

TUGAS AKHIR - SS 145561

PEMODELAN PENGARUH CURAH HUJAN TERHADAP PRODUKTIVITAS PRODUKSI PADI DI PROVINSI JAWA TIMUR DENGAN MENGGUNAKAN REGRESI PANEL

IMAM HIDAYAT NRP 10611300000084

Pembimbing Ir. Mutiah Salamah Chamid, M. Kes,

Departemen Statistika Bisnis Fakultas Vokasi Institut Teknologi Sepuluh Nopember Surabaya 2018

TUGAS AKHIR - SS 145561

PEMODELAN PENGARUH CURAH HUJAN TERHADAP PRODUKTIVITAS PRODUKSI PADI DI PROVINSI JAWA TIMUR DENGAN MENGGUNAKAN REGRESI PANEL

IMAM HIDAYAT NRP 10611300000084

Pembimbing Ir. Mutiah Salamah Chamid, M. Kes,

Departemen Statistika Bisnis Fakultas Vokasi Institut Teknologi Sepuluh Nopember Surabaya 2018

FINAL PROJECT - SS 145561

MODELLING THE EFFECT OF RAINFALL TO AGRICULTURE PRODUCTIVITY IN EAST JAVA USING PANEL REGRESSION

IMAM HIDAYAT NRP 10611300000084

Supervisor Ir. Mutiah Salamah Chamid, M.Kes

Departement Of Statistics Business Faculty of vocation Sepuluh Nopember Institute of Technology Surabaya 2018

LEMBAR PENGESAHAN

PEMODELAN PENGARUH CURAH HUJAN TERHADAP PRODUKTIVITAS PRODUKSI PADI DI PROVINSI JAWA TIMUR DENGAN MENGGUNAKAN REGRESI PANEL

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Ahli Madya pada Departemen Statistika Bisnis Fakultas Vokasi Institut Teknologi Sepuluh Nopember

Oleh:

IMAM HIDAYAT NRP. 10611300000084

SURABAYA, JANUARI 2018

Menyetujui, Pembimbing Tugas Akhir:

Ir. Mutiah Salamah Chamid, M.Kes.

NIP-19571007 198303 2 001

Kepala Departemen Statistika Bisnis

Fakultas Vokasi ITS

Vahyu Wibowo, S.Si, M.Si

19740328 199802 1 001

STATISTIKA BISNIS

Pemodelan Pengaruh Curah Hujan Terhadap Produktivitas Produksi Padi di Provinsi Jawa Timur dengan Menggunakan Regresi Panel

Nama mahasiswa : Imam Hidayat NRP : 10611300000084

Program Studi : Diploma III

Departemen : Statistika Bisnis FV-ITS

Dosen

: Ir. Mutiah Salamah Chamid, M.Kes

Pembimbing

ABSTRAK

Pertanian masih menjadi sektor penting dalam mendorong pertumbuhan ekonomi di Indonesia. Seperti yang disampai oleh Bank setidaknya pertanian menyumbang 20% pertumbuhan ekonomi ditahun 2017. Akan tetapi, pola tanam pertanian yang ada di Indonesia masih bergantung terhadap iklim. Provinsi Jawa Timur merupakan provinsi terbesar produksi pertaniannya jika dilihat dari tanaman padi. Akan tetapi provinsi Jawa Timur juga menjadi Provinsi tertinggi yang terkena bencana banjir dari seluruh provinsi yang ada di Indonesia. Penelitian ini dilakukan dengan menggunakan regresi panel untuk mengetahui pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur. Secara umum, produktivitas produksi padi di Provinsi Jawa Timur dari tahun 1997 hingga tahun 2015 mengalami kenaikan. Model regresi panel yang sesuai untuk mengestimasi pengaruh curah hujan terhadap produktivitas produksi padi adalah fixed effect model dengan variasi antar individu. Model yang didapatkan dari hasil estimasi adalah $\hat{y} = 55,84755 + \mu_i + 0,139106x$. Model tersebut menunjukan bahwa variabel curah hujan berpengaruh signifikan terhadap produktivitas produksi padi di Provinsi Jawa Timur.

Kata Kunci: Produktivitas Produksi Padi, Provinsi Jawa Timur, Regresi Panel

(Halaman ini sengaja dikosongkan)

Modelling The Effect of Rainfall to Agriculture Productivity in East Java using Panel Regression

Student Name : Imam Hidayat NRP : 10611300000084

Programe : Diploma III

Departement : Bussines Statistics FV-ITS

Academic : Ir. Mutiah Salamah Chamid, M.Kes

Supervisor

ABSTRACT

Agriculture is importan sector to encourage the economic development in Indonesia. Bank Indonesia declered this sector at least 20% take a part in economic development of Indonesia in 2017. Howerver, Indonesia agriculter still depend on the weather. East Java is the biggest agriculture productor in Indonesia. In the other side, flood is the Indonesia especially East Java. This Research used panel regression to know abaout the effect of rainfaal to agriculture productivity in East Java. Overall, agriculture productivity in East Java increased from year to year between 1997 and 2015. The appropriate regression model to estimate the effect of rainfall on rice production productivity is fixed effect model with variation between individuals. Estimated model is $\hat{y} = 55,84755 + \mu_i + 0,139106x$ that means the rainfall significantly effect the agriculture productivity in East Jawa.

Keywords — East Java, Agriculture Productivity, Panel Regression

(Halaman ini sengaja dikosongkan)

KATA PENGANTAR

Alhamdulillahirobbil'alamin. Rasa syukur senantiasa penulis panjatkan kehadirat Allah SWT yang telah melimpahkan rahmat, hidayah dan karunia-Nya sehingga penulis dapat menyelesaikan tugas akhir dengan judul "PEMODELAN PENGARUH CURAH HUJAN TERHADAP PRODUKTIVITAS PRODUKSI PADI DI PROVINSI JAWA TIMUR DENGAN MENGGUNAKAN REGRESI DATA PANEL" dengan lancar dan tepat waktu.

Keberhasilan penyelesaian laporan tugas akhir ini tidak terlepas dari partisipasi dan dukungan dari berbagai pihak. Oleh karena itu, dengan segala kerendahan hati penulis mengucapkan terima kasih yang sebesar-besarnya kepada:

- 1. Bapak, ibu, dan keluarga besar penulis atas do'a dan kasih sayang yang begitu besar sehingga penulis selalu memiliki kekuatan dan semangat dalam menjalani proses perkuliahan dan menyelesaikan tugas akhir ini.
- 2. Ibu Ir. Mutiah Salamah Chamid, M.Kes. selaku dosen pembimbing yang senantiasa memberikan ilmu, perhatian, bimbingan dan pengarahan dengan begitu baik selama menyelesaikan tugas akhir ini dan semoga senantiasa diberkahi oleh-Nya.
- 3. Bapak Dr. Brodjol Sutijo Ulama, M.Si dan Ibu Dra. Sri Mumpuni Retnaningsih, MT. selaku dosen penguji yang telah memberikan ilmu, kritik dan saran membangun untuk kesempurnaan tugas akhir ini.
- 4. Bapak Dr. Wahyu Wibowo, S.Si., M.Si. selaku Kepala Departemen Statistika Bisnis ITS dan Ibu Ir. Sri Pingit Wulandari, MS. selaku Ketua Prodi DIII Statistika Bisnis yang telah memfasilitasi penulis selama menuntut ilmu di Jurusan Statistika ITS.
- 5. Bapak Dr. Brodjol Sutijo Ulama, M.Si selaku dosen wali dan seluruh Bapak/Ibu dosen Statistika Bisnis atas segala bimbingan, masukan, dan ilmu yang telah diberikan.

- 6. Seluruh staff tata usaha Jurusan Statistika Bisnis yang telah mempelancar penulis selama masa perkuliahan.
- 7. Alfani Husna Ahlisa, seluruh Kabinet SOLID HIMADATA-ITS dan seluruh rekan-rekan sesama mahasiswa yang telah memberi semangat, perhatian dan bantuan sehingga tugas akhir ini bisa diselesaikan dengan baik.
- 8. Serta semua pihak yang telah banyak membantu penulis yang tidak dapat disebutkan satu persatu.

Semoga kebaikan dan bantuan yang telah diberikan kepada penulis dibalas dengan kebaikan yang lebih baik oleh Allah SWT. Aamiin. Penulis menyadari bahwa tugas akhir ini masih terdapat kekurangan, oleh karena itu kritik dan saran yang bersifat membangun sangat diharapkan. Semoga tugas akhir ini dapat memberikan manfaat baik bagi penulis, pembaca, dan semua pihak.

Surabaya, Januari 2018

Penulis

DAFTAR ISI

	Halar	nan
	AMAN JUDUL	
LEM	IBAR PENGESAHAN	iv
ABS'	ΓRAK	\mathbf{V}
	TRACT	
KAT	'A PENGANTAR	ix
DAF	TAR ISI	хi
DAF	TAR GAMBAR	xii
DAF	TAR TABEL	XV
DAF	TAR LAMPIRAN	xvi
BAB	I PENDAHULUAN	
1.1	Latar Belakang	1
1.2	Rumusan Masalah	
1.3	Tujuan	3
1.4	Manfaat	3
1.5	Batasan Masalah	4
BAB	II TINJAUAN PUSTAKA	
2.1	Regresi Panel	5
2.2	Estimasi Model Regresi Panel	
	2.3.1 Common Effect Model (CEM)	7
	2.3.2 Fixed Effect Model (FEM)	7
	2.3.3 Random Effect Model (REM)	
2.3	Pemilihan Model Regresi Panel	9
	2.3.1 Uji Chow	9
	2.3.2 Uji Lagrange Multiplier (LM)	10
	2.3.3 Uji Hausman	
2.4	Pengujian Parameter Model Regresi	
2.5	Pengujian Asumsi Residual IIDN	
	2.5.1 Pengujian Asusmsi Residual Indentik	
	2.5.2 Pengujian Asumsi Residual Independen	

	2.5.3 Pengujian Asumsi Residual Berdistribusi	
	Normal	14
2.6	Penelitian Sebelumnya	15
BAB	III METODOLOGI PENELITIAN	
3.1	Sumber Data	19
3.2	Variabel Penelitian	23
3.3		
	BAB IV ANALISIS DAN PEMBAHASAN	
4.1	Karakteristik Produktivitas Produksi Padi dan Faktor	
	Diduga Mempengaruhnya	27
	4.1.1 Produktivitas Produksi Padi dan Rata-Rata Curah	
	Hujan Tahun 1997 sampai 1998	27
	4.1.2 Produktivitas Produksi Padi dan Rata-Rata Curah	
	Hujan di Provinsi Jawa Timur Berdasarkan	
	Kabupaten/Kota	29
4.2	Pemodelan Produktivitas Produksi Padi di Provinsi	
	Jawa Timur	31
	4.2.1 Estimasi Model Regresi Data Panel	31
	4.2.2 Pemilihan Metode Estimasi Model Regresi Data	
	Panel	40
	4.2.3 Pengujian Asumsi Residual IIDN	
	BAB V KESIMPULAN DAN SARAN	
5.1	Kesimpulan	45
5.2	Saran	
	DAFTAR PUSTAKA	
	LAMPIRAN	

DAFTAR TABEL

	Halan	nan
Tabel 2.1	Penelitian Dampak Perubahan Iklim	16
Tabel 3.1	Struktur Data	
Tabel 3.2	Kabupaten/Kota yang Diamati	22
Tabel 3.3	Variabel Penelitian	
Tabel 4.1	Uji Signifikan antara Produktivitas Produksi Padi	
	dan Rata-Rata Curah Hujan dengan Menggunakan	
	CEM	32
Tabel 4.2	Uji Signifikan antara Produktivitas Produksi Padi	
	dan Rata-Rata Curah Hujan dengan Menggunakan	
	FEM Individu	33
Tabel 4.3	Nilai intersep disetiap Kabupaten/Kota di Provinsi	
	Jawa Timur	34
Tabel 4.4	Uji Signifikan antara Produktivitas Produksi Padi	
	dan Rata-Rata Curah Hujan dengan Menggunakan	
	FEM Waktu	35
Tabel 4.5	Uji Signifikan antara Produktivitas Produksi Padi	
	dan Rata-Rata Curah Hujan dengan Menggunakan	
	FEM Individu dan Waktu	36
Tabel 4.6	Uji Signifikan antara Produktivitas Produksi Padi	
	dan Rata-Rata Curah Hujan dengan Menggunakan	
	REM	38
Tabel 4.7	Nilai Efek Error untuk setiap Kabupaten/Kota	38
Tabel 4.8	Hasil Uji Chow	40
Tabel 4.9	Hasil Uji Hausman	41
Tabel 4.10	Hasil Uji Kolmogorov-Smirnov	41
Tabel 4.11	Hasil Uji Park	42
Tabel 4.12	Hasil Run Test	42

(Halaman ini sengaja dikosongkan)

DAFTAR GAMBAR

	Halan	nan
Gambar 3.1	Diagram Alir	25
Gambar 4.1	Produktivitas Produksi Padi di Provinsi Jawa	
	Timur Tahun 1997 Hingga Tahun 2015	28
Gambar 4.2	Rata-Rata Curah Hujan di Provinsi Jawa	
	Timur Pada Tahun 1997 Hingga Tahun 2015	29
Gambar 4.3	Produktivitas Produksi Padi setiap Kabupaten/	
	Kota di Provinsi Jawa Timur Tahun 1997	
	Hingga Tahun 2015	30
Gambar 4.4	Rata-Rata Curah Hujan di Kabupaten/Kota	
	Provinsi Jawa Timur Pada Tahun 1997 Hingga	
	Tahun 2015	31

(Halaman ini sengaja dikosongkan)

DAFTAR LAMPIRAN

T T	- 1			
н	ลไ	21	n	an

l
49
65
66
72
73
74
76
77
78
79
80

(Halaman ini sengaja dikosongkan)

BAB I PENDAHULUAN

1.1 Latar Belakang

Pertanian masih menjadi salah satu sektor penting dalam mendorong pertumbuhan ekonomi Indonesia. Sebagai salah satu sektor yang peting dalam pertumbuhan ekonomi, sektor pertanian masuk dalam tiga sektor penompang pertumbuhan ekonomi pada tahun 2017. Seperti yang disampaikan oleh Bank Indonesia (BI) pertanian setidaknya menyumbang 20% dari total pertumbuhan ekonomi pada tahun 2017 (Glienmourinsie, 2016). Hal ini disebabkan oleh letak Indonesia yang sangat strategis yaitu terletak pada daerah tropis dengan curah hujan yang tinggi sehingga banyak macam tumbuhan yang dapat hidup dan tumbuh dengan cepat. Akan tetapi, kondisi tersebut menyebabkan sistem pertanian yang ada di Indonesia sangat bergantung pada iklim.

Salah satu lokasi penyumbang produksi pertanian terbesar terutama pada tanaman padi terletak pada provinsi Jawa Timur. Badan Pusat Statistika menyebutkan bahwa provinsi Jawa Timur menjadi provinsi dengan produksi padi tertinggi pada tahun 2013 hingga tahun 2015 di Indonesia. Tercatat pada tahun 2013 jumlah produksi padi mencapai 16.90% dan pada tahun 2014 sebesar 17.50% secara nasional. Meskipun menjadi provinsi dengan jumlah produksi padi terbesar tiga tahun terakhir, akan tetapi pada tahun 2015 jumlah produksi padi yang diperoleh mengalami penurunan menjadi 17.00% secara nasional. Salah satu penyebab menurunnya produksi padi dikarenakan curah hujan yang terjadi di Jawa Timur cukup tinggi. Curah hujan menurut Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) adalah jumlah air yang turun ke tanah dalam satuan milimeter kubik (mm³). Tercatat hingga tahun 2016 provinsi Jawa Timur menjadi provinsi tertinggi yang terkena bencana banjir yakni mencapai 36% dari jumlah banjir diseluruh provinsi Indonesia (Afni, 2016). Kejadian tersebut menyebabkan perolehan produkitivitas tanaman padi dibeberapa Kabupaten atau Kota yang ada di Provinsi Jawa Timur mengalami penurunan. Produktivitas padi menggambarkan perbandingan antara jumlah produksi padi dan luas lahan yang dapat ditanami tanaman padi dalam kurun waktu tertentu. Disamping itu faktor biologis, seperti lahan pertanian dengan tingakat kesuburan yang berbeda, bibit, obat-obatan yang digunakan dalam pertanian dan juga faktor ekonomi seperti biaya produksi, tenaga kerja, tingkat pendidikan juga berpangaruh terhadap produktivitas produksi padi (Murdiantoro, 2011). Akan tetapi, faktor biologis dan faktor ekonomi tersebut dapat diperhitungkan tingkat kejadiannya sedangkan faktor iklim yang terjadi tidak dapat diperhitungkan tingkat kejadiannya.

