

THESIS – KI142502

THE IMPACT OF ENTERPRISE SOFTWARE
DESIGN PATTERNS ON MAINTAINABILITY
METRICS: A CASE STUDY

I MADE BHASKARA GAUTAMA
NRP. 5114201017

SUPERVISORS
Dr. Ir. Siti Rochimah, MT.
Rizky Januar Akbar S.Kom., M.Eng.

MASTER PROGRAM
AREAS OF EXPERTISE: SOFTWARE ENGINEERING
DEPARTMENT OF INFORMATICS
FACULTY OF INFORMATION TECHNOLOGY
INSTITUT TEKNOLOGI SEPULUH NOPEMBER
SURABAYA
2018

i

APPROVAL SHEET

ii

[This page is intentionally left blank]

iii

THE IMPACT OF ENTERPRISE SOFTWARE DESIGN

PATTERNS ON MAINTAINABILITY METRICS: A CASE

STUDY

ABSTRACT

Design pattern in software engineering is a set of solutions that is used to

solve software development common problems. The purpose of using design

patterns is to improve software quality. There are several design patterns that have

been proposed. One of them is enterprise design patterns which are specified for

enterprise application. However, there lack of literature that studies these patterns.

This study proposes a methodology to measure the impact of design patterns

on software maintainability attribute. It uses Academic Information System (AIS)

of Institut Teknologi Sepuluh Nopember (ITS) as a case study. It is an enterprise

application because it involves persistent data. It was built without using any

standards, thus becomes more complex along with how often the maintenance is

conducted. It indicates that AIS has a low maintainability. Based on ISO/IEC

25010, maintainability is one of the quality attributes. It uses C&K metrics and

three additional metrics to measure the maintainability. Measurements are

conducted on software which is built without considering the use of design

patterns and software which is built using design patterns. Both of the results are

evaluated to obtain scientific evidence of the impact.

There are two pattern versions produced in this study. Both of the pattern

versions are able to improve the maintainability. We evaluate the impact based on

the layer. On presentation layer, pattern versions are able to improve the

maintainability to a small extent. On domain layer, it is improved to a certain

extent. On data-source layer, it is improved to a great extent. Pattern versions are

also able to decrease the number of duplicated methods.

Keywords : Design patterns, maintainability, refactoring, enterprise, academic

information system.

Name : I Made Bhaskara Gautama

Student Identity Number : 5114201017

Supervisor : Dr. Ir. Siti Rochimah, MT.

Co-Supervisor : Rizky Januar Akbar S.Kom., M.Eng.

iv

[This page is intentionally left blank]

v

PREFACE

First of all, I would like to thank God for being able to finish the thesis

report titled “The Impact of Enterprise Software Design Patterns on

Maintainability Metrics: A Case Study“.

This thesis is a final work as a partial fulfillment for the Master degree at

Institut Teknologi Sepuluh Nopember Surabaya. The completion of this report

cannot be separated from the support of various people. They have contributed

either directly or indirectly to this study which makes me very grateful. But most

of all, I would like to thank both of my supervisors, Mrs. Dr. Ir. Siti Rochimah,

MT. and Mr. Rizky Januar Akbar S.Kom., M.Eng for their helpful comments,

suggestion, feedback, and so forth. I also would like to thank all the people who

have supported me so far. Thank you for your encouragement and tireless

enthusiasm.

Needless to say, this thesis report is far from perfect. Therefore, I really

hope for helpful suggestions and advices to improve this report. At last, I hope

this report can be useful for everyone.

 Surabaya, January 8, 2018

 Author

vi

[This page is intentionally left blank]

vii

TABLE OF CONTENTS

APPROVAL SHEET ... i

ABSTRACT ... iii

PREFACE ... v

TABLE OF CONTENTS .. vii

TABLE OF FIGURES ... ix

TABLE OF TABLES ... xi

CHAPTER 1 INTRODUCTION ... 1

1.1 Background ... 1

1.2 Research Questions ... 2

1.3 Purpose and Significance .. 3

1.4 Limitations .. 3

CHAPTER 2 LITERATURE STUDY .. 5

2.1 Enterprise Design Pattern .. 5

2.2 Software Quality ... 9

2.2.1 Quality Model Division – ISO/IEC 25010 10

2.2.2 Quality Measurement Division ISO/IEC 25023 12

2.2.3 Maintainability .. 13

2.3 Measurement Methods .. 14

2.3.1 C&K Metrics ... 14

2.3.2 ISO/IEC 25023 Measurement Functions 18

2.3.3 Median Absolute Deviation (MAD) ... 18

2.3.4 Li & Henry Metrics ... 19

2.4 Evaluation Methods .. 20

2.4.1 Percentage Change .. 20

2.4.2 Pearson Product Moment Correlation Coefficient 20

2.5 Academic Information System (AIS) ... 21

CHAPTER 3 RESEARCH METHODOLOGY .. 23

3.1 Research Activities.. 23

3.2 Research Design .. 23

viii

3.2.1 Preparation ... 24

3.2.2 Measurements .. 25

3.2.3 Refactoring .. 27

3.2.4 Evaluation .. 27

3.3 Preliminary Experiment ... 28

3.3.1 Preparation ... 28

3.3.2 Measuring ALT Version .. 30

3.3.3 Refactoring .. 31

3.3.4 Measuring PAT Version .. 33

3.3.5 Evaluation .. 36

CHAPTER 4 RESULTS & ANALYSIS ... 41

4.1 Case Study ... 41

4.2 Refactoring .. 44

4.2.1 Domain Model and Active Record Pattern.................................... 44

4.2.2 Domain Model and Data Mapper Pattern 46

4.3 Measurements .. 48

4.3.1 Alternative or Non-pattern Version (ALT) 50

4.3.2 Domain Model and Active Record Version (PAT-AR) 51

4.3.3 Domain Model and Data Mapper Version (PAT-DM) 52

4.4 Evaluation .. 53

4.4.1 Presentation Layer ... 56

4.4.2 Domain Layer .. 59

4.4.3 Data-source Layer.. 63

4.4.4 Threats to Internal Validity ... 65

CHAPTER 5 CONCLUSION & FUTURE WORK .. 67

5.1 Conclusion ... 67

5.2 Future Work ... 69

REFERENCES .. 71

ix

TABLE OF FIGURES

Figure 2.1 Domain model class diagram... 6

Figure 2.2 Active record class diagram... 7

Figure 2.3 Data Mapper Example ... 9

Figure 2.4 Scope of quality measures (ISO/IEC 25010 2011).............................. 11

Figure 2.5 Software product quality model (ISO/IEC 25010 2011). 11

Figure 2.6 System quality in use model (ISO/IEC 25010 2011). 12

Figure 2.7 Relationship among the measurement (ISO/IEC 25023 2015). 13

Figure 2.8 AIS package diagram (U. L. Yuhana & Anggraini 2015). 22

Figure 3.1 Research design activity diagram. ... 24

Figure 3.2 Preparation activity diagram. ... 24

Figure 3.3 Learning module package diagram. ... 25

Figure 3.4 Measuring ALT version activity diagram.. 26

Figure 3.5 Measuring PAT version activity diagram. ... 26

Figure 3.6 Software refactoring activity diagram. .. 27

Figure 3.7 Evaluation activity diagram. .. 28

Figure 3.8 DbM-Alt class diagram. .. 29

Figure 3.9 DbM-Pat-AR class diagram. .. 32

Figure 3.10 DbM-Pat-DM class diagram. ... 33

Figure 3.11 Measurement results . .. 38

Figure 3.12 Relative changes. ... 38

Figure 4.1 Class diagram of case study. .. 42

Figure 4.2 Service and repository layer of MK domain model............................. 43

Figure 4.3 Displacement flow of business logic and repository (PAT-AR). 45

Figure 4.4 Architecture of PAT-AR version. .. 45

Figure 4.5 Class diagram of PAR-AR version. ... 46

Figure 4.6 Displacement flow of business logic and repository (PAT-DM). 47

Figure 4.7 Architecture of PAT-DM version. ... 47

Figure 4.8 Class diagram of PAT-DM version. .. 48

Figure 4.9 Relative change of metrics between versions on presentation layer. .. 57

file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218835
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218836
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218837
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218838
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218839
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218840
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218841
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218842
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218843
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218844
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218845
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218846
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218847
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218848
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218849
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218850
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218851
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218852
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218853
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218854
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218855
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218856
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218857
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218858
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218859
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218860
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218861
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218862
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218863

x

Figure 4.10 Relative change of metrics between versions on domain layer. 61

Figure 4.11 Relative change between ALT and PAT-DM on data-source layer. . 64

file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218864
file:///D:/WHY%20SO%20SERIOUS/KULIAH/WAY%20OUT/Tesis/Revisi%20-%20(ENG)%20Design%20Patterns%20-%20Thesis.docx%23_Toc503218865

xi

TABLE OF TABLES

Table 2.1 Enterprise design patterns (Fowler et al. 2002). 5

Table 2.2 Mapping between C&K metrics and Maintainability 17

Table 2.3 Additional metrics. .. 19

Table 2.4 Degree of correlation coefficient .. 21

Table 3.1 Measurement results of DbM-Alt (C&K metrics). 30

Table 3.2 Measurement results of DbM-Alt (ISO/IEC 25023)............................. 30

Table 3.3 MAD, min, and max value of DbM-Alt (C&K metrics). 30

Table 3.4 Average values of DbM-Alt (C&K metrics) .. 31

Table 3.5 Measurement results of DbM-Pat-AR (C&K metrics). 33

Table 3.6 Measurement results of DbM-Pat-AR (ISO/IEC 25023). 33

Table 3.7 MAD, min, and max value of DbM-Pat-AR (C&K metrics)................ 34

Table 3.8 Average values of DbM-Pat-AR (C&K metrics). 34

Table 3.9 Measurement results of DbM-Pat-DM (C&K metrics). 34

Table 3.10 Measurement results of DbM-Pat-DM (ISO/IEC 25023). 34

Table 3.11 MAD, min, and max value of DbM-Pat-DM (C&K metrics). 34

Table 3.12 Average values of DbM-Pat-DM (C&K metrics). 35

Table 3.13 Relative change of DbM (C&K metrics). ... 36

Table 3.14 Relative change of DbM (ISO/IEC 25023)... 37

Table 3.15 Correlation between C&K metrics and ISO/IEC 25023. 39

Table 4.1 Module names mapping. ... 41

Table 4.2 Measurement results of ALT version.. 50

Table 4.3 Measurement results of PAT-AR version. .. 51

Table 4.4 Measurement results of PAT-DM version. ... 52

Table 4.5 Relative change of sum value of AIS.. 53

Table 4.6 Relative change of average/mean value of AIS. 54

Table 4.7 Relative change of maximum value of AIS. ... 55

Table 4.8 Mean and standard deviation values of presentation layer. 56

Table 4.9 Relative change of metrics from ALT to PAT-AR and PAT-DM. 56

Table 4.10 Mean and standard deviation of ALT version on domain layer. 59

xii

Table 4.11 Relative change of metrics from ALT to PAT-AR on domain layer. . 59

Table 4.12 Relative change of metrics from ALT to PAT-DM on domain layer. 60

Table 4.13 Relative change from PAT-AR to PAT-DM on domain layer. 60

Table 4.14 Mean and standard deviation of ALT version on data-source layer. .. 63

Table 4.15 Relative change from ALT to PAT-DM on data-source layer. 63

1

CHAPTER I

INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 Background

Design patterns are used to improve software quality. The most famous and

well-developed software design patterns are Gang of Four (GoF) design patterns:

Gamma, Helms, Johnson, and Vlissides (Gamma et al. 1994). Research of

software design patterns in various fields is still conducted until nowadays. There

are several design patterns which are proposed, i.e., GoF 1994, Buschmann 1996,

Serial 2011, Sinha 1996, Fowler 2002, and so on (Gonzalez-Sanchez et al. 2012).

Design patterns consist of a set of solution. They are used to solve software

development common problems. Thus, they shorten the software development,

reduces costs, and improve the software quality (Ali & Elsih 2013; Christopoulou

et al. 2012). Usually, design patterns cannot be used directly into the source code

because it is a description or template. It is used to guide the software

development to produce a more reusable code.

This study uses Academic Information System (AIS) as a case study. It is an

AIS of Institut Teknologi Sepuluh Nopember (ITS). It is an enterprise system that

is operated to ease long-term student academic administration. AIS is often

maintained due to changes in business process, standard operating procedure, and

features. Maintenance process is difficult because one change in certain code

affects another code in several places. Doing this process repetitively may

increase structure complexity of the software. Thus, the future maintenance

process will be difficult and likely impossible to do. High coupling value causes

this problem occurs. It indicates that the software has low modularity. Thus, it

affects maintainability as well.

Refactoring is a technique to handle this problem. It changes the internal

structure without affects the external function (Muraki & Saeki 2002). This study

involves the application of design patterns to lead the software refactoring. We

use enterprise software design patterns by Fowler (Fowler et al. 2002). The main

2

reason of utilizing those patterns is because AIS involves persistent data.

Applying design patterns aim to improve the software maintainability.

