15.992 / H 102

TUGAS AKHIR KL 1702

RSKE

Rad

5-1

2002

627.98

STUDI UMUR KELELAHAN KAKI JACK-UP DENGAN BERBAGAI KONFIGURASI BRACING

Oleh :

RINA RADITYANINGSIH 4397 100 036

JURUSAN TEKNIK KELAUTAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

2002 PERPU	002 PERPUSTAKAAN IT S		
Tgl. Terime	19-2-2002		
Terima Dari	H		
No. Agenda Prp	JISBAD		

STUDI UMUR KELELAHAN KAKI JACK-UP DENGAN BERBAGAI KONFIGURASI BRACING

TUGAS AKHIR

Diajukan Guna Untuk Memenuhi Sebagian Persyaratan

Untuk Memperoleh Gelar Sarjana Teknik

Pada

Jurusan Teknik Kelautan Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya

Mengetahui/Menyetujui

Dosen Pembimbing I

Ir. Jusuf Sutomo, MSc NIP. 131 287 547 EKNIK KELAUTAN

Dosen Pembimbing H/ oh

Ir. Murdjito, MSc. Eng NIP. 132 149 376

SURABAYA 2002

Abstrak

Struktur kaki merupakan struktur yang terpenting pada jack-up platform, hal ini dikarenakan kaki jack-up digunakan sebagai penyangga beban yang utama, oleh sebab itu pola perangkaan dan bracing system pada struktur kaki sangat penting. Studi kali ini bertujuan untuk mencari perbandingan umur kelelahan dari kaki jack-up tipe bracing K, X dan Z akibat beban gelombang dengan menggunakan pendekatan metode Hot Spot Stress dan penggunaan kurva S-N yang ditetapkan oleh API RP 2A. Kerusakan komulatif yang terjadi pada joint kritis dihitung dengan menggunakan teori Palmgren-Miner. Perhitungan tegangan yang terjadi pada struktur kaki dihitung dengan menggunakan bantuan software Strucad dan analisa fatigue dilakukan dengan bantuan excel. Kriteria kekuatan ijin menurut ketentuan API RP-2A. Hasil yang didapat dari studi ini adalah tegangan aksial rata-rata yang terjadi akibat beban gelombang padakaki jack-up bracing K adalah 12.5% lebih rendah jika dibandingkan dengan tipe bracing X dan 9.5% lebih tinggi dibanding tipe bracing Z, tegangan bending rata-rata yang terjadi akibat beban gelombang pada kaki jack-up tipe K adalah 15.5% lebih tinggi dari bracing X dan 39.5% lebih rendah dari bracing Z, tegangan geser rata-rata yang terjadi akibat beban gelombang pada kaki jackup tipe K adalah 46% lebih rendah dari bracing X dan 62% lebih rendah dari bracing Z, respon struktur (tegangan aksial dan tegangan bending) akibat beban kombinasi adalah tegangan aksial pada kaki jack-up tipe bracing K 18.5% lebih rendah dari bracing X dan Z, tegangan bending akibat beban kombinasi pada kaki jack-up bracing K 79% lebih tinggi dari bracing X dan 76% lebih tinggi dari bracing Z. Sehingga didapatkah bahwa umur kelelahan kaki jack-up bracing K adalah 233% lebih lama dibanding kaki jack-up bracing X dan 167% lebih lama dibanding kaki jack-up bracing Z.

KATA PENGANTAR

Puji syukur kami panjatkan kehadirat Tuhan Yesus Kristus yang telah memberikan berkat, rahmat dan hikmadnya sehingga Tugas Akhir yang berjudul "STUDI UMUR KELELAHAN KAKI JACK-UP DENGAN BERBAGAI KONFIGURASI BRACING" ini dapat diselesaikan.

Tugas Akhir ini dikerjakan guna memenuhi salah satu persyaratan dalam menyelesaikan studi kesarjanaan S-1 di Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember Surabaya.

Studi pada Tugas Akhir ini adalah menghitung umur kelelahan pada kaki Jack-Up dengan pola *bracing* K, X dan Z. Adapun parameter yang digunakan adalah persamaan berat masing-masing kaki dan lingkungan laut yang sama. Umur kelelahan dihitung akibat beban kombinasi (beban gelombang, *selfweight* dan *payload*). Dari pembebanan tersebut maka akan didapat respon struktur berupa tegangan, baik itu tegangan aksial, tegangan bending maupun tegangan geser. Respon struktur dianggap dua dimensi, sehingga *fatigue life* yang dihitung hanya akibat tegangan karena gaya aksial (*axial stress*) dan tegangan karena momen bending (*in-plane bending*) yang bekerja pada join kritis. *Fatigue life* dihitung dengan menggunakan metode *Hot Spot Stress*, sehingga pemilihan besarnya SCF sangat menentukan *fatigue life* yang terjadi.

Hasil yang didapat dari perhitungan *fatigue life* masing-masing tipe *bracing*, akan menentukan keefektifan tipe *bracing* yang digunakan dengan parameter persamaan berat kaki dan lingkungan laut yang sama.

i

Kami menyadari bahwasannya banyak kekurangan dalam studi ini, oleh sebab itu masukan, kritik dan saran sangat kami harapkan untuk dapat memperbaiki kekurangan-kekurangan yang ada. Satu harapan kami bahwasannya studi ini dapat berguna bagi adik-adik Jurusan Teknik Kelautan maupun siapa saja yang membutuhkan.

Surabaya, Februari 2002

Rina Radityaningsih

4.4

UCAPAN TERIMA KASIH

Menyadari bahwasannya terselesaikannya tugas akhir ini bukan karena semata-mata kekuatan diri sendiri, maka pada kesempatan ini tidak lupa saya sampaikan terima kasih yang sebesar-besarnya kepada:

- Papa Soelam Santoso, atas doa, kasih sayang dan cinta kasih, pengertian dan bimbingannya kepada ananda.
- Mama Endang, atas doa, kasih sayang dan cinta kasih, pengertian, bimbingan dan pengorbanannya yang tidak ada duanya untuk ananda.
- Bapak Dr.Ir.P. Indiyono, MSc, selaku Ketua Jurusan Teknik Kelautan FTK-ITS.
- Bapak Dr.Ir.P. Wahyudi, selaku Sekretaris Jurusan Teknik Kelautan FTK-ITS.
- 5. Bapak Ir. Jusuf Sutomo, MSc, selaku Dosen Pembimbing I Tugas Akhir.
- 6. Bapak Ir. Murdjito, MSc Eng, selaku Dosen Pembimbing II Tugas Akhir.
- Bapak Ir. Joswan J. Soedjono, MSc, yang turut membantu memberikan masukan untuk Tugas Akhir ini.
- 8. Bapak Ir. Eko Panunggal, PhD.
- 9. Staf Dosen dan Karyawan Jurusan Teknik Kelautan FTK-ITS.
- I Wayan Yuliada, ST, atas doa, kasih sayang, pengertian dan kesabarannya selama pengerjaan tugas akhir ini yang seringkali menjadi bulan-bulanan emosi.
- Saudara-saudaraku, Keluarga Mas Romi, Keluarga Mbak Reni, adikku Rio dan Ricco, atas doa dan cerita-cerita indah yang kita buat bersama.

- 12. Keluarga Bali dan Keluarga Surabaya, untuk doanya.
- 13. Teman-temanku, Silvi untuk doa dan dorongannya, Titin yang mau menjadi tempat luapan emosiku dikala aku "gila", Arko, yang telah menjadi teman seperjuangan sesama *fatigue* dan pinjaman cartridgenya, teman-teman sesama Jack-up (Pradintio untuk tukar pikirannya, Didik-Godjel, Dian-Chik yen, Zein), cewek laut'97 (Menuk, Wiwin, Nurin, Christine, Miil, Dien, Miyuki, Ratih atas doa dan kebersamaannya selama ini), cowok laut'97: Juprik sorry lek guyon-ne kenemenen, Awang untuk bantuan pengerjaan TRB II, Kacong atas pinjaman bukune, Santo, Aries-Pusing, Bustami, Farouck, Geong, Hariyono dll atas doa dan kerjasamanya selama ini.
- Darmo, untuk SMS di pagi buta, arek-arek lab (Antok, Soni, Ondy, Mas Slamet), Mbak Rina dan Mbak Ristia, Milka buat kursus singkatnya.
- 15. Dan pihak-pihak lain yang tidak dapat saya sebutkan satu persatu.

Surabaya, 3 Februari 2002

Rina Radityaningsih

	2.2.7 Sambungan Tubular	II-16
	2.2.8 Fatigue	II-18
BAB III	METODOLOGI	
3.1	Umum	III-1
	3.1.1 Material Properti	III-1
	3.1.2 Data Lingkungan	III-2
3.2	Pemodelan	III-3
	3.2.1 Konfigurasi Dan Pola Perangkaan	III-5
3.3	Perhitungan Beban Gelombang	III-6
3.4	Perhitungan Tegangan	III-8
3.5	Analisa Fatigue	III-9
BAB IV	HASIL PEMBAHASAN	
4.1	Umum	IV-1
4.2	Kriteria Kekuatan Dalam API RP 2A	IV-1
	4.2.1 Tegangan Tarik Ijin	IV-1
	4.2.2 Tegangan Tekuk	IV-2
	4.2.3 Tegangan Geser	IV-2
	4.2.4 Tegangan Geser Torsional	IV-2
4.3	Respon Struktur	IV-3
	4.3.1 Respon Struktur Terhadap Beban Gelombang	IV-3
	4.3.2 Respon Struktur Terhadap Beban Kombinasi	IV-9
4.4	Pembahasan	IV-12
	4.4.1 Tegangan Aksial Akibat Beban Gelombang	IV-12
	4.4.2 Tegangan Bending Akibat Beban Gelombang	IV-12

	4.4.3 Tegangan Geser Akibat Beban Gelombang	IV-12
	4.4.4 Tegangan Aksial Akibat Beban Kombinasi	IV-13
	4.4.5 Tegangan Bending Akibat Beban Kombinasi	IV-14
4.5	Perhitungan Fatigue Life	IV-14
	4.5.1 Penentuan Join Kritis	IV-14
	4.5.2 Stress Concentration Factor	IV-15
	4.5.3 Perhitungan Fatigue Life	IV-16
BAB V	KESIMPULAN DAN SARAN	
5.1.	Kesimpulan	V-1
5.2.	Saran	V 2
Daftar Pustak	a	v-5

.

