

TESIS - RC 142501

PENGARUH DARI RENCANA INDUK BANDAR UDARA DI PROVINSI KALIMANTAN SELATAN TERHADAP VOLUME PENUMPANG SERTA WAKTU DAN BIAYA PERJALANAN

ERIZA ISLAKUL ULMI NRP. 3116206001

DOSEN PEMBIMBING:

Ir. Ervina Ahyudanari, M.E., Ph.D

PROGRAM MAGISTER
BIDANG KEAHLIAN MANAJEMEN DAN REKAYASA TRANSPORTASI
DEPARTEMEN TEKNIK SIPIL
FAKULTAS TEKNIK SIPIL, LINGKUNGAN DAN KEBUMIAN
INSTITUT TEKNOLOGI SEPULUH NOPEMBER
SURABAYA
2018

Tesis disusun untuk memenuhi salah satu syarat memperoleh gelar Magister Teknik (M.T)

di

Institut Teknnologi Sepuluh Nopember Surabaya

Oleh: Eriza Islakul Ulmi Nrp. 3116206001

Tanggal Ujian

: 8 Januari 2018

Periode Wisuda : Maret 2018

Disetujui oleh:

1. Ir. Ervina Ahyudanari, ME., Ph.D

(Pembimbing)

NIP: 19690224 199512-2 001

2. Ir. Hera Widyastuti, MT, Ph.D

(Penguji I)

NIP: 19600828 198701 2 001

3. Dr./Hitapriya Suprayitno, M. Eng

(Penguji II)

NIP: 19541103 198601 1 001

Fakultas Teknik Sipil, Lingkungan dan Kebumian (FTSLK)

A. Warmadewanthi, ST. MT. Ph.D

NIP.19750212 199903 2 001

KATA PENGANTAR

Puji syukur kehadirat Allah SWT atas segala rahmat dan hidayah-Nya penulis dapat menyelesaikan Tesis dengan judul *Pengaruh Dari Rencana Induk Bandar Udara Di Provinsi Kalimantan Selatan Terhadap Volume Penumpang Serta Waktu Dan Biaya Perjalanan* seperti yang diharapkan. Tesis ini disusun penulis dalam rangka memenuhi salah satu syarat memperoleh gelar Magister Teknik di Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Institut Teknologi Sepuluh Nopember Surabaya. Selama proses pengerjaan Tesis, penulis mendapatkan banyak bimbingan, dukungan, dan bantuan dari berbagai pihak. Oleh karena itu penulis menyampaikan terima kasih kepada:

- Kedua orang tua, Bapak M. Mahbuby dan Ibu Alm Serkinty, atas segala doa dan kasih sayangnya serta kepada Kakak, Perliva Mia Sesca, S.I.kom, dan Adik, Novia Safitri Berliansari yang juga selalu memberikan doa dan dukungan.
- 2. Ir. Ervina Ahyudanari. M.E, Ph.D selaku dosen pembimbing yang dengan sabar dan sepenuh hati membimbing, mengarahkan, dan memberikan saran untuk penulis.
- Bapak dan Ibu Dosen Jurusan Teknik Sipil FTSP ITS Surabaya yang tidak mungkin disebutkan satu persatu, atas ketekunan memberikan ilmu-ilmu yang sangat bermanfaat.
- 4. Keluarga Besar Angkatan 2016, kalian keluarga baru yang sangat hebat. Semoga suatu hari nanti kita bisa bertemu dan berkumpul disuasana yang jauh lebih membanggakan.

Penulis menyadari bahwa masih terdapat banyak kesalahan dalam penyusunan Tesis ini, oleh karena itu penulis mengharapkan saran dan kritik agar lebih baik lagi di masa mendatang.

Surabaya, 22 Januari 2018

Penulis

"Halaman ini sengaja dikosongkan"

PENGARUH DARI RENCANA INDUK BANDAR UDARA DI PROVINSI KALIMANTAN SELATAN TERHADAP VOLUME PENUMPANG SERTA WAKTU DAN BIAYA PERJALANAN

Nama : Eriza Islakul Ulmi

NRP : 3116 206 001

Dosen pembimbing : Ir. Ervina Ahyudanari, M.E., Ph.D

ABSTRAK

Menurut data Badan pusat Statistik Kalimantan Selatan Jumlah penumpang angkutan udara yang berangkat melalui bandara di Kalimantan Selatan selama bulan Desember 2016 sebanyak 163.715 orang. Sedangkan Jumlah penumpang angkutan laut yang berangkat melalui pelabuhan Trisakti Banjarmasin pada bulan Desember 2016 sebanyak 1.833 orang. Dari data tersebut dapat diindikasi bahwa penduduk Kalimantan Selatan lebih banyak menggunakan pesawat sebagai moda transportasi.

Perubahan kelas bandara sesuai dengan PM Perhubungan No.69 Tahun 2013 menjadikan perubahan pola perjalanan yang berpengaruh pada sebaran perjalanan penumpang dan biaya operasional pesawat. Oleh karena itu, diperlukan suatu analisis untuk memprediksi jumlah penumpang, waktu dan biaya perjalanan di masa mendatang.

Penelitian dilakukan dengan pengumpulan data pergerakan penumpang dari masing-masing bandar udara untuk mendapatkan matriks asal tujuan (MAT) eksisting. Dengan adanya perubahan status bandar udara akibat PM No. 69 Tahun 2013 tersebut akan disimulasikan perubahan pergerakan yang mungkin terjadi. Hasil Penelitian ini menunjukkan bahwa adanya rute baru yaitu Tanjung-Kotabaru yang memiliki jarak 82,2 km, untuk *flight time* rute baru tersebut yaitu 11 menit. Pada tahun 2020 jika rute tersebut dibuka pada rute itu diprediksi ada 1.773 penumpang dari Tanjung ke Kotabaru, hal ini memberikan pengaruh pada demand bandar udara di Kotabaru yaitu dari 299.203 orang menjadi 300.976 orang pada

tahun 2020. Rute Tanjung-Banjarmasin yang baru beroperasi setelah tiga tahun tidak beroperasi memiliki potensi untuk terus bertahan diindikasi melalui jumlah penumpang pada tahun 2020 yaitu 5942 orang. Perkiraan tarif setiap rute pada tahun 2020 yaitu Banjarmasin-Kotabaru sebesar Rp 1.649.000,00. Rute Banjarmasin-Tanjung sebesar Rp. 1.650.000,00. Rute Banjarmasin-Batulicin sebesar 1.454.000,00. Dan rute baru Kotabaru-Tanjung sebesar Rp. 863.900,00.

Kata Kunci: Bandar Udara, Pola Penerbangan, Waktu Perjalanan, Biaya Perjalanan, Sebaran Penumpang

THE IMPACT OF AIRPORT PLAN AT AIRPORT IN SOUTH KALIMANTAN PROVINCE ON VOLUME PASSENGER, TRAVEL TIME, AND TRAVEL COST

Nama : Eriza Islakul Ulmi

NRP : 3116 206 001

Dosen pembimbing: Ir. Ervina Ahyudanari, M.E., Ph.D

ABSTRACT

According to data of the Central Bureau of Statistics Kalimantan Selatan air transport passengers departing through the airport in South Kalimantan during December 2016 as many as 163,715 people. While the number of passengers traveling through sea transport port Trisakti Banjarmasin in December 2016 as many as 1,833 people. From the data above, we had indicated that South Kalimantan people often used aircraft as mode of transportation than ship.

The change of airport class according to regulation of the minister of transportation No. 69 year 2013 makes possible changes in travel patterns that affect travel time and travel cost. This causes research needs to be done to determine the travel patterns that occur.

The research was conducted by collecting passenger movement data from each airport to get the original matrix destination (MAT) existing. With the change of airport status due to regulation of the minister of transportation No. 69 year 2013 will be simulated changes in the movement that may occur. The results of this study indicate that the new route is Tanjung-Kotabaru which has a distance of 82.2 km, for the flight time of the new route is 11 minutes. By 2020 if the route is opened on the route it is predicted that there are 1,773 passengers from Tanjung to Kotabaru,

this has an effect on the demand of airports in Kotabaru from 299,203 people to

300,976 people by 2020. The new Tanjung-Banjarmasin route operates after three

years not operating has the potential to continue to survive indicated through the

number of passengers in 2020 is 5942 people. The estimated tarif of each route in

2020 is Banjarmasin-Kotabaru Rp 1.649.000,00. Banjarmasin-Tanjung route for

Rp. Rp 1.650.000,00. The Banjarmasin-Batulicin route is 1,454,000.00 and the new

route Kotabaru-Tanjung Rp. 863.900,00.

Keywords: Airport, Flight Pattern, Travel Time, Travel Cost, Distribution of

Movement

Х

DAFTAR ISI

HALA	MAN JUDUL i
LEMB	AR PENGESAHANiii
KATA	PENGANTAR v
ABSTI	RAKvii
ABSTI	RACTix
DAFT	AR ISIxi
DAFT	AR TABELxv
DAFT	AR GAMBAR xix
BAB I	1
PEND	AHULUAN1
1.1	Latar Belakang 1
1.2	Perumusan Masalah
1.4	Tujuan Penelitian
1.3	Batasan Masalah6
1.5	Manfaat Penelitian
BAB I	I9
KAJIA	N PUSTAKA9
2.1	Pola Jaringan Penerbangan9
2.2	Kebijakan Manajemen Bandar udara11
2.3	Bandar Udara
2.3	3.1 Kriteria Bandar Udara 14
2.3	3.2 Kondisi Eksisting

2.3.3	Rencana Pengembangan Bandar Udara	18
2.3.4	Pengoperasian Bandar udara	19
2.4 Per	rmodelan	22
2.4.1	Model Bangkitan Pergerakan	23
2.4.1	Model Sebaran Pergerakan	27
2.5 Per	ramalan (Forecasting)	29
2.6 Stu	ıdi Peneltian Terdahulu	29
2.7 Sir	itesis Kajian Pustaka	30
BAB III		37
METODOI	LOGI PENELITIAN	37
3.1 Wi	layah Studi	37
3. 2 Ba	gan Alir Penelitian	38
3.3 Me	etode Analisis Data	40
3.4 Ba	ndar Udara di Provinsi Kalimantan Selatan	42
3. 4. 1	Gambaran umum Bandar Udara	42
3. 4. 2	Jarak dan Waktu Tempuh Antar Bandar Udara Eksi	sting43
3. 4. 3	Pola Jaringan Penerbangan di Kalimantan Selatan	45
3. 4. 4	Koordinat Bandar Udara di Kalimantan Selatan	46
3.5 Ka	rakteristik Pesawat dan Biaya Operasional	48
3.5. 1	Waktu Tempuh Pesawat	48
3.5. 2	Biaya Operasional Pesawat	50
3. 6 Da	ta Bangkitan dan Tarikan	52
3. 6. 1	Data Pergerakan	52
3. 6. 2	Parameter Peubah Bebas	56
BAB IV		65
ANALISIS	DATA DAN PEMBAHASAN	65

4.1	Kriteria Landas Pacu Bandar Udara di Kalimantan Selatan	65
4.2	Perhitungan Pendekatan Jarak Antar Bandar Udara di Kalima	ntan
Selat	an	66
4.3	Perhitungan Pendekatan Waktu Tempuh	70
4.4	Perhitungan Biaya Operasional Pesawat dan Perkiraan Tarif	75
4.5	Klasifikasi Bandar udara	78
4.6	Prediksi Jumlah Penumpang Bandar Udara Syamsudin Noor	79
4.7	Prediksi Jumlah Penumpang Bandar Udara Gusti Syamsir Alar	n . 83
4.8	Prediksi Jumlah Penumpang Bandar Udara Bersujud	89
4.9	Prediksi Jumlah Penumpang Bandar Udara Tanjung Warukin	91
4.10	Model Sebaran Pergerakan	97
4.11	Model Sebaran Pergerakan Setelah Perubahan Hierarki	98
BAB V		103
KESIM	IPULAN DAN SARAN	103
5.1	Kesimpulan	103
5.2	Saran	105
DAFT	AR PUSTAKA	107

"Halaman ini sengaja dikosongkan"

DAFTAR TABEL

Tabel 1. 1 Jarak Antar Bandar Udara di Provinsi Kalimantan Selatan	3
Tabel 1. 2 Kondisi Eksisting Bandar udara di Provinsi Kalimantan Selatan	3
Tabel 1. 3 Rencana Induk Nasional Bandar Udara di Provinsi Kalimantan Selatan	l
	4
Tabel 1. 4 Perubahan Yang Terjadi Pada Bandar Udara di Kalimantan Selatan	
Berdasarkan PM No. 69 Tahun 2013	5
Tabel 2. 1 Klasifikasi Bandar udara pengumpul	1
Tabel 2. 2 Parameter Jaringan Penerbangan dan Implikasinya 12	2
Tabel 2. 3 Kriteria Cakupan Pelayanan Bandar Udara 1:	5
Tabel 2. 4 Kriteria dan Cara Penilaian Hierarki Bandar Udara 1:	5
Tabel 2. 5 Kriteria Klasifikasi Bandar Udara10	6
Tabel 2. 6 Peran, Fungsi, Penggunaan, Hierarki Dan Klasifikasi Bandar Udara	
Eksisting di Provinsi Kalimantan Selatan1	7
Tabel 2. 7 Rencana Induk Nasional Bandar Udara di Kalimantan Selatan 1	
Tabel 2. 8 Bentuk Umum Matriks Asal Tujuan (MAT)2	8
Tabel 2. 9 Sintesis Kajian Pustaka Pendahuluan dan Kriteria Pengembangan	
Bandar Udara	1
Tabel 3. 1 Metoda Analisis Data40	0
Tabel 3. 2 Jarak Antar Bandar Udara di Provinsi Kalimantan Selatan 4.	3
Tabel 3. 3 Waktu Tempuh Antar Bandar Udara di Provinsi Kalimantan Selatan 4-	4
Tabel 3. 4 Rute Penerbangan Antar Bandar udara di Provinsi Kalimantan Selatan	
Tahun 201640	6
Tabel 3. 5 Koordinat Bandar Udara di Provinsi Kalimantan Selatan4	7
Tabel 3. 6 Koordinat Desimal Bandar Udara di Provinsi Kalimantan Selatan 4'	7
Tabel 3. 7 Kinerja Pesawat ATR 72-600	9
Tabel 3. 8 Tarif penumpang Eksisting	1
Tabel 3. 9 Tarif Jarak Penumpang Pelayanan Kelas Ekonomi Angkutan Udara	
Niaga Beriadwal Dalam Negeri (Pesawat Propeller > 30 Tempat Duduk) 5	1

Tabel 3. 10 Jumlah penumpang di bandar Udara Syamsudin Noor Tahun 2005-	-
2016	52
Tabel 3. 11 Jumlah Penumpang Berangkat dari Bandar Udara Syamsudin Noon	r
Per Tahun	53
Tabel 3. 12 Jumlah Penumpang Datang ke Bandar Udara Syamsudin Noor Per	
Tahun	55
Tabel 3. 13 Jumlah Penduduk Masing-masing Kota/Kabupaten Bandar Udara	di
Kalimantan Selatan	57
Tabel 3. 14 Pendapatan domestik Regional Bruto Atas Dasar Harga Berlaku	
Menurut Kabupaten/Kota di Provinsi Kalimantan Selatan	58
Tabel 3. 15 Jumlah penduduk Angkatan Kerja Masing-masing Kota/Kabupater	n
Bandar Udara di Kalimantan Selatan	59
Tabel 3. 16 penerbangan Berangkat	60
Tabel 3. 17 Jumlah penerbangan Datang	63
Tabel 4. 1 Kriteria Landas pacu pada bandar udara di Kalimantan Selatan	65
Tabel 4. 2 Titik Koordinat dari Bandar Udara di Provinsi Kalimantan Selatan	66
Tabel 4. 3 Koordinat Titik X dan Titik Y rute Banjarmasin - Kotabaru	67
Tabel 4. 4 Koordinat Sumbu X dan Y	67
Tabel 4. 5 Matriks ΔX	68
Tabel 4. 6 Matriks Δ Y	68
Tabel 4. 7 Matriks ΔX^2	68
Tabel 4. 8 Matriks ΔY ²	68
Tabel 4. 9 Matriks D ²	69
Tabel 4. 10 Matriks D	69
Tabel 4. 11 jarak Antar Bandar Udara di Kalimantan Selatan	69
Tabel 4. 12 Jarak Antar Bandar Udara dengan penambahan rute pada tahun 20)20
dan 2030	70
Tabel 4. 13 kecepatan setiap fase pesawat ATR 72-600	71
Tabel 4. 14 Pendekatan Jarak lurus fase penerbangan pesawat	71
Tabel 4. 15 Pendekatan Jarak Lurus Fase Penerbangan Pesawat	72
Tabel 4. 16 Jarak Jelajah Masing-masing Rute Penerbangan	72

Tabel 4. 17 Waktu Tempuh untuk fase penerbangan	73
Tabel 4. 18 Waktu Tempuh Setiap Rute Penerbangan	73
Tabel 4. 19 Waktu Tempuh Tanjung ke Kotabaru	74
Tabel 4. 20 Rute-rute eksisting dengan jarak dekat	74
Tabel 4. 21 Tarif batas Atas dan Batas Bawah Rute penerbangan Internal	
Kalimantan Selatan	75
Tabel 4. 22 Tarif per km penerbangan internal Kalimantan Selatan	75
Tabel 4. 23 Laju Inflasi pada kota Banjarmasin	76
Tabel 4. 24 Biaya Operasional tahun 2020 dan tahun 2030	77
Tabel 4. 25 Tarif penerbangan Internal pada Kalimantan Selatan tahun 2020	77
Tabel 4. 26 Tarif penerbangan Internal pada Kalimantan Selatan tahun 2030	78
Tabel 4. 27 Angka Pertumbuhan Jumlah penumpang	80
Tabel 4. 28 Angka Pertumbuhan Jumlah penumpang	81
Tabel 4. 29 Prediksi Jumlah Penumpang Tahun 2018-2030	82
Tabel 4. 30 Jumlah penumpang Kotabaru	83
Tabel 4. 31 Angka Pertumbuhan Jumlah penumpang	84
Tabel 4. 32 Angka Pertumbuhan Jumlah penumpang	85
Tabel 4. 33 Prediksi Jumlah Penumpang Tahun 2018-2030	85
Tabel 4. 34 Angka Pertumbuhan Jumlah penumpang	86
Tabel 4. 35 Angka Pertumbuhan Jumlah penumpang	87
Tabel 4. 36 Prediksi Jumlah Penumpang Tahun 2018-2030	88
Tabel 4. 37 Jumlah penumpang tahun 2020 dan tahun 2030	88
Tabel 4. 38 Jumlah penumpang Batulicin	89
Tabel 4. 39 angka pertumbuhan	89
Tabel 4. 40 Prediksi Jumlah Penumpang Tahun 2018-2030	90
Tabel 4. 41 angka pertumbuhan	90
Tabel 4. 42 Prediksi Jumlah Penumpang Tahun 2018-2030	91
Tabel 4. 43 Jumlah penumpang tahun 2020 dan tahun 2030	91
Tabel 4. 44 Peubah Bebas dan Tidak Bebas pada Model Bangkitan	92
Tabel 4. 45 Data Peubah Bebas dan Tidak bebas pada model bangkitan	92
Tabel 4. 46 Korelasi peubah bebas dan tidak bebas	93
Tabel 4. 47 Hasil regresi dari peubah bebas dan tidak bebas	93

Tabel 4. 48 Data Peubah Bebas Dan Tidak Bebas Pada Model Tarikan94
Tabel 4. 49 Korelasi peubah bebas dan tidak bebas
Tabel 4. 50 Hasil regresi dari peubah bebas dan tidak bebas
Tabel 4. 51 Persamaan Bangkitan dan Tarikan Bandar Udara Tanjung Warukin 95
Tabel 4. 52 Angka pertumbuhan dari variabel peubah tidak bebas $X3$ dan $X495$
Tabel 4. 53 Prediksi Angkatan Kerja dan Penerbangan Berangkat96
Tabel 4. 54 Jumlah Penumpang Tahun 2020 Dan 2030 di Bandar Udara Tanjung
Warukin96
Tabel 4. 55 Matriks Asal Tujuan penerbangan Internal Kalimantan Selatan Tahun
201497
Tabel 4. 56 Matriks Asal Tujuan penerbangan Internal Kalimantan Selatan Tahun
201597
Tabel 4. 57 Matriks Asal Tujuan penerbangan Internal Kalimantan Selatan Tahun
201697
Tabel 4. 58 Proporsi Antara Banjarmasin dan Kotabaru98
Tabel 4. 59 Proporsi Jumlah penumpang berangkat dari Tanjung Warukin99
Tabel 4. 60 Proporsi Jumlah penumpang datang ke Tanjung Warukin99
Tabel 4. 61 Matriks Asal Tujuan penerbangan Internal Kalimantan Selatan Tahun
2020
Tabel 4. 62 Matriks Asal Tujuan penerbangan Internal Kalimantan Selatan Tahun
2030

DAFTAR GAMBAR

Gambar 1. 1 Lokasi Bandar udara di Kalimantan Selatan	2
Gambar 2. 1 Pola Jaringan Penerbangan (Pat Hanlon, 1996 dalam Mastra, 2016)9
Gambar 2. 2 Proses Kalibrasi dan Pengabsahan Model Analisis Regresi	. 25
Gambar 2. 3 Metode untuk Mendapatkan Matriks Asal Tujuan (MAT) (Tamin,	,
1985, 1986, 1988abcd)	. 27
Gambar 3. 1 Peta Administrasi Provinsi Kalimantan Selatan	.37
Gambar 3. 2 Bagan Alir Penelitian	. 38
Gambar 3. 3 Lanjutan Bagan Alir Penelitian	. 39
Gambar 3. 4 Waktu Tempuh dan Jarak Antar Bandar Udara	. 44
Gambar 3. 5 Pola Penerbangan Eksisting dan rencana di Provinsi Kalimantan	
Selatan	. 45
Gambar 3. 6 Pesawat ATR 72-600 (ATR DC/E, 2014)	. 48
Gambar 3. 7 Kinerja Pesawat ATR 72- 600 (Eurocontrol Training Institute, -)	. 48
Gambar 3. 8 fase climb dan Descent pesawat	
(http://www.luizmonteiro.com/Misc.aspx)	. 49
Gambar 3. 9 Perhitungan sudut terbang(K.Haroon, 2005)	. 49
Gambar 3. 10 Rumus Trigonometri dari fase penurunan pesawat	. 50
Gambar 3. 11 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara	
Syamsudin Noor Ke Bandar Udara Gusti Syamsir Alam	. 53
Gambar 3. 12 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara	
Syamsudin Noor Ke Bandar Udara Tanjung Warukin	. 54
Gambar 3. 13 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara	
Syamsudin Noor Ke Bandar Udara Bersujud	. 54
Gambar 3. 14 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Gusti	
Syamsir Alam Ke Bandar Udara Syamsudin Noor	. 55
Gambar 3. 15 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Tanjur	ıg
Warukin Ke Bandar Udara Syamsudin Noor	. 56
Gambar 3. 16 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Bersuj	ud
Ke Bandar Udara Syamsudin Noor	. 56

Gambar 3. 17 Grafik Jumlah penduduk di Kabupaten/Kota di Provinsi Kalimantan
Selatan(Sumber: BPS Kalimantan Selatan, 2016)
Gambar 3. 18 Grafik PDRB di Kabupaten/Kota di Provinsi Kalimantan Selatan
(BPS Kalimantan Selatan, 2016)59
Gambar 3. 19 Grafik Jumlah penduduk Angkatan Kerja di Kabupaten/Kota di
Provinsi Kalimantan Selatan (BPS Kalimantan Selatan, 2016)60
Gambar 3. 20 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara
Syamsudin Noor Ke Bandar Udara Gusti Syamsir Alam61
Gambar 3. 21 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara
Syamsudin Noor Ke Bandar Udara Tanjung Warukin
Gambar 3. 22 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara
Syamsudin Noor Ke Bandar Udara Bersujud
Gambar 3. 23 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Gusti
Syamsir Alam Ke Bandar Udara Syamsudin Noor
Gambar 3. 24 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Tanjung
Warukin Ke Bandar Udara Syamsudin Noor
Gambar 3. 25 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Bersujud
Ke Bandar Udara Syamsudin Noor
Gambar 4. 1 Titik Koordinat Bandar Udara pada Bidang Kartesius66
Gambar 4. 2 Kinerja Pesawat ATR 72- 600 (Eurocontrol Training Institute, -)
70
Gambar 4. 3 Grafik jumlah penumpang bandar udara Syamsudin Noor (PT
Angkasa Pura I Cabang Banjarmasin)
Gambar 4. 4 Grafik trendline linier
Gambar 4. 5 Grafik trendline eksponensial
Gambar 4. 6 grafik trendline polinomial
Gambar 4. 7 Grafik prediksi jumlah penumpang tahun 2018-203082
Gambar 4. 8 Grafik trendline linier
Gambar 4. 9 Grafik trendline eksponensial
Gambar 4. 10 Grafik trendline linier
Gambar 4 11 Grafik trendline eksponensial 86

BAB I

PENDAHULUAN

1.1 Latar Belakang

Kalimantan Selatan merupakan provinsi yang terletak di pulau kalimantan dengan batas-batas wilayahnya yaitu sebelah barat dengan propinsi Kalimantan Tengah, sebelah timur dengan Selat Makasar, sebelah selatan dengan Laut Jawa dan di sebelah utara dengan propinsi Kalimantan Timur. Provinsi Kalimantan Selatan memiliki luas 37.530,52 m². Provinsi Kalimantan Selatan ini mempunyai 11 kabupaten dan 2 kota kabupaten, terdiri dari kabupaten Balangan, kabupaten Banjar, kabupaten Barito Kuala, kabupaten Hulu Sungai Selatan, kabupaten Hulu Sungai Tengah, kabupaten Hulu Sungai Utara, kabupaten Kotabaru, kabupaten Tabalog, kabupaten Tanah Bumbu, kabupaten Tanah Laut, kabupaten Tapin, kota Banjarbaru, dan kota Banjarmasin. Ibu kota provinsi Kalimantan Selatan berada di kota Banjarmasin. Kalimantan Selatan merupakan salah satu pintu masuk perekonomian di Kalimantan, hal ini dikarenakan lokasi provinsi Kalimantan Selatan berada paling dekat dengan pulau jawa.

