

**TUGAS AKHIR - TF141581** 

# FABRIKASI NANOPARTIKEL STRUKTUR CORE-SHELL Au@SiO2 DENGAN SiO2 EKSTRAKSI LUMPUR SIDOARJO SEBAGAI FOTOANODA UNTUK APLIKASI DSSC (DYE-SENSITIZED SOLAR CELLS)

EMHA RIYADHUL JINAN ALHADI NRP. 2413 100 037

Dosen Pembimbing Dr.-Ing. Doty Dewi Risanti, S.T., M.T.

DEPARTEMEN TEKNIK FISIKA Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2017



### FINAL PROJECT- TF141581

# FABRICATION OF NANOPARTICLE Au@SiO<sub>2</sub> CORE-SHELL STRUCTURE USING SiO<sub>2</sub> EXTRACTED FROM SIDOARJO MUD AS PHOTOANODE FOR DSSC (DYE-SENSITIZED SOLAR CELLS) APPLICATIONS

EMHA RIYADHUL JINAN ALHADI NRP. 2413 100 037

Supervisor Dr.-Ing. Doty Dewi Risanti, ST, MT.

DEPARTMENT OF ENGINEERING PHYSICS Faculty of Industrial Technology Institut Teknologi Sepuluh Nopember Surabaya 2017

# PERNYATAAN BEBAS PLAGIARISME

Saya yang bertanda tangan dibawah ini :

| Nama             | : Emha Riyadhul Jinan Alhadi          |
|------------------|---------------------------------------|
| NRP              | : 2413100037                          |
| Departemen/Prodi | : Teknik Fisika/S1 Teknik Fisika      |
| Fakultas         | : Fakultas Teknologi Industri         |
| Perguruan Tinggi | : Institut Teknologi Sepuluh Nopember |

Dengan ini menyatakan bahwa Tugas Akhir dengan judul **"Fabrikasi Nanopartikel Struktur Core-shell Au@SiO2** dengan SiO2 Ekstraksi Lumpur Sidoarjo sebagai Fotoanoda untuk Aplikasi DSSC (Dye-Sensitized Solar Cells)" adalah benar karya saya sendiri dan bukan plagiat dari karya orang lain. Apabila di kemudian hari terbukti terdapat plagiat pada Tugas Akhir ini, maka saya bersedia menerima sanksi sesuai ketentuan yang berlaku.

Demikian surat ini saya buat dengan sebenar-benarnya.

Surabaya, 11 Oktober 2017 Yang membuat pernyataan,

Emha Riyadhul Jinan Alhadi NRP.2413100037

# FABRIKASI NANOPARTIKEL STRUKTUR CORE-SHELL Au@SiO2 DENGAN SiO2 EKSTRAKSI LUMPUR SIDOARJO SEBAGAI FOTOANODA UNTUK APLIKASI DSSC (DYE-SENSITIZED SOLAR CELLS)

# **TUGAS AKHIR**

### Oleh:

### Emha Riyadhul Jinan Alhadi NRP: 2413 100 037

Surabaya, 11 Oktober 2017 Mengetahui/Menyetujui,

**Pembimbing I** 

Dr.-Ing. Doty Dewi Risanti, S.T., M.T. NIP. 19740903 199802 2 001



11 33

# FABRIKASI NANOPARTIKEL STRUKTUR CORE-SHELL Au@SiO2 DENGAN SiO2 EKSTRAKSI LUMPUR SIDOARJO SEBAGAI FOTOANODA UNTUK APLIKASI DSSC (DYE-SENSITIZED SOLAR CELLS)

### **TUGAS AKHIR**

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada

Bidang Studi Rekayasa Bahan Program Studi S-1 Departemen Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

Oleh: EMHA RIYADHUL JINAN ALHADI NRP. 2413100037

Disetujui oleh Tim Penguji Tugas Akhir:

1. Dr.-Ing. Doty Dewi Risanti, S.T., M.T.

2. Dyah Sawitri, S.T., M.T.

3. Detak Yan Pratama, S.T., M.Sc.

4. Andi Rahmadiansyah, S.T., M.T.

SURABAYA 11 Oktober 2017

Pembimbing I) (Ketua Penguji) (Penguji I) (Penguji II)

## FABRIKASI NANOPARTIKEL STRUKTUR *CORE-SHELL* Au@SiO<sub>2</sub> DENGAN SiO<sub>2</sub> EKSTRAKSI LUMPUR SIDOARJO SEBAGAI FOTOANODA UNTUK APLIKASI DSSC (*DYE-SENSITIZED SOLAR CELLS*)

| Nama Mahasiswa   | : Emha Riyadhul Jinan Alhadi          |
|------------------|---------------------------------------|
| NRP              | : 2413100037                          |
| Departemen       | : Teknik Fisika FTI-ITS               |
| Dosen Pembimbing | : DrIng Doty Dewi Risanti, S.T., M.T. |

#### Abstrak

Penelitian sebelumnya menunjukkan bahwa lumpur Sidoarjo memiliki kadar SiO<sub>2</sub> yang tinggi. Penambahan nanopartikel SiO<sub>2</sub> dan nanopartikel emas (Au) dalam bentuk *core*shell dilakukan untuk meningkatkan performa DSSC. Penelitian ini melakukan modifikasi pada fotoanoda DSSC dengan menggunakan TiO<sub>2</sub>/Au@SiO<sub>2</sub> core-shell sebagai semikonduktor. Variasi fraksi 0,5% dan 1% penambahan core-shell Au@SiO2 pada TiO<sub>2</sub> dengan variasi volume 30 ml, 60 ml, 90 ml dan 120 ml penambahan SiO<sub>2</sub> ekstraksi lumpur Sidoarjo dalam core-shell Au@SiO<sub>2</sub>. Penambahan struktur *core-shell* Au@SiO<sub>2</sub> ini diharapkan menghasilkan efek LSPR oleh nanopartikel Au, sehingga dapat meningkatkan penyerapan cahaya dan nilai arus foton yang dihasilkan. Hasil karakterisasi FESEM dan EDX Au@SiO<sub>2</sub> menunjukkan partikel emas sebagian berada di dalam SiO<sub>2</sub> membentuk *core-shell* Au@SiO<sub>2</sub>. Hasil IPCE menunjukkan sampel DSSC dengan fotoanoda TiO<sub>2</sub>/Au@SiO<sub>2</sub> 30 ml 1%, memiliki IPCE tertinggi sebesar 0,0086 % serta memiliki rentang IPCE paling luas, mulai dari 415 nm hingga 650 nm. Semakin banyak *core-shell* yang ditambahkan pada TiO<sub>2</sub> akan menghasilkan IPCE yang lebih tinggi dan lebih lebar. Terdapat penurunan IPCE pada panjang gelombang 550 nm. Hal ini disebabkan oleh partikel emas yang tidak terlingkupi silika akan berkontak langsung dengan elektrolit dan terkorosi sehingga efek LSPR dari partikel emas tersebut berkurang dan memiliki lifetime yang terbatas.

Kata kunci : DSSC, Au@SiO<sub>2</sub>, *core-shell*, Lumpur Sidoarjo, IPCE

## FABRICATION OF NANOPARTICLE Au@SiO<sub>2</sub> CORE-SHELL STRUCTURE USING SiO<sub>2</sub> EXTRACTED FROM SIDOARJO MUD AS PHOTOANODE FOR DSSC (DYE-SENSITIZED SOLAR CELLS) APPLICATIONS

| Name       | : Emha Riyadhul Jinan Alhadi          |  |
|------------|---------------------------------------|--|
| NRP        | : 2413100037                          |  |
| Department | : Engineering Pyhsics FTI-ITS         |  |
| Supervisor | : DrIng Doty Dewi Risanti, S.T., M.T. |  |

#### Abstract

Previous research showed that Sidoarjo mud containing high amount of SiO<sub>2</sub>. The addition of SiO<sub>2</sub> nanoparticles and gold nanoparticles (Au) in the form of core-shells are used to improve DSSC performance. This study modified DSSC photoanode using TiO<sub>2</sub>/Au@SiO<sub>2</sub> core-shell as semiconductor. Variations of 0.5% and 1% of the Au@SiO<sub>2</sub> fractional fraction were given to coreshell prepared by using 30 ml, 60 ml, 90 ml and 120 ml of SiO<sub>2</sub>. The addition of the  $Au@SiO_2$  core-shell structure is expected to produce an LSPR effect by Au nanoparticles, thereby it would increase the light absorption and photocurrent values. The result of FESEM and EDX characterization Au@SiO<sub>2</sub> shows the gold particles located partly inside the SiO<sub>2</sub> forming Au@SiO<sub>2</sub> coreshell. The IPCE results show that DSSC sample with photoanode TiO<sub>2</sub>/Au@SiO<sub>2</sub> 30 ml 1% has the highest percentage IPCE of 0,0086% and also has the widest IPCE in the range of 415 nm to 650 nm. Higher amount of core-shell in  $TiO_2$  leads to higher IPCE value and wider wavelength coverage. IPCE decreased at wavelength of 550 nm. This is due to the gold particles uncovered by silica being in direct contact with the electrolyte and corroded allowing the LSPR effects of the gold particles were reduced and thus shorten the lifetime.

Keywords : DSSC, Au@SiO<sub>2</sub>, core-shell, Sidoarjo Mud, IPCE.

## KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Allah SWT, karena berkat rahmat dan karunia-Nya penulis mampu menyelesaikan laporan Tugas Akhir yang berjudul "Fabrikasi Nanopartikel Struktur Core-shell Au@SiO<sub>2</sub> dengan SiO<sub>2</sub> Ekstraksi Lumpur Sidoarjo sebagai Fotoanoda untuk Aplikasi DSSC (Dye-Sensitized Solar Cells)". Penulis telah banyak mendapatkan bantuan dari berbagai pihak dalam menyelesaikan Tugas Akhir ini. Untuk itu penulis mengucapkan terima kasih kepada :

- 1. Bapak Agus Muhamad Hatta, ST, MSi, Ph.D, selaku Ketua Jurusan Teknik Fisika ITS.
- 2. Ibu Dr.-Ing Doty Dewi Risanti, ST, MT. selaku dosen pembimbing yang telah sabar dalam memberikan dukungan, bimbingan dan arahan dalam menyelesaikan Tugas Akhir ini.
- 3. Seluruh dosen Rekayasa Bahan yang telah memberikan materi dan bimbingan untuk menunjang tugas akhir.
- 4. Seluruh dosen Teknik Fisika ITS yang telah menjadi media transfer ilmu sehingga kami dapat merampungkan jenjang perkuliahan hingga terselesaikannya Tugas Akhir ini.
- 5. Bapak Ismul Hadi dan Ibu Sri Wiryati Ratningdiah, adek hani, adek habib dan seluruh keluarga tercinta yang selalu memberi motivasi dan mendoakan penulis dimanapun berada.
- 6. Seluruh staf pegawai Jurusan Teknik Fisika atas semua bentuk kerjasamanya selama masa kuliah.
- Laboratorium Instrumentasi dan Sains Analitik Kimia ITS, Laboratorium Nano Bioenergi UNS, Pusat Penelitian Fisika LIPI dan Laboratorium XRD Jurusan Material dan Metalurgi ITS telah membantu melakukan pengujian dalam Tugas Akhir ini.
- 8. Laboratorium Rekayasa Bahan dan Laboratorium Fotonik, Teknik Fisika ITS yang telah memberikan pinjaman alat dan fasilitas untuk menyelesaikan Tugas Akhir ini.
- 9. Teman seperjuangan dan pembimbing mbak Nur Fadhilah atas segala bantuan dan bimbingan dalam pengerjaan Tugas Akhir.

- 10. Rekan asisten Laboratorium Rekayasa Bahan (Haikal, Mas Khamim, Mbak Intan dan Ojzan) serta rekan seperjuangan dalam mengerjakan Tugas Akhir (Kevin, Devita, Emir, Thomas, Risandy dan Doncang) atas semangat dan dukungan yang telah diberikan.
- 11. Serta semua pihak yang tidak dapat penulis sebutkan satu per satu.

Dengan segala kerendahan hati penulis menerima kritik dan saran yang membangun terkait dengan laporan tugas akhir ini demi kebaikan bersama. Besar harapan agar laporan tugas akhir ini dapat lebih baik dan bermanfaat. Akhir kata penulis berharap laporan tugas akhir ini dapat memberikan manfaat bagi kehidupan manusia khususnya dalam pemahaman dan aplikasi material dan energi yang ada di Indonesia.

Surabaya, 11 Oktober 2017

Penulis

# DAFTAR ISI

| PERNYATAAN BEBAS PLAGIARISME       v         LEMBAR PENGESAHAN       Error! Bookmark not defined.         ABSTRAK       xi         ABSTRACT       xiiii         KATA PENGANTAR       xv         DAFTAR ISI       xviii         DAFTAR GAMBAR       xix         DAFTAR TABEL       xxiiii         BAB I PENDAHULUAN       1         1.1       Latar Belakang       3         1.3       Tujuan       3         BAB II DASAR TEORI       5         2.1       Prinsip Kerja Dye Sensitized Solar Cell (DSSC)       5         2.2       Material Penyusun Fotoanoda DSSC       6         2.3       Prinsip Kerja Modifikasi Fotoanoda DSSC       18         2.4       Efek LSPR (Localized Surface Plasmon Resonance) 19       2.5         2.5       Pengaruh Modifikasi Fotoanoda DSSC       23         2.7       Pengaruh Ketebalan Silika pada DSSC       26         BAB III METODOLOGI PENELITIAN       29       31         3.4       Reduksi Au       30         3.2       Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo       30         3.3       Sintesis Nanopartikel Au@SiO2       31         3.4       Reduksi Au       32                                                                       | HALAM    | AN JUDUL                                          | i    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------|------|
| LEMBAR PENGESAHAN       Error! Bookmark not defined.         ABSTRAK       xi         ABSTRACT       xiii         KATA PENGANTAR       xv         DAFTAR ISI       xvii         DAFTAR GAMBAR       xix         DAFTAR GAMBAR       xixi         DAFTAR TABEL       xxiii         BAB I PENDAHULUAN       1         1.1       Latar Belakang       3         1.3       Tujuan       3         BAB II DASAR TEORI       5         2.1       Prinsip Kerja Dye Sensitized Solar Cell (DSSC)       5         2.2       Material Penyusun Fotoanoda DSSC       6         2.3       Prinsip Kerja Modifikasi Fotoanoda DSSC       18         2.4       Efek LSPR (Localized Surface Plasmon Resonance)       19         2.5       Pengaruh Modifikasi Fotoanoda terhadap Absorbansi 21       2.6         2.6       Efek Scattering pada Nanopartikel Core-shell       23         2.7       Pengaruh Ketebalan Silika pada DSSC       25         2.8       Efisiensi Konservasi Cahaya Menggunakan IPCE       26         BAB III METODOLOGI PENELITIAN       29       3.1       Alat dan Bahan       30         3.2       Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo       30                             | PERNYA   | ATAAN BEBAS PLAGIARISME                           | v    |
| ABSTRAK       xi         ABSTRACT       xiii         KATA PENGANTAR       xv         DAFTAR ISI       xvii         DAFTAR GAMBAR       xix         DAFTAR TABEL       xxiii         BAB I PENDAHULUAN       1         1.1       Latar Belakang       1         1.2       Rumusan Masalah       3         1.3       Tujuan       3         BAB II DASAR TEORI       5       2.1         Prinsip Kerja Dye Sensitized Solar Cell (DSSC)       5         2.2       Material Penyusun Fotoanoda DSSC       6         2.3       Prinsip Kerja Modifikasi Fotoanoda DSSC       18         2.4       Efek LSPR (Localized Surface Plasmon Resonance)       19         2.5       Pengaruh Modifikasi Fotoanoda DSSC       25         2.8       Efisiensi Konservasi Cahaya Menggunakan IPCE       26         BAB III METODOLOGI PENELITIAN       30       30       3.2         2.5       Sintesis Nanopartikel SiO2 dari Lumpur Sidoarjo       30         3.3       Sintesis Nanopartikel SiO2       33       3.6         3.4       Reduksi Au       32       3.5       3.5         3.4       Reduksi Au       32       3.5       3.3                                                                             | LEMBA    | R PENGESAHAN Error! Bookmark not define           | ed.  |
| ABSTRACT       xiii         KATA PENGANTAR       xv         DAFTAR ISI       xvii         DAFTAR GAMBAR       xix         DAFTAR TABEL       xxiii         BAB I PENDAHULUAN       1         1.1       Latar Belakang       1         1.2       Rumusan Masalah       3         1.3       Tujuan       3         BAB II DASAR TEORI       5       2.1         2.1       Prinsip Kerja Dye Sensitized Solar Cell (DSSC)       5         2.2       Material Penyusun Fotoanoda DSSC       6         2.3       Prinsip Kerja Modifikasi Fotoanoda DSSC       18         2.4       Efek LSPR (Localized Surface Plasmon Resonance) .19       2.5         2.5       Pengaruh Modifikasi Fotoanoda terhadap Absorbansi 21       2.6         2.6       Efek Scattering pada Nanopartikel Core-shell       23         2.7       Pengaruh Ketebalan Silika pada DSSC       25         2.8       Efisiensi Konservasi Cahaya Menggunakan IPCE       26         BAB III METODOLOGI PENELITIAN       29       3.1       Alat dan Bahan       30         3.2       Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo       30       3.3       3.5         3.4       Reduksi Au       32                                 | ABSTRA   | ΑΚ                                                | .xi  |
| KATA PENGANTARxvDAFTAR ISIxviiDAFTAR GAMBARxixDAFTAR TABELxxiiiBAB I PENDAHULUAN11.1Latar Belakang1.2Rumusan Masalah331.3Tujuan3BAB II DASAR TEORI52.12.1Prinsip Kerja Dye Sensitized Solar Cell (DSSC)52.2Material Penyusun Fotoanoda DSSC62.32.3Prinsip Kerja Modifikasi Fotoanoda DSSC2.4Efek LSPR (Localized Surface Plasmon Resonance) .192.5Pengaruh Modifikasi Fotoanoda terhadap Absorbansi 212.6Efek Scattering pada Nanopartikel Core-shell2.7Pengaruh Ketebalan Silika pada DSSC2.8Efisiensi Konservasi Cahaya Menggunakan IPCE26BAB III METODOLOGI PENELITIAN293.13.1Alat dan Bahan303.23.2Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo313.43.4Reduksi Au323.53.5Sintesis Nanopartikel Au@SiO23.8Pengukuran efisiensi konversi cahaya dengan IPCE4.3Karakterisasi Nanopartikel TTIR4.1Karakterisasi Nanopartikel TTIR4.2Karakterisasi Nanopartikel FTIR4.3Karakterisasi Nanopartikel FTIR524.34.3Karakterisasi UV-Vis (Ultraviolet-Visual)                                                                                                                                                                                                                                                | ABSTRA   | ACT                                               | ciii |
| DAFTAR ISIxviiDAFTAR GAMBARxixDAFTAR TABELxxiiiBAB I PENDAHULUAN11.1Latar Belakang11.2Rumusan Masalah31.3Tujuan3BAB II DASAR TEORI52.1Prinsip Kerja Dye Sensitized Solar Cell (DSSC)52.2Material Penyusun Fotoanoda DSSC62.3Prinsip Kerja Modifikasi Fotoanoda DSSC182.4Efek LSPR (Localized Surface Plasmon Resonance)192.5Pengaruh Modifikasi Fotoanoda terhadap Absorbansi212.6Efek Scattering pada Nanopartikel Core-shell232.7Pengaruh Ketebalan Silika pada DSSC252.8Efisiensi Konservasi Cahaya Menggunakan IPCE26BAB III METODOLOGI PENELITIAN293.13.1Alat dan Bahan303.2Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo303.3Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel Au@SiO2333.7Prosedur Perakitan DSSC433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel TTIR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                       | KATA P   | ENGANTAR                                          | xv   |
| DAFTAR GAMBARxixDAFTAR TABELxxiiiDAFTAR TABELxxiiiiBAB I PENDAHULUAN11.1Latar Belakang11.2Rumusan Masalah31.3Tujuan3BAB II DASAR TEORI52.1Prinsip Kerja Dye Sensitized Solar Cell (DSSC)52.2Material Penyusun Fotoanoda DSSC62.3Prinsip Kerja Modifikasi Fotoanoda DSSC182.4Efek LSPR (Localized Surface Plasmon Resonance)192.5Pengaruh Modifikasi Fotoanoda terhadap Absorbansi212.6Efek Scattering pada Nanopartikel Core-shell232.7Pengaruh Ketebalan Silika pada DSSC252.8Efisiensi Konservasi Cahaya Menggunakan IPCE26BAB III METODOLOGI PENELITIAN293.13.1Alat dan Bahan303.2Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo303.3Sintesis Nanopartikel TiO2313.4Reduksi Au323.5Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel Au@SiO2433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel TTIR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                 | DAFTAF   | R ISIx                                            | vii  |
| DAFTAR TABELxxiiiBAB I PENDAHULUAN11.1Latar Belakang11.2Rumusan Masalah31.3Tujuan3BAB II DASAR TEORI52.1Prinsip Kerja Dye Sensitized Solar Cell (DSSC)52.2Material Penyusun Fotoanoda DSSC62.3Prinsip Kerja Modifikasi Fotoanoda DSSC182.4Efek LSPR (Localized Surface Plasmon Resonance)192.5Pengaruh Modifikasi Fotoanoda terhadap Absorbansi212.6Efek Scattering pada Nanopartikel Core-shell232.7Pengaruh Ketebalan Silika pada DSSC252.8Efisiensi Konservasi Cahaya Menggunakan IPCE26BAB III METODOLOGI PENELITIAN293.1Alat dan Bahan303.2Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo303.3Sintesis Nanopartikel TiO2313.4Reduksi Au323.5Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel Au@SiO2433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel TTIR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                      | DAFTA    | R GAMBAR                                          | kix  |
| BAB I PENDAHULUAN       1         1.1       Latar Belakang       1         1.2       Rumusan Masalah       3         1.3       Tujuan       3         BAB II DASAR TEORI       5         2.1       Prinsip Kerja Dye Sensitized Solar Cell (DSSC)       5         2.2       Material Penyusun Fotoanoda DSSC       6         2.3       Prinsip Kerja Modifikasi Fotoanoda DSSC       18         2.4       Efek LSPR (Localized Surface Plasmon Resonance) .19       2.5         2.5       Pengaruh Modifikasi Fotoanoda terhadap Absorbansi 21       2.6         2.6       Efek Scattering pada Nanopartikel Core-shell       23         2.7       Pengaruh Ketebalan Silika pada DSSC       25         2.8       Efisiensi Konservasi Cahaya Menggunakan IPCE       26         BAB III METODOLOGI PENELITIAN       29       3.1       Alat dan Bahan       30         3.2       Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo       30       30         3.3       Sintesis Nanopartikel Au@SiO2       33         3.4       Reduksi Au       32         3.5       Sintesis Nanopartikel Au@SiO2       33         3.6       Karakterisasi Nanopartikel       34         3.7       Prosedur Perakitan DS | DAFTAF   | R TABELxx                                         | tiii |
| 1.1Latar Belakang11.2Rumusan Masalah31.3Tujuan3BAB II DASAR TEORI52.1Prinsip Kerja Dye Sensitized Solar Cell (DSSC)52.2Material Penyusun Fotoanoda DSSC62.3Prinsip Kerja Modifikasi Fotoanoda DSSC182.4Efek LSPR (Localized Surface Plasmon Resonance)192.5Pengaruh Modifikasi Fotoanoda terhadap Absorbansi212.6Efek Scattering pada Nanopartikel Core-shell232.7Pengaruh Ketebalan Silika pada DSSC252.8Efisiensi Konservasi Cahaya Menggunakan IPCE26BAB III METODOLOGI PENELITIAN293.13.1Alat dan Bahan303.2Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo303.3Sintesis Nanopartikel TiO2313.4Reduksi Au323.5Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel Au@SiO2433.7Prosedur Perakitan DSSC433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel FTIR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                          | BAB I PI | ENDAHULUAN                                        | 1    |
| 1.2Rumusan Masalah31.3Tujuan3BAB II DASAR TEORI52.1Prinsip Kerja Dye Sensitized Solar Cell (DSSC)52.2Material Penyusun Fotoanoda DSSC62.3Prinsip Kerja Modifikasi Fotoanoda DSSC182.4Efek LSPR (Localized Surface Plasmon Resonance)192.5Pengaruh Modifikasi Fotoanoda terhadap Absorbansi212.6Efek Scattering pada Nanopartikel Core-shell232.7Pengaruh Ketebalan Silika pada DSSC252.8Efisiensi Konservasi Cahaya Menggunakan IPCE26BAB III METODOLOGI PENELITIAN293.1Alat dan Bahan303.2Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo303.3Sintesis Nanopartikel TiO2333.4Reduksi Au323.5Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel Au@SiO2433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel TTIR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                                                                           | 1.1      | Latar Belakang                                    | 1    |
| 1.3Tujuan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2      | Rumusan Masalah                                   | 3    |
| BAB II DASAR TEORI52.1Prinsip Kerja Dye Sensitized Solar Cell (DSSC)52.2Material Penyusun Fotoanoda DSSC62.3Prinsip Kerja Modifikasi Fotoanoda DSSC182.4Efek LSPR (Localized Surface Plasmon Resonance)192.5Pengaruh Modifikasi Fotoanoda terhadap Absorbansi 212.6Efek Scattering pada Nanopartikel Core-shell232.7Pengaruh Ketebalan Silika pada DSSC252.8Efisiensi Konservasi Cahaya Menggunakan IPCE26BAB III METODOLOGI PENELITIAN293.1Alat dan Bahan303.2Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo303.3Sintesis Nanopartikel TiO2333.4Reduksi Au323.5Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel Au@SiO2433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel FTIR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                                                                                                       | 1.3      | Tujuan                                            | 3    |
| 2.1Prinsip Kerja Dye Sensitized Solar Cell (DSSC)52.2Material Penyusun Fotoanoda DSSC62.3Prinsip Kerja Modifikasi Fotoanoda DSSC182.4Efek LSPR (Localized Surface Plasmon Resonance)192.5Pengaruh Modifikasi Fotoanoda terhadap Absorbansi212.6Efek Scattering pada Nanopartikel Core-shell232.7Pengaruh Ketebalan Silika pada DSSC252.8Efisiensi Konservasi Cahaya Menggunakan IPCE26BAB III METODOLOGI PENELITIAN293.1Alat dan Bahan303.2Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo303.3Sintesis Nanopartikel TiO2313.4Reduksi Au323.5Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel Au@SiO2433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel FTIR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                                                                                                                           | BAB II I | DASAR TEORI                                       | 5    |
| 2.2Material Penyusun Fotoanoda DSSC62.3Prinsip Kerja Modifikasi Fotoanoda DSSC182.4Efek LSPR (Localized Surface Plasmon Resonance)192.5Pengaruh Modifikasi Fotoanoda terhadap Absorbansi212.6Efek Scattering pada Nanopartikel Core-shell232.7Pengaruh Ketebalan Silika pada DSSC252.8Efisiensi Konservasi Cahaya Menggunakan IPCE26BAB III METODOLOGI PENELITIAN293.1Alat dan Bahan303.2Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo303.3Sintesis Nanopartikel TiO2313.4Reduksi Au323.5Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel Mu@SiO2433.7Prosedur Perakitan DSSC433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel TIR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.1      | Prinsip Kerja Dye Sensitized Solar Cell (DSSC)    | 5    |
| 2.3Prinsip Kerja Modifikasi Fotoanoda DSSC182.4Efek LSPR (Localized Surface Plasmon Resonance)192.5Pengaruh Modifikasi Fotoanoda terhadap Absorbansi212.6Efek Scattering pada Nanopartikel Core-shell232.7Pengaruh Ketebalan Silika pada DSSC252.8Efisiensi Konservasi Cahaya Menggunakan IPCE26BAB III METODOLOGI PENELITIAN293.1Alat dan Bahan303.2Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo303.3Sintesis Nanopartikel TiO2313.4Reduksi Au323.5Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel343.7Prosedur Perakitan DSSC433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel XRD474.2Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.2      | Material Penyusun Fotoanoda DSSC                  | 6    |
| 2.4Efek LSPR (Localized Surface Plasmon Resonance) .192.5Pengaruh Modifikasi Fotoanoda terhadap Absorbansi 212.6Efek Scattering pada Nanopartikel Core-shell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.3      | Prinsip Kerja Modifikasi Fotoanoda DSSC           | 18   |
| 2.5Pengaruh Modifikasi Fotoanoda terhadap Absorbansi 212.6Efek Scattering pada Nanopartikel Core-shell232.7Pengaruh Ketebalan Silika pada DSSC252.8Efisiensi Konservasi Cahaya Menggunakan IPCE26BAB III METODOLOGI PENELITIAN293.1Alat dan Bahan303.2Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo303.3Sintesis Nanopartikel TiO2313.4Reduksi Au323.5Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel343.7Prosedur Perakitan DSSC433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel TIR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4      | Efek LSPR (Localized Surface Plasmon Resonance).  | 19   |
| 2.6Efek Scattering pada Nanopartikel Core-shell232.7Pengaruh Ketebalan Silika pada DSSC252.8Efisiensi Konservasi Cahaya Menggunakan IPCE26BAB III METODOLOGI PENELITIAN293.1Alat dan Bahan303.2Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo303.3Sintesis Nanopartikel TiO2313.4Reduksi Au323.5Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel343.7Prosedur Perakitan DSSC433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel TIR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5      | Pengaruh Modifikasi Fotoanoda terhadap Absorbansi | 21   |
| 2.7Pengaruh Ketebalan Silika pada DSSC252.8Efisiensi Konservasi Cahaya Menggunakan IPCE26BAB III METODOLOGI PENELITIAN293.1Alat dan Bahan303.2Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo303.3Sintesis Nanopartikel TiO2313.4Reduksi Au323.5Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel343.7Prosedur Perakitan DSSC433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel TIR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.6      | Efek Scattering pada Nanopartikel Core-shell      | 23   |
| 2.8Efisiensi Konservasi Cahaya Menggunakan IPCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.7      | Pengaruh Ketebalan Silika pada DSSC               | 25   |
| BAB III METODOLOGI PENELITIAN293.1Alat dan Bahan303.2Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo303.3Sintesis Nanopartikel TiO2313.4Reduksi Au323.5Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel343.7Prosedur Perakitan DSSC433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel TR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.8      | Efisiensi Konservasi Cahaya Menggunakan IPCE      | 26   |
| 3.1Alat dan Bahan303.2Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo303.3Sintesis Nanopartikel TiO2313.4Reduksi Au323.5Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel343.7Prosedur Perakitan DSSC433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel TIR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BAB III  | METODOLOGI PENELITIAN                             | 29   |
| 3.2Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo303.3Sintesis Nanopartikel TiO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.1      | Alat dan Bahan                                    | 30   |
| 3.3Sintesis Nanopartikel TiO2313.4Reduksi Au323.5Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel343.7Prosedur Perakitan DSSC433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel XRD474.2Karakterisasi Nanopartikel FTIR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.2      | Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo  | 30   |
| 3.4Reduksi Au323.5Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel343.7Prosedur Perakitan DSSC433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel XRD474.2Karakterisasi Nanopartikel FTIR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.3      | Sintesis Nanopartikel TiO <sub>2</sub>            | 31   |
| 3.5Sintesis Nanopartikel Au@SiO2333.6Karakterisasi Nanopartikel343.7Prosedur Perakitan DSSC433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel XRD474.2Karakterisasi Nanopartikel FTIR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.4      | Reduksi Au                                        | 32   |
| 3.6Karakterisasi Nanopartikel343.7Prosedur Perakitan DSSC433.8Pengukuran efisiensi konversi cahaya dengan IPCE45BAB IV ANALISA DATA DAN PEMBAHASAN474.1Karakterisasi Nanopartikel XRD474.2Karakterisasi Nanopartikel FTIR524.3Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.5      | Sintesis Nanopartikel Au@SiO <sub>2</sub>         | 33   |
| <ul> <li>3.7 Prosedur Perakitan DSSC</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.6      | Karakterisasi Nanopartikel                        | 34   |
| <ul> <li>3.8 Pengukuran efisiensi konversi cahaya dengan IPCE45</li> <li>BAB IV ANALISA DATA DAN PEMBAHASAN47</li> <li>4.1 Karakterisasi Nanopartikel XRD47</li> <li>4.2 Karakterisasi Nanopartikel FTIR52</li> <li>4.3 Karakterisasi UV-Vis (Ultraviolet-Visual)53</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.7      | Prosedur Perakitan DSSC                           | 43   |
| <ul> <li>BAB IV ANALISA DATA DAN PEMBAHASAN</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.8      | Pengukuran efisiensi konversi cahaya dengan IPCE  | 45   |
| <ul> <li>4.1 Karakterisasi Nanopartikel XRD47</li> <li>4.2 Karakterisasi Nanopartikel FTIR</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BAB IV   | ANALISA DATA DAN PEMBAHASAN                       | 47   |
| <ul> <li>4.2 Karakterisasi Nanopartikel FTIR</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.1      | Karakterisasi Nanopartikel XRD                    | 47   |
| 4.3 Karakterisasi UV-Vis (Ultraviolet-Visual)53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.2      | Karakterisasi Nanopartikel FTIR                   | 52   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.3      | Karakterisasi UV-Vis (Ultraviolet-Visual)         | 53   |

| 4.4     | Karakterisasi FE-SEM dan EDX | 56 |
|---------|------------------------------|----|
| 4.5     | Pengujian IPCE               | 61 |
| BAB V I | PENUTUP                      | 73 |
| 5.1     | Kesimpulan                   | 73 |
| DAFTA   | R PUSTAKA                    | 75 |
| LAMPIF  | RAN A                        |    |
| LAMPIF  | RAN B                        |    |
| LAMPIF  | RAN C                        |    |
| LAMPIF  | RAN D                        |    |
| LAMPIF  | RAN E                        |    |
| BIODAT  | TA PENULIS                   |    |
|         |                              |    |

