L -80	0.00	0	0.00	0
0.4654	4 13.50	88.67	91	0.00 0 88.23 -88	24.09	-80	0.00	0	0.00	0
			~ ~	0.00 0				•		
0.4833	3 13.00	76.45	91	76.06 -88 0.00 0	20.83	-81	0.00	0	0.00	0
0.5027	7 12.50	67.46	91	67.12 -88	18.37	-82	0.00	0	0.00	0
0.5236	5 12.00	59.84	91	0.00 0 59.53 -88	16.34	-83	0.00	0	0.00	0
0 5712	2 11 00	AC 9 E	01	0.00 0	12.05	05	0.00	0	0.00	0
0.5712	2 11.00	40.85	91	40.01 -88 0.00 0	13.05	-05	0.00	U	0.00	U
0.5984	4 10.50	41.88	90	41.66 -89 0 00 0	11.76	-86	0.00	0	0.00	0
0.6283	3 10.00	37.37	90	37.18 -89	10.61	-87	0.00	0	0.00	0
0.661	.4 9.50	33.26	89	0.00 0 33.09 -90	9.55	-88	0.00	0	0.00	0
				0.00 0				-		-
0.698	1 9.00	29.47	89	29.32 -90 0.00 0	8.56	-89	0.00	0	0.00	0
0.739	2 8.50	25.93	88	25.80 -91	7.62	-90	0.00	0	0.00	0
0.785	4 8.00	22.59	86	0.00 0 22.48 -93	9.18	-124	0.00	0	0.00	0
0 027	9 7 E O	10.40	OE	0.00 0	E 96	04	0 00	0	0.00	0
0.857	o 7.50	19.40	00	19.30 -94 0.00 0	5.00	-94	0.00	U	0.00	U
0.897	6 7.00	16.28	83	16.20 -96 0.00 0	4.97	-96	0.00	0	0.00	0
0.966	6 6.50	13.21	80	13.15 -99	4.07	-99	0.00	0	0.00	0
1.0472	2 6.00	10.21	78	0.00 0 10.16 -101	3.18	-101	0.00	0	0.00	0
				0.00 0				-		-
1.142	4 5.50	7.37	76	7.34 -103 0.00 0	2.32	-103	0.00	0	0.00	0
1.256	6 5.00	4.91	78	4.89 -101	1.56	-101	0.00	0	0.00	0
1.3963	4.50	2.99 84	2	0.00 0 2.98 -95 0.9	5 -95	0.00	0	0.00	0	0.00
1.5708	4.00	1.65 98		1.65 -81 0.5	3 -81	0.00	0	0.00	0	0.00
2.0944	3.00	0.20 155		0.20 -24 0.0 0	7 -25	0.00	0	0.00	0	0.00
******	*****	*******	****	- ************************************	*****	*****	*****	****	*****	****
*	:	~ ~ ~ ~ ~ ~ *	ጥ ጥ ጥ	*** MOSES	***	ጥጥጥጥ ጥጥ ች	ዮ ጥ ጥ ጥ		*	
*	SDVD		, NAC			Ju	ly 16, 1	2017	*	
-	384K *	цэрон ву		JJLJJ				*	-	

