

SKRIPSI - TK141581

SINTESIS KOMPOSIT MnO₂/CARBON SEBAGAI KATODA SEBAGAI KATODA PADA Zn-AIR BATTERY

Oleh : Khairunisa Kartina Rakhmad 02211546000036

Mayda Amalia Rakhma 02211546000039

Dosen Pembimbing : Dr. Widiyastuti, S.T., M.T NIP. 19750306 200212 2 002

Ni Made Intan Putri Suari, S.T., M.T NIP. 19890106 201504 2 002

DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2018

SKRIPSI - TK141581

SYNTHESIS OF MnO₂/CARBON COMPOSITE AS CATHODE ON Zn-AIR BATTERY

Authors : Khairunisa Kartina Rakhmad 02211546000036

Mayda Amalia Rakhma 02211546000039 Advisors: Dr. Widiyastuti, S.T., M.T NIP. 19750306 200212 2 002

Ni Made Intan Putri Suari, S.T., M.T NIP. 19890106 201504 2 002

CHEMICAL ENGINEERING DEPARTMENT FACULTY OF INDUSTRIAL TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2018

LEMBAR PENGESAHAN

SINTESIS KOMPOSIT MnO₂/CARBON SEBAGAI KATODA PADA Zn-AIR BATTERY

Diajukan untuk Memenuhi Salah Satu Syarat memperoleh Gelar Sarjana Teknik pada Program Studi S-1 Departemen Teknik Kimia Institut Teknologi Sepuluh Nopember Surabaya

Oleh :

Khairunisa Kartina Rakhmad Mayda Amalia Rakhma

Disetujui oleh Tim Penguji Skripsi :

- 1. Dr. Widiyastuti, S.T., M.T (Pembimbing I)
- 2. Ni Made Intan Putri Suari, S.T., M.T (Pembimbing II)
- Prof. Dr. Ir. Heru Setyawan, M.Eng (Penguji I)
- Dr. Kusdianto, S.T., M.Sc.Eng (Penguji II)
- Dr. Eng. Raden Darmawan, S.T., M.T (Penguji III)

NRP. 02211546000036 NRP. 02211546000039

Scanned by CamScanner

SINTESIS KOMPOSIT MnO₂/CARBON SEBAGAI KATODA PADA Zn-AIR BATTERY

Penulis	: Khairunisa Kartina R.
	(02211546000036)
	Mayda Amalia Rakhma
	(02211546000039)
Departemen	: Teknik Kimia FTI-ITS
Dosen Pembimbing	: Dr. Widyastuti, S.T., M.T
U	Ni Made Intan Putri Suari, S.T.,

M.T

ABSTRAK

Penelitian ini bertujuan untuk mengetahui pengaruh jumlah elektroda dan kondisi saat elektrolisis terhadap morfologi nanopartikel MnO₂. Selain itu juga dilakukan untuk mengetahui α-MnO₂ nanopartikel dari KMnO₄ yang terbentuk pada suasana asam, serta pengaruh penambahan karbon dengan MnO₂ sebagai material elektrokatalis pada Metal Air Battery dengan anoda Zn. Sintesis MnO₂ menggunakan metode elektrokimia dengan elektrolisis larutan elektrolit berupa potassium permanganate (KMnO₄) disertai pengadukan dengan magnetic stirrer. Kondisi sintesis menggunakan suasana asam dengan menambahkan asam sulfat (H₂SO₄) dan elektrolisis selama 30 menit. Penelitian ini dilakukan pada variasi jumlah elektroda karbon 1, 2, 3, 4 pasang pada tegangan 3V. Untuk memisahkan partikel yang terbentuk dari pengotor dilakukan pengendapan menggunakan centrifuge dan endapan dicuci hingga pH netral air demin yang selanjutnya dikeringkan pada furnace suhu 150°C. Serbuk MnO2 dikompositkan dengan karbon aktif dan graphene. Untuk MnO2 struktur dan morfologi dianalisa menggunakan X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), dan Brunauer-Emmet-Teller

Sedangkan untuk sifat elektrokimia dievaluasi (BET).menggunakan Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV), dan Polarization Linear (PL). Multielectrode memiliki performa yang paling baik, dibuktikan dari uji XRD, struktur nanopartikel MnO₂ memiliki beberapa *peak*, vaitu: $2\theta = 12,59^{\circ}$; 17.91° ; 28.38° ; 37.45° ; 41.86° ; 49.69° dan 59,96° berbentuk kristal α-MnO₂. Sedangkan pada hasil SEM dan BET, bentuk partikel semakin tidak terlihat aglomerat. Hal ini menunjukkan bahwa diameter partikel semakin kecil seiring dengan bertambah besarnya luas permukaan. Pada uji elektrokatalis, OCP yang dihasilkan semakin tinggi dan positif, vaitu 0,030. Komposit MnO₂/Karbon-Aktif dan MnO₂/Graphene dianalisa morfologi menggunakan SEM, untuk konduktivitas dengan metode four Point Probe, dan. sifat elektrokimia menggunakan Cyclic Voltammetry. Komposit MnO₂/Graphene memiliki konduktivitas yang besar daripada komposit MnO₂/Karbon-Aktif sebesar 39.809 / Ω m.

SYNTHESIS OF MnO₂/CARBON COMPOSITE AS CATHODE ON Zn-AIR BATTERY

Author	: Khairunisa Kartina Rakhmad
	(02211546000036)
	Mayda Amalia Rakhma
	(02211546000039)
Departement	: Teknik Kimia FTI-ITS
Advisor	: Dr. Widyastuti, S.T., M.T
	Ni Made Intan Putri Suari, S.T.,
M.T	

ABSTRACT

This study aims to determine the effect of the number of electrodes and the current conditions of electrolysis on morphology of MnO₂ nanoparticles. It was also conducted to find out the α-MnO₂ nanoparticles of KMnO₄ formed in acidic atmosphere, and to know the effect of carbon addition with MnO₂ as electrocatalytic material on Zn air battery with Zn anode. MnO₂ synthesis uses electrochemical method with electrolysis of electrolytic solution in the form of potassium permanganate (KMnO₄) with stirring with magnetic stirrer. The synthesis conditions use an acidic atmosphere by adding sulfuric acid (H_2SO_4) and electrolysis for 30 minutes. This research was conducted on variation of number of carbon electrode 1, 2, 3, 4 pairs at 3V voltage. To separate the particles formed from the impurities is carried out the deposition using centrifuge and the precipitate washed up to neutral pH demin water which is then dried in the furnace for 150°C. MnO₂ powder is composed with activated carbon and graphene. For MnO₂ structures and morphology were analyzed using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Brunauer-Emmet-Teller (BET). As for the electrochemical

properties evaluated using Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV), and Linear Polarization (PL). Multi-electrode has the best performance, evidenced from the XRD test, the structure of MnO₂ nanoparticles has several peak, namely: $2\theta = 12.59^{\circ}$; 17.91° ; $28,38^{\circ}$; 37.45° ; $41,86^{\circ}$; $49,69^{\circ}$ and 59,96° are α -MnO₂ crystals. While on the results of SEM and BET, the form of particles increasingly not seen agglomerates. This shows that the particle diameter is getting smaller as the surface area increases. In the electrocatalytic test, the resulting OCP is higher and positive, ie 0.030. Composite MnO₂ / Active Carbon and MnO₂ / Graphene were analyzed using SEM morphology, for conductivity by the four Point Probe method, and electrochemical properties using Cyclic Voltammetry. The MnO₂ / Activated Carbon composite of 39,809 / Ω m.

DAFTAR ISI

LEMBAR	PENGESAHANiii
ABSTRAI	Хiv
ABSTRAC	2 T vi
KATA PE	NGANTAR viii
DAFTAR	ISIx
DAFTAR	GAMBARxiv
DAFTAR	TABELxvi
BAB I PE	NDAHULUAN
I.1	Latar Belakang1
I.2	Rumusan Masalah2
I.3	Tujuan Penelitian3
I.4	Manfaat Penelitian3
BAB II TI	NJAUAN PUSTAKA
II.1	Manganese dioxide (MnO ₂)5
II.2	Karbon
II.3	Hubungan antara Metal Air Battery dengan Zn Air Battery10
II.4	Elektrokatalis pada Zn Air Battery14
II.5	Sintesis MnO ₂ 15
II.6	Komposit MnO ₂ dengan Karbon16
II.7	Jenis Uji pada Nanopartikel MnO216
	II.7.1 X-Ray Diffraction (XRD)16
	II.7.2 Brunaeur-Emmet-Teller (BET)17

	II.7.3 Scanning Electron Microscopy (SEM)17				
	II.7.4 Rotating Disk Electrode (RDE)18				
II.8	Hasil Penelitian Terdahulu19				
BAB III M	BAB III METODOLOGI PENELITIAN				
III.1	Garis Besar Penelitian23				
III.2	Bahan Penelitian23				
III.3	Metodologi Penelitian23				
	III.3.1 Sintesis MnO ₂ 23				
	III.3.2 Aplikasi MnO2 sebagai Elektrokatalis26				
	III.3.3 Komposit MnO ₂ /Carbon27				
	III.3.4 Uji Konduktivitas MnO ₂ /Carbon29				
	III.3.5 Aplikasi MnO ₂ /Carbon sebagai Elektrokatalis				
	III.3.6 Uji Karakteristik Nanopartikel MnO230				
	III.3.7 Uji Karakteristik Nanopartikel MnO ₂ / <i>Carbon</i> 32				
BAB IV HASIL DAN PEMBAHASAN					
IV.1	Sintesis MnO ₂				
Г	 V.1.1 Pengaruh Variasi Jumlah Elektroda pada Suasana Asam terhadap <i>Yield</i> yang dihasilkan 36 				
Г	V.1.2 Pengaruh Variasi Jumlah Elektroda terhadap Kemurnian MnO ₂ 37				
Г	V.1.3 Pengaruh Variasi Jumlah Elektroda terhadap Morfologi MnO ₂ 41				

IV.1.4 Pengaruh Variasi Jumlah Elektroda terhadap Luas Permukaan Nanopartikel MnO ₂ 43			
IV.1.5 Kemampuan MnO ₂ dalam Kinerja untuk Mereduksi Oksigen pada Zn Air Battery44			
IV.2 Pengaruh Penambahan <i>Carbon</i> terhadap MnO ₂			
IV.2.1 Karakteristik Morfologi dari Sampel50			
IV.2.2 Pengaruh Penambahan <i>Carbon</i> terhadap Konduktivitas MnO ₂ 52			
IV.2.3 Kemampuan Komposit MnO ₂ /Carbon dalam Kinerja sebagai Elektrokatalis54			
BAB V KESIMPULAN DAN SARAN			
V.1 Kesimpulan59			
V.2 Saran			
DAFTAR PUSTAKA			
APPENDIKS			

DAFTAR GAMBAR

Gambar II.1 Struktur dari α -MnO ₂ dan β -MnO ₂
Gambar II.2 Struktur dari α -MnO ₂ jika dilihat dari sumbu C6
Gambar II.3 Struktur dari γ-MnO ₂ 7
Gambar II.4 Ilustrasi pori-pori karbon9
Gambar II.5 Skema Kerja Metal Air Battery11
Gambar II.6 Skema Prinsip Kerja Zn Air Battery13
Gambar II.7 Karakteristik α-MnO ₂ berdasarkan JCPDS 044014117
Gambar II.8 Spesifikasi Poin pada SEM18
Gambar II.9 Skema Rotating Disk Electrode (RDE)
Gambar III.1 Flowchart Proses Sintesis MnO ₂ 25
Gambar III.2 Sintesis MnO ₂ Metode Elektrokimia25
Gambar III.3 Flowchart Aplikasi MnO2 sebagai Elektrokatalis
Gambar III.4 Skema Uji Elektrokatalis
Gambar III.5 Flowchart Komposit MnO ₂ /Carbon
Gambar III.6 Flowchart Uji Konduktivitas MnO ₂ /Carbon29
Gambar III.7 Skema Uji Konduktivitas dengan Metode Four Point Probe
Gambar III.8 Flowchart Uji Elektrolisis MnO ₂ /Carbon31
Gambar IV.1.2.1 Grafik Uji <i>XRD</i> MnO ₂ 1 Pasang berdasarkan Pemanasan 60 ^o C dan Tanpa
Pemanasan

Gambar IV.1.2.2 Grafik Uji <i>XRD</i> MnO ₂ Elektroda 1 Pasang Pemanasan 60 ^o C dan <i>Aging</i>
Gambar IV.1.2.3 Grafik Uji XRD MnO ₂ Variasi Jumlah Elektroda 3 V40
Gambar IV.1.3.1 <i>Morfologi</i> MnO ₂ Asam dengan beda Potensial 3 V42
Gambar IV.1.5.1 Grafik <i>Cyclic Voltammetry (CV)</i> 2 elektroda (1 pasang) 3 V
Gambar IV.1.5.2 Grafik <i>Cyclic Voltammetry</i> (CV) 8 elektroda (4 pasang) 3 V
Gambar IV.1.5.3 Grafik <i>Linear Sweep Voltammetry (LSV)</i> 2 elektroda (1 pasang) 3 V48
Gambar IV.1.5.4 Grafik <i>Linear Sweep Voltammetry (LSV)</i> 8 elektroda (4 pasang) 3 V49
Gambar IV.2.1.1 Morfologi MnO ₂
Gambar IV.2.1.2 Morfologi Carbon
Gambar IV.2.1.3 Morfologi Komposit MnO ₂ /Carbon52
Gambar IV.2.3.1 Grafik Cyclic Voltammetry (CV) Komposit MnO ₂ / Karbon Aktif
Gambar IV.2.3.2 Grafik Cyclic Voltammetry (CV) Komposit MnO ₂ / Graphene
Gambar IV.2.3.3 Grafik <i>Linear Sweep Voltammetry (LSV)</i> komposit MnO ₂ / <i>Carbon</i> 1600 rpm dengan 3V58

