

TUGAS AKHIR - MO.141326

PEMODELAN WAVE ENERGY CONVERTER MODE GERAK PITCH DENGAN VARIASI PENANGKAP GELOMBANG BENTUK SILINDER BERPENAMPANG ELIPS

IMAM FAIZ FARKHANI NRP. 4312100099

Dosen Pembimbing :

Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. Nur Syahroni, S.T., MT., Ph.D

DEPARTEMEN TEKNIK KELAUTAN Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya 2017

TUGAS AKHIR – MO141326

PEMODELAN *WAVE ENERGY CONVERTER* MODE GERAK *PITCH* DENGAN VARIASI PENANGKAP GELOMBANG BENTUK SILINDER BERPENAMPANG ELIPS

IMAM FAIZ FARKHANI NRP. 4313 100 099

Dosen Pembimbing: Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. Nur Syahroni, S.T., M.T., Ph.D.

DEPARTEMEN TEKNIK KELAUTAN Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya 2017

FINAL PROJECT – MO141326

THE MODELING OF PITCH MOTION-BASED WAVE ENERGY CONVERTER WITH VARIATION OF ELLIPTICAL SHAPED BUOYANCY CHAMBER

IMAM FAIZ FARKHANI REG. 4313 100 099

Supervisors: Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. Nur Syahroni, S.T., M. T., Ph.D.

OCEAN ENGINEERING DEPARTMENT Faculty of Marine Technology Institut Teknologi Sepuluh Nopember Surabaya 2017

PEMODELAN WAVE ENERGY CONVERTER MODE GERAK PITCH DENGAN VARIASI PENANGKAP GELOMBANG BENTUK SILINDER BERPENAMPANG ELIPS

TUGAS AKHIR

Diajukan untuk memenuhi salah satu syarat memperoleh gelar sarjana teknik pada program studi S-1 Departemen Teknik Kelautan Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya

Oleh:

IMAM FAIZ FARKHANI NRP. 4313100099

Disetujui oleh:

1. Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D.	(Pembimbing 1)
2. Nur Syahroni, S.T., M.T., Ph.D.	(Pembimbing 2)
3. Murdjito, M.Sc. Eng.	(Penguji 1)
4. Ir. Mas Murtedjo, M. Eng.	(Penguji 2)
5. Yoyok Setyo Hadiwidodo, S.T., M.T., Ph.D.	(Penguji 3)
6. Dr. Eng. Rudi Waluyo Prastianto, S.T., M.T.	(Penguji 4)

SURABAYA, JULI 2017

iii

PEMODELAN WAVE ENERGY CONVERTER MODE GERAK PITCH DENGAN VARIASI PENANGKAP GELOMBANG BENTUK SILINDER BERPENAMPANG ELIPS

Nama Mahasiswa	: Imam Faiz Farkhani
NRP	: 4313100099
Departemen	: Teknik Kelautan – FTK ITS
Dosen Pembimbing	: Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D.
	Nur Syahroni, S.T., MT., Ph.D.

ABSTRAK

Gelombang merupakan salah satu sumber energi baru dan terbarukan yang telah banyak diteliti melalui pengembangan konsep Wave Energy Converter (WEC). Dalam tugas akhir ini, akan dilakukan perancangan dan analisis awal struktur Wave Energy Converter dengan memanfaatkan konfigurasi dan prinsip kerja struktur lepas pantai berjenis Articulated Tower yang memiliki sifat tidak stabil akibat hempasan gelombang untuk memanfaatkannya sebagai mekanisme penggerak pompa piston yang mengalirkan fluida untuk menggerakkan turbin penghasil listrik. Tujuan dari tugas akhir ini adalah untuk mengetahui karakteristik gerak dari struktur Wave Energy Converter yang divariasikan berdasarkan ukuran buoyancy chamber pada 3 kedalaman yang berbeda. Dari beberapa variasi ukuran struktur tersebut, akan ditemukan satu struktur yang memiliki amplitudo pitch terbesar pada masing-masing kedalaman berdasarkan perhitungan dengan metode analitik dan numerik. Hasil penelitian ditemukan bahwa amplitudo pitch struktur meningkat seiring bertambahnya volume buoyancy chamber. Struktur WEC dengan variasi ke-3 dengan kedalaman 10 m pada frekuensi gelombang 1 rad/s menghasilkan amplitudo pitch terbesar dengan nominal amplitudo pitch sebesar 9,10 derajat. Kecepatan aliran air maksimum yang dapat dipompa oleh pompa piston adalah 136,14 m/s.

Kata Kunci— Articulated Tower, WEC, RAO, Silinder Berpenampang Elips, Buoyancy Chamber, Pompa Piston

MODELING OF PITCH MOTION-BASED WAVE ENERGY CONVERTER WITH VARIATION OF ELLIPTICAL CYLINDER-SHAPED BUOYANCY CHAMBER

Name of Student	: Imam Faiz Farkhani
Reg. Number	: 4313100099
Department	: Ocean Engineering – FTK ITS
Supervisors	: Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D.
	Nur Syahroni, S.T., MT., Ph.D.

ABSTRACT

Wave is one of the example of renewable energy source that has been studied and harnessed by many researchers through the construction of many kinds of Wave Energy Converter. In this study, the researcher will conduct the preliminary study of wave energy converter design using the principle of the Articulated Tower structure. Pitch motion characteristic of Articulated Tower is the main topic that will be functioned as the driving force of the piston pump, the device which is often used as the fluid thruster. The fluid pumped by the piston pump will be beneficial as a mechanical energy source of electric rotors. The goal of this study is to discover the motion characteristic of the Wave Energy Converter (WEC) which will be modified based on the size of buoyancy chamber at 3 different water depths. From those structure variations, there will be one structure having the largest pitch amplitude at each depth based on analytical and numerical RAO calculation. The result of the study shows that the increase of the buoyancy chamber will also result in the increase of maximum pitch amplitude. At frequency of 1 rad/s, structure with variation no.1 in the depth of 10 m having the largest pitch amplitude (9.10 degree). The maximum water flow velocity which can be pumped by piston is 136.14 m/s.

Keywords— Articulated Tower, WEC, RAO, Elliptical Cylinder, Buoyancy Chamber, Piston Pump

KATA PENGANTAR

Alhamdulillah atas limpahan kasih sayang dan kemurahan hati Allah SWT, penulis telah berhasil menyusun laporan Tugas Akhir sesuai dengan waktu yang telah ditentukan. Tugas Akhir yang berjudul "Pemodelan *Wave Energy Converter* Mode Gerak *Pitch* dengan Variasi Penangkap Gelombang Bentuk Silinder Berpenampang Elips" ini merupakan salah satu syarat untuk meraih gelar Sarjana S1-Departemen Teknik Kelautan Institut Teknologi Sepuluh Nopember.

Penulis memilih topik tugas akhir tersebut karena ketertarikan penulis terhadap hidrodinamika struktur lepas pantai dan sedang berkembang pesatnya teknologi pembangkit listrik tenaga gelombang sebagai alternatif sumber energi terbarukan. Dalam pengerjaan dan penyusunan tugas akhir ini penulis mendapatkan bimbingan dosen-dosen pembimbing yang sangat membantu penulis dalam memahami konsep hingga pada akhirnya penulis dapat menyelesaikan tugas akhir ini dengan baik. Peran teman-teman dengan topik tugas akhir sejenis juga sangat membantu penulis terutama dalam memahami pengoperasian *software*.

Penulis menyadari akan kekurangan-kekurangan yang ada dalam laporan Tugas Akhir ini. Kritik dan saran yang membangun sangat penulis harapkan guna mewujudkan penyusunan laporan yang lebih sempurna. Penulis berharap semoga penelitian ini dapat bermanfaat bagi masyarakat banyak dan dapat digunakan sebagai acuan untuk pengembangan penelitian sejenis di masa mendatang.

Surabaya, 17 Juli 2017

Imam Faiz Farkhani 4313100099

UCAPAN TERIMAKASIH

Tanpa bimbingan dan bantuan dari pihak-pihak yang bersangkutan, penulis tidak akan dapat menyelesaikan laporan Tugas Akhir dengan baik. Penulis mengucapkan terima kasih kepada :

- Kedua Orang tua penulis yang secara tulus ikhlas selalu memberikan doa, dukungan moral, serta panutan kepada penulis.
- Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. selaku dosen pembimbing I yang telah bersedia untuk memberikan bimbingan dan pemahaman konsep kepada penulis dalam proses analisis serta penyelesaian tugas akhir.
- Bapak Nur Syahroni S.T., M.T., Ph.D. selaku dosen pembimbing II yang telah memberikan kesempatan penulis untuk memilih topik tugas akhir ini dan meluangkan waktunya untuk memberi asistensi.
- Bapak Dr. Eng. Rudi Waluyo Prastianto, S.T., M.T., selaku dosen wali yang telah memberi arahan dan dukungan kepada penulis selama masa perkuliahan di ITS – Surabaya.
- Danil Tri Putra selaku rekan se-topik bidang, serta rekan-rekan Tugas Akhir bimbingan Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. dan Bapak Nur Syahroni S.T., M.T., Ph.D.
- Karyawan Tata Usaha Departemen Teknik Kelautan ITS yang telah membantu dalam segala keperluan administrasi selama proses perkuliahan maupun sidang tugas akhir.
- 7. Keluarga besar Valtameri Teknik Kelautan ITS 2013.

Ucapan terima kasih juga penulis sampaikan kepada seluruh pihak yang secara langsung maupun tak langsung turut membantu dalam menyelesaikan Tugas Akhir ini. Semoga segala kebaikan atas bantuan dan dukungannya kepada penulis untuk dapat menyelesaikan tugas akhir ini mendapatkan balasan yang setimpal oleh Allah *subhanallahu wa ta'ala. Aamiin allahumma aamiin.*

HALAMAN JUDULi
LEMBAR PENGESAHANiii
ABSTRAKiv
KATA PENGANTARvi
UCAPAN TERIMA KASIHvii
DAFTAR ISIviii
DAFTAR GAMBARx
DAFTAR TABELxii
DAFTAR LAMPIRANxiii
BAB I PENDAHULUAN 1
1.1. LATAR BELAKANG1
1.2. RUMUSAN MASALAH
1.3. TUJUAN
1.4. MANFAAT
1.5. BATASAN MASALAH
1.6. SISTEMATIKA PENULISAN
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI
2.1. TINJAUAN PUSTAKA
2.2. DASAR TEORI
2.2.1. Wave Energy Converter
2.2.2. Articulated Tower
2.2.3. Teori Gelombang13
2.2.4. Gaya Gelombang Morison15
2.2.5. Mode Gerak Struktur Lepas Pantai
2.2.6. Response Amplitude Operator (RAO)
2.2.7. Sistem Kerja Piston
2.2.8. Estimasi Daya Listrik
BAB III METODOLOGI PENELITIAN
3.1. SKEMA DIAGRAM ALIR
3.2. PENJELASAN DIAGRAM ALIR
BAB IV ANALISIS DAN PEMBAHASAN

DAFTAR ISI

4.1. PENENTUAN DIMENSI WEC	. 29
4.2. TABULASI RAO ANALITIK STRUKTUR WEC	. 31
4.3. PERBANDINGAN RAO ANALITIK DENGAN RAO NUMERIK.	. 35
4.4. RAO WEC DENGAN MATERIAL BERBEDA	. 39
4.5. PERHITUNGAN ANALITIK KECEPATAN ALIRAN AIR	. 42
BAB V PENUTUP	. 47
5.1. KESIMPULAN	. 47
5.2. SARAN	. 47
DAFTAR PUSTAKA	. 49

DAFTAR GAMBAR

Gambar 2.1 Struktur <i>Pelamis</i>
Gambar 2.2 Diagram skematik struktur Wave Dragon7
Gambar 2.3 Struktur <i>Oyster 1</i>
Gambar 2.4 Konfigurasi dasar struktur Articulated Tower9
Gambar 2.5 Letak titik B, G, dan K struktur Articulated Tower 10
Gambar 2.6 Gelombang Sinusoidal14
Gambar 2.7 Regions of Validity of Wave Theory
Gambar 2.8 Prosedur analisis beban gelombang
Gambar 2.9 Silinder terpancang tegak dalam medan propagasi gelombang 17
Gambar 2.10 Sumbu gerakan pada kapal19
Gambar 2.11 Mekanisme pompa piston
Gambar 3.1 Diagram alir pengerjaan tugas akhir
Gambar 3.2 Diagram alir pengerjaan tugas akhir (lanjutan)24
Gambar 3.3 Desain tampak samping dan prinsip kerja Wave Energy Converter
Gambar 3.4 Rack sliding dan roller
Gambar 3.5 Desain tampak depan Wave Energy Converter
Gambar 3.6 Desain tampak atas Wave Energy Converter
Gambar 4.1. Grafik RAO Variasi Dimensi 1 (analitik)
Gambar 4.2 Grafik RAO Variasi Dimensi 2 (analitik)
Gambar 4.3 Grafik RAO Variasi Dimensi 3 (analitik)
Gambar 4.4 Grafik perbandingan RAO WEC D=4m d=1m H=3,5m t=10mm
kedalaman 10m
Gambar 4.5 Grafik perbandingan RAO WEC D=4m d=1m H=3,5m t=10mm
kedalaman 15m
Gambar 4.6 Grafik perbandingan RAO WEC D=4m d=1m H=3,5m t=10mm
kedalaman 20m
Gambar 4.7 Grafik perbandingan RAO WEC D=6m d=1.5m H=4,5m t=25mm
kedalaman 10m

Gambar 4.8 Grafik perbandingan RAO WEC D=6m d=1.5m H=4,5m t=25mm
kedalaman 15m
Gambar 4.9 Grafik perbandingan RAO WEC D=6m d=1.5m H=4,5m t=25mm
kedalaman 20m
Gambar 4.10 Grafik perbandingan RAO WEC D=8m d=2m H=5,5m t=30mm
kedalaman 10m
Gambar 4.11 Grafik perbandingan RAO WEC D=8m d=2m H=5,5m t=30mm
kedalaman 15m
Gambar 4.12 Grafik perbandingan RAO WEC D=8m d=2m H=5,5m t=30mm
39 3kedalaman 20m
Gambar 4.13 Grafik RAO fiber glass variasi 1 (analitik)40
Gambar 4.14. Grafik RAO fiber glass variasi 2 (analitik)
Gambar 4.15 Grafik RAO fiber glass variasi 3 (analitik)41
Gambar 4.16 Parameter dalam kalkulasi kecepatan aliran

DAFTAR TABEL

DAFTAR LAMPIRAN

LAMPIRAN A	KALKULASI RAO ANALITIK
LAMPIRAN B	HASIL RUNNING AQWA

BAB I PENDAHULUAN

1.1. LATAR BELAKANG

Ketersediaan energi dalam jumlah yang memadai merupakan aspek utama yang akan menentukan berjalan tidaknya aktivitas manusia di era globalisasi ini. Melihat semakin pesatnya arus globalisasi, tidak heran jika hampir semua alat yang dipergunakan dalam aktivitas kehidupan manusia telah didominasi oleh perangkat elektronik. Dalam bukunya yang berjudul *Energy Conversion*, (Goswami dan Kreith, 2008) menuliskan bahwa peningkatan laju pertumbuhan penduduk dunia disebabkan oleh pertumbuhan yang sangat pesat penduduk pada kawasan Asia Pasifik, khususnya China dan India. Meningkatnya populasi sama artinya dengan meningkatnya permintaan, jika ketersediaan energi tidak dapat dipenuhi, maka bisa saja terjadi kelangkaan energi yang dampaknya akan sangat buruk bagi perekonomian dunia. Kondisi lain yang juga telah menjadi isu internasional adalah perubahan iklim akibat pemanasan global. Kondisi inilah yang membuat banyak peneliti terpacu untuk terus meningkatkan sumber energi terbarukan yang ramah lingkungan. Sumber energi tersebut umumnya dapat berasal dari sinar matahari, geothermal, angin, gelombang, dan arus.

Salah satu sumber energi terbarukan dan tidak asing bagi bidang Teknik Kelautan adalah energi gelombang. Gagasan *Wave Energy Converter* (WEC) telah ditemukan sejak 1799 oleh Monsieur Girard dengan memanfaatkan pergerakan *heave* struktur lever yang dipasang pada tepi dermaga. Kurangnya perhitungan numeris menyebabkan Monsieur Girard tidak dapat memperkirakan berapa besar daya yang dapat dihasilkan oleh WEC tersebut sehingga hasil penemuannya pada akhirnya tidak dikonstruksikan. Baru pada tahun 1970-an WEC kembali diteliti lebih mendalam dan beberapa *prototype* telah berhasil dikonstruksi pada awal tahun 2000-an (Folley, 2016).

Terdapat banyak model *Wave Energy Converter* yang telah dikembangkan dan dikonstruksi. Dalam penelitian ini, penulis akan memodelkan sekaligus melakukan analisis pada jenis *wave energy converter* yang memanfaatkan mode gerak *pitch*. Sementara dasar teori yang digunakan untuk pemodelan struktur Wave Energy Converter adalah berdasarkan kalkulasi analitik yang digunakan pada struktur Articulated Tower. Analisis yang akan dilakukan adalah memvariasikan ukuran penangkap gelombang sehingga dapat diketahui ukuran penangkap gelombang yang menghasilkan amplitudo *pitch* terbesar. Prinsip Kerja WEC dengan konfigurasi Articulated Tower ini adalah dengan memanfaatkan *buoyancy chamber* (silinder elips) sebagai media penangkap gelombang. Struktur diasumsikan akan mengalami gerakan *pitch* akibat hempasan puncak gelombang dan akan kembali lagi pada kedudukan setimbang secara harmonis akibat *restoring moment*. Struktur ini dihubungkan dengan roller joint pada seabed dan akan diinstal pada perairan dekat pantai sehingga arah gelombang diasumsikan datang dari satu arah saja. *Buoyancy cham*ber akan dihubungkan dengan pompa piston memanjang, sehingga gerakan harmonis *pitch* dari struktur ini diharapkan mampu dimanfaatkan sebagai gaya mekanis penggerak pompa piston yang mengalirkan fluida berkecepatan tinggi sebagai penggerak turbin penghasil listrik.

1.2. PERUMUSAN MASALAH

Perumusan masalah yang akan diselesaikan dalam tugas akhir ini adalah:

- 1. Bagaimana respon gerak struktur *Wave Energy Con*verter ketika terkena beban gelombang berdasarkan variasi ukuran silinder berpenampang elips?
- 2. Berapa kecepatan pancaran air terbesar yang dipompa oleh piston?

1.3. TUJUAN

Adapun tujuan yang akan dicapai penulis dalam melakukan tugas akhir ini adalah:

- 1. Mengetahui respon gerak struktur *Wave Energy Converter* ketika terkena beban gelombang berdasarkan variasi ukuran silinder berpenampang elips.
- 2. Mengetahui kecepatan pancaran air terbesar yang dipompa oleh piston.

1.4. MANFAAT

Manfaat dari penelitian ini adalah dapat memberikan pengetahuan dan preliminary analysis dalam bidang pengembangan Wave Energy Converter

dengan konfigurasi *Articulated Tower* sebagai salah satu media pembangkit listrik dengan sumber energi terbarukan.

1.5. BATASAN MASALAH

Agar ruang lingkup bahasan dalam tugas akhir ini tidak melebar maka perlu adanya batasan-batasan sebagai berikut:

- 1. Struktur *Wave Energy Converter* (WEC) merupakan struktur berkonfigurasi *Articulated Tower* dengan variasi penangkap gelombang berbentuk silinder berpenampang elips.
- 2. Analisis kinerja WEC didasarkan pada eksitasi gelombang reguler dengan sejumlah variasi frekuensi dan tinggi gelombang.
- 3. Analisis gerakan WEC akan dilakukan dengan menerapkan formulasi analitik dan pemodelan numerik berdasar teori difraksi.
- Struktur WEC diasumsikan akan dioperasikan pada perairan dengan kedalaman antara 10 sampai 20 meter.
- 5. Struktur kaki WEC diasumsikan kaku, sehingga tidak ada efek hidroelastisitas yang harus diperhitungkan dalam analisis gerakan.
- 6. Tidak dilakukan desain konstruksi rinci dan analisis kekuatan struktur pada struktur WEC.
- 7. Analisis hanya dilakukan sampai pada ditemukannya kecepatan aliran air untuk memutar turbin generator. Tidak dilakukan kajian efek pancaran air terhadap kecepatan putar turbin.
- 8. Tinggi gelombang insiden untuk semua kedalaman diasumsikan sama.

1.6. SISTEMATIKA PENULISAN

Sistematika yang digunakan dalam tugas akhir ini adalah sebagai berikut :

BAB I PENDAHULUAN

Bab ini menjelaskan tentang latar belakang penelitian tugas akhir ini, permasalahan yang akan dibahas, tujuan dilakukannya penelitian, manfaat, batasan-batasan masalah yang berguna untuk menghasilkan pembahasan yang lebih efisien, dan sistematika penulisan tugas akhir.

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

Bab ini menjelaskan tentang pustaka-pustaka yang relevan dengan topik tugas akhir serta teori-teori yang akan digunakan sebagai acuan dalam melakukan analisis. Pustaka dapat diperoleh melalui jurnal nasional maupun internasional, buku, dan juga informasi dari situs web.