Banjarmasin merupakan kota terpadat dan terbesar di Kalimantan Selatan. Banjarmasin yang dijuluki kota seribu sungai karena wilayah Banjarmasin banyak dilalui sungai besar dan sungai kecil (kanal). Sehingga kegiatan masyarakat banyak yang dilakukan di bantaran sungai termasuk kegiatan perdagangan yang dikenal dengan pasar terapung. Budaya sungai pada kota Banjarmasin, memberikan corak budaya tersendiri dan menarik untuk dijadikan potensi wisata. wisatawan dapat menikmati pemandangan rumah-rumah pinggir sungai dengan menyusuri sepanjang sungai Martapura dan sungai Barito menggunakan perahu Klotok dan *Speedboat*. Selain Banjarmasin, Kotabaru juga memiliki potensi wisata dimana selain memiliki banyak pulau, pantai dan lautan. Di Kotabaru juga memiliki gunung, lembah dan dataran serta masih adanya kawasan hutan atau pedalaman. Keanekaragaman ini dimunculkan eksotisme alam sehingga dapat dijadikan obyek wisata.

Menurut data Badan pusat Statistik Kalimantan Selatan Jumlah penumpang angkutan udara yang berangkat melalui bandara di Kalimantan Selatan selama bulan Desember 2016 sebanyak 163.715 orang. Sedangkan Jumlah penumpang angkutan laut yang berangkat melalui pelabuhan Trisakti Banjarmasin pada bulan Desember 2016 sebanyak 1.833 orang . Dari data tersebut dapat disimpulkan bahwa penduduk Kalimantan Selatan lebih banyak menggunakan pesawat sebagai moda transportasi.

Kalimantan Selatan memiliki empat bandar udara yaitu badar udara Tanjung Warukin di Tanjung Warukin, bandar udara Syamsuddin Noor di Banjarmasin, bandar udara Bersujud di Batulicin, dan bandar udara Gusti Syamsir Alam di Kotabaru. Bandar udara Syamsuddin Noor di Banjarmasin merupakan pusat transportasi udara di provinsi Kalimantan Selatan. Lokasi Bandar udara di provinsi Kalimantan Selatan yang menjadi lokasi studi penelitian ini dapat dilihat pada Gambar 1. 1.

Gambar 1. 1 Lokasi Bandar udara di Kalimantan Selatan

Lokasi penelitian yang ditunjukkan pada Gambar 1.1 memiliki jarak antara Bandar udara yang dapat dilihat pada Tabel 1. 1.

Tabel 1. 1 Jarak Antar Bandar Udara di Provinsi Kalimantan Selatan

No	Rute Bandar Udara		Jarak (Km)
1	Syamsudin Noor	Gusti Syamsir Alam	157,2
2	Syamsudin Noor	Tanjung Warukin	155,13
3	Syamsudin Noor	Bersujud	138,45
4	Gusti Syamsir Alam	Tanjung Warukin	144,85
5	Gusti Syamsir Alam	Bersujud	22,5
6	Tanjung Warukin	Bersujud	147,22

Sumber: Google Maps (https://maps.google.co.id/)

Tabel 1.1 menyampaikan jarak antar bandar udara yang merupakan jarak imajiner dari *Google Maps*. Pengukuran jarak dilakukan dengan mengambil garis lurus dari titik bandar udara yang satu dengan titik bandar udara yang lainnya pada peta *Google Maps*.

Berdasarkan Peraturan Menteri Perhubungan 69 tahun 2013, Bandar udara Syamsudin Noor ditetapkan sebagai bandar udara domestik yaitu bandar udara yang melayani rute penerbangan dalam negeri. Klasifikasi dan peran Bandar udara di Provinsi Kalimantan Selatan dapat dilihat pada Tabel 1. 2.

Tabel 1. 2 Kondisi Eksisting Bandar udara di Provinsi Kalimantan Selatan

Bandar udara	Klasifikasi Landas Pacu	Peran Tahun 2013
	Tahun 2013	
Syamsudin Noor	4D (1800 m, bentang	Pengumpul skala
	sayap 36 m – 52 m)	Sekunder (hub)
Gusti Syamsir Alam	3C (1200m - 1800 m,	Pengumpan (spoke)
Tanjung Warukin	bentang sayap 24m – 36 m)	
Bersujud		

Sumber: Peraturan Menteri Perhubungan No. 69 tahun 2013

Peraturan Menteri Perhubungan No 69 tahun 2013 tentang tatanan kebandarudaraan nasional. Dalam lampiran II.B Peraturan Menteri Perhubungan diatur rencana induk nasional bandar udara, termasuk di dalamnya rencana induk bandar udara di Provinsi Kalimantan Selatan. Pada tahun 2020 dan tahun 2030 akan terjadi perubahan hierarki, yang dapat dilihat pada Tabel 1. 3.

Tabel 1. 3 Rencana Induk Nasional Bandar Udara di Provinsi Kalimantan Selatan

Bandar udara	Klasifikasi Landas Pacu	Peran Tahun 2020 dan 2030
	Tahun 2030	
Syamsudin Noor	4D (1800 m, bentang sayap	pengumpul skala primer
	36 m – 52 m)	
Gusti Syamsir Alam	3C (1200m - 1800 m,	pengumpul skala tersier
	bentang sayap 24m –36 m)	
Tanjung Warukin	3C (1200m - 1800 m,	Pengumpan
	bentang sayap 24m – 36 m)	
Bersujud	4C (1800 m, bentang sayap	Pengumpan
	24 m – 36 m)	

Sumber: Peraturan Menteri Perhubungan No. 69 tahun 2013

Perubahan yang terjadi menurut Peraturan Menteri Perhubungan No 69 tahun 2013 pada keempat bandar udara di Kalimantan Selatan adalah pada peran dan klasifikasi landas pacu. Di Tahun 2020 dan 2030 Bandar udara Syamsudin Noor berubah peran bandar udara menjadi pengumpul skala primer (*hub*), bandar udara Gusti Syamsir Alam menjadi pengumpul tersier (*hub*). Klasifikasi Landas pacu yang berubah hanya pada terjadi pada bandar udara Bersujud di Batulicin pada tahun 2030 menjadi landas pacu 4C (1800 m, bentang sayap 24 m – 36 m). Sedangkan peran dan klasifikasi landas pacu pada bandar udara yang lain masih tetap seperti kondisi eksisting. Perubahan–perubahan yang terjadi pada bandar udara di Kalimantan Selatan ditunjukkan pada Tabel 1. 4.

Tabel 1. 4 Perubahan Yang Terjadi Pada Bandar Udara di Kalimantan Selatan Berdasarkan PM No. 69 Tahun 2013

Bandar udara	Klasifikasi	Landas Pacu	Peran Tahun 2020 dan 2030
	2020	2030	
Syamsudin Noor	Tetap 4D Tetap 4D 1		pengumpul sekunder>
			Pengumpul primer
Gusti Syamsir Alam	Tetap 3C Tetap 3C		Pengumpan
			pengumpul tersier
Tanjung Warukin	Tetap 3C	Tetap 3C	Pengumpan
Bersujud	Tetap 3C	Berubah 4C	Pengumpan

Sumber: Peraturan Menteri Perhubungan No. 69 tahun 2013

Dengan adanya Peraturan Menteri Perhubungan No.69 Tahun 2013 akan terjadi perubahan pergerakan pesawat antar bandar udara di Kalimantan Selatan. Perubahan pola pergerakan ini berdampak pada perubahan sebaran perjalanan penumpang dan biaya operasional pesawat. Oleh karena itu, diperlukan suatu analisis untuk memprediksi jumlah penumpang, waktu perjalanan serta perkiraan tarif di masa mendatang. Sehingga penelitian dengan judul "Pengaruh Dari Rencana Induk Bandar Udara Di Provinsi Kalimantan Selatan Terhadap Volume Penumpang Serta Waktu Dan Biaya Perjalanan" ini sangat relevan dilakukan. Hasil penelitian ini diharapkan dapat digunakan untuk memberikan gambaran perubahan yang akan terjadi pada tahun 2020-2030 dan arah pengembangan pada bandar udara yang ada pada Provinsi Kalimantan Selatan.

1.2 Perumusan Masalah

Dengan adanya perubahan klasifikasi landasan pacu bandara-bandara di Kalimantan Selatan diperkirakan akan terjadi perubahan juga pada pergerakan pesawat dan penumpang. Perubahan ini perlu diteliti agar sistem jaringan penerbangan di Kal-Sel dapat tetap efisien. Berdasarkan latar belakang tersebut, permasalahan yang didapat dirumuskan:

- Bagaimana kesesuaian kondisi eksisting bandar udara yang ada di Provinsi Kalimantan Selatan dengan Peraturan Menteri Perhubungan no.69 tahun 2013?
- 2. Bagaimana perubahan pada waktu tempuh dan biaya operasional penerbangan akibat perubahan hierarki bandar udara di Kalimantan Selatan?
- 3. Bagaimana memperkirakan jumlah penumpang yang dilayani masingmasing bandar udara di Kalimantan Selatan hingga tahun 2030?
- 4. Bagaimana perkiraan perubahan sebaran pergerakan penumpang bandar udara di Provinsi Kalimantan Selatan setelah perubahan hierarki?

1.4 Tujuan Penelitian

Secara umum, penelitian ini bertujuan untuk dapat untuk dapat mengetahui perubahan pola perjalanan penumpang yang terwakili oleh nilai volume penumpang serta waktu dan biaya perjalanan secara khusus:

- 1. Mengetahui kesesuaian kondisi eksisting bandar udara dengan peraturan menteri perhubungan no 69 tahun 2013.
- 2. Mengetahui dampak perubahan hierarki bandar udara di Provinsi Kalimantan Selatan terhadap waktu tempuh, biaya operasional maskapai, serta tarif penumpang penerbangan internal provinsi
- 3. Mengetahui perkiraan jumlah penumpang pada masing- masing bandar udara di Provinsi Kalimantan Selatan hingga tahun 2030
- Mengetahui perkiraan sebaran pergerakan jumlah penumpang pada masing- masing bandar udara di Provinsi Kalimantan Selatan di tahun 2020 dan 2030

1.3 Batasan Masalah

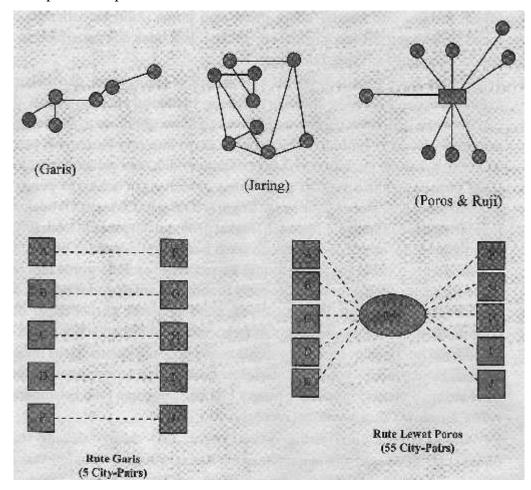
Rincian permasalahan yang disajikan merupakan penuntun dalam mencapai tujuan penelitian. Dalam proses pengerjaan penelitian ini, ada beberapa asumsi yang diperlukan untuk menjadiakan penelitian ini lebih terarah. Pembahasan dalam penelitian ini dibatasi sebagai berikut:

- Rute penerbangan yang diteliti hanya pada rute bandar udara yang ada di Kalimantan Selatan
- Penetapan hierarki bandar udara sebagai Bandar udara pengumpul dan pegumpan berdasarkan pada Peraturan Menteri No 69 tahun 2013
- 3. Tidak melakukan perhitungan perencanaan terhadap landas pacu dan insfrastruktur lainnya
- 4. Perhitungan biaya operasional pesawat dan penetapan tarif penumpang mengikuti peraturan menteri perhubungan nomor 14 tahun 2016
- 5. Tarif dasar penumpang yang dipakai adalah batas bawah tarif penumpang dari peraturan menteri perhubungan nomor 14 tahun 2016

1.5 Manfaat Penelitian

Penelitian yang dimaksudkan untuk mengetahui perubahan pola perjalanan penumpang tersebutdiharapkan dapat memberikan kontribusi pemahaman lebih dalam yaitu:

- 1. Memahami tentang dampak dari perubahaan hierarki Bandar udara sesuai dengan regulasi yang ada.
- 2. Karateristik permasalahan yang sama pada bandar udara pengumpul dan bandar udara pengumpan.
- 3. Memodelkan sebaran pergerakan transportasi udara
- 4. Arah perencanaan dan pengembangan Bandar udara pada Provinsi Kalimantan Selatan bagi pihak pemerintah ataupun swata juga sebagai bahan pertimbangan bagi pengambilan kebijakan Bandar udara.


"Halaman ini sengaja dikosongkan"

BAB II

KAJIAN PUSTAKA

2.1 Pola Jaringan Penerbangan

Pola jaringan penerbangan ada tiga golongan menurut bentuk lintasannya dan dapat dilihat pada Gambar 2.1.

Gambar 2. 1 Pola Jaringan Penerbangan (Pat Hanlon, 1996 dalam Mastra, 2016)

Jaringan penerbangan dapat dikelompokkan menjadi tiga golongan menurut bentuk lintasannya, yaitu :

1. Pola garis (*line network*) yang menghubungkan bandar udara asal (*origin*) denagn bandar udara tujuan (*destination*) secara langsung atau singgah (atau singgah-singgah) di bandar udara antara untuk mengisi bahan bakar

- dan/atau memuat/membongkar muatan. Baik saat pergi maupun pulang, pada umumnya melalui bandar udara yang sama.
- 2. Pola jaring atau sarang laba-laba (*grid network*) yang menghubungkan bandar udara asal dengan dua atau lebih bandar udara tujuan dan kembali lagi ke bandar udara asal tanpa melalui lintasan yang telah dilalui (*backtracing*), seperti gambaran sejumlah bentuk trapesium dan segi tiga. Sebenarnya, dalam pola jaring terdapat beberapa rute yang memiliki jadwal terpadu.
- 3. Pola poros dan jari-jari (*hub* and *spoke network*) yang menghubungkan bandar udara asal dengan bandar udara tujuan melalui satu bandar udara pusat atau poros (*hub*) ke beberapa bandar udara pada ujung jari-jari bagian luar (*spokes*). Jadi tidak ada penerbangan antar-bandar udara *spokes*.

Setiap pola hubungan tersebut di atas memiliki keunggulan dan kekurangan antara satu dan lain pola. Pola garis kurang memerlukan sinkronisasi dengan penerbangan lain, tidak banyak mengeluarkan biaya untuk agen, dan memeroleh pengunaan pesawat (utilisasi) lebih banyak. Biaya rata-rata stasion dan penjualan lebih tinggi karena jumlah penerbangan lebih rendah, dan peluang isian pesawat (load factors) menjadi rendah pada ujung penerbangan sehingga penggunaan pesawat jarak jauh pada sektor (stage length) relatif pendek menjadi tidak efisien. Pola jaring lebih mudah memperoleh tingkat penggunaan pesawat lebih tinggi dan aliran lalu-lintas yang dilayani stasion lebih banyak pula, namun biaya rata-rata stasion dan penjualan juga lebih tinggi karena tersebar. Pola poros dan jari-jari dapat melipatgandakan jumlah city-pairs (hubungan antarbandar udara), pilihan bandar udara tujuan jumlahnya banyak, biaya rata-rata stasion dapat ditekan, isian pesawat dapat ditingkatkan, dan frekuensi dapat ditingkatkan. Akan tetapi, di balik hal itu, layanan ini kurang diminati penumpang karena harus menunggu lama di bandar udara poros, memerlukan fasilitas dan tenaga manusia banyak, serta jaringan sangat kompleks sehingga bila ada gangguan (ada kelambatan satu sektor misalnya) akan berakibat menyeluruh.

Berdasarkan Peraturan Menteri Perhubungan No. 69 tahun 2013 tentang tatanan kebandarudaraan nasional, Hierarki bandar udara terdiri dari bandar udara

pengumpul (hub) dan bandar udara pengumpan (spoke).

Bandar udara pengumpul (*hub*) merupakan bandar udara yang mempunyai cakupan pelayanan yang luas dari berbagai bandar udara yang melayani penumpang dan/atau kargo dalam jumlah besar dan mempengaruhi perkembangan ekonomi secara nasional atau berbagai provinsi. Pada Tabel 2.1 dapat dilihat klasifikasi Bandar udara pengumpul.

Bandar udara pengumpan (*spoke*) merupakan bandar udara yang mempunyai cakupan pelayanan dan mempengaruhi perkembangan ekonomi sosial, bandar udara tujuan atau bandar udara penunjang dari bandar udara pengumpul, juga sebagai salah satu prasarana penunjang pelayanan kegiatan sosial.

Tabel 2. 1 Klasifikasi Bandar udara pengumpul

Skala pelayanan	Penunjang Pelayanan	Melayani penumpang
Bandar Udara		
pengumpul		
primer	Pusat Kegiatan Nasional	\geq 5.000.000 orang per tahun
	(PKN)	
Sekunder	Pusat Kegiatan Nasional	≥1.000.000 dan ≤5.000.000
	(PKN)	orang per tahun
Tersier	Pusat Kegiatan Nasional	≥500.000 dan ≤1.000.000
	(PKN) dan Pusat	orang per tahun
	Kegiatan Wilayah	
	(PKW)	

Sumber: Peraturan Menteri Perhubungan No. 69 tahun 2013

2.2 Kebijakan Manajemen Bandar udara

Kepentingan suatu negara terhadap operasi penerbangan ialah mengatur keamanan dan keselamatan bagi penerbang maupun kawasan yang dilintasi pesawat udara di bawahnya. Karena perkembangan yang terjadi timbul kepentingan-kepentingan pada aspek politik dan ekonomi sehingga dibutuhkan pengaturan terhadap penggunaan ruang udara dan persyaratan teknis pesawat udara beserta infrastruktur terminal bandar udara. Perjanjian paris (1919) mengakui prinsip

kedaulatan mutlak bagi suatu negara dan laut wilayahnya. Jadi negara memiliki hak dan kewenangan untuk mengatur penggunaan udara yang berada di atas wilayahnya. (Mastra, 2016)

Nasution (2008) menyatakan bahwa kebijakan pemerintah dalam pengembangan jaringan dan rute berperan untuk mengatur keseimbangan antara penawaran dan permintaan. Pembuatan jaringan penerbangan merupakan tahapan yang sangat penting dalam perecanaan transportasi karena di satu pihak dapat mempengaruhi efesiensi sarana dan prasarana, dan di lain pihak mempengaruhi tingkat pelayanan penumpang angkutan udara. Dalam membuat dan mengevaluasi jaringan penerbangan digunakan beberapa parameter yang saling berkaitan, tetapi berbeda kepentingan antara perusahaan, penumpang, dan pemerintah sebagai pembuat kebijakan. Parameter-parameter tersebut dapat dilihat pada Tabel 2.2

Tabel 2. 2 Parameter Jaringan Penerbangan dan Implikasinya

Parameter	Satuan	Implikasinya							
Frekuensi	Per minggu	Frekuensi tinggi akan mempermudah penumpang dalam							
		melakukan perjalanan sesuai dengan kebutuhan sehingga							
		dapat meningkan kesempatan bagi pelaku ekonomi nasional.							
		Memperlihatkan tingkat produktivitas perusahaan							
		penerbangan dalam mengoperasikan armadanya							
Load factor	Persen	Memperlihatkan tingkat produksi/kapasitas perusahaan							
		penerbangan dalam mengoperasikan armadanya							
Seat-NM	Seat-NM	Memperlihatkan tingkat produksi/kapasitas perusahaan							
		penerbangan							
Utilitas A/C	Jam/minggu	Memperlihatkan tingkat penggunaan armadanya, yang							
		implikasinya bagi perusahaan penerbangan adalah mobilitas							
		investasi							
Pendapatan	US/tahun	Pendapatan yang diperoleh perusahaan penerbangan yang							
		selanjutnya akan meningkatkan laju pertumbuhan ekonomi							

Sumber:-, (Nasution, 2008)

Prioritas kepentingan parameter jaringan penerbangan bagi *air line*, penumpang dan pemerintah adalah sebagai berikut.

- a. Bagi maskapai: pendapatan, L/F, utilisasi, frekuensi, dan seat/Nm.
- b. Bagi pemakai (penumpang): frekuensi, pendapatan, seat/Nm, L/F, dan utilitas
- c. Bagi pemerintah: frekuensi, L/F, pendaptan, utilisasi, dan seat/Nm.

Dalam dekade terakhir diperkenalkan perusahaan angkutan udara berbiaya rendah atau *low cost carrier* (LCC). Perusahaan ini dapat menandingi efisiensi yang dapat diciptakan pola poros dan jari-jari, dengan berkonsentrasi pada penawaran tarif rendah, tanpa layanan penuh, dan layanan antarbandar udara (*point-to-point*) tanpa singgah. Hal itu dapat dicapai antara lain dengan memilih sektor pendek dengan tarif murah dan tidak terbatas, frekuensi layanan tinggi, mengutamakan ketepatan waktu keberangkatan; tidak disediakan makan (hanya menyajikan kudapan), tidak ada pesan tempat, dan tidak melayani penerbangan sambungan (*connecting flight*); hanya tersedia kelas tunggal dengan konfigurasi kursi padat, menjual sendiri (meminimumkan penggunaan agen), meminimalkan pesawat berada di darat, serta berusaha menghindari bersaing langsung dengan perusahaan besar dengan memilih bandar udara yang berbiaya lebih rendah (kelas dua atau yang lebih tua).(Mastra,2016)

Menurut Takebayashi dan Ishikura (2013) yang melakukan penelitian tentang dampak dari pintu masuk biaya rendah atau *low cost carrier* (LCC) di Timur pasar angkutan penumpang internasional Asia, terutama untuk kepadatan tinggi jarak pendek pasar, dan membahas kebijakan manajemen yang efisien dari beberapa sistem bandara. Hasilnya juga menunjukkan bahwa salah satu *flag carrier* mungkin kehilangan keuntungan karena masuknya LCC jika kebijakan ini diadopsi. LCC akan meningkat seiring dengan meningkatnya kepekaan penumpang terhadap tiket pesawat dan utilitas penumpang akan meningkat.

Fageda, dkk (2017) memperkirakan persamaan harga menggunakan data di tingkat rute dan penerbangan lima negara Eropa dimana proporsi wilayah yang signifikan terletak di pulau-pulau; Prancis, Yunani, Italia, Portugal, dan Spain. Penerapan Kewajiban Pelayanan Publik tidak efektif dalam mengurangi tarif didapatkan bahwa tarif lebih tinggi pada rute yang penduduknya tidak menerima subsidi. Perlu adanya perubahan kebijakan untuk mendukung layanan udara ke pulau-pulau dan untuk menghindari distorsi pada tarif pasar yang diakibatkan oleh perusahaan penerbangan.

Shiraishi and Hirata (2015) meneliti bahwa di Jepang, jumlah rute udara domestik yang ditinggalkan telah meningkat deregulasi pasar penerbangan terutama di jalur udara regional dengan permintaan penumpang yang kurang. Pemerintah daerah telah memulai mempertahankan rute udara regional, hal ini akan mempengaruhi perilaku pilihan rute udara penumpang dan hubungan antara perubahan biaya perjalanan dan perubahan volume penumpang antar daerah.

2.3 Bandar Udara

2.3.1 Kriteria Bandar Udara

ICAO menggolongkan bandar udara menjadi tujuh jenis menurut panjang landas pacu yang dimiliki (Simon Hutchceson/1996:127). Panjang landasan kurang dari 800 meter (Dorner 228, Twin Otter) dengan kode 1B, panjang 800 meter sampai kurang dari 1.200 meter (Saab 340, Metrolinier, Bandeirante) dengan kode 2B, panjang 1.200 meter sampai kurang dari 1.800 meter sampai kurang dari (F100, Bae 146, FSO) dengan kode 3C, panjang 1.800 meter dan yang lebih panjang lagi (A320, B727, B737), dengan kode 4C. Dalam pemberian kode, untuk sekelompok panjang landasan yang sama diberi kode berbeda menurut spesifikasi pesawat yang dapat menggunakannya. Sebagai contoh, untuk panjang landasan 800 meter sampai kurang dari 1.200 meter untuk pesawat Dash 8 diberi kode 2C. Untuk panjang landasan 1.800 meter dan yang lebih panjang lagi untuk pesawat DC-10, MD-11, L-1011, B767, A300, A310 diberi kode 4D; atau untuk pesawat B747-400 (100-400 series), A330, A340, B-777 diberi kode 4E. (Mastra,2016)

Lampiran III .B Peraturan Menteri PerhubunganNo.69 Tahun 2013, bandar udara yang akan dibangun atau dikembangkan menurut rencana induk nasional bandar udara perlu memperhatikan kriteria yang tercantum pada tabel – tabel berikut ini.

Tabel 2. 3 Kriteria Cakupan Pelayanan Bandar Udara

Wilayah	Kriteria	Indikator
Pulau Jawa dan Sumatera	cakupan pelayanan 100 km atau jarak dua bandar udara 200 km.	Jarak / waktu pencapaian moda transportasi darat atau moda transportasi lainnya yang dapat dilayani suatu bandar udara pada wilayah tertentu.
Pulau Kalimantan dan Sulawesi	cakupan pelayanan 60 km atau jarak dua bandar udara 120 km.	Jarak / waktu pencapaian moda transportasi darat atau moda transportasi lainnya yang dapat dilayani suatu bandar udara pada wilayah tertentu.
Bali, Nusa Tenggara, Kepulauan Maluku dan Pulau Papua	cakupan pelayanan 30 km atau jarak dua bandar udara 60 km.	Jarak / waktu pencapaian moda transportasi darat atau moda transportasi lainnya yang dapat dilayani suatu bandar udara pada wilayah tertentu.