DAFTAR TABEL

Tabel II.1 Reaksi anoda serta seluruh reaksi pada Metal A.	ir
Battery	12
Tabel II.2 Perkembangan Sintesis MnO2	20
Tabel IV.1.1.1 Perbandingan Hasil Sintesis MnO2	36
Tabel IV.1.3.1 Diameter Partikel Variasi Jumlah Elektroda	a43
Tabel IV.1.4.1 Perbandingan Hasil Analisa BET antara Sin Electrode dan Multi Electrode	ngle 44
Tabel IV.1.5.1 Daftar Potensial Puncak Katoda MnO2	45
Tabel IV.2.2.1 Hasil Konduktivitas pada MnO2	53
Tabel IV.2.2.2 Hasil Uji Konduktivitas pada Komposit MnO ₂ /Carbon	53
Tabel IV.2.3.1 Daftar Potensial Puncak Katoda Komposit MnO ₂ /Carbon	55

BAB I PENDAHULUAN

I.1. Latar Belakang

Kebutuhan energi dan masalah lingkungan yang tinggi memaksa untuk mencari penyimpanan energi alternatif dan sistem konversi, seperti smart grid. Selain itu, peralatan dan perangkat elektronik *portable* telah berkembang dengan pesat dan kemajuan ini menuntut energi. Namun, energi maksimal dari baterai lithium-ion saat ini terbatas dikarenakan bahan elektroda yang memiliki interkalasi kimia sehingga baterai tersebut tidak memuaskan untuk aplikasi yang praktis. Karena hal tersebut, Metal-Air Battery menarik banyak perhatian sebagai salah satu alternatif karena densitas energi yang tinggi dibandingkan dengan baterai isi ulang lainnya. Karakteristik dari Metal-Air Battery memiliki struktur sel yang terbuka, karena baterai ini menggunakan gas oksigen yang langsung diakses dari udara. Zn-Air Battery khususnya memiliki potensi yang kuat untuk digunakan sebagai perangkat penyimpanan energi yang alternatif. Selain itu, Zn memiliki berbagai kelebihan seperti biaya yang rendah, bahan yang melimpah, potensi kesetimbangan yang rendah, sifat ramah lingkungan, debit tegangan yang rata, dan umur simpan yang panjang (Lee, dkk. 2011). Zn-Air Battery memiliki 3 bagian yaitu logam Zn sebagai anoda, elektroda udara sebagai katoda yang terbagi menjadi lapisan difusi gas dan lapisan aktif katalis dan juga sebuah pemisah antara anoda dan katoda (Yang, dkk. 2011)

Salah satu tantangan utama dalam Zn-Air Battery adalah adanya Oxygen Reduction Reaction (ORR) yang terhambat saat terjadi pelepasan pada elektroda dari baterai. Karena ORR yang terhambat menyebabkan tingginya over potential yang mengakibatkan hilangnya efisiensi energi. Oleh karena itu, dibutuhkan adanya katalis seperti mangan dioksida (MnO_2) . Diketahui bahwa MnO_2 menunjukkan aktivitas yang tinggi untuk ORR yang serupa dengan katalis logam mulia seperti Pt, Ru, dan Ir dan juga MnO_2 dikenal sebagai material yang berlimpah jumlahnya di alam, murah dan ramah lingkungan (Flegler, dkk. 2016)

Manganese dioxide (MnO₂) merupakan oksida mangan yang dapat berbentuk kristalin maupun amorf. Struktur kristalinnya memiliki polimorfi struktur kristal, seperti β -, α -, γ atau δ -MnO₂. Masing-masing struktur kristalin tersebut memiliki terowongan (tunnel) dengan ukuran yang berbeda beda. β -MnO₂ (pyrolusite), α -MnO₂ (ramsdellite), γ -MnO₂ (nsutite) dan δ -MnO₂ (vernadite) memiliki struktur tunnel (1x1), (1x2), (1x1)(1x2), dan $(1x\infty)$ secara berturut – turut. Dengan struktur tunnel yang dimiliki oleh material oksida mangan tersebut, maka MnO₂ banyak digunakan sebagai selektif katalis, penukar ion, dan penukar molekul (Wang, Li dan Sun, 2013). Diantara struktur kristal tersebut, α -MnO₂ menunjukkan kinerja elektrokimia yang terbaik. Namun, MnO₂ memiliki fitur konduktivitas elektrik vang rendah. Oleh karena untuk memperbaiki konduktivitas elektrik α -MnO₂ itu. dikompositkan dengan serbuk karbon (Lee, dkk. 2011)

Bahan karbon seperti karbon aktif (*activated carbon*) dan *graphene* telah dipelajari sebagai bahan elektroda yang memiliki luas permukaan yang tinggi, konduktivitas listrik yang baik, ukuran pori yang sesuai dan stabilitas kimia yang baik sehingga memiliki kapasitansi elektroda yang tinggi (Yang, dkk. 2011). Dalam skripsi ini kami mensintensis MnO₂ dan mengompositkan MnO₂/*Carbon* sebagai katoda pada *Zn-Air Battery* untuk meningkatkan kinerja kapasitor.

I.2. Rumusan Masalah

Berdasarkan latar belakang yang telah disebutkan sebelumnya, maka rumusan masalah pada penelitian ini

difokuskan pada :

- 1. Bagaimanakah pengaruh jumlah elektroda dan kondisi saat elektrolisis terhadap morfologi nanopartikel MnO₂ ?
- 2. Bagaimanakah kristalinitas α-MnO₂ nanopartikel dari KMnO₄ yang terbentuk pada suasana asam ?

I.3. Tujuan Penelitian

Tujuan yang ingin dicapai dari penelitian ini adalah sebagai berikut :

- 1. Mengetahui pengaruh jumlah elektroda dan kondisi saat elektrolisis terhadap morfologi nanopartikel MnO₂.
- 2. Mengetahui kristalinitas α -MnO₂ nanopartikel dari KMnO₄ yang terbentuk pada suasana asam.

I.4. Manfaat Penelitian

Adapun manfaat yang ingin diperoleh dari penelitian ini yaitu sebagai elektrokatalis dari komposit $MnO_2/Carbon$ sehingga dapat diaplikasikan sebagai katoda pada *Zn-Air Battery*.

BAB II TINJAUAN PUSTAKA

II.1 Manganese Dioxide (MnO₂)

Mangan dioksida (MnO₂) memiliki banyak aplikasi dalam bidang industri, antara lain: sebagai reagen dalam sintesis organik, sebagai inorganik pigmen pada keramik dan gelas , serta sebagai elektoda pada baterai. Selama beberapa tahun terakhir, penggunaan mangan dioksida sebagai elektroda baterai banyak menarik perhatian. Selain harganya yang murah dan ramah lingkungan, MnO₂ memiliki kapasitas penyimpanan yang tinggi, yaitu 615 mAh/g (Xing, Yin, and Zhang 2014) dalam arti lain MnO₂ sangat cocok untuk dijadikan superkapasitor. (Viscarini, dkk 2014)

Pada dasarnya Struktur dan valensi MnO_2 hanya berasal dari satu struktur saja yaitu MnO_6 oktahedral. Kombinasi dari MnO_6 menyebabkan MnO_2 terdapat dalam berbagai jenis untuk tujuan yang spesifik.

Gambar II.1 (a) Struktur dari α-MnO₂ tersusun atas rantai ganda MnO₆ oktahedral. (b) β-MnO₂ tersusun atas rantai tunggal MnO₆ oktahedral
 Gambar II.1 (a) menunjukkan bahwa α-MnO₂ tersusun atas rantai ganda MnO₆ oktahedral dan ruang

interstitial yang terdiri dari saluran satu dimensi yang memiliki ukuran relatif (2x2) dan (1x1) yang membentang dengan arah paralel menuju sumbu c dari sel tetragonal. Sedangkan struktur dari β -MnO₂ hanya terdiri dari rantai tunggal MnO₆ oktahedral.

Gambar II.2 menunjukkan struktur memiliki simetris tetragonal dengan ruang per grup 14/m. Kerangka memiliki ruang interstitial yang terdiri dari saluran tunggal berukuran (1x1) dan (2x2). Saluran (1x1) mewakili ruang interstitial yang ditemukan pada β -MnO₂. Kation seperti Ba²⁺ (*hollandite*), K⁺ (*cryptomelane*), NH₄, atau O₂ anion (dari H₂O (atau H₃O) dan Li₂O) yang menstabilkan kerangka MnO₂ dengan cara mengisi sebagian pusat dari saluran (2x2) pada posisi khusus (0, 0, z), biasanya mendekati (0, 0, ¹/₂). Jika oksigen mengisi bagian ini, maka struktur akan membentuk susunan baris tertutup untuk oksigen dengan lapisan paralel pada bidang (110). Kerangka α -MnO₂ di alam (mineral) distabilkan dengan kation seperti Ba²⁺ (*hollandite*) dan K⁺ (*cryptomelane*) atau dengan ion NH⁺ yang terletak didalam saluran besar (2x2).

 $\begin{array}{c} \textbf{Gambar II.2} \ Struktur \ \alpha-MnO_2 \ jika \ dilihat \ dari \ bagian \ bawah \\ & dari \ sumbu \ c - unit \ sel \\ Pertumbuhan \ dua \ atau \ lebih \ terowongan \ juga \ dapat \\ terjadi \ pada \ MnO_2. \ Menurut \ penelitian \ yang \ dilakukan \ oleh \end{array}$

Devaraj terdapat pertumbuhan yang tidak beraturan dari terowongan (1x1) (*pyrolusite*) dan terowongan (1x2) (*ramsdellite*) pada struktur γ - MnO₂ (*nsutite*).

Gambar II.3 (a) Struktur dari γ -MnO₂ dengan pertumbuhan yang tidak beraturan dari terowongan (1x1) (*pyrolusite*) dan

(1x2) (ramsdellite). (b) (1x2) ramsdellite-MnO₂

Gambar II.3 menunjukkan struktur dari γ -MnO₂. *Ramsdellite* tersusun atas rantai ganda MnO₆ (**Gambar II.3b**) yang dihubungkan bersama untuk membentuk terowongan berukuran (1x2) *octahedral cross section. Ramsdellite* hanya ditemukan pada alam sedangkan produk sintetis γ -MnO₂ mengandung *pyrolusite* (1x1).

Setiap struktur polimorfi MnO₂ memiliki ukuran struktur yang berbeda-beda, dimana ditentukan oleh jumlah dari sub-unit oktahedral (n x m). Contohnya, α -MnO₂ terdiri dari rantai ganda MnO₆ oktahedral dan membentuk terowongan 1D (2x2) dan (1x1) pada unit sel tetragonal. Ukuran terowongan (2x2) kurang lebih ~4,6 angstrom, ukuran ini cukup besar untuk insersi atau ekstraksi kation. Sedangkan struktur γ -MnO₂ tersusun atas struktur ramsdellite (1 x 2) dan pirolusit (1 x 1). β -MnO₂ memiliki struktur terowongan menampung kation. Selanjutnya, δ -MnO₂ tersusun atas struktur 2D yang memiliki *interlayer* berukuran ~7 angstrom. Dengan spesifikasi tersebut memungkinkan adanya jumlah yang signifikan untuk air maupun kation untuk stabilisasi seperti Na⁺ atau K⁺. Struktur terakhir, λ -MnO₂ yang memiliki struktur terowongan 3D dengan bentuk yang lebih terbuka dibandingkan β - MnO₂ sehingga memungkinkan terjadinya difusi kation sebagian diantara 2D dan 1D.

Sifat elektrokatalis dari MnO₂ salah satunya tergantung oleh struktur kristal. Kemampuan elektrokatalis dari MnO₂ dengan struktur polimorfi berbeda memiliki kemampuan semakin meningkat dari $\beta - \langle \lambda - \langle \gamma - \langle \alpha - , \alpha - MnO_2 \rangle$ adalah jenis MnO₂ dengan kemampuan elektrokatalis paling bagus karena memiliki struktur kristal yang cukup luas untuk menampung dan mendekomposisi molekul oksigen. (Lu and Shee 2013)

II.2 Karbon

Karbon merupakan suatu material yang memiliki berbagai keunggulan dari segi sifat fisika dan kimia, sehingga banyak dikembangkan oleh para peneliti saat ini. Keunggulan yang dimiliki oleh karbon ini menjadikannya sebagai material dengan aplikasi yang luas. Performa dari karbon ini dipengaruhi oleh morfologi (seperti: karbon koloidal, *nanotube*, *fullerenese*, grafit, grafen, *colloidal sphere*, *nanofiber*, *porous carbon*, *nanowire*, dan karbon aktif) yang dimiliki akibat metode dan kondisi sintesis.