Iklim ekstrim yang terjadi tidak sedikit menyebabkan kerugian disektor pertanian di berbagai daerah. Curah hujan yang cukup tinggi pada musim hujan di beberepa lokasi di Indonesia telah menggenangi tanaman yang sedang tumbuh ataupun siap untuk dipanen. Disisi lain, pada musim kemarau terjadi kekeringan yang menyebabkan tanah tidak layak untuk ditanami. Parahnya, kejadian ini terjadi di banyak lokasi yang merupakan lumbung padi ataupun produk pertanian terbesar di Indonesia. Dilihat dari hal tersebut secara empiris dapat disimpulkan bahwa perubahan iklim memberikan dampak negatif terhadap pertanian di Indonesia.

Kesimpulan diatas tidaklah cukup mengingat pengaruh curah hujan yang terjadi secara berkelanjutan dengan suatu tren tertentu yang mungkin akan lebih cepat dan besar dampaknya di masa mendatang. Sejauh ini, studi maupun kajian yang sudah dilakukan di indonesia terkait dampak pengaruh curah hujan terhadap sektor pertanian masih terbatas pada penjabaran datadata aktual melalui statistika deskriptif. Mengingat kejadian tersebut merupakan suatu kejadian yang dinamis dengan dampak yang bervariasi sepanjang waktu, maka perlu dilakukan studi yang mampu memberikan informasi mengenai bagaimana dampak curah hujan terhadap sektor pertanian dari waktu ke waktu. Dalam bahasa statistika, diperlukan suatu model yang dapat menggambarkan dampak yang ditimbulkan oleh curah hujan terhadap sektor pertanian. Dengan demikian langkah

antistipatif dapat dilakukan guna mengurangi dampak negatif yang dapat mengancam ketahanan pangan di Indonesia.

1.2 Rumusan Masalah

Pengaruh curah hujan menjadi isu yang terus mendapatkan perhatian diberbagai sektor yang ditimbulkan. Salah satu sektor yang sangat dipengaruhi oleh curah hujan adalah sektor pertanian. Indonesia sebagai negara yang masih bergantung pada sektor pertanian, tentunya sangat bergantung pula pada curah hujan yang terjadi. Penelitian atau kajian yang pernah ada terkait dampak dari curah hujan terhadap sektor pertanian masih terbatas pada analisa data *cross section*, sehingga dampak dari pengaruh curah hujan dari waktu ke waktu masih belum teridentifikasi dengan baik. Penelitian ini menggunakan pendekatan ekonometrika dengan memanfaatkan data panel untuk dapat mengestimasi dampak pengaruh curah hujan terhadap produktivitas padi di provinsi Jawa Timur pada tahun 1997-2015.

1.3 Tujuan

Berdasarkan pada rumusan masalah yang telah diuraikan, maka tujuan penelitian ini adalah sebagai berikut.

- 1. Bagaimana karakteristik produktivitas tanaman padi dan curah hujan di provinsi Jawa Timur pada tahun 1997 hingga tahun 2015.
- 2. Bagaimana model yang mampu menggambarkan pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur pada tahun 1997 hingga tahun 2015.

1.4 Manfaat

Penelitian dampak curah hujan sangatlah dinamis dengan memperhatikan curah hujan berpengaruh pada banyak sektor. Pemerintah Indonesia sudah berkomitmen serius dalam mengatasi hal ini. Manfaat yang dapat diambil secara langsung dari penelitian ini terutama bagi Kementrian Pertanian Republik Indonesia adalah dengan diketahuinya model yang dapat mengestimasi perubahan iklim yang akan dialami. Sehingga langkah antisipasi untuk mencegah terjadinya ancaman terhadap

ketahanan pangan terutama tanaman padi menjadi lebih mudah dan lebih baik.

1.5 Batasan Masalah

Penelitian ini membatasi periode waktu yang digunakan adalah 18 tahun yang dimulai dari tahun 1997 hingga 2015 dengan setiap tahunnya dibagi menjadi tiga periode pengukuran yaitu pada bulan Januari sampai April sebagai periode pertama, bulan Mei sampai Agustus sebagai periode kedua, dan yang terakhir September sampai Desember sebagai periode ketiga. Periode tersebut didapatkan dari data sekunder yang diambil di Badan Pusat Statistika Jawa Timur. Penelitian ini menggunakan efek individu dan waktu dalam melakukan pemodelan regresi data panel.

BAB II TINJAUAN PUSTAKA

Pada bab ini akan disajikan tinjauan statistik dan non statistik yang akan digunakan pada penelitian ini, antara lain statistika deskriptif, regresi panel, metode estimasi model regresi panel, pemilihan model regresi panel, uji signifikansi parameter, uji asumsi IIDN, serta rangkuman penelitian yang sudah pernah dilakukan sebelumnya.

2.1 Regresi Panel

Regresi panel adalah analisa regresi yang menggunakan struktur data panel. Data panel merupakan gabungan dari data *cross section* (individual) dan *time series* (runtun waktu). Pada regresi linier menggunakan data *cross section* dalam melakukan analisa. Data tersebut merupakan beberapa unit individu yang diambil pada periode yang sama. Sedangkan data *time series* objek yang diobservasi merupakan beberapa unit individu yang diambil pada kurun waktu yang ditentukan. Berdasarkan hal tesebut, data panel merupakan gugusan data dengan beberapa unit individu yang sama dan diamati dalam kurun yang ditentukan. Secara singkat, data panel memiliki dimensi ruang dan waktu (Gujarati & Porter, 2015).

Menurut (Gujarati & Porter, 2015) data panel terbagi menjadi dua yaitu data panel seimbang (*balance panel*) dan data panel tidak seimbang (*unbalance panel*). Data panel dapat dikatakan seimbang jika masing-masing subjek (*cross section*) memiliki jumlah observasi yang sama dan ketika jumlah dari dari subjek memiliki jumlah yang berbeda maka disebut sebagai data panel tidak lengkap (*unbalance panel*).

Terdapat beberapa keuntungan menggunakan data panel (Gujarati & Porter, 2015) diantaranya adalah sebagai berikut.

- 1. Teknik estimasi data panel dapat mengatasi heterogenitas
- 2. Dengan menggabungkan antara observasi *croos section* dan *time series* data panel dapat memberi lebih banyak informasi, lebih banyak variasi, sedikit kolineritas

antarvariabel, lebih besar degree of freedom dan tentunya lebih efisien.

- 3. Dengan mempelajari data *croos section* yang berulang dari waktu ke waktu, data panel sangat cocok untuk mempelajari dinamika perubahan.
- 4. Data panel baik digunakan untuk mendeteksi dan mengukur dampak secara sederhana.
- 5. Data panel memudahkan untuk mempelajari model perilaku yang rumit.
- 6. Data panel dapat meminimumkan bias.

Persamaan model regresi dengan menggunakan data *cross* section adalah sebagai berikut

$$y_i = \alpha + \beta x_i + e_i \tag{2.1}$$

Denga nilai i = 1,2,...,N, dimana nilai N adalah banyak data. Sedangkan untuk persamaan data *time series* dapat ditulis sebagai berikut

$$y_{\cdot} = \alpha + \beta x_{\cdot} + e_{\cdot} \tag{2.2}$$

Dengan t = 1,2,...,T, dimana T adalah banyak data *time series*. Dari kedua persamaan diatas dapat dituliskan persamaan model regresi panel sebagai berikut.

$$y_{\mu} = \alpha_{\mu} + \beta x_{\mu} + e_{\mu} \tag{2.3}$$

2.1 Estimasi Model Regresi Panel

Dalam melakukan estimasi data panel akan ada beberapa kemungkinan yang terjadi. Hal ini disebabkan ketika menggunakan data panel akan menghasilkan instersep dan koefisien slope yang berbeda pada setiap unit individu dan setiap periode waktu. Kemungkinan yang akan muncul yaitu (Widarjono, 2017).

- Diasumsikan intersep dan slope adalah tetap sepanjang waktu dan unit individu serta perbedaan intersep dan slope dijelaskan oleh variabel gangguan
- 2. Diasumsikan slope adalah tetap dan intersep berbeda antar individu

- 3. Diasumsikan slope tetap dan intersep berbeda baik antar waktu maupun antar individu
- 4. Diasumsikan intersep dan slope berbeda antar individu
- 5. Diasumsikan intersep dan slope berbeda antar waktu dan individu.

Oleh karena itu terdapat beberapa metode yang biasa digunakan untuk mengestimasi model regresi data panel yaitu dengan pendekatan *Common Effect, Fixed Effect* dan *Random Effect*.

2.2.1 Common Effect Model

Common Effect Model merupakan metode estimasi data panel dengan mengombinasikan data time series dan croos section. Dengan hanya menggabungkan data tersebut maka tidak perlu melihat perbedaan waktu ataupun unit individu, maka bisa digunakan metode OLS dalam mengestimasi model data panel (Widarjono, 2017). Adapun persamaan model regresi yang didapat adalah sebagai berikut.

$$Y_{ii} = \alpha + \beta X_{ii} + e_{ii} \tag{2.4}$$

2.2.2 Fixed Effect Model

Fixed Effect Model merupakan metode data panel dengan mengasumsikan slope sama akan tetapi intersep berbeda. Dalam hal ini yang dibeda-bedakan adalah berdasarkan individu dan waktu (Setiawan & Kusrini, 2010).

a. Antar individu

Pada model ini diasumsikan bahwa tidak terdapat efek waktu tetapi terdapat efek yang berbeda antar individu. Sehingga model regresi yang digunakan adalah regresi dumi dengan model yang didapat adalah sebagai berikut

$$Y_{ij} = \alpha_{ij} + \beta X_{ij} + e_{ij} \tag{2.5}$$

Indeks i pada intersep α_i menunjukkan bahwa intersep dari masing-masing individu berbeda akan tetapi pada unit waktu konstan. Perbedaan tsebut biasa dinyatakan dengan dummy variabel.

b. Antar waktu

Pada model ini, diasumsikan bahwa tidak terdapat efek individu tetapi terdapat efek yang berbeda dari waktu. Adapun persamaan model regresi ini dapat ditulis sebagai berikut.

$$Y_{ii} = \alpha_i + \beta X_{ii} + e_{ii} \tag{2.6}$$

Indeks t pada intersep α_t menunjukan bahwa intesep dari masing-masing waktu berbeda, tetapi intersep untuk unit individu adalah konstan. Perbedaan intersept tersebut biasa dinyatakan sebagai nilai dummy.

c. Antar waktu dan antar individu

Pada model ini, diasumsikan bahwa terdapat efek yang berbeda dari waktu dan individu. Adapun persamaan regresi yang didapat adalah sebagi berikut.

$$Y_{ii} = \alpha_0 + \mu_i + \lambda_i + \beta X_{ii} + e_{ii}$$
 (2.7)

 μ_i Merupakan intersep untuk individu ke-i dan λ_i merupakan intersep untuk waktu ke-t. Perbedaan intersep tersebut dapat dinyatakan dengan variabel *dummy*.

Pada model FEM perbedaan intesep dinyatakan dalam variabel *dummy* sehingga dapat diestimasi menggunakan metode OLS untuk mendapatkan estimasi yang tidak bias dan konsiten (Nachrowi & Usman, 2006).

2.2.3 Random Effect Model

Random Effect Model merupakan metode estimasi model regresi data panel dengan menggunakan nilai error atau model secara acak. Hal ini digunakan untuk mengatasi permasalahan hilangnya derajat bebas dari model ketika menggunakan variabel tambahan (dummy) (Gujarati & Porter, 2015). Mengingat ada dua komponen error yaitu pada unit individu dan waktu, maka nilai error pada model REM perlu diuraikan menjadi error pada unit waktu dan individu serta error gabungan. Adapun persamaan model secara acak adalah sebagi berikut.

$$Y_{ii} = \alpha_0 + \beta X_{ii} + w_{ii} \tag{2.8}$$

Dimana $w_{it} = e_i + u_{it}$ dengan w_{it} adalah error gabungan yang terdiri dari e_i , yaitu merupakan komponen error unit individu dan u_{it} merupakan komponen error gabungan unit individu dan waktu dengan asumsi sebagai berikut.

$$e_i \approx N(0, \sigma_e^2) \tag{2.9}$$

$$u_{it} \approx N\left(0, \sigma_u^2\right) \tag{2.10}$$

$$E(e_i u_{ii}) = 0; E(e_i e_j) = 0; (i \neq j)$$
 (2.11)

$$E(u_{ii}u_{is}) = E(u_{ij}u_{ij}) = E(u_{ii}u_{js}) = 0; (i \neq j; t \neq s)$$
 (2.12)

2.3 Pemilihan Estimasi Model Regresi Data Panel

Untuk mengetahui model yang akan dipakai, maka terlebih dahulu dilakukan uji spesifikasi model sebagai berikut.

2.3.1 Uji Chow

Uji Chow digunakan untuk mengetahui apakah regresi data panel dengan model FEM lebih baik dari model CEM. Uji Chow ini mirip dengan uji F (Widarjono, 2017). Hipotesis yang digunakan dalam pengujian ini adalah sebagai berikut.

$$H_0$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_N = 0$ (Model CEM)

 H_1 : Paling sedikit ada satu $\alpha_i \neq \alpha_j$ dengan i,j=1,2,...,N (Model FEM)

Statistik Uji

$$F_{hitung} = \frac{\left(R_{FEM}^2 - R_{CEM}^2\right) / (N-1)}{\left(1 - R_{FEM}^2\right) / (NT - N - k)}$$
(2.13)

Dimana,

$$R_{CEM}^2 = \frac{SSR_{CEM}}{SST_{CEM}} \times 100\% \tag{2.14}$$

$$R_{CEM}^{2} = \frac{\sum (\widehat{Y}_{CEM} - \overline{Y}_{CEM})^{2}}{\sum (Y_{CEM} - \overline{Y}_{CEM})^{2}} \times 100\%$$
 (2.15)

$$R_{CEM}^2 = \frac{SSR_{FEM}}{SST_{FEM}} \times 100\% \tag{2.16}$$

$$R_{CEM}^{2} = \frac{\sum (\widehat{Y}_{FEM} - \overline{Y}_{FEM})^{2}}{\sum (Y_{FEM} - \overline{Y}_{FEM})^{2}} \times 100\%$$
 (2.17)

Keterangan:

 R_{CEM}^2 = R-Square model CEM

 R_{FEM}^2 = R-Square model FEM

SSR = Jumlah Kadrat Regresi
SST = Jumlah Kuadrat Total
N = jumlah unit Cross Section
T = jumlah unit time series

K = jumlah parameter yang akan di estimasi (Variabel

prediktor)

 $Daerah \quad penolakan: \quad tolak \quad H_0 \quad jika \quad F_{\text{hitung}} > F_{\alpha;(N-1,NT-N-k)}$ (Asteriou & Hall, 2017).

2.3.2 Uji Lagrange Multiplier

Uji signifikan *Random effect* digunakan untuk mengetahui apakah *Random Effect* lebih bagus dari pada *Common Effect Model*, maka digunakan uji Lagrange Multiplier (LM). Pengujian ini di dasarkan pada nilai residual pada metode OLS. Adapun hipotesis dari pengujian *Lagrange Multiplier* adalah sebagai berikut.

 H_0 : $\sigma_i^2 = 0$ (Model CEM)

 H_0 : $\sigma_i^2 \neq 0$ (Model REM)

Statistik Uji

$$LM = \frac{NT}{2(T-1)} \left[\frac{\sum_{i=1}^{n} (T\hat{e}_{it})^{2}}{\sum_{i=1}^{N} \sum_{t=1}^{T} \hat{e}_{it}^{2}} - 1 \right]^{2}$$
(2.18)

Dengan $\hat{e}_{it} = Y_{it} - \hat{Y}_{it}$

Keterangan:

N = jumlah unit individu (Cross Section)

T = jumlah periode waktu (Time Series)

 \hat{e}_{it} = residual yang didapatkan dari metode OLS (CEM)

Daerah penolakan: tolak H₀ jika $LM > \chi^2_{\alpha:k}$ (Widarjono, 2017)

2.3.3 Uji Hausman

Uji Hausman bertujuan untuk memilih model terbaik antara FEM dan REM (Widarjono, 2017). Metode ini digunakan untuk menguji apakah ada hubungan antara nilai *error* pada model ada hubunga dengan variabel prediktor. Hipotesis yang digunakan dalam pengujian ini adalah sebagai berikut.

Hipotesis

 H_0 : $corr(X_u, e_u) = 0$ (Model FEM)

 $H_1: corr(X_{ii}, e_{ii}) \neq 0$ (Model REM)

Statistik Uji:

Statistik uji yang digunakan adalah uji *Chi-Square* berdasarkan kriteria wald, yaitu.

$$H = \hat{q} \operatorname{var}(\hat{q})^{-1} \hat{q} \tag{2.19}$$

Dengan memasukan nilai $\hat{q} = (\hat{\beta}_{FE} - \hat{\beta}_{RE})$ dan $var(\hat{q}) = var(\hat{\beta}_{FE}) - var(\hat{\beta}_{RE})$, maka didapatkan nilai uji statistik sebegai berikut.

$$H = (\hat{\beta}_{FE} - \hat{\beta}_{RE}) \left[\operatorname{var}(\hat{\beta}_{FE}) - \operatorname{var}(\hat{\beta}_{RE}) \right]^{-1} (\hat{\beta}_{FE} - \hat{\beta}_{RE}) \quad (2.20)$$

Keterangan:

 $\hat{\beta}_{FE}$ = estimasi parameter FEM

 $\hat{\beta}_{RE}$ = estimasi parameter REM

Daerah penolakan: tolak H_0 jika $H > \chi^2_{\alpha;k}$ (Widarjono, 2017).