Sumber: Peraturan Menteri Perhubungan No. 69 tahun 2013

Tabel 2. 4 Kriteria dan Cara Penilaian Hierarki Bandar Udara

NO	KRITERIA	SUB KRITERIA	SUB KRITERIA
	Terletak di	a. Status kota dalam RTRWN	1). PKN
1	kota yang merupakan	KIKWIN	2). PKW 3). PKL
	pusat zona		1). Internasional
	ekonomi	b. Penggunaan Bandar Udara	2). Domestik
			1). 5.000.000
			2). 1.000.000 – 4.999.999
		a. Penumpang Datang dan	3). 500.000 – 999.999
		Berangkat (per tahun)	4). 100.000 – 499.999
			5). < 100.000
			1). 500.000
		b. Penumpang Transit	2). 250.000 – 499.999
2	Kepadatan		3). 100.000 – 249.999
	Penumpang		4). 50.000 – 99.999
			5). < 50.000
		c. Frekuensi Penerbangan	1) 700
		(per minggu)	1). 500
		, CC /	2). 200 – 499
			3). 100 – 199
			4). 50 – 99 5). 550
			5). < 50

Tabel 2.4 Kriteria dan Cara Penilaian Hierarki Bandar Udara (Lanjutan)

NO	KRITERIA	SUB KRITERIA	SUB KRITERIA
3	Fungsi Penyebaran	 a. Rute Penerbangan Dalam Negeri b. Rute Penerbangan Luar Negeri c. Rute Cakupan Dalam Negeri 	1). 15 2). 5 - 14 3). < 5 1). 5 2). 1 - 4 1). > 5 2). 3 - 5 3). < 3

Sumber: Peraturan Menteri Perhubungan No. 69 tahun 2013

Tabel 2. 5 Kriteria Klasifikasi Bandar Udara

Kode Nomor (Code Number)	Panjang Landas Pacu Berdasar Referensi Pesawat (Aeroplane Reference Field Length)	Kode Huruf (Code Letter)	Bentang Sayap (Wing Span)	Jarak Roda Utama Terluar (Outer Mean Gear)
1	ARFL < 800 m	A	wing span <	Outer Mean Gear < 4.5 m
2	800 m ARFL < 1200 m	В	15 m wing span < 24 m	4.5 m outer mean gear < 6 m
3	1200 m ARFL < 1800 m	С	24 m <i>wing</i> <i>span</i> < 36 m	6 m outer mean gear < 9 m
4	1800 m ARFL	D	36 m <i>wing</i> span < 52 m	9 m outer mean gear < 14 m
		Е	52 m wing span < 56 m	9 m outer mean gear < 14 m
		F	56 m wing span < 80 m	14 m outer mean gear < 16 m

Sumber: Peraturan Menteri Perhubungan No. 69 tahun 2013

2.3.2 Kondisi Eksisting

Pengembangan sistem jaringan dan rute transportasi udara dilakukan dengan memperhatikan dan mempertimbangkan pada tata ruang nasional. Pola tata ruang nasional ini menggambarkan skenario peruntukkan lahan dan ruang nasional (tata guna lahan/ ruang nasional). Dari pola ini diharapkan akan dikenali

arah pengembangan wilayah nasional dan sistem jaringan transportasi yang mampu mendukungnya. (Nasution,2008)

Lampiran I.B Peraturan Menteri Perhubungan No.69 Tahun 2013 memuat data bandar udara masing masing provinsi di Indonesia beserta peran, fungsi, dan Penggunaan Bandar udara saat ini (eksisting). Lokasi Penelitian ini hanya pada Provinsi Kalimantan Selatan maka Tabel 2.6 dapat dilihat data bandar udara di Provinsi Kalimantan Selatan saat ini.

Tabel 2. 6 Peran, Fungsi, Penggunaan, Hierarki Dan Klasifikasi Bandar Udara Eksisting di Provinsi Kalimantan Selatan

NO	BANDAR UDARA	KOTA/ LOKASI		PERAN					FUNGSI		PENG-		
			S	G E	A M T	P/ P W	D T	R B	D P	W N	P R	P U	GUNAAN BANDAR UDARA
PR	OVINSI KAL	IMANTAN S	ELA	TAN	1								
1.	Syamsudin	D : :											Dom
	Noor	Banjarmasin											
2.	Gusti	Kotabaru											Dom
	Syamsir												
	Alam												
3.	Tanjung	Tanjung											Dom
	Warukin	Warukin											
4.	Bersujud	Batulicin											Dom

Sumber: Peraturan Menteri Perhubungan No. 69 tahun 2013

Keterangan : S = Simpul, GE = Gerbang Ekonomi, AMT = Alih Moda Transportasi, P/PW = Perindag/Pariwisata, DT = Daerah Terisolir, RB = Rawan Bencana, DP = Daerah Perbatasan, WN = Wawasan Nusantara, PR = Pemerintah, PU = Pengusaha

2.3.3 Rencana Pengembangan Bandar Udara

Rencana induk nasional bandar udara terdiri atas kebijakan nasional mengenai bandar udara dan rencana lokasi bandar udara beserta penggunaan hierarki, serta klasifikasi bandar udara. Strategi pembangunan, pengoperasian pendayagunaan, dan pengembangan bandar udara diantaranya dalam bentuk meningkatkan peran bandar udara dan menyiapkan kapasitas bandar udara sesuai hierarki bandar udara. Penetapan ini harus memperhatikan tahapan pengembangan dan pemantapan hierarki bandar udara sebagai bandar udara pengumpul (*hub*) dengan skala pelayanan primer, sekunder, atau tersier, sedang bandar udara pengumpan (*spoke*) merupakan bandar udara tujuan atau bandar udara penunjang pelayanan kegiatan nasional hingga kegiatan lokal.

Tujuan rencana induk bandar udara adalah untuk memberikan rincian khusus untuk pengembangan masa depan dari suatu bandar udara untuk memenuhi kebutuhan-kebutuhan penerbangan sesuai dengan tujuan masyarakat. Proyeksi atau prakiraan tahunan dari lalu lintas bandar udara selarna periode perencanaan merupakan dasar bagi persiapan prakiraan yang terinci dalam rencana induk (Horonjeff, 1993). Rencana induk nasional bandar udara menurut PM No.69 tahun 2013 di Provinsi Kalimantan Selatan dapat dilihat pada Table 2.7.

Tabel 2. 7 Rencana Induk Nasional Bandar Udara di Kalimantan Selatan

NO	BANDAR UDARA	KOTA/ LOKASI	PENGGUNA AN BANDAR UDARA		HIERARKI BANDAR UDARA		KLASIFIK ASI LANDAS PACU	
			2020	2030	2020	2030	2020	2030
PRO	VINSI KALIN	MANTAN SELA	ATAN					
1.	Syamsudin Noor	Banjarmasin	Dom	Dom	PP	PP	4D	4D
2.	Gusti Syamsir Alam	Kotabaru	Dom	Dom	PT	PT	3C	3C
3.	Tanjung Warukin	Tanjung Warukin	Dom	Dom	P	P	3C	3C
4.	Bersujud	Batulicin	Dom	Dom	P	P	3C	4C

Sumber: Peraturan Menteri Perhubungan No. 69 tahun 2013

Keterangan : Dom = domestik, PP : pengumpul skala primer, PS = pengumpul skala sekunder, PT = pengumpul skala tersier, P = pengumpan

Trzepacz (2007)meneliti perubahan hierarki bandara di transportasi udara Eropa, menemukan bahwa maskapai menggunakan bandara yang menawarkan biaya yang lebih rendah menimbulkan perubahan hierarki bandara. Lapangan udara lokal atau bandara regional menjadi titik penting transportasi Eropa. Proses ini mempengaruhi beberapa perubahan tata ruang bandara. Perkembangan bandara membutuhkan lebih banyak ruang untuk membangun terminal, mengembangkan sistem landasan pacu, dan memperbesar pusat layanan. Di samping pertumbuhan ini, perubahan juga menyangkut penggunaan lahan di lingkungan bandara, karena kegiatan ekonomi baru muncul di sekitar ini bandara yang dibangun. Tetapi perluasan bandara memiliki hambatan seperti bandara dikelilingi oleh kawasan perumahan.

2.3.4 Pengoperasian Bandar udara

1. Jarak Penerbangan Antar Bandar Udara

Jarak penerbangan antarbandar udara (stage length) menentukan besar biaya setiap satuan produk (seat-km atau tonne-km). Pergerakan pesawat udara di darat, tinggal landas dan mendaki (*climbing*), serta persiapan mendarat (*decent*) menghabiskan cukup banyak bahan bakar dibandingkan dengan terbang datar atau jelajah (cruising) apalagi terbang tinggi. Di samping banyak menghabiskan bahan bakar, dalam kondisi tersebut dibutuhkan waktu lama atau gerak maju lebih lambat dibandingkan dengan dalam terbang datar dan tinggi. Kalau rata-rata stage length pendek relatif terhadap keseluruhan jarak terbang atau banyak singgah (stop over sehingga menempuh perjalanan dengan waktu lebih lama, berarti lebih banyak bahan bakar dihabiskan dan banyak waktu digunakan, maka lebih banyak biaya yang dikeluarkan untuk setiap produk. Dengan demikian, semakin pendek stage length yang ditempuh semakin besar biaya operasi langsung untuk setiap satuan produk sampai pada jarak tertentu yaitu saat harus mengorbankan bobot muatan (payload) untuk memuat tambahan bahan bakar, karena setelah jarak tersebut dicapai, biaya akan semakin besar dengan bertambah panjangnya jarak terbang. (Mastra, 2016)

Hansen and Li (2017) merumuskan dan menerapkan metrik baru untuk mengidentifikasi beberapa daerah bandara (MAR) di seluruh dunia, berdasarkan

jarak temporal antara bandara. Matriks ini, yang bertentangan dengan penelitian yang ada berdasarkan jarak spasial, memperhitungkan waktu perjalanan sesungguhnya antara bandara penumpang dan perjalanan mereka melalui transportasi darat. Kami menyelidiki berbagai properti jaringan MARs yang baru dibangun pada skala global untuk tahun 2015, termasuk pentingnya MARs dalam transportasi udara global, pengelompokan kesamaan, tumpang tindih tujuan, dan peran bandara di dalam MAR.

Metode pengukuran jarak Euclidean adalah metode pengukuran jarak garis lurus (straight line) antara titik X(X1,X2,...Xn) dan titik Y (Y1,Y2,...Yn). Purnamasari and Teknik (2011)

2. Jumlah penggunaan pesawat udara

Jumlah penggunaan pesawat udara (*utilization*) dan jumlah atau silklus penerbangan (*flight cycle*) dalam suatu rute menentukan besar biaya yang harus dikeluarkan untuk setiap satuan produk. Semakin banyak penggunaan pesawat udara (utilisasi) semakin kecil biaya setiap jamnya, karena total biaya setiap tahun. Penyusutan dan asuransi dapat dibebankan pada jam produktif itu. Sebaliknya, biaya bandar udara (*airport charge*) dan biaya stasion untuk stage length lebih pendek akan lebih sering dikenakan atau lebih besar jumlahnya untuk setiap satuan produk dibandingkan dengan jarak lebih panjang. Biaya pemeliharaan dan perbaikan pesawat udara, besarnya ditentukan oleh jumlah penerbangan (*flight cycle*) yaitu frekuensi tinggal landas dan pendaratan. Semakin sering melakukan tinggal landas dan pendaratan semakin besar biaya untuk jasa pemeliharaan dan perbaikan serta pengadaan suku cadang. (Mastra, 2016)

3. Frekuensi Penerbangan

Frekuensi penerbangan dan jarak perjalanan setiap penumpang menentukan besar biaya yang dikeluarkan perusahaan. Semakin tinggi frekuensi layanan diberikan dalam waktu tertentu dimungkinkan untuk meningkatkan penggunaan (*utilization*) pesawat udara dan awaknya, karena pengaturan jadwal lebih fleksibel, sedangkan semakin sering awak pesawat udara terbang semakin

rendah biaya awak pesawat untuk setiap "block hour". Demikian juga, frekuensi yang tinggi juga memungkinkan perusahaan untuk mengurangi waktu dan biaya awak pesawat udara di darat, dalam suatu rute perjalanan panjang. Biaya layanan penumpang yang dibayarkan perusahaan untuk setiap penumpang seperti reservasi, urusan tiket, penanganan penumpang dan bagasi, serta layanan bandar udara; berhubungan lebih erat dengan jumlah penumpang dibandingkan dengan jarak. (Mastra, 2016)

4. Kelas dan Kemampuan Pesawat Udara

Menurut jarak layanan, pesawat udara jenis angkutan umum utama (*major transport*) dapat dibagi menjadi tiga kelas yaitu pesawat udara jarak pendek, jarak sedang, dan jarak panjang (Simon Hutcheson/1996:107). Kelompok angkutan umum lainnya ialah kelas angkutan umum regional (*regional transport*) sebagai pengumpan angkutan utama.

- 1) Jarak pendek (*short range*) yaitu mencakup layanan 1.000-3.500 NM, dengan 50-200 tempat duduk.
- 2) Jarak sedang (*medium range*) yaitu mencakup layanan 3.500-5.500 NM, dengan 200-300 tempat duduk
- 3) Jarak panjang (*long range*) yaitu mencakup layanan 5.500-8.000 NM, dengan 300-450 NM tempat duduk
- 4) Angkutan Regional:
 - dengan muatan sampai 20.000 kg atau 30-56 penumpang, untuk jarak 1.500-4.200 NM;
 - dengan muatan sampai 13.600 kg atau 14-30 penumpang, untuk jarak 500-3.500 NM;
 - dengan muatan sampai 5.750 kg atau 5-15 penumpang, untuk jarak 400-3.500 NM.

5. Biaya Operasional Pesawat Udara

Menurut Ackert (2012) menyatakan bahwa dampak panjang penerbangan yang lebih rendah menghasilkan beban siklus yang lebih tinggi pada bagian aksesori mesin dengan konsekuensi perawatan non rutin yang lebih tinggi. Segmen

penerbangan yang lebih kecil juga memaksa mesin untuk menghabiskan proporsi waktu penerbangan total yang lebih besar dengan menggunakan pengaturan daya lepas landas dan pendakian yang menghasilkan kemunduran kinerja yang lebih cepat, yang berarti DMC (Direct Maintenance Cost) atau biaya pemeliharaan langsung yang lebih tinggi.

Zuidberg (2014) menyatakan adanya pengaruh karakteristik maskapai penerbangan terhadap rata-rata biaya operasi per pergerakan pesawat. Analisis ini menggabungkan pemilihan variabel maskapai penerbangan yang komprehensif, variabel armada penerbangan, dan variabel pasar penerbangan. Hasil regresi menunjukkan bahwa maskapai yang menggunakan pesawat baru memiliki biaya operasi rata-rata yang lebih tinggi per pergerakan pesawat terbang, mengemukakan bahwa biaya kepemilikan (penyusutan dan biaya sewa) pesawat baru lebih besar daripada biaya pemeliharaan pesawat tua yang semakin meningkat. Sehingga memungkinkan maskapai untuk memberikan harga tiket yang lebih tinggi.

Hasil penelitian Kawasaki (2008) adalah Jika nilai waktu untuk penumpang cukup kecil dan biaya operasionalnya sedang atau bila nilai waktu untuk penumpang tinggi dan biaya operasi kecil, maskapai memilih jaringan hub-spoke. Jika tidak maka yang dipilih jaringan point-to-point.

2.4 Permodelan

Nommika dan Anto (2016) menyatakan permodelan bisa menjadi metode yang sangat membantu dalam pengembangan infrastruktur bandara dan optimalisasi operasional. Perencanaan berdasarkan pemodelan kapasitas dinamis terminal bandar udara yang berasal dari kekhususan bandara regional dapat menjadi substrat untuk perancangan terminal bandara, pengambilan keputusan dalam manajemen SDM serta pemilihan teknologi yang akan digunakan. Dengan cara ini batas antrian yang panjang karena LOS akan menjadi masukan untuk perencanaan kapasitas dinamis dan hasil optimalisasi kapasitas dinamis dengan meter persegi per penumpang yang dibutuhkan akan menjadi masukan untuk perencanaan terminal dari sudut pandang kapasitas statis. Pada perencanaan kapasitas bandara regional peran yang cukup besar dipengaruhi oleh waktu

kedatangan komuter atau bus transfer lokal. Hal semacam itu bisa mudah diterapkan jika penyediaan layanan ini didukung oleh otoritas lokal.

Nasution (2008) menyatakan terdapat beberapa teknik peramalan yang dapat digunakan untuk menghitung angkutan udara. Pemilihan teknik peramalan yang tepat tergantung ketersediaan data yang diperlukan, maksud peramalan dikaitkan dengan tingkat kecanggihan teknik yang digunakan, kerangka waktu, serta ketersediaan.

2.4.1 Model Bangkitan Pergerakan

1. Model analisis regresi-liniear

Model linear digunakan untuk pola permintaan yang menunjukkan suatu hubungan linear dengan perubahan waktu. Hubungan yang mendasarinya mungkin konstan atau berubah dengan pola yang teratur, musiman, atau siklus. (Nasution, 2008)

Model analisis regresi linier dapat memodelkan hubungan antara dua variabel atau lebih yaitu variabel tidak bebas atau respon (y) yang mempunyai hubungan fungsional dengan satu atau lebih variabel bebas atau prediktor (x). Regresi yang hanya mempunyai sebuah variabel bebas yang tersangkut didalamnya, secara umum dinyatakan dalam Rumus 2. 1. (Tamin, 2000)

$$Y = A + BX$$
....(2.1)

Keterangan:

Y = Variabel tidak bebas

X = Variabel bebas

A = Konstanta regresi

B = Koefisien regresi

Nilai parameter A dan bisa didapatkan dari Rumus 2. 2 dan Rumus 2. 3.

$$B = \frac{N\sum(XiYi) - \sum(Xi)\sum(Yi)}{N\sum(Xi^2) - (\sum Xi)^2} \dots (2.2)$$

$$A = Y - BX$$
.....(2.3)

Y dan X adalah nilai rata-rata dari variabel-variabel Y dan X.

Model analisis regresi-linier berganda

Analisis regresi-linier berganda adalah metode statistik yang dapat digunakan untuk mempelajari hubungan antara sifat permasalahan yang sedang diselidiki. Metode ini mempunyai lebih banyak variabel bebas atau prediktor (X) yang bersangkutan didalamnya, secara umum dinyatakan dalam Rumus 2. 4

$$Y = A + B1X1 + B2X2 + ... + BzXz$$
 (2.4)

Dengan:

Y = Variabel tidak bebas

A = Konstanta regresi

X1....Xz = Variabel bebas

B1....Bz = Koefisien regresi

Analisis korelasi akan menghasilkan nilai koefisien korelasi (r) yang besarnya berkisar antar -1 s/d +1, yang dapat ditentukan melalui Rumus 2. 5

$$r = \frac{N \sum_{i} (X_{i}Y_{i}) - (\sum_{i} (X_{i}) \sum_{i} (Y_{i}))}{\sqrt{|N \sum_{i} (X_{i}^{2}) - (\sum_{i} (X_{i})^{2})| |N \sum_{i} (Y_{i}^{2}) - (\sum_{i} (Y_{i})^{2})||}}$$
.....(2.5)

Dengan:

r = Koefisien korelasi

N = Jumlah data

Xi = Peubah bebas

Yi = Peubah tidak bebas

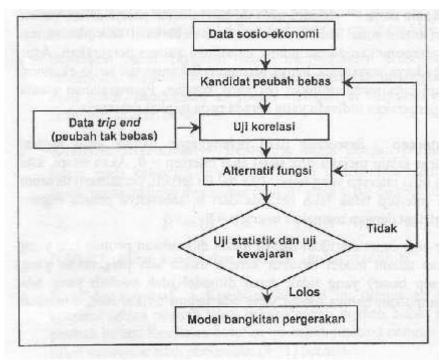
Koefisien Determinasi adalah salah satu Kriteria untuk menentukan apakah variabel suatu fungsi regresi yang digunakan cukup tepat ialah menggunakan atau melihat koefisien determinasi (R²). Bentuk persamaan koefisien determinasi (R²) dinyatakan pada rumus 2.6.

$$R^{2} = \frac{\sum_{i} (\hat{y}i - \hat{Y}i)^{2}}{\sum_{i} (\hat{Y}i - \hat{Y}i)^{2}}$$
(2.6)

Dengan:

 R^2 = Koefisien determinasi

ÿi= Hasil Pengamatan yang didapat dari persamaan


Ῡi= Rata-rata dari Yi

2. Model regresi berbasis zona

Model ini digunakan untuk mendapatkan hubungan linear antara jumlah pergerakan yang dibangkitkan atau tertarik oleh zona dan ciri sosio-ekonomi ratarata dari rumah tangga pada setiap zona. Model jenis hanya dapat menjelaskan variasi perilaku pergerakan antara zona.

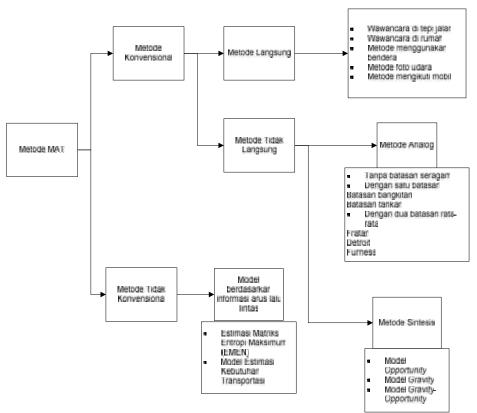
Zona kosong tidak dimasukkan dalam perhitungan karena penambahan jumlah zona yang tidak dapat memberikan data yang berguna serta tepat hanya akan menghasilkan statistik yang ketepatannya rendah.

Proses permodelan bangkitan pergerakan dengan menggunakan metode analisis regresi linear dapat dilihat pada Gambar 2. 2.

Gambar 2. 2 Proses Kalibrasi dan Pengabsahan Model Analisis Regresi Model analisis regresi berbasis zona

Metode ini secara bertahap mengurangi jumlah peubah bebas sehingga didapatkan model terbaik yang hanya terdiri dari beberapa peubah bebas. Metode analisis langkah demi langkah tipe 1 (satu) yang memiliki beberapa tahap yaitu: (Tamin, 2008)

1. Menentukan parameter sosio ekonomi yang akan digunakan sebagai peubah bebas.


- a) Memilih parameter (peubah bebas) yang berdasarkan logika yang memiliki keterkaitan (korelasi) dengan peubah tidak bebas
- b) Menguji korelasi untuk mengabsahkan keterkaitannya dengan peubah tidak bebas (bangkitan dan tarikan pergerakan). Persyaratan statistik utama yang harus dipenuhi dalam memilih peubah bebas adalah:
 - Peubah bebas harus memiliki korelasi tinggi dengan peubah tidak bebas.
 - Sesame peubah bebas tidak boleh saling berkolerasi. Jika terdapat dua peubah bebas yang saling berkolerasi pilihlah salah satu yang memiliki korelasi lebih tinggi terhadap peubah tidak bebasnya
- Melakukan analisis regresi linear berganda dengan semua peubah bebas terpilih untuk mendapatkan nilai koefisien determinasi derta nilai konstata dan koefisien regresinya
- Menentukan parameter yang mempunyai korelasi terkecil terhadap peubah tidak bebasnya dan hilangkan parameter tersebut. Melakukan kembali analisis regeresi linier berganda untuk mendapatkan nilai koefisien determinasi serta nilai konstanta dan koefisien regresinya.
- 4. Melakukan lagi tahap-3 (tiga) satu demi satu sampai hanya tertinggal satu parameter saja
- 5. Mengkaji nilai koefisien determinasi dan koefisien regresi setiap model untuk mendapatkan atau menentukan model terbaik dengan kriteria sebagai berikut:
 - a) Semakin banyak peubah bebas yang digunakan, semakin baik model tersebut.
 - b) Tanda koefisien regresi (+/-) sesuai dengan yang diharapkan.
 - c) Nilai konstanta regeresi kecil (semakin mendekati nol).
 - d) Nilai koefisien determinasi (R2) besar (semakin mendekati satu) semakin baik.

2.4.1 Model Sebaran Pergerakan

1. Matriks Pergerakan

Total jumlah perjalanan dalam suatu area studi selama periode waktu tertentu, dapat digunakan sebagai indikator kebutuhan transportasi. Pola perjalanan didalam suatu sistem transportasi biasanya digambarkan dalam bentuk arus (kendaraan, orang, maupun barang) yang bergerak dari lokasi asal menuju titik tujuan, dalam suatu wilayah studi dan dalam rentang periode waktu tertentu. Matriks asal tujuan (MAT) sering digunakan oleh perencana transportasi untuk menggambarkan pola perjalanan tersebut . (Tamin, 2000)

MAT adalah matriks berdimensi dua yang berisi informasi mengenai besarnya pergerakan antarlokasi (zona) di dalam daerah tertentu. Baris menyatakan zona asal dan kolom menyatakan tujuan, sehingga sel matriksnya menyatakan besarnya arus dari zona asal ke zona tujuan. Metode untuk mendapatkan MAT dapat dikelompokkan menjadi dua bagian utama, yaitu metode konvensional dan metode tidak konvensional. (Tamin, 1985, 1986, 1988abcd)

Gambar 2. 3 Metode untuk Mendapatkan Matriks Asal Tujuan (MAT) (Tamin, 1985, 1986, 1988abcd)

Matriks asal tujuan (MAT) dapat digunakan untuk menggambarkan pola pergerakan di dalam daerah kajian. Sel dari setiap baris i berisi informasi mengenai pergerakan yang berasal dari zona i tersebut ke setiap zona d. sel diagonal berisi informasi mengenai pergerakan intrazona (i=d). oleh karena itu :

T_{id} = pergerakan dari zona asali ke zona tujuan d

O_i = jumlah pergerakan yang berasal dari zona asal i

D_d = jumlah pergerakan yang menuju dari zona tujuan d

T = total matriks

N = jumlah zona

Tabel 2. 8 Bentuk Umum Matriks Asal Tujuan (MAT)

N	1	2	•••	N	Oi
1	T ₁₁	T ₁₂		T_{1N}	O ₁
2	T ₂₁	T ₂₂	•••	T_{2N}	O_2
•••	•••	•••	•••	•••	•••
N	T _{N1}	T _{N2}	•••	T _{NN}	O _N
D _d	D_1	D_2	•••	D _N	T

Sumber: Tamin, (1985, 1986, 1988abcd)

$$Oi = \sum_{d} Tid.$$

$$Dd = \sum_{l} Tid.$$

$$T = \sum_{l} Oi = \sum_{d} Dd = \sum_{l} \sum_{d} Tid.$$
(2.8)

Aprilliansyah dan Herman (2015) meneliti tentang model bangkitan dan tarikan serta model sebaran pergerakan yang terjadi di Provinsi Jawa Barat. Untuk membentuk model bangkitan dan tarikan pergerakan diperlukan data asal tujuan yang diperoleh dari data sekunder. Hasil data sekunder dianalisis dengan metode Analisis Regresi Linier untuk mendapatkan model persamaan matematis yang paling baik.(Xiao et al., 2014)(Xiao et al., 2014)

2.5 Peramalan (Forecasting)

Exponential Smoothing Forecasting Method

Exponential Smoothing Forecasting Method adalah peramalan dengan mengadakan penghalusan atau pemulusan terhadap data masa lalu yaitu dengan mengambil rata-rata dari nilai beberapa tahun untuk rnenaksir nilai pada tahun yang akan datang dan metode ini menggunakan metode time series (Hillier, 2008).

$$Forecast = (Last\ value) + (1-)(Last\ forecast)....(2.7)$$

Gordiievych and Shubin (2015) menganalisis metode peramalan deret waktu pada contoh harga peramalan tiket pesawat. Kemudian, informasi itu direncanakan untuk membangun sebuah sistem yang akan membantu pelanggan membuat keputusan pembelian dengan meramalkan bagaimana harga tiket pesawat akan berkembang di masa depan.

