

TESIS - SK2501

ALUMINOSILIKAT MESOPORI DARI *RED MUD* SEBAGAI KATALIS ESTERIFIKASI ASAM LEMAK BEBAS DALAM MINYAK KEMIRI SUNAN

Ahmad Anwarud Dawam 1415 201 002

DOSEN PEMBIMBING Prof. Dr. Didik Prasetyoko, M.Sc

PROGRAM MAGISTER BIDANG KEAHLIAN KIMIA ANORGANIK JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2017

TESIS - SK2501

MESOPOROUS ALUMINOSILICATE FROM RED MUD AS ALUMINA SOURCE AND ITS APPLICATION FOR ACID CATALYST IN ESTERIFICATION OF KEMIRI SUNAN OIL

Ahmad Anwarud Dawam 1415 201 002

SUPERVISOR Prof. Dr. Didik Prasetyoko, M.Sc

MASTER PROGRAM INORGANIC CHEMISTRY CHEMISTRY DEPARTMENT FACULTY OF MATHEMATICS AND NATURAL SCIENCE INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2017

Aluminosilikat Mesopori dari Red Mud sebagai Katalis Esterifikasi Asam Lemak Bebas dalam Minyak Kemiri Sunan

Nama NRP Dosen Pembimbing : Ahmad Anwarud Dawam : 1415 201 002 : Prof. Dr. Didik Prasetyoko, M.Sc.

ABSTRAK

Pada penelitian ini FFA dalam kemiri sunan diesterifikasi dengan katalis asam aluminosilikat mesopori (ASM) yang disintesis dari red mud. Penelitian ini terbagi menjadi beberapa bagian yaitu ekstraksi alumina, sintesis, dan uji aktivitas katalitik. Alumina dalam red mud dipisahkan melalui metode alkali fusi pada suhu 450 – 500 °C, hasil analisa XRF menunjukkan bahwa pada suhu 450 °C silika pada red mud lebih mudah terekstraksi. Produk fusi kemudian digunakan dalam sintesis katalis ASM melalui metode hidrotermal pada suhu 80 °C selama 24 jam, dan CTABr digunakan sebagai template pengarah mesopori. Padatan hasil sintesis memiliki fase amorf yang dibuktikan dengan XRD, dan SEM. Analisa FTIR menunjukkan karakteristik dari material aluminasilika, dan Uji keasaman menunjukkan ASM memiliki sisi asam Brønsted dan Lewis. Uji aktivitas katalisis dari ASM hasil sintesis dilakukan pada reaksi esterifikasi asam lemak bebas dalam kemiri sunan menggunakan metanol pada suhu 60 °C. Parameter reaksi seperti, rasio minyak:metanol (1/9, 1/18, 1/27), waktu reaksi (30-120 menit), dan loading katalis (2,5 %, 5 %, 10 %) divariasi untuk mempelajari pengaruh tiap parameter. Konversi FFA paling tinggi dihasilkan pada rasio minyak:metanol 1/18, waktu reaksi 120 menit, dan loading katalis 5 %.

Kata kunci : aluminosilikat mesopori, esterifikasi, red mud, Reutalis trisperma oil

Mesoporous Aluminosilicates from *Red Mud* as Catalyst for Free Fatty Acid Esterification in Kemiri Sunan Oil

Name	: Ahmad Anwarud Dawam
NRP	: 1415 201 002
Supervisor	: Prof. Dr. Didik Prasetyoko, M.Sc.

ABSTRACT

In this reserach FFA in kemiri sunan was reduced by esterification process with an acid catalyst mesoporous aluminosilicate (ASM) that synthesized from red mud. This study is divided into several parts, namely alumina extraction, synthesis, and test catalytic activity. Alumina content in red mud is separated through the alkali fusion method at temperature 450-500 °C, XRF analysis shows silica at red mud more easily extracted at temperature 450 °C. The fusion product then used in ASM synthesis via hydrothermal method at 80 °C for 24 hours, and CTABr is used as a mesoporous directing template. The synthesized solid has an amorphous phase as evidenced by XRD, SEM, and TEM. The FTIR analysis shows the characteristic of aluminasilicate material, and the acidity test indicates that ASM has Brønsted and Lewis acid site. The catalytic activity was studied on the esterification reaction of free fatty acids in kemiri sunan using methanol at temperature 60 °C. Reaction parameters such as ratio of oil:methanol (1/9, 1/18, 1/27), the reaction time (30-120 minutes), and catalyst loading (2.5 %, 5 %, 10 %), was varied to study the effects of each parameter. The highest FFA conversion is produced on the ratio of oil:metanol 1/18, reaction time 120 minutes, and catalyst loading 5 %.

Keywords : esterification, mesoporous aluminosilicate, red mud, *Reutalis*

trisperma oil

KATA PENGANTAR

Segala puji dan syukur penulis panjatkan kehadirat Allah SWT. yang telah melimpahkan Rahmat dan Anugerah-Nya, sehingga penulis dapat menyelesaikan penyusunan Tesis dengan judul "Aluminosilikat Mesopori dari *Red Mud* sebagai Katalis Esterifikasi Asam Lemak Bebas dalam Minyak Kemiri Sunan".

Dalam penyusunan tesis ini, penulis banyak mendapat bantuan dari berbagai pihak. Oleh karena itu, penulis menyampaikan terima kasih yang sebesar-besarnya kepada:

- 1. Prof. Dr. Didik Prasetyoko, M.Sc. selaku dosen pembimbing yang telah mengarahkan dan membimbing penulis dalam penyusunan naskah tesis ini;
- 2. Prof. Dr. Mardi Santoso selaku Kaprodi Magister Kimia ITS Surabaya;
- 3. Dr. Afifah Rosyidah selaku dosen wali;
- 4. Seluruh dosen dan karyawan Jurusan Kimia FMIPA ITS;
- 5. Dr. Fahimah Martak, Dr. Hendro Juwono, dan Sri Fatmawati, Ph.D selaku penguji yang memberikan masukan agar naskah tesis ini menjadi lebih baik;
- 6. Kedua orang tua dan keluarga yang tiada henti mendoakan, dan memberikan semangat kepada peneliti selama masa perkuliahan;
- Teman-teman Program Pascasarjana Kimia angkatan 2015-2016 terutama Diwasasri Pradini dan Vita Nur Iftitahiyah

8. Rekan-rekan penelitian di Laboratorium Kimia Material dan Energi

Penulis menyadari sepenuhnya bahwa Skripsi ini masih jauh dari kesempurnaan, sehingga saran dan kritik yang sifatnya membangun selalu penulis harapkan dari semua pihak demi kesempurnaan Skripsi ini. Akhir kata penulis harapkan semoga Skripsi ini dapat bermanfaat bagi semua pihak.

Surabaya, Agustus 2017

Penulis

DAFTAR ISI

LEMBAR PENGESAHAN PROPOSAL TESIS Error! Bookmark not defined.
ABSTRAK
ABSTRACTiii
KATA PENGANTARiv
DAFTAR ISIv
DAFTAR TABEL viii
DAFTAR GAMBARix
BAB 1 PENDAHULUAN1
1.1. Latar Belakang1
1.2. Rumusan Masalah
1.3. Tujuan Penelitian
1.4. Manfaat Penelitian
1.5. Ruang Lingkup Penelitian
BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI
2.1. Limbah Bauksit (<i>Red Mud</i>) 5
2.2. Pemanfaatan Limbah Bauksit (<i>Red Mud</i>) 6
2.3. Alkali Fusi
2.4. Sintesis Material Mesopori
2.5. Sintesis Aluminosilikat Mesopori9
2.6. Minyak Kemiri Sunan 11
2.7. Reaksi Esterifikasi Asam Lemak Bebas
2.8. Karakterisasi Aluminosilikat Mesopori 17
2.8.1. X-ray Fluoroscence (XRF)17
2.8.2. X-ray Diffraction (XRD)20
2.8.3. Spektroskopi Fourier Transform Infra-Red (FTIR)22
2.8.4. Keasaman Permukaan24
2.8.5. Scanning Electron Microscopy-Energy Dispersive X-ray (SEM- EDX)
2.8.6. Transmission Electron Microscope (TEM)
2.8.7. Adsorpsi-desorpsi Nitrogen
BAB 3 METODE PENELITIAN
3.1. Alat dan Bahan
3.1.1. Alat

3.1.2. Bahan	31
3.2. Prosedur Penelitian	32
3.2.1. Preparasi Sampel Red Mud	32
3.2.2. Reaksi Fusi Alkali Red Mud dan NaOH	32
3.2.3. Ekstraksi dan Pembuatan <i>Feed</i> Natrium Aluminat dan Natrium Silikat	32
3.2.4. Sintesis Aluminosilikat Mesopori	33
3.2.5. Pertukaran Kation dan Uji Keasaman pada Permukaan Produk Pad dengan Metode Adsorpsi Piridin	atan 33
3.2.6. Uji Aktivitas Katalis dalam Reaksi Esterifikasi Minyak Kemiri Sunan	34
3.3. Karakterisasi Sampel Red Mud dan Produk Hasil Sintesis	35
3.3.1. X-ray Flourescence (XRF)	35
3.3.2. Thermogravimetric Analysis-Differential Thermogravimetry Analysis	35
3.3.3. Scanning Electron Microscopy-Energy Dispersive X-ray (SEM- EDX)	36
3.3.4. Transmission Electron Microscopy (TEM)	36
3.3.5. X-ray Diffraction (XRD)	36
3.3.6. Adsorpsi-desorpsi Nitrogen	36
3.3.7. Spektroskopi FTIR (Fourier Transform Infra Red)	37
BAB 4 HASIL DAN PEMBAHASAN	39
4.1. Hasil preparasi sampel red mud	39
4.2. Hasil reaksi alkali fusi dan ekstraksi SiO ₂ dan Al ₂ O ₃ dari <i>Red Mud</i>	40
4.3. Sintesis Aluminosilikat Mesopori	43
4.4. Karakterisasi Padatan	45
4.4.1. Difraksi sinar-X (XRD)	45
4.4.2. Spektroskopi FTIR	46
4.4.3. Adsorpsi-Desorpsi N2	48
4.4.4. Scanning electron microscopy-Energy Dispersive X-ray (SEM- EDX)	50
4.4.5. Transmission electron microscopy (TEM)	52
4.4.6. Adsorpsi-desorpsi piridin	53
4.5. Uji Aktivitas Katalitik	55
4.5.1. Pengaruh Rasio Molar Minyak:Metanol	56

4.5.2. Pengaruh waktu reaksi	57
4.5.3. Pengaruh jumlah katalis	59
4.6. Mekanisme reaksi esterifikasi	60
BAB 5 KESIMPULAN DAN SARAN	63
5.1. Kesimpulan	63
5.2. Saran	63
DAFTAR PUSTAKA	65
LAMPIRAN	75

DAFTAR TABEL

Tabel 2.1	Pemanfaatan Red Mud di Berbagai Bidang	.6
Tabel 2.2	Metode sintesis aluminosilikat dari berbagai bahan dasar	10
Tabel 2.3	Kandungan hasil biodiesel dari minyak kemiri sunan (Reutealis	
	trisperma Oil) (Doyle dkk., 2016)	11
Tabel 2.4	Beberapa contoh asam lemak minyak nabati (David I. Mostofsky dkk.	,
	2001)	13
Tabel 2.5	Penggunaan katalis dalam reaksi esterifikasi asam lemak bebas	15
Tabel 2.6	Perbedaan WDS dan EDS (Gauglitz, G., dkk. 2003)	19
Tabel 2.7	Komposisi Kimia Red Mud Pulau Bintan (Metode XRF) (Wulandari,	
	2016)	19
Tabel 2.8	Data Luas Permukaan, dan volume mesopori dari aluminosilikat	29
Tabel 3.1	Parameter Reaksi Esterifikasi	35
Tabel 4.1	Kadar silika, alumina, dan besi dari produk reaksi fusi	41
Tabel 4.2	Data Isoterm Adsorpsi-desorpsi Nitrogen	50
Tabel 4.3	Kadar Unsur dalam ASM	51
Tabel 4.4	Sifat keasaman dari aluminosilikat mesopori (ASM)	54

DAFTAR GAMBAR

Gambar 2.1 Bauksit (Al ₂ O ₃ .nH ₂ O)
Gambar 2.2 Skema metode soft-templating melalui dua jenis sintesis : (A)
cooperative self-assembly dan (B) templating (W. Li dan Zhao,
2013)
Gambar 2.3 Mekanisme reaksi esterifikasi (Kirumakki dkk., 2004) 14
Gambar 2.4 Grafik pengaruh rasio mol terhadap konversi asam oleat (5% katalis
zeolit Y, suhu 70 °C, waktu reaksi 1 jam. (Doyle dkk., 2016) 16
Gambar 2.5 Grafik pengaruh loading katalis terhadap konversi asam oleat, rasio
mol 1:6 (asam:alkohol), suhu 70 °C, waktu reaksi 1 jam
menggunakan katalis zeolit Y (Doyle dkk., (2016) 17
Gambar 2.6 Grafik pengaruh waktu reaksi terhadap konversi asam oleat, rasio mol
1:6 (asam:alkohol), suhu 70 °C, menggunakan katalis zeolit Y
(Doyle dkk., (2016)
Gambar 2.7 Proses terjadinya fotoelektrik (Guenter Gauglitz dan Vo-Dinh, 2003)
Gambar 2.8 Difraktogram (a) Anatase, (b) Quartz, (c) Boehmite, (d) Gibbsite, (e)
Goehtite, (f) Hematite, (g) red mud (Wulandari, 2016) 21
Gambar 2.9 Pola XRD dari ZSM-5, Aluminosilikat Mesopori dengan
penambahan TPAOH (AAM), dan NaOH (AAM-T) (Hartati, 2014)
Gambar 2.10 Spektra Infra Merah dengan variasi NaOH/RM; (a) 0,8; (b) 1,0; (c)
1,2; (d) 1,4; (e) 1,5 (Wulandari, 2016)
Gambar 2.11 Spektra adsorpsi piridin aluminosilikat mesopori dengan rasio
NaOH/RM (a) 0,8; (b) 1,0; (c) 1,2; (d) 1,4; (e) 1,5. (Wulandari,
2016)
Gambar 2.12 SEM dari garam alumina (A), dan alumina mesopori dengan rasio
berat CTABr/Garam alumina: 1 (B), 2 (C), 5 (D) (Eka Putra
Ramdhani, 2015)
Gambar 2.13 TEM dari aluminosilikat mesopori (Qoniah dkk., 2015) 27
Gambar 2.14 Tipe grafik adsorpsi-desorpsi nitrogen berdasarkan IUPAC (Perry,
1997)
Gambar 2.15 Isoterm Adsorpsi-Desorpsi Nitrogen aluminosilikat mesopori
RM/NaOH 1,0 (Wulandari, 2016) 29
Gambar 2.16 Isoterm Adsorpsi-Desorpsi Nitrogen aluminosilikat mesopori
dengan waktu hidrotermal 12, 24, dan 48 jam. (Qoniah, 2015) 30
Gambar 2.17 Isoterm Adsorpsi-Desorpsi Nitrogen aluminosilikat mesopori
dengan penambahan TPAOH (Hartati, 2015)

Gambar 4.1 Penampakan fisik red mud sebelum dan setelah milling	39
Gambar 4.2 Campuran NaOH sebelum reaksi fusi (A); setelah reaksi fusi (B)	40
Gambar 4.3 Filtrat Fusi 400, 450, 500, 550, 600, 650 °C	41
Gambar 4.4 Grafik TGA/DTG campuran red mud dan NaOH	42
Gambar 4.5 Difraktogram red mud, FF-450, ASM	45
Gambar 4.6 Spektra FTIR Red Mud, FF-450, dan ASM	47
Gambar 4.7 Grafik Isoterm Adsorpsi-desorpsi Nitrogen	49
Gambar 4.8 Distribusi pori dari aluminosilikat mesopori (BJH)	50
Gambar 4.9 Foto SEM dari ASM	51
Gambar 4.10 Spektra EDX dari ASM	52
Gambar 4.11 Foto TEM ASM hasil sintesis	53
Gambar 4.12 Spektra inframerah piridin untuk sampel ASM hasil sintesis	54
Gambar 4.13 Pengaruh rasio mol minyak:metanol terhadap penurunan FFA	57
Gambar 4.14 Pengaruh waktu reaksi terhadap penurunan FFA	58
Gambar 4.15 Pengaruh jumlah katalis terhadap penurunan FFA	59
Gambar 4.16 Penampakan fisik dari tiap variasi jumlah katalis	60

BAB 1 PENDAHULUAN

1.1. Latar Belakang

Biodiesel merupakan bahan bakar alternatif dengan kandungan monoalkil ester turunan asam lemak rantai panjang yang berasal dari minyak nabati atau hewani (Borges dan Díaz, 2012). Bahan baku (seperti minyak nabati, hewani, dan lemak) telah banyak diteliti untuk meningkatkan daya saing dari biaya produksi biodiesel. Pada umumnya, *feedstock* yang digunakan pada produksi biodiesel berasal dari minyak nabati yang dapat dikonsumsi (*edible*) seperti kelapa sawit, bunga matahari, dan kedelai (Albayati dan Doyle, 2015). Namun, minyak nabati *edible* memiliki harga yang mahal, untuk itu para peneliti dan industri mengembangkan *feedstock* alternatif yang relatif lebih murah. Oleh karena itu, telah dikembangkan penggunaan *feedstock* murah dari *non edible* seperti *crude oil* atau *waste oil* untuk mengatasi masalah tersebut (Demirbas, 2009).

Beberapa *crude oil* seperti *C. pentandra* (Silitonga dkk., 2013), *Silybum marianum L.* (Fadhil dkk., 2017), *Cerberra odollam* (Kansedo dan Lee, 2013), dan *Reutealis trisperma* (Holilah dkk., 2015) tengah dikembangkan sebagai *feedstock* dalam produksi biodiesel. Holilah dkk., (2015) melaporkan *R. trisperma* atau kemiri sunan memiliki kandungan minyak 50 – 52 wt%, kandungan ini lebih banyak dibandingkan minyak kelapa sawit, sehingga *R. trisperma* dapat dikatakan memiliki potensi untuk digunakan sebagai *feedstock* pada produksi biodiesel. Namun, kandungan *free fatty acid* (FFA) yang tinggi dalam *crude oil* dapat mengakibatkan penyabunan dan mengurangi *yield* dari *fatty acid methyl esters* (FAMEs), hal ini menyebabkan proses produksi biodiesel tidak dapat dilakukan hanya dengan proses transesterifikasi menggunakan katalis basa. Hal tersebut juga berakibat pada sulitnya pemisahan produk dan penggunaan kembali katalis (Farag dkk., 2012). Oleh karena itu, untuk menghindari terjadinya penyabunan, rentang kadar FFA yang disarankan adalah 0,5 % - 1,0 % (Abidin dkk., 2012).

Proses produksi melalui dua tahap reaksi (esterifikasi-transesterifikasi) telah diteliti untuk meningkatkan *yield* dari FAMEs. Esterifikasi bertindak sebagai langkah *pre-treatment* untuk mengurangi kadar FFA dalam *feedstock* dan telah dipelajari efek dari parameter reaksi yang mempengaruhi konversi FFA diantara lain *loading* katalis, suhu reaksi, rasio alkohol:minyak, hingga penggunaan beberapa jenis katalis seperti katalis asam homogen (Narasimharao dkk., 2007), dan katalis asam heterogen (Sani dkk., 2014). Meskipun penggunaan katalis asam homogen seperti asam sulfat lebih banyak diminati, namun hal tersebut memiliki beberapa kekurangan yaitu terjadinya korosi pada peralatan yang digunakan, adanya reaksi samping, pemisahan produk yang kurang maksimal, dan katalis yang tidak dapat digunakan kembali (Chabukswar dkk., 2013).

Beberapa penelitian terakhir menunjukkan bahwa material aluminosilikat memiliki kemampuan katalitik yang baik pada reaksi esterifikasi (X. Li dkk., 2010; Hartati, Prasetyoko, dkk., 2014). Hal ini dikarenakan adanya sisi asam Lewis dan asam Brønsted pada material tersebut (Zhou dkk., 2013), dan adanya mesopori akan mengurangi hambatan sterik serta meningkatkan kestabilan termal serta densitas dari katalis (Alaba dkk., 2017). Salah satu cara untuk mensintesis material mesopori adalah metode hidrotermal dengan bahan komersil seperti ludox dan natrium aluminat sebagai sumber silika dan alumina (Zhang dkk., 2001). Oleh karena itu, penggunaan bahan-bahan alam dan limbah sebagai sumber silika dan alumina dalam sintesis material aluminosilikat telah banyak dilakukan dan dikembangkan. Bahan dan limbah yang telah banyak digunakan diantaranya adalah kaolin (Qoniah dkk., 2015a), dan *red mud* (Wulandari, 2016b).

Red mud adalah residu atau bahan buangan yang berasal dari pengolahan bauksit untuk produksi alumina. Komposisi yang dominan dalam *red mud* adalah Fe₂O₃ (48,89 %), Al₂O₃ (29,00 %), dan SiO₂ (18,10 %). Kandungan alumina dan silika yang cukup tinggi pada *red mud* tersebut dapat dimanfaatkan untuk sintesis material aluminosilikat. Namun, kandungan *hematite* (Fe₂O₃) dalam *red mud* harus dipisahkan terlebih dahulu sebelum dapat digunakan dalam sintesis material aluminosilikat dari *red mud*.

Metode yang dapat digunakan dalam pemisahan Fe₂O₃ adalah metode alkali fusi (Rayalu dkk., 2000a). Prinsip reaksi alkali fusi adalah reaksi antara

alumina dan silika dengan basa alkali NaOH pada suhu tinggi 550-650 °C. Wulandari (2016) telah berhasil mensintesis aluminosilikat mesopori dari *red mud* dengan variasi mol NaOH yang dicampurkan, dan dilaporkan material aluminosilikat mesopori hasil sintesis memiliki sisi asam Brønsted dan sisi asam Lewis sehingga material tersebut memiliki potensi sebagai katalis asam. Namun, belum dilakukan uji aktivitas katalis dari material hasil sintesis tersebut.

Pada penelitian ini *red mud* yang diperoleh dari Pulau Bintan dipisahkan kandungan alumina dan silikanya menggunakan metode alkali fusi untuk kemudian digunakan sebagai bahan baku sintesis material aluminosilikat mesopori. Sintesis dilakukan menggunakan metode hidrotermal dengan CTABr sebagai *template* pengarah mesopori. Katalis hasil sintesis akan diuji aktivitasnya sebagai katalis asam dalam reaksi esterifikasi minyak kemiri sunan yang diambil dari perkebunan di Majalengka, Jawa Barat.

1.2. Rumusan Masalah

Berdasarkan penelitian yang dilaporkan oleh Ramdhani (2015), dan Wulandari (2016) telah diketahui bahwa red mud dapat digunakan sebagai sumber alumina pada sintesis material aluminosilikat mesopori dengan cara mengekstrak alumina menggunakan metode alkali fusi. Oleh karena itu, perumusan masalah pada penelitian adalah mengetahui pengaruh suhu fusi terhadap proses ekstraksi alumina dan bagaimana aktivitas aluminosilikat mesopori hasil sintesis sebagai katalis pada reaksi esterifikasi FFA dalam minyak kemiri sunan.

1.3. Tujuan Penelitian

Penelitian ini bertujuan untuk mensintesis aluminosilikat mesopori dari *red mud* sebagai sumber alumina dan aplikasinya sebagai katalis pada reaksi esterifikasi.

1.4. Manfaat Penelitian

Aluminasilikat mesopori yang telah disintesis diharapkan dapat menjadi katalis alternatif dalam reaksi esterifikasi dan variasi parameter reaksi yang dilakukan dapat menjadi referensi untuk menentukan kondisi optimal reaksi.

1.5. Ruang Lingkup Penelitian

Penelitian ini dibatasi pada sintesis dan karakterisasi aluminosilkat mesopori menggunakan metode hidrotermal dengan surfaktan CTABr sebagai pengarah struktur mesopori. Produk yang dihasilkan kemudian diuji kemampuannya sebagai katalis asam dalam reaksi esterifikasi minyak kemiri sunan.

BAB 2

TINJAUAN PUSTAKA DAN DASAR TEORI

2.1. Limbah Bauksit (*Red Mud*)

Bauksit merupakan material heterogen yang mempunyai kandungan mineral dengan komposisi utama oksida alumina seperti boehmit (Al₂O₃.H₂O) dan mineral gibsit (Al₂O₃.3H₂O). Bauksit terbentuk dari batuan sedimen yang mempunyai kadar Al relatif tinggi, kadar Fe rendah, dan kadar kuarsa (SiO₂) bebas sangat rendah bahkan hampir tidak ada (misalnya sienit dan nefelin yang berasal dari batuan beku, batu lempung, lempung, dan serpih). Batuan tersebut akan mengalami proses lateritisasi, yaitu proses pertukaran suhu secara terus menerus sehingga batuan mengalami pelapukan dan kemudian akan mengeras menjadi bauksit melalui proses dehidrasi.

Gambar 2.1 Bauksit (Al₂O₃.nH₂O)

Berdasarkan data kementerian Energi dan Sumber Daya Mineral (ESDM) Indonesia, bauksit banyak ditemukan di Pulau Bintan, Pulau Bangka, dan Kalimantan Barat. Hingga saat ini penambangan bauksit di Pulau Bintan merupakan yang terbesar di Indonesia. Beberapa tempat penambangan bauksit lain di Indonesia adalah :

- 1. Sumatera Utara : Kota Pinang
- Riau : P. Bulan, P. Bintan, P. Lobam, Kijang, Galang, Wacopek, Tanah Merah, dan Senggarang

- Kalimantan Barat : Tayan Menukung, Sandai Pantus, Balai Berkuah, Kendawangan, dan Munggu Besar.
- 4. Bangka Belitung : Sigembir.