BAB III METODOLOGI PENELITIAN

Bab ini menjelaskan metodologi dalam pengerjaan tugas akhir dari tahap awal hingga tahap akhir ditemukannya penarikan kesimpulan. Metodologi berguna untuk memahami prosedur yang digunakan dalam melakukan analisis sehingga proses pengolahan data dapat dilakukan dengan sistematis

BAB IV ANALISIS DAN HASIL PEMBAHASAN

Bab ini membahas tentang analisis yang dilakukan berdasarkan metodologi yang telah dipaparkan dalam BAB III untuk menjawab permasalahan yang diuraikan dalam tugas akhir ini.

BAB V PENUTUP

Bab ini memaparkan kesimpulan dari hasil analisis tugas akhir dan saran untuk penelitian sejenis yang dapat dilakukan selanjutnya untuk menghasilkan suatu kajian penelitian yang lebih mendalam.

BAB II

TINJAUAN PUSTAKA DAN DASAR TEORI

2.1. TINJAUAN PUSTAKA

Jenis struktur *Wave Energy Converter* yang memanfaatkan mode gerakan *pitch* struktur masih cukup jarang dijumpai. Struktur *wave energy* yang sering dikomersialkan umumnya memanfaatkan mode gerakan *heave* sebagai penggerak tuas yang terhubung dengan pompa. Beberapa nama WEC yang menggunakan prinsip ini adalah *Pelamis, Wave Star, Piston Pump, Wave Carpet,* dan *Oscillo Drive* (Grzelak, 2017). Sementara pembangkit listrik tenaga gelombang jenis lain adapula yang tidak memanfaatkan mode gerakan *pitch* maupun *heave* dari struktur. Jenis WEC seperti *Wave Dragon* dan *DRAKOO* (*Dragon King Of Ocean*) memanfaatkan prinsip jebakan gelombang, sehingga tenaga penggerak turbin yang digunakan adalah gelombang air yang telah ditangkap dan dialirkan menuju turbin.

Oyster WEC dan Wave Roller adalah dua jenis Wave Energy Converter yang menggunakan konsep mode gerakan pitch. Keduanya merupakan WEC paling umum dikenal dan telah mengalami pengembangan konsep yang lebih jauh (Whittaker dan Folley, 2012). Namun satu-satunya konsep WEC mode gerak pitch yang telah berhasil dikomersialkan adalah Oyster WEC yang diproduksi oleh Aquamarine Power.

Jurnal nasional yang membahas tentang pemodelan dan mekanisme WEC yang sejenis masih sangat jarang dijumpai. Selama studi literatur, setidaknya penulis telah menemukan jurnal internasional yang membahas eksperimen pada struktur WEC jenis *Oyster*. Penelitian tentang dinamika dan ekstraksi energi dari jenis WEC dengan model bottom-hinged plate telah dilakukan oleh (Gomes, dkk, 2014). Dalam penelitiannya, WEC dimodelkan sebagai pelat pejal berbentuk persegi panjang yang direkatkan pada engsel pada pondasi yang terpancang dalam tanah. Penelitian tersebut membahas tentang analisis perbandingan antara koefisien hidrodinamis terhadap frekuensi, pengaruh ketebalan dan luas area penampang penangkap gelombang terhadap frekuensi, efek variasi tinggi pelat dan titik berat terhadap periode, dan lain-lain. Salah satu hasil penelitian tersebut menunjukkan perbandingan rasio lebar penangkap gelombang dan kedalaman air antara 2 sampai 5 merupakan pilihan yang paling cocok untuk kondisi sea state yang paling umum.

Jurnal nasional yang membahas tentang WEC dengan tipe lain setidaknya masih cukup mudah dijumpai. Utami (2010) melakukan penelitian pada WEC jenis Oscillating Water Column (OWC). Beliau meneliti tentang potensi energi listrik pada 30 laut berbeda di kawasan perairan Indonesia. Penelitiannya menunjukkan bahwa perairan Indonesia yang menghasilkan energi listrik terbesar adalah di daerah Perairan bagian selatan Banten hingga Jawa Barat, perairan selatan Jawa Tengah, perairan selatan Jawa Tengah, dan Laut Arafuru sebesar 1968 kW dan energi yang terkecil sebesar 246 Watt pada perairan Selat Malaka. Yudanto dkk (2016) melakukan penelitian tentang desain dan analisis gerak WEC berbentuk tabung. Analisis yang dilakukan baru sampai pada analisis RAO dan belum membahas tentang potensi energi listrik yang dapat dihasilkan. Rizki (2016) juga melakukan penelitian yang hampir serupa dengan variasi bentuk balok. Sementara jurnal yang membahas tentang articulated tower diantaranya telah dilakukan oleh Datta dan Jain (1989) yang membahas tentang respons struktur Articulated Tower pada kondisi angin dan gelombang acak. Bar-avi dan Benaroya, (1996) telah melakukan penelitian tentang respons Articulated Tower dengan dua derajad kebebasan pada kondisi lingkungan yang berbeda. Sementara Islam dkk (2009) melakukan penelitian tentang respons Articulated Tower dengan engsel ganda yang bertujuan untuk meminimalkan amplitudo *pitch* struktur.

2.2. DASAR TEORI

2.2.1. Wave Energy Converter

Gelombang merupakan salah satu sumber energi alternatif yang dapat dimanfaatkan sebagai pembangkit energi listrik. WEC telah dikembangkan sejak awal era 1970-an. Masalah utama dalam pengembangan WEC adalah minimnya keuntungan yang dapat dihasilkan (*low profitability*) sehingga sulit untuk dikomersialkan. Baru pada era 90-an, beberapa perusahaan kecil di UK dan Norwegia telah berhasil menemukan solusi untuk memanfaatkan kinerja WEC secara komersial (Meisen dan Loiseau, 2009).

Jenis WEC yang telah dikomersialkan umumnya diaplikasikan pada laut menengah dan laut dalam. Struktur WEC seperti *Pelamis* dan *Wave Dragon* memiliki ukuran yang sangat besar dan memiliki ketahanan terhadap kondisi lingkungan ekstrim. *Pelamis* dapat menghasilkan energi listrik per tahun sebesar 2.7 GWh sementara *Wave Dragon* dapat menghasilkan energi per tahun sebesar maksimal sebesar 52 GWh. Struktur *Pelamis* dapat dilihat pada Gambar 2.1, sementara struktur dan prinsip kerja Wave Dragon dapat dilihat pada Gambar 2.2.

Gambar 2.1 Struktur Pelamis (Meisen dan Loiseau, 2009)

Gambar 2.2 Diagram skematik struktur *Wave Dragon* (Meisen dan Loiseau, 2009) Sementara struktur WEC yang memiliki ukuran lebih kecil dan memiliki kesamaan dengan struktur uji dalam penelitian ini adalah *Oyster Wave Energy Converter*. Struktur ini menghasilkan energi listrik sebesar 315 kW pada hari pertama diluncurkan secara komersial (Cameron, 2010). Struktur *Oyster 1* dapat dilihat pada Gambar 2.3, yang mana merupakan struktur *Oyster* WEC generasi pertama.

Gambar 2.3 Struktur Oyster 1 (Cameron dkk, 2010)

2.2.2. Articulated Tower

Struktur Articulated Tower merupakan hasil inovasi dari Atkins Global, sebuah perusahaan yang bergerak pada bidang desain offshore structure. Struktur ini dikembangkan pada awal tahun 1970 an dan pertama kali di install pada perairan Argyll Field di North Sea. Analisis dinamis yang umumnya dilakukan pada Articulated Tower diantaranya (Djatmiko, 2016) :

- Compliant structure : perpindahan mode pitch rotational pada universal joint
- Mekanisme *restoring* menggunakan *buoyancy chamber*
- *Explore* : efek variasi pada ukuran dan pemosisian *buoyancy chamber* terhadap perilaku struktur
- Apply : analisis linier SDOF system
- Evaluasi perilaku struktur pada regular dan random seas

Gambar 2.4 Konfigurasi dasar struktur *Articulated Tower* (Djatmiko, 2016) *Articulated Tower* menawarkan solusi yang dapat menurunkan biaya yang sangat signifikan jika dibandingkan dengan struktur *lifted jacket* konvensional (Djatmiko, 2016). Articulated Tower disebut juga sebagai *Loading Platform*, *Buoyant Tower*, dan *Loading Column* dalam dunia *offshore*. Struktur ini dapat digunakan sebagai mooring kapal tanker, oil loading, production riser, dan control tower pada lingkungan keras dan terpencil (Murtedjo, 2005).

Konfigurasi dasar struktur *Articulated Tower* dapat dilihat pada Gambar 2.4. Sementara parameter-parameter analitis pada *Articulated Tower* seperti letak titik B, G, dan K struktur dapat dilihat pada Gambar 2.5.

Gambar 2.5 Letak titik B, G, dan K struktur *Articulated Tower* (Djatmiko, 2016) Persamaan Gerak Struktur *Articulated Tower* dapat dirumuskan sebagai berikut (Murtedjo, 2005) :

$$(I_{\theta} + I_{\theta A})\ddot{\boldsymbol{\theta}} + C_{\theta}\dot{\boldsymbol{\theta}} + K_{\theta}\theta = M_{\theta 0}\cos\omega t$$
(2.1)

dimana,

 I_{θ} = momen massa dari inersia struktur yang mendekati *centre of rotation* $I_{\theta A}$ = momen *added mass* dari inersia struktur yang mendekati *centre of rotation*

 C_{θ} = koefisien *damping* struktur

 K_{θ} = koefisien kekakuan struktur

 $M_{\theta 0}$ = amplitude dari momen eksitasi akibat gelombang insiden

 ω = frekuensi gelombang insiden

Dengan menghilangkan gaya eksternal dan efek damping, persamaan getaran bebas (*free oscillation*) dapat ditulis menjadi :

$$(I_{\theta} + I_{\theta A})\ddot{\boldsymbol{\theta}} + K_{\theta} \theta = 0 \tag{2.2}$$

Gaya eksternal yang terdapat dalam rumus persamaan gerak, merupakan *restoring moment* yang berfungsi sebagai gaya pengembali struktur ketika struktur

mengalami gerakan *pitch. Restoring moment* merupakan efek dari adanya *buoyancy*, dan dapat dituliskan sebagai :

$$M_{R\theta} = (\rho g V K B \sin \theta - g W K G \sin \theta)$$
(2.3)

dimana,

ρ	= densitas air laut	
g	= percepatan gravitasi	
KB	= centre of buoyancy vertikal	
KG	= centre of gravity vertical	
W	= berat total <i>articulated tower</i>	
θ	= rotasi gerakan <i>pitch</i> pada sumbu <i>articulated tower</i>	
untuk sudut perputaran yang kecil (sin $\theta = \theta$)		

$$M_{R\theta} = (\rho g V K B - g W K G) \theta \tag{2.4}$$

sehingga komponen kekakuan dapat dituliskan sebagai :

$$K_{\theta} = (\rho g V K B - g W K G) \quad \text{dalam kN.m}$$
(2.5)

untuk mendapatkan kekakuan momen yang memadai maka perlu diperhatikan kriteria sebagai berikut :

- *Buoyancy chamber* harus didesain agar memiliki volume yang cukup untuk menghasilkan gaya *buoyant* dan momen *buoyant*.
- Pemasangan *buoyancy chamber* vertikal yang tepat juga dapat membawa *centre of buoyancy* ke atas.
- Ballast chamber diisi agar menggeser centre of gravity ke bawah.

Komponen Inersia (mass moment) dapat dituliskan sebagai :

$$\begin{split} I_{\theta} &= m_{\theta} \left(l_{1} + l_{2} + l_{3} + l_{4} + l_{5} \right)^{2} \\ &+ \left[\frac{1}{12} m_{1} \left(6R_{1}^{2} + l_{1}^{2} \right) + m_{1} \left(\frac{l_{1}}{2} + l_{2} + l_{3} + l_{4} + l_{5} \right)^{2} \right] \\ &+ \left[\frac{1}{12} m_{2} \left(6R_{2}^{2} + l_{2}^{2} \right) + m_{2} \left(\frac{l_{2}}{2} + l_{3} + l_{4} + l_{5} \right)^{2} \right] \\ &+ \left[\frac{1}{12} m_{3} \left(6R_{3}^{2} + l_{3}^{2} \right) + m_{3} \left(\frac{l_{3}}{2} + l_{4} + l_{5} \right)^{2} \right] \\ &+ \left[\frac{1}{12} m_{4} \left(6R_{4}^{2} + l_{4}^{2} \right) + m_{4} \left(\frac{l_{4}}{2} + l_{5} \right)^{2} \right] \end{split}$$

$$+\left[\left[\frac{1}{12}m_{5}\left(6R_{5}^{2}+l_{5}^{2}\right)m_{5}\left(\frac{l_{5}}{2}\right)^{2}\right]\right]$$
(2.6)

dimana :

 m_0 = massa dek l_n, R_n, m_n = panjang, radius, dan massa komponen silinder (n = 1, 2, ..., 5)n= 1, Upper Shaftn= 2, Buoyancy Tankn= 3, Lower Shaftn= 4, Ballast Tankn= 5, Connector

sementara untuk komponen Inersia (added mass moment of inertia) :

$$I_{\theta A} = m_{1}^{'} \left(\frac{l_{1}^{'}}{2} + l_{2} + l_{3} + l_{4} + l_{5} \right)^{2} + m_{2}^{'} \left(\frac{l_{2}^{'}}{2} + l_{3} + l_{4} + l_{5} \right)^{2} + m_{3}^{'} \left(\frac{l_{3}^{'}}{2} + l_{4} + l_{5} \right)^{2} + m_{4}^{'} \left(\frac{l_{4}^{'}}{2} + l_{5} \right)^{2} + m_{5}^{'} \left(l_{5} \right)^{2}$$
(2.7)

dimana :

 \vec{l}_1, \vec{m}_1 = panjang dan added mass dari struktur silinder yang tercelup dalam permukaan air

Komponen terakhir dalam persamaan gerak adalah komponen damping hidrodinamis yang dapat dituliskan sebagai :

$$C = \pi c_f \left(\frac{M_o (\omega, \mu = 0)}{\zeta_a} \right)$$
(2.8)

dimana,

$$c_f = \frac{\omega^3 \cosh^2 kd}{4\pi\rho g^3 \tanh kd [1 + (\sin 2 kd)/2kd]}$$

$$\zeta_a$$
 = amplitudo gelombang = H/2

$$\rho$$
 = densitas air laut

- g = percepatan gravitasi
- *k* = angka gelombang = $2\pi/\lambda$

$$\lambda$$
 = panjang gelombang (untuk perairan dalam λ = g $T^2/2\pi$

d = kedalaman air

sementara untuk mengetahui respons yang dihasilkan oleh *articulated tower* pada saat terkena gaya gelombang bisa menggunakan rumus :

$$\theta_{0} = \frac{M_{\theta}/K_{\theta}}{\sqrt{\left\{1 - \left(\frac{\omega}{\omega_{n}}\right)^{2}\right\}^{2} + \left\{2\zeta_{f}\frac{\omega}{\omega_{n}}\right\}^{2}}}$$
(2.9)

dimana :

 θ_0 = amplitudo gerakan *pitch* (respons struktur)

 M_{θ} = amplitudo momen eksitasi *pitch*

 K_{θ} = kekakuan struktur

 ω = frekuensi gelombang

 ω_n = frekuensi natural struktur

 $\zeta_f = damping \ ratio$

2.2.3. Teori Gelombang

Gelombang laut dapat didefinisikan sebagai perpindahan energi dari satu titik ke titik lain akibat adanya gesekan antara angin dan permukaan air laut. Secara umum fenomena aktual dari gelombang laut sangat kompleks untuk dimodelkan secara matematis akibat adanya sifat nonlinier, karakteristik tiga dimensi, dan perilaku acak. Namun ada dua teori klasik yang dapat mensimulasikan tipe gelombang sederhana, yaitu teori Airy (1845) dan teori Stokes (1880) (Shore Protection Manuals, 1984).

Teori Airy dan Stokes umumnya lebih baik digunakan untuk memperkirakan perilaku gelombang sederhana dengan kriteria rasio antara kedalaman air dan tinggi gelombang yang tidak terlalu kecil. Untuk gelombang sederhana di daerah laut dangkal, teori Cnoidal umumnya menghasilkan hasil pendekatan yang lebih akurat. Sementara untuk perairan dangkal yang dekat dengan breaker zone, teori gelombang soliter menghasilkan hasil yang cukup baik untuk beberapa perilaku gelombang tertentu. Gelombang pada umumnya diasumsikan memiliki bentuk sinusoidal untuk mempermudah formulasi analitik. Contoh bentuk gelombang sinusoidal beserta parameter-parameternya dapat dilihat pada Gambar 2.6.

Gambar 2.6 Gelombang Sinusoidal (SPM, 1984)

Teori gelombang dapat mendeskripsikan gelombang dalam bentuk persamaan, yang mana persamaan tersebut berupa persamaan profil gelombang, kecepatan partikel air, dan percepatan partikel air. Parameter kecepatan dan partikel air diperlukan dalam perhitungan gaya gelombang Morison. Untuk menentukan teori gelombang, diperlukan beberapa parameter gelombang untuk divalidasikan dalam grafik *regions of validity of wave theories* seperti yang tertera pada Gambar 2.7.

Parameter yang diperlukan untuk menentukan teori gelombang menggunakan *regions of validity of wave theories* adalah periode gelombang (T), tinggi gelombang (H), dan kedalaman perairan (d). Beberapa teori gelombang yang dapat digunakan diantaranya adalah Airy, Stokes orde-2, Stokes orde-3, Stokes orde-4, Cnoidal, dan teori gelombang soliter.

Gambar 2.7 Regions of Validity of Wave Theory (SPM, 1984)

2.2.4. Gaya Gelombang Morison

Persamaan Morison merupakan persamaan empiris yang menggabungkan parameter kecepatan partikel air dalam persamaan gaya drag dengan parameter percepatan partikel air dalam persamaan gaya inersia. Seperti yang telah dijelaskan dalam sub bab sebelumnya, diperlukan beberapa data lingkungan dalam prosedur analisis beban gelombang. Data ingkungan yang diperlukan umumnya berupa tinggi gelombang signifikan, periode gelombang signifikan, dan panjang gelombang. Data lingkungan tersebut akan digunakan untuk menentukan teori gelombang yang relevan berdasarkan grafik *regions of validity of wave theory*. Skema analisis gelombang disajikan dalam Gambar 2.8.

Gambar 2.8 Prosedur analisis beban gelombang (Djatmiko, 2014)

Dalam analisis beban gelombang untuk struktur *Wave Energy Converter* berkonfigurasi *Articulated Tower*, struktur diasumsikan sebagai silinder langsing terpancang tegak. Gaya gelombang Morison merupakan penjumlahan dari gaya inersia dengan gaya drag. Gaya inersia merupakan penjumlahan dari gaya tekanan dinamik dan gaya percepatan. Persamaan gaya Morison dapat dikembangkan lebih lanjut untuk mencari persamaan momen eksitasi struktur dengan cara diintegralkan. Sama seperti gaya gelombang, Momen eksitasi struktur juga terdiri dari dua jenis momen yaitu momen gaya inersia dan momen gaya drag. Dari persamaan untuk menghitung response struktur.

Persamaan Morison adalah persamaan dengan asumsi bahwa perbandingan diameter silinder (benda) jauh lebih kecil daripada panjang gelombang sehingga efek-efek difraksi dapat diabaikan. Struktur atau benda tersebut juga seringkali diasumsikan sebagai silinder langsing yang terpancang tegak. Silinder terpancang tegak dalam medan propagasi gelombang dapat dilihat pada Gambar 2.9.