* Draft * Roll Gy	= . Radius	135.0 Me = 61.5 N	eters Neters	Trim Ang Pitch Gy	e = 0. v. Radius = tors *	00 Deg : 61.5 N	Neters	Yav	w Gy. Ra	* adius	
* Headin	g =	0.00 De	g.	Forward Sp on 1/ 20	eed = 0.	00 Kno	ts Lir	neariz	zation B	ased	
******	* *******	******	****	*****	******	*****	*****	* ****	*****	****	
		*****	****	* * * * * * * * * * * *	******	*****	***				
++	++ C O N I	N E C T O	R F C	DRCE RE: =========	5 P O N S E	Е ОРЕ ======	RAT (O R S	+++		
				===							
Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified											
For The Element II											
ΕΝΟΟ	JNTER	FX /	_	FY /	FZ /	MX /	.	MY /	N	//Z/	
		Wave	Ampl Wav	l. Wave A e Ampl.	mpl. ۱، Nave Am	Vave A pl.	mpl.	Wa	ve Amp	l.	
Frequency	Period	/	//	//	/	//		//		//-	
-(Rad/So	ec)(Sec	:)- Amp	l. Ph Ampl	ase Ampl. I. Phase A	Phase mpl. Pha	Ampl. Ise	Phase	Am	pl. Pha	ase	
0.1571	40.00	16.35	-89	16.26 -89 0 00	52.56 0	-47	0.00	0	0.00	0	
0.1795	35.00	24.01	-89	23.88 -89	47.64	-45	0.00	0	0.00	0	
0.2094	30.00	36.41	-89	0.00 36.23 -89 0.00	0 43.53 0	-47	0.00	0	0.00	0	
0.2513	25.00	64.47	-89	64.14 -89	42.73	-57	0.00	0	0.00	0	
0.3142	20.00	173.33	-90	0.00 172.45 -9 0.00	0 0 63.60 0	-77	0.00	0	0.00	0	
0.3307	19.00	278.41	-91	277.00 -9	L 92.90	-83	0.00	0	0.00	0	
0.3491	18.00	904.42	-96	899.85 -96 0.00	5 280.18 0	-94	0.00	0	0.00	0	
0.3696	17.00	690.95	96	687.45 96	202.77	94	0.00	0	0.00	0	
0.3927	16.00	248.27	93	247.02 93	0 3 70.15	87	0.00	0	0.00	0	
0.4189	15.00	145.52	92	144.78 92	2 40.27	84	0.00	0	0.00	0	
0.4333	14.50	120.82	92	0.00 120.21 92	u 2 33.15	84	0.00	0	0.00	0	
0.4488	14.00	102.61	91	0.00 102.09 9 [.]	0 27.98	84	0.00	0	0.00	0	
				0.00	0			-		-	

0.465	64 13.50) 88	.67	91 88	3.23	91	24.09	84	0.00	0	0.00	0
0 493	12 00	76	45	01 70	0.0	0 0	20.96	01	0.00	0	0.00	0
0.483	5 13.00	/ /0	.45	91 /6	0.0	91	20.80	84	0.00	U	0.00	U
0.502	27 12.50) 67.	.46	91 67	7.12	91	18.43	85	0.00	0	0.00	0
0.523	6 12.00) 59.	.84	91 59	9.53	91	16.40	85	0.00	0	0.00	0
0 571	2 11 00		ог	01 4/	0.0	0 0	12 12	07	0.00	0	0.00	0
0.571	12 11.00	40	.00	91 40	0.0 0.0	0 0	13.12	87	0.00	U	0.00	U
0.598	84 10.50) 41	.88	90 41	L.66	90	11.83	87	0.00	0	0.00	0
0.628	3 10.00) 37.	.37	90 37	0.0 7.18	90	10.67	88	0.00	0	0.00	0
					0.0	0 0						
0.6614	9.50	33.26	89	33.09	89	9.6 0	0 88	0.00	0	0.00	0 (0.00
0.6981	9.00	29.47	89	29.32	89	8.6 0	51 87	0.00	0	0.00	0 0	0.00
0.7392	8.50	25.93	88	25.80	88	7.6 0	7 87	0.00	0	0.00	0 0	0.00
0.78	54 8.00	22.	59	86 22	.48	86	7.41	127	0.00	0	0.00	0
					0.0	0 0						
0.8378	7.50	19.40	85	19.30	85	5.8 0	5 85	0.00	0	0.00	0 0	0.00
0.8976	7.00	16.28	83	16.20	83	4.9 0	7 83	0.00	0	0.00	0 0	0.00
0.9666	6.50	13.21	80	13.15	80	4.0	8 80	0.00	0	0.00	0 0	0.00
1.0472	6.00	10.21	78	10.16	78	0 3.1	.8 78	0.00	0	0.00	0 0	0.00
1,1474	5.50	7.37	76	7.34	76	0	7 76	0.00	0	0.00	0	0.00
1.1424	5.50	7.37	/0	7.34	70	0	_ /0	0.00	Ū	0.00	Ū	0.00
1.2566	5.00	4.91	78	4.89	78	1.50 0	5 78	0.00	0	0.00	0	0.00
1.3963	4.50	2.99	84	2.98	84	0.9	6 84	0.00	0	0.00	0	0.00
1.5708	4.00	1.65	98	1.65	98	0.5	3 98	0.00	0	0.00	0	0.00
2.094	44 3.00	0.2	20 1	155 0.	.20 1	0 155	0.07	154	0.00	0	0.00	0
1.5708	4.00	2.33	98	2.33	0.0 98	0 0 0.7	5 98	0.00	0	0.00	0	0.00
2.094	44 3.00	0.2	28 1	155 0.	.28 1	U 155	0.09	154	0.00	0	0.00	0
Page 25	Licens	ee - Ins	titut	: Teknolo	ogi Se	o u puluh	Sura	Rev 07.	.10.01	.11		
*****	******	*****	***	*****	****	****	*****	*****	****	****	*****	****
		****	****	******	****	****	****	*****	****			
:	*			**	** M	OSES	***				*	
	k							Ju	ıly 16,	2017	*	
*	SPAF	२ (3DDif	t By	MOSES)							*	