Lampiran

DAFTAR GAMBAR

.

Gambar 1.1 Ko	onfigurasi Sambungan Bracing K, X dan Z	I-5
Gambar 2.1 Re	egion Of Validity Of Wave Theories (API RP 2A)	II-6
Gambar 2.2 Di	stribusi Gaya Gelombang pada Silinder Tegak	II-12
Gambar 2.3 Ar	rbitrarily Oriented Cylindrical Member	II-13
Gambar 2.4 K	urva S-N Menurut API RP 2A LRFD	II-21
Gambar 2.5 Pa	arameter Suatu Sambungan Tubular	II-24
Gambar 3.1 M	odel Kaki Jack-up	III-4
Gambar 3.2 Ko	onfigurasi kaki masing-masing tipe bracing per bay	III-5
Gambar 3.3 Ar	rah datang gelombang	III-7
Gambar 3.4 Di	iagram Alir Metodologi	III-12
Gambar 4.1 σ_a	aksial akibat beban gelombang pada joint kritis 1	IV-4
Gambar 4.2 σ_a	aksial akibat beban gelombang pada joint kritis 2	IV-5
Gambar 4.3 σ_b	bending akibat beban gelombang pada joint kritis 1	IV-6
Gambar 4.4 σ_b	bending akibat beban gelombang pada joint kritis 2	IV-7
Gambar 4.5 τ _g	geser akibat beban gelombang pada joint kritis 1	IV-8
Gambar 4.6 τ _g	geser akibat beban gelombang pada joint kritis 2	IV-9
Gambar 4.7 σ_a	aksial akibat beban kombinasi	IV-10
Gambar 4.8 or	bending akibat beban kombinasi	IV-11

DAFTAR TABEL

.

1 Section

Tabel 2.1	$\Delta \sigma_{ref}$, M (Inverse Log-Log Slope) Pada 2 Juta Siklus	II-22
Tabel 2.2	SCF dalam API RP 2A LRFD 1993	II-23
Tabel 3.1	Tabel Data Gelombang untuk fatigue criteria	III-3
Tabel 3.2	Properti model kaki jack-up tiap model	III-6
Tabel 3.3	Cd Dan Cm untuk Masing-Masing Tipe Bracing	III-8
Tabel 4.1	σ_{aksial} akibat beban gelombang pada joint kritis 1	IV-3
Tabel 4.2	σ_{aksial} akibat beban gelombang pada joint kritis 2	IV-4
Tabel 4.3	σ_{bending} akibat beban gelombang pada joint kritis 1	IV-5
Tabel 4.4	σ_{bending} akibat beban gelombang pada joint kritis 2	IV-6
Tabel 4.5	τ_{geser} akibat beban gelombang pada joint kritis 1	IV-7
Tabel 4.6	τ_{geser} akibat beban gelombang pada joint kritis 2	IV-8
Tabel 4.7	σ_{aksial} akibat beban kombinasi	IV-10
Tabel 4.8	$\sigma_{bending}$ akibat beban kombinasi	IV-11
Tabel 4.9	Prosentase $\sigma_{aksial}, \sigma_{bending}$ dan τ_{geser} akibat beban gelombang	IV-13
Tabel 4.10) Prosentase σ_{aksial} dan $\sigma_{bending}$ akibat beban kombinasi	IV-14
Tabel 4.11	Joint kritis pada masing-masing tipe bracing	IV-15
Tabel 4.12	2 SCF padajoint kritis	IV-15
Tabel 4.13	Fatigue Life pada joint kritis	
	dengan rumusan SCF API dan Kuang	IV-16

х

OD	diameter luar
Re	reynold number
SCF	faktor konsentrasi tegangan
t	tebal brace
Т	tebal chord
Т	periode gelombang
$\frac{\partial u}{\partial t}$	percepatan gelombang
U	kecepatan gelombang
V	gaya geser melintang

w beban orbit dari gerakan partikel air

Lambang Huruf Yunani

α	(alpha)	perbandingan diameter chord dengan panjang chord	
β	(betta)	perbandingan tebal brace dengan tebal chord	
γ	(gamma)	perbandingan diameter chord dengan dua kali tebal chord	
ζ	(zhi)	perbandingan gap dengan diameter chord	
θ	(theta)	sudut antara chord dengan brace	
ν	(nu)	viskositas kinematik fluida	
ξ	(xie)	perbandingan gap 1 + gap 2 dengan diameter chord	
π	(phi)	3.14	
ρ	(rho)	berat jenis fluida	
σ	(sigma)	tegangan aksial, tegangan bending	
τ	(tau)	tegangan geser	
ω	(omega)	frekwensi angular	

Tuhan, gembalaku yang baik, (Mazmur 23 : 1-6)

Mazmur Daud. Tuhan adalah gembalaku, takkan kekurangan aku.

Ia membaringkan aku di padang yang berumput hijau, Ia membimbing aku ke air yang tenang;

Ia menyegarkan jiwaku. Ia menuntun aku di jalan yang benar oleh karena nama-Nya.

Sekalipun aku berjalan dalam lembah kekelaman, aku tidak takut bahaya, sebab Engkau besertaku; gada-Mu dan tongkat-Mu, itulah yang menghibur aku.

Eng!;au menyediakan hidangan bagiku, di hadapan lawanku; Engkau mengurapi kepalaku dengan minyak; pialaku penuh melimpah.

Kebajikan dan kemurahan belaka akan mengikuti aku, seumur hidupku; dan aku akan diam dalam rumah Tuhan sepanjang masa.

(Amin)

BAB I PENDAHULUAN

BAB I

PENDAHULUAN

1.1. Latar Belakang Masalah

Perkembangan timbulnya kebutuhan akan konstruksi anjungan lepas pantai didorong oleh adanya perkembangan di bidang industri pengeboran minyak dan gas di lepas pantai yang mempunyai kecenderungan untuk mencari ladangladang minyak di perairan yang lebih dalam dengan kondisi laut yang semakin ganas. Bertambahnya permintaan pasar terhadap kebutuhan akan minyak dan gas, maka menuntut pihak industri oil company untuk memenuhi permintaan tersebut. Sehingga diharapkan adanya keseimbangan antara supply dan demand. Kenyataan yang harus diterima adalah bahwasannya tidak selalu terdapat ladang-ladang minyak dengan reservoir yang besar dan mempunyai nilai ekonomis yang tinggi pada masa yang akan datang, sehingga kecenderungan untuk memanfaatkan ladang-ladang marginal (marginal field) menjadi alternatif utama. Untuk dapat mengoptimalkan ladang-ladang marginal tersebut maka diperlukan suatu anjungan lepas pantai yang effektif dari segi biaya. Jack-up merupakan salah satu jenis bangunan lepas pantai yang sangat effektif dan potensial untuk daerah operasi di daerah ladang marginal.

Jack-up drilling unit adalah salah satu fasilitas untuk pemboran lepas pantai. Kaki dari *jack-up* berada di sudut-sudut *deck*, dan menjulang sampai dasar laut dengan jumlah kaki umumnya tiga buah dan empat buah atau juga lebih.

Pendahuluan

Konstruksi jack-up platform pada mulanya dituiukan untuk mengkombinasikan keunggulan anjungan terpancang dan keunggulan anjungan terapung. Pada struktur terapung gerakan struktur di atas air relatif lebih besar dibanding dengan struktur terpancang, kecuali pada jack-up platform. Pada waktu operasional perilaku jack-up platform seperti halnya struktur offshore terpancang, karena geladak dan bangunan atas ditopang oleh kaki-kakinya yang terpancang ke dasar laut. Berbeda dengan struktur terpancang, kaki-kaki jack-up tidak permanen terpancang di dasar laut, melainkan dapat dinaik-turunkan. Dalam menjalankan fungsinya jack-up platform harus senantiasa mampu menahan beban yang terjadi pada tiap-tiap fase kerja yang ada, terutama pada fase operasi. Lingkungan merupakan faktor utama yang sangat berperan penting dalam perancangan struktur jack-up platform.

Struktur kaki merupakan bagian terpenting pada perancangan struktur *jack-up platform*, sebab kaki-kaki tersebut digunakan sebagai penopang beban utama pada waktu operasi. Bentuk dan ukuran *chords* serta *layout* dari *bracing* sangat menentukan daya tahan kaki dalam mendukung beban.

Pada kondisi lingkungan operasional di lepas pantai, pembebanan yang terjadi berulang-ulang terjadi pada struktur kaki-kaki *jack-up*. Hal ini akan mengakibatkan terjadinya *fatigue* pada struktur tersebut. *Fatigue* dapat mengakibatkan munculnya kepecahan pada struktur, terutama pada sambungan-sambungan tubular yang kritis terhadap beban. *Fatigue* berarti pengurangan kekuatan (kegagalan) suatu konstruksi karena beban berulang. Kegagalan ini bersifat progresif, dimana tahap akhirnya berupa penjalaran retak yang tidak

stabil. Oleh sebab itu *fatigue life* dari suatu struktur *jack-up* akibat beban lingkungan harus dianalisa terlebih dahulu untuk memprediksi kelayakan operasi.

Pemilihan *lay-out* struktur kaki *jack-up* akan mempengaruhi kekuatan dari *jack-up* itu sendiri. Kekuatan kaki dengan tipe *bracing* yang berbeda akan berbeda pula hal ini akan sangat berpengaruh terhadap umur kelelahan masing-masing tipe apabila dioperasikan pada lingkungan laut yang sama. Oleh sebab itu proses pemilihan *lay-out* merupakan suatu proses yang penting karena berpengaruh pada berbagai faktor baik itu teknis maupun ekonomis.