2.6 Studi Peneltian Terdahulu

Syarif (2016) meneliti tentang analisa kesesuaian dan dampak perubahan hierarki bandar udara di kalimantan utara. Untuk mengetahui perubahan sebaran pergerakan pada tahun rencana (2020) dilakukan analisis yang terdiri dari dua skenario, yaitu : 1. Apabila tidak terjadi perubahan hierarki bandar udara (tanpa perubahan hierarki), 2. Apabila terjadi perubahan hierarki (dengan perubahan hierarki) digunakan dengan analisis sebaran pergerakan penumpang dengan metode analogi (Furness). Sebelum mendapatkan hasil perhitungan tersebut, terlebih dahulu digunakan matriks dasar pada tahun 2015.

Suryani, Chou, dan Chen (2010) meneliti bagaimana mengembangkan model untuk memperkirakan permintaan penumpang udara dan untuk mengevaluasi beberapa skenario kebijakan terkait dengan perluasan kapasitas terminal landasan pacu dan penumpang untuk memenuhi permintaan masa depan. Kerangka kerja dinamika sistem dapat digunakan untuk model, menganalisis dan menghasilkan skenario untuk meningkatkan kinerja sistem karena kemampuannya mewakili arus informasi dan fisik, berdasarkan kontrol umpan balik informasi yang

terus menerus diubah menjadi keputusan dan tindakan. Mereka menemukan bahwa dampak tiket pesawat, tingkat dampak pelayanan, PDB, jumlah penduduk, jumlah penerbangan per hari dan waktu tinggal memainkan peran penting dalam menentukan volume penumpang udara, utilisasi landasan pacu dan total area tambahan yang dibutuhkan untuk perluasan kapasitas terminal penumpang.

Xiao et al., (2014) meneliti Jumlah penumpang yang digunakan sebagai proyeksi untuk demand transportasi udara. Penumpang transportasi udara biasanya memiliki perilaku yang kompleks yaitu irregularity, volatility yang endekatan baru yaitu singular tinggi dan musiman. Penulis melakukan sebuah p ive-network-based fuzzy inference system (ANFIS) spectrum analysis (SSA), adapt d improved particle swarm optimization (IPS0), untuk prediksi lalu lintas an penurnpang transportasi udara jangka pendek. SSA merupakan teknik non parametik dalam analisis time series, digunakan untuk mengidentifikasi dan penggalian tren dan demand transportasi udara musiman dan intelegen teknogi buatan. ANFIS merupakan sistem yang menggabungkan manfaat dari fuzzy inference systems dan ANN. ANFIS dan IPSO digunakan untuk menganalisis yang berhubungan dengan irregularity dan volatility. The HK penumpang udara Data dikumpulkan untuk membangun dan memvalidasi model peramalan. Dari hasil penelitian ini menunjukkan adanya potensi besar dengan menggunakan pendekatan yang di gunakan penulis dalam menentukan peramalan permintaan transportasi udara dan dapat dianggap sebagai altematif.

2.7 Sintesis Kajian Pustaka

Sinentesis Kajian Pustaka berfungsi untuk menggabungkan beberapa dasar teori pada kajian pustaka dan landasan teori pada penelitian dampak Peraturan Menteri Perhubungan No.69 Tahun 2013 terhadap *travel cost* dan *travel time* untuk mendapat kesimpulan yang komprehensif dan koheren. Berikut sintesis kajian pustaka dan landasan teori dapat dilihat pada Tabel 2. 9.

Tabel 2. 9 Sintesis Kajian Pustaka Pendahuluan dan Kriteria Pengembangan Bandar Udara

Kajian Pustaka	Landasan Teori	Dasar Teori	Indikator/ Variabel
Pola Jaringan Penerbangan	Mastra, 2016	Jaringan penerbangan dapat dikelompokkan menjadi tiga golongan, yaitu pola garis, pola jaring, dan pola poros	
Teneroungun	PM No 69, 2013	Hierarki bandar udara terdiri dari bandar udara pengumpul (<i>hub</i>) dan bandar udara pengumpan (<i>spoke</i>).	
	Mastra, 2016	Kepentingan suatu negara terhadap operasi penerbangan ialah mengatur keamanan dan keselamatan bagi penerbang maupun kawasan yang dilintasi pesawat udara di bawahnya.	
Kebijakan Manajemen Bandar Udara	Nasution, 2008	kebijakan pemerintah dalam pengembangan jaringan dan rute berperan untuk mengatur keseimbangan antara penawaran dan permintaan.	
	Takebayashi dan Ishikura, 2013	salah satu <i>flag carrier</i> mungkin kehilangan keuntungan karena masuknya LCC jika kebijakan ini diadopsi	
	Fageda, dkk 2017	Perlu adanya perubahan kebijakan untuk mendukung layanan udara ke pulau-pulau dan untuk menghindari distorsi pada tarif pasar yang diakibatkan oleh perusahaan penerbangan.	
	Shiraishi and Hirata 2015	di Jepang jumlah rute udara domestik yang ditinggalkan telah meningkat, deregulasi pasar penerbangan terutama di jalur udara regional dengan permintaan penumpang yang kurang.	
	Hutchceson, 1996 dam Mastra, 2016	ICAO menggolongkan bandar udara menjadi tujuh jenis menurut panjang landas pacu yang dimiliki (Simon Hutchceson/1996:127).	1. Kriteria Bandar Udara
Bandar Udara	PM No. 69, 2013	Lampiran III .B PM No.69 Tahun 2013, memuat tabel-tabel kriteria bandar udara yang akan dikembangkan menurut rencana induk nasional bandar udara	

Lanjutan Tabel 2. 9 Sintesis Kajian Pustaka Pendahuluan dan Kriteria Pengembangan Bandar Udara

Kajian Pustaka	Landasan Teori	Dasar Teori	Indikator/ Variabel
Tustana	Nasution, 2008	Pengembangan sistem jaringan dan rute transportasi udara dilakukan dengan memperhatikan dan mempertimbangkan pada tata	Kondisi eksisting
	PM No. 69, 2013	ruang nasional. Lampiran I.B PM No.69 Tahun 2013 memuat data bandar udara masing masing provinsi di Indonesia beserta peran, fungsi, dan Penggunaan Bandar udara saat ini (eksisting).	
	PM No. 69, 2013	Rencana induk nasional bandar udara terdiri atas kebijakan nasional mengenai bandar udara dan rencana lokasi bandar udara beserta penggunaan hierarki, serta klasifikasi bandar udara.	2. Rencana Pengemban gan bandara Udara
Pengoperasian Bandar udara	Mastra, 2016	Jarak penerbangan antarbandar udara (<i>stage length</i>) menentukan besar biaya setia satuan produk (<i>seat</i> -km atau <i>tonne</i> -km).	1. Jarak Antar Bandar Udara
	Hansen and Li 2017	Matriks baru untuk mengidentifikasi beberapa daerah bandara (MAR) di seluruh dunia, berdasarkan jarak temporal antara bandara.	
	Purnamasari and Teknik 2011	Metode pengukuran jarak Euclidean adalah metode pengukuran jarak garis lurus (straight line) antara titik X(X1,X2,Xn) dan titik Y (Y1,Y2,Yn)	
	Mastra, 2016	Jumlah penggunaan pesawat udara (utilization) dan jumlah atau silklus penerbangan (flight cycle) dalam suatu rute menentukan besar biaya yang harus dikeluarkan untuk setiap satuan produk.	2. Jumlah penggunaan pesawat

Lanjutan Tabel 2. 9 Sintesis Kajian Pustaka Pendahuluan dan Kriteria Pengembangan Bandar Udara

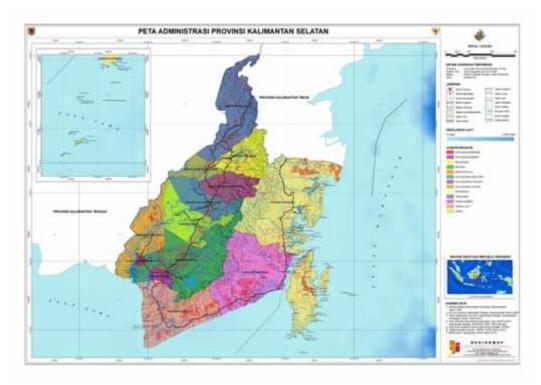
Kajian	Landasan	Dasar Teori	Indikator/
Pustaka	Teori		Variabel
	Mastra,	Frekuensi penerbangan dan jarak	Frekuensi
	2016	perjalanan setiap penumpang	Penerban-gan
		menentukan besar biaya yang	
		dikeluarkan perusahaan.	
	Hutcheson,	pesawat udara jenis angkutan	Kelas dan
	1996	umum utama (major transport)	kemamp-uan
	dalam	dapat dibagi menjadi tiga kelas	pesawat
	Mastra,	yaitu pesawat udara jarak pendek,	
	2016	jarak sedang, dan jarak panjang	
	Ackert, 2012 Zuidberg	Segmen penerbangan yang lebih kecil juga memaksa mesin untuk menghabiskan proporsi waktu penerbangan total yang lebih besar dengan menggunakan pengaturan daya lepas landas dan pendakian yang menghasilkan kemunduran kinerja yang lebih cepat, yang berarti DMC (Direct Maintenance Cost) atau biaya pemeliharaan langsung yang lebih tinggi.	Pesawat
	2014	maskapai penerbangan terhadap rata-rata biaya operasi per pergerakan pesawat.	
	Kawasaki 2008	Jika nilai waktu untuk penumpang cukup kecil dan biaya operasionalnya sedang atau bila nilai waktu untuk penumpang tinggi dan biaya operasi kecil, maskapai memilih jaringan hubspoke. Jika tidak maka yang dipilih jaringan point-to-point.	

Lanjutan Tabel 2. 9 Sintesis Kajian Pustaka Pendahuluan dan Kriteria Pengembangan Bandar Udara

Kajian	Landasan	Dasar Teori	Indikator/
Pustaka	Teori		Variabel
Permodelan	Nommika dan Anto 2016	Perencanaan berdasarkan pemodelan kapasitas dinamis terminal bandar udara yang berasal dari kekhususan bandara regional dapat menjadi substrat untuk perancangan terminal bandara, pengambilan keputusan dalam manajemen SDM serta pemilihan teknologi yang akan digunakan.	
	Nasution, 2008	Beberapa teknik peramalan yang dapat digunakan untuk menghitung angkutan udara. Pemilihan teknik peramalan yang tepat tergantung ketersediaan data yang diperlukan, maksud peramalan dikaitkan dengan tingkat kecanggihan teknik yang digunakan, kerangka waktu, serta ketersediaan.	
Peramalan		metode peramalan deret waktu pada contoh harga peramalan tiket pesawat. Kemudian, informasi itu direncanakan untuk membangun sebuah sistem yang akan membantu pelanggan membuat keputusan pembelian dengan meramalkan bagaimana harga tiket pesawat akan berkembang di masa depan.	
	Nasution, 2008	Beberapa metode peramalan yang sesuai untuk angkutan udara adalah model eksponensial, model regresi linear, dan model logistik	
	Tamin, 2000	Model analisis regresi linier dapat memodelkan hubungan antara dua variabel atau lebih yaitu variabel tidak bebas atau respon (y) yang mempunyai hubungan fungsional dengan satu atau lebih variabel bebas atau prediktor (x).	

Lanjutan Tabel 2. 9 Sintesis Kajian Pustaka Pendahuluan dan Kriteria Pengembangan Bandar Udara

Kajian Pustaka	Landasan Teori	Dasar Teori	Indikator/ Variabel
	Tamin, 2008	Metode ini mengasumsikan bahwa pola pergerakan saat ini dapat diproyeksikan untuk masa yang akan datang, dengan menggunakan besarnya pertumbuhan zona.	
	Aprilliansyah dan Herman, 2015	Hasil data sekunder dianalisis dengan metode Analisis Regresi Linier untuk mendapatkan model persamaan matematis yang paling baik.	
	Syarif, 2016	Untuk mengetahui perubahan sebaran pergerakan pada tahun rencana (2020) dilakukan analisis yang terdiri dari dua skenario, yaitu: 1. Apabila tidak terjadi perubahan hierarki bandar udara (tanpa perubahan hierarki), 2. Apabila terjadi perubahan hierarki (dengan perubahan hierarki digunakan dengan analisis sebaran pergerakan penumpang dengan metode analogi (Furness).	
	Suryani, Chou, dan Chen ,2010	bagaimana mengembangkan model untuk memperkirakan permintaan penumpang udara dan untuk mengevaluasi beberapa skenario kebijakan terkait dengan perluasan kapasitas terminal landasan pacu dan penumpang untuk memenuhi permintaan masa depan.	
	Xiao et al., 2014	Jumlah penumpang yang digunakan sebagai proyeksi untuk demand transportasi udara. Penumpang transportasi udara biasanya memiliki perilaku yang kompleks yaitu irregularity, volatility yang endekatan baru yaitu singular tinggi dan musiman.	

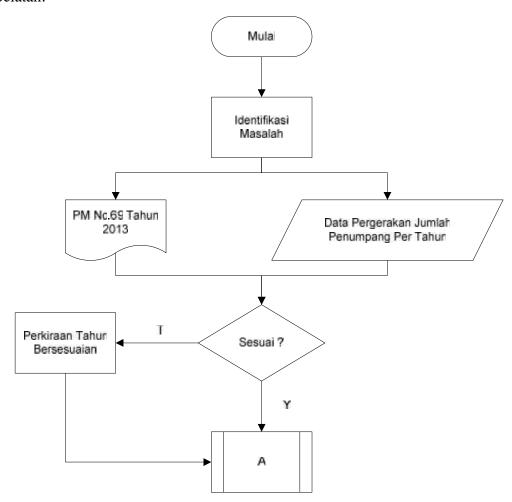

"Halaman ini sengaja dikosongkan"

BAB III

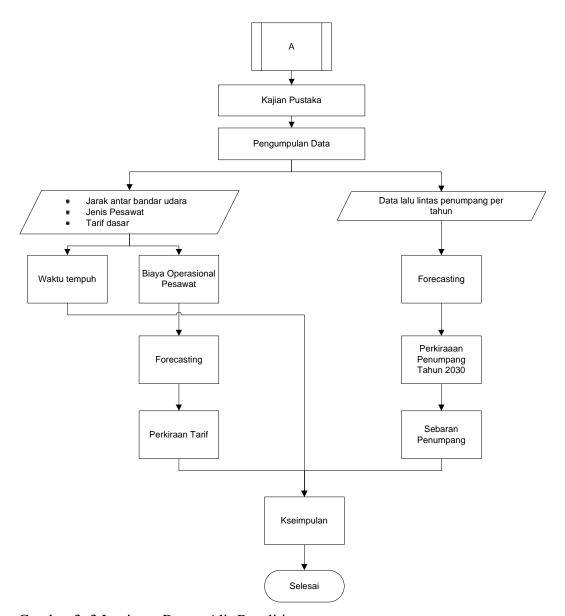
METODOLOGI PENELITIAN

3.1 Wilayah Studi

Penelitian ini dilakukan pada bandar udara yang terletak di Provinsi Kalimantan Selatan. Jumlah bandar udara yang diteliti sebanyak empat bandar udara yaitu badar udara Tanjung Warukin di Tanjung Warukin, bandar udara Syamsuddin Noor di Banjarmasin, bandar udara Bersujud di batulicin, dan bandar udara Gusti Syamsir Alam di Kotabaru. Gambar 3.1 menunjukkan peta administrasi Provinsi Kalimantan Selatan yang merupakan wilayah studi pada penelitian ini.



Gambar 3. 1 Peta Administrasi Provinsi Kalimantan Selatan¹


¹ diakses dari https://petatematikindo.wordpress.com/2013/03/31/administrasi-provinsikalimantan-selatan/, pada tanggal 4 mei 2017 pukul 12:15

3. 2 Bagan Alir Penelitian

Pada Gambar 2.1 berikut adalah bagan alir pada penelitian dampak Peraturan Menteri Perhubungan No.69 Tahun 2013 terhadap travel cost dan travel time pada bandar udara di Provinsi Kalimantan Selatan Bandar udara di Kalimantan Selatan:

Gambar 3. 2 Bagan Alir Penelitian

Gambar 3. 3 Lanjutan Bagan Alir Penelitian

Bangan Alir pada Gambar 3. 2 menunjukkan apakah kondisi eksisting pada masing-masing bandar udara di Kalimantan Selatan sesuai dengan klasifikasi bandar udara pada Peraturan Menteri perhubungan No. 69 Tahun 2013, kesesuaian ini dilihat dari data eksisting pergerakan jumlah penumpang per tahun.

Bagan alir pada Gambar 3. 3 menunjukkan gambaran proses lanjutan setelah diketahui kesesuaian kondisi eksisting pada masing –masing bandar udara di Kalimantan Selatan. Untuk mengetahui jarak antar bandar udara dianalisis dengan metode jarak *euclidean*. Setelah mendapatkan jarak dilakukan perhitungan waktu

tempuh dengan menggunakan data jenis pesawat dan kecepatan pesawat. Kemudian dilakukan perhitungan untuk biaya operasional untuk masa mendatang termasuk juga rute baru. Dari nilai biaya operasional ini dapat digunakan untuk perkiraan tarif masing-masing rute penerbangan.

Data lalu lintas penumpang penerbangan internal diramalkan menggunakan metode time series atau analisis regresi linier berganda, sesuai dengan data histori yang didapatkan dipilih metode yang cocok untuk menghasilkan peramalan yang mendekati kenyataan. Analisa regresi linier bergan digunakan untuk bandar udara Tanjung Warukin karena Bandar udara ini sudah tiga tahun tidak beroperasi sehingga data histori yang dimemenuhi kriteria, yang digunakan yaitu data sosio ekonomi kota Tanjung: jumlah penduduk, PDRB, jumlah angkatan kerja, jumlah penerbangan datang dan berangkat.

Dari hasil peramalan ini didapatkan jumlah penumpang masing-masing rute yang dapat digunakan untuk mengetahui sebaran pergerakan di masa mendatang. Dari hasil sebaran ini dapat diketahui demand dari masing-masing bandar udara.

3. 3 Metode Analisis Data

Metode analisis data pada penelitian ini bertujuan untuk memberikan urutan yang sistematis dan mencapai tujuan penelitian. Metoda analisis data terdiri dari sasaran penelitian, data yang diperlukan, teknik atas metoda analisis serta keluaran (output) penelitian, yang kemudian disusun pada

Tabel 3. 1 Metoda Analisis Data

Sasaran Penelitian	Input Data	Metoda Analisis	Keluaran / Output
Mengetahui kesesuaian cakupan pelayanan bandar udara	 Koordinat masing-masing Bandar Udara. Koordinat UTM masing-masing bandar udara 	Analisis jarak euclidean	Matriks jarak-lurus langsung (jarak antar bandar udara yang diamati).

Lanjutan Tabel 3. 1 Metoda Analisis Data

Sasaran Penelitian	Input Data	Metoda Analisis	Keluaran / Output
Mengetahui dampak perubahan hierarki bandar udara terhadap	 Jarak antar bandar udara Kecepatan pesawat 	Analisis waktu tempuh	Waktu tempuh antar bandar udara
travel time dan travel cost	 Tarif dasar penumpang Jarak antar bandar udara 	Analisis biaya operasional	Biaya operasional pesawat
Mengetahui kesesuaian	1. Data jumlah penumpang per tahun masing-masing bandar udara 2. Data sosio ekonomi untuk kota Tanjung: jumlah penduduk, PDRB, jumlah angkatan kerja, jumlah penerbangan datang dan berangkat	 Forecasting Analisis regresi linear berganda 	1. Prediksi jumlah penumpang pada tahun 2030 masing-masing bandar udara 2. Persamaan bangkitan dan tarikan (khusus kota tanjung)
Mengetahui sebaran pergerakan penumpang di penerbangan internal Kalimatan Selatan	1. Prediksi Jumlah penumpang tahun 2020 dan 2030	Analisa sebaran pergerakan	 MAT tahun eksisting MAT tahun 2020 dan 2030

3. 4 Bandar Udara di Provinsi Kalimantan Selatan

3. 4. 1 Gambaran umum Bandar Udara

Gambaran umum bandar udara pada masing-masing bandar udara di Kalimantan Selatan adalah sebagai berikut.

a. Bandar Udara Syamsudin Noor

Berikut ini adalah gambaran umum dari bandar udara Syamsudin Noor

1) Kota : Banjarmasin

2) Jenis Bandara : Publik

3) Pengelola : PT Angakasa Pura I

4) Elevasi : 66 kaki (20 m)

5) Kode ICAO : WAOO6) Kode IATA : BDJ

b. Bandar Udara Gusti Syamsir Alam

Berikut ini adalah gambaran umum dari bandar udara Gusti Syamsir Alam

Kota : Kotabaru
 Jenis Bandara : Publik

3) Pengelola :PT Angkasa Pura II

4) Elevasi : 1.2 m / 4 ft
5) Kode ICAO : WAOK
6) Kode IATA : KBU

c. Bandar Udara Tanjung Warukin

Berikut ini adalah gambaran umum dari bandar udara Tanjung Warukin:

1) Jenis Bandara : Sipil

2) Kota : Tanjung

3) Pengelola : PT Angkasa Pura 2 dan Kentanix Group

4) Elevasi : 1,2 m (4 ft)

5) Kode ICAO : WRBN

6) Kode IATA : TJG

d. Bandar Udara Bersujud

Berikut ini adalah gambaran umum dari bandar udara Bersujud:

1) Jenis Bandara : Sipil

2) Kota : Batulicin

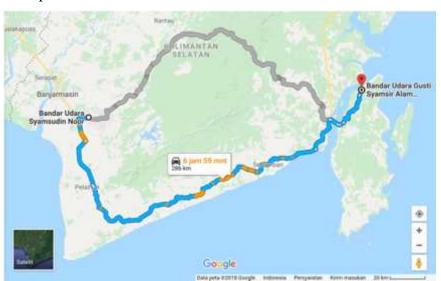
3) Pengelola : Penerbangan carteran pada tahun 2005 yang dilayani oleh PT. DAS dengan pesawat CASSA, dan PT. Premi Air dengan pesawat CESNA. Selain itu juga ada penerbangan reguler di Bandara Bersujud, pada tahun 2007 dilayani oleh PT. Karindangan Air dengan pesawat DERAYA 30 seat, dan Trigana Air dengan pesawat ATR-42.

4) Elevasi : 7 m (23 ft)
5) Kode ICAO : WAOC
6) Kode IATA : BTW

3. 4. 2 Jarak dan Waktu Tempuh Antar Bandar Udara Eksisting

Jarak antar bandar udara dengan menggunakan pesawat didapatkan dengan menarik garis lurus imaginer dari titik satu bandara kebandara lainnya. Untuk jarak menggunakan mobil didapatkan dari petunjuk arah *Google Maps* dan dapat dilihat pada Gambar 3. 4. Jarak antar bandar udara di Provinsi Kalimantan Selatan dapat dilihat padaTabel 3. 2.

Tabel 3. 2 Jarak Antar Bandar Udara di Provinsi Kalimantan Selatan

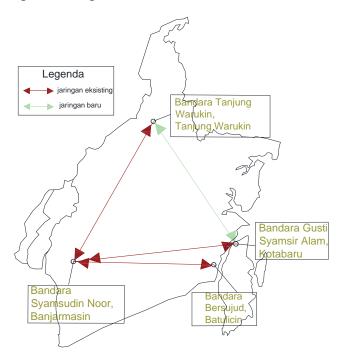

No	Rute bandara Udara		Jarak (km)	
			Pesawat	Mobil
1	Syamsudin Noor	Gusti Syamsir Alam	157,2	284
2	Syamsudin Noor	Tanjung Warukin	155,13	190
3	Syamsudin Noor	Bersujud	138,45	254
4	Gusti Syamsir Alam	Tanjung Warukin	144,85	270
5	Gusti Syamsir Alam	Bersujud	22,5	42,4
6	Tanjung Warukin	Bersujud	147,22	230

Waktu tempuh antar bandar udara di Provinsi Kalimantan Selatan dapat dilihat pada Tabel 3. 3.

Tabel 3. 3 Waktu Tempuh Antar Bandar Udara di Provinsi Kalimantan Selatan

No	Nama bandara		Waktu tempuh		
			Pesawat	Mobil	
1	Syamsudin Noor	Gusti Syamsir Alam	25 menit ²	6 jam 22 menit	
2	Syamsudin Noor	Tanjung Warukin	-	4 jam 37 menit	
3	Syamsudin Noor	Bersujud	22 menit ³	5 jam 22 menit	
4	Gusti Syamsir	Tanjung Warukin	-	6 jam 58 menit	
	Alam				
5	Gusti Syamsir	Bersujud	-	1 jam 23 menit	
	Alam				
6	Tanjung Warukin	Bersujud	-	5 jam 49 menit	

Waktu tempuh pesawat menggunakan flight www.flightradar24.com dan waktu tempuh mobil didapatkan dari Google Maps dan dapat dilihat pada Gambar 3. 4.



Gambar 3. 4 Waktu Tempuh dan Jarak Antar Bandar Udara

https://www.flightradar24.com/data/flights/iw1390
 https://www.flightradar24.com/data/flights/iw1382

3. 4. 3 Pola Jaringan Penerbangan di Kalimantan Selatan

Pola penerbangan eksisisting dan pola penerbangan rencana sesuai rencana induk PM No.69 Tahun 2013 pada tahun 2020 dan 2030pada Provinsi Kalimantan Selatan dapat dilihat pada Gambar 3. 5.