2.2. Pemanfaatan Limbah Bauksit (Red Mud)

Pengembangan teknologi pemanfaatan *red mud* secara komprehensif merupakan salah satu solusi untuk mengatasi masalah limbah *red mud* yang semakin bertumpuk. Pemanfaatan red mud dapat dilakukan dengan mengambil komponen dominan dari red mud untuk kemudian digunakan sebagai sumber bahan baku dalam pembuatan suatu material tertentu. Selain memiliki kandungan besi yang tinggi, *red mud* juga memiliki kadar aluminium dan natrium yang cukup tinggi. Al₂O₃ dan Na₂O dalam *red mud* telah berhasil dipisahkan menggunakan metode pelelehan garam,, dimana diperoleh Al₂O₃ sebesar 88% (Zhong dan Zhang, 2008). Setelah proses dealuminasi, ditambahkan larutan NaOH untuk mendapatkan Na₂O dari *red mud*.

No.	Bidang	Pemanfaatan	Literatur
1	Katalisis	Sebagai katalis dalam proses	(Q. Liu dkk., 2013)
		produksi biodiesel	
		Red mud terkarbonasi sebagai	(Pulford dkk., 2012)
		katalis dalam proses cracking	
		hidrokarbon	
		Red mud sebagai katalis pada	(Cakici dkk., 2004)
		konversi minyak bekas dan plastik	
		bekas menjadi bahan bakar	
2	Pengelolahan air	Red mud sebagai adsorbent CO ₂	(Chen dkk., 2016)
	dan air limbah	pada limbah	
		Komposit PET dan <i>red mud</i> sebagai	(Bento dkk., 2016)
		katalis pemisahan material organik	
		dari air	
3	Material	Preparasi keramik glass dari red	(Yang dkk., 2008)
	bangunan	mud	
4	Material pengisi	Red mud sebagai filler dalam	(Nan dkk., 2010)
	filler	pembuatan PVC	

Tabel 2.1 Pemanfaatan Red Mud di Berbagai Bidang

2.3. Alkali Fusi

Alkali fusi adalah metode ekstraksi alumina dengan menambahkan NaOH sebagai pelarut. Proses ini akan menyebabkan unsur – unsur seperti Ti, Fe, dan Ca yang terdapat pada *red mud* tidak larut dan tertinggal sebagai endapan, sedangkan alumina akan larut dalam air sehingga dapat dengan mudah dipisahkan dengan *filtrasi* untuk kemudian menghasilkan Al(OH)₂ dan dikalsinasi menjadi Al₂O₃. Hal yang harus diperhatikan dalam proses ini adalah kadar SiO₂ dalam material tersebut. Apabila terdapat kadar SiO₂ yang tinggi, maka SiO₂ akan lebih mudah berikatan dengan alkali sehingga alumina yang berikatan dengan alkali menjadi lebih sedikit. Oleh karena itu, proses ini lebih cocok digunakan pada material yang mengandung SiO₂ rendah seperti *red mud*.

Metode alkali fusi telah dilaporkan oleh (Rayalu dkk., 2000) yang mencampurkan abu layang batubara dengan agen pengaktivasi (NaOH), perbandingan rasio molar 1:1,2 diikuti dengan pemanasan suhu tinggi (500-600 °C), dan massa fusi yang dihasilkan digunakan dalam sintesis zeolit A. Zeolit A yang dihasilkan terbukti mempunyai kristalinitas yang murni. Berdasarkan pada teori tersebut, telah dilakukan studi tentang pengaruh suhu pembakaran pada reaksi alkali fusi pada abu layang batubara dengan NaOH. Suhu pembakaran divariasi 400, 450, 500, 550, 600, 650 °C selama 2 jam. Hal ini dilakukan untuk memperoleh leburan dari abu layang dan NaOH sebagai bahan awal sumber Si, Al, dan Na untuk sintesis zeolit A. Wahyuni (2010) melaporkan bahwa fase yang terbentuk sesudah reaksi fusi mempengaruhi kelarutan Al dan Si. Fase kristal yang terdapat pada abu layang (kuarsa, dan mulit) mengakibatkan kelarutan Al dan Si menjadi kecil. Hal ini dikarenakan fase kristal memiliki kelarutan yang lebih kecil dibandingkan dengan fasa amorf. Kelarutan Si paling besar terdapat pada suhu fusi 450 °C. Disamping itu, studi tentang pengaruh rasio NaOH/red mud terhadap pengurangan massa leburan telah dilakukan oleh Wulandari (2016) dengan variasi rasio 0,8; 1,0; 1,2; 1,4; dan 1,5. Selama reaksi fusi berlangsung, campuran leburan antara red mud dan NaOH mengalami pengurangan massa sehingga massa fusi yang didapatkan menjadi lebih kecil dibandingkan dengan massa awal campuran. Hal ini terjadi karena pada suhu tinggi, molekul air yang berada pada campuran red mud dan NaOH mengalami dekomposisi massa. Presentase pengurangan massa campuran

meningkat dengan bertambahnya jumlah NaOH yang digunakan. Presentase paling besar dijumpai pada rasio NaOH/*red mud* 1,5.

2.4. Sintesis Material Mesopori

Gambar 2.2 Skema metode soft-templating melalui dua jenis sintesis : (A) *cooperative self-assembly* dan (B) *templating* (W. Li dan Zhao, 2013)

Menurut definisi *International Union of Pure and Applied Chemistry* (IUPAC), material berpori dapat diklasifikasikan menjadi material mikropori (diameter pori < 2 nm), material mesopori (diameter pori mulai dari 2–50 nm), dan material material (diameter pori > 50 nm) (W. Li dan Zhao, 2013).

Material mesopori memiliki pori berukuran nanometer dalam jumlah yang banyak sehingga memiliki luas permukaan yang besar. Karakteristik tersebut menyebabkan material mesopori memiliki kemampuan yang sangat baik untuk mengadsorpsi dan berinteraksi dengan atom, ion, dan molekul pada permukaannya. Material mesopori pada umumnya diaplikasikan pada berbagai bidang, antara lain; penukar ion, proses pemisahan, katalis, sensor, template untuk *carbon nanotube*, dan pemurnian material. Beberapa penelitian telah dilakukan terkait metode sintesis material mesopori, faktor yang mempengaruhi struktur mesopori (Naik dan Ghosh, 2009) adalah *Starting* material yang digunakan, agen pengaruh struktur (surfaktan) yang digunakan, dan parameter reaksi seperti pH, temperature, pelarut.

Karakteristik material mesopori yang berhasil disintesis pada umumnya memiliki distribusi pori yang luas, luas permukaan yang besar (~1000 m²/g), *channel* pori yang besar, stabilitas termal dan struktur yang baik, porositas yang tinggi, dan kemudahan dalam membuat pori yang dipengaruhi oleh kondisi sintesis dan penggunaan surfaktan (Lu dkk., 2009).

Penggunaan *template* dalam sintesis material mesopori merupakan metode yang paling sering digunakan. *Template* berfungsi sebagai pengarah pori pada saat proses kristalisasi, dan hilang pada saat proses kalsinasi. *Template* terdiri dari *hardtemplate* (karbon, resin, polistiren) untuk material yang relatif rigid, dan *softtemplate* (misel dari molekul surfaktan atau polimer kationik hidrofilik) (Cejka dkk., 2010). Molekul surfaktan berfungsi untuk membentuk misel dalam larutan dan sebagai pengarah struktur meso yang menghasilkan distribusi ukuran mesopori yang seragam (Serrano dkk., 2013).

2.5. Sintesis Aluminosilikat Mesopori

Material aluminosilikat mesopori konvensional biasanya disintesis menggunakan sumber silika organik yang mahal dan cenderung beracun, seperti tetrametil ortosilikat (TMOS) atau tetraetil ortosilikat (TEOS), dan sumber alumina berupa sodium aluminat (Sun dkk., 2015). Dewasa ini telah banyak dikembangkan sintesis material aluminosilikat mesopori dengan menggunakan sumber aluminosilikat dari alam seperti kaolin (Qoniah dkk., 2015a), *attapulgite* (Jia-kuan dkk., 2005), *halloysite* (Zhou dkk., 2014), *saponite* (Linssen dkk., 2003), *volclay* (Adjdir dkk., 2009), lempung alam (Sun dkk., 2015), abu sekam padi (Simanjuntak dkk., 2013), *K-feldspar* (Miao dkk., 2005).

Metode sintesis material aluminosilikat mesopori yang umum digunakan adalah sol gel dan hidrotermal. Metode sol gel merupakan metode sintesis berdasar pada pembentukan larutan koloid hidrofilik dari misel yang terpisah karena proses netralisasi muatan pada permukaan oleh muatan larutan (Perego dan Villa, 1997). Metode hidrotermal adalah metode pembuatan kristal yang tergantung pada kelarutan mineral dalam air panas di bawah kondisi tekanan tinggi. Faktor yang perlu diperhatikan dalam sintesis menggunakan metode hidrotermal yaitu temperatur, tekanan, pelarut yang digunakan, dan stoikiometri reaksi. Zhou dkk., 2014 menggunakan metode hidrotermal untuk mensintesis aluminosilikat mesopori dari *halloysite*. Parameter reaksi yang digunakan adalah suhu hidrotermal 90 °C selama 24 jam. Metode lain yang dapat digunakan adalah metode elektrokimia, *liquid-phase transport* dan rekristalisasi.

Sumber	Surfaktan	Metode	Kondisi Optimum	Referensi
Alumina dan			_	
Silika				
Natrium	CTABr	Sol-gel	Waktu aging 3 hari	(Zhao dkk.,
aluminat,				2001)
LUDOX				
Aluminium sec-	CTABr	Sol-gel dan	Waktu aging 48	(Derewinski
butoksida,		cationic	jam dan suhu	dkk., 2002)
TEOS		surfactant	kalsinasi 520 °C	
		route		
K-feldspar	CTABr	Hidrotermal	Suhu hidrotermal	(Miao dkk.,
			130 °C selama 60	2005)
			jam; pH 10,5	
Natrium	СТАОН	Kristalisasi	Suhu hidrotermal	(Xia dan
aluminat, <i>fumed</i>		hidrotermal	135 °C selama 24	Mokaya, 2006)
silica			jam	
SBA-15 dan	TPABr	Rekristalisasi	Aging 2 hari	(Luo dkk.,
natrium		SBA dan sol-		2008)
aluminat		gel		
Zeolit Na-A	ТМАОН	Metode	Rasio Si/Al : 7	(Tanaka dkk.,
		template-		2009)
		assisted		
Aluminium	Pluronic	Hidrotermal	Suhu hidrotermal	(Q. Li dkk.,
isopropoksida,	P123		100 °C selama 24	2010)
TEOS			jam	
Logam	-	Elektrokimia	Waktu aging 24	(Simanjuntak
aluminium, abu			jam, <i>voltase</i> 6 V	dkk., 2013)
sekam padi				
<i>Red mud</i> , Ludox	CTABr	Hidrotermal	Rasio RM/OH 1,0;	(Wulandari,
			Suhu Ekstraksi	2016b)
			600 °C; Suhu	
			hidrotermal 80 °C	
			selama 24 jam	

Tabel 2.2 Metode sintesis aluminosilikat dari berbagai bahan dasar

Struktur mesopori dalam material aluminosilikat memiliki keunggulan tersendiri dalam aplikasinya sebagai katalis, dimana mesopori akan meningkatkan transfer massa dan difusi dari reaktan yang selanjutnya akan meningkatkan proses katalitik (Pérez-Ramírez dkk., 2008). Mesopori aluminosilkat juga diketahui dapat diaplikasikan sebagai katalis asam. Struktur amorf aluminosilikat mengakibatkan tereksposnya atom aluminium dari *framework* Si-O-Al sehingga jumlah asam Lewis yang terdapat pada permukaan bertambah (Zhou dkk., 2013).

2.6. Minyak Kemiri Sunan

Kemiri Sunan (*Reutealis trisperma*) merupakan tanaman penghasil minyak nabati yang memiliki potensi sebagai bahan bakar nabati. Tanaman ini berasal dari Philipina, namun berkembang pula di Indonesia khususnya daerah Jawa Barat. Tanaman ini dapat menghasilkan 300-500 kg biji kering per pohon per tahun dengan kandungan minyak 50-56%. Dapat disimpulkan bahwa dalam satu hektar dengan populasi 100 pohon dapat menghasilkan 50 ton biji kering, setara dengan 15-25 ton minyak, nilai tersebut lebih tinggi dibandingkan dengan produksi yang dihasilkan oleh kelapa sawit (Holilah dkk., 2014).

No.	Jenis metil ester dari	Kandungan (%)
	kemiri sunan	
1	Metil palmitat	22,92
2	Metil paltmitoleat	0,33
3	Metil stearat	21,95
4	Metil oleat	30,16
5	Metil linoleat	13,60
6	Metil linolenat	1,80
7	Metil arachidat	0,31
8	Metl eicosenoat	0,79

 Tabel 2.3 Kandungan hasil biodiesel dari minyak kemiri sunan (Reutealis trisperma Oil) (Doyle dkk., 2016)

Proses produksi biodiesel dari minyak kemiri sunan menggunakan dua tahap reaksi (esterifikasi-transesterifikasi) telah dilaporkan oleh Holilah dkk., (2015), dan kandungan metil ester hasil reaksi ditentukan menggunakan GC-MS. Metil Oleat ditemukan sebagai jenis metil ester yang dominan (30,16 %), diikuti dengan metil palmitat dan metil stearat berturut-turut 22,92 %, dan 21,95 % Tabel 2.3.

Angka asam dan *free fatty acid* dari minyak kemiri sunan dilaporkan sebesar 11 mg KOH/g dan 2,24 %. *Free fatty acid* (FFA) adalah jumlah asam lemak bebas (%wt) yang terdapat dalam minyak. Penentuan % FFA dapat dilakukan menggunakan metode titrasi dan dihitung melalui persamaan (2.1) (Rukunudin dkk., 1998) :

%
$$FFA = \frac{V_{KOH} \times N \times 28,2}{W} \times 100 \%;$$
 (2.1)

dimana :

V_{KOH} = volume KOH yang dibutuhkan (mL)
 N = Normalitas dari KOH
 W = Berat sampel minyak (gram)

Angka asam (AV) adalah jumlah KOH dalam milligram yang diperlukan untuk menetralkan 1 gram minyak. Sama halnya dengan % FFA, angka asam juga ditentukan menggunakan metode titrasi dan dihitung menggunakan persamaan (2.2) (Rukunudin dkk., 1998) ;

$$AV = \frac{V_{KOH} \, x \, N \, x \, 56,1}{W}; \tag{2.2}$$

dengan :

 V_{KOH} = Volume KOH yang dibutuhkan (mL)

N = Normalitas KOH

W = Berat sampel minyak (gram)

2.7. Reaksi Esterifikasi Asam Lemak Bebas

Esterifikasi adalah tahap konversi pembentukan ester melalui reaksi kondensasi. Reaktan yang digunakan dalam reaksi esterifikasi umumnya golongan asam karboksilat dan alkohol. Salah satu contoh golongan asam karboksilat yang digunakan dalam reaksi esterifikasi adalah asam lemak bebas. Asam lemak bebas merupakan suatu asam organik yang dihasilkan selama proses hidrolisis lemak atau minyak dan tidak terikat dengan molekul lain. Asam lemak bebas terdiri dari rantai

Jenis asam lemak	Rumus Struktur
Asam palmitat	CH ₃ (CH ₂) ₁₄ COOH
Asam palmitoleat	CH ₃ (CH ₂) ₅ CH=CH(CH ₂) ₇ COOH
Asam stearat	CH ₃ (CH ₂) ₁₆ COOH
Asam oleat	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COOH
Asam linoleat	CH ₃ (CH ₂) ₄ CH=CHCH ₂ CH=CH(CH ₂) ₇ COOH
Asam arakhidat	CH ₃ (CH ₂) ₁₈ COOH

Tabel 2.4 Beberapa contoh asam lemak minyak nabati (David I. Mostofsky dkk., 2001)

hidrokarbon serta memiliki gugus fungsi karboksil (COOH) di salah satu ujungnya dan gugus metil (CH₃) di ujung lainnya Tabel 2.4. Perbedaan tiap jenis asam lemak terdapat pada panjang rantai yang dimiliki, dari 6 atom karbon hingga 18 lebih atom karbon, dan hampir semua jenis minyak nabati termasuk dalam asam lemak rantai panjang (David I. Mostofsky dkk., 2001).

Reaksi esterifikasi umumnya digunakan untuk menurunkan kadar asam lemak bebas suatu *feedstock* dalam aplikasi biodiesel. Minyak kemiri sunan yang memiliki kadar asam lemak bebas (FFA) sebesar 2,24% (Holilah dkk., 2015) tidak dapat diubah menjadi biodiesel jika langsung dilakukan reaksi transesterifikasi dengan katalis basa. Oleh karena itu, kadar FFA pada minyak kemiri sunan harus diturunkan melalui reaksi esterifikasi terlebih dahulu. Persamaan reaksi esterifikasi secara umum dapat dijelaskan pada Gambar 2.3. Reaksi esterifikasi terjadi dalam beberapa tahapan. Tahap yang pertama adalah proses protonasi gugus karbonil oleh katalis asam. Tahap kedua merupakan proses dimana metanol menyerang gugus karbonil yang telah terprotonasi. Tahap terakhir yang terjadi adalah pembentukan produk metil ester sekaligus lepasnya ion H⁺ yang bersumber dari katalis asam (Kirumakki dkk., 2004).

Gambar 2.3 Mekanisme reaksi esterifikasi (Kirumakki dkk., 2004)

Pada Tabel 2.5 dijelaskan penelitian sebelumnya mengenai penggunaan katalis dalam reaksi esterifikasi asam lemak bebas. Al-MCM-41 merupakan material aluminosilikat dengan sisi asam yang tinggi. Carmo Jr. dkk., (2009) melaporkan bahwa ukuran dan tipe dari rantai alkohol mempengaruhi reaksi

esterifikasi, diperoleh urutan alkohol dari yang paling efektif untuk reaksi esterifikasi asam palmitat adalah metanol > etanol > isopropanol. Pengaruh waktu juga dilaporkan pada penelitian ini, dimana ditemukan konversi maksimal terdapat pada waktu reaksi 1 jam dan konversi tidak meningkat hingga waktu reaksi 2 jam. Penggunaan katalis asam padat lainnya juga telah dilaporkan oleh Corro dkk., (2011). Katalis SiO₂ dipretreatment dengan HF terlebih dahulu agar terbentuk sisi asam tinggi pada permukaan katalis. Konversi %FFA ditemukan mencapai maksimal pada waktu reaksi 4 jam dan suhu reaksi 70 °C. Selain itu, reaksi esterifikasi minyak kemiri sunan telah dilaporkan oleh (Doyle dkk., 2016) menggunakan katalis asam homogen H₂SO₄. FFA pada minyak kemiri sunan berhasil dikurangi sebanyak 96,3% dengan *loading* katalis 3% dari minyak, dengan suhu reaksi 65 °C selama 2 jam.

Jenis Katalis	Rasio mol	%	Suhu (°C)	%	Referensi
	(asam :	Katalis	dan waktu	Konversi	
	alkohol)				
Al-MCM-41	1:60	0,6	130, 1 jam	79	(Carmo Jr.
mesopori					dkk., 2009)
SiO ₂	1:30	4	70, 4 jam	86	(Corro dkk.,
teraktivasi					2011)
asam					
H_2SO_4	1:9	3	65, 2 jam	96,3	(Holilah
					dkk., 2014)
H-MCM-36	1:30	1	70, 6 jam	85,3	(Purova
					dkk., 2015)
Zeolite Y	1:9	5	70, 1 jam	85	(Doyle dkk.,
					2016)
ZnAl ₂ O ₄	1:9	1	120, 1 jam	94,65	(Soltani
mesopori					dkk., 2016)

Tabel 2.5 Penggunaan katalis dalam reaksi esterifikasi asam lemak bebas

Penggunaan material aluminosilikat kristalin lainnya sebagai katalis reaksi esterifikasi adalah zeolit HMCM-36 sebagai katalis biodiesel (Purova dkk., 2015). Konversi asam palmitat menjadi biodiesel diperoleh sebesar 85,3 % pada waktu reaksi 6 jam dan suhu 70 °C, dan maksimum konversi diperoleh pada waktu 24 jam. Pemanfaatan bahan alam sebagai katalis salah satunya dilaporkan pula oleh Doyle

dkk. (2016), dimana kaolin digunakan sebagai bahan dasar untuk mensintesis zeolit Y yang kemudian digunakan sebagai katalis esterifikasi asam oleat. Katalis hasil sintesis memiliki aktivitas yang relatif lebih baik dari zeolit Y komersial. Konversi maksimum diperoleh sebesar 85% selama 1 jam pada suhu 70 °C. Produksi biodiesel dari non edible oil yaitu PFAD (palm fatty acid distillate) dengan metanol telah dilaporkan oleh Soltani dkk. (2016). Biodiesel diperoleh dari reaksi esterifikasi PFAD menjadi metil ester menggunakan katalis ZnAl₂O₄ mesopori. Rasio mol asam: alkohol diperoleh optimal pada 1:9, penambahan alkohol yang berlebih akan menyebabkan tertutupnya sisi aktif. Loading katalis akan mempengaruhi jumlah sisi aktif yang dapat mengkatalisis reaksi, diperoleh *loading* katalis optimum pada konsentrasi 1% berat dengan yield 77,09 %. Waktu reaksi juga dapat mempengaruhi yield yang dihasilkan. Reaksi esterifikasi PFAD menjadi metil ester menghasilkan yield 81,54 % pada 15 menit pertama, dan meningkat hingga 93,18 pada waktu reaksi 45 menit hingga mencapai maksimum (94,65 %) pada 60 menit. Namun, yield cenderung konstan ketika waktu reaksi diperpanjang hingga 150 menit. Berdasarkan literatur yang telah disebutkan, dapat dikatakan bahwa yield reaksi dipengaruhi oleh rasio mol asam: alkohol Gambar 2.4, jumlah katalis Gambar 2.5 dan waktu reaksi Gambar 2.6.

Gambar 2.4 Grafik pengaruh rasio mol terhadap konversi asam oleat (5% katalis zeolit Y, suhu 70 °C, waktu reaksi 1 jam. (Doyle dkk., 2016)

Gambar 2.5 Grafik pengaruh *loading* katalis terhadap konversi asam oleat, rasio mol 1:6 (asam:alkohol), suhu 70 °C, waktu reaksi 1 jam menggunakan katalis zeolit Y (Doyle dkk., (2016)

Gambar 2.6 Grafik pengaruh waktu reaksi terhadap konversi asam oleat, rasio mol 1:6 (asam:alkohol), suhu 70 °C, menggunakan katalis zeolit Y (Doyle dkk., (2016)

2.8. Karakterisasi Aluminosilikat Mesopori

2.8.1. X-ray Fluoroscence (XRF)

XRF merupakan instrument analitik yang dapat digunakan untuk penentuan secara hampir seluruh unsur dalam suatu sampel secara spektrokimia. Analisis menggunakan XRF dilakukan berdasarkan identifikasi dan perbedaan karakteristik sinar X yang terjadi akibat efek fotolistrik. Efek fotolistrik terjadi karena elektron dalam atom suatu sampel dikenai sinar dengan energi yang cukup tinggi. Proses terjadinya fotoelektrik dapat dijelaskan pada Gambar 2.7.

Gambar 2.7 Proses terjadinya fotoelektrik (Guenter Gauglitz dan Vo-Dinh, 2003)

- 1. Elektron di kulit K terpental keluar dari atom akibat dari radiasi sinar X yang datang, sehingga terjadi kekosongan / vakansi elektron pada orbital.
- Elektron di kulit L atau M "turun" untuk mengisi vakansi tersebut disertai oleh emisi sinar X yang khas dan menyebabkan adanya vakansi lain di kulit L atau M.
- 3. Saat vakansi terbentuk di kulit L, elektron dari kulit M atau N "turun" untuk mengisi vakansi tersebut disertai dengan lepasnya sinar X yang khas.
- 4. Elektron Auger terjadi ketika energi eksitasi dari *inner atom* diteruskan menuju salah satu dari elektron terluar dan menyebabkan elektron tersebut terlontar ke luar dari atom.

Instrumentasi XRF menggunakan pengukuran energi dan panjang gelombang emisi sinar X khas dari tiap atom untuk menganalisa tiap senyawa.

Kuantitas / konsentrasi tiap senyawa ditentukan berdasarkan pada intensitas dari Sinar X yang diukur. Berdasarkan mode analisisnya, XRF dibagi menjadi *Wavelength Dispersive* (WDS) dan *Energy Dispersive* (EDS). Perbedaan kedua jenis XRF dijelaskan pada Tabel 2.6.

WDS-XRF	EDS-XRF
Lebih besar, lebih kompleks,	Lebih kecil, lebih sederhana, tidak
menggunakan pendingin untuk X-ray	menggunakan pendingin
tube	
Rentang analisa B(5)–U(92), lebih	Rentang Analisa Na (11) – U (92),
sensitif, lebih akurat, menggunakan	tidak harus menggunakan pompa
pompa vakum	vakum
Menggunakan gas Argon-Metana, He	Menggunakan gas He

Tabel 2.6 Perbedaan WDS dan EDS (Gauglitz, G., dkk. 2003)

Berdasarkan hasil XRF, dapat diketahui bahwa *red mud* dari Pulau Bintan mempunyai kandungan dominan oksida besi (Fe₂O₃) sebesar 48,89%, alumina (Al₂O₃) sebesar 29,00%, dan silika (SiO₂) 18,10% serta terdapat pula senyawa minor seperti TiO₂, P₂O₅, K₂O, CaO, CuO, V₂O₅ dan MnO (Wulandari, 2016). Kadar senyawa yang dalam *red mud* Pulau Bintan dapat dilihat pada Tabel 2.7.