# DAFTAR GAMBAR

| Gambar 2.1  | Prinsip kerja dan skema proses transfer elektron                 |
|-------------|------------------------------------------------------------------|
| ~           | pada DSSC                                                        |
| Gambar 2.2  | Struktur kristal nanopartikel $T_1O_2$ (a) Anatase,              |
|             | (b) Rutile, (c) Brookite                                         |
| Gambar 2.3  | Struktur kristal emas FCC ( <i>Face Centered Cubic</i> )         |
| Gambar 2.4  | Diagram pita energi (a) Logam dan                                |
|             | semikonduktor nonequilibrium termal (b)                          |
|             | Kontak logam semikonduktor pada                                  |
|             | keseimbangan termal                                              |
| Gambar 2.5  | Skematik proses elektron transfer pada Au-                       |
|             | semikonduktor heterostruktur (a) hanva Au                        |
|             | tereksitasi, (b) hanya semikonduktor yang                        |
|             | tereksitasi dan (c) eksitasi serentak dari Au dan                |
|             | semikonduktor                                                    |
| Gambar 2.6  | Skema energi diagram dari proses transfer hot                    |
|             | electron                                                         |
| Gambar 2.7  | Persentase penghamburan dan penyerapan                           |
|             | cahaya pada emas (Au) terhadap ukuran                            |
|             | nanopartikel17                                                   |
| Gambar 2.8  | Proses transfer elektron pada fotoanoda                          |
|             | TiO <sub>2</sub> /Au@SiO <sub>2</sub>                            |
| Gambar 2.9  | Skema LSPR19                                                     |
| Gambar 2.10 | Skema ilustrasi peningkatan arus foto efek                       |
|             | LSPR                                                             |
| Gambar 2.8  | Karakterisasi UV-Vis fotoanoda TiO <sub>2</sub> dan              |
|             | TiO <sub>2</sub> +Au@SiO <sub>2</sub> dalam (a) beberapa pewarna |
|             | (b) tanpa pewarna23                                              |
| Gambar 2.11 | Skema hamburan cahaya pada struktur core-                        |
|             | shell                                                            |
| Gambar 2.12 | (a) Spektrum absorbansi <i>core-shell</i> Au@SiO <sub>2</sub>    |
|             | dengan variasi ketebalan SiO2 pada polimer                       |
|             | plasmonik PEDOT:PSS/PTB7 (b) Karakteristik                       |
|             | IPCE tanpa dan dengan core-shell Au@SiO $_2$ 25                  |
| Gambar 3.1  | Metodologi penelitian                                            |

| Gambar 3.2  | Proses ekstraksi SiO2 lumpur Sidoarjo (a)                            |  |  |
|-------------|----------------------------------------------------------------------|--|--|
|             | Pencucian, (b) Penyaringan, dan (c) Hasil                            |  |  |
|             | kalsinasi SiO <sub>2</sub> lumpur Sidoarjo31                         |  |  |
| Gambar 3.3  | Proses sintesis $TiO_2$ (a) Pencampuran $TiCl_3$                     |  |  |
|             | dengan <i>ammonia</i> , (b) Pencucian endapan TiO <sub>2</sub>       |  |  |
|             | dan (c) Hasil kalsinasi TiO <sub>2</sub> 32                          |  |  |
| Gambar 3.4  | Proses reduksi emas (a) HAuCl <sub>4</sub> .3H <sub>2</sub> O bubuk, |  |  |
|             | (b) Preparasi larutan emas dan trisodium citrate                     |  |  |
|             | dan (c) Hasil reduksi emas32                                         |  |  |
| Gambar 3.5  | Proses sintesis Au@SiO <sub>2</sub> (a) Persiapan larutan            |  |  |
|             | APTMS, (b) Larutan SiO <sub>2</sub> yang telah disaring              |  |  |
|             | dan (c) Hasil titrasi campuran Au dan SiO <sub>2</sub> 33            |  |  |
| Gambar 3.6  | Skema nanopartikel struktur core-shell                               |  |  |
|             | Au@SiO <sub>2</sub>                                                  |  |  |
| Gambar 3.7  | (a) Diagram skematik pengujian XRD (b) XRD                           |  |  |
|             | Philips X'pert MPD35                                                 |  |  |
| Gambar 3.8  | Skema pengujian FT-IR spektrometer37                                 |  |  |
| Gambar 3.9  | Diagram skematik pengujian UV-Vis                                    |  |  |
|             | spectrophotometer                                                    |  |  |
| Gambar 3.10 | FE-SEM (JIB-4610F, courtesy JEOL-USA)40                              |  |  |
| Gambar 3.11 | Pelapisan foto anoda pada kaca FTO                                   |  |  |
|             | menggunakan metode doctor blade45                                    |  |  |
| Gambar 3.12 | Fabrikasi DSSC (a) Kaca FTO dengan                                   |  |  |
|             | fotoanoda yang telah direndam dengan pewarna                         |  |  |
|             | (b) DSSC yang telah disusun <i>sandwich</i> 45                       |  |  |
| Gambar 3.13 | Pengujian IPCE (a) Skema pengujian (b) Set up                        |  |  |
|             | alat pengujian di Laboratorium Fotonika46                            |  |  |
| Gambar 4.1  | Hasil XRD SiO <sub>2</sub> dari lumpur Sidoarjo47                    |  |  |
| Gambar 4.2  | Hasil XRD TiO <sub>2</sub> fasa anatase48                            |  |  |
| Gambar 4.3  | Hasil XRD core-shell Au@SiO <sub>2</sub> 49                          |  |  |
| Gambar 4.4  | Hasil XRD sintesis Au metode Turkevich pada                          |  |  |
|             | (a) pH 3,1 dan (b) pH 9,8. Tanda (*)                                 |  |  |
|             | menunjukkan puncak NaCl pada kisi (220) dan                          |  |  |
|             | (311)                                                                |  |  |
| Gambar 4.5  | Hasil FTIR SiO <sub>2</sub> dari lumpur Sidoarjo53                   |  |  |

| Gambar 4.6  | Hasil UV-Vis dari <i>core-shell</i> (a) Au@SiO <sub>2</sub> 30                               |    |
|-------------|----------------------------------------------------------------------------------------------|----|
|             | ml, (b) Au@SiO <sub>2</sub> 60 ml, (c) Au@SiO <sub>2</sub> 90 ml                             |    |
|             | dan (d) Au@SiO <sub>2</sub> 120 ml                                                           | 54 |
| Gambar 4.7  | <i>Tauc plot core-shell</i> Au@SiO <sub>2</sub>                                              | 55 |
| Gambar 4.8  | Hasil FE-SEM dari core-shell Au@SiO <sub>2</sub> 30 ml,                                      |    |
|             | (a)10.000x dan (b)100.000x                                                                   | 57 |
| Gambar 4.9  | Hasil EDX dari <i>core-shell</i> Au@SiO <sub>2</sub> 30 ml, (a)                              |    |
|             | Kuantisasi tiap unsur (b) Persebaran emas (Au)                                               | 58 |
| Gambar 4.10 | Distribusi ukuran partikel emas                                                              | 60 |
| Gambar 4.11 | Hasil uji IPCE pada DSSC (a) Variasi fraksi                                                  |    |
|             | TiO <sub>2</sub> /SiO <sub>2</sub> (b) Fraksi 0,5% Au@SiO <sub>2</sub> pada TiO <sub>2</sub> |    |
|             | (c) Fraksi 1% Au@SiO <sub>2</sub> pada TiO <sub>2</sub> (d) 30 ml                            |    |
|             | $SiO_2$ pada Au@SiO_2 (e) 60 ml SiO_2 pada                                                   |    |
|             | Au@SiO <sub>2</sub> (f) 90 ml SiO <sub>2</sub> pada Au@SiO <sub>2</sub> (g)                  |    |
|             | 120 ml SiO <sub>2</sub> pada Au@SiO <sub>2</sub>                                             | 64 |
| Gambar 4.12 | Perubahan rapat arus terhadap daya (a) 30 ml                                                 |    |
|             | SiO <sub>2</sub> pada Au@SiO <sub>2</sub> dan TiO <sub>2</sub> (b) (b) fraksi                |    |
|             | 0,5% Au@SiO <sub>2</sub> pada TiO <sub>2</sub> (c) fraksi 1%                                 |    |
|             | Au@SiO <sub>2</sub> pada Ti $\hat{O}_2$                                                      | 67 |

# DAFTAR TABEL

| Tabel 2.1 | Komposisi SiO <sub>2</sub> Lumpur Sidoarjo | 11 |
|-----------|--------------------------------------------|----|
| Tabel 3.1 | Komposisi sampel DSSC yang akan diteliti   | 44 |
| Tabel 4.1 | Perhitungan XRD core-shell Au@SiO2         | 50 |
| Tabel 4.2 | Perhitungan Energi Pita Celah              | 56 |
| Tabel 4.3 | Persentase Unsur Hasil EDX                 | 59 |
| Tabel 4.4 | Hasil Analisis Partikel Emas dengan Softwa | re |
|           | ImageJ                                     | 59 |
| Tabel 4.5 | Hasil uji IPCE                             | 68 |
|           |                                            |    |

# BAB I PENDAHULUAN

### 1.1 Latar Belakang

Pada tahun 1991, DSSC (Dve-Sensitized Solar Cell) atau dikenal dengan Grätzel Cell pertama kali ditemukan dan dipatenkan oleh (O'Regan & Grätzel, 1991). Grätzel Cell semikonduktor nanopartikel TiO<sub>2</sub>. menggunakan lapisan semikonduktor dengan luas permukaan yang tinggi dan pewarna ruthenium kompleks berhasil menggenerasikan listrik sebesar 7.9% dari cahaya matahari dan 12% dari difusi cahaya. Permasalahan utama terletak pada ketidakstabilan dari DSSC. Peningkatan penyerapan cahaya dilakukan dengan optimisasi porositas menggunakan TiO<sub>2</sub> lapisan berpori dan pewarna ruthenium kompleks berhasil meningkatkan efisiensi hingga 10,53% (Gao, et al., 2008). Namun total penyerapan cahaya dari molekul pewarna dibatasi oleh luas permukaan TiO<sub>2</sub>.

Modifikasi dilakukan dengan cara co-sensitisasi lapisan TiO<sub>2</sub> dengan pewarna porphyrin (FNE57) dan pewarna organik (FNE46), namun hanya mampu meningkatkan efisiensi sebesar 7,88% (Fan, et al., 2016). Doping pada TiO<sub>2</sub> dengan karbon (Chu, et al., 2008), nitrogen (Eom, et al., 2014) dan logam Al/Zn (Jin, et al., 2016) juga dilakukan, namun hasil yang didapat dengan doping karbon sebesar 4,42%, doping nitrogen 3,6%, dan doping logam Al/Zn 7,12%. Penambahan nanopartikel SiO<sub>2</sub> dan nanopartikel emas (Au) dalam bentuk *core-shell* dilakukan untuk meningkatkan performa DSSC (Li, et al., 2012).

(Puspitasari, 2016) melakukan penelitian pada fotoanoda DSSC menggunakan komposit nanopartikel TiO<sub>2</sub>/SiO<sub>2</sub>. Hasil yang diperoleh SiO<sub>2</sub> hasil ekstraksi lumpur Sidoarjo menghasilkan efisiensi yang lebih tinggi yaitu 0,016% dibandingkan efisiensi SiO<sub>2</sub> dari prekursor TEOS (*tetraethyl orthosilicate*) 0,013%. Hal ini disebabkan karena pada nanopartikel SiO<sub>2</sub> ekstraksi lumpur memiliki kandungan lain, yakni  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> dan NaAlSi<sub>3</sub>O<sub>8</sub> yang berfungsi untuk mengurangi

rekombinasi antara *photoanode* dan pewarna sehingga menyebabkan naiknya nilai  $J_{SC}$  (Puspitasari, 2016).

Beberapa penelitian yang telah dilakukan untuk meningkatkan efisiensi DSSC, antara lain penggunaan submikron partikel *core-shell* SiO<sub>2</sub>@TiO<sub>2</sub> yang ditempelkan pada fotoanoda TiO<sub>2</sub> dengan pewarna N-719. Submikron *core-shell* SiO<sub>2</sub>@TiO<sub>2</sub> yang ditanam pada fotoanoda TiO<sub>2</sub> dapat memperbesar efek penghamburan cahaya, menyerap pewarna tiga kali lebih besar dan meningkatkan konversi energi menjadi 5,1%, hasil ini lebih besar 46% daripada fotoanoda TiO<sub>2</sub> saja yakni sebesar 3,5% (Wang, et al., 2013).

Penambahan partikel nano dari logam mulia seperti perak (Ag) dan emas (Au) menjadi metode yang efektif untuk menambah performansi dari DSSC, dikarenakan adanya efek LSPR (Localized Surface Plasmon Resonance). Fungsi LSPR dari nanopartikel emas (Au) pada DSSC dapat meningkatkan light harvesting dan penyerapan molekul pewarna yang lebih besar dikarenakan permukaan Au membentuk awan elektron yang dapat gelombang beresonansi secara koheren dengan medan elektromagnetik lokal cahaya di sekitarnya dengan baik. Adanya Au menambah elektron yang tereksitasi sebagai akibat permukaan plasmonik nanopartikel emas (Au) yang mentransfer elektron ke pita konduksi TiO<sub>2</sub> (Jang, et al., 2014).

Penambahan *core-shell* Au@SiO<sub>2</sub> pada fotoanoda DSSC dapat meningkatkan penyerapan cahaya dan efisiensi konversi daya DSSC. Penelitian yang dilakukan oleh (Li, et al., 2012) dengan komponen SiO<sub>2</sub> dari TEOS, TiO<sub>2</sub> sebagai dasar fotoanoda dan N-719 sebagai pewarna, efek LSPR dari Au yang dapat meningkatkan penyerapan cahaya dan bersinergi baik dengan pewarna N-719 dalam meningkatkan transfer energi memperlihatkan perbedaan efisiensi yang cukup signifikan sebesar 4,81%, dimana 37% lebih tinggi dibandingkan hanya menggunakan TiO<sub>2</sub> yakni 3,52% (Li, et al., 2012).

Penelitian lebih lanjut yang telah dilakukan oleh (Budiarti, 2016), dengan memodifikasi fotoanoda DSSC menggunakan 1,0 wt% struktur *core-shell* TiO<sub>2</sub>@SiO<sub>2</sub>@Au, dimana penambahan

SiO<sub>2</sub> hasil ekstraksi lumpur Sidoarjo dapat meningkatkan efisiensi menjadi dua kali lebih tinggi yakni 0,0317% dibandingkan hanya menggunakan TiO<sub>2</sub> 0,016%. Hal ini dikarenakan penambahan SiO<sub>2</sub> memiliki efek penghamburan cahaya sehingga semakin mengenai banyak cahaya vang pewarna dan mampu mengkonversi photon dari menjadi elektron lebih banyak sehingga dapat meningkatkan nilai arus dan tegangan yang dihasilkan. Hasil FESEM menunjukkan SiO<sub>2</sub> tidak sepenuhnya melingkupi TiO<sub>2</sub> dan hasil FTIR tidak menunjukkan adanya ikatan Ti – O – Si sehingga struktur *core-shell* tidak terbentuk secara sempurna mengakibatkan nilai hambatan yang dihasilkan menjadi semakin tinggi (Budiarti, 2016).

Penelitian tugas akhir ini berfokus pada fabrikasi DSSC dengan fotoanoda TiO<sub>2</sub> yang ditambahkan variasi struktur *coreshell* Au@SiO<sub>2</sub>. Partikel SiO<sub>2</sub> yang digunakan didapatkan dari hasil sintesis lumpur Sidoarjo dengan variasi fraksi yang ditentukan, sehingga dapat diperoleh nilai konversi arus DSSC yang optimal. Pewarna yang digunakan adalah pewarna N-719. Dengan penambahan struktur *core-shell* Au@SiO<sub>2</sub> ini diharapkan menghasilkan efek LSPR (*Localized Surface Plasmon Resonance*) oleh nanopartikel Au, sehingga dapat meningkatkan penyerapan cahaya dan nilai arus foton yang dihasilkan.

## 1.2 Rumusan Masalah

Permasalahan yang dihadapi dalam tugas akhir ini adalah:

- a. Bagaimana karakteristik nanopartikel SiO<sub>2</sub> dari hasil ekstraksi lumpur Sidoarjo?
- b. Bagaimana karakteristik nanopartikel struktur *core-shell* Au@SiO<sub>2</sub> yang disintesis?
- c. Bagaimana konversi foton menjadi arus pada DSSC dengan nanopartikel struktur *core-shell* Au@SiO<sub>2</sub>?

# 1.3 Tujuan

Tujuan dari penelitian tugas akhir ini adalah:

a. Mengetahui karakteristik nanopartikel SiO<sub>2</sub> dari hasil ekstraksi lumpur Sidoarjo.

- b. Mengetahui karakteristik nanopartikel struktur *core-shell* Au@SiO<sub>2</sub> yang disintesis.
- c. Mengetahui konversi foton menjadi arus pada DSSC dengan nanopartikel struktur *core-shell* Au@SiO<sub>2</sub>.

# BAB II DASAR TEORI

#### 2.1 Prinsip Kerja Dye Sensitized Solar Cell (DSSC)

Siklus kerja dye sensitized solar cell ditunjukkan pada Gambar 2.1. Foton akan diserap oleh molekul pewarna yang ada di permukaan semikonduktor titanium dioksida dan elektron akan tereksitasi (D\*) dari tingkat Highest Occupied Molecular Orbital (HOMO) ke tingkat Lowest Unoccupied Molecular Orbital (LUMO) ketika molekul pewarna menyerap sejumlah foton dengan energi yang sesuai. Setelah itu elektron akan diinjeksikan ke semikonduktor titanium dioksida dan meninggalkan pewarna (D<sup>+</sup>). Kemudian elektron menuju kontak pada sisi bagian belakang yang terbuat dari transparent conducting oxide (TCO) (elektroda negatif/anoda), dari TCO elektron menuju ke sirkuit eksternal dan akhirnya menuju ke elektroda lawan (elektroda positif/katoda). Setelah dari elektroda lawan, elektron ditransfer ke elektrolit triiodida dan menghasilkan iodin, siklus ditutup dengan proses reduksi yang dialami pewarna yang teroksidasi oleh iodin dalam elektrolit (Halme, 2002).



Gambar 2.1 Prinsip kerja dan skema proses transfer elektron pada DSSC (Wu & Zhu, 2013)

Selain proses kimia di atas, terdapat beberapa proses yang tidak diinginkan. Proses ini akan menurunkan efisiensi dari DSSC, yaitu rekombinasi dari elektron yang terinjeksi dengan pewarna teroksidasi atau pasangan redoks yang teroksidasi pada permukaan  $TiO_2$  (Nazeeruddin, Baranoff, & Grätzel, 2011).

#### 2.2 Material Penyusun Fotoanoda DSSC

2.2.1 Nanopartikel TiO<sub>2</sub> Anatase

 $TiO_2$  memiliki 3 struktur kristal, yaitu rutile, anatase dan brookite. Struktur kristal nanopartikel  $TiO_2$  ditunjukkan pada Gambar 2.2.





Rutile adalah fase yang stabil secara termodinamika. Energi pita celah dari rutile adalah 3,0 eV setara dengan energi cahaya dengan panjang gelombang 413 nm, sedangkan energi pita celah dari anatase adalah 3,2 eV setara dengan energi cahaya dengan panjang gelombang 388 nm (Asahi, et al., 2001). Energi pita celah yang tinggi ini mengurangi spektrum cahaya yang dapat diserap, tetapi mampu meningkatkan pita valensi maksimum ke tingkat energi yang lebih tinggi relatif terhadap potensi redoks dari molekul pewarna yang terabsorpsi. Hal ini meningkatkan kemampuan oksidasi dari elektron dan mendukung transfer elektron dari pewarna yang terserap ke TiO<sub>2</sub> (Luttrell, et al., 2014).

DSSC menggunakan fotoanoda TiO<sub>2</sub> anatase yang telah dilapisi pewarna memiliki penyerapan cahaya 35% dan IPCE 14% lebih tinggi dibandingkan dengan TiO<sub>2</sub> rutile dilapisi pewarna (Park, van de Lagemaat, & Frank, 2000). Hal ini dikarenakan TiO<sub>2</sub> anatase memiliki luas permukaan (surface area) yang lebih besar dibandingkan dengan TiO<sub>2</sub> rutile, dimana semakin besar luas permukaan maka semakin besar penyerapan pewarna dan meningkatkan generasi foto arus (photocurrent) (Jeng, et al., 2013). TiO<sub>2</sub> anatase juga memiliki konstanta dielektrik yang tinggi yaitu  $\mathcal{E} = 80$ , sehingga menjadi pelindung listrik yang baik dari elektron terinjeksi molekul pewarna teroksidasi yang menempel pada permukaan TiO2, hal ini mencegah rekombinasi sebelum reduksi pewarna oleh elektrolit redoks. TiO<sub>2</sub> anatase juga memiliki indeks bias yang tinggi (n=2,5) sehingga menghasilkan hamburan cahaya yang efisien dalam pori fotoelektroda, vang secara signifikan meningkatkan penyerapan cahaya (Kay & Grätzel, 1996).

#### 2.2.2 Nanopartikel Au Sebagai Material Core

Penambahan logam mulia ke TiO<sub>2</sub> dapat mempengaruhi kinerja fotovoltaik. Fungsi kerja logam mulia lebih tinggi dari pada TiO<sub>2</sub>, dimana elektron yang dikeluarkan dari TiO<sub>2</sub> di sekitar partikel logam menyebabkan pembentukan Schottky barrier pada daerah semikonduktor logam. Schottky barrier sendiri adalah potensial energi penghalang untuk elektron terbentuk pada sambungan semikonduktor-logam (Tung, 2014). Terbentuknya Schottky barrier mampu mengurangi rekombinasi muatan. Selain itu juga dapat mempercepat transfer elektron ke elektroda sehingga transfer muatan menjadi efisien. Endapan nanopartikel logam mulia pada permukaan TiO<sub>2</sub> memfasilitasi proses transfer muatan antar muka dengan efektif, karena fungsi logam sebagai dan menurunkan rekombinasi muatan penyerap elektron (Pandikumar, et al., 2016).

Logam mulia seperti emas ( $\phi_m$ Au: 5,1-5,5 eV), perak ( $\phi_m$ Ag: 4,12 eV) dan tembaga (Cu) digunakan elektroda logam dalam DSSC karena memiliki fungsi kerja yang lebih tinggi daripada afinitas elektron dari TiO<sub>2</sub> ( $\chi$ TiO<sub>2</sub>: 4.0 eV) sehingga

dapat membentuk *Schottky barrier* dan memberikan elektron saat pengisian muatan di elektrolit (Dao & Choi, 2016). Fungsi kerja yang tinggi membuat elekroda logam stabil di udara bebas dan memiliki kontak yang baik dengan lapisan pewarna (Khatri, et al., 2012). Peningkatan efisiensi dipengaruhi oleh perbedaan fungsi kerja antara Au dengan TiO<sub>2</sub> dimana perbedaan yang cukup besar mampu meningkatkan *Schottky barrier* yang secara efisien menangkap *hot electron* dibandingkan dengan Ag dengan TiO<sub>2</sub> yang memiliki perbedaan fungsi kerja kecil (Dao & Choi, 2016).



Gambar 2.3 Struktur kristal emas FCC (*Face Centered Cubic*) (Maeland & Flanagan, 1964)

Struktur kristal logam emas adalah FCC (*Face Centered Cubic*) (Gambar 2.3). Emas memiliki densitas sebesar 19,32 g/cm<sup>3</sup> pada suhu mendekati suhu kamar (Brown & Lemay, 1985). Emas memiliki konduktivitas listrik sebesar  $4,10 \times 10^7$  S/m dan konsentrasi elektron bebas sebesar  $5,91 \times 10^{22}$  cm<sup>3</sup> yang membuat emas menjadi sangat konduktif dan digunakan pada aplikasi energi tinggi (Fulay & Lee, 2016). Logam mulia dapat meningkatkan aktifitas fotokatalik pada cahaya tampak karena menghambat rekombinasi elektron serta adanya efek plasmonik serta dapat meningkatkan pemanenan cahaya (Ye et al., 2013). Nanopartikel Au sebagai salah satu logam mulia dapat meningkatkan rentang dan kekuatan penyerapan cahaya pada fotoanoda. Dengan meningkatkan Au pada fotoanoda, jumlah

spektrum penyerapan cahaya meningkat sementara jumlah penyerapan pewarna berkurang (Bai et al., 2014).