Perbedaan morfologi ini akan berakibat pada luasnya aplikasi dari karbon tersebut, seperti: pendukung katalis, adsorben, penyimpan gas, teknologi pemisahan, elektroda batrei, template material berpori, sel bahan bakar, dan sel biologis. Selain itu, beberapa partikel karbon dengan morfologi tertentu akan memiliki aplikasi yang berbeda, diantaranya:

a. Karbon sperik diaplikasikan dalam *nanodevice*, penyimpan energi, teknologi pemisahan, adsorben, katalis, anoda baterai, dan *template* pembentuk material berpori

- b. Karbon berpori digunakan sebagai penukar ion, katalis, elektroda baterai, pengisi polimer, ultrafiltrasi, sensor, bahan bakar, adsorben, dan membran
- c. Karbon koloidal memiliki keunggulan, diantaranya: banyak gugus fungsi, mudah terdispersi, mempunyai sisi aktif, dan mudah dikompositkan

Selain dari morfologi dan aplikasinya yang luas, partikel karbon juga banyak diteliti karena memiliki beberapa keunggulan, seperti: tidak berbahaya, murah, kapasitas volumetrik tinggi, kapasitas refersibel tinggi, mudah dikompositkan, berlimpah, murah, dan stabil. (Effendi, dkk. 2015)

Bahan karbon seperti karbon aktif (*activated carbon*) dan *graphene* telah dipelajari sebagai bahan elektroda yang memiliki luas permukaan yang tinggi, konduktivitas listrik yang baik, ukuran pori yang sesuai dan stabilitas kimia yang baik sehingga memiliki kapasitansi elektroda yang tinggi (Yang, dkk. 2011)

Karbon aktif merupakan senyawa karbon amorf yang memiliki porositas serta luas area interpartikulat yang tinggi. Karbon aktif berbeda dengan elemen karbon biasa, yaitu adanya atom-atom lain, selain karbon, yang terdapat di dalam dan luar permukaan. Karbon aktif memiliki pori-pori, yang berdasarkan ukurannya dibedakan menjadi *micropore* (500 Å). Dalam adsorpsi, macropore merupakan jalan masuk dari fluida ke karbon aktif, mesopore sebagai tempat terjadinya adsorpsi dan transportasi fluida di dalam karbon aktif, sementara di dalam micropore terjadi adsorpsi adsorbat. Luas permukaan dari karbon aktif, sebesar 95% merupakan luas dari micropore, 5% mesopore, sementara *macropore* cenderung tidak dari berkontribusi penting dalam memberikan luas permukaan karbon aktif.

Ilustrasi struktur pori-pori dalam karbon aktif disajikan pada **Gambar II.4**,

Gambar II.4 Ilustrasi Pori-pori dalam Karbon

Karbon aktif dan graphene telah dianggap sebagai material berpotensial di industri seperti listrik, elektrokimia, dan aplikasi elektronik. Penyimpanan energi dengan volume yang besar dengan densitas daya yang tinggi, biaya produksi yang rendah, dan biaya pemeliharaan yang rendah adalah salah satu aspek utama penelitian dalam sistem penyimpanan energi. Karbon seperti karbon aktif dan graphene telah menjadi bahan yang menjanjikan dalam penelitian baterai untuk menyiman energy dengan kepadatan daya yang tinggi dan siklus hidup vang panjang. Disamping bobotnya yang ringan dengan luas permukaan yang tinggi, karbon merupakan bahan yang mudah didapatkan karena berlimpah di alam (Xing et al. 2014). Sejauh ini, karbon merupakan elemen yang paling umum digunakan untuk superkapasitor. Ketika karbon diolah untuk memperbaiki sifat seperti porositas yang tinggi. Dengan tingginya porositas maka luas permukaan juga meningkat. Graphene hanyalah satu lapisan grafit, namun memiliki sifat yang berbeda secara signifikan dari banyak lapisan grafit. Konduktivitas listrik dan termal, kekuatan, dan luas permukaan berbeda antara graphene dan grafit. Konduktivitas graphene telah diukur mencapai 649 S/cm. properti yang paling penting pada graphene adalah luas

permukaan yang mencapai 2675 m²/g dan memiliki kapasitansi sebesar 550 F/g (Kannappan, dkk. 2013).

II.3. Hubungan antara *Metal Air Battery* dengan *Zn-Air Battery*

Metal Air Battery adalah jenis baterai yang berbeda. salah satu bahan elektroaktif (oksigen) tidak perlu disimpan. hal ini secara teori menyederhanakan desain dan meningkatkan densitas energi sel. dan baterai ini juga disebut sebagai *fuel* cell/ baterai hibrida. Teknologi ini berpotensi memiliki energi spesifik tertinggi dari teknologi baterai yang pernah ada. Metal Air Battery pertama dikembangkan pada tahun 1868 berbasis MnO₂/*Carbon* sebagai katoda. Sejak dulu, banyak logam yang telah ditemukan sesuai dengan kegunaannya, termasuk Ca, Al, Fe, Cd, dan Zn. Tahun 1996, Li-Air Battery merupakan baterai pertama yang dapat di charge ulang. Namun, selama dekade terakhir, Zn-Air Battery juga menarik perhatian. Hal ini dikarenakan, Metal Air Battery terdiri dari eletroda karbon berpori terbuka (katoda udara) yang menjebak oksigen gas dan dipisahkan dari anoda logam oleh elektrolit yang mungkin merupakan zat solid, aqueous, non-aqueous (organik), atau hibrida. Hingga tahun 2011, jenis elektrolit non-aqueous merupakan yang paling berkembang. (Li-batteries, 2012)

Metal Air Battery menghasilkan energi listrik melalui reaksi redoks antara logam dan oksigen dari udara. Pada bagian katoda memiliki struktur berpori yang memungkinkan tersedianya pasokan oksigen yang berlimpah langsung dari udara atmosfer. Baterai jenis ini juga memiliki densitas energi yang cukup tinggi karena oksigen pada katoda tidak disimpan di dalam baterai namun berasal dari udara luar. Logam pada anoda memiliki rasio valensi elektron terhadap inti atom yang cukup tinggi, nilai densitas energi *Metal Air Battery* tertinggi dapat mencapai 32000 kg/Wh sedangkan nilai densitas energi pada bahan bakar seperti bensin berkisar pada 14000 kg/Wh.

Gambar II.5 Skema Kerja Metal Air Battery Dalam perkembangannya, teknologi Metal Air Battery memiliki beberapa kelemahan diantaranya adalah efisiensi rendah pada anoda dan reaksi pada katoda yang cukup lambat. Masalah yang sering timbul pada anoda adalah terbentuknya passivasi. Passivasi adalah lapisan tambahan yang terbentuk di sekitar elektroda sehingga menghambat masuknya oksigen kedalam elektroda. Passivasi ini menyebabkan terbentuknya akumulasi oksida logam, hidroksida, dan senyawa lain menyebabkan terhambatnya proses discharging material aktif yang ada. Self discharge dan korosi pada anoda logam menurunkan efisiensi pada anoda dan memperpendek umur baterai. Sedangkan pada katoda masalah yang sering timbul adalah reaksi yang cukup lambat dan rendahnya reaksi reversible oksigen yang meliputi Reaksi Reduksi Oksigen (ORR) serta Reaksi Evolusi Oksigen (OER).

Metal Air Battery terdiri dari anoda logam, katoda berpori, dan elektrolit. Anoda logam berperan sebagai oksidator dan melepaskan elektron keluar baterai ketika proses *discharge*. Pada saat yang sama, oksigen akan berdifusi ke dalam katoda, menerima elektron dari anoda dan oksigen mengalami reduksi lalu bereaksi dengan ion logam menjadi senyawa logam oksida. Pada saat sel mengalami proses *charging* (untuk *rechargeable Metal Air Battery*), proses ini akan berbalik dengan terjadinya Reaksi Evolusi Oksigen (OER) di dalam larutan elektrolit. Reaksi dan produk pada *Metal Air Battery* akan bervariasi hal ini ditentukan oleh jenis logam, elektrolit, dan katalis yang digunakan.

Berikut ini terdapat beberapa contoh reaksi anoda dan reaksi keseluruhan pada *metal air battery* dengan elektrolit basa. V^{α} adalah potensial standart (E⁰) dapat diketahui dengan mengasumsikan potensial pada reaksi katoda yang bernilai 0,4 V. Nilai ini didapatkan dari *Standart Hydrogen Electrode* (SHE).

Metal air – cells	Reaksi Anoda (a) dan Reaksi <i>Overall</i> (o)	Ε ⁰ /V α
Zn-air	(a) $Zn + 2OH^{-} \rightarrow ZnO + H_2O + 2e^{-}$ (o) $2Zn + O_2 \rightarrow 2ZnO$	-1,25 1,65
Mg-air	g-air (a) $2Mg + 4OH^{-} \rightarrow 2Mg(OH)_2 + 4e^{-}$ (b) $2Mg + O_2 + 2H_2O \rightarrow 2Mg(OH)_2$	
Al-air	$(a) Al + 3OH^{-} \rightarrow Al(OH)_3 + 3e^{-}$ $(o) 4Al + 3O_2 + 6H_2O \rightarrow Al(OH)_3$	
Li-air	(a) $\text{Li} + \text{OH}^- \rightarrow \text{LiOH} + \text{e}^-$ (o) $4\text{Li} + \text{O}_2 + 2\text{H}_2\text{O} \rightarrow 4\text{LiOH}$	-2,95 3,35

 Tabel II.1. Reaksi Anoda serta Seluruh Reaksi pada Metal Air Battery

Sedangkan reaksi yang terjadi pada katoda yaitu reaksi reduksi oksigen yang masuk melalui pori – pori katoda dapat

 $\begin{array}{ll} \text{diuraikan sebagai berikut:} \\ O_2 + 2H_2O + 4e^- \rightarrow 4OH^- & (E^0 = 0,4 \text{ V}) \dots \\ (1) \\ O_2 + H_2O + 2e^- \rightarrow HO_2^- + OH^- & (E^0 = -0,07 \text{ V}) \dots \\ (2) \\ HO_2^- + H_2O + 2e^- \rightarrow 3OH^- & (E^0 = 0,87 \text{ V}) \dots \\ (3) \\ 2HO_2^- \rightarrow 2OH^- + O_2 & \dots \\ .(4) \end{array}$

Reaksi reduksi oksigen terdiri dari reaksi elektrokimia kompleks yang melibatkan lebih dari satu langkah transfer elektron. Reaksi diatas terjadi pada *Metal Air Battery* dengan elektrolit basa dan anoda dari logam transisi. *Oxygen Reduction Reactions* (ORR) memiliki mekanisme yang beragam yang ditentukan oleh jenis elektrolit dan katalis yang digunakan. (Cheng and Chen 2012)

Gambar II.6 Skema Prinsip Kerja *Zn-Air Battery Zn-Air Battery* adalah baterai yang didukung oleh logam seng dan oksigen dari udara. Karena kelimpahan global logam seng, baterai ini jauh lebih murah untuk diproduksi daripada baterai *lithium-ion*. Juga dapat menyimpan lebih banyak energi (secara teoritis lima kali lebih banyak daripada baterai lithium-ion), jauh lebih aman dan lebih ramah

lingkungan.

Sementara *Zn-Air Battery* ini digunakan sebagai sumber energi untuk alat bantu dengar dan beberapa kamera film dan perangkat sinyal kereta api. Penggunaannya yang meluas telah terhambat oleh pengisian ulang yang sulit. Hal ini disebabkan kurangnya elektrokatalis yang berhasil mengurangi dan menghasilkan oksigen selama pemakaian dan pengisian baterai.

Menurut Profesor Yuan Chen, dari Fakultas Teknik dan Teknologi Informasi Universitas Sydney, *Zn-Air Battery* telah dibuat dengan katalis logam mulia yang mahal, seperti platinum dan *iridium oxide*. Sehingga dibutuhkan katalis berkinerja tinggi dan biaya rendah yang baru.

II.4 Elektrokatalis pada Zn-Air Battery

Reaksi pada katoda secara umum berlangsung menggunakan elektrokatalis. Beberapa jenis bahan telah digunakan sebagai Elektrokatalis pada Metal-Air Battery diantaranya logam mulia, campuran logam, logam transisi, dan logam dari senyawa makrosiklik. Logam dari golongan transisi merupakan jenis yang paling sering digunakan hal ini dikarenakan keberlimpahannya, murah, dan ramah lingkungan. Walaupun beberapa senyawa kurang stabil pada media asam, namun senyawa-senyawa dari golongan ini cukup stabil pada elektrolit basa. Logam golongan transisi dikenal memiliki sejumlah valensi. Contohnya adalah Mn yang memiliki lebih dari satu valensi diantaranya Mn (II), Mn (III), dan Mn (IV). Pada ORR, senyawa mangan berperan sebagai oxygen acceptor/donor mediator dan membantu transfer elektron. Struktur amorf pada senyawa Mn sangat berpengaruh sebagai kinerjanya sebagai elektrokatalis. Kemampuan elektrokatalis pada MnO₂ secara umum dapat diurutkan sebagai berikut α - > β - > γ -MnO₂. Hal ini didasarkan pada kemampuan konduksi

listrik dan luas permukaan.

Elektrokatalis mempercepat terjadinya Oxygen Reduction Reaction (ORR) dan Oxygen Evolution Reaction (OER). ORR adalah reaksi reduksi oksigen yang masuk melalui pori – pori katoda yang kemudian digunakan untuk bereaksi dengan logam anoda membentuk oksida logam. Reaksi yang terjadi pada ORR secara umum adalah sebagai berikut:

 $O_2 + 2H_2O + 4e^- \rightarrow 4 \text{ OH}^ E^0 = 0,401 \text{ V}$ Kebalikan dari ORR adalah OER dimana akan dihasilkan oksigen dari ion hidroksida yang kemudian digunakan untuk reaksi balik sel ketika dalam fase *charging*. Reaksi yang terjadi adalah sebagai berikut:

 $4OH^{-} \rightarrow O_2 + 2H_2O + 4e^{-}$ $E^0 = -0,401 \text{ V}$

II.5 Sintesis MnO₂

Mangan dioksida disintesis dari kalium permanganate (KMnO₄) melalui mekanisme elektrolisis. Pada elektrolisis Mangan (IV) oksida dibutuhkan sumber tegangan arus searah untuk menguraikan ion-ion pada larutan elektrolit. Pada proses elektrolisis ini digunakan elektroda *carbon* yang bersifat *inert*. Mekanisme yang terjadi ketika pada larutan elektrolit mulai dialirkan arus listrik adalah ion negatif akan bergerak ke arus positif dan ion positif akan bergerak ke arus negatif. Reaksi kimia yang terjadi pada masing-masing elektroda dapat diketahui dari potensial standar oksidasi/reduksi dari masing-masing spesies.