While AIS is being developed, it involves two teams. The original AIS was

built by the first team, while the second team is performed the maintenance and

improvement. It was done without using any standards and not all of AIS is well

managed (Rochimah et al. 2014). Based on the result of research, AIS needs to be

evolved (Rochimah et al. 2015). AIS structure becomes more complex along with

how often the maintenance is conducted. It is one of the challenges in software

evolution that is software erosion (Handani & Rochimah 2015). Thus, it needs a

re-engineering to fix this problem. It involves design patterns to improve the

software maintainability. There are so many design pattern literature which may

be used for references. However, the impact of design patterns on software quality

attributes are still controversial (Ampatzoglou et al. 2013; Ali & Elsih 2013).

There are also lacks of literature that studied enterprise design patterns

specifically. So, we propose a quantitative research to study the impact of

enterprise design patterns on software maintainability. We measure the software

maintainability by using software quality metrics (Muraki & Saeki 2002;

Ampatzoglou et al. 2012). We use international standard ISO/IEC 25010 and

ISO/IEC 25023 as well (ISO/IEC 25010 2011; ISO/IEC 25023 2015). We also

investigate the code changes that occurred when feature is added. The purpose of

this study is to produce scientific evidence in which design patterns may improve

the software maintainability. The result of this study is expected to help developer

to determine appropriate patterns when conducting re-engineering on AIS.

1.2 Research Questions

Our hypothesis is constructed in the following sentence: “Utilizing design

patterns may improve the software maintainability”. This study uses three

research questions to formulate the problem. The questions are stated as follows.

1. To what extent application of design patterns may affect software

maintainability?

3

2. How to indicate appropriate patterns on a selected case based on some

specific criteria?

3. How to validate the impact of utilizing design patterns on software

maintainability?

1.3 Purpose and Significance

The purpose of this study is to investigate to what extent the design patterns

affect software maintainability.

The benefit of this research is to provide design patterns recommendation

that used to lead AIS re-engineering process. Thus, the software is easier to

maintain for long term maintenance processes.

1.4 Limitations

This study limits the problems to prevent it be widened. Limitations that are

used in this study are organized as follows.

1. Using AIS (research version, which is built using Java) of ITS as a case

study.

2. Focusing on software maintainability measurement.

3. Using enterprise software design patterns by Martin Fowler (Fowler et

al. 2002).

4. Using Java programming language.

4

[This page is intentionally left blank]

5

CHAPTER II

LITERATURE STUDY

CHAPTER 2 LITERATURE STUDY

Basic theories that used to solve the problems discusses in this chapter.

Theories include design patterns for enterprise object-oriented application

architecture, software quality, measurement method, evaluation method, and

academic information system of ITS.

2.1 Enterprise Design Pattern

Based on Martin Fowler’s book “Patterns of Enterprise Application

Architecture” (Fowler et al. 2002), there are distinct kinds of software application.

One of those is enterprise application. It is usually involves a lot of persistent data,

concurrently accessed by many people, and a lot of user interface to handle the

data. Also, it usually integrates with other enterprise application. Table 2.1 shows

types and names of enterprise design patterns.

Table 2.1 Enterprise design patterns (Fowler et al. 2002).

Numb Types Patterns

1 Domain Logic Patterns

Transaction Script

Domain Model

Table Module

Service Layer

2 Data Source Architectural Patterns

Table Data Gateway

Row Data Gateway

Active Record

Data Mapper

3 Object-Relational Behavioral Patterns

Unity of Work

Identity Map

Lazy Load

4 Object-Relational Structural Patterns

Identity Field

Foreign Key Mapping

Association Table Mapping

Dependent Mapping

Embedded Value

Serialized LOB

Single Table Inheritance

Class Table Inheritance

Concrete Table Inheritance

Inheritance Mapper

5 Object-Relational Metadata Mapping Patterns

Metadata Mapping

Query Object

Repository

6

6 Web Presentation Patterns

Model View Controller

Page Controller

Front Controller

Template View

Transform View

Two Step View

Application Controller

7 Distribution Patterns
Remote Facade

Data Transfer Object

8 Offline Concurrency Patterns

Optimistic Offline Lock

Pessimistic Offline Lock

Coarse-Grained Lock

Implicit Lock

9 Session State Patterns

Client Session State

Server Session State

Database Session State

This sub chapter only mentions design patterns which are used in the

preliminary study which are Domain Model, Active Record, and Data Mapper.

1. Domain Model

Domain Model is an object model of the domain that incorporates both

behavior and data. Business logic of the software can be very complex. Rules

and logic describe many different cases. Objects were designed to deal with

this complexity. A Domain Model creates connections of interconnected

objects, where each object has its own functions and behavior. Figure 2.1

shows the example of Domain Model class diagram (Fowler et al. 2002).

Figure 2.1 Domain model class diagram.

7

Using Domain Model in an application involves inserting a whole layer of

objects. We work on business area which is modeled by these objects. Objects

represent the data and capture the rules that are used in the business. Mostly,

the data and processes are combined to make them work together.

Domain model is used if there are a complicated and ever changing

business rules involving validation, calculation, and derivation. Aside from

that, if there are a simple not null checks and a couple of sums to calculate,

then a Transaction Script is a better solution.

2. Active Record

Active Record is an object that wraps a record data structure in an external

resource, such as a row in a database table, and adds some domain logic to that

object. An object carries both data and behavior. Much of this data is persistent,

and needs to be stored to a database. Active Record put the data access logic

into the domain object. Figure 2.2 shows the example of Active Record class

diagram (Fowler et al. 2002).

Active Record can be used together with Domain Model. This is because

the classes in Domain Model match very closely with the record structure of an

underlying database. Each active record is responsible to saving nd loading to

the database, and also any domain logic that acts upon the data. The data

structure of the Active Record should exactly match that of the database that is

one field in the class for each column in the table. The Active Record class

typically has the following methods:

- Construct an instance of the Active Record from a SQL result set row.

- Construct a new instance for later insertion into the table.

- Static finder methods to wrap commonly used SQL queries and return

Active Record objects.

Figure 2.2 Active record class diagram.

8

- Methods to update the database and insert into the database with the data in

the Active Record.

- Getting and setting methods for the fields.

- Methods that implement some pieces of business logic.

Active Record is a good choice when your domain logic is not too complex,

such as create, read, update and deletes. Derivations and validations based on a

single record work well in this structure. In an initial design for a Domain

Model the main choice is between Active Record and Data Mapper. Active

Record has the primary advantage of simplicity. It is easy to build Active

Records and they are easy to understand. The primary problem with them is

they work well only if the Active Record objects correspond directly to the

database tables, an isomorphic schema. If the business logic is complex then it

leads us to use the object mechanisms such as direct relationships, collections,

and inheritance. These do not map easily onto Active Record. Adding them

piecemeal soon gets very messy, so it will lead the use of Data Mapper.

3. Data Mapper

Data Mapper transfers data from a domain object to a database. Objects and

relational databases have different mechanisms for structuring data. Many parts

of objects, such as collections and inheritance are not present in relational

databases. When building an object model with a lot of business logic, it is

valuable to use these mechanisms to better organize the data and the behavior

that goes with it. This leads to variant schemas, where the object schema and

the relational schema do not match up. In this situation we still need to transfer

data between the two schemas. This data transfer becomes a complexity in its

own right. If the in-memory objects know about the relational database

structure, then changes in one tend to ripple to the other. The Data Mapper is a

layer of software that acts as a mediator between the in-memory objects and the

database. Its responsibility is to transfer data between the two, and also the two

layers from each other. Using Data Mapper the in-memory objects need have

no knowledge that there is even a database present, no SQL interface code, and

certainly no knowledge of the database schema.

9

The separation between domain and data source is the main goal of a Data

Mapper, but there are plenty of details that have to be addressed to make it

happen. There is also a lot of variety in how different people have built their

mapping layers. Figure 2.3 shows the example of Data Mapper (Fowler et al.

2002).

 Updates data using Data Mapper is simple. A client asks the mapper to

save a domain object. The mapper pulls the data out of the domain object and

shuttles it to the database. The whole layer of Data Mapper can be substituted,

either for testing purposes, or to allow a single domain layer to work with

different databases. In this simple case, the mapper separates the database code

away from the domain objects, thus making the domain objects simpler as they

focus on only one task. But soon other issues come into play which suggest

other patterns.

2.2 Software Quality

There are several definitions of software quality. Those definitions are

described as follows.

1. There are five perspectives on software quality according to

Kitchenham and Pfleeger (Kitchenham & Pfleeger 1996), i.e., (1)

transcendental perspective, which is metaphysical aspect of quality; (2)

Figure 2.3 Data Mapper Example

10

user perspective, which is the appropriateness of software based on

context of use; (3) manufacturing perspective, which is conformance to

requirements; (4) product perspective, which is inherent characteristic

of the software; (5) final perspective, which is value-based quality.

2. According to Feigenbaum (Feigenbaum 1961), software quality is a

customer determination. It is based on customer experiences and

measured by their requirements.

3. According to Juran (Juran & Gryna 1988), software quality has several

meanings. But there are two categories in common, i.e., (1) quality

consist of the product which meet the user requirements and

satisfaction; (2) quality consist of the product which free from

dependencies.

The International Organization for Standardization (ISO) and the

International Electrotechnical Commission (IEC) develop a specialized system for

standardization. One of the recent projects is Software product Quality

Measurements and Evaluation (SQuaRE). It has five divisions, i.e.:

1. ISO/IEC 2500n – Quality Management Division.

2. ISO/IEC 2501n – Quality Model Division.

3. ISO/IEC 2502n – Quality Measurement Division.

4. ISO/IEC 2503n – Quality Requirement Division.

5. ISO/IEC 2504n – Quality Evaluation Division.

2.2.1 Quality Model Division – ISO/IEC 25010

ISO/IEC 25010 (ISO/IEC 25010 2011) defines two kinds of quality model,

i.e., (1) software quality model; (2) system quality in use model. Figure 2.4 shows

the scope of quality measures. Data quality model is discussed in ISO/IEC 25012.

11

Software product quality model composed of eight attributes which can be

measured internally or externally. This model can be applied to every kind of

software. Those attributes are functional suitability, reliability, performance

efficiency, operability, security, compatibility, maintainability, and security.

Figure 2.5 shows the characteristic attributes of software product quality model

with its sub characteristic.

System quality in use model composed of three characteristic attributes

which is presented in Figure 2.6. The product can be measured when it is used in a

Figure 2.4 Scope of quality measures (ISO/IEC 25010 2011).

Figure 2.5 Software product quality model (ISO/IEC 25010 2011).

12

realistic context. This model may be affected by any of software product quality

model attributes. Attributes of this model are usability in use, flexibility in use,

and safety in use. Quality in use refers to overall quality in operational

environment for a specific user.

2.2.2 Quality Measurement Division ISO/IEC 25023

ISO/IEC 25023 (ISO/IEC 25023 2015) defines quality measurements

function based on characteristic and sub characteristic on ISO/IEC 25010 which is

intended to be used together. It contains an explanation of measuring software

quality and a basic set of quality measures. The measurable quality-related

properties are called properties to quantify. It is measured by applying the

measurement method which is a logical sequence of operations. The result of

applying the measurement method is called quality measurement element. To

produce a quality measure, it is used measurement function to combine the quality

measurement element. This quality measure is a quantification of the quality

characteristic and sub characteristic. More than one quality measure can be used

for the measurement of characteristic and sub characteristic. Figure 2.7 shows the

relationship among the measurement.

Figure 2.6 System quality in use model (ISO/IEC 25010 2011).

13

2.2.3 Maintainability

Software maintainability is the degree which the software product can be

modified (understood, repaired, and enhanced). Modifications may include

corrections, improvement, or adaptation of the software to changes in

environment, and in requirements and functional specifications (ISO/IEC 25010

2011). Maintainability has seven sub attributes, i.e.:

- Modularity: The degree to which a system or computer program is

composed of discrete components such that a change to one component

has minimal impact on other components.

- Reusability: The degree to which an asset can be used in more than one

software system, or in building other assets.

- Analyzability: The degree to which the software product can be

diagnosed for deficiencies or causes of failures in the software, or for the

parts to be modified to be identified.

- Changeability: The degree to which the software product enables a

specified modification to be implemented. The ease with which a

software product can be modified.

Figure 2.7 Relationship among the measurement (ISO/IEC 25023 2015).

14

- Modification stability: The degree to which the software product can

avoid unexpected effects from modifications of the software.

- Testability: The degree to which the software product enables modified

software to be validated.

- Maintainability compliance: The degree to which the software product

adheres to standards or conventions relating to maintainability.

There is a relationship between software maintainability and software

metrics. Li & Henry (Li & Henry 1993) have validated several object-oriented

software metrics. The research found that there is a strong relationship between

metrics and maintenance effort in object-oriented software. We can predict

maintenance effort by using combination of metrics that are collected from the

source code.

2.3 Measurement Methods

This sub chapter discusses the measurement methods. It consists of C&K

metrics, ISO/IEC 25023 measurement functions, and Median Absolute Deviation

(MAD).