Gambar 2.9 Silinder terpancang tegak dalam medan propagasi gelombang (Djatmiko, 2014)

Gaya tekanan yang bekerja pada struktur laut terpancang tegak pada elemen $R_1 d\varphi dz$ dapat dituliskan sebagai berikut :

$$d(dF_P) = \rho g \zeta_0 e^{kz} sink\{(x_c + R_1 cos\varphi) - ct\}(R_1 d\varphi dz)$$
(2.10)

Untuk komponen arah sumbu x :

$$d(dF_P) = -\rho g\zeta_0 e^{kz} sink\{(x_c + R_1 cos\varphi) - ct\}(R_1 d\varphi dz)$$
(2.11)

Integrasi gaya tekanan sekeliling silinder :

$$d(dF_P) = -\rho g\zeta_0 R_1 e^{kz} dz \int_0^{2\pi} \cos\theta \sink\{(x_c + R_1 \cos\varphi) - ct\} d\varphi \quad (2.12)$$

Jika dengan korelasi sudut ganda :

$$d(dF_P) = -\rho g \zeta_0 R_1 e^{kz} dz \int_0^{2\pi} \{ sink(x_c - ct)cos(kR_1)cos\varphi + sink(x_c - ct)cos(kR_1)cos\varphi \} d\varphi$$
(2.13)

Untuk gaya horizontal per satuan kedalaman dapat ditemukan menggunakan persamaan :

$$(dF_P) = -\rho g \zeta_0 \pi R_1^2 k e^{kz} cosk(x_c - ct) dz$$
(2.14)

Gaya inersia yang bekerja pada struktur langsing terpancang tegak didapatkan dengan memasukan koefisien massa tambah pada persamaan gaya horizontal per satuan kedalaman. Koefisien massa tambah didapatkan dari massa tambah yang dibagi dengan massa displasmen :

$$(dF_{I}) = -(1 + C_{m})\rho g\zeta_{0}\pi R_{1}^{2}ke^{kz}cosk(x_{c} - ct)dz$$
(2.15)

Karena nilai $gk = \omega^2$ dan $kc = \omega$ jadi rumus gaya inersia dapat ditulis menjadi

$$(dF_I) = -(1+C_m)\rho\zeta_0\pi R_1^2 \omega^2 e^{kz} \cos(kx_c - \omega t)dz$$
(2.16)

Untuk gaya drag yang bekerja pada silinder tegak yang proporsial dengan kecepatan partikel gelombang dapat dituliskan sebagai berikut :

$$(dF_D) = \frac{1}{2}\rho C_D 2R_1 k^2 c^2 \zeta_0^2 e^{2kz} sink(x_c - ct) |sink(x_c - ct)| dz \qquad (2.17)$$

Karena $\omega^2 = k^2 c^2$ maka dapat dituliskan menjadi :

$$(dF_D) = \rho C_D R_1 \omega^2 \zeta_0^2 e^{2kz} sink(x_c - ct) |sink(x_c - ct)| dz$$
(2.18)

Gaya gelombang total per satuan panjang yang bekerja pada struktur langsing terpancang tegak (gaya Morison) didapatkan dengan menjumlahkan gaya inersia dan gaya drag :

$$(dF_T) = (dF_I) + (dF_D)$$
(2.19)

$$(dF_T) = \{ -(1 + C_m)\rho\zeta_0 \pi R_1^2 \omega^2 e^{kz} \cos(kx_c - \omega t) + \rho C_D R_1 \omega^2 \zeta_0^2 e^{2kz} \sin k(x_c - ct) | \sin k(x_c - ct) | \} dz$$
(2.20)

$$(dF_T) = \rho\{C_D R_1 u | u| - (1 + C_m)\pi R_1^2 \dot{u}\} dz$$
(2.21)

u dan \dot{u} masing-masing adalah kecepatan dan percepatan horizontal partikel gelombang. Dalam analisis secara formulasi analitik dalam tugas akhir ini, digunakan kinematika partikel gelombang Airy untuk perairan menengah demi memudahkan perhitungan. Persamaan kecepatan dan percepatan partikel air teori Airy dapat dituliskan sebagai berikut :

$$u = \omega \zeta_0 \frac{\cosh[k_w(z+d)]}{\sinh(k_w d)} \sin(\omega t - k_w x)$$
(2.22)

$$\frac{\partial u}{\partial t} = \dot{u} = \omega^2 \zeta_0 \frac{\cosh[k_w(z+d)]}{\sinh(k_w d)} \cos(\omega t - k_w x)$$
(2.23)

sementara momen eksitasi gelombang dapat dicari dengan persamaan

$$dM_0 = (z - d)dF_x \tag{2.24}$$

integrasi dari Persamaan 2.24 dapat dituliskan menjadi

$$\int_{-z_n}^{-z_{n-1}} z \, dF_x - d \int_{-z_n}^{-z_{n-1}} dF_x \tag{2.25}$$

2.2.5. Mode Gerak Struktur Lepas Pantai

Akibat pengaruh gelombang, bangunan apung dapat mengalami enam mode gerakan bebas yang terbagi menjadi dua jenis, yaitu tiga mode gerakan translasional dan tiga mode gerakan rotasional (Bhattacharya, 1978). Berikut adalah keenam mode gerakan tersebut :

1. Mode gerak translasional : - *Surge*, gerakan transversal arah sumbu x.

- *Sway*, gerakan transversal arah sumbu y.
- Heave, gerakan transversal arah sumbu z.
- 2. Mode gerak rotasional : *Roll*, gerakan rotasional arah sumbu x.
 - Pitch, gerakan rotasional arah sumbu y.
 - Yaw, gerakan rotasional arah sumbu z.

untuk memahami mode gerak tersebut, dapat dilihat Gambar 2.10 yang menjelaskan tentang sumbu gerak kapal.

Menurut (Battacharya, 1978), gerakan rotasional ada empat momen penting yaitu

gaya inersia :	$Fa = -a\check{z}$	(2.26)
gaya <i>damping</i> :	$Fb = b\dot{z}$	(2.27)
gaya restoring :	Fc = cz	(2.28)
dan gaya exciting	<i>.</i>	

Persamaan untuk momen inersia yaitu :

 $I = mr^2$ (2.29)

dengan :

m = massa kapal (kg)

r = jari-jari girasi (m)

Jari-jari girasi di sini yaitu jarak antara titik berat kapal dengan titik berat modul. Jadi untuk gerakan *roll*, *pitch*, dan *yaw* yang membedakan hanya pada besarnya jari jari girasi.

Sedangkan untuk momen gaya persamaannya yaitu :

Momen gaya = I α (2.30)

dengan :

 α = percepatan putar (rad/s²)

I = momen inersia (kg.m²)

2.2.6. Response Amplitude Operator (RAO)

Response Amplitude Operator (RAO) merupakan perbandingan antara amplitudo gerakan struktur dengan amplitudo gelombang. RAO umumnya adalah grafik yang disajikan sedemikian rupa menggunakan absis frekuensi gelombang (ω), dan ordinat perbandingan antara amplitudo gerakan struktur dan amplitudo gerakan gelombang. Pada frekuensi dimana frekuensi gelombang insiden mendekati frekuensi natural struktur, grafik RAO akan mengalami penaikan ekstrim.

$$RAO = \zeta_{k0} / \zeta_0 \ (\text{deg/m}) \tag{2.31}$$

dengan :

 ζ_{k0} = amplitudo struktur (degree, radian atau m)

 ζ_0 = amplitudo gelombang (m)

Amplitudo gelombang merupakan setengah dari tinggi gelombang, sementara amplitudo struktur dapat dicari menggunakan Persamaan 2.9.

2.2.7. Sistem Kerja Piston

Piston yang bekerja pada WEC ini menggunakan prinsip kerja pompa piston hidraulik yang merupakan salah satu jenis pompa *reciprocating*. Mekanisme kerja pompa piston terdiri dari silinder piston yang bergerak maju mundur yang digerakkan oleh mekanisme kerja engkol (*crank mechanism*). Dalam satu putaran engkol, piston melakukan satu gerakan maju penuh (*discharge*) dan satu gerakan balik penuh (*suction*) sepanjang silinder pembungkus piston. Konfigurasi umum pompa piston dapat dilihat pada Gambar 2.11.

Gambar 2.11 Mekanisme pompa piston (Petersson, 1994)

Selama proses suction, piston bergerak mundur, katup discharge tetap tertutup sementara katup suction terbuka yang membuat fluida tersedot masuk kedalam *casing* silinder. Ketika proses discharge, piston akan bergerak maju, katup suction akan menutup, sementara katup discharge terbuka yang menyebabkan fluida terdorong dan mengalir menuju katup discharge. Sementara debit air (*flow rate*) untuk pompa piston *single acting* dapat dihitung menggunakan Persamaan 2.32 (Petersson, 1994) :

$$\mathbf{Q} = \mathbf{F} \, \mathbf{S} \, \mathbf{n} \, \mathbf{\eta} \mathbf{v} \tag{2.32}$$

dengan :

$$Q = flow rate (m^3/s)$$

$$F = luas penampang piston (m2)$$

S = panjang kayuhan piston (m)

n = kecepatan rotasi poros (s^{-1})

 ηv = efisiensi volumetris

dalam analisis struktur *Wave Energy Comverter* ini, persaman di atas tidak dapat digunakan. Oleh karenanya akan dijabarkan pendekatan analitik lain untuk menghitung kecepatan aliran air oleh dorongan pompa piston. Kecepatan gerak struktur dapat ditemukan dari penurunan persamaan simpangan gerak *pitch* harmonis (*harmonically oscillation*) dalam mode *angular (rotasional)* terhadap waktu. Sehingga :

$$\theta(t) = \theta_0 \cos(kx - \omega t) \tag{2.33}$$

diturunkan terhadap waktu menjadi :

$$v_{rot}(t) = \theta_0 \,\omega \sin(kx - \omega t) \tag{2.34}$$

mengubah amplitudo *pitch* rotasioanal (θ_0) kedalam amplitudo translasional (x_0) didapatkan :

$$v_x(t) = x_0 \omega \sin(kx - \omega t)$$
(2.35)

setelah kecepatan gerak struktur ditemukan, mengalikannya dengan luas penampang piston akan mendapatkan debit air (m³/s). Menggunakan prinsip Bernoulli, dapat dinyatakan bahwa debit air dalam piston sama dengan debit air yang keluar melalui lubang outlet piston. Untuk memaksimalkan kecepatan aliran yang keluar, diperlukan luas penampang lubang outlet piston yang lebih kecil dari luas penampang piston mengingat debit juga dapat dinyatakan sebagai luas penampang dikali dengan kecepatan aliran air.

2.2.8. Estimasi Daya Listrik

Penelitian ini tidak mengkaji pembangkitan energi listrik secara mendalam. Namun setelah menemukan kecepatan aliran air, dapat dihitung daya listrik yang dapat dihasilkan oleh generator turbin menggunakan persamaan analitik sederhana (Grzelak dkk, 2017) :

$$P(Power) = 0.5 \rho A v^{3} Cp \qquad (2.36)$$

dengan :

$$\rho$$
 = densitas air laut (kg/m³)

A = luas permukaan yang disapu rotor (turbin) (m^2)

v = kecepatan aliran air (m/s)

Cp = efisiensi faktor dari turbin

Persamaan di atas sudah sesuai dengan *SI base units* dari satuan daya atau *power* (Watt = kg.m²/s³).
BAB III

METODOLOGI PENELITIAN

3.1 SKEMA DIAGRAM ALIR

Proses penelitian perlu digambarkan secara sistematis untuk memudahkan tahapan pengerjaan. Tahap-tahap pengerjaan tersebut dijelaskan dalam Gambar 3.1 dan 3.2.

Gambar 3.1 Diagram alir pengerjaan tugas akhir

Gambar 3.2 Diagram alir pengerjaan tugas akhir (lanjutan)

3.2. PENJELASAN DIAGRAM ALIR

1. Studi Literatur

Studi literatur diperlukan untuk mengumpulkan dasar-dasar teori yang diperlukan untuk analisis dalam penelitian yang terkait. Dasar teori dapat diambil dari buku teks maupun jurnal penelitian. Selain dasar teori diperlukan pula tinjauan mengenai penelitian-penelitian yang sebelumnya telah dilakukan yang masih berhubungan dengan bahasan penelitian dalam tugas akhir ini.

2. Pengumpulan Data

Setelah melakukan studi literatur, akan diketahui teori penunjang serta langkah-langkah dalam melaksanakan penelitian. Selanjutnya akan dilakukan pengumpulan data-data yang diperlukan dalam penelitian tugas akhir ini. Adapun data-data yang diperlukan dalam pengerjaan tugas akhir ini berupa data ukuran tabung dan data gelombang sebagai berikut :

Data gelombang (BMKG dalam Utami 2011) :

Tinggi Gelombang Signifikan (Hs)	= 0,5m - 2m
Tinggi gelombang maksimum (Hmaks)	= 0,7m - 2,5m
Periode gelombang (T)	=2,51s-6,51s
Panjang gelombang (λ)	= 32,26m - 129m
kedalaman air (d)	= 12m
densitas air laut (p)	$= 1025 kg/m^3$
Percepatan gravitasi (g)	$= 9.8 \text{ m/s}^2$

Data variasi ukuran silinder bouyancy berpenampang elips :

$D_{a3} = 8m,$	$D_{b3} = 2m$	$h_3 = 5.5m$
$D_{a2} = 6m$,	$D_{b2} = 1.5m$	$h_2 = 4.5m$
$D_{a1} = 4m$,	$D_{b1} = 1m$	$h_1 = 3.5m$

Pemodelan Geometris Struktur Wave Energy Converter (Pemodelan Awal)

Pada tahap ini, akan dilakukan pemodelan tiga dimensi struktur WEC. Pemodelan dilakukan untuk mengetahui konfigurasi dasar struktur WEC. Struktur WEC pada dasarnya berupa silinder *buoyancy chamber* yang ditopang oleh silinder *leg* yang dihubungkan dengan roller joint pada sea bed. Struktur akan difokuskan untuk bergerak rotasional pada satu arah saja, oleh karena itu struktur ini akan diinstal pada perairan dekat pantai.

Buoyancy chamber akan disambungkan dengan pompa piston secara horizontal. Untuk memungkinkan gerakan piston yang tetap horizontal (tetap lurus) maka akan diinstal dua buah rack sliding yang berguna sebagai jalur gerak dari batang piston. Gerakan piston akan memompa air untuk menggerakkan hydroelectric turbin *hydroelectric*.

Gambar 3.3 Desain tampak samping dan prinsip kerja *Wave Energy Converter*

Gambar 3.4 Rack sliding dan roller

Gambar 3.3 menunjukkan desain struktur tampak samping. Gambar 3.4 menjelaskan mekanisme *roller* yang bergerak pada *rack sliding*. Gambar 3.5 adalah desain tampak depan WEC, sementara Gambar 3.6 adalah desain WEC tampak atas.

Gambar 3.5 Desain tampak depan Wave Energy Converter

Gambar 3.6 Desain tampak atas *Wave Energy Converter* 4. Analisis Respon Gerak Struktur (Numerik)

Pada tahap ini dilakukan permodelan *wave energy converter* dengan menggunakan *software* untuk mengetahui RAO struktur yang akan dianalisis menggunakan bantuan analisis *hydrodynamic diffraction software* Ansys AQWA.

5. Analisis Respon Gerak Struktur (Analitik)

Pada tahapan ini dilakukan perhitungan sudut kemiringan (amplitudo *pitch*) yang terjadi pada *wave energy converter* untuk masing-masing variasi ukuran tabung melalui plot RAO. Sudut kemiringan ini berguna untuk menghitung kecepatan aliran air yang dipompa oleh piston.

6. Membandingkan Sudut Kemiringan *Wave Energy Converter* Hasil Hitungan Manual (Analitik) Dan *Output Software Ansys AQWA*

Setelah mengetahui *output* dari *software*. Pada tahap ini mengecek hasil perhitungan manual dan hasil *output* dari *software* untuk dibandingkan. Dari hasil presentase perbedaan tidak terlalu besar maka desain *wave energy converter* telah sesuai. Jika hasil berbeda jauh akan dilakukan pengecekan ulang untuk mengetahui apakah terjadi kesalahan dalam proses perhitungan ataupun permodelan.

7. Menghitung Kecepatan Aliran Air yang Dipompa oleh Piston

Setelah diketahui amplitudo pitch dari semua variasi struktur pada frekuensi tertentu, selanjutnya akan dilakukan perhitungan kecepatan pancaran air yang keluar dari outlet piston.

8. Kesimpulan

Setelah dilakukan semua proses tahapan pengerjaan tugas akhir dan telah mendapatkan hasil, akan dilakukan penarikan kesimpulan untuk menjawab perumusan masalah.

BAB IV ANALISIS DAN PEMBAHASAN

4.1. PENENTUAN DIMENSI WEC

Tahap awal analisis tugas akhir ini adalah menentukan dimensi *Wave Energy Converter* (WEC). Penentuan dimensi WEC dilakukan dengan metode *trial and error* dengan mengacu pada tiga kedalaman laut yang berbeda diantaranya 10 m, 15 m dan 20 m. Ketiga kedalaman tersebut didasari dengan pertimbangan bahwa struktur WEC nantinya akan diinstal pada perairan dekat pantai. Masing-masing kedalaman laut tersebut akan dilakukan analisis RAO mode gerak *pitch* untuk mengetahui amplitudo *pitch* pada rentang frekuensi yang telah ditentukan.

Penentuan dimensi struktur yang dimaksud diantaranya adalah ukuran diameter *buoyancy chamber*, ketebalan (*shell thickness*) *buoyancy chamber*, diameter *leg*, dan ketebalan *leg*. Diameter *leg* telah ditentukan dengan diameter 0,3 m dan ketebalan 100 mm untuk semua variasi dan kedalaman air dengan asumsi bahwa dimensi tersebut cukup kuat untuk semua kondisi variasi ukuran *buoyancy chamber* dan kedalaman air. Sementara variasi dimensi *buoyancy chamber* berpenampang elips ini harus memiliki volume yang harus sama dengan volume diameter *buoyancy chamber* berbentuk silinder berpenampang lingkaran. Karena luas lingkaran adalah πr^2 sementara luas elips adalah $\pi r_a r_b$ maka diusulkanlah ukuran diameter silinder berpenampang elips sebagai berikut :

Variasi 1

 $\begin{array}{l} D_{a1}=4\mbox{ m}\\ D_{b1}=1\mbox{ m}\\ h=3.5\mbox{ m}\\ t\ (shell\ thickness)=10\mbox{ mm}\\ \end{array}$ Variasi 2 $\begin{array}{l} D_{a2}=6\mbox{ m}\\ D_{b2}=1.5\mbox{ m}\\ h=4.5\mbox{ m}\\ t\ (shell\ thickness)=25\mbox{ mm}\\ \end{array}$ Variasi 3

 $D_{a3} = 8 m$ $D_{b3} = 2 m$ h = 5.5 mt (shell thickness) = 30 mm

dengan dimensi *leg* untuk semua variasi ukuran dan kedalaman :

D = 0.3 m

t (*shell thickness*) = 100 mm.

Ukuran tersebut mengacu pada ukuran penampang silinder berpenampang lingkaran (2 m, 3 m, dan 4 m). Panjang *leg* menyesuaikan, yaitu dengan mengurangi kedalaman laut dengan panjang *buoyancy chamber* yang tercelup. Panjang *buoyancy chamber* yang tercelup adalah panjang total *buoyancy chamber* dikurangi panjang *buoyancy chamber* di atas rata-rata permukaan air laut (*unsubmerged length*), dengan nominal unsubmerged length sebesar 1,5 m untuk semua variasi *buoyancy chamber* dan kedalaman. *Shell thickness* merupakan ketebalan struktur yang diperlukan untuk menghitung massa struktur secara manual, yaitu dengan mengalikan volume kulit dengan densitas material (baja, ρ = 7850 kg/m³). Dengan demikian, *shell thickness* adalah faktor kedua setelah diameter dan ketinggian struktur silinder yang sangat mempengaruhi besarnya massa struktur.

Penentuan dimensi awal struktur WEC ini berhubungan erat dengan analisis respons struktur dengan metode formulasi analitik karena memudahkan kita untuk mengetahui kegagalan yang dapat terjadi dalam perhitungan respons struktur tersebut. Kegagalan yang mudah diamati adalah respons *pitch* struktur (amplitudo *pitch*) yang melebihi 90⁰ atau hasil perhitungan amplitudo *pitch* struktur *error*. Banyak faktor yang mempengaruhi kegagalan tersebut diantaranya perhitungan momen struktur yang terlalu besar akibat diameter *buoyancy chamber* yang terlalu besar, kekakuan struktur yang bernilai negatif (ketebalan kulit yang terlalu besar), sering kali ditemukan pula frekuensi natural yang terlalu besar sehingga menyebabkan amplitudo *pitch* maksimum melebihi 90⁰. Oleh karena itu

penentuan dimensi awal ini merupakan langkah yang panjang karena telah melalui berbagai *trial and error* dan pengecekan perhitungan analitik yang lebih teliti.

4.2. TABULASI RAO ANALITIK STRUKTUR WEC

Penentuan dimensi awal struktur akan dilanjutkan dengan perhitungan respons struktur menggunakan metode analitik. Pada penelitian ini, penulis hanya akan menguji struktur pada 3 kedalaman berbeda yaitu, 10 m, 15 m, dan 20 m. Kombinasi antara 3 jenis kedalaman dan 3 variasi ukuran *buoyancy chamber* akan menghasilkan total 9 variasi struktur. Sementara rentang frekuensi yang digunakan untuk plot grafik RAO adalah 0.1 - 2.0 rad/s dengan tinggi gelombang insiden 2.5 m. Rentang antar frekuensi ditentukan sebesar 0.1 rad/s dan dapat diperkecil untuk area kurva kritis untuk menghasilkan grafik RAO yang lebih akurat.

Tahap awal dalam perhitungan respons secara analitik adalah menghitung kekakuan struktur, momen inersia struktur dan momen inersia massa tambah yang diperlukan untuk mencari frekuensi natural struktur berdasarkan mode gerak *pitch*. Selanjutnya, parameter yang perlu dihitung adalah momen eksitasi maksimum struktur dengan menggunakan integral persamaan Morison dengan kinematika partikel gelombang Airy untuk perairan menengah yang dikalikan dengan lever. Damping ratio (ζ_f) yang digunakan sebesar 0,05 berdasarkan penelitian yang telah dilakukan oleh Helvacioglu, 1998. Hasil kalkulasi kekakuan, momen inersia massa struktur, momen inersia massa tambah, dan frekuensi natural disajikan dalam Tabel 4.1, Tabel 4.2, Tabel 4.3, dan Tabel 4.4.