Gambar 3. 5 Pola Penerbangan Eksisting dan rencana di Provinsi Kalimantan Selatan

Pola jaringan penerbangan yang hanya ada tiga rute di Provinsi Kalimantan Selatan yaitu Banjarmasin-Kotabaru, Banjarmasin-Batulicin, Banjarmasin-Tanjung Warukin, pada tahun 2020 adanya rencana induk memungkinkan terjadinya penambahan rute yaitu Tanjung-Kotabaru.

Rute penerbangan internal di Provinsi Kalimantan Selatan beserta maskapai penerbangan yang tersedia pada tahun 2017 dapat dilihat pada Tabel 3. 4.

Tabel 3. 4 Rute Penerbangan Antar Bandar udara di Provinsi Kalimantan Selatan Tahun 2016

					Frekunsi
No	Dari	Ke	Maskapai	Jadwal	Penerbangan
1	Banjarmasin	tabalong	-	-	-
2	Tabalong	Banjarmasin	-	-	-
3	Banjarmasin	Batulicin	Wings Air	Ada	1 hari sekali
4	Batulicin	Banjarmasin	Wings Air	Ada	1 hari sekali
5	Banjarmasin	Kotabaru	Wings Air	ada	1 kali sehari
			Kalstar	ada	2 hari sekali
			Lion Air	ada	1 hari sekali
6	Kotabaru	Banjarmasin	Wings Air	ada	1 kali sehari
			Kalstar	ada	2 hari sekali
			Lion Air	ada	1 hari sekali

Sumber: Tiket.com (https://www.tiket.com/)

Kementerian Perhubungan (Kemenhub) menghentikan sementara operasi penerbangan maskapai Kalstar Aviation Air. Penghentian itu dilakukan mulai tanggal 30 September 2017, sehingga penelitian ini hanya memperhitungkan pada pesawat jenis Wings Air dengan jenis pesawat ATR 72-600.

Bandar Udara Tanjung Warukin Kembali beroperasi pada tanggal 4 desember 2017 dilayani oleh Maskapai PT Pelita air service setelah tiga tahun tidak beroperasi.

3. 4. 4 Koordinat Bandar Udara di Kalimantan Selatan

Data koordinat bandar udara digunakan untuk mengukur jarak masing-masing bandar udara. Jarak masing-masing bandar udara akan digunakan untuk mengetahui kesesuaian kondisi eksisting dengan kriteria jarak antar bandar udara yang terdapat pada Lampiran III.B Peraturan Menteri Perhubungan No.69 Tahun 2013. Jarak masing-masing bandar udara juga merupakan salah satu variabel yang akan digunakan untuk menetapkan waktu tempuh serta biaya pokok operasional pesawat.

Data korordinat bandar udara ini merupakan data sekunder yang didapatkan melalui *Aeronautical Information Publication* (AIP) Indonesia dan publikasi Kementrian Perhubungan Republik Indonesia. Data koordinat pada masing-masing bandar udara di Provinsi Kalimantan Selatan adalah sebagai berikut

Tabel 3. 5 Koordinat Bandar Udara di Provinsi Kalimantan Selatan

No	Nama Bandar	Kota	Kode	Koordinat			
	Udara		IATA	Lintang		Bujur	
1.	Syamsudin Noor	Banjarmasin	BDJ	3°26 32	U	114°45 45	T
2.	Gusti Syamsir Alam	Kotabaru	KBU	3°17 45	U	116°09 51	T
3.	Tanjung Warukin	Tanjung Warukin	TJG	2,216361°	U	115,436691°	T
4.	Bersujud	Batulicin	BTW	3° 27 0	U	116° 0 0	Т

Sumber: Wikipedia (https://id.wikipedia.org/wiki)

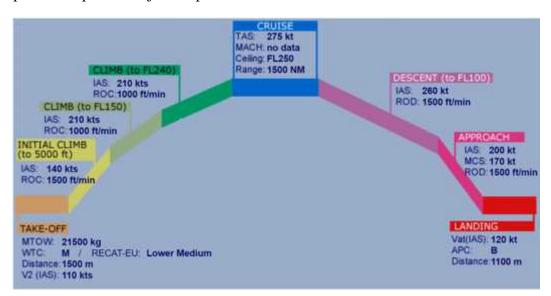
Tabel 3. 6 Koordinat Desimal Bandar Udara di Provinsi Kalimantan Selatan

No	Nama Bandar	Kota	Kode	Koordinat Desimal	
	Udara		IATA	Lintang	Bujur
1.	Syamsudin Noor	Banjarmasin	BDJ	-3.442222	114.7625
2.	Gusti Syamsir Alam	Kotabaru	KBU	-3.295833	116.164167
3.	Tanjung Warukin	Tanjung Warukin	TJG	-2.216361	115.436691
4.	Bersujud	Batulicin	BTW	-3.45	116

Sumber: Gohack (https://tools.wmflabs.org/geohack)

Data koordinat di atas akan dikonversikan kedalam koordinat *Universal Transverse Mercator (UTM)* dengan nilai satuan jarak (meter), yang kemudian akan dihitung menggunakan rumus jarak *euclidean* yang akan di susun ke dalam matriks jarak

3.5 Karakteristik Pesawat dan Biaya Operasional


3.5. 1 Waktu Tempuh Pesawat

Jenis pesawat yang digunakan oleh maskapai yang melayani penerbangan antar kota/kabupaten di Provinsi Kalimantan Selatan adalah pesawat jenis ATR 72-600. Kinerja pesawat ATR 72-600 dapat dilihat pada Gambar 3. 6.

Gambar 3. 6 Pesawat ATR 72-600 (ATR DC/E, 2014)

Untuk perhitungan waktu tempuh diperlukan data setiap fase pergerakan pesawat seperti ditunjukkan pada Gambar 3. 7

Gambar 3. 7 Kinerja Pesawat ATR 72-600 (Eurocontrol Training Institute, -)

Keterangan:

MTOW = *maxzimum take off weight*

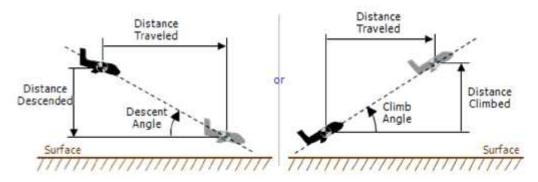
IAS = Indicated airspeed

 $ROC = Rate\ of\ climb$

 $TAS = True \ airspeed$

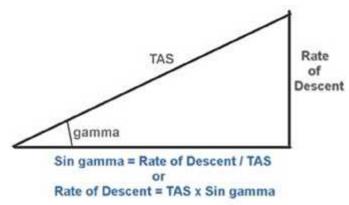
ROD = Rate of descent

 $APC = Auto\ Pilot\ Computer$

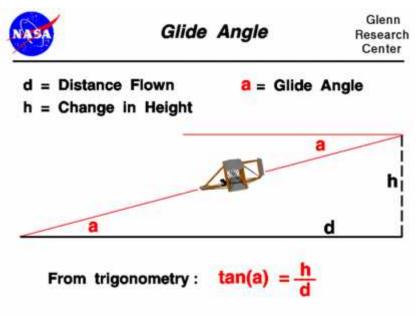

Dari tiap fase pergerakan terdapat data kecepatan dan jarak antar fase seperti ditunjukkan pada Tabel 3. 7.

Tabel 3. 7 Kinerja Pesawat ATR 72-600

performance	ATR 72-600		
	Speed (knot)	Distance	
Take Off	110	1500 m	
Climbing	210	25000 ft	
Cruising	266	-	
Descent	260	1000 ft	
Landing	120	1100 m	


Sumber: Eurocontrol Training Institute, -

Fase Intial climb, Climbing (FL150), Climbing (FL240), Descent, approach memiliki sudut yang dapat diilustrasikan pada Gambar 3. 8


Gambar 3. 8 fase climb dan Descent pesawat (http://www.luizmonteiro.com/Misc.aspx)

Pada Gambar 3. 7 hanya didapat ketinggian dan kecepatan pesawat, untuk mendapatkan sudut tersebut dihitung dengan menggunakan rumus pada Gambar 3. 9.

Gambar 3. 9 Perhitungan sudut terbang (K.Haroon, 2005)

Setelah mendapat nilai sudut terbang tersebut dilakukan perhitungan jarak lurus dengan menggunakan rumus pada Gambar 3. 10

Gambar 3. 10 Rumus Trigonometri dari fase penurunan pesawat (https://www.grc.nasa.gov/)

Total jarak lurus setiap fase penerbangan kemudian ditambahkan dengan jarak landing dan take off pesawat sehingga didapatkan :

$$Jarak lurus total = Jarak fase + Landing + Take off....(3.1)$$

Kemudian untuk mendapatkan jarak jelajah (*cruising*) di dapatkan dari jarak antar bandar udara dikurang jarak lurus total. Setelah didapat jarak dari masingmasing fase kemudian setiap fase dibagi kecepatan dari fase-fase tersebut.

Waktu tempuh =
$$\frac{f_{ar_ik}}{\kappa_{ecopatan pesawat}}$$
.....(3.2)

Setelah didapatkan waktu tempuh dari masing-masing fase dijumlahkan sehingga didapatkan waktu tempuh pesawat

3.5. 2 Biaya Operasional Pesawat

Berikut ini adalah tarif pesawat eksisting dari rute Banjarmasin-Kotabaru dan Banjarmasin-Batulicin dapat dilihat pada Tabel 3. 1

Tabel 3. 8 Tarif penumpang Eksisting

No	Rute		Tarif Eksisting (Rp)	Maskapai
1	Banjarmasin	Batulicin	330.000	Wings Air
3	Banjarmasin	Kotabaru	341.000	Wings air

Tarif berdasarkan Peraturan Menteri Perhubungan No. 14 tahun 2016 menurut jenis pesawat dengan rute antar bandar udara di Kalimantan Selatan dapat dilihat pada Tabel 3. 9.

Tabel 3. 9 Tarif Jarak Penumpang Pelayanan Kelas Ekonomi Angkutan Udara Niaga Berjadwal Dalam Negeri (Pesawat Propeller > 30 Tempat Duduk)

No	Rute		Jarak (km)	Batas Atas (Rp)	Batas bawah (Rp)
1	Banjarmasin	Batulicin	139	495000	149000
2	Banjarmasin	Tanjung Warukin	157	559000	168000
3	Banjarmasin	Kotabaru	159	566000	170000

Sumber: Peraturan Menteri Perhubungan No. 14 tahun 2016

Untuk menghitung biaya operasional pesawat dapat digunakan tarif penumpang per orang dari Peraturan Menteri Perhubungan No. 14 tahun 2016 dibagi oleh jarak masing-masing bandar udara sehingga didapatkan besaran tarif dasar penumpang per orang. Tarif dasar per orang tersebut dikalikan dengan kapasitas tempat duduk (seat) yang terisi dengan asumsi yang diberikan di PM Perhubungan No.14 tahun 2016 adalah 70% dari total tempat duduk yang tersedia. Hasil perkalian tersebut merupakan tarif dasar total penumpang dalam satu kali penerbangan. Rumus perhitungan biaya operasional dapat lihat pada persamaan berikut

Tarif dasar (Rp/org - km) = (Tarif Penumpang)/(Jarak tempuh)....(3.3)

Jumlah seat terisi = Load Factor \times kapasitas seat.....(3.4)

Dimana:

Load Factor = 65 % untuk pesawat jet

Load Factor = 70% untuk pesawat propeller

Tarif dasar total = Tarif dasar \times jumlah seat terisi.....(3.5)

Tarif dasar total pada PM Perhubungan No.14 tahun 2016 adalah hasil perhitungan biaya pokok per satuan unit produksi ditambah keuntungan. Menurut PM perhubungan No.126 tahun 2015 tingkat keuntungan (margin) paling banyak sebesar 10%, sehingga:

Tarif dasar total = Biaya operasional + (10 % tarif dasar total)....(3.6)

Biaya operasional = Tarif dasar total - (10 % tarif dasar total)....(3.7)

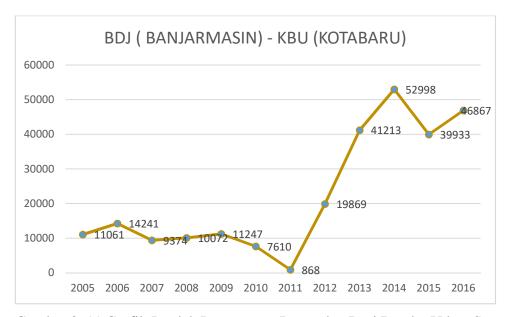
3. 6 Data Bangkitan dan Tarikan

3. 6. 1 Data Pergerakan

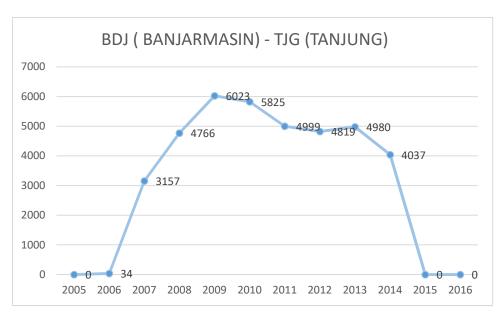
Data pergerakan dalam penelitian ini adalah data jumlah penumpang datang dan berangkat dari masing-masing bandar udara di Provinsi Kalimantan Selatan. Hal ini disajikan pada Tabel 3. 10.

Tabel 3. 10 Jumlah penumpang di bandar Udara Syamsudin Noor Tahun 2005-2016

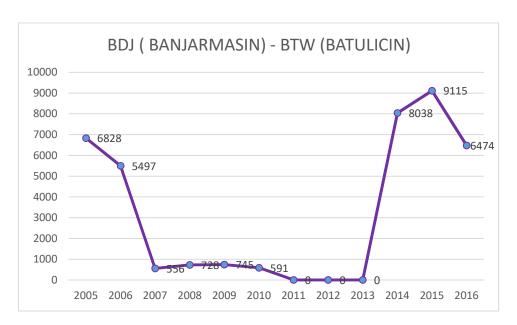
Bandar udara Syamsudin Noor				
Tahun	Jumlah penumpang			
2005	1.342.239			
2006	1.476.711			
2007	1.584.085			
2008	1.753.799			
2009	2.068.343			
2010	2.609.350			
2011	2.985.774			
2012	3.634.592			
2013	3.890.729			
2014	3.703.443			
2015	3.538.179			
2016	3.595.470			


Sumber: PT Angkasa Pura I Cabang Banjarmasin

Berikut adalah data lalu lintas pergerakan penumpang di bandar udara Syamsudin Noor yang didapat dari Angkasa Pura I cabang Banjarmasin. Data lalu Lintas yang diambil adalah data penerbangan internal di Kalimantan Selatan.

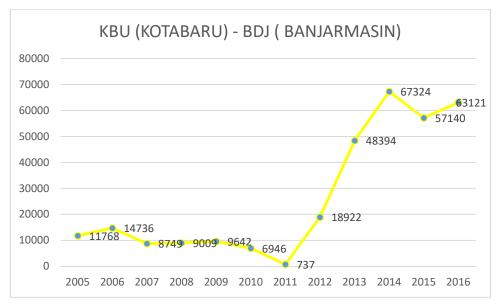

Tabel 3. 11 Jumlah Penumpang Berangkat dari Bandar Udara Syamsudin Noor Per Tahun

No	Tahun	BDJ-KBU	BDJ-TJG	BDJ-BTW
1	2005	11061	-	6828
2	2006	14241	34	5497
3	2007	9374	3157	556
4	2008	10072	4766	728
5	2009	11247	6023	745
6	2010	7610	5825	591
7	2011	868	4999	-
8	2012	19869	4819	-
9	2013	41213	4980	-
10	2014	52998	4037	8038
11	2015	39933	-	9115
12	2016	46867	-	6474
		265353	38640	38572

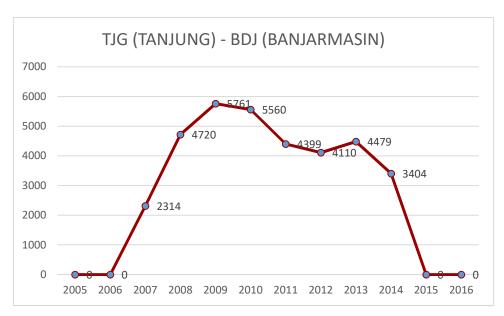

Sumber: PT Angkasa Pura I Cabang Banjarmasin

Gambar 3. 11 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Syamsudin Noor Ke Bandar Udara Gusti Syamsir Alam

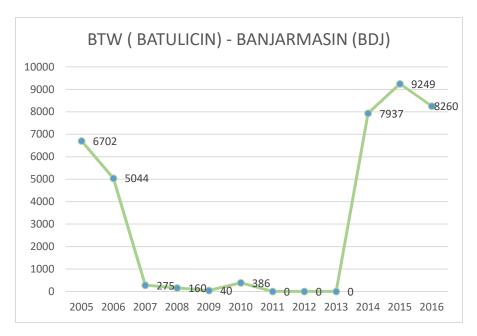
Gambar 3. 12 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Syamsudin Noor Ke Bandar Udara Tanjung Warukin



Gambar 3. 13 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Syamsudin Noor Ke Bandar Udara Bersujud


Tabel 3. 12 Jumlah Penumpang Datang ke Bandar Udara Syamsudin Noor Per Tahun

No	Tahun	KBU-BDJ	TJG-BDJ	BTW-BDJ
1	2005	11768	-	6702
2	2006	14736	-	5044
3	2007	8749	2314	275
4	2008	9009	4720	160
5	2009	9642	5761	40
6	2010	6946	5560	386
7	2011	737	4399	
8	2012	18922	4110	
9	2013	48394	4479	
10	2014	67324	3404	7937
11	2015	57140	-	9249
12	2016	63121	-	8260
Total		316488	34747	38053


Sumber: PT Angkasa Pura I Cabang Banjarmasin

Gambar 3. 14 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Gusti Syamsir Alam Ke Bandar Udara Syamsudin Noor

Gambar 3. 15 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Tanjung Warukin Ke Bandar Udara Syamsudin Noor

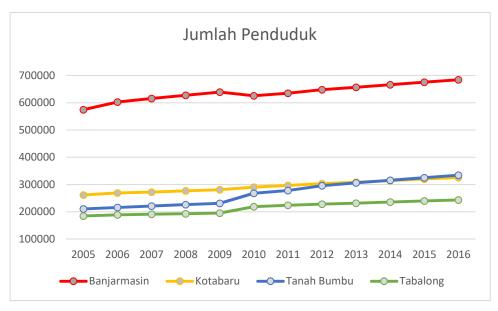
Gambar 3. 16 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Bersujud Ke Bandar Udara Syamsudin Noor

3. 6. 2 Parameter Peubah Bebas

Penelitian ini salah satunya bertujuan untuk memprediksikan besarnya nilai bangkitan dan tarikan pada tahun 2020 dan 2030 yang berhubungan dengan berubahnya peranan dari beberapa bandar udara di Provinsi Kalimantan Selatan.

Metode yang digunakan adalah metode analisi-korelasi, dalam menggunakan metode ini terdapat beberapa tahapan yaitu uji korelasi antar peubah bebas dan peubah tidak bebas, serta analisis linier berganda untuk mendapatkan persamaan nilai bangkitan dan tarikan.

Penelitian ini mengunakan metode analisis langkah demi langkah tipe 1 (satu). Berdasarkan metose analisis tersebut secara logika penelitian ini menggunakan 4 (empat) jenis data peubah bebas, yaitu; data jumlah penduduk, data Pendapatan Domestik Regional Bruto (PDRB). Data sosioekonomi Kota Banjarmasin untuk bandar udara Syamsudin Noor, data sosioekonomi Kotabaru untuk bandar udara Gusti Syamsir Alam, Data sosioekonomi Kabupaten Tanah Bumbu untuk bandar udara Bersujud , Data sosioekonomi Kabupaten Tabalong bandar udara Tanjung Warukin. Berikut adalah data-data peubah bebas pada penelitian ini:


4.1.Jumlah penduduk

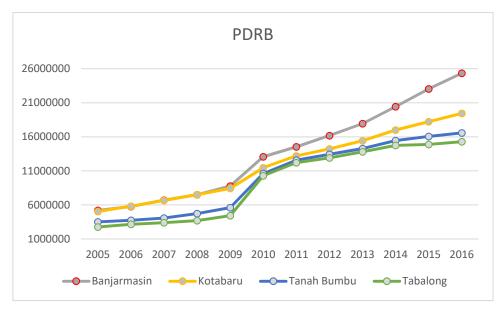
Jumlah penduduk merupakan peubah bebas X1 dan dapat dilihat pada Tabel 3. 13

Tabel 3. 13 Jumlah Penduduk Masing-masing Kota/Kabupaten Bandar Udara di Kalimantan Selatan

2.7	Tahun	Banjarmasin	T7 . 1	Tanah	T. 1. 1
No		J	Kotabaru	Bumbu	Tabalong
1	2005	574325	261792	210717	184373
2	2006	602725	269111	216008	189009
3	2007	615570	272000	221304	191000
4	2008	627245	276574	226208	193082
5	2009	638902	281120	231135	195114
6	2010	625481	290142	267929	218620
7	2011	634990	296987	277924	223813
8	2012	648029	303459	295358	228051
9	2013	656778	308730	306185	231718
10	2014	666223	314492	315815	235777
11	2015	675440	320208	325115	239593
12	2016	684200	325800	334300	243500

Sumber: BPS Kalimantan Selatan, 2016

Gambar 3. 17 Grafik Jumlah penduduk di Kabupaten/Kota di Provinsi Kalimantan Selatan(Sumber: BPS Kalimantan Selatan, 2016)


4.2.Pendapatan Domestik Regional Bruto (PDRB)

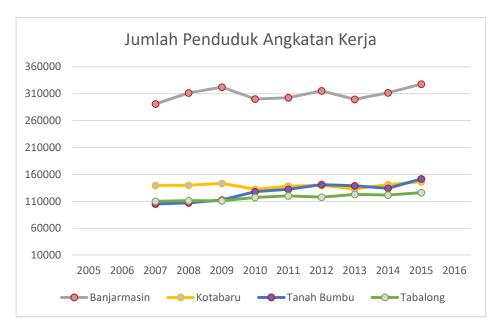
Pendapatan Domestik Regional Bruto (PDRB) merupakan peubah bebas X2 dan dapat dilihat pada Tabel 3. 14.

Tabel 3. 14 Pendapatan domestik Regional Bruto Atas Dasar Harga Berlaku Menurut Kabupaten/Kota di Provinsi Kalimantan Selatan

				Tanah	
No	Tahun	Banjarmasin	Kotabaru	Bumbu	Tabalong
1	2005	5217672.43	5033297.09	3518438.3	2765713.52
2	2006	5773193.27	5824888.75	3748067.72	3160307.31
3	2007	6703546.04	6653147.86	4091859.29	3396971.2
4	2008	7509920.76	7498282.92	4728964.73	3700169.27
5	2009	8769218.39	8430311.87	5604857.1	4436619.83
6	2010	13067090.3	11443591.9	10600137.2	10292209.1
7	2011	14531046.8	13187378.4	12591916.8	12204202.8
8	2012	16177225	14219688.4	13422183.5	12921942.4
9	2013	17930436.1	15424846	14262064	13812146.7
10	2014	20420107.2	16993762.8	15457094.3	14737131
11	2015	23037240.7	18217829.2	16052114.8	14887268
12	2016	25326473.5	19445680.1	16569019.7	15286489.4

Sumber: BPS Kalimantan Selatan, 2016

Gambar 3. 18 Grafik PDRB di Kabupaten/Kota di Provinsi Kalimantan Selatan (BPS Kalimantan Selatan, 2016)


4.3. Jumlah Penduduk Angkatan Kerja

Jumlah penduduk angkatan kerja merupakan peubah bebas X5 dan dapat dilihat pada Tabel 3. 15

Tabel 3. 15 Jumlah penduduk Angkatan Kerja Masing-masing Kota/Kabupaten Bandar Udara di Kalimantan Selatan

No	Tahun	Banjarmasin	Kotabaru	Tanah Bumbu	Tabalong
1	2005	Danjamasm	Rotabara	Dumou	Tabalong
2	2006				
3	2007	291151	139686	105259	110252
4	2008	311497	140079	107167	111507
5	2009	322177	143677	112747	111252
6	2010	300320	132483	127980	117533
7	2011	302758	138602	132600	120435
8	2012	315394	140129	141249	117978
9	2013	299799	133297	139113	123044
10	2014	311951	141568	134199	121965
11	2015	327864	146621	152022	126403
12	2016				

Sumber: BPS Kalimantan Selatan, 2016

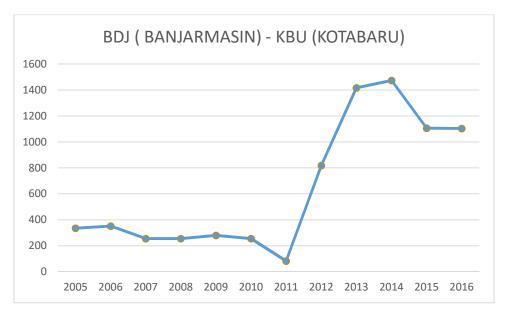
Gambar 3. 19 Grafik Jumlah penduduk Angkatan Kerja di Kabupaten/Kota di Provinsi Kalimantan Selatan (BPS Kalimantan Selatan, 2016)

4.4. Penerbangan Berangkat dan Datang

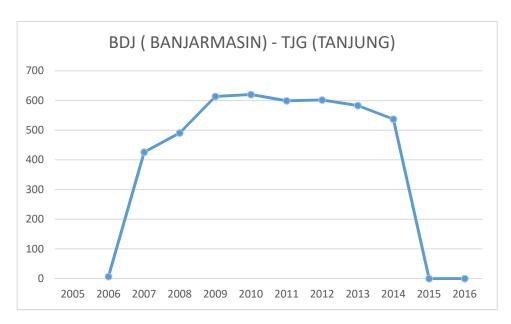
Penerbangan datang dan berangkat ditunjukkan dari data pesawat datang dan berangkat yang didapatkan dari bandar udara Syamsuddin Noor, data di dapatkan dari PT Angkasa Pura I. Penerbangan Berangkat dan Datang merupakan peubah bebas X4 dan dapat dilihat pada Tabel 3. 16 dan Tabel 3. 17

Tabel 3. 16 penerbangan Berangkat

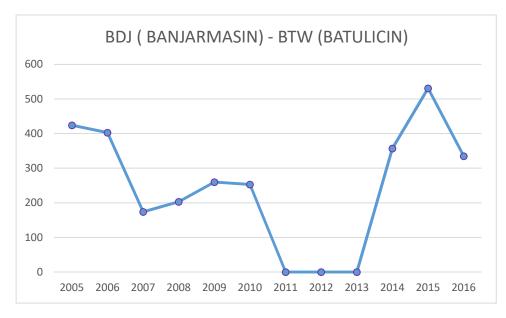
Tahun	BDJ-KBU	BDJ-TJG	BDJ-BTW
2005	335	-	424
2006	351	7	403
2007	255	426	174
2008	255	491	203
2009	280	614	260
2010	255	620	253
2011	83	599	-
2012	819	602	-
2013	1417	583	-
2014	1473	537	357
2015	1106	-	531
2016	1104	-	335
	7733	4479	2940


Sumber: PT Angkasa Pura I Cabang Banjarmasin

Rute Banjarmasin-Kotabaru memiliki frekuensi penerbangan satu hari sekali, pada tahun 2011 tidak memiliki banyak penerbangan kemungkinan akibat faktor cuaca. Pada tahun 2013-2014 Wing Air membuka penerbangan satu hari sekali untuk rute BJM-KBU kemudian pada tahun 2015-2016 hanya menjadi satu penerbangan setiap harinya.