	*				*
	* Draft = 1	.35.0 Meters	Trim Angle	= 0.00 Deg.	*
*	* Roll Gy. Radius 🗧	= 61.5 Meters	Pitch Gy. Ra30.0 Meters	dius = 61.5 Met *	ters Yaw Gy. Radius
*	* Heading =	0.00 Deg.	Forward Speed on 1/20 *	= 0.00 Knots	Linearization Based
	*				*
*	*****	*****	****	****	****
		******	*****	****	*

+++ CONNECTOR FORCE RESPONSE OPERATORS+++

Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified

For The Element III

E N C O U N T E R 		FX / Wave	Amp	FY / I. Wav	FZ ve Am	:/ ipl. V	MX / Vave /	/ Ampl.	MY / Wa	í Ive Amp	VIZ / DI.
Frequency	Period	/	Wav /	ve Ampl. /	Wa -///	ave Amp /	ol. / /		//-		//-
-(Rad/Se	ec)(Sec	:)- Amp	l. Pł Amp	nase Am I. Phase	npl. F Am	phase <i>p</i> l. Pha	Ampl. Ise	Phase	Am	npl. Pha	ase
0.1571	40.00	16.35	-89	16.26 0.0	90 0 0	52.56	-47	0.00	0	0.00	0
0.1795	35.00	24.01	-89	23.88 0 0	90 0 0	47.64	-45	0.00	0	0.00	0
0.2094	30.00	36.41	-89	36.23	90 0	43.53	-47	0.00	0	0.00	0
0.2513	25.00	64.47	-89	64.14	90	42.73	-57	0.00	0	0.00	0
0.3142	20.00	173.33	-90	0.0 172.45	00 89	63.60	-77	0.00	0	0.00	0
0.3307	19.00	278.41	-91	0.0 277.00	0 0 88	92.90	-83	0.00	0	0.00	0
0.3491	18.00	904.42	-96	0.0 899.84 0.0	00 83 00	280.17	-94	0.00	0	0.00	0
0.3696	17.00	690.95	96	687.46	-83	202.77	94	0.00	0	0.00	0
0.3927	16.00	248.27	93	247.01	-86	70.15	87	0.00	0	0.00	0
0.4189	15.00	145.52	92	0.0 144.78	-87	40.27	84	0.00	0	0.00	0
0.4333	14.50	120.82	92	0.0 120.21 0.0	00 -87 00	33.15	84	0.00	0	0.00	0
0.4488	14.00	102.61	91	102.09 0.0	-88 0 0	27.98	84	0.00	0	0.00	0