#### 2.2.3 SiO<sub>2</sub> Ekstraksi Lumpur Sidoarjo Sebagai Material Shell

SiO<sub>2</sub> merupakan material penghambur yang berfungsi untuk meningkatkan penyerapan cahaya oleh pewarna 3 kali lebih kuat dibandingkan tanpa adanya material penghambur. SiO<sub>2</sub> bertindak sebagai material penghambur, perbedaan indeks bias yang besar antara SiO<sub>2</sub> (n=1,5) dan TiO<sub>2</sub> (n=2,52) mampu membuat jalannya cahaya hamburan pada *core-shell* semakin panjang dan dapat kembali mengenai lapisan aktif pewarna sehingga memberikan efek hamburan cahaya yang kuat. Hal ini sesuai dengan peningkatan refraksi dan transmitansi teori Fresnel pada SiO<sub>2</sub> dengan TiO<sub>2</sub> (DeVore, 1951):

$$n = \sqrt{n_0 n_s} \tag{2.1}$$

Dimana n<sub>0</sub> merupakan indeks bias lapisan luar, n merupakan indeks bias lapisan tengah dan n<sub>s</sub> merupakan indeks bias lapisan dalam. Indeks bias (n<sub>0</sub>) dari cahaya datang di udara adalah 1, sehingga n harus sesuai dengan akar dari n<sub>s</sub>. Diketahui indeks bias SiO<sub>2</sub> (n=1,5) dan TiO<sub>2</sub> (n<sub>s</sub>=2,52) menunjukkan akar dari n<sub>s</sub> sekitar 1,59. Namun, penurunan lebih lanjut n<sub>s</sub> merupakan penyesuaian dari struktur nanoporous TiO<sub>2</sub> dan menghasilkan kesesuaian  $n = \sqrt{n_0 n_s}$  (DeVore, 1951). Dispersi optik pada TiO<sub>2</sub> (DeVore, 1951):

$$n_s^2 = 5,913 + \frac{0,2441}{\lambda^2 - 0.803} \tag{2.2}$$

Dimana  $\lambda$  merupakan panjang gelombang dari sinar datang. Dispersi optik pada SiO<sub>2</sub> (Gosh, 1999):

$$n^{2} = 1,286 + \frac{1,0704\,\lambda^{2}}{\lambda^{2} - 0.01} + \frac{1,102\,\lambda^{2}}{\lambda^{2} - 100}$$
(2.3)

Dari hukum Fresnel didapatkan hubungan:

$$t_{12} = \frac{2n_1}{n_1 + n}, t_{23} = \frac{2n}{n_2 + n}, r_{21} = \frac{n_1 - n}{n_1 + n}, r_{23} = \frac{n_2 - n}{n_2 + n}$$
(2.4)

Dimana  $t_{12}$  merupakan amplitudo transmisi dari udara ke SiO<sub>2</sub>,  $t_{23}$  merupakan amplitudo transmisi dari SiO<sub>2</sub> ke TiO<sub>2</sub>,  $r_{12}$ merupakan amplitudo reflektansi dari udara ke SiO<sub>2</sub>,  $r_{23}$ merupakan amplitudo reflektansi dari SiO<sub>2</sub> ke TiO<sub>2</sub>. Peningkatan transmisi dari SiO<sub>2</sub> dengan TiO<sub>2</sub> fotoanoda setelah pemantulan dan transmisi berulang dapat dihitung berdasarkan:

$$T = \frac{(t_{12}t_{23})^2}{1 - 2r_{12}r_{23}\cos\varphi + (r_{12}r_{23})^2}$$
(2.5)

Dengan T merepresentasikan transmisi,  $\varphi = \frac{4\pi}{\lambda} d\cos\theta$ adalah perbedaan fasa, d adalah ketebalan SiO<sub>2</sub>,  $\theta$  adalah sudut

cahaya datang.

Selain itu, SiO<sub>2</sub> dipilih karena tidak hanya sebagai penghambur yang baik, tetapi juga dapat menjadi penghalang antara  $TiO_2$  dan elektrolit. SiO<sub>2</sub> juga dapat meningkatkan pemanenan cahaya serta dapat menghambat rekombinasi tanpa mengurangi tingkat penyerapan pewarna pada film  $TiO_2$ . Dengan adanya peningkatan pemanenan cahaya dan pengurangan rekombinasi dapat meningkatkan efisiensi sebesar 50% (Tanvi et al., 2016).

Lumpur Sidoarjo memiliki kandungan silika sebesar 55 %, sehingga mempunyai prospek untuk disintesis dan didapatkan silika orde nano yang mempunyai kemurnian tinggi yaitu 88,4 - 95,7 wt% pada pH 7 dengan metode kopresipitasi. Penurunan pH akhir larutan dapat meningkatkan kemurnian nanosilika yang dihasilkan, namun penurunan pH akhir larutan menyebabkan turunnya massa silika yang dihasilkan (Pribadi et al., 2013).

 $SiO_2$  hasil ekstraksi dari lumpur Sidoarjo memiliki puncak pada  $2\theta = 24,968^{\circ}$ , memiliki puncak yang tidak tajam dan cenderung melebar, sehingga mengindikasikan nanopartikel  $SiO_2$ dari lumpur Sidoarjo merupakan  $SiO_2$  amorf. Nanopartikel  $SiO_2$ ekstraksi lumpur memiliki butiran-butiran nanopartikel yang berbentuk bulatan tidak sempurna, kecil, dan polidispers, dengan ukuran partikel antara lain 51,97 nm, 56,61 nm 59,78 nm, 60,30 nm, 64,59 nm, dan 64,84 nm.

Selain puncak utama milik SiO<sub>2</sub>, pada ekstraksi lumpur ditemui 2 puncak lain pada  $2\theta = 45,556^{\circ}$  yang merupakan milik  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> dan pada  $2\theta = 31,786^{\circ}$  yang merupakan milik albite (NaAlSi<sub>3</sub>O<sub>8</sub>). yang berfungsi untuk menghambat laju rekombinasi dan sebagai partikel penghambur sehingga kemampuan absorpsi *dye* lebih besar (Puspitasari, 2016).

| Elemen | Weight % | Atomic % |
|--------|----------|----------|
| 0      | 53,74    | 59,24    |
| Na     | 3,82     | 2,70     |
| Al     | 5,21     | 3,14     |
| Si     | 15,17    | 8,78     |

Tabel 2.1 Komposisi SiO<sub>2</sub> hasil ekstraksi lumpur Sidoarjo (Puspitasari, 2016)

#### 2.2.4 Struktur Core-Shell Au@SiO<sub>2</sub> Sebagai DSSC

Penambahan logam mulia diharapkan dapat memberikan peningkatan efisiensi pada DSSC. Logam mulia dapat meningkatkan aktifitas fotokatalik pada cahaya tampak karena menghambat rekombinasi elektron serta adanya efek plasmonik serta dapat meningkatkan pemanenan cahaya (Ye et al., 2013).



Metal



(a)



**(b)** 

Gambar 2.4 Diagram pita energi (a) Logam dan semikonduktor nonequilibrium termal (b) Kontak logam semikonduktor pada keseimbangan termal (Sze, 1985)

Gambar 2.4 merupakan diagram pita energi logam pada semikonduktor tipe n di saat belum kontak dan setelah kontak. Di saat tidak ada tegangan bias, diagram pita berada pada kondisi kesetimbangan termal dari kedua material. Fungsi kerja logam  $(q\phi_m)$  berbeda dengan fungsi kerja semikonduktor  $(q\phi_s)$ . Fungsi kerja didefinisikan sebagai perbedaan energi antara tingkat Fermi dan tingkat vakum. Terdapat afinitas elektron  $(q\chi)$  yang merupakan perbedaan energi antara pita konduksi dan tingkat vakum pada semikonduktor. Ketika logam membuat kontak dengan semikonduktor, tingkat Fermi pada kedua material sama pada kesetimbangan termal. Pada kondisi ideal, tinggi penghalang
(*barrier*) pada semikonduktor tipe n ( $\phi_{Bn}$ ) merupakan perbedaan antara fungsi kerja logam ( $q\phi_m$ ) dan afinitas elektron semikonduktor ( $q\chi$ ) (Sze, 1985).

$$q\phi_{Bn} = q\phi_m - q\chi \tag{2.6}$$

Schottky barrier mengacu pada kontak antara logam dan semikonduktor yang memiliki ketinggian barrier yang besar ( $\phi_{Bn} >> kT$ ). Pada sisi semikonduktor, V<sub>bi</sub> merupakan harga tegangan difusi (*build-in potential*) yang dibutuhkan oleh elektron pada pita konduksi untuk berpindah menuju logam dan  $qV_n$  merupakan jarak antara batas bawah dari pita konduksi dengan tingkat Fermi (Sze, 1985).

$$V_{bi} = \phi_{Bn} - V_n \tag{2.7}$$

Pada saat kesetimbangan termal, kerapatan arus seimbang dari kedua sisi, sehingga tidak menghasilkan arus keluaran. Elektron pada semikondukor yang akan mengalir menuju logam dilawan oleh aliran elektron dari logam menuju semikonduktor dengan seimbang. Komponen arus ini proporsional dengan kerapatan dari elektron pada batasan. Pada permukaan semikonduktor, elektron dapat keluar secara termal menuju logam jika energinya diatas dari tinggi *barrier*. Pada kesetimbangan termal didapatkan (Sze, 1985):

$$\left|J_{m \to s}\right| = \left|J_{s \to m}\right| = C_1 N_C \exp\left(-\frac{q\phi_{Bn}}{kT}\right)$$
(2.8)

Dimana fungsi kerja semikonduktor  $(q\phi_s)$  digantikan dengan tinggi *barrier* semikonduktor tipe n  $(q\phi_{Bn})$ , N<sub>C</sub> adalah densitas keadaan di pita konduksi,  $J_{m\to s}$  adalah arus dari logam ke semikonduktor,  $J_{s\to m}$  adalah arus dari semikonduktor ke logam, kT adalah energi termal dan C<sub>1</sub> adalah konstanta.

Sifat penyearah oleh *Schottky barrier* ini berguna pada DSSC sebagai penghalang terjadinya rekombinasi elektron. Elektron yang telah diinjeksikan dari logam mulia ke semikonduktor, terhalang untuk kembali lagi ke logam oleh *Schottky barrier*. Menurut (Chang, et al., 2011) kontak logam dan semikonduktor yang memiliki perbedaan tingkat Fermi TiO<sub>2</sub> (3.2 eV) dan Au (5.1 eV), dimana tingkat Fermi Au lebih rendah dari TiO<sub>2</sub> (semikonduktor tipe n), mampu membentuk *Schottky barrier* di antaranya. Elektron yang telah melewati pita energi LUMO dari pewarna dan dipenetrasi ke pita konduksi TiO<sub>2</sub> tidak dapat kembali ke molekul pewarna ataupun elektrolit dikarenakan adanya *Schottky barrier* ini, sehingga efisiensi dalam injeksi *hot electron* menuju fotoanoda dapat meningkat secara efektif (Chang, et al., 2011).

Kontak logam langsung dengan semikonduktor membentuk *Schottky barrier*, namun dapat terjadi *loss* pada depan permukaan logam *Schottky* dikarenakan elektron terdifusi kembali melawan arah medan listrik pada kontak tersebut dan berekombinasi dengan *hole* yang terkumpul di permukaan logam. Sehingga dibutuhkan lapisan pelindung tipis untuk mengurangi kecepatan rekombinasi ini. Elektron yang telah terselamatkan dari rekombinasi akan dipengaruhi oleh medan listrik sekitarnya untuk bergerak pada arah yang tepat. Hal ini menyebabkan elektron sebagian berkontribusi menjadi arus keluaran dan sebagian lagi hilang oleh rekombinasi.

Kecepatan rekombinasi permukaan yang rendah juga menghambat terkumpulnya hole pada permukaan logam yang menumpuk di kontak logam-insulator-semikonduktor. Perlu diperhatikan bahwa lapisan pelindung harus tipis agar tidak mengurangi keluaran arus akibat terbentuknya hambatan seri. Lapisan pelindung tipis pada kontak logam-semikondukor mampu mengurangi kecepatan rekombinasi permukaan sebesar 10<sup>4</sup> cm/s dibandingkan dengan logam-semikonduktor saja sebesar dengan  $10^{7}$ cm/s. Panel surva MIS (metal-insulatorsemiconductor) memiliki kecepatan rekombinasi permukaan sebesar 10<sup>4</sup> cm/s juga menghasilkan medan negatif dan *fill factor* vang lebih besar daripada MS (metal-semiconductor) yang memiliki kecepatan rekombinasi permukaan sebesar 107 cm/s (Debnath & Chatterjee, 1995).



Gambar 2.5 Skematik proses elektron transfer pada Ausemikonduktor heterostruktur (a) hanya Au tereksitasi, (b) hanya semikonduktor yang tereksitasi dan (c) eksitasi serentak dari Au dan semikonduktor (Dutta, Mehetor, & Pradhan, 2015)

Transfer elektron pada Gambar 2.5 jalur 1 menunjukkan eksitasi semikonduktor dari pita valensi ke pita konduksi diikuti oleh transfer elektron menuju level Fermi Au. Jalur 2 menunjukkan eksitasi elektron dari level Fermi ke state plasmonik permukaan Au menuju pita konduksi semikonduktor. Jalur 3 menunjukkan pasangan eksitasi dari semikonduktor dan plasmonik Au. Terdapat kemungkinan terjadinya photosensitized dan penyerapan cahaya matahari baik dari logam maupun semikonduktor, dimana material merupakan pasangan plasmonik emas dengan semikonduktor yang memiliki pita celah rendah. Kontak logam dengan semikonduktor tak hanya menghasilkan perlambatan rekombinasi elektron tapi juga kemungkinan eksitasi dari kedua sisi secara serentak. Kondisi dimana logam dan semikonduktor adalah photosensitive merupakan hal yang sangat menjanjikan dari keduanya untuk menyerap cahaya dan menghasilkan lebih banyak pembawa muatan eksitasi foton (Dutta, Mehetor, & Pradhan, 2015).



Gambar 2.6 Skema energi diagram dari proses transfer *hot electron* (Erwin, et al., 2016)

Gambar 2.6 menunjukkan proses transfer *hot electron*. Diawali dengan eksitasi yang berkelanjutan oleh permukaan plasmon dari logam mulia menghasilkan pasangan *hot electron* dan *hole* diikuti dengan difusi dari *hot electron* menuju antar muka logam-semikonduktor. *Hot electron* dengan energi yang cukup melintasi *Schottky barrier* dan menembus lapisan tipis insulator untuk masuk ke pita konduksi dari semikondukor terdekat. *Hot electron* dapat terjadi jika tingkat Fermi dari logam dan semikonduktor seimbang dan memiliki jalur bagi elektron untuk berpindah diantaranya. Agar dapat terjadi *hot electron* lapisan pelindung logam (SiO<sub>2</sub>) harus lebih tipis dari elektron *tunneling barrier*, yaitu 3-5 nm untuk SiO<sub>2</sub>. Karena logam merupakan pengumpul elektron, lapisan silika berfungsi sebagai isolasi elektrik dari logam, meminimalisir rekombinasi dari

pasangan elektron-*hole*, dan pelindung logam dari terjadinya korosi oleh elektrolit (Erwin, et al., 2016).

Lapisan silika dengan ketebalan ~3-5 nm cukup untuk menyediakan kestabilan kimiawi dan termal pada logam tanpa mengurangi medan elekromagnetik yang mengelilingi permukaan logam. Lapisan silika yang lebih tebal (>10 nm) tidak hanya menghasilkan pergeseran ke spektral merah (*red-shift*) dari resonansi plasmon karena indeks bias yang besar dari silika, tapi juga melindungi osilasi elektron pada logam yang menyebabkan peredaman plasmonik (Erwin, et al., 2016).



Gambar 2.7 Persentase penghamburan dan penyerapan cahaya pada emas (Au) terhadap ukuran nanopartikel (Erwin, et al., 2016)

Distribusi ukuran partikel emas (Au) juga mempengaruhi sifat penyerapan dan penghamburan cahaya yang dihasilkan (Gambar 2.7). Emas dengan ukuran partikel yang besar dapat secara baik menghamburkan cahaya agar meningkatkan cahaya yang diserap oleh pewarna walaupun berjarak ratusan nanometer dari emas, inilah yang disebut dengan far-field scattering (penghambur medan jauh). Ukuran emas vang kecil menyebabkan interaksi plasmonik dari permukaan emas dan cahaya yang diserap dengan meningkatkan medan lokal elektromagnetik, disebut electromagnetic near-field enhancement (peningkatan medan lokal elektromagnetik) (Erwin, et al., 2016).

#### 2.3 Prinsip Kerja Modifikasi Fotoanoda DSSC

Prinsip kerja dari hasil modifikasi photoanoda DSSC nanopartikel TiO<sub>2</sub>/Au@SiO<sub>2</sub> ditunjukkan pada Gambar 2.8.



Gambar 2.8 Proses transfer elektron pada fotoanoda TiO<sub>2</sub>/Au@SiO<sub>2</sub> (Erwin, et al., 2016)

Ketika terkena cahaya, foton mengeksitasi elektron dari tingkat HOMO ke tingkat LUMO pada molekul pewarna. Berbeda dengan Gambar 2.1, elektron yang tereksitasi dari pewarna terinjeksi tidak langsung menuju semikonduktor TiO<sub>2</sub> namun melewati Au@SiO<sub>2</sub> terlebih dahulu. Elektron yang tereksitasi dari nanopartikel Au@SiO<sub>2</sub> dari pewarna menuju ke dalam pita konduksi dari nanopartikel TiO<sub>2</sub> dan keluar melalui kaca FTO menuju rangkaian eksternal. Berbeda dengan DSSC biasa, penambahan Au@SiO<sub>2</sub> memiliki peran penting dalam proses transfer elektron. Logam mulia seperti emas (Au: 5,1-5,5 eV), perak (Ag: 4,12 eV) dan tembaga (Cu) digunakan elektroda logam dalam DSSC karena memiliki fungsi kerja yang lebih tinggi daripada TiO<sub>2</sub> (4 eV) sehingga dapat memberikan elektron saat pengisian muatan di elektrolit. Fungsi kerja yang tinggi membuat elektroda logam stabil di udara bebas dan memiliki kontak yang baik dengan lapisan pewarna (Khatri, et al., 2012). Molekul pewarna yang teroksidasi meregenerasi elektron dari elektrolit melalui reaksi redoks dan teregenerasi. Elektrolit sendiri diregenerasi melalui elektroda lawan platinum oleh elektron yang melewati rangkaian eksternal (Erwin, et al., 2016).

#### 2.4 Efek LSPR (Localized Surface Plasmon Resonance)

Localized Surface Plasmon Resonance merupakan suatu fenomena optik yang disebabkan oleh gelombang cahaya yang terperangkap dalam nanopartikel konduktif yang memiliki ukuran lebih kecil daripada panjang gelombang cahaya tersebut. Fenomena ini merupakan hasil dari interaksi antara cahaya masuk dengan awan elektron dalam pita konduksi. Interaksi ini menghasilkan osilasi plasmon lokal yang koheren dengan frekuensi resonansi yang sangat bergantung pada komposisi, ukuran, geometri, lingkungan dielektrik dan jarak permisahan partikel-partikel dari nanopartikel (Gambar 2.9).



Gambar 2.9 Skema LSPR (Willets & Van Duyne, 2006)

Medan elektromagnetik yang sangat intens dan lokal, yang disebabkan oleh LSPR membuat nanopartikel menjadi transduser yang sangat sensitif terhadap sedikit perubahan indeks bias lokal. Untuk beberapa molekul organik dengan indeks bias yang relatif tinggi, menyebabkan nanopartikel pada pergeseran merah (Willets & Van Duyne, 2006). DSSC dengan material plasmonik memiliki skema transfer elektron yang agak berbeda. *Hot electron* dan *hole* yang dihasilkan dari eksitasi permukaan plasmon dapat diinjeksikan secara bersamaan ke dalam pita konduksi TiO<sub>2</sub> dan dari elektrolit berlangsung dalam selang waktu *femtosecond*. Pembawa *hot charge* yang tereksitasi dan akumulasi dari muatan elektroda lawan akan mendorong pasangan *electron-hole* bergeser ke tingkat Fermi yang memungkinkan terjadi transfer secara termal, baik menuju ke pita konduksi TiO<sub>2</sub> maupun ke elektrolit (Jang et al., 2014).



Gambar 2.10 menunjukkan skema peningkatan kerapatan arus tidak hanya disebabkan oleh eksitasi pewarna karena efek

LSPR yang berkaitan dengan peningkatan *near-field* saja, tetapi juga dipengaruhi oleh pembangkitan arus foton tambahan yang diberikan oleh transfer *hot electron* dari struktur *core-shell plasmonic* ke pita konduksi TiO<sub>2</sub>, penghamburan foton pada *far-field* dan resonansi plasmonik terhadap transfer energi (Erwin, et al., 2016).

#### 2.5 Pengaruh Modifikasi Fotoanoda terhadap Absorbansi

Modifikasi fotoanoda pada DSSC dapat meningkatkan absorbansi atau penyerapan terhadap panjang gelombang tampak, baik dengan penambahan partikel penghambur maupun material *plasmonic*. Besarnya intensitas absorbansi pada struktur *coreshell* disebabkan karena efek penghambur yang lebih kuat. Teori hamburan Mie menyatakan bahwa, efek penghambur dipengaruhi oleh besarnya perbedaan indeks bias antara partikel penghambur dengan media di sekitarnya (Wang, et al., 2013). Teori hamburan Mie digunakan untuk hamburan elektromagnetik oleh sebuah benda speris dalam radius R, persamaan hamburan Mie dapat dilihat pada persamaan berikut (Hahn, 2009).

$$\sigma_{scat} = \frac{\lambda^2}{2\pi} \sum_{n=0}^{\infty} (2n+1) \left( \left| a_n \right|^2 + \left| b_n \right|^2 \right)$$
(2.9)

Teori hamburan Mie mencakup penyelesaian hamburan dari gelombang elektromagnetik pada partikel sferis homogen (penyerapan atau non penyerapan) tanpa terikat pada ukuran partikel tertentu. Saat gelombang elektromagnetik yang berinteraksi dengan partikel diskrit, orbit elektron dalam molekul penyusun berosilasi secara periodik dengan frekuensi yang sama dari gelombang elektromagnetik. Osilasi ini menghasilkan pemisahan muatan dalam molekul secara periodik yang disebut induksi momen dipol. Osilasi induksi momen dipol ini berfungsi sebagai sumber radiasi elektromagnetik yang menghasilkan hamburan cahaya. Momen dipol yang dipancarkan gelombang elektro magnetik ke n. Dimana parameter  $a_n$  dan  $b_n$  didefinisikan sebagai berikut (Hahn, 2009):

$$a_{n} = \frac{\Psi_{n}(\alpha)\Psi_{n}(m\alpha) - m\Psi_{n}(m\alpha)\Psi_{n}(\alpha)}{\xi(\alpha)\Psi_{n}(m\alpha) - m\Psi_{n}(m\alpha)\xi_{n}(\alpha)}$$
(2.10)

$$b_n = \frac{m\Psi_n(\alpha)\Psi_n'(m\alpha) - \Psi_n(m\alpha)\Psi_n'(\alpha)}{m\xi(\alpha)\Psi_n'(m\alpha) - \Psi_n(m\alpha)\xi_n'(\alpha)}$$
(2.11)

Dengan:

$$\alpha = \frac{2\pi a m_0}{\lambda_0} \tag{2.12}$$

Dimana *a* adalah jari-jari speris partikel, *m* adalah indeks bias partikel penghambur,  $m_0$  adalah indeks bias sekitar medium dan  $\lambda_0$  panjang gelombang radiasi pada kondisi vakum. Parameter  $\Psi_n$ dan  $\xi_n$  didefinisikan sebagai berikut (Hahn, 2009):

$$\Psi_{n}(z) = \left(\frac{\pi z}{2}\right)^{\frac{1}{2}} J_{n+1/2}(z)$$
 (2.13)

$$\xi_{n}(z) = \left(\frac{\pi z}{2}\right)^{\frac{1}{2}} H_{n+1/2}(z)$$
 (2.14)

Parameter  $\Psi_n$  dan  $\xi_n$  merupakan persamaan Ricatti-Bessel didefinisikan  $\Psi_n$  sebagai bentuk dari tipe pertama fungsi speris Bessel orde setengah  $(J_{n+1/2}(z))$  dan  $\xi_n$  sebagai bentuk dari tipe pertama fungsi speris Hankel orde setengah  $(H_{n+1/2}(z))$ . Fungsi Ricatti-Bessel dalam orde setengah ini digunakan untuk menyelesaikan kasus gelobang elektromagnetik pada objek speris.

Hamburan Mei merupakan solusi analisis paling sederhana dari persamaan Maxwell dalam mendeskripsikan perlaku dari nanopartikel logam speris disaat tereksitasi dengan medan elektrik. Pada nanopartikel logam speris dengan jari-jari *a* dalam medium dielektrik, dimana permitivitas logam  $\ell_{\text{metal}}$  dan permitivitas medium  $\ell_{\text{metal}}$ , hamburan Mie dapat dinyatakan sebagai berikut (Erwin, et al., 2016):

$$\sigma_{scat} = \frac{8\pi}{3} k^4 a^6 \left| \frac{\varepsilon_{metal} - \varepsilon_{medium}}{\varepsilon_{metal} - 2\varepsilon_{medium}} \right|^2$$
(2.15)

Dimana  $k = 2\pi/\lambda$ ,  $\lambda$  merupakan panjang gelombang cahaya datang. Berikut ini merupakan absorbansi fotoanoda TiO<sub>2</sub> dan TiO<sub>2</sub> yang telah ditambahkan *core-shell* Au@SiO<sub>2</sub> dengan beberapa pewarna dan tanpa pewarna (Gambar 2.11).



Gambar 2.11 Karakterisasi UV-Vis fotoanoda  $TiO_2$  dan  $TiO_2$ +Au@SiO\_2 dalam (a) beberapa pewarna (b) tanpa pewarna (Li, et al., 2012)

Gambar 2.11 menunjukkan fotoanoda dengan struktur *core-shell* mengalami peningkatan absorbansi jika dibandingkan dengan fotoanoda yang tidak memiliki struktur *core-shell* dan Peningkatan absorbansi juga ditunjukkan pada fotoanoda dengan pewarna dibandingkan dengan tanpa pewarna. Hal ini dikarenakan penambahan nanopartikel Au dapat memunculkan puncak pada daerah cahaya tampak oleh adanya efek LSPR (*Localized Surface Plasmon Resonance*). Penambahan pewarna juga meningkatkan sinergi penyerapan cahaya pada daerah cahaya tampak (Li, et al., 2012).

#### 2.6 Efek Scattering pada Nanopartikel Core-shell

Nanokristal TiO<sub>2</sub> yang umumnya digunakan sebagai lapisan fotoanoda DSSC pada dasarnya transparan untuk cahaya tampak, sehingga sebagian besar cahaya yang masuk ke DSSC ditransmisikan melalui lapisan TiO<sub>2</sub> tanpa berinteraksi dengan pewarna. Oleh karena itu, diperlukan lapisan penghambur yang memiliki struktur yang berbeda dengan TiO<sub>2</sub>. Hal ini bertujuan

agar cahaya akan terhambur balik ke lapisan aktif dan mengenai pewarna (Son, et al., 2013).



Gambar 2.12 Skema hamburan cahaya pada struktur *core-shell* (Son, et al., 2013)

Gambar 2.12 mengilustrasikan jalur penghamburan cahaya dari TiO<sub>2</sub> dan SiO<sub>2</sub>@TiO<sub>2</sub> (STCS-NP) berdasarkan optika geometrinya. Cahaya datang dipantulkan dengan cara yang sama pada permukaan TiO<sub>2</sub> dan STCS karena permukaanya terdiri dari TiO<sub>2</sub>. Pada STCS, cahaya yang terpantul ke dalam STCS melewati jalur pantulan internal yang telah termodifikasi dengan perbedaan indeks bias di dalam srtuktur *core/shell* dan menghasilkan *backscatter* yang kuat. Hal ini menunjukkan struktur dari STCS berkontribusi dalam peningkatan efek penyerapan cahaya dengan meningkatkan probabilitas interaksi antara foton dan molekul pewarna. (Son, et al., 2013).

Efek hamburan cahaya yang kuat sebagian besar tergantung pada ukuran partikel dan perbedaan indeks bias antara lapisan aktif dan penghambur. Efisiensi dari hamburan balik dapat merepresentasikan peningkatan penyerapan cahaya karena lebih banyak cahaya yang terperangkap ke dalam DSSC seiring dengan perbedaan indeks bias yang lebih besar (Son, et al., 2013).

Perbedaan indeks bias yang besar antara  $SiO_2$  dan  $TiO_2$ menunjukkan fungsi dari  $SiO_2$  sebagai partikel penghambur.  $SiO_2$ memiliki indeks bias 1,5 sedangkan  $TiO_2$  memiliki indeks bias 2,52. Mekanisme potensial dari peningkatan transmisi pada *photoanode*  $TiO_2$  dengan  $SiO_2$  menurut teori Fresnel ditunjukkan oleh persamaan (2.5).

## 2.7 Pengaruh Ketebalan Silika pada DSSC

Penggunaan nanopartikel core-shell ke dalam DSSC mampu menyediakan penghamburan pada far-field dan meningkatkan efisiensi dari jalan cahaya yang lebih panjang. Pada penelitian sebelumnya, dilakukan penggabungan nanopartikel logam coreshell ke DSSC, dimana inti logamnya adalah Au atau Ag dan lapisan luarnya adalah SiO<sub>2</sub>. Pelapisan nanopartikel logam ini bertujuan untuk: (1) Jika shell bersifat isolator, maka dapat mengisolasi nanopartikel Au dari sekitarnya. Hal ini penting karena nanopartikel Au sendiri dapat menjebak elektron dan mempercepat reduksi I<sub>3</sub> ke I yang merupakan kerugian mekanisme transfer elektron (2) Menumbuhkan lapisan shell yang sangat tipis sehingga memungkinkan zat molekul pewarna berada cukup dekat dengan nanopartikel logam untuk meningkatkan efek plasmonik. (3) Shell menjadi pelindung nanopartikel Au terhadap  $I_3$  dimana kontak langsung akan menyebabkan korosi terhadap Au. Dari ketiga faktor tersebut diketahui bahwa ketebalan dari shell SiO<sub>2</sub> akan mempengaruhi peformansi DSSC (Sheehan, et al., 2012)



Gambar 2.13 (a) Spektrum absorbansi *core-shell* Au@SiO<sub>2</sub> dengan variasi ketebalan SiO<sub>2</sub> pada polimer plasmonik PEDOT:PSS/PTB7 (b) Karakteristik

IPCE tanpa dan dengan *core-shell* Au@SiO<sub>2</sub> (Zhang, et al., 2016)

Penambahan core-shell Au@SiO2 pada lapisan fotoaktif dapat berfungsi memaksimalkan permukaan energi plasmon dan meningkatkan efisiensi konversi daya (PCE) pada sel surya. Gambar 2.13a menunjukkan bahwa dengan lapisan silika yang lebih tipis akan menyebabkan kenaikan daya serap (nilai absorbansi) yang lebih tinggi. Core-shell dengan tebal lapisan silika 2-3 nm, dapat menghasilkan kerapatan arus tertinggi 21,2 mA.cm<sup>-2</sup> dan PCE 9.55%. Sebaliknya, dengan kenaikan ketebalan lapisan SiO<sub>2</sub> sebesar 38 nm secara signifikan menurunkan PCE dan Jsc menjadi 8,25% dan 18,5 mA.cm<sup>-2</sup>. Hal ini disebabkan karena core-shell Au@SiO2 dengan tebal lapisan silika 3 nm memiliki medan dekat yang kuat yang dihasilkan oleh NR-Au yang mampu mendukung penyerapan cahaya pada lapisan fotoaktif. Selain itu, redaman LSPR yang lebih lamban di sekitar NR-Au membuat intensitas medan dekat tetap bernilai tinggi pada lapisan fotoaktif, sehingga mampu meningkatkan penyerapan cahaya, yang disertai dengan peningkatan Jsc dan PCE yang signifikan pada Gambar 2.13b. Induksi medan dekat NR-Au tidak mencukupi untuk digunakan dalam peningkatan performansi jika lapisan core-shell silika sangat tebal. Sebaliknya, medan dekat berada pada tingkat yang tinggi ketika dilapisi silika yang sangat tipis (Zhang, et al., 2016).