Kekakuan (K _θ) (kN/m)								
	Da=4m,Db=1m Da=6m,Db=1,5m Da=8m,Db=2ma							
	H=3,5m t=10mm	H=5,5m t=30mm						
d=10m	184,71	531,97	1743,91					
d=15m	154,73	764,52	2824,02					
d=20m	21,55	893,88	3800,94					

Momen Inersia Massa Struktur (I_{θ}) (ton.m ²)								
	Da=4m,Db=1m Da=6m,Db=1,5m Da=8m,Db=2ma							
	H=3,5m t=10mm	H=4,5m t=25mm	H=5,5m t=30mm					
d=10m	337,38	1193,80	2098,17					
d=15m	936,84	2948,55	5197,88					
d=20m	1988,51	5649,06	9865,06					

Tabel 4.2 Momen inersia massa struktur WEC

Tabel 4.3 Momen inersia massa tambah struktur WEC

Momen Inersia Massa Tambah $(I_{\theta A})$ (ton.m ²)									
	Da=4m,Db=1m Da=6m,Db=1,5m Da=8m,Db=2ma								
	H=3,5m t=10mm	H=4,5m t=25mm H=5,5m t=30mm							
d=10m	2095,92	6287,89	13193,58						
d=15m	5088,963	15876,77	34853,06						
d=20m	9405,38	29845,43	66846,86						

Tabel 4.4 Frekuensi natural struktur WEC

Frekuensi Natural (ω _n)						
Da=4m,Db=1m Da=6m,Db=1,5m Da=8m,Db=2ma						
	H=3,5m t=10mm	H=4,5m t=25mm	H=5,5m t=30mm			
d=10m	0,2755	0,2667	0,3377			
d=15m	0,1602	0,2015	0,2655			
d=20m	0,0435	0,1587	0,2266			

Tabel 4.1 sampai 4.4 diatas memperlihatkan bahwa semakin besar ukuran *buoyancy chamber* semakin besar pula kekakuan, momen inersia, dan frekuensi natural. Meskipun peningkatan kekakuan per variasi ukuran menunjukkan jumlah yang besar (3 kali lipat), frekuensi natural hanya mengalami peningkatan yang relatif kecil. Hal ini menjelaskan bahwa perubahan frekuensi natural banyak dipengaruhi oleh besarnya momen inersia setiap variasi ukuran. Tabulasi RAO dilakukan untuk mengetahui karakteristik gerakan struktur akibat eksitasi gelombang reguler. Dimensi struktur yang memiliki amplitudo *pitch* terbesar akan dipilih untuk dilakukan analisis kecepatan aliran air dalam pompa piston (*reciprocating pump*). Tabulasi RAO dilakukan menggunakan metode analitik akan dibandingkan dengan hasil tabulasi RAO menggunakan metode numerik.

Plot grafik RAO metode analitik dipaparkan dalam Gambar 4.1, Gambar 4.2, dan Gambar 4.3 :

Gambar 4.2 Grafik RAO Variasi Dimensi 2 (analitik)

Gambar 4.3 Grafik RAO Variasi Dimensi 3 (analitik)

*)catatan : $D = D_a$ = diameter mayor , $d = D_b$ = diameter minor, h = panjang *buoyancy chamber*

Berdasarkan Grafik RAO dari 9 struktur tersebut, dapat disimpulkan bahwa semakin besar ukuran *buoyancy chamber* maka semakin besar pula amplitudo *pitch* maksimum yang terjadi. Penambahan panjang *leg* (akibat penambahan kedalaman) akan menyebabkan puncak grafik RAO bergeser ke sebelah kiri karena frekuensi natural struktur yang mengecil. Hal ini disebabkan karena penambahan panjang leg mengakibatkan masssa struktur yang membesar yang juga menyebabkan momen inersia yang ikut membesar. Momen inersia yang membesar akan mengurangi besar frekuensi natural struktur. Penambahan ukuran *buoyancy chamber* akan menyebabkan kekakuan struktur membesar. Meskipun diikuti pula dengan momen inersia yang membesar, penambahan ukuran *buoyancy chamber* tetap akan menyebabkan membesarnya frekuensi natural struktur sehingga RAO *pitch* maksimum akan terjadi pada frekuensi gelombang insiden yang lebih besar dengan momen eksitasi maksimum yang lebih besar pula. Hasil Analisis RAO ini juga menyatakan bahwa karakteristik gerak struktur sudah sesuai dengan dasar teori.

4.3. PERBANDINGAN RAO ANALITIK DENGAN RAO NUMERIK

Hasil RAO menggunakan kalkulasi analitik perlu dibandingkan dengan hasil RAO menggunakan kalkulasi numerik (*software* ANSYS AQWA). Meskipun hasil RAO analitik sudah menunjukkan pola gerak yang harmonis, kalkulasi numerik tetap dilakukan dengan harapan untuk mengetahui hasil yang lebih akurat.

Perbandingan RAO analitik dan numeric dipaparkan daam Gambar 4.4 sampai Gambar 4.12 :

Gambar 4.4 Grafik perbandingan RAO WEC D=4m d=1m H=3,5m t=10mm

kedalaman 10m

Gambar 4.5 Grafik perbandingan RAO WEC D=4m d=1m H=3,5m t=10mm kedalaman 15m

Gambar 4.6 Grafik perbandingan RAO WEC D=4m d=1m H=3,5m t=10mm kedalaman 20m

Gambar 4.7 Grafik perbandingan RAO WEC D=6m d=1.5m H=4,5m t=25mm kedalaman 10m

Gambar 4.8 Grafik perbandingan RAO WEC D=6m d=1.5m H=4,5m t=25mm kedalaman 15m

Gambar 4.9 Grafik perbandingan RAO WEC D=6m d=1.5m H=4,5m t=25mm kedalaman 20m

Gambar 4.10 Grafik perbandingan RAO WEC D=8m d=2m H=5,5m t=30mm kedalaman 10m

Gambar 4.11 Grafik perbandingan RAO WEC D=8m d=2m H=5,5m t=30mm kedalaman 15m

Gambar 4.12 Grafik perbandingan RAO WEC D=8m d=2m H=5,5m t=30mm kedalaman 20m

Hasil plot RAO *software* Aqwa memperlihatkan bahwa meskipun terlihat perbedaan dengan RAO analitik, pola grafik juga memiliki karakteristik yang hampir sama, yaitu menunjukkan bahwa puncak RAO terletak pada frekuensi yang hampir sama dan frekuensi natural struktur mengecil seiring dengan bertambahnya panjang *leg* (akibat penambahan kedalaman). Beberapa kekurangan *software* aqwa adalah hanya dapat menganalisis "surface body" sehingga tidak dapat digunakan untuk menganalisis kecepatan aliran air yang dipompa oleh piston. Selain itu, input momen inersia dari hasil hitungan analitik dengan hasil *software* solidworks menunjukkan hasil yang berbeda dengan perbedaan yang cukup signifikan. Tidak dijumpainya input kekakuan struktur dalam analisis *hydrodynamic diffraction* dalam *software* ANSYS AQWA juga menjadi kendala lain dalam proses running RAO struktur.

4.4. RAO WEC DENGAN MATERIAL BERBEDA

Seperti yang telah dijelaskan dalam bab 3, berdasarkan data yang diperoleh dapat disimpulkan bahwa frekuensi gelombang lokasi studi masih berada jauh dari frekuensi natural struktur pada umumnya. Frekuensi gelombang insiden di lokasi studi berkisar pada rentang 1 hingga 2.5 rad/s sementara frekuensi natural struktur umumnya masih berkisar pada rentang 0.1 hingga 0.3 rad/s. Dalam sub bab ini akan dilakukan percobaan untuk meningkatkan frekuensi natural struktur agar mendekati frekuensi gelombang insiden di lokasi studi untuk menghasilkan

amplitudo *pitch* struktur yang lebih besar. Mengacu pada persamaan frekuensi natural struktur yang telah dijelaskan pada dasar teori, maka untuk meningkatkan frekuensi natural dapat dilakukan peningkatan kekakuan pada struktur. Metode lain yang dapat dilakukan untuk meningkatkan frekuensi natural struktur adalah dengan mengurangi massa struktur (yang berpengaruh pada penurunan momen inersia massa struktur). Dalam kasus ini peneliti memutuskan untuk memilih mengurangi massa struktur karena hal ini dapat dilakukan tanpa mengubah dimensi struktur. Penggantian jenis material struktur yang semula adalah baja ($\rho = 7.85 \text{ ton/m}^3$) akan diubah dengan material fiber glass dengan $\rho = 1.55 \text{ ton/m}^3$.

Gambar 4.13 Grafik RAO fiber glass variasi 1 (analitik)

Gambar 4.15 Grafik RAO fiber glass variasi 3 (analitik)

Dari plot RAO tersebut dapat kita simpulkan bahwa dengan mengubah material struktur dengan massa jenis yang jauh lebih kecil sekalipun, puncak RAO masih bergeser pada rentang frekuensi 0.3 hingga 0.5 rad/s. Ini menunjukkan

bahwa dalam menentukan dimensi awal struktur ini tidaklah mudah dan memerlukan proses *trial and error* yang cukup lama. Penggunaan formulasi analitik memungkinkan untuk mengetahui parameter-parameter yang membuat struktur tidak masuk akal untuk dikonstruksi, seperti nilai kekakuan struktur yang negatif karena massa struktur yang lebih besar daripada massa displasmen dan amplitudo *pitch* yang terlalu besar (seringkali berada diatas 100 derajat). Seringkali amplitudo *pitch* yang terlalu besar diakibatkan oleh kekakuan yang terlalu besar dan frekuensi natural yang terlalu besar sehingga menyebabkan puncak RAO terjadi pada frekuensi dengan momen eksitasi yang lebih besar.

4.5. PERHITUNGAN ANALITIK KECEPATAN ALIRAN AIR

Merujuk pada hasil pengumpulan data pada BAB III, telah diketahui bahwa periode gelombang pada lokasi rencana instalasi WEC (pantai selatan Jawa Timur) adalah berkisar antara 2,51 - 6,51 s atau setara dengan frekuensi 2,5 - 1 rad/s. Maka akan kita ambil salah amplitudo *pitch* (θ_0) dari frekuensi yang memiliki amplitudo *pitch* terbesar yaitu pada frekuensi 1 rad/s. Dari frekuensi tersebut, akan dihitung amplitudo translasional struktur menggunakan aturan tangent. Posisi vertikal dari piston telah ditentukan dengan kedalaman 1,5 m dari permukaan air, sehingga akan muncul parameter baru berupa "panjang lengan" yang merupakan jarak vertikal piston dari dasar laut. Ukuran diameter tabung piston dan diameter outlet ditentukan dengan ukuran masing-masing 0.5 m dan 0.05 m, dengan panjang tabung piston sama dengan dua kali amplitudo translasional struktur. Sementara v_x piston adalah kecepatan aliran air dalam tabung piston yang diasumsikan sama dengan kecepatan translasional struktur $v_x(t)$ yang dapat dicari menggunakan Persamaan (2.35).

Tuber 4.5 7 Implitudo piten dan amplitudo translasional pada nekuensi 1 rad/s						
	0	panjang	amplitudo	panjang		
Ukuran	Θ_0	lengan (l)	translasional	tabung piston		
	(deg)	(m)	$(x_0) (m)$	$(2x_0)$ (m)		
D _a =4m, D _b =1m H=3,5m	0 17	o 5	1.27	2.54		
t=10mm d=10m	0,47	0,5	1,27	2,34		
D _a =4m, D _b =1m H=3,5m	5.07	125	1.20	2.40		
t=10mm d=15m	5,07	15,5	1,20	2,40		
D _a =4m, D _b =1m H=3,5m	256	10 5	1 15	2.20		
t=10mm d=20m	5,50	18,5	1,15	2,30		

Tabel 4.5 Amplitudo pitch dan amplitudo translasional pada frekuensi 1 rad/s

Tabel 4.6 Amplitudo *pitch* dan amplitudo translasional pada frekuensi 1 rad/s (lanjutan)

	(J /		
D _a =6m, D _b =1,5m H=4,5m t=25mm d=10m	8,29	8,5	1,24	2,48
D _a =6m, D _b =1,5m H=4,5m t=25mm d=15m	5,06	13,5	1,20	2,40
D _a =6m, D _b =1,5m H=4,5m t=25mm d=20m	3,62	18,5	1,17	2,34
D _a =8m, D _b =2m H=5,5m t=30mm d=10m	9,10	8,5	1,36	2,72
D _a =8m, D _b =2m H=5,5m t=30mm d=15m	5,35	13,5	1,26	2,52
D _a =8m, D _b =2m H=5,5m t=30mm d=20m	3,78	18,5	1,22	2,44

Gambar 4.16 Parameter dalam kalkulasi kecepatan aliran

Dalam kalkulasi yang tertera pada Tabel 4.5 dan Tabel 4.6 diperlukan beberapa parameter yang perlu dipahami. Parameter-parameter tersebut telah dijelaskan pada Gambar 4.16, sementara metode untuk mencari parameter tersebut akan dijelaskan sebagai berikut :

amplitudo translasional struktur dapat dihitung dengan :

Amplitudo translasional $(x_o) = panjang \ lengan \ . \ tan \ (\theta_0)$ (4.1)

sementara kecepatan outlet piston dapat dihitung dengan :

Debit piston = *Debit outlet* v_x *piston* . *area penampang piston* = v_x *outlet* . *area penampang outlet* (4.2) persamaan diatas menjelaskan bahwa alasan untuk memperkecil diameter outlet piston adalah untuk meningkatkan kecepatan pancaran air yang keluar dari piston tersebut. Selanjutnya hasil kalkulasi akan disajikan dalam Tabel 4.7.

Ukuran	θ_{o} (deg)	x _o (m)	v _x piston maks (m/s)	Debit piston maks Q(m3/s)	v _x outlet maks (m/s)
$D_a=4m, D_b=1m$ H=3,5m t=10mm d=10m	8,47	1,27	1,27	0,249	126,61
$D_a=4m, D_b=1m$ H=3,5m t=10mm d=15m	5,07	1,20	1,20	0,235	119,73
D _a =4m, D _b =1m H=3,5m t=10mm d=20m	3,56	1,15	1,15	0,226	115,20
D _a =6m, D _b =1,5m H=4,5m t=25mm d=10m	8,29	1,24	1,24	0,243	123,91
D _a =6m, D _b =1,5m H=4,5m t=25mm d=15m	5,06	1,20	1,20	0,235	119,56
D _a =6m, D _b =1,5m H=4,5m t=25mm d=20m	3,62	1,17	1,17	0,230	117,01
D _a =8m, D _b =2m H=5,5m t=30mm d=10m	9,10	1,36	1,36	0,267	136,14
$\begin{array}{l} D_a=8m, D_b=2m\\ H=5,5m\ t=30mm\\ d=15m \end{array}$	5,35	1,26	1,26	0,248	126,47
$\begin{array}{l} D_a=8m, \ D_b=2m\\ H=5,5m\ t=30mm\\ d=20m \end{array}$	3,78	1,22	1,22	0,240	122,07

Tabel 4.7 Debit dan kecepatan aliran maksimum pada frekuensi 1 rad/s

Merujuk pada Persamaan (2.35), kecepatan translasional struktur dapat didefinisikan sebagai :

 $v_x(t) = x_0 \omega \sin(kx - \omega t) = v_x piston$

yang merupakan persamaan sinus, sehingga memiliki nilai yang berubah sepanjang waktu. Kalkulasi di atas merupakan hasil kalkulasi pada kondisi kecepatan maksimum, atau dengan kata lain *sin* (ωt) = 1. Dapat disimpulkan bahwa kecepatan pancaran air terbesar terjadi pada struktur yang memiliki

amplitudo *pitch* maksimum terbesar berdasarkan hasil plot RAO (variasi 3, kedalaman 10 m) dengan besar kecepatan 136,14 m/s. Sementara kecepatan aliran rata-rata dari struktur tersebut dapat dilihat dalam Tabel 4.8.

0
42,07
80,02
110,14
129,48
136,14
129,48
110,14
80,02
42,07
0
78.14

Tabel 4.8 Kecepatan aliran air rata-rata pada struktur variasi 3 kedalaman 10 m

 v_x outlet (m/s)

t (s)

Perlu diketahui bahwa dalam perhitungan kecepatan pancaran air ini masih menggunakan asumsi analitik yang sederhana dan belum memperhatikan efekefek lain yang terjadi akibat penyambungan struktur WEC dengan pompa piston, seperti redaman (*damping*) yang secara teori dapat menurunkan amplitudo maksimum struktur. Dalam tugas akhir ini, tidak mampunya *software* dalam menganalisis pompa dan belum adanya literatur mengenai kalkulasi pompa dengan konfigurasi struktur serupa menjadi kendala yang besar untuk menghasilkan kalkulasi yang valid.

Kecepatan pancaran air outlet akan dialirkan melalui jalur pipa khusus untuk memutar turbin listrik sehingga dapat menghasilkan daya listrik. Untuk mengetahui hal tersebut diperlukan analisis dengan metode yang lebih valid dan disertai dengan perancangan mendetail dari struktur. Namun, dengan menggunakan Persamaan (2.36) kita dapat mengetahui estimasi daya listrik yang dapat dihasilkan dari kecepatan aliran air outlet. Dalam perhitungan daya listrik ini, kecepatan aliran air yang digunakan adalah kecepatan aliran air rata-rata yang telah tersaji dalam Tabel 4.8. Maka estimasi daya listrik yang dapat dihasilkan dari kecepatan aliran rata-rata yang telah dihitung adalah :

P(Power) = $0.5 \rho A v^3 Cp$ P(Power) = $0.5 1025 \pi 0.25 0.2^2 78.14^3 0.8$ P(Power) = 6,91 MW

Sementara pada kecepatan aliran maksimal, daya yang dapat dihasilkan adalah :

P(Power) = $0.5 \ 1025 \ \pi \ 0.25 \ 0.2^2 \ 136.14^3 \ 0.8$ P(Power) = $36,56 \ MW$

Turbin *hydroelectric* yang digunakan memiliki diameter 0,2 m, dengan efisiensi 80%. Ukuran tersebut didapatkan berdasarkan asumsi awal saja, karena dalam tugas akhir ini tidak dilakukan kajian khusus mengenai pembangkitan daya listrik. Merujuk pada daya listrik yang dihasilkan oleh WEC jenis lain, *Oyster 1* dapat menghasilkan daya sebesar 315 kW per unit, sementara satu unit *Oyster 2* (*upgrade* dari *Oyster 1*) dapat menghasilkan daya tidak kurang dari 2 MW (Cameron dkk, 2010).

BAB V PENUTUP

5.1. KESIMPULAN

Berdasarkan analisis yang telah dilakukan, maka didapatkan beberapa kesimpulan sebagai berikut :

- 1. Amplitudo Pitch (respons) struktur akan meningkat seiring dengan bertambahnya ukuran buoyancy chamber. Penambahan kedalaman air akan diikuti oleh penambahan ukuran leg yang pada dasarnya memiliki ketebalan yang lebih besar sehingga meningkatkan massa struktur. Massa struktur yang meningkat (momen inersia meningkat) akan menurunkan frekuensi natural yang berdampak pada amplitudo pitch maksimum struktur yang mengecil. Penelitian ini dilakukan pada tiga kedalaman berbeda untuk mengetahui variasi ukuran buoyancy chamber mana yang menghasilkan amplitudo *pitch* terbesar untuk masing-masing kedalaman tersebut. Hasil Plot RAO dengan formulasi analitik menunjukkan bahwa RAO *pitch* terbesar dimiliki oleh struktur variasi 3 ($D_a = 8 \text{ m}, D_b = 2 \text{ m H}$ = 5,5 m t = 30 mm) untuk semua kedalaman. Struktur variasi 3 dengan kedalaman 10 m memiliki RAO pitch maksimum sebesar 48,89/m, sementara kedalaman 15 m memiliki RAO pitch maksimum sebesar 35,39⁰/m, dan kedalaman 20 m memiliki RAO *pitch* maksimum sebesar $16.47^{\circ}/m$
- 2. Kecepatan pancaran air terbesar pada outlet piston adalah 136,14 m/s, dihitung pada frekuensi 1 rad/s yang terdapat pada variasi ukuran $D_a = 8$ m $D_b= 2$ m H = 5,5 m t = 30 mm (variasi 3) dengan kedalaman 10 m dan amplitudo *pitch* 9,1⁰.

5.2. SARAN

Untuk membuat penelitian ini dapat direalisasikan sebagai struktur *Wave Energy Converter* yang nyata, diperlukan penelitian lanjut yang lebih merinci. Beberapa saran yang dapat penulis sampaikan diantaranya:

- 1. Perlunya desain struktur yang lebih mendetail, pertimbangan kekuatan struktur, pengkajian ilmu *structural dynamic* yang lebih mendalam dan kerja sama dengan departemen lain (terutama teknik mesin) untuk menghasilkan penelitian yang lebih valid.
- 2. Perlunya mencoba *software* lain yang lebih akurat dan metode lain untuk menghitung kecepatan pancaran air yang keluar dari outlet piston.

DAFTAR PUSTAKA

- Bar-Avi, P., Benaroya, H. Response of A Two Degrees of Freedom Articulated Tower to Different Environmental Conditions. 1996. International Jurnal of Non-Linear Mechanics, Vol 31, No. 5, pp, 717-741. Pistacaway. USA.
- Bhattacharya, R. 1978. *Dynamic of Marine Vehicles*, John Wiley and Sons Inc. New York.
- Cameron, L., Doherty, R., Henry, A., Van't Hoff, J., Kaye, D., Naylor, D.,
 Bourdier., Whittaker, T. 2010. *Design of the Next Generation of the Oyster Wave Energy Converter*. Aquamarine Power Ltd., 10 St. Andrew's Square, Edinburgh, U.K.
- Chakrabarti, S. K. 1987. *Hydrodynamics of Offshore Structures*. Computational Mechanics Publications Southampton. Boston. USA.
- Department of The Army. 1984. *Shore Protection Manual (SPM) Volume I.* Vicksburg, Mississippi.
- Djatmiko, E. B. 2014. *Gaya Gelombang pada Struktur Langsing Terpancang*. Mata Kuliah Hidrodinamika I. Institut Teknologi Sepuluh Nopember. Surabaya.
- Djatmiko, E. B. 2016. *Hydrodynamic Analysis On Articulated Tower. Materi Kuliah Program Pasca Sarjana Teknologi Kelautan.* Surabaya.
- Datta, T. K., Jain, A. K., 1989. Response of Articulated Tower Platforms to Random Wind and Wave Forces. Department of Civil Engineering. Indian Institut of Technology. Delhi.
- Folley, M. 2016. Numerical Modelling of Wave Energy Converter. Elsevier. London.
- Gomes, R. P. F., dkk. 2014. The Dynamics and Power Extraction of Bottom-Hinged Plate Wave Energy Converters in Regular and Irregular Waves. LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- Goswami, D. Y dan Kreith, F. 2008. *Energy Conversion*. CRC Press. Taylor and Francis Group. Boca Raton.
- Grzelak, D., Brose, N., Schuenemann, L. 2017. Ocean Power : tidal and wave energy.