1.2. Perumusan Masalah

Permasalahan yang ingin diangkat pada tugas akhir ini adalah:

- Bagaimanakah pengaruh beban siklik gelombang terhadap kekuatan kaki *jack-up* tipe truss 3 *chords* dengan *bracing system* tipe K, X, dan Z
- Bagaimanakah perhitungan *fatigue life* pada stuktur kaki *jack-up* dengan *bracing system* tipe K, X, Z akibat beban tersebut
- Bagaimanakah pengaruh tata letak brace ditinjau dari segi *fatigue life*-nya

1.3. Tujuan

Tujuan yang ingin dicapai pada analisa ini adalah:

- Memperkirakan pengaruh beban siklik gelombang terhadap kaki jack-up tipe truss 3 chords dengan bracing system tipe K, X, dan Z
- Menghitung *fatigue life* pada stuktur kaki *jack-up* dengan *bracing* system tipe K, X, Z akibat beban tersebut
- Menganalisa pengaruh tata letak brace ditinjau dari segi *fatigue life*nya

1.4. Manfaat

Manfaat yang didapat dari hasil analisa ini adalah sebagai bahan pertimbangan bagi para *designer* dan *engineer* dalam mengambil suatu keputusan untuk menentukan tipe *lay-out* struktur kaki *jack-up* berdasarkan *fatigue life*-nya.

1.5. Batasan

Untuk mempersempit permasalahan dan memudahkan analisa maka permasalahan akan dibatasi pada hal-hal sebagai berikut:

 Obyek studi adalah *jack-up* tipe *truss* 3 *chords* dengan konfigurasi sambungan bracing K, X, dan Z

- Fatigue life yang dihitung hanya akibat gaya aksial dan in-plane bending
- Data Jack-Up yang digunakan mengacu kepada 'Dyvi Gamma' yang disesuaikan dengan kondisi lingkungannya
- Data lingkungan yang digunakan adalah Widuri *Field* dengan perincian sebagai berikut:

•	Lokasi	: Laut Jawa
•	Kedalaman	: 73.4 ft
•	Tinggi gelombang max	: 26.5 ft
•	Perioda gelombang max	: 8.8 sec
	Panjang gelombang max	: 365 ft

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II

TINJAUAN PUSTAKA DAN LANDASAN TEORI

2.1. Tinjauan Pustaka

Jack-up drilling rig merupakan salah satu jenis bangunan lepas pantai terapung yang mempunyai kaki sampai ke dasar laut, lambung dari *jack-up* dapat diturun-naikkan (Badu, 2000).

Konfigurasi jack-up platform mengalami perubahan dari waktu ke waktu, hal ini disesuaikan dengan kondisi pengoperasiannya dan juga fungsi dari bangunan tersebut. Begitu juga dengan konstruksi kakinya. Jumlah kaki untuk struktur jack-up yang modern berjumlah 3 atau 4 buah. Konfigurasi kaki merupakan bagian terpenting pada perancangan struktur jack-up, kaki-kaki jack-up digunakan sebagai penopang utama beban pada waktu operasi. Kaki *jack-up* dapat berupa pipa baja dan dapat juga berupa konstruksi rangka/cangkang. Kaki jack-up dengan struktur rangka terdiri dari chord sebagai elemen utama dan bracing sebagai penegar. pada kaki struktur rangka biasanya digunakan chords dengan jumlah 3 atau 4. Menurut Murdjito, 1997, konstruksi kaki cangkang menjadikan beban hidrodinamis yang bekerja pada struktur lebih rendah dibanding dengan konstruksi tertutup, hal ini dikarenakan pada konstruksi kaki cangkang nilai C_D dan C_M jauh lebih rendah dibanding pada konstruksi kaki tertutup, untuk tipe 3 *chord* memiliki $C_D \times D$ yang lebih rendah daripada 4 *chord*, yakni 76 % lebih rendah dan pada X bracing beban hidrodinamis akan lebih rendah daripada pada K bracing, karena harga C_D pada X bracing lebih rendah dibanding harga C_D pada K bracing. Untuk X type maximum beban bracing

diagonal yang berupa beban geser 33 % lebih rendah dibanding dengan K type (Murdjito, 1996).

Stabilitas struktur dalam mengantisipasi beban lingkungan terutama beban gelombang dan badai, kekuatan dan kekakuan kaki *jack-up*, besarnya penyimpangan horizontal yang melebihi kriteria keselamatan operasi, tingginya perioda natural struktur sangat mempengaruhi umur kelelahan (*fatigue*). Sebagai penyebab kegagalan struktur disini dapat diakibatkan oleh dua kemungkinan utama, yakni: terjadinya deformasi serius pada struktur *jack-up* dan stabilitas *jack-up* yang terlalu rendah (Murdjito, 1997).

Fatigue berarti kegagalan karena pembebanan siklik. Pembebanan dan penghilangan beban secara berulang-ulang sering menyebabkan terjadinya kegagalan, walaupun tegangan *yield*nya tidak sampai terlampaui. Kegagalan ini akan berakibat terjadinya retak yang tidak stabil (Graff, 1981). Pada umumnya kegagalan pada metal setelah pembebanan 10⁷ siklik mempunyai stress amplitudo antara 0.3 dan 0.5 pada *Tensile Strength* yang tepat (Reddy, 1991).

Kekuatan letih ditentukan oleh tiga variable, yaitu (Salmon, 1992):

- banyaknya siklus pembebanan
- kisaran tegangan beban layanan (perbedaan antara tegangan maksimum dan minimum)
- 3. ukuran cacat mula-mula

Pada umumnya kegagalan *fatigue* pada *jack-up* terjadi pada kaki, yaitu pada sambungan dan juga pada daerah dekat *spud cans* (Niemi, 1990). Suatu sambungan tubular akan menimbulkan tegangan membran pada *chord*, sehingga akan terjadi konsentrasi tegangan di beberapa titik pada sambungan (*hot spots*),

dimana besarnya *hot spots* akan beberapa kali lebih besar daripada tegangan nominal (Djatmiko, 1994). Walaupun demikian sumber terpenting dari ketidakpastian dalam memprediksi *fatigue life* pada *jack-up platform* adalah kenyataan bahwa masing-masing kaki menerima stress yang berbeda-beda pada kondisi lingkungan yang berbeda dalam periode yang berbeda (Svenningsen, 1983).

2.2. Landasan Teori

2.2.1. Jack-up Platform

Jack-up drilling unit adalah unit pemboran lepas pantai yang mempunyai kaki sampai ke dasar laut. Lambung dari *jack-up* dapat diturun-naikkan. Saat melakukan operasi pemboran, lambung berada beberapa feet di atas permukaan laut. Kaki dari *jack-up* berada pada sudut-sudut *deck*, yang jumlah kakinya umumnya tiga buah dan ada juga yang empat buah.

Sturktur *jack-up platform* dapat dikelompokkan atas geladak, kaki dan sepatu (pondasi). Ukuran utama geladak *jack-up platform* sangat tergantung pada posisi kaki. Berat geladak akan menentukan besarnya berat struktur yang akan mempengaruhi konstruksi daripada kaki-kaki *jack-up* dan jenis sepatu yang digunakan.

Konstruksi kaki *jack-up platform* merupakan bagian terpenting pada perancangan struktur *jack-up*. Hal ini dikarenakan bahwa sebagai beban utama waktu operasi adalah kaki-kaki *jack-up*, demikian juga dengan arus transformasi beban senantiasa melewati kaki-kaki *jack-up*.

Kaki *jack-up* dengan struktur rangka terdiri dari *chord* sebagai elemen utama yang didukung oleh *bracing* sebagai penegar. Kriteria penting dalam merancang bentuk kaki *jack-up* adalah:

- Jarak antar kaki, jarak antar kaki akan menentukan stabilitas struktur dalam menahan beban momen.
- 2. **Jarak antar chords**, jarak antar chord selain menentukan kekakuan kaki juga akan menentukan berat kaki. Jarak antar *chords* akan menentukan momen inersia kaki, berarti juga akan menentukan kemampuan struktur dalam menahan beban momen dan gaya geser.
- 3. Tipe chords, bentuk dan ukuran chords sangat menentukan daya tahan kaki dalam mendukung beban. Bentuk dan ukuran chords ditentukan oleh beberapa faktor antara lain:
 - kekakuan dan kelenturan kaki
 - posisi dan konstruksi daripada racks pada chord dan pinions di jacking huis
 - hubungan antar kaki dengan sepatu (pondasi)
 - kekuatan dan ukuran chord terhadap elemen penegar
- 4. Bentuk penampang kaki jack-up (bay), satu kaki dibagi atas segmen-segmen yang sama yang disebut *bay*. Setiap *bay* akan memiliki sifat dan karakteristik yang sama yang terdiri atas *chord*, penegar horizontal ataupun diagonal. Ada tipe *bay* dalam konstruksi kaki *jack-up platform*, yakni *bay* segitiga dan *bay* bujur sangkar.
- 5. **Tipe penegar (bracings)**, konstruksi *bracings* yang umum untuk *jack-up platform* ialah bentuk *K-type* atau *X-type*. Untuk *jack-up*

II - 5

platform yang dioperasikan di perairan yang dalam konstruksi bracing tipe X paling sering digunakan.

2.2.2. Beban Gelombang Air Laut (Wave Loads)

Beban gelombang air laut (*Wave Loads*) merupakan beban lingkungan yang paling dominan dan akan selalu bekerja secara kontinyu selama periode kerja dari bangunan lepas pantai terpancang tersebut.

Pada dasarnya karakteristik dari suatu gelombang air laut menunjukkan sifat – sifat dari gelombang acak (random).untuk dapat memahami karakteristik gelombang laut yang bersifat random tersebut orang sering menggunakan analisa pendekatan matematis dengan jalan menggabungkan gelombang – gelombang reguler dengan cara menganalisa spektra gelombang laut (*Wave Spectrum*).

2.2.2.1. Penentuan Teori Gelombang yang akan Digunakan

Gaya-gaya yang terjadi pada air laut merupakan beban lingkungan dominan yang harus dipertimbangkan dalam mendesain suatu struktur offshore. Gaya-gaya yang terjadi pada air laut dapat diklasifikasikan sebagai berikut; yaitu gaya akibat adanya gelombang dan gaya akibat adanya arus.

Terdapat tiga bentuk dasar dari gelombang, yaitu: (1) sinusoidal wave, (2) enoidal waves dan (3) solitary wave. Masing-masing gelombang dapat dihitung dengan menggunakan teori gelombang baik itu derajat rendah maupun teori gelombang derajat tinggi. Satu diantara teori gelombang tersebut harus dipilih untuk digunakan menghitung kecepatan dan percepatan gelombang.

Pada keadaan perairan lingkungan *Widuri Field* mempunyai perbandingan $H/gT^2 = 0.00843$ dan $d/gT^2 = 0.04758$. dengan melihat pada grafik *Region of validity of wave theories* maka teori gelombang yang baik untuk digunakan adalah Stokes Order 5.