# 2.8 Efisiensi Konservasi Cahaya Menggunakan IPCE

Nilai IPCE menunjukkan proses transfer elektron dari pewarna ke semikonduktor dan dari I<sup>-</sup> yang teroksidasi ke pewarna (Hara, et al., 2000). *Incident Photon to Current Conversion Efficiency* (IPCE) merupakan parameter yang digunakan untuk mengukur seberapa efektifitas DSSC dalam mengkonversi foton menjadi arus. Nilai IPCE akan 100 % ketika semua foton menghasilkan pasangan elektron-*hole*. Akan tetapi pada kenyataannya nilai IPCE selalu kurang dari 100 %, hal ini disebabkan karena adanya refleksi foton, semikonduktor yang tidak dapat menyerap pewarna secara sempurna, rekombinasi elektron pada semikonduktor dan sebagainya. Untuk menghitung nilai IPCE dapat menggunakan persamaan berikut (Varghese & Grimes, 2008).

$$IPCE [\%] = \frac{1240[eV.nm] \times J_{sc}[\mu A cm^{-2}]}{\lambda[nm] \times P_{cahaya}[\mu W cm^{-2}]}$$
(2.16)

Dengan:

1240 = Faktor konversi cahaya ke arus

 $J_{SC}$  = Kerapatan arus ( $\mu A \text{ cm}^{-2}$ )

- $\lambda$  = Panjang gelombang yang diubah-ubah pada monokromator (nm),

IPCE atau dikenal dengan efisiensi kuantum eksternal dapat memberikan estimasi dari total arus photon dari DSSC pada semua jenis iluminasi yang mengenai luasan aktif dari fotoanoda, baik dari sumber cahaya matahari, halogen dan sumber cahaya lainnya. IPCE memberikan rasio antara hasil generasi arus yang dikonversikan elektron pada DSSC dengan banyaknya foton yang mengenai luasan aktif pada panjang gelombang tertentu. IPCE dihitung dengan mengukur arus dari DSSC pada variasi panjang gelombang dengan kerapatan daya yang diketahui pada masingmasing panjang gelombang (Varghese & Grimes, 2008). Halaman ini sengaja dikosongkan



**BAB III** 

Gambar 3.1 Metodologi penelitian

Tahapan penelitian tugas akhir pada Gambar 3.1 dapat dijelaskan sebagai berikut:

#### 3.1 Alat dan Bahan

Peralatan yang digunakan dalam pelaksanaan penelitian ini antara lain *magnetic stirrer*, *hot plate*, *oven*, *furnace*, timbangan digital, pH meter, labu erlenmeyer, gelas beker, gelas ukur, pipet tetes, spatula logam, spatula keramik dan kertas saring.

Bahan kimia yang digunakan dalam penelitian ini antara lain, lumpur Sidoarjo, HCl 37%, NaOH, NH4OH 28%, *ethanol* (EtOH), aquades, TiCl<sub>3</sub>, (*3-Aminoprophyl*) *trimethoxysilane* (APTMS, 97%), *ammonium* (25% NH<sub>3</sub>), HAuCl<sub>4</sub>.3H<sub>2</sub>O (49%), *trisodium citrate* (C<sub>6</sub>H<sub>5</sub>Na<sub>3</sub>O<sub>7</sub>\*2H<sub>2</sub>O), *deionized water*, kalium iodida (KI), iodida (I), PEG 4000, chloroform, *acetonitrile*, *ruthenium* N-719, *acetic acid* (98% CH<sub>3</sub>COOH) dan Triton X-100.

Bahan yang dibutuhkan untuk perakitan DSSC antara lain kaca *Fluorine doped tin oxide* (FTO) (tipe *soda-lime*, resistasi  $8\Omega$ /sq, 20 mm x 20 mm, tebal 3,2 mm, TEC 8, Dyesol), pasta fotoanoda titania (TiO<sub>2</sub>) dengan penambahan *Core-shell* Au@SiO<sub>2</sub>, *dye* ruthenium (N-719, Dyesol), elektrolit iodide/triiodide, dan kaca FTO *Pt-Coated* (luas lapisan 20 mm x 20 mm, tebal 3,2 mm, TEC 15, Dyesol).

#### 3.2 Ekstraksi Nanopartikel SiO2 dari Lumpur Sidoarjo

Nanopartikel SiO<sub>2</sub> dari lumpur Sidoarjo diekstrak dengan menggunakan metode kopresipitasi. Lumpur Sidoarjo direndam dalam larutan HCl selama 24 jam untuk menghilangkan partikelpartikel pengotor (Gambar 3.2a). Kemudian lumpur tersebut dicuci dengan menggunakan aquades dan dikeringkan di bawah sinar matahari dan dihaluskan hingga 250 mesh. 10 gram lumpur Sidoarjo dan 60 ml NaOH (7 M) dicampur dan diaduk dengan menggunakan *magnetic stirrer* selama satu jam dengan suhu 70°C. Ditambahkan aquades sebanyak 250 ml ditambahkan ke dalam larutan lumpur sebelum disaring menggunakan kertas saring (Gambar 3.2b). Selanjutnya HCl 37% ditambahkan ke dalam larutan hasil penyaringan hingga didapatkan larutan dengan pH 7. Setelah didapatkan pH 7 dan terbentuk endapan putih SiO<sub>2</sub>, selanjutnya dicuci dengan menggunakan aquades untuk menghilangkan kandungan asam, basa, maupun garam yang terkandung di dalamnya. Endapan SiO<sub>2</sub> ini disaring dan dikeringkan dalam oven pada suhu 80°C selama 24 jam (Gambar 3.2c) (Pribadi & Munasir, 2013).



Gambar 3.2 Proses ekstraksi SiO<sub>2</sub> lumpur Sidoarjo (a) Pencucian, (b) Penyaringan, dan (c) Hasil kalsinasi SiO<sub>2</sub> lumpur Sidoarjo

# 3.3 Sintesis Nanopartikel TiO<sub>2</sub>

Nanopartikel TiO<sub>2</sub> disintesis dari prekusor TiCl<sub>3</sub> dengan metode kopresipitasi. 10 ml TiCl<sub>3</sub>, 4,7 ml aquades, dan 0,3 ml HCl diaduk selama 3 menit dengan suhu 45°C. Setelah itu, 20 ml HCl 37% ditambahkan ke dalam larutan tersebut. Setelah beberapa saat, larutan akan berubah warna menjadi ungu tua kemudian 50 ml NH<sub>4</sub>OH 25% ditambahkan ke dalam larutan sambil diaduk hingga larutan berwana ungu kehitaman (Gambar 3.3a). Selanjutnya 50 ml larutan amonia ditambahkan hingga larutan berwarna putih terbentuk. Suspensi yang mengandung endapan putih dicuci dengan menggunakan aquades hingga suspensi tidak berbau amonia (Gambar 3.3b). Selanjutnya untuk mendapatkan TiO<sub>2</sub> fasa anatase maka endapan putih dikalsinasi pada suhu 400°C selama 5 jam (Gambar 3.3c) (Budiarti, 2016).



Gambar 3.3 Proses sintesis TiO<sub>2</sub> (a) Pencampuran TiCl<sub>3</sub> dengan *ammonia*, (b) Pencucian endapan TiO<sub>2</sub> dan (c) Hasil kalsinasi TiO<sub>2</sub>

#### 3.4 Reduksi Au

Nanopartikel Au direduksi menggunakan metode Turkevich, 2,5 ml larutan HAuCl<sub>4</sub>.3H<sub>2</sub>O (0,2% w/v) (Gambar 3.4a) dalam 50 ml DI-water dipanaskan pada temperatur 150°C hingga mendidih. Kemudian ditambahkan 2 ml *trisodium citrate* (1% w/v) (Gambar 3.4b) sambil diaduk dengan kecepatan tinggi. Larutan tersebut tetap dipanaskan selama 10 menit, sambil terus diaduk hingga warnanya berubah menjadi merah keunguan (*red wine*) dan mencapai temperatur ruang (Gambar 3.4c) (Ziegler & Eychmüller, 2011).



Gambar 3.4 Proses reduksi emas (a) HAuCl<sub>4</sub>.3H<sub>2</sub>O bubuk, (b) Preparasi larutan emas dan *trisodium citrate* dan (c) Hasil reduksi emas

#### 3.5 Sintesis Nanopartikel Au@SiO<sub>2</sub>

Nanopartikel Au@SiO<sub>2</sub> disintesis dengan metode kopresipitasi. Sebelum sintesis, larutan APTMS (1 mM)dipersiapkan, dimana 18,3 µl APTMS ditambahkan pada 100 ml gelas ukur dan tambahkan DI-water hingga penuh, dan dapat langsung digunakan (Gambar 3.5a). Sintesis Au@SiO<sub>2</sub>, masukkan 30 ml larutan reduksi Au ke dalam gelas beker, tambahkan 0,4 ml larutan APTMS (1mM) dan diaduk selama 15 menit (Li, et al., 2012). Kemudian ditambahkan 30 ml, 60 ml, 90 ml, dan 120 ml larutan hasil ekstraksi SiO<sub>2</sub> dari lumpur Sidoarjo (Gambar 3.5b) dan dititrasi dengan HCl hingga pH larutan mencapai 7 (Gambar 3.5c). Kemudian terus diaduk sampai terbentuk endapan. Endapan tersebut dipisahkan dengan kertas saring, lalu dicuci dengan aquades untuk menghilangkan kadar asam, basa, dan garam. Kemudian dikeringkan pada temperatur 80°C selama 24 jam (Budiarti, 2016).



Gambar 3.5 Proses sintesis Au@SiO<sub>2</sub> (a) Persiapan larutan APTMS, (b) Larutan SiO<sub>2</sub> yang telah disaring dan (c) Hasil titrasi campuran Au dan SiO<sub>2</sub>

Pembuatan *core-shell* Au@SiO<sub>2</sub> secara garis besar dimulai dari reduksi HAuCl<sub>4</sub>.3H<sub>2</sub>O menjadi nanopartikel emas (Au) sebagai *core*, lalu dilapisi APTMS sebagai perekat, kemudian ditambahkan larutan basa SiO<sub>2</sub> lumpur Sidoarjo sebagai *shell* dan dititrasi hingga mencapai pH 7 agar mendapat endapan *core-shell* 

Au@SiO<sub>2</sub>. Skema struktur *core-shell* nanopartikel Au@SiO<sub>2</sub> dapat dilihat pada Gambar 3.6 berikut.



Gambar 3.6 Skema nanopartikel struktur core-shell Au@SiO2

#### 3.6 Karakterisasi Nanopartikel

Hasil sintesis nanopartikel SiO<sub>2</sub>, TiO<sub>2</sub>, dan *core-shell* Au@SiO<sub>2</sub> dilakukan karakterisasi nanopartikel seperti *X-Ray Diffraction* (XRD), *Fourier Transform Infrared Spectroscopy* (FT-IR), *Brunauer Emmet Teller* (BET), UV-Vis *Spectroscopy*, *Field Emission Scanning Electron Microscopy* (FESEM) dan *Energy Dispersion X-ray spectroscopy* (EDX).

# 3.6.1. X-Ray Diffraction (XRD)

X-Ray Diffraction (XRD) adalah suatu metode yang digunakan untuk mengkarakterisasi struktur kristal material. Selain itu karakterisasi menggunakan X-Ray Diffraction (XRD) dapat mengetahui pola difraksi, ukuran dan Miller dari kristal nanopartikel yang diperoleh dari hasil ekstraksi dan sintesis. Berikut pada Gambar 3.7 menunjukkan diagram skematik pengujian material menggunakan XRD dan alat XRD yang digunakan untuk pengujian.

Prinsip kerja pengujian material menggunakan XRD yaitu elektron yang dihasilkan oleh suatu filamen panas dalam keadaan vakum dan pada tegangan tinggi, ditumbukkan pada permukaan logam (Cu) dengan kecepatan tinggi akan menghasilkan sinar-X. Sinar-X tersebut ditembakkan pada sampel uji, sehingga terjadi penyerapan dan hamburan intensitas sinar-X oleh atom-atom dalam material sampel uji. Berkas sinar-X tersebut ada yang saling melemahkan karena fasenya berbeda dan ada yang saling menguatkan karena fasenya sama, sehingga terjadi difraksi ke segala arah dengan memenuhi hukum Bragg.



Gambar 3.7 (a) Diagram skematik pengujian XRD (b) XRD Philips X'pert MPD

Hukum Bragg menyatakan bahwa perbedaan lintasan berkas difraksi sinar-X harus merupakan kelipatan panjang gelombang, secara matematis dapat dituliskan sebagai berikut:

$$n\lambda = d\sin\theta \tag{3.1}$$

Keterangan:

n = bilangan bulat (1, 2, 3,...)

- $\lambda$  = panjang gelombang sinar-X (m)
- d = jarak antar bidang (m)
- $\theta$  = sudut difraksi

Detektor bergerak sepanjang lintasan 20 dengan kecepatan sudut konstan untuk mendeteksi berkas-berkas sinar-X yang didifraksikan oleh sampel uji. Grafik karakterisasi sampel uji yang dihasilkan berupa puncak-puncak difraksi dengan intensitas relatif sepanjang nilai 20. Pola difraksi setiap padatan kristalin tertentu, sehingga dapat diketahui material apa saja yang ada pada sampel uji. Semakin tinggi intensitas puncak difraksi yang dihasilkan menunjukkan bahwa material yang terkandung dalam sampel uji semakin kristalin. Begitu juga sebaliknya, semakin rendah intensitas dan semakin lebar puncak difraksi yang ada menunjukkan bahwa material yang terkandung berbentuk amorf.

Pada penelitian ini, pengujian XRD dilakukan pada sudut bragg 5° hingga 90° serta digunakan untuk melihat jenis kristalinitas, ukuran butir, dan persentase jenis kristal. Hasil pengujian XRD ini berupa grafik yang nantinya akan digunakan untuk menghitung ukuran kristal dari nanopartikel dengan menggunakan persamaan Scherrer (Cullity, 1956).

$$D_{hkl} = \frac{k\lambda}{\beta_{hkl}\cos\theta}$$
(3.2)

Keterangan:

| D <sub>hkl</sub> | = rata-rata ukuran butir suatu bahan (nm)          |
|------------------|----------------------------------------------------|
| k                | = konstanta (k=0,89)                               |
| λ                | = panjang gelombang sinar-X (Cu : 0,154 nm)        |
| $\beta_{hkl}$    | = FWHM ( <i>Full Width Half Maximum</i> ) (radian) |
| θ                | = sudut Bragg                                      |

Hasil pengujian XRD ini juga dapat digunakan untuk menghitung persentase jenis kristal dari nanopartikel dengan menggunakan persamaan RIR (*Reference Intensity Ratio*) (Verrall, 2013).

$$\% = \frac{(I/I_{max})}{\Sigma(I/I_{max})} \times 100\%$$
 (3.3)

Keterangan:

I = Intensitas dari suatu puncak (cts) I<sub>max</sub> = Intensitas tertinggi dari seluruh puncak (cts)

## 3.6.2. Fourier Transform Infrared Spectroscopy (FT-IR)

FT-IR adalah singkatan dari *Fourier Transform InfraRed Spectroscopy* yang merupakan metode dari spektroskopi infra merah. Pada spektroskopi *infrared*, gelombang IR diradiasikan melalui sampel. Sebagian dari radiasi inframerah ini diserap pleh sampel dan sebagian akan ditransmisikan. Hasil spektra yang didapatkan merepresentasikan absorbsi molekular dari sampel. Hasil absorbsi molekular ini bersifat unik dan akan berbeda untuk berbagai sampel. Skema pengujian menggunakan FT-IR dapat dilihat pada Gambar 3.8 berikut.



Gambar 3.8 Skema pengujian FT-IR spektrometer (Thermo Nicolet Corp., 2001)

Prinsip kerja FT-IR secara umum yakni energi inframerah diemisikan dari *black-body source*. Sinar ini akan melewati sebuah alat yang berguna untuk mengontrol jumlah energi yang dipancarkan ke sampel. Sinar akan masuk ke interferometer dimana *spectral encoding* akan dilakukan. Setelah itu sinar akan masuk dalam tempat sampel dimana berkas sinar ini akan

ditransmisikan atau dipantulkan oleh sampel tergantung pada tipe analisis yang digunakan. Pada langkah ini, frekuensi energi yang unik untuk sampel akan terserap. Selanjutnya berkas sinar akan melewati detektor pada pengukuran akhir. Detektor digunakan untuk mengukur sinyal interferogram khusus. Selanjutnya sinyal pengukuran akan dikirim ke komputer dimana transformasi Fourier akan digunakan untuk mengolah data hasil pengukuran.

## 3.6.3. Pengujian UV-Vis Spectroscopy

Pengujian UV-Vis *Spectroscopy* merupakan suatu metode yang digunakan untuk mengetahui penyerapan energi cahaya dari pewarna sebagai fungsi panjang gelombang. Komponen dari UV-Vis *spectrophotometer* antara lain sumber cahaya, monokromator, kompartemen sampel, detektor dan pengukur intensitas cahaya (Gambar 3.9).



Gambar 3.9 Diagram skematik pengujian UV-Vis *spectrophotometer* (Brian, 2000)

Prinsip kerja UV-Vis *spectrophotometer* yaitu, cahaya tampak atau UV-Vis ditembakkan ke sampel, yang dilewatkan monokromator. Cahaya monokromatis tersebut akan ditransmisikan dan diserap. Cahaya yang diserap akan menghasilkan signal elektrik pada detektor. Nilai dari adsorbansi berbanding terbalik dengan nilai transmisi. Nilai adsorbsi

bergantung pada jumlah molekul dari larutan, sesuai dengan hukum Lambert Beer.

$$A = \varepsilon.a.b \tag{3.4}$$

A adalah absorbansi,  $\varepsilon$  adalah absortivitas (absorban larutan 1 M dalam sel culvet dengan lebar 1 cm), a adalah ketebalan larutan (cm), dan b adalah konsentrasi larutan (M). Hasil dari pembacaan spektrum adsorbansi dari pengujian UV-Vis *spectrophotometer* berupa panjang gelombang yang diadsorbsi.

# **3.6.4.** Field Emission Scanning Electron Microscopy (FE-SEM)

Field Emission Scanning Electron Microscopy (FE-SEM) merupakan salah satu mikroskop elektron yang menghasilkan gambar dari sampel dengan cara scanning di atas sampel dalam keadaan vakum dengan berkas elektron energi tinggi yang difokuskan (diameter <10 nm) yang ditembakkan oleh Field Emission Gun. Field Emission merupakan pelepasan elektron dari ujung tungsten *emitter* yang terkena medan listrik (*electric field*) yang kuat pada suhu tertentu. Field Emission Gun sendiri memiliki beberapa tipe menurut suhu pemanasan ujung permukaan tungsten vaitu, Cold Cathode Type dan Schottky-type. FE-SEM JIB-4610F menggunakan Schottky-type Electron Gun dengan memanfaatkan efek Schottky dimana penghalang potensial (barrier potential) suatu material berkurang di medan listrik yang kuat, sehingga memudahkan emisi termoelektron. Schottky-type Electron Gun memanaskan ujung tungsten emitter dengan suhu ~1800 K dan dilapisi dengan zirkonium oksida (ZrO) yang mampu memudahkan emisi elektron dengan mengurangi fungsi kerja dari ujung tungsten ( $\sim$ 2,7 eV). Gambar hasil FE-SEM dapat digunakan untuk analisa morfologi mikrostruktur dari sampel dan karakteristik komposisi kimianya.

Cara kerja FE-SEM adalah menggunakan sinar elektron dari *Field Emission Gun* yang dipercepat dengan anoda dan difokuskan menuju sampel. Sinar elektron yang terfokus memindai keseluruhan sampel dengan diarahkan oleh koil pemindai. Kumparan pemindai akan melakukan pembelokan pada

elektron sehingga menjadi sekumpulan susunan berkas yang lebih kecil yang disebut berkas pemindaian (scanning beam) dan lensa obyektif (magnetik) yang akan memfokuskannya pada permukaan sampel. Ketika elektron mengenai sampel maka sampel akan mengeluarkan elektron baru yang akan diterima oleh detektor dan dikirim ke monitor. Intensitas elektron baru ini tergantung pada nomer atom unsur yang ada pada permukaan spesimen. Mikroskop elektron mampu mencapai resolusi sekitar 0,1 - 0,2 nm dan juga bisa mendapatkan beberapa jenis pantulan yang berguna untuk keperluan karakterisasi. Pantulan elektron sekunder menghasilkan topografi dari benda yang dianalisa, pantulan *backscattered* elektron sedangkan memberikan perbedaan berat molekul dari atom-atom yang menyusun permukaan material (Russel, 1995).



Gambar 3.10 FE-SEM (JIB-4610F, courtesy JEOL-USA)

# 3.6.5. Energy Dispersion X-ray spectroscopy (EDX)

*Energy Dispersion X-ray spectroscopy* (EDX) merupakan karakterisasi material menggunakan sinar-X yang diemisikan ketika material mengalami tumbukan dengan elektron. Ada empat

komponen utama dari susunan EDX: sumber berkas cahaya, detektor sinar-X, pengolah pulsa, dan penganalisis (Gambar 3.11(b)). Ketika tegangan tinggi elektron mengenai spesimen, elektron meninggalkan lapisan K atom dalam kondisi tekeksitasi. Elektron dari lapisan luar akan mengisi *hole* dari eksitasi elektron tersebut dan pada saat yang sama melepaskan energi dalam bentuk sinar X. Besar energi yang dilepaskan bergantung pada lapisan elektron mana yang tereksitasi dan memiliki informasi spesifik mengenai karaktristik perbedaan level energi elektron dari atom. Silika-litium semikonduktor digunakan sebagai detektor. Untuk mendapatkan informasi dari unsur yang ada dalam sampel, besar energi dari sumber harus melebihi dari batas ambang energi dari unsur tersebut agar dapat mengeksitasi elektron di dalamnya. Hampir keseluruhan unsur pada tabel periodik, namun unsur H, Li dan He yang memiliki energi transisi yang tidak dapat dideteksi, serta unsur logam mulia tidak dapat dideteksi oleh EDX (Ii, 2012).

Sebelum mencapai detektor, masukan energi sinar X melewati *collimator* untuk memastikan hanya energi yang tereksitasi dari sampel saja yang masuk, jendela polimer beryllium berfungsi untuk mempertahankan kondisi vakum di dalam detektor disaat sinar X masuk. Akhirnya sinar X yang mencapai kristal silikon menghasilkan muatan sinyal yang dikuatkan oleh FET. Besar muatan yang masuk proposional dengan karakteristik energi dari sinar X mengindikasikan informasi dari sampel telah masuk dan dianalisis sesuai dengan unsurnya. Tabung *cryostat* berfungsi untuk mendinginkan detektor dan mengurangi sinyal gangguan (Ii, 2012).

Sistem EDX yang paling umum ditemukan pada SEM. SEM dilengkapi dengan sebuah katoda dan lensa magnet untuk menciptakan dan memusatkan suatu berkas cahaya elektron, dan sejak 1960-an SEM telah dilengkapi kemampuan untuk menganalisa unsur. EDX detektor sendiri sudah termasuk dalam FESEM JIB-4610F dalam nama R-BEI detektor (Gambar 3.11(a)). Suatu detektor digunakan untuk mengkonversikan energi sinar-X ke dalam sinyal tersebut dan melewatkan sinyal tersebut ke suatu penganalisis untuk menampilkan data dan analisa luas dari pengembangan cacat permukaan (Chardin, et al., 1998).



Gambar 3.11 (a) EDX *detector* pada JIB-4610F (*courtesy* JEOL-USA), (b) Skematis dari EDX (Ii, 2012)

# 3.6.6. ImageJ

Image J merupakan aplikasi gratis *image processing* yang dikembangkan oleh US National Institute of Health sebagai alat untuk menganalisis ukuran partikel, luasan area, manipulasi intensitas, kontras, konvolusi, analisis Fourier, penajaman dan penghalusan gambar, deteksi sudut, menghilangkan noise hingga mengitung jumlah piksel dalam gambar. Dapat melakukan transformasi geometris seperti pengaturan skala, perputaran dan seleksi gambar. Hasil analisis dapat ditampilkan dalam bentuk data tabel, diagram garis dan histogram. Dalam perhitungan partikel dari gambar EDX, menentukan skala dilakukan dengan menarik garis lurus sesuai dengan skala yang tertera pada gambar EDX. Titik-titik piksel dari material yang memiliki warna tersendiri diseleksi dengan mengatur Threshold. Untuk mengetahui distribusi ukuran partikel, digunakan analisis partikel dari tab Analize dan didapatkan banyak urutan partikel dengan ukuran pada tiap masing-masing partikel berdasarkan ukuran pikselnya (Ruzicka, 2013).

# 3.7 Prosedur Perakitan DSSC

# 3.7.1 Pembuatan Elektrolit

Elektrolit yang digunakan dalam penelitian ini adalah pasangan iodide/triiodide. Langkah pertama dalam pembuatan elektrolit adalah 0,8 gram kalium iodida (KI) dilarutkan dalam 10 ml *acetonitrile* hingga larut sepenuhnya. Setelah itu, 0,127 gram iodide (I<sub>2</sub>) ditambahkan ke dalam larutan elektrolit sambil terus diaduk hingga I<sub>2</sub> larut sepenuhnya. PEG 4000 sebanyak 7 gram dilarutkan dalam 25 ml *chloroform* hingga larut sempurna dan membentuk gel. Kemudian larutan elektrolit dicampur dengan gel tersebut dan diaduk di atas *magnetic stirrer* selama 1 jam pada suhu 80°C (Wahyuono, 2013).

# 3.7.2 Pembuatan Pewarna

Pewarna yang digunakan dalam penelitian ini adalah ruthenium kompleks N-719 yang merupakan pewarna industri standar. Pewarna ini memiliki warna merah bata. Pewarna yang digunakan adalah 0,3 mM larutan  $C_{58}H_{86}N_8O_8RuS_2$  (N-719), dari penjumlahan massa atom relatif formula kimianya didapatkan massa molekul relatif (Mr) sebesar 1187. Sehingga untuk membuat 0,3 mM larutan N-719, dicampurkan 0,07122 gram N-719 kedalam 200 ml etanol 98% (Puspitasari, 2016).

# 3.7.3 Fabrikasi DSSC

Dalam penelitian ini TiO<sub>2</sub> yang digunakan memiliki fasa anatase dan perbandingan nanopartikel TiO<sub>2</sub> dan *core-shell* Au@SiO<sub>2</sub> yang menjadi tambahan antara lain 0,5% dan 1%, sehingga perbandingan antara TiO<sub>2</sub> dengan Au@SiO<sub>2</sub> menjadi 99,5:0,5; dan 99,0:1,0. Selain itu, setiap perbandingan ditambahkan variasi volume SiO<sub>2</sub> dalam nanopartikel *core-shell* Au@SiO<sub>2</sub> antara lain 30 ml, 60 ml, 90 ml dan 120 ml. Sampel yang digunakan dalam penelitian ini dapat dilihat pada Tabel 3.1.