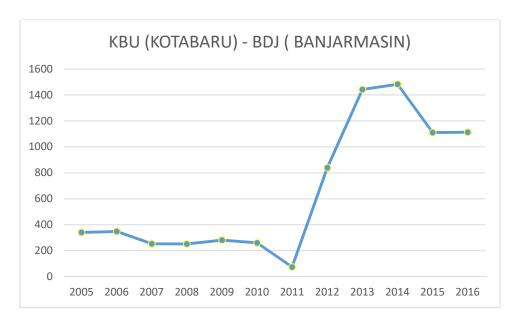

Frekuensi penerbangan Banjarmasin-Batulicin hanya satu hari sekali. Pada tahun 2005-2006 masih ada pesawat carteran yang melayani bandar udara Bersujud.

Frekuensi penerbangan untuk Banjarmasin-Tanjung pada tahun 2006-2014 yaitu sehari sekali dengan dua maskapai yang melayani yatu Kalstar dan Wings Air. Kemudian tahun 2015-2017 bandar udara Tanjung Warukin tidak beroperasi.

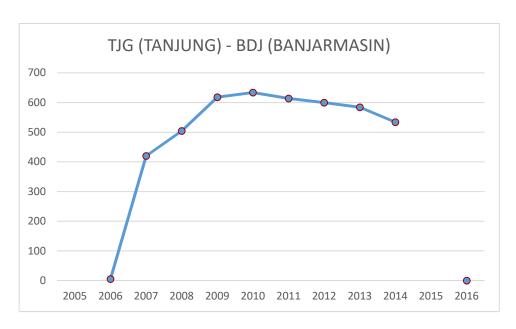

Berikut ini adalah grafik dari penerbangan berangkat dari bandar udara Syamsudin Noor.

Gambar 3. 20 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Syamsudin Noor Ke Bandar Udara Gusti Syamsir Alam

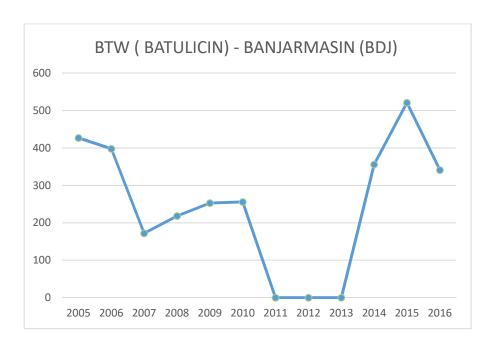
Gambar 3. 21 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Syamsudin Noor Ke Bandar Udara Tanjung Warukin



Gambar 3. 22 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Syamsudin Noor Ke Bandar Udara Bersujud


Tabel 3. 17 Jumlah penerbangan Datang

Tahun	KBU-BDJ	TJG-BDJ	BTW-BDJ
2005	341	-	427
2006	348	5	398
2007	253	420	172
2008	252	504	218
2009	282	618	253
2010	260	634	256
2011	75	614	-
2012	839	600	-
2013	1442	584	-
2014	1483	534	356
2015	1110	-	521
2016	1113	-	341
	7798	4513	2942


Sumber: PT Angkasa Pura I Cabang Banjarmasin

Gambar 3. 23 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Gusti Syamsir Alam Ke Bandar Udara Syamsudin Noor

Gambar 3. 24 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Tanjung Warukin Ke Bandar Udara Syamsudin Noor

Gambar 3. 25 Grafik Jumlah Penumpang Berangkat Dari Bandar Udara Bersujud Ke Bandar Udara Syamsudin Noor

BAB IV

ANALISIS DATA DAN PEMBAHASAN

4.1 Kriteria Landas Pacu Bandar Udara di Kalimantan Selatan

Ukuran landas pacu menunjukkan kriteria landas pacu pada masingmasing bandar udara di Kalimantan Selatan. Kriteria landas Pacu dapat dilihat pada Tabel 4.1.

Tabel 4. 1 Kriteria Landas pacu pada bandar udara di Kalimantan Selatan

Bandar udara	Ukuran l	Kriteria Landas	
		pacu	
	Panjang (m) Lebar (m)		
Syamsudin Noor ⁴	2220	45	4 D
Gusti Syamsir Alam ⁵	1650	30	3 C
Tanjung Warukin ⁶	1400	30	3 C
Bersujud ⁷	1600	30	3 C

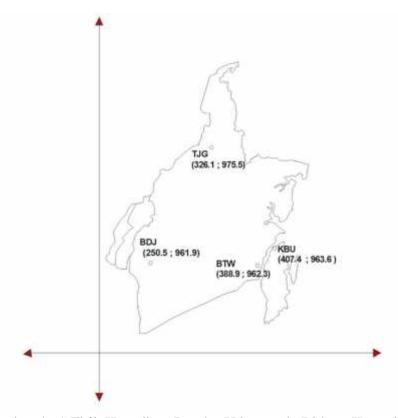
Dari Tabel 4.1 dapat dilihat bahwa kriteria ladas pacu eksisting sesuai dengan kriteria landas pacu pada PM No.69 Tahun 2013. Pesawat yang akan digunakan pada penerbangan internal Kalimantan Selatan yaitu ATR 72-600. Diketahui bahwa ATR 72-600 memerlukan jarak 1500 m untuk *take off* dan memerlukan jarak 1,100 m untuk *landing* sehingga runway pada bandar udara Tanjung Warukin memenuhi standar runway yang dibutuhkan ATR 72-600.

Klasifikasi Landas pacu Berdasarkan PM No.69 Tahun 2013 bandar udara Bersujud di Batulicin pada tahun 2030 menjadi landas pacu 4C (1800 m, bentang sayap 24 m – 36 m), hal ini membuat landas pacu bandar udara Bersujud dapat digunakan oleh pesawat lain.

⁴ https://id.wikipedia.org/wiki/Bandar_Udara_Syamsudin_Noor

⁵ https://id.wikipedia.org/wiki/Bandar Udara Gusti Syamsir Alam

⁶ https://id.wikipedia.org/wiki/Bandar_Udara_Warukin


⁷ https://id.wikipedia.org/wiki/Bandar Udara Bersujud

4.2 Perhitungan Pendekatan Jarak Antar Bandar Udara di Kalimantan Selatan

Pada Tabel 4. 2 masing-masing bandar udara ditetapkan menjadi 4 zona yaitu zona 1 bandar udara Syamsudin Noor (BDJ), zona 2 bandar udara Gusti Syamsir Alam (KBU), zona 3 bandar udara Tanjung Warukin (TJG) dan zona 4 bandar udara Bersujud (BTW). Titik koordinat pada garis sumbu X dan garis sumbu Y dari masing-masing zona telah dikonversi menjadi satuan meter. Kemudian titik tersebut digambarkan dengan sistem koordinat kartesius yang dapat dilihat pada Gambar 4. 2.

Tabel 4. 2 Titik Koordinat dari Bandar Udara di Provinsi Kalimantan Selatan

No	Nama Bandar Udara	Zona	Kode	X	Y
			IATA	(m)	(m)
1.	Syamsudin Noor	1	BDJ	250478.34	9619677.27
2.	Gusti Syamsir Alam	2	KBU	407381.75	9635678.26
3.	Tanjung Warukin	3	TJG	326073.59	9754932.47
4.	Bersujud	4	BTW	388930.23	9622863.71

Gambar 4. 1 Titik Koordinat Bandar Udara pada Bidang Kartesius

Titik koordinat tersebut dikonversikan dari meter menjadi kilometer kemudian dianalisa menggunakan *Euclidean Distance* yang disusun menjadi matriks jarak. Penggunaan *Euclidean Distance* ini dimaksudkan untuk memudahkan dalam analisis jarak antar bandar udara karena jarak yang mengikuti rute penerbangan tidak dapat di peroleh.

Contoh perhitungan jarak rute Banjarmasin- Kotabaru:

Tabel 4. 3 Koordinat Titik X dan Titik Y rute Banjarmasin - Kotabaru

Kota	Sumbu X	Sumbu Y
BDJ	250.05	961.9
KBU	407.4	963.6

Sumbu X

$$\Delta X = 250.05 - 407.4 = 156.9$$

$$\Delta X^2 = (156.9)^2 = 24617.6$$

Sumbu Y

$$\Delta Y = 961.9 - 963.6 = -1.7$$

$$\Delta Y^2 = (-1.7)^2 = 2.89$$

$$Jarak(D) = \sqrt{24617.6 + 2.89} = \sqrt{24620.5} = 156.909 \text{ km}$$

Perhitungan selanjutnya terdapat pada tabel-tabel dibawah ini .

Matriks jarak sumbu X dan sumbu Y dapat dilihat pada Tabel 4. 4

Tabel 4. 4 Koordinat Sumbu X dan Y

Kota	Sumbu X	Sumbu Y
BDJ	250.05	961.9
KBU	407.4	963.6
TJG	326.1	975.5
BTW	388.9	962.3

Dari Tabel 4. 4 koordinat sumbu X dan sumbu Y tersebut dilakukan perhitungan yaitu dengan titik koordinat bandar udara yang satu dikurangkan dengan titik koordinat pada bandar udara yang lain. Sehingga didapat hasil perhitungan matriks ΔX pada Tabel 4. 5 dan matriks ΔY pada Tabel 4. 6. Hasil perhitungan ΔX dan ΔY kemudian di kuadratkan dan dapat dilihat pada Tabel 4. 7 dan Tabel 4. 8.

Tabel 4. 5 Matriks ΔX

ΛX		BDJ	KBU	TJG	BTW
Δ	Λ	250.5	407.4	326.1	388.9
BDJ	250.5	0	-156.9	-75.6	-138.4
KBU	407.4	156.9	0	81.3	18.5
TJG	326.1	75.6	-81.3	0	-62.8
BTW	388.9	138.4	-18.5	62.8	0

Tabel 4. 6 Matriks Δ Y

ΛY		BDJ	KBU	TJG	BTW
Δ	Y	961.9	963.6	975.5	962.3
BDJ	961.9	0	-1.7	-13.6	-0.4
KBU	963.6	1.7	0	-11.9	1.3
TJG	975.5	13.6	11.9	0	13.2
BTW	962.3	0.4	-1.3	-13.2	0

Tabel 4. 7 Matriks ΔX^2

ΔX^2		BDJ	KBU	TJG	BTW
ΔΛ		250.5	407.4	326.1	388.9
BDJ	250.5	0	24617.6	5715.36	19154.6
KBU	407.4	24617.6	0	6609.69	342.25
TJG	326.1	5715.36	6609.69	0	3943.84
BTW	388.9	19154.6	342.25	3943.84	0

Tabel 4. 8 Matriks ΔY^2

ΛY^2		BDJ	KBU	TJG	BTW
ΔΙ		961.9	963.6	975.5	962.3
BDJ	961.9	0	2.89	184.96	0.16
KBU	963.6	2.89	0	141.61	1.69
TJG	975.5	184.96	141.61	0	174.24
BTW	962.3	0.16	1.69	174.24	0

Matriks ΔX^2 dan Matriks ΔY^2 dijumlahkan dan menjadi Matriks D^2 dan dapat dilihat pada Tabel 4. 9.

Tabel 4. 9 Matriks D²

D^2		BDJ	KBU	TJG	BTW
D					
BDJ		0	24620.5	5900.32	19154.7
KBU		24620.5	0	6751.3	343.94
TJG		5900.32	6751.3	0	4118.08
BTW		19154.7	343.94	4118.08	0

Matriks D^2 kemudian diakarkan sehingga di dapatkan Matriks D dan dapat dilihat pada Tabel 4. 10, Matriks D merupakan jarak antar bandar udara.

Tabel 4. 10 Matriks D

D		BDJ	KBU	TJG	BTW
D		km	km	km	km
BDJ	km	0	156.909	76.8135	138.401
KBU	km	156.909	0	82.1663	18.5456
TJG	km	76.8135	82.1663	0	64.1723
BTW	km	138.401	18.5456	64.1723	0

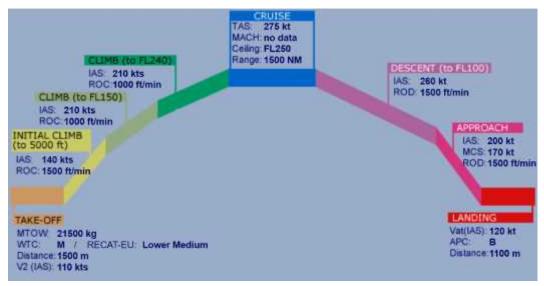
Berdasarkan matriks D tersebut disajikan jarak antar bandar udara yang terdapat pada Tabel 4. 11

Tabel 4. 11 jarak Antar Bandar Udara di Kalimantan Selatan

Jarak antar bandar udara (km)			
BDJ- KBU	156.9		
BDJ-TJG	76.8		
BDJ-BTW	138.4		
KBU-TJG	82.2		
KBU-BTW	18.5		
TJG-BTW	64.2		

Rute pada tahun 2030 akan ada satu rute baru karena perubahan hierarki yaitu dari Tanjung ke Kotabaru, sedangkan dari Batulicin ke Kotabaru tidak memungkinkan terjadi rute baru dikarenakan jarak hanya 18 km karena menurut Horonjeff, Mckelvey(1993), bandar udara harus terletak cukup jauh satu sama lainnya untuk mejaga agar pesawat terbang yang akan mendarat di satu bandar udara tidak terganggu oleh gerakan pesawat terbang di bandar udara yang lain.

Jarak minimum diantara dua bandar udara sangat tergantung pada volume dan tipe lalu lintas udara untuk menghindari konflik dalam arus lalu lintas.


Jarak dari Batulicin ke Tanjung juga diabaikan karena Batulicin dan Tanjung hanya menjadi bandar udara pengumpan. Jarak Banjarmasin-Tanjung Warukin dengan perhitungan matriks jarak tidak dapat digunakan karena tidak sesuai dengan jarak PM 14 Tahun 2016. Oleh karena itu, penelitian ini menggunakan jarak pda PM 14 tahun 2016 untuk Banjarmasin-Tanjung Warukin sehingga jarak antar bandar udara di Provinsi Kalimantan Selatan yang diperlihatkan dalam analisis dapat dilihat pada Tabel 4. 12

Tabel 4. 12 Jarak Antar Bandar Udara dengan penambahan rute pada tahun 2020 dan 2030

Jarak antar bandar udara				
(km)				
BDJ- KBU 156.9				
BDJ-TJG	157			
BDJ-BTW	138.4			
KBU-TJG 82.2				

4.3 Perhitungan Pendekatan Waktu Tempuh

Pendekatan waktu tempuh didapatkan dari jarak antar bandar udara dibagi dengan kecepatan pesawat. Kecepatan pesawat terdapat pada karakteristik Operasional pesawat ATR 72- 600 dapat dilihat pada Gambar 4. 2.

Gambar 4. 2 Kinerja Pesawat ATR 72-600 (Eurocontrol Training Institute, -)

Pada Gambar 4.2 ditampilkan semua proses operasional ATR 72 dimulai dari *take-off*, pendakian (*climb*, meliputi :*initial climb*, *climb to FL150*, *climb to FL240*), penjelajahan (*cuise*), penurunan (*descent*), pendekatan (*approach*), dan pendaratan (*landing*). Setiap fase operasional ditampilkan dengan kecepatan dan jarak atau ketinggian pesawat. Kecepatan Pesawat dirangkum dan disajikan pada Tabel 4. 13.

Tabel 4. 13 kecepatan setiap fase pesawat ATR 72-600

Fase	Kecepatan				
rase	Knots	Km/jam	m/s		
Take off	110	203.72	56.63		
Intial climb	140	259.28	72.08		
Climbing (FL150)	210	388.92	108.12		
Climbing (FL240)	210	388.92	108.12		
Cruising	275	509.3	141.59		
Descent	260	481.52	133.86		
approach	200	370.4	102.97		
landing	120	222.24	61.78		

Dari karakteristik operasional pada Gambar 4. 2 pesawat didapat ketinggian masing-masing fase saat penerbangan. Satuan dari ketinggian fase kemudian dikonversi menjadi meter. Dengan rumus trigonometri didapatkan jarak lurus dari setiap fase penerbangan. Hasil perhitungan ini disajikan pada Tabel 4. 14

Tabel 4. 14 Pendekatan Jarak lurus fase penerbangan pesawat

fase	knots	ft/min	sin	
intial climb	140	1500	0.105831	60.75021
Climbing (FL150)	210	1000	0.047036	26.95948
Climbing (FL240)	210	1000	0.047036	26.95948
Descent	260	1500	0.056986	32.66809
approach	200	1500	0.074081	42.48443

Tabel 4. 15 Pendekatan Jarak Lurus Fase Penerbangan Pesawat

Fase		Ketinggian Pesawat	Tan	jarak lurus
	ft	m		m
intial climb	5000	1525	1.785644	854
Climbing (FL150)	10000	3050	0.508635	5996
Climbing (FL240)	10000	3050	0.508635	5996
Descent	10000	3050	0.641202	4757
approach	15000	4575	0.915831	4995
	22599			

Total jarak lurus setiap fase penerbangan kemudian ditambahkan dengan jarak landing dan take off pesawat sehingga didapatkan :

$$jarak lurus total = 22599 m + 1500 m + 1100 m$$

= 25119 m

Jarak antar bandar udara kemudian dikurangkan dengan jarak lurus total sehingga didapatkan jarak jelajah (cruise) dari masing-masing rute penerbangan di Kalimantan Selatan dan dapat dilihat pada Tabel 4. 16

Tabel 4. 16 Jarak Jelajah Masing-masing Rute Penerbangan

Jarak antar bandar udara			Jarak Lurus	Jarak jelajah
(km)		(m)	Total	(cruise)
BDJ- KBU	156.9	156900		131701
BDJ-TJG	157	157000	25199	131801
BDJ-BTW	138.4	138400		113201

Dari jarak setiap fase penerbangan kemudian dibagi dengan kecepatan setiap fase didapatkan waktu tempuh total fase penerbangan yang belum ditambahkan waktu tempuh jelajah. Hasil perhitungan dapat dilihat pada Tabel 4. 17.

Tabel 4. 17 Waktu Tempuh untuk fase penerbangan

Fase	jarak	Kecepatan (m/s)	Waktu (s)
Take off	1500	57	26
intial climb	854	72	12
Climbing (FL150)	5996	108	55
Climbing (FL240)	5996	108	55
Descent	4757	134	36
approach	4995	103	49
landing	1100	62	18
,	Γotal		251

Waktu tempuh total fase penerbangan ditambahkan dengan waktu tempuh jelajah masing-masing rute dan didapatkan waktu tempuh penerbangan masing-masing rute dan dapat dilihat pada Tabel 4. 18

Tabel 4. 18 Waktu Tempuh Setiap Rute Penerbangan

				Waktu Tempuh	
Rute	Jarak Jelajah	Kecepatan	waktu Jelajah	detik	menit
BDJ- KBU	131701	141.59	930	1181	20
BDJ-TJG	131801	141.59	931	1181	20
BDJ-BTW	113201	141.59	800	1051	18

Dari perhitungan tersebut didapatkan waktu tempuh untuk rute penerbangan Banjarmasin ke Kotabaru yaitu 20 menit, tetapi pada waktu tempuh eksisting yaitu 25 menit terdapat selisih selama 5 menit. Waktu tempuh untuk rute penerbangan Banjarmasin ke Tanjung Warukin yaitu 20 menit. Waktu tempuh untuk rute penerbangan Banjarmasin ke Batulicin yaitu 18 menit, sedangkan waktu tempuh eksisting yaitu 22 menit terdapat selisih 4 menit. Selisih pendekatan waktu tempuh dan waktu tempuh eksisting dimungkinkan karena pola lintasan terbang pesawat yang tidak lurus sedangkan pada pendekatan waktu tempuh diasumsikan pesawat terbang lurus.

Pada tahun 2020 akan terjadi penambahan rute Tanjung-Kotabaru untuk mengetahui waktu tempuh rute Tanjung-Kotabaru dapat dilihat pada perhitungan Tabel 4. 19

Tabel 4. 19 Waktu Tempuh Tanjung ke Kotabaru

				W	'aktu
Duta	Jarak	Vacanatan	waktu	Te	mpuh
Rute	Jelajah	Kecepatan	Jelajah	detik	menit
KBU-TJG	57001	141.59	403	1056	11

Dari Tabel 4. 19 dapat diketahui waktu tempuh Tanjung-Kotabaru yaitu 11 menit.

Rute-rute bandar udara di Kalimantan Selatan jika dibandingkan dengan rute-rute exsisting dengan jarak yang dekat seperti pada Tabel 4. 20

Tabel 4. 20 Rute-rute eksisting dengan jarak dekat

Rute	Jarak	Flight Time
	(km)	(menit)
Surabaya-Jember	169	34
Bandung-Jakarta	104	23
Denpasar-Lombok	122	29
Sumenep-Surabaya	135	35
Batam-Tanjung Pinang	67	10

Pada Tabel 3. 20 Jarak dan *flight time* dari masing-masing rute didapatkan dari situs *www.flightradar24.com*. Rute Surabaya-Jember dengan jarak 169 km memiliki waktu tempuh selama 34 menit. Rute Bandung-Jakarta dengan jarak 104 km memiliki waktu tempuh selama 23 menit. Rute Sumenep-Surabaya dengan jarak 135 km memiliki waktu tempuh selama 35 menit. Sedangkan Banjarmasin-Batulicin dengan jarak 139 km hanya memiliki waktu tempuh selama 22 menit jauh lebih cepat daripada rute Bandung-Jakarta dan Sumenep-Surabaya.

Rute Denpasar-Lombok dengan jarak 122 km memiliki waktu tempuh selama 23 menit lebih lambat dibandingkan rute Banjarmasin-Kotabaru dengan jarak 157 km memiliki waktu tempuh selama 25 menit.

Rute Batam-Tanjung Pinang dengan jarak 67 km memiliki waktu tempuh selama 10 menit lebih lambat jika dibandingkan rute baru Tanjung-Kotabaru dengan jarak 82 km dengan waktu tempuh 11 menit. Dapat disimpulkan dari perbandingan di atas bahwaa waktu tempuh pesawat tidak hanya berpengaruh pada

jarak antar bandara akan tetapi bergantung pada jalur penerbangan dan pola lintasan terbang pada masing-masing rute.

4.4 Perhitungan Biaya Operasional Pesawat dan Perkiraan Tarif

Tarif batas Atas dan Batas Bawah Rute penerbangan Internal Kalimantan Selatan menurut PM N0.14 tahun 2016 dapat dilihat pada Tabel 4. 21

Tabel 4. 21 Tarif batas Atas dan Batas Bawah Rute penerbangan Internal Kalimantan Selatan

No	Rute		Jarak (km)	Batas Atas (Rp)	Batas bawah (Rp)
1	Banjarmasin	Batulicin	139	495000	149000
2	Banjarmasin	Tanjung Warukin	157	559000	168000
3	Banjarmasin	Kotabaru	159	566000	170000

Sumber: Peraturan Menteri Perhubungan No. 14 tahun 2016

Berdasarkan PM No.14 tahun 2016 diambil tarif batas atas sebagai acuan untuk memprediksi tarif tahun 2020 dan 2030. Dari tarif batas atas dibagi dengan jarak antar rute sehingga didapatkan tarif per km dari penerbangan internal Kalimantan Selatan. Hasil perhitungan tarif per km dapat dilihat pada Tabel 4. 22

Tabel 4. 22 Tarif per km penerbangan internal Kalimantan Selatan

No	Rute	è	Tarif Dasar/ km (Rp)	Seats	Tarif Dasar per Pesawat (Rp)	Biaya Operasional per pesawat (Rp)
1	BDJ	BTW				
2	BDJ	TJG	3561	49	174496	157047
3	BDJ	KBU				

Dari Tabel 4. 22 didapat tarif/km rute internal di Kalimantan Selatan maka tarif/km pesawat internal di Kalimantan Selatan yaitu sebesar Rp 3561,00.

Jumlah *seats* untuk pesawat ATR 72-600 yaitu 70 seats dan Load Factors dari pesawat yaitu 70%, jadi jumlah seats yang terisi 49 seats. Tarif dasar per

pesawat pada penerbangan internal yaitu Rp. 1744.96,00 sehingga didapatkan biaya operasional pesawat adalah Rp. 157.047,00.