Tabel 2.7 Komposisi Kimia *Red Mud* Pulau Bintan (Metode XRF) (Wulandari, 2016)

Komposisi	% Berat
Fe ₂ O ₃	48,89
Al ₂ O ₃	29,00
SiO ₂	18,10
TiO ₂	2,67
P ₂ O ₅	0,55
K ₂ O	0,26
CaO	0,25
NiO	0,09
CuO	0,08
Cr ₂ O ₃	0,08
V ₂ O ₅	0,06
MnO	0,04

2.8.2. X-ray Diffraction (XRD)

XRD digunakan untuk memperoleh informasi tentang struktur, komposisi, dan tingkat kristalinitas material. Dasar dari penggunaan difraksi sinar-X untuk mempelajari kisi kristal adalah berdasarkan persamaan Bragg (Pope, 1997) :

$$n.\lambda = 2.d.\sin\theta,\tag{2.3}$$

dengan :

n = orde sinar (1, 2, 3, ...),

 λ = panjang gelombang dari berkas sinar (sinar X)

d = jarak antara dua bidang kisi

 θ = sudut datang antara sinar datang dengan bidang normal.

Instrumentasi XRD terdiri dari tiga bagian utama, yaitu tabung sinar-X, tempat sampel, dan detektor sinar X. Sinar X dihasilkan di tabung sinar X yang berisi katoda, katoda tersebut berfungsi untuk memanaskan filamen, sehingga menghasilkan elektron. Perbedaan tegangan menghasilkan percepatan pada elektron. Ketika elektron mempunyai tingkat energi yang tinggi dan menabrak elektron pada sampel, dihasilkan pancaran sinar X. Sampel dan detektor berputar untuk menangkap dan merekam intensitas refleksi sinar X untuk kemudian diolah dalam bentuk grafik.

Material kristalin mempunyai pola difraksi sinar-X yang khas, sesuai dengan struktur kristal serta atom penyusunnya. Material kristalin mempunyai atom penyusun yang tersusun sedemikian rupa sehingga bentuknya menyerupai suatu bidang dengan jarak antar bidang tertentu. Tiap atom penyusun tersebut dapat memantulkan berkas sinar-X sehingga dihasilkan pola difraksi yang berbeda untuk tiap material kristalin. Berbeda dengan material amorf, dimana atom penyusunnya tersusun secara acak. Oleh karena itu, material amorf tidak dapat menghasilkan pola difraksi yang menunjukkan sturktur kristalnya.

Kandungan fasa mineral *red mud* dapat dianalisis menggunakan XRD. Pola difraktogram XRD *red mud* ditunjukkan pada Gambar 2.8. Hasil identifikasi menunjukkan bahwa fasa mineral yang ada dalam *red mud* adalah *hematite* (Fe₂O₃), *goethite* (FeOOH), *gibbsite* (Al(OH)₃), *boehmite* (γ-AlO(OH)), *quartz* (SiO₂), dan *anatase* (TiO₂) (Wulandari, 2016).

Mineral *hematite* ditandai dengan adanya puncak difraksi pada 20 24,81 dan 35,94°, sedangkan puncak difraksi untuk *goethite* terdapat pada 20 21,46 dan 34,94°. Puncak difraksi pada 20 18,24; 20,50; dan 45,41° menandakan adanya *gibbsite. Boehmite* memiliki puncak difraksi pada 20 38,40°. Puncak difraksi untuk *quartz* terdapat pada 20 26,49 dan 36,57°, sedangkan puncak difraksi pada 20 25,22° merupakan puncak khas dari *anatase*. Selain itu terdeteksi pula adanya mineral lain yang ditandai dengan munculnya puncak difraksi pada 20 12,82° yang merupakan puncak khas untuk mineral alumina silika (*mullite*) (Sushil dan Batra, 2012).

Gambar 2.8 Difraktogram (a) *Anatase*, (b) *Quartz*, (c) *Boehmite*, (d) *Gibbsite*, (e) *Goehtite*, (f) *Hematite*, (g) *red mud* (Wulandari, 2016)

Du dan Yang, (2012), Dang dkk., (2013), dan Qoniah dkk., (2015) melaporkan bahwa material aluminosilikat mesopori menghasilkan pola difraksi dengan *hump* (gundukan) pada 20 20-30° yang mengindikasikan *framework* aluminosilikat amorf. Hasil yang sama juga dilaporkan oleh Hartati dkk., (2014) ditemukan adanya *hump* pada 20 22° (Gambar 2.9), sehingga dapat disimpulkan bahwa penambahan TPAOH pada sintesis aluminosilikat tidak berpengaruh pada karakteristik amorf dari material tersebut.

Gambar 2.9 Pola XRD dari ZSM-5, Aluminosilikat Mesopori dengan penambahan TPAOH (AAM), dan NaOH (AAM-T) (Hartati, 2014)

2.8.3. Spektroskopi Fourier Transform Infra-Red (FTIR)

Spektroskopi inframerah merupakan instrumentasi yang digunakan untuk mengidentifikasi material berdasarkan gugus fungsi struktur molekulnya. Metode analisa ini berdasarkan pada frekuensi spesifik suatu molekul yang dihubungkan dengan vibrasi internal dari atom gugus fungsi. Sampel yang digunakan dalam analisa FTIR dapat berbentuk padat, cair, maupun gas. Sampel yang diletakkan dalam *sample holder* diberikan radiasi infra merah, kemudian sampel akan mengabsorpsi radiasi pada frekuensi yang sesuai dengan frekuensi vibrasional molecular dan meneruskan seluruh frekuensi yang lain. Frekuensi dari radiasi yang terabsorb diukur oleh detektor spectrometer IR, dan plot hasil dari energi terabsorb terhadap frekuensi dikenal sebagai spektra IR dari material yang dikarakterisasi. Identifikasi senyawa menggunakan metode analisa FTIR berdasar pada spektra IR khas yang dihasilkan dari perbedaan struktur kimia dari material. Pengukuran FTIR pada umumnya berlangsung pada *range* pita serapan 7000 – 400 cm⁻¹. Keuntungan dari metode FTIR yaitu radiasi sumber sinar pengukuran, dan akurasi pengukuran yang lebih tinggi dengan spektrometer dispersif cahaya konvensional.

Gambar 2.10 Spektra Infra Merah dengan variasi NaOH/RM; (a) 0,8; (b) 1,0; (c) 1,2; (d) 1,4; (e) 1,5 (Wulandari, 2016)

Wulandari (2016) telah melaporkan spektroskopi FTIR pada material aluminosilikat mesoposi yang disintesis dari *red mud* Pulau Bintan (Gambar 2.10). Sintesis dilakukan dengan perbedaan rasio NaOH yang digunakan untuk memisahkan alumina dari *red mud*. Produk aluminosilikat yang dihasilkan memiliki puncak pada pita serapan 1103, 794, dan 462 cm⁻¹ yang merupakan karakteristik untuk material aluminosilikat. Puncak serapan pada 1103 cm⁻¹
merupakan puncak serapan vibrasi ulur asimetri internal Si-O-Si. Puncak serapan pada daerah bilangan gelombang 790 dan 470 cm⁻¹ masing–masing menunjukkan vibrasi ulur asimetri internal Si-O-Al dan vibrasi tekuk ikatan O-T-O (Flanigen dkk., 1974).

2.8.4. Keasaman Permukaan

Keasaman permukaan dari suatu katalis merupakan salah satu sifat penting yang mempengaruhi aktivitas katalitiknya. Sifat keasamaan permukaan dari suatu padatan dapat berupa asam Lewis, asam Brønsted, atau keduanya. Salah satu cara untuk mempelajari jenis keasaman permukaan adalah metode adsorpsi molekul *probe* pada permukaan katalis. Molekul *probe* yang digunakan pada umumnya adalah piridin. Interaksi antara molekul *probe* pada permukaan katalis diamati menggunakan spektroskopi infra merah (FTIR).

Interaksi antara molekul piridin dengan sisi asam Brønsted memiliki pita serapan khas pada daerah bilangan gelombang 1540-1545 cm⁻¹, sedangkan interaksi antara molekul piridin dengan sisi asam Lewis memiliki pita serapan khas pada daerah bilangan gelombang sekitar 1440-1452 cm⁻¹ (Platon dan Thomson, 2003). Karakterisasi keasaman permukaan katalis dengan spektroskopi FTIR berdasar pada perubahan intensitas dan frekuensi piridin setelah diadsorpsi oleh gugus fungsi yang berinteraksi pada permukaan katalis. Semakin banyak piridin yang teradsorp, intensitas yang dihasilkan akan semakin tinggi, sehingga sifat keasaman suatu katalis dapat diketahui.

Mekanisme pengikatan molekul *probe* dengan sisi asam suatu katalis terjadi dalam tiga tahap :

- Molekul yang teradsorp akan terprotonasi oleh proton yang berasal dari gugus hidroksil permukaan, molekul ini akan berperan sebagai sisi asam Brønsted permukaan,
- 2. Atom N akan memberikan pasangan elektron bebas kepada kation dari oksida pada permukaan, sehingga berperan sebagai asam Lewis,
- 3. Ikatan hidrogen yang terjadi antara molekul *probe* dengan sisi asam permukaan. Namun, interaksi ini sangan lemah, sehingga tidak dapat digunakan untuk menentukan keasaman permukaan.

Gambar 2.11 Spektra adsorpsi piridin aluminosilikat mesopori dengan rasio NaOH/RM (a) 0,8; (b) 1,0; (c) 1,2; (d) 1,4; (e) 1,5. (Wulandari, 2016)

Spektra adsorpsi piridin dari sampel aluminosilikat mesopori dapat dilihat pada Gambar 2.11. Wulandari (2016) telah melakukan sintesis aluminosilikat mesopori dengan *red mud* sebagai sumber alumina, pada penelitian tersebut dilaporkan terdapat puncak pada bilangan gelombang sekitar 1444 cm⁻¹ dan 1544 cm⁻¹ yang merupakan karakteristik dari interaksi piridin dengan sisi asam Lewis dan sisi asam Brønsted. Selain itu juga ditemukan puncak serapan pada 1490 cm⁻¹ yang merupakan karakteristik untuk kedua jenis asam Lewis dan asam Brønsted (Platon dan Thomson, 2003).

2.8.5. Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX)

Mikroskop elektron adalah instrumen yang menggunakan sinar dari elektron berenergi tinggi untuk mengamati objek dengan skala yang sangat kecil. Pengamatan ini akan menghasilkan informasi tentang topologi (ciri-ciri permukaan), morfologi (bentuk dan ukuran partikel), informasi kristalografi (penyusunan atom dalam objek) dan komposisi. Cara kerja SEM adalah pertama sumber elektron difokuskan dalam vakum menuju *probe* yang sangat runcin didekat permukaan sampel. Sinar elektron melewati kumparan dan lensa objektif yang membelokkan secara vertical dan horizontal sehingga permukaan sampel dapat ter*scan.* Setelah elektron melakukan penetrasi pada permukaan, jumlah interaksi yang terjadi akan menghasilkan emisi dari elektron atau foton dari permukaan. Fraksi yang terjadi dapat dikumpulkan dengan detector pada posisi yang tepat. Gambar dihasilkan pada *cathode ray tube* (CRT), setiap titik tembakan elektron pada sampel dipetakan secara langsung setiap titik di layar. SEM bekerja pada voltase antara 2 hingga 50 kV. Sampel SEM harus bersifat konduktif, oleh karena itu sampel harus di*coating* terlebih dahulu dengan karbon untuk meningkatkan konduktifitas (Chester dan Derouane, 2009).

Gambar 2.12 SEM dari garam alumina (A), dan alumina mesopori dengan rasio berat CTABr/Garam alumina: 1 (B), 2 (C), 5 (D) (Ramdhani, 2015)

Gambar 2.12 adalah mikrograf dari sampel hasil penelitan yang dilakukan oleh Ramdhani (2015). Hasil pemisahan garam alumina dari red mud menghasilkan partikel dengan bentuk tidak teratur dan tidak terdapat pori pada permukaan partikel. Garam alumina tersebut kemudian digunakan dalam proses sintesis alumina mesopori menggunakan CTABr sebagai agen pengarah struktur mesopori (Khalil, 2008). Penambahan CTABr dengan konsentrasi yang berbeda berpengaruh secara signifikan terhadap bentuk partikel alumina yang dihasilkan.

2.8.6. Transmission Electron Microscope (TEM)

TEM memiliki fungsi untuk analisis morfologi, struktur kristal, dan komposisi spesimen. TEM menyediakan resolusi lebih tinggi dibandingkan SEM, dan menggunakan energi berkas elektron sekitar 60 hingga 350 keV. Komponen-komponen TEM secara umum terdiri dari ruang vakum yang merupakan tempat dimana interaksi elektron terjadi, spesimen *stages* yang berfungsi seperti meja preparat atau *sample holder* pada mikroskop, *electron gun* yang menghasilkan partikel elektron, *electron lens* berfungsi untuk memfokuskan sinar sejajar yang dihasilkan oleh *electron gun*, dan *apertures* yang digunakan untuk mengarahkan elektron agar dapat bergerak secara aksial.

Gambar 2.13 TEM dari aluminosilikat mesopori (Qoniah dkk., 2015)

Gambar 2.13 merupakan mikrograf dari sampel hasil penelitian yang dilakukan oleh Qoniah dkk. (2015). Aluminosilikat hasil sintesis memiliki morfologi agregat nanopartikel dengan ukuran partikel yang seragam sekitar 40 nm tanpa adanya morfologi kristal yang khas.

2.8.7. Adsorpsi-desorpsi Nitrogen

Analisa menggunakan adsorpsi-desorpsi gas nitrogen bertujuan untuk mengetahui luas permukaan spesifik dan ukuran pori suatu padatan berdasarkan teori BET (Brunauer, Emmet, Teller). Teori tersebut mengasumsikan terjadi adsorpsi *multilayer* bahkan pada tekanan rendah, tidak terjadi interaksi antar molekul yang teradsorpsi, nilai kecepatan adsorpsi sama dengan kecepatan desorpsi, dan padatan memiliki permukaan yang homogen.

Gambar 2.14 Tipe grafik adsorpsi-desorpsi nitrogen berdasarkan IUPAC (Perry, 1997)

Menurut IUPAC, grafik adsorpsi-desorpsi nitrogen dapat diklasifikasikan menjadi enam tipe (Gambar 2.14) :

- A. Tipe I; tipe ini khas terjadi untuk fisisorpsi gas pada padatan mikropori dan kemisorpsi isotermal.
- B. Tipe II; tipe ini umumnya terlihat dari adsorpsi pada padatan non pori.
- C. Tipe III; Grafik ini khas untuk uap, misalnya air pada padatan hidrofobik.
- D. Tipe IV; Grafik tipe IV ini memperlihatkan loop histerisis yang disebabkan oleh kondensasi kapiler pada mesopori.
- E. Tipe V; Grafik ini juga khas untuk uap seperti halnya tipe III, namun terlihat adanya loop histerisis yang juga dihasilkan oleh kondensasi kapiler pada mesopori.
- F. Grafik VI; Grafik tipe ini khas untuk padatan tak berpori yang mempunyai permukaan seragam.

Wulandari, (2016) melaporkan bahwa aluminosilikat mesopori hasil sintesis menujukkan pola isoterm tipe IV yang merupakan karakteristik dari material mesopori. Selain itu, pada isoterm aluminosilikat juga terdapat *loop* histerisis pada tekanan relatif P/P₀ 0,4 hingga 1,0 (Gambar 2.15). Histerisis yang terbentuk mengindikasikan adanya kondensasi kapiler pada mesopori. Hasil yang sama dilaporkan oleh Qoniah dkk., (2015) (Gambar 2.16), dimana luas permukaan meningkat seiring dengan bertambahnya waktu hidrotermal, sedangkan Hartati dkk., (2014) (Gambar 2.17) melaporkan penambahan TPAOH dan CTABr akan menghasilkan pori hirarki yang lebih banyak.

Sampel	SBET	Smeso	Volume Pori	Referensi
	(m^2/g)	(m^2/g)	(cm ³ /g)	
ASM 1,0	400,34	175,31	1,04	(Wulandari, 2016b)
ASM 48 jam	545	375	0,85	(Qoniah dkk., 2015a)
AAM	-	145,99	0,31	(Hartati, Didik
				Prasetyoko, dkk.,
				2014)

Tabel 2.8 Data Luas Permukaan, dan volume mesopori dari aluminosilikat

Gambar 2.15 Isoterm Adsorpsi-Desorpsi Nitrogen aluminosilikat mesopori RM/NaOH 1,0 (Wulandari, 2016)

Gambar 2.16 Isoterm Adsorpsi-Desorpsi Nitrogen aluminosilikat mesopori dengan waktu hidrotermal 12, 24, dan 48 jam. (Qoniah, 2015)

Gambar 2.17 Isoterm Adsorpsi-Desorpsi Nitrogen aluminosilikat mesopori dengan penambahan TPAOH (Hartati, 2015)

BAB 3

METODE PENELITIAN

3.1. Alat dan Bahan

3.1.1. Alat

Peralatan yang digunakan dalam penelitian ini adalah peralatan – peralatan gelas, blender, *furnace*, *tubular furnace*, oven, mortar, ayakan 200 mesh, *stainless steel crussible*, *boats crussible*, neraca analitik, *hotplate*, botol polietilen, *magnetic stirrer*, indikator pH universal, kertas saring, pompa vakum, corong *Buchner*, erlenmeyer, dan buret.

Sampel dan produk sintesis dikarakterisasi dengan instrumen X-ray Diffraction (X'pert PRO PANalytical), Thermogravimetric Analysis-Differential Thermogravimetry Analysis (METTLER TOLEDO), Fourier Transform Infra Red Spectroscopy (8400S Shimadzu), X-ray Flourence (Minipal 4 PANalytical), Scanning Electron Microscopy-Energy Dispersive X-ray (Shimadzu SU3500), Transmission Electron Micoscope (Hitachi HT7700) dan adsorpsi-desorpsi nitrogen (Quantachrom eCorporation Nova-1200).

3.1.2. Bahan

Bahan-bahan yang digunakan dalam penelitian ini adalah *red mud* (lumpur residu bauksit) yang berasal dari Bintan Provinsi Kepulauan Riau, natrium hidroksida (Merck, NaOH 99%), *Silica colloidal* (Aldrich, Ludox 30%), *tetrapropylammonium hydroxide* (Merck, TPAOH 40 % wt *solution in water*), aqua DM, *Cetyltrimethylammonium bromide* (Aldrich, C₁₉H₄₂BrN), amonium asetat (Merck, CH₃CO₂NH₄), piridin (Aldrich, C₅H₅N), minyak kemiri sunan yang berasal dari Majalengka Jawa Barat, metanol (Merck, CH₃OH 99%), dan etanol (Merck, C₂H₅OH 99%).

3.2. Prosedur Penelitian

3.2.1. Preparasi Sampel Red Mud

Sampel *red mud* (residu bauksit) dari Bintan, Provinsi Kepulauan Riau yang masih berupa bongkahan dan butiran-butiran kasar, dihaluskan terlebih dahulu menjadi butiran-butiran halus menggunakan blender. Butiran-butiran halus tersebut kemudian digerus menggunakan mortar dan diayak menggunakan ayakan 200 mesh untuk mendapatkan sampel *red mud* dengan ukuran yang seragam. Sampel *red mud* kemudian dikeringkan dalam oven pada temperatur 105 °C untuk menghilangkan kadar airnya.

3.2.2. Reaksi Fusi Alkali Red Mud dan NaOH

Metode reaksi fusi yang dilakukan merujuk pada penelitain yang dilakukan oleh Wulandari (2016). Sampel *red mud* yang telah dihaluskan dan NaOH dengan perbandingan rasio (1:1) dicampur hingga homogen dan dimasukkan ke dalam krusibel *stainless steel*. Campuran kemudian dimasukkan ke dalam *furnace* dan dilakukan reaksi fusi dengan variasi suhu 450-600 °C dengan *increment* 50 °C selama 2 jam. Produk fusi yang dihasilkan kemudian didinginkan dalam desikator dan ditimbang untuk mengetahui massa fusi.

3.2.3. Ekstraksi dan Pembuatan Feed Natrium Aluminat dan Natrium Silikat

Produk fusi yang dihasilkan pada proses sebelumnya digerus dan dicampurkan dengan 127,5 ml aqua DM. Campuran dimasukkan ke dalam botol polietilen kemudian diaduk dengan *magnetic stirrer* selama 24 jam pada suhu ruang untuk memperoleh Si dan Al terlarut. Campuran selanjutnya difiltrasi untuk memisahkan sumber Si dan Al (filtrat) dan logam lainnya (residu).

Filtrat kemudian diuapkan dan dikeringkan untuk mendapatkan padatan natrium-aluminat dan natrium-silikat. Padatan yang diperoleh dianalisis menggunakan instrumen XRF untuk mengetahui komposisi Si dan Al. Data tersebut dijadikan acuan dalam menentukan rasio mol sintesis aluminosilikat mesopori.

3.2.4. Sintesis Aluminosilikat Mesopori

Aluminosilikat mesopori amorf dari *red mud* disintesis menggunakan metode penelitian Hartati dkk (2014) dengan rasio komposisi molar $1 \text{ SiO}_2 : 0,0125$ Al₂O₃ : 0,2 TPAOH : 38 H₂O.

Padatan filtrat fusi berfungsi sebagai sumber Al₂O₃ dimasukkan ke dalam botol polietilen, kemudian ditambahkan LUDOX sebagai sumber SiO₂ secara perlahan dan disertai dengan pengadukan kuat untuk menghindari penggumpalan pada saat gel terbentuk. Gel kemudian distirer selama 30 menit, kemudian TPAOH dan akuades ditambahkan ke dalam campuran gel dan stirer dilanjutkan selama 15 jam pada temperatur ruang. Campuran yang diperoleh kemudian dimasukkan ke dalam oven dan dipanaskan pada temperatur 80°C selama 24 jam untuk reaksi hidrotermal. Setelah campuran dingin, CTABr ditambahkan secara perlahan, dengan rasio SiO₂/CTABr : 3,85 dan distirer selama 30 menit. Campuran kemudian di-*aging* selama 4 jam pada temperatur ruang. Padatan yang terbentuk dicuci dengan akuades sampai pH netral dan dikeringkan pada suhu 60°C selama 24 jam. Padatan kering dikalsinasi pada suhu 550°C (flow rate suhu 2°C/menit) dengan aliran N₂ selama 1 jam dilanjutkan dengan aliran udara selama 6 jam.

3.2.5. Pertukaran Kation dan Uji Keasaman pada Permukaan Produk Padatan dengan Metode Adsorpsi Piridin

Pertukaran ion dilakukan pada padatan aluminasilika yang diperoleh. Hal ini dilakukan mengingat material tersebut diaplikasikan sebagai katalis. Pertukaran ion dilakukan dengan cara merefluks sebanyak 0,5 gram padatan hasil sintesis dengan 20 mL larutan amonium asetat 0,5 M pada suhu 60°C selama 3 jam. Padatan selanjutnya dikeringkan pada suhu 110°C selama 12 jam dan dikalsinasi pada suhu 550°C selama 1 jam dengan dialiri gas N₂ dan dilanjutkan dengan dialiri udara selama 6 jam. Padatan yang diperoleh kemudian diuji keasamannya.

Uji keasaman dilakukan menggunakan metode adsorpsi piridin yang dimonitor dengan spektrofotometer FTIR Wulandari (2016). Hal ini bertujuan untuk mengetahui sifat keasaman permukaan pada padatan hasil sintesis. Padatan yang telah ditukar ion diambil sebanyak 13,00 mg dan dihaluskan dengan mortar agats, kemudian padatan dibentuk pelet menggunakan cetakan, alat penekan, dan

dongkrak. Pelet yang dihasilkan kemudian diletakkan pada *sample holder* dan dimasukkan ke dalam tabung gelas tahan panas untuk dipanaskan pada suhu 400 °C selama 4 jam dalam *tubular furnace* dengan dialiri N₂. Setelah tabung gelas didinginkan hingga mencapai suhu kamar, ditambahkan 2 tetes piridin di dekat pelet dalam suasana N₂, *hold* selama 1 jam. Setelah 1 jam, kran gas N₂ ditutup, dan dilakukan vakum selama 1 jam agar piridin teradsoprsi.

Proses selanjutnya adalah desorpsi piridin. Desorpsi piridin dilakukan pada suhu 150 °C selama 3 jam dengan dialiri gas N₂. Spektra infra merah direkam pada daerah bilangan gelombang 2000-1400 cm⁻¹ setelah proses desorpsi piridin pada pelet selesai dilakukan.

3.2.6. Uji Aktivitas Katalis dalam Reaksi Esterifikasi Minyak Kemiri Sunan

Padatan yang diperoleh selanjutnya digunakan sebagai katalis dalam reaksi esterifikasi minyak kemiri sunan. Reaksi esterifikasi dilakukan dengan metode refluks, digunakan metanol sebagai pelarut. Dilakukan variasi pada rasio mol minyak dan metanol yang digunakan (1:9, 1:18, 1:27) (Holilah dkk., 2014). Minyak kemiri sunan dicampur dengan katalis hasil sintesis, *loading* katalis yang digunakan divariasi 2,5; 5; dan 10% dari berat sampel minyak kemiri sunan. Campuran dimasukkan ke dalam labu bundar, dan diletakkan di atas *oil bath* dengan pengaturan suhu reaksi 60 °C, waktu reaksi divariasi 30, 60, 90, dan 120 menit, disertai dengan pengadukkan (Doyle dkk., 2016). Proses selanjutnya adalah pemisahan antara kandungan ester, alkohol, dan air menggunakan pelarut heksana untuk kemudian dihitung kandungan asam lemaknya.