Langkah pertama yang dilakukan dalam fabrikasi DSSC adalah pembuatan pasta dengan dasar nanopartikel TiO<sub>2</sub>. Serbuk

nanopartikel sebanyak 0,25 gram yang telah dihaluskan kemudian dilarutkan dengan 87,5  $\mu$ L aquades, 125  $\mu$ L CH<sub>3</sub>COOH, and 12,5  $\mu$ L Triton X-100 (sekitar 1 tetes pipet) (Puspitasari, 2016).

|                                               | Perbandingan               | Volume SiO <sub>2</sub>   |
|-----------------------------------------------|----------------------------|---------------------------|
| Tipe                                          | TiO <sub>2</sub> dan core- | dalam core-               |
|                                               | shell                      | shell Au@SiO <sub>2</sub> |
| TiO <sub>2</sub> anatase                      | 100:0                      | -                         |
| TiO <sub>2</sub> (Anatase) / SiO <sub>2</sub> | 99,5:0,5                   | -                         |
| ekstraksi lumpur                              | 99,0:1,0                   | -                         |
|                                               | 99,5:0,5                   | 30 ml                     |
|                                               |                            | 60 ml                     |
| $\mathbf{T}^{\mathbf{C}}$ (Anstead) /         |                            | 90 ml                     |
| Au@SiO <sub>2</sub> ekstraksi                 |                            | 120 ml                    |
|                                               | 99,0:1,0                   | 30 ml                     |
| lumpui                                        |                            | 60 ml                     |
|                                               |                            | 90 ml                     |
|                                               |                            | 120 ml                    |

Tabel 3.1 Komposisi sampel DSSC yang akan diteliti

Pelapisan pasta fotoanoda ke kaca FTO menggunakan metode *doctor blade* (Gambar 3.12). Pada metode ini pasta diteteskan ke kaca FTO dan dilapiskan dengan menggunakan spatula kaca. Luasan aktif fonoanoda adalah 0,5 cm x 0,5 cm. Setelah pasta dilapiskan dan mengering, kaca FTO yang telah dilapiskan dipanaskan pada suhu 225°C selama 2 menit menggunakan *hot plate*. Kaca FTO yang telah dipanaskan kemudian direndam dalam larutan pewarna selama 12 jam. Selanjutnya yakni proses penyusunan komponen-komponen DSSC dengan struktur *sandwich*. Susunan ini terdiri dari kaca FTO yang telah terlapisi fotoanoda yang direndam dalam larutan pewarna, larutan elektrolit, dan kaca FTO berlapis platina yang bertindak sebagai elektroda lawan. Pemberian larutan elektrolit dilakukan dengan menuangkan elektrolit secukupnya menutupi luasan aktif fotoanoda dan tidak melebihi luasan tersebut.

Selanjutnya susunan DSSC ini direkatkan menggunakan penjepit (Puspitasari, 2016).



Gambar 3.12 Pelapisan foto anoda pada kaca FTO menggunakan metode *doctor blade* 



Gambar 3.13 Fabrikasi DSSC (a) Kaca FTO dengan fotoanoda yang telah direndam dengan pewarna (b) DSSC yang telah disusun *sandwich* 

# 3.8 Pengukuran efisiensi konversi cahaya dengan IPCE

DSSC yang telah difabrikasi kemudian diuji sensitivitasnya terhadap panjang gelombang cahaya tampak dengan menggunakan uji IPCE. Pengujian IPCE dilakukan di laboratorium Fotonika Teknik Fisika ITS.

Gambar 3.14a merupakan skema dari alat yang digunakan untuk mengukur IPCE. Untuk melakukan pengukuran IPCE diperlukan monokromator (CT-10T, JASCO) dan lampu halogen (GR-150). Jarak antara lampu halogen ke monokromator adalah 4 cm, sedangkan jarak antara DSSC ke monokromator adalah 1 cm. Daya pada setiap panjang gelombang cahaya lampu halogen diukur menggunakan *Optical Power Meter* (Thorlab S-120C).



Gambar 3.14 Pengujian IPCE (a) Skema pengujian (b) *Set up* alat pengujian di Laboratorium Fotonika

## BAB IV ANALISA DATA DAN PEMBAHASAN

#### 4.1 Karakterisasi Nanopartikel XRD

Pengujian XRD bertujuan untuk mengetahui tingkat kristalinitas dari masing-masing sampel, baik dari jenis kristal yang terbentuk, persentase jenis kristal dalam sampel serta ukuran kristal tiap masing-masing puncak yang terbentuk.

# 4.1.1 Karakterisasi XRD SiO<sub>2</sub> Lumpur Sidoarjo

Nanopartikel SiO<sub>2</sub> didapatkan dari ekstraksi lumpur Sidoarjo 80°C selama 24 jam hingga akhirnya didapatkan serbuk nanopartikel berwarna putih (Pribadi & Munasir, 2013). Gambar 4.1 menunjukkan hasil pola XRD untuk nanopartikel SiO<sub>2</sub> dari ekstraksi lumpur Sidoarjo. Hasil XRD untuk SiO<sub>2</sub> ekstraksi dari lumpur Sidoarjo menunjukkan hanya satu puncak pada  $2\theta =$ 26,81656°, dimana berdasarkan ICDD (*International Centre for Diffraction Data*) No.00-005-0490 menunjukkan bahwa pada puncak tersebut dimiliki oleh SiO<sub>2</sub> dengan hkl (101).



Gambar 4.1 Hasil XRD SiO<sub>2</sub> dari lumpur Sidoarjo

Ukuran dan persentase kristal dari keseluruhan sampel nanopartikel SiO<sub>2</sub> dari ekstraksi lumpur Sidoarjo dihitung dari hasil XRD pada Gambar 4.1. Persamaan (3.2) dan persamaan (3.3) didapatkan persentase dan ukuran kristal berdasarkan sudut puncak, tinggi puncak dan FWHM (*Full Width Half Maximum*) SiO<sub>2</sub> dengan hkl (101) dan diperoleh persentase SiO<sub>2</sub> dari sampel sebesar 100%. Puncak tunggal ini menunjukkan bahwa hampir tidak terdeteksi pengotor pada sampel dan menunjukkan kemurnian yang cukup tinggi. Semakin tajam puncak difraksi maka mengindikasikan semakin kristalin suatu nanopartikel (Yu dkk., 2011). Puncak difraksi SiO<sub>2</sub> ekstraksi lumpur menurut Gambar 4.1 memiliki puncak yang tidak tajam dan cenderung melebar, sehingga mengindikasikan jenis nanopartikel SiO<sub>2</sub> ini merupakan SiO<sub>2</sub> amorf.

#### 4.1.2 Karakterisasi XRD TiO<sub>2</sub> Anatase

Nanopartikel  $TiO_2$  fasa anatase didapatkan dari sintesis  $TiCl_3$  dengan ammonia dan HCl hingga mendapat endapan putih dan dikalsinasi pada suhu 400°C selama 5 jam (Budiarti, 2016).



Gambar 4.2 Hasil XRD TiO<sub>2</sub> fasa anatase
Hasil pola XRD nanopartikel TiO<sub>2</sub> pada Gambar 4.2 menurut ICDD No.00-015-0875 memiliki fasa anatase dengan puncak utama pada  $2\theta = 25,2414^{\circ}$  dan hkl (120). Puncak-puncak minor juga dimiliki oleh TiO<sub>2</sub> anatase, sehingga persentase TiO<sub>2</sub> anatase dari sampel sebesar 100% dan ukuran kristal sebesar 8,59 nm, cukup kecil dan sesuai dengan dengan ukuran kristal TiO<sub>2</sub> anatase menurut (Puspitasari, 2016), yaitu sebesar 12,72 nm. Keseluruhan puncak dengan mayoritas dimiliki oleh TiO<sub>2</sub> anatase ini menunjukkan bahwa hampir tidak terdeteksi pengotor pada sampel dan menunjukkan kemurnian yang cukup tinggi.

## 4.1.3 Karakterisasi XRD core-shell Au@SiO<sub>2</sub>

Nanopartikel *core-shell* Au@SiO<sub>2</sub> didapatkan dari sintesis reduksi Au, dengan perekat APTMS dan dengan SiO<sub>2</sub> dari ekstraksi lumpur 80°C selama 24 jam hingga akhirnya didapatkan serbuk nanopartikel (Li, et al., 2012) (Budiarti, 2016).



Gambar 4.3 Hasil XRD core-shell Au@SiO2

Analisis XRD nanopartikel *core-shell* Au@SiO<sub>2</sub> pada Gambar 4.3 dilakukan dengan membandingkan pada standar ICDD No.00-005-0490 untuk SiO<sub>2</sub>, No.00-004-0784 untuk Au, No.00-029-1486 untuk  $\gamma$ Al<sub>2</sub>O<sub>3</sub>, JCPDS 5-0628 mengenai NaCl. Persentase jenis kristal dan ukuran diameter kristal dari hasil XRD *core-shell* Au@SiO<sub>2</sub> dihitung menggunakan persamaan (3.2) dan (3.3). Hasil perhitungan tersebut ditabulasikan pada Tabel 4.1.

| Core shall                | Ionic                                    | Persentase | Ukuran kristal |  |
|---------------------------|------------------------------------------|------------|----------------|--|
| Core-shell                | Jeins                                    | (%)        | (nm)           |  |
| Au@SiO2 30ml              | Au                                       | 0,428      | 24,842         |  |
|                           | NaCl                                     | 33,825     | 48,793         |  |
|                           | SiO <sub>2</sub>                         | 64,062     | (amorf)        |  |
|                           | $\gamma$ -Al <sub>2</sub> O <sub>3</sub> | 1,685      | 115,011        |  |
|                           | Au                                       | 0,371      | 12,426         |  |
|                           | NaCl                                     | 38,489     | 81,320         |  |
| Au@S1O <sub>2</sub> 60ml  | SiO <sub>2</sub>                         | 59,270     | (amorf)        |  |
|                           | $\gamma$ -Al <sub>2</sub> O <sub>3</sub> | 1,870      | 76,699         |  |
| Au@SiO2 90ml              | Au                                       | 0,235      | 11,896         |  |
|                           | NaCl                                     | 38,023     | 100,038        |  |
|                           | SiO <sub>2</sub>                         | 60,827     | (amorf)        |  |
|                           | $\gamma$ -Al <sub>2</sub> O <sub>3</sub> | 0,915      | 115,013        |  |
| Au@SiO <sub>2</sub> 120ml | Au                                       | 0,050      | 8,484          |  |
|                           | NaCl                                     | 39,320     | 133,380        |  |
|                           | SiO <sub>2</sub>                         | 42,880     | (amorf)        |  |
|                           | $\gamma$ -Al <sub>2</sub> O <sub>3</sub> | 17,750     | 153,337        |  |

Tabel 4.1 Perhitungan XRD core-shell Au@SiO2

Persentase kristal pada Tabel 4.1 menunjukkan SiO<sub>2</sub> memiliki persentase terbesar pada tiap variasi sampel, berkisar

43%-64%. Emas (Au) memiliki persentase kristal terkecil pada tiap variasi sampel, berkisar 0,05%-0,43%. Trend persentase kristal emas (Au) pada Tabel 4.1 menunjukkan semakin kecil persentase seiring penambahan volume SiO<sub>2</sub> dengan ukuran kristal yang variatif.

Beberapa impuritas ditunjukkan pada Gambar 4.3 dan Tabel 4.1 seperti NaCl, dengan persentase dari 33,8248% hingga 39,32%, dimana kadar NaCl bertambah seiring penambahan SiO<sub>2</sub>, dan juga  $\gamma$ Al<sub>2</sub>O<sub>3</sub> dengan persentase dari 1,6848% hingga 17,75%.



Gambar 4.4 Hasil XRD sintesis Au metode Turkevich pada (a) pH 3,1 dan (b) pH 9,8. Tanda (\*) menunjukkan puncak NaCl pada kisi (220) dan (311) (Panda & Chattopadhyay, 2007)

Sintesis partikel emas dengan metode Turkevich telah dilakukan oleh (Panda & Chattopadhyay, 2007) dengan variasi pH menggunakan penambahan HCl untuk pH rendah dan penambahan NaOH untuk pH tinggi dengan hasil XRD pada Gambar 4.4. Hasil XRD tersebut menunjukkan puncak emas dengan kisi masing-masing dan puncak dengan tanda (\*) menunjukkan puncak NaCl dengan kisi (220) dan (311). Hal ini mengindikasikan bahwa NaCl terbentuk sebagai hasil sampingan dari sintesis emas dari prekursor HAuCl<sub>4</sub> dengan penambahan NaOH. Sesuai dengan metode yang digunakan pada penelitian ini dalam proses pengendapan koloid Au@SiO<sub>2</sub> pada pH 7 juga menggunakan NaOH, sehingga terdapat NaCl pada sampel yang dihasilkan.

Penambahan 50 ml NaCl dalam 0,4 gram pasta TiO<sub>2</sub> tipe P300 (Transparent type, 20% TiO<sub>2</sub>, 100-120 kg/ms viskositas, 20-50 nm ukuran partikel) ternyata mampu meningkatkan efisiensi jika konsentrasi NaCl tidak melebihi 1% wt (Liao, et al., 2015). Hal ini disebabkan penambahan NaCl dapat meninggalkan rongga pori pada TiO<sub>2</sub> setelah dicuci dengan *deionized water* dan banyaknya rongga pori dari TiO<sub>2</sub> dapat mengoptimalkan penyerapan pewarna pada TiO<sub>2</sub> sehingga mampu meningkatkan cahaya dan perangkap cahaya yang hamburan mampu meningkatkan photocurrent (arus listrik yang disebabkan oleh cahaya) pada DSSC. Penelitian ini memiliki fraksi penambahan core-shell hanya sebesar 0,5% dan 1% dimana kadar NaCl pada core-shell tidak melebihi 40% sehingga diharapkan mampu meningkatkan efisiensi dari DSSC. Keberadaan yAl<sub>2</sub>O<sub>3</sub> pada DSSC dapat menghambat laju rekombinasi, namun keberadaan ini harus sesedikit mungkin dikarenakan Al<sub>2</sub>O<sub>3</sub> dapat menghambat transfer muatan (Tien, et al., 2011).

## 4.2 Karakterisasi Nanopartikel FTIR

Pengujian FTIR bertujuan untuk mengetahui jenis-jenis gugus ikatan yang terbentuk dari sampel nanopartikel. Hasil spektra FTIR pada Gambar 4.5 menunjukkan SiO<sub>2</sub> lumpur Sidoarjo memiliki puncak lebar pada panjang gekombang 999,95 cm<sup>-1</sup> menandakan ikatan *stretching* Si-O, dimana ikatan Si-O mulai meregang di dalam nanopartikel. Kemudian ikatan Si-O-Si berada pada puncak 418,50 cm<sup>-1</sup> dan 409,33 cm<sup>-1</sup>. Khusus pada *coreshell* Au@SiO<sub>2</sub> 30 ml terdapat ikatan *stretching* C-H pada

1401,06 cm<sup>-1</sup> namun tidak ada sama sekali ikatan yang ditunjukkan oleh emas (Au) (Saikia & Parthasarathy, 2010).



Gambar 4.5 Hasil FTIR SiO2 dari lumpur Sidoarjo

#### 4.3 Karakterisasi UV-Vis (Ultraviolet-Visual)

Pengujian UV-Vis bertujuan untuk mengetahui besar penyerapan terhadap panjang gelombang cahaya yang diberikan pada sampel nanopartikel yang telah didispersi. Pengambilan data UV-Vis dilakukan sebanyak tiga kali dengan simbol a, b dan c pada tiap sampel.

Hasil UV-Vis *core-shell* Au@SiO<sub>2</sub> ditunjukkan pada Gambar 4.6. Puncak yang cukup lebar terlihat pada Gambar 4.6 (a) Au@SiO<sub>2</sub> 30 ml di panjang gelombang UV 394 nm dan pada daerah cahaya tampak 542 nm, kemudian di (b) Au@SiO<sub>2</sub> 60 ml, (c) Au@SiO<sub>2</sub> 90 ml dan (d) Au@SiO<sub>2</sub> 120 ml tidak terlihat puncak pada rentang sinar tampak, namun terlihat pada rentang ultraviolet 386 - 392 nm. Penyerapan panjang gelombang ini dimiliki oleh SiO<sub>2</sub> lumpur Sidoarjo dengan energi pita sebesar 3,15 eV menunjukkan puncak panjang gelombang 394 nm (Puspitasari, 2016). Penyerapan cahaya pada rentang UV sangat dihindari dalam pembuatan panel surya karena paparan sinar UV mampu mendegradasi elektrolit pada DSSC dan dapat meningkatkan konsumsi  $I_3^-$  pada elektrolit di saat DSSC disambungkan dengan beban listrik (Carnie, Watson, & Worsley, 2012).



Gambar 4.6 Hasil UV-Vis dari *core-shell* (a) Au@SiO<sub>2</sub> 30 ml, (b) Au@SiO<sub>2</sub> 60 ml, (c) Au@SiO<sub>2</sub> 90 ml dan (d) Au@SiO<sub>2</sub> 120 ml

Hasil UV-Vis *core-shell* Au@SiO<sub>2</sub> juga menunjukkan bahwa semakin sedikit penambahan volume silika sebagai *shell* pada *core* emas, akan semakin terlihat puncak penyerapan pada

panjang gelombang 542 nm, dimana puncak penyerapan emas (Au) terlihat dari rentang 520 nm hingga 590 nm, berurutan berdasarkan besar partikel emas 16 nm hingga 125 nm (López-Muñoz, et al., 2012). Dengan demikian semakin sedikit penambahan silika akan semakin besar efek LSPR (*Localized Surface Plasmon Resonance*).

Hasil uji UV-Vis spektra ini dapat digunakan untuk mengetahui *energy gap* dari nanopartikel dengan menggunakan *Tauc plot* pada Gambar 4.7.



Perhitungan energi pita celah didapatkan dari hubungan *Tauc plot* dengan absorbansi dari pengujian UV-Vis menggunakan persamaan Beer-Lambert (Hassanien & Akl, 2015):

$$(\alpha h \upsilon)^{\frac{1}{n}} = \beta \left( h \upsilon - E_g \right) \tag{4.1}$$

Koefisien absorbansi ( $\alpha$ ) didapatkan dari:

$$\alpha = \frac{1}{t} \ln \left( \frac{1}{T} \right) \tag{4.2}$$

$$T = 10^{-A} \tag{4.3}$$

Ketebalan wadah sampel (t) adalah 1 cm, T adalah transmisi dan A adalah absorbansi. Grafik *Tauc plot* menggunakan sumbu y  $(\alpha hv)^{1/n}$  dan sumbu x (hv), sehingga didapatkan garis lurus pada beberapa bagian. Ekstrapolasi garis lurus ini akan memotong sumbu x (hv) untuk mendapatkan nilai energi pita celah (Hassanien & Akl, 2015). Tabel perhitungan  $(\alpha hv)^{1/n}$  dan hv terdapat pada Lampiran D. Tabel 4.2 menunjukkan perhitungan puncak panjang gelombang tunggal dari hasil ekstrapolasi energi pita celah dari persamaan:

$$E_g = \frac{hc}{\lambda} \tag{4.4}$$

| Core-shell                 | E <sub>g</sub> (eV) | $\lambda$ (nm) |
|----------------------------|---------------------|----------------|
| Au@SiO <sub>2</sub> 30 ml  | 2,00                | 619,90         |
| Au@SiO <sub>2</sub> 60 ml  | 1,88                | 659,47         |
| Au@SiO <sub>2</sub> 90 ml  | 1,89                | 655,98         |
| Au@SiO <sub>2</sub> 120 ml | 1,94                | 639,07         |

Tabel 4.2 Perhitungan energi pita celah

#### 4.4 Karakterisasi FE-SEM dan EDX

Pengujian FE-SEM bertujuan untuk mengetahui morfologi secara visual dari sampel nanopartikel *core-shell* Au@SiO<sub>2</sub>, dan EDX bertujuan untuk mengetahui unsur yang ada pada *core-shell* Au@SiO<sub>2</sub> beserta persebarannya.



Gambar 4.8 Hasil FE-SEM dari *core-shell* Au@SiO<sub>2</sub> 30 ml, (a)10.000x dan (b)100.000x





(b)

Gambar 4.9 Hasil EDX dari *core-shell* Au@SiO<sub>2</sub> 30 ml, (a) Kuantisasi tiap unsur (b) Persebaran emas (Au)

Hasil FE-SEM pada Gambar 4.8 dari *core-shell* Au@SiO<sub>2</sub> 30 ml (a) 10.000x menunjukkan bintik putih diidentifikasi sebagai emas (Au) dan saat diperbesar (b) 100.000x terlihat partikel emas dengan rata-rata ukuran 13,88 nm. Hasil ini diperkuat dari Gambar 4.9 hasil EDX (a) grafik tiap unsur dalam sampel, terdapat puncak emas (Au) dan terdapat persebaran emas sesuai dengan Tabel 4.3, terlihat pada (b) distribusi emas (Au) pada sampel. Hasil EDX pada Tabel 4.3 menunjukkan persentase unsur tiap penambahan volume SiO<sub>2</sub> dalam *core-shell* Au@SiO<sub>2</sub>.

| Core-shell                | Unsur wt % |       |      |       |       |      |
|---------------------------|------------|-------|------|-------|-------|------|
|                           | 0          | Na    | Al   | Si    | Cl    | Au   |
| Au@SiO <sub>2</sub> 30ml  | 27,49      | 23,14 | 5,6  | 13,13 | 27,59 | 3,05 |
| Au@SiO <sub>2</sub> 60ml  | 22,26      | 22,76 | 3,14 | 16,01 | 33,79 | 2,04 |
| Au@SiO <sub>2</sub> 90ml  | 40,16      | 14,26 | 10,6 | 27,86 | 5,12  | 1,98 |
| Au@SiO <sub>2</sub> 120ml | 35,74      | 14,87 | 8,41 | 23,47 | 15,98 | 1,53 |

Tabel 4.3 Persentase unsur hasil EDX

Gambar hasil EDX (Lampiran C) dapat digunakan untuk menghitung banyak partikel emas di dalam satu sampel Au@SiO<sub>2</sub>, ukuran rata-rata partikel emas dan persentase luas partikel emas dalam gambar dengan menggunakan *software* ImageJ. Hasil perhitungan dari *software* ImageJ ditunjukkan pada Tabel 4.4 dan Lampiran E. Hasil perhitungan dari *software* ImageJ juga dapat digunakan untuk melihat distribusi ukuran partikel emas berdasarkan jumlahnya.

Tabel 4.4 Hasil analisis partikel emas dengan software ImageJ

| Core-shell                | Jumlah<br>partikel | Ukuran rata-<br>rata (nm) | Area % |
|---------------------------|--------------------|---------------------------|--------|
| Au@SiO <sub>2</sub> 30ml  | 2849               | 1,76                      | 15,878 |
| Au@SiO <sub>2</sub> 60ml  | 2818               | 3,75                      | 8,505  |
| Au@SiO <sub>2</sub> 90ml  | 2495               | 3,35                      | 6,49   |
| Au@SiO <sub>2</sub> 120ml | 2593               | 3,42                      | 6,856  |



Gambar 4.10 Distribusi ukuran partikel emas

Tabel 4.3 dan Tabel 4.4 menunjukkan penurunan persentase unsur dan jumlah partikel emas seiring dengan penambahan SiO<sub>2</sub>. Gambar 4.10, Tabel 4.4 dan Lampiran E memperlihatkan mayoritas ukuran emas sebesar 0,57 nm sebanyak 706 partikel dengan rata-rata ukuran total partikel sebesar 1,76 nm pada sampel Au@SiO<sub>2</sub> 30 ml, diikuti dengan penambahan 60 ml, 90 ml, 120 ml dengan mayoritas ukuran sebesar 2,3 nm dan ukuran rata-rata partikel 3,75 nm, 3,35 nm dan 3,42 nm secara berturut. Hasil ini menunjukkan ukuran partikel bertambah sedangkan jumlah partikelnya berkurang seiring penambahan SiO<sub>2</sub>.

Tabel 4.3 dan 4.4 menunjukkan persentase emas terbanyak terdapat pada sampel Au $@SiO_2$  30ml sebesar 3,05% wt dan jumlah partikel sebesar 2849 dengan 15,8% distribusi area

gambar distribusi emas (Au) pada FE-SEM dan EDX sebesar 3,05% hingga 1,53%, menunjukkan partikel emas sebagian berada di dalam SiO<sub>2</sub> membentuk *core-shell* Au@SiO<sub>2</sub>.

## 4.5 Pengujian IPCE

Pengujian IPCE bertujuan untuk mengetahui persentase perubahan foton dari cahaya tampak menjadi arus pada DSSC berdasarkan tiap panjang gelombang menggunakan persamaan (2.11). Hasil IPCE dari sampel DSSC ditunjukkan pada Gambar 4.11.









Gambar 4.11 Hasil uji IPCE pada DSSC (a) Variasi fraksi TiO<sub>2</sub>/SiO<sub>2</sub> (b) Fraksi 0,5% Au@SiO<sub>2</sub> pada TiO<sub>2</sub> (c) Fraksi 1% Au@SiO<sub>2</sub> pada TiO<sub>2</sub> (d) 30 ml SiO<sub>2</sub> pada Au@SiO<sub>2</sub> (e) 60 ml SiO<sub>2</sub> pada Au@SiO<sub>2</sub> (f)

90 ml SiO<sub>2</sub> pada Au@SiO<sub>2</sub> (g) 120 ml SiO<sub>2</sub> pada Au@SiO<sub>2</sub>

Hasil IPCE pada Gambar 4.11 untuk semua variasi sampel DSSC menunjukkan bahwa persentase perubahan foton dari cahaya tampak menjadi arus pada keseluruhan variasi DSSC berada mulai pada panjang gelombang 415 nm hingga 680 nm. Hal ini menunjukkan bahwa terjadi perubahan foton menjadi arus (*incident photocurrent*) pada sinar tampak pada seluruh variasi DSSC namun dengan tingkat persentase penyerapan yang berbeda.

Puncak IPCE yang tertinggi terdapat pada sampel DSSC dengan fotoanoda TiO<sub>2</sub>/Au@SiO<sub>2</sub> 30 ml 1%, sebesar 0,0086% IPCE pada panjang gelombang 475 nm, selain itu terdapat dua puncak lain yaitu sebesar 0,0077% pada 425 nm dan 0,0064% pada 515 nm. Puncak pada 425 nm, 475 nm dan 515 ini dimiliki oleh TiO<sub>2</sub>, pewarna N-719 dan emas (Au) secara berturut (Niu, et al., 2012; Li, et al., 2012). Puncak emas pada 515 nm dengan diameter partikel 13,88 nm sesuai dengan penelitian (López-Muñoz, et al., 2012) yang memiliki puncak emas pada panjang gelombang 520 nm dengan diameter partikel 16 nm. Sampel DSSC ini juga menunjukkan rentang IPCE paling luas, mulai dari 415 nm hingga 650 nm, dibandingkan dengan fotoanoda TiO<sub>2</sub> saja, hanya memiliki rentang 445 nm hingga 650 nm. Hal ini sesuai dengan hasil UV-Vis pada Gambar 4.5 dimana nilai absorbansi cahaya tertinggi terdapat pada core-shell Au@SiO2 30ml sehingga mampu meningkatkan konversi foton menjadi elektron atau IPCE.

Penambahan 1% *core-shell* Au@SiO<sub>2</sub> 30 ml pada TiO<sub>2</sub> sebagai fotoanoda mampu meningkatkan konversi foton menjadi elektron sebesar 29,13% lebih tinggi dibandingkan dengan TiO<sub>2</sub> saja dengan nilai IPCE sebesar 0,00666%. Puncak IPCE dihasilkan fotoanoda TiO<sub>2</sub>/Au@SiO<sub>2</sub> 30 ml 1% sebesar 0,0086% dibandingkan dengan fotoanoda TiO<sub>2</sub>/Au@SiO<sub>2</sub> 30 ml 0,5% sebesar 0,00635%. Penambahan 1% *core-shell* Au@SiO<sub>2</sub> 30 ml pada TiO<sub>2</sub> sebagai fotoanoda meningkatkan IPCE 35,4% lebih besar daripada penambahan 0,5% *core-shell* Au@SiO<sub>2</sub> 30 ml

pada TiO<sub>2</sub>. Hal ini menunjukkan semakin banyak penambahan *core-shell* Au@SiO<sub>2</sub> dalam TiO<sub>2</sub> mampu meningkatkan konversi foton menjadi elektron atau IPCE. Sampel *core-shell* Au@SiO<sub>2</sub> 60 ml, 90 ml, 120ml juga menunjukkan penambahan 1% *core-shell* pada TiO<sub>2</sub> meningkatkan 17,05%, 7,81%, 7,81% secara berturut daripada 0,5% *core-shell* pada TiO<sub>2</sub>.

Penambahan volume SiO<sub>2</sub> mulai 30 ml, 60 ml, 90 ml dan 120 ml pada *core-shell* Au@SiO<sub>2</sub> menunjukkan penurunan IPCE yang dihasilkan seiring dengan penambahan volume. Fraksi penambahan 1% dengan penambahan SiO<sub>2</sub> 30ml memiliki IPCE sebesar 0,0086%, 60 ml sebesar 0,00501%, 90 ml dan 120 ml sebesar 0,00359%. Hasil tersebut menunjukkan penurunan IPCE seiring penambahan volume SiO<sub>2</sub>.

Perubahan kerapatan arus terhadap panjang gelombang juga dapat dilihat pada Gambar 4.11, sesuai dengan hasil IPCE, semua sampel menghasilkan arus mulai pada panjang gelombang 415 nm hingga 680 nm. Sampel TiO<sub>2</sub>/Au@SiO<sub>2</sub> 30 ml 1%, memiliki rentang perubahan kerapatan arus yang paling luas, mulai dari 415 nm hingga 650 nm.