2.4 Pengujian Parameter Model Regresi Panel

Pengujian parameter model regresi panel dalam penelitian ini menggunakan pengujian parsial atau pengujian secara individu. Pengujian ini digunakan untuk mengetahui pengaruh variabel prediktor terhadap variabel respon (Drapper & Smith, 1998). Hipotesis yang digunakan dalam penelitaian ini adalah sebagai berikut.

Hipotesis

 H_0 : $\beta_i = 0$

 $H_0: \beta_i \neq 0$ untuk $i = 1, 2, \dots, k$

Statistik Uji:

$$t_{hitung} = \frac{\hat{\beta}_i}{se(\hat{\beta}_i)}$$
 (2.21)

Dengan
$$se(\hat{\beta}_i) = \sqrt{(\mathbf{x}^T \mathbf{x})^{-1} \sigma^2}$$

Daereah penolakan H₀ adalah jika $|t| > t_{\frac{\alpha}{2}(NT-(k+1))}$

2.5 Pengujian Asumsi Residual IIDN

Pengujian asumsi ini dilakukan untuk melihat kebaikan model yang didapatkan dari model estimasi. Pengujian ini meliputi uji asumsi residual identi, uji asumsi residual independen, dan uji residual berdistribusi normal. Berikut adalah pengujian tersebut.

2.5.1 Pengujian asumsi residual identik

Pengujian ini dilakukan untuk mengetahui homogenitas dari varians. Varians dari variabel gangguan adalah konstan

(homoskedastisitas) atau disebut juga identik. Apabila terjadi kasus heteroskedastisitas, maka pengira kuadrat terkecil tetap tak bias dan konsisten, tetapi tidak efisien (variansi membesar). Dampak dari membesarnya variansi adalah pengujian parameter regresi dengan statistik uji t menjadi tidak valid dan selang kepercayaan untuk parameter regresi cenderung melebar (Gujarati & Porter, 2015). Hipotesis yang digunakan dalam asumsi residual identik adalah sebagai berikut

Hipotesisi

$$H_0: \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \dots = \sigma_n^2 = \sigma^2$$

 H_1 : minimal ada satu $\sigma_i^2 \neq \sigma_i^2$ dimana $i \neq j$

Pengujian yang digunakan untuk mendeteksi heteroskedastisitas adalah uji Park. Uji Park mengasumsikan bahwa σ_i^2 merupakan fungsi dari variabel prediktor X. Jika $\boldsymbol{\beta}$ signifikan artinya terdapat heteroskedastisitas. Tahap untuk melakukan uji Park yaitu

- a. Meregresikan Y terhadap X dengan metode kuadrat terkecil, seta mendapatkan nilai e_i dan e_i^2 .
- b. Meregresikan e_i^2 dengan X menggunakan model $\ln \sigma_i^2 = \ln \sigma + \beta X_i + v.$

Statistik Uji

$$t_{hittung} = \frac{\hat{\beta}_i}{se(\hat{\beta}_i)}$$
 (2.21)

Dengan:
$$se(\widehat{\beta}_i) = \sqrt{(\mathbf{x}^T \mathbf{x})^{-1} \sigma^2}$$

Daereah penolakan H₀ adalah jika $|t| > t_{\frac{\alpha}{2}(NT-(k+1))}$

2.5.2 Pengujain asumsi residual independen

Pengujian ini dilakukan untuk mengetahui autokorelasi yang sering muncul pada data time series. Autokorelasi dalam konsep regresi linier berarti komponen error berkorelasi berdasarkan urutan waktu (pada data berkala) atau urutan ruang (pada data tampang lintang), atau korelasi pada dirinya sendiri. Apabila asumsi independen (tidak autokorelasi) tidak terpenuhi, maka metode estimasi dengan OLS tetap tidak bias dan konsisten, tetapi tidak lagi efisien karena variansi membesar. Cara mendeteksi autokolerasi menggunakan uji Durbin-Watson (Gujarati & Porter, 2015).

Hipotesis

 $H_0: E(\varepsilon_i, \varepsilon_j) = 0; i = j$ (tidak terjadi kasus otokolerasi)

 $H_1: E(\varepsilon_i, \varepsilon_i) \neq 0; i \neq j$ (terjadi kasus otokolerasi.)

Statistik Uji

$$d = \frac{\sum_{t=2}^{n} (\hat{u}_{t} - \hat{u}_{t-1})^{2}}{\sum_{t=2}^{n} \hat{u}_{t}^{2}}$$
(2.17)

Aturan pengambilan keputusan adalah sebagai berikut.

 $0 < d < d_L$ Tolak H₀ (Ada autokolerasi posistif

 $d_L < d < d_U$ Tidak ada keputusan

 $d_u < d < 4 - d_u$ Gagal tolak H₀

 $4 - d_{II} < d < 4 - d_{I}$ Tidak ada keputusan

 $4 - d_L < d < 4$ Tolak H₀ (Ada Autokolerasi negative)

2.5.3 Pengujian asumsi residual berdistribusi normal

Pemeriksaan asumsi residual berdistribusi normal digunakan untuk mendeteksi kenormalan residual. Asumsi distribusi normal dapat diketahui dengan uji Kolmogorov Smirnov, yaitu dengan melihat nilai D_{hitung} (Daniel, 1989). Hipotesis dari pengujian ini adalah sebagai berikut:

 $H_0: F(x) = F_0(x)$ Residual berdistribusi normal

 $H_0: F(x) \neq F_0(x)$ Residual tidak berdistribusi normal Statistik uji.

$$D = \sup_{x} |S(x) - F_0(x)|$$
 (2.18)

 $F_0(\mathbf{x}) = \text{Distribusi komulatif}$

S(x) = Distribusi sampel

Daerah kritis: Tolak H_0 jika nilai $D_{hitung} < D_{\alpha}$

2.6 Penelitian Sebelumnya

Sebelum penelitian ini dilakukan, telah dilakukan penelitian-penelitian sebelumnya mengenai dampak perubahan iklim adalah sebagai berikut yang disajikan dalam Tabel 2.1.

Tabel 2.1 Penelitian Dampak Perubahan Iklim

No	Nama Peneliti	Judul Penelitian	Variabel Penelitian	Hasil
1	Doni Silalahi,	Analisis Ketahanan	Y: Rasio ketersediaan beras	Seluruh variabel bebas yaitu
	Rachmad	Pangan Provinsi Sumatera	X1: Stok beras	stok beras, luas areal panen
	Sitepu, Gim	Utara Dengan Metode	X2: Luas areal panen padi	padi, produktivitas lahan,
	Tarigan (2014)	Regresi Data Panel	X3: Produktivitas Lahan	jumlah konsumsi beras dan
			X4: Jumlah konsumsi beras	harga beras berpengaruh
			X5: Harga beras	secara individu maupun
			-	secara keseluruhan terhadap
				rasio ketersediaan beras
2	Ruminta	Analisis Penurunan	Curah hujan, suhu udara, pola	Dampak perubahan iklim di
	(2016)	Produksi Tanaman Padi	tanam, sumber daya air	kabupaten Bandung sudah
		Akibat Perubahan Iklim	(irigasi), tata guna lahan	dirasakan oleh masyarakat
		Dikabupaten Bandung	pertanian, ketinggian tempat,	yang diindikasikan oleh
		Jawa Barat	dan data sosial ekonomi.	bergesernya musim tanam
			Konversi lahan sawah, dan luas	dan panen, luas panen. luas
			lahan panen, banjir, kekeringan,	lahan, penurunan
			ledakan hama penyakit	produktivitas, dan produksi
			produktivitas tanaman padi,	tanaman padi dibeberapa
			gagal tanam yang dianalisis	lahan sawah tadah hujan
			secara deskriptif	dan sawah setengah irigasi

Tabel 2.1 Penelitian Dampak Perubahan Iklim (Lanjutan)

No	Nama Peneliti	Judul Penelitian	Variabel Penelitian	Hasil
3	Taufiqi Yuliawan (2012)	Pengaruh Kenaikan Suhu Terhadap Produksi Tanaman Padi Sawah Irigasi Dan Tadah Hujan Di Indonesia Menggunakan Model Simulasi Pertanian Sheirary Rice Berbasiskan Sistem Informasi Geografis (SIG)	Intrapolasi curah hujan, peta jenis sawah irigasi dan tadah hujan yang dianalisa secara deskriptif	Produksi padi akan mengalami penurunan akibat kenaikan suhu udara. Dataran rendah akan megalami penurunan produksi padi yang lebih besar dibandingkan dataran tinggi akibat kenaikan suhu. produksi padi nasional pada sawah irigasi mengalami penurunan 11.1%. Sedangnkan padi sawah tadah hujan mengalami penurunan sebesar 14.4% untuk setiap kenaikan suhu udara 1 Celcius.
4	Feni Kurniawan (2011)	Dampak Perubahan Iklim Terhadap Pendapatan Dan Faktor-Faktor Penentu Adaptasi Petani Terhadap Perubahan Iklim	Produksi tanaman pangan, luas area panen, produktivitas tanaman pangan, curah hujan dan suuhu udara. Yang dianalisa secara deskriptif dan regresi logistik	Rendahnya pemahaman petani terhadap perubahan iklim disebabkan kurangnya informasi dan sumber pengetahuan mengenai perubahan iklim. Hal ini menyebabkan kecenderungan adaptasi petani terhadap iklim masih kecil.

(Halaman ini sengaja dikosongkan)

BAB III METODOLOGI PENELITIAN

Pada bab ini akan disajikan sumber data, variabel penelitian beserta definisi operasional, langkah analisis, dan diagram alir yang digunakan dalam penyusunan penelitian ini.

3.1 Sumber data

Data yang digunakan pada penelitian merupakan data sekunder. Data produktivitas tanaman padi merupakan variabel respon yang diperoleh dari Badan Pusat Statistika Jawa Timur. Sedangkan variabel prediktor pada penelitian ini merupakan data curah hujan. Data ini diperoleh dari publikasi BMKG yang tersedia secara online di www.dataonline.bmkg.go.id. Jumlah data yang diolah adalah data dari tahun 1997-2015. Mengingat kedua data tersebut adalah data sekunder, maka sebelum melakukan analisis terlebih dahulu dilakukan proses penyesuaian dari kedua data tersebut. Penyesuaian yang dilakukan adalah dengan menjadikan setiap pengamatan sesuai dengan periode pertama bulan Januari hingga bulan Apri, periode kedua bulan Mei hingga bulan Agustus dan periode ketiga bulan September hingga bulan Desember. Struktur data yang digunakan dalam penelitian ini disajikan dalam Table 3.1 sebagai berikut.

Variabel Prediktor Varibel Respon Objek Periode **(Y) (X)** ke-1 1997 Y(1;SM Ke-1 1997) X(1;SM Ke-1 1997) ke-2 1997 Y(1:SM Ke-2 1997) X(1:SM Ke-2 1997) ke-3 1997 X(1;SM Ke-3 1997) Y(1:SM Ke-3 1997) ke-1 1998 Y(1:SM Ke-1 1998) X(1;SM Ke-1 1998) Kab./Kota 1 ke-2 1998 Y(1:SM Ke-2 1998) X(1:SM Ke-2 1998) ke-3 1998 Y(1:SM Ke-3 1998) X(1;SM Ke-3 1998)

Y(1:SM Ke-1 2015)

X(1;SM Ke-1 2015)

ke-1 2015

Tabel 3.1 Struktur Data

Tabel 3.1 Struktur Data

	Tabel	3.1 Struktur Data	
Objek	Periode	Varibel Respon (Y)	Variabel Prediktor (X)
Kab/Kota 1	ke-2 2015	$Y_{(1;SM \ Ke-2 \ 2015)}$	$X_{(1;SM \ Ke-2 \ 2015)}$
Kao/Kota 1	ke-3 2015	Y(1;SM Ke-3 2015)	X(1;SM Ke-3 2015)
	ke-1 1997	$Y_{(2;SM \text{ Ke-1 1997})}$	$X_{(2;SM \text{ Ke-1 } 1997)}$
	ke-2 1997	$Y_{(2;SM\;Ke\text{-}2\;1997)}$	$X_{(2;SM \ Ke-2 \ 1997)}$
	ke-3 1997	Y(2;SM Ke-3 1997)	X(2;SM Ke-3 1997)
	ke-1 1998	$Y_{(2;SM \ Ke-1 \ 1998)}$	$X_{(2;SM \ Ke-1 \ 1998)}$
Kab./Kota 2	ke-2 1998	Y(2;SM Ke-2 1998)	$X_{(2;SM \text{ Ke-2 } 1998)}$
Kau./Kuta 2	ke-3 1998	Y(2;SM Ke-3 1998)	X(2;SM Ke-3 1998)
	:	:	:
	ke-1 2015	$Y_{(2;SM \text{ Ke-1 } 2015)}$	$X_{(2;SM \text{ Ke-1 } 2015)}$
	ke-2 2015	$Y_{(2;SM\ \text{Ke-}2\ 2015)}$	$X_{(2;SM \text{ Ke-}2\ 2015)}$
	ke-3 2015	$Y_{(2;SM\ \text{Ke-3 }2015)}$	$X_{(2;SM \text{ Ke-3 } 2015)}$
	ke-1 1997	Y(3;SM Ke-1 1997)	X(3;SM Ke-1 1997)
	ke-2 1997	Y(3;SM Ke-2 1997)	X(3;SM Ke-2 1997)
	ke-3 1997	Y(3;SM Ke-3 1997)	X(3;SM Ke-3 1997)
	ke-1 1998	Y(3;SM Ke-1 1998)	$X_{(3;SM \text{ Ke-1 1998})}$
Kab./Kota 3	ke-2 1998	Y(3;SM Ke-2 1998)	$X_{(3;SM \text{ Ke-2 1998})}$
Nau./Nota 3	ke-3 1998	Y(3;SM Ke-3 1998)	X(3;SM Ke-3 1998)
	:	:	:
	ke-1 2015	Y(3;SM Ke-1 2015)	$X_{(3;SM \text{ Ke-1 } 2015)}$
	ke-2 2015	$Y_{(3;SM\;Ke\text{-}2\;2015)}$	$X_{(3;SM\ Ke-2\ 2015)}$
	ke-3 2015	Y(3;SM Ke-3 2015)	X(3;SM Ke-3 2015)
	ke-1 1997	Y(4;SM Ke-1 1997)	X(4;SM Ke-1 1997)
Kab./Kota 4	ke-2 1997	Y(4;SM Ke-2 1997)	$X_{(4;SM \text{ Ke-2 1997})}$
	ke-3 1997	Y(4;SM Ke-3 1997)	X(4;SM Ke-3 1997)

Tabel 3.1 Struktur Data (Lanjutan)

Objek	Periode	Varibel Respon (Y)	Variabel Prediktor (X)
	ke-1 1998	Y _(4;SM Ke-1 1998)	X(4;SM Ke-1 1998)
	ke-2 1998	Y(4;SM Ke-2 1998)	X(4;SM Ke-2 1998)
	ke-3 1998	$Y_{(4;SM\;Ke\text{-}3\;1998)}$	X(4;SM Ke-3 1998)
Kab./Kota 4	:	:	:
	ke-1 2015	$Y_{(4;SM\;Ke\text{-}1\;2015)}$	$X_{(4;SM\ Ke-1\ 2015)}$
	ke-2 2015	Y(4;SM Ke-2 2015)	X(4;SM Ke-2 2015)
	ke-3 2015	$Y_{(4;SM\;Ke\text{-}3\;2015)}$	$X_{(4;SM\ Ke-3\ 2015)}$
	ke-1 1997	Y(5;SM Ke-1 1997)	X(5;SM Ke-1 1997)
	ke-2 1997	Y(5;SM Ke-2 1997)	X(5;SM Ke-2 1997)
	ke-3 1997	Y(5;SM Ke-3 1997)	X(5;SM Ke-3 1997)
	ke-1 1998	Y(5;SM Ke-1 1998)	X(5;SM Ke-1 1998)
TZ 1 /TZ	ke-2 1998	Y(5;SM Ke-2 1998)	X(5;SM Ke-2 1998)
Kab./Kota 5	ke-3 1998	Y(5;SM Ke-3 1998)	X(5;SM Ke-3 1998)
	:	:	:
	ke-1 2015	$Y_{(5;SM\ Ke\text{-}1\ 2015)}$	$X_{(5;SM\ Ke-1\ 2015)}$
	ke-2 2015	$Y_{(5;SM\ \text{Ke-}2\ 2015)}$	$X_{(5;SM \text{ Ke-2 } 2015)}$
	ke-3 2015	Y(5;SM Ke-3 2015)	X(5;SM Ke-3 2015)
	ke-1 1997	Y(6;SM Ke-1 1997)	X(6;SM Ke-1 1997)
	ke-2 1997	Y _(6;SM Ke-2 1997)	$X_{(6;SM\ Ke-2\ 1997)}$
	ke-3 1997	Y(6;SM Ke-3 1997)	X(6;SM Ke-3 1997)
TZ 1 /TZ	ke-1 1998	Y _(6;SM Ke-1 1998)	X _(6;SM Ke-1 1998)
Kab./Kota 6	ke-2 1998	Y(6;SM Ke-2 1998)	X(6;SM Ke-2 1998)
	ke-3 1998	Y _(6;SM Ke-3 1998)	X _(6;SM Ke-3 1998)
	:	:	:
	ke-1 2015	Y _(6;SM Ke-1 2015)	X _(6;SM Ke-1 2015)

Tabel 3.1 Struktur Data (Lanjutan)

Objek	Periode	Varibel Respon (Y)	Variabel Prediktor (X)
V-1-/V-4- C	ke-2 2015	Y(6;SM Ke-2 2015)	X(6;SM Ke-2 2015)
Kab/Kota 6	ke-3 2015	$Y_{(6;SM \text{ Ke-3 2015})}$	X(6;SM Ke-3 2015)
	ke-1 1997	Y(7;SM Ke-1 1997)	X(7;SM Ke-1 1997)
	ke-2 1997	Y _(7;SM Ke-2 1997)	X(7;SM Ke-2 1997)
	ke-3 1997	Y(7;SM Ke-3 1997)	X(7;SM Ke-3 1997)
	ke-1 1998	Y(7;SM Ke-1 1998)	X(7;SM Ke-1 1998)
W-1- /W-4- 7	ke-2 1998	Y(7;SM Ke-2 1998)	X(7;SM Ke-2 1998)
Kab./Kota 7	ke-3 1998	Y(7;SM Ke-3 1998)	X(7;SM Ke-3 1998)
	• •	:	:
	ke-1 2015	$Y_{(7;SM \ Ke-1 \ 2015)}$	$X_{(7;SM \text{ Ke-1 } 2015)}$
	ke-2 2015	$Y_{(7;SM \ Ke-2 \ 2015)}$	$X_{(7;SM\ Ke-2\ 2015)}$
	ke-3 2015	Y _(7;SM Ke-3 2015)	$X_{(7;SM \text{ Ke-3 } 2015)}$

Adapun Kabupaten/Kota yang dijadikan sebagai objek penelitian berasal dari Provinsi Jawa Timur disajikan pada table sebagai berikut.