Gambar 2.1 Region Of Validity Of Wave Theories (API RP 2A)

2.2.2.2. Persamaan Teori Gelombang Stokes Orde Lima

Teori Stokes digunakan untuk gelombang dengan amplitudo yang relatif kacil jika disbanding dengan kedalaman perairan. Teori Stoke dimunculkan pertama kali oleh Lord Stoke sekitar tahun 1847, kemudian berturut-turut

dikembangkan oleh Borgman dan Chappelear (1958), Bretschneider (1960), Lars Skjelbreia dan James Hendrickson (1960), Tscuchiya dan Yamaguchi (1972).

Koefisien yang diberikan oleh Skjebreia dan Hendrikus untuk teori Stoke orde 5 adalah sebagai berikut:

 $s = \sinh kd$ $c = \cosh kd$

 $C_o^2 = g \tanh kd$

dan,

$$A_{11} = \frac{1}{s}$$

$$A_{13} = \frac{-c^2(5c^2 + 1)}{8s^5}$$

$$ac = 18 - 249c^2$$

$$A_{15} = \frac{-(1.184c^{10} - 1.440c^8 - 1.992c^6 + 2.641c^4 + ac)}{1.536s^{11}}$$

$$A_{22} = \frac{3}{8s^4}$$
$$A_{24} = \frac{192c^8 - 424c^6 - 312c^4 + 480c^2 - 17}{768s^{10}}$$

$$\begin{split} \mathcal{A}_{33} &= \frac{13 - 4c^2}{64s^7} & ...\\ ac &= 512c^{12} + 4.224c^{10}\\ \mathcal{A}_{35} &= \frac{ac - 6.800c^8 - 12.808c^6 + 16.704c^4 - 3.154c^2 + 107}{4.096s^{13}(6c^2 - 1)}\\ \mathcal{A}_{44} &= \frac{80c^6 - 816c^4 + 1.338c^2 - 197}{1.536s^{10}(6c^2 - 1)}\\ ac5 &= 163.470c^2 - 16.245\\ \mathcal{A}_{55} &= \frac{-(2.880c^{10} - 72.480c^8 + 324.000c^6 - 432.000c^4 + ac5)}{61.440s^{11}(6c^2 - 1)(8c^4 - 11c^2 + 3)} \end{split}$$

$$\begin{split} B_{22} &= \frac{\left(2c^2 + 1\right)c}{4s^3} \\ B_{24} &= \frac{c\left(272c^8 - 504c^6 - 192c^4 + 322c^2 + 21\right)}{384s^9} \\ B_{33} &= \frac{3\left(8c^6 + 1\right)}{64s^6} \\ bc &= 88.128c^{14} - 208.224c^{12} + 70.848c^{10} \\ B_{35} &= \frac{bc + 54.000c^8 - 21.816c^6 + 6.264c^4 - 54c^2 - 81}{12.288s^{12}\left(6c^2 - 1\right)} \\ B_{44} &= \frac{c\left(768c^{10} - 448c^8 - 48c^6 + 48c^4 + 106c^2 - 21\right)}{384s^9\left(6c^2 - 1\right)} \\ bc5 &= 192.000c^{16} - 262.720c^{14} + 83.680c^{12} + 20.160c^{10} \\ B_{55} &= \frac{bc5 - 7.280c^8 + 7.160c^6 - 1.800c^4 - 1.050c^2 + 225}{12.288s^{10}\left(6c^2 - 1\right)\left(8c^4 - 11c^2 + 3\right)} \\ C_1 &= \frac{8c^4 - 8c^2 + 9}{8s^4} \\ cc &= 3.840c^{12} - 4.096c^{10} \\ C_2 &= \frac{cc + 2.592c^8 - 1.008c^6 + 5.944c^4 - 1.830c^2 + 147}{512s^{10}\left(6c^2 - 1\right)} \\ C_3 &= \frac{-1}{4sc} \\ C_4 &= \frac{12c^8 + 36c^6 - 162c^4 + 141c^2 - 27}{122c^8} \end{split}$$

$$192cs^{9}$$

dimana:

$$\begin{split} F_{1} &= \lambda A_{11} + \lambda^{3} A_{13} + \lambda^{5} A_{15} \\ F_{2} &= \lambda^{2} A_{22} + \lambda^{4} A_{24} \\ F_{3} &= \lambda^{3} A_{33} + \lambda^{5} A_{35} \\ F_{4} &= \lambda^{4} A_{44} \\ F_{5} &= \lambda^{5} A_{55} \end{split}$$

Sehingga kecepatan partikelnya adalah sebagai berikut:

$$u = C \sum_{n=1}^{3} nF_n \cos n\theta \cosh nkS \qquad (2.2.2.2-1)$$

$$w = C \sum_{n=1}^{5} nF_n \sin n\theta \sinh nkS$$
 (2.2.2.2-2)

dan percepatan partikelnya adalah sebagai berikut:

$$\frac{\partial u}{\partial t} = kc^2 \sum_{n=1}^{5} n^2 F_n \sin n\theta \cosh nkS \qquad (2.2.2.2-3)$$

$$\frac{\partial w}{\partial t} = -kc^2 \sum_{n=1}^{5} n^2 F_n \cos n\theta \sinh nkS \qquad (2.2.2.2-4)$$

$$L_0 = \frac{gT^2}{2\pi} \tag{2.2.2.5}$$

$$C = \frac{gT}{2\pi} \tanh kd \tag{2.2.2.-6}$$

$$kH = 2 \left[\lambda + \lambda^3 B_{33} + \lambda^5 (B_{35} + B_{55})\right]$$
(2.2.2.2-7)

2.2.3. Batasan Pemakaian Persamaan Morison

Perhitungan gaya dari partikel air dengan menggunakan persamaan Morison, hanya mungkin jika dilakukan asumsi bahwa gerak gelombang tidak dipengaruhi oleh adanya struktur yang dilaluinya.

Ini berarti harus dipertimbangkan karakter dimensi diameter struktur tidak melebihi 0.2 atau D/L < 0.2.

all

115

Beberapa persyaratan yang harus diperhatikan dalam mendesain gelombang adalah:

- D/L > 1 kondisi ini mendekati pemantulan gelombang secara murni
- D/L> 0.2 pertambahan gaya gelombang oleh difraksi perlu diperhitungkan
- D/L < 0.2 penggunaan rumus Morison adalah valid
- D/w > 0.2 gaya inersialebih dominan
- D/w < 0.2 gaya tahanan lebih dominan

dimana:

- D : diameter pipa
- L : panjang gelombang
- w: beban orbit dari gerakan partikel air

 $w = H/ \tanh (2d/L)$

- d: kedalaman air
- H : tinggi gelombang

Pada keadaan lingkungan perairan *Widuri Field* diketahui diameter pipa (OD) = 250 mm dan panjang gelombang max (L_o) = 111.325 m, sehingga D/L = 0.00224, sehingga rumus Morison valid digunakan pada perhitungan gaya gelombang.

2.2.4. Persamaan Morison

Terdapat dua bagian besar dari gelombang yang menyebabkan gaya yang terjadi pada struktur. Gaya Drag (F_D) disebabkan karena kecepatan pertikel air dalam bentuk gaya Drag. Magnitudo dari F_D tergantung dari bentuk, kekasaran

dari obyek, Reynold number dan intensity turbulensi saat mengalir. Gaya Inertia F₁ yang tergantung dari percepatan partikel air. Sedangkan gaya Inersia adalah penjumlahan gaya Froude-Krylov dengan gaya Massa Tambah.

Untuk menentukan besarnya gaya gelombang pada suatu bangunan lepas pantai terpancang, maka persamaan Morisson yang sering digunakan adalah :

$$F = F_D + F_I$$
 (2.2.4 - 1)

dimana:

 $F_D = 0.5 C_D \rho A IUI I \overline{U} I$ (2.2.4 - 2)

$$F_1 = C_M \rho \bigtriangleup \frac{\partial u}{\partial t}$$
(2.2.4 - 3)

dimana :

 $F_D =$ gaya Drag

 $C_D =$ koeffisien drag

 $\rho = massa jenis air laut$

A =luas area yang terkena air

U = kecepatan partikel air laut

 C_M = koeffisien massa tambah

 $\frac{\partial u}{\partial t}$ = percepatan partikel dengan arah sumbu X (horisontal)

 $F_{I} = gaya Inersia$

Sehingga

$$F = 0.5 C_D \rho A IUI I\overline{U}I + C_M \rho \bigtriangleup \frac{\partial u}{\partial t}$$
(2.2.4 - 4)

Untuk silinder dengan diameter D, maka total gaya per satuan panjang adalah:

$$F = 0.5 C_{\rm D} \rho D I U I I \overline{U} I + 0.25 C_{\rm M} \rho \pi D^2 \frac{\partial u}{\partial t}$$
(2.2.4 - 5)

F = gaya total hidrostatis yang bekerja pada struktur bangunan lepas pantai

Gambar 2.2 Distribusi Gaya Gelombang Pada Silinder Tegak

Besarnya koefisien massa tambah (C_M) dan koefisien drag (C_D) tergantung dari besarnya Reynold number. Adapun besarnya Reynold number adalah sebagai berikut:

 $R_e = \frac{UD}{v}$ dimana v = viskositas kinematikdari fluida

= 1.0×10^{-5} ft²/sec (untuk air laut)

2.2.5 Teori Gaya Gelombang Pada Silinder Miring

Gambar 2.2 Arbitrarily Oriented Cylindrical Member

Harga komponen kecepatan normal (v) terhadap sumbu silinder adalah :

$$\mathbf{v} = (\mathbf{u}^2 + \mathbf{v}^2 - (\mathbf{c}_{\mathbf{x}} \, \mathbf{u} + \mathbf{c}_{\mathbf{y}} \, \mathbf{v})^2)^{1/2} \tag{2.2.5-1}$$

Komponen kecepatan normal (v) yang searah sumbu x, y dan z berturutturut adalah sebagai berikut :

$$u_{normal} = u - c_x (c_x u + c_y v)$$

$$v_{normal} = v - c_y (c_x u + c_y v)$$

$$w_{normal} = -c_z (c_x u + c_y v)$$
(2.2.5-2)

dimana :

$$c_{x} = \sin \phi \cos \theta$$

$$c_{y} = \sin \phi \sin \theta$$

$$c_{z} = \cos \phi$$
(2.2.5-3)