0.46	54 13.5	0 88	3.67	91 8	8.23 -8	38	24.09	84	0.00	0	0.00	0
					0.00	0						
0.483	33 13.0	0 76	5.45	91 7	6.06 -8	38	20.86	84	0.00	0	0.00	0
0.502	27 12.5	0 67	7.46	91 6	0.00 7.12 -8	U 88	18.43	85	0.00	0	0.00	0
0.50		• •		51 0	0.00	0	10.40	00	0.00	Ū	0.00	Ū
0.523	36 12.0	0 59	9.84	91 5	9.53 -8	38	16.40	85	0.00	0	0.00	0
					0.00	0				-		
0.57	12 11.0	0 46	0.85	91 4	. 5.61 ה ה	58 0	13.12	87	0.00	0	0.00	0
0.598	84 10.5	0 41	L.88	90 4	0.00 1.66 -8	39	11.83	87	0.00	0	0.00	0
					0.00	0						
0.628	83 10.0	0 37	7.37	90 3	7.18 -8	39	10.67	88	0.00	0	0.00	0
0 6614	0.50	22.26	00	22.00	0.00	0	n 00	0.00		0.00		0.00
0.6614	9.50	33.20	89	33.09	-90	9.60	5 88	0.00	0	0.00	0	0.00
0.6981	9.00	29.47	89	29.32	-90	8.61	L 87	0.00	0	0.00	0	0.00
					0							
0.7392	8.50	25.93	88	25.80	-91	7.67	7 87	0.00	0 (0.00	0	0.00
0 79	5/ 20	יר ר	50	86 23	0	12	7 / 1	127	0.00	0	0 00	0
0.78	54 8.00	5 22		80 ZZ	0.00	0	/.41	127	0.00	U	0.00	U
0.8378	7.50	19.40	85	19.30	-94	5.85	5 85	0.00	0	0.00	0	0.00
					0							
0.8976	7.00	16.28	83	16.20	-96	4.97	7 83	0.00	0 (0.00	0	0.00
0 9666	6 50	13 21	80	13 15	U _99_	4 09	N 8 1	0.00	0	0.00	0	0 00
0.5000	0.50	19.21	00	13.13	0	4.00		0.00		0.00		0.00
1.04	72 6.0	0 10	.21	78 10	0.16 -1	01	3.18	78	0.00	0	0.00	0
					0.00	0			_		_	
1.1424	5.50	7.37	76	7.34	-103	2.32	76	0.00	0	0.00	0	0.00
1.2566	5.00	4.91	78	4.89	-101	1.56	78	0.00	0	0.00	0	0.00
	0.00				0	2.00		0.00	•	0.00	•	0.00
1.3963	1 50	2.99	84	2.98	-95	0.96	84	0.00	0	0.00	0	0.00
	4.50											
4 5700	4.50			4 67	0				•		•	0.00
1.5708	4.00	1.65	98	1.65	0 -81	0.53	98	0.00	0	0.00	0	0.00
1.5708 2.0944	4.00	1.65 0.20	98 155	1.65 0.20	0 -81 0 -24	0.53 0.07	98 154	0.00	0	0.00	0	0.00 0.00

:	****	****	
*	*** MOSES ***		*
*		July 16, 2017	*
* SPAR (3DI	Diff By MOSES)		4

* Draft * Roll Gy	= . Radius	135.0 Me = 61.5 N	eters Neters	Trim Ang Pitch G	le = 0. y. Radius =	00 Deg 61.5	g. Meters	Yav	w Gy. Ra	* adius		
* Headin	g =	0.00 De	g.	Forward Sp 0n 1/ 20	eed = 0.) *	00 Kno	ots Lir	neariz	zation B	ased		
* * * * * * * * *	***************************************											
		*****	****	*****	*******	*****	****					
++	+ C O N I	N E C T O	R F C	DRCE RE	S P O N S E	E O P I	E R A T (O R S	+++	====		
				===								
Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified												
For The Element IV												
ΕΝΟΟ	INTER	FX /		FY /	FZ /	MX /	I	MY/	N	ΛZ /		
		Wave	Ampl Way	l. Wave e Ampl	Ampl. V Wave Ami	Nave A	mpl.	Wa	ve Amp	l.		
Frequency	Period	/	//	//	//	/ /		//		//-		
-(Rad/Se	ec)(Sec	:)- Amp	l. Ph Ampl	ase Ampl. Phase A	/ Phase / Ampl. Pha	Ampl. Ise	Phase	Am	pl. Pha	ase		
0.1571	40.00	16.35	-89	16.26 -89	52.62	48	0.00	0	0.00	0		
0.1795	35.00	24.01	-89	23.88 -8	€ 47.72	46	0.00	0	0.00	0		
0.2094	30.00	36.41	-89	0.00 36.23 -89 0.00	0 9 43.65 0	48	0.00	0	0.00	0		
0.2513	25.00	64.47	-89	64.14 -89	9 42.95	57	0.00	0	0.00	0		
0.3142	20.00	173.33	-90	0.00 172.45 -9 0.00	0 0 64.23 0	76	0.00	0	0.00	0		
0.3307	19.00	278.41	-91	277.00 -9	1 93.85 0	81	0.00	0	0.00	0		
0.3491	18.00	904.42	-96	899.85 -9 0.00	6 282.87 0	81	0.00	0	0.00	0		
0.3696	17.00	690.95	96	687.45 9	5 204.45	-80	0.00	0	0.00	0		
0.3927	16.00	248.27	93	247.02 9	3 70.59	-81	0.00	0	0.00	0		
0.4189	15.00	145.52	92	144.78 9	2 40.42	-80	0.00	0	0.00	0		
0.4333	14.50	120.82	92	120.21 9	2 33.23	-80	0.00	0	0.00	0		
0.4488	14.00	102.61	91	0.00 102.09 9 0.00	0 1 28.01 0	-80	0.00	0	0.00	0		