Elektrolisis melibatkan anoda bermuatan positif (oksidasi) dan katoda bermuatan negatif (reduksi). Pada anoda, terjadi oksidasi H₂O :

 $2H_2O \rightarrow O_2 + 4H^+ + 4e^ E^0 = +1,23 \text{ V} \dots (IV.1)$ Sedangkan pada reaksi reduksi pada katoda melibatkan transfer ion H⁺ akibat adanya penambahan H₂SO₄ : MnO + 4H⁺ + 2e⁻ → MnO + 2H O $E^0 = +1.67 \text{ V} \dots (IV.2)$

 $MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O_-E^0 = +1,67 V..... (IV.2)$

Pembentukan endapan MnO_2 terjadi di daerah katoda, dimana pada daerah itu MnO_4^- direduksi dari Mn^{7+} menjadi Mn^{4+} . Suasana yang sangat asam diciptakan agar terbentuk endapan MnO_2 yang sempurna sehingga diperlukan larutan, seperti H_2SO_4 . Hal itu didukung oleh persamaan reaksi (IV.2), dimana dibutuhkan 4 mol H⁺ untuk bereaksi dengan 1 mol MnO_4^- untuk membentuk 1 mol endapan MnO_2 . Sehingga dibutuhkan asam (H⁺) berlebih untuk menghasilkan endapan MnO_2 yang optimum.

II.6 Komposit MnO₂ dengan Karbon

Nilai energi dan daya pada superkapasitor ditentukan oleh jenis elektroda yang digunakan. Secara umum ada dua mekanisme penyimpanan energi oleh elektroda yang digunakan dalam superkapasitor yaitu Electrochemical Double-Layer Capacitor (EDLC) yaitu kapasitor elektrokimia yang memiliki rapat energi yang lebih besar dari pada kapasitor biasa dan Pseudocapacitance yang merupakan superkapasitor yang menyimpan energinya berdasarkan pada prinsip reduksioksidasi. Penggunaan kedua mekanisme penyimpanan energi oleh elektroda ini dapat digunakan untuk mendapatkan nilai daya yang lebih tinggi dan meningkatkan energi untuk sebuah piranti superkapasitor dengan cara menambahkan oksida logam pada karbon yang berpori. Beberapa oksida logam yang umum digunakan sebagai elektroda pada superkapasitor adalah seperti: Ruthenium Oksida (RuO₂), Mangan Dioksida (MnO₂), Nikel Oksida (NiO) dan Kobalt Oksida (Ca₃O₄) (Lokhande, Dubal, and Joo 2011)

Sedangkan, beberapa peneliti melakukan penelitian yang berhubungan dengan komposit MnO_2 /karbon dan telah diketahui bahwa MnO_2 memiliki beberapa kelebihan diatas bahan karbon, seperti : kapasitansi tinggi, harga murah, kompabilitas lingkungan dan kelimpahan alam pada aplikasi

lain (superkapasitor), namun memiliki nilai konduktivitas yang rendah. Sehingga dibutuhkan adanya karbon untuk menunjang tingginya konduktivitas pada komposit ini (Yang, dkk. 2011)

II.7 Jenis Uji pada Nanopartikel MnO₂

II.7.1 X-Ray Diffraction (XRD)

XRD adalah alat yang sangat berguna untuk analisis struktur kristal dan ukuran kristal. Sintesis pada kondisi hidrotermal dapat ditandai dengan adanya analisa XRD.

Gambar II.7 Karakteristik α-MnO₂ berdasarkan JCPDS 044-0141

Seperti Pada karakteristik α -MnO₂, sampel memiliki *peak* difraksi dengan indeks struktur kristal tunggal-tetragonal berdasarkan JCPDS 044-0141, dimana standar ini memiliki pertumbuhan kristal dari nanopartikel MnO₂ yang sangat baik.

II.7.2 Brunaeur-Emmet-Teller (BET)

Teori Brunaeur-Emmet-Teller bertujuan untuk mengetahui adsorpsi fisik molekul gas pada permukaan padat dan berfungsi sebagai dasar teknik analisis penting untuk pengukuran luas permukaan material tertentu.

Secara singkat, teori / metode ini didasarkan pada adsorpsi multi lapisan fisik dari gas-gas yang tidak korosif (seperti nitrogen, argon, karbon dioksida, dll.) Pada bahan padat (misalnya bubuk nano-material) untuk menentukan data area permukaan spesifik. Teorinya adalah teknik analisis yang paling umum dan standar (ISO 9277: 2010, DIN ISO 9277: 2013) untuk pengukuran area permukaan spesifik yang diterbitkan oleh Brunauer, Emmett and Teller (1938). (Contents 2016)

II.7.3 Scanning Electron Microscopy (SEM)

Analisa SEM dibutuhkan untuk mengetahui morfologi dari suatu partikel material tertentu. Hasil *image* dari SEM adalah perbesaran dengan 2D pada *digital domain*. Setiap piksel dari *image* yang didapatkan sesuai dengan titik pada sampel tersebut yang sebanding dengan intensitas sinyal yang ditangkap oleh detektor pada setiap titik tertentu.

Gambar II.8 Spesifikasi Poin pada SEM

Image yang dihasilkan dan ditampilkan secara elektronik. Hal ini dikarenakan, *Image* dari SEM terbentuk dengan sintesis elektronik, tidak tada transformasi optik yang terjadi, dan tidak maya. (Kim, Iroaga, and Murmann 2004)

II.7.4 Rotating Disk Electrode (RDE)

Teknologi elektroda berputar termasuk *Rotating Disk Electrode (RDE)* dan *Rotating Ring Disk Electrode (RRDE)* merupakan salah satu metode pengukuran elektrokimia yang penting. Khususnya, dalam mempelajari kinetika dan mekanisme reaksi elektroda. RDE maupun RRDE dapat menunjukkan bagaimana mengukur jumlah transfer elektron, konsentrasi reaktan dan koefisien difusi, konstanta reaksi kinetik, dan intermediet reaksi. Teori Kouteckye-Levich merupakan teori yang terkenal untuk menganalisa RDE dan RRDE pada *Oxygen Reduction Reaction (ORR)*. Dimana, teori ini memberi hubungan antara nomor transfer electron ORR, konsentrasi O₂ (atau kelarutan), koefisien difusi O₂, viskositas larutan elektrolit, dan tingkat putaran elektroda. Dengan menganalisis hubungan ini, baik kinetika dan mekanisme ORR dapat diperkirakan.

Bagian terpenting dari teknik RDE dalah konveksi larutan elektrolit. Karena konveksi larutan, reaktan dalam larutan akan bergerak bersamaan dengan konveksi pada laju transportasi yang sama. Dimana, bagian bawah tepi elektroda yang keatas dengan arah sejajar permukaan elektroda dapat memperlihatakna bagaimana difusi dari layer konveksi dapat terbentuk dan dapat menjawab suatu *mathematic experession*. (Xing, dkk. 2014)

II.8 Hasil Penelitian Terdahulu

Pada penelitian ini, nanopartikel MnO_2 disintesis menggunakan metode elektrokimia dengan control suhu saat proses elektrolisis suasana asam. Dwi dan Giska (2017) telah berhasil mensintesis MnO_2 dari $KMnO_4$ dengan metode elektrolisis pada suasa asam. Kemudian Tigor (2013) berhasil mendapatkan kristal MnO_2 jenis alpha pada kondisi suhu 60°C. Berikut adal beberapa hasil penelitian sintesis MnO_2 yang pernah dilakukan pada beberapa penelitian sebelumnya pada **Tabel II. 2**:

No	Peneliti	Judul	Hasil
•			
1.	Yang dkk, 2008	Hydrothermal Synthesis and Electrochemical Characterization of α-MnO ₂ Nanorods as Cathode Material for Lithium Batteries	Dihasilkan partikulat MnO ₂
2.	Min-min, Z.	Template Synthesis	Partikulat yang

 Tabel II.2 Perkembangan Sintesis MnO2

	dkk, 2010	of MnO2/CNT	dihasilkan MnO ₂ .	
		Nanocomposite and	Memiliki kapasitas	
		Its Application in	penyimpanan yang besar	
		Rechargeable	namun karakteristik	
		Lithium Batteries	kristal yang buruk.	
		A High-Energy-		
		Density Micro		
		Supercapasitor of	Partikulat yang	
2	Shen dkk,	Asymmetric	dihasilkan MnO ₂ .	
3.	2013	Configuration by	Memiliki kapasitansi	
		using Micro	yang besar	
		Fabrication		
		Technoligies		
		Sintesis Nanopartikel	Struktur Kristal MnO ₂	
4	Tigor dkk,	Mangan Dioksida	yang paling baik	
4.	2013	(MnO ₂) dengan	terbentuk pada suhu	
		Elektrolisa KMnO ₄	operasi larutan 60 °C	
	Feng dkk, 2014	MnO_2 Prepared by		
		Hydrothermal		
		Method and	Didonation Mr.O	
5.		Electrochemical	dan can Uidratharmal	
		Performance as	dengan Hidrotherman	
		Anode for Lithium-		
		Ion Battery		
		Sintesis MnO ₂	Dout inslat was a	
6.	Almira, C.	dengan Teknik	dihagillan MrQ nada	
	Prasetyo,	Elektrokimia dan	dinasiikan MinO ₂ pada	
	2014	Aplikasinya sebagai		
		Superkapasitor	(asam)	
	Viscarini,	Sintesis Partikel	Partikulat yang	
7.	Nur	MnO ₂ dengan Teknik	ranikulai yang dibasilkan MnO. dangan	
	Rokhima,	Elektrokimia dalam	kristelinites yong hyml	
	Minta	Sel Membran	KIIstannitas yang buruk	

	Yuwana, 2014		
8.	Chafid dkk, 2015	Pengaruh Annealing terhadap Kristalinitas MnO ₂ Hasil Sintesis dengan Metode Elektrokimia	Ukuran Kristal membesar seiring bertambahnya suhu <i>annealing</i> , menyebabkan luas permukaan berkurang
9.	Iqbal dkk, 2016	Pengaruh Morfologi Partikel MnO ₂ terhadap Kinerjanya sebagai Superkapasitor	MnO ₂ dengan ukuran partikel yang besar dan ukuran kristal yang kecil memiliki sifat kapasitansi yang lebih baik dibandingkan dengan MnO ₂ dengan ukuran partikel yang kecil
10	Giska dkk, 2017	Sintesis MnO ₂ dengan Metode Elektrokimia sebagai Elektrokatalis pada <i>Metal Air Bettery</i>	Jumlah elektroda dan voltase pada saat elektrolisis berpengaruh pada <i>yield</i> partikel MnO ₂ serta dihasilkan kristal yang menyerupai α-MnO ₂ dengan diameter partikel lebih besar dan luas permukaan lebih kecil pada suasa asam.
BAB III METODOLOGI PENELITIAN

III.1 Garis Besar Penelitian

Garis besar penelitian ini terdiri dari 3 bagian, yaitu :

- a. Sintesis MnO₂ pada suasana asam
- b. Komposit MnO₂/Carbon
- c. Uji karakteristik, konduktivitas dan elektrokatalis MnO₂ serta MnO₂-Carbon sebagai katoda Zn-air battery

Sintesis MnO_2 dengan metode asam mengacu pada prosedur penelitian yang telah dilakukan oleh Giska dkk, 2017 dan Tigor dkk, 2013.

III.2 Bahan Penelitian

- a. KMnO4
- b. H₂SO₄ 98%
- c. Elektroda (Karbon)
- d. Karbon aktif
- e. Graphene

- f. N-Methylpyrrolidone (NMP)
- g. PVdf
- h. Air demin
- i. KOH 0,6 M
- III.3 Metodologi Penelitian

Gambar III.1 Flowchart Sintesis MnO₂

Sintesa MnO_2 dilakukan dengan metode elektrokimia. Sel elektrokimia merupakan sebuah *beaker glass* berukuran 600 ml yang berisi 5 gram KMnO₄ dengan 300 ml Air Demin kemudian ditambahkan dengan 100 ml H₂SO₄. Pada penelitian ini digunakan 1,2,3, dan 4 pasang elektroda, terdiri dari katoda dan anoda dengan elektrolisis pemanasan 60°C. Tiap elektroda dihubungkan kepada satu daya DC. Anoda dihubungkan pada kutub positif dan katoda dihubungkan pada kutub negatif.