Tabel 3.2 Kabupaten/Kota yang diamati

No	Kabupaten/Kota	Stasiun
1	Malang	Stasiun Geofisika Karang Kates
1		Stasiun Klimatologi Karang Ploso
2	Pasuruan	Stasiun Geofisika Tretes
3	Gresik	Stasiun Meteorologi Sangkapura
4	Banyuwangi	Stasiun Meteorologi Banyuwangi
5	Sidoarjo	Stasiun Meteorologi Juanda
6	Sumenep	Stasiun Meteorologi Kalianget
7	Ngajuk	Stasiun Geofisika Sawahan

3.2 Variabel Penelitian

Variabel penelitian yang digunakan dalam penelitian ini disajikan dalam Table 3.3 sebagai berikut.

Tabel 3.3 Variabel Penelitian

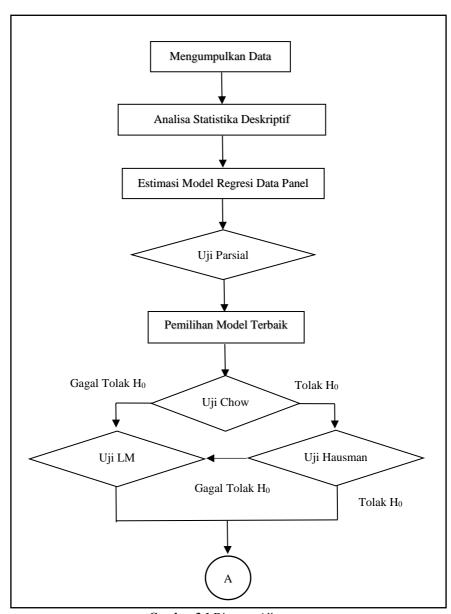
Variabel	Keterangan	Skala	Satuan
Y	Produktivitas tanaman padi	Rasio	Ton/Hektar
X	Curah hujan	Rasio	mm^3

Definisi operasional dari varibel produktivitas tanaman padi dan curah hujan adalah sebagai berikut.

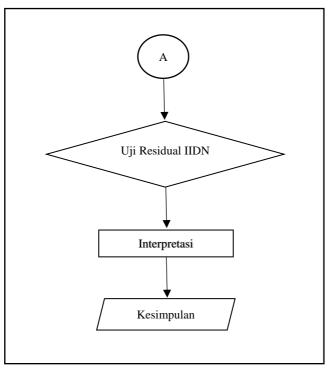
a. Produktivitas tanaman padi

Produktivitas tanaman padi merupakan hasil perhitungan dari jumlah produksi tanaman padi (ton) yang dibagi oleh luas lahan (hektar) yang bisa dipanen pada kabupaten atau kota dalam periode waktu tertentu (BPS, 2015).

b. Curah hujan


Data curah hujan merupakan data jumlah curah hujan setiap kabupaten atau kota dalam periode tertentu. Curah hujan sendiri dihitung dengan satuan milimeter kubik (mm³) yaitu tinggi air yang tertampung pada area seluas 1 meter persegi (m²) (BMKG, 2015).

3.3 Langkah Analisis


Langkah analisis yang digunakan dalam penelitian adalah sebagai berikut.

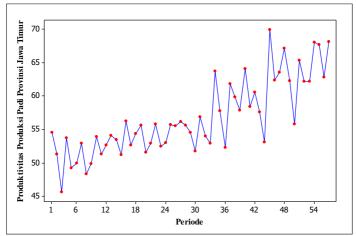
- 1. Mengumpulkan data produktifitas produksi padi dan curah hujan Jawa Timur pada periode 1997-2015.
- 2. Untuk menjawab rumusan masalah yang pertama, maka dilakukan analisa statistika deskriptif pada data produktivitas produksi padi dan curah hujan.
- 3. Untuk menjawab rumasan masalah yang kedua, maka dilakukan langkah-langkah sebagai berikut.
- a. Melakukan estimasi model regresi panel dengan menggunakan metode *Common Effect Model* (CEM).
- b. Melakukan estimasi model regresi panel dengan menggunakan metode *Fixed Effect Model* (FEM).

- c. Melakukan estimasi model regresi panel dengan menggunakan metode *Rommon Effect Model* (REM).
- d. Melakukan pemilihan estimasi model regresi panel dengan menggunakan Uji Chow. Jika keputusannya adalah H₀ gagal ditolak maka model yang terpilih adalah model CEM dan dilanjutkan ke langkah f. Namun jika keputusannya adalah H₀ ditolak maka model yang terpilih adalah model FEM dan dilanjutkan ke langkah e.
- e. Melakukan pemilihan estimasi model regresi panel dengan menggunakan Uji Hausman. Jika keputusannya H₀ gagal ditolak maka model yang terpilih adalah model FEM dan dilanjutkan ke langkah f. Namun apabila keputusannya adalah H₀ ditolak maka model yang digunakan adalah model REM.
- f. Melakukan pemilihan estimasi model regresi panel dengan menggunakan Uji Lagrange Multiplier. Jika keputusannya H₀ gagal ditolak maka model yang digunakan adalah model CEM. Namun apabila keputusannya adalah H₀ ditolak maka model yang digunakan adalah model REM.
- g. Melakukan pengujian signifikansi parameter regresi panel secara parsial untuk melihat apakah variabel prediktor berpangaruh signifikan terhadap variabel respon.
- h. Melakukan pengujian asumsi residual IIDN.
- i. Mendapatkan estimasi model regresi panel dan menginterpretasikannya.
- j. Membuat kesimpulan.
 Langkah analisis diatas dapat ditunjukan pada diagram alir sebagai berikut.

Gambar 3.1 Diagram Alir

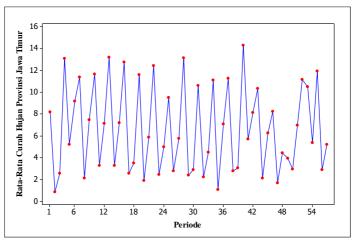
Gambar 3.1 Diagram Alir (Lanjutan)

BAB IV ANALISIS DAN PEMBAHASAN


Pada bab ini akan dilakukan analisis dan pembahasan untuk menjawab permasalahan serta mencapai tujuan dari penelitian ini. Bab ini mensajikan karakteristik produktivitas produksi padi di Jawa Timur dengan periode pertama yaitu Januari sampai April, periode kedua yaitu Mei sampai Agustus dan periode September sampai Desember pada tahun 1997 hingga tahun 2015 serta faktor yang diduga mempengaruhinya. Selain itu, juga akan disajikan pemodelan data panel yang dimulai dengan pemilihan estimasi model, pengujian signifikan parameter, uji asumsi IIDN hingga estimasi model regresi data panel.

4.1 Karakteristik Produktivitas Produksi Padi dan Faktor yang Diduga Mempengaruhinya

Statistika deskriptif digunakan untuk menyajikan data yang telah dikumpulkan sehingga dapat memberikan informasi atau karakteristik mengenai data tersebut. Penelitian kali ini menyajikan produktivitas padi dan curah hujan sebagai faktor yang diduga berpengaruh dalam bentuk *time series plot* dan *bar chart* sehingga dapat memberikan gambaran umum mengenai produktivitas produksi padi dan curah hujan di Provinsi Jawa Timur.

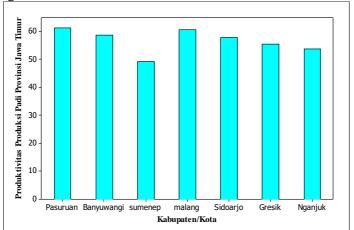

4.1.1 Produktivitas Produksi Padi dan Rata-Rata Curah Hujan Tahun 1997 sampai 1998.

Produktivitas produksi padi dan rata-rata curah hujan di Provinsi Jawa Timur yang dimulai pada tahun 1997 hingga tahun 2015 dengan periode pertama yaitu Januari sampai April, periode kedua yaitu Mei sampai Agustus dan periode September sampai Desember perkembangannya akan disajikan dengan menggunaan time series plot. Time series plot tersebut akan disajikan pada Gambar sebagai berikut.

Gambar 4.1 Produktivitas Produksi Padi di Provinsi Jawa Timur Tahun 1997 hingga Tahun 2015

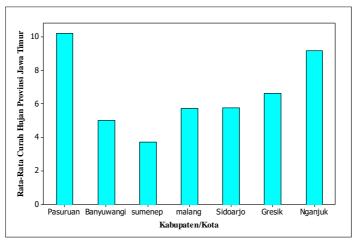
Gambar 4.1 menunjukan bahwa produktivitas produksi padi di Provinsi Jawa Timur bervariasi tapi secara visual dapat dilihat dari perkembangan setiap periode hampir mengalami kenaikan. Terlihat pada gambar tersebut produktivitas produksi padi paling tinggi terjadi pada periode September sampai Desember ditahun 2011 yaitu mencapai 69,90 persen. Sedangkan untuk produktivitas produksi padi dengan nilai terendah terjadi pada periode September sampai Desember tahun 1997 dengan nilai mencapai 45,70 persen. Untuk mengetahui salah satu faktor yang diduga berpengaruh terhadap variasi produktivitas produksi padi di provinsi Jawa timur, maka disajikan pula karakteristik curah hujan di provinsi Jawa Timur pada tahun 1997 sampai tahun 2015.

Gambar 4.2 Rata-Rata Curah Hujan di Provinsi Jawa Timur Pada Tahun 1997 hingga Tahun 2015


Gambar 4.2 menunjukan bahwa rata-rata cura hujan di Provinsi Jawa Timur. Pada gambar tersebut terlihat rata-rata curah hujan paling tinggi terjadi pada periode Januari sampai April ditahun 2010 yaitu mencapai 14,3123 milimeter kubik. Sedangkan untuk rata-rata curah hujan dengan nilai terendah terjadi pada periode Mei-Agustus tahun 1997 degan nilai mencapai 0.8859 milimeter kubik. Selain itu, dapat diketahui juga rata-rata curah hujan terjadi penigkatan di periode pertama yaitu bulan Januari sampai bulan April dan rata-rata curah hujan akan terjadi penurunan pada periode kedua yaitu bulan Mei sampai bulan Agustus. Peningkatan dan penurunan tersebut terjadi dimulai dari tahun 1997 hingga tahun 2015. Hal ini menujukkan periode musim yang terjadi di Provinsi Jawa Timur. Akan tetapi, pada periode pertama di tahun 2012 terjadi penurunan rata-rata curah hujan dan berbeda dengan pariode ditahun sebelumnya.

4.1.2 Produktivitas Produksi Padi dan Curah Hujan pada Provinsi Jawa Timur Bedasarkan Kabupaten/Kota.

Produktivitas produksi padi dan curah hujan di Kabupaten/Kota di provinsi Jawa Timur akan disajikan dengan menggunakan *bar chart* untuk menggambarkan karakteristik dari


produktivitas produksi padi dan curah hujan di Kabupaten/Kota di Provinsi Jawa Timur. *Bar chart* tersebut disajikan pada gambar

sebagai berikut.

Gambar 4.3 Produktivitas Produksi Padi setiap Kabupaten/Kota di Provinsi Jawa Timur Tahun 1997 hingga Tahun 2015

Gambar 4.3 menunjukkan bahwa produktivitas produksi padi di Kabupaten Sumenep pada tahun 1997 sampai tahun 2015 memperoleh nilai terendah yaitu sebesar 49,31 ton/hektar. Sedangkan produktivitas produksi padi tertinggi berada di Kabupaten Pasuruan sebesar 61,33 ton/hektar. Untuk mengetahui karakteristik faktor yang diduga berpengaruh terhadap produtivitas produksi padi, maka disajikan bar chart untuk mengambarkan karaktistik curah hujan di Kabupaten/Kota provinsi Jawa Timur.

Gambar 4.4 Rata-Rata Curah Hujan di Kabupaten/Kota Provinsi Jawa Timur Pada Tahun 1997 hingga Tahun 2015

Gambar 4.4 menunjukkan bahwa rata-rata curah hujan di Kabupaten Sumenep pada tahun 1997 sampai tahun 2015 memperoleh nilai terendah dibandingkan dengan kabupaten lainnya yaitu sebesar 3,7 milimiter kubik. Sedangkan Kabupaten Pasuruan memiliki rata-rata curah hujan tertinggi dibandingkan dengan kabupaten lainnya yaitu sebesar 10,2 milimter kubik dari tahun 1997 sampai tahun 2015.

4.2 Pemodelan Produktivitas Produksi Padi di Provinsi Jawa Timur

Pemodelan produktivitas produksi padi menggunakan regresi data panel. Pemodelan ini menggunakan variabel produktivitas produksi padi sebagai variabel respon dan variabel curah hujan sebagai variabel prediktor. Berikut adalah analisis regresi data panel untuk mengetahui apakah variabel curah hujan berpengaruh terhadap produktivitas produsi padi dengan menggunakan efek individu dan waktu.

4.2.1 Estimasi model regresi data panel

1. Common Effect Model

Model CEM hanya menggabungkan data *time series* dan *cross section* tanpa melihat perbedaan antar waktu dan individu.

Model ini mengasumsikan bahwa perilaku data antar Kabupaten/Kota di provinsi Jawa Timur sama dalam kurun waktu pengamatan. Beikut merupakan pengujian signifikan dan model CEM untuk produktivitas produksi padi di provinsi Jawa timur disajikan pada tabel 4.1.

Tabel 4.1 Üji Signifikan antara Produktivitas Padi dan Rata-Rata Curah Hujan dengan menggunakan CEM

Variabel	Coefficient	t-hitung	t-tabel	P-Value	Keputusan
С	55.30448	86,959	1,966	0,0000	H ₀ ditolak
Curah Huian	0.221242	3,0317	1,966	0,0026	H ₀ ditolak

Tabel 4.1 menujukan hasil dari pengujian secara parsial dapat disimpulkan bahwa curah hujan berpengaruh secara signifikan terhadap produktivitas produksi padi. Hal ini dapat dilihat dari t_{hitung} yang lebih besar dari t_{tabel} yaitu 3,0317 > 1,966. Dari hasil pengujian tersebut juga dapat dilihat model yang dapat menggambarkan pengaruh curah hujan terhadap produktivitas porduksi padi di provinsi Jawa Timur adalah sebagai berikut.

$$\hat{\mathbf{y}} = 55,30448 + 0,2212x$$
 (4.1)

Untuk seluruh Kabupaten/Kota di provinsi Jawa Timur pada setiap kenaikan curah hujan sebasar 1 mm³, maka produktivitas produksi padi akan naik sebesar 0,2212 ton/hektar. Model CEM untuk produktivitas produksi padi ini juga menujukkan bahwa koefisien determinasi sebesar 0,022628. Besaran koefisien determinasi tersebut menunjukan bahwa model tersebut mampu menjelaskan variasi produktivitas produksi padi sebesar 2,26% dan sisanya dijelaskan berdasarkan variabel lain.