2.3.1 C&K Metrics

This study uses C&K metrics (Chidamber & Kemerer 1994) which have

been used widely (Li & Henry 1993; Ampatzoglou et al. 2012). C&K metrics are

described as follows.

1. Weighted Methods per Class (WMC)

Sum of McCabe’s cyclomatic complexity of all local methods in the class.

Assume a class is C1 with methods M1, …, Mn in the class. Let c1, …, cn are

the complexity of the methods. Then:

 ∑

 (1)

WMC = n if all method complexities are considered to be unity. Where n is

the number of methods.

15

Viewpoints:

- The number and complexity of methods that involved is become a

predictor. It predicts the time and effort is required to develop and maintain

the class.

- Large number of methods makes a greater potential impact on children.

Children are inheriting all the methods which defined in the class.

- Classes with large numbers of methods are limiting the possibility of reuse.

2. Depth of Inheritance Tree (DIT)

Inheritance level number of the class, 0 for the root class.

Viewpoints:

- The deeper a class is in the hierarchy, the greater the number of methods it

is likely to inherit, making it more complex to predict its behavior.

- Deeper trees constitute greater design complexity, since more methods and

classes are involved.

- The deeper a particular class is in the hierarchy, the greater the potential

reuse of inherited methods.

3. Number of Children (NOC)

Number of direct sub-classes that the class has or number of immediate

subclasses subordinated to a class in the class hierarchy.

Viewpoints:

- Greater the number of children, greater the reuse, since inheritance is a

form of reuse.

- Greater the number of children, the greater the likelihood of improper

abstraction of the parent class. If a class has a large number of children, it

may be a case of misuse of sub classing.

- The number of children gives an idea of the potential influence a class has

on the design. If a class has a large number of children, it may require more

testing of the methods in that class.

3. Coupling Between Object Classes (CBO)

Count of the number of other classes to which it is coupled.

Viewpoints:

16

- Excessive coupling between object classes is detrimental to modular design

and prevents reuse. The more independent a class is, the easier it is to reuse

it in another application.

- In order to improve modularity and promote encapsulation, inter-object

class couples should be kept to a minimum. The larger the number of

couples, the higher the sensitivity to changes in other parts of the design,

and therefore maintenance is more difficult.

- A measure of coupling is useful to determine how complex the testing of

various parts of a design are likely to be. The higher the inter-object class

coupling, the more rigorous the testing needs to be.

4. Response For a Class (RFC)

Total number of local methods and the number of methods called by local

methods in the class. RFC = |RS| where RS is the response set for the class.

 * + * + (2)

Where {Ri} = set of methods called by method i and {M} = set of all methods

in the class.

Viewpoints:

- If a large number of methods can be invoked in response to a message, the

testing and debugging of the class becomes more complicated since it

requires a greater level of understanding required on the part of the tester.

- The larger the number of methods that can be invoked from a class, the

greater the complexity of the class.

- A worst case value for possible responses will assist in appropriate

allocation of testing time.

5. Lack of Cohesion in Methods (LCOM)

Number of disjoint sets of local methods, i.e., number of sets of local methods

that do not interact with each other, in the class. For instance consider a class

C with 2 methods M1 , M2. Let {Ii} = set of instance variables used by method

Mi. {I1} = {a, b, c, d}, {I2} = {a, b, c, d, e}, then {I1} ∩ {I2} is nonempty,

which in this case is 1 ({e}).

Viewpoints:

17

- Cohesiveness of methods within a class is desirable, since it promotes

encapsulation.

- Lack of cohesion implies classes should probably be split into two or more

subclasses.

- Any measure of disparateness of methods helps identify flaws in the design

of classes.

- Low cohesion increases complexity, thereby increasing the likelihood of

errors during the development process.

Regarding to ISO/IEC 25010 on the maintainability sub attributes, software

metrics that used in this study need to be mapped. Each metric represent the

complexity of the software. It may affects maintainability in general or the entire

sub attributes implicitly. For instance, WMC metric is the complexity of class C.

WMC = n, where n is the number of methods of class C. Thus, classes with large

number of methods potentially have a bad architecture. It has a greater impact on

children and high coupling. It limits the reusability and modularity. Large number

of methods is likely harder to trace when there is an error or defect and limits the

analyzability. It also becomes a predictor of time and effort that required in

maintaining the class which is affects the modifiability (changeability and

modification stability). Testing is also more difficult because it harder to predict

the behavior of a class with large number of methods.

Mapping is conducted based on which are mentioned explicitly in the

literature (Chidamber & Kemerer 1994). Changeability and Modification stability

are merged into Modifiability (ISO/IEC 25023 2015). Table 2.2 presents the

mapping results between C&K metrics and ISO/IEC 25010 Maintainability sub

attributes.

Table 2.2 Mapping between C&K metrics and Maintainability

C&K Metrics ISO/IEC 25010 Maintainability sub attributes

WMC Modularity, Reusability, Modifiability

DIT Reusability

NOC Reusability

CBO Modularity, Reusability, Modifiability, Testability

RFC Testability, Modifiability

LCOM Modifiability

18

2.3.2 ISO/IEC 25023 Measurement Functions

Based on ISO/IEC 25023, there is also a measurement function that used to

measure the maintainability attribute. The maintainability measurement functions

which are recommended are stated as follows.

1. Modularity measure

- ID: MMo-1-G

- Name: Coupling of components conformance

- Description: How strongly are the components independent and

how many components are free from impacts from changes of other

components in a system or software product?

- Measurement function: X = A / B. A = Number of components

which are implemented with minimal impact on others. B = Number

of components which required to be independent.

2. Reusability measure

- ID: MRe-1-G

- Name: Reusability of assets

- Description: How many assets in a system can be reusable?

Measurement function: X = A / B. A = Number of assets which are designed

and implemented to be reusable B = Number of assets in a system.

2.3.3 Median Absolute Deviation (MAD)

Median Absolute Deviation is also called Absolute Deviation around the

Median. It is a robust statistic method to measure central tendency. Robust

statistic means it has good performance for a wide ranged and non-normally

distributed data. MAD is insensitive to the presence of outliers compared to mean

and standard deviation methods. MAD is denoted as (Leys et al. 2013):

 (| ()|) (3)

Where,

 b = 1.4826 (a constant linked to the assumption of normality of the data),

M = median of the series,

x = population (data).

19

MAD is used to detect outliers. There are three thresholds depending on the

researcher’s criteria: 3 (very conservative); 2.5 (moderately conservative); 2

(poorly conservative). Thus the data population which includes for further

investigation is:

 (4)

2.3.4 Li & Henry Metrics

This study also uses three additional metrics. These metrics are used by Wei

Li and Sallie Henry (Li & Henry 1993) as an addition to C&K metrics in their

study to predict maintainability. Table 2.3 shows the additional metrics.

Table 2.3 Additional metrics.

Metric Description ISO/IEC 25010 Maintainability sub att.

NOM Number Of Methods Modifiability

SIZE1 Lines of code Modifiability

SIZE2 Number of properties Modifiability

1. Number of Methods (NOM)

NOM is a class interface increment metric. It serves well as an interface

metric because the local methods in a class constitute the interface

increment of the class. It is easy to collect in most object-oriented

programming language. The number of local methods define in a class

may indicate the operation property of a class. The more methods a

class has, it indicates the more complex the interface of the class.

2. Line of code (LOC or SIZE1)

SIZE1 is one of two size metrics used by Li & Henry. It is used to

measure a procedure or function. Then, the accumulated LOC of all

procedures and functions is used to measure a program. This metric is

measured by counting the number of semicolons in a class.

3. Number of properties (SIZE2)

SIZE2 is other one of two size metrics. It is calculated by adding the

number of attributes and the number of local methods in a class as a

number of properties.

20

2.4 Evaluation Methods

This sub chapter discusses evaluation methods that are used in this study. It

consists of Relative Change or Percentage Change and Pearson Product Moment

Correlation Coefficient.

2.4.1 Percentage Change

Percentage change or relative change is used in quantitative science to

compare two quantities. The term “change” means one of the quantities that being

compared is considered as a starting value. For example there are two numerical

quantities, x and y, where x as the starting value. Then the relative change is

denoted as (Bennett & Briggs 2005):

 ()

 (5)

The relative change is undefined or zero if the value of x equals zero (0).

The value of relative change can be a positive or negative value. Positive value

means that the change is increased while negative value means that the change is

decreased.

2.4.2 Pearson Product Moment Correlation Coefficient

In statistic, correlation is a measure of linear dependence of two variables or

more. This method was found by Karl Pearson in early 90s. The correlation

between two variables is not a two way causal relationship. For example the

higher the human body, the heavier the body is. However the heavier the human

body, does not mean the higher the body is. Thus, there are cause and result in

correlation. The Pearson Product Moment Correlation Coefficient (PPMCC), r,

can take a range of values from +1 to -1. A value of 0 indicates that there is no

association between the two variables. A value indicates a positive association if it

is greater than 0. That is, as the value of one variable increases, so does the value

of the other variable. A value indicates a negative association if it is less than 0.

That is, as the value of one variable increases, the value of the other variable

21

decreases. Pearson product moment coefficient correlation is denoted as (Pearson

1895):

∑ (̅)(̅)

√∑ (̅)

 ∑ (̅)

 (6)

Where:

- r = coefficient correlation

- xi = x value on the i
th

 data

- ̅ = mean of x values

- yi = y value on the i
th

 data

- ̅ = mean of y values

Or it can be denoted as (Pearson 1895):

 ()
∑

∑ ∑

√(∑
(∑)

)(∑
(∑)

)

 (7)

Where N = total number of attributes.

The absolute value of correlation coefficient is used to define the degree of

correlation. Table 2.4 shows the degree of correlation.

Table 2.4 Degree of correlation coefficient

r Degree of correlation

0,01 – 0,20 Very low

0,21 – 0,40 Low

0,41 – 0,60 Average

0,61 – 0,80 Strong

0,81 – 0,99 Very strong

2.5 Academic Information System (AIS)

AIS is used to manage the academic data, in this case, data of Institut

Teknologi Sepuluh Nopember (ITS). AIS has been used as a case study in several

researches (Handani & Rochimah 2015; Rochimah et al. 2015; Rochimah et al.

2014; Yuhana et al. 2016; Sugiyanto et al. 2016). It consists of six modules, i.e.,

(1) framework; (2) domain; (3) learning; (4) equivalence; (5) curriculum; and (6)

22

assessment (currently in Indonesian language, i.e., framework, domain,

pembelajaran, ekuivalensi, kurikulum, and penilaian). AIS was developed using

Java programming language and Spring MVC for the web development. It also

used Eclipse Virgo and OSGI Framework. Tomcat is used for its web server.

Figure 2.8 shows package diagram of AIS.

Figure 2.8 AIS package diagram (U. L. Yuhana & Anggraini 2015).

23

CHAPTER III

RESEARCH METHODOLOGY

CHAPTER 3 RESEARCH METHODOLOGY

3.1 Research Activities

In general, this study begins with literature study, followed by research

design and implementation. Writing the report is conducted thoroughly during the

research period. Except for reporting, the activities of this study conducted in the

following order.

1. Literature study

This first step is collecting and studying the literatures that related to

enterprise software design patterns, refactoring, and software metrics.

2. Research design

The second step is to construct a research design. It is created based on

the result of literature study. It aims to solve the research problem, thus

to answer the research questions.

3. Implementation

The third step is implementing the research design. We follow the

research design step by step to produce a result.

4. Reporting

Every steps of this study is documented, from literature study until

implementation.

3.2 Research Design

This study has five main phases, i.e., (1) preparation; (2) measurement of

existing system (this is the system which is built without considering the use of

design patterns specifically, later it is called as alternative or ALT version); (3)

refactoring, (4) measurement of refactored system (this is the system which is

built with considering the use of design patterns, later it is called as pattern or

PAT version); and (5) evaluation. We present the research design as an activity

diagram in Figure 3.1, and the expanded version of each activity in this remaining

sub chapter.

24

3.2.1 Preparation

Preparation phase includes several definitions, i.e., part of the AIS that used

as a case study, quality measurements, and features to be added. This phase,

which is shown in Figure 3.2 is a preparation for both ALT and PAT version.

We use learning module (pembelajaran) of AIS as a case study as shown in

Figure 3.3. It is often maintained due to changes in standard operating procedure,

feature addition or alteration. There are five packages in this module, i.e.:

1. Validator Package

This package acts as a validator of the incoming data. It also contains

several rules which are related to assessment business process.

2. Model Package

This package is a data mapper between database and program.

3. Repository Package

This package consists of two kinds of file, i.e., interface and class

implementation. It contains Data Access Object (DAO) classes that are

used to access the database.

4. Controller Package

This package represents its name. It contains controller classes that are

used to connect presentation and data source layer. It also runs the

software business process.

Figure 3.1 Research design activity diagram.

Figure 3.2 Preparation activity diagram.

25

5. Service Package

This package contains classes that store the AIS business process.

Controller call classes from this package to gather data from the

repository.

We use C&K metrics (Chidamber & Kemerer 1994) to measure the

software maintainability. Those metrics have been used widely (Ampatzoglou et

al. 2012; Li & Henry 1993) and can be used to predict maintainability in general.