Pada perkembangannya tarif akan mengalami perubahan, hal ini disebabkan oleh perubahan inflasi yang terjadi. Inflasi yang terjadi di kalimanatan Selatan didapatkan dari inflasi ibukota Kalimantan Selatan yaitu kota Banjarmasin dan dapat di lihat pada Tabel 4. 23

Tabel 4. 23 Laju Inflasi pada kota Banjarmasin

Tahun	Laju Inflasi (i) %
2005	12.94
2006	11.03
2007	7.78
2008	11.62
2009	3.86
2010	9.06
2011	3.98
2012	5.96
2013	6.98
2014	7.16

Sumber: BPS Kalimantan Selatan, 2005-2014

Dari Tabel 4. 23 didapatkan nilai inflasi pada tahun 2005-2014 di Kalimantan Selatan. Dari data 10 tahun laju inflasi didapatkan nilai rata-ratanya sebesar 8.04 %. Untuk meramalkan tarif dasar pada tahun 2020 dan tahun 2030 digunakan tarif dasar pada tahun 2016 yaitu Rp 3.561,00 sebagai nilai P. Nilai laju inflasi rata-rata sebagai *i*. Nilai n ntuk tahun 2020 yaitu 4 tahun dan untuk tahun 2030 yaitu 14 tahun. Perhitungan tardapat dilihat pada Persamaan

Tarif Dasar Tahun 2020 =
$$3.561(1 + 0.0804)^4 = 4.852...$$

Tarif Dasar Tahun 2030 = $3.561(1 + 0.0804)^{14} = 10.510...$

Dari perhitungan tersebut didapatkan nilai tarif dasar pada tahun 2020 sebesar Rp 4.852,00 dan pada tahun 2030 sebesar Rp 10.510,00. Sehingga dapat dihitung biaya operasional pada tahun 2020 dan tahun 2030 dengan mengalikan tarif dasar dengan jumlah seats pesawat. Hasil Perhitungan dapat dilihat pada Tabel 4. 24

Tabel 4. 24 Biaya Operasional tahun 2020 dan tahun 2030

Tahun	Rute		Tarif Dasar/	Seats	Tarif	Biaya
			km		Dasar per	Operasional
			(Rp)		Pesawat	per pesawat
					(Rp)	(Rp)
2020	BDJ	BTW				
	BDJ	TJW	4852	49	237.748	216.135
	BDJ	KBU				
	KBU	TJG				
2030	BDJ	BTW				
	BDJ	TJW	10510	49	514.990	468.173
	BDJ	KBU				
	KBU	TJG				

Untuk mendapatkan tarif dari masing- masing rute pada tahun 2020 dihitung dengan cara tarif dasar dikali dengan jarak masing-masing rute . Hasil perhitungan dapat dilihat pada Tabel 4.25.

Tabel 4. 25 Tarif penerbangan Internal pada Kalimantan Selatan tahun 2020

Jarak antar bandar udara (km)		Tarif Dasar	Perkiraan Tarif
BDJ- KBU	156,9		761.000
BDJ-TJG	157	4852	761.000
BDJ-BTW	138,4	4032	671.500
KBU-TJG	82,2		398.800

Perkiraan tarif pada tahun 2020 untuk rute Banjarmasin-Kotabaru sebesar Rp 761.000,00. Rute Banjarmasin-Tanjung sebesar Rp. 761.000,00. Rute Banjarmasin-Batulicin sebesar 671.500,00. Dan rute baru Kotabaru-Tanjung sebesar Rp. 398.800,00.

Dengan cara perhitungan yang sama dengan perhitungan perkiraan tarif 2020 didapatkan perkiraan tarif pada tahun 2030 dan dapat dilihat pada Tabel 4.26.

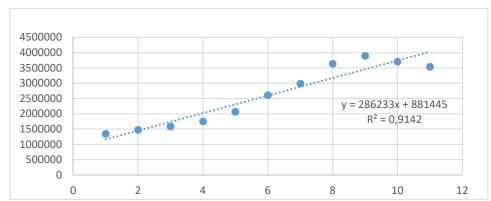
Tabel 4. 26 Tarif	penerbangan I	Internal r	oada K	alimantan	Selatan	tahun 2030

Jarak antar bandar udara		Tarif	Perkiraan
(km)		Dasar	Tarif
BDJ- KBU	156,9		1.649.000
BDJ-TJG	157	10.510	1.650.000
BDJ-BTW	138,4		1.454.000
KBU-TJG	82,2		863.900

Perkiraan tarif pada tahun 2030 untuk rute Banjarmasin-Kotabaru sebesar Rp1.649.000,00. Rute Banjarmasin-Tanjung sebesar Rp. 1.650.000,00. Rute Banjarmasin-Batulicin sebesar 1.454.000,00. Dan rute baru Kotabaru-Tanjung sebesar Rp. 863.900,00.

4.5 Klasifikasi Bandar udara

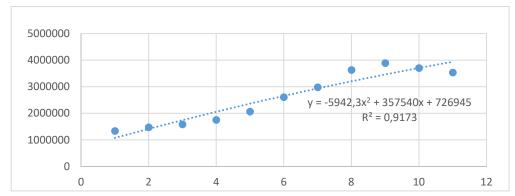
Klasifikasi Bandar udara dapat dilihat dari banyaknya penumpang per tahun pada bandar udara tersebut. Berdasarkan data lalu lintas pergerakan penumpang pada bandar udara pengumpul yaitu Bandar Udara Syamsudin Noor. Jumlah penumpang pada Bandar udara Syamudin Noor dapat dilihat pada Gambar 4. 3.


Gambar 4. 3 Grafik jumlah penumpang bandar udara Syamsudin Noor (PT Angkasa Pura I Cabang Banjarmasin)

Berdasarkan Peraturan Menteri Perhubungan No. 69 tahun 2013 Bandar Udara pengumpul skala sekunder yaitu bandar udara melayani penumpang ≥1.000.000 dan ≤5.000.000 orang per tahun. Sehingga dari data jumlah penumpang tahun 2005-2016 di bandar udara Syamsudin Noor melayani paling sedikit 1.342.239 penumpang pada tahun 2005 dan paling banyak melayani 3.890.729 penumpang pada tahun 2013 maka bandar udara Syamsudin Noor dikategorikan sebagai Bandar Udara pengumpul skala sekunder.

4.6 Prediksi Jumlah Penumpang Bandar Udara Syamsudin Noor

Untuk menghasilkan prediksi jumlah penumpang yang akurat pada masa mendatang harus memilih metode yang tepat. Berdasarkan data tahun 2005-2015 dilakukan percobaan menggunakan metode analisis *trendline* dan *Exponential Smoothing Forecasting Method* (time series), dari kedua metode tersebut dipilih yang mendekati nilai jumlah penumpang pada tahun 2016. Diketahui bahwa jumlah penumpang tahun 2016 yaitu 3.595.470 orang.


Berikut ini adalah analisis trendline berupa grafik linier pada Gambar 4. 4, grafik eksponensial Gambar 4. 5, dan grafik polynomial Gambar 4. 6

Gambar 4. 4 Grafik trendline linier

Gambar 4. 5 Grafik trendline eksponensial

Gambar 4. 6 grafik trendline polinomial

Dari grafik-grafik di atas didapat beberapa persamaan dan nilai R^2 , dari nilai R^2 yang paling besar yaitu R^2 = 0,9289 didapatkan dari grafik eksponensial yang memiliki persamaan y =1.000.000 $e^{0.1186x}$. Dari persamaan tersebut dimasukkan nilai urutan dari prediksi pada tahun 2016 yaitu :

$$Y = 1.000.000 e^{0.1186 (12)} = 4.150.380$$

Jadi dari hasil perhitungan persamaan eksponensial prediksi tahun 2016 adalah 4.150.380 orang.

Dari data jumlah penumpang Tahun 2005-2015 dicari persentase angka pertumbuhan jumlah penumpang. Hasil Perhitungan dapat dilihat pada Tabel 4.27. Tabel 4.27 Angka Pertumbuhan Jumlah penumpang

Tahun	Angka Pertumbuhan (%)
2006	10.02
2007	7.27
2008	10.71
2009	17.94
2010	26.16
2011	14.43
2012	21.73
2013	7.05
2014	-4.81
2015	-4.46

Dari angka pertumbuhan dihitung nilai rata-rata angka pertumbuhan didapatkan sebesar 10.60 %. Sehingga dengan perhitungan peramalan dapat diketahui jumlah penumpang tahun 2016 yaitu

Jumlah penumpang $2016 = 3.538.179 (1+0.106)^1 = 3.913.305$

Jadi dari perhitungan *time series* didapatkan jumlah penumpang tahun 2016 adalah 3.913.305 orang.

Tahun 2016 jumlah penumpang banda bandar udara Syamsuddin Noor adalah 3.595.470 orang. Dari kedua metode tersebut didapatkan jumlah penumpang yang paling mendekati jumlah penumpang 2016 adalah metode *time series*, sehingga perhitungan prediksi pada tahun 2020 dan 2030 menggunakan metode *time series*.

Dari data jumlah penumpang Tahun 2005-2016 dicari persentase angka pertumbuhan jumlah penumpang. Hasil Perhitungan dapat dilihat pada Tabel 4. 28.

Tabel 4. 28 Angka Pertumbuhan Jumlah penumpang

Tahun	Angka Pertumbuhan (%)
2006	10.02
2007	7.27
2008	10.71
2009	17.94
2010	26.16
2011	14.43
2012	21.73
2013	7.05
2014	-4.81
2015	-4.46
2016	1.62

Dari angka pertumbuhan dihitung nilai rata-rata angka pertumbuhan didapatkan sebesar 9,79 %. Sehingga dengan perhitungan peramalan dapat diketahui jumlah penumpang tahun 2018-2030. Hasil perhitungan dapat dilihat pada Tabel 4. 29.

Tabel 4. 29 Prediksi Jumlah Penumpang Tahun 2018-2030

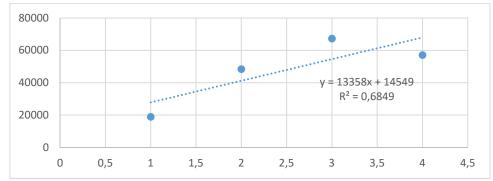
Tahun	Jumlah Penumpang
2018	4333575
2019	4757641
2020	5223205
2021	5734326
2022	6295464
2023	6911512
2024	7587844
2025	8330360
2026	9145535
2027	10040479
2028	11023000
2029	12101665
2030	13285885

Gambar 4. 7 Grafik prediksi jumlah penumpang tahun 2018-2030

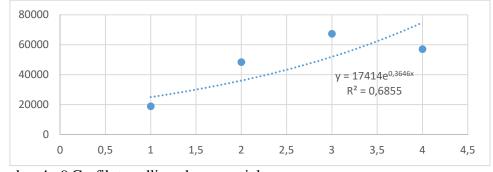
Ramalan jumlah penumpang tahun 2020 yaitu sebanyak 5.223.205 orang , dan untuk tahun 2030 sebanyak 13.285.885 orang. Berdasarkan Peraturan Menteri Perhubungan No. 69 tahun 2013 Bandar Udara pengumpul skala primer yaitu bandar udara melayani penumpang $\geq 5.000.000$ orang per tahun, sehingga untuk menaikkan klasifikasi bandar udara Syamsudin Noor menjadi bandar udara pengumpul skala primer sudah memenuhi persyaratan.

4.7 Prediksi Jumlah Penumpang Bandar Udara Gusti Syamsir Alam

Dari data jumlah penumpang rute Banjarrmasin -Kotabaru diambil data 5 tahun terakhir yaitu tahun 2012-2016. Data ini disajikan pada Tabel 4. 30


dari kedua metode tersebut dipilih yang mendekati nilai jumlah penumpang pada tahun 2016. Diketahui bahwa jumlah penumpang tahun 2016 yaitu 63121 orang.

Tabel 4. 30 Jumlah penumpang Kotabaru


No	Tahun	KBU-BDJ	BDJ-KBU
1	2012	18922	19869
2	2013	48394	41213
3	2014	67324	52998
4	2015	57140	39933
5	2016	63121	46867

a. Jumlah penumpang berangkat (bangkitan)

Berikut ini adalah analisis *trendline* dari jumlah penumpang berangkat di bandar udara Gusti Syamsir Alam berupa grafik linier pada Gambar 4. 8 dan grafik grafik eksponensial Gambar 4. 9.

Gambar 4. 8 Grafik trendline linier

Gambar 4. 9 Grafik trendline eksponensial

Dari grafik-grafik di atas didapat beberapa persamaan dan nilai R^2 , dari nilai R^2 yang paling besar yaitu R^2 = 0,6855 didapatkan dari grafik eksponensial yang memiliki persamaan $y = 17.414 \ e^{0.3646 \ x}$. Dari persamaan tersebut dimasukkan nilai urutan dari prediksi pada tahun 2016 yaitu:

$$Y = 17.414 e^{0.3646 (5)} = 107.799$$

Jadi dari hasil perhitungan persamaan eksponensial prediksi tahun 2016 adalah 107.799 orang.

Prediksi jumlah penumpang berangkat tahun 2016 menggunakan time series yaitu dari data jumlah penumpang Tahun 2005-2015 dicari persentase angka pertumbuhan jumlah penumpang. Hasil Perhitungan dapat dilihat pada Tabel 4. 31

Tabel 4. 31 Angka Pertumbuhan Jumlah penumpang

Tahun	Angka Pertumbuhan (%)
2013	155.76
2014	39.12
2015	-15.13

Dari angka pertumbuhan dihitung nilai rata-rata angka pertumbuhan didapatkan sebesar 59.91 %. Sehingga dengan perhitungan peramalan dapat diketahui jumlah penumpang tahun 2016 yaitu

Jumlah penumpang
$$2016 = 57.140 (1+0.5991)^1 = 91.375$$

Jadi dari perhitungan *time series* didapatkan jumlah penumpang tahun 2016 adalah 91.375 orang.

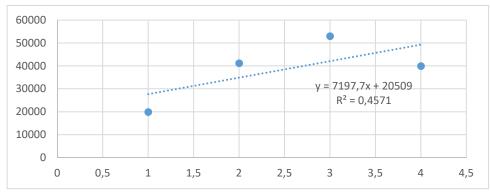
Tahun 2016 jumlah penumpang berangkat banda bandar udara Gusti Syamsir Alam adalah 63.121 orang. Dari kedua metode tersebut didapatkan jumlah penumpang yang paling mendekati jumlah penumpang 2016 adalah metode *time series*, sehingga perhitungan prediksi pada tahun 2020 dan 2030 menggunakan metode *time series*.

Maka untuk prediksi jumlah penumpang pada Kotabaru digunakan metode *time series*. Dari data jumlah penumpang Tahun 2005-2016 dicari persentase angka pertumbuhan jumlah penumpang. Hasil Perhitungan dapat dilihat pada Tabel 4. 32

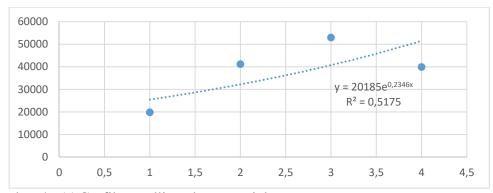
Tabel 4. 32 Angka Pertumbuhan Jumlah penumpang

Tahun	Angka Pertumbuhan (%)
2013	155.76
2014	39.12
2015	-15.13
2016	10.47%

Hasil rata-rata dari angka pertumbuhan adalah 47.55 %, sehingga dengan perhitungan peramalan dapat diketahui jumlah penumpang tahun 2018-2030. Hasil perhitungan dapat dilihat pada Tabel 4. 33.


Tabel 4. 33 Prediksi Jumlah Penumpang Tahun 2018-2030

Tahun	Jumlah Penumpang
2018	137,426
2019	202,777
2020	299,203
2021	441,483
2022	651,422
2023	961,193
2024	1,418,269
2025	2,092,698
2026	3,087,839
2027	4,556,200
2028	6,722,810
2029	9,919,708
2030	14,636,829


Ramalan jumlah penumpang tahun 2020 yaitu sebanyak 299.203 orang , dan untuk tahun 2030 sebanyak 14.636.829 orang.

b. Jumlah Penumpang Datang (Tarikan)

Berikut ini adalah analisis *trendline* berupa grafik linier pada Gambar 4. 10 dan grafik eksponensial pada Gambar 4. 11.

Gambar 4. 10 Grafik trendline linier

Gambar 4. 11 Grafik trendline eksponensial

Dari grafik-grafik di atas didapat beberapa persamaan dan nilai R^2 , dari nilai R^2 yang paling besar yaitu R^2 = 0,5175 didapatkan dari grafik eksponensial yang memiliki persamaan $y=20.185\ e^{0.2346\ x}$ Dari persamaan tersebut dimasukkan nilai urutan dari prediksi pada tahun 2016 yaitu:

$$Y = 20.185 e^{0.2346 (5)} = 65.231$$

Prediksi jumlah penumpang datang tahun 2016 menggunakan time series yaitu dari data jumlah penumpang Tahun 2005-2015 dicari persentase angka pertumbuhan jumlah penumpang. Hasil Perhitungan dapat dilihat pada Tabel 4. 31 Tabel 4. 34 Angka Pertumbuhan Jumlah penumpang

Tahun	Angka Pertumbuhan (%)
2013	107.42%
2014	28.60%
2015	-24.65%

Dari angka pertumbuhan dihitung nilai rata-rata angka pertumbuhan didapatkan sebesar 37.12 %. Sehingga dengan perhitungan peramalan dapat diketahui jumlah penumpang tahun 2016 yaitu

Jumlah penumpang $2016 = 39.933 (1+0.3712)^1 = 54.757$

Jadi dari perhitungan *time series* didapatkan jumlah penumpang tahun 2016 adalah 54.757 orang.

Tahun 2016 jumlah penumpang berangkat banda bandar udara Gusti Syamsir Alam adalah 46.867 orang. Dari kedua metode tersebut didapatkan jumlah penumpang yang paling mendekati jumlah penumpang 2016 adalah metode *time series*, sehingga perhitungan prediksi pada tahun 2020 dan 2030 menggunakan metode *time series*.

Prediksi jumlah penumpang pada Kotabaru digunakan metode *time series*. Dari data jumlah penumpang Tahun 2005-2016 dicari persentase angka pertumbuhan jumlah penumpang. Hasil Perhitungan dapat dilihat pada Tabel 4. 35 Tabel 4. 35 Angka Pertumbuhan Jumlah penumpang

Tahun	Angka Pertumbuhan (%)
2013	107.42%
2014	28.60%
2015	-24.65%
2016	17.36%

Hasil rata-rata dari angka pertumbuhan adalah 32.18%, sehingga dengan perhitungan peramalan dapat diketahui jumlah penumpang tahun 2018-2030. Hasil perhitungan dapat dilihat pada Tabel 4. 36.

Tabel 4. 36 Prediksi Jumlah Penumpang Tahun 2018-2030

Tahun	Jumlah Penumpang
2018	81,887
2019	108,241
2020	143,076
2021	189,122
2022	249,987
2023	330,439
2024	436,784
2025	577,353
2026	763,162
2027	1,008,768
2028	1,333,418
2029	1,762,549
2030	2,329,787

Ramalan jumlah penumpang tahun 2020 yaitu sebanyak 143.076 orang , dan untuk tahun 2030 sebanyak 2.329.787 orang.

Jumlah penumpang datang dan berangkat kemudian dijumlahkan dan didapatkan jumlah total tahun 2020 dan tahun 2030. Hasil perhitungan dapat dilihat pada Tabel 4. 37

Tabel 4. 37 Jumlah penumpang tahun 2020 dan tahun 2030

Tahun	Bangkitan	Tarikan	Jumlah
2020	299,203	143,076	442,279
2030	14,636,829	2,329,787	16,966,616

Berdasarkan Peraturan Menteri Perhubungan No. 69 tahun 2013 Bandar Udara pengumpul skala tersier yaitu bandar udara melayani penumpang ≥500.000 dan ≤1.000.000 orang per tahun. Ramalan jumlah penumpang tahun 2020 yaitu sebanyak 442.279 orang dan untuk tahun 2030 sebanyak 16.966.616 orang. Pada tahun 2020 bandar udara Gusti Syamsir Alam tidak memenuhi syarat untuk menaikkan klasifikasi menjadi bandar udara skala tersier dan pada tahun 2030 jumlah penumpang terlalu banyak dari syarat yang ditentukan, sehingga tidak memenuhi syarat untuk bandar udara skala tersier. Ramalan Jumlah penumpang ini sebelum terjadi perubahan hierarki.

4.8 Prediksi Jumlah Penumpang Bandar Udara Bersujud

Dari data jumlah penumpang rute Banjarrmasin -Kotabaru diambil data lima tahun terakhir yaitu tahun 2012-2016. Data ini disajikan pada Tabel 4. 38.

Tabel 4. 38 Jumlah penumpang Batulicin

No	Tahun	BTW-BDJ	BDJ-BTW
1	2005	6702	6828
2	2006	5044	5497
3	2007	275	556
4	2008	160	728
5	2009	40	745
6	2010	386	591
7	2011	0	0
8	2012	0	0
9	2013	0	0
10	2014	7937	8038
11	2015	9249	9115
12	2016	8260	6474

a. Jumlah penumpang Berangkat (bangkitan)

Dari data jumlah penumpang Tahun 2014-2016 dicari persentase angka pertumbuhan jumlah penumpang. Hasil Perhitungan dapat dilihat pada Tabel 4. 39 Tabel 4. 39 angka pertumbuhan

Tahun	Angka Pertumbuhan (%)
2015	16.53018
2016	-10.693

Dari angka pertumbuhan dihitung nilai rata-rata angka pertumbuhan didapatkan sebesar 2.92 %. Sehingga dengan perhitungan peramalan dapat diketahui jumlah penumpang tahun 2018-2030. Hasil perhitungan dapat dilihat pada Tabel 4.40

Tabel 4. 40 Prediksi Jumlah Penumpang Tahun 2018-2030

Tahun	Jumlah Penumpang
2018	8,749
2019	9,005
2020	9,267
2021	9,538
2022	9,816
2023	10,103
2024	10,398
2025	10,701
2026	11,013
2027	11,335
2028	11,666
2029	12,006
2030	12,356

Ramalan jumlah penumpang tahun 2020 yaitu sebanyak 9267 orang , dan untuk tahun 2030 sebanyak 123.56 orang.

b. Jumlah penumpang datang (Tarikan)

Dari data jumlah penumpang Tahun 2005-2016 dicari persentase angka pertumbuhan jumlah penumpang. Hasil Perhitungan dapat dilihat pada Tabel 4. 41.

Tabel 4. 41 angka pertumbuhan

Tahun	Angka Pertumbuhan (%)
2015	16.53018
2016	-10.693

Dari angka pertumbuhan dihitung nilai rata-rata angka pertumbuhan didapatkan sebesar -7.79 %, karena nilai pertumbuhan minus maka digunakan angka pertumbuhan bangkitan yaitu 2,92 %. Sehingga perhitungan peramalan dapat dilihat pada Tabel 4. 42.

Tabel 4. 42 Prediksi Jumlah Penumpang Tahun 2018-2030

Tahun	Jumlah Penumpang
2018	6,857
2019	7,058
2020	7,264
2021	7,476
2022	7,694
2023	7,918
2024	8,149
2025	8,387
2026	8,632
2027	8,884
2028	9,143
2029	9,410
2030	9,685

Ramalan jumlah penumpang tahun 2020 yaitu sebanyak 7.264 orang, dan untuk tahun 2030 sebanyak 9.685 orang.

Jumlah penumpang datang dan berangkat kemudian dijumlahkan dan didapatkan jumlah total tahun 2020 dan tahun 2030. Hasil perhitungan dapat dilihat pada Tabel 4. 43

Tabel 4. 43 Jumlah penumpang tahun 2020 dan tahun 2030

Tahun	Bangkitan	Tarikan	Jumlah
2020	9,267	7,264	16.531
2030	12,356	9,685	22.221

Berdasarkan ramlan jumlah penumpang pada tahun 2020 sebanyak 16.531 orang dan tahun 2030 sebanyak 22.221 orang maka pada tahun 2020 dan tahun 2030 sesuai jumlah penumpang dengan klasifikasi bandar udara yaitu bandar udara pengumpan.

4.9 Prediksi Jumlah Penumpang Bandar Udara Tanjung Warukin

Dari data jumlah penumpang bandar udara Tanjung Warukin tahun 2015 dan 2016 tidak memiliki jumlah penumpang karena penurunan jumlah penumpang pada tahun sebelumnya sehingga dilakukan penutupan bandar udara dari tahun

2015. Jika bandara difungsikan lagi pada tahun 2020 maka dilakukan prediksi jumlah penumpang berdasarkan parameter sosioekonomi.

a. Jumlah penumpang berangkat (Bangkitan)

Jumlah penumpang berangkat menjadi peubah tidak bebas dan untuk peubah tidak bebas yaitu jumlah penduduk, PDRB, jumlah penduduk angkatan kerja, jumlah penerbangan berangkat . Variabel peubah bebas dan tidak bebas yang ditentukan dapat dilihat pada Tabel 4. 44

Tabel 4. 44 Peubah Bebas dan Tidak Bebas pada Model Bangkitan

No	Peubah	
1	Jumlah penumpang	Y
2	Jumlah penduduk	X1
3	PDRB (dalam jutaan)	X2
4	Jumlah Penduduk Angkatan Kerja	X3
5	Jumlah Penerbangan Berangkat	X4

Tabel 4. 45 Data Peubah Bebas dan Tidak bebas pada model bangkitan

No	Y	X1	X2	X3	X4
1	0	184373	2765714	0	0
2	0	189009	3160307	0	5
3	2314	191000	3396971	110252	420
4	4720	193082	3700169	111507	504
5	5761	195114	4436620	111252	618
6	5560	218620	10292209	117533	634
7	4399	223813	12204203	120435	614
8	4110	228051	12921942	117978	600
9	4479	231718	13812147	123044	584
10	3404	235777	14737131	121965	534
11	0	239593	14887268	126403	0
12	0	243500	15286489	0	0

Varibel peubah bebas dan tidak bebas dikorelasi dan dapat dilihat pada Tabel 4.46.