Gambar III.2 Sintesis MnO2 Metode Elektrokimia

III.3.2 Aplikasi MnO₂ sebagai Elektrokatalis

Gambar III.3 Flowchart Aplikasi MnO₂ sebagai Elektrokatalis

Pembuatan sampel elektrokatalis dibuat dengan cara mencampur secara merata serbuk MnO₂ seberat 0,01 gram dengan *PVdf* 0,001 gram dan *N-Methylpyrolidane* (NMP) secukupnya sampai terbentuk pasta. Mencetak pasta tersebut diatas Pt yang kemudian dikeringkan di oven dengan temperatur 80°C. Setelah dilakukan pembuatan elektrokatalis, maka dilakukan uji karakterisasi dengan menggunakan *AUTOLAB* PGSTAT 302N. Sampel elektrokatalis yang sudah dibuat digunakan sebagai elektroda kerja. Platina (Pt) digunakan sebagai *counter electrode* untuk pengukuran elektrokimia dan elektroda pembanding yang digunakan adalah Ag/AgCl. Elektrolit yang digunakan adalah larutan elektrolit KOH 0,6 M. Pengukuran voltametri siklik (CV) dilakukan berulang dalam 6 siklik dengan rentang tegangan terpasang -1 sampai 1 V pada temperatur ruangan menggunakan *scan rate* 0,01 V/s. Untuk uji LSV menggunakan variabel kecepatan putar, yaitu 400 rpm, 800 rpm, 1200 rpm, 1600 rpm, dan 2000 rpm. Uji Polarisasi Linier juga berlangsung dari rentang -0,8 hingga 0,5 V pada *scan rate* 0,01 V/s. Berikut skema Uji Elektrokatalis yang digunakan terlampir pada **Gambar III.4** sebagai berikut :

Gambar III.4 Skema Uji Elektrokatalis

Gambar III.5 Flowchart Komposit MnO₂/Carbon

Pada Komposit $MnO_2/Carbon$, *Carbon* yang digunakan divariasikan berupa karbon aktif dan *graphene* dengan perbandingan 1:1 dari masing-masing MnO_2 dan karbon. *Acetylene Black* dan *PVdf* yang ditambahkan mendapat perbandingan 0,1 : 0,1 sehingga untuk keseluruhan campuran MnO_2 : *Carbon* : *Acetylen Black* : *PVdf* sebesar 1 : 1 : 0,1 :0,1 dari masing-masing variabel jenis karbon yang digunakan. Waktu yang dibutuhkan dalam pencampuran dengan *ball mill* dilakukan selama 100 detik.

III.3.4 Uji Konduktivitas MnO₂/Carbon

Gambar III.6 Flowchart Uji Konduktivitas MnO₂/Carbon

Uji konduktivitas yang dilakukan dengan menggunakan metode 4 Point Probe. Alat yang digunakan dalam metode ini yaitu berupa power supply sebagai sumber tegangan, AVO meter sebagai voltmeter. Menyalakan power supply dengan mengatur tegangan input sebesar 2 Volt. Komposit MnO₂/Carbon yang sudah divariasikan selanjutnya di kompaksi. Komposit MnO₂ yang sudah di kompaksi ditancapkan pada kaki probe secara tegak lurus dengan sampel. Berikut skema uji konduktivitas yang digunakan terlampir pada

Gambar III.7.

Gambar III.7 Skema Uji Kondutivitas dengan Metode 4 Point Probe

III.3.5 Aplikasi MnO₂/Carbon sebagai Elektrokatalis

Gambar III.8 Flowchart Uji Elektrolisis MnO₂/Carbon

Sampel serbuk komposit MnO₂/*Carbon* seberat 0,01 gram ditambahkan 0,001 gram *PVdf* dan *N-Methylpyrolidane* (NMP) sampai menjadi pasta yang kemudian dicetak diatas Pt pada motor RDE. Dikeringkan didalam oven yang bersuhu 80^oC selama 1,5 jam. Setelah kering dilakukan uji karakterisis menggunakan *AUTOLAB PGSTAT 302N*. Sampel elektrokatalis yang sudah dibuat digunakan sebagai elektroda kerja. Platina (Pt) digunakan sebagai *counter electrode* untuk pengukuran elektrokimia dan elektroda pembanding yang digunakan adalah Ag/AgCl. Elektrolit yang digunakan adalah larutan elektrolit KOH 0,6 M. Pengukuran voltametri siklik ini dilakukan berulang dalam 6 siklik pada rentang tegangan terpasang -0,8 – 0,5 V pada temperatur ruangan menggunakan *scan rate* 0,01 V/s.

III.3.6 Uji Karakterisasi Nanopartikel MnO₂

Karakterisasi produk MnO₂ dilakukan dengan mengamati properti berikut:

a. Analisa BET Analisa ini dilakukan dengan mengambil sedikit sampel dari produk yang telah terbentuk dan

mengalisanya dengan *BET (Brunauer-Emmet-Teller) NOVA 1200 Quantachrom series.* Dari hasil ini didapatkan luas permukaan, volume pori, dan diameter pori.

- b. Karakterisasi dengan XRD Dari analisa *XRD (X-Ray Diffraction)* didapatkan peak yang dihasilkan oleh difraksi sinar X untuk mengetahui kemurnian dari partikel MnO₂ yang dihasilkan. Dari analisa tersebut juga dapat ditunjukkan berapa persen kuantitas dari MnO₂. Alat analisa ini menggunakan *PAN analytical series*.
- c. Karakterisasi dengan SEM Dari analisa *SEM (Scanning Electron Microscopy)* ini dapat diketahui bentuk morfologi dari partikel MnO₂ yang dihasilkan dari tahap sintesis. Dengan menggunakan hamburan sinar elektron berenergi tinggi, dapat diketahui detail morfologi, ukuran dan bentuk dari suatu nanopartikel. Selama pengujian digunakan alat *Zeiss Evo MA 10*

III.3.7 Uji Karakterisasi Komposit MnO₂/Carbon

Dari analisa SEM (*Scanning Electron Microscopy*) ini dapat diketahui bentuk morfologi dari partikel MnO₂ yang dihasilkan dari tahap sintesis. Dengan menggunakan hamburan sinar elektron berenergi tinggi, dapat diketahui detail morfologi, ukuran dan bentuk dari suatu nanopartikel. Selama pengujian digunakan alat *Zeiss Evo MA 10*

BAB IV HASIL DAN PEMBAHASAN

Manganese dioxide (MnO₂) merupakan oksida mangan vang dapat berbentuk kristalin maupun *amorf*. Diantara ienis MnO₂, yaitu α -MnO₂, β -MnO₂, γ -MnO₂, dan δ -MnO₂, struktur kristal α-MnO₂ menunjukkan kinerja elektrokimia terbaik. Namun, MnO₂ memiliki fitur konduktivitas elektrik yang rendah. Oleh karena itu, untuk memperbaiki konduktivitas elektrik dari α -MnO₂, maka dikompositkan dengan serbuk karbon. Dalam hal ini, komposit MnO₂/Carbon memiliki peran dalam pencegahan adanya lapisan passivasi yang terbentuk dalam Metal-Air Battery pada logam Zn. Untuk mengetahui kinerja dari MnO₂/Carbon tersebut, maka dilakukan 3 tahap penelitian, vaitu: Sintesis MnO₂ pada suasana asam, komposit MnO₂/*Carbon*, uji karakteristik. elektrokatalis. dan konduktivitas MnO2 serta MnO2/Carbon sebagai katoda Zn-Air Batterv.

Tahap pertama, sintesis MnO₂ dilakukan pada suasana asam dengan metode elektrokimia variasi jumlah elektroda dan tegangan 3V. Kondisi sintesis MnO₂ yang optimum dapat dilihat dari perbedaan saat elektrolisis berlangsung. Pada treatment tanpa pengaruh suhu, elektrolisis hanya dialiri arus dengan beda potensial 3V. Untuk treatment aging, setelah elektrolisis dilakukan selama 30 menit, larutan didiamkan hingga variabel waktu satu bulan dan juga seminggu. Sedangkan pada *treatment* pengaruh suhu, elektrolisis dikontrol dengan kondisi steady 60°C. Variabel yang digunakan adalah jumlah elektroda 1 pasang, 2 pasang, 3 pasang, dan 4 pasang. Partikel MnO₂ terbentuk dari reduksi KMnO₄ menjadi MnO₂ pada katoda. Pertama, sebanyak 5 gram padatan KMnO4 dilarutkan kedalam 300 ml air demin dan ditambahkan 100 ml secara perlahan kedalam KMnO₄ dengan H_2SO_4 98%

pengadukan (*stirrer*). Elektroda yang digunakan pada proses elektrolisis ini adalah karbon karena sifatnya yang *inert* sehingga diharapkan tidak ikut bereaksi selama proses sintesis berlangsung. Elektrolisis melibatkan anoda bermuatan positif (oksidasi) dan katoda bermuatan negatif (reduksi). Pada anoda, terjadi oksidasi H_2O :

 $2H_2O \rightarrow O_2 + 4H^+ + 4e^ E^0 = +1,23 V \dots (IV.1)$ Sedangkan pada reaksi reduksi pada katoda melibatkan transfer ion H⁺ akibat adanya penambahan H₂SO₄ : MnO₄⁻ + 4H⁺ + 3e⁻ \rightarrow MnO₂ + 2H₂O $E^0 = +1,67 V \dots (IV.2)$

Pembentukan endapan MnO_2 terjadi di daerah katoda, dimana pada daerah itu MnO_4^- direduksi dari Mn^{7+} menjadi Mn^{4+} . Setelah dilakukan penambahan larutan H_2SO_4 pekat tersebut suasana larutan menjadi sangat asam. Suasana yang sangat asam tersebut diciptakan agar terbentuk endapan MnO_2 yang sempurna. Hal itu didukung oleh persamaan reaksi (IV.2) dimana dibutuhkan 4 mol H⁺ untuk bereaksi dengan 1 mol MnO_4^- untuk membentuk 1 mol endapan MnO_2 . Sehingga dibutuhkan asam (H⁺) berlebih untuk menghasilkan endapan MnO_2 yang optimum.

Setelah endapan MnO₂ diperoleh, langkah selanjutnya adalah memisahkan endapan MnO₂ dengan larutan induknya menggunakan *centrifuge* serta dilakukan pencucian untuk membersihkan endapan dengan air demin. Endapan MnO₂ selanjutnya dikeringkan didalam *furnace* dengan suhu 150 °C. Suhu tersebut dipilih agar air yang kemungkinan ikut dalam endapan pada proses elektrolisis akan menguap dengan sempurna sehingga diperoleh serbuk MnO₂ murni.

Tahap kedua, dilakukan uji karakteristik nanopartikel MnO_2 yang dihasilkan meliputi *X-Ray Diffraction (XRD)* untuk mengetahui kemurnian partikel MnO_2 dan karakter kristal yang terbentuk adalah α -MnO₂, *Brunauer Emmet Teller (BET)* untuk

menguji luas permukaan dan diameter pori, serta Scanning *Electron Microscopy (SEM)* untuk mengetahui morfologi MnO₂ vang terbentuk. Selain itu, juga dilakukan pengujian untuk mengetahui kinerja MnO₂ dalam aplikasinya sebagai elektrokatalis pada Zn-Air Battery. Nanopartikel MnO₂ yang telah disintesis dibentuk menjadi pasta dengan manambahkan PVdf sebagai binder dan NMP sebagai solvent. Pasta MnO₂ tersebut dioleskan pada bagian logam Platina (Pt) motor Rotating Disk Electrode (RDE). Selanjutnya, sampel yang telah terbentuk dikeringkan di oven pada suhu 80°C selama 90 menit. Setelah kering, dihitung loading MnO₂ dalam setiap sampelnya dengan uji Cyclic Voltammetry (CV) untuk mengetahui kemampuannya dalam mereduksi oksigen, Linear Sweep Voltammetry (LSV) untuk mengetahui kemampuan kinerja elektroda dengan variasi waktu, serta Linear Polarization (PL) untuk mengetahui rate kinetika yang berlangsung. MnO₂ pada tiap jumlah elektroda juga diuji konduktivitasnya dengan rangkaian alat pada Digital Multimeter KW0600830 dan Direct Curren (DC) GW INSTEK GPD-3303.

Dari hasil uji konduktivitas tiap jumlah elektroda ini dipilih yang tertinggi untuk kemudian dikompositkan dengan karbon. Variabel karbon yang digunakan adalah karbon aktif (arang) dan graphene. Masing-masing dikompositkan dengan MnO₂ dengan bantuan Acetylene Black untuk meningkatkan konduktivitas pada karbon serta PVdf sebagai binder dari MnO₂, Acetylene Black, dan karbon. Perbandingan antara MnO₂, karbon, Acetylene Black, dan PVdf adalah 10 : 10 : 0,1 : 0,1. Selanjutnya, komposit MnO₂/Carbon dikompaksi pada tekanan 15 Psig dan dioven pada suhu 80 °C hingga 30 menit untuk menghasilkan komposit MnO₂/Carbon pada Zn-Air Battery maka dilakukan uji karakteristik Scanning Electron Microscopy (SEM), uji konduktivitas, dan juga uji Cyclic Voltammetry (CV). Berikut adalah hasil penelitian yang telah didapatkan berkaitan dengan faktor yang diuji terkait dengan tujuan yang ingin dicapai ialah sebagai berikut :

IV.1 Sintesis MnO₂

IV.1.1 Pengaruh Variasi Jumlah Elektroda pada Suasana Asam terhadap *Yield* yang Dihasilkan

Dari tahap proses sintesis MnO_2 suasana asam dengan metode elektrolisis, digunakan variasi jumlah elektroda (1 pasang, 2 pasang, 3 pasang, dan 4 pasang) pada tegangan 3V. Berikut hasil dari sintesis MnO_2 dalam variasi jumlah elektroda, dengan massa awal reaktan adalah 5 gram dan mol awal reaktan KMnO₄ sebesar 0,032 mol yang dapat dirangkum dalam **Tabel IV.1.1.1** :

Suasana Asam							
Jumlah Pasang	Jumlah Elektro da	Vol tas e (V)	Massa Endapa n (gram)	Mol Endap an (mol)	<i>Yield</i> Massa (%)	Yield Mol (%)	
1	2		1,4678	0,0168	29,35	52,7	
2	4	2	1,5954	0,0183	31,9	57,3	
3	6	3	2,2381	0,0257	44,62	80,4	
4	8		2,52	0,0289	50,4	90,5	

Tabel IV.1.1.1 Perbandingan Hasil Sintesis MnO₂

Dari tabel diatas dapat diketahui bahwa MnO_2 pada tiap peningkatan jumlah elektroda memiliki jumlah *yield* yang semakin tinggi. Contohnya, Sintesis MnO_2 saat elektrolisis 1 pasang dengan 2 elektroda memiliki *yield* massa 29,35% sedangkan pada elektrolisis 4 pasang dengan 8 elektroda memiliki *yield* 50,4%. Pada suasana asam, ion MnO_4^- akan bereaksi dengan ion H⁺ yang berasal dari H₂SO₄, Penambahan H₂SO₄ menjadi faktor penting yang mempengaruhi *yield* ini karena pada suasana asam mendukung untuk mempercepat laju pertumbuhan partikel MnO₂ sehingga partikel yang terbentuk akan banyak dan cenderung besar. Jumlah elektroda pun mempengaruhi kapasitansi *yield* yang dihasilkan. Hal ini disebabkan karena penggunaan multi elektroda menyebabkan luas permukaan elektroda yang semakin besar, sehingga menyediakan permukaan yang lebih luas sebagai tempat reaksi kimia pembentukan nanopartikel MnO₂.