It has been validated with several datasets and techniques. Based on the

explanation of each metric, it may represent all of maintainability attributes in

ISO/IEC 25010. In addition, we also include two maintainability aspects out of

five that are modularity and reusability based on ISO/IEC 25023. Our reason is

because those quality aspects are recommended or highly recommended based on

its recommendation level. Moreover, it can be measured using the internal

software structure.

Features are chosen based on expert judgment. It is because AIS do not have

a history of changes. These features are inserted to trigger the source code

changes. It has two functions, i.e., (1) as criteria to consider the appropriate

pattern; (2) to conduct the experiment of impact analysis on measurement phase.

3.2.2 Measurements

We measure the maintainability of AIS prior to refactoring process (ALT

version). Then, we conduct an experiment that is inserting a feature and analyze to

what extent the code has changes. Figure 3.4 shows the activity of measuring ALT

Figure 3.3 Learning module package diagram.

26

version. We use the same methods as ALT version to measure PAT version of

AIS. Figure 3.5 shows the activity diagram of measurement on PAT version.

There are three different changes that we use in the impact analysis

experiment (alteration, addition, and deletion). The quantitative analysis is

conducted in two different levels that are class and method level. Consider classes

C1, …, Cn with M1, …, Mn where Mn is the number of methods in the class Cn.

Then, the relative change of the impact change analysis based on equation (5) is

stated as follows.

1. Alteration

Alteration is counted when an existing class or method is altered or

modified. It is denoted as:

 (8)

∑

 (9)

2. Addition Addition is counted when a new class and/or method are

added. It is denoted as:

Figure 3.4 Measuring ALT version activity diagram.

Figure 3.5 Measuring PAT version activity diagram.

27

 (10)

∑

 (11)

3. Deletion

Deletion is counted when a new class and/or method are deleted. It is

denoted as:

 (12)

∑

 (13)

3.2.3 Refactoring

At refactoring phase, we develop PAT version and select appropriate

patterns based on specific criteria. We simulate to add a feature to trigger the

source code changes, thus we analyze and formulate which design pattern are

suitable for those case. There is a possibility that more than one pattern are

suitable to apply. Thus, there is a possibility we produce more than one PAT

version. Figure 3.6 shows the expanded activities of software refactoring.

3.2.4 Evaluation

We use Percentage Change or Relative Change which denoted as equation

(5) to measure the extent of changes. We separate the measurement between C&K

metrics and ISO/IEC 25023 measurement functions because it is measured at a

different level. C&K metrics are measured at class level while ISO/IEC 25023

measurement functions are measured at package level. Finally, we calculate the

Figure 3.6 Software refactoring activity diagram.

28

correlation between C&K metrics and ISO/IEC 25023 measurement functions.

We use Pearson Product Moment to evaluate the correlation which denoted as

equation (6) or (7). We use this method because the maintainability measurement

results are in interval scales. Figure 3.7 shows the activity diagram of evaluation

phase.

3.3 Preliminary Experiment

We conducted preliminary experiment to illustrate how this method is used.

This experiment is discussed in the remaining sub chapters.

3.3.1 Preparation

We use a simple Java program as a case study on this experiment, namely

Simple Database Manipulation (DbM). It is a CRUD (create, read, update, and

delete) program that is used to manipulate database of employee data. Figure 3.8

shows the program’s class diagram.

DbM was built without considering the use of design pattern. So, we call

this version as DbM-Alt. It consists of two packages, namely main and

presentation. In this case, we ignore the presentation layer and focus on other

layer. The main package consists of two classes which are described as follows.

- Employee()

Figure 3.7 Evaluation activity diagram.

29

This class consists of domain model and database operations. Domain

model represents the Employee data with its attributes. Database

operations consist of CRUD. It similar to Active Record design pattern.

However, business process on this class is mixed with database

operation methods.

- dbConn()

This class is used to create a database connection object.

DbM-alt manipulates employee data which has four attributes, i.e., (1) id;

(2) name; (3) age; (4) salary. Aside from database manipulation, DbM also has a

business process. There is a tax that applied 10% of the salary which is stored in a

different table with employee id as the foreign key.

We need to define a feature to trigger the source code changes. Both of

feature or a change in standard operating procedure is acceptable. In this case, we

suppose there is a change in business process. 5% tax is applied for employee

under 21 years old and 10% is applied for the others.

Figure 3.8 DbM-Alt class diagram.

30

3.3.2 Measuring ALT Version

First step of measurement phase is to measure maintainability by using

software metrics. We use Java tool Chidamber and Kemerer Java Metrics

(Spinellis 2005) to get the values. For MMo-1-G and MRe-1-G, we measure it

manually based on measurement function on ISO/IEC 25023. Terms of

component and assets in ISO/IEC 25023 represent a class in this measurement.

Thus, we measure it at the package level. Measurement results based on C&K

metrics shows in Table 3.1, and based on ISO/IEC 25023 shows in Table 3.2.

Table 3.1 Measurement results of DbM-Alt (C&K metrics).

Classes WMC DIT NOC CBO RFC LCOM

dbConn 3 1 0 0 9 1

Employee 15 1 0 1 30 57

Table 3.2 Measurement results of DbM-Alt (ISO/IEC 25023).

MMo-1-G MRe-1-G

main 0.5 0.5

We use MAD to handle outlier data. This step is required to produce a more

valid data for evaluation phase because we need to calculate the average or mean

of the data. We use 3 as the value of min-max threshold because the data need to

be very conservative.

Table 3.3 MAD, min, and max value of DbM-Alt (C&K metrics).

 WMC DIT NOC CBO RFC LCOM

MAD 8.896 0 0 0.74 15.567 41.513

Min. Val. -17.69 1.00 0.00 -1.72 -27.20 -95.54

Max. Val. 35.69 1.00 0.00 2.72 66.20 153.54

Table 3.3 shows the minimum and maximum threshold of DbM-Alt

measurement results using C&K metrics. Equation (3) is used to calculate MAD.

Equation (4) is used to calculate the minimum and maximum value of the data. It

indicates the entire data in Table 3.1 are included for the evaluation phase because

there are no outliers. Finally, Table 3.4 presents the average C&K metrics value of

DbM-Alt measurement results.

31

Table 3.4 Average values of DbM-Alt (C&K metrics)

Classes WMC DIT NOC CBO RFC LCOM

dbConn 3 1 0 0 9 1

Employee 15 1 0 1 30 57

Mean 9 1 0 0.5 20 29

For DbM-Alt measurement results using ISO/IEC 25023 measurement

functions, it is clearly no need to either calculate MAD or mean because it is a

single record of results. We can use those values directly for the evaluation phase.

These values become the starting values to calculate relative changes. It is

because there is no classification whether the quality is bad, enough, good,

excellent, and so on.

Second step is to simulate the change in standard operating procedure as

mentioned at the previous sub chapter. DbM-Alt does not consider the use of

design patterns as mentioned by Fowler. If we apply the change, there are two

methods in one class that need to modify because of code duplication on its

business process. Thus, we need to apply design pattern to organize the domain

logic of this application. Detail of the change that occurs based on equations (8, 9,

10, 11, 12) are:

1. Class level

2. Method level

3.3.3 Refactoring

First step of software refactoring is to define a suitable design pattern. We

define which design pattern is used based on the code changes in the previous

step. As mentioned earlier, there are two methods that need to change. It has a

32

same mechanism to calculate tax before the database interaction process. That

means we need to manage the data source architectural patterns. There are four

options of design patterns that used to manage the data source, i.e., (1) Active

Record Pattern; (2) Table Data Gateway Pattern; (3) Row Data Gateway Pattern;

(4) Data Mapper Pattern. We can use all of those design patterns to produce PAT

version of DbM. In this experiment, we use domain model to organize the domain

logic because considering the future of ever-changing business. Thus, we use

Active Record and Data Mapper patterns on this case.

Active Record is addressed to handle a small and simple application. We

create a model based on the database, in this case is employee model. This model

composed by setter and getter, some business logic, and database query. Thus, it

can reduce the duplication method as in DbM-Alt. This class is similar to

DbMAlt. However, because we consider the use of design patterns, we pull out

the business process becomes a method on this class. Later, this version is called

as DbM-Pat-AR. Figure 3.9 shows the class diagram of DbM-Pat-AR.

Data Mapper aims to separate the business logic and database access. It

moves the data between domain object and database to keep them independent.

Figure 3.9 DbM-Pat-AR class diagram.

33

This refactored version is called DbM-Pat-DM. Figure 3.10 shows the class

diagram of DbM-Pat-DM.

3.3.4 Measuring PAT Version

We use same measurement methods as we used earlier while measuring

DbM-Alt. Table 3.5 and Table 3.6 shows the measurement results of DbM-Pat-

AR.

Table 3.5 Measurement results of DbM-Pat-AR (C&K metrics).

Classes WMC DIT NOC CBO RFC LCOM

dbConn 3 1 0 0 9 1

Employee 15 1 0 1 30 53

Table 3.6 Measurement results of DbM-Pat-AR (ISO/IEC 25023).

Packages MMo-1-G MRe-1-G

domain 0.5 0.5

To handle the outliers, we use a same mechanism which has been discussed

in sub chapter 3.3.2. Table 3.7 presents the minimum and maximum threshold of

DbM-Pat-AR measurement results. It shows that the entire data in Table 3.5 is

included for evaluation phase. Table 3.8 shows the average values of DbM-PatAR

measurement result using C&K metrics. Same thing goes with Table 3.6 as

explained in sub chapter 3.3.2.

Figure 3.10 DbM-Pat-DM class diagram.

34

Table 3.7 MAD, min, and max value of DbM-Pat-AR (C&K metrics).

 WMC DIT NOC CBO RFC LCOM

MAD 8.896 0 0 0.74 15.567 38.548

Min. Val. -17.69 1.00 0.00 -1.72 -27.20 -88.64

Max. Val. 35.69 1.00 0.00 2.72 66.20 142.64

Table 3.8 Average values of DbM-Pat-AR (C&K metrics).

Classes WMC DIT NOC CBO RFC LCOM

dbConn 3 1 0 0 9 1

Employee 15 1 0 1 30 53

Mean 9 1 0 0.5 20 27

Table 3.9 and Table 3.10 show the measurement results of DbM-Pat-DM.

Table 3.11 shows the minimum and maximum threshold of DbM-Pat-AR

measurement results.

Table 3.9 Measurement results of DbM-Pat-DM (C&K metrics).

Classes WMC DIT NOC CBO RFC LCOM

dbConn 3 1 0 0 9 1

Employee 11 1 0 0 15 41

EmployeeMapper 6 1 0 2 23 15

Table 3.10 Measurement results of DbM-Pat-DM (ISO/IEC 25023).

Packages MMo-1-G MRe-1-G

domain 1 0.667

Table 3.11 MAD, min, and max value of DbM-Pat-DM (C&K metrics).

 WMC DIT NOC CBO RFC LCOM

MAD 4.4 0 0 0 8.896 20.756

Min. Val. -7.34 1.00 0.00 0.00 -11.69 -47.27

Max. Val. 19.34 1.00 0.00 0.00 41.69 77.27

In DbM-Pat-DM, there is one value which is considered as outlier that is

CBO on EmployeeMapper class. It is an outlier because of the value greater than

max threshold. Thus, we calculate the average by using only two of the remaining

values as shown in Table 3.12.

35

Table 3.12 Average values of DbM-Pat-DM (C&K metrics).

Classes WMC DIT NOC CBO RFC LCOM

dbConn 3 1 0 0 9 1

Employee 11 1 0 0 15 41

EmployeeMapper 6 1 0 2 23 15

Mean 6.667 1 0 0 16 19

The change in standard operating procedure or business process simulation

only affects one class on one method of DbM-Pat-AR and DbM-Pat-DM

respectively. The detail is:

- DbM-Pat-AR (Active Record)

1. Class level

2. Method level

- DbM-Pat-AR (Active Record)

1. Class level

2. Method level

Since DbM-Alt-AR has only one class for its domain layer, all of the

changes occurred in Employee class. But it is likely harder to trace the code

36

section that needs to change because business logic and database access are in one

class.

DbM-Alt-DM is easier to maintain because the business process and

database access have been separated in a different class. Based on the change

scenario, we can consider that the change is in business process. Thus, the class

that become our target is Employee class since it is composed of domain model

and business process.

3.3.5 Evaluation

In this evaluation phase, we need to find to what extent the use of design

patterns affect software maintainability attribute. We measure the relative change

and whether the change is positive or negative. There is a difference of positive or

negative meaning on C&K metrics and ISO/IEC 25023. On C&K metrics,

positive change means that the value of metric is increased, so the complexity is

increased. Thus, the maintainability is decreased and vice versa. Meanwhile on

ISO/IEC 25023, positive change means the value of measurement function is

increased. Thus, the maintainability is increased because the larger the value, then

the higher the cohesion or the reusability is. Table 3.13 shows the relative change

of C&K metrics measurement on DbM-Alt (Alternative), DbM-Pat-AR (Active

Record), and DbM-Pat-DM (Data Mapper).