Perubahan kerapatan arus terhadap daya yang diberikan dapat dilihat pada Gambar 4.12, dimana semakin banyak penambahan SiO<sub>2</sub> pada *core-shell* Au@SiO<sub>2</sub> semakin lambat kenaikan rapat arus yang terjadi. Tabel 4.5 menunjukkan daya minimum yang dibutuhkan DSSC dalam menghasilkan arus, kemudian kerapatan arus maksimum yang dapat dicapai DSSC, rentang panjang gelombang aktif dan gradien kemiringan pada masing-masing DSSC dari Gambar 4.11 dan 4.12.

| Sampel                                              | Daya min<br>(µW) | J <sub>sc</sub> maks<br>(µA/cm <sup>2</sup> ) | λ pada<br>J <sub>sc</sub> maks<br>(nm) | Rentang λ<br>aktif (nm) | Gradien |
|-----------------------------------------------------|------------------|-----------------------------------------------|----------------------------------------|-------------------------|---------|
| TiO <sub>2</sub>                                    | 46,8124          | 0,80                                          | 490                                    | 445-650                 | 0,0204  |
| TiO <sub>2</sub> /SiO <sub>2</sub> 0,5%             | 55,9650          | 0,80                                          | 520                                    | 470-680                 | 0,0116  |
| TiO <sub>2</sub> /SiO <sub>2</sub> 1%               | 49,5660          | 0,40                                          | 465                                    | 455-600                 | 0,0243  |
| TiO <sub>2</sub> /Au@SiO <sub>2</sub><br>30ml 0,5%  | 37,8020          | 0,80                                          | 505                                    | 430-635                 | 0,0147  |
| TiO <sub>2</sub> /Au@SiO <sub>2</sub><br>30ml 1%    | 37,4250          | 1,07                                          | 515                                    | 415-650                 | 0,0167  |
| TiO <sub>2</sub> /Au@SiO <sub>2</sub><br>60ml 0,5%  | 50,0842          | 0,40                                          | 475                                    | 460-580                 | 0,0165  |
| TiO <sub>2</sub> /Au@SiO <sub>2</sub><br>60ml 1%    | 49,5660          | 0,40                                          | 465                                    | 455-605                 | 0,0243  |
| TiO <sub>2</sub> /Au@SiO <sub>2</sub><br>90ml 0,5%  | 66,1816          | 0,40                                          | 490                                    | 480-615                 | 0,0102  |
| TiO <sub>2</sub> /Au@SiO <sub>2</sub><br>90ml 1%    | 60,9422          | 0,40                                          | 485                                    | 475-610                 | 0,0116  |
| TiO <sub>2</sub> /Au@SiO <sub>2</sub><br>120ml 0,5% | 66,1816          | 0,40                                          | 490                                    | 480-565                 | 0,0102  |
| TiO <sub>2</sub> /Au@SiO <sub>2</sub><br>120ml 1%   | 60,9422          | 0,40                                          | 485                                    | 475-610                 | 0,0116  |

Tabel 4.5 Hasil uji IPCE

Generasi arus tercepat dan tertinggi terdapat pada sampel TiO<sub>2</sub>/Au@SiO<sub>2</sub> 30ml 1% dimana dengan daya minimum 37,4  $\mu$ W arus sudah mulai tergenerasi hingga mencapai kerapatan arus tertinggi sebesar 1,07  $\mu$ A/cm<sup>2</sup>. Tabel 4.5 juga menunjukkan pada

sampel TiO<sub>2</sub>/Au@SiO<sub>2</sub> 30ml 1% tidak hanya memiliki rentang panjang gelombang terpanjang, namun juga memiliki gradien kemiringan sebesar 0,0167 hingga mencapai puncak tertingginya.

Generasi arus membutuhkan daya semakin besar seiring penambahan SiO<sub>2</sub> disebabkan oleh SiO<sub>2</sub> sebagai insulator menjadi hambatan seri dalam kontak logam semikonduktor serta menghambat kinerja transfer elektron antara emas dan TiO<sub>2</sub> (Debnath & Chatterjee, 1995). Penambahan lapisan silika sebagai pelindung permukaan emas dengan ketebalan ~ 3-5 nm dapat mengurangi kecepatan rekombinasi dan memiliki medan dekat yang kuat yang dihasilkan oleh Au yang mampu mendukung penyerapan cahaya pada lapisan fotoaktif. Namun jika tebal SiO<sub>2</sub> melebihi 10 nm mampu membuat puncak penyerapan cahaya bergeser ke arah panjang gelombang yang lebih besar (red-shift) karena kenaikan indeks bias lokal di sekitar nanopartikel oleh kulit silika (Chen, et al., 2012) dan juga melindungi osilasi elektron pada logam sehingga mengurangi induksi medan dekat dan menyebabkan peredaman plasmonik (Chen, et al., 2012; Erwin, et al., 2016).

Hasil SEM dan EDX menunjukkan tidak seluruh emas dilapisi silika, sehingga terdapat partikel emas yang berkontak langsung dengan elektrolit dan mengumpulkan elektron langsung serta mempercepat reduksi  $I_3$  ke I yang merupakan kerugian mekanisme transfer elektron. Partikel emas yang telah berkontak langsung dengan elektrolit akan terkorosi sehingga efek LSPR dari partikel emas tersebut memiliki *lifetime* yang terbatas dan mengurangi penyerapan cahaya dan pembentukan pasangan elektron-*hole*, mengurangi medan elektromagnetik pada medan dekat (*near-field*) serta mengurangi penghamburan cahaya pada medan jauh (*far-field*). Hal ini yang menyebabkan penurunan IPCE setelah panjang gelombang 550 nm seperti pada Gambar 4.11 (Erwin, et al., 2016).

Distribusi ukuran emas juga mempengaruhi performansi IPCE. Partikel emas dengan distribusi ukuran yang besar memiliki puncak penyerapan pada panjang gelombang lebih besar dibandingkan dengan yang kecil. Efek penyerapan cahaya dan penghambur berkebalikan seiring besarnya ukuran partikel. Semakin besar ukuran partikel maka semakin berkurang tingkat penyerapan cahaya dan semakin besar efek penghamburnya, begitupun sebaliknya (Erwin, et al., 2016).

Puncak panjang gelombang UV-Vis yang tidak sama dengan IPCE karena elektrolit iodida/triiodida memiliki penyerapan yang kuat pada cahaya biru yang menyebabkan rendahnya IPCE pada daerah panjang gelombang pendek dan menghasilkan pergeseran puncak (Ito, 2011). Partikel emas pada sampel Au@SiO<sub>2</sub> dengan distribusi rata-rata hingga 2 nm, menurut Gambar 2.7 menunjukkan hampir 100% terjadinya absorbansi. Hal ini menunjukkan terjadinya interaksi plasmonik dari permukaan emas dan cahaya yang diserap dengan meningkatkan medan lokal elektromagnetik, disebut electromagnetic near-field enhancement (peningkatan medan lokal elektromagnetik). Variabel yang mempengaruhi near-field sendiri adalah volume dari logam dalam mode kecil (nanometer), dimana pada ukuran ini memiliki intensitas medan lebih besar dari pada cahaya datang dan morfologi dari logam (Erwin, et al., 2016). Terlihat pada Gambar 4.10 Au@SiO<sub>2</sub> 30 ml memiliki distribusi partikel emas dengan ukuran <10 nm paling banyak dibandingkan dengan sampel lainnya. Sehingga TiO2/Au@SiO2 30ml 1% memiliki arus tertinggi, daya minimum terkecil dan panjang gelombang aktif terluas. Serta penambahan fraksi 1% menghasilkan arus 1,5 kali lebih besar dibandingkan dengan 0,5%.

SiO<sub>2</sub> lumpur Sidoarjo memiliki energi pita celah sebesar 3,15 eV, lebih besar dibandingkan dengan SiO<sub>2</sub> dari TEOS sebesar 2,725eV. Energi pita celah yang besar disebabkan adanya kandungan  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> dan  $\alpha$ -Fe<sub>3</sub>O<sub>3</sub> dalam SiO<sub>2</sub> lumpur Sidoarjo (Puspitasari, 2016). Sehingga semakin banyak penambahan SiO<sub>2</sub> menyebabkan semakin besar energi pita celah dari *core-shell*. Hal ini sesuai dengan Gambar 4.7 dan Tabel 4.2 hasil dari *tauc plot*, bahwa trend kenaikan energi pita celah seiring dengan penambahan SiO<sub>2</sub> lumpur Sidoarjo. Namun pada Au@SiO<sub>2</sub> 30 ml tidak mengikuti trend tersebut dan memiliki energi pita celah terbesar, yaitu 2,0 eV. Menurut Gambar 4.9 dari hasil FE-SEM dan EDX, tidak terbentuknya tren dikarenakan  $SiO_2$  *shell* tidak sepenuhnya melingkupi *core* Au seluruhnya. Pada Tabel 4.2 menunjukkan semua sampel masih dalam rentang panjang gelombang tampak (620 nm-660 nm).

Penambahan plasmonik Au dan Ag dalam permukaan TiO<sub>2</sub> dapat mengurangi energi pita celah dari fotoanoda modifikasi (Lim, et al., 2017). Hasil perhitungan XRD pada Tabel 4.2 dan hasil persentase unsur EDX pada Tabel 4.3 menunjukkan semakin banyak penambahan SiO<sub>2</sub> semakin sedikit persentase Au dalam *core-shell*. Sehingga hal ini sesuai bahwa semakin banyak penambahan SiO<sub>2</sub> semakin besar energi pita celah pada fotoanoda. Au@SiO<sub>2</sub> 60 ml-120 ml seharusnya memiliki energi pita celah lebih besar daripada 30 ml, salah satu penyebabnya adalah Au tidak terlingkupi secara baik yang menyebabkan rendahnya energi pita celah, terdapat pada Tabel 4.4.

Ukuran emas juga mempengaruhi pergeseran penyerapan cahaya dalam DSSC. (López-Muñoz, et al., 2012) meneliti puncak penyerapan pada emas dengan diameter 16 nm hingga 120 nm. Puncak penyerapan emas emas (Au) dari diameter terkecil hingga terbesar secara berturut bergeser dari panjang gelombang 520 nm hingga 590 nm. Hasil distribusi ukuran emas pada Gambar 4.10 menunjukkan semakin besar penambahan SiO<sub>2</sub> pada *core-shell* semakin besar distribusi ukuran emas. Hal ini sesuai dengan pergeseran puncak IPCE pada gambar 4.11(b) dan (c) yang semakin *red-shift* seiring penambahan SiO<sub>2</sub>. Selain itu kerapatan arus yang dihasilkan juga menurun. Hal ini juga disebabkan oleh peran SiO<sub>2</sub> dalam melindungi Au, jika telalu banyak SiO<sub>2</sub> dapat menjadi hambatan seri dalam kontak logam semikonduktor serta menghambat kinerja transfer elektron antara emas dan TiO<sub>2</sub> (Debnath & Chatterjee, 1995).

Semikonduktor TiO<sub>2</sub> yang digunakan sebagai fotoanoda dasar pada penelitian ini merupakan 100% TiO<sub>2</sub> fasa anatase, dimana campuran fasa rutile yang merupakan nanopartikel yang baik dalam penghamburan cahaya digunakan pada penelitian sebelumnya. Sehingga penambahan core-shell Au@SiO<sub>2</sub> memiliki peran penting dalam meningkatkan konversi foton ke arus IPCE sebesar 28,4% dibandingkan dengan TiO<sub>2</sub> saja. Hal ini disebabkan oleh terbentuknya *Schottky Barrier* pada permukaan Au/TiO<sub>2</sub> dengan SiO<sub>2</sub> sebagai insulasi mampu mengurangi rekombinasi elektron, dan mempercepat proses transfer muatan (Debnath & Chatterjee, 1995; Pandikumar, et al., 2016)

# BAB V PENUTUP

## 5.1 Kesimpulan

Berdasarkan hasil pengujian dan analisa yang telah dilakukan, dapat diambil kesimpulan sebagai berikut,

- 1. Hasil XRD menunjukkan komposisi hasil ekstraksi SiO<sub>2</sub> dari lumpur Sidoarjo memiliki puncak tunggal yang lebar sehingga merupakan 100% SiO<sub>2</sub> amorf.
- Core-shell Au@SiO<sub>2</sub> memiliki persentase kristal mayoritas SiO<sub>2</sub> dengan persentase sebesar 43%-64%, persentase core Au sebesar 0,05%-0,428% dengan tren menurun seiring penambahan volume SiO<sub>2</sub>. Core-shell Au@SiO<sub>2</sub> 30 ml memiliki puncak penyerapan cahaya tampak pada 542 nm dan persentase partikel emas tertinggi sebesar 3,05%. FESEM dan EDX Au@SiO<sub>2</sub> menunjukkan partikel emas sebagian berada di dalam SiO<sub>2</sub> membentuk core-shell Au@SiO<sub>2</sub>.
- Hasil IPCE menunjukkan sampel DSSC dengan fotoanoda TiO<sub>2</sub>/Au@SiO<sub>2</sub> 30 ml 1%, memiliki IPCE tertinggi sebesar 0,0086 % serta memiliki rentang IPCE paling luas, mulai dari 415 nm hingga 650 nm. Semakin banyak *core-shell* yang ditambahkan pada TiO<sub>2</sub> akan menghasilkan IPCE yang lebih tinggi dan lebih lebar.

Halaman ini sengaja dikosongkan

#### **DAFTAR PUSTAKA**

- Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., & Oharashi, W. (2001). Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. *Science, New Series*, 293, 269-271. doi:10.1126/science.1061051
- Brown, T. L., & Lemay, H. E. (1985). *Chemistry: The Central Science*. New Jersey: Prentice Hall Inc.
- Budiarti, H. A. (2016). Fabrikasi DSSC (Dye-Sensitized Solar Cells) berbasis Struktur Core-Shell TiO<sub>2</sub>@SiO<sub>2</sub>@Au sebagai Partikel Penghambur dan Material Plasmonic. Surabaya: Institut Teknologi Sepuluh Nopember.
- Carnie, M., Watson, T., & Worsley, D. (2012). UV Filtering of Dye-Sensitized Solar Cells: The Effects of Varying the UV Cut-Off upon Cell Performance and Incident Photonto-Electron Conversion Efficiency. *International Journal* of Photoenergy, Vol. 2012(2012), 1-9. doi:10.1155/2012/506132
- Chang, H., Cho, K. C., Kuo, C. G., Kao, M. J., Huang, D. K., Chu, K. H., & Lin, X. P. (2011). Application of a Schottky barrier to dye-sensitized solar cells (DSSCs) with multilayer thin films of photoelectrodes. *Journal of Alloys and Compounds, Vol. 509*(S1), S486–S489. doi:10.1016/j.jallcom.2011.01.162
- Chardin, H., Acevedo, A. C., Risnes, S., Goldbreg, M., Jegat, N., & Six, N. (1998). Scanning electron microscopy and energy-dispersive X-ray analysis of defects in mature rat incisor enamel after thyroparathyroidectomy. *Archives of Oral Biology, Vol.* 43(4), 317-327. doi:10.1016/S0003-9969(97)00106-4
- Chen, J. J., Wu, J. C., Wu, P. C., Tsai, D. P., Sheng, C., Xiao, Y., & Zu, L. (2012). Improved Photocatalytic Activity of Shell-Isolated Plasmonic Photocatalyst Au@SiO<sub>2</sub>/TiO<sub>2</sub> by Promoted LSPR. *The Journal of Physical Chemistry C*, Vol. 116(50), 26535–26542. doi:10.1021/jp309901y
- Chu, D., Yuan, X., Qin, G., Xu, M., Zheng, P., Lu, J., & Zha, L. (2008). Efficient carbon doped nanostructured TiO<sub>2</sub>

(anatase) film for photoelectrochemical solar cells. *Journal of Nanoparticle Research*, 10(2), 357-363. doi:10.1007/s11051-007-9241-7

- Dao, V.-D., & Choi, H.-S. (2016). Highly-Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells Created by Means of Dry Plasma Reduction. *Nanomaterials, Vol.* 6(4), 1-9. doi:10.3390/nano6040070
- Debnath, M., & Chatterjee, P. (1995). Effect of an insulating interfacial layer at the metal (or TCO)/semiconductor front contact on the performance of a-Si : H solar cells. *Journal of Non-Crystalline Solids, Vol. 181*(3), 301-309. doi:10.1016/S0022-3093(94)00488-9
- DeVore, J. R. (1951). Refractive indices of rutile and sphalerite. Journal of theOptical Society of America, 41(6), 416-419. doi:10.1364/JOSA.41.000416
- Dutta, S. K., Mehetor, S. K., & Pradhan, N. (2015). Metal Semiconductor Heterostructures for Photocatalytic Conversion. *The Journal of Physical Chemistry Letters*, *6*, 936-944. doi:10.1021/acs.jpclett.5b00113
- Eom, K. H., Yun, T. K., Hong, J. Y., Bae, J. Y., Huh, S., & Won,
  Y. S. (2014). Effect of nitrogen doping on the performance of dye-sensitized solar cells composed of mesoporous TiO<sub>2</sub> photoelectrodes. *Journal of Nanoscience and Nanotechnology*, *12*, 9362-9369. doi:PMID 25971066
- Erwin, W. R., Zarick, H. F., Talbert, E. M., Bardhan, R., Zarick, H. F., & Boulesbaa, A. (2016). Light trapping in mesoporous solar cells with plasmonic nanostructures. *Energy & Environmental Science, Vol.* 9(5), 1577-1601. doi:10.1039/c5ee03847b
- Fan, S., Lu, X., Sun, H., Zhou, G., Chang, Y. J., & Wang, Z. S. (2016). Effect of the co-sensitization sequence on the performance of dye-sensitized solar cells with porphyrin and organic dyes. *Physical Chemistry Chemical Physics*, 18(2), 932-938. doi:10.1039/C5CP05986K

- Fulay, P., & Lee, J. K. (2016). Electronic, Magnetic, and Optical Materials, Second Edition. Florida: CRC Press Taylor and Francis Group.
- Gao, F., Wang, Y., Zhang, J., Shi, D., Wang, M., Humphry-Baker, R., . . . Grätzel, M. (2008). A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dyesensitized solar cell. *Chemical Communications*, 0(23), 2635-2637. doi:10.1039/B802909A
- Gosh, G. (1999). Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz. *Optics Communications, 163*(1-3), 95-102. doi:10.1016/S0030-4018(99)00091-7
- Hahn, D. W. (2009). *Light Scattering Theory*. Florida: University of Florida.
- Halme, J. (2002). Dye-Sensitized Nanostructured and Organic Photovoltaic Cells: Technical Review and Preleminary Test. Finland: Helsinki University of Technology.
- Hara, K., Horiguchi, T., Kinoshita, Tohru, Sayama, K., Sugihara, H., & Arakawa, H. (2000). Highly Efficient Photon-To-Electron Conversion With Mercurochrome-Sensitized Nanoporous Oxide Semiconductor Solar Cells. Solar Energy Materials and Solar Cells, Vol. 64(2), 115-134. doi:10.1016/S0927-0248(00)00065-9
- Hassanien, A. S., & Akl, A. A. (2015). Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50-xSex thin films. *Journal of Alloys and Compounds, Vol. 648*, 280-290. doi:10.1016/j.jallcom.2015.06.231
- Ii, S. (2012). Nanoscale Chemical Analysis in Various Interfaces with Energy Dispersive X-Ray Spectroscopy and Transmission Electron Microscopy. *X-Ray Spectroscopy*, 13, 265-280. doi:10.5772/31645
- Ito, S. (2011). Investigation of Dyes for Dye-Sensitized Solar Cells: Ruthenium-Complex Dyes, Metal-Free Dyes, Metal-Complex Porphyrin Dyes and Natural Dyes. *Solar*

*Cells - Dye-Sensitized Devices, 2, 19-48.* doi:10.5772/19960

- Jang, H., Jang, Y. J., Kochuveedu, S. T., Byun, M., Lin, Z., & Kim, D. H. (2014). Plasmonic dye-sensitized solar cells incorporated with Au-TiO<sub>2</sub> nanostructures with tailored configurations. *Nanoscale*, Vol. 6(3), 1823-1832. doi:10.1039/C3NR05012B
- Jeng, M. J., Wung, L. Y., Chang, L. B., Chow, L., Wei, T., & Xiandong, W. (2013). Particle Size Effects of TiO<sub>2</sub> Layers on the Solar Efficiency of Dye-Sensitized Solar Cells. *International Journal of Photoenergy*, Vol. 2013(2013), 1-9. doi:10.1155/2013/563897
- Jin, E. M., Jeong, S. M., Kang, H. C., Gu, H. B., Chung, B., & Chon, N. (2016). Photovoltaic Effect of Metal-Doped TiO<sub>2</sub> Nanoparticles for Dye-Sensitized Solar Cells. *ECS Journal of Solid State Science and Technology*, 5(5), Q-109-Q114. doi:10.1149/2.0031605jss
- Kay, A., & Grätzel, M. (1996). Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide andcarbon powder. *Solar Energy Materials and Solar Cells, Vol.* 44(1), 99-117. doi:10.1016/0927-0248(96)00063-3
- Khatri, I., Bao, J., Kishi, N., Soga, T., Hopkinson, M., & Robinson, A. (2012). Similar Device Architectures for Inverted Organic Solar Cell and Laminated Solid-State Dye-Sensitized Solar Cells. *International Scholarly Research Network*, Vol. 2012(2012), 1-10. doi:10.5402/2012/180787
- Lee, J.-K., & Yang, M. (2011). Progress in light harvesting and charge injection of dye-sensitized solar cells. *Materials Science and Engineering: B, Vol. 176*(15), 1142-1160. doi:10.1016/j.mseb.2011.06.018
- Li, H., Hong, W., Cai, F., Tang, Q., Yan, Y., Hu, X., ... Xu, Z.
   (2012). Au@SiO<sub>2</sub> nanoparticles coupling co-sensitizers for synergic efficiency enhancement of dye sensitized

solar cells. Journal of Materials Chemistry, Vol. 22(47), 24734-24743. doi:10.1039/C2JM35577A

- Li, J. F., Tian, X. D., Li, S. B., Anema, J. R., Yang, Z. L., Ding, Y., . . . Tian, Z. Q. (2012). Surface analysis using shellisolated nanoparticle-enhanced Raman spectroscopy. *Nature Protocols, Vol.* 8(1), 52-62. doi:10.1038/nprot.2012.141
- Liao, W. Y., Yang, Y. J., Hsu, C. M., Hsu, C. C., Cheng, I. C., & Chen, J. Z. (2015). Atmospheric-pressure-plasma-jet sintered dual-scale porous TiO<sub>2</sub> using an economically favorable NaCl solution. *Journal of Power Sources, Vol.* 281, 252-257. doi:10.1016/j.jpowsour.2015.01.160
- Lim, S. P., Lim, Y. S., Pandikumar, A., Lim, H. N., Ng, Y. H., Ramaraj, R., . . . Huang, N. M. (2017). Gold– silver@TiO<sub>2</sub> nanocomposite-modified plasmonic photoanodes for higher efficiency dye-sensitized solar cells. *Physical Chemistry Chemical Physics*, 19(2), 1395-1407. doi:10.1039/C6CP05950C
- López-Muñoz, G. A., Pescador-Rojas, J. A., Ortega-Lopez, J., Salazar, J. S., Balderas-López, J. A., Albert, A. J., & Gorden, A. B. (2012). Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations. *Nanoscale Research Letters, Vol.* 7(423), 423-428. doi:10.1186/1556-276X-7-423
- Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., & Batzill, M. (2014). Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO<sub>2</sub> films. *Scientific Reports, Vol.* 4(4043), 4043-4051. doi:10.1038/srep04043
- Maeland, A., & Flanagan, T. B. (1964). Lattice Spacings of gold– palladium alloys. *Canadian Journal of Physics*, 42(11), 2364-2366. doi:10.1139/p64-213
- Nazeeruddin, M. K., Baranoff, E., & Grätzel, M. (2011). Dyesensitized solar cells: A brief overview. *Solar Energy*, 85, 1172–1178. doi:10.1016/j.solener.2011.01.018

- Niu, H., Liu, L., Wang, H., Zhang, S., Ma, Q., Mao, X., ... Xu, J. (2012). Significant influence of nano-SiO<sub>2</sub> on the performance of dye-sensitized solar cells based on P25. *Electrochimica Acta, Vol. 81*, 246-253. doi:10.1016/j.electacta.2012.07.028
- O'Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO<sub>2</sub> films. *Letters to Natures, Vol. 353*, 737-740. doi:10.1038/353737a0
- Panda, B. R., & Chattopadhyay, A. (2007). Synthesis of Au Nanoparticles at "all" pH by H<sub>2</sub>O<sub>2</sub> Reduction of HAuCl<sub>4</sub>. *Journal of Nanoscience and Nanotechnology, Vol.* 7(6), 1911–1915. doi:10.1166/jnn.2007.740
- Pandikumar, A., Lim, S. P., Jayabal, S., Huang, N. M., Lim, H. N., & Ramaraj, R. (2016). Titania@gold plasmonic nanoarchitectures : An ideal photoanode for dyesensitized solar cells. *Renewable and Sustainable Energy Reviews*, 60, 408–420. doi:10.1016/j.rser.2016.01.107
- Park, N. G., van de Lagemaat, J., & Frank, A. U. (2000). Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO<sub>2</sub> Solar Cells. *The Journal of Physical Chemistry B, Vol. 104*(38), 8989-8994. doi:10.1021/jp9943651
- Pribadi, A. J., & Munasir, A. A. (2013). Pengaruh pH akhir larutan pada sintesis nanosilika dari bahan lusi dengan metode kopresipitasi. *Jurnal Inovasi Fisika Indonesia*, *Vol.* 2(3), 7-10.
- Puspitasari, R. N. (2016). Fabrikasi Struktur core-shell SiO<sub>2</sub>@TiO<sub>2</sub>@Au sebagai Partikel Penghambur dan Material Plasmonic untuk aplikasi DSSC (Dye-Sensitized Solar Cells). Surabaya: Institut Teknologi Sepuluh Nopember.
- Ruzicka, J. Y. (2013). *Particle sizing using ImageJ*. New Zealand: MacDiarmid Institute MESA.
- Saikia, B. J., & Parthasarathy, G. (2010). Fourier Transform Infrared Spectroscopic Fourier Transform Infrared

Spectroscopic Meghalaya, Northeastern India. *Scientific Research, Vol. 1*(4), 206-210. doi:10.4236/jmp.2010.1403

- Sheehan, S. W., Noh, H., Brudvig, G. W., Cao, H., Schmuttenmaer, C. A., & Rooks, M. (2012). Plasmonic Enhancement of Dye-Sensitized Solar Cells Using Core–Shell–Shell Nanostructures. *The Journal of Physical Chemistry C, Vol. 117*(2), 927–934. doi:10.1021/jp311881k
- Smyth, J. R., & Bish, D. L. (1988). Crystal Structures and Cation Sites of the Rock-Forming Minerals. Boston: ALLEN & UNWIN.
- Son, S., Hwang, S. H., Kim, C., Yun, J. Y., Jang, J., & Lie, H. N. (2013). Designed synthesis of SiO<sub>2</sub>/TiO<sub>2</sub> core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. ACS Applied Materials and Interfaces, Vol. 5(11), 4815–4820. doi:10.1021/am400441v
- Sze, S. M. (1985). Semiconductor Devices Physics and Technology (2nd Edition). New York: John Wiley & Sons, Inc.
- Tien, T. C., Pan, F. M., Tsai, F. Y., Lin, C., Li, K. M., & Yao, L. M. (2011). Growth mode transition of atomic layer deposited Al<sub>2</sub>O<sub>3</sub> on porous TiO<sub>2</sub> electrodes of dyesensitized solar cells. *Thin Solid Films, Vol. 520*(6), 6-11. doi:10.1016/j.tsf.2011.08.057
- Tributsch, H. (1972). Reaction of Excited Chorophyll Molecules at Electrodes and in Photosynthesis. *Photochemistry and Photobiology*, *16*(4), 261-269. doi:10.1111/j.1751-1097.1972.tb06297.x
- Tung, R. T. (2014). The physics and chemistry of the Schottky barrier height. *Applied Physics Reviews*, 1(1), 1-54. doi:10.1063/1.4858400
- Varghese, O., & Grimes, C. (2008). Appropriate Strategies for Determining The Photoconversion Efficiency of Water Photoelectrolysis Cells: A Review with Examples Using Titania Nanotube Array Photoanodes. Solar Energy

*Materials & Solar Cells, Vol. 92*(4), 374-384. doi:10.1016/j.solmat.2007.11.006

- Wahyuono, R. A. (2013). Dye-Sensitized Solar Cells (DSSC) Fabrication with TiO<sub>2</sub> and ZnO Nanoparticle for High Conversion Efficiency. Surabaya: Institut Teknologi Sepuluh Nopember.
- Wang, Y., Chen, E., Lai, H., Lu, B., Hu, Z., Qin, X., . . . Du, G. (2013). Enhanced light scattering and photovoltaic performance for dye-sensitized solar cells by embedding submicron SiO<sub>2</sub>/TiO<sub>2</sub> core/shell particles in photoanode. *Ceramics International, Vol. 39*(5), 5407-5413. doi:10.1016/j.ceramint.2012.12.048
- Willets, K. A., & Van Duyne, R. P. (2006). Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, Vol. 58, 267-297. doi:10.1146/annurev.physchem.58.032806.104607
- Wongcharee, K., Meeyoo, V., Chavadej, S., Kumara, N. T., Lim, A., Lim, C. M., . . . Ekanayake, P. (2017). Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. *Solar Energy Materials and Solar Cells, Vol. 91*(7), 566-571. doi:10.1016/j.solmat.2006.11.005
- Wu, Y., & Zhu, W. (2013). Organic sensitizers from D–p–A to D–A–p–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. *The Royal Society of Chemistry, Vol. 42*(5), 2039-2058. doi:10.1039/C2CS35346F
- Zhang, R., Zhou, Y., Peng, L., Li, X., Chen, S., Feng, X., . . . Huang, W. (2016). Influence of SiO<sub>2</sub> shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO<sub>2</sub> core-shell structures. *Scientific Reports, Vol.* 6(25036), 1-9. doi:10.1038/srep25036
- Ziegler, C., & Eychmüller, A. (2011). Seeded growth synthesis of uniform gold nanoparticles with diameters of 15-300 nm.