Kandungan FFA sampel sebelum dan setelah reaksi dihitung menggunakan metode titrasi (International, 2005). Sebanyak 1,00 gram sampel dilarutkan menggunakan etanol, dimasukkan ke dalam erlenmeyer, dan dilarutkan menggunakan isopropanol yang telah dinetralkan menggunakan NaOH 0,1 M. Indikator yang diguakan adalah *phenolphtalein* (PP). Dicatat volume NaOH yang diperlukan untuk merubah warna larutan dari bening menjadi merah muda. Titrasi dilakukan sebanyak tiga kali pengulangan (triplo). Sebelum titrasi dilakukan, NaOH distandarisasi terlebih dahulu menggunakan asam oksalat ($C_2H_2O_4$) 0,1 M. $C_2H_2O_4$ 0,1 M dibuat dengan cara menimbang asam oksalat sebanyak 0,6303 gram,

dimasukkan ke dalam labu ukur 100 mL dan ditambahkan akuades hingga garis batas.

Loading Katalis	Rasio Mol	Waktu Reaksi	Suhu
(%)	(Minyak:Alkohol)	(menit)	(°C)
	1:9		60
5	1:18	30-120	
	1:27		
2,5			60
5	1:18	30-120	
10			

Tabel 3.1 Parameter Reaksi Esterifikasi

Perhitungan konversi FFA tiap parameter reaksi dapat diperoleh berdasarkan %FFA seperti dalam persamaan 3.1 (Yunus dkk., 2016) :

$$Konversi = \frac{\%FFA_{t0} - \%FFA_t}{\%FFA_{t0}} \ x \ 100\%;$$
(3.1)

dengan :

% FFA_{t0}= % FFA dari reaksi pada waktu reaksi 0 menit

% $FFA_t = \%$ FFA dari reaksi pada waktu t

3.3. Karakterisasi Sampel Red Mud dan Produk Hasil Sintesis

3.3.1. X-ray Flourescence (XRF)

Untuk mengetahui komposisi dan persentasi setiap komponen yang terkandung di dalam sampel *red mud*, sampel dianalisa menggunakan instrument XRF. Setelah proses pemisahan melalui metode ekstraksi fusi, dilakukan kembali analisa XRF untuk memastikan kandungan besi pada sampel berhasil dipisahkan, dan menentukan berapa banyak silika yang harus ditambahkan.

3.3.2. Thermogravimetric Analysis-Differential Thermogravimetry Analysis

TGA-DSC digunakan untuk mengetahui transformasi yang terjadi pada selama reaksi alkali fusi berlangsung. Sampel campuran red mud dan NaOH

ditimbang sebanyak 10,00 mg kemudian diletakkan pada sampel holder yang tersedia. Analisa dilakukan pada rentang suhu 30-1000 °C dengan laju kenaikan suhu diatur sebesar 2°C / detik.

3.3.3. Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX)

SEM-EDX digunakan untuk mengetahui morfologi permukaan dan kandungan unsur dari sampel hasil sintesis. Pengamatan dilakukan dengan meletakkan sampel dalam holder yang tersedia setelah dilakukan pelapisan. Pelapisan tersebut dilakukan dengan Pd/Au selama 15 menit pada tekanan 6×10^{-2} mBar.

3.3.4. Transmission Electron Microscopy (TEM)

TEM digunakan untuk mengetahui pembentukan pori dari sampel hasil sintesis. Pengamatan dilakukan dengan meletakkan sampel dalam holder yang tersedia setelah dilakukan pelapisan. Pelapisan tersebut dilakukan dengan melarutkan sampel dalam resin.

3.3.5. X-ray Diffraction (XRD)

Sampel *red mud*, padatan filtrat fusi, padatan residu fusi, produk aluminosilikat mesopori hasil sintesis sebelum dan sesudah kalsinasi dikarakterisasi menggunakan XRD untuk mengetahui struktur kristal, fasa kristal dan kristalinitasnya. Sebanyak 0,5 gram sampel ditempatkan pada *sample holder* kemudian ditembak dengan sinar X dengan sumber sinar Cu K α ($\lambda = 1,5405$ Å) pada 40 kV dan 30 mA dilakukan pada rentang sudut 2 θ antara 2-90° (Yang dkk, 2013).

3.3.6. Adsorpsi-desorpsi Nitrogen

Isoterm adsorpsi-desorpsi nitrogen diamati dengan menggunakan instrumen Quantachrom eCorporation (Nova-1200). Hal yang perlu dilakukan sebelum analisis ini adalah sampel sebanyak 0,2 gram di vakum selama 3 jam pada 300 °C kemudian dialiri gas Nitrogen pada 77 K. Luas permukaan spesifik (S_{BET}) dihitung dengan persamaan BET (Brunauer-Emmet-Teller), sedangkan distribusi ukuran pori (*pore size distribution*/PSD) dianalisis menggunakan metode BJH (Barret-Joiner-Halenda) dan SF (Saito- Foley).

3.3.7. Spektroskopi FTIR (Fourier Transform Infra Red)

Sampel *red mud*, padatan filtrat fusi, dan produk aluminosilikat mesopori hasil sintesis dikarakterisasi menggunakan spektroskopi FTIR. Preparasi sampel dilakukan menggunakan teknik *pellet* KBr dengan komposisi sampel sekitar 1,00 % terhadap total campuran, dan pada bilangan gelombang 400-1400 cm⁻¹.

"Halaman ini sengaja dikosongkan"

BAB 4 HASIL DAN PEMBAHASAN

Pada bab ini akan dipaparkan hasil dan pembahasan dari penelitian yang telah dilakukan, meliputi ekstraksi kandungan silika dan alumina dari *red mud* menggunakan metode alkali fusi, sintesis aluminosilikat mesopori menggunakan metode hidrotermal, dan uji katalitik pada reaksi esterifikasi asam lemak bebas pada minyak kemiri sunan. Produk hasil sintesis dikarakterisasi menggunakan XRD, spektroskopi FTIR, adsorpsi-desorpsi piridin, TEM, SEM, dan adsorpsi-desorpsi nitrogen. Kandungan asam lemak bebas diukur menggunakan metode titrasi, dan dihitung presentase penurunannya.

4.1. Hasil preparasi sampel red mud

Sampel *red mud* yang digunakan dalam penelitian ini diambil dari kolam pembuangan *red mud* di Pulau Bintan, Kepuluan Riau. Sampel *red mud* awalnya berbentuk gumpalan kering. *Red mud* dihancurkan menjadi partikel dengan ukuran lebih kecil dan kemudian dihaluskan menggunakan grinder. *Red mud* halus selanjutnya diayak menggunakan ayakan 200 mesh (Gambar 4.1) untuk menghasilkan ukuran *red mud* yang lebih seragam dan meningkatkan luas permukaan dari sampel sehingga kontak antara *red mud* dan NaOH pada saat reaksi fusi dapat dimaksimalkan. Hasil pengayakan dikeringkan terlebih dahulu pada suhu 105 °C untuk menghilangkan air yang terikat secara fisik dalam sampel *red mud*.

Gambar 4.1 Penampakan fisik red mud sebelum dan setelah milling

4.2. Hasil reaksi alkali fusi dan ekstraksi SiO2 dan Al2O3 dari Red Mud

Alkali fusi bertujuan untuk menguraikan dan mengaktivasi komponen SiO₂ dan Al₂O₃ dalam red mud menggunakan sumber alkali (basa) sehingga membentuk garam natrium silikat dan natrium aluminat yang larut dalam air. Pada penelitian ini digunakan natrium hidroksida (NaOH) sebagai sumber alkali. Persamaan reaksi fusi komponen SiO₂ dan Al₂O₃ dapat dituliskan sebagai berikut:

$$2 \operatorname{NaOH}_{(s)} + \operatorname{Al}_2O_{3(s)} \longrightarrow 2 \operatorname{NaAlO}_{2(s)} + \operatorname{H}_2O_{(s)}$$
$$2 \operatorname{NaOH}_{(s)} + \operatorname{SiO}_{2(s)} \longrightarrow \operatorname{Na}_2\operatorname{SiO}_{3(s)} + \operatorname{H}_2O_{(g)}$$

Reaksi dilakukan dalam krusibel *stainless steel* dengan mencampurkan *red mud* dan NaOH dengan rasio 1:1. Campuran kemudian dipanaskan dengan variasi suhu 450-650 °C selama 2 jam. Variasi suhu dilakukan untuk mengetahui pengaruh suhu terhadap kelarutan garam natrium silikat dan natrium aluminat yang terbentuk. Padatan red mud sebelum dan setelah reaksi fusi dapat dilihat pada Gambar 4.2. Produk hasil fusi digerus dan dilarutkan dalam air untuk memperoleh garam alumina dan garam silika dari produk fusi. Proses filtrasi kemudian dilakukan untuk memisahkan kandungan besi seperti yang telah dilaporkan oleh Wulandari (2016).

Gambar 4.2 Campuran NaOH sebelum reaksi fusi (A); setelah reaksi fusi (B)

Secara visual, tidak terdapat perbedaan warna dari filtrat fusi yang dihasilkan pada tiap variasi suhu (Gambar 4.3). Padatan yang terbentuk berwarna putih kehijauan, hal ini menunjukkan bahwa komponen *red mud* dan NaOH telah

melebur dan membentuk garam alkali. Produk fusi dari tiap suhu kemudian dianalisis kandungan logam yang terkandung menggunakan instrumen XRF.

Gambar 4.3 Filtrat Fusi 400, 450, 500, 550, 600, 650 °C

Tabel 4.1 menunjukkan bahwa kandungan silika yang paling tinggi terdapat pada produk fusi suhu 450 °C (SiO₂ 40 % dan Al₂O₃ 32 %). Hasil yang sama juga dilaporkan oleh Wahyuni, (2010) dimana diperoleh kelarutan Si paling tinggi pada suhu 450 °C dalam reaksi fusi abu layang menggunakan NaOH. Menurut Wahyuni, (2010) fase yang terbentuk sesudah reaksi fusi mempengaruhi kelarutan dari Al dan Si. Pada reaksi fusi abu layang, pada suhu 450 °C fase yang terbentuk setelah reaksi adalah natrium silikat, sedangkan pada suhu 400, 500, 550, 600, dan 650 °C terbentuk fase natrium aluminosilikat yang memiliki kelarutan lebih rendah daripada natrium silikat. Hal ini karena fase gelas (amorf) memiliki kelarutan yang lebih tinggi dibandingkan fase kristal (Inada dkk., 2005).

Suhu Reaksi Fusi	Kadar (%)			
(°C)	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	
400	24	40	2.5	
450	40.3	32	1.73	
500	13	35	2.2	
550	21	35	3.56	
600	13	48	2.5	
650	27	42	1.1	

Tabel 4.1 Kadar silika, alumina, dan besi dari produk reaksi fusi

Pada reaksi alkali fusi, suhu reaksi dapat mempengaruhi kristalinitas dari produk (Shigemoto dkk., 1993). Selain itu, kadar besi pada produk fusi suhu 450 °C diperoleh hanya sebesar 1,73 % sehingga dapat dikatakan pemisahan kadar besi dari red mud telah berhasil.

Gambar 4.4 Grafik TGA/DTG campuran red mud dan NaOH

Hasil yang mendukung pernyataan diatas dapat dilihat pada grafik analisa termal (TGA/DTG) dari campuran *red mud* dan NaOH (Gambar 4.4). Pada Gambar 4.4 dapat dilihat terdapat penurunan massa dari campuran pada suhu 110 (1), 159 (2), 215 (3), 278 (4), 417 °C (5). Penurunan pertama terjadi pada suhu 110 °C diikuti pada suhu 159 °C. Pada kedua suhu tersebut terjadi dekomposisi dari H₂O yang terikat secara fisik dan H₂O kristal, sedangkan penurunan yang terjadi pada suhu 215 °C dan 278 °C mengindikasikan adanya transformasi silika dan alumina menjadi garam natrium silika (Na₂SiO₃) atau natrium alumina (NaAlO₂) (Shigemoto dkk., 1993). Penurunan massa terakhir yang dimulai pada suhu 417 °C mengindikasikan adanya dekomposisi dari hidroksida (OH⁻) yang terdapat pada mineral (Borra dkk., 2015). Berdasarkan data diatas dapat disimpulkan bahwa suhu

optimal untuk proses ekstraksi Si dari *red mud* adalah 450 °C. Oleh karena itu, dipilih hasil reaksi fusi pada suhu 450°C (FF-450) sebagai sumber Al dalam proses sintesis aluminosilikat.

4.3. Sintesis Aluminosilikat Mesopori

Proses selanjutnya adalah sintesis aluminosilikat mesopori dari natrium silikat-natrium aluminat yang diperoleh dari proses ekstraksi. Data kadar ion logam Si dan ion logam Al yang diperoleh dari analisa XRF digunakan sebagai acuan dalam menentukan rasio molar sintesis aluminosilikat mesopori. Metode sintesis yang digunakan adalah hidrotermal, dan komposisi rasio molar mengacu pada penelitian Hartati, Didik Prasetyoko, dkk., (2014). Pembentukan mesopori mengacu pada metode penelitian Qoniah dkk., (2015) menggunakan surfaktan kationik *cetyltrimethylammonium bromide* (CTABr) sebagai *template* pengarah mesopori.

Kandungan ion logam Al yang lebih banyak dibandingkan ion logam Si dalam produk fusi menyebabkan diperlukan adanya penambahan Si dari sumber lain untuk mencukupi kebutuhan Si pada komposisi molar sintesis yang digunakan. Dalam penelitian ini digunakan silika koloidal (LUDOX) sebagai sumber silika. Bahan lain yang digunakan adalah TPAOH sebagai agen pengarah struktur, aqua DM sebagai sumber H₂O dan CTABr sebagai agen pengarah mesopori.

Proses sintesis diawali dengan mencampurkan padatan produk reaksi fusi (*feed*) dan Ludox dalam botol polipropilen (PP). Penambahan Ludox ke dalam botol PP dilakukan secara perlahan dan disertai dengan pengadukan kuat agar gel putih yang terbentuk tidak menggumpal. Aqua DM ditambahkan ke dalam campuran secara perlahan dan diaduk selama 30 menit. Aqua DM berperan sebagai pelarut untuk meningkatkan pencampuran dan perpindahan material, mengubah sifat fisik/kimia reaktan dan produk, serta mempercepat reaksi (Johnson dan Arshad, 2014). Tahapan berikutnya adalah penambahan TPAOH dilanjutkan dengan *stirring* selama 15 jam pada suhu ruang.

Tahapan sintesis dilanjutkan dengan proses hidrotermal yang dilakukan pada suhu 80 °C selama 24 jam. Selama proses hidrotermal, larutan mengalami kondensasi dimana terjadi pemutusan dan pembentukan ikatan baru Si, Al-O-Si, Al (T-O-T) menghasilkan ikatan penyusun material kritaslin (Cundy dan Cox, 2005). Proses kristalisasi dihentikan dengan mendinginkan wadah reaksi (botol PP) menggunakan air mengalir. Pendinginan mendadak ini dilakukan untuk mencegah terbentuknya kristal aluminosilikat yang sempurna dengan ukuran pori yang lebih kecil. Keadaan ini dihindari agar pembentukan mesopori yang dibantu dengan template CTABr menjadi lebih mudah pada proses selanjutnya.

Pembentukan mesopori dilakukan dengan menambahkan surfaktan CTABr ke dalam gel putih yang dihasilkan (SiO₂/CTABr = 3,85). Campuran kemudian di-*aging* selama 4 jam pada suhu ruang. Pada proses *aging* terjadi kristalisasi tahap kedua yaitu penataan struktur dan pembentukan misel yang menyebabkan terbentuknya mesopori. Padatan yang dihasilkan kemudian dicuci dengan aqua DM hingga pH netral, dan dikeringkan pada suhu 60 °C selama 24 jam untuk menghilangkan kadar air. Penghilangan air pada suhu rendah dilakukan agar air keluar secara perlahan sehingga tidak merusak kerangka Si-O-Al (Perego dan Villa, 1997). Proses selanjutnya adalah kalsinasi padatan pada suhu 550 °C selama 1 jam dengan kenaikan 2 °C menggunakan aliran gas nitrogen agar dekomosisi templat berlangsung perlahan sehingga tidak merusak struktur kerangka dan memperkuat ikatan aluminosilikat (Si-O-Al) yang rapuh (Bérubé dan Kaliaguine, 2008), kemudian diteruskan kalsinasi pada suhu 550 °C selama 6 jam pada udara bebas untuk menghilangkan template organic (karbon) dan menguatkan *framework* Si-O-Al.

Padatan putih yang terbentuk dinotasikan sebagai ASM. Setelah seluruh tahap kalsinasi selesai, padatan yang terbentuk dikarakterisasi menggunakan difraksi sinar-X (XRD), spektroskopi inframerah (FTIR), adsorpsi-desorpsi N₂, *scanning electron microscopy* (SEM), *transmission electron microscopy* (TEM), dan adsorpsi-desorpsi piridin.

4.4. Karakterisasi Padatan

4.4.1. Difraksi sinar-X (XRD)

Karakterisasi XRD digunakan untuk identifikasi fasa padatan hasil sintesis. Karakterisasi XRD dilakukan pada *range* sudut 2θ antara 5 – 50°. Pola difraktogram sampel *red mud*, produk fusi 450°C (FF-450), dan ASM dapat dilihat pada Gambar 4.5.

Gambar 4.5 Difraktogram red mud (A), FF-450 (B), ASM (C)

Pada difraktogram *red mud* dapat dilihat beberapa *peak* dari mineral *hematite* (Fe₂O₃), *gibbsite* (Al(OH)₃), *boehmite* (γ -AlO(OH)), *anatase* (TiO₂), dan *quartz* (SiO₂). *Hematite* memiliki puncak difraksi pada $2\theta = 26^{\circ}$, 40° , dan 47° (JCPDS 00-033-0664), *gibbsite* memiliki puncak difraksi pada $2\theta = 20^{\circ}$ dan 24° (JCPDS 00-007-0324); *boehmite* memiliki puncak difraksi pada $2\theta = 18^{\circ}$, 33° , dan 45° ; *anatase* (JCPDS 00-021-1307) memiliki puncak difraksi pada $2\theta = 28^{\circ}$ dan

55°(JCPDS 00-021-1272); *quartz* memiliki puncak difraksi pada $2\theta = 21^{\circ}$, 26° dan 50° (JCPDS 00-005-0490).

Difraktogram FF-450 °C menunjukkan adanya penurunan intensitas *peak* dari semua kandungan mineral yang terdapat pada *red mud.* Pada 20 12° dan 20° yang merupakan puncak khas dari *boehmite*, dan *gibbsite* terlihat adanya penurunan intensitas. Hal ini menunjukkan kandungan alumina pada red mud yaitu *boehmite*, dan *gibbsite* (Al(OH)₃) telah berhasil dilarutkan menjadi Natruium Aluminat. Selain itu, terjadi penurunan intensitas pada 20 26° yang menunjukkan bahwa kandungan *hematite* (Fe₂O₃) yang dominan pada *red mud* telah berhasil dipisahkan.. Hasil ini sesuai dengan data XRF (Tabel 4.1) dimana diperoleh kandungan besi yang relatif kecil (1,73 %).

Pola difraktogram pada aluminasilika hasil sintesis (ASM) menunjukkan adanya *hump* (gundukan) pada *range* $2\theta = 15-30^{\circ}$ tanpa adanya puncak. Menurut Xu dkk., (2011) adanya *hump* merupakan karakteristik dari fasa amorf suatu padatan, sehingga dapat disimpulkan bahwa ASM hasil sintesis memiliki fasa amorf. Hasil yang sama juga dilaporkan oleh Qoniah dkk., (2015); dan Hartati, Prasetyoko, dkk., (2014). Berdasarkan hasil tersebut, dapat disimpulkan bahwa ASM telah berhasil disintesis dari *red mud* dan fasa yang dihasilkan adalah amorf.

4.4.2. Spektroskopi FTIR

Teknik spektroskopi FTIR digunakan untuk identifikasi gugus fungsi dari padatan hasil sintesis (ASM). Gambar 4.6 menunjukkan spektra absorpsi FTIR dari *red mud*, FF-450, dan ASM pada daerah 4000-400 cm⁻¹.

Pada spektra FTIR *red mud* terlihat adanya puncak serapan pada bilangan gelombang 3452, 3525, dan 3622 cm⁻¹ yang merupakan puncak serapan khas dari vibrasi ulur –OH, sedangkan puncak serapan pada bilangan gelombang 1629 cm¹ menandakan adanya vibrasi tekuk –OH (Sushil dan Batra, 2012). Puncak serapan khas untuk vibrasi tekuk Si-O-Si, dan Si-O-Al terlihat pada daerah bilangan gelombang 1012, dan 1031 cm⁻¹. Vibrasi ulur Si-O pada tetrahedral SiO₄ menunjukkan puncak serapan pada bilangan gelombang 746, 798, dan 914 cm⁻¹ (Liu dkk., 2009). Puncak serapan pada bilangan gelombang 669 cm⁻¹ menunjukkan

adanya vibrasi ulur Al-O, sedangkan pada bilangan gelombang 470, dan 538 cm⁻¹ merupakan puncak serapan khas dari vibrasi ulur Fe-O (Gök dkk., 2007).

Spektra FF 450 menunjukkan adanya beberapa perubahan puncak serapan. Salah satunya terdapat pada bilangan gelombang 3452, 3525, dan 3622 cm⁻¹ dimana sebelum alkali fusi diperoleh puncak yang tajam, sedangkan puncak setelah alkali fusi terlihat lebih lebar. Hal ini mengindikasikan kandungan air yang terdapat pada sampel (FF-450) lebih banyak yang kemungkinan disebabkan oleh adanya NaOH yang higroskopik sehingga mudah mengikat air. Perubahan lainnya dapat dilihat pada pengurangan intensitas serapan vibrasi ulur Fe-O pada bilangan gelombang 470 cm⁻¹, hal ini mengindikasikan adanya pengurangan kandungan Fe dalam FF-450 (Nyquist dan Kagel, 2012). Berdasarkan data tersebut dapat disimpulkan bahwa masih terdapat kandungan Fe pada produk hasil reaksi alkali fusi, hal ini didukung oleh data XRF yang menunjukkan masih adanya kandungan Fe sebesar 1,73 % (Tabel 4.1).

Gambar 4.6 Spektra FTIR red mud (A), FF-450 (B), dan ASM (C)

Spektra FTIR ASM menunjukkan adanya puncak karakteristik material aluminosilikat pada daerah bilangan gelombang sekitar 470, 798, dan 1109 cm⁻¹. Puncak pada bilangan gelombang sekitar 470 cm⁻¹ dihasilkan dari vibrasi tekuk ikatan internal T-O, dimana T adalah atom Si atau Al. Puncak yang muncul pada bilangan gelombang 798 cm⁻¹ menandakan adanya vibrasi ulur asimetri internal Si-O-Al, sedangkan puncak pada bilangan gelombang sekitar 1109 cm⁻¹ menunjukkan vibrasi ulur asimetri internal Si-O-Si (Flanigen dkk., 1971). Selain ketiga puncak tersebut, terdapat pula puncak yang melebar dengan intensitas rendah pada bilangan gelombang 966 cm⁻¹. Menurut Lesthaeghe dkk., (2008) puncak pada daerah bilangan gelombang 960 cm⁻¹ dihasilkan dari vibrasi gugus silanol (Si-OH) pada permukaan dinding mesopori. Berdasarkan spektrum tersebut, dapat disimpulkan bahwa terdapat struktur mesopori pada ASM hasil sintesis. Pernyataan ini didukung dengan data analisa adsorpsi-desorpsi N₂.

4.4.3. Adsorpsi-Desorpsi N₂

Teknik adsorpsi-desorpsi nitrogen secara fisik merupakan teknik yang digunakan untuk menentukan distribusi ukuran pori dan luas permukaan spesifik suatu padatan (Haber dkk., 1995). Terdapat beberapa metode perhitungan dalam teknik adsorpsi-desorpsi nitrogen. Namun, pada material mesopori metode yang digunakan adalah BET dan BJH. Metode BET (S_{BET}) digunakan untuk menentukan luas permukaan spesifik, sedangkan metode BJH digunakan untuk menentukan distribusi ukuran pori. Grafik isotherm adsorpsi-desorpsi nitrogen ditunjukkan pada Gambar 4.7.

Pola isoterm ASM hasil sintesis menunjukkan pola isoterm tipe IV dimana terjadi adsorpsi molekul nitrogen dalam jumlah rendah pada tekanan relatif (P/P₀) 0,0 sampai 0,3 yang ditandai dengan pola isoterm yang naik. Hal ini disebabkan pada tekanan relatif 0,01 – 0,3 molekul nitrogen yang teradsorp memenuhi permukaan padatan sehingga terbentuk lapisan tunggal atau *monolayer*. Pada tekanan relatif (P/P₀) 0,4 – 0,9 mengindikasikan terbentuknya *multilayer* dengan adanya penambahan volume molekul nitrogen yang teradsorpsi (Chorkendorff dan Niemantsverdriet, 2017).

Gambar 4.7 Grafik Isoterm Adsorpsi-desorpsi Nitrogen

Pada kurva isoterm tersebut juga dapat diamati adanya *hysteresis loop* pada tekanan relatif (P/P₀) 0,4 - 1,0. Hal ini dikarenakan terdapat perbedaan jumlah nitrogen yang terdesorpsi dan teradsorpsi. Pada tekanan relatif (P/P₀) yang sama, jumlah nitrogen yang terdesorpsi lebih sedikit daripada yang teradsorpsi sehingga menyebabkan kondensasi kapiler. Menurut Adamson, (2012) kondensasi kapiler disebabkan karena adanya pori pada permukaan padatan yang menyebabkan jumlah lapisan pada adsorbat terbatas.