Table 3.13 Relative change of DbM (C&K metrics).

Metrics Alternative (x) Active Record (y) Data Mapper (z) %Δx-y %Δx-z %Δy-z

WMC 9 9 6.667 0% -25.93% -25.93%

DIT 1 1 1 0% 0% 0%

NOC 0 0 0 0% 0% 0%

CBO 0.5 0.5 0 0% -100% -100%

RFC 19.5 19.5 15.667 0% -19.66% -19.66%

LCOM 29 27 19 -6.9% -34.48% -29.63%

Mean -3.39% -28.25% -25.73%

We use the average or mean of C&K metrics measurement values from each

version (Table 3.4, Table 3.8, and Table 3.12) to compose Table 3.13. There are

three changes that need to be analyzed, i.e., (1) from Alternative to Active Record,

37

notated as %Δx-y; (2) from Alternative to Data Mapper, notated as %Δx-z; (3)

from Active Record to Data Mapper, notated as %Δy-z.

From Alternative to Active Record, the overall Maintainability is increased

by 3.39%. There is only one metric value that decreased which means

Modifiability is increased based on Table 2.2. Modifiability (ISO/IEC 25023) is

Changeability and Modification Stability attributes in ISO/IEC 25010.

From Alternative to Data Mapper, the biggest improvement of

Maintainability is occurred by 28.25%. Those values mean Data Mapper is better

than Active Record to improve the overall Maintainability in this case. More

specific, there are four metrics value that is increased (WMC, CBO, RFC, and

LCOM). That means Modularity, Reusability, Modifiability, and Testability

attributes are increased.

From Active Record to Data Mapper, the overall Maintainability also

increased by 25.73%. As mentioned earlier, there is still a room for improvement

even we have already used a design patterns. Improvement occurs in four metrics

value (WMC, CBO, RFC, and LCOM) which means Modularity, Reusability,

Modifiability, and Testability attributes are increased.

Table 3.13 shows the relative change of ISO/IEC 25023 measurement

functions on DbM-Alt (Alternative), DbM-Pat-AR (Active Record), and DbMPat-

DM (Data Mapper).

Table 3.14 Relative change of DbM (ISO/IEC 25023).

Metrics Alternative (x) Active Record (y) Data Mapper (z) %Δx-y %Δx-z %Δy-z

MMo-1-G 0.5 0.5 1 0% 100% 100%

MRe-1-G 0.5 0.5 0.667 0% 33% 33%

Mean 0% 67% 67%

From Alternative to Data Mapper, there are no improvements either on

Modularity or Reusability. From Alternative to Data Mapper, overall

Maintainability is increased by 67%. And from Active Record to Data Mapper,

overall Maintainability is increased by 67%. Figure 3.11 illustrates the

measurement results and Figure 3.12 illustrates the relative change of C&K

metrics and ISO/IEC 25023 measurement functions.

38

We also calculate the correlation between C&K metrics and ISO/IEC 25023

measurement functions. The result is presented on Table 3.15. Based on those

result, C&K metrics are very highly correlated with ISO/IEC 25023 measurement

functions. The negative correlation means that the highest the C&K metrics value,

then the lowest the ISO/IEC 25023 measurement functions value is. This

correlation indicates that the maintainability based on C&K metrics and ISO/IEC

25023 is linear. Which means if the measurement results of C&K metrics found

the Maintainability is increased, then the Maintainability of measurement results

by using ISO/IEC 25023 is increased too.

Figure 3.11 Measurement results .

Figure 3.12 Relative changes.

39

Table 3.15 Correlation between C&K metrics and ISO/IEC 25023.

C&K (a) ISO/IEC 25023 (b) a*b a2 b2

%Δx-y -0.034 0 0 0.001 0

%Δx-z -0.282 0.667 -0.188 0.080 0.444

%Δy-z -0.257 0.667 -0.172 0.066 0.444

SUM -0.574 1.333 -0.360 0.147 0.889

Correlation coefficient (r) -0.996

40

[This page is intentionally left blank]

41

CHAPTER IV

RESULTS & ANALYSIS

CHAPTER 4 RESULTS & ANALYSIS

4.1 Case Study

Each module of AIS, except Framework and Domain Module, is basically

consisted of three packages, i.e. Controller, Service, and Repository (Figure 2.8).

It uses a shared domain model (Modul-Domain or Domain Module). While

conducted case study selection, we found those shared domain models are

considered as “anemic”. Anemic Domain Model is a domain model which has no

behavior but a bunch of setters and getters (Fowler 2003). This domain model is

an anti-pattern, the opposite of PoEAA (Pattern of Enterprise Application

Architecture) which is proposed by Fowler himself. Anemic domain model on

AIS causes code duplications. Each module contains behavior of same domain

model. Some of the behaviors (service) are exactly the same. Thus, we consider

using this problem to select the case study.

Because there is a change on how we select the case study, we cannot use

Learning Module alone as mentioned in the previous chapter. The selection

involves four modules, i.e. Domain, Learning, Curriculum, and Equivalence

Module. It is conducted by selecting one domain model and then investigates its

relationships with other modules. Figure 4.1 shows the selected case study which

is focused on MK domain model. MK domain model is a model that represents

college course with attributes, setters, and getters. We do not use a special method

to decide which domain model to be used because all of them are anemic. We just

need to make sure that the selected domain model has a relationship with all other

modules or as much as possible. Module names in Figure 4.1 are names used by

the programmer. Table 4.1 maps the in-picture module names and the actual

module names.

Table 4.1 Module names mapping.

In-picture Module Name Actual Module Name Abbreviation

com.AIS.Modul.MataKuliah.* Curriculum Cr

com.bustan.siakad.* Equivalence Eq

42

com.its.sia.* Learning Ln

com.sia.modul.* Domain Dm

MK domain model is associated with three modules that are Curriculum,

Equivalence, and Learning Module. Each module consists of Controller, Service,

and Repository package.

Figure 4.1 Class diagram of case study.

43

There are duplicated codes on service and repository layer on those three

modules. Basically, the service layer on each module is a business process and the

repository layer is a data transaction of MK anemic domain model. Thus, they

consist of the same code. Figure 4.2 shows the service and repository layer of MK

in each module.

Figure 4.2 Service and repository layer of MK domain model.

44

Service layer of MK in Equivalence and Learning Module is identically

similar. They are also similar with Curriculum Module with one extra method and

have a same method with different name (findById and getById). The same thing

occurs in repository layer where each layer of those three modules is similar. In

maintenance process, if there are changes in business process of MK domain, then

all of those Service and Repository classes will change.

Thus, instead of defining and applying features as mentioned in the previous

chapter, we consider observing these duplicated methods. Moreover, the

duplicated methods is there because the existence of anemic domain model. It

becomes the largest impact of those models.

4.2 Refactoring

We develop PAT version by using Domain Logic and Data Source

Architectural Patterns because there is a problem with domain model in the

current version of AIS. Data Source Architectural Patterns are used to map the

domain model into database.

In Domain Logic Patterns, we use Domain Model Pattern because AIS is

already using domain model although it is still anemic. In Data Source

Architectural Patterns, we pick two patterns which is Active Record and Data

Mapper pattern because those patterns suit well with Domain Model Pattern. So,

there are two combinations of design pattern which produce two PAT versions of

AIS. The first is Domain Model and Active Record Pattern, and the second one is

Domain Model and Data Mapper Pattern.

4.2.1 Domain Model and Active Record Pattern

Domain Model is an object model that contains both data and behavior.

While Active Record is an object that represents a row in a database table or view

and also contain domain logic. Thus, the domain model class of this PAT version

will contain data, behavior, and data access. We called this version as PAT-AR

version. Figure 4.3 shows the displacement flow of business logic and repository

from each module into domain module.

45

Business logic A from module X and Y merged with its anemic domain in

Domain Module. The same goes with repository A from module X and Y also

merged with domain A in Domain Module. By this process, now we have domain

A which is contains data, behavior, and data access. It also eliminates class

duplications in Service and Repository layer. Figure 4.4 shows the architecture of

refactored AIS which is PAT-AR version.

Based on the displacement flow diagram above, Service and Repository

layer from all three modules of AIS (Curriculum, Equivalence, and Learning

Module) will be merged into its domain model in Domain Module. Figure 4.5

shows the class diagram of refactored AIS (PAT-AR version).

Figure 4.3 Displacement flow of business logic and repository (PAT-AR).

Figure 4.4 Architecture of PAT-AR version.

46

4.2.2 Domain Model and Data Mapper Pattern

This version uses the same pattern to manage domain object which is

Domain Model Pattern. To manage the data source, this version uses Data Mapper

Pattern. Data Mapper is a mapper that moves data between object and database.

Thus, the domain object of this version will contain data and behavior while its

data access layer is separated from them. We called this version as PAT-DM

version. Figure 4.6 shows the displacement flow diagram of this version.

Business logic of Domain A from service layer in other modules is merged

into Domain A in domain module. The same thing happens with Domain B, and

so on. Thus, that makes the domain model is no longer anemic because it contains

both data and behavior.

Figure 4.5 Class diagram of PAR-AR version.

47

However, there are also duplicated codes in Repository layer. To handle this

problem, we make a new layer in Domain Module that is Data-source layer which

hold database transaction of domain model. Service and Repository layer in each

module (Domain Module excluded) still can contain domain logic and database

transaction. If the module uses a unique logic which only applied on that module,

it can inherit the related domain model. The same goes with Repository layer. It

can inherit the related data-source from Domain Module. The result of this

process is shown in Figure 4.7.

Service layer from all three modules (Curriculum, Equivalence, and

Learning Module) are merged into its domain model in Domain Module. Then,

Repository layer from those modules are merged into a new Data-source layer in

Domain Module. Figure 4.8 shows the class diagram of refactored AIS (PAT-DM

version).

Figure 4.6 Displacement flow of business logic and repository (PAT-DM).

Figure 4.7 Architecture of PAT-DM version.

48

4.3 Measurements

Because there is a change in our method to select the case study, we also

need to change the measurement method to fit the selected case study. There are

three points on this change.

First one is we cannot use the measurement functions of ISO/IEC 25023

because the measurements require the whole classes in a module. In fact, we did

not use the whole classes of Learning Module as proposed but involves three

modules instead. Moreover, we did not use the whole classes of all those three

modules. We only use classes which are related to a specific domain model. In

addition to C&K Metrics, we use three more metrics to improve the measurement

Figure 4.8 Class diagram of PAT-DM version.

49

results. Those metrics are used by Li & Henry to predict software maintainability

(Li & Henry 1993).

The second one is we used to detect outliers by using median absolute

deviation. It is because we need to produce a more valid average or mean value

which is used to evaluate the impact. However, there is a change about how we

select the case study and we found that average value alone cannot be used for

evaluation. We only use average value where the specific criteria are met, and

then we add two new values which are sum and maximum value. Thus, there is no

need to detect the outlier using median absolute deviation.

The third one is impact analysis of AIS. We have proposed the impact

analysis by simulating the change in standard operating procedure, feature

addition, or feature alteration. However, because we push the anemic domain

model problem to the surface, we found that the most suitable way to analyze the

impact is by investigate the duplicated code or method. Thus, we calculate how

many methods in the case study are considered as a duplicate. The result is in

percentage with the equation as follows:

∑

 (14)

Where Mdup = number of duplicated method, n = number of classes in case

study, and NOM = number of all methods. The method is considered as a

duplicate if it is the same as other methods. The term “same” is not exactly the

same as it is written in the code, but if they have a same function then it is

considered as a duplicate. For example, MKService class of Learning and

Equivalence Module in Figure 4.2 are containing same methods. If there are ten

methods and eight of them are distinct from other methods, then the number of

duplicated method is Mdup = Mtotal – Mdistinct. Where Mtotal = number of all

methods, Mdistinct = number of distinct methods. Then the duplicated methods Mdup

is 10 – 8 = 2.

50

4.3.1 Alternative or Non-pattern Version (ALT)

Measurement results of ALT version of AIS are shown in Table 4.2. It

involves four modules as show in Figure 4.1. Classes in three modules

(Curriculum, Equivalence, and Learning) are consisted of Presentation

(Controller), Service, and Repository layer.

Curriculum Module consists of seven classes of Presentation layer, two

classes of Service layer, and two classes of Repository layer. Equivalence Module

is consisted of four classes of Presentation layer, two classes of Service layer, and

two classes of Repository layer. Learning module is consisted of two classes of

Presentation layer, two classes of Service layer, and two classes of Repository

layer.

Table 4.2 Measurement results of ALT version.