Journal of Physical Chemistry C, Vol. 115(11), 4502-4506. doi:10.1021/jp1106982

Halaman ini sengaja dikosongkan
# LAMPIRAN A PERHITUNGAN XRD

| Angle [°2Th,] | I=Height [cts] | FWHM Left<br>[°2Th,] | Туре                             | hkl | X=I/Imax | Percer<br>(X/Xtota | ntage=<br>1)x100% | Ukuran<br>kristal (nm) |
|---------------|----------------|----------------------|----------------------------------|-----|----------|--------------------|-------------------|------------------------|
| 38,2656       | 44,96          | 0,3346               | Au                               | 111 | 0,0130   | 0,4284             | 0,4284            | 24,8419                |
| 31,6856       | 3448,25        | 0,1673               | N-CI                             | 200 | 1,0000   | 32,8599            | 22.0240           | 48,7928                |
| 53,8337       | 101,25         | 0,0816               | NaCI                             | 311 | 0,0294   | 0,9649             | 33,8248           |                        |
| 45,4220       | 2289,06        | 0,0816               |                                  | 201 | 0,6638   | 21,8135            |                   |                        |
| 45,5421       | 1486,29        | 0,0612               |                                  | 201 | 0,4310   | 14,1635            | 64,0620           |                        |
| 56,4659       | 690,73         | 0,1224               |                                  | 210 | 0,2003   | 6,5823             |                   |                        |
| 56,6193       | 384,68         | 0,0816               |                                  | 210 | 0,1116   | 3,6658             |                   |                        |
| 66,2107       | 320,22         | 0,1020               |                                  | 300 | 0,0929   | 3,0515             |                   |                        |
| 73,0990       | 17,94          | 0,4080               | SiO <sub>2</sub>                 | 104 | 0,0052   | 0,1710             |                   |                        |
| 75,2738       | 428,93         | 0,1224               |                                  | 302 | 0,1244   | 4,0875             |                   |                        |
| 75,4952       | 235,33         | 0,1020               |                                  | 302 | 0,0682   | 2,2426             |                   |                        |
| 83,9612       | 266,28         | 0,1224               |                                  | 311 | 0,0772   | 2,5375             |                   |                        |
| 84,2324       | 137,43         | 0,1224               |                                  | 204 | 0,0399   | 1,3096             |                   |                        |
| 27,3948       | 465,64         | 0,1338               |                                  | 101 | 0,1350   | 4,4373             |                   |                        |
| 66,3994       | 176,8          | 0,0816               | γ-Al <sub>2</sub> O <sub>3</sub> | 440 | 0,0513   | 1,6848             | 1,6848            | 115,0108               |
|               | 2              | Ktotal               |                                  |     | 3,0432   |                    |                   |                        |

## • Au@SiO<sub>2</sub> 30 ml

#### • Au@SiO<sub>2</sub> 60 ml

| Angle<br>[°2Th,] | I=Height<br>[cts] | FWHM Left<br>[°2Th,] | Туре                             | hkl | X=I/Imax | Perce<br>(X/Xtota | ntage=<br>al)x100% | Ukuran<br>kristal (nm) |
|------------------|-------------------|----------------------|----------------------------------|-----|----------|-------------------|--------------------|------------------------|
| 38,3589          | 24,92             | 0,6691               | Au                               | 111 | 0,0098   | 0,3706            | 0,3706             | 12,4263                |
| 31,7589          | 2531,88           | 0,1004               | N <sub>2</sub> C1                | 200 | 1,0000   | 37,6548           | 20 4000            | 81,3199                |
| 53,9086          | 56,09             | 0,204                | NaCi                             | 311 | 0,0222   | 0,8342            | 36,4690            |                        |
| 45,4782          | 1084,46           | 0,204                |                                  | 201 | 0,4283   | 16,1284           |                    |                        |
| 45,6552          | 1034,04           | 0,0816               |                                  | 201 | 0,4084   | 15,3785           |                    |                        |
| 56,5002          | 327,68            | 0,0612               |                                  | 210 | 0,1294   | 4,8733            | 59,2702            |                        |
| 56,6043          | 350,94            | 0,1836               |                                  | 210 | 0,1386   | 5,2193            |                    |                        |
| 66,271           | 171,64            | 0,102                | S:O.                             | 300 | 0,0678   | 2,5527            |                    |                        |
| 73,2842          | 14,1              | 0,4896               | 5102                             | 104 | 0,0056   | 0,2097            |                    |                        |
| 75,3313          | 348,11            | 0,1224               |                                  | 302 | 0,1375   | 5,1772            |                    |                        |
| 75,5099          | 271,95            | 0,204                |                                  | 302 | 0,1074   | 4,0445            |                    |                        |
| 83,9843          | 190,77            | 0,102                |                                  | 311 | 0,0753   | 2,8372            |                    |                        |
| 27,4519          | 191,59            | 0,2007               |                                  | 101 | 0,0757   | 2,8494            |                    |                        |
| 66,4567          | 125,75            | 0,1224               | γ-Al <sub>2</sub> O <sub>3</sub> | 440 | 0,0497   | 1,8702            | 1,8702             | 76,6989                |
|                  |                   | Xtotal               |                                  |     | 2,6557   |                   |                    |                        |

| Angle<br>[°2Th,] | I=Height<br>[cts] | FWHM<br>Left<br>[°2Th,] | Туре                                     | hkl | X=I/Imax | Percer<br>(X/Xtota | ntage=<br>1)x100% | Ukuran<br>kristal<br>(nm) |
|------------------|-------------------|-------------------------|------------------------------------------|-----|----------|--------------------|-------------------|---------------------------|
| 38,4489          | 23,92             | 0,6991                  | Au                                       | 111 | 0,0063   | 0,2346             | 0,2346            | 11,8963                   |
| 31,6903          | 3801,76           | 0,0816                  | N <sub>2</sub> C1                        | 200 | 1,0000   | 37,2910            | 28 0222           | 100,0384                  |
| 53,868           | 74,65             | 0,1224                  | NaCI                                     | 311 | 0,0196   | 0,7322             | 38,0232           |                           |
| 45,4286          | 2297,27           | 0,0816                  |                                          | 201 | 0,6043   | 22,5336            |                   |                           |
| 45,5599          | 1078,26           | 0,0612                  |                                          | 201 | 0,2836   | 10,5765            | 60,8272           |                           |
| 56,4598          | 637,88            | 0,0816                  |                                          | 210 | 0,1678   | 6,2569             |                   |                           |
| 56,62            | 342,61            | 0,0612                  |                                          | 210 | 0,0901   | 3,3606             |                   |                           |
| 66,2079          | 210,3             | 0,102                   |                                          | 300 | 0,0553   | 2,0628             |                   |                           |
| 73,0415          | 29,25             | 0,2448                  | SiO <sub>2</sub>                         | 104 | 0,0077   | 0,2869             |                   |                           |
| 75,2778          | 376,53            | 0,102                   |                                          | 302 | 0,0990   | 3,6933             |                   |                           |
| 75,5056          | 180,6             | 0,1224                  |                                          | 302 | 0,0475   | 1,7715             |                   |                           |
| 83,9671          | 386,99            | 0,0816                  |                                          | 311 | 0,1018   | 3,7959             |                   |                           |
| 84,2347          | 146,63            | 0,1224                  |                                          | 204 | 0,0386   | 1,4383             |                   |                           |
| 27,3526          | 514,92            | 0,0669                  |                                          | 101 | 0,1354   | 5,0508             |                   |                           |
| 66,4033          | 93,28             | 0,0816                  | $\gamma$ -Al <sub>2</sub> O <sub>3</sub> | 440 | 0,0245   | 0,9150             | 0,9150            | 115,0133                  |
|                  |                   | Xtotal                  |                                          |     | 2,6816   |                    |                   |                           |

#### • Au@SiO<sub>2</sub> 90 ml

# • Au@SiO<sub>2</sub> 120 ml

| Angle<br>[°2Th,] | I=Height<br>[cts] | FWHM<br>Left<br>[°2Th,] | Туре                                     | hkl | X=I/Imax | Percer<br>(X/Xtota | ntage=<br>1)x100% | Ukuran<br>kristal<br>(nm) |
|------------------|-------------------|-------------------------|------------------------------------------|-----|----------|--------------------|-------------------|---------------------------|
| 38,4489          | 23,92             | 0,6991                  | Au                                       | 111 | 0,0063   | 0,2346             | 0,2346            | 11,8963                   |
| 31,6903          | 3801,76           | 0,0816                  | N <sub>2</sub> C1                        | 200 | 1,0000   | 37,2910            | 28 0222           | 100,0384                  |
| 53,868           | 74,65             | 0,1224                  | NaCI                                     | 311 | 0,0196   | 0,7322             | 36,0232           |                           |
| 45,4286          | 2297,27           | 0,0816                  |                                          | 201 | 0,6043   | 22,5336            |                   |                           |
| 45,5599          | 1078,26           | 0,0612                  |                                          | 201 | 0,2836   | 10,5765            |                   |                           |
| 56,4598          | 637,88            | 0,0816                  |                                          | 210 | 0,1678   | 6,2569             | 60,8272           |                           |
| 56,62            | 342,61            | 0,0612                  |                                          | 210 | 0,0901   | 3,3606             |                   |                           |
| 66,2079          | 210,3             | 0,102                   |                                          | 300 | 0,0553   | 2,0628             |                   |                           |
| 73,0415          | 29,25             | 0,2448                  | SiO <sub>2</sub>                         | 104 | 0,0077   | 0,2869             |                   |                           |
| 75,2778          | 376,53            | 0,102                   |                                          | 302 | 0,0990   | 3,6933             |                   |                           |
| 75,5056          | 180,6             | 0,1224                  |                                          | 302 | 0,0475   | 1,7715             |                   |                           |
| 83,9671          | 386,99            | 0,0816                  |                                          | 311 | 0,1018   | 3,7959             |                   |                           |
| 84,2347          | 146,63            | 0,1224                  |                                          | 204 | 0,0386   | 1,4383             |                   |                           |
| 27,3526          | 514,92            | 0,0669                  |                                          | 101 | 0,1354   | 5,0508             |                   |                           |
| 66,4033          | 93,28             | 0,0816                  | $\gamma$ -Al <sub>2</sub> O <sub>3</sub> | 440 | 0,0245   | 0,9150             | 0,9150            | 115,0133                  |
|                  |                   | Xtotal                  |                                          |     | 2,6816   |                    |                   |                           |

# LAMPIRAN B HASIL FE-SEM

• Au@SiO<sub>2</sub> 30 ml







• Au@SiO<sub>2</sub> 120 ml



# LAMPIRAN C HASIL EDX

• Au@SiO $_2$  30 ml



• Au@SiO<sub>2</sub> 60 ml



• Au@SiO<sub>2</sub> 90 ml



#### LAMPIRAN D PERHITUNGAN ENERGI PITA CELAH

| Panjang   |         | Abso    | rbansi  |         | $(\alpha h \nu)^2$ |         |          |          |      |
|-----------|---------|---------|---------|---------|--------------------|---------|----------|----------|------|
| Gelombang | Au@SiO2 | Au@SiO2 | Au@SiO2 | Au@SiO2 | Au@SiO2            | Au@SiO2 | Au@SiO2  | Au@SiO2  | hν   |
| (nm)      | 30 ml   | 60 ml   | 90 ml   | 120 ml  | 30 ml              | 60 ml   | 90 ml    | 120 ml   |      |
| 370       | 0,0483  | 0,0567  | 0,2583  | 0,1213  | 1390,67            | 1911,55 | 39727,58 | 8763,78  | 3,35 |
| 372       | 0,0683  | 0,0760  | 0,2767  | 0,1417  | 2749,88            | 3401,54 | 45077,77 | 11819,09 | 3,33 |
| 374       | 0,0860  | 0,0950  | 0,2933  | 0,1590  | 4309,12            | 5258,22 | 50131,91 | 14729,42 | 3,31 |
| 376       | 0,1010  | 0,1090  | 0,3060  | 0,1717  | 5880,33            | 6848,76 | 53976,14 | 16987,56 | 3,30 |
| 378       | 0,1100  | 0,1180  | 0,3133  | 0,1793  | 6901,39            | 7941,73 | 55996,93 | 18343,11 | 3,28 |
| 380       | 0,1160  | 0,1240  | 0,3177  | 0,1850  | 7594,22            | 8677,82 | 56952,23 | 19315,72 | 3,26 |
| 382       | 0,1200  | 0,1290  | 0,3197  | 0,1883  | 8042,12            | 9293,67 | 57069,31 | 19808,99 | 3,25 |
| 384       | 0,1230  | 0,1310  | 0,3207  | 0,1907  | 8361,47            | 9484,51 | 56830,28 | 20091,93 | 3,23 |
| 386       | 0,1240  | 0,1330  | 0,3213  | 0,1917  | 8410,14            | 9675,27 | 56477,00 | 20093,39 | 3,21 |
| 388       | 0,1250  | 0,1340  | 0,3203  | 0,1920  | 8458,46            | 9720,33 | 55548,90 | 19956,01 | 3,20 |
| 390       | 0,1260  | 0,1347  | 0,3193  | 0,1923  | 8506,41            | 9716,85 | 54637,89 | 19820,50 | 3,18 |
| 392       | 0,1257  | 0,1350  | 0,3177  | 0,1927  | 8375,34            | 9665,63 | 53518,73 | 19686,82 | 3,16 |
| 394       | 0,1260  | 0,1350  | 0,3167  | 0,1923  | 8334,57            | 9567,75 | 52643,76 | 19420,09 | 3,15 |
| 396       | 0,1260  | 0,1347  | 0,3153  | 0,1923  | 8250,60            | 9424,63 | 51675,42 | 19224,43 | 3,13 |
| 398       | 0,1260  | 0,1350  | 0,3137  | 0,1920  | 8167,88            | 9376,40 | 50618,03 | 18965,79 | 3,12 |
| 400       | 0,1250  | 0,1347  | 0,3127  | 0,1917  | 7958,56            | 9237,08 | 49794,09 | 18711,47 | 3,10 |
| 402       | 0,1250  | 0,1347  | 0,3107  | 0,1910  | 7879,57            | 9145,40 | 48671,18 | 18397,10 | 3,08 |
| 404       | 0,1250  | 0,1347  | 0,3097  | 0,1903  | 7801,75            | 9055,08 | 47880,74 | 18088,46 | 3,07 |
| 406       | 0,1247  | 0,1347  | 0,3077  | 0,1907  | 7683,93            | 8966,08 | 46799,74 | 17973,48 | 3,05 |
| 408       | 0,1240  | 0,1340  | 0,3063  | 0,1900  | 7527,62            | 8790,71 | 45941,25 | 17673,46 | 3,04 |
| 410       | 0,1240  | 0,1337  | 0,3050  | 0,1897  | 7454,36            | 8661,90 | 45098,97 | 17440,10 | 3,02 |
| 412       | 0,1233  | 0,1333  | 0,3033  | 0,1893  | 7303,00            | 8535,28 | 44175,40 | 17210,54 | 3,01 |
| 414       | 0,1230  | 0,1333  | 0,3020  | 0,1890  | 7193,57            | 8453,01 | 43365,85 | 16984,69 | 2,99 |
| 416       | 0,1230  | 0,1330  | 0,3007  | 0,1880  | 7124,56            | 8330,12 | 42571,46 | 16644,23 | 2,98 |
| 418       | 0,1223  | 0,1330  | 0,2987  | 0,1873  | 6980,26            | 8250,60 | 41605,96 | 16368,63 | 2,97 |
| 420       | 0,1220  | 0,1320  | 0,2970  | 0,1873  | 6876,31            | 8049,78 | 40752,00 | 16213,10 | 2,95 |
| 422       | 0,1217  | 0,1320  | 0,2953  | 0,1870  | 6774,12            | 7973,66 | 39914,87 | 16002,69 | 2,94 |
| 424       | 0,1210  | 0,1317  | 0,2940  | 0,1863  | 6637,03            | 7858,77 | 39182,99 | 15739,25 | 2,92 |
| 426       | 0,1207  | 0,1310  | 0,2927  | 0,1860  | 6538,68            | 7706,52 | 38464,67 | 15536,08 | 2,91 |
| 428       | 0,1200  | 0,1307  | 0,2907  | 0,1853  | 6406,33            | 7595,86 | 37586,99 | 15281,08 | 2,90 |
| 430       | 0,1200  | 0,1300  | 0,2890  | 0,1843  | 6346,88            | 7448,77 | 36812,34 | 14976,33 | 2,88 |
| 432       | 0,1190  | 0,1300  | 0,2877  | 0,1840  | 6183,88            | 7379,96 | 36136,51 | 14784,37 | 2,87 |
| 434       | 0,1190  | 0,1293  | 0,2863  | 0,1833  | 6127,02            | 7237,29 | 35473,09 | 14542,47 | 2,86 |
| 436       | 0,1187  | 0,1290  | 0,2847  | 0,1830  | 6036,97            | 7134,13 | 34740,41 | 14357,00 | 2,84 |
| 438       | 0,1180  | 0,1283  | 0,2827  | 0,1820  | 5914,94            | 6996,25 | 33941,86 | 14071,14 | 2,83 |
| 440       | 0,1170  | 0,1280  | 0,2817  | 0,1813  | 5762,37            | 6896,83 | 33396,44 | 13841,55 | 2,82 |
| 442       | 0,1163  | 0,1280  | 0,2803  | 0,1813  | 5645,45            | 6834,55 | 32782,31 | 13716,57 | 2,80 |
| 444       | 0,1160  | 0,1270  | 0,2790  | 0,1800  | 5562,69            | 6667,70 | 32179,34 | 13394,11 | 2,79 |
| 446       | 0,1160  | 0,1270  | 0,2777  | 0,1793  | 5512,91            | 6608,04 | 31587,29 | 13176,10 | 2,78 |
| 448       | 0,1150  | 0,1260  | 0,2760  | 0,1793  | 5370,00            | 6446,44 | 30931,20 | 13058,72 | 2,77 |
| 450       | 0,1150  | 0,1260  | 0,2747  | 0,1790  | 5322,37            | 6389,26 | 30361,38 | 12894,83 | 2,76 |
| 452       | 0,1140  | 0,1260  | 0,2727  | 0,1777  | 5184,03            | 6332,85 | 29656,63 | 12591,27 | 2,74 |
| 454       | 0,1140  | 0,1257  | 0,2720  | 0,1777  | 5138,46            | 6244,00 | 29252,35 | 12480,58 | 2,73 |
| 456       | 0,1137  | 0,1253  | 0,2707  | 0,1773  | 5063,74            | 6156,56 | 28712,73 | 12324,97 | 2,72 |
| 458       | 0,1130  | 0,1247  | 0,2690  | 0,1763  | 4960,90            | 6038,16 | 28113,07 | 12080,16 | 2,71 |
| 460       | 0,1130  | 0,1250  | 0,2677  | 0,1763  | 4917,86            | 6017,82 | 27593,55 | 11975,34 | 2,70 |
| 462       | 0,1123  | 0,1247  | 0,2667  | 0,1763  | 4818,01            | 5934,05 | 27151,15 | 11871,88 | 2,68 |
| 464       | 0,1120  | 0,1243  | 0,2657  | 0,1753  | 4748,26            | 5851,59 | 26716,08 | 11636,64 | 2,67 |

| 466 | 0,1120 | 0,1240 | 0,2643 | 0,1753 | 4707,59 | 5770,40 | 26222,05 | 11536,97 | 2,66 |
|-----|--------|--------|--------|--------|---------|---------|----------|----------|------|
| 468 | 0,1113 | 0,1240 | 0,2627 | 0,1743 | 4612,04 | 5721,19 | 25671,60 | 11308,47 | 2,65 |
| 470 | 0,1113 | 0,1237 | 0,2617 | 0,1743 | 4572,88 | 5642,14 | 25260,14 | 11212,43 | 2,64 |
| 472 | 0,1110 | 0,1233 | 0,2603 | 0,1733 | 4507,09 | 5564,31 | 24791,92 | 10990,43 | 2,63 |
| 474 | 0,1107 | 0,1233 | 0,2590 | 0,1733 | 4442,34 | 5517,46 | 24331,98 | 10897,88 | 2,62 |
| 476 | 0,1103 | 0,1227 | 0,2580 | 0,1730 | 4378,59 | 5412,20 | 23941,98 | 10764,97 | 2,60 |
| 478 | 0,1097 | 0,1223 | 0,2570 | 0,1723 | 4289,71 | 5337,88 | 23558,36 | 10592,96 | 2,59 |
| 480 | 0,1097 | 0,1220 | 0,2557 | 0,1723 | 4254,04 | 5264,68 | 23120,67 | 10504,87 | 2,58 |
| 482 | 0,1100 | 0,1213 | 0,2543 | 0,1713 | 4244,49 | 5164,17 | 22690,66 | 10297,32 | 2,57 |
| 484 | 0,1093 | 0,1213 | 0,2533 | 0,1713 | 4158,62 | 5121,58 | 22326,91 | 10212,40 | 2,56 |
| 486 | 0,1090 | 0,1210 | 0,2520 | 0,1713 | 4099,35 | 5051,65 | 21911,05 | 10128,52 | 2,55 |
| 488 | 0,1093 | 0,1210 | 0,2507 | 0,1707 | 4090,72 | 5010,32 | 21502,46 | 9967,64  | 2,54 |
| 490 | 0,1090 | 0,1200 | 0,2500 | 0,1707 | 4032,70 | 4887,70 | 21214,00 | 9886,44  | 2,53 |
| 492 | 0,1093 | 0,1200 | 0,2490 | 0,1703 | 4024,48 | 4848,05 | 20873,88 | 9767,96  | 2,52 |
| 494 | 0,1093 | 0,1200 | 0,2480 | 0,1700 | 3991,96 | 4808,87 | 20539,23 | 9651,14  | 2,51 |
| 496 | 0,1090 | 0,1190 | 0,2467 | 0,1693 | 3935,72 | 4691,00 | 20155,44 | 9498,53  | 2,50 |
| 498 | 0,1090 | 0,1190 | 0,2457 | 0,1693 | 3904,17 | 4653,39 | 19832,09 | 9422,39  | 2,49 |
| 500 | 0,1093 | 0,1187 | 0,2447 | 0,1693 | 3896,73 | 4590,42 | 19513,91 | 9347,16  | 2,48 |
| 502 | 0,1093 | 0,1180 | 0,2437 | 0,1683 | 3865,74 | 4502,89 | 19200,81 | 9163,63  | 2,47 |
| 504 | 0,1097 | 0,1177 | 0,2427 | 0,1683 | 3858,54 | 4442,02 | 18892,69 | 9091,05  | 2,46 |
| 506 | 0,1100 | 0,1180 | 0,2420 | 0,1680 | 3851,40 | 4431,98 | 18640,79 | 8983,64  | 2,45 |
| 508 | 0,1093 | 0,1177 | 0,2410 | 0,1680 | 3774,96 | 4372,34 | 18341,77 | 8913,04  | 2,44 |
| 510 | 0,1110 | 0,1177 | 0,2407 | 0,1677 | 3860,47 | 4338,12 | 18147,89 | 8808,21  | 2,43 |
| 512 | 0,1107 | 0,1177 | 0,2393 | 0,1683 | 3807,40 | 4304,29 | 17807,42 | 8809,17  | 2,42 |
| 514 | 0,1110 | 0,1170 | 0,2387 | 0,1673 | 3800,62 | 4222,60 | 17570,82 | 8637,21  | 2,41 |
| 516 | 0,1113 | 0,1170 | 0,2377 | 0,1673 | 3793,90 | 4189,93 | 17289,08 | 8570,38  | 2,40 |
| 518 | 0,1117 | 0,1170 | 0,2370 | 0,1670 | 3787,23 | 4157,64 | 17059,72 | 8470,48  | 2,39 |
| 520 | 0,1127 | 0,1167 | 0,2363 | 0,1673 | 3825,77 | 4102,24 | 16833,64 | 8439,04  | 2,38 |
| 522 | 0,1123 | 0,1157 | 0,2357 | 0,1673 | 3774,08 | 4001,38 | 16610,78 | 8374,49  | 2,38 |
| 524 | 0,1123 | 0,1160 | 0,2347 | 0,1663 | 3745,32 | 3993,82 | 16344,62 | 8211,65  | 2,37 |
| 526 | 0,1127 | 0,1157 | 0,2340 | 0,1670 | 3738,99 | 3940,76 | 16128,53 | 8214,78  | 2,36 |
| 528 | 0,1133 | 0,1160 | 0,2330 | 0,1663 | 3754,76 | 3933,53 | 15870,06 | 8087,71  | 2,35 |
| 530 | 0,1133 | 0,1157 | 0,2327 | 0,1673 | 3726,48 | 3881,50 | 15705,48 | 8123,59  | 2,34 |
| 532 | 0,1133 | 0,1157 | 0,2317 | 0,1667 | 3698,51 | 3852,37 | 15453,91 | 7998,51  | 2,33 |
| 534 | 0,1137 | 0,1157 | 0,2307 | 0,1663 | 3692,48 | 3823,57 | 15206,24 | 7906,98  | 2,32 |
| 536 | 0,1133 | 0,1150 | 0,2307 | 0,1663 | 3643,51 | 3751,46 | 15092,97 | 7848,08  | 2,31 |
| 538 | 0,1133 | 0,1150 | 0,2297 | 0,1657 | 3616,47 | 3723,62 | 14851,35 | 7727,52  | 2,30 |
| 540 | 0,1137 | 0,1150 | 0,2287 | 0,1653 | 3610,88 | 3696,09 | 14613,45 | 7639,55  | 2,30 |
| 542 | 0,1133 | 0,1150 | 0,2283 | 0,1650 | 3563,29 | 3668,87 | 14463,54 | 7552,73  | 2,29 |
| 544 | 0,1140 | 0,1150 | 0,2277 | 0,1653 | 3578,88 | 3641,94 | 14273,67 | 7527,62  | 2,28 |
| 546 | 0,1137 | 0,1147 | 0,2263 | 0,1647 | 3531,96 | 3594,38 | 14003,82 | 7412,43  | 2,27 |
| 548 | 0,1137 | 0,1140 | 0,2257 | 0,1653 | 3506,22 | 3526,82 | 13820,01 | 7418,13  | 2,26 |
| 550 | 0,1133 | 0,1140 | 0,2250 | 0,1643 | 3460,39 | 3501,22 | 13638,74 | 7275,46  | 2,25 |
| 552 | 0,1133 | 0,1140 | 0,2243 | 0,1640 | 3435,36 | 3475,89 | 13459,97 | 7193,57  | 2,25 |
| 554 | 0,1133 | 0,1137 | 0,2237 | 0,1643 | 3410,60 | 3430,69 | 13283,66 | 7170,78  | 2,24 |
| 556 | 0,1130 | 0,1137 | 0,2227 | 0,1640 | 3366,22 | 3406,05 | 13070,60 | 7090,43  | 2,23 |
| 558 | 0,1123 | 0,1133 | 0,2217 | 0,1633 | 3302,81 | 3361,88 | 12860,77 | 6982,58  | 2,22 |
| 560 | 0,1127 | 0,1130 | 0,2213 | 0,1630 | 3298,75 | 3318,30 | 12730,70 | 6904,52  | 2,21 |
| 562 | 0,1127 | 0,1127 | 0,2207 | 0,1630 | 3275,31 | 3275,31 | 12564,22 | 6855,47  | 2,21 |
| 564 | 0,1123 | 0,1127 | 0,2193 | 0,1623 | 3232,91 | 3252,13 | 12324,97 | 6751,37  | 2,20 |
| 566 | 0,1117 | 0,1127 | 0,2190 | 0,1617 | 3172,11 | 3229,18 | 12200,85 | 6648,79  | 2,19 |
| 568 | 0,1113 | 0,1130 | 0,2190 | 0,1627 | 3131,04 | 3225,48 | 12115,08 | 6683,98  | 2,18 |
| 570 | 0,1110 | 0,1120 | 0,2173 | 0,1613 | 3090,52 | 3146,45 | 11847,80 | 6528,80  | 2,18 |
| 572 | 0,1113 | 0,1120 | 0,2167 | 0,1610 | 3087,40 | 3124,49 | 11693,02 | 6456,46  | 2,17 |
| 574 | 0,1103 | 0,1117 | 0,2160 | 0,1613 | 3011,09 | 3084,31 | 11540,33 | 6438,12  | 2,16 |
| 576 | 0,1103 | 0,1113 | 0,2150 | 0,1610 | 2990,22 | 3044,67 | 11354,46 | 6367,10  | 2,15 |