Gambar 4.8 memperlihatkan data distribusi ukuran pori dari sampel aluminosilikat mesorpori dengan metode BJH (Barret, Joiner, Halenda). Berdasarkan gambar tersebut terlihat bahwa distribusi pori sampel aluminosilikat memiliki ukuran pori pada radius sekitar 1,53 – 15,57 nm (diameter pori 3,1 – 31 nm) (Tabel 4.2) dengan luas permukaan total 404 m²/g.

Gambar 4.8 Distribusi pori dari aluminosilikat mesopori (BJH)

	Tabel 4.2 Data Isoterm	Adsorpsi-desorpsi Nitrogen
--	------------------------	----------------------------

Nama Sampel	SBET ^a (m ² /g)	Luas Permukaaan (m²/g) ^b		V _{Meso} ^c (cm ³ g ⁻¹)	V _{Mikro} ^b (cm ³ g ⁻¹)	D _{Meso} ^c (nm)		D _{Mikro} e (nm)
		Meso	Mikro			Kecil	Besar	
AAM	404	223	181	0,77	0,104	3,4	17,5	1,8

^a Luas permukaan total diukur menggunakan metode BET

^bLuas permukaan meso, luas permukaan mikro, dan volume mikropori diukur menggunakan metode t-plot

^cVolume mesopori, dan diameter mesopori diukur menggunakan metode BJH

^dVolume mikropori diukur menggunakan metode HK

^eDiameter mikropori diukur menggunakan metode SF

4.4.4. Scanning electron microscopy-Energy Dispersive X-ray (SEM-EDX)

Morfologi dan ukuran partikel dari sampel diamati dengan Scanning Electron Microscopy (SEM), sedangkan untuk mengetahui kandungan unsur-unsur yang terdapat pada sampel digunakan Energy Dispersive X-ray (EDX). Sampel yang diamati dengan teknik ini adalah aluminasilika mesopori (ASM) hasil sintesis. Morfologi permukaan dari sampel tersebut diperlihatkan pada Gambar 4.9. Sampel ASM memiliki morfologi seperti bongkahan dengan bentuk dan ukuran yang tidak seragam. Partikel dari ASM terlihat membentuk aglomerasi dengan ukuran partikel sekitar 100 – 200 nm. Berdasarkan morfologi yang teramati dapat dikatakan bahwa ASM hasil sintesis memiliki fase amorf yang ditunjukkan oleh tidak ditemukan adanya bentuk partikel yang khas pada ASM. Hal ini sesuai dengan data XRD (Gambar 4.5) dimana diperoleh pola difraktogram dari material amorf.

Gambar 4.9 Foto SEM dari ASM

Unsur	% Berat	% Atom
Al	1,41	0,95
Si	36,40	23,46
Fe	0,31	0,10
0	47,28	53,49

Tabel 4.3 Kadar Unsur dalam ASM

Gambar 4.10 Spektra EDX dari ASM

Analisa unsur – unsur yang terdapat dalam sampel ASM diukur dengan teknik EDX. Hasil spektrum EDX dari sampel ASM ditunjukkan pada Gambar 4.10. Hasil spektrum EDX menunjukkan bahwa sampel terdiri dari unsur – unsur yang digunakan sebagai prekursornya yaitu Si, Al, dan O. Hal ini membuktikan bahwa tidak ada unsur lain yang terbentuk selama proses sintesis, selain itu tidak terdeteksi adanya unsur lain seperti Fe yang merupakan unsur dominan dalam *red mud*. Berdasarkan data EDX dapat disimpulkan bahwa tidak ada pengotor dalam sampel hasil sintesis. Komposisi unsur yang terdapat pada sampel ditunjukkan pada Tabel 4.3.

4.4.5. Transmission electron microscopy (TEM)

Analisa sampel ASM menggunakan instrument TEM juga dilakukan untuk mengetahui penampakan pori yang terbentuk pada ASM. Gambar 4.11 memperlihatkan mikrograf dari ASM hasil sintesis.

Gambar 4.11 Foto TEM ASM hasil sintesis

Berdasarkan gambar TEM terlihat bahwa pori dari ASM memiliki bentuk pori *spherical* dan tidak teratur dengan ukuran pori ~1 nm. Hal ini dapat dilihat dari pembentukan sistem penghubung yang terjadi secara acak. Hasil yang sama juga dilaporkan oleh Qoniah dkk., (2015) dimana dihasilkan aluminosilikat dengan bentuk pori yang tidak teratur pada material aluminosilikat. Hasil analisa TEM ini mengkonfirmasi adanya mesopori yang terbentuk pada interpartikel.

4.4.6. Adsorpsi-desorpsi piridin

Pertukaran kation dilakukan untuk menggantukan ion Na⁺ yang terdapat dalam padatan aluminosilikat mesopori hasil sintesis. Langkah tersebut merupakan bagian dari teknik analisa keasaman permukaan menggunakan metode adsorpsidesorpsi piridin. Semakin banyak piridin yang teradsorp maka intensitas puncak semakin tinggi dan sifat keasamannya meningkat (Qoniah dkk., 2015). Spektra adsorpsi piridin dari aluminosilikat mesopori (ASM) hasil sintesis ditunjukkan pada Gambar 4.12.

Gambar 4.12 Spektra inframerah piridin untuk sampel ASM hasil sintesis

Spektra absorpsi ASM memperlihatkan adanya puncak pada bilangan gelombang 1445 cm⁻¹ yang merupakan puncak interaksi piridin dengan sisi asam Lewis pada sampel. Puncak tersebut mengindikasikan adanya vibrasi ulur pada ikatan C-C dari ikatan kompleks piridin pada sisi asam Lewis. Sedangkan sisi asam Brønsted pada permukaan ASM ditandai dengan munculnya puncak pada daerah bilangan gelombang 1543 cm⁻¹. Puncak tersebut mengindikasikan adanya vibrasi ulur C-C dari ion piridinium. Selain kedua puncak tersebut, terdapat pula puncak serapan pada 1491 cm⁻¹ yang merupakan puncak dari total kedua jenis asam Lewis dan asam Brønsted.

Sampel	Berat (g)	Sisi asam Lewis (mmol/g)	Sisi as. Brønsted (mmol/g)	Total B+L (mmol/g)	B/L
ASM	0,013	0,2149	0,0118	0,2267	18,212

Tabel 4.4 Sifat keasaman dari aluminosilikat mesopori (ASM)

Jumlah sisi asam ditentukan menggunakan hasil karakterisasi FTIR dimana jumlah sisi asam setara dengan jumlah piridin yang teradsorp pada sampel (µmol piridin per gram sampel). Perhitungan sisi asam dilakukan menggunakan metode integrasi luasan di bawah kurva puncak pada spektra FTIR dan dihitung jumlah sisi asamnya menggunakan persamaan dari Emeis (1993). Data hasil perhitungan ditampilkan pada Tabel 4.4. Berdasarkan data tersebut, dapat dilihat bahwa ASM hasil sintesis memiliki lebih banyak sisi asam Lewis (0,215 mmol/g) daripada sisi asam Brønsted (0,012 mmol/g). Hasil ini berbeda dari data yang dilaporkan Wulandari (2016) dimana sisi asam Lewis dari aluminosilikat (AAM) hasil sintesis adalah 0,086 mmol/g dan sisi asam Brønsted 0,096. Adanya jumlah sisi asam Lewis yang lebih banyak pada produk sintesis penelitian ini (ASM) mengindikasikan bahwa ASM memiliki potensi sebagai katalis asam.

4.5. Uji Aktivitas Katalitik

Untuk mengetahui aktivitas dari katalis, dilakukan uji aktivitas melalui reaksi esterifikasi asam lemak bebas (FFA) dalam minyak kemiri sunan. FFA yang tinggi dalam minyak dapat menyebabkan saponifikasi dan menurunkan yield pada pembutan biodiesel (Holilah dkk., 2015). Oleh karena itu, preparasi minyak kemiri sunan perlu dilakukan sebelumya untuk menurunkan kadar FFA. Penurunan FFA dilakukan melalui reaksi esterifikasi dimana FFA dikonversi menjadi metil ester.

Uji aktivitas katalis melalui reaksi esterifikasi minyak kemiri sunan dilakukan sesuai dengan metode yang dilakukan oleh Bariyah, (2014). Uji dilakukan dalam seperangkat alat refluks pada suhu 60°C dengan variasi rasio mol minyak:metanol 1:9, 1:18, dan 1:27 selama 2 jam. Langkah selanjutnya rasio mol yang menghasilkan penurunan FFA (konversi) paling tinggi digunakan untuk mempelajari pengaruh waktu reaksi terhadap konversi. Variasi waktu yang dilakukan adalah 30, 60, 90, 120 menit. Pengaruh jumlah katalis dipelajari dengan melakukan variasi jumlah katalis 2,5, 5,0 dan 10 % dari sampel minyak kemiri sunan.

Reaksi esterifikasi diawali dengan memasukkan minyak kemiri sunan ke dalam labu leher tiga dan dipanaskan hingga suhu 60 °C. Pada sistem lain, metanol dengan katalis diaduk dan dipanaskan sampai metanol sebagian menguap pada tutup. Setelah kondisi campuran metanol dan katalis tercapai, selanjutnya campuran metanol dan katalis dicampurkan pada labu leher tiga berisi minyak kemiri sunan. Waktu rekasi dihitung tepat saat suhu campuran stabil pada 60 °C.

Campuran hasil reaksi ditambahkan heksana untuk memisahkan antara katalis, fase minyak, dan fase metanol. Fase minyak yang telah terpisah (hasil reaksi) kemudian dititrasi untuk mengetahui sisa FFA yang belum terkonversi menjadi metil ester. Titrasi dilakukan dengan cara mencampurkkan hasil reaksi dengan etanol sebagai pelarut. Selanjutnya sampel dititrasi dengan NaOH, titrasi dihentikan ketika terjadi perubahan warna pada sampel dari kuning jernih menjadi merah muda keruh. Perubahan warna menandakan bahwa asam lemak bebas (FFA) telah habis bereaksi dengan NaOH. Volume NaOH yang dibutuhkan kemudian digunakan untuk menghitung persen konversi dalam minyak kemiri sunan. Besarnya konversi ini menunjukkan aktivitas katalitik dari ASM hasil sintesis.

4.5.1. Pengaruh Rasio Molar Minyak:Metanol

Variasi rasio molar minyak/metanol dilakukan pada reaksi esterifikasi dengan jumlah katalis 2,5 % berat dan suhu 60 °C. Soltani dkk. (2016) melaporkan bahwa rasio molar metanol merupakan salah satu parameter penting yang mempengaruhi konversi FFA. Secara teori, reaksi esterifikasi membutuhkan satu mol metanol per mol asam lemak bebas, dan karena reaksi esterifikasi bersifat *reversible*, jumlah metanol yang berlebih dapat menggeser kesetimbangan kearah pembentukan ester. Presentase konversi FFA pada tiap variasi rasio metanol/minyak yang dilakukan dapat dilihat pada Gambar 4.13.

Gan dkk., 2010 melaporkan bahwa reaksi esterifikasi asam lemak bebas menggunakan katalis asam heterogen menunjukkan peningkatan konversi seiring dengan peningkatan rasio molar metanol terhadap minyak. Hasil yang sama diperoleh pada penelitian ini, terjadi peningkatan konversi FFA dari 25 % hingga 37 % dengan meningkatnya rasio molar metanol 1:9 menjadi 1:18. Namun, ketika rasio molar metanol ditingkatkan menjadi 1:27 terjadi penurunan konversi FFA. Fenomena yang sama juga dilaporkan oleh Kusumaningtyas, 2016.

Gambar 4.13 Pengaruh rasio mol minyak:metanol terhadap penurunan FFA

Pada reaksi esterifikasi asam asetat oleh benzil alkohol terjadi penurunan konversi pada saat rasio molar alkohol ditambahkan dari 1:4 menjadi 1:6. Hal ini disebabkan reaksi esterifikasi merupakan reaksi reversible dan metanol yang berlebih dapat meningkatkan kepolaran di dalam sistem ketika reaksi. Menurut Gokulakrishnan dkk., 2007 asam asetat akan larut seiring dengan penambahan jumlah alkohol, sehingga dapat mencegah adsorpsi asam asetat pada sisi asam katalis. Hal yang serupa dilaporkan oleh Liu dkk. (2006), metanol yang berlebih dapat meningkatkan viskositas campuran dan menghambat pembentukan metil ester. Oleh karena itu, reaksi esterifikasi pada tahapan selanjutnya digunakan rasio molar minyak/metanol 1:18.

4.5.2. Pengaruh waktu reaksi

Waktu reaksi katalisis juga merupakan salah satu factor yang berpengaruh terhadap hasil reaksi. Nascimento dkk., 2011 melaporkan bahwa konversi meningkat ketika waktu reaksi ditingkatkan. Waktu reaksi berpengaruh terhadap nilai konversi yang diperoleh, hal ini karena semakin lama waktu reaksi yang dilakukan, semakin besar kesempatan untuk bertumbukan antara molekul zat pereaksi sehingga konversi yang diperoleh akan semakin besar. Optimasi waktu reaksi dilakukan untuk mengetahui waktu yang paling efisien pada reaksi esterifikasi asam lemak bebas dengan metanol menggunakan katalis ASM hasil sintesis. Pengaruh waktu reaksi esterifikasi minyak kemiri sunan terhadap konversi asam lemak bebas ditunjukkan pada Gambar 4.14.

Gambar 4.14 Pengaruh waktu reaksi terhadap penurunan FFA

Grafik pada Gambar 4.14 menunjukkan pola kenaikan konversi yang signifikan hingga waktu reaksi 90 menit dan setelah itu kenaikan konversi tidak terlalu signifikan pada waktu reaksi 120 menit. Konversi tertinggi diperoleh pada waktu 120 menit sebesar 37 % dengan rasio molar minyak/metanol 1/18. Hasil yang sama dilaporkan oleh Doyle 2016 dimana terjadi peningkatan konversi dari 65 % pada waktu reaksi 30 menit hingga 80 % pada waktu reaksi 45 menit dan terjadi penurunan konversi namun tidak signifikan pada waktu reaksi lebih lama dari 60 menit. Hal ini karena reaksi esterifikasi merupakan reaksi yang reversible, semakin lama waktu reaksi produk yang terbentuk dimungkinkan akan kembali lagi menjadi reaktan (Gan dkk., 2010).

4.5.3. Pengaruh jumlah katalis

Jumlah katalis juga merupakan faktor penting dalam reaksi. Jumlah sisi aktif yang dapat berinteraksi dengan reaktan sebanding dengan jumlah katalis yang ditambahkan dalam reaksi. Optimasi jumlah katalis pada reaksi esterifikasi minyak kemiri sunan menggunakan metanol dapat dilihat pada Gambar 4.15.

Gambar 4.15 Pengaruh jumlah katalis terhadap penurunan FFA

Gambar 4.15 menunjukkan peningkatan konversi dari 37 % menjadi 41 % pada penambahan jumlah katalis dari 2.5 % menjadi 5,0 %. Hal ini disebabkan jumlah sisi aktif dari katalis bertambah seiring dengan bertambahnya jumlah katalis. Namun, pada saat penambahan jumlah katalis menjadi 10 % terjadi penurunan konversi FFA hingga 32 %. Penampakan fisik dari tiap variasi jumlah katalis dapat dilihat pada Gambar 4.16. Menurut Xie dan Zhao, (2014) jumlah katalis yang berlebih dapat meningkatkan viskositas dari campuran pada saat reaksi berlangsung, sehingga mengurangi kontak permukaan antara sisi aktif katalis dan reaktan. Hasil yang sama juga dilaporkan oleh Nur Syazwani dkk. (2017) dimana tidak terdapat peningkatan konversi pada penambahan jumlah katalis dari 2 % menjadi 4 %.
Meskipun konversi FFA yang paling tinggi dihasilkan oleh jumlah katalis 5,0 %, dalam proses pemisahan antara ester dan sisa metanol setelah reaksi, variasi jumlah katalis 2,5 % cenderung lebih mudah untuk dipisahkan (Gambar 4.16). Hal ini disebabkan karena katalis yang memiliki ukuran nano dengan jumlah yang lebih banyak akan memerlukan waktu yang lebih lama agar dapat terpisah secara sempurna.

Gambar 4.16 Penampakan fisik dari tiap variasi jumlah katalis

4.6. Mekanisme reaksi esterifikasi

Reaksi esterifikasi sangat dipengaruhi oleh keasamaan dari katalis yang digunakan. Rao dkk. (2011) telah melaporkan bahwa katalis dengan keasamaan yang tinggi menghasilkan konversi FFA yang tinggi pula. Hal ini karena katalis dengan keasaman yang tinggi dapat mengikat FFA pada sisi aktif dalam jumlah besar. Menurut Zeng dkk. (2013), keasaman memiliki pengaruh yang lebih besar daripada luas permukaan dari suatu katalis.

Mekanisme katalitik pada reaksi esterifikasi asam lemak bebas pada kemiri sunan menggunakan metanol terjadi melalui beberapa tahap. Tahapan pertama adalah aktivasi asam lemak oleh asam Brønsted maupun Lewis pada katalis, dilanjutkan dengan reaksi antara metanol dan asam lemak yang teraktivasi (karbokation) pada katalis hingga dihasilkan ion oksonium. Tahapan selanjutnya adalah reaksi dehidrasi dimana molekul air akan hilang. Proses terakhir adalah pembentukan produk metil ester (Kirumakki dkk., 2004).

"Halaman ini sengaja dikosongkan"

BAB 5 KESIMPULAN DAN SARAN

5.1. Kesimpulan

Red mud dapat diaplikasikan sebagai bahan baku untuk sintesis material lain dengan cara mengekstraksi kandungan alumina dan silika terlebih dahulu. Metode ekstraksi alkali fusi dengan suhu reaksi 450 °C menghasilkan kandungan silika yang paling tinggi. Produk fusi tersebut berhasil disintesis menjadi aluminosilikat melalui metode hidrotermal pada suhu 80 °C selama 24 jam. Berdasarkan hasil karakterisasi XRD, padatan hasil sintesis memiliki fase amorf. Sementara itu, berdasarkan analisa SEM-EDX sampel memiliki morfologi seperti bongkahan dan membentuk aglomerasi dengan ukuran partikel 100–200 nm dengan rasio Si/Al 25. Pola isoterm adsorpsi-desorpsi nitrogen tipe IV menunjukkan bahwa sampel memiliki mesopori dengan diameter 3,4–17,5 nm dan luas permukaan 404 m²/g. Analisa keasamaan menggunakan metode adsorpsi piridin menunjukkan sampel memiliki sisi asam Brønsted dan Lewis dengan total 0,2267 mmol/g. Uji katalitik dilakukan pada reaksi esterifikasi asam lemak bebas dalam minyak kemiri sunan. Kondisi optimum reaksi dihasilkan pada rasio mol minyak:metanol 1:18 dengan suhu reaksi 2 jam pada suhu 60 °C dan jumlah katalis 2,5 %.

5.2. Saran

Perlu dilakukan studi lanjutan dengan variasi mol SiO₂/Al₂O₃ pada proses sintesis agar terlihat pengaruhnya terhadap jumlah sisi asam dan aktivitas katalitik dari produk hasil sintesis. Aplikasi lain dari aluminosilikat juga perlu dilakukan penelitian lebih lanjut untuk mengetahui pengaruh aluminosilikat pada reaksi lain. "Halaman ini sengaja dikosongkan"

DAFTAR PUSTAKA

- Abidin, S.Z., Haigh, K.F., dan Saha, B. (2012), "Esterification of Free Fatty Acids in Used Cooking Oil Using Ion-Exchange Resins as Catalysts: An Efficient Pretreatment Method for Biodiesel Feedstock." *Industrial & Engineering Chemistry Research*, Vol. 51, No. 45, Hal. 14653–14664.
- Adamson, A. (2012), A Textbook of Physical Chemistry, Elsevier,
- Adjdir, M., Ali-Dahmane, T., Friedrich, F., Scherer, T., dan Weidler, P.G. (2009),
 "The Synthesis of Al-MCM-41 from Volclay A Low-Cost Al and Si Source." *Applied Clay Science*, Vol. 46, No. 2, Hal. 185–189.
- Alaba, P.A., Sani, Y.M., Mohammed, I.Y., Abakr, Y.A., dan Daud, W.M.A.W. (2017), "Synthesis and Characterization of Sulfated Hierarchical Nanoporous Faujasite Zeolite for Efficient Transesterification of Shea Butter." *Journal of Cleaner Production*, Vol. 142, Part 4, No. Januari, Hal. 1987–1993.
- Albayati, T.M., dan Doyle, A.M. (2015), "Encapsulated Heterogeneous Base Catalysts onto SBA-15 Nanoporous Material as Highly Active Catalysts in the Transesterification of Sunflower Oil to Biodiesel." *Journal of Nanoparticle Research*, Vol. 17, No. 2, Hal. 109.
- Bariyah, U. (2014), "Pengaruh Rasio SiO₂/Al₂O₃ Pada Sintesis ZSM-5 Dan Aktivitas Katalitiknya Untuk Reaksi Esterifikasi"Institut Teknologi Sepuluh Nopember, Surabaya.
- Bento, N.I., Santos, P.S.C., de Souza, T.E., Oliveira, L.C.A., dan Castro, C.S. (2016), "Composites Based on PET and Red Mud Residues as Catalyst for Organic Removal from Water." *Journal of Hazardous Materials*, Vol. 314, No. Agustus, Hal. 304–311.
- Bérubé, F., dan Kaliaguine, S. (2008), "Calcination and Thermal Degradation Mechanisms of Triblock Copolymer Template in SBA-15 Materials." *Microporous and Mesoporous Materials*, Vol. 115, No. 3, Hal. 469–479.
- Borges, M.E., dan Díaz, L. (2012), "Recent Developments on Heterogeneous Catalysts for Biodiesel Production by Oil Esterification and Transesterification Reactions: A Review." *Renewable and Sustainable Energy Reviews*, Vol. 16, No. 5, Hal. 2839–2849.

- Borra, C.R., Pontikes, Y., Binnemans, K., dan Van Gerven, T. (2015), "Leaching of Rare Earths from Bauxite Residue (Red Mud)." *Minerals Engineering*, , Sustainable Minerals, Vol. 76, No. Mei, Hal. 20–27.
- Cakici, A.I., Yanik, J., UÇar, S., Karayildirim, T., dan Anil, H. (2004), "Utilization of Red Mud as Catalyst in Conversion of Waste Oil and Waste Plastics to Fuel." *Journal of Material Cycles and Waste Management*, Vol. 6, No. 1, Hal. 20–26.
- Carmo Jr., A.C., de Souza, L.K.C., da Costa, C.E.F., Longo, E., Zamian, J.R., dan da Rocha Filho, G.N. (2009), "Production of Biodiesel by Esterification of Palmitic Acid over Mesoporous Aluminosilicate Al-MCM-41." *Fuel*, Vol. 88, No. 3, Hal. 461–468.
- Cejka, J., Corma, A., dan Zones, S. (2010), Zeolites and Catalysis: Synthesis, Reactions and Applications, John Wiley & Sons,
- Chabukswar, D.D., Heer, P.K.K., dan Gaikar, V.G. (2013), "Esterification of Palm Fatty Acid Distillate Using Heterogeneous Sulfonated Microcrystalline Cellulose Catalyst and Its Comparison with H₂SO₄ Catalyzed Reaction." *Industrial & Engineering Chemistry Research*, Vol. 52, No. 22, Hal. 7316– 7326.
- Chen, H., Wang, G., Xu, Y., Chen, Z., dan Yin, F. (2016), "Green Process for Supercritical Water Oxidation of Sewage Sludge with Red Mud as CO₂ Absorbent." *Journal of Environmental Chemical Engineering*, Vol. 4, No. 3, Hal. 3065–3074.
- Chester, A.W., dan Derouane, E.G. (2009), Zeolite Characterization and Catalysis, Springer,
- Chorkendorff, I., dan Niemantsverdriet, J.W. (2017), *Concepts of Modern Catalysis* and Kinetics, John Wiley & Sons,
- Corro, G., Tellez, N., Jimenez, T., Tapia, A., Banuelos, F., dan Vazquez-Cuchillo, O. (2011), "Biodiesel from Waste Frying Oil. Two Step Process Using Acidified SiO₂ for Esterification Step." *Catalysis Today*, Special Issue on Selected Contributions of the Second International Symposium on New Catalytic Materials, Cancun (Mexico), August 2009, Vol. 166, No. 1, Hal. 116–122.
- Cundy, C.S., dan Cox, P.A. (2005), "The Hydrothermal Synthesis of Zeolites: Precursors, Intermediates and Reaction Mechanism." *Microporous and Mesoporous Materials*, Vol. 82, No. 1–2, Hal. 1–78.
- Dang, T.H., Chen, B.-H., dan Lee, D.-J. (2013), "Application of Kaolin-Based Catalysts in Biodiesel Production via Transesterification of Vegetable Oils

in Excess Methanol." *Bioresource Technology*, , Special Issue: IBS 2012 & Special Issue: IFIBiop, Vol. 145, No. Oktober, Hal. 175–181.