- Helvacioglu, I.H., dan Incecik, A. 1998. Dynamic Analysis of Coupled Articulated Tower and Floating Production Systems". Proceedings of the 7th International Conference on Offshore Mechanics and Arctic Engineering, ASME, Houston.
- Islam, N., Zaheer, M. M., Ahmed, S. 2009. *Double hinged articulated tower interaction with wind and waves*. Jurnal of Wind Engineering and Industrial Aerodynamics. Delhi. India.
- Meisen, P., Loiseau, A. 2009. Ocean Energy Technologies for Renewable Energy Generation. Global Energy Network Institut.
- Murtedjo, M., Djatmiko, E. B., dan Sudjianto, H. 2005. The Infuence of Buoyancy Parameters on the Dynamic Behavior of Articulated Tower. Jurnal Mekanikal, No.19, 32-47.
- Petersson, M. 1994. Design of Fluid Power Piston Pumps: With Special Reference to Noise Reduction. Division of Fluid Power Technology, Department of Mechanical Engineering, Linköping University.
- Rizki, E. S., Hadi E. S., Kiryanto. 2016. Desain Konverter Gelombang Bentuk Segi Empat sebagai Sumber Pembangkit Listrik di Perairan Laut Jawa. Jurnal Teknik Perkapalan. Universitas Diponegoro.
- Utami, S. R. 2010. Studi Potensi Pembangkit Listrik Tenaga Gelombang Laut dengan Menggunakan Sistem Oscillating Water Column (OWC) di Tiga Puluh Wilayah Kelautan Indonesia. Departemen Teknik Elektro. Fakultas Teknik Universitas Indonesia. Indonesia.
- Whittaker, T., Folley, M., 2012. *Nearshore oscillating wave surge converters and the development of Oyster*. Philos. Trans. R. Soc. A 370, 345–364.
- Yudanto, R., Hadi E. S., Kiryanto. 2016. Desain Konverter Gelombang Bentuk Tabung sebagai Sumber Pembangkit Listrik di Perairan Laut Jawa. Jurnal Teknik Perkapalan. Universitas Diponegoro.

LAMPIRAN A (KALKULASI RAO ANALITIS)

	RAO		D=4m	d=1m	h=3.5m	depth=10m		thickness=1	0mm
ω _n	ω	Mmax	k	с	θ (rad)	θ (deg)	ζ ₀ (m)	rao (⊖/m)	rao (deg/m)
0.275514	0.1	3.676791	184.7068	0.05	0.022906	1.3124383	1.25	0.0183251	1.04995064
0.275514	0.2	14.66137	184.7068	0.05	0.165857	9.502889461	1.25	0.13268537	7.602311569
0.275514	0.25	18.53534	184.7068	0.05	0.505338	28.95376013	1.25	0.40427076	23.16300811
0.275514	0.3	32.81747	184.7068	0.05	0.825539	47.29988745	1.25	0.66043102	37.83990996
0.275514	0.4	57.92164	184.7068	0.05	0.280669	16.08114138	1.25	0.22453509	12.8649131
0.275514	0.5	89.66854	184.7068	0.05	0.211014	12.0902175	1.25	0.16881128	9.672174003
0.275514	0.6	127.678	184.7068	0.05	0.184386	10.56455688	1.25	0.14750904	8.451645507
0.275514	0.7	171.5037	184.7068	0.05	0.170025	9.741687454	1.25	0.13601962	7.793349963
0.275514	0.8	220.6425	184.7068	0.05	0.160625	9.203140059	1.25	0.12850008	7.362512047
0.275514	0.9	274.5453	184.7068	0.05	0.153611	8.801240561	1.25	0.1228885	7.040992449
0.275514	1	332.6273	184.7068	0.05	0.147862	8.471841323	1.25	0.11828922	6.777473059
0.275514	1.1	394.2796	184.7068	0.05	0.142826	8.183310663	1.25	0.11426057	6.546648531
0.275514	1.2	458.8793	184.7068	0.05	0.138208	7.918724684	1.25	0.11056625	6.334979747
0.275514	1.3	525.7999	184.7068	0.05	0.133841	7.668551572	1.25	0.10707318	6.134841258
0.275514	1.4	594.4216	184.7068	0.05	0.12963	7.427274544	1.25	0.10370432	5.941819635
0.275514	1.5	664.1394	184.7068	0.05	0.125519	7.191688649	1.25	0.10041492	5.753350919
0.275514	1.6	734.3719	184.7068	0.05	0.121475	6.959979499	1.25	0.09717965	5.567983599
0.275514	1.7	804.5678	184.7068	0.05	0.117482	6.731195668	1.25	0.09398522	5.384956535
0.275514	1.8	874.2129	184.7068	0.05	0.113532	6.504931807	1.25	0.09082598	5.203945445
0.275514	1.9	942.8342	184.7068	0.05	0.109626	6.281130473	1.25	0.08770113	5.024904378
0.275514	2	1010.005	184.7068	0.05	0.105766	6.059953866	1.25	0.08461292	4.847963093
						47.29988745			

Tabel D.1 Kalkulasi RAO variasi 1, kedalaman 10 m

N	lass Mome	nt of Inert	ia						
<i>I</i> =	$\frac{m1(3a^2+1)}{12}$	$\frac{-3b^2+l^2)}{2}$	- m1(l1/2	2 + I2) ² +	$\frac{m^2(3a^2)}{1}$	$\frac{+3b^2+l^2)}{2}$	+		
variasi 1 denth	m1(ton)	21 (m)	h1 (m)	1 (m)	m2(ton)	22 (m)	h2 (m)	12 (m)	Im
10 m	2 630199	aı (III) 0 5	0 49	35	3 952006	az (iii) 0 15	0.05	12 (III) 8	1 <i>yy</i> 337 3747
10 111	2.030133	0.5	0.45	5.5	3.332000	0.15	0.05		lxx
	2.630199	2	1.99	3.5	3.952006	0.15	0.05	8	342.2866
									Izz
									5.605826

adde	d mass mo				
	I = m1	L(1/2 +	2) ² + m2	(l2/2) ²	
variasi 1					
depth	m1 (ton)	l1(m)	m2 (ton)	l2 (m)	Iуу
10 m	25.76106	2	0.579624	8	2095.92

	RAO		D=4m	d=1m	h=3.5m	depth=15m		thickness=1	0mm
ω _n	ω	Mmax	k	с	θ (rad)	θ (deg)	ζ ₀ (m)	rao (⊖/m)	rao (deg/m)
0.160243	0.05	1.446663	154.7287	0.05	0.010352	0.593124486	1.25	0.00828158	0.474499589
0.160243	0.1	5.781714	154.7287	0.05	0.060884	3.488393789	1.25	0.04870717	2.790715031
0.160243	0.15	12.99038	154.7287	0.05	0.541062	31.00054109	1.25	0.43284921	24.80043287
0.160243	0.2	23.04817	154.7287	0.05	0.260615	14.93214575	1.25	0.20849209	11.9457166
0.160243	0.25	35.9211	154.7287	0.05	0.160942	9.221289267	1.25	0.12875349	7.377031414
0.160243	0.3	51.56599	154.7287	0.05	0.132671	7.601516909	1.25	0.1061372	6.081213527
0.160243	0.4	90.95498	154.7287	0.05	0.112246	6.431206824	1.25	0.08979659	5.144965459
0.160243	0.5	140.7003	154.7287	0.05	0.104023	5.960104899	1.25	0.08321876	4.768083919
0.160243	0.6	200.1683	154.7287	0.05	0.09932	5.690604789	1.25	0.07945583	4.552483831
0.160243	0.7	268.6236	154.7287	0.05	0.095981	5.499281713	1.25	0.07678446	4.39942537
0.160243	0.8	345.2484	154.7287	0.05	0.093245	5.342552779	1.25	0.07459611	4.274042223
0.160243	0.9	429.1603	154.7287	0.05	0.09079	5.201871123	1.25	0.07263182	4.161496899
0.160243	1	519.4307	154.7287	0.05	0.088461	5.068439898	1.25	0.07076877	4.054751918
0.160243	1.1	615.1012	154.7287	0.05	0.086181	4.937835615	1.25	0.06894519	3.950268492
0.160243	1.2	715.1991	154.7287	0.05	0.083912	4.807800639	1.25	0.06712956	3.846240511
0.160243	1.3	818.7516	154.7287	0.05	0.081633	4.677229964	1.25	0.06530645	3.741783971
0.160243	1.4	924.7993	154.7287	0.05	0.079337	4.545665292	1.25	0.06346946	3.636532233
0.160243	1.5	1032.408	154.7287	0.05	0.077022	4.413025158	1.25	0.06161746	3.530420126
0.160243	1.6	1140.681	154.7287	0.05	0.074691	4.279452947	1.25	0.05975244	3.423562358
0.160243	1.7	1248.768	154.7287	0.05	0.072348	4.14522712	1.25	0.05787829	3.316181696
0.160243	1.8	1355.875	154.7287	0.05	0.07	4.010705755	1.25	0.05600002	3.208564604
0.160243	1.9	1461.272	154.7287	0.05	0.067654	3.876290715	1.25	0.05412323	3.101032572
0.160243	2	1564.299	154.7287	0.05	0.065317	3.74240346	1.25	0.05225381	2.993922768
						31.00054109			

Tabel D.2 Kalkulasi RAO variasi 1, kedalaman 15 m

Ν	/lass Mome	nt of Inert	ia						
<i>I</i> =	$\frac{m1(3a^2-1)}{1}$	$+3b^2+l^2$	+ m1(l1/2	2 + 2) ² +	$\frac{m^2(3a^2)}{1}$	$+3b^2+l^2)$ 2	+		
variasi 1									
depth	m1(ton)	a1(m)	b1(m)	l1(m)	m2 (ton)	a2 (m)	b2 (m)	l2 (m)	Iуу
10 m	2.630199	0.5	0.49	3.5	6.418156	0.15	0.05	13	936.8361
									lxx
	2.630199	2	1.99	3.5	6.418156	0.15	0.05	13	941.748
									Izz
									5.636653

adde	d mass mo				
	I = m1	.(1/2 +	2) ² + m2	$(2/2)^2$	
			,	,	
variasi 1					
depth	m1 (ton)	l1(m)	m2 (ton)	l2 (m)	Iyy
10 m	25.76106	2	0.941889	13	5088.963

	RAO		D=4m	d=1m	h=3.5m	depth=20m		thickness=1	0mm
ω _n	ω	Mmax	k	с	θ (rad)	θ (deg)	ζ ₀ (m)	rao (⊖/m)	rao (deg/m)
0.043495	0.025	0.49629	21.55492	0.05	0.034258	1.962841563	1.25	0.02740644	1.57027325
0.043495	0.05	1.984689	21.55492	0.05	0.269678	15.45139369	1.25	0.21574216	12.36111495
0.043495	0.075	4.463786	21.55492	0.05	0.104544	5.989914482	1.25	0.08363498	4.791931585
0.043495	0.1	7.931233	21.55492	0.05	0.085727	4.911823873	1.25	0.068582	3.929459098
0.043495	0.2	31.60535	21.55492	0.05	0.072771	4.169459098	1.25	0.05821663	3.335567279
0.043495	0.3	70.66972	21.55492	0.05	0.070388	4.032924162	1.25	0.05631024	3.22633933
0.043495	0.4	124.5559	21.55492	0.05	0.069137	3.961269206	1.25	0.05530975	3.169015365
0.043495	0.5	192.5056	21.55492	0.05	0.068095	3.901542245	1.25	0.05447581	3.121233796
0.043495	0.6	273.6013	21.55492	0.05	0.067053	3.841873033	1.25	0.05364267	3.073498426
0.043495	0.7	366.7979	21.55492	0.05	0.065952	3.778791796	1.25	0.05276189	3.023033436
0.043495	0.8	470.9531	21.55492	0.05	0.064775	3.711312726	1.25	0.0518197	2.969050181
0.043495	0.9	584.8535	21.55492	0.05	0.063519	3.639344329	1.25	0.05081483	2.911475463
0.043495	1	707.237	21.55492	0.05	0.062189	3.563148427	1.25	0.04975094	2.850518741
0.043495	1.1	836.8119	21.55492	0.05	0.060792	3.483126814	1.25	0.04863362	2.786501451
0.043495	1.2	972.2731	21.55492	0.05	0.059336	3.399730549	1.25	0.04746919	2.719784439
0.043495	1.3	1112.317	21.55492	0.05	0.05783	3.313421215	1.25	0.04626409	2.650736972
0.043495	1.4	1255.658	21.55492	0.05	0.056281	3.224655596	1.25	0.04502469	2.579724477
0.043495	1.5	1401.041	21.55492	0.05	0.054697	3.133880711	1.25	0.04375723	2.507104569
0.043495	1.6	1547.257	21.55492	0.05	0.053085	3.041532821	1.25	0.04246781	2.433226257
0.043495	1.7	1693.157	21.55492	0.05	0.051453	2.948037291	1.25	0.04116237	2.358429833
0.043495	1.8	1837.667	21.55492	0.05	0.049808	2.853807969	1.25	0.03984668	2.283046375
0.043495	1.9	1979.796	21.55492	0.05	0.048158	2.759245694	1.25	0.03852634	2.207396555
0.043495	2	2118.649	21.55492	0.05	0.046508	2.664736033	1.25	0.03720673	2.131788826
						15.45139369			

Tabel D.3 Kalkulasi RAO variasi 1, kedalaman 20 m

N	lass Mome	nt of Inert	ia						
I =	$\frac{m1(3a^2+1)}{12}$	$\left(\frac{3b^2+l^2}{2}\right)$	- m1(l1/2	2 + 2) ² +	$\frac{m^2(3a^2)}{1}$	$+3b^2+l^2)$ 2	+		
variasi 1		- 4 ()	h4 ()	14 ()		-2()	h2()	12 ()	
depth	m1 (ton)	a1 (m)	b1 (m)	11 (m)	m2 (ton)	a2 (m)	62 (m)	12 (m)	IXX
10 m	2.630199	0.5	0.49	3.5	8.884306	0.15	0.05	18	1988.51
									lyy
	2.630199	2	1.99	3.5	8.884306	0.15	0.05	18	1993.422
									lzz
									5.66748

adde	ed mass mo				
	$(2/2)^2$				
		、	,		
variasi 1					
depth	m1 (ton)	l1(m)	m2 (ton)	l2 (m)	Iyy
10 m	25.76106	2	1.304154	18	9405.37

	RAO		D=6m	<mark>d=1.5</mark> m	h=4.5m	depth=10m		thickness=2	5mm
ω _n	ω	Mmax	k	с	θ (rad)	θ (deg)	ζ ₀ (m)	rao (θ/m)	rao (deg/m)
0.266651	0.1	11.57476	531.9689	0.05	0.025295	1.44930794	1.25	0.02023616	1.159446352
0.266651	0.2	46.09774	531.9689	0.05	0.195249	11.18693766	1.25	0.15619912	8.949550132
0.266651	0.25	71.7931	531.9689	0.05	0.881699	50.51765882	1.25	0.70535958	40.41412706
0.266651	0.3	102.9712	531.9689	0.05	0.670695	38.42799214	1.25	0.53655599	30.74239371
0.266651	0.4	181.2189	531.9689	0.05	0.270528	15.50010978	1.25	0.21642236	12.40008782
0.266651	0.5	279.5154	531.9689	0.05	0.208257	11.93225382	1.25	0.16660569	9.545803055
0.266651	0.6	396.2248	531.9689	0.05	0.183035	10.48712318	1.25	0.14642786	8.389698546
0.266651	0.7	529.448	531.9689	0.05	0.168766	9.669592132	1.25	0.13501298	7.735673706
0.266651	0.8	677.0761	531.9689	0.05	0.158964	9.107970285	1.25	0.12717126	7.286376228
0.266651	0.9	836.8477	531.9689	0.05	0.151298	8.668749321	1.25	0.12103857	6.934999456
0.266651	1	1006.408	531.9689	0.05	0.144753	8.293740848	1.25	0.11580247	6.634992678
0.266651	1.1	1183.367	531.9689	0.05	0.138833	7.954519359	1.25	0.11106604	6.363615488
0.266651	1.2	1365.358	531.9689	0.05	0.133278	7.636247312	1.25	0.10662213	6.108997849
0.266651	1.3	1550.086	531.9689	0.05	0.127949	7.330945851	1.25	0.10235931	5.864756681
0.266651	1.4	1735.379	531.9689	0.05	0.122773	7.034353803	1.25	0.09821811	5.627483042
0.266651	1.5	1919.223	531.9689	0.05	0.117711	6.744325851	1.25	0.09416855	5.395460681
0.266651	1.6	2099.797	531.9689	0.05	0.112747	6.459955833	1.25	0.090198	5.167964666
0.266651	1.7	2275.495	531.9689	0.05	0.10788	6.181068541	1.25	0.086304	4.944854833
0.266651	1.8	2444.944	531.9689	0.05	0.103113	5.907911174	1.25	0.08249	4.726328939
0.266651	1.9	2607.008	531.9689	0.05	0.098453	5.640959175	1.25	0.07876265	4.51276734
0.266651	2	2760.793	531.9689	0.05	0.093913	5.380791	1.25	0.07513002	4.3046328
						50 51765882			

Tabel D.4 Kalkulasi RAO variasi 2, kedalaman 10 m	

N	lass Mome	nt of Inert	ia						
<i>I</i> =	$\frac{m1(3a^2+1)}{12}$	$\left(-\frac{3b^2+l^2}{2}\right)$	+ m1(l1/	2 + 2) ² +	$\frac{m^2(3a^2)}{1}$	$+3b^2+l^2)$ 2	+		
variasi 1									
depth	m1(ton)	a1 (m)	b1(m)	l1(m)	m2 (ton)	a2 (m)	b2 (m)	l2 (m)	Ixx
10 m	12.9943	0.75	0.725	4.5	3.458776	0.15	0.05	7	1193.802
									lyy
	12.9943	3	2.975	4.5	3.458776	0.15	0.05	7	1248.257
									Izz
									61.56718

adde	d mass mo				
	I = m1	(1/2 +	$(2)^{2} + m^{2}$	$(2/2)^2$	
		-(/		(.=/ =)	
variasi 1					
depth	m1 (ton)	l1(m)	m2 (ton)	l2 (m)	Iyy
10 m	86.94358	3	0.507171	7	6287.886

	RAO		D=6m	d=1.5m	h=4.5m	depth=15m		thickness=25r	
ω _n	ω	Mmax	k	с	θ (rad)	θ (deg)	ζ ₀ (m)	rao (ፀ/m)	rao (deg/m)
0.201523	0.1	18.44222	764.5214	0.05	0.031934	1.829666881	1.25	0.02554697	1.463733504
0.201523	0.15	41.4167	764.5214	0.05	0.119816	6.864975696	1.25	0.09585314	5.491980557
0.201523	0.19	66.31453	764.5214	0.05	0.595323	34.10948742	1.25	0.47625829	27.28758993
0.201523	0.25	114.3545	764.5214	0.05	0.270447	15.49548097	1.25	0.21635773	12.39638477
0.201523	0.3	163.9907	764.5214	0.05	0.175073	10.0309616	1.25	0.14005865	8.024769277
0.201523	0.4	288.495	764.5214	0.05	0.128069	7.337834562	1.25	0.1024555	5.87026765
0.201523	0.5	444.7639	764.5214	0.05	0.112702	6.45735176	1.25	0.09016164	5.165881408
0.201523	0.6	630.1091	764.5214	0.05	0.104723	6.000198138	1.25	0.08377857	4.80015851
0.201523	0.7	841.4203	764.5214	0.05	0.099411	5.695833768	1.25	0.07952884	4.556667014
0.201523	0.8	1075.256	764.5214	0.05	0.095259	5.457911171	1.25	0.07620682	4.366328937
0.201523	0.9	1327.938	764.5214	0.05	0.091658	5.251600654	1.25	0.07332618	4.201280523
0.201523	1	1595.653	764.5214	0.05	0.088329	5.060905944	1.25	0.07066358	4.048724755
0.201523	1.1	1874.542	764.5214	0.05	0.085137	4.877964079	1.25	0.06810923	3.902371263
0.201523	1.2	2160.798	764.5214	0.05	0.08201	4.698846311	1.25	0.06560827	3.759077049
0.201523	1.3	2450.742	764.5214	0.05	0.078918	4.521683824	1.25	0.06313462	3.61734706
0.201523	1.4	2740.904	764.5214	0.05	0.075848	4.345744991	1.25	0.06067805	3.476595992
0.201523	1.5	3028.076	764.5214	0.05	0.072797	4.170944116	1.25	0.05823737	3.336755293
0.201523	1.6	3309.373	764.5214	0.05	0.069771	3.997562579	1.25	0.0558165	3.198050064
0.201523	1.7	3582.259	764.5214	0.05	0.066778	3.826081948	1.25	0.05342218	3.060865558
0.201523	1.8	3844.581	764.5214	0.05	0.063828	3.657079824	1.25	0.05106247	2.925663859
0.201523	1.9	4094.573	764.5214	0.05	0.060932	3.491162835	1.25	0.04874583	2.792930268
0.201523	2	4330.859	764.5214	0.05	0.058101	3.328922804	1.25	0.04648053	2.663138243
						34.10948742			