Komponen percepatan normal dalam arah x, y dan z adalah sebagai berikut:

$$a_{normal x} = a_{x} - c_{x} (c_{x} a_{x} + c_{y} a_{y})$$

$$a_{normal y} = a_{y} - c_{y} (c_{x} a_{x} + c_{y} a_{y})$$

$$a_{normal z} = -c_{z} (c_{x} a_{x} + c_{y} a_{y}).$$
(2.2.5-4)

Hubungan antara Persamaan Morisson per satuan panjang pada silinder miring adalah sebagai berikut :

$$f_{x} = 0.5 \rho C_{d} D v u_{n} + 0.25 \rho \pi D^{2} C_{l} a_{normal x}$$

$$f_{y} = 0.5 \rho C_{d} D v v_{n} + 0.25 \rho \pi D^{2} C_{l} a_{normal y}$$

$$f_{x} = 0.5 \rho C_{d} D v w_{n} + 0.25 \rho \pi D^{2} C_{l} a_{normal z} \quad (2.2.5-5)$$

Dari persamaan diatas, untuk mendapatkan besarnya gaya di masing – masing sumbu, maka persamaan diatas diintegralkan seperti persamaan dibawah ini :

$$F_{x} = \int f_{x} ds$$

$$F_{y} = \int f_{y} ds$$

$$F_{z} = \int f_{z} ds$$
(2.2.5-6)

2.2.6 Kriteria Tegangan Ijin

Bagian struktur yang menerima beban kompresi dan beban tekuk harus memenuhi kriteria kekuatan dan kriteria stabilitas. Apabila total tegangan pada setiap bagian konstruksi melebihi tegangan ijin maka kegagalan pada struktur akan terjadi (API RP-2A, 1993).

Tegangan tarik ijin

$$Ft = 0.6 x Fy$$

$$(2.2.6 - 1)$$

Dimana: Ft = tegangan tarik ijin (MPa)

Fy = tegangan yield (MPa)

Tegangan Tekuk

$$\label{eq:Fb} \begin{split} F_b = 0,75 \ F_y & \mbox{untuk D/t} \le 1500/ \ F_y \\ atau \ D/t \le 10340/ \ F_y \ (satuan \ Sl) & (2.2.6-2) \end{split}$$

 $F_{b} = \left[0,84 - 1,74 \frac{F_{y}.D}{E_{t}}\right] F_{y} \quad \text{untuk } 1500/F_{y} < D/t \le 3000/F_{y} \qquad (2.2.6 - 3)$

atau 10340/Fy < D/t \leq 20680/ Fy (satuan SI)

$$F_b = \left[0,72 - 0,58 \frac{F_y.D}{E_t}\right].F_y$$
 untuk 3000/Fy < D/t < 300

atau 20680/
$$F_y < D/t \le 300$$
 (satuan SI) (2.2.6 - 4)

Tegangan Geser

Untuk bagian tubular, tegangan geser maksimum adalah:

$$f_v = \frac{V}{0,5.D} \tag{2.2.6-5}$$

dimana: V = gaya geser lintang (MPa)

A = luas bidang (m²)

Sedangkan tegangan geser yang diijinkan ditentukan dari:

 $F_V = 0.4 \times F_v$

Tegangan Geser Torsional

Tegangan geser torsional maksimum untuk bagian tubular akibat torsi adalah:

$$f_v = \frac{M_t \left(\frac{D}{2}\right)}{I_p} \tag{2.2.6-6}$$

dimana:

 f_{vt} = tegangan geser torsi maksimum (MPa)

 $M_1 = momen torsi (MN.m)$

 $I_p = momen inersia polar (m^4)$

Tegangan torsional yang diijinkan: $f_{vt} = 0.4 \text{ x } F_y$

2.2.7 Sambungan Tubular

Menurut Djatmiko, 1994 karakteristik sambungan tubular member dapat diklasifikasikan sebagai berikut:

- Kekakuan struktur terhadap beban puntiran
- Bentuk struktur simetris dan simpel
- Luas permukaan struktur relatif kecil, sehingga kebituhan akan cat juga kecil
- Kode perancangan sehubungan dengan tubular member banyak tersedia
- Cd dan Cm struktur kecil
Kriteria kegagalan suatu sambungan tubular pada dasarnya dapat diklasifikasikan dalam tiga katagori yaitu batas elastis material, kelelahan struktur akibat beban tarik dan ultimate/deformasi akibat beban tekan. Bentuk kegagalan suatu sambungan tubular pada dasarnya merupakan fungsi dari jenis sambungan, parameter sambungan dan kondisi pembebanan. Bentuk kegagalan pada sambungan tubular dapat berupa:

- 1. Kerusakan dinding utama tubular/chord (*punching shear*)
- 2. Keretakan awal pada sambungan chord-brace
- Tekukan (*buckling*) lokal pada dinding chord disekitar brace yang mendapat beban tekan
- 4. Kerusakan geser pada seluruh penampang chord
- 5. Dinding *chord* terkelupas disekitar *brace* yang mendapat beban tarik

2.2.7.1 Aspek Parameter Sambungan Tubular

• Aspek parameter β (d/D)

Bila $\beta < 0.3$ kemungkinan kegagalan sambungan terutama dalam bentuk kerusakan sambungan las akibat tarikan atau desakan *brace* pada sisi *chord*, atau kegagalan desakan geser (*punching shear failures*)

Bila $\beta > 0.8$ kemungkinan kegagalan terjadi dalam bentuk keruntuhan (*collaps*) pada *chord*. Bila $0.3 < \beta < 0.8$ kemungkinan kegagalan dalam bentuk interaksi antara punching shear dengan collaps. Dalam kebiasaan praktis orang sering mengambil harga $0.4 < \beta < 0.7$

Aspek parameter γ (D/2T)

 γ memberikan indikasi ketipisan struktur tubular. Kegagalan yang sering terjadi dalam bentuk tekukan (bukling). Dalam kebiasaan praktis untuk bangunan lepas pantai nilai γ minimal adalah 10.

• Aspek parameter τ (t/T)

τ memberikan indikasi kemungkinan kerusakan dinding *chord* mendahului kepecahan penampang *brace*. Harga τ untuk bangunan lepas pantai berkisar antara 0.5 sampai dengan 0.7.

2.2.8 Fatigue

Fatigue untuk 'logam lelah' definisi pendekatannya adalah kemampuan dari logam untuk mengalami kerusakan karena adanya kondisi pembebanan dinamis yang berulang pada saat tegangannya kurang dari tegangan ijinnya pada sebuah tes statik.

Kerusakan akibat adanya *fatigue* menyebabkan sebuah struktur atau komponen menjadi tidak hanya sekedar *fracture* (retak). Sebuah logam yang dikenai pembebanan berulang mudah dipengaruhi *fatigue failure* jika beban yang ...

Perlunya analisa *fatigue* pada bangunan lepas pantai karena (Soedjono, 1999):

- Bangunan lepas pantai sebagai subyek beban *cyclic* sepanjang beroperasi
 (diperkirakan 10⁸ cycles dalam 20 tahun)
- Karena dibatasi kemampuan perawatan, sebuah derajat keandalan tertinggi yang dibutuhkan.

- ∞ Konsekwensi kegagalan yang sangat besar.
- Timbulnya *crack* sangat lambat di lepas pantai dan dapat dikontrol melalui program perbaikan.
- Jika tegangan lebih kecil daripada 0.5 pada yield stress maka tidak terjadi fatigue.
- Jika bangunan lepas pantai berada pada lingkungan yang korosif, maka tidak ada batas *fatigue*, kurva S-N tidak berlanjut.

2.2.8.1 Kurva S-N

Secara konvensional perancangan atau penentuan umur kelelahan *tubular joint* dilakukan dengan menggunakan kurva S-N, sedangkan metode yang lebih modern yang sedang dikembangkan adalah metode *Fracture Mechanics*. Kurva S-N digunakan untuk karakteristik *fatigue* pada material yang mempunyai *cycle* tegangan berulang-ulang pada magnitude konstan. Dimana N adalah jumlah *cycle* pada tegangan S yang menyebabkan kerusakan struktur.Metode Fracture Mechanics dianggap metode yang akurat karena metode ini memperhitungkan kondisi fisik dari *tubular joint*, dimana *fatigue* seringkali dianggap sebagai proses yang terdiri dari dua tahap yaitu *crack initation* dan *crack propagation*.

Metode dengan menggunakan kurva S-N relatif sederhana sehingga mudah penggunaannya dan sudah dipakai secara luas dalam perancangan atau penentuan umur kelelahan *tubular joint*. Kurva S-N tersebut didapatkan dengan menguji material beberapa kali dalam range tegangan nol sampai minimum. Walaupun secara praktis banyak struktur material untuk *range cycles stress* yang tidak nol sampai minimum.

Ada dua macam pendekatan dalam menggunakan kurva S-N, yaitu pendekatan yang menggunakan Punching Shear Stress (PSS) dan pendekatan yang menggunakan Hot Spot Stress (HSS). Kedua metode ini mengkonversikan tegangan nominal menjadi tegangan maksimum pada pertemuan chord dan brace sebagai fungsi parameter geometri tubular joint dan faktor konstanta yang diperoleh secara empiris. Metode Punching Shear Stress merupakan metode yang paling konvensional dan sederhana yang hanya memperhitungkan rasio tebal brace-tebal chord (τ) dan sudut antara brace dan chord (θ) sebagai parameter geometri yang mempengaruhi tegangan maksimum di pertemuan chord dan brace. Sedangkan metode hot spot stress menghitung tegangan maksimum dipertemuan chord-brace dengan jalan mengalikan tegangan nominal dengan faktor yang disebut Stress Concentration Factor (SCF). Sehingga dapat dikatakan bahwa metode ini memperhitungkan hampir semua parameter geometri, tergantung jenis joint. Jika dibandingkan dengan metode Punching Shear Stress, metode Hot Spot Stress dipandang lebih realistik dan lebih akurat, sehingga pada studi kali ini menggunakan metode Hot Spot Stress.