2. Fixed Effect model

Berbeda dengan CEM, estimasi dengan menggunakan FEM mengasumsikan bahwa instersep antar Kabupaten/Kota dan waktu berbeda sedangakan *slope*-nya tetap sama. Terdapat tiga asumsi pemilihan model FEM yaitu variasi antar individu, antar waktu, atau variasi antar individu dan waktu. Berikut adalah model dari ketiga asumsi tersebut.

a. Variasi antar individu

Pada model ini estimasi ini, variasi terletak pada individu yaitu Kabupaten/Kota di provinsi Jawa Timur dengan mengabaikan faktor waktu. Berikut merupakan hasil uji signifikan dan persamaan model yang didapat disajikan pada tabel 4.2.

Tabel 4.2 Uji Signifikan antara Produktivitas Padi dan Rata-Rata Curah Hujan dengan Menggunakan FEM Individu

Variabel	Coefficient	t-hitung	t-tabel	P-Value	Keputusan
С	55.8475	93,625	1,966	0,0000	H ₀ ditolak
Curah Hujan	0.1391	1,970	1,966	0,0495	H ₀ ditolak

Tabel 4.2 menujukan hasil dari pengujian secara parsial dapat disimpulkan bahwa curah hujan berpengaruh secara signifikan terhadap produktivitas produksi padi di Provinsi Jawa Timur. Hal ini dapat dilihat dari $t_{\rm hitung}$ yang lebih besar dari $t_{\rm tabel}$ yaitu 1,970 > 1,966. Dari hasil pengujian tersebut juga dapat dilihat model yang dapat menggambarkan pengaruh curah hujan hujan terhadap produktivitas porduksi padi di provinsi Jawa Timur. Model yang diporoleh adalah sebagai berikut.

$$\hat{y} = 55,84755 + \mu_i + 0,139106x \tag{4.2}$$

Persamaan 4.2 menunjukan bahwa nilai koefisisen variabel curah hujan sebesar 0,139106 dan bertanda positif. Tanda tersebut menunjukan bahwa pada setiap kenaikan curah hujan sebesar 1 mm³, maka akan menyebabkan produktivitas produksi padi di Provinsi Jawa Timur naik sebesar 0,139106 ton/hektar. Koefisien determinasi dari persamaan tersebut sebesar 0,226889. Besaran koefisien determinasi tersebut menunjukan bahwa model mampu menjelaskan variasi produktivitas produksi padi di provinsi Jawa timur sebesar 22.69% dan sisanya dijelaskan oleh variabel lain. Nilai μ_i yang didapatkan pada persamaan tersebut merupakan pengaruh intersep disetiap Kabupaten/Kota. Nilai dari μ_i disajikan pada tabel dibawah ini.

No	Kabupaten/Kota	$\mu_{_i}$
1	Pasuruan	4.056221
2	Banyuwangi	2.133294
3	Sumenep	-7.052824
4	Malang	4.046646
5	Sidoarjo	1.357771
6	Gresik	-1.285845
7	Nganjuk	-3.255262

Tabel 4.3 Nilai intersep disetiap Kabupaten/Kota di Provinsi Jawa Timur

Nilai μ_i merupakan pengaruh variabel tetap yaitu Kabupaten/Kota yang ada di Provinsi Jawa Timur. Dengan memasukan nilai μ_i pada persamaan 4.2, maka akan didapatkan model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur sebagai berikut.

1. Model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur yang dipengaruhi oleh Kabupaten Pasuruan sebagai variabel tetap.

$$\hat{y} = 59,84755 + 0,139106x \tag{4.3}$$

2. Model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur yang dipengaruhi oleh Kabupaten Banyuwangi sebagai variabel tetap.

$$\hat{\mathbf{y}} = 57,84755 + 0,139106x \tag{4.4}$$

3. Model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur yang dipengaruhi oleh Kabupaten Sumenep sebagai variabel tetap

$$\hat{y} = 48,794726 + 0,139106x \tag{4.5}$$

4. Model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur yang dipengaruhi oleh Kabupaten Malang sebagai variabel tetap

$$\hat{y} = 59,894196 + 0,139106x \tag{4.6}$$

5. Model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur yang dipengaruhi oleh Kabupaten Sidoarjo sebagai variabel tetap

$$\hat{y} = 57,205321 + 0,139106x \tag{4.7}$$

6. Model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur yang dipengaruhi oleh Kabupaten Gresik sebagai variabel tetap.

$$\hat{y} = 54,561705 + 0,139106x \tag{4.8}$$

7. Model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur yang dipengaruhi oleh Kabupaten Nganjuk sebagai variabel tetap.

$$\hat{y} = 52,532288 + 0,139106x \tag{4.9}$$

b. Variasi antar waktu

Pada asumsi ini variasi terletak pada waktu pengamatan sedangkan faktor Kabupaten/Kota diprovinsi Jawa Timur diabaikan. Berikut merupakan hasil uji signifikan dan model yang didapatkan disajikan pad tabel 4.4.

Tabel 4.4 Uji Signifikan antara Produktivitas Padi dan Rata-Rata Curah Hujan dengan Menggunakan FEM Waktu

Variabe	el Coefficie	nt t-hitung	t-tabel	P-Value	Keputusan
С	55.7525	88,3356	1,966	0,0000	H ₀ ditolak
Curah Hujan	0.15348	1,89556	1,966	0,0589	H ₀ gagal ditolak

Tabel 4.4 menujukan hasil dari pengujian secara parsial dapat disimpulkan bahwa curah hujan tidak berpengaruh secara signifikan terhadap produktivitas produksi padi di Provinsi Jawa Timur menggunakan estimasi fixed effect model dengan variasi antar waktu pengamatan. Hal ini dapat dilihat dari nilai t_{hitung} yang lebih kecil dari nilai t_{tabel} yaitu 1,8955 < 1,966. Oleh karena itu, estimasi model menggunakan fixed effect model dengan variasi waktu pengamatan tidak tepat digunakan antar mengestimasi pegaruh curah hujan terhadap produktivitas padi di Provinsi Jawa Timur. Dari hasil pengujian tersebut juga dapat dilihat model yang dapat menggambarkan pengaruh curah hujan

hujan terhadap produktivitas porduksi padi di provinsi Jawa Timur. Model yang diporoleh adalah sebagai berikut.

$$\hat{y} = 55,75251 + \lambda_{s} + 0,15381x \tag{4.10}$$

Dari model tersebut dapat dilihat bahwa pada setiap kenaikan curah hujan sebesar 1 mm³, maka akan menyebabkan produktivitas produksi padi di provinisi Jawa Timur naik sebesar 0,15381 ton/hektar. Koefisien determinasi dari model FEM antar ini sebesar 0,453556. Besaran koefisien determinasi tersebut menjujukan bahwa model mampu menjelaskan variasi produktivitas produksi padi di provinsi Jawa Timur sebesar 45,36% dan sisanya dijelaskan oleh variabel lain. nilai λ_{τ} menunjukan ada pengaruh waktu pengataman terhadap model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur. Karena pada model FEM dengan variasi antar waktu pengamatan tidak tepat untuk digunakan maka nilai

λ_t tidak ditampilkan pada penelitian ini.

c. Variasi antar individu dan waktu

Pada asumsi ini faktor Kabupaten/Kota di Provinsi Jawa Timur dan faktor waktu pengamatan tidak diabaikan dalam melakukan estimasi model FEM. Berikut merupakan hasil dari pengujian signifikan dan model yang diperoleh disajikan pada tabel 4.5.

Tabel 4.5 Uji Signifikan antara Produktivitas Padi dengan Rata-Rata Curah Hujan dengan Menggunakan FEM Kabupaten/Kota dan Waktu

Variabel	Coefficient	t-hitung	t-tabel	P-Value	Keputusan
 С	57,12204	102,2783	1,966	0,0000	H ₀ ditolak
Curah Huian	-0,0536	0,72	1,966	0,4720	H ₀ gagal ditolak

Tabel 4.5 menujukan hasil dari pengujian secara parsial dapat disimpulkan bahwa curah hujan tidak berpengaruh terhadap produktivitas produksi padi di Provinsi Jawa Timur menggunakan estimasi *fixed effect model* dengan variasi antar individu dan waktu pengamatan. Hal ini, dapat dilihat dari t_{hitung} yang lebih kecil dari t_{tabel} yaitu 0,72 < 1,966. Oleh karena itu, estimasi model

menggunakan fixed effect model dengan variasi antar individu dan waktu pengamatan tidak tepat digunakan untuk mengestimasi pegaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur. Dari pengujian tersebut didapatkan model yang dapat menggambarkan pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur. Model tersebut adalah sebagai berikut.

$$\hat{y} = 57,12204 + \mu_i + \lambda_i - 0,0536x$$
 (4.12)

Dari model tersebut dapat dilihat bahwa pada setiap kenaikan curah hujan sebesar 1 mm³, maka akan menyebabkan produktivitas produksi padi di Provinsi Jawa Timur turun sebesar 0,0536 ton/hektar. Koefisien determinasi dari model FEM ini 0.6675. Besaran koefisien determinasi sebesar tersebut menuniukan bahwa mampu menjelaskan model variasi produktivitas produksi padi di provinsi Jawa Timur sebesar 66,75% dan sisanya dijelaskan oleh variabel lain. nilai μ_i dan λ_i ada pengaruh Kabupaten/Kota menunjukan dan pengataman terhadap model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur. Karena pada model FEM dengan variasi antar waktu pengamatan tidak tepat untuk digunakan maka nilai μ_i dan λ_i tidak ditampilkan pada penelitian ini.

Setelah diperoleh estimasi model dengan FEM dari masing-masing variasi. Dapat dilihat bahwa model yang digunakan untuk dibandigkan dengan metode estimasi yang lain adalah model FEM dengan variasi antar individu saja. Hal ini didasari pada kedua model FEM yang lain tidak tepat digunakan untuk mengestimasi pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur.

3. Random Effec model

Pada model ini, estimasi pada pengamatan a_i diasumsikan sebagai varibel random. Pengujian signifikan dan model estimasi $random\ effect$ pada perngaruh curah hujan terhadap produktivitas

produksi padi di Provinsi Jawa Timur ditunjukan pada tabel sebegai berikut.

Tabel 4.6 Uji Signifikan antara Produktivitas Padi dengan Rata-Rata Curah

Hujan (REM)					
Variabel	Coefficient	t-hitung	t-tabel	P-Value	Keputusan
С	55,81410	33,34477	1,966	0,0000	H ₀ ditolak
Curah Hujan	0,144166	2,050806	1,966	0,0409	H ₀ ditolak

Tabel 4.6 menjelaskan bahwa variabel curah hujan berpengaruh signifikan terhadap produktivitas produksi padi. Kesimpulan ini didapatkan dari nilai t_{hitung} yang lebih besar dari t_{tabel} yaitu 2,0508 > 1,966. Berikut merupakan model yang diperoleh dari pengujian signifikansi tersebut

$$\hat{y}_{ii} = 55,81410 + 0.144166x + e_{ii} \tag{4.13}$$

Persamaan 4.5 menunjukan bahwa nilai koefisien variabel curah hujan sebesar 0.144166 dan bertanda positif. Tanda positif tersebut menunjukan bahwa semakin tinggi curah hujan maka akan berdampak semakin tinggi produktivitas produksi padi di Provinsi Jawa Timur. Nilai koefisien determinasi (R^2) dari model yang terbentuk adalah 1,05%. Artinya model yang digunakan dapat menjelaskan variabilitas produktivitas produksi padi sebesar 1,05% dan sisanya dijelaskan variabel lain yang tidak termasuk dalam model. Nilai e_i merupakan nilai eror pada setiap Kabupaten/Kota di Provinsi Jawa Timur. Nilai eror tersebut akan disajikan pada tabel 4.7.

Tabel 4.7 Nilai Efek *Error* untuk Setiap Kabupaten/Kota

No	Kabupaten/Kota	e_i
1	Pasuruan	3,822685
2	Banyuwangi	2,027158
3	Sumenep	-6,662922
4	Malang	3,835105
5	Sidoarjo	1,289414
6	Gresik	-1,217373
7	Nganjuk	-3,094067

Dengan memasukkan nilai e_i kedalam model sesuai dengan persamaan 4.5, maka akan didapatkan nilai taksiran produktivitas produksi padi (\hat{y}_{ij}) yang dipengaruhi oleh nilai random error dari masing-masing Kabupaten/Kota. Berikut merupakan model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur yang diestimasi dengan $random\ effect$ dan dipengaruhi nilai eror.

1. Model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur yang dipengaruhi oleh nilai error Kabupaten Pasuruan.

$$\hat{y} = 59,636785 + 0,144166x \tag{4.14}$$

2. Model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur yang dipengaruhi oleh nilai error Kabupaten Banyuwangi.

$$\hat{y} = 57,841258 + 0,144166x \tag{4.15}$$

3. Model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur yang dipengaruhi oleh nilai error Kabupaten Sumenep.

$$\hat{y} = 49,151178 + 0,144166x \tag{4.16}$$

4. Model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur yang dipengaruhi oleh nilai error Kabupaten Malang.

$$\hat{y} = 59,649205 + 0,144166x \tag{4.17}$$

5. Model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur yang dipengaruhi oleh nilai error Kabupaten Sidoarjo.

$$\hat{y} = 57,103514 + 0,144166x \tag{4.18}$$

6. Model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur yang dipengaruhi oleh nilai error Kabupaten Gresik.

$$\hat{y} = 54,596727 + 0,144166x \tag{4.19}$$

7. Model pengaruh curah hujan terhadap produktivitas produksi padi di Provinsi Jawa Timur yang dipengaruhi oleh nilai error Kabupaten Nganjuk.

$$\hat{y} = 52,720033 + 0,144166x \tag{4.20}$$

4.2.2 Pemilihan teknik estimasi model produktivitas produksi padi dan curah hujan di provinsi Jawa Timur

Metode estimasi model regresi data panel terdiri dari tiga metode yaitu CEM (*Common Effect Model*), FEM (*Fixed effect Model*), dan REM (*Random Effect Model*). Sebelum dilakukan pemodelan, maka telebih dahulu dilakukan pengujian yaitu uji Chow, Uji Hausman, dan Uji *Lagrange Multiplier*. Berikut adalah hasil dari Uji Chow yang digunakan untuk memilih model terbaik diantara model CEM dan model FEM. Hipotesis yang digunakan dalam Uji Chow adalah sebagai berikut.

$$H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_7$$
 (Model CEM)

 H_1 : paling sedikit ada satu $\alpha_i \neq \alpha_j$ dimana $i \neq j$ (Model FEM) Untuk $i,j=1,2,\cdots,7$

Tabel 4.8 Hasil Uii Chow

F-hitung	Derajat Bebas	F-Tabel	P-Value	Keputusan
17,2175	6;391	2,12177	0,0000	H ₀ ditolak

Tabel 4.8 menunjukan bahwa keputusan yang didapatkan dari Uji Chow adalah H0 ditolak pada taraf signifikan 10%. Hal ini disebabkan nilai F-hitung lebih besar dari F-tabel. Sehingga model yang terpilih adalah model FEM. Tahap selanjutnya harus dilakukan uji Hausman untuk memilih model yang terbaik diantara model REM atau FEM. Hipotesis yang digunakan dalam uji Hausman adalah sebagai berikut.

Hipotesis

 H_0 : $corr(X_{it}, e_{it}) = 0$ (Model FEM)

 $H_1: corr(X_{it}, e_{it}) \neq 0 \text{ (Model REM)}$

Tabel 4.9 Hasil Uji Hausman

Н	Derajat Bebas	χ^2 - tabel	P-Value	Keputusan
0,586790	10%;1	2,7055	0,4437	H ₀ gagal ditolak

Tabel 4.9 menujukan bahwa keputusan yang didapatkan dari uji Hausman adalah gagal tolak H_0 pada taraf signifikan 10%. Hal ini disebabkan nilai H lebih kecil dari χ^2 - tabel . Sehingga model yang terpilih adalah model FEM. Karena pada pengujian dengan menggunakan uji Chow dan uji Hausman didapatkan model yang terpilih adalah dengan menggunakan FEM, maka tidak perlu dilanjutkan pada pengujian $Lagrange\ Multiplier$.

4.2.3 Pengujian Asumsi Residual IIDN

Langkah selanjutnya adalah melakukan uji asumsi residual IIDN berdasarkan model yang diestimasi menggunakan *Fixed Effect Model* dengan variasi antar individu. Pengujian asumsi residual IIDN akan dibahas sebagai berikut.

a. Residual berdistribusi normal

Pengujian residual berdistribusi normal digunakan untuk mengetahui apakah residual berdistribusi normal. Untuk mengetahui apakah residual berdistribusi normal maka dilakukan Uji Kolmogorov-Smirnov. Hipotesis dari Uji Kolmogorov-Smirnov adalah sebagai berikut.