0.465	54 13.5	0 88	8.67	91 8	8.23	91	24.09	-80	0.00	0	0.00	0
				~ -	0.00	0						•
0.483	33 13.0	0 76	.45	91 7	6.06 ი იი	91	20.83	-81	0.00	0	0.00	0
0.502	27 12.5	0 67	.46	91 6	7.12	91	18.37	-82	0.00	0	0.00	0
0.523	36 12.0	0 59	.84	91 5	0.00 9.53	0 0 91	16.34	-83	0.00	0	0.00	0
0.57 1	L2 11.0	0 46	.85	91 4	0.00 6.61) 0 91	13.05	-85	0.00	0	0.00	0
0.598	34 10.5	0 41	.88	90 4	0.00 1.66) 0 90	11.76	-86	0.00	0	0.00	0
					0.00	0						
0.628	33 10.0	0 37	.37	90 3	7.18	90	10.61	-87	0.00	0	0.00	0
0.6614	9.50	33.26	89	33.09	89	9.5	5 -88	0.00	0	0.00	0	0.00
)			-			
0.6981	9.00	29.47	89	29.32	89	8.5 h	6 -89	0.00	0	0.00	0	0.00
0.7392	8.50	25.93	88	25.80	88	י 7.6 ר	2 -90	0.00	0	0.00	0	0.00
0.78	54 8.00	0 22	.59	86 22	2.48	86	9.18 -	124	0.00	0	0.00	0
0 8378	7 50	19 40	85	19 30	0.00) 0 58	6 -94	0 00	0	0.00	0	0 00
0.0570	7.50	13.40	05	15.50)	0 -34	0.00	Ū	0.00		0.00
0.8976	7.00	16.28	83	16.20	83	4.9)	7 -96	0.00	0	0.00	0	0.00
0.9666	6.50	13.21	80	13.15	80	- 4.0	7 -99	0.00	0	0.00	0	0.00
1.04	72 6.00	0 10	.21	78 10	0.16	78	3.18 -	101	0.00	0	0.00	0
1 1474	5 50	7 37	76	7 34	0.00) () 232	-103	0 00	0	0 00	0	0 00
1.1424	5.50	7.37	70	7.34	/0	2.32)	-105	0.00	U	0.00	U	0.00
1.2566	5.00	4.91	78	4.89	78	1.56 า	-101	0.00	0	0.00	0	0.00
1.3963	4.50	2.99	84	2.98	84	0.95	5 -95	0.00	0	0.00	0	0.00
1.5708	4.00	1.65	98	1.65	98	0.53	8 -81	0.00	0	0.00	0	0.00
2.0944	3.00	0.20	155	0.20	155	0.0 0.0	7 -25	0.00	0	0.00	0	0.00
						-						

BIODATA PENULIS

Naufal Diaz Aditia, dilahirkan di Surakarta pada tanggal 4 Mei 1995, merupakan anak kedua dari empat bersaudara. Penulis menempuh pendidikan formal di SDN Keputran IX Yogyakarta, SMPN 2 Yogyakarta, dan SMAN 7 Yogyakarta. Setelah lulus SMA pada tahun 2013, penulis diterima di Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan, Institut

Teknologi Sepuluh Nopember, Surabaya melalui jalur SBMPTN dan terdaftar dengan NRP 4313100079. Selama menempuh masa perkuliaan, penulis sempat aktif menjadi Staff BEM FTK 2014/2015, Ketua Divisi Oceanic Departemen Kewirausahaan HIMATEKLA 2015/2016, Ketua Offshore Oil Rig Club 2015/2016 dan Pengurus Laboratorium Hidrodinamika FTK ITS 2016/2017. Penulis juga aktif menjadi panitia kegiatan kampus. Pada tahun 2016, penulis berkesempatan melaksanakan kerja praktek di PT. PHE ONWJ Divisi Engineering and Integrity selama dua bulan. Selama masa studi Strata I yang ditempuh selama empat tahun, penulis tertarik dalam bidang hidrodinamika lepas pantai dan rancang bangun bangunan lepas pantai.