Gambar 2.3 Kurva S-N Menurut API RP 2A

- Kurva X' berlaku untuk tubular joint dengan pengelasan tanpa profile control dan tebal *brace* tidak melebihi 16 mm
- Kurva X berlaku untuk pengelasan dalam profil control dangan tebal *brace* kurang dari 25 mm

Kurva S-N dalam gambar 2.3 dapat dinyatakan secara matematis sebagai berikut:

$$N = 2x10^{6} \left(\frac{\Delta\sigma}{\Delta\sigma_{ref}}\right)^{-m}$$

Kurva	$\Delta \sigma_{ref}$	m	Endurance Limit
Х	100 MPa	4.38	35 MPa
X'	79 MPa	3.74	23 MPa

Tabel 2.1 $\Delta \sigma_{ref}$, M (Inverse Log-Log Slope) Pada 2 Juta Siklus

Pada perhitungan fatigue life kali ini dipergunakan kurva S-N X', hal ini disebabkan tebal brace yang digunakan tidak melebihi 16 mm.

2.2.8.2 Metode Hot Spot Stress

Metode Hot Spot Stress menggunakan tegangan geometri maksimum di daerah diskontinuitas (pertemuan chord-brace) yang diperoleh dengan mengalikan tegangan nominal dengan SCF (Stress Concentration Factor). Tegangan maksimum tersebut dikenal Hot Spot Stress yang terjadi pada daerah diskontinuitas.

$$SCF = \frac{\sigma_{hotspot}}{\sigma_{no\min al}}$$

Bermacam-macam formulasi SCF telah banyak dikembangkan, antara lain oleh Marshall, Wordsworth, Visser, Potvin, Kuang, American Petroleum Institute dan lain-lain. Pemilihan formulasi SCF didasarkan pada:

- Tipe bracing/tubular joint
- Jenis beban pada joint tersebut; aksial load, in-plane bending ataukah out-plane bending
- Dimensi dari chord dan brace

Formulasi SCF untuk sambungan brace dengan geometri yang tidak sama maka digunkan parameter non dimensional (γ , τ , β , θ) yang disesuaikan dengan

tipe joint yang diamati. Formulasi SCF yang digunakan pada studi kali ini adalah berdasarkan API RP 2A LRFD 1993 dan rumusan Kuang.

Jenis joint	Axial	In-plane bending	Out-plane bending
T chord	1,7 x 1,8 √γ τ sin θ	$2/3 \times 1.8 \sqrt{\gamma} \tau \sin \theta$	$3/2 \times 1.8 \sqrt{\gamma} \tau \sin \theta$
Y chord	$1,7 \times 1,8 \sqrt{\gamma} \tau \sin \theta$	$2/3 \times 1.8 \sqrt{\gamma} \tau \sin \theta$	$3/2 \times 1.8 \sqrt{\gamma} \tau \sin \theta$
K chord	$1,8 \sqrt{\gamma} \tau \sin \theta$	$2/3 \times 1,8 \sqrt{\gamma} \tau \sin \theta$	$3/2 \times 1.8 \sqrt{\gamma} \tau \sin \theta$
X chord	2,4 x 1,8 $\sqrt{\gamma}$ $\tau \sin \theta$ untuk $\beta < 0,98$	$2/3 \ge 1,8 \sqrt{\gamma} = \tau \sin \theta$	$3/2 \ge 1.8 \sqrt{\gamma} \ \tau \sin \theta$
X chord	$1,7 \ge 1,8 \sqrt{\gamma} \tau \sin \theta$ untuk $\beta > 0,98$	$2/3 \times 1,8 \sqrt{\gamma} \tau \sin \theta$	$3/2 \ge 1.8 \sqrt{\gamma} \tau \sin \theta$
SCF brac	ce .	$1,0+0,375(1+\sqrt{(\gamma/f)})$	3) SCF _{chord} \geq 1,8

Tabel 2.2 SCF	dalam API RP	2A LRFD 1993
---------------	--------------	--------------

Formulasi SCF Kuang untuk tubular joint T, Y dan TK adalah sebagai berikut:

SCF T,Y,chord =
$$1,777[1/(2\gamma)]^{-0.808} e^{1.2A} (\tau)^{1.333} [1/(2\alpha)]^{0.057} \sin^{1.694} \theta$$

SCF T,Y,brace = $2,784[1/(2\gamma)]^{0.55} e^{1.35A} (\tau) [1/(2\alpha)]^{0.12} \sin^{1.94} \theta$
Dimana A = β^3
SCF K,chord = $0.949[1/(2\gamma)]^{0.666} \beta^{-0.059} (\tau)^{1.104} \zeta^{0.057} \sin^{1.521} \theta$
SCF K,brace = $0.825[1/(2\gamma)]^{0.157} \beta^{-0.441} (\tau)^{0.56} \zeta^{0.058} e^{1.448} \sin \theta$
SCF TK,chord = $1.26[1/(2\gamma)]^{0.54} \beta^{0.12} (\tau)^{1.068} \sin \theta$
SCF TK,chord = $1.26[1/(2\gamma)]^{0.1} \beta^{-0.36} (\tau)^{0.68} \xi^{0.126} \sin^{0.5} \theta$
(Untuk $0^0 < \theta < 45^0$)
SCF TK brace = $12.88[1/(2\gamma)]^{0.1} \beta^{-0.36} (\tau)^{0.68} \xi^{0.126} \sin^{2.86} \theta$

(Untuk $45^0 < \theta < 90^0$)

Untuk TK brace dengan posisi vertikal:

SCF _{TK,brace, v} = 4.491[1/(2
$$\gamma$$
)]^{0.123} β ^{-0.396} (τ)^{0.672} ξ ^{0.159} sin ^{2.267} θ

Untuk T, K dan Y in-plane bending

SCF _{T,Y,chord} =
$$0.463[1/(2\gamma)]^{-0.6} \beta^{0.04} [1/(2\alpha)]^{-0.86} \sin^{0.57} \theta$$

SCF _{T,Y,brace} = $1.109[1/(2\gamma)]^{-0.23} \beta^{0.38} \tau^{0.38} \sin^{0.21} \theta$

SCF _{K, chord} =
$$1.4[1/(2\gamma)]^{0.38}\beta^{0.06}\tau^{1.104}\zeta^{0.94}\sin^{0.9}\theta$$

SCF _{K, brace} = 2.827 $\beta^{-0.35} \tau^{0.56} \zeta^{0.35} \sin^{0.5} \theta$

Batas-batas berlakunya rumus Kuang et adalah sebagai berikut:

- $0.015 \le T/D \le 0.06$ $0.020 \le t/D \le 0.08$ $0.300 \le d/D \le 0.80$ $0.010 \le g/D \le 1.00$
- $0.050 \leq D/L \leq 0.30$

 $0^0~\leq~T/D~\leq~90^0$

Gambar 2.4 Parameter Suatu Sambungan Tubular

2.2.8.3 Hukum Palmgren - Miner

Gesekan pada *fatigue life time* diasumsikan oleh range tegangan yang diberikan dalam satu tahun didefinisikan oleh Miner pada tahun 1945 sebagai perbandingan jumlah *cycles* dalam range tegangan i, yang terjadi dalam satu tahun jumlah *cycles* yang diperlukan dalam range tegangan yang menyebabkan kerusakan . Total kerusakan per tahun diberikan oleh jumlah gesekan per umur pakai adalah sbb:

$$D = \sum_{i=1}^{m} \frac{n_i}{N_i} \le 1$$

dimana:

D = kerusakan per tahun

 $n_i = jumlah cycles$ yang terjadi pada range tegangan i

N_i = jumlah *cycles* dalam range tegangan i yang diperlukan untuk menyebabkan kerusakan (*failure*)

M = jumlah range yang diperhitungkan

BAB III METODOLOGI

BAB III

METODOLOGI

3.1 Umum

Studi kali ini bertujuan untuk mendapatkan umur kelelahan pada kaki jack-up tipe bracing K, X dan Z apabila berat dari struktur kaki jack-up adalah sama. Adapun model jack-up mengacu pada Dyvi Gamma, namun disesuaikan dengan lingkungan dan kriteria perancangan yang diinginkan.

Fatigue life dihitung hanya karena beban axial dan beban bending (In-plane bending). Umur kelelahan dihitung menggunakan kurva S-N dengan pendekatan metode Hot Spot Stress. pendekatan dengan metode Hot Spot Stress ini adalah menghitung tegangan maksimum pada pertemuan chord dan brace, yang disebut hot spot stress yaitu dengan cara mengalikan tegangan nominal dengan Stress Concentration Factor (SCF). Formulasi SCF yang digunakan disini adalah rumusan API RP 2A dan rumusan Kuang. Dari kedua rumusan tersebut diambil rumusan yang terbesar sehingga akan menghasilkan umur kelelahan yang terkritis.

3.1.1 Material Properti

Material yang digunakan adalah dalam desain struktur kaki pada bracing K, X dan Z adalah berdasarkan pada *American Institute of Steel Construction* (AISC) 9th, adalah sebagai berikut:

Jenis material

High Strength Low Alloy

ASTM A572 grade 65

Modulus young's (E)	=	2.005E+10 Pascal
Shear's modulus (G)	= 1	7.438E+11 Pascal
Poisson's ratio (n)	=	0.32
Mass density (p)	=	7835 kg/m ³
Tension stress	=	1.454E+10 Pascal
Comp. Stress	=	1.623E+10 Paascal
Shear stress	=	11.0548 Pascal
Yield stress	=	65 Ksi

3.1.2 Data Lingkungan

Data lingkungan diambil dari Widuri Field Maxus yaitu:

Keda	laman	perairan	1	73.4 fee
neua	laman	peranan		13.4 100

Platform design life : 25 tahun

Data gelombang fatigue criteria untuk periode 25 tahun adalah sebagai berikut:

Tinggi Gelombang	Banyaknya Kejadian	Periode Gelombang
(ft)	(n)	(sec)
0.0 - 1.9	130018000	4.5
2.0 - 3.9	30171000	5.1
4.0 - 5.9	6668800	5.6
6.0 - 7.9	1474000	6.0
8.0 - 9.9	325760	6.3
10.0 - 11.9	72010	6.6
12.0 - 13.9	15914	6.9
14.0 - 15.9	3518	7.2
16.0 - 17.9	777	7.5
18.0 - 19.9	172	7.8
20.0 - 21.9	38	8.1
22.0 - 23.9	9	8.4
24.0 - 25.9	2	8.7

Tabel 3.1 Tabel Data Gelombang untuk fatigue criteria

3.2 Pemodelan

Model mengacu pada Dyvi Gamma namun disesuaikan dengan lingkungan dimana studi ini berlangsung. Pemodelan pertama yang harus dilakukan adalah perhitungan massa struktur kaki tiap tipe bracing, sehingga didapatkan massa yang sama pada setiap tipe *bracing system*.