IV.1.2 Pengaruh Variasi Jumlah Elektroda terhadap Kemurnian MnO₂

Kemurnian dari MnO₂ yang dihasilkan dari tahap sintesis dapat dilakukan dengan uji karakterisasi, yaitu metode *X-Ray Diffraction* (XRD). MnO₂ adalah partikel yang memiliki kecenderungan memiliki struktur kristalinitas *amorf* maupun *low* kristalin. Pada penelitian ini, α -MnO₂ merupakan struktur kristalinitas yang dipilih sebagai parameter kristalinitas yang paling baik.

Kondisi yang digunakan mempengaruhi kristalinitas yang didapatkan dari nanopartikel MnO₂. Hal ini dikarenakan pembentukan α -MnO₂, β -MnO₂, γ -MnO₂, dan δ -MnO₂ dapat stabil pada kondisi tertentu saja.

Uji XRD dilakukan dengan besar sudut 20 dari *range* 5° – 90°. Dari hasil yang didapatkan akan dijumpai puncak (*peak*) yang nantinya dibandingkan dengan data JCPDS α -MnO₂ 00-044-0141, yaitu 20 = 12,7° (110) ; 28,8° (310) ; 37,5° (211) ; 42,1° (301) ; 49,9° (411) ; 56,2° (600) dan 60,3° (521). Untuk mengetahui struktur polimorfi yang dibentuk. Pada penelitian ini, telah dilakukan beberapa kali uji dengan *treatment* yang berbeda-beda agar dapat dilihat optimasi hasil nanopartikel MnO₂ yang terbaik.

Gambar IV.1.2.1 Grafik Uji XRD MnO₂ Elektroda 1 Pasang berdasarkan Pemanasan 60 °C dan Tanpa Pemanasan 60 °C

Pada **Gambar IV.1.2.1**, diketahui bahwa jumlah *peak* α-MnO₂ saat pemanasan 60 °C dan tanpa pemanasan 60 °C hanya menghasilkan satu *peak* saja. Namun bila dibandingkan dengan standar dari JCPDS α-MnO₂ 044-0141, hasil 2θ dari variabel pemanasan 60 °C lebih bagus dibandingkan tanpa pemanasan 60 °C. Hal ini dibuktikan dari kesesuaian standar JCPDS α-MnO₂ 044-0141 terhadap hasil tiap variabel. JCPDS α-MnO₂ 044-0141 menunjukkan bahwa *peak* tertinggi ialah 2θ = 37,5 °C. Pada variabel tanpa pemanasan 60 °C, didapatkan 2θ = 36,8°, sedangkan variabel pemanasan 60 °C, ialah 2θ = 37,5°. Sehingga dapat disimpulkan bahwa dengan pemanasan 60 °C, α-MnO₂ pada elektroda 1 pasang lebih sesuai dengan standar JCPDS α-MnO₂ 044-0141 yang telah ada.

Dari perbandingan variabel diatas, uji XRD dilanjutkan

dengan *treatment* yang lain, yaitu *aging*. *Aging* dilakukan setelah elektrolisis dan sebelum proses pencucian. Berikut merupakan hasil perbandingan XRD elektroda 1 pasang *treatment aging* dan pemanasan 60 °C,

Gambar IV.1.2.2 Grafik Uji XRD MnO₂ Elektroda 1 Pasang berdasarkan Pemanasan 60 °C dan *Aging*

Pada hasil uji XRD diatas, didapatkan hasil berbeda antara *treatment* pemanasan 60 °C dan *aging*. Hasil *aging* jauh lebih banyak menghasilkan *peak* α -MnO₂, yaitu : 2 θ = 12,6°; 17,9°; 28,7°; 37,6°; 42,09°; 49,81° dan 60,15°. Hal ini dimungkinkan terbentuknya endapan nanopartikel MnO₂ saat dibiarkan selama satu minggu. Namun *treatment* ini tidak efisien dilakukan karena memerlukan waktu yang cukup lama untuk mendapatkan kristalinitas MnO₂ yang diharapkan.

Oleh karena itu, penelitian dilakukan dengan metode pemanasan 60 °C karena dianggap mampu menghasilkan *peak* α -MnO₂. Berikut merupakan hasil analisa grafik uji XRD MnO₂ variasi jumlah elektroda (1-4 pasang) dengan beda potensial 3V

:

Gambar IV.1.2.3 Grafik Uji XRD MnO₂ Variasi Jumlah Elektroda 3V

Gambar diatas menunjukkan perbandingan jumlah elektroda pada saat elektrolisis. MnO₂ yang disintesis dengan kondisi suhu 60°C memiliki struktur kristalinitas α -MnO₂ dengan data JCPDS, yaitu 2 θ = 12,7° (110) ; 28,8° (310) ; 37,5° (211) ; 42,1° (301) ; 49,9° (411) ; 56,2° (600) dan 60,3° (521). Dari hasil uji XRD, sintesis MnO₂ 2 elektroda (1 pasang) 3V, didapatkan *peak* yang menyerupai kristalinitas dari α -MnO₂, yaitu 2 θ = 37,0°. Sedangkan untuk hasil MnO₂ 4 elektroda (2 pasang) 3V, *peak* serupa kristalinitas α -MnO₂, yaitu 2 θ = 37,6° dan 46,31°. Untuk MnO₂ 6 elektroda (3 pasang) 3V, yaitu 2 θ = 12,15° ; 28,46° ; 37,26° dan 41,83° dan MnO₂ 8 elektroda (4 pasang) 3V memiliki *peak* serupa kristalinitas α -MnO₂, yaitu 2 θ

 $= 12,59^{\circ}$; $17,91^{\circ}$; $28,38^{\circ}$; $37,45^{\circ}$; $41,86^{\circ}$; $49,69^{\circ}$ dan $59,96^{\circ}$.

Berdasarkan hasil analisa XRD yang didapatkan, diketahui apabila semakin banyak jumlah pasangan elektroda yang digunakan, kemurnian partikel MnO_2 akan semakin tinggi. Hal ini dikarenakan semakin banyak pasangan elektroda yang digunakan, maka jarak antar elektroda akan semakin kecil sehingga intensitas reaksi ion H⁺ dan ion MnO_4^- akan semakin besar. Sehingga partikel MnO_2 akan lebih mudah terbentuk. Begitu pula sebaliknya, dengan satu pasang elektroda, jarak antar ion yang dihasilkan oleh elektroda semakin besar sehingga kemungkinan untuk ion bereaksi langsung akan semakin kecil. Pada pengaruh kondisi yang digunakan, Pemanasan 60 °C lebih mudah dan efisien untuk dilakukan dibanding dengan tanpa pemanasan ataupun *aging*.

IV.1.3 Pengaruh Variasi Jumlah Elektroda terhadap Morfologi MnO₂

Morfologi MnO₂ dapat dilakukan dengan cara pengujian menggunakan *Scanning Electron Microscopy (SEM)*. Bentuk MnO₂ ini secara umum memiliki bentuk, diantaranya: batang, bulat, kubus, dan bulat berduri. Sebagai material untuk elektrokatalis, morfologi memiliki peranan penting karena mempengaruhi luas permukaan yang akan berkontak dengan elektrolit.

Pada pengujian SEM berdasarkan perbedaan jumlah elektroda untuk sampel MnO_2 asam dengan beda potensial 3V, didapatkan hasil sebagai berikut

(c)

(**d**)

Gambar 1V.1.3.1 Morfologi MnO₂ Asam dengan Beda Potensial 3V Perbesaran 10.000 Kali (a) 2 elektroda (b) 4 elektroda (c) 6 elektroda (d) 8 elektroda

Dari morfologi MnO₂ single dan multi-electrode yang disintesis dengan kondisi asam, didapatkan bentuk bulat (sphere). Semakin sedikit elektroda saat elektrolisis, morfologi nanopartikel MnO₂ terlihat semakin aglomerat. Pada gambar (a), partikel yang dihasilkan masih saling bertumbukan dan besar-besar. Begitu juga pada gambar (b) yang masih terlihat saling bertumbukan dan bentuk antar partikel yang tidak seragam. Pada gambar (c), partikel mulai terlihat jelas, namun bentuk partikel masih beragam. Sedangkan pada gambar (d), partikel terlihat seragam dan jelas tidak saling bertumbukan. Hal ini juga dapat dibuktikan dari hasil perhitungan antara diameter partikel skala gambar per skala sebenarnya.

Jumlah Elektrod a	Skala Gamba r (mm)	Skala Sebenarny a (μm)	Diamete r Partikel, D (μm)	Diamete r rata- rata (D _{av})
	30		5,45	
1	30	10	5,45	4,72
	18		3,27	
	10		1,81	
2	10	10	1,81	1,75
	9		1,63	
	3		0,54	
3	4	10	0,72	0,63
	3,5		0,63	
	3		0,54	
4	3,5	10	0,63	0,57
	3		0,54	

Tabel IV.1.3.1 Diameter Partikel Variasi Jumlah Elektroda

Dari gambar visual dan tabel diatas, dapat disimpulkan bahwa elektroda 4 pasang memiliki diameter yang paling kecil, yaitu : 0,57 μ m (570 nm), dimana semakin bagus nanopartikel MnO₂ yang dihasilkan.

IV.1.4 Pengaruh Variasi Jumlah Elektroda terhadap Luas Permukaan Nanopartikel MnO₂

Teori Brunauer, Paul Hugh Emmet, dan Edward Teller atau yang biasa disebut dengan *Brunauer-Emmet-Teller (BET)* merupakan teori yang menjelaskan tentang fenomena adsorpsi molekul gas di permukaan zat padat (melekatnya molekul gas di permukaan zat padat). Jika zat padat berupa partikel-partikel maka luas permukaan untuk zat padat dengan massa tertentu makin besar jika ukuran partikel makin kecil. Untuk mengetahui luas permukaan MnO₂ yang didapatkan dari metode BET, berikut adalah hasil analisa yang didapatkan pada variabel 1 pasang dan 4 pasang dengan beda potensial 3V suasana asam. (Nanosains, 2009)

 Tabel IV.1.4.1 Perbandingan Hasil Analisa BET antara Single

 Electrode dan Multi Electrode

Variab el	Kondi si	Jumla h Pasan g	Jumlah Elektro da	Volta se (V)	Luas Permuka an (m²/g)
Acom	60 0C	1	2	2	75,755
Asam	00 °C	4	8	3	395, 996

Saat tahap sintesis multi elektroda, partikel MnO₂ yang didapatkan sangat kecil sehingga luas permukaan yang didapatkan cenderung sangat besar. Sedangkan sintesis MnO₂ dengan *single electrode* memiliki luas permukaan yang kecil. Dikaitkan dengan morfologi dari *single* dan multi elektroda yang didapatkan dari hasil SEM, semakin banyak elektroda, bentuk partikel semakin tidak terlihat aglomerat. Hal ini menunjukkan bahwa diameter partikel semakin kecil seiring dengan bertambah besarnya luas permukaan.

IV.1.5 Kemampuan MnO₂ dalam Kinerja untuk Mereduksi Oksigen pada Zn Air Battery

Setelah dilakukan tahap sintesis MnO₂ dengan variasi elektroda yang digunakan, maka untuk mengetahui kinerja logam oksidasi (MnO₂) yang terbentuk pada aplikasi elektrokatalis katoda *Zn-Air Battery* dilakukan uji elektrokatalis. Dalam hal ini, sampel diuji dengan metode *Rotating Disk Electrode (RDE)*. Setelah dilakukannya kalibrasi alat RDE untuk menstabilkan kondisi, selanjutnya dengan merangkai alat dan menjenuhkan O₂ selama 20 menit. Karena untuk mendapatkan aktivitas katalis terhadap ORR, hal pertama yang dilakukan adalah menempatkan elektroda katalis ke O_2 atau larutan elektrolit udara jenuh sebagai perekam *Cyclic Votammograms*.