- David I. Mostofsky, Shlomo Yehuda, dan Norman Salem (2001), *Fatty Acids* (*Physiological and Behavioral Functions*), Humana Press, Totowa, New Jersey.
- Demirbas, A. (2009), "Biodiesel from Waste Cooking Oil via Base-Catalytic and Supercritical Methanol Transesterification." *Energy Conversion and Management*, Vol. 50, No. 4, Hal. 923–927.
- Derewinski, M., Machowska, M., dan Sarv, P. (2002), "Acidity and Thermal Stability of Mesoporous Aluminosilicates Synthesized by Cationic Surfactant Route." Dalam *Studies in Surface Science and Catalysis*, diedit oleh G. Giordano and F. Testa R. Aiello, 142:1157–1164.
- Nascimento, L.A.S., Tito, L.M., Angélica, R.S., Da Costa, C.E., Zamian, J.R., dan da Rocha Filho, G.N. (2011), "Esterification of Oleic Acid over Solid Acid Catalysts Prepared from Amazon Flint Kaolin." *Applied Catalysis B: Environmental*, Vol. 101, No. 3, Hal. 495–503.
- Doyle, A.M., Albayati, T.M., Abbas, A.S., dan Alismaeel, Z.T. (2016), "Biodiesel Production by Esterification of Oleic Acid over Zeolite Y Prepared from Kaolin." *Renewable Energy*, Vol. 97, No. November, Hal. 19–23.
- Du, C., dan Yang, H. (2012), "Investigation of the Physicochemical Aspects from Natural Kaolin to Al-MCM-41 Mesoporous Materials." *Journal of Colloid* and Interface Science, Vol. 369, No. 1, Hal. 216–22.
- Eka Putra Ramdhani (2015), "Sintesis Alumina Mesopori"Kimia-FMIPA, ITS, Surabaya,
- Emeis, C.A. (1993), "Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts." *Journal of Catalysis*, Vol. 141, No. 2, Hal. 347–354.
- Fadhil, A.B., Ahmed, K.M., dan Dheyab, M.M. (2017), "Silybum Marianum L. Seed Oil: A Novel Feedstock for Biodiesel Production." *Arabian Journal of Chemistry*, Vol. 10, Supplement 1, No. Februari, Hal. 683–690.
- Farag, H., El-Maghraby, A., Taha, N.A., dan others (2012), "Transesterification of Esterified Mixed Oil for Biodiesel Production." *International Journal of Chemical and Biochemical Sciences*, Vol. 2, Hal. 105–114.
- Flanigen, E.M., Khatami, H., dan Szymanski, H.A. (1971), "Infrared Structural Studies of Zeolite Frameworks." ACS Publications,

- Flanigen, E.M., Khatami, H., dan Szymanski, H.A. (1974), "Infrared Structural Studies of Zeolite Frameworks." Dalam Molecular Sieve Zeolites-I, 101:201–229.
- Gan, S., Ng, H.K., Ooi, C.W., Motala, N.O., dan Ismail, M.A.F. (2010), "Ferric Sulphate Catalysed Esterification of Free Fatty Acids in Waste Cooking Oil." *Bioresource Technology*, Vol. 101, No. 19, Hal. 7338–7343.
- Gök, A., Omastová, M., dan Prokeš, J. (2007), "Synthesis and Characterization of Red Mud/Polyaniline Composites: Electrical Properties and Thermal Stability." *European Polymer Journal*, Vol. 43, No. 6, Hal. 2471–2480.
- Gokulakrishnan, N., Pandurangan, A., dan Sinha, P.K. (2007), "Esterification of Acetic Acid with Propanol Isomers under Autogeneous Pressure: A Catalytic Activity Study of Al-MCM-41 Molecular Sieves." *Journal of Molecular Catalysis A: Chemical*, Vol. 263, No. 1, Hal. 55–61.
- Haber, J., Block, J., dan Delmon, B. (1995), "Manual of Methods and Procedures for Catalyst Characterization (Technical Report)." *Pure and Applied Chemistry*, Vol. 67, No. 8–9, Hal. 1257–1306.
- Hartati, Didik Prasetyoko, Mardi Santoso, Hasliza Bahruji, dan Sugeng Triwahyono (2014), "Highly Active Aluminosilicates with a Hierarchical Porous Structure for Acetalization of 3,4-Dimethoxybenzaldehyde." *Jurnal Teknologi (Science & Engineering*, Vol., Mei, Hal, 25–30
- Hartati, H., Prasetyoko, D., Santoso, M., Bahruji, H., dan Triwahyono, S. (2014), "Highly Active Aluminosilicates with a Hierarchical Porous Structure for Acetalization of 3, 4-Dimethoxybenzaldehyde." *Jurnal Teknologi*, Vol. 69, No. 5, Hal. 25–30.
- Holilah, H., Prasetyoko, D., Oetami, T.P., Santosa, E.B., Zein, Y.M., Bahruji, H., Fansuri, H., Ediati, R., dan Juwari, J. (2015), "The Potential of Reutealis Trisperma Seed as a New Non-Edible Source for Biodiesel Production." *Biomass Conversion and Biorefinery*, Vol. 5, No. 4, Hal. 347–353.
- Inada, M., Eguchi, Y., Enomoto, N., dan Hojo, J. (2005), "Synthesis of Zeolite from Coal Fly Ashes with Different Silica–alumina Composition." *Fuel*, Vol. 84, No. 2–3, Hal. 299–304.
- International, A. (2005), Official Methods of Analysis of AOAC International, AOAC International,
- Jia-kuan, Y., Zhang, D., Jian, H., Guo, X., dan Bo, X. (2005), "Study on Crystallization Behavior of Glass-Ceramics Mostly Made from Red Mud and Fly Ash [J]." *Materials Science and Technology*, Vol. 6, Hal. 018.

- Johnson, E.B.G., dan Arshad, S.E. (2014), "Hydrothermally Synthesized Zeolites Based on Kaolinite: A Review." *Applied Clay Science*, Vol. 97–98, No. Agustus, Hal. 215–221.
- Kansedo, J., dan Lee, K.T. (2013), "Process Optimization and Kinetic Study for Biodiesel Production from Non-Edible Sea Mango (Cerbera Odollam) Oil Using Response Surface Methodology." *Chemical Engineering Journal*, Vol. 214, No. Januari, Hal. 157–164.
- Kirumakki, S.R., Nagaraju, N., dan Narayanan, S. (2004), "A Comparative Esterification of Benzyl Alcohol with Acetic Acid over Zeolites Hβ, HY and HZSM5." *Applied Catalysis A: General*, Vol. 273, No. 1, Hal. 1–9.
- Kusumaningtyas, D.T. (2016), "Esterifikasi Asam Asetat Dengan Benzil Alkohol Menggunakan Katalis ZSM-5 Mesopori"Institut Teknologi Sepuluh Nopember, Surabaya.
- Lesthaeghe, D., Vansteenkiste, P., Verstraelen, T., Ghysels, A., Kirschhock, C.E., Martens, J.A., Speybroeck, V.V., dan Waroquier, M. (2008), "MFI Fingerprint: How Pentasil-Induced IR Bands Shift during Zeolite Nanogrowth." *The Journal of Physical Chemistry C*, Vol. 112, No. 25, Hal. 9186–9191.
- Li, W., dan Zhao, D. (2013), "An Overview of the Synthesis of Ordered Mesoporous Materials." *Chemical Communications*, Vol. 49, No. 10, Hal. 943–946.
- Li, X., Li, B., Xu, J., Wang, Q., Pang, X., Gao, X., Zhou, Z., dan Piao, J. (2010), "Synthesis and Characterization of Ln-ZSM-5/MCM-41 (Ln = La, Ce) by Using Kaolin as Raw Material." *Applied Clay Science*, Vol. 50, No. 1, Hal. 81–86.
- Linssen, T., Mees, F., Cassiers, K., Cool, P., Whittaker, A., dan Vansant, E.F. (2003), "Characterization of the Acidic Properties of Mesoporous Aluminosilicates Synthesized from Leached Saponite with Additional Aluminum Incorporation." *The Journal of Physical Chemistry B*, Vol. 107, No. 33, Hal. 8599–8606.
- Liu, Q., Xin, R., Li, C., Xu, C., dan Yang, J. (2013), "Application of Red Mud as a Basic Catalyst for Biodiesel Production." *Journal of Environmental Sciences*, Vol. 25, No. 4, Hal. 823–829.
- Liu, W., Yang, J., dan Xiao, B. (2009), "Application of Bayer Red Mud for Iron Recovery and Building Material Production from Alumosilicate Residues." *Journal of Hazardous Materials*, Vol. 161, No. 1, Hal. 474–78.

- Liu, Y., Lotero, E., dan Goodwin, J.G. (2006), "A Comparison of the Esterification of Acetic Acid with Methanol Using Heterogeneous versus Homogeneous Acid Catalysis." *Journal of Catalysis*, Vol. 242, No. 2, Hal. 278–86.
- Lu, C., Lv, J., Xu, L., Guo, X., Hou, W., Hu, Y., dan Huang, H. (2009), "Crystalline Nanotubes of γ-AlOOH and γ-Al₂O₃: Hydrothermal Synthesis, Formation Mechanism and Catalytic Performance." *Nanotechnology*, Vol. 20, No. 21,
- Luo, Y., Hou, Z., Li, R., dan Zheng, X. (2008), "Synthesis of Ultrastable Ordered Mesoporous Aluminosilicates Molecular Sieves with 'hard Template." *Microporous and Mesoporous Materials*, Vol. 110, No. 2–3, Hal. 583–589.
- Miao, S., Liu, Z., Ma, H., Han, B., Du, J., Sun, Z., dan Miao, Z. (2005), "Synthesis and Characterization of Mesoporous Aluminosilicate Molecular Sieve from K-Feldspar." *Microporous and Mesoporous Materials*, Vol. 83, No. 1–3, Hal. 277–282.
- Naik, B., dan Ghosh, N.N. (2009), "A Review on Chemical Methodologies for Preparation of Mesoporous Silica and Alumina Based Materials." *Recent Patents on Nanotechnology*, Vol. 3, No. 3, Hal. 213–224.
- Nan, X., Zhang, T., Liu, Y., dan Dou, Z. (2010), "Analysis of Comprehensive Utilization of Red Mud in China." *The Chinese Journal of Process Engineering*, Vol. 10, No. 1, Hal. 264–270.
- Narasimharao, K., Lee, A., dan Wilson, K. (2007), "Catalysts in Production of Biodiesel: A Review." *Journal of Biobased Materials and Bioenergy*, Vol. 1, No. 1, Hal. 19–30.
- Nur Syazwani, O., Lokman Ibrahim, M., Wahyudiono, Kanda, H., Goto, M., dan Taufiq-Yap, Y.H. (2017), "Esterification of High Free Fatty Acids in Supercritical Methanol Using Sulfated Angel Wing Shells as Catalyst." *The Journal of Supercritical Fluids*, Vol. 124, No. Juni, Hal. 1–9.
- Nyquist, R.A., dan Kagel, R.O. (2012), Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts: Infrared Spectra of Inorganic Compounds, Vol. Vol. 4, Academic press,
- Perego, C., dan Villa, P. (1997), "Catalyst Preparation Methode." *Catalysis Today*, Vol. 34, , Hal. 281–305.
- Pérez-Ramírez, J., Christensen, C.H., Egeblad, K., Christensen, C.H., dan Groen, J.C. (2008), "Hierarchical Zeolites: Enhanced Utilisation of Microporous Crystals in Catalysis by Advances in Materials Design" Vol. 37, No. 11, Hal. 2530–2542.

- Platon, A., dan Thomson, W.J. (2003), "Quantitative Lewis/Brönsted Ratios Using DRIFTS." *Industrial & Engineering Chemistry Research*, Vol. 42, No. 24, Hal. 5988–5992.
- Pope, C.G. (1997), "X-Ray Diffraction and the Bragg Equation." J. Chem. Educ, Vol. 74, No. 1, Hal. 129.
- Pulford, I.D., Hargreaves, J.S.J., Durišová, J., Kramulova, B., Girard, C., Balakrishnan, M., Batra, V.S., dan Rico, J.L. (2012), "Carbonised Red Mud–A New Water Treatment Product Made from a Waste Material." *Journal of Environmental Management*, Vol. 100, No. Juni, Hal. 59–64.
- Purova, R., Narasimharao, K., Ahmed, N.S.I., Al-Thabaiti, S., Al-Shehri, A., Mokhtar, M., dan Schwieger, W. (2015), "Pillared HMCM-36 Zeolite Catalyst for Biodiesel Production by Esterification of Palmitic Acid." *Journal of Molecular Catalysis A: Chemical*, Vol. 406, No. September, Hal. 159–167.
- Qoniah, I., Prasetyoko, D., Bahruji, H., Triwahyono, S., Jalil, A.A., Suprapto, Hartati, dan Purbaningtias, T.E. (2015), "Direct Synthesis of Mesoporous Aluminosilicates from Indonesian Kaolin Clay without Calcination." *Applied Clay Science*, Vol. 118, No. Desember, Hal. 290–294.
- Rao, B.V.S.K., Chandra Mouli, K., Rambabu, N., Dalai, A.K., dan Prasad, R.B.N. (2011), "Carbon-Based Solid Acid Catalyst from de-Oiled Canola Meal for Biodiesel Production." *Catalysis Communications*, Vol. 14, No. 1, Hal. 20– 26.
- Rayalu, S., Meshram, S.U., dan Hasan, M.Z. (2000), "Highly Crystalline Faujasitic Zeolites from Flyash." *Journal of Hazardous Materials*, Vol. 77, No. 1–3, Hal. 123–131.
- Rukunudin, I.H., White, P.J., Bern, C.J., dan Bailey, T.B. (1998), "A Modified Method for Determining Free Fatty Acids from Small Soybean Oil Sample Sizes." *Journal of the American Oil Chemists' Society*, Vol. 75, No. 5, Hal. 563–568.
- Sani, Y.M., Daud, W.M.A.W., dan Abdul Aziz, A.R. (2014), "Activity of Solid Acid Catalysts for Biodiesel Production: A Critical Review." *Applied Catalysis A: General*, Vol. 470, No. Januari, Hal. 140–161.
- Serrano, D., Pizarro, P., dan others (2013), "Synthesis Strategies in the Search for Hierarchical Zeolites." *Chemical Society Reviews*, Vol. 42, No. 9, Hal. 4004–4035.

- Shigemoto, N., Hayashi, H., dan Miyaura, K. (1993), "Selective Formation of Na-X Zeolite from Coal Fly Ash by Fusion with Sodium Hydroxide prior to Hydrothermal Reaction." *Journal of Materials Science*, Vol. 28, No. 17, Hal. 4781–4786.
- Silitonga, A.S., Ong, H.C., Mahlia, T.M.I., Masjuki, H.H., dan Chong, W.T. (2013), "Characterization and Production of Ceiba Pentandra Biodiesel and Its Blends." *Fuel*, Vol. 108, No. Juni, Hal. 855–858.
- Simanjuntak, W., Sembiring, S., Manurung, P., Situmeang, R., dan Low, I.M. (2013), "Characteristics of Aluminosilicates Prepared from Rice Husk Silica and Aluminum Metal." *Ceramics International*, Vol. 39, No. 8, Hal. 9369–9375.
- Soltani, S., Rashid, U., Yunus, R., dan Taufiq-Yap, Y.H. (2016), "Biodiesel Production in the Presence of Sulfonated Mesoporous ZnAl₂O₄ Catalyst via Esterification of Palm Fatty Acid Distillate (PFAD)." *Fuel*, Vol. 178, No. Agustus, Hal. 253–262.
- Sun, C., Zhang, F., Wang, A., Li, S., dan Cheng, F. (2015), "Direct Synthesis of Mesoporous Aluminosilicate Using Natural Clay from Low-Grade Potash Ores of a Salt Lake in Qinghai, China, and Its Use in Octadecylamine Adsorption." *Applied Clay Science*, Vol. 108, No. Mei, Hal. 123–127.
- Sushil, S., dan Batra, V.S. (2012), "Modification of Red Mud by Acid Treatment and Its Application for CO Removal." *Journal of Hazardous Materials*, Vol. 203–204, No. Februari, Hal. 264–273.
- Tanaka, S., Okada, H., Nakatani, N., Maruo, T., Nishiyama, N., dan Miyake, Y. (2009), "Mesoporous Aluminosilicates Assembled from Dissolved LTA Zeolite and Triblock Copolymer in the Presence of Tetramethylammonium Hydroxide." *Journal of Colloid and Interface Science*, Vol. 333, No. 2, Hal. 491–496.
- Wahyuni, T. (2010), "Pengaruh Suhu Fusi Terhadap Pembentukan Zeolit A Dari Abu Layang Batubara Paiton, Influence Of Fused In The Formation Of Zeolite A From Of Coal Fly Ash Paiton." Undergraduate Theses, Chemistry Departement, 549.68 Tri p, 2009, Vol., Januari,
- Wulandari, F. (2016), "Sintesis Dan Karakterisasi Aluminosilkat Mesopori Dari Red Mud Pulau Bintan Sebagai Sumber Alumina"Kimia-FMIPA, ITS, Surabaya,
- Xia, Y., dan Mokaya, R. (2006), "Molecularly Ordered Layered Aluminosilicate-Surfactant Mesophases and Their Conversion to Hydrothermally Stable Mesoporous Aluminosilicates." *Microporous and Mesoporous Materials*, Vol. 94, No. 1–3, Hal. 295–303.

- Xie, W., dan Zhao, L. (2014), "Heterogeneous CaO–MoO₃–SBA-15 Catalysts for Biodiesel Production from Soybean Oil." *Energy Conversion and Management*, Vol. 79, No. Maret, Hal. 34–42.
- Xu, L., Liu, Z., Li, Z., Liu, J., Ma, Y., Guan, J., dan Kan, Q. (2011), "Non-Crystalline Mesoporous Aluminosilicates Catalysts: Synthesis, Characterization and Catalytic Applications." *Journal of Non-Crystalline Solids*, Vol. 357, No. 4, Hal. 1335–1341.
- Yang, J., Zhang, D., Hou, J., He, B., dan Xiao, B. (2008), "Preparation of Glass-Ceramics from Red Mud in the Aluminium Industries." *Ceramics International*, Vol. 34, No. 1, Hal. 125–130.
- Yunus, N.B.M., Roslan, N.A.B., Yee, C.S., dan Abidin, S.Z. (2016), "Esterification of Free Fatty Acid in Used Cooking Oil Using Gelular Exchange Resin as Catalysts." *Procedia Engineering*, Proceeding of 4th International Conference on Process Engineering and Advanced Materials (ICPEAM 2016), Vol. 148, Hal. 1274–1281.
- Zeng, D., Ou, D.-B., Wei, T., Ding, L., Liu, X.-T., Hu, X.-L., Li, X., dan Zheng, Q.-S. (2013), "Collagen/β1 Integrin Interaction Is Required for Embryoid Body Formation during Cardiogenesis from Murine Induced Pluripotent Stem Cells." *BMC Cell Biology*, Vol. 14, No. Januari, Hal. 5.
- Zhang, Z., Han, Y., Zhu, L., Wang, R., Yu, Y., Qiu, S., Zhao, D., dan Xiao, F.-S. (2001), "Strongly Acidic and High-Temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure." *Angewandte Chemie International Edition*, Vol. 40, No. 7, Hal. 1258–1262.
- Zhao, D., Nie, C., Zhou, Y., Xia, S., Huang, L., dan Li, Q. (2001), "Comparison of Disordered Mesoporous Aluminosilicates with Highly Ordered Al-MCM-41 on Stability, Acidity and Catalytic Activity." *Catalysis Today*, , Nanomaterials in Catalysis, Vol. 68, No. 1–3, Hal. 11–20.
- Zhong, L., dan Zhang, Y.F. (2008), "Sub Molten Salt Method Recycling Red Mud." *The Chinese Journal of Nonferrous Metals*, Vol. 18, , Hal. 70–73.
- Zhou, C., Sun, T., Gao, Q., Alshameri, A., Zhu, P., Wang, H., Qiu, X., Ma, Y., dan Yan, C. (2014), "Synthesis and Characterization of Ordered Mesoporous Aluminosilicate Molecular Sieve from Natural Halloysite." *Journal of the Taiwan Institute of Chemical Engineers*, Vol. 45, No. 3, Hal. 1073–1079.

Zhou, J., Liu, Z., Li, L., Wang, Y., Gao, H., Yang, W., Xie, Z., dan Tang, Y. (2013), "Hierarchical Mesoporous ZSM-5 Zeolite with Increased External Surface Acid Sites and High Catalytic Performance in O-Xylene Isomerization." *Chinese Journal of Catalysis*, Vol. 34, No. 7, Hal. 1429–1433.

LAMPIRAN

1. Preparasi Sampel Red Mud (RM) Red mud L Dihaluskan menggunakan miling Butiran halus red mud Dihaluskan dengan mortar dan diayak Red mud halus Dikeringkan dalam oven, $T = 105^{\circ}C$ t = 4 jam Red mud kering

2. Reaksi Fusi Alkali Red Mud dan NaOH

4. Sintesis Aluminosilikat Mesopori

5. Pertukaran Kation dan Uji Keasaman pada Permukaan Produk Padatan dengan Metode Adsorpsi Piridin

6. Uji Aktivitas Katalis dalam Reaksi Esterifikasi Minyak Kemiri Sunan

7. Perhitungan Massa Campuran Sintesis Aluminosilikat Mesopori

Perbandingan Komposisi molar campuran:

 $1 \text{ SiO}_2: 0,0125 \text{ Al}_2\text{O}_3: 0,2 \text{ TPAOH}: 38 \text{ H}_2\text{O}$ $\text{SiO}_2/\text{Al}_2\text{O}_3 = 80$

Semua dibagi dengan 5

Produk fusi yang digunakan adalah FF-450, dimana :

 $Al_2O_3 = 32 \%$

 $SiO_2 = 40 \%$

Perhitungan massa untuk sintesis

 0,0025 mol Al₂O₃ Massa Al₂O₃ = 0,0025 x 101,96 = 0,2549 gram

> Supplai dari *red mud* 32 % Massa *red mud* = 0,2549 / 32%= 0,7965 gram

• 0,2 mol SiO₂ Massa SiO₂ = 0,2 x 60,09 = 12,018 gram

> Suplai dari Red Mud 40 % Massa SiO₂ dari red mud = $40\% \ge 0,7965$ = 0,3186 gram Butuh SiO₂ dari Ludox = 12,018 - 0,3186= 11,699 gram

Massa Ludox 30% yang ditambahkan = 11,699 / 30% = 38,997 gram

0,04 TPAOH
 Massa TPAOH = 0,04 x 203,36
 = 8,3144 gram

Massa TPAOH 40 % yang ditambahkan = 8,3144 / 40%= 20,336 7,6 H₂O Massa H₂O = 7,6 x 18 = 136,8 gram

> Telah disuplai dari Ludox $(70\% H_2O) = 27,298$ gram TPAOH $(60\% H_2O) = 12,201$ gram

 $H_2O \text{ yang ditambahkan} = 136,8 - 39,499$ = 97,299 gram

 CTABr (Rasio SiO₂/CTABr = 3,85) Mol CTABr = 0,2 / 3,85 = 0,0519 mol Massa CTABr = 0,0519 x 364,45 = 18,932 gram

8. Karakterisasi XRD

1.2.Peak List:	(Bookmark 3)

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
12.3034	420.62	0.0836	7.19416	42.38
18.2876	992.47	0.0669	4.85133	100.00
19.8406	184.38	0.1673	4.47495	18.58
20.2965	461.84	0.1338	4.37546	46.53
20.5401	267.77	0.1171	4.32411	26.98
21.5124	292.74	0.1673	4.13082	29.50
24.8493	270.10	0.1673	3.58317	27.21
26.6074	151.47	0.1338	3.35026	15.26
26.8784	104.30	0.1004	3.31710	10.51
33.6644	55.62	0.5353	2.66235	5.60
34.9585	132.42	0.1673	2.56671	13.34
35.9254	166.95	0.1673	2.49982	16.82
36.5345	146.56	0.2007	2.45953	14.77
37.1237	156.80	0.1673	2.42183	15.80
37.6298	203.31	0.2007	2.39041	20.49
38.3712	185.48	0.2007	2.34592	18.69
39.3155	114.89	0.2676	2.29172	11.58
40.1093	79.77	0.2007	2.24818	8.04
41.6598	90.61	0.2007	2.16802	9.13
44.1745	94.75	0.2007	2.05027	9.55
45.4624	123.61	0.1338	1.99513	12.45
47.5557	22.34	0.8029	1.91209	2.25

1.3. Main Graphics, Analyze View: (Bookmark 2)

1.4.Peak List:	(Bookmark 3)
TO THE CHILLIDGE	Doominain SI

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
14.1376	101.27	0.2007	6.26465	20.14
18.5553	72.27	0.2007	4.78192	14.37
22.5027	39.18	0.1673	3.95122	7.79
23.3677	82.97	0.1338	3.80689	16.50
24.5767	248.51	0.3011	3.62228	49.43
26.1128	87.91	0.1673	3.41258	17.49
27.7420	68.91	0.2007	3.21577	13.71
29.9008	247.33	0.2007	2.98833	49.19
30.1827	363.28	0.0836	2.96105	72.25
31.2265	145.65	0.2007	2.86441	28.97
31.8778	109.42	0.2007	2.80737	21.76
33.2963	111.66	0.2342	2.69094	22.21
34.3106	222.12	0.2007	2.61368	44.18
34.6185	386.43	0.1004	2.59113	76.86
35.3760	315.89	0.2342	2.53737	62.83

35.6483	217.17	0.1004	2.51861	43.19
36.6516	59.01	0.4015	2.45193	11.74
38.1632	502.78	0.0669	2.35823	100.00
39.9416	137.84	0.1673	2.25723	27.41
41.1553	87.79	0.2007	2.19342	17.46
41.5843	141.33	0.1673	2.17178	28.11
43.1301	79.82	0.2676	2.09746	15.88
44.5902	49.30	0.1673	2.03211	9.80
46.5982	123.39	0.1338	1.94912	24.54
47.1493	72.17	0.2007	1.92762	14.35
48.3055	144.47	0.1673	1.88414	28.73

1.5.Main Graphics, Analyze View: (Bookmark 2)

1.6.Peak L	ist: (Boo	kmark	3)
------------	-----------	-------	----

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
3.8224	271.79	0.4080	23.09704	100.00
21.4813	26.08	0.0900	4.13332	9.59