Tabel 4. 46 Korelasi peubah bebas dan tidak bebas

	Y	X1	X2	X3	X4
Y	1.00				
X1	0.02	1.00			
X2	0.05	1.00	1.00		
X3	0.75	0.30	0.32	1.00	
X4	0.99	0.08	0.11	0.77	1.00

Tabel 4. 47 Hasil regresi dari peubah bebas dan tidak bebas

No	Peubah	Parameter	Kombinasi			
		Model	1	2	3	4
1	Intersep	С	-14534.1	186.164	12.7659	-42.5844
2	Jumlah	X1	0.08349			
	Penduduk		0.06349			
3	PDRB	X2	-0.00037	-00002.6		
4	Jumlah	X3				
	Penduduk		-0.001	-0.00012	-0.00166	
	Angkatan Kerja					
5	Jumlah	X4				
	Penerbangan		9.08343	8.74618	8.91766	8.67516
	Berangkat					
		R2	0.98486	0.9806	0.97791	0.9774
		F-Stat	113.83	134.777	199.22	432.406

b. Jumlah penumpang datang (Tarikan)

Jumlah penumpang berangkat menjadi peubah tidak bebas dan untuk peubah tidak bebas yaitu jumlah penduduk, PDRB, jumlah penduduk angkatan kerja, jumlah penerbangan datang. Variabel peubah bebas dan tidak bebas yang ditentukan dapat dilihat pada Tabel 4. 48

Tabel 4. 48 Data Peubah Bebas Dan Tidak Bebas Pada Model Tarikan

No	Y	X1	X2	X3	X4
1	0	184373	2765714	0	0
2	34	189009	3160307	0	7
3	3157	191000	3396971	110252	426
4	4766	193082	3700169	111507	491
5	6023	195114	4436620	111252	614
6	5825	218620	10292209	117533	620
7	4999	223813	12204203	120435	599
8	4819	228051	12921942	117978	602
9	4980	231718	13812147	123044	583
10	4037	235777	14737131	121965	537
11	0	239593	14887268	126403	0
12	0	243500	15286489	0	0

Tabel 4. 49 Korelasi peubah bebas dan tidak bebas

	Y	X1	X2	X3	X4
Y	1.00				
X1	0.02	1.00			
X2	0.05	1.00	1.00		
X3	0.75	0.30	0.32	1.00	
X4	0.99	0.08	0.11	0.77	1.00

Tabel 4. 50 Hasil regresi dari peubah bebas dan tidak bebas

No	Peubah	Parameter	Kombinas	si		
		Model	1	2	3	4
1	Intersep	C	-14722.2	186.4319	6.927824	-45.6912
2	Jumlah	X1				
	Penduduk		0.084553			
3	PDRB	X2				
	(dalam					
	jutaan)		-0.00038	-2.7E-05		
4	Jumlah	X3				
	Penduduk					
	Angkatan					
	Kerja		-0.00091	3.79E-07	-0.00159	
5	Jumlah	X4				
	Penerbangan					
	Berangkat		9.154608	8.805913	8.984346	8.74934
		R2	0.980899	0.976539	0.97366	0.97319
		F-Stat	89.86936	110.9954	166.3438	362.9973

Dari perhitungan bangkitan dan tarikan didapatkan persamaan yang dapat dilihat padaTabel 4. 51

Tabel 4. 51 Persamaan Bangkitan dan Tarikan Bandar Udara Tanjung Warukin

Wilayah	Persamaan			
	Bangkitan	Tarikan		
Tajung warukin	12.7659 - 0.00166 X3 + 8.9176X4	6.928 - 0.00159 X3 + 8.98X4		

Tabel 4. 52 Angka pertumbuhan dari variabel peubah tidak bebas X3 dan X4

X3	Angka	X4	Angka	X4	Angka
AS	Pertumbuhan	(bangkitan)	Pertumbuhan	(tarikan)	pertumbuhan
110252		0		0	
111507	1%	5		7	
111252	0%	420	20.00%	426	15.26%
117533	6%	504	22.62%	491	25.05%
120435	2%	618	2.59%	614	0.98%
117978	-2%	634	-3.15%	620	-3.39%
123044	4%	614	-2.28%	599	0.50%
121965	-1%	600	-2.67%	602	-3.16%
126403	4%	584	-8.56%	583	-7.89%

Hasil rata-rata dari angka pertumbuhan adalah 13 % untuk X3, 4.08% untuk X4(bangkitan), 3.91 % untuk X4(bangkitan) sehingga dengan perhitungan peramalan dapat diketahui jumlah penumpang tahun 2018-2030. Hasil perhitungan dapat dilihat pada Tabel 4.53.

Tabel 4. 53 Prediksi Angkatan Kerja dan Penerbangan Berangkat

Tahun	Angkatan Kerja	Penerbangan	Penerbangan
1 411411	- Ingravan Herja	Berangkat	Datang
2020	130878	679	676
2021	133175	706	702
2022	135513	735	730
2023	137891	765	758
2024	140311	796	788
2025	142773	829	819
2026	145279	863	851
2027	147829	898	884
2028	150423	934	918
2029	153063	973	954
2030	155749	1,012	992

Hasil prediksi angkatan kerja pada tahun 2020 dan penerbangan berangkat tahun 2020 dimasukkan pada persamaan bangkitan sehingga didapat jumlah penumpang tahun 2020, hal ini dilakukan pada tahun 2030. Hasil perhitungan dapat dilihat pada tabel Tabel 4. 54

Tabel 4. 54 Jumlah Penumpang Tahun 2020 Dan 2030 di Bandar Udara Tanjung Warukin

Tahun	Bangkitan	Tarikan	Jumlah Penumpang
2020	5837	5860	11697
2030	8767	8655	17422

Jumlah penumpang berangkat pada tahun 2020 sebanyak 5.837 orang dan tahun 2030 sebanyak 8.767 orang. Jumlah penumpang datang pada tahun 2020 sebanyak 5.860 orang dan tahun 2030 sebanyak 8.655 orang.

Berdasarkan ramalan jumlah penumpang pada tahun 2020 sebanyak 11.697 orang dan tahun 2030 sebanyak 17.422 orang maka sesuai jumlah penumpang dengan klasifikasi bandar udara yaitu bandar udara pengumpan.

4.10 Model Sebaran Pergerakan

Dari data lalu lintas pergerakan penunpang di Bandar udara Syamsudin Noor sebagai bandar udara pengumpul maka dapat dibuat matriks asal tujuan pada tahun 2014 pada Tabel 4. 55, MAT tahun 2015 pada Tabel 4. 56, MAT tahun 2016 pada Tabel 4. 57.

Tabel 4. 55 Matriks Asal Tujuan penerbangan Internal Kalimantan Selatan Tahun 2014

ТО	FROM					
10	BDJ	KBU	TJG	BTW	DEMAND	
BDJ	-	67324	3404	7937	78665	
KBU	52998	-	_	_	52998	
TJG	4037	-	_	_	4037	
BTW	8038	-	-	-	8038	
SUPPLY	65073	67324	3404	7937		
					143738	

Sumber: PT Angkasa Pura I Cabang Banjarmasin

Tabel 4. 56 Matriks Asal Tujuan penerbangan Internal Kalimantan Selatan Tahun 2015

TO	FROM						
ТО	BDJ	KBU	TJG	BTW	DEMAND		
BDJ	-	57140	-	9249	66389		
KBU	39933	-	-	-	39933		
TJG	-	-	-	-	0		
BTW	9115	-	-	-	9115		
SUPPLY	49048	57140	0	9249			

Sumber: PT Angkasa Pura I Cabang Banjarmasin

Tabel 4. 57 Matriks Asal Tujuan penerbangan Internal Kalimantan Selatan Tahun 2016

ТО	FROM						
	BDJ	KBU	TJG	BTW	DEMAND		
BDJ	-	63121	-	8260	71381		
KBU	46867	-	-	1	46867		
TJG	-	-		0			
BTW	6474	-	-	-	6474		
SUPPLY	53341	63121	0	8260			

Sumber: PT Angkasa Pura I Cabang Banjarmasin

4.11 Model Sebaran Pergerakan Setelah Perubahan Hierarki

Pendapatan per kapita penduduk (INC) adalah jumlah total produksi bruto suatu negara tiap tahun dibagi dengan jumlah penduduk. Apabila terjadi peningkatan pada pendapatan per kapita, maka jumlah penumpang (PAX) kemungkinan juga akan meningkat karena daya beli dari penumpang semakin besar. Pendapatan per kapita mempunyai pengaruh terhadap jumlah penumpang. (Amin, 2013)

PDRB antara Banjarmasin dan Kotabaru digunakan sebagai acuan untuk membagi sebaran pergerakan dari Tanjung Warukin ke Banjarmasin dan Kotabaru. Proporsi ini dapat dilihat pada Tabel 4. 58

Tabel 4. 58 Proporsi Antara Banjarmasin dan Kotabaru

No	Tahun	Banjarmasin	Kotabaru
1	2005	5.217.672	5.033.297
2	2006	5.773.193	5.824.889
3	2007	6.703.546	6.653.148
4	2008	7.509.921	7.498.283
5	2009	8.769.218	8.430.312
6	2010	13.067.090	11.443.592
7	2011	14.531.047	13.187.378
8	2012	16.177.225	14.219.688
9	2013	17.930.436	15.424.846
10	2014	20.420.107	16.993.763
11	2015	23.037.241	18.217.829
12	2016	25.326.474	19.445.680
To	otal	7649908	164.463.170
Propos	rsi (%)	54	46

Sumber: BPS Kalimantan Selatan, 2016

Proporsi yang didapat yaitu 54 % untuk Bnajarmasin dan 46 % untuk Kotabaru. Hasil proporsi ini digunakan untuk membagi jumlah penumpang yang berangkat dari bandar udara Tanjung Warukin. Sebaran pergerakan berangkat pada bandar udara Tanjung Warukin pada tahun 2020 dan 2030 dapat dilihat pada Tabel 4. 59.

Tabel 4. 59 Proporsi Jumlah penumpang berangkat dari Tanjung Warukin

Tahun	Jumlah	K	Ce Ce
Tallull	Penumpang	BJM	KBU
2020	5837	3152	2685
2030	8767	4734	4033

Sebaran pergerakan datang dari bandar udara Tanjung Warukin pada tahun 2020 dan 2030 dapat dilihat pada Tabel 4. 60.

Tabel 4. 60 Proporsi Jumlah penumpang datang ke Tanjung Warukin

Tahun	Jumlah	dari		
Tanun	Penumpang	BJM	KBU	
2020	5860	3164	2696	
2030	0 8655 4674		3981	

Dari hasil prediksi dibuat sebaran pergerakan penerbangan internal pada Provinsi Kalimantan Selatan pada tahun 2020 disajikan pada Tabel 4. 61 dan pada tahun 2030 disajikan pada Tabel 4.62.

Tabel 4. 61 Matriks Asal Tujuan penerbangan Internal Kalimantan Selatan Tahun 2020

ТО	FROM					
10	BDJ	KBU	TJG	BTW	DEMAND	
BDJ		143.076	3.152	9.267	155.495	
KBU	299.203		2.685		301.888	
TJG	3.164	2.696			5.860	
BTW	7.264				7.264	
SUPPLY	309.631	145.772	5.837	9.267		

TO	FROM				
	BDJ	KBU	TJG	BTW	DEMAND
BDJ		143076	3854	9267	156197
KBU	299203		1773		300976
TJG	5942	2732			8674

BTW	7.264				7264
SUPPLY	312409	145808	5627	9267	

Pada tahun 2020 *demand* dari penerbangan internal bandar udara Syamsudin Noor sebanyak 155.495orang , bandar udara Gusti Syamsir Alam sebanyak 301.888 orang , Bandar udara Tanjung Warukin Sebanyak 5.860 orang, dan Bandar udara Bersujud sebanyak 7.264 orang.

Tabel 4. 62 Matriks Asal Tujuan penerbangan Internal Kalimantan Selatan Tahun 2030

ТО	FROM					
10	BDJ	KBU	TJG	BTW	DEMAND	
BDJ		2.329.787	4.734	12.356	2.346.877	
KBU	14.636.829		4.033		14.640.862	
TJG	4.674	3.981			8.655	
BTW	9.685				9.685	
SUPPLY	14.651.188	2.333.768	8.767	12.356		

Pada tahun 2030 *demand* dari penerbangan internal bandar udara Syamsudin Noor sebanyak 2.346.877 orang, bandar udara Gusti Syamsir Alam sebanyak 14.640.862 orang, Bandar udara Tanjung Warukin Sebanyak 8.655 orang, dan Bandar udara Bersujud sebanyak 9.685 orang

Dari prediksi jumlah penumpang pada bandar udara Tanjung Warukin menunjukkan bahwa bandar udara Tanjung Warukin memiliki potensi untuk terus bertahan setelah dioperasikan kembali pada tanggal 4 desember 2017, apalagi setelah adanya perubahan hierarki *demand* pada bandar udara dari 3.164 orang menjadi 2.696 orang pada tahun 2020. Dan pada tahun 2030 *demand* penerbangan internal dari 4.674 orang menjadi 3.981 orang.

Di bandar udara Gusti Syamsir Alam mengalami perubahan *demand* penerbangan internal setelah terjadi perubahan hierarki yaitu dari 299.203 orang menjadi 301.888 orang pada tahun 2020 tetapi hal ini belum bisa menaikkan klasifikasi bandar udara Gusti Syamsir Alam menjadi bandar udara skala tersier. Pada tahun 2030 demand penerbangan internal bandar udara Gusti Syamsir Alam dari 14.636.829 orang menjadi 14.640.862 orang, hal ini menjadikan bandar udara

Gusti Syamsir Alam dapat menaikkan klasifikasi bandar udaranya menjadi bandar udara skala sekunder bukan menjadi bandar udara skala tersier pada PM No.69 tahun 2013.

Pada tahun 2011-2013 bandar udara Bersujud tidak beroperasi karena penurunan *demand*, tetapi dari prediksi jumlah penumpang bandar udara Bersujud mengalami kenaikan yang signifikan ditunjukkan pada *demand* tahun 2020 yaitu 7.264 orang dan tahun 2030 yaitu 9.685 orang. Dengan prediksi tersebut mengindikasi bahwa bandar udara Bersujud dapan terus beroperasi di masa mendatang.

Prediksi sebaran penumpang dari 2020 sampai tahun 2030 mungkin akan terbagi dengan adanya rencana pembangunan jalur rel kereta api di Kalimantan Selatan dengan rute Banjarmasin-Tanjung dan ditargetkan beroperasi pada tahun 2019. Hal ini menjadi penting untuk keberlangsungan bandar udara Tanjung Warukin maka bandar udara Tanjung Warukin harus melakukan strategi yang tepat agar penumpang pesawat tidak berpindah moda menggunakan kereta api.

"Halaman ini sengaja dikosongkan"

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari hasil dan pembahasan menunjukkan beberapa hal yang dapat disimpulkan mengenai Pengaruh Dari Rencana Induk Bandar Udara Di Provinsi Kalimantan Selatan Terhadap Jumlah Penumpang Pada Tahun 2020 Dan 2030 yaitu sebagai berikut:

- Dari data jumlah penumpang tahun 2005-2016 di bandar udara Syamsudin Noor melayani paling sedikit 1.342.239 penumpang pada tahun 2005 dan paling banyak melayani 3.890.729 penumpang pada tahun 2013 maka bandar udara Syamsudin Noor dikategorikan sebagai Bandar Udara pengumpul skala sekunder. Hal ini sesuai dengan klasifikasi bandar udara eksisting PM No.69 Tahun 2013.
- 2. Terjadi perubahan hierarki yang berpengaruh pada penambahan rute tanjung ke Kotabaru. Perubahan yang terjadi pada Jarak tempuh yaitu 82,2 km dengan waktu tempuh 11 menit dan perkiraan tarif sebesar Rp 398.800,00 untuk tahun 2020 dan Rp. 863.900,00 untuk tahun 2030. Perkiraan tarif untuk masing-masing rute yaitu rute Banjarmasin-Kotabaru dengan waktu tempuh 20 menit, perkiraan tarif sebesar Rp 761.000,00 untuk tahun 2020 dan Rp 1.649.000,00 untuk tahun 2030. Rute Banjarmasin-Tanjung dengan waktu tempuh 20 menit dan perkiraan tarif sebesar Rp 761.000,00 untuk tahun 2020 dan Rp. 1.650.000,00 untuk tahun 2030. Rute Banjarmasin-Batulicin dengan waktu tempuh 18 menit dan perkiraan tarif sebesar Rp 671.500,00 untuk tahun 2020 dan Rp 1.454.000,00 untuk 2030. Perubahan yang terjadi sangat berpengaruh pada keberlangsungan masing-masing bandar udara di masa mendatang.
- Prediksi jumlah penumpang dan klasifikasi bandar udara pada tahun 2020 dan 2030 masing-masing bandar udara yaitu :
 - a) Prediksi jumlah penumpang bandar udara Syamsudin Noor tahun 2020 yaitu sebanyak 5.223.205 orang, dan tahun 2030 sebanyak 13.285.885

- orang. Sehingga untuk menaikkan klasifikasi bandar udara Syamsudin Noor menjadi bandar udara pengumpul skala primer sudah memenuhi persyaratan.
- b) Prediksi jumlah penumpang bandar udara Gusti Syamsir Alam tahun 2020 yaitu sebanyak 442.279 orang dan tahun 2030 sebanyak 16.966.616 orang. Pada tahun 2020 bandar udara Gusti Syamsir Alam tidak memenuhi syarat untuk menaikkan klasifikasi menjadi bandar udara skala tersier dan pada tahun 2030 jumlah penumpang terlalu banyak dari syarat yang ditentukan, sehingga tidak memenuhi syarat untuk bandar udara skala tersier. Prediksi Jumlah penumpang ini sebelum terjadi perubahan hierarki.
- c) Prediksi ramalan jumlah penumpang bandar udara Tanjung Warukin pada tahun 2020 sebanyak 11.697 orang dan tahun 2030 sebanyak 17.422 orang, Sehingga memenuhi persyaratan sebagai bandar udara pengumpan.
- d) Prediksi jumlah penumpang bandar udara Bersujud pada tahun 2020 sebanyak 16.531 orang dan tahun 2030 sebanyak 22.221 orang, Sehingga memenuhi persyaratan sebagai bandar udara pengumpan.
- 4. Perubahan sebaran pergerakan yang terjadi akibat perubahan hierarki berpengaruh pada demand penumpang penerbangan internal bandar udara Gusti Syamsir Alam yaitu dari 299.203 orang menjadi 301.888 orang pada tahun 2020 tetapi hal ini belum bisa menaikkan klasifikasi bandar udara Gusti Syamsir Alam menjadi bandar udara skala tersier. Pada tahun 2030 demand penerbangan internal bandar udara Gusti Syamsir Alam dari 14.636.829 orang menjadi 14.640.862 orang, hal ini menjadikan bandar udara Gusti Syamsir Alam dapat menaikkan klasifikasi bandar udaranya menjadi bandar udara skala sekunder bukan menjadi bandar udara skala tersier sesuai dengan PM No.69 tahun 2013.

5.2 Saran

Dari hasil dan pembahasan dari penelitian ini terdapat beberapa hal yang menjadi pertimbangan untuk dapat menjadi kajian selanjutnya atau langkah yang sebaiknya dilakukan yaitu:

- 1. Perlu adanya analisis lebih lanjut tentang pemilihan moda untuk keberlangsungan bandar udara Tanjung Warukin
- 2. Perlu adanya penelitian lebih lanjut terhadap rute baru karena adanya perubahan hierarki

"Halaman ini sengaja dikosongkan"

DAFTAR PUSTAKA

- Amin, Andhi Pahlevi. (2013). Analisis Pengaruh Tarif Penerbangan, Jumlah Penerbangan Dan Pendapatan Perkapita Dalam Meningkatkan Jumlah Penumpang. *Journal Bisnis Strategi*, 22(1), 49–66.
- Anonim¹.https://contentzone.eurocontrol.int/aircraftperformance/details.aspx?ICA O=AT44&ICAOFilter=at7. Diakses 6 desember 2017.
- Anonim².https://www.grc.nasa.gov/www/k12/VirtualAero/BottleRocket/airplane/glidang.slide.html.Diakses 6 desember 2017.
- Ackert, Shannon. 2012. "Basics of Aircraft Maintenance Reserve Development and Management." *Aircraft Monitor*. http://www.iata.org/whatwedo/workgroups/Documents/Paperless Supply Chain/Basics-AC MR.pdf% 5Cnhttp://www.aircraftmonitor.com/uploads/1/5/9/9/15993320/basics_of_aircraft_maintenance_reserves___v1.pdf.
- Aprilliansyah dan Herman (2015). Perkiraan Distribusi Pergerakan Penumpang Di Provinsi Jawa Barat Berdasarkan Asal Tujuan Transportasi Nasional. Jurnal Online Institut Teknologi Nasional. Bandung.
- Badan Pusat Statistik Provinsi Kalimantan Selatan (2016). Kalimantan Selatan Dalam Angka 2016. BPS Kalimantan Selatan.Banjarmasin.
- Fageda, X., Luis, J., & Valido, J. (2017). An empirical evaluation of the e ff ects of European public policies on island airfares ☆. *Transportation Research Part A*, 106(August), 288–299. https://doi.org/10.1016/j.tra.2017.09.018
- Gordiievych, A., & Shubin, I. (2015). Forecasting of Airfare Prices Using Time Series, 68–71.
- Hillier, Frederick S. (2008). Introduction to Management Science: A Modeling and Case Studies Appraoch with Spreadsheets Third Edition. McGraw-Hill/Irwin, a business unit of The McGraw-Hill Companies.
- Hansen, M., & Li, A. (2017). Multiple airport regions based on inter-airport temporal distances. *Transportation Research Part E: Logistics and Transportation Review*, 101, 84–98. https://doi.org/10.1016/j.tre.2017.03.002

- Kawasaki, A. (2008). Network effects, heterogeneous time value and network formation in the airline market. *Regional Science and Urban Economics*, 38(4), 388–403. https://doi.org/10.1016/j.regsciurbeco.2008.02.004
- Kementerian Perhubungan (2013). Tatanan Kebandarudaraan Nasional No 69. Kementerian Perhubungan. Jakarta.
- Mastra, IG.P (2016). Manajemen Transportasi Udara.MITRA Wacana Media. Jakarta.
- Nasution, M (2008). Manajemen Transportasi Edisi ketiga. Ghalia Indonesia.Bogor.
- Nommik dan Antov (2016). Modelling Regional Airport Terminal Capacity. 16th Conference on Reliability and Statistics in Transportation and Communication. Riga, Latvia.
- Purnamasari, S. M., & Teknik, S. (2011). Analisis Kelompok (Cluster Analysis), (18209007).
- Shiraishi, Y., & Hirata, T. (2015). Analysis of the Impact of Abandoned Direct Air Routes on Inter-regional Passenger Travel Flows in Japan, 11(2013), 2333–2346.
- Suryani, E, Chou, S.Y, dan Chen, C.H (2010). Air passenger demand forecasting and passenger terminal capacity expansion: A system dynamics framework. Expert Systems with Applications 37 page 2324–2339.
- Syarif , Iif Ahmad (2016). Analisa Kesesuaian dan Dampak Perubahan Hierarki Bandar Udara di Kalimantan Utara. Tesis Institut Teknologi Sepuluh Nopember.
- Takebayashi, M. (2011). Impact of Low Cost Carriers and Multiple Airport System, 8(3), 309–322.
- Tamin, O. Z (2008). Perencanaan, permodelan, dan Rekayasa Transportasi: teori, contoh soal dan aplikasi. ITB Bandung. Bandung.
- Tamin, O. Z (2000). Perencanaan, permodelan, dan Transportasi. ITB Bandung. Bandung.Fageda, X., Luis, J., & Valido, J. (2017). An empirical evaluation of the e ff ects of European public policies on island airfares ☆. *Transportation Research Part A*, 106(August), 288–299. https://doi.org/10.1016/j.tra.2017.09.018
- Gordiievych, A., & Shubin, I. (2015). Forecasting of Airfare Prices Using Time Series, 68–71.

- Hansen, M., & Li, A. (2017). Multiple airport regions based on inter-airport temporal distances. *Transportation Research Part E: Logistics and Transportation Review*, 101, 84–98. https://doi.org/10.1016/j.tre.2017.03.002
- Kawasaki, A. (2008). Network effects, heterogeneous time value and network formation in the airline market. *Regional Science and Urban Economics*, 38(4), 388–403. https://doi.org/10.1016/j.regsciurbeco.2008.02.004
- Pendapatan, D. A. N., & Dalam, P. (n.d.). PENERBANGAN, JUMLAH PENERBANGAN, 22(1), 49–66.
- Purnamasari, S. M., & Teknik, S. (2011). Analisis Kelompok (Cluster Analysis), (18209007).
- Shiraishi, Y., & Hirata, T. (2015). Analysis of the Impact of Abandoned Direct Air Routes on Inter-regional Passenger Travel Flows in Japan, 11(2013), 2333–2346.
- Trzepacz, P. (2007). Spatial aspects of air transportation liberalization changes in European airport hierarchy. *Bulletin of Geography (Socio-Economic Series)*, 8(8), 163–177.
- Xiao, Y., Liu, J. J., Hu, Y., Wang, Y., Keung, K., & Wang, S. (2014). Journal of Air Transport Management A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting, *39*, 1–11. https://doi.org/10.1016/j.jairtraman.2014.03.004
- Zuidberg, J. (2014). Journal of Air Transport Management Identifying airline cost economies: An econometric analysis of the factors affecting aircraft operating costs. *Journal of Air Transport Management*, 40, 86–95. https://doi.org/10.1016/j.jairtraman.2014.06.007

BIOGRAFI PENULIS

ERIZA ISLAKUL ULMI dilahirkan di Saing, desa kecil di kabupaten Barito Timur pada tanggal 22 oktober 1992. Putri kedua dari tiga bersaudara pasangan M.Mahbuby dan Serkinty (Alm) ini menghabiskan hampir 18 tahun di kota Banjarbaru. Penulis menempuh pendidikan formal di TK Anggrek Landasan Ulin, SDN LUT 2 Banjarbaru, SMP Negeri 4 Banjarbaru, dan SMA Negeri 2 banjarbaru. Setelah lulus dari SMA Negeri 2 Banjarbaru penulis menempuh **S**1 di pendidikan Universitas Lambung Mangkurat dengan mengambil Jurusan Teknik

Sipil dan lulus pada tahun 2015. Kemudian penulis memutuskan untuk melanjutkan pendidikannya ke jenjang pascasarjana dan penulis diterima di Jurusan Manajemen dan Rekayasa Transportasi, Institut Teknologi Sepuluh Nopember. Pada masa perkuliahan penulis kehilangan ibu yang sangat disayanginya tetapi dengan tekad dan amanah dari sang ibu (Alm), penulis tetap berada di Surabaya dam melajutkan kuliahnya. Akhir kata penulis mengucapkan rasa syukur sebesar-besarnya atas terselesaikannya Tesis yang berjudul "Pengaruh Dari Rencana Induk Bandar Udara Di Provinsi Kalimantan Selatan Terhadap Volume Penumpang Serta Waktu Dan Biaya Perjalanan". Penulis berharap bahwa tesis yang dibuat dapat bermanfaat bagi orang lain.