Kemudian, diuji dengan menggunakan *Cyclic Voltammetry* untuk mengetahui apakah MnO₂ tersebut mampu mereduksi O₂. Pada *Zn-Air Battery*, terdapat 2 jenis reaksi yang terlibat, yaitu : *Oxygen Reduction Reaction (ORR)* dan *Oxygen Evolution Reaction (OER)*. Bersamaan dengan oksigen dari udara akan direduksi menjadi ion OH⁻. Sebaliknya, pada OER akan berlangsung pada fase *charge*, dimana ion OH⁻ dari reaksi ORR akan berevolusi membentuk O₂. Berikut merupakan reaksi ORR dari 2 mekanisme diatas :

$$\begin{array}{c} O_2 + 2H_2O + 4e^- \rightarrow 4OH^- & (E^0 = 0,4 \text{ V})....\\ (IV.4) \\ O_2 + H_2O + 2e^- \rightarrow HO_2^- + OH^- & (E^0 = -0,07 \\ \text{V})....(IV.5) \end{array}$$

Dari pengujian *Cyclic Voltammetry* dapat diketahui mekanisme reaksi yang berlangsung, kemudian ditinjau apakah reaksi tersebut sesuai dengan reduksi oksigen yang dibutuhkan terjadi, khususnya pada reaksi (1). Adanya reaksi yang terjadi dapat diketahui dengan melihat adanya *peak* yang terbentuk selama pengujian, sehingga pada penelitian ini diinginkan terbentuk puncak potensial katoda sesuai dengan mekanisme *Zn-Air Battery*.

Pada *Cyclic Voltammetry* dengan *scan rate* 0,01 V/s didapatkan adanya puncak potensial pada katoda, namun memiliki nilai potensial yang berbeda pada masing-masing variabelnya. Puncak potensial tersebut dapat dilihat pada **Tabel IV.1.5.1** :

Variabel	Jumlah Elektroda	Voltase	Potensial Puncak (V)
Asam 1	2	3	-0,35

Tabel IV.1.5.1 Daftar Potensial Puncak Katoda MnO2

Pasang		
Asam 4	0	0.7
Pasang	0	-0,7

Dari hasil yang telah didapatkan, diketahui apabila semakin banyak jumlah elektroda saat elektrolisis, maka nilai potensial puncak akan semakin kecil (minus).

Gambar IV.1.5.1 Grafik *Cyclic Voltammetry (CV)* 2 Elektroda (1 Pasang) 3V

Gambar IV.1.5.2 Grafik *Cyclic Voltammetry (CV)* 8 Elektroda (4 Pasang) 3V

Selanjutnya, dilakukan uji LSV (*Linear Sweep Voltammetry*), yaitu untuk mengetahui arus kinerja elektroda dengan menggunakan kecepatan putar. Pada pengujian ini terdapat 5 variabel kecepatan putar, yaitu : 400, 800, 1200, 1600, dan 2000 rpm. Rangkaian yang digunakan untuk LSV sama dengan rangkaian CV, hanya saja terdapat motor yang bergerak saat analisa berlangsung.

Gambar IV.1.5.3 Grafik *Linear Sweep Voltammetry (LSV)* 2 Elektroda (1 Pasang) 3V

Pada polarisasi linier, daerah ORR berada pada daerah katodik. Yakni sebelah kiri nilai potensial nol (V=0), atau yang bernilai negatif. Sedangkan, daerah OER berada pada sebelah kanan potensial nol (V=0), atau yang bernilai positif. Polarisasi

sendiri terjadi ketika potensial yang ada pada permukaan elektroda mengalami pergeseran menuju nilai kesetimbangannya sehingga mengakibatkan terjadinya reaksi elektrokimia. Sebagian reaksi kimia bukan merupakan reaksi tunggal khususnya reaksi yang melibatkan lebih dari satu elektron. Setiap reaksi tunggal memiliki laju kinetika masing – masing.

Rangkaian alat yang digunakan untuk pengujian polarisasi linear sama dengan yang digunakan untuk pengujian Cyclic Voltammetry (CV) vaitu working electrode (Pt pada motor RDE dengan *loading* MnO₂), *counter electrode* (platina), reference electrode (Ag/AgCl), dan elektrolit yang digunakan adalah KOH 0,6 M. Dari hasil pengujian dibuat plot grafik antara densitas arus dan voltase, serta diperoleh juga data Open Circuit Potential (OCP). OCP yang dihasilkan pada MnO₂ 1 pasang lebih rendah dari 4 pasang, yaitu -0,01 dan 0,030. Performa elektrokatalis dapat dilihat dari nilai OCP yang dihasilkan. Semakin tinggi dan positif OCP yang dihasilkan, maka semakin bagus performa yang dapat dihasilkan. Dengan nilai OCP yang tinggi berarti apabila sebelum dialirkan arus listrik, material tersebut sudah memiliki potensial yang tinggi. OCP adalah potensial arus nol atau potensial diam yang ada pada setiap elektroda. OCP Pada saat $i_0 = 0$, terdapat tegangan yang diberikan oleh satu daya luar. Untuk mengetahui performa elektrokatalis yang dapat dihasilkan dalam setiap variabel, dapat ditinjau dari densitas arus tertinggi yang dapat dihasilkan dalam setiap sampel untuk MnO₂ 2 dan 8 Elektroda.

IV.2 Pengaruh Penambahan *Carbon* terhadap MnO₂

IV.2.1 Karakteristik Morfologi dari Sampel

Untuk mengetahui karakteristik dari sampel dilakukan uji SEM yang didapatkan sifat morfologi permukaan dari MnO_2 dan Karbon, dengan karbon yang digunakan berupa

karbon aktif dan *graphene*. Pada mikrograf SEM dari MnO_2 menunjukkan bahwa MnO_2 yang disiapkan untuk komposit bersifat bulat, dan memiliki distribusi ukuran yang homogen seperti yang ditunjukkan pada **Gambar IV.2.1.1**

Gambar IV.2.1.1 Morfologi MnO₂ dengan perbesaran 10000 kali

Morfologi dari karbon yang digunakan yaitu berupa karbon aktif dan *graphene*, untuk karbon aktif dengan permukaan halus, dan memiliki potongan besar yang tak beraturan yang terdistribusikan secara acak, sedangakan untuk *graphene* memiliki morfologi yang menyerupai morfologi dari karbon aktif seperti yang dapat dilihat pada **Gambar IV.2.1.2**

64

Gambar IV.2.1.2 (a) Morfologi Karbon aktif dengan perbesaran 10000 kali; (b) Morfologi *Graphene* dengan perbesaran 10000 kali Sedangkan untuk morfologi dari komposit MnO₂/*Carbon* dapat dilihat pada Gambar IV.2.1.3,

Gambar IV.2.1.3 Morfologi Komposit MnO₂/*Carbon* (a) Komposit MnO₂/Karbon Aktif (b) Komposit MnO₂/*Graphene*

Untuk morfologi komposit MnO2/Karbon Aktif terlihat pada Gambar IV.2.1.3 (a) yang memperlihatkan bahwa MnO₂ saling menempel pada permukaan karbon aktif, sedangkan untuk komposit MnO₂/Graphene ditunjukkan pada Gambar IV.2.1.3 (b) belum menunjukkan perbedaan antara MnO₂ yang menempel pada graphene hal ini dikarenakan morfologi graphene yang seperti lembaran vang memungkinkan akan hancur ketika di ball mill dengan MnO₂ sehingga perbedaan pada SEM masih belum terlihat. Karbon aktif dan graphene yang digunakan sebagai komposit MnO2 memiliki morfologi yang menunjukkan bahwa nanopartikel dari MnO₂ saling terikat satu sama lain sehingga membentuk morfologi permukaan berpori. Morfologi berpori sangan untuk kineria penvimpanan energi. penting Jaringan konduktivitas yang terbentuk dari MnO2 pada permukaan karbon dapat meningkatkan listrik yang menghasilkan transfer

kinetik yang lebih baik dan menambah kapasitansi elektrokimia.

IV.2.2 Pengaruh Penambahan *Carbon* terhadap Konduktivitas MnO₂

Untuk mengetahui konduktivitas yang dihasilkan dilakukan uji konduktivitas dengan menggunakan metode *4 Point Probe*. Metode *4 point probe* berisi 4 kabel yang dibuat untuk menghubungkan dengan sampel yang diujikan. Arus (I) mengalir dibagian *probe* luar, voltase (V) diukur di bagian *probe* dalam dan jarak antar *probe* (S) sebesar 0,003 m. Dari uji konduktivitas MnO₂, komposit MnO₂/Karbon-Aktif dan MnO₂/Grapahene didapatkan hasil seperti **Tabel IV.2.2.1** dan **Tabel IV.2.2.2**

No.	Nama Sampel	Jumlah Elektroda (pasang)	V _{in} (V)	I _{out} (A)	V _{out} (V)	R (Ωm)	σ (/Ωm)
1		1	2	0,002	0,027	0,254	3,932
2	MnO	2	2	0,002	0,016	0,151	6,635
3	IVIIIO ₂	3	2	0,002	0,015	0,141	7,077
4		4	2	0,002	0,013	0,122	8,166

Tabel IV.2.2.1 Hasil Uji Konduktivitas pada MnO2

 Table IV.2.2.2 Hasil Uji Konduktivitas pada Komposit

 MnO₂/Carbon

No.	Komposit	V _{in} (V)	I _{out} (A)	V _{out} (V)	R (Ωm)	σ (/Ωm)
1	MnO ₂ / Karbon- Aktif	2	0,003	0,005	0,031	31,847
2	MnO ₂ /	2	0,003	0,001	0,025	39,809

Graphene			

Dapat diketahui dari Table IV.2.2.1, bahwa untuk sampel MnO₂ nilai konduktivitasnya semakin meningkat sesuai dengan banyaknya jumlah elektroda yaitu sebesar 3,932; 6.635; 7,077; 8,166 / Ω m secara berturut-turut dengan arus yang keluar sebesar 0,002 A. Hal ini dikarenakan pengaruh dari jumlah elektroda saat elektrolisis yang menunjukkan semakin banyak jumlah elektroda maka hambatan yang dihasilkan semakin kecil sehingga nilai konduktivitas yang dihasilkan semakin besar. Oleh karena itu, MnO₂ dengan jumlah elektroda 4 pasang yang memiliki nilai hambatan yang kecil sebesar 0,122 Ωm dan nilai konduktivitas vang tinggi vaitu sebesar 8,166/ Ωm dipilih sebagai bahan untuk dikompositkan dengan karbon aktif dan graphene. Setelah dilakukan komposit dari masing-masing karbon yang kemudian dilakukan kompaksi untuk uii konduktivitas. Hasil dari uji konduktivitas yang dihasilkan dari komposit MnO₂/Carbon Aktif dan MnO₂/Graphene sesuai dengan Table IV.2.2.2 menunjukkan bahwa nilai konduktivitas pada MnO₂ mengalami kenaikan dengan adanya penambahan karbon. Untuk komposit MnO₂/Karbon Aktif menghasilkan nilai konduktivitas sebesar 31,847/ Ω m dimana memiliki hambatan sebesar 0.031 Ωm . Sama halnya dengan MnO₂/Graphene menghasilkan nilai konduktivitas vang meningkat sebesar 39.809/ Ω m yang lebih kecil daripada MnO₂ tanpa penambahan karbon. Hal ini dikarenakan karbon memiliki konduktivitas yang lebih tinggi daripada MnO₂ sehingga penambahan karbon dapat meningkatkan konduktivitas listrik. Sedangkan untuk komposit MnO₂/Karbon Aktif nilai konduktivitasnva lebih rendah daripada komposit $MnO_2/Graphene$ yaitu sebesar 31,847/ Ω m dan 39,809/ Ω m. Hal ini dikarenakan karbon aktif memiliki resistensi listrik yang besar dan luas permukaan yang rendah dari graphene yang

diketahui mempunyai luas permukaan yang tinggi sehingga dapat mempertahankan konduktivitas listrik secara keseluruhan dengan baik (Cheng,dkk. 2011).

IV.2.3 Kemampuan Komposit MnO₂/Carbon dalam Kinerja sebagai elektrokatalis

Aktivitas elektrokatalis komposit MnO₂/*Carbon* untuk reaksi reduksi oksigen (ORR) diukur dengan RDE (*Rotating Disk Electrode*). Dilakukannya kalibrasi alat RDE untuk menstabilkan kondisi, selanjutnya dengan merangkai alat dan menjenuhkan O₂ selama 20 menit. Karena untuk mendapatkan aktivitas katalis terhadap ORR, hal pertama yang dilakukan adalah menempatkan elektroda katalis ke O₂ atau larutan elektrolit udara jenuh sebagai perekam *Cyclic Votammograms*. Kemudian, diuji dengan menggunakan *Cyclic Votammograms*. Kemudian, diuji dengan menggunakan *Cyclic Votammetry* untuk mengetahui apakah MnO₂ tersebut mampu mereduksi O₂. Adanya reaksi yang terjadi dapat diketahui dengan melihat adanya *peak* yang terbentuk selama pengujian, sehingga pada penelitian ini diinginkan terbentuk puncak potensial katoda sesuai dengan mekanisme *Zn-Air Battery*.