Hipotesis

 $H_0: F(x) = F_0(x)$ Residual berdistribusi normal

 $H_0: F(x) \neq F_0(x)$ Residual tidak berdistribusi normal

Daerah penolakan: tolak H₀ jika,

KS-hitung > KS-tabel dan P-value < α

Tabel 4.10 Hasil Uji Kolmogorov Smirnov

KS-hitung	KS-tabel	P-Value	Keputusan
0.080	0.068	0,013	H ₀ ditolak

Tabel 4.10 menunjukan bahwa hasil dari uji Kolmogorov Smirnov adalah H_0 ditolak. Hal ini disebabkan nilai KS-hitung yang lebih besar dari KS-tabel dengan nilai $\alpha = 10\%$ yaitu 0,080 > 0,068. Selain itu nilai P-Value lebih kecil dari α yaitu

0.013 < 0.05. Artinya residual belum memenuhi asumsi residual berdistribusi normal.

b. Residual identik

Pengujian residual identik dilakukan untuk mengetahui homogenitas varians residual. Pengujian yang digunakan adalah uji Park yaitu dengan meregresikan antara $\ln(e_i^2)$ dengan $\ln(x)$. Hipotesis yang digunakan adalah sebagai berikut. Hipotesis

$$H_0: \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \dots = \sigma_n^2 = \sigma^2$$
 (tidak terjadi kasus heteroskedastisitas)

$$H_1$$
: minimal ada satu $\sigma_i^2 \neq \sigma_j^2$ dimana $i \neq j$ (terjadi kasus heteroskedastisitas)

Daerah penolakan: tolak H_0 jika, t-hitung > t-tabel dan P-Value $< \alpha$ Tabel 4.11 Hasil Uji Park

Variabel	t-hitung	t-tabel	P-Value	Keputusan
Curah Hujan	0,067	1,966	0,946	H ₀ gagal ditolak

Tabel 4.11 menunjukan hasil dari uji Park adalah H₀ gagal ditolak pada taraf signifikan 10%. Hal ini disebabkan nilai thitung lebih kecil dari t-tabel. Artinya, tidak terjadi kasus heteroskedastisitas sehingga residual telah memenuhi asumsi residual identik.

c. Residual independen

Pengujian residual independen dilakukan untuk mengetahui adanya otokolerasi yang sering muncul pada data *time series*. Pengujian yang digunakan adalah *run test* dengan hipotesis sebagai berikut.

Hipotesis

 H_0 : $E(\varepsilon_i, \varepsilon_j) = 0; i = j$ (tidak terjadi kasus otokolerasi)

 $H_1: E(\varepsilon_i, \varepsilon_j) \neq 0; i \neq j$ (terjadi kasus otokolerasi.)

Tabel 4.12 Hasıl Run Test					
R	R P-Value N ₁ N ₂ Keputusan				
134	0,0000	199	200	H ₀ ditolak	

Tabel 4.12 menunjukan bahwa hasil *run test* adalah H_0 ditolak karena *P-value* lebih kecil dari taraf signifikan 0,05. Selain itu, pengambilan keputusan juga dapat melalui nilai R dengan kententuan H_0 gagal ditolak jika R berada didalam *confidence interval* $E(R) \pm Z_{\alpha/2}(\sigma_{Run})$ dengan perhitungan sebagai berikut.

$$\begin{split} E(\mathbf{R}) &= \frac{2N_1N_2}{N} + 1 = \frac{2 \times 199 \times 200}{399} + 1 = 199,498 \\ \sigma_{Run}^2 &= \frac{2N_1N_2(2N_1N_2 - N)}{N^2(N - 1)} \\ &= \frac{2 \times 199 \times 200(2 \times 199 \times 200 - 399)}{399^2(399 - 1)} = 99,498 \\ \sigma_{Run} &= \sqrt{99,498} = 9,975 \\ E(\mathbf{R}) &\pm \mathbf{Z}_{\alpha/2}(\sigma_{Run}) \\ 199,498 &\pm (1,96 \times 9,975) = 199,498 \pm 19,55 \end{split}$$

Berdasarkan perhitungan diatas maka didapatkan keputusan tolak H_0 karena R berada diluar *confidence interval* yaitu 134 < 179,948 < 219,0495. Artinya residual tidak memenuhi asumsi residual independen.

Berdasarkan pada pengujian asumsi residual IIDN dapat diketahui bahwa model yang diestimasi menggunakan FEM dengan variasi antar individu tidak memenuhi asumsi residual berdistribusi normal dan tidak memenuhi asumsi independen. Akan tetapi model yang telah didapatkan telah memenuhi asumsi indentik. Pada penelitian ini telah dilakukan transformasi untuk mengatasi kasus tersebut, akan tetapi hasil yang didapatkan tidak berubah.

(Halaman ini sengaja dikosongkan)

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

- 1. Hasil analisis dengan menggunakan statistika deskriptif dapat diketahui bahwa.
 - a. Secara umum, produktivitas produksi padi di Provinsi Jawa Timur mengalami kenaikan dari tahun 1997 hingga tahun 2015.
 - b. Curah hujan mengalami kenaikan dan penurunan pada periode yang sama dari tahun 1997 hingga tahun 2015.
 - c. Kabupaten Sumenep menjadi Kabupaten dengan produktivitas produksi padi dan curah hujan terendah di provinsi Jawa Timur pada tahun 1997 sampai 2015.
 - d. Kabupaten Pasuruan menjadi kabupaten dengan produktivitas produksi padi dan curah hujan tertinggi di Provinsi Jawa Timur pada tahun 1997 sampai 2015.
- 2. Model regresi yang sesuai untuk mengambarkan hubungan produktivitas produksi padi dengan curah hujan di provinsi Jawa Timur adalah *Fixed Effect Model* dengan variasi antar individu yaitu $\hat{y} = 55,84755 + \mu_i + 0,139106x$. Model yang didapatkan menggambarkan bahwa variabel curah hujan berpengaruh signifikan terhadap produktivitas produksi padi di Provinsi Jawa Timur.

5.2 Saran

Berdasarkan hasil penelitian yang telah dilakukan, curah hujan berpengaruh positif terhadap produktivitas produksi padi di Provinsi Jawa Timur. Badan yang bertanggung jawab terhadap ketahanan pangan diharapkan mampu mengatasi perubahan iklim lebih awal, sehinnga tidak banyak berpengaruh terhadap produktivitas produksi padi di Provinsi Jawa Timur. Pada penelitian selanjutnya dapat menggunakan variabel yang lebih banyak agar model yang didapatkan lebih baik dan dapat menggambarkan keadaan lebih menyeluruh.

(Halaman ini sengaja dikosongkan)

DAFTAR PUSTA

- Afni. (2016, Februari 14). *Banjir di Jawa Timur Paling Parah*. Retrieved from Jawa Pos: https://www.jawapos.com/read/2016/02/14/18024/banjir-di-jawa-timur-paling-parah
- Asteriou, D., & Hall, S. G. (2017). Applied Econometrics A Modern Approach Using Eviews and Microfit Revised Edition. New York: PALGRAVE MACMILLAN.
- BMKG. (2015). *WEBFAQ*. Retrieved from Data Online Pusat Database-BMKG: dataonline.bmkg.go.id/webfaq
- BPS. (2015). Survey Pertanian. *Produksi Padi dan Palawijaya di Jawa TImur 2015/2016*.
- Daniel, W. W. (1989). *Statistika Nonparametrik Terapan*. Jakarta: PT. Gramedia.
- Drapper, N. N., & Smith, H. (1998). *Applied Regression Analysis* (3 ed.). Canada: John Wiley & Sons.
- Glienmourinsie, D. (2016, September 12). *BI: ini tiga sektor penopang pertumbuhan ekonomi 2017*. Retrieved from Sindo: https://ekbis.sindonews.com/read/1138704/bi-initiga-sektor-penopang-pertumbuhan-ekonomi-2017
- Gujarati, D. N., & Porter, D. C. (2015). *Dasar-Dasar Ekonometrika* (5 ed., Vol. 2). Jakarta: Salemba Empat.
- Kurniawan, F. (2011). Dampak Perubahan Iklim Terhadap Pendapatan dan Faktor-Faktor Penentu Adaptasi Petani Terhadap Perubahan Iklim. Bogor: Departemen Ekonomi Sumberdaya dan Lingkungan Fakultas Ekonomi dan Manajemen Institut Pertanian Bogor.
- Murdiantoro, B. (2011). FAKTOR-FAKTOR YANG MEMPENGARUHI PRODUKSI PADI DIDESA PULO REJO KECAMATAN WINONG KABUPATEN PATI. Semarang: Jurusan Pembangunan Fakultas Ekonomi Universitas Negeri Semarang.
- Nachrowi, D. N., & Usman, H. (2006). Pendekatan Populer dan Praktis Ekonometrika untuk Analisis Ekonomi dan

- *Keuangan*. Jakarta: Lembaga Penerbit Fakultas Ekonomi Universitas Indonesia.
- Ruminta. (2016). Analisis Penurunan Produksi Tanaman Padi Akibat Perubahan Iklim di Kabupaten Bandung Jawa BArat. Bandung: Padjajaran University.
- Setiawan, & Kusrini, D. E. (2010). *Ekonometrika*. Yogyakarta: ANDI.
- Silalahi, D., Sitepu, R., & Tarigan, G. (2014). Analisis Ketahanan Pangan Provinsi Sumatera Utara dengan Metode Regresi Data Panel. *Saintia Matematika*, 237-251.
- Widarjono, A. (2017). *Ekonometrika Pengantar dan Aplikasinya*. Yogyakarta: UPP STIM YKPN.
- Yuliawan, T. (2012). Pengaruh Kenaikan Suhu Terhadap Produksi Tanaman Padi Sawah Irigasi dena Tanah Hujan di Indonesia Menggunakan Model Simulasi Pertanian Sheirary Rice Berbasiskan Sistem Informasi Geografis (SIG). Bogor: Deoartemen Geofisikan dan Meteorologi Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor.

LAMPIRAN

Lampiran 1. Data Produktivitas Produksi Padi dan Curah Hujan di Provinsi Jawa Timur Tahun 1997-2015

Kabupaten/Kota	Periode	Produktifitas Padi	Curah Hujan
Pasuruan	Jan-Apr 1997	56.56	14.0250
Pasuruan	Mei-Agt 1997	54.99	1.8115
Pasuruan	Sep-Des 1997	55.90	3.4754
Pasuruan	Jan-Apr 1998	57.11	21.3917
Pasuruan	Mei-Agt 1998	54.86	8.8341
Pasuruan	Sep-Des 1998	55.82	12.9090
Pasuruan	Jan-Apr 1999	57.25	18.6450
Pasuruan	Mei-Agt 1999	57.27	5.7480
Pasuruan	Sep-Des 1999	55.98	14.3041
Pasuruan	Jan-Apr 2000	55.59	18.4793
Pasuruan	Mei-Agt 2000	56.06	6.3171
Pasuruan	Sep-Des 2000	56.47	9.7541
Pasuruan	Jan-Apr 2001	56.65	19.1925
Pasuruan	Mei-Agt 2001	56.32	7.3252
Pasuruan	Sep-Des 2001	60.75	7.2811
Pasuruan	Jan-Apr 2002	59.43	21.1858
Pasuruan	Mei-Agt 2002	59.21	1.7642
Pasuruan	Sep-Des 2002	61.52	4.3852
Pasuruan	Jan-Apr 2003	61.23	19.5417
Pasuruan	Mei-Agt 2003	60.81	3.4309
Pasuruan	Sep-Des 2003	58.77	7.6967
Pasuruan	Jan-Apr 2004	62.29	22.9256
Pasuruan	Mei-Agt 2004	61.13	5.2732
Pasuruan	Sep-Des 2004	58.92	8.6721
Pasuruan	Jan-Apr 2005	57.18	19.5417

Kabupaten/Kota	Periode	Produktifitas Padi	Curah Hujan
Pasuruan	Mei-Agt 2005	56.93	8.3902
Pasuruan	Sep-Des 2005	58.19	10.2377
Pasuruan	Jan-Apr 2006	55.84	21.1833
Pasuruan	Mei-Agt 2006	59.92	4.3740
Pasuruan	Sep-Des 2006	58.15	4.3607
Pasuruan	Jan-Apr 2007	57.90	16.8333
Pasuruan	Mei-Agt 2007	61.29	3.2927
Pasuruan	Sep-Des 2007	59.44	6.0557
Pasuruan	Jan-Apr 2008	64.23	16.9421
Pasuruan	Mei-Agt 2008	65.60	1.5041
Pasuruan	Sep-Des 2008	59.14	9.8033
Pasuruan	Jan-Apr 2009	61.00	24.2000
Pasuruan	Mei-Agt 2009	68.99	7.0049
Pasuruan	Sep-Des 2009	62.11	4.3279
Pasuruan	Jan-Apr 2010	62.12	28.2167
Pasuruan	Mei-Agt 2010	64.39	7.6423
Pasuruan	Sep-Des 2010	70.22	12.0123
Pasuruan	Jan-Apr 2011	61.48	16.5000
Pasuruan	Mei-Agt 2011	65.77	4.2358
Pasuruan	Sep-Des 2011	72.49	10.5082
Pasuruan	Jan-Apr 2012	58.54	7.9835
Pasuruan	Mei-Agt 2012	66.24	2.5935
Pasuruan	Sep-Des 2012	73.74	5.0984
Pasuruan	Jan-Apr 2013	64.40	1.0017
Pasuruan	Mei-Agt 2013	63.69	2.7626
Pasuruan	Sep-Des 2013	68.47	7.6525

Kabupaten/Kota	Periode	Produktifitas Padi	Curah Hujan
Pasuruan	Jan-Apr 2014	65.80	17.6625
Pasuruan	Mei-Agt 2014	67.84	4.1236
Pasuruan	Sep-Des 2014	69.15	6.8869
Pasuruan	Jan-Apr 2015	67.16	17.0533
Pasuruan	Mei-Agt 2015	68.23	3.2927
Pasuruan	Sep-Des 2015	69.01	4.7705
Banyuwangi	Jan-Apr 1997	57.92	4.1833
Banyuwangi	Mei-Agt 1997	53.48	1.3033
Banyuwangi	Sep-Des 1997	54.41	0.7869
Banyuwangi	Jan-Apr 1998	58.47	4.2417
Banyuwangi	Mei-Agt 1998	52.63	1.2764
Banyuwangi	Sep-Des 1998	54.50	6.8459
Banyuwangi	Jan-Apr 1999	54.82	8.8667
Banyuwangi	Mei-Agt 1999	54.90	2.1220
Banyuwangi	Sep-Des 1999	54.63	3.9385
Banyuwangi	Jan-Apr 2000	59.12	6.8446
Banyuwangi	Mei-Agt 2000	54.05	4.2764
Banyuwangi	Sep-Des 2000	53.67	4.6475
Banyuwangi	Jan-Apr 2001	59.31	5.1000
Banyuwangi	Mei-Agt 2001	54.27	2.4309
Banyuwangi	Sep-Des 2001	56.53	4.9754
Banyuwangi	Jan-Apr 2002	57.32	8.7583
Banyuwangi	Mei-Agt 2002	54.18	1.6829
Banyuwangi	Sep-Des 2002	55.74	3.2869
Banyuwangi	Jan-Apr 2003	59.27	9.3417
Banyuwangi	Mei-Agt 2003	55.35	1.8293

Kabupaten/Kota	Periode	Produktifitas Padi	Curah Hujan
Banyuwangi	Sep-Des 2003	51.92	5.0000
Banyuwangi	Jan-Apr 2004	58.36	9.1818
Banyuwangi	Mei-Agt 2004	56.53	2.7081
Banyuwangi	Sep-Des 2004	52.05	1.8934
Banyuwangi	Jan-Apr 2005	59.49	4.6542
Banyuwangi	Mei-Agt 2005	56.65	1.8293
Banyuwangi	Sep-Des 2005	55.17	4.6311
Banyuwangi	Jan-Apr 2006	58.82	6.4333
Banyuwangi	Mei-Agt 2006	56.33	2.9593
Banyuwangi	Sep-Des 2006	54.69	1.7541
Banyuwangi	Jan-Apr 2007	57.44	7.9225
Banyuwangi	Mei-Agt 2007	56.00	2.0407
Banyuwangi	Sep-Des 2007	55.92	1.5738
Banyuwangi	Jan-Apr 2008	65.00	6.0992
Banyuwangi	Mei-Agt 2008	59.82	0.6667
Banyuwangi	Sep-Des 2008	55.55	4.8238
Banyuwangi	Jan-Apr 2009	60.38	6.8750
Banyuwangi	Mei-Agt 2009	64.32	1.9756
Banyuwangi	Sep-Des 2009	58.44	2.9672
Banyuwangi	Jan-Apr 2010	69.21	6.5083
Banyuwangi	Mei-Agt 2010	63.99	5.7154
Banyuwangi	Sep-Des 2010	61.67	3.8115
Banyuwangi	Jan-Apr 2011	59.69	4.8833
Banyuwangi	Mei-Agt 2011	56.86	1.5691
Banyuwangi	Sep-Des 2011	65.60	2.8689
Banyuwangi	Jan-Apr 2012	61.65	5.1570