Sambungan kaki dan geladak dimodelkan dengan memberi tumpuan rol pada masing-masing *chord* dan *spud can* dimodelkan dengan memberi tumpuan jepit pada masing-masing *chord*, seperti gambar di bawah ini:

Gambar 3.1 Model kaki jack-up

3.2.1 Konfigurasi dan Pola Perangkaan

Konfigurasi kaki jack-up per bay dapat dilihat pada gambar di bawah ini, dengan dengan ukuran yang dapt dilihat pada tabel 3.2.

Gambar 3.2 Konfigurasi kaki masing-masing tipe bracing per bay

Tipe	Bracing K	Bracing X	Bracing Z
Panjang Chord/bay (mm)	2000	2000	2000
Panjang Hor. Brace/bay (mm)	4000	4000	4000
Panjang Dia. Brace/bay (mm)	2828	4472	4472
OD chord (mm)	250	250	250
OD horizontal bracing (mm)	180	125	150
OD diagonal bracing (mm)	180	125	125
Tebal chord (mm)	15.625	12.5	15.625
Tabal horizontal bracing (mm)	11.25	6.45	9.375
Tebal diagonal bracing (mm)	11.043	5	6.25
Kl/r chord	22.86	22.86	22.86
Kl/r horizontal bracing	50.79	73.14	60.95
Kl/r diagonal bracing	35.91	81.77	81.77
D/t chord	16	20	16
D/t horizontal bracing	16	19.39	16
D/t diagonal bracing	16.3	25	20
Massa/kaki (ton)	51.1	51.1	51.1

Tabel 3.2	Properti	model	kaki j	ack-up	tiap	model

3.3 Perhitungan Beban Gelombang

Perhitungan beban gelombang dilakukan dengan menggunakan software STRUCAD, dengan memasukkan: kedalaman air, teori gelombang yang digunakan, tinggi masing-masing gelombang (H), periode masing-masing gelombang, dan wave directionnya dari x global axis.

Berdasarkan data gelombang di atas setelah dicek menggunakan grafik region validity of wave theories (API RP 2A), hubungan d/gT² dan H/gT² pada

data gelombang yang ada menunjukkan bahwa teori yang harus digunakan adalah Stokes orde 5.

Pemodelan beban gelombang yang dialami oleh struktur kaki Jack-Up hanya ditinjau dari arah 0⁰ dari sumbu X global axis.

Gambar 3.3 Arah datang gelombang

Perhitungan beban gelombang digunakan persamaan Morrison. Ini berarti harus dipertimbangkan karakter dimensi diameter struktur tidak melebihi 0.2 atau D/L < 0.2.

Pada keadaan lingkungan perairan *Widuri Field* diketahui diameter pipa (OD) = 250 mm dan panjang gelombang max (L_o) = 111.325 m, sehingga D/L = 0.00224, sehingga rumus Morison valid digunakan pada perhitungan gaya gelombang.

Untuk besarnya Cd⁷ dan Cm ditentukan oleh besarnya Reynold Number. Besarnya Cd dan Cm dapat dilihat pada tabel di bawah ini:

	Bracing K	Bracing X	Bracing Z
Cd chord	0.61	0.61	0.61
Cd horizontal bracing	0.61	0.61	0.61
Cd diagonal bracing	0.61	0.61	0.61
Cm chord	1.39	1.39	1.39
Cm horizontal bracing	1.39	1.39	1.39
Cm diagonal bracing	1.39	1.39	1.39

Tabel 3.3 Cd Dan Cm untuk Masing-Masing Tipe Bracing

3.4 Perhitungan Tegangan

Perhitungan tegangan yang terjadi pada struktur akibat beban gelombang dihitung dengan menggunakan software STRUCAD. Langkah-langkah perhitungan tegangan yang terjadi adalah sebagai berikut:

- 1. Masuk pada modul Alpha:
 - Memilih unit satuan yang akan digunakan
 - Memasukkan koordinat joint struktur
- Setelah selesai membuat geometri struktur pada modul alpha, kemudianmasuk pada modul beta:
 - Masuk pada card OPTION, memasukkan pilihan cara pengerjaan (API RP 2A)
 - Masuk pada LDOPT (Load Generation Option Card), untuk memasukkan berat jenis air laut, berat jenis baja dan kedalaman air
 - Memasukkan OD chord, horizontal bracing dan diagonal bracing, tebal chord, horizontal bracing dan diagonal bracing, E, G FY, model tumpuan dan beban gelombang.
- 3. Melakukan analisa dengan menggunakan metode analisa statis.

- 4. Masuk pada modul NOAH untuk melakukan running program.
- 5. Dari hasil *running* program didapat defleksi pada *joint*, gaya, momen bending, gaya geser, torsi, stress axial dan stress bending.

3.5 Analisa Fatigue

Setelah mendapatkan tegangan aksial dan tegangan bending (In-plane Bending) maka analisa fatigue dapat dilakukan. Namun terlebih dahulu diadakan pengecekan terhadap tegangan yang terjadi. Tegangan yang didapat dari hasil *running* dibandingkan dengan tegangan ijin menurut ketentuan API RP 2A. Apabila tegangan yang terjadi pada struktur memenuhi kriteria tersebut maka fatigue dapat dihitung.

Prosedure analisa fatigue pada struktur baja:

- Menentukan *joint-joint* yang kritis pada struktur akibat gaya gelombang
- 2. Menghitung hot spot stress yang terjadi pada join tersebut dengan cara: $\sigma_{hotspot} = \sigma_{no \min al} xSCF$
- Menggunakan kurva S-N X' (API RP 2A) untuk mendapatkan N (number of cycles to failure)
- Menghitung commulatif damage (D), dimana harga D tidak boleh melebihi dari satu.
- Fatigue life pada joint kemudian diberikan oleh 1/(Σn/N). Sedangkan hasilnya dapat ditabulasikan seperti berikut:

Formulasi SCF yang digunakan adalah dengan rumusan yang diberikan oleh API dan rumusan Kuang, dari kedua rumusan ini diambil nilai SCF yang terbesar, hal ini bertujuan untuk mendapatkan umur kelelahan yang terpendek. Adapun formulasi SCF untuk rumusan API dan Kuang dapat dilihat pada bab II. Untuk lebih jelasnya dapat dilihat dalam diagram alir berikut ini:

Gambar 3.5 Diagram Alir Metodologi

BAB IV HASIL PEMBAHASAN

BAB IV

HASIL DAN PEMBAHASAN

4.1 Umum

Setelah melalui tahap-tahap metodologi maka kita dapat melanjutkan untuk menganalisa hasil yang diperoleh untuk mendapatkan *fatigue life* pada masing-masing tipe bracing.

Untuk keperluan analisa fatigue maka hasil perhitungan stress aksial dan stress bending yang didapat adalah akibat beban kombinasi yaitu beban gelombang, *selfweight* dan *payload*. Hasil nilai tegangan yang didapat akan menjadi acuan untuk menentukan *joint* yang kritis akibat beban aksial dan akibat moment bending, dimana tegangan yang didapat dicek dahulu menurut tegangan ijin yang ditentukan oleh API RP 2A.

4.2 Kriteria Kekuatan dalam API RP 2A

Berdasarkan kriteria tegangan ijin oleh API RP-2A sesuai dengan Bab II dengan material yang dipilih sesuai dengan Bab III adalah sebagai berikut:

4.2.1 Tegangan tarik ijin

Tegangan tarik ijin untuk material yang dipilih, sesuai dengan Bab III adalah:

Ft = 0.6 x Fy

Dimana: Ft = tegangan tarik ijin (MPa)

```
Fy = tegangan yield (MPa)
```

 $Ft = 0.6 \times 447.89$

Ft = 268.73 MPa

4.2.2 Tegangan Tekuk

Harga D/t pada masing-masing tipe bracing adalah kurang dari 10340/ F_y (lihat tabel 3.2), sehingga rumusan yang digunakan adalah:

$F_b = 0,75 F_y$	D/t \leq 10340/ F_y	(satuan SI)	
$F_b = 335.92 \text{ MPa}$	$D/t \le 23.086$	(satuan SI)	

4.2.3 Tegangan Geser

Untuk bagian tubular, tegangan geser maksimum adalah:

$$f_v = \frac{V}{0, 5.D}$$

dimana: V = gaya geser lintang (MPa)

A = luas bidang (m²)

Sedangkan tegangan geser yang diijinkan ditentukan dari:

$$F_{\rm V} = 0.4 \text{ x } F_{\rm y}$$

 $F_V = 0,4 \ge 447.89$

 $F_V = 179.156 \text{ MPa}$

4.2.4 Tegangan Geser Torsional

Tegangan geser torsional maksimum untuk bagian tubular akibat torsi adalah:

$$f_v = \frac{M_i \left(\frac{D}{2}\right)}{I_p}$$

dimana: f_{vt} = tegangan geser torsi maksimum (MPa)

 $M_t = momen torsi (MN.m)$

 $I_p = momen inersia polar (m^4)$

Tegangan torsional yang diijinkan: $f_{vt} = 0.4 \text{ x F}_{y}$

 $f_{vt} = 0,4 \times 447.89$ $f_{vt} = 179.156 MPa$

4.3 Respon Struktur

4.3.1 Respon Struktur terhadap beban gelombang

Respon struktur berupa tegangan aksial, tegangan bending dan tegangan geser akibat beban gelombang pada member kritis dapat dilihat pada tabel dibawah ini:

Respon tegangan aksial pada joint 5 member *chord* (joint kritis 1)