9. Analisa XRF

			Samp	e ident			
400 0							
100 0	<u></u>						T. T. T. T. M.
	I						
			Applicat	i on <standar< td=""><td>dless></td><td></td><td></td></standar<>	dless>		
			Sequer	ice Average	of 2		
		Measuren	nent period - st	art 19-Jul-20)16 10:24:29		
		Measure	ment period - e	nd 19-Jul-20)16 10:40:16		
			Posit	ion 6			
							-
Compound	AI2O3	SiO2	P205	K20	CaO	TiO2	V205
Compound Conc	Al2O3 40 +/- 0.7	SiO2 24 +/- 0.2	P2O5 7.1 +/- 0.1	K20 9.81 +/- 0.23	CaO 11.1 +/- 0.2	TiO2 0.65 +/- 0.03	V205 0.80 +/- 0.06
Compound Conc Unit	AI2O3 40 +/- 0.7 %	SiO2 24 +/- 0.2 %	P2O5 7.1 +/- 0.1 %	K20 9.81 +/- 0.23 %	CaO 11.1 +/- 0.2 %	TiO2 0.65 +/- 0.03 %	V2O5 0.80 +/- 0.06 %
Compound Conc Unit	Al2O3 40 +/- 0.7 %	SiO2 24 +/- 0.2 %	P2O5 7.1 +/- 0.1 %	K20 9.81 +/- 0.23 %	CaO 11.1 +/- 0.2 %	TiO2 0.65 +/- 0.03 %	V2O5 0.80 +/- 0.06 %
Compound Conc Unit	AI2O3 40 +/- 0.7 %	SiO2 24 +/- 0.2 %	P2O5 7.1 +/- 0.1 %	K20 9.81 +/- 0.23 %	CaO 11.1 +/- 0.2 %	TiO2 0.65 +/- 0.03 %	V205 0.80 +/- 0.06 %
Compound Conc Unit Compound	Al2O3 40 +/- 0.7 % Cr2O3	SiO2 24 +/- 0.2 % Fe2O3	P2O5 7.1 +/- 0.1 %	K20 9.81 +/- 0.23 %	CaO 11.1 +/- 0.2 % Ga2O3	TiO2 0.65 +/- 0.03 % As2O3	V2O5 0.80 +/- 0.06 % Yb2O3
Compound Conc Unit Compound Conc	Al2O3 40 +/- 0.7 % Cr2O3 0.89 +/- 0.03	SiO2 24 +/- 0.2 % Fe2O3 2.5 +/- 0.04	P2O5 7.1 +/- 0.1 % NiO 0.98 +/- 0.07	K20 9.81 +/- 0.23 % CuO 0.74 +/- 0.03	CaO 11.1 +/- 0.2 % Ga2O3 0.54 +/- 0.02	TiO2 0.65 +/- 0.03 % As2O3 0.60 +/- 0.04	V205 0.80 +/- 0.06 % Yb203 0.7 +/- 0.002

19-Jul-2016 11:24:38

Sample results - Averages

Page 1

Sample ident 450 C -不丁 个

Application	<standardless></standardless>	
Sequence	Average of 2	
Measurement period - start	19-Jul-2016 10:22:08	
Measurement period - end	19-Jul-2016 10:38:05	
Position	5	

Compound	AI2O3	SiO2	P2O5	K20	CaO	TiO2
Conc	32 +/- 0.4	40.3 +/- 0.3	5.8 +/- 0.2	8.51 +/- 0.15	4.52 +/- 0.08	2.3 +/- 0.07
Unit	%	%	%	%	%	%

Compound	V2O5	Cr2O3	Fe2O3	NiO	CuO	Ga2O3
Conc	0.54 +/- 0.004	0.90 +/- 0.02	1.73 +/- 0.07	0.72 +/- 0.03	0.38 +/- 0.02	0.33 +/- 0.02
Unit	%	%	%	%	%	%

Compound	As2O3	Br	Er2O3
Conc	0.40 +/- 0.0009	0.24 +/- 0.004	0.95 +/- 0.006
Unit	%	%	%

Sample results - Averages

Page 1

19-Jul-2016 11:25:13

Sample results - Averages

Page 1

			Samp	le ident			
550 C	· · · · _* · · ·	· · · · · · · · · · · · · · · · · · ·			·	· · · _주 · · · ·	<u>*</u>
			Applicat	ion <standard< th=""><th>dless></th><th></th><th></th></standard<>	dless>		
			Sequer	nce Average o	of 2		
		Measuren	nent period - st	tart 19-Jul-20	16 10:17:53		
		Measure	nent period - e	and 19-Jul-20	16 10:31:01		
			Posit	ion 3			
Compound	AI2O3	SiO2	P205	K20	CaO	TiO2	V205
Conc	35 +/- 0.01	21 +/- 0.05	6.9 +/- 0.096	19.0 +/- 0.02	5.5 +/- 0.04	2.7 +/- 0.098	1.1 +/- 0.02
Unit	%	%	%	%	%	%	%
				-			
	0-000	11-0	E-000	Nio	00	0-000	4-000
Compound	Cr2O3	MnO	Fe2O3	NiO	CuO	Ga2O3	As2O3

Compound	PbO
Conc	0.6 +/- 0.05
Unit	%

19-Jul-2016 11:25:33

Sample results - Averages

Page 1

Compound	Fe2O3	NiO	CuO	Ga2O3	As2O3	PbO
Conc	2.5 +/- 0.02	1.6 +/- 0.06	1.0 +/- 0.03	0.92 +/- 0.02	1.4 +/- 0.04	0.8 +/- 0.02
Unit	%	%	%	%	%	%

19-Jul-2016 11:25:53

Sample results - Averages

			Sample id	ent		
650	С					
						<u>*</u>
			Application	<standardless></standardless>		
			Sequence	Average of 2	_	
		Measuremen	t period - start	19-Jul-2016 10:13:2	в	
		Measuremer	t period - end	19-Jul-2016 10:26:4	4	
			Position	1		
Compound	AI2O3	SiO2	P2O5	K20	CaO	V2O5
Conc	42 +/- 0.9	27 +/- 0.4	14 +/- 0.6	3.4 +/- 0.09	6.78 +/- 0.007	0.92 +/- 0.00
11	%	%	%	%	%	%
Unit						
Unit						
Unit						
Compound	Cr2O3	Fe2O3	NiO	CuO	Ga2O3	As203
Compound Conc	Cr2O3 1.2 +/- 0.03	Fe2O3 1.1 +/- 0.07	NiO	CuO 0.70 +/- 0.02	Ga2O3 0.53 +/- 0.00097	As2O3

Compound	PbO
Conc	0.4 +/- 0.08
Unit	%

86

Page 1

11. Analisa spektroskopi FTIR

3 SHIMADZU

Comment; red mud Date/Time; 6/19/2017 11:36:33 AM No. of Scans; Resolution: Apodization;

(SHIMADZU

Comment; FF-450 Date/Time; 6/19/2017 11:54:53 AM No. of Scans; Resolution: Apodization;

() SHIMADZU

Comment; ASM1 Date/Time; 4/6/2017 10:59:24 PM No. of Scans; Resolution: Apodization;

12. Adsorpsi-Desorpsi N2

		Cuantachromes ASi Acqu C 1994-2012	awin™- Automa isition and Redu Quantachrome version 3.0	ted Gas Sorption De uction Instruments	ita	Quantachrome
nalysis perator: ample ID: ample Desc: ample Weight:	Lab. Energi ITS EI-0679 N ASM K	Date:2016/12/08 Filename: Comment: Instrument:	Report Operate Iq_phisy Autosor	V: Lab. Energi IT _st1_2016_12_08_08 b IQ Station 1	S Date: 8_06_16E+0679 N AS	2016/12/09 M K.qps
prox. Outgas Time alysis gas:	Nitrogen	Final Outgas Non-ideality:	Temp.: 300 °C 6.58e-00	5 1/Torr	Extended info: CellType:	Available 9mm w/o rod
alysis lime:	10:22 hr:min	Bath temp.:	77.35 K		VoidVol Remeasure	
id Vol. Mode:	Januaru Vandaru	Cold Zone V	4 99999		Warm Zone V:	15 9579 00
	FIG MOREAGE	BJH Pore Size	Distributio	on Adsorption	n	10.5075 00
		Data Rodu	tion Paran	notore Data -		
	Thermal Transpirat	ion: on Eff. m	ol, diameter (D)	13.54 Å	Eff. cell stem diam.	(d): 4 0000 mm
Method	Calc, method; de B	Der	101		and a state a state of	all stand tour
JH/DH method	Moving pt. avg.: of	Ignor	ing P-tags below	v 0.35 P/Po		
	Nitrogon	Teme	Temperature 77.350K			
dsorbate	nitrogen	Temp	erature	77.350K		
dsorbate	Molec. Wt.: 28.01	3 Cross	stribution	Adsorption	Liquid Density:	0.808 g/cc
Radius [Å]	Molec. Wt.: 28.01 BJ Pore Volume [cc/g]	3 Cross H Pore Size Di Pore Surf Area [m ² ig]	dV(r) [cc/Å/g]	Adsorption [dS(r) [m ³ Å/g]	Liquid Density: Data dV(logr) [cc/g]	0.808 g/cc dS(logr) [cc/g]
Radius [Å]	Molec. Wt.: 28.01 BJ Pore Volume [cc/g]	3 Cross H Pore Size Di Pore Surf Area [m ² /g]	dV(r) [cc/Å/g]	Adsorption [dS(r) [m ³ [Åig]	Liquid Density: Data dV(logr) [ccig] 1. 40902-01	0.808 g/bc dS(logr) [cc/g] 4.7412m-00
Radius [Å] 17.0006 19.1012	Molec. Wt.: 28.01 BJ Pore Volume [cc/g] 1.9082e-02 3.5882e-02	3 Cross H Pore Size Di Pore Surf Area [m ³ /g] 2.3105e+01 4.0118e+01	dV(r) [cc/Å/g] 1.0306e-02 7.0690e-03	Adsorption [dS(r) [m ³ /Å/g] 1.21250+01 3 7.40060+01	Liquid Density: Data	0.808 g/bc dS(logr) [cc/g] 4.7412c+01 3.2510c+03
Radius [Å] 17.0006 19.1012 21.5765	Molec. Wt.: 28.01 Pore Volume [cc/g] 1.9692e-02 3.5882e-02 4.9771e-02	3 Cross H Pore Size Di Pore Surf Area [m ⁷ (g] 2.3165e+01 4.0118e+01 5.2992e+01	dV(r) [cc/Å/g] 1.0306=01 5.2211=01	Adsorption [dS(r) [m ² Å/g] 2 1.2125e+0 3 7.4006+10 3 4.8396e+0	Liquid Density: Data	0.808 g/bc dS(logr) [cc/g] 4.7412b+0(3.2510b+0) 2.4014c+0(3.2510b+0)
Radius [Å] 17.0005 19.1012 21.5705 24.5143	Molec. Wt.: 28.01 Pore Volume [cc/g] 1.9692e-02 4.9771e-02 6.2204e-02	3 Cross H Pore Sure Di Pore Surf Area [m ⁷ /g] 2.3105e+01 4.0118e+01 5.29922e+01 6.3185e+01	dV(r) [cc/Å/g] 1.0306e-02 7.0680e-02 5.2211e-02 3.8852e-02	77.330K 16.200 År Adsorption [dS(r) [m ³ Å/g] 2 1.2125∞+0 3 7.4006∞+01 3 3.1675~040	Liquid Density: Data dV(logr) [ccig] 1 4.0302e-01 0 3.1048e-01 0 2.5807e-01 0 2.1895e-01	0.808 g/bc dS(logr) [cc/g] 4.74120+00 3.25100+00 2.40146+00 1.78060+00
Radius [Å] 17.0006 19.1012 21.5705 24.5145 27.0457	Molec. Wt.: 28.01 Pore Volume [cc/g] 1.9082e-02 4.9771e-02 0.2264e-02 0.7882e-02	3 Cross H Pore Size Di Pore Surf Area [m ³ /g] 2.3105e+01 4.0118e+01 5.2992e+01 6.3185e+01 6.7118e+01	dV(r) [cc/Å/g] 1.0306e-01 7.0680e-01 3.8852e-01 2.8803e-01	Adsorption [dS(r) [m ³ Å/g] 2 1.2125+01 3 7.4006+00 3 3.16976+00 3 3.16976+00 3 3.16976+00 3 3.16976+00	Liquid Density: Data	0.806 gitc dS(logr) [cc/g] 4.7412e+01 2.4014e-01 1.3259e+02 1.3259e+02
Radius [Å] 17.0006 19.1012 21.5703 24.5145 27.0457 28.9979	Molec. Wt.: 28.01 Pore Volume [cc/g] 1.9692e-02 3.5882e-02 4.9771e-02 6.2264e-02 7.4177e-02 6.788e-02 7.4177e-02	3 Cross H Pore Size Di Pore Surf Area [m ⁷ g] 2.3105e+01 4.0118e+01 5.2992e+01 6.3185e+01 7.1005e+01 7.1005e+01	dV(r) [cc/Å/g] 1.0306-01 5.2211e-01 3.8852e-02 3.2042e-01 3.2042e-01	Adsorption [dS(r) [m ² Å'g] 2 1.2125e+0 3 4.8396e+0 3 3.1697e+0 3 2.1298e+0 3 2.2098e+0	Liquid Density: Data dV(logr) [cc/g] 1 4.0302e-01 3.1048e-01 0 2.5807e-01 2.1898e-01 1 2.7390e-01 0 2.1395e-01 0 2.1395e-01	0.808 g/tc dS(logr) [ccig] 4.7412e+01 3.2510e+01 1.3255e+01 1.3255e+01 1.4750e+02
Radius [Å] 17.0006 19.1012 21.5705 24.5145 27.0457 28.9979 31.2552 33.8629	Molec. Wt.: 28.01 Pore Volume [cc/g] 1.9992e-02 3.5882e-02 4.9771e-02 6.2264e-02 6.7883e-02 7.9993e-02 8.5472e-02 8.5472e-02	**************************************	dV(r) [cc/Å/g] 1.0306-01 7.0680-01 9.8532-01 2.8803e-01 3.8532e-01 2.2476e-01 2.2476e-01 2.2476e-01 2.2477e-01	77.330K 16.200 År Adsorption [dS(r) [m ³ Å/g] 2 1.2125±+01 3 7.4006±+01 3 3.1697±+01 3 2.1299±+00 3 1.43828±+00 3 1.43828±+000 3 1.43825±+000 3 1.43825±+000000000000000000000000000000000000	Liquid Density: Data dV(logr) [ccig] 1 4.0302e-01 0 3.1048e-01 0 2.189e-01 0 2.189e-01 0 1.7930e-01 0 1.0187e-01 0 1.0187e-01 0 1.0187e-01	0.808 g/tc dS(logr) [cc/g] 4.7412e+00 3.2510e+01 3.2510e+01 1.3259e-00
Radius [Å] 17.0006 19.1012 21.5705 24.5145 27.0457 28.9979 31.2552 33.8029 26.8119	Molec. Wt.: 28.01 Pore Volume [cc/g] 1.9082e-02 3.5882e-02 4.9771e-02 0.2264e-02 0.2264e-02 0.7583e-02 7.4177e-02 8.5457e-02 8.5457e-02 8.5457e-02 8.5457e-02	Area [m ³] Pore Surf Area [m ³ g] 2.3106e+01 4.0118e+01 5.2992e+01 6.3185e+01 6.3185e+01 7.5199e+01 7.	dV(r) [cc/Å/g] 1.0306-01 5.2211e-01 3.8852e-01 3.8852e-01 3.2424e-01 2.8933e-01 3.2424e-01 2.2476e-01 2.2476e-01 2.24776e-01 2.24776e-01 2.24776e-01	Adsorption [dS(r) [m ³ Å/g] 2 1.2125+0 3 7.4006+0 3 3.1097e+0 3 2.1299e+0 3 1.4392e+0 3 1.2390e+0 3	Liquid Density: Data dV(logr) [ccig] 1 4.0302e-01 0 3.1048e-01 0 2.5907e-01 0 2.1388e-01 0 2.1388e-01 0 1.037e-01 0 1.037e-01 0 1.037e-01 0 1.037e-01	0.806 gitc dS(logr) [cc/g] 4.7412e+01 3.2510e+02 2.4014e+02 1.7850e+02 1.7850e+02 1.3259e+02 1.3599e+02
Radius [Å] 17.0006 19.1012 21.5703 24.5145 27.0457 28.9979 31.2552 33.8629 36.8319 40.4967	Molec. Wt.: 28.01 Pore Volume [cc/g] 1.9092e-02 3.5882e-02 4.9771e-02 6.2264e-02 6.7882e-02 7.9098e-02 9.1954e-02 9.1954e-02 9.904e-02	Area Pore Surf Area [m ⁷ g] 2.31050+01 4.01180+01 4.01180+01 6.31850+01 6.31850+01 6.71180+01 7.10060+01 7.10060+01 8.19330+01	dV(r) [cc/Å/g] 1.03060-02 5.2211e-01 3.8852e-02 2.8803e-02 3.2042e-03 2.2470e-03 2.0877e-03 1.9298e-00 1.9327e-03	dS(r) [m²/Å/g] 2 1.21250-0 3 7.4006-00 4 4.3996-00 3 1.612996-00 3 1.612996-00 3 1.432290-00 3 1.432290-00 3 1.432290-00 3 1.43224-00 3 1.43224-00 3 1.43224-00 3 1.43224-00 3 1.43424-00	Liquid Density: Data dV(logr) [cc/g] 1 4.0302e-01 0 3.1048e-01 0 2.589e-01 0 2.1899e-01 0 2.1899e-01 0 1.0336e-01 0 1.0336e-01 0 1.0337e-01 1 1.8006-01	0.808 g/tc dS(logr) [ccig] 4.7412e+00 2.4014e+00 2.4014e+00 1.7805e+00 1.4255e+00 1.4255e+00 1.4255e+00 1.4255e+00 8.8820e+00 8.8820e+00 8.8820e+00
Radius [Å] 17.0006 19.1012 21.5705 24.5145 27.0457 28.9979 31.2852 33.8629 36.8319 40.4867 44.8859	Molec. Wt.: 28.01 Pore Volume [cc/g] 1.9692e-02 3.5882e-02 4.9771e-02 6.2264-02 6.7883e-02 7.4177-e02 7.4999e-02 8.5457e-02 8.5457e-02 9.5914e-02 9.5914e-02 1.083e-01 1.083e-01	Area Pore Surf Area [m ² /g] 2.3166e+01 4.0118e+01 5.2992e+01 6.3185e+01 6.3185e+01 6.3185e+01 7.1666e+01 7.1696e+01 7.1696e+01 8.1933e+01 8.1933e+01 8.1933e+01 8.1933e+01	dV(r) [cc/Å/g] 1.03060-01 5.22116-00 3.88520-01 3.88520-01 2.2470-01 2.2470-01 2.2470-01 1.8279-01 1.8279-01 1.8279-01 1.8279-01	Adsorption C dS(r) [m ³ Å/g] 2 1.2125e+01 3 7.4006e+01 3 3.1697e+01 3 3.1697e+01 3 3.1697e+01 3 1.2390e+00 3 1.43828e+00 3 1.2330e+01 3 1.2330e+01 3 8.3195e+01 3 8.3195e+01	Liquid Density: Data dV(logr) [ccig] 1 4.0302e-01 0 3.1048e-01 0 2.189e-01 0 2.189e-01 0 1.7330e-01 0 1.6357e-01 1.8056e-01 1.8057e-01 1.8057e-01 1.8057e-01 1.8057e-01 1.8057e-01 1.8057e-01	0.808 g/tc dS(logr) [cc/g] 4.7412e+00 3.2510e+00 3.2510e+00 1.3259e-00 1.3259e-00 1.3259e-00 9.0087e-00 9.0087e-00 8.8820e+0 8.8820e+0 8.8820e+0 8.8820e+0
Radius [Å] 17.0006 19.1012 21.5705 24.5145 27.0457 28.9979 31.2552 33.8029 36.8319 40.49579 50.1241	Molec. Wt.: 28.01 Pore Volume [cc/g] 1.9092e-02 3.5882e-02 4.9771e-02 6.264e-02 6.7583e-02 7.4177e-02 8.5457e-02 9.1594e-02 1.0830e-01 1.2195e-01 1.2195e-01	Area [m ³] Pore Surf Area [m ³ g] 2.3105e+01 4.0118e+01 5.2992e+01 6.3185e+01 6.3185e+01 6.3185e+01 7.5199e+01 7.5199e+01 8.3934e+01 8.3934e+01 8.3934e+01 8.3701e+01 8.3701e+01	dV(r) [cc/Å/g] 1.0306-01 7.0690-01 5.22116-01 3.8526-01 3.8526-01 3.24276-01 2.2476-01 2.2476-01 2.24776-01 2.24776-01 2.24776-01 2.24776-01 2.25996-01 1.32796-01 1.32796-01 1.32796-01 1.32796-01 2.35036-01 2.25036-01	Adsorption [dS(r) [m ³ Å/g] 2 1.2125+0 3 7.4006+0 3 4.8396+0 3 2.1299+0 3 2.2099+0 3 1.4382+0 3 1.2330+0 3 1.2330+0 3 1.2330+0 3 1.3320+0 3 1.33200+0 3 1.32	Liquid Density: Data dV(logr) [ccig] 1 4.0302e-01 0 3.1048e-01 0 2.1889-01 0 2.1385e-01 0 1.037e-01 0 1.037e-01 1.0208e-01 1.0208e-01 1.8006e-01 1.9288e-01 1.9288e-01 1.9288e-01 1.9288e-01	0.806 gitc dS(logr) [cc/g] 4.7412e+01 3.2510e+01 2.4014e+01 1.3259e+01 1.3259e+01 1.3259e+01 1.3259e+01 1.3259e+00 1.3259e+00 1.3259e+00 1.3259e+00 1.3259e+01
Radius [Å] 17.0006 19.1012 21.5703 24.5145 27.0457 28.9979 31.2552 33.8629 36.8319 40.4967 44.8859 50.1241 56.5741	Molec. Wt.: 28.01 Pore Volume [cc/g] 1.9692e-02 3.5882e-02 4.9771e-02 6.2264e-02 6.7883e-02 7.9699e-02 9.1594e-02 9.1594e-02 9.1594e-02 9.1594e-02 9.1594e-02 1.0830e-01 1.2190e-01 1.2190e-01 1.3800e-01	Area Pore Surf Area [m ⁷ g] 2.31050+01 4.01180+01 4.01180+01 6.31850+01 6.31850+01 6.31850+01 7.10500+01 8.19330+01 8.19330+01 8.19340+01 8.297010+01 9.52070+01 9.52070+01 9.52070+01	dV(r) [cc/Å/g] 1.0506-02 7.0690-02 5.2211e-02 3.88528-02 2.88038-02 2.24768-02 1.89578-02 1.89578-02 2.35038-02 1.88778-02 2.55038-02 1.58478-02	Adsorption [dS(r) [m ^{2/Å} /g] 2 1.2125e+0 3 7.4006e+0 3 3.1697e+0 3 1.2396e+0 3 1.2396e+0 3 1.4382e+0 3 1.4382e+0 3 1.4382e+0 3 1.4382e+0 3 9.3781e-0 1 9.3781e-0 3 7.7102e-01 7 7.7102e-01	Liquid Density: Data dV(logr) [ccig] 1 4.0302e-01 0 3.1046e-01 0 2.5907e-01 0 2.1896e-01 0 1.0337e-01 0 1.0337e-01 0 1.0337e-01 1 1.8289e-01 2.7996e-01 1 2.2820e-01	0.808 g/tc dS(logr) [ccig] 4.7412e+00 2.4014e+00 2.4014e+00 1.7856e+00 1.7856e+00 1.4259e+00 1.4259e+00 1.4259e+00 8.8820e+00 8.8920e+00 8.99200e+00 8.99200e+00 8.9
Radius [Å] 17.0006 19.1012 21.5705 24.5145 27.0457 28.9979 31.2552 33.8029 36.8319 40.4967 36.8319 40.4967 50.1241 56.5741 56.5741	Molec. Wt.: 28.01 Pore Volume [cc/g] 1.9692e-02 3.5882e-02 4.9771e-02 6.2264e-02 6.7983e-02 8.5477e-02 7.9699e-02 8.5477e-02 9.1994e-02 9.1994e-02 9.1994e-02 1.2195e-01 1.2195e-01 1.3002e-01 1.5540e-01	Area Pore Surf Area [m ⁷ /g] 2.3166e+01 4.0118e+01 5.2992e+01 7.1666e+01 7.1666e+01 7.1666e+01 7.1666e+01 7.1666e+01 7.1666e+01 7.1666e+01 7.5199e+01 7.8000e+01 8.1933e+01 8.1933e+01 8.1933e+01 8.1933e+01 8.1934e+01 9.5207e+0	dV(r) [cc/Å/g] 1.03068-01 7.0680-01 5.22116-00 3.88528-01 2.24766-01 2.24766-01 2.24766-01 2.24766-01 2.24766-01 1.82798-01 1.82798-01 1.82798-02 1.82798-02 1.82798-02 1.84778-02 2.03928-01 1.84778-02 2.03928-01	Adsorption [dS(r) [m ³ Å/g] 2 1.2125+01 3 7.4006+01 3 2.1295+01 3 4.8396+00 3 2.1299+00 3 1.4382+01 3 1.4382+01 3 1.23306+01 3 1.23306+01 3 9.3781-01 3 9.3781-00 3 7.0102-01 3 7.0102-0	Liquid Density: Data dV(logr) [ccig] 1 4.0302e-01 0 3.1048e-01 0 2.1997e-01 0 2.1997e-01 0 1.7330e-01 0 1.6167e-01 0 1.6167e-01 0 1.6258e-01 1.8006e-0	0.808 g/tc dS(logr) [cc/g] 4.7412e+00 3.2510e+00 2.4014e+00 1.3259e+00 1.3259e+00 1.3259e+00 1.3259e+00 8.8820e+01 8.8820e+01 8.8820e+01 9.3740e+00 9.3740e+00
Radius [Å] 17.0006 19.1012 21.5705 24.5145 27.0457 28.9979 36.8319 37.6457 37.6457 37.6457 37.6457 37.6457 38.8459 36.8319 36.8319 36.8319 36.8319 36.8319 36.8319 36.8319 36.8319 36.8319 36.8319 36.8319 36.8319 36.8319 36.8319 36.8319 36.8319 36.8319 36.8379 36.8319 36.8379 37.6457 37.	Molec. Wt.: 28.01 Pore Volume [cc/g] 1.9982e-02 3.5882e-02 4.9771e-02 0.2264e-02 0.2264e-02 0.7589e-02 7.4177e-02 9.9014e-02 1.0830e-01 1.2195e-01 1.3002e-01 1.3002e-01 1.5540e-02 1.5540e-02 1.	Area (m ⁷ /g) 2.3100e+01 4.0118e+01 5.2992e+01 6.3185e+01 6.3185e+01 6.3185e+01 7.1098e+01 8.1933e+01 8.1934e+01 8.5894e+01 8.5297e+01 1.0018e+02 1.	Section: 1 Section: 1 Stribution dV(r) [cc/Å/g] 1.0306-01 7.0680-01 5.2211e-01 3.8852e-01 3.8852e-01 3.2424e-02 2.8872e-02 1.9327e-01 1.9327e-01 1.9327e-01 1.9327e-01 1.9327e-02 1.9327e-0	Adsorption I dS(r) [m ³ Å/g] 2 1.2125+0 3 7.4006+0 3 3.1697+0 3 2.1299+0 3 3.1697+0 3 2.1299+0 3 3.1697+0 3 1.4396+0 3 1.4396+0 3 1.4396+0 3 9.5449e-01 3 6.3195e-0 3 6.2695e-0 3 6.2655e-0 4 6.499-0 1 6.2535e-0 5 6.5535e-0 6 6.2695e-0 5 6.5535e-0 6 6.2695e-0 5 6.5535e-0 6 6.2695e-0 6 7.2695e-0 7.2695e	Liquid Density: Data dV(logr) [cc/g] 1 4.0302e-01 3.1048e-01 0 2.580e-01 0 2.1385e-01 0 1.7390e-01 1.6167e-01 0 1.637e-01 1.8288e-01 0 1.637e-01 1.8288e-01 0 1.8288e-01 1.8498e-01 1.8288e-01 1.8288e-01 1.8288e-01 1.	0.808 g/tc dS(logr) [ccig] 4.7412e+01 3.2510e+00 1.3250e+00 1.3250e+00 1.4750e+00 1.0455e+00
Radius [Å] 17.0006 19.1012 21.5703 24.5145 27.0457 28.9979 31.2522 33.8029 36.8319 40.4907 44.8959 50.1241 56.5741 64.5707 76.0809 92.4078 118.4907	Molec. Wt.: 28.01 Pore Volume [cc/g] 1.9692e-02 3.5882e-02 4.9771e-02 6.2264e-02 6.7883e-02 4.9771e-02 7.4999e-02 8.5457e-02 9.194e-02 1.6830e-01 1.2195e-01 1.3630e-01 1.2195e-01 1.3500e-01 1.5540e-02 1.5	Area Pore Surf Area [m ⁷ /g] 2.3165e+01 4.0118e+01 5.29922+01 6.3185e+01 6.3185e+01 6.3185e+01 6.3185e+01 6.3185e+01 8.894e+01 8.894e+01 8.894e+01 8.59761e+01 9.5207e+01 9.5207e+01 9.5207e+01 9.5207e+01 9.5207e+01 9.5207e+01 9.5207e+01 9.5207e+01 9.5207e+01 1.0016e+02 1.1047e+02 1.2208e+02	dV(r) [cc/Å/g] 1.0306=01 7.0680=01 0.22116=01 3.8852e=01 2.8803e=01 3.2042e=01 2.2476e=01 1.8298e=01 1.8	Adsorption C dS(r) [m ^{3/} Å/g] 2 1.2125+0 3 7.4006+0 3 3.1637+0 3 3.1637+0 3 3.1637+0 3 3.1637+0 3 3.1330+0 3 1.4382+0 3 1.4382+0 3 1.4382+0 3 1.4382+0 3 1.0489-0 3 8.3195-0 3 6.3895-0 3 7.0102-0 3 6.4895-0 3 6.4895-0 3 7.0102-0 3 6.4895-0 3 7.4905-0 5 7.4005-0 5 7.4005-	Liquid Density: Data dV(logr) [ccig] 1 4.0302e-01 0 3.1048e-01 0 2.5907e-01 0 2.1898e-01 0 1.028e-01 0 1.037e-01 1.828e-01 1.828e-01 1.828e-01 2.798e-01 1.828e-01 3.0405e-01 1.828e-01 3.0405e-01 1.828e-	0.808 g/tc dS(logr) [ccig] 4.7412e+00 3.2910e-00 1.7805e-00 1.7805e-00 1.3259e-00 1.3259e-00 1.3259e-00 8.8820e-00 8.8820e-00 8.8820e-00 9.5927e-00 1.08128-00 9.12728e-00 9.3740e-00 9.8884e-00
Radius [Å] 17.0006 19.1012 21.5765 24.5145 27.0457 28.9979 31.2552 33.8029 36.8319 40.4907 44.8559 50.1241 56.5741 56.5741 56.5741 56.5741 56.5741 56.5741 56.2741 52.4078 118.4307 76.8669 52.4078 118.4307 155.2161	Molec. Wt.: 28.01 Pore Volume [cc/g] 1.9682e-02 3.5882e-02 4.9771e-02 6.2264e-02 6.2264e-02 6.7583e-02 4.9771e-02 7.4177e-02 7.4177e-02 7.4177e-02 7.4177e-02 7.4177e-02 1.0580e-01 1.2195e-01 1.2195e-01 1.2195e-01 1.2304e-02 3.0380e-01 1.2321e-01 3.0380e-01 1.2322e-01 3.0380e-01 1.2322e-01 3.0380e-01 1.2322e-01 3.0380e-01 1.2322e-01 3.0380e-01 1.2322e-01 3.0380e-01 1.2322e-01 3.0380e-01 1.2322e-01 3.0380e-01 1.2322e-01 3.0380e-01 1.2322e-01 3.0380e-01 1.2322e-01 3.0380e-01 3.0380e-01 3.0380e-01 3.0380e-01 3.0380e-01 3.0380e-01 3.0380e-01 3.0380e-01 3.0380e-01 3.0380e-01 3.0380e-01 3.0380e-01 3.0380e-02 3.0380e-02 3.0380e-02 3.0380e-02 3.0380e-02 3.0380e-02 3.0380e-02 3.0380e-02 3.0380e-01 3.	Area [m ¹ /g] 2 3106e+01 4.0118e+01 5.2992e+01 6.3185e+01 6.7118e+01 7.1665e+01 7.1665e+01 7.1695e+01 7.5195e+01 7.5195e+01 8.9701e+01 9.207e+01 9.207e+01 9.207e+01 1.0018e+02 1.1347e+02 1.2268e+02 1.2565e+02 1.2565e+02	dV(r) stribution dV(r) [cc/Å/g] 1.0306e-01 7.0680e-01 5.2211e-00 3.8852e-01 2.8803e-00 3.2852e-01 2.2476	Adsorption I dS(r) [m ² /Å/g] 2 1.2125+01 3 7.4006+01 3 4.8396+00 3 2.1299+00 3 1.4382+01 3 1.4392+01 3 1.4382+01 3 1.4382+01	Liquid Density: Data dV(logr) [ccig] 1 4.0302e-01 0 3.1049e-01 0 2.1930e-01 0 2.1930e-01 0 2.1930e-01 0 1.6187e-01 0 1.6187e-01 0 1.6187e-01 0 1.628e-01 1.8006e-01 1.8006e-01 1.8006e-01 3.7996e-01 1.30405e-01 3.7996e-01 1.5195e-01 3.7996e-01 7.4295e-01 7.4295e-01	0.808 gitc dS(logr) [cc/g] 4.7412e+00 4.7412e+00 1.7806e+00 1.7806e+00 1.3259e+00 1.3359e+00
Radius [Å] 17.0006 19.1012 21.5705 24.5145 27.0457 28.9979 31.2522 33.8029 36.8319 40.4957 44.4957 44.4959 50.1241 56.3741 64.8707 76.0809 92.4678 11.84367 105.2161 129.4951	Molec. Wt.: 28.01 Pore Volume [cc/g] 1.9092e-02 3.5882e-02 4.9771e-02 6.2264e-02 6.7883e-02 7.9099e-02 9.1594e-02 9.1594e-02 9.1594e-02 1.0830e-01 1.2196-01 1.2302e-01 1.3602e-01 1.3	Area Pore Surf Area [m ⁷ g] 2.31056+01 4.0118+01 5.2992e+01 6.3185e+01 6.7118+01 7.1006e+01 7.1006e+01 7.1096e+01 8.1933e+01 8.1933e+01 8.1933e+01 8.1933e+01 8.1933e+01 1.0018e+02 1.0018e+02 1.3385e+02 1.3385e+02 1.3385e+02 1.3385e+02 1.3385e+02 1.3585e+01 1.3575e+02 1.3585e+01 1.3575e+02 1.3585e+01 1.3575e+02 1.3585e+01 1.3575e+02 1.35755e+02 1.3575e+02 1.3575e+02 1.35756e+02	dV(r) [cc/Å/g] 1.03060-00 7.0860-00 5.22110-00 3.88520-00 2.88038-00 3.20420-00 2.24760-00 1.9327000000000000000000000000000000000000	Adsorption [dS(r) [m ^{2/} Å/g] 2 1.21250-00 3 7.40060-00 4 4.39960-00 3 3.16970-00 3 2.12996-00 3 1.23960-00 3 1.43820-00 3 1.43820-00 3 1.43820-00 3 1.43820-00 3 1.43820-00 3 1.43820-00 3 1.43820-00 3 1.43820-00 3 2.39180-01 3 4.54320-02 3 5.54520-02 3 5.55500 3 5.555000 3 5.5550000 3 5.5550000 3 5.555000000000000000000000000000000000	Liquid Density: Data dV(logr) [ccig] 1 4.0302e-01 0 3.1048e-01 0 2.5807-01 0 2.1898e-01 0 2.1898e-01 0 2.1385e-01 0 1.0376-01 1.0307e-01 1.8288e-01 0 1.0376-01 1.8288e-01 0 3.0405e-01	0.808 g/tc dS(logr) [ccig] 4.7412e+00 3.2510e+00 1.4750e+00
Radius [Å] 17.0006 19.1012 21.5763 24.5145 27.0457 28.9979 31.2852 33.8629 36.8319 40.4857 36.8319 40.4857 76.0859 92.4678 118.4357 116.4357 116.4357 105.2161 29.48518 129.48518 116.4357 116.4577 116.4577 116.4577 116.4577 116.4577 116.45	Molec. Wt.: 28.01 Pore Volume [cc/g] 1.9992e-02 3.5882e-02 4.9771e-02 6.224e-02 6.7883e-02 4.9771e-02 7.4098e-02 8.5472e-02 8.5472e-02 8.5614e-02 9.9624e-02 9.9614e-02 9.9624e-02 9.9624e-02 9.9624e-02 9.9624e-02 9.9624e-02 9.9624e-02 9.9624e-02 9.9624e-02 9.9624e-02 9.9624e-02 9.9624e-02 9.9624e-02 9.9624e-02 9.9624e-02 9.9624e-02 9.7422e-01 9.7422e-01 9.7422e-01 9.7428e-01	Area Pore Surf Area [m ⁷ /g] 2.3166e+01 4.0118e+01 5.2992e+01 6.3185e+01 6.3185e+01 6.3185e+01 6.3185e+01 6.3185e+01 8.1938e+01 8.1938e+01 8.1938e+01 8.1938e+01 8.1938e+01 8.1938e+01 8.1938e+02 1.0016e+02 1.0016e+02 1.0056e+02 1.0072e+0	dV(r) [cc/Å/g] 1.0306e-01 7.0680e-01 5.2211e-00 3.88532e-01 2.8803e-00 3.88532e-01 2.2476e-00 2.0877e-00 1.9298e-01 1.9298e-01 1.9298e-01 1.9298e-01 1.9298e-01 1.9298e-01 1.9298e-01 1.9298e-02 1.9392e-00 2.1490e-00	Adsorption C dS(r) [m ³ Å/g] 2 1.2125e+0 3 7.4006e+0 3 3.1697e+0 3 4.8396e+0 3 9.5449e-0 3 9.5449e-0 3 6.2899e+0 3 4.6481e-01 3 4.1099e-01 4 5.4322e+02 4 5.4322e+02 5 4.532e+02 5 5.448e+01 5 5.448e+01 5 5.432e+02 5 5.448e+01 5 5.448e+01 5 5.432e+02 5 5.448e+01 5 5.432e+02 5 5.448e+01 5 5.432e+02 5 5.4522e+02 5 5.4522e+02	Liquid Density: Data dV(logr) [ccig] 1 4.0302e-01 0 3.1048e-01 0 2.5907e-01 0 2.5907e-01 0 1.7930e-01 0 1.0357e-01 1.8006e-01 1.8288e-01 2.7996e-01 1.8288e-01 2.7996e-01 3.0405e-01 3.0405e-01 3.7996e-01 3	0.808 g/tc dS(logr) [ccig] 4.7412e+02 3.2910e+02 3.2910e+02 3.2910e+02 1.3259e+02 1.3259e+02 1.3259e+02 8.8922e+07 8.8922e+07 8.8922e+07 8.8922e+07 9.3740e+02 9.3740e+02 9.8984e+00 9.8984e+00 9.8984e+00 9.8984e+00 9.8984e+00 9.8984e+00 9.8984e+00 9.8984e+00 9.8984e+00 9.8984e+00 1.1115e+02 8.8982e+00 1.1115e+02 8.8982e+00 1.8982e+00