Kabupaten/Kota	Periode	Produktifitas Padi	Curah Hujan
Banyuwangi	Mei-Agt 2012	60.42	1.2358
Banyuwangi	Sep-Des 2012	64.54	2.0902
Banyuwangi	Jan-Apr 2013	64.18	1.1142
Banyuwangi	Mei-Agt 2013	52.93	4.4138
Banyuwangi	Sep-Des 2013	66.91	6.1680
Banyuwangi	Jan-Apr 2014	64.88	5.2525
Banyuwangi	Mei-Agt 2014	64.81	52.6008
Banyuwangi	Sep-Des 2014	64.23	7.3787
Banyuwangi	Jan-Apr 2015	64.53	7.0900
Banyuwangi	Mei-Agt 2015	65.25	2.5789
Banyuwangi	Sep-Des 2015	65.95	3.2295
Sumenep	Jan-Apr 1997	43.67	5.9025
Sumenep	Mei-Agt 1997	43.00	0.1049
Sumenep	Sep-Des 1997	0.00	1.4639
Sumenep	Jan-Apr 1998	40.75	7.1042
Sumenep	Mei-Agt 1998	43.70	1.8341
Sumenep	Sep-Des 1998	43.70	5.3770
Sumenep	Jan-Apr 1999	42.37	8.0158
Sumenep	Mei-Agt 1999	32.29	1.2008
Sumenep	Sep-Des 1999	43.75	4.9934
Sumenep	Jan-Apr 2000	44.74	8.7562
Sumenep	Mei-Agt 2000	40.71	1.6715
Sumenep	Sep-Des 2000	44.17	6.4352
Sumenep	Jan-Apr 2001	45.19	7.9917
Sumenep	Mei-Agt 2001	50.58	0.7748
Sumenep	Sep-Des 2001	42.00	3.8885

Kabupaten/Kota	Periode	Produktifitas Padi	Curah Hujan
Sumenep	Jan-Apr 2002	45.98	4.7333
Sumenep	Mei-Agt 2002	48.79	0.3634
Sumenep	Sep-Des 2002	49.13	2.3484
Sumenep	Jan-Apr 2003	44.09	4.4792
Sumenep	Mei-Agt 2003	46.56	1.1041
Sumenep	Sep-Des 2003	49.45	3.0746
Sumenep	Jan-Apr 2004	44.68	7.8347
Sumenep	Mei-Agt 2004	47.38	0.6252
Sumenep	Sep-Des 2004	49.57	2.6869
Sumenep	Jan-Apr 2005	49.39	4.1333
Sumenep	Mei-Agt 2005	49.17	2.2610
Sumenep	Sep-Des 2005	48.41	3.2803
Sumenep	Jan-Apr 2006	51.82	13.7025
Sumenep	Mei-Agt 2006	42.75	0.1642
Sumenep	Sep-Des 2006	48.28	1.6246
Sumenep	Jan-Apr 2007	50.46	6.8783
Sumenep	Mei-Agt 2007	42.06	2.8203
Sumenep	Sep-Des 2007	49.40	1.3975
Sumenep	Jan-Apr 2008	57.49	4.9306
Sumenep	Mei-Agt 2008	45.30	0.8813
Sumenep	Sep-Des 2008	49.13	4.7180
Sumenep	Jan-Apr 2009	59.29	4.7333
Sumenep	Mei-Agt 2009	61.15	0.3634
Sumenep	Sep-Des 2009	57.67	2.3484
Sumenep	Jan-Apr 2010	54.29	4.7333
Sumenep	Mei-Agt 2010	60.57	0.3634

Kabupaten/Kota	Periode	Produktifitas Padi	Curah Hujan
Sumenep	Sep-Des 2010	43.82 2.348	
Sumenep	Jan-Apr 2011	52.10	6.1933
Sumenep	Mei-Agt 2011	51.28	0.7862
Sumenep	Sep-Des 2011	66.28	3.2664
Sumenep	Jan-Apr 2012	52.93	5.6314
Sumenep	Mei-Agt 2012	67.18	1.3837
Sumenep	Sep-Des 2012	47.85	2.8762
Sumenep	Jan-Apr 2013	66.43	6.7758
Sumenep	Mei-Agt 2013	57.43	6.2463
Sumenep	Sep-Des 2013	51.65	4.1721
Sumenep	Jan-Apr 2014	55.70	6.6933
Sumenep	Mei-Agt 2014	60.82	0.9959
Sumenep	Sep-Des 2014	65.97	2.0607
Sumenep	Jan-Apr 2015	60.05	5.3242
Sumenep	Mei-Agt 2015	57.70	2.3683
Sumenep	Sep-Des 2015	50.71	2.6213
Malang	Jan-Apr 1997	54.35	8.2625
Malang	Mei-Agt 1997	57.76	0.4721
Malang	Sep-Des 1997	56.07	2.6303
Malang	Jan-Apr 1998	53.98	10.9458
Malang	Mei-Agt 1998	54.77	4.0004
Malang	Sep-Des 1998	56.29	7.3279
Malang	Jan-Apr 1999	51.21	8.6292
Malang	Mei-Agt 1999	55.37	0.7642
Malang	Sep-Des 1999	54.98	6.3934

Kabupaten/Kota	Periode	Produktifitas Padi	Curah Hujan
Malang	Jan-Apr 2000	55.37	10.4587
Malang	Mei-Agt 2000	55.86	1.5285
Malang	Sep-Des 2000	56.86	6.3893
Malang	Jan-Apr 2001	57.29	8.7208
Malang	Mei-Agt 2001	58.77	2.3821
Malang	Sep-Des 2001	56.79	6.1242
Malang	Jan-Apr 2002	56.81	12.4792
Malang	Mei-Agt 2002	53.56	2.5488
Malang	Sep-Des 2002	58.99	4.2664
Malang	Jan-Apr 2003	58.06	9.1542
Malang	Mei-Agt 2003	56.87	0.7195
Malang	Sep-Des 2003	56.82	8.4426
Malang	Jan-Apr 2004	57.96	10.1570
Malang	Mei-Agt 2004	58.33	1.0732
Malang	Sep-Des 2004	56.96	7.5205
Malang	Jan-Apr 2005	53.48	8.4417
Malang	Mei-Agt 2005	56.01	1.6260
Malang	Sep-Des 2005	56.91	6.8607
Malang	Jan-Apr 2006	55.77	10.4833
Malang	Mei-Agt 2006	57.57	1.3049
Malang	Sep-Des 2006	54.83	3.4713
Malang	Jan-Apr 2007	53.77	7.2375
Malang	Mei-Agt 2007	54.06	1.2886
Malang	Sep-Des 2007	56.07	6.5656
Malang	Jan-Apr 2008	59.64	9.3636
Malang	Mei-Agt 2008	58.10	1.3780

Kabupaten/Kota	Periode	Produktifitas Padi	Curah Hujan
Malang	Sep-Des 2008	55.74	6.6762
Malang	Jan-Apr 2009	62.55	8.0208
Malang	Mei-Agt 2009	62.12	1.8943
Malang	Sep-Des 2009	61.43	3.0574
Malang	Jan-Apr 2010	70.84	10.6208
Malang	Mei-Agt 2010	62.66	5.2520
Malang	Sep-Des 2010	67.13	9.7131
Malang	Jan-Apr 2011	63.43	7.0333
Malang	Mei-Agt 2011	62.59	1.5813
Malang	Sep-Des 2011	79.31	5.6639
Malang	Jan-Apr 2012	69.73	9.6318
Malang	Mei-Agt 2012	60.95	0.7520
Malang	Sep-Des 2012	78.99	6.3770
Malang	Jan-Apr 2013	68.63	9.5358
Malang	Mei-Agt 2013	63.34	2.1321
Malang	Sep-Des 2013	83.32	6.9684
Malang	Jan-Apr 2014	60.46	8.8838
Malang	Mei-Agt 2014	63.90	1.9618
Malang	Sep-Des 2014	82.91	5.0951
Malang	Jan-Apr 2015	67.36	10.6617
Malang	Mei-Agt 2015	63.33	1.8520
Malang	Sep-Des 2015	82.41	3.9725
Sidoarjo	Jan-Apr 1997	57.53	6.5900
Sidoarjo	Mei-Agt 1997	51.63	1.8557
Sidoarjo	Sep-Des 1997	51.29	2.0574
Sidoarjo	Jan-Apr 1998	59.42	15.1842

Kabupaten/Kota	Periode	Produktifitas Padi	Curah Hujan
Sidoarjo	Mei-Agt 1998	46.25	6.7789
Sidoarjo	Sep-Des 1998	51.59	7.3861
Sidoarjo	Jan-Apr 1999	56.80	10.7633
Sidoarjo	Mei-Agt 1999	48.50	1.1984
Sidoarjo	Sep-Des 1999	43.62	5.1213
Sidoarjo	Jan-Apr 2000	53.16	11.0942
Sidoarjo	Mei-Agt 2000	47.13	1.8065
Sidoarjo	Sep-Des 2000	52.06	5.0189
Sidoarjo	Jan-Apr 2001	59.20	12.3283
Sidoarjo	Mei-Agt 2001	51.27	3.5520
Sidoarjo	Sep-Des 2001	50.85	5.4344
Sidoarjo	Jan-Apr 2002	59.82	9.7208
Sidoarjo	Mei-Agt 2002	48.26	0.6065
Sidoarjo	Sep-Des 2002	56.87	1.9762
Sidoarjo	Jan-Apr 2003	52.80	13.4625
Sidoarjo	Mei-Agt 2003	50.20	1.5642
Sidoarjo	Sep-Des 2003	58.09	3.3377
Sidoarjo	Jan-Apr 2004	53.33	14.9140
Sidoarjo	Mei-Agt 2004	51.27	1.5967
Sidoarjo	Sep-Des 2004	58.23	2.3197
Sidoarjo	Jan-Apr 2005	54.46	9.1867
Sidoarjo	Mei-Agt 2005	54.83	4.7496
Sidoarjo	Sep-Des 2005	57.36	4.5689
Sidoarjo	Jan-Apr 2006	54.93	15.9667
Sidoarjo	Mei-Agt 2006	55.51	2.1317
Sidoarjo	Sep-Des 2006	53.78	1.8918

Kabupaten/Kota	Periode	Produktifitas Padi	Curah Hujan
Sidoarjo	Jan-Apr 2007	60.16	10.7825
Sidoarjo	Mei-Agt 2007	60.13	1.0911
Sidoarjo	Sep-Des 2007	54.97	2.4336
Sidoarjo	Jan-Apr 2008	67.27	7.1140
Sidoarjo	Mei-Agt 2008	64.23	0.3976
Sidoarjo	Sep-Des 2008	54.69	5.3057
Sidoarjo	Jan-Apr 2009	64.47	11.1783
Sidoarjo	Mei-Agt 2009	58.38	3.8236
Sidoarjo	Sep-Des 2009	57.54	1.7279
Sidoarjo	Jan-Apr 2010	67.05	15.0975
Sidoarjo	Mei-Agt 2010	55.05	5.2724
Sidoarjo	Sep-Des 2010	60.04	6.5795
Sidoarjo	Jan-Apr 2011	52.24	12.4842
Sidoarjo	Mei-Agt 2011	47.05	1.7821
Sidoarjo	Sep-Des 2011	68.50	5.5270
Sidoarjo	Jan-Apr 2012	64.55	7.6636
Sidoarjo	Mei-Agt 2012	65.38	1.4772
Sidoarjo	Sep-Des 2012	67.85	1.8943
Sidoarjo	Jan-Apr 2013	61.17	2.9992
Sidoarjo	Mei-Agt 2013	50.78	1.8350
Sidoarjo	Sep-Des 2013	68.82	3.9631
Sidoarjo	Jan-Apr 2014	66.79	11.0358
Sidoarjo	Mei-Agt 2014	67.04	3.0618
Sidoarjo	Sep-Des 2014	66.29	3.3631
Sidoarjo	Jan-Apr 2015	75.29	13.4250
Sidoarjo	Mei-Agt 2015	77.94	1.6431

Kabupaten/Kota	Periode	Produktifitas Padi	Curah Hujan
Sidoarjo	Sep-Des 2015	82.73	1.7402
Gresik	Jan-Apr 1997	54.15	8.6658
Gresik	Mei-Agt 1997	43.64	0.6541
Gresik	Sep-Des 1997	46.43	2.6590
Gresik	Jan-Apr 1998	51.97	12.5658
Gresik	Mei-Agt 1998	49.62	7.9171
Gresik	Sep-Des 1998	47.53	13.5156
Gresik	Jan-Apr 1999	54.87	11.7308
Gresik	Mei-Agt 1999	46.61	2.6943
Gresik	Sep-Des 1999	50.89	7.7885
Gresik	Jan-Apr 2000	52.37	11.1405
Gresik	Mei-Agt 2000	51.33	5.7374
Gresik	Sep-Des 2000	54.67	6.8066
Gresik	Jan-Apr 2001	46.82	13.2375
Gresik	Mei-Agt 2001	55.50	3.1268
Gresik	Sep-Des 2001	49.68	10.7885
Gresik	Jan-Apr 2002	58.78	9.7142
Gresik	Mei-Agt 2002	52.27	1.1602
Gresik	Sep-Des 2002	42.10	3.1500
Gresik	Jan-Apr 2003	61.22	10.3742
Gresik	Mei-Agt 2003	44.12	2.4463
Gresik	Sep-Des 2003	49.48	8.5852
Gresik	Jan-Apr 2004	61.70	8.1041
Gresik	Mei-Agt 2004	44.87	3.6992
Gresik	Sep-Des 2004	49.62	6.5410
Gresik	Jan-Apr 2005	58.01	6.6667

Kabupaten/Kota	Periode	Produktifitas Padi	Curah Hujan
Gresik	Mei-Agt 2005	52.85	0.9236
Gresik	Sep-Des 2005	50.11	10.6959
Gresik	Jan-Apr 2006	56.27	11.3875
Gresik	Mei-Agt 2006	56.71	4.2179
Gresik	Sep-Des 2006	53.37	4.6582
Gresik	Jan-Apr 2007	60.77	8.2767
Gresik	Mei-Agt 2007	53.92	3.7805
Gresik	Sep-Des 2007	54.55	7.1615
Gresik	Jan-Apr 2008	67.98	12.9760
Gresik	Mei-Agt 2008	57.72	1.6764
Gresik	Sep-Des 2008	51.90	6.5311
Gresik	Jan-Apr 2009	66.04	8.9908
Gresik	Mei-Agt 2009	55.19	2.5870
Gresik	Sep-Des 2009	56.95	3.3246
Gresik	Jan-Apr 2010	67.84	10.8758
Gresik	Mei-Agt 2010	55.28	7.8935
Gresik	Sep-Des 2010	63.03	9.6221
Gresik	Jan-Apr 2011	55.40	9.5125
Gresik	Mei-Agt 2011	43.97	1.7163
Gresik	Sep-Des 2011	62.75	8.4484
Gresik	Jan-Apr 2012	66.13	9.2711
Gresik	Mei-Agt 2012	64.40	1.8423
Gresik	Sep-Des 2012	61.66	5.9787
Gresik	Jan-Apr 2013	59.32	6.2367
Gresik	Mei-Agt 2013	59.48	2.5585
Gresik	Sep-Des 2013	64.83	8.0328

Kabupaten/Kota	Periode	Produktifitas Padi	Curah Hujan	
Gresik	Jan-Apr 2014	65.42	7.0683	
Gresik	Mei-Agt 2014	55.44	1.8837	
Gresik	Sep-Des 2014	57.15	6.1770	
Gresik	Jan-Apr 2015	76.80	10.1467	
Gresik	Mei-Agt 2015	51.27	1.4902	
Gresik	Sep-Des 2015	59.87	2.4836	
Nganjuk	Jan-Apr 1997	58.07	9.8667	
Nganjuk	Mei-Agt 1997	54.65	0.0000	
Nganjuk	Sep-Des 1997	55.78	4.8913	
Nganjuk	Jan-Apr 1998	54.78	20.1750	
Nganjuk	Mei-Agt 1998	42.91	5.9431	
Nganjuk	Sep-Des 1998	40.32	11.0574	
Nganjuk	Jan-Apr 1999	53.55	12.9500	
Nganjuk	Mei-Agt 1999	43.73	1.2520	
Nganjuk	Sep-Des 1999	45.52	9.9508	
Nganjuk	Jan-Apr 2000	57.35	14.6777	
Nganjuk	Mei-Agt 2000	54.30	1.9512	
Nganjuk	Sep-Des 2000	50.99	10.9918	
Nganjuk	Jan-Apr 2001	54.28	25.7250	
Nganjuk	Mei-Agt 2001	47.58	3.4634	
Nganjuk	Sep-Des 2001	41.87	11.8525	
Nganjuk	Jan-Apr 2002	56.02	22.5767	
Nganjuk	Mei-Agt 2002	52.44	10.1522	
Nganjuk	Sep-Des 2002	56.44	5.1803	
Nganjuk	Jan-Apr 2003	53.12	14.7717	
Nganjuk	Mei-Agt 2003	47.24	2.3756	