Pada *Cyclic Voltammetry* dengan *scan rate* 0,01 V/s didapatkan adanya puncak potensial pada katoda, namun memiliki nilai potensial yang berbeda pada masing-masing komposit. Puncak potensial tersebut dapat dilihat pada **Tabel IV.2.3.1**:

 Tabel IV.2.3.1 Daftar Potensial Puncak Katoda komposit

 MnO₂/ Carbon

Komposit	Voltase (V)	Potensial Puncak (V)
MnO ₂ / Karbon Aktif	3	-0,6
MnO ₂ / Graphene		-0,5

Dapat dilihat pada tabel bahwa komposit MnO₂/ *Graphene* memiliki peak yang menunjukkan nilai potensial yang semakin baik karena mendekati nilai positif dibandingkan dengan komposit MnO₂/ Karbon Aktif. Untuk grafik *Cyclic Voltammetry* dapat dilihat pada **Gambar IV.2.3.1** dan **Gambar IV.2.3.2** sebagai berikut,

Gambar IV.2.3.1 Grafik *Cyclic Voltammetry (CV)* Komposit MnO₂/ Karbon Aktif

Gambar IV.2.3.2 Grafik Cyclic Voltammetry (CV) Komposit MnO₂/ Graphene

Selanjutnya, dilakukan uji LSV (*Linear Sweep Voltammetry*), yaitu untuk mengetahui arus kinerja elektroda dengan menggunakan kecepatan putar. Pada pengujian ini terdapat 5 variabel kecepatan putar, yaitu : 400, 800, 1200, 1600, dan 2000 rpm. Untuk LSV dengan 1600 rpm dapat dilihat pada **Gambar IV.2.3.3**

Gambar IV.2.3.3 Grafik *Linear Sweep Voltammetry (LSV)* komposit MnO₂/*Carbon* 1600 rpm dengan 3V

Dapat dilihat pada **Gambar IV.2.3.3**, bahwa pada potensial yang sama didapatkan current density untuk komposit MnO₂/ Karbon Aktif sebesar -0,05933 mA/cm²m⁻¹ dengan perolehan OCP sebesar -0,006. Sedangkan untuk MnO₂/ *Graphene* didapatkan current density yang lebih besar dibandingkan dengan MnO₂/ Karbon Aktif sebesar -0,20 mA/cm²m⁻¹ sehingga menunjukkan komposit MnO₂/ *Graphene* lebih baik. Namun terjadi penurunan current density dan ketidakstabilan katalitik yang terjadi pada komposit MnO₂/ *Carbon* jika dibandingkan dengan MnO₂ murni, hal ini dapat disebabkan karena perbandingan komposisi dari MnO₂ dan *Carbon* yang belum sesuai.
BAB V KESIMPULAN DAN SARAN

V.1 Kesimpulan

Berdasarkan penelitian yang telah dilakukan, maka dapat disimpulkan bahwa :

- 1. *Yield* partikel MnO₂ yang dihasilkan sebanding dengan jumlah elektroda. Semakin banyak jumlah elektroda yang digunakan, maka semakin besar *yield* yang dihasilkan.
- Pembentukan α-MnO₂ dipengaruhi oleh adanya suhu dan banyaknya jumlah elektroda. Elektrolisis dengan kondisi steady 60 °C multi-electrode, peak α-MnO₂ semakin banyak sehingga menunjukkan kristalinitas yang semakin baik.
- 3. Hasil uji elektrokatalis *multi-electrode* lebih bagus dibanding *single-electrode*. Semakin positif nilai OCP, maka performa elektrokatalis lebih bagus.
- 4. MnO₂ dengan elektroda 4 pasang memiliki konduktivitas yang lebih baik dari MnO₂ dengan elektroda 1, 2, dan 3 pasang yaitu sebesar 8,166/Ωm, sedangkan untuk komposit MnO₂/Karbon, komposit MnO₂/Graphene memiliki nilai konduktivitas yang baik daripada komposit MnO₂/Karbon aktif yaitu sebesar 39,809/Ωm sehingga komposit MnO₂/Graphene dapat mengalirkan konduktivitas listrik yang baik.

V.2 Saran

Telah dilakukan penelitian tentang komposit MnO₂-*Carbon* sebagai elektrokatalis pada *Zn-Air Battery*. Elektrokatalis sendiri memiliki fungsi untuk mempercepat jalannya reaksi *Oxygen Reduction Reaction* (ORR) dan *Oxygen Evolution Reaction* (OER), serta mampu menghambat terbentuknya lapisan passivasi. Untuk membuktikan adanya pengaruh penambahan karbon dengan MnO₂ sebagai material elektrokatalis pada *Metal Air Battery* dengan anoda Zn, diperlukan adanya uji baterai.

APPENDIKS

1. Perhitungan Yield Massa MnO₂

Untuk mengetahui perbandingan antara produk MnO₂ yang terbentuk dibandingkan dengan reaktan awal (KMnO₄), dapat diketahui dengan menghitung nilai *yield*. Berikut adalah *yield* yang didapatkan dari segi massa dengan persamaan sebagai berikut :

- Massa awal $KMnO_4 = 5$ gram
- Massa produk = Massa MnO₂ yang terbentuk $Yield = \frac{Massa MnO_2(gram)}{Massa KMnO_4 (gram)} x \ 100\%$

Berikut adalah contoh perhitungan *yield* massa untuk variabel MnO_2 asam 2 elektoda (1 pasang) 3V:

- Massa awal $KMnO_4 = 5$ gram
- Massa produk Yield = $\frac{1,4678}{5} \times 100\%$

= 29,35%

Dengan cara yang sama, berikut adalah hasil keseluruhan *yield* massa yang didapatkan untuk seluruh variabel :

Suasana Asam					
Jumlah Pasang	Jumlah Elektroda	Voltase (V)	Massa Endapan (gram)	Yield Massa (%)	
1	2		1,4678	29,35	
2	4	2	1,5954	31,9	
3	6	3	2,2381	44,62	
4	8		2,52	50,4	

2. Perhitungan Yield Mol

Perbandingan antara produk yang terbentuk dengan reaktan dapat juga dinyatakan secara stoikiometri dengan menggunakan *yield* mol, atau perbandingan antara mol produk yang terbentuk dibandingkan dengan mol reaktan. Secara reaksi, berikut adalah persamaan reaksi yang terjadi dalam pembentukan MnO_2 :

 $MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$

Dari persamaan tersebut, dapat diketahui apabila 1 mol MnO_4^- membentuk 1 mol MnO_2 atau keduanya memiliki koefisien yang sama. Berikut adalah persamaan yang digunakan untuk menghitung *yield* mol :

$$Yield = \frac{Mol \ MnO_2}{Mol \ KMnO_4} x \ 100\%$$

Mol awal (KMnO₄)
$$= \frac{Massa \ KMnO_4}{BM \ KMnO_4}$$
$$= \frac{5 \ gram}{158,03 \ gram/mol}$$
$$= 0,032 \ mol$$

• Mol produk

= Mol MnO₂ yang terbentuk

Berikut adalah contoh perhitungan *yield* mol untuk variabel MnO_2 asam 2 elektoda (1 pasang) 3V:

• Mol awal $KMnO_4 = 0,032 mol$

 Massa MnO₂ 	= 1,4678 gram
 Mol MnO₂ 	1,4678 gram
	[—] 86,96 gram/mol
	= 0.0168 mol

• Sehingga, *yield* mol :

$$Yield = \frac{0,0168}{0,032} \times 100\%$$

= 52.74%

Dengan cara yang sama, berikut adalah hasil keseluruhan *yield* mol yang didapatkan untuk seluruh variabel :

Suasana A	Isam

Jumlah Pasang	Jumlah Elektroda	Voltase (V)	Mol Endapan (mol)	Yield Mol (%)
1	2		0,0168	52,74
2	4	2	0,0183	57,33
3	6	3	0,0257	80,42
4	8		0,0289	90,55

3. Perhitungan Konduktivitas

Dari hasil uji konduktivitas dengan menggunakan 4 point probe didapatkan hasil sebagai berikut :

No.	Nama Sampel	Jumlah Elektroda (pasang)	V _{in} (V)	I _{out} (A)	V _{out} (V)
1	MnO ₂	1	2	0,002	0,027
2		2	2	0,002	0,016
3		3	2	0,002	0,015
4		4	2	0,002	0,013

Untuk menghitung resistensinya menggunakan persamaan :

$$R = 2 \times \pi \times s \times \frac{V}{I}$$

Diketahui jarak antar probe sebesar s = 0,003 m

Sehingga nilai resistensi untuk MnO_2 1 pasang adalah sebagai berikut :

 $R = 2 \times 3,14 \times 0,003 \times \frac{0,027}{0,002} = 0,254 \,\Omega\mathrm{m}$ $\sigma = \frac{1}{R} = \frac{1}{0,254} = 3,932 \,/\Omega\mathrm{m}$

Dengan cara yang sama, dilakukan perhitungan dengan sampel yang lain .

DAFTAR PUSTAKA

- Cheng, Fangyi dan Jun Chen. 2012. "Metal–air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts." *Chemical Society Reviews* 41(6):2172.
- Cheng, Qian dan Tang. 2011. "Nano-Flower MnO2 Coated Graphene Composite Electrodes for Energy Storage Devices." *MRS Proceedings* 1303:129–34.
- Contents, English. 2016. "Specific Surface Area by Brunauer-Emmett-Teller (BET) Theory." 1–5.
- Effendi, Devi Bentia, Nurul Huda Rosyid, Asep Bayu, dan Dani Nandiyanto. 2015. "JURNAL INTEGRASI PROSES Website :
 - Http://jurnal.untirta.ac.id/index.php/jip REVIEW :
 SINTESIS NANOSELULOSA 1 Program Studi Kimia ,
 Jurusan Pendidikan Kimia , Fakultas Pendidikan
 Matematika Dan Ilmu Pengetahuan Alam , Universitas
 Pendidikan Indonesia , Jl ." 5(2):61–74.
- Flegler, Andreas, dan Hartmann . 2016. "Manganese Oxide Coated Carbon Materials as Hybrid Catalysts for the Application in Primary Aqueous Metal-Air Batteries." C 2(1):4. Retrieved (http://www.mdpi.com/2311-5629/2/1/4).
- Kannappan, Santhakumar, dan Kaliyappan. 2013. "Graphene Based Supercapacitors with Improved Specific Capacitance and Fast Charging Time at High Current Density." Retrieved (http://arxiv.org/abs/1311.1548).
- Kim, E., E. Iroaga, dan B. Murmann. 2004. "Brief Introduction to Scanning Electron Microscopy (SEM)." *Http://Cfamm.Ucr.Edu/Documents/Sem-Intro.Pdf* (i):35– 37.
- Lee, Jang Soo, Kim, dan Cao. 2011. "Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air." Advanced

Energy Materials 1(1):34–50.

Li-batteries, For. 2012. "Metal-Air Battery." 1-2.

- Lokhande, C. D., D. P. Dubal, dan Oh-Shim Joo. 2011. "Metal Oxide Thin Film Based Supercapacitors." *Current Applied Physics* 11(3):255–70.
- Lu, Jie dan Volney Shee. 2013. "Genetic and Epigenetic Mechanisms in Down Syndrome Brain." *Down Syndrome*.
- Nanosains, Jurnal. 2009. "Review : Karakterisasi Nanomaterial." 2(1):1–9.
- Viscarini, Nur Rokhima, Minta Yuwana, H.Setyawan. 2014. "SINTESA PARTIKEL MnO 2 DENGAN TEKNIK ELEKTROKIMIA DALAM SEL MEMBRAN." Jurnal Teknik POMITS 2(1):5.
- Xing, Wei, Geping Yin, dan Jiujun Zhang. 2014. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts.
- Yang, Juan, Linda Zou, Huaihe Song, dan Zhengping Hao. 2011. "Development of Novel MnO2/nanoporous Carbon Composite Electrodes in Capacitive Deionization Technology." *Desalination* 276(1–3):199–206. Retrieved (http://dx.doi.org/10.1016/j.desal.2011.03.044).

BIOGRAFI PENULIS

Khairunisa Kartina Rakhmad, dilahirkan di Probolinggo, 3 Desember 1992. Penulis menyelesaikan pendidikan formalnya di SD Negeri Tisnonegaran 2 Probolinggo, SMP Negeri 1 Probolinggo, dan SMA Negeri 2 Probolinggo. Pada tahun 2011-2014, penulis menempuh Perguruan jenjang Tinggi di D3 Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember Surabaya. Kemudian,

pada tahun 2016, melanjutkan studi S1 melalui program Lintas Jalur Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember Surabaya. Penulis juga telah melaksanakan kerja praktek di PT. Pupuk Sriwidjaja, Palembang dan PT. Lotte Chemical Titan Nusantara, Banten. Untuk penelitian tugas akhir, penulis melakukan risetnya di Laboratorium Elektokimia dan Korosi, Teknik Kimia ITS Surabaya dengan judul penelitian, "Sintesis komposit MnO₂/Carbon sebagai katoda pada Zn-Air Battery". Penelitian tersebut berada dibawah bimbingan Dr. Widiyastuti, S.T., M.T. dan Ni Made Intan Putri Suari, S.T., M.T. menghubungi penulis. melalui email Untuk dapat khairunisakr0312@gmail.com

BIOGRAFI PENULIS

Mayda Amalia Rakhma, dilahirkan di Gresik, 24 Mei 1994. Penulis menyelesaikan pendidikan formalnya di SDNU 1 Trate Gresik, SMP Negeri 3 Gresik, dan SMA Negeri 1 Gresik. Pada tahun 2012-2015, penulis menempuh jenjang Perguruan Tinggi di D3 Teknik Kimia, Fakultas Teknologi Institut Industri, Teknologi Sepuluh Nopember Surabaya. Kemudian, pada tahun 2016, melanjutkan studi S1 melalui program Lintas Jalur Teknik Kimia. Fakultas

Teknologi Industri, Institut Teknologi Sepuluh Nopember Surabaya. Penulis juga telah melaksanakan kerja praktek di PT. Petrokimia Gresik dan PT. Lotte Chemical Titan Nusantara, Banten. Untuk penelitian tugas akhir, penulis melakukan risetnya di Laboratorium Elektokimia dan Korosi, Teknik Kimia ITS Surabaya dengan judul penelitian, "Sintesis komposit MnO₂/*Carbon* sebagai katoda pada *Zn-Air Battery*". Penelitian tersebut berada dibawah bimbingan Dr. Widiyastuti, S.T., M.T. dan Ni Made Intan Putri Suari, S.T., M.T. Untuk menghubungi penulis, dapat melalui email : maydamalia49@gmail.com