Tabel D.5 Kalkulasi RAO variasi 2, kedalaman 15 m	
Tabel D.5 Kalkulasi RAO variasi 2, kedalaman 15 m	

N	lass Mome	nt of Inert	ia						
<i>I</i> =	$\frac{m1(3a^2+1)}{12}$	$\frac{3b^2+l^2}{2}$	+ m1(l1/	2 + 2) ² +	$\frac{m^2(3a^2)}{1}$	$+3b^2+l^2)$ 2	+		
variasi 1									
depth	m1 (ton)	a1 (m)	b1(m)	l1(m)	m2 (ton)	a2 (m)	b2 (m)	l2(m)	lyy
10 m	12.9943	0.75	0.725	4.5	5.924926	0.15	0.05	12	2948.551
									lxx
	12.9943	3	2.975	4.5	5.924926	0.15	0.05	12	3003.005
									lzz
									61.59801

adde	d mass mo				
	I = m1	(1/2 +	$(2/2)^2$		
		-(,		(/-)	
variasi 1					
depth	m1 (ton)	l1(m)	m2 (ton)	l2 (m)	Iyy
10 m	86.94358	3	0.869436	12	15876.77

	RAO		D=6m	d=1.5m	h=4.5m	depth=20m		5mm	
ω _n	ω	Mmax	k	с	θ (rad)	θ (deg)	ζ ₀ (m)	rao (ፀ/m)	rao (deg/m)
0.158693	0.1	25.35427	893.8782	0.05	0.04679	2.680893321	1.25	0.03743233	2.144714657
0.158693	0.125	39.58127	893.8782	0.05	0.11423	6.544882547	1.25	0.0913838	5.235906038
0.158693	0.145	53.21568	893.8782	0.05	0.315452	18.07409045	1.25	0.25236191	14.45927236
0.158693	0.2	100.9436	893.8782	0.05	0.187686	10.75362768	1.25	0.15014897	8.602902147
0.158693	0.25	157.1732	893.8782	0.05	0.117999	6.760825191	1.25	0.09439893	5.408660153
0.158693	0.3	225.3654	893.8782	0.05	0.097695	5.597518281	1.25	0.0781561	4.478014625
0.158693	0.4	396.3387	893.8782	0.05	0.082734	4.740286693	1.25	0.06618689	3.792229354
0.158693	0.5	610.7859	893.8782	0.05	0.076494	4.382807526	1.25	0.06119554	3.506246021
0.158693	0.6	864.9362	893.8782	0.05	0.072751	4.168343653	1.25	0.05820106	3.334674922
0.158693	0.7	1154.447	893.8782	0.05	0.069953	4.008023417	1.25	0.05596256	3.206418734
0.158693	0.8	1474.534	893.8782	0.05	0.067555	3.870601839	1.25	0.0540438	3.096481471
0.158693	0.9	1820.106	893.8782	0.05	0.065327	3.742989083	1.25	0.05226199	2.994391267
0.158693	1	2185.9	893.8782	0.05	0.063167	3.619192574	1.25	0.05053346	2.895354059
0.158693	1.1	2566.606	893.8782	0.05	0.061024	3.496413356	1.25	0.04881914	2.797130685
0.158693	1.2	2956.992	893.8782	0.05	0.058878	3.373435844	1.25	0.04710205	2.698748675
0.158693	1.3	3352.013	893.8782	0.05	0.056721	3.24988289	1.25	0.04537693	2.599906312
0.158693	1.4	3746.91	893.8782	0.05	0.054556	3.125838684	1.25	0.04364494	2.500670947
0.158693	1.5	4137.294	893.8782	0.05	0.052389	3.001643105	1.25	0.04191084	2.401314484
0.158693	1.6	4519.215	893.8782	0.05	0.050227	2.877772212	1.25	0.04018128	2.30221777
0.158693	1.7	4889.212	893.8782	0.05	0.04808	2.754764929	1.25	0.03846377	2.203811943
0.158693	1.8	5244.348	893.8782	0.05	0.045958	2.633176061	1.25	0.03676607	2.106540849
0.158693	1.9	5582.224	893.8782	0.05	0.04387	2.513545296	1.25	0.03509571	2.010836237
0.158693	2	5900.981	893.8782	0.05	0.041825	2.396376524	1.25	0.03345973	1.91710122
						18.07409045			

Tabel D.6 Kalkulasi RAO variasi 2, kedalaman 20 m

Ν	/lass Mome	nt of Inert	ia						
<i>I</i> =	$\frac{m1(3a^2-1)}{12}$	$-3b^2+l^2)$	+ m1(l1/2	2 + 2) ² +	$\frac{m^2(3a^2)}{1}$	$+3b^2+l^2)$	ŧ		
variasi 1									
depth	m1 (ton)	a1 (m)	b1(m)	l1 (m)	m2 (ton)	a2 (m)	b2 (m)	l2 (m)	lyy
10 m	12.9943	0.75	0.725	4.5	8.391076	0.15	0.05	17	5649.056
									lxx
	12.9943	3	2.975	4.5	8.391076	0.15	0.05	17	5703.51
									lzz
									61.62884

adde	d mass mo				
	I = m1	.(1/2 +	(l2/2) ²		
variasi 1					
depth	m1 (ton)	l1(m)	m2 (ton)	l2 (m)	Iyy
10 m	86.94358	3	1.231701	17	29845.43

	RAO		D=8m	d=2m	<mark>h=5.5m</mark>	depth=10m		thickness=3	0mm
ω _n	ω	Mmax	k	с	θ (rad)	θ (deg)	ζ ₀ (m)	rao (⊖/m)	rao (deg/m)
0.337702	0.1	25.74544	1743.911	0.05	0.016173	0.926671873	1.25	0.01293878	0.741337498
0.337702	0.2	102.4054	1743.911	0.05	0.090071	5.160684515	1.25	0.07205675	4.128547612
0.337702	0.32	259.1257	1743.911	0.05	1.066763	61.12101957	1.25	0.85341043	48.89681565
0.337702	0.4	400.5782	1743.911	0.05	0.546867	31.33319776	1.25	0.43749397	25.0665582
0.337702	0.5	615.5906	1743.911	0.05	0.293838	16.83570381	1.25	0.23507077	13.46856305
0.337702	0.6	868.7626	1743.911	0.05	0.230206	13.18980424	1.25	0.18416441	10.55184339
0.337702	0.7	1154.895	1743.911	0.05	0.200489	11.48716063	1.25	0.16039102	9.189728504
0.337702	0.8	1468.32	1743.911	0.05	0.182323	10.44632675	1.25	0.14585824	8.357061402
0.337702	0.9	1803.096	1743.911	0.05	0.169264	9.69813674	1.25	0.13541153	7.758509392
0.337702	1	2153.202	1743.911	0.05	0.158818	9.099604252	1.25	0.12705444	7.279683401
0.337702	1.1	2512.717	1743.911	0.05	0.149845	8.585512886	1.25	0.11987637	6.868410309
0.337702	1.2	2875.985	1743.911	0.05	0.141774	8.123067649	1.25	0.11341942	6.498454119
0.337702	1.3	3237.765	1743.911	0.05	0.1343	7.694813999	1.25	0.10743987	6.155851199
0.337702	1.4	3593.338	1743.911	0.05	0.127256	7.291212293	1.25	0.10180453	5.832969834
0.337702	1.5	3938.597	1743.911	0.05	0.120551	6.907050491	1.25	0.09644062	5.525640393
0.337702	1.6	4270.099	1743.911	0.05	0.114137	6.539565308	1.25	0.09130956	5.231652247
0.337702	1.7	4585.089	1743.911	0.05	0.10799	6.18739467	1.25	0.08639233	4.949915736
0.337702	1.8	4881.494	1743.911	0.05	0.102101	5.849965418	1.25	0.08168093	4.679972334
0.337702	1.9	5157.898	1743.911	0.05	0.096467	5.527123535	1.25	0.0771732	4.421698828
0.337702	2	5413.491	1743.911	0.05	0.091087	5.218906901	1.25	0.07286969	4.175125521
						61.12101957			

Tabel D.7 Kalkulasi RAO variasi 3, kedalaman 10 m	

N	lass Mome	nt of Inerti	ia						
<i>I</i> =	$\frac{m1(3a^2+1)}{12}$	$\frac{-3b^2+l^2)}{2}$	+ m1(l1/2	2 + 2) ² +	$\frac{m2(3a^2)}{1}$	$+3b^2+l^2)$ 2	+		
variasi 1									
depth	m1 (ton)	a1 (m)	b1(m)	l1(m)	m2 (ton)	a2 (m)	b2 (m)	l2 (m)	Iyy
10 m	25.9218	1	0.97	5.5	2.965546	0.15	0.05	6	2098.166
									lxx
	25.9218	4	3.97	5.5	2.965546	0.15	0.05	6	2291.413
									lzz
									218.4399

adde	d mass mo				
	I = m1	(1/2 +	2) ² + m2	$(12/2)^2$	
	1 1113		2) • 1112	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
variasi 1					
depth	m1 (ton)	l1(m)	m2 (ton)	l2 (m)	Iуу
10 m	206.0885	4	0.434718	6	13193.58

RAO		D=8m	d=2m	h=5.5m	depth=15m	thickness=30mm		0mm	
ω _n	ω	Mmax	k	с	θ (rad)	θ (deg)	ζ ₀ (m)	rao (ፀ/m)	rao (deg/m)
0.265539	0.1	41.88969	2824.023	0.05	0.017268	0.989387973	1.25	0.01381446	0.791510379
0.265539	0.2	166.5835	2824.023	0.05	0.134303	7.694976266	1.25	0.10744214	6.155981013
0.265539	0.26	269.4896	2824.023	0.05	0.772119	44.23916915	1.25	0.61769533	35.39133532
0.265539	0.4	651.0415	2824.023	0.05	0.18038	10.33499175	1.25	0.14430371	8.267993401
0.265539	0.5	999.8304	2824.023	0.05	0.138704	7.947178833	1.25	0.11096355	6.357743066
0.265539	0.6	1409.902	2824.023	0.05	0.121419	6.956802011	1.25	0.09713528	5.565441609
0.265539	0.7	1872.517	2824.023	0.05	0.111344	6.379535317	1.25	0.08907512	5.103628254
0.265539	0.8	2378.179	2824.023	0.05	0.104194	5.969900157	1.25	0.08335553	4.775920126
0.265539	0.9	2916.96	2824.023	0.05	0.098437	5.640037108	1.25	0.07874977	4.512029686
0.265539	1	3478.833	2824.023	0.05	0.093411	5.352073439	1.25	0.07472904	4.281658751
0.265539	1.1	4053.979	2824.023	0.05	0.088801	5.087900188	1.25	0.07104049	4.070320151
0.265539	1.2	4633.066	2824.023	0.05	0.084446	4.838405897	1.25	0.06755689	3.870724718
0.265539	1.3	5207.489	2824.023	0.05	0.080267	4.598980904	1.25	0.06421389	3.679184723
0.265539	1.4	5769.557	2824.023	0.05	0.076226	4.367409887	1.25	0.06098055	3.49392791
0.265539	1.5	6312.632	2824.023	0.05	0.072305	4.142792562	1.25	0.0578443	3.31423405
0.265539	1.6	6831.213	2824.023	0.05	0.068503	3.924951557	1.25	0.05480266	3.139961245
0.265539	1.7	7320.969	2824.023	0.05	0.064823	3.714090123	1.25	0.05185848	2.971272098
0.265539	1.8	7778.726	2824.023	0.05	0.061271	3.510587007	1.25	0.04901704	2.808469606
0.265539	1.9	8202.409	2824.023	0.05	0.057855	3.314871246	1.25	0.04628433	2.651896997
0.265539	2	8590.961	2824.023	0.05	0.054582	3.12734603	1.25	0.04366599	2.501876824
						44.23916915			

Tabel D.8 Kalkulasi RAO variasi 3, kedalaman 15 m	

N	lass Mome	nt of Inert	ia						
<i>I</i> =	$\frac{m1(3a^2+1)}{12}$	$-3b^2+l^2$	+ m1(l1/2	2 + 2) ² +	$\frac{m2(3a^2)}{1}$	$+3b^2+l^2)$	+		
variasi 1									
depth	m1 (ton)	a1 (m)	b1(m)	l1(m)	m2 (ton)	a2 (m)	b2 (m)	l2 (m)	Iуу
10 m	25.9218	1	0.97	5.5	5.431696	0.15	0.05	11	5197.876
									Ixx
	25.9218	4	3.97	5.5	5.431696	0.15	0.05	11	5391.123
									Izz
									218.4708

adde	d mass mo								
	$I = m1(11/2 + 12)^2 + m2$			$(2/2)^2$					
		-((/-)					
variasi 1									
depth	m1 (ton)	l1(m)	m2 (ton)	l2 (m)	Iyy				
10 m	206.0885	4	0.796983	11	34853.06				
	RAO		D=8m	d=2m	<mark>h=5.5m</mark>	depth=20m		thickness=3	0mm
----------------	-----	----------	----------	------	---------------------	-------------	--------------------	-------------	-------------
ω _n	ω	Mmax	k	с	θ (rad)	θ (deg)	ζ ₀ (m)	rao (⊖/m)	rao (deg/m)
0.222594	0.1	58.07853	3800.939	0.05	0.019113	1.095119948	1.25	0.01529076	0.876095958
0.222594	0.2	242.5253	3800.939	0.05	0.359305	20.58666708	1.25	0.2874441	16.46933366
0.222594	0.3	514.4715	3800.939	0.05	0.163577	9.372276276	1.25	0.13086166	7.497821021
0.222594	0.4	902.0723	3800.939	0.05	0.106121	6.080256915	1.25	0.0848964	4.864205532
0.222594	0.5	1384.844	3800.939	0.05	0.089921	5.152075975	1.25	0.07193655	4.12166078
0.222594	0.6	1951.984	3800.939	0.05	0.081888	4.691808729	1.25	0.06551001	3.753446983
0.222594	0.7	2591.194	3800.939	0.05	0.076642	4.391267021	1.25	0.06131365	3.513013617
0.222594	0.8	3289.138	3800.939	0.05	0.072583	4.158723101	1.25	0.05806673	3.326978481
0.222594	0.9	4031.903	3800.939	0.05	0.069092	3.958653749	1.25	0.05527323	3.166923
0.222594	1	4805.467	3800.939	0.05	0.065891	3.775254781	1.25	0.0527125	3.020203825
0.222594	1.1	5596.13	3800.939	0.05	0.062849	3.601006372	1.25	0.05027953	2.880805097
0.222594	1.2	6390.901	3800.939	0.05	0.059905	3.43230491	1.25	0.04792402	2.745843928
0.222594	1.3	7177.827	3800.939	0.05	0.057029	3.26754652	1.25	0.04562356	2.614037216
0.222594	1.4	7946.257	3800.939	0.05	0.054213	3.106193993	1.25	0.04337065	2.484955194
0.222594	1.5	8687.031	3800.939	0.05	0.051457	2.948284054	1.25	0.04116581	2.358627243
0.222594	1.6	9392.593	3800.939	0.05	0.048767	2.794150104	1.25	0.0390137	2.235320083
0.222594	1.7	10057.04	3800.939	0.05	0.046151	2.644258746	1.25	0.03692082	2.115406997
0.222594	1.8	10676.09	3800.939	0.05	0.043618	2.499110595	1.25	0.03489417	1.999288476
0.222594	1.9	11247.01	3800.939	0.05	0.041175	2.359179696	1.25	0.03294036	1.887343757
0.222594	2	11768.49	3800.939	0.05	0.038831	2.224877421	1.25	0.03106515	1.779901937
						20.58666708			

Tabel D.9 Kalkulasi RAO variasi 3, kedalaman 20 m	

N	lass Mome	nt of Inert	ia						
<i>I</i> =	$\frac{m1(3a^2+1)}{12}$	$\left(-3b^2+l^2\right)$	+ m1(l1/2	2 + 2) ² +	$m2(3a^2)$	$+3b^2+l^2)$	ł		
variasi 1									
depth	m1 (ton)	a1 (m)	b1 (m)	l1 (m)	m2 (ton)	a2 (m)	b2 (m)	l2 (m)	Iyy
10 m	25.9218	1	0.97	5.5	7.897846	0.15	0.05	16	9865.055
									Ixx
	25.9218	4	3.97	5.5	7.897846	0.15	0.05	16	10058.3
									Izz
									218.5016

adde	d mass mo				
	I = m1	(1/2 +	2) ² + m2	$(2/2)^2$	
				(/-)	
variasi 1					
depth	m1 (ton)	l1(m)	m2 (ton)	l2 (m)	Ι
10 m	206.0885	4	1.159248	16	66846.86

LAMPIRAN B (HASIL RUNNING AQWA)

variasi 1

Project

Name	Project
Data Folder Root	D:\tenanan\tugas akhir\runningan aqwa\run btch run\vari1_files\dp0\AQW\AQW
Date of Creation	6/14/2017 1:12:20 AM
Last Modified	7/9/2017 9:41:19 PM
Global Control	50
Geometric Features	50
Connections	50
Environment Features	50
Product Version	16.0 RELEASE

Contents

- **Units**
- Model (A3)
 - Geometry 0
 - Part
- Surface Body
- Part Axes .
- Surface Body
- Surface Body
- Surface Body
- Surface Body
- Point Mass
- Point Buoyancy
- Connections 0
 - Catenary Data
- Mesh 0
- Hydrodynamic Diffraction (A4) 0
 - Analysis Settings
 - . Gravity
 - Structure Selection
 - . Wave Directions
 - Wave Frequencies .
 - Solution (A5)
 - RAOs (Response Amplitude Operators) (Distance/Rotation vs Frequency)
 - Pressures and Motions

Report Not Finalized

Not all objects described below are in a finalized state. As a result, data may be incomplete, obsolete or in error. View first state problem. To finalize this report, edit objects as needed and solve the analyses.

Units

TABLE 1			
Length	Metre		
Mass	Kilograms		
Rotational Velocity	Degrees		
Force	Newton		
Frequency	Radians per Second		
Time	Second		

Model (A3)

Geometry

.	_
Object Name	Geometry
State	Fully Defined
	Details of Geometry
Attached Assembly	D:\tenanan\tugas akhir\runningan aqwa\run btch
Name	run\vari1_files\dp0\AQW\DM\AQW.agdb
	Sea Geometry
Water Depth	10.1 m
Water Density	1025 kg/m³
Water Size X	1000 m
Water Size Y	1000 m
	Import Preferences
Import Solid	No
Bodies	INC
Import Surface	Vac
Bodies	1 65
Import Line Bodies	Yes

Part

Model (A3) > Geometry > Part				
Object Name	Part			
State	Fully Defined			
Details of	ⁱ Part			
Part Visibility	Visible			
Suppressed	Not Suppressed			
Total Structural Mass	6580 kg			
X Position of COG	0.0 m			
Y Position of COG	0.0 m			
Z Position of COG	-3.7 m			
Generate Internal Lid	No			
Current Calculation Depth	0.0 m			
Fixity Op	Fixity Options			
Structure Fixity	Structure is Free to Move			
Force Fac	ctors			
Drag Factor	1			
Mass Factor	1			
Slam Factor	0.0			
Advanced C	Options			
Submerged Structure Detection	Program Controlled			
Override Calculated GMX	No			
Override Calculated GMY	No			
Non-Linear Ro	Non-Linear Roll Damping			
Non-Linear Roll Damping	Excluded from Calculations			

TABLE 3 Model (A3) > Geometry > Pa

TABLE 4 Model (A3) > Geometry > Part > Body					
	Object Name	Surface Body	-		

State	Fully Defined
Details of	Surface Body
Body Visibility	Visible

Suppressed	Not Suppressed
Structure Type	Physical Geometry
Surface Type	Program Controlled

Model (A3) > Geometry	> Part > Axes
Object Name	Part Axes

State	Fully Defined	
Details of Part Axes		
Visibility	Visible	
Alignment Method	Global Axes	
Rotation About Global Z	0.0°	
Rotation About Local Y	0.0°	
Rotation About Local X	0.0°	
Unit Vector X	[1, 0.0, 0.0]	
Unit Vector Y	[0.0, 1, 0.0]	
Unit Vector Z	[0.0, 0.0, 1]	

TABLE 6

Model (A3) > Geometry > Part > Body

Object Name	Surface Body	
State	Fully Defined	
Details of Surface Body		
Body Visibility	Visible	
Suppressed	Not Suppressed	
Structure Type	Physical Geometry	
Surface Type	Program Controlled	

TABLE 7

Model (A3) > Geometry > Part > Body

Object Name	Surface Body	
State	Fully Defined	
Details of Surface Body		
Body Visibility	Visible	
Suppressed	Not Suppressed	
Structure Type	Physical Geometry	
Surface Type	Program Controlled	

TABLE 8 Model (A3) > Geometry > Part > Body Object Name Surface Body

State	Fully Defined	
Details of Surface Body		
Body Visibility	Visible	
Suppressed	Not Suppressed	
Structure Type	Physical Geometry	
Surface Type	Program Controlled	

TABLE 9 Model (A3) > Geometry > Part > Body Object Name Surface Body

State	Fully Defined	
Details of Surface Body		
Body Visibility	Visible	
Suppressed	Not Suppressed	
Structure Type	Physical Geometry	
Surface Type	Program Controlled	