Kabupaten/Kota	Periode	Produktifitas Padi	Curah Hujan
Nganjuk	Sep-Des 2003	46.12	4.9090
Nganjuk	Jan-Apr 2004	52.20	13.8198
Nganjuk	Mei-Agt 2004	48.23	2.4146
Nganjuk	Sep-Des 2004	46.23	5.5410
Nganjuk	Jan-Apr 2005	58.29	13.9153
Nganjuk	Mei-Agt 2005	62.68	0.0000
Nganjuk	Sep-Des 2005	67.35	0.0000
Nganjuk	Jan-Apr 2006	55.92	12.9417
Nganjuk	Mei-Agt 2006	53.18	1.9431
Nganjuk	Sep-Des 2006	39.44	2.8197
Nganjuk	Jan-Apr 2007	57.63	16.3642
Nganjuk	Mei-Agt 2007	50.52	1.6398
Nganjuk	Sep-Des 2007	40.32	6.4566
Nganjuk	Jan-Apr 2008	64.24	20.4645
Nganjuk	Mei-Agt 2008	54.04	1.0447
Nganjuk	Sep-Des 2008	40.02	11.9197
Nganjuk	Jan-Apr 2009	58.87	14.7333
Nganjuk	Mei-Agt 2009	48.64	1.9683
Nganjuk	Sep-Des 2009	51.33	3.6836
Nganjuk	Jan-Apr 2010	57.27	24.1333
Nganjuk	Mei-Agt 2010	47.10	7.9764
Nganjuk	Sep-Des 2010	58.02	12.8508
Nganjuk	Jan-Apr 2011	59.31	15.6692
Nganjuk	Mei-Agt 2011	44.17	3.2724
Nganjuk	Sep-Des 2011	74.39	7.4697
Nganjuk	Jan-Apr 2012	62.96	12.2405

Kabupaten/Kota	Periode	Produktifitas Padi	Curah Hujan
Nganjuk	Mei-Agt 2012	60.25	2.5163
Nganjuk	Sep-Des 2012	75.18	6.9426
Nganjuk	Jan-Apr 2013	51.71	0.0000
Nganjuk	Mei-Agt 2013	43.09	0.9625
Nganjuk	Sep-Des 2013	53.19	11.8140
Nganjuk	Jan-Apr 2014	56.42	21.6191
Nganjuk	Mei-Agt 2014	55.56	8.6882
Nganjuk	Sep-Des 2014	70.37	6.7720
Nganjuk	Jan-Apr 2015	62.73	19.8379
Nganjuk	Mei-Agt 2015	56.23	7.1750
Nganjuk	Sep-Des 2015	66.48	17.6920

Keterangan: Y : Produktivitas Produksi Padi

X : Curah Hujan

Lampiran 2. Estimasi Model Common Effect Model (CEM)

Dependent Variable: Y? Method: Pooled Least Squares Date: 12/20/17 Time: 16:47

Sample: 1 57

Included observations: 57 Cross-sections included: 7

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X?	55.30448 0.221242	0.635980 0.072976	86.95945 3.031722	0.0000 0.0026
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.022628 0.020166 8.275833 27190.30 -1408.376 9.191338 0.002591	Mean depende S.D. depende Akaike info Schwarz crit Hannan-Quin Durbin-Wats	ent var criterion erion nn criter.	56.76732 8.360563 7.069556 7.089551 7.077475 0.917282

Lampiran 3. Estimasi Model Fixed Effect Model (FEM)

a. Fixed Effect Model antar individu

Dependent Variable: Y?

Method: Pooled Least Squares Date: 12/20/17 Time: 12:35

Sample: 1 57

Included observations: 57 Cross-sections included: 7

Variable	Coefficient	Std. Error	t-Statistic	Prob.
X?	0.139106	0.070607	1.970154	0.0495
С	55.84755	0.596500	93.62548	0.0000
Fixed Effects (Cross)				
_1C	4.056221			
_2C	2.133294			
_3C	-7.052824			
_4C	4.046646			
_5C	1.357771			
_6C	-1.285845			
_7C	-3.255262			
	Effects Spec	cification		
Cross-section fixed (du	mmy variables)			
R-squared	0.226889	Mean depen	dent var	56.76732
Adjusted R-squared	0.213048	S.D. depend		8.360563
S.E. of regression	7.416680	-		6.865186
Sum squared resid	21507.79	Schwarz criterion 6.9		6.945166
Log likelihood	-1361.605	Hannan-Quinn criter. 6.8		6.896862
F-statistic	16.39272	Durbin-Wats	son stat	1.173700
Prob(F-statistic)	0.000000			

b. Fixed Effect Model antar waktu

Dependent Variable: Y? Method: Pooled Least Squares Date: 12/20/17 Time: 12:31

Sample: 1 57

Included observations: 57 Cross-sections included: 7

Variable	Coefficient	Std. Error	t-Statistic	Prob.
X?	0.153481	0.080969	1.895563	0.0589
C	55.75251	0.631144	88.33560	0.0000
Fixed Effects (Period)				
1C	-2.407074			
2C	-4.581237			
3C	-10.44951			
4C	-3.977986			
5C	-7.306576			
6C	-7.200494			
7C	-4.518425			
8C	-7.698553			
9C	-6.992963			
10C	-3.583466			
11C	-4.912745			
12C	-4.152874			
13C	-3.672563			
14C	-2.790977			
15C	-5.646754			
16C	-1.398917			
17C	-3.479927			
18C	-1.892217			
19C	-1.847579			
20C	-4.455138			
21C	-3.704368			
22C	-1.869347			
23C	-3.599407			
24C	-3.438129			
25C	-1.454213			
26C	-0.597228			

27C	-0.419854
28C	-2.145663
29C	-1.561999
30C	-4.413957
31C	-0.506867
32C	-2.104234
33C	-3.493580
34C	6.233258
35C	1.912188
36C	-4.533439
37C	4.322358
38C	3.645291
39C	1.702069
40C	6.138662
41C	1.800567
42C	3.560699
43C	0.326707
44C	-2.981075
45C	13.19188
46C	5.340564
47C	7.534564
48C	10.68005
49C	5.902484
50C	-0.392064
51C	8.491563
52C	4.742692
53C	4.843262
54C	11.42948
55C	10.11926
56C	6.650929
57C	11.61288

Effects Specification

Period fixed (dummy variables)

R-squared	0.453556	Mean dependent var	56.76732
Adjusted R-squared	0.362215	S.D. dependent var	8.360563
S.E. of regression	6.676868	Akaike info criterion	6.768823
Sum squared resid	15201.97	Schwarz criterion	7.348672

Log likelihood	-1292.380	Hannan-Quinn criter.	6.998473
F-statistic	4.965515	Durbin-Watson stat	1.149011
Prob(F-statistic)	0.000000		

c. Fixed Efeect Model antar individu dan waktu

Dependent Variable: Y? Method: Pooled Least Squares Date: 12/20/17 Time: 12:36

Sample: 1 57

Included observations: 57 Cross-sections included: 7

Variable	Coefficient	Std. Error	t-Statistic	Prob.
X?	-0.053648	0.074511	-0.720002	0.4720
C	57.12204	0.558496	102.2783	0.0000
Fixed Effects (Cross)				
_1C	4.751271			
_2C	1.827293			
_3C	-7.610934			
_4C	3.877115			
_5C	1.195383			
_6C	-1.282418			
_7C	-2.757709			
Fixed Effects (Period)				
1C	-2.075309			
2C	-5.767264			
3C	-11.28749			
4C	-2.636835			
5C	-7.593587			
6C	-6.663878			
7C	-3.532576			
8C	-8.624839			
9C	-6.809315			
10C	-2.542863			
11C	-5.593169			
12C	-4.041626			
13C	-2.311070			

14C	-3.478306
15C	-5.526592
16C	-0.129965
17C	-4.308609
18C	-2.534032
19C	-0.816629
20C	-5.426097
21C	-3.859356
22C	-0.666415
23C	-4.454364
24C	-3.766849
25C	-0.854850
26C	-1.381482
27C	-0.597665
28C	-0.790013
29C	-2.425689
30C	-5.174520
31C	0.321984
32C	-3.001700
33C	-3.926762
34C	7.168487
35C	0.766023
36C	-4.430049
37C	5.282489
38C	2.856226
39C	0.966852
40C	7.733620
41C	1.618047
42C	3.875949
43C	1.095811
44C	-3.908443
45C	13.11698
45C 46C	5.674788
47C	6.514216
47C 48C	10.23542
49C	
49C 50C	5.351507 -1.142846
51C	
51C 52C	8.565159
	5.687545
53C	5.643141

54C	11.17647
55C	11.22163
56C	5.885036
57C	11.32367

Effects Specification

Cross-section fixed (dummy variables) Period fixed (dummy variables)

R-squared Adjusted R-squared	0.667527 0.605002	Mean dependent var S.D. dependent var	56.76732 8.360563
S.E. of regression	5.254519	Akaike info criterion	6.302025
Sum squared resid	9249.341	Schwarz criterion	6.941859
Log likelihood	-1193.254	Hannan-Quinn criter.	6.555433
F-statistic	10.67619	Durbin-Watson stat	1.865551
Prob(F-statistic)	0.000000		

Lampiran 4. Random Effect Model

Dependent Variable: Y?

Method: Pooled EGLS (Cross-section random effects)

Date: 12/21/17 Time: 21:32

Sample: 1959 2015

Included observations: 57 Cross-sections included: 7

Total pool (balanced) observations: 399

Swamy and Arora estimator of component variances

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	55.81410	1.673849	33.34477	0.0000
X?	0.144166	0.070297	2.050806	0.0409
Random Effects (Cross)				
_1C	3.822685			
_2C	2.027158			
_3C	-6.662922			
_4C	3.835105			
_5C	1.289414			
_6C	-1.217373			
_7C	-3.094067			
Effects	Specification		S.D.	Rho
Cross-section random			4.139452	0.2375
Idiosyncratic random			7.416680	0.7625
	Weighted	l Statistics		
R-squared	0.010494	Mean depender	nt var	13.10781
Adjusted R-squared	0.008001	S.D. dependent	var	7.442654
S.E. of regression	7.412819	Sum squared re	sid 2	21815.11
F-statistic	4.210189	Durbin-Watson	stat	1.155846
Prob(F-statistic)	0.040837			
	Unweighte	ed Statistics		
R-squared Sum squared resid	0.019882 27266.70	Mean depender Durbin-Watson		56.76732 0.924751

Lampiran 5. Uji Chow

Redundant Fixed Effects Tests

Equation: Untitled

Test cross-section fixed effects

Effects Test	Statistic	d.f.	Prob.
Cross-section F	17.217480	(6,391)	0.0000
Cross-section Chi-square	93.543527	6	

Cross-section fixed effects test equation:

Dependent Variable: PRODUKTIFITAS_PADI

Method: Panel Least Squares Date: 01/19/18 Time: 13:11

Sample: 1959 2015 Periods included: 57 Cross-sections included: 7

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C CURAH HUJAN	55.30448 0.221242	0.635980 0.072976	86.95945 3.031722	0.0000 0.0026
R-squared	0.022628	Mean depend		56.76732
Adjusted R-squared	0.020166	S.D. depende	nt var	8.360563
S.E. of regression Sum squared resid	8.275833 27190.30	Akaike info of Schwarz crite		7.069556 7.089551
Log likelihood F-statistic	-1408.376 9.191338	Hannan-Quir Durbin-Wats		7.077475 0.917282
Prob(F-statistic)	0.002591	Daroni Wats	on our	0.717202

Lampiran 6. Uji Hausman

Correlated Random Effects - Hausman Test

Pool: Untitled

Test cross-section random effects

Test Summary	Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.
Cross-section random	0.586790	1	0.4437

Cross-section random effects test comparisons:

Variable	Fixed	Random	Var(Diff.)	Prob.
X?	0.139106	0.144166	0.000044	0.4437

Cross-section random effects test equation:

Dependent Variable: Y? Method: Panel Least Squares Date: 12/20/17 Time: 17:34

Sample: 157

Included observations: 57 Cross-sections included: 7

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	55.84755	0.596500	93.62548	0.0000	
X?	0.139106	0.070607	1.970154	0.0495	
Effects Specification					
Cross-section fixed (dun	nmy variables)				
R-squared	0.226889	Mean dependent var		56.76732	
Adjusted R-squared	0.213048	S.D. dependent var 8.3		8.360563	
S.E. of regression	7.416680	Akaike info criterion 6.865		6.865186	
Sum squared resid	21507.79	Schwarz criterion 6.94		6.945166	
Log likelihood	-1361.605	Hannan-Quinn criter. 6.8968		6.896862	

F-statistic	16.39272	Durbin-Watson stat	1.173700
Prob(F-statistic)	0.000000		

Lampiran 7. Uji Lagrange Multiplier

Lagrange Multiplier Tests for Random Effects

Null hypotheses: No effects

Alternative hypotheses: Two-sided (Breusch-Pagan) and one-sided

(all others) alternatives

	Cross-section	Test Hypothesis Time	Both
Breusch-Pagan	412.1816	143.6168	555.7984
	(0.0000)	(0.0000)	(0.0000)
Honda	20.30226	11.98402	22.82985
	(0.0000)	(0.0000)	(0.0000)
King-Wu	20.30226	11.98402	23.02295
	(0.0000)	(0.0000)	(0.0000)
Standardized Honda	22.67353 (0.0000)	12.24382 (0.0000)	19.09993 (0.0000)
Standardized King-Wu	22.67353	12.24382	21.87333
	(0.0000)	(0.0000)	(0.0000)
Gourierioux, et al.*			555.7984 (< 0.01)
*Mixed chi-square asymptoti 1% 5% 10%	7.289 4.321		

Lampiran 8. Run Test Runs Test

	e
Test Value ^a	881921
Cases < Test Value	199
Cases >= Test Value	200
Total Cases	399
Number of Runs	134
Z	-6.667
Asymp. Sig. (2-tailed)	.000

a. Median

Lampiran 9. Uji Park

$ANOVA^{a} \\$

Mo	odel	Sum of Squares	df	Mean Square	F	Sig.
	Regression	.027	1	.027	.005	.946 ^b
1	Residual	2324.501	393	5.915		
	Total	2324.527	394			

a. Dependent Variable: lnei2b. Predictors: (Constant), lnx

Coefficientsa

Model			tandardized pefficients	Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant)	2.433	.238		10.216	.000
1	lnx	009	.133	003	067	.946

a. Dependent Variable: lnei2

Lampiran 10. Uji Kolmogorov-Smirnov One-Sample Kolmogorov-Smirnov Test

		e
N		399
Normal Parameters ^{a,b}	Mean	0E-8
Normal Parameters.	Std. Deviation	7.351168456
	Absolute	.080
Most Extreme Differences	Positive	.080
	Negative	078
Kolmogorov-Smirnov Z		1.592
Asymp. Sig. (2-tailed)		.013

a. Test distribution is Normal.

b. Calculated from data.

Lampiran 11. Surat Kevalidan Data

SURATPERNYATAAN

Saya yang bertanda tangan di bawah ini, mahasiswa Departemen Statistika Bisnis Fakultas Vokasi ITS:

Nama : Imam Hidayat NRP : 10611300000084

menyatakan bahwa data yang digunakan dalam Tugas Akhir/ Thesis ini merupakan data sekunder yang diambil dari publikasi lainnya yaitu:

: Badan Pusat Statistika Jawa Timur dan Badan

Meteorologi Klimatologi dan Geofisika

Keterangan: Curah Hujan dan Produktivitas Produksi Padi di Jawa

Timur Tahun 1997 sampai 2015

Surat Pernyataan ini dibuat dengan sebenarnya. Apabila terdapat pemalsuan data maka saya siap menerima sanksi sesuai aturan yang berlaku.

Mengetahui

Pembimbing Tugas Akhir

(Ir. Mutiah Salamah Chamid, M.Kes)

NIP. 19571007 198303 2 001

Surabaya, Januari 2018

(Imam Hidayat)

NRP. 1061130000000084

BIODATA PENULIS

Penulis dilahirkan di Kabupaten, 09 Mei 1996 dengan nama lengkap Imam Hidayat, biasa dipanggil Imam. Penulis merupakan anak Pertama dari pasangan Bapak Akhmad Afandi dan Ibu Raudlatul Jannah. Pendidikan formal yang ditempuh penulis adalah MI-Miftahul Ulum Sumenep, MTS-Miftahul Ulum Sumenep dan SMA Negeri 1 Sumenep. Pada tahun 2013 penulis diterima di Jurusan Statistika ITS

program studi diploma. Selama kuliah, penulis pernah menjadi ketua himpunan di organisasi intra kampus dan aktif dibidang keilmiahan lebih tepatnya dibidang pengabdian masyarakat. Bagi pembaca yang ingin berdiskusi, memberikan saran dan kritik tentang Tugas Akhir ini dapat disampaikan melalui email imamhidayat.mdr@gmail.com.