Mod. Class WMC DIT NOC CBO RFC LCOM NOM SIZE1 SIZE2

Cr SatManMKController 7 1 0 15 40 7 5 126 9

MKController 7 1 0 17 45 7 5 142 10

SilabusController 17 1 0 32 105 38 15 344 26

EkuivalensiMKController 7 1 0 13 35 7 5 113 8

CapPembMKController 9 1 0 15 58 20 7 181 11

PrasyaratMKController 7 1 0 12 37 7 5 118 7

RPController 21 1 0 37 132 56 20 518 37

MKService 10 1 0 2 10 45 0 17 0

MKServiceImpl 11 1 0 8 55 11 10 100 13

MKRepository 7 1 0 1 7 21 0 13 0

MKRepositoryImpl 8 1 0 6 29 0 7 95 8

Eq KatalogSatManController 15 1 0 28 145 31 14 521 25

CalonPDController 34 1 0 44 226 15 33 1381 47

EkuivalensiMKController 19 1 0 29 160 87 18 836 29

EkuivalensiPDController 19 1 0 40 196 67 18 1028 32

MKService 8 1 0 2 8 28 0 14 0

MKServiceImpl 9 1 0 5 43 14 8 85 11

MKRepository 6 1 0 1 6 15 0 12 0

MKRepositoryImpl 4 1 0 6 29 0 6 82 7

Ln PembController 22 1 0 28 113 113 20 429 31

ManajemenKRSController 18 1 0 49 147 0 16 473 36

MKService 8 1 0 2 8 28 0 14 0

MKServiceImpl 9 1 0 10 57 14 8 100 12

MKRepository 6 1 0 1 6 15 0 12 0

MKRepositoryImpl 7 1 0 6 29 0 6 82 7

Dm MK 23 1 0 3 24 231 22 123 33

Sum 318 26 0 412 1750 877 248 6959 399

Mean 12.23 1 0 15.85 67.31 33.73 9.538 267.7 15.35

Std. Dev. 7.122 0 0 14.65 62.73 48.02 8.391 341.2 13.84

Maximum 34 1 0 49 226 231 33 1381 47

51

Each layer have a different characteristic, thus standard deviation in some

metrics are nearly equal or bigger than its mean because the data are not normally

distributed. So, we consider to separating the measurement results based on the

layer for evaluation purposes.

The duplicated methods of this version can be investigated by analyzing the

class diagram in Figure 4.2. In service layer, total number of method is 26 with 10

distinct methods. Then, the number of duplicated method in this layer is 16

methods. In repository layer, total number of method is 19 with 7 distinct

methods. Then, the number of duplicated method in this layer is 12 methods.

Total number of duplicated methods in this version is 16 + 12 = 28 methods. Total

number of method in this version is 248 methods. By using Equation 14, then:

4.3.2 Domain Model and Active Record Version (PAT-AR)

Table 4.3 shows the measurement results of PAT-AR version of AIS. This

version has 14 classes in total which is less than the number of classes in ALT

version (26 classes). Based on the discussion in refactoring phase, the duplicated

methods are merged based on its layer and function. Moreover, service layer is

merged into domain model to “cure” the anemic model of the domain. In addition,

repository layer also merged with domain model to follow the Active Record

Patterns. Thus, the number of classes in this version is decreased.

Table 4.3 Measurement results of PAT-AR version.

Mod. Class WMC DIT NOC CBO RFC LCOM NOM SIZE1 SIZE2

Cr

EkuivalensiMKController 7 1 0 11 34 9 5 105 7

SatManMKController 7 1 0 14 40 7 5 124 9

SilabusController 17 1 0 30 105 38 15 338 26

CapPembMKController 9 1 0 14 58 20 7 176 11

PrasayaratMKController 7 1 0 12 38 7 5 116 7

MKController 7 1 0 16 45 7 5 138 10

RPController 21 1 0 35 132 56 20 507 36

Eq

EkuivalensiPDController 19 1 0 39 196 67 18 1000 32

KatalogSatManController 15 1 0 28 143 31 14 518 25

EkuivalensiMKController 18 1 0 29 159 83 18 814 29

CalonPDController 34 1 0 44 225 15 33 1364 47

Ln

ManajemenKRSController 18 1 0 45 148 0 16 444 31

PembController 22 1 0 28 114 113 20 424 31

52

Dm MK 33 1 0 9 72 474 32 255 46

 Total 234 14 0 354 1509 927 213 6323 347

 Mean 16.71 1 0 25.29 107.8 66.21 15.21 451.6 24.79

 Std. Dev. 8.697 0 0 12.13 59.91 117.7 9.049 362.4 13.39

 Maximum 34 1 0 45 225 474 33 1364 47

Three modules that are Curriculum, Equivalence, and Learning of this

version are only consisted of presentation layer. Curriculum Module has seven

controller classes, Equivalence Module has four controller classes, and Learning

Module has two controller classes.

As in the previous version, the data on this PAT-AR version of AIS are not

normally distributed. For example, standard deviation of LCOM metric is far

larger than its mean.

There are no duplicated methods in this version. It is because Service and

Repository layer, areas in which those duplicated methods have a high probability

to occur, have already merged with domain model. Moreover, this version is using

design patterns where the domain object is not anemic anymore.

4.3.3 Domain Model and Data Mapper Version (PAT-DM)

Table 4.4 shows the measurement results of PAT-DM version of AIS. This

version has 16 classes in total which is less than the number of classes in ALT

version (26 classes) and has two more classes compared with PAT-AR version.

Those two classes belong to Data-source layer which is pulled out from domain

model to follow the Data Mapper Pattern.

Table 4.4 Measurement results of PAT-DM version.

Mod. Class WMC DIT NOC CBO RFC LCOM NOM SIZE1 SIZE2

Cr EkuivalensiMKController 7 1 0 11 34 9 5 105 7

SatManMKController 7 1 0 14 40 7 5 124 9

SilabusController 17 1 0 30 105 38 15 338 26

CapPembMKController 9 1 0 14 58 20 7 176 11

PrasayaratMKController 7 1 0 12 38 7 5 116 7

MKController 7 1 0 16 45 7 5 138 10

RPController 21 1 0 35 132 56 20 507 36

Eq EkuivalensiPDController 19 1 0 39 196 67 18 1000 32

KatalogSatManController 15 1 0 28 143 31 14 518 25

EkuivalensiMKController 18 1 0 29 159 83 18 814 29

CalonPDController 34 1 0 44 225 15 33 1364 47

Ln ManajemenKRSController 18 1 0 45 148 0 16 444 31

53

PembController 22 1 0 28 114 113 20 424 31

Dm MK 32 1 0 6 61 442 31 199 45

Ds MKSource 7 1 0 1 7 21 0 13 0

MKSourceImpl 8 1 0 6 30 0 7 90 8

Total 248 16 0 358 1535 916 219 6370 354

Mean 15.5 1 0 22.38 95.94 57.25 13.69 398.1 22.13

Std. Dev. 8.566 0 0 13.67 63.79 104.3 9.272 365.8 14.25

Maximum 34 1 0 45 225 442 33 1364 47

There are no big different of the result summary between this version and

PAT-AR version. The overall data of these results are also not normally

distributed which is indicated by the value of standard deviation compared to its

mean. There are also no duplicated methods in this version.

4.4 Evaluation

This sub-chapter presents the extent of changes that occurs between

alternative (ALT), pattern active record (PAT-AR), and pattern data mapper

(PAT-DM) version of AIS.

In the previous chapter, section preliminary experiment, we calculated the

correlation between C&K Metrics and ISO/IEC 25023 measurement functions. As

mentioned earlier, we do not use those measurement functions instead of adding

three additional metrics because there is a change in how we select the case study.

Thus, we do not calculate the correlation either. We also deepen the analysis in

this sub-chapter by discuss the finding which is separated by the logical layers.

First of all, we discuss the relative change of metrics between all those

versions of AIS. These changes involve all classes regardless to its layer. We

investigate the relative change of three values, i.e. sum, mean, and maximum

value of all metrics.

Table 4.5 Relative change of sum value of AIS.

Metric
Version ΔSum

ALT PAT-AR PAT-DM ALTPAT-AR ALTPAT-DM PAT-ARPAT-DM

WMC 318 234 248 -26.42% -22.01% 5.98%

DIT 26 14 16 -46.15% -38.46% 14.29%

NOC 0 0 0 0% 0% 0%

CBO 412 354 358 -14.08% -13.11% 1.13%

RFC 1750 1509 1535 -13.77% -12.29% 1.72%

LCOM 877 927 916 5.70% 4.45% -1.19%

NOM 248 213 219 -14.11% -11.69% 2.82%

SIZE1 6959 6323 6370 -9.14% -8.46% 0.74%

54

SIZE2 399 347 354 -13.03% -11.28% 2.02%

-9.72% -8.85% 0.96%

Table 4.5 shows the relative change of sum value which is notated by ΔSum.

From ALT to PAT-AR version, almost all changes of sum value are negative. It

indicates a decrease in total complexity of PAT-AR version. Complexity in

general, which is represented by metrics, is decreased because the number of

classes also decreased. The same goes with the change from ALT to PAT-DM

version. The number of classes in PAT-DM version is also less than ALT version.

Thus, the total number of metrics is likely to decrease. From PAT-AR to PAT-

DM version, there is an increase in the number of classes. Thus, the total number

of metrics is likely to increase.

Since PAT-AR and PAT-DM version of AIS has a smaller number of

classes compared to ALT version, this result from sum point of view is very

reasonable and may or may not represent the general impact of design pattern. We

need to break down the evaluation into a smaller scope and investigate the criteria

whether the sum value can be used as a valid measurement or not.

Table 4.6 shows the relative change of mean value which is notated by

ΔMean. From ALT to PAT-AR version, most of the changes are positive. That

means the complexity of PAT-AR is greater than ALT version. However, if we

investigate the measurement results, each layer has their own nature in term of

measurement values. There is also code duplication that makes the evaluation

more complicated by using mean value alone. Moreover, some of standard

deviation values are bigger than its average value which means the data is not

normally distributed. These results also may or may not represent the general

impact of design patterns on software maintainability.

Table 4.6 Relative change of average/mean value of AIS.

Metric
Version ΔMean

ALT PAT-AR PAT-DM ALTPAT-AR ALTPAT-DM PAT-ARPAT-DM

WMC 12.23 16.71 15.50 36.66% 26.73% -7.26%

DIT 1 1 1 0% 0% 0%

NOC 0 0 0 0% 0% 0%

CBO 15.85 25.29 22.38 59.57% 41.20% -11.51%

RFC 67.31 107.79 95.94 60.14% 42.54% -10.99%

55

LCOM 33.73 66.21 57.25 96.30% 69.73% -13.54%

NOM 9.54 15.21 13.69 59.50% 43.50% -10.04%

SIZE1 267.65 451.64 398.13 68.74% 48.75% -11.85%

SIZE2 15.35 24.79 22.13 61.51% 44.17% -10.73%

67.67% 48.11% -11.66%

Table 4.7 shows the relative change of maximum value which is notated by

ΔMax. These values represent the maximum complexity of one class in a module.

It is used to indicate the maximum effort required to maintain a class. For example

the LCOM value from ALT to PAT-AR version is increased more than doubled.

The increased value occurs in Domain Layer which is MK class (see Table 4.2

and Table 4.3). That means the effort which is required to maintain MK class is

doubled because MK class in PAT-AR version contains domain logic and data

source methods.

Table 4.7 Relative change of maximum value of AIS.

Metric
Version ΔMax

ALT PAT-AR PAT-DM ALTPAT-AR ALTPAT-DM PAT-ARPAT-DM

WMC 34 34 34 0% 0% 0%

DIT 1 1 1 0% 0% 0%

NOC 0 0 0 0% 0% 0%

CBO 49 45 45 -8.16% -8.16% 0%

RFC 226 225 225 -0.44% -0.44% 0%

LCOM 231 474 442 105.19% 91.34% -6.75%

NOM 33 33 33 0% 0% 0%

SIZE1 1381 1364 1364 -1.23% -1.23% 0%

SIZE2 47 47 47 0% 0% 0%

11.04% 9.44% -1.44%

Since there are some problems, i.e. standard deviation value bigger than its

mean, data are not normally distributed, the existence of duplicated code, the

difference in the number of classes between layers, and the difference in the

nature of measurement results between layer, we need to split the evaluation based

on the layer. We use three layers concept which are Presentation, Domain, and

Data-source Layer to covers all layers in all version of AIS. We also use different

kinds of value to conclude whether the maintainability is increased or decreased.

ΔSum is used when comparing a layer that has the same class between versions or

when there are duplicated codes. If we assume there are a hundred of duplicated

classes (App A) with a metric value of each class is 10. Then two refactored

56

classes (App B) based on App A with metric values are 10 and 12 respectively.

So, the comparison of mean value between App A and B is 10:11, which means

App A is better than App B even though App A is a bunch of duplicated classes

that are more difficult to maintain. If there is a change in App A, then all hundred

classes need to change. However, in App B, we only need to manage those two

classes without other duplicated classes. So, we use sum and maximum value to

evaluate the duplicated codes. ΔMean is used when comparing a layer that has no

duplicated codes and the standard deviation values is less than its mean. ΔMax is

used to measure the extent of change in the maximum complexity of one class in a

module. Thus, we always include ΔMax regardless to the conditions.

4.4.1 Presentation Layer

The comparison involves the same class between versions on this layer.

Thus, we use ΔSum to evaluate the impact of design patterns.

Table 4.8 Mean and standard deviation values of presentation layer.