TABLE 10 Model (A3) > Geometry > Part > Point Mass **Object Name** Point Mass State **Fully Defined Details of Point Mass** Visibility Visible Suppressed Not Suppressed Х 0.0 m Y 0.0 m Ζ -3.7 m Mass Definition Manual 6580 kg Mass Define Inertia Values by Direct input of Inertia Kxx 6.43884016061758 m

Куу	14.4674721620565 m
Kzz	7.72238683042119E-02 m
Ixx	272798 kg.m ²
Ixy	0.0 kg.m ²
lxz	0.0 kg.m ²
lyy	1377245 kg.m ²
lyz	0.0 kg.m ²
Izz	39.24 kg.m²

TABLE 11

Model (A3) > Geometry > Part > Point Buoyancy

Object Name	Point Buoyancy	
State	Fully Defined	
Details of Point Buoyancy		
Visibility	Visible	
Suppressed	Not Suppressed	
Х	0.0 m	
Y	0.0 m	
Z	-1.41 m	
Volume	6.848 m ³	

Connections

TABLE 12Model (A3) > ConnectionsObject NameConnectionsStateFully DefinedDetails of Connections

 TABLE 13

 Model (A3) > Connections > Catenary Data

 Object Name
 Catenary Data

 State
 Fully Defined

 Details of Catenary Data

Mesh

TABLE 14			
Model (A3)	> Mesh		
Object Name	Mesh		
State	Meshed		
Details of	Details of Mesh		
Defaul	ts		
Global Control	Basic Controls		
Mesh Para	Mesh Parameters		
Defeaturing Tolerance	0.00001 m		
Max Element Size	0.2 m		
Max Allowed Frequency	8.143 rad/s		
Meshing Type	Program Controlled		
Generated Mesh Information			
Number of Nodes	6144		
Number of Elements	6138		
Number of Diff Nodes	3835		
Number of Diff Elements	3757		

Hydrodynamic Diffraction (A4)

	TABLE 15		
Model (A3) > Analysis			
	Object Name	Hydrodynamic Diffraction (A4)	
	State	Solved	
	Details of Hydrodynamic Diffraction		
	Analysis Type	Hydrodynamic Diffraction/Radiation	

TABLE 16 Model (A3) > Hydrodynamic Diffraction (A4) > Analysis Settings

Object Name	Analysis Settings		
State	Fully Defined		
Details of Analysis Setti	Details of Analysis Settings		
Parallel Processing	Program Controlled		
Generate Wave Grid Pressures	Yes		
Wave Grid Size Factor	2		
Common Analysis Options			
Ignore Modelling Rule Violations	Yes		
Calculate Extreme Low/High Frequencies	Yes		
Calculate Drift Coefficients	Yes		
Include Multi-Directional Wave Interaction	Yes		
Near Field Solution	Program Controlled		
Linearized Morison Drag	No		

QTF Options			
Calculate Full QTF Matrix	Yes		
Output File Options			
Full QTF Matrix	No		
Field Point Wave Elevation	Yes		
Source Strengths	No		
Potentials	No		
Centroid Pressures	No		
Element Properties	No		
ASCII Hydrodynamic Database	No		
Example of Hydrodynamic Database	No		

TABLE 18			
Model (A3) > Hydrodynamic Diffraction (A4) > Structure Selection			
	Object Name	Structure Selection	
	State	Fully Defined	
	Details of Structure	ails of Structure Selection	
	Structures to Exclude	None	
Group of Structures			
	Interacting Structure Groups	None	
Structure Ordering			
	Structure 1	Part	

	Stru	cture 1	Part	
	ТА	BLE 19		
Model (/	A3) > Hydrodynamic	Diffract	ion (A4) > Wave Di	irection
	Object Name		Wave Direction	S
	State		Fully Defined	
	Details of V	Nave Di	rections	
	Туре	Range o	of Directions, No Fo	rward Speed
Required Wave Input				
	Wave Range		-180° to 180°	
	Interval		180°	
Number of Int	termediate Directions		1	
	Optional W	ave Dire	ctions A	
	Additional Range		None	
	Optional W	ave Dire	ctions B	
	Additional Range		None	
	Optional W	ave Dire	ections C	
	Additional Range		None	
	Optional W	ave Dire	ctions D	

TABLE 20Model (A3) > Hydrodynamic Diffraction (A4) > Wave Frequency

None

Additional Range

Object Name	Wave Frequencies	
State	Fully Defined	
Details of Wave Fre	quencies	
Intervals Based Upon	Frequency	
Frequency/Period D	Definition	
Range	Manual Definition	
Definition Type	Range	
Lowest Frequency Definition	Program Controlled	
Lowest Frequency	0.1 rad/s	
Longest Period	62.83185 s	
Highest Frequency Definition	Manual Definition	
Highest Frequency	2 rad/s	
Shortest Period	3.14159 s	
Number of Intermediate Values	36	
Interval Frequency	0.05135 rad/s	
Additional Frequencies A		
Additional Range	None	
Additional Frequencies B		
Additional Range None		
Additional Frequencies C		
Additional Range None		
Additional Frequencies D		
Additional Range	None	

Solution (A5)

TABLE 21Model (A3) > Hydrodynamic Diffraction (A4) > Solution (A5) > Hydrodynamic Graph
Results

Object Name	RAOs (Response Amplitude Operators) (Distance/Rotation vs Frequency)			
State	Solved			
Details of RAOs (Response Amplitude Operators) (Distance/Rotation vs Frequence				
Presentation Method	Line			
Axes Selection	Distance/Rotation vs Frequency			
Frequency or Period Scale	Frequency			
Export CSV File	Select CSV File			
Line A				
Structure	Part			
Туре	RAOs (Response Amplitude Operators)			
Component	Global RY			
Direction	-180°			
Position of Min in X	0.1			
Position of Max in X	0.305			
Minimum Value	0.507			
Maximum Value	12.311			
	Line B			
Structure	Undefined			

FIGURE 1 Model (A3) > Hydrodynamic Diffraction (A4) > Solution (A5) > RAOs (Response Amplitude Operators) (Distance/Rotation vs Frequency)

TABLE 22Model (A3) > Hydrodynamic Diffraction (A4) > Solution (A5) > RAOs (Response
Amplitude Operators) (Distance/Rotation vs Frequency)

operators) (Distance/Notation V3				
	Line A (°/m)			
0.1 rad/s	0.506582057330887			
0.15135 rad/s	0.889632352837572			
0.2027 rad/s	1.53538586444896			
0.25405 rad/s	3.04504987681389			
0.30541 rad/s	12.3106911251223			
0.35676 rad/s	8.23271643588245			
0.40811 rad/s	3.38921307725049			
0.45946 rad/s	2.23315148003341			
0.51081 rad/s	1.71025588939592			
0.56216 rad/s	1.41148954127781			
0.61351 rad/s	1.21794236404545			
0.66486 rad/s	1.08231519097481			
0.71622 rad/s	0.982621749849299			
0.76757 rad/s	0.906736747344871			
0.81892 rad/s	0.84722696329299			
0.87027 rad/s	0.800088359375294			
0.92162 rad/s	0.761976010528328			
0.97297 rad/s	0.731090108544942			
1.02432 rad/s	0.705946741467097			
1.07568 rad/s	0.685530132099165			

1.12703 rad/s0.668764525646871.17838 rad/s0.6553308242099241.22973 rad/s0.6444952093393751.28108 rad/s0.6358153729256111.33243 rad/s0.6289968697823821.38378 rad/s0.623648991744821.43514 rad/s0.6195118180984971.48649 rad/s0.6137617059518451.53784 rad/s0.61137617059518451.58919 rad/s0.6100554745534671.69189 rad/s0.6085934939059671.74324 rad/s0.607168865855491.79459 rad/s0.6023526219952791.8973 rad/s0.6005684485180252 rad/s0.598560586345453		
1.17838 rad/s0.6553308242099241.22973 rad/s0.6444952093393751.28108 rad/s0.6358153729256111.33243 rad/s0.6289968697823821.38378 rad/s0.623648991744821.43514 rad/s0.6195118180984971.48649 rad/s0.6137617059518451.53784 rad/s0.6137617059518451.58919 rad/s0.6117686780963761.64054 rad/s0.6100554745534671.69189 rad/s0.6085934939059671.74324 rad/s0.607168865855491.79459 rad/s0.6023526219952791.8973 rad/s0.6005684485180252 rad/s0.598560586345453	1.12703 rad/s	0.66876452564687
1.22973 rad/s0.6444952093393751.28108 rad/s0.6358153729256111.33243 rad/s0.6289968697823821.38378 rad/s0.623648991744821.43514 rad/s0.6195118180984971.48649 rad/s0.6195118180984971.48649 rad/s0.6137617059518451.53784 rad/s0.6137617059518451.58919 rad/s0.6117686780963761.64054 rad/s0.6100554745534671.69189 rad/s0.6085934939059671.74324 rad/s0.607168865855491.79459 rad/s0.6023526219952791.8973 rad/s0.6005684485180252 rad/s0.598560586345453	1.17838 rad/s	0.655330824209924
1.28108 rad/s0.6358153729256111.33243 rad/s0.6289968697823821.38378 rad/s0.623648991744821.43514 rad/s0.6195118180984971.48649 rad/s0.6163183844963981.53784 rad/s0.6137617059518451.58919 rad/s0.6117686780963761.64054 rad/s0.6100554745534671.69189 rad/s0.6085934939059671.74324 rad/s0.607168865855491.79459 rad/s0.6023526219952791.8973 rad/s0.6005684485180252 rad/s0.598560586345453	1.22973 rad/s	0.644495209339375
1.33243 rad/s0.6289968697823821.38378 rad/s0.623648991744821.43514 rad/s0.6195118180984971.48649 rad/s0.6137617059518451.53784 rad/s0.6137617059518451.58919 rad/s0.6117686780963761.64054 rad/s0.6100554745534671.69189 rad/s0.6085934939059671.74324 rad/s0.607168865855491.79459 rad/s0.60236202805437481.84595 rad/s0.6023526219952791.94865 rad/s0.6005684485180252 rad/s0.598560586345453	1.28108 rad/s	0.635815372925611
1.38378 rad/s0.623648991744821.43514 rad/s0.6195118180984971.48649 rad/s0.613183844963981.53784 rad/s0.6137617059518451.58919 rad/s0.6137617059518451.64054 rad/s0.6100554745534671.69189 rad/s0.6085934939059671.74324 rad/s0.607168865855491.79459 rad/s0.6056202805437481.84595 rad/s0.6040417597935351.8973 rad/s0.6005684485180252 rad/s0.598560586345453	1.33243 rad/s	0.628996869782382
1.43514 rad/s0.6195118180984971.48649 rad/s0.6163183844963981.53784 rad/s0.6137617059518451.58919 rad/s0.6117686780963761.64054 rad/s0.6100554745534671.69189 rad/s0.6085934939059671.74324 rad/s0.607168865855491.79459 rad/s0.607168865855491.84595 rad/s0.6040417597935351.8973 rad/s0.6023526219952791.94865 rad/s0.6005684485180252 rad/s0.598560586345453	1.38378 rad/s	0.62364899174482
1.48649 rad/s0.6163183844963981.53784 rad/s0.6137617059518451.58919 rad/s0.6117686780963761.64054 rad/s0.6100554745534671.69189 rad/s0.6085934939059671.74324 rad/s0.607168865855491.79459 rad/s0.6056202805437481.84595 rad/s0.6023526219952791.94865 rad/s0.6005684485180252 rad/s0.598560586345453	1.43514 rad/s	0.619511818098497
1.53784 rad/s0.6137617059518451.58919 rad/s0.6117686780963761.64054 rad/s0.6100554745534671.69189 rad/s0.6085934939059671.74324 rad/s0.607168865855491.79459 rad/s0.6056202805437481.84595 rad/s0.6040417597935351.8973 rad/s0.6023526219952791.94865 rad/s0.6005684485180252 rad/s0.598560586345453	1.48649 rad/s	0.616318384496398
1.58919 rad/s0.6117686780963761.64054 rad/s0.6100554745534671.69189 rad/s0.6085934939059671.74324 rad/s0.607168865855491.79459 rad/s0.6056202805437481.84595 rad/s0.6040417597935351.8973 rad/s0.6023526219952791.94865 rad/s0.6005684485180252 rad/s0.598560586345453	1.53784 rad/s	0.613761705951845
1.64054 rad/s0.6100554745534671.69189 rad/s0.6085934939059671.74324 rad/s0.607168865855491.79459 rad/s0.6056202805437481.84595 rad/s0.6040417597935351.8973 rad/s0.6023526219952791.94865 rad/s0.6005684485180252 rad/s0.598560586345453	1.58919 rad/s	0.611768678096376
1.69189 rad/s0.6085934939059671.74324 rad/s0.607168865855491.79459 rad/s0.6056202805437481.84595 rad/s0.6040417597935351.8973 rad/s0.6023526219952791.94865 rad/s0.6005684485180252 rad/s0.598560586345453	1.64054 rad/s	0.610055474553467
1.74324 rad/s0.607168865855491.79459 rad/s0.6056202805437481.84595 rad/s0.6040417597935351.8973 rad/s0.6023526219952791.94865 rad/s0.6005684485180252 rad/s0.598560586345453	1.69189 rad/s	0.608593493905967
1.79459 rad/s0.6056202805437481.84595 rad/s0.6040417597935351.8973 rad/s0.6023526219952791.94865 rad/s0.6005684485180252 rad/s0.598560586345453	1.74324 rad/s	0.60716886585549
1.84595 rad/s0.6040417597935351.8973 rad/s0.6023526219952791.94865 rad/s0.6005684485180252 rad/s0.598560586345453	1.79459 rad/s	0.605620280543748
1.8973 rad/s0.6023526219952791.94865 rad/s0.6005684485180252 rad/s0.598560586345453	1.84595 rad/s	0.604041759793535
1.94865 rad/s0.6005684485180252 rad/s0.598560586345453	1.8973 rad/s	0.602352621995279
2 rad/s 0.598560586345453	1.94865 rad/s	0.600568448518025
	2 rad/s	0.598560586345453

Model (A3) > Hydrodynamic Diffraction (A4) > Solution (A5) > Pressures and Motions Results

	Suits
Object Name	Pressures and Motions
State	Underdefined
Details of Pressures	and Motions
Structure Selection	None
Result Selec	ction
Frequency	0.1 rad/s
Direction	0.0°
Incident Wave Amplitude	1 m
Result Type	Phase Angle
Wave Position (Phase)	0
Contour Selection	
Structure Contour Type	Interpolated Pressure
Above Water Body Display	Dimmed
Pressure Measurement	Head of Water
Wave Contour Type	Wave Height
Component Selection	
Include Incident Wave	Yes
Include Diffracted Wave	Yes
Include Radiation Wave	Yes
Include Hydrostatic Differential	Yes
Include Second Order Terms	Yes
Results	3
Minimum Value	0.0
Maximum Value	0.0

FIGURE 2 Model (A3) > Hydrodynamic Diffraction (A4) > Solution (A5) > Pressures and Motions

variasi 2

Project

Name	Project
Data Folder Root	D:\tenanan\tugas akhir\runningan aqwa\run btch run\vari2_files\dp0\AQW\AQW
Date of Creation	6/15/2017 1:44:31 AM
Last Modified	7/10/2017 2:12:59 PM
Global Control	50
Geometric Features	50
Connections	50
Environment Features	50
Product Version	16.0 RELEASE

Contents

- **Units**
- Model (A3)
 - Geometry 0
 - Part
 - Surface Body
 - Part Axes
 - Point Mass
 - Point Buoyancy
 - Connections 0
 - Catenary Data
 - Mesh 0
 - Hydrodynamic Diffraction (A4) 0
 - Analysis Settings
 - . Gravity
 - Structure Selection
 - . Wave Directions
 - Wave Frequencies .
 - Solution (A5)
 - RAOs (Response Amplitude Operators) (Distance/Rotation vs Frequency)
 - Pressures and Motions

Report Not Finalized

Not all objects described below are in a finalized state. As a result, data may be incomplete, obsolete or in error. View first state problem. To finalize this report, edit objects as needed and solve the analyses.

Units

TABLE 1		
Length	Metre	
Mass	Kilograms	
Rotational Velocity	Degrees	
Force	Newton	
Frequency	Radians per Second	
Time	Second	

Model (A3)

Geometry

Object Name	Geometry	
State	Fully Defined	
	Details of Geometry	
Attached Assembly Name	D:\tenanan\tugas akhir\runningan aqwa\run btch run\vari2_files\dp0\AQW\DM\AQW.agdb	
Sea Geometry		
Water Depth	15.1 m	
Water Density	1025 kg/m³	
Water Size X	1000 m	
Water Size Y	1000 m	
Import Preferences		
Import Solid Bodies	No	
Import Surface Bodies	Yes	
Import Line Bodies	Yes	

Part

Model (A3) > Geometry > Part			
Object Name Part			
State	Fully Defined		
Details of	ⁱ Part		
Part Visibility	Visible		
Suppressed	Not Suppressed		
Total Structural Mass	9050 kg		
X Position of COG	0.0 m		
Y Position of COG	0.0 m		
Z Position of COG	-6.1 m		
Generate Internal Lid	No		
Current Calculation Depth	0.0 m		
Fixity Options			
Structure Fixity	Structure is Free to Move		
Force Fac	Force Factors		
Drag Factor	1		
Mass Factor	1		
Slam Factor	0.0		
Advanced Options			
Submerged Structure Detection	Program Controlled		
Override Calculated GMX	No		
Override Calculated GMY	No		
Non-Linear Roll Damping			
Non-Linear Roll Damping	Excluded from Calculations		

TABLE 3 Model (A3) > Geometry > Pa

M	TA Iodel (A3) > Geo	\BLE 4 ometry > Part > Bod	y
	Object Name	Surface Body	

State	Fully Defined
Details of	Surface Body
Body Visibility	Visible

Suppressed	Not Suppressed
Structure Type	Physical Geometry
Surface Type	Program Controlled

Model (A3) > Geometry > Part > Body

	Object Name	Surface Body
	State	Fully Defined
Details of Surface Body		Surface Body
	Body Visibility	Visible
	Suppressed	Not Suppressed
	Structure Type	Physical Geometry
	Surface Type	Program Controlled

TABLE 6

Model (A3) > Geometry > Part > Body

Object Name	Surface Body	
State	tate Fully Defined	
Details of Surface Body		
Body Visibility	Visible	
Suppressed Not Suppress		
Structure Type	Physical Geometry	
Surface Type	Program Controlled	

TABLE 7Model (A3) > Geometry > Part > Body

	Object Name	Surface Body
	State	Fully Defined
Details of Surface Body		Surface Body
	Body Visibility	Visible
	Suppressed	Not Suppressed
	Structure Type	Physical Geometry
	Surface Type	Program Controlled

TABLE 8

Model (A3) > Geometry > Part > Body

Object Name	Surface Body	
State	Fully Defined	
Details of Surface Body		
Body Visibility	Visible	
Suppressed	Not Suppressed	
Structure Type	Physical Geometry	
Surface Type	Program Controlled	

TABLE 9

Model (A3) > Geometry > Part > Axes			
Object Name Part Axe			
State	Fully Defined		
Details of Part Axes			
Visibility	Visible		
Alignment Method	Global Axes		

Rotation About Global Z	0.0°
Rotation About Local Y	0.0°
Rotation About Local X	0.0°
Unit Vector X	[1, 0.0, 0.0]
Unit Vector Y	[0.0, 1, 0.0]
Unit Vector Z	[0.0, 0.0, 1]

Model (A3) > Geometry > Part > Point Mass

Object Name	Point Mass	
State	Fully Defined	
Details of	Point Mass	
Visibility	Visible	
Suppressed	Not Suppressed	
Х	0.0 m	
Y	0.0 m	
Z	-6.1 m	
Mass Definition	Manual	
Mass	9050 kg	
Define Inertia Values by	Direct input of Inertia	
Кхх	9.74814332796464 m	
Куу	21.0106629072265 m	
Kzz	4.32262453527116E-02 m	
Ixx	859988 kg.m²	
lxy	0.0 kg.m ²	
lxz	0.0 kg.m²	
lyy	3995104 kg.m ²	
lyz	0.0 kg.m ²	
lzz	16.91 kg.m ²	

TABLE 11

Model (A3) > Geometry > Part > Point Buoyancy

Object Name	Point Buoyancy	
State	Fully Defined	
Details of Point Buoyancy		
Visibility	Visible	
Suppressed	Not Suppressed	
Х	0.0 m	
Y	0.0 m	
Z	-1.96 m	
Volume	7.202 m ³	

Connections

TABLE 12Model (A3) > ConnectionsObject NameConnectionsStateFully DefinedDetails of Connections

 TABLE 13

 Model (A3) > Connections > Catenary Data

 Object Name
 Catenary Data

 State
 Fully Defined

 Details of Catenary Data

Mesh

TABLE 14 Model (A3) > Mesh		
Object Name Mesh		
State	Meshed	
Details of Mesh		
Defaults		
Global Control	Basic Controls	
Mesh Parameters		
Defeaturing Tolerance	0.00001 m	
Max Element Size	0.2 m	
Max Allowed Frequency	8.239 rad/s	
Meshing Type	Program Controlled	
Generated Mesh Information		
Number of Nodes	6648	
Number of Elements	6642	
Number of Diff Nodes	4339	
Number of Diff Elements	4261	

Hydrodynamic Diffraction (A4)