165.175 m²/g
0.740 colg 17.001 Å

nifetate 0 199 201 Gastafree Interest

-

10

Report kd:(709608061:20161209 074846187) Page 1 of 1

Quantachrome® ASiOwin™- Automated Gas Sorption Data Acquisition and Reduction © 1904-2012, Quantachrome Instruments version 3.0

Sample ID: Sample Desc:		Filename: Comment:	iq_phisy_st1_2016_12_08	08_00_10EF0079 N A	SM K.qps
Sample Weight: Approx. Outgas Tim Analysis gas:	0.0842 g 97.5 hrs Nitrogen	Instrument: Final Outgas Temp.: Non-ideality:	Autosorb IQ Station 1 300 °C 6.58e-05 1/Torr	Extended info: CellType:	Available 9mm w/o rod
Analysis Mode: Analysis Mode: Analysis Mode:	10:22 hr:min Standard He Measure	Cold Zone V:	4.23922 oc	VoidVol Remeasu Warm Zone V:	Te: off 15.9673 cc
		BJH Pore Size Dist	ribution Desorpt	ion	
		Data Reduction	Parameters Data		
t-Method	Thermal Transpire Calc. method: de	ation: on Eff. mol. dian	neter (D): 3.54 Å	Eff. cell stem diam	. (d): 4.0000 mm

Adsorbate	Nitrogen Molec. Wt.: 28.013	Temperature Cross Section:	77.350K 16.200 Å	Liquid Density:	0.808 g/cc
-----------	--------------------------------	-------------------------------	---------------------	-----------------	------------

BJH Pore Size Distribution Desorption Data -

Radius	Pore Volume	Pore Surf	dV(r)	dS(r)	dV(logr)	dS(logr)
[Å]	[cc/g]	[m ² /g]	[cc/Å/g]	[m ^{ay} Å/g]	[cc/g]	[cc/g]
15.2677	2.1373e-02	2.7997e+01	1.3718e-02	1.7970e+01	4.8183e-01	6.3118e+02
17.0387	0.2407e-02	0.44900+01	1.00730-02	1.83970+01	0.14216-01	7.20906402
19.1044	7.23340-02	8.02296+01	8.70190-03	9,14396+00	3.80196-01	4.03030+02
21.6207	8.4866e-02	9.6821e+01	4.7375e-03	4.3824e+00	2.3556e-01	2.1790e+02
24.5439	9.6277e-02	1.06126+02	3.5648e-03	2.90486+00	2.0118e-01	1.63938+02
28.0972	1.0680e-01	1.1361e+02	2.6946e-03	1.9180e+00	1.7405e-01	1.23896+02
32,7967	1.2057e-01	1.22016+02	2.5069e-03	1.5287e+00	1.8887e-01	1.15186+02
39,1711	1.3787e-01	1.3084e+02	2.3836e-03	1.2170e+00	2.1437e-01	1.0945e+02
47,9568	1.6647e-01	1.4277e+02	2.7678e-03	1.1540e+00	3.0451e-01	1.2697e+02
61.7619	2.2128e-01	1.0051e+02	3.1762e-03	1.0285e+00	4.4874e-01	1.45316+02
87.9366	3.6079e-01	1.9224e+02	3.9754e-03	9.0414e-01	7.9414e-01	1.8062e+02
155.6765	5.5761e-01	2.1753e+02	1.9607e-03	2.5189e-01	6.7775e-01	8.7071e+01
839.7555	7.7109e-01	2.2261e+02	1.6838e-04	4.0103e-03	2.4973e-01	5.9478e+00

BJH desorption summary
Surface Area = 222.615 m³/g Pore Volume = 0.771 colg Pore Radius Dv(r) = 17.039 Å

Report kt:(169438544:20161209 074900234) Page 1 of 1

Quantachrome® ASiQwin™- Automated Gas Sorption Data Acquisition and Reduction © 1994-2012, Quantachrome Instruments version 3.0

Analysis Operator:	Inh Energi ITS	Dataconstratos	Report Operator: Lab Ener	Date:	0101000
Sample ID:	EL-0679 N ASM K	Filename:	in phisy st1 2016 12 0	8 08 06 16EL0679 N ASI	M K ops
Sample Desc:		Comment:	"Thurst and round in the		
Sample Weight:	0.0842 g	Instrument:	Autosorb IO Station 1		
Approx. Outgas Ti	met7.5 hrs	Final Outgas Temp.:	300 °C	Extended info:	Available
Analysis gas:	Nitrogen	Non-ideality:	6.58e-05 1/Torr	CellType:	9mm w/o rod
Analysis Time:	10:22 hr:min	Bath temp.:	77.35 K		
Analysis Mode:	Standard			VoidVol Remeasure	off
VoidVol. Mode:	He Measure	Cold Zone V:	4.23922 00	Warm Zone V:	15.9673 cc
		Isot	herm		
		and the second second second	CONTRACTOR STORE		
		— Data Reduction	Parameters Data		
	Thermal Transpire	ation: on Eff mol dian	notor (D): 2 54 A	Eff call stem diam (d): 4 0000 mm

	Inermal Transpiration: on	Eff. mol. diameter (U): 3.54 A		Eff. cell stem diam. (d): 4.0000 mm	
Adsorbate	Nitrogen Molec. Wt.: 28.013	Temperature Cross Section:	77.350K 16.200 År	Liquid Density:	0.808 g/cc

Isotherm Data -Relative Volume @ STP Relative Volume @ STP Relative Volume @ STP Pressure Pressure Pressure [cc/g] [cc/g] [cc/g] 1.12264e-02 59,4192 6.00679e-01 178.0701 9.01658e-01 329.7499 62.8864 69.7894 78.8821 8.50245e-01 8.00140e-01 7.51450e-01 258.5538 229.5098 213.2238 1.51272e-02 2.62437e-02 6.25032e-01 6.49143e-01 181.3791 185.2025 4.92386e-02 6.74424e-01 188.8398 7.35445e-02 9.96341e-02 85.7626 91.7867 6.99042e-01 7.23416e-01 192.6483 196.7260 7.01523e-01 6.49399e-01 202.2855 193.2228 1.23188e-01 1.50704e-01 1.73789e-01 96.5754 101.7761 105.8285 7.50127e-01 7.74774e-01 7.99729e-01 201.8836 207.3611 215.1386 6.00988e-01 5.51386e-01 5.01456e-01 186.1259 179.0433 171.8983 1.98222e-01 2.23328e-01 2.47961e-01 110.0000 114.4809 118.9720 8.23835e-01 8.48538e-01 8.73053e-01 223.3268 234.2546 249.4888 4.50484e-01 3.98370e-01 3.51776e-01 162.7157 150.3974 141.1877 8.98549e-01 9.23685e-01 9.48447e-01 2.75768e-01 2.98417e-01 124.1612 128.4325 272.5548 314.3337 3.00799e-01 2.51977e-01 130.8942 121.3334 138.0837 3.48111e-01 381.0832 2.01227e-01 111.9094 3.98325e-01 4.48655e-01 147.3601 9.74230e-01 9.83347e-01 466.7599 500.1449 1.50711e-01 1.01092e-01 102.6899 92.7089 5.00385e-01 5.50754e-01 163.7489 171.0039 9.93460e-01 9.51029e-01 569.8331 436.9781

Report Id:{75335834:20161209 074722906} Page 1 of 1

ter 5 100 2012 Gastafann hateren

main 3.0

13. Analisa SEM-EDX

14. Analisa TEM

15. Adsorpsi-Desorpsi Piridin

() SHIMADZU

Comment; HASM2 Date/Time; 5/17/2017 11:17:16 PM No. of Scans; 20 Resolution: 4 [1/cm] Apodization; Happ-Genzel
16. Perhitungan Jumlah Sisi Asam Lewis dan Brønsted

Jumlah sisi asam dapat dihitung dengan persamaan yang dikembangkan oleh Emeis (1993)

Jumlah sisi asam (mmol/g) = $\frac{B \times L}{k \times g} \times 10^{-3}$

Keterangan :

k = koefisien asam (Lewis : 1,42 cm/mmol ; Brønsted : 1,88 cm/mmol)

B = Luas puncak pita Lewis atau Brønsted (cm⁻¹)

L = Luas pellet sampel (cm²)

g = Berat pellet (g)

Jumlah sisi asam Lewis =
$$\frac{5,0538 \times 0,785}{1,42 \times 0,013} \times 10^{-3}$$

= 0,2149 mmol/g
Jumlah sisi asam Brønsted = $\frac{0,37 \times 0,785}{1,88 \times 0,013} \times 10^{-3}$
= 0,0118 mmol/g

17. Perhitungan Konversi Asam Lemak Bebas (FFA) Minyak Kemiri Sunan

Konversi FFA ditentukan dengan cara menghitung nilai FFA awal dan nilai FFA akhir sesudah reaksi. Persen FFA dan konversi dihitung dengan persamaan berikut.

$$\% FFA = \frac{V_{NaOH} x N_{NaOH} x Mr_{FFA}}{m_{sampel} x 1000} x 100\%$$

$$\% Konversi = \frac{FFA_{awal} - FFA_{akhir}}{FFA_{awal}} x100\%$$

 FFA Minyak Kemiri Sunan Sebelum Reaksi Diketahui : Massa Minyak : 1,0301 gram V NaOH : 4,3 ml

Maka
%*FFA* =
$$\frac{4,3 \times 0,0925 \times 282,4}{1,0301 \times 1000} \times 100\%$$

= 10,91 %

- ➢ FFA Minyak Kemiri Sunan Setelah Reaksi
 - ➢ Diketahui :
 - ≻ Massa Minyak : 0,9608 gram
 - ➢ V NaOH : 2,5 ml
 - Maka

$$\% FFA = \frac{2.5 \ x \ 0.0925 \ x \ 282.4}{0.9608 \ x \ 1000} x 100\%$$
$$= 6,805 \ \%$$

Sehingga :

$$\% Konversi = \frac{10,91 - 6,805}{10,91} x100\%$$

= 37,62

Dengan cara yang sama, perhitungan ini juga dilakukan untuk variasi rasio mol, waktu reaksi, dan jumlah katalis. Hasil perhitungan dituliskan pada tabel berikut:

Jumlah	Waktu	Rasio Mol	V _{NaOH}	N _{NaOH}	%FFA	%Konversi
Katalis	Reaksi	(minyak:m	(ml)	(N)		
		etanol)				
2,5 %	120 Menit	1:9	3	0,078	6,432	24,99
		1:18	2,5	0,092	6,805	37,62
		1:27	3,3	0,091	8,397	13,067
2,5 %	30 Menit	1:18	3,1	0,113	9,615	20,882
	60 Menit		2,8	0,113	6,239	29,641
	90 Menit		2,4	0,126	8,389	36,20
	120 Menit		2,5	0,092	6,805	37,62
2,5 %	120 Menit	1:18	2,5	0,092	6,805	37,62
5 %			1,2	0,081	5,035	41,533
10 %			2,25	0,113	8,177	32,715

BIODATA PENULIS

Penulis mempunyai nama lengkap Ahmad Anwarud Dawam dilahirkan di Sampit, 12 Oktober 1991, merupakan anak pertama dari tiga bersaudara. Penulis telah menempuh pendidikan formal di SDN-4 MB. Hulu Ketapang (1997-2003), SMPN-1 Sampit (2003-2006), dan SMAN-1 Sampit (2006-2009). Penulis kemudian melanjutkan pendidikan sarjana (S1) di jurusan Kimia FMIPA Universitas Indonesia (2009-2014). Penulis sempat bekerja di perusahan swasta selama satu tahun

sebagai teknisi. Pada tahun 2015 penlis diterima di Program Pasca Sarjana Kimia FMIPA ITS dengan NRP. 1415201002. Penulis tergabung dalam kelompok penelitian zeolit di Laboratorium Kimia Material dan Energi di bawah bimbingan Prof. Dr. Didik Prasetyoko, M.Sc. dan saat ini telah berhasil menyelesaikan Tesis ini. Penulis dapat dihubungi melalui email: aadawam@gmail.com.