Metric
ALT PAT-AR PAT-DM

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

WMC 15.54 7.74 15.46 7.71 15.46 7.71

DIT 1 0 1 0 1 0

NOC 0 0 0 0 0 0

CBO 27.62 12.02 26.54 11.68 26.54 11.68

RFC 110.69 61.54 110.54 61.31 110.54 61.31

LCOM 35 34.27 34.85 33.69 34.85 33.69

NOM 13.92 8.05 13.92 8.05 13.92 8.05

SIZE1 477.69 378.02 466.77 371.81 466.77 371.81

SIZE2 23.69 12.77 23.15 12.48 23.15 12.48

Table 4.8 shows the mean and standard deviation values of metrics. There is

no standard deviation value which is bigger than its mean. There is also no

duplicated code. Thus, we also use ΔMean for this layer.

Table 4.9 Relative change of metrics from ALT to PAT-AR and PAT-DM.

Metric
Sum Mean Maximum

ALT PAT ΔSum ALT PAT ΔMean ALT PAT ΔMax

WMC 202 201 -0.50% 15.54 15.46 -0.50% 34 34 0%

DIT 13 13 0% 1 1 0% 1 1 0%

NOC 0 0 0% 0 0 0% 0 0 0%

57

CBO 359 345 -3.90% 27.62 26.54 -3.90% 49 45 -8.16%

RFC 1439 1437 -0.14% 110.69 110.54 -0.14% 226 225 -0.44%

LCOM 455 453 -0.44% 35 34.85 -0.44% 113 113 0%

NOM 181 181 0% 13.92 13.92 0% 33 33 0%

SIZE1 6210 6068 -2.29% 477.69 466.77 -2.29% 1381 1364 -1.23%

SIZE2 308 301 -2.27% 23.69 23.15 -2.27% 47 47 0%

-1.83%

-1.83%

-1.17%

Measurement results of PAT-AR and PAT-DM are the same on this layer.

PAT in Table 4.9 represents both of those pattern versions. From sum point of

view, the total number of metric is decreased by 1.83% in average. The same goes

from mean point of view which is also decreased by 1.83%. It is clear to conclude

that the complexity from ALT to PAT version is decreased. The maximum value

of metric is decreased by 1.17% in average. The decreased values occur in CBO,

RFC, and SIZE1 metric.

Figure 4.9 shows the graph of relative change between versions in this layer.

The bar from PAR-AR to PAT-DM is invincible because the measurement results

of both version is the same, thus the relative change is equal to 0%. Negative

value of relative change means the complexity is decreased, so the maintainability

is increased. Because the measurement results of both pattern versions are the

same and the relative change is decreased respectively, both of them have the

same impact in improving the maintainability.

Figure 4.9 Relative change of metrics between versions on presentation layer.

58

Modularity of both pattern versions is increased. It is indicated by the

decreased value of WMC and CBO metric. Both of the metric values are

decreased by 0.5% and 3.9% in ΔSum and ΔMean respectively. The maximum

value of WMC is unchanged because the methods in this layer remain the same as

ALT version. The maximum value of CBO is decreased by 8.16% because in

ALT version, presentation layer is connected with a domain model and several

services. However, in PAT version, presentation layer only connects with domain

model alone.

Reusability of both pattern versions is increased. It is indicated by the

decreased value of WMC and CBO metric. The value of DIT and NOC are

unchanged. WMC and CBO are decreased by no more than 4%. Moreover, two

other metrics remain the same. Thus, the reusability is only increased slightly.

Modifiability of both pattern versions is increased. It is indicated by the

decreased value of WMC, CBO, RFC, LCOM, SIZE1, and SIZE2 metric. The

value of NOM is unchanged because the methods in this layer are also unchanged.

The maximum value of RFC is decreased because the number of methods called

by local methods in the class of this layer is decreased. It only connects with one

domain model without services from other modules. The maximum value of

SIZE1 is decreased because there is a change in how the class of this layer

interacts with other modules. Thus, it cuts several lines that contain a code to

connect with service layer.

Testability of both pattern versions is increased. It is indicated by the

decreased value of CBO and RFC metric by 3.9% and 0.14% respectively. The

maximum value of both metrics is also decreased by 8.16% and 0.44%

respectively.

As this layer does not have any duplicated methods, both of the pattern

versions have no impact related to them. However, pattern versions are able to

improve the maintainability to a small extent. The improvement is small because

there is not much change that occurs in this layer. Some of the sum and mean

values does not change. Any decreased value is also not more than 4%. Moreover,

59

most of the maximum value does not change. In average, the decreased

complexity is only by 1.83% from ALT to any pattern versions.

4.4.2 Domain Layer

The comparison of this layer does not involve the same class, however there

are duplicated methods. Thus, we use ΔSum to evaluate the impact of design

patterns.

Table 4.10 Mean and standard deviation of ALT version on domain layer.

ALT WMC DIT NOC CBO RFC LCOM NOM SIZE1 SIZE2

Mean 11.14 1 0 4.57 29.29 53.00 6.86 64.71 9.86

Std. Dev. 4.94 0 0 3.02 20.44 73.49 7.40 44.27 10.97

Table 4.10 shows the mean and standard deviation values of ALT version in

this layer. Some of standard deviation values are bigger than its mean. Thus, we

do not use ΔMean to evaluate the impact on this layer.

Table 4.11 Relative change of metrics from ALT to PAT-AR on domain layer.

Metric
Sum Mean Maximum

ALT PAT-AR ΔSum ALT PAT-AR ΔMean ALT PAT-AR ΔMax

WMC 78 33 -57.69% 11.14 33 196.15% 23 33 43.48%

DIT 7 1 -85.71% 1 1 0% 1 1 0%

NOC 0 0 0% 0 0 0% 0 0 0%

CBO 32 9 -71.88% 4.57 9 96.88% 10 9 -10%

RFC 205 72 -64.88% 29.29 72 145.85% 57 72 26.32%

LCOM 371 474 27.76% 53 474 794.34% 231 474 105.19%

NOM 48 32 -33.33% 6.86 32 366.67% 22 32 45.45%

SIZE1 453 255 -43.71% 64.71 255 294.04% 123 255 107.32%

SIZE2 69 46 -33.33% 9.86 46 366.67% 33 46 39.39%

-27.00%

411.01%

84.40%

Table 4.11 shows the relative change of metrics from ALT to PAT-AR on

this layer. From sum point of view, the total number of metric is decreased by

27% in average. There is one metric value that increased, i.e. LCOM metric. The

increased value occurs because we merge the anemic domain, service, and

repository into one class. High value of LCOM means classes should probably be

split into two or more subclasses. The maximum value of metric is increased by

88.4% in average. It indicates that more effort is needed to maintain the most

complex classes in PAT-AR version compared to ALT version. However, there is

60

only one class that needs to be handled in PAT-AR version. Meanwhile there are

seven classes in ALT version. That explains why the sum value is decreased.

Table 4.12 Relative change of metrics from ALT to PAT-DM on domain layer.

Metric
Sum Mean Maximum

ALT PAT-DM ΔSum ALT PAT-DM ΔMean ALT PAT-DM ΔMax

WMC 78 32 -58.97% 11.14 32 187.18% 23 32 39.13%

DIT 7 1 -85.71% 1 1 0% 1 1 0%

NOC 0 0 0% 0 0 0% 0 0 0%

CBO 32 6 -81.25% 4.57 6 31.25% 10 6 -40%

RFC 205 61 -70.24% 29.29 61 108.29% 57 61 7.02%

LCOM 371 442 19.14% 53 442 733.96% 231 442 91.34%

NOM 48 31 -35.42% 6.86 31 352.08% 22 31 40.91%

SIZE1 453 199 -56.07% 64.71 199 207.51% 123 199 61.79%

SIZE2 69 45 -34.78% 9.86 45 356.52% 33 45 36.36%

-35.31%

352.81%

63.40%

Table 4.12 shows the relative change of metrics from ALT to PAT-DM on

this layer. The relative change between these versions is similar from the previous

comparison. The sum values are decreased by 35.31% with one increased value of

metric that is LCOM. In PAT-DM version, we merge anemic domain and service

into one class. The maximum value of metric is increased by 63.4% in average.

More effort is needed to maintain the most complex classes in PAT-DM version

compared to ALT version. However, PAT-DM version is also consisted of one

class only.

Table 4.13 Relative change from PAT-AR to PAT-DM on domain layer.

Metric
Sum Mean Maximum

PAT-AR PAT-DM ΔSum PAT-AR PAT-DM ΔMean PAT-AR PAT-DM ΔMax

WMC 33 32 -3.03% 33 32 -3.03% 33 32 -3.03%

DIT 1 1 0% 1 1 0% 1 1 0%

NOC 0 0 0% 0 0 0% 0 0 0%

CBO 9 6 -33.33% 9 6 -33.33% 9 6 -33.33%

RFC 72 61 -15.28% 72 61 -15.28% 72 61 -15.28%

LCOM 474 442 -6.75% 474 442 -6.75% 474 442 -6.75%

NOM 32 31 -3.13% 32 31 -3.13% 32 31 -3.13%

SIZE1 255 199 -21.96% 255 199 -21.96% 255 199 -21.96%

SIZE2 46 45 -2.17% 46 45 -2.17% 46 45 -2.17%

-11.39%

-11.39%

-11.39%

Table 4.13 shows the relative change of metrics from PAT-AR to PAT-DM

on this layer. The comparison involves only one class in each version. Thus, all of

61

those values are the same which is decreased by 11.39%. It indicates that PAT-

DM version is better than PAT-AR version in domain layer.

Figure 4.10 shows the graph of relative change between versions in this

layer. We only use sum and max value, so mean bar is ignored. Maximum bar

from ALT to any pattern version is increased. As discussed earlier, the amount of

effort needed to maintain the most complex classes in ALT version is less than

any of pattern version. However, the amount of effort to maintain the whole

classes of ALT version is more than any of pattern version which is indicated by

the sum bar. Green-colored bar indicates that PAT-DM version is better than

PAT-AR version.

Modularity of both pattern versions is increased. It is indicated by the

decreased value of WMC and CBO metric. The sum value is decreased in both of

pattern versions. In PAT-AR version, the value is decreased by 57.69% and

71.88% respectively. In PAT-DM version, the value is decreased by 58.97% and

81.25% respectively. The maximum values of WMC are increased in both pattern

versions, thus it requires more time and effort to maintain the most complex class.

However, pattern versions only consist of one class respectively. So, they still

require less time and effort in maintaining their class compared to all classes in

ALT version.

Figure 4.10 Relative change of metrics between versions on domain layer.

62

Reusability of both pattern versions is increased. It is indicated by the

decreased value of WMC, DIT, and CBO metric. NOC metric remains unchanged

in pattern versions. It is because there are no changes which involve child classes

in all three versions.

Modifiability of both pattern versions is still unclear whether it is increasing

or decreasing. Although WMC, CBO, RFC, NOM, SIZE1, and SIZE2 metric

values are decreased, there is an increasing value which is LCOM metric. As

mentioned earlier, lack of cohesion means the class should probably be split into

two or more subclasses. Since we follow the pattern, we cannot split that class. It

is not safe to conclude that modifiability is increased just because most of the

metric values related to modifiability are decreased. We cannot measure the

impact of LCOM metric on other metrics related to modifiability. Thus, another

experiment is needed to make the impact more clearly. We discuss this finding

further in the next chapter.

Testability of both pattern versions is increased. It is indicated by the

decreased value of CBO and RFC metric. In PAT-AR version, the value is

decreased by 71.88% and 64.88% respectively. In PAT-DM version, the value is

decreased by 81.25% and 70.24% respectively. The maximum value of RFC is

increased in both versions by 26.32% and 7.02% respectively. RFC is increased

because the total number of methods in a class is greatly increased. However,

since any of pattern versions has only one class, the total complexity by RFC

metric is still less than ALT version.

In ALT version, this layer consists of 26 methods and 16 of them are

duplicates. Thus, 61.54% of the method in this version is duplicates. Any of the

pattern versions managed to reduce that value down to zero. Based on case study,

pattern versions are able to eliminate the duplicated methods to a great extent

regardless of how many they are. On modularity, reusability, and testability sub-

attribute, pattern versions are able to improve them to a great extent. The total

metric values are decreased by more than 50% of the original complexity.

Moreover, there are no more duplicated methods to work with. However, because

63

the modifiability sub-attribute is still unclear, we conclude that the maintainability

of pattern versions in this layer is increased to a certain extent.

4.4.3 Data-source Layer

The comparison of this layer does not involve the same class, however there

are duplicated methods. Thus, we use ΔSum to evaluate the impact of design

patterns.

Table 4.14 Mean and standard deviation of ALT version on data-source layer.

ALT WMC DIT NOC CBO RFC LCOM NOM SIZE1 SIZE2

Mean 6.33 1 0 3.50 17.67 8.50 3.17 49.33 3.67

Std. Dev. 1.25 0 0 2.50 11.34 8.73 3.18 37.25 3.68

Table 4.14 shows the mean and standard deviation values of ALT version in

this layer. Some of standard deviation values are bigger than its mean. Thus, we

do not use ΔMean to evaluate the impact on this layer.