| 578 | 0,1097 | 0,1110 | 0,2147 | 0,1603 | 2933,78 | 3005,56 | 11241,08 | 6270,85 | 2,14 |
|-----|--------|--------|--------|--------|---------|---------|----------|---------|------|
| 580 | 0,1097 | 0,1110 | 0,2133 | 0,1597 | 2913,59 | 2984,86 | 11025,44 | 6176,00 | 2,14 |
| 582 | 0,1083 | 0,1103 | 0,2127 | 0,1593 | 2823,66 | 2928,88 | 10881,47 | 6108,04 | 2,13 |
| 584 | 0,1087 | 0,1107 | 0,2120 | 0,1593 | 2821,64 | 2926,46 | 10739,42 | 6066,28 | 2,12 |
| 586 | 0,1083 | 0,1100 | 0,2110 | 0,1583 | 2785,25 | 2871,61 | 10565,85 | 5949,55 | 2,12 |
| 588 | 0,1077 | 0,1097 | 0,2103 | 0,1573 | 2732,39 | 2834,84 | 10427,88 | 5834,74 | 2,11 |
| 590 | 0,1073 | 0,1097 | 0,2093 | 0,1573 | 2697,12 | 2815,66 | 10259,06 | 5795,25 | 2,10 |
| 592 | 0,1073 | 0,1093 | 0,2087 | 0,1573 | 2678,92 | 2779,69 | 10125,05 | 5756,16 | 2,09 |
| 594 | 0,1067 | 0,1087 | 0,2080 | 0,1570 | 2627,96 | 2727,44 | 9992,83  | 5693,26 | 2,09 |
| 596 | 0,1060 | 0,1080 | 0,2073 | 0,1567 | 2577,83 | 2676,02 | 9862,35  | 5631,13 | 2,08 |
| 598 | 0,1053 | 0,1087 | 0,2067 | 0,1563 | 2528,51 | 2691,07 | 9733,59  | 5569,75 | 2,07 |
| 600 | 0,1057 | 0,1077 | 0,2060 | 0,1550 | 2527,60 | 2624,19 | 9606,53  | 5438,71 | 2,07 |
| 602 | 0,1050 | 0,1077 | 0,2050 | 0,1547 | 2479,25 | 2606,78 | 9450,38  | 5379,42 | 2,06 |
| 604 | 0,1043 | 0,1077 | 0,2033 | 0,1547 | 2431,68 | 2589,54 | 9235,87  | 5343,85 | 2,05 |
| 606 | 0,1043 | 0,1070 | 0,2030 | 0,1543 | 2415,66 | 2540,72 | 9144,95  | 5285,78 | 2,05 |
| 608 | 0,1033 | 0,1067 | 0,2030 | 0,1537 | 2354,01 | 2508,33 | 9084,89  | 5205,79 | 2,04 |
| 610 | 0,1030 | 0,1067 | 0,2017 | 0,1530 | 2323,54 | 2491,91 | 8907,24  | 5126,94 | 2,03 |
| 612 | 0,1023 | 0,1060 | 0,2010 | 0,1523 | 2278,59 | 2444,80 | 8790,71  | 5049,19 | 2,03 |
| 614 | 0,1023 | 0,1057 | 0,1993 | 0,1517 | 2263,77 | 2413,65 | 8589,30  | 4972,54 | 2,02 |
| 616 | 0,1013 | 0,1053 | 0,1993 | 0,1513 | 2205,35 | 2382,89 | 8533,62  | 4918,61 | 2,01 |
| 618 | 0,1010 | 0,1040 | 0,1980 | 0,1503 | 2176,71 | 2307,94 | 8365,43  | 4822,46 | 2,01 |
| 620 | 0,1003 | 0,1040 | 0,1973 | 0,1503 | 2134,23 | 2293,07 | 8255,67  | 4791,39 | 2,00 |
| 622 | 0,1000 | 0,1043 | 0,1967 | 0,1493 | 2106,46 | 2292,98 | 8147,33  | 4697,51 | 1,99 |
| 624 | 0,0993 | 0,1037 | 0,1960 | 0,1490 | 2065,17 | 2249,28 | 8040,40  | 4646,63 | 1,99 |
| 626 | 0,0987 | 0,1030 | 0,1950 | 0,1487 | 2024,54 | 2206,28 | 7907,79  | 4596,35 | 1,98 |
| 628 | 0,0977 | 0,1027 | 0,1940 | 0,1473 | 1971,10 | 2178,08 | 7777,12  | 4485,57 | 1,97 |
| 630 | 0,0980 | 0,1017 | 0,1930 | 0,1467 | 1971,99 | 2122,32 | 7648,36  | 4416,89 | 1,97 |
| 632 | 0,0977 | 0,1023 | 0,1923 | 0,1460 | 1946,23 | 2136,66 | 7547,61  | 4349,17 | 1,96 |
| 634 | 0,0977 | 0,1013 | 0,1917 | 0,1467 | 1933,97 | 2081,90 | 7448,17  | 4361,33 | 1,96 |
| 636 | 0,0967 | 0,1007 | 0,1910 | 0,1453 | 1882,67 | 2041,70 | 7350,00  | 4255,50 | 1,95 |
| 638 | 0,0957 | 0,1007 | 0,1900 | 0,1447 | 1832,38 | 2028,92 | 7227,71  | 4190,16 | 1,94 |
| 640 | 0,0960 | 0,1000 | 0,1890 | 0,1443 | 1833,65 | 1989,64 | 7107,20  | 4144,84 | 1,94 |
| 642 | 0,0947 | 0,0993 | 0,1880 | 0,1437 | 1771,98 | 1950,99 | 6988,44  | 4081,09 | 1,93 |
| 644 | 0,0943 | 0,0997 | 0,1877 | 0,1423 | 1748,61 | 1951,92 | 6920,50  | 3980,85 | 1,93 |
| 646 | 0,0947 | 0,0997 | 0,1870 | 0,1423 | 1750,10 | 1939,86 | 6828,93  | 3956,24 | 1,92 |
| 648 | 0,0937 | 0,0987 | 0,1850 | 0,1420 | 1702,77 | 1889,41 | 6642,45  | 3913,46 | 1,91 |
| 650 | 0,0930 | 0,0987 | 0,1853 | 0,1413 | 1668,30 | 1877,80 | 6625,44  | 3852,98 | 1,91 |
| 652 | 0,0930 | 0,0980 | 0,1840 | 0,1410 | 1658,08 | 1841,16 | 6490,45  | 3811,34 | 1,90 |
| 654 | 0,0927 | 0,0977 | 0,1830 | 0,1403 | 1636,16 | 1817,49 | 6380,89  | 3752,33 | 1,90 |
| 656 | 0,0923 | 0,0973 | 0,1833 | 0,1397 | 1614,52 | 1794,11 | 6365,17  | 3694,13 | 1,89 |
| 658 | 0,0927 | 0,0970 | 0,1823 | 0,1397 | 1616,33 | 1771,03 | 6257,70  | 3671,71 | 1,88 |
| 660 | 0,0917 | 0,0970 | 0,1820 | 0,1387 | 1572,06 | 1760,31 | 6197,11  | 3597,42 | 1,88 |
| 662 | 0,0907 | 0,0967 | 0,1810 | 0,1377 | 1528,67 | 1737,69 | 6092,22  | 3524,33 | 1,87 |
| 664 | 0,0907 | 0,0950 | 0,1797 | 0,1373 | 1519,48 | 1668,19 | 5966,69  | 3486,18 | 1,87 |
| 666 | 0,0900 | 0,0953 | 0,1797 | 0,1373 | 1488,23 | 1669,84 | 5930,91  | 3465,28 | 1,86 |
| 668 | 0,0897 | 0,0947 | 0,1787 | 0,1367 | 1468,40 | 1636,73 | 5830,00  | 3411,20 | 1,86 |
| 670 | 0,0893 | 0,0953 | 0,1787 | 0,1363 | 1448,81 | 1649,96 | 5795,25  | 3374,34 | 1,85 |
| 672 | 0,0887 | 0,0947 | 0,1773 | 0,1357 | 1418,79 | 1617,30 | 56/5,14  | 3321,56 | 1,84 |
| 0/4 | 0,0897 | 0,0943 | 0,1770 | 0,1357 | 1442,57 | 1596,41 | 5524.16  | 2250.10 | 1,84 |
| 6/6 | 0,088/ | 0,0940 | 0,1760 | 0,1350 | 1402,05 | 15/5,/8 | 5524,16  | 3250,19 | 1,85 |
| 6/8 | 0,0873 | 0,0947 | 0,1760 | 0,1347 | 1352,18 | 1588,80 | 5491,62  | 3215,11 | 1,85 |
| 680 | 0,0877 | 0,093/ | 0,1/4/ | 0,1340 | 1354,52 | 1546,28 | 53/6,96  | 3104,00 | 1,82 |
| 082 | 0,0867 | 0,0930 | 0,1727 | 0,1333 | 1310,04 | 1515,42 | 5304,74  | 2065.82 | 1,82 |
| 084 | 0,0860 | 0,0927 | 0,1/2/ | 0,1327 | 1288,51 | 1495,/9 | 5193,25  | 2017.41 | 1,81 |
| 060 | 0,0800 | 0,0927 | 0,1720 | 0,1320 | 1200,81 | 140/,08 | 3123,22  | 5017,41 | 1,81 |

| 688 | 0,0857 | 0,0920 | 0,1710 | 0,1313 | 1263,52 | 1457,25 | 5034,43 | 2969,67 | 1,80 |
|-----|--------|--------|--------|--------|---------|---------|---------|---------|------|
| 690 | 0,0857 | 0,0910 | 0,1707 | 0,1307 | 1256,20 | 1417,49 | 4985,79 | 2922,58 | 1,80 |
| 692 | 0,0853 | 0,0907 | 0,1697 | 0,1303 | 1239,25 | 1399,00 | 4899,09 | 2890,90 | 1,79 |
| 694 | 0,0843 | 0,0903 | 0,1687 | 0,1297 | 1203,41 | 1380,74 | 4813,65 | 2844,94 | 1,79 |
| 696 | 0,0837 | 0,0897 | 0,1673 | 0,1300 | 1177,66 | 1352,63 | 4710,65 | 2843,17 | 1,78 |
| 698 | 0,0837 | 0,0897 | 0,1677 | 0,1290 | 1170,92 | 1344,89 | 4702,37 | 2783,58 | 1,78 |
| 700 | 0,0833 | 0,0897 | 0,1670 | 0,1290 | 1154,98 | 1337,21 | 4638,44 | 2767,69 | 1,77 |
| 702 | 0,0830 | 0,0897 | 0,1670 | 0,1283 | 1139,24 | 1329,60 | 4612,04 | 2723,58 | 1,77 |
| 704 | 0,0820 | 0,0890 | 0,1657 | 0,1277 | 1105,65 | 1302,47 | 4512,94 | 2680,06 | 1,76 |
| 706 | 0,0823 | 0,0877 | 0,1653 | 0,1267 | 1108,35 | 1256,59 | 4469,37 | 2623,31 | 1,76 |
| 708 | 0,0810 | 0,0877 | 0,1640 | 0,1263 | 1066,69 | 1249,50 | 4372,76 | 2594,80 | 1,75 |
| 710 | 0,0810 | 0,0877 | 0,1637 | 0,1260 | 1060,69 | 1242,47 | 4330,50 | 2566,60 | 1,75 |
| 712 | 0,0807 | 0,0873 | 0,1627 | 0,1253 | 1046,08 | 1226,12 | 4253,75 | 2525,27 | 1,74 |
| 714 | 0,0803 | 0,0863 | 0,1620 | 0,1250 | 1031,64 | 1191,50 | 4195,35 | 2497,80 | 1,74 |
| 716 | 0,0810 | 0,0873 | 0,1623 | 0,1243 | 1042,99 | 1212,46 | 4189,13 | 2457,44 | 1,73 |
| 718 | 0,0807 | 0,0863 | 0,1610 | 0,1240 | 1028,67 | 1178,26 | 4097,67 | 2430,69 | 1,73 |
| 720 | 0,0797 | 0,0863 | 0,1613 | 0,1240 | 997,75  | 1171,73 | 4091,83 | 2417,20 | 1,72 |
| 722 | 0,0793 | 0,0850 | 0,1597 | 0,1230 | 983,95  | 1129,53 | 3985,55 | 2365,21 | 1,72 |
| 724 | 0,0790 | 0,0853 | 0,1600 | 0,1227 | 970,31  | 1132,13 | 3980,13 | 2339,43 | 1,71 |
| 726 | 0,0787 | 0,0853 | 0,1580 | 0,1230 | 956,85  | 1125,90 | 3859,90 | 2339,22 | 1,71 |
| 728 | 0,0790 | 0,0843 | 0,1577 | 0,1237 | 959,68  | 1093,63 | 3822,54 | 2351,67 | 1,70 |
| 730 | 0,0780 | 0,0843 | 0,1573 | 0,1217 | 930,42  | 1087,65 | 3785,56 | 2263,77 | 1,70 |
| 732 | 0,0773 | 0,0837 | 0,1563 | 0,1210 | 909,59  | 1064,68 | 3717,20 | 2226,81 | 1,69 |
| 734 | 0,0783 | 0,0847 | 0,1560 | 0,1207 | 928,19  | 1084,34 | 3681,22 | 2202,51 | 1,69 |
| 736 | 0,0777 | 0,0843 | 0,1550 | 0,1210 | 907,50  | 1069,98 | 3614,45 | 2202,67 | 1,68 |
| 738 | 0,0773 | 0,0833 | 0,1550 | 0,1207 | 894,86  | 1039,10 | 3594,89 | 2178,70 | 1,68 |
| 740 | 0,0767 | 0,0830 | 0,1543 | 0,1197 | 874,75  | 1025,24 | 3544,79 | 2131,17 | 1,68 |
| 742 | 0,0780 | 0,0827 | 0,1553 | 0,1190 | 900,57  | 1011,55 | 3571,55 | 2096,14 | 1,67 |
| 744 | 0,0767 | 0,0820 | 0,1527 | 0,1193 | 865,37  | 989,96  | 3431,45 | 2096,58 | 1,67 |
| 746 | 0,0760 | 0,0823 | 0,1530 | 0,1187 | 845,83  | 992,68  | 3427,99 | 2062,12 | 1,66 |
| 748 | 0,0757 | 0,0820 | 0,1530 | 0,1183 | 833,95  | 979,40  | 3409,69 | 2039,60 | 1,66 |
| 750 | 0,0753 | 0,0823 | 0,1520 | 0,1173 | 822,22  | 982,12  | 3347,34 | 1994,60 | 1,65 |
| 752 | 0,0757 | 0,0813 | 0,1510 | 0,1170 | 825,10  | 953,31  | 3285,89 | 1972,74 | 1,65 |
| 754 | 0,0757 | 0,0813 | 0,1510 | 0,1177 | 820,73  | 948,26  | 3268,48 | 1984,72 | 1,64 |
| 756 | 0,0743 | 0,0810 | 0,1510 | 0,1170 | 787,88  | 935,54  | 3251,21 | 1951,92 | 1,64 |
| 758 | 0,0747 | 0,0813 | 0,1507 | 0,1167 | 790,77  | 938,28  | 3219,81 | 1930,59 | 1,64 |
| 760 | 0,0740 | 0,0797 | 0,1493 | 0,1153 | 772,63  | 895,49  | 3146,45 | 1876,80 | 1,63 |
| 762 | 0,0737 | 0,0807 | 0,1487 | 0,1153 | 761,67  | 913,30  | 3102,07 | 1866,96 | 1,63 |
| 764 | 0,0733 | 0,0803 | 0,1483 | 0,1143 | 750,85  | 901,03  | 3072,03 | 1825,13 | 1,62 |
| 766 | 0,0730 | 0,0800 | 0,1477 | 0,1150 | 740,16  | 888,91  | 3028,60 | 1836,85 | 1,62 |
| 768 | 0,0730 | 0,0797 | 0,1477 | 0,1150 | 736,31  | 876,93  | 3012,85 | 1827,29 | 1,61 |
| 770 | 0,0730 | 0,0800 | 0,1463 | 0,1140 | 732,49  | 879,70  | 2943,34 | 1786,33 | 1,61 |
| 772 | 0,0723 | 0,0783 | 0,1467 | 0,1140 | 715,45  | 839,06  | 2941,46 | 1777,09 | 1,61 |
| 774 | 0,0723 | 0,0783 | 0,1457 | 0,1133 | 711,75  | 834,73  | 2886,51 | 1747,30 | 1,60 |
| 776 | 0,0720 | 0,0783 | 0,1457 | 0,1130 | 701,58  | 830,43  | 28/1,65 | 1728,10 | 1,60 |
| 778 | 0,0710 | 0,0787 | 0,1447 | 0,1127 | 678,72  | 833,21  | 2817,81 | 1709,10 | 1,59 |
| 780 | 0,0713 | 0,0787 | 0,1447 | 0,1117 | 681,60  | 828,95  | 2803,38 | 1670,29 | 1,59 |
| 782 | 0,0717 | 0,0777 | 0,1437 | 0,1123 | 684,47  | 803,88  | 2750,64 | 1681,66 | 1,59 |
| 784 | 0,0707 | 0,0780 | 0,1443 | 0,1120 | 662,11  | 806,66  | 2762,08 | 1663,18 | 1,58 |
| 786 | 0,0703 | 0,0780 | 0,1430 | 0,1110 | 652,55  | 802,56  | 2697,50 | 1625,31 | 1,58 |
| 788 | 0,0707 | 0,0770 | 0,1420 | 0,1097 | 655,41  | 778,15  | 2646,42 | 1578,45 | 1,57 |
| 790 | 0,0703 | 0,0773 | 0,1423 | 0,109/ | 645,96  | /80,93  | 2645,41 | 1570,47 | 1,57 |
| 792 | 0,0697 | 0,0770 | 0,1420 | 0,1100 | 630,57  | 770,31  | 2619,76 | 1572,06 | 1,57 |
| 794 | 0,0697 | 0,0760 | 0,1413 | 0,109/ | 627,40  | /46,66  | 2582,16 | 1554,69 | 1,56 |
| /90 | 0,0700 | 0,0767 | 0,1407 | 0,1090 | 030,24  | /56,00  | 2545,02 | 1528,13 | 1,56 |
| /98 | 0,0690 | 0,0757 | 0,1400 | 0,1090 | 609,29  | 132,12  | 2508,33 | 1520,48 | 1,55 |



• Au@SiO<sub>2</sub> 90 ml



| Au@SiO          | 0 <sub>2</sub> 30 ml | Au@Si         | O <sub>2</sub> 60 ml | Au@Si         | O <sub>2</sub> 90 ml | Au@SiO <sub>2</sub> 120 ml |                 |  |
|-----------------|----------------------|---------------|----------------------|---------------|----------------------|----------------------------|-----------------|--|
| Ukuran Partikel | Jumlah Partikel      | Ukuran        | Jumlah Partikel      | Ukuran        | Jumlah Partikel      | Ukuran Partikel            | Iumlah Partikel |  |
| (nm)            | Juman I artikel      | Partikel (nm) | Juman I artiker      | Partikel (nm) | Junnan Fartiker      | (nm)                       | Junnan Fartiker |  |
| 0,1427          | 1                    | 0,5787        | 2                    | 0,5787        | 2                    | 0,7752                     | 1               |  |
| 0,1902          | 5                    | 0,7716        | 1                    | 0,7716        | 1                    | 1,5500                     | 1               |  |
| 0,4281          | 253                  | 1,543         | 2                    | 1,736         | 299                  | 1,7440                     | 307             |  |
| 0,5707          | 706                  | 1,736         | 287                  | 2,315         | 926                  | 2,3260                     | 948             |  |
| 0,7610          | 574                  | 2,315         | 961                  | 3,086         | 684                  | 3,1010                     | 704             |  |
| 0,9988          | 104                  | 3,086         | 744                  | 4,051         | 67                   | 3,4880                     | 1               |  |
| 1,1410          | 74                   | 4,051         | 107                  | 4,63          | 58                   | 4,0700                     | 84              |  |
| 1,1890          | 63                   | 4,63          | 81                   | 4,823         | 59                   | 4,6510                     | 80              |  |
| 1,3320          | 192                  | 4,823         | 69                   | 5,401         | 183                  | 4,8450                     | 48              |  |
| 1,4270          | 5                    | 5,401         | 212                  | 5,787         | 1                    | 5,4260                     | 172             |  |
| 1,5220          | 54                   | 5,787         | 1                    | 6,173         | 44                   | 5,8140                     | 2               |  |
| 1,5700          | 26                   | 6,173         | 52                   | 6,366         | 14                   | 6,2020                     | 44              |  |
| 1,6170          | 4                    | 6,366         | 21                   | 6,944         | 8                    | 6,3950                     | 11              |  |
| 1,7120          | 23                   | 6,559         | 5                    | 7,137         | 32                   | 6,5890                     | 2               |  |
| 1,7600          | 68                   | 6,944         | 24                   | 7,716         | 31                   | 6,9770                     | 15              |  |
| 1,9020          | 65                   | 7,137         | 39                   | 7,909         | 10                   | 7,1710                     | 27              |  |
| 1,9500          | 22                   | 7,716         | 57                   | 8,102         | 2                    | 7,7520                     | 42              |  |
| 1,9980          | 2                    | 7,909         | 11                   | 8,488         | 19                   | 7,9460                     | 11              |  |
| 2,0930          | 53                   | 8,488         | 28                   | 8,681         | 3                    | 8,1390                     | 1               |  |
| 2,1400          | 9                    | 8,681         | 5                    | 8,873         | 2                    | 8,5270                     | 25              |  |
| 2,1880          | 6                    | 8,873         | 4                    | 9,259         | 3                    | 8,7210                     | 3               |  |
| 2,2830          | 5                    | 9,259         | 2                    | 9,452         | 8                    | 8,9150                     | 3               |  |
| 2,3310          | 36                   | 9,452         | 11                   | 10,03         | 5                    | 9,3020                     | 5               |  |
| 2,3780          | 2                    | 10,03         | 14                   | 10,22         | 7                    | 9,4960                     | 12              |  |
| 2,4730          | 15                   | 10,22         | 12                   | 10,42         | 1                    | 9,6900                     | 2               |  |
| 2,5210          | 18                   | 10,8          | 14                   | 10,8          | 5                    | 10,0800                    | 7               |  |
| 2,6160          | 1                    | 11            | 1                    | 11            | 1                    | 10,2700                    | 4               |  |
| 2,6630          | 42                   | 11,57         | 3                    | 11,57         | 7                    | 10,6600                    | 1               |  |
| 2,7110          | 7                    | 11.77         | 3                    | 11.77         | 2                    | 10.8500                    | 10              |  |
| 2,7590          | 2                    | 11.96         | 1                    | 11.96         | 1                    | 11.0500                    | 1               |  |
| 2,8540          | 10                   | 12.35         | 2                    | 12.35         | 1                    | 11.2400                    | 2               |  |
| 2,9010          | 16                   | 12,54         | 11                   | 13.12         | 1                    | 11.6300                    | 3               |  |
| 2,9490          | 2                    | 13.12         | 2                    | 13.31         | 1                    | 11.8200                    | 2               |  |
| 3.0440          | 6                    | 13.31         | 3                    | 13.89         | 3                    | 12,4000                    | 2               |  |
| 3.0920          | 28                   | 13.5          | 1                    | 15.43         | 1                    | 12,7900                    | 1               |  |
| 3,1390          | 1                    | 13.89         | 3                    | 17.94         | 1                    | 13,1800                    | 2               |  |
| 3,2340          | 18                   | 14.27         | 1                    | 23,15         | 1                    | 13,3700                    | 1               |  |
| 3.2820          | 13                   | 14.66         | 1                    | 25.08         | 1                    | 13,5700                    | 1               |  |
| 3,3290          | 8                    | 14.85         | 3                    |               | -                    | 14.1500                    | 1               |  |
| 3,4240          | 7                    | 15,43         | 1                    |               |                      | 14,7300                    | 1               |  |
| 3,4720          | 10                   | 15.62         | 2                    |               |                      | 15,7000                    | 1               |  |
| 3,5200          | 9                    | 16.2          | 3                    |               |                      | 19,3800                    | 1               |  |
| 3,6150          | 7                    | 16,4          | 2                    |               |                      | 19,7700                    | 1               |  |
| 3,6620          | 16                   | 17.55         | 1                    |               |                      | 24.4200                    | 1               |  |
| 3.7100          | 5                    | 18,71         | 1                    |               |                      | , ====                     |                 |  |
| 3,8050          | 5                    | 20,45         | 1                    |               |                      |                            |                 |  |
| 3.8530          | 6                    | 20.83         | 1                    |               |                      |                            |                 |  |
| 3,9000          | 1                    | 21,03         | 1                    |               |                      |                            |                 |  |
| 3,9950          | 9                    | 24,11         | 1                    |               |                      |                            |                 |  |
| 4,0430          | 6                    | 25,08         | 1                    |               |                      |                            |                 |  |
| 4,0900          | 5                    | 27,01         | 1                    |               |                      |                            |                 |  |
| 4,1850          | 4                    | 28.16         | 1                    |               |                      |                            |                 |  |
| 4.2330          | 9                    | 32.6          | 1                    |               |                      |                            |                 |  |
| 4.2810          | 4                    | 51.5          | 1                    |               |                      |                            |                 |  |
| 4,3760          | 7                    | 71.76         | 1                    |               |                      |                            |                 |  |
| 4,4230          | 9                    | . ,           |                      |               |                      |                            |                 |  |
| 4.4710          | 1                    |               |                      |               |                      |                            |                 |  |
| 4,5660          | 6                    |               |                      |               |                      |                            |                 |  |
|                 |                      |               |                      |               |                      |                            |                 |  |

#### Distribusi Ukuran Partikel Emas •

| 4.6140 | 6 |
|--------|---|
| 4,0140 | 0 |
| 4,6610 | 4 |
| 4,7560 | 5 |
| 4,8040 | 4 |
| 4,8510 | 3 |
| 4 9460 | 2 |
| 4.0040 |   |
| 4,9940 | / |
| 5,0420 | 2 |
| 5,0890 | 1 |
| 5,1370 | 1 |
| 5 1840 | 4 |
| 5 2220 | 5 |
| 3,2320 | 3 |
| 5,2790 | 2 |
| 5,3270 | 3 |
| 5,3750 | 3 |
| 5 4220 | 3 |
| 5,1220 | 2 |
| 5,5170 | 2 |
| 5,5650 | 3 |
| 5,7070 | 1 |
| 5,7550 | 7 |
| 5,8030 | 3 |
| 5,8500 | 1 |
| 5,0000 | 1 |
| 5,8980 | 2 |
| 5,9450 | 5 |
| 5,9930 | 2 |
| 6.0400 | 1 |
| 6 1260 | 1 |
| 0,1300 | 1 |
| 6,1830 | 2 |
| 6,2780 | 1 |
| 6,3260 | 1 |
| 6 3730 | 1 |
| 6 4210 | 2 |
| 0,4210 | 2 |
| 6,4680 | 1 |
| 6,5160 | 3 |
| 6,5640 | 1 |
| 6 7060 | 3 |
| 6,7000 | 1 |
| 6,8490 | 1 |
| 6,8970 | 3 |
| 6,9440 | 1 |
| 6,9920 | 1 |
| 7.0870 | 2 |
| 7,0070 | 2 |
| 7,1340 | Z |
| 7,1820 | 1 |
| 7,2290 | 2 |
| 7,2770 | 2 |
| 7,3250 | 6 |
| 7.4670 | 2 |
| 7,4070 | 5 |
| 7,5150 | 1 |
| 7,7050 | 1 |
| 7,8480 | 1 |
| 7,8950 | 1 |
| 7 0/20 | 2 |
| 7,7430 | 5 |
| 8,0380 | 1 |
| 8,0860 | 2 |
| 8,1330 | 1 |
| 8.2760 | 1 |
| 9 4100 | 1 |
| 0,4190 | 1 |
| 8,4660 | 1 |
| 8,6090 | 1 |
| 8,6560 | 4 |
| 8 7990 | 1 |
| 8 0/20 | 1 |
| 0,9420 | 1 |
| 9,0370 | 2 |
| 9,0840 | 2 |
| 9,1320 | 1 |
|        |   |

| 9,2270  | 1   |
|---------|-----|
| 9,4170  | 2   |
| 9,4650  | 1   |
| 9,5600  | 1   |
| 9,6080  | 2   |
| 9,7500  | 1   |
| 9.8450  | 2   |
| 10.0400 | 2   |
| 10 1300 | - 1 |
| 10,1500 | 1   |
| 10,5200 | 1   |
| 11,3700 | 1   |
| 11,3700 | 1   |
| 11,4000 | 1   |
| 11,5100 | 1   |
| 11,5600 | 1   |
| 11,7500 | 2   |
| 11,8900 | 1   |
| 11,9400 | 1   |
| 12,1800 | 1   |
| 12,2200 | 1   |
| 12,2700 | 1   |
| 12,3200 | 1   |
| 12,3700 | 1   |
| 12,4600 | 1   |
| 12,5100 | 1   |
| 12,6000 | 2   |
| 12,7500 | 1   |
| 13.0300 | 1   |
| 13.2700 | 1   |
| 13 5100 | 1   |
| 13,9800 | 1   |
| 14 2700 | 2   |
| 15,1200 | 1   |
| 15,1200 | 2   |
| 15,6500 | 1   |
| 15,000  | 1   |
| 15,7900 | 1   |
| 16,1700 | 1   |
| 18,0700 | 1   |
| 18,2600 | 1   |
| 18,7400 | 1   |
| 18,7900 | 1   |
| 19,4100 | 2   |
| 19,8300 | 1   |
| 20,3600 | 1   |
| 20,5900 | 1   |
| 20,7800 | 1   |
| 21,8300 | 1   |
| 21,9700 | 1   |
| 26,6300 | 1   |
| 28,2500 | 1   |
| 29,4900 | 1   |
| 30,3000 | 1   |
| 34 2000 | 1   |
| 54,2000 | 1   |

#### **BIODATA PENULIS**



Penulis mempunyai nama lengkap Emha Riyadhul Jinan Alhadi, lahir di Desa Meninting pada tanggal 10 Juli 1996 dan merupakan anak sulung dari 3 bersaudara. Penulis melewati masa kecil tepatnya di Desa Narmada, Kabupaten Lombok Barat dengan menempuh pendidikan di SDN 5 Lembuak lalu SMPN 1 Narmada. Kemudian melanjutkan studi di SMAN 1 Mataram yang kemudian dilanjutkan ke ITS Departemen Teknik Fisika pada tahun

2013 dengan NRP 2413100037. Selama kuliah, penulis telah aktif dalam beberapa organisasi dan kepanitiaan, seperti menjadi staff Student Resource Development di HMTF ITS periode 2014-2015, koordinator Rayon Bali dan Nusa Tenggara di Engineering Physics Week 2015 dan CEO BII-Maybank Scholarship ITS pada periode 2014-2015. Hingga pada tahun 2017 penulis akhirnya melaksanakan Tugas Akhir sebagai syarat untuk menyelesaikan studi S1 di Jurusan Teknik Fisika dengan judul Fabrikasi Nanopartikel Struktur *Coreshell* Au@SiO<sub>2</sub> dengan SiO<sub>2</sub> Ekstraksi Lumpur Sidoarjo sebagai Fotoanoda untuk Aplikasi DSSC *(Dye-Sensitized Solar Cells)*". Bagi pembaca yang memiliki saran, kritik, atau ingin berdiskusi lebih lanjut tentang Tugas Akhir ini, maka bisa menghubungi penulis melalui nomor (085337525349) atau email <u>riyadh.goes@gmail.com</u>