TABLE 15		
wodel (A3) > Analysis		
Object Name	Hydrodynamic Diffraction (A4)	
State	Solved	
Details of Hydrodynamic Diffraction		

Analysis Type Hydrodynamic Diffraction/Radiation

TABLE 16

Model (A3) > Hydrodynamic Diffraction (A4) > Analysis Settings

Object Name	Analysis Settings	
State	Fully Defined	
Details of Analysis Settings		
Parallel Processing	Program Controlled	
Generate Wave Grid Pressures	Yes	
Wave Grid Size Factor	2	
Common Analysis Options		
Ignore Modelling Rule Violations	Yes	
Calculate Extreme Low/High Frequencies	Yes	
Calculate Drift Coefficients	Yes	
Include Multi-Directional Wave Interaction	Yes	
Near Field Solution	Program Controlled	
Linearized Morison Drag	No	

QTF Options			
Calculate Full QTF Matrix	Yes		
Output File Options			
Full QTF Matrix	No		
Field Point Wave Elevation	Yes		
Source Strengths	No		
Potentials	No		
Centroid Pressures	No		
Element Properties	No		
ASCII Hydrodynamic Database	No		
Example of Hydrodynamic Database	No		

TABLE 18				
Model (A3	Model (A3) > Hydrodynamic Diffraction (A4) > Structure Selection			
	Object Name	Structure Selection		
	State	Fully Defined		
	Details of Structure	Selection		
	Structures to Exclude	None		
	Group of Struc	tures		
	Interacting Structure Groups	None		
	Structure Ord	ering		
	Structure 1	Part		

	Stru	cture 1	Part	
TABLE 19				
Model (/	A3) > Hydrodynamic	Diffract	ion (A4) > Wave Di	irection
	Object Name		Wave Direction	S
	State		Fully Defined	
Details of Wave Directions				
	Туре	Range o	of Directions, No Fo	rward Speed
Required Wave Input				
	Wave Range		-180° to 180°	
	Interval		180°	
Number of Int	termediate Directions		1	
	Optional W	ave Dire	ctions A	
	Additional Range		None	
	Optional W	ave Dire	ctions B	
	Additional Range		None	
	Optional W	ave Dire	ections C	
	Additional Range		None	
	Optional W	ave Dire	ctions D	

TABLE 20Model (A3) > Hydrodynamic Diffraction (A4) > Wave Frequency

None

Additional Range

Object Name	Wave Frequencies		
State	Fully Defined		
Details of Wave Frequencies			
Intervals Based Upon	Frequency		
Frequency/Period D	Definition		
Range	Manual Definition		
Definition Type	Range		
Lowest Frequency Definition	Program Controlled		
Lowest Frequency	0.1 rad/s		
Longest Period	62.83185 s		
Highest Frequency Definition	Manual Definition		
Highest Frequency	2 rad/s		
Shortest Period	3.14159 s		
Number of Intermediate Values	37		
Interval Frequency	0.05 rad/s		
Additional Frequencies A			
Additional Range	None		
Additional Frequencies B			
Additional Range	None		
Additional Freque	ncies C		
Additional Range	None		
Additional Freque	ncies D		
Additional Range	None		

Solution (A5)

TABLE 21Model (A3) > Hydrodynamic Diffraction (A4) > Solution (A5) > Hydrodynamic Graph
Results

Object Name	RAOs (Response Amplitude Operators) (Distance/Rotation vs Frequency)		
State	Solved		
Details of RAOs (Respo	onse Amplitude Operators) (Distance/Rotation vs Frequency)		
Presentation Method	Line		
Axes Selection	Distance/Rotation vs Frequency		
Frequency or Period Scale	Frequency		
Export CSV File	Select CSV File		
Line A			
Structure	Part		
Туре	RAOs (Response Amplitude Operators)		
Component	Global RY		
Direction	-180°		
Position of Min in X	2		
Position of Max in X	0.25		
Minimum Value	0.469		
Maximum Value	13.454		
Line B			
Structure	Undefined		

FIGURE 1 Model (A3) > Hydrodynamic Diffraction (A4) > Solution (A5) > RAOs (Response Amplitude Operators) (Distance/Rotation vs Frequency)

TABLE 22Model (A3) > Hydrodynamic Diffraction (A4) > Solution (A5) > RAOs (Response
Amplitude Operators) (Distance/Rotation vs Frequency)

poratoro) (Biotanoo/itotation vo
	Line A (°/m)
0.1 rad/s	0.555014448487772
0.15 rad/s	1.06348788124937
0.2 rad/s	2.30066725964876
0.25 rad/s	13.4543926412626
0.3 rad/s	4.73732572010658
0.35 rad/s	2.22094273033543
0.4 rad/s	1.52017012396888
0.45 rad/s	1.18852207124757
0.5 rad/s	0.994588454718573
0.55 rad/s	0.867582527845214
0.6 rad/s	0.778485858412718
0.65 rad/s	0.71309682895019
0.7 rad/s	0.663553037949297
0.75 rad/s	0.625399441163048
0.8 rad/s	0.595562453464934
0.85 rad/s	0.572157689695975
0.9 rad/s	0.553769859954949
0.95 rad/s	0.539352824720933
1 rad/s	0.528146938892175
1.05 rad/s	0.519527293520472

1.1 rad/s	0.512933866454735
1.15 rad/s	0.507955405601736
1.2 rad/s	0.504207072490427
1.25 rad/s	0.501346077001838
1.3 rad/s	0.499086244881916
1.35 rad/s	0.497218348226476
1.4 rad/s	0.495548740500378
1.45 rad/s	0.493922034900004
1.5 rad/s	0.492195544504725
1.55 rad/s	0.490480099805994
1.6 rad/s	0.488708092603199
1.65 rad/s	0.486785821238663
1.7 rad/s	0.484700425746841
1.75 rad/s	0.482451532601761
1.8 rad/s	0.480033165387901
1.85 rad/s	0.477466828528974
1.9 rad/s	0.474719011409366
1.95 rad/s	0.471808123523325
2 rad/s	0.468699907203293

TABLE 23Model (A3) > Hydrodynamic Diffraction (A4) > Solution (A5) > Pressures and
Motions Results

Object Name	Pressures and Motions	
State	Underdefined	
Details of Pressures and Motions		
Structure Selection	None	
Result Selec	ction	
Frequency	0.1 rad/s	
Direction	0.0°	
Incident Wave Amplitude	1 m	
Result Type	Phase Angle	
Wave Position (Phase)	0	
Contour Selection		
Structure Contour Type	Interpolated Pressure	
Above Water Body Display	Dimmed	
Pressure Measurement	Head of Water	
Wave Contour Type	Wave Height	
Component Se	election	
Include Incident Wave	Yes	
Include Diffracted Wave	Yes	
Include Radiation Wave	Yes	
Include Hydrostatic Differential	Yes	
Include Second Order Terms	Yes	
Results	;	
Minimum Value	0.0	
Maximum Value	0.0	

FIGURE 2 Model (A3) > Hydrodynamic Diffraction (A4) > Solution (A5) > Pressures and Motions

variasi 3

Project

Name	Project
Data Folder Root	D:\tenanan\tugas akhir\runningan aqwa\run btch run\vari3_files\dp0\AQW\AQW
Date of Creation	6/30/2017 12:56:30 PM
Last Modified	7/10/2017 10:43:29 PM
Global Control	50
Geometric Features	50
Connections	50
Environment Features	50
Product Version	16.0 RELEASE

Contents

Units •

Model (A3) .

Geometry 0

Part

- Surface Body
- Surface Body
- Surface Body .
- Surface Body
- Surface Body
- Part Axes
- Point Mass
- Point Buoyancy
- **Connections** 0
 - Catenary Data •
- o <u>Mesh</u>
- Hydrodynamic Diffraction (A4)
 - Analysis Settings .
 - Gravity
 - Structure Selection
 - Wave Directions
 - Wave Frequencies •
 - Solution (A5)
 - . RAOs (Response Amplitude Operators) (Distance/Rotation vs Frequency)
 - Pressures and Motions

Units

TABLE 1		
Length	Metre	
Mass	Kilograms	
Rotational Velocity	Degrees	
Force	Newton	
Frequency	Radians per Second	
Time	Second	

Model (A3)

Geometry

TABLE 2 Model (A3) > Geometry		
Object Name	Geometry	
State	Fully Defined	
Details of Geometry		
Attached Assembly Name	D:\tenanan\tugas akhir\runningan aqwa\run btch run\vari3_files\dp0\AQW\DM\AQW.agdb	
Sea Geometry		
Water Depth	20.1 m	

Water Density	1025 kg/m³	
Water Size X	1000 m	
Water Size Y	1000 m	
Import Preferences		
Import Solid Bodies	No	
Import Surface Bodies	Yes	
Import Line Bodies	Yes	

Part

TABLE 3		
Model (A3) > Geometry > Part		
Object Name	Part	
State	Fully Defined	
Details of	Part	
Part Visibility	Visible	
Suppressed	Not Suppressed	
Total Structural Mass	11510 kg	
X Position of COG	0.0 m	
Y Position of COG	0.0 m	
Z Position of COG	-8.54 m	
Generate Internal Lid	No	
Current Calculation Depth	0.0 m	
Fixity Options		
Structure Fixity	Structure is Free to Move	
Force Factors		
Drag Factor	1	
Mass Factor	1	
Slam Factor	0.0	
Advanced Options		
Submerged Structure Detection	Program Controlled	
Override Calculated GMX	No	
Override Calculated GMY	No	
Non-Linear Roll Damping		
Non-Linear Roll Damping	Excluded from Calculations	

TABLE 4	4
---------	---

TABLE 4			
Model (A3) > Geometry > Part > Body			у
	Object Name	Surface Body	
	State	Fully Defined	
	Details of Surface Body		
E	Body Visibility	Visible	
	Suppressed	Not Suppressed	
S	tructure Type	Physical Geometry	
	Surface Type	Program Controlled	

TABLE 5Model (A3) > Geometry > Part > BodyObject NameSurface Body

State	Fully Defined
Details of Surface Body	
Body Visibility	Visible
Suppressed	Not Suppressed
Structure Type	Physical Geometry
Surface Type	Program Controlled

Model (A3) > Geometry > Part > Body

Object Name	Surface Body
State	Fully Defined
Details of	Surface Body
Body Visibility	Visible
Suppressed	Not Suppressed
Structure Type	Physical Geometry
Surface Type	Program Controlled

TABLE 7

Model (A3) > Geometry > Part > Body

Object Name	Surface Body
State	Fully Defined
Details of	Surface Body
Body Visibility	Visible
Suppressed	Not Suppressed
Structure Type	Physical Geometry
Surface Type	Program Controlled

TABLE 8

Model (A3) > Geometry > Part > Body

Object Name	Surface Body	
State	Fully Defined	
Details of Surface Body		
Body Visibility	Visible	
Suppressed	Not Suppressed	
Structure Type	Physical Geometry	
Surface Type	Program Controlled	

TABLE 9

Model (A3) > Geometry > Part > Axes

Object Name	Part Axes
State	Fully Defined
Details of Part	Axes
Visibility	Visible
Alignment Method	Global Axes
Rotation About Global Z	0.0°
Rotation About Local Y	0.0°
Rotation About Local X	0.0°
Unit Vector X	[1, 0.0, 0.0]
Unit Vector Y	[0.0, 1, 0.0]
Unit Vector Z	[0.0, 0.0, 1]

Model (A3) > Geometry > Part > Point Mass	
Object Name	Point Mass
State	Fully Defined
Details of	Point Mass
Visibility	Visible
Suppressed	Not Suppressed
Х	0.0 m
Y	0.0 m
Z	-8.54 m
Mass Definition	Manual
Mass	11510 kg
Define Inertia Values by	Direct input of Inertia
Кхх	12.4253950880027 m
Куу	25.6185817119403 m
Kzz	3.84337131186073E-02 m
Ixx	1777034 kg.m ²
Ixy	0.0 kg.m ²
lxz	0.0 kg.m ²
lyy	7554148 kg.m ²
lyz	0.0 kg.m ²
Izz	17.002 kg.m ²

TABLE 10	0
Model (A3) > Geometry > F	Part > Point Mass

TABLE 11 Model (A3) > Geometry > Part > Point Buoyancy Object Name Point Buoyancy

	, , ,
State	Fully Defined
Details of P	oint Buoyancy
Visibility	Visible
Suppressed	Not Suppressed
Х	0.0 m
Y	0.0 m
Z	-2.68 m
Volume	7.56 m³

Connections

TABLE 12

Model (A3) > Connections		
Object Name	Connections	
State Fully Defined		
Details of Connections		

TABLE 13 Model (A3) > Connections > Catenary Data Object Name Catenary Data State Fully Defined Details of Catenary Data

Mesh

TABLE 14		
Model (A3) > Mesh		
Object Name	Mesh	
State	Meshed	
Details of Mesh		
Defaults		
Global Control	Basic Controls	
Mesh Parameters		
Defeaturing Tolerance	0.00001 m	
Max Element Size	0.2 m	
Max Allowed Frequency	8.402 rad/s	
Meshing Type	Program Controlled	
Generated Mesh Information		
Number of Nodes	7144	
Number of Elements	7138	
Number of Diff Nodes	4835	
Number of Diff Elements	4757	

Hydrodynamic Diffraction (A4)

TABLE 15 Model (A3) > Analysis		
Object Name	Hydrodynamic Diffraction (A4)	
State	Solved	
Details of Hydrodynamic Diffraction		
Analysis Type	Hydrodynamic Diffraction/Radiation	

Model (A3) > Hydrodynamic Diffraction (A4) > Analysis Settings

Object Name	Analysis Settings	
State	Fully Defined	
Details of Analysis Setti	ngs	
Parallel Processing	Program Controlled	
Generate Wave Grid Pressures	Yes	
Wave Grid Size Factor	2	
Common Analysis Optic	ons	
Ignore Modelling Rule Violations	Yes	
Calculate Extreme Low/High Frequencies	Yes	
Calculate Drift Coefficients	Yes	
Include Multi-Directional Wave Interaction	Yes	
Near Field Solution	Program Controlled	
Linearized Morison Drag	No	
QTF Options		
Calculate Full QTF Matrix	Yes	
Output File Options		
Full QTF Matrix	No	
Field Point Wave Elevation	Yes	
Source Strengths	No	
Potentials	No	
Centroid Pressures	No	

Element Properties	No
ASCII Hydrodynamic Database	No
Example of Hydrodynamic Database	No

Model (A3) > Hydrodynamic Diffraction (A4) > Wave Direction

Object Name	Wave Directions	
State	Fully Defined	
Details of Wave Directions		
Туре	Range of Directions, No Forward Speed	
Required Wave Input		
Wave Range	-180° to 180°	
Interval	180°	
Number of Intermediate Directions	1	
Optional Wave Directions A		
Additional Range	None	
Optional Wave Directions B		
Additional Range	None	
Optional Wave Directions C		
Additional Range	None	
Optional Wave Directions D		
Additional Range	None	

TABLE 20Model (A3) > Hydrodynamic Diffraction (A4) > Wave Frequency			
	Object Name	Wave Frequencies	
	State	Fully Defined	
	Details of Wave Frequencies		
	Intervals Based Upon	Frequency	
	Frequency/Period Definition		
	Range	Manual Definition	
	Definition Type	Range	
	Lowest Frequency Definition	Program Controlled	

Lowest Frequency	0.1 rad/s	
Longest Period	62.83185 s	
Highest Frequency Definition	Manual Definition	
Highest Frequency	2 rad/s	
Shortest Period	3.14159 s	
Number of Intermediate Values	37	
Interval Frequency	0.05 rad/s	
Additional Frequencies A		
Additional Range None		
Additional Frequencies B		
Additional Range	None	
Additional Frequencies C		
Additional Range	None	
Additional Frequencies D		
Additional Range	None	

Solution (A5)

TABLE 21Model (A3) > Hydrodynamic Diffraction (A4) > Solution (A5) > Hydrodynamic GraphResults

Object Name	RAOs (Response Amplitude Operators) (Distance/Rotation vs Frequency)		
State	Solved		
Details of RAOs (Response Amplitude Operators) (Distance/Rotation vs Frequence			
Presentation Method	Line		
Axes Selection	Distance/Rotation vs Frequency		
Frequency or Period Scale	Frequency		
Export CSV File	Select CSV File		
Line A			
Structure	Part		
Туре	RAOs (Response Amplitude Operators)		
Component	Global RY		
Direction	-180°		
Position of Min in X	2		
Position of Max in X	0.25		
Minimum Value	0.426		
Maximum Value	7.081		
	Line B		
Structure	Undefined		

FIGURE 1

Model (A3) > Hydrodynamic Diffraction (A4) > Solution (A5) > RAOs (Response Amplitude Operators) (Distance/Rotation vs Frequency)

TABLE 22 Model (A3) > Hydrodynamic Diffraction (A4) > Solution (A5) > RAOs (Response Amplitude Operators) (Distance/Rotation vs Frequency)

·	Line A (°/m)
0.1 rad/s	0.597464074179401
0.15 rad/s	1.27139926647138
0.2 rad/s	3.9976900844146
0.25 rad/s	7.08103725879158
0.3 rad/s	2.19677645383486
0.35 rad/s	1.38869165048878
0.4 rad/s	1.05322893711601
0.45 rad/s	0.869192744942045
0.5 rad/s	0.753441902603809
0.55 rad/s	0.674679095942131
0.6 rad/s	0.618428912949932
0.65 rad/s	0.577048798832792
0.7 rad/s	0.546093314297236
0.75 rad/s	0.522777342987487
0.8 rad/s	0.505229466431813
0.85 rad/s	0.492131458120403
0.9 rad/s	0.482487711260021
0.95 rad/s	0.475519370841874
1 rad/s	0.470565562702911
1.05 rad/s	0.467073948654859
1.1 rad/s	0.464602540753226
1.15 rad/s	0.462770449230075
1.2 rad/s	0.461285630137538

1.25 rad/s	0.459921033046564
1.3 rad/s	0.458457344851771
1.35 rad/s	0.457061211496738
1.4 rad/s	0.455541174241293
1.45 rad/s	0.453853530546918
1.5 rad/s	0.452000574930288
1.55 rad/s	0.449997995482152
1.6 rad/s	0.447862654232023
1.65 rad/s	0.445603409081483
1.7 rad/s	0.443222154340808
1.75 rad/s	0.440742688950388
1.8 rad/s	0.438136865060322
1.85 rad/s	0.43541767603829
1.9 rad/s	0.432570260886762
1.95 rad/s	0.429564337321721
2 rad/s	0.426381229044657

Model (A3) > Hydrodynamic Diffraction (A4) > Solution (A5) > Pressures and Motions Results

Motions Results		
Object Name	Pressures and Motions	
State	Solved	
Details of Pressures and Motions		
Structure Selection	Part	
Result Sele	ction	
Frequency	0.1 rad/s	
Direction	0.0°	
Incident Wave Amplitude	1 m	
Result Type	Phase Angle	
Wave Position (Phase)	Sequence	
Number of Steps	12	
Contour Sele	ection	
Structure Contour Type	Interpolated Pressure	
Above Water Body Display	Dimmed	
Pressure Measurement	Head of Water	
Wave Contour Type	Wave Height	
Component Selection		
Include Incident Wave	Yes	
Include Diffracted Wave	Yes	
Include Radiation Wave	Yes	
Include Hydrostatic Differential	Yes	
Include Second Order Terms	Yes	
Results		
Minimum Value	-0.1707841887957	
Maximum Value	0.988773107528687	

FIGURE 2 Model (A3) > Hydrodynamic Diffraction (A4) > Solution (A5) > Pressures and Motions

Diffraction (A4) > Solution (A5) > Pressures and Motions

BIODATA PENULIS

Lahir di Blora tanggal 9 Mei 1995, dengan nama Imam Faiz Farkhani penulis merupakan anak pertama dari tiga bersaudara. Penulis menempuh pendidikan formal di SD N Leteh 2, SMP N 2 Rembang, dan SMA N 1 Rembang. Tamat pada tahun 2013, penulis melanjutkan pendidikan ke jenjang Strata 1 (S1) Departemen Teknik Kelautan Institut Teknologi Sepuluh Nopember (ITS) Surabaya melalui jalur SBMPTN tertulis dengan alasan

karena tertarik pada bidang perancangan dan analisis struktur bangunan. Pada masa perkuliahan, penulis aktif dalam pelatihan seperti LKMM TD 2014, PMO LMB ITS 2015 serta aktif dalam kepanitiaan seperti Kejurnaskot Shorinji Kempo Surabaya 2014 dan OCEANO Teknik Kelautan ITS 2014. Unit Kegiatan Mahasiswa Shorinji Kempo merupakan organisasi tempat penulis mengembangkan keterampilan manajemen, serta mengasah kemampuan bela diri. Penulis sempat diamanahi sebagai Ketua Umum UKM Shorinji Kempo ITS periode kepengurusan 2015/2016. Penulis pernah berkesempatan untuk Kerja Praktek di Galangan Pelni Surya Surabaya dimana penulis mendapatkan banyak pengalaman tentang proses reparasi kapal, regulasi-regulasi umum terkait transaksi reparasi kapal, dan negosiasi dengan pemilik kapal. Penulis juga menguasai beberapa *software* terkait dengan bidang teknik kelautan seperti SACS, Ansys AQWA, dan auto CAD. Ketertarikan penulis terhadap hidrodinamika struktur lepas pantai adalah alasan mengapa penulis memilih topik tugas akhir ini.

Contact Person

: <u>imamfaizfrk21@gmail.com</u> (e-mail) 085732134684 (WA/LINE)