The comparison of this layer involves only two versions which are ALT and

PAT-DM. Technically, PAT-AR version does not have a data-source layer

because all of the database transactions are located in domain model.

Table 4.15 Relative change from ALT to PAT-DM on data-source layer.

Metric
Sum Mean Maximum

ALT PAT-DM ΔSum ALT PAT-DM ΔMean ALT PAT-DM ΔMax

WMC 38 15 -60.53% 6.33 7.5 18.42% 8 8 0%

DIT 6 2 -66.67% 1 1 0% 1 1 0%

NOC 0 0 0% 0 0 0% 0 0 0%

CBO 21 7 -66.67% 3.50 3.5 0% 6 6 0%

RFC 106 37 -65.09% 17.67 18.5 4.72% 29 30 3.45%

LCOM 51 21 -58.82% 8.50 10.5 23.53% 21 21 0%

NOM 19 7 -63.16% 3.17 3.5 10.53% 7 7 0%

SIZE1 296 103 -65.20% 49.33 51.5 4.39% 95 90 -5.26%

SIZE2 22 8 -63.64% 3.67 4 9.09% 8 8 0%

-64.22%

7.33%

-2.29%

Table 4.15 shows the relative change of metrics from ALT to PAT-DM on

this layer. From sum point of view, the total number of metric is decreased by

64.22% in average. Thus, we can conclude that the complexity of PAT-DM

version on data-source layer is less than ALT version. It means the maintainability

of ALT version on this layer is less than PAT-DM version. The maximum value

64

of metric is decreased by 2.29% in average. It indicates that less effort is needed

to maintain the most complex classes in PAT-DM version compared to ALT

version.

Figure 4.11 shows the graph of relative change between ALT and PAT-DM

version in this layer. We only use sum and max value, so mean bars is ignored.

There is one maximum value that is increased, i.e. RFC. However, sum and

maximum value itself is decreased in average. PAT-DM version is less complex

than ALT version in data-source layer. Thus, PAT-DM has a higher

maintainability compared to ALT version.

Modularity of pattern version is increased. It is indicated by the decreased

value of WMC and CBO metric. The sum values of those metrics are decreased

by 60.53% and 66.67% respectively. There are no changes occur in the maximum

value of those metrics.

Reusability of pattern version is increased. It is indicated by the decreased

value of WMC, DIT, and CBO metric. NOC value does not change because there

are no child classes involved in both ALT and PAT-DM version. Thus, zero

percent change does not affect the reusability, unless if the change is positive.

Modifiability of pattern version is increased. It is indicated by the decreased

value of WMC, CBO, RFC, LCOM, NOM, SIZE1, and SIZE2 metric. The

maximum value of RFC is increased because the class in pattern version contains

Figure 4.11 Relative change between ALT and PAT-DM on data-source layer.

65

more methods than ALT version. However, the total number of classes in pattern

version is less than ALT version. That explains why the sum value is decreased.

Testability of pattern version is increased. It is indicated by the decreased

value of CBO and RFC. Both of the metrics are decreased by 66.67% and 65.09%

respectively.

In ALT version, this layer consists of 19 methods and 12 of them are

duplicates. Thus, 63.15% of the method in this version is duplicates. Pattern

version of this layer is also able to reduce the duplicated methods to a great extent

as in domain layer. Pattern version is also able to improve the maintainability to a

great extent. It is because the duplicated methods are eliminated. Moreover, the

decrease in complexity which represented by the metric values is decreased by

more than 50%. It is a great improvement since duplicated methods require more

time and effort in doing maintenance.

4.4.4 Threats to Internal Validity

This study uses AIS of ITS as a case study. It contains anemic domain

models that cause code duplications in service and repository layer. Without the

existence of those duplicated codes, the patterns used may not improve the

maintainability to the extent of the results of this study. We may also need other

methods to evaluate if there are no duplicated codes in both versions and the

standard deviation value is bigger than its mean.

66

[This page is intentionally left blank]

67

CHAPTER V

CONCLUSION & FUTURE WORK

CHAPTER 5 CONCLUSION & FUTURE WORK

5.1 Conclusion

This is a quantitative study to assess the impact of PoEAA on software

maintainability. We use AIS of ITS as a case study. AIS is considered as an

Anemic Domain Model because the domain model does not contain its behavior.

There are five phases which are used in this study, i.e. (1) preparation, (2)

measuring non-pattern or alternative version, (3) refactoring, (4) measuring

pattern version, (5) evaluation. We use nine software metrics to measure the

complexity and to predict the software maintainability. There are three design

patterns that are used in this study. We use Domain Model as its Domain Logic

Pattern, then Active Record and Data Mapper as its Data Source Architectural

Pattern. We use combinations of those three patterns that produce two pattern

versions. In the evaluation phase, we calculate the relative change of each metric

and evaluate it based on the layers. We compare the measurement results of all

versions based on three layers, i.e. presentation, domain, and data-source. The

conclusion of this work can be drawn as follows:

1. Pattern selection is conducted based on the layer. The selected case has

a problem in its domain layer which is anemic, thus we decide to

organize the domain logic by using Domain Logic Patterns. The anemic

domain model also affects data-source layer, thus we use Data Source

Architectural Patterns to solve the problem.

2. On presentation layer, both of the pattern versions have a same

measurement results. They managed to improve the maintainability of

ALT version. Modularity, reusability, modifiability, and testability of

pattern versions are increased. It is indicated by a decreased metric

value. However, the decreased value is no more than 4%. Moreover,

there are no duplicated methods in this layer. This concludes that the

pattern versions are able to improve the maintainability to a small

68

extent. Change that occurs in this layer is not too much and the decrease

in complexity is only by 1.83% in average.

3. On domain layer, PAT-AR version is able to improve the

maintainability of ALT version. The number of duplicated methods is

reduced to zero, or decreased by 100% from 61.54% to 0% of

duplicated methods. Modularity, reusability, and testability sub-

attribute are also increased. The metric values which represent those

sub-attributes are decreased by more than 50%. However, modifiability

sub-attribute is still unclear because there is one increasing metric

value. Therefore, PAT-AR version is only able to improve the

maintainability to a certain extent. The same goes for PAT-DM version.

The different is PAT-DM version is able to improve the maintainability

more than PAT-AR version. It is improved to a certain extent because

the total complexity is only decreased by 11.39% and no duplicated

methods are involved.

4. On data-source layer, PAT-DM version is able to improve the

maintainability of ALT version. Modularity, reusability, modifiability,

and testability of PAT-DM version are increased. The decrease in

complexity which represented by the metric values is decreased by

more than 50%. The number of duplicated methods is also decreased by

100% from 63.15% to 0%. PAT-DM version is able to improve the

maintainability to a great extent.

5. The greatest maintainability improvements occur on data-source layer,

followed by domain layer, and then presentation layer. That is because

data-source layer of ALT version is the least layer which uses design

patterns. Domain layer is already using domain model though still

anemic and there are no patterns involve in presentation layer.

6. PoEAA can “heal” the anemic domain model of AIS also eliminate the

duplicated methods in service and repository layer of ALT version of

AIS. The impact can be evaluated by measuring the metric values in

each version and comparing them.

69

7. The duplicated code from ALT to any of pattern version is decreased by

11.29%.

Despite design patterns are able to improve the software maintainability and

eliminate code duplications, there are several drawbacks:

1. While duplicated methods are eliminated, the average maximum value

of metric in any pattern version is greatly increased.

2. There is lack of cohesion in domain layer of pattern version. The value

of LCOM metric is increased, which mean the complexity is increased.

However, the increased value is reasonable since domain layer holds

both data and behavior instead of setter and getter only. LCOM metric

indicates the Modifiability. While this metric is increased, other metrics

which also represent Modifiability is decreased. That is why

Modifiability in domain layer is still unclear.

5.2 Future Work

In future work, we need to investigate the drawbacks of this work. The sub-

attribute of maintainability that remain unclear is Modifiability. We may solve

this problem by conducting an experiment which involves volunteers to maintain

AIS. The experiment is designed according to the Modifiability sub-attribute.

Thus, we can investigate the correlation between the value of software

maintainability metrics and the software maintenance activities.

70

[This page is intentionally left blank]

71

REFERENCES

Ali, M. & Elsih, M.O., 2013. A Comparative Literature Survey of Design Patterns

Impact on Software Quality. In Proceeding of the International Conference

on Information Science and Applications (ICISA). pp. 1–7.

Ampatzoglou, A., Charalampidou, S. & Stamelos, I., 2013. Research state of the

art on GoF design patterns: A mapping study. Journal of Systems and

Software, 86(7), pp.1945–1964.

Ampatzoglou, A., Frantzeskou, G. & Stamelos, I., 2012. A methodology to assess

the impact of design patterns on software quality. Information and Software

Technology, 54(4), pp.331–346.

Bennett, J. & Briggs, W., 2005. Using and Understanding Mathematics: A

Quantitative Reasoning Approach (3rd ed.), Boston: Pearson.

Chidamber, S.R. & Kemerer, C.F., 1994. A Metrics Suite for Object Oriented

Design. IEEE Transactions on Software Engineering, 20(6), pp.476–493.

Christopoulou, A. et al., 2012. Automated refactoring to the Strategy design

pattern. Information and Software Technology, 54(11), pp.1202–1214.

Feigenbaum, A.V., 1961. Total Quality Control, McGraw-Hill.

Fowler, M., 2003. Anemic Domain Model. Available at:

https://martinfowler.com/bliki/AnemicDomainModel.html [Accessed July 6,

2017].

Fowler, M. et al., 2002. Patterns of Enterprise Application Architecture, Addison

Wesley.

Gamma, E. et al., 1994. Design Patterns: Elements of Reusable Object-Oriented

Software, Pearson Education.

Gonzalez-Sanchez, J. et al., 2012. Affective computing meets design patterns: A

pattern-based model for a multimodal emotion recognition framework. In

EuroPLoP ’11 Proceedings of the 16th European Conference on Pattern

Languages of Programs.

Handani, F. & Rochimah, S., 2015. Relationship Between Features Volatility And

Software Architecture Design Stability In Object- Oriented Software :

72

Preliminary Analysis. In 2015 International Conference on Information

Technology Systems and Innovation, ICITSI 2015 - Proceeding. pp. 1–5.

ISO/IEC 25010, 2011. Systems and software engineering - Systems and software

Quality Requirements and Evaluation (SQuaRE) - System and software

quality models.

ISO/IEC 25023, 2015. Systems and software engineering - Systems and software

Quality Requirements and Evaluation (SQuaRE) - Measurement of system

and software product quality.

Juran, J.M. & Gryna, F.M., 1988. Juran’s Quality Control Handbook, McGraw-

Hill.

Kitchenham, B. & Pfleeger, S.L., 1996. Software quality: the elusive target. IEEE

Software, 13(1), pp.12–21.

Leys, C. et al., 2013. Detecting outliers: Do not use standard deviation around the

mean, use absolute deviation around the median. Journal of Experimental

Social Psychology, 49(4), pp.764–766.

Li, W. & Henry, S., 1993. Object-Oriented Metrics that Predict Maintainability.

Journal of Systems and Software, 23(2), pp.111–122.

Muraki, T. & Saeki, M., 2002. Metrics for Applying GOF Design Patterns in

Refactoring Processes. In Proceedings of the 4th international workshop on

Principles of software evolution - IWPSE ’01. p. 27.

Pearson, K., 1895. Notes on regression and inheritance in the case of two parents.

In Proceedings of the Royal Society of London. pp. 240–242.

Rochimah, S., Rahmani, H.I. & Yuhana, U.L., 2015. Usability characteristic

evaluation on administration module of Academic Information System using

ISO/IEC 9126 quality model. In 2015 International Seminar on Intelligent

Technology and Its Applications, ISITIA 2015 - Proceeding. pp. 363–368.

Rochimah, S., Yuhana, U.L. & Raharjo, A.B., 2014. Academic Information

System Quality Measurement Using Quality Instrument : A Proposed Model.

In 2014 International Conference on Data and Software Engineering,

ICODSE 2015 - Proceeding. pp. 1–6.

Spinellis, D., 2005. Tool writing: A forgotten art? IEEE Software, 22(4), pp.9–11.

73

Sugiyanto, Rochimah, S. & Sarwosri, 2016. The improvement of software quality

model for academic websites based on multi-perspective approach. Journal

of Theoretical and Applied Information Technology, 86(3), pp.464–471.

U. L. Yuhana, G.P.N.S. & Anggraini, R.N.E., 2015. Rancang Bangun

Commercial Off The Shelf (Cots) Sistem Informasi Akademik Berbasis Web

Pada Modul Kelola Pembelajaran. Institut Teknologi Sepuluh Nopember,

Surabay: JURNAL TEKNIK ITS.

Yuhana, U.L., Saptarini, I. & Rochimah, S., 2016. Portability characteristic

evaluation Academic information System assessment module using AIS

Quality Instrument. In ICITACEE 2015 - 2nd International Conference on

Information Technology, Computer, and Electrical Engineering: Green

Technology Strengthening in Information Technology, Electrical and

Computer Engineering Implementation, Proceedings. pp. 133–137.