Tinggi Gelombang (m)	Bracing K σ _{Aksial} (MPa)	Bracing X σ _{Aksial} (MPa)	Bracing Ζ σ _{Aksial} (MPa)
0.305	0.03	0.03	0.02
0.915	0.12	0.12	0.09
1.525	0.24	0.25	0.19
2.135	0.41	0.44	0.33
2.745	0.64	0.69	0.51
3.355	1.00	1.07	0.81
3.965	1.38	1.5	1.13
4.575	1.83	2.02	1.5
5.185	2.36	2.63	1.95
5.795	2.98	3.36	2.48
6.405	3.86	4.34	3.23
7.015	4.74	5.36	3.98
7.625	5.72	6.36	4.82

Tabel 4.1 Tegangan aksial akibat beban gelombang pada joint kritis 1

Sehingga apabila dibuat gafik hubungan tegangan aksial pada setiap tinggi gelombang adalah sebagai berikut:

 Respon tegangan aksial pada join 58 member chord pada bracing K dan X serta join 31 pada bracing Z (joint kritis 2) adalah sebagai berikut:

Tinggi Gelombang	Bracing K	Bracing X	Bracing Z
(m)	σ_{Aksial} (MPa)	σ _{Aksial} (MPa)	σ _{Aksial} (MPa)
0.305	0.03	0.03	0.02
0.915	0.10	0.12	0.09
1.525	0.22	0.26	0.21
2.135	0.40	0.47	0.37
2.745	0.64	0.77	0.60
3.355	1.06	1.22	0.98
3.965	1.47	1.71	1.37
4.575	1.96	2.30	1.83
5.185	2.55	2.99	2.38
5.795	3.22	3.80	3.01
6.405	4.22	4.92	3.95
7.015	5.17	6.06	4.86
7.625	6.23	7.34	5.85

Tabel 4.2 σ_{aksial} akibat beban gelombang pada joint kritis 2

Sehingga apabila dibuat gafik hubungan tegangan aksial pada setiap tinggi gelombang adalah sebagai berikut:

Gambar 4.2 σ_{aksial} akibat beban gelombang pada joint pada joint kritis 2

Respon tegangan bending pada joint 5 member *chord* (joint kritis 1)

Tabel 4.3	Tegangan	bending akibat	beban	gelombang	pada j	oint kritis	51
		<u> </u>		<u> </u>			

Tinggi Gelombang	Bracing K	Bracing X	Bracing Z
(m)	obending (MPa)	σ _{bending} (MPa)	obending (MPa)
0.305	0	0	0
0.915	0	0	0.02
1.525	0.01	0	0.05
2.135	0.02	0	0.09
2.745	0.05	0	0.15
3.355	0.05	0.01	0.23
3.965	0.08	0.01	0.34
4.575	0.10	0	0.46
5.185	0.13	0	0.61
5.795	0.16	0	0.78
6.405	0.21	0.01	1.01
7.015	0.25	0.01	1.26
7.625	0.30	0.02	1.54

Hasil Pembahasan

Sehingga apabila dibuat gafik hubungan tegangan bending pada setiap tinggi gelombang adalah sebagai berikut:

Gambar 4.3 obending akibat beban gelombang pada joint kritis 1

Respon tegangan bending pada *joint* 58 member *chord* bracing K dan X dan *joint* 31 member *chord* pada bracing Z (joint kritis 2)

Tabel 4.4 Tegangan bending akibat beban gelombang pada joint kritis 2

Tinggi Gelombang	Bracing K	Bracing X	Bracing Z
0.305	0 01	O Dending (IVII d)	Obending (IVII d)
0.915	0.01	0.01	0.05
1.525	0.06	0.06	0.08
2.135	0.09	0.08	0.12
2.745	0.14	0.12	0.16
3.355	0.19	0.16	0.20
3.965	0.25	0.2	0.24
4.575	0.30	0.24	0.29
5.185	0.36	0.29	0.35
5.795	0.43	0.35	0.41
6.405	0.51	0.43	0.49
7.015	0.60	0.51	0.58
7.625	0.69	0.61	0.68

Gambar 4.4 $\sigma_{bending}$ akibat beban gelombang pada joint kritis 2

Respon tegangan geser pada joint 5 member chord (joint kritis 1)

Tabel 4.5	Tegangan	geser	akibat	beban	gelombang	pada	joint k	ritis !	1
	0 0	0			00	F	,		

Tinggi Gelombang (m)	Bracing K τ _{geser} (MPa)	Bracing X τ _{geser} (MPa)	Bracing Ζ τ _{geser} (MPa)
0.305	0	0	0
0.915	0	0	0
1.525	0	0	0
2.135	0	0.01	0.01
2.745	0.01	0.01	0.02
3.355	0.01	0.02	0.03
3.965	0.01	0.03	0.05
4.575	0.02	0.05	0.07
5.185	0.03	0.07	0.10
5.795	0.04	0.09	0.13
6.405	0.05	0.12	0.18
7.015	0.07	0.15	0.22
7.625	0.08	0.19	0.28

Sehingga apabila dibuat gafik hubungan tegangan bending pada setiap tinggi gelombang adalah sebagai berikut:

 Respon tegangan geser pada *joint* 58 member *chord* bracing K dan X dan *joint* 31 member *chord* pada bracing Z (joint kritis 2)

Tinggi Gelombang	Bracing K	Bracing X	Bracing Z
(m)	Geser	Geser	Geser
0.305	0	0	0
0.915	0	0	0.01
1.525	0	0.01	0.01
2.135	0.01	0.02	0.02
2.745	0.01	0.02	0.04
3.355	0.03	0.05	0.07
3.965	0.03	0.07	0.10
4.575	0.05	0.10	0.12
5.185	0.06	0.13	0.15
5.795	0.08	0.17	0.19
6.405	0.11	0.23	0.25
7.015	0.13	0.26	0.29
7.625	0.15	0.32	0.33

Tabel 4.6	Tegangan	geser	akibat	behan	gelombang	pada	ioint	kritis	2
1 4001 4.0	regangan	guaui	anivat	ocuan	geronnoang	paua	joint	VIIII2	4

Sehingga apabila dibuat gafik hubungan tegangan bending pada setiap tinggi gelombang adalah sebagai berikut:

Gambar 4.6 tgeser akibat beban gelombang pada joint kritis 2

4.3.2 Respon struktur terhadap beban kombinasi

Untuk analisa *fatigue* pada struktur kaki jack-up pada masing-masing tipe bracing digunakan respon struktur berupa tegangan aksial dan tegangan bending akibat beban kombinasi pada member kritis. Respon struktur berupa tegangan aksial dan tegangan bending pada member kritis dapat dilihat pada tabel dibawah ini:

Tinggi Gelombang (m)	Bracing K (MPa)	Bracing X (MPa)	Bracing Z (MPa)
0.305	1.91	2.33	2.33
0.915	5.77	7.04	7.01
1.525	9.66	11.78	11.72
2.135	13.59	16.59	16.47
2.745	17.58	21.45	21.27
3.355	21.71	26.45	26.18
3.965	29.62	36.10	35.72
4.575	37.60	45.85	45.32
5.185	45.66	55.69	55.00
5.795	53.82	65.64	64.75
6.405	62.23	75.85	74.73
7.015	70.64	86.10	84.71
7.625	79.15	96.47	94.77

Tabel 4.7 Tegangan aksial akibat beban kombinasi

Sehingga apabila dibuat gafik hubungan tegangan aksial akibat beban kombinasi

adalah sebagai berikut:

Tinggi Gelombang (m)	Bracing K (MPa)	Bracing X (MPa)	Bracing Z (MPa)
0.305	0.10	0.01	0.02
0.915	0.29	0.04	0.06
1.525	0.48	0.06	0.10
2.135	0.66	0.08	0.14
2.745	0.84	0.12	0.19
3.355	1.00	0.16	0.24
3.965	1.38	0.20	0.30
4.575	1.75	0.24	0.36
5.185	2.12	0.29	0.43
5.795	2.49	0.35	0.51
6.405	2.84	0.43	0.60
7.015	3.19	0.51	0.70
7.625	3.52	0.61	0.82

Tabel 4.8 Tegangan bending akibat beban kombinasi

Sehingga apabila dibuat gafik hubungan tegangan aksial akibat beban kombinasi adalah sebagai berikut:

Gambar 4.8 σ_{bending} akibat beban kombinasi

4.3 Pembahasan

4.3.1 σ_{aksial} akibat beban gelombang

Dari gambar 4.1 dan 4.2 diketahui bahwa semakin bertambah tinggi gelombang maka σ_{aksial} akibat beban gelombang akan semakin besar pula, hal ini berlaku pada masing-masing tipe bracing. Besarnya σ_{aksial} yang terjadi pada suatu struktur tidak hanya dipengaruhi oleh besar gaya yang terjadi pada struktur tersebut, tapi juga pada luas penampang struktur yang terkena gaya tersebut. Sehingga apabila kita berbicara tentang luasan maka hal ini terkait erat dengan besarnya nilai D/t. Prosentase σ_{aksial} akibat beban gelombang pada joint kritis 1 dan 2 dapat dilihat pada tabel 4.9. Dari tabel tersebut dapat dilihat bahwasannya σ_{aksial} rata-rata yang terjadi akibat beban gelombang pada jack-up bracing K adalah 12.5% lebih rendah jika dibandingkan dengan tipe bracing X dan 9.5% lebih tinggi dibanding tipe bracing Z.

4.3.2 σ_{bending} akibat beban gelombang

Dari gambar 4.3 dan 4.4 diketahui bahwa semakin bertambah tinggi gelombang maka $\sigma_{bending}$ yang didapat akan semakin besar pula, pada tiap-tiap tipe *bracing*. Prosentase $\sigma_{bending}$ pada joint kritis 1 dan 2 dapat dilihat pada tabel 4.9. Dari tabel tersebut diketahui bahwa $\sigma_{bending}$ rata-rata yang terjadi pada kaki jackup tipe K adalah 15.5% lebih tinggi dari bracing X dan 39.5% lebih rendah dari bracing Z.

4.3.3 τ_{geser} akibat beban gelombang

Dari gambar 4.5 dan 4.6 diketahui bahwa semakin bertambah tinggi gelombang maka τ_{geser} akibat beban gelombang akan semakin besar pula, pada tiap-tiap tipe *bracing*. Prosentase τ_{geser} pada joint kritis 1 dan 2 dapat dilihat pada

tabel 4.9. Dari tabel tersebut dapat disimpulkan bahwa τ_{geser} yang terjadi akibat beban gelombang pada kaki jack-up bracing K adalah 46% lebih rendah dari bracing X dan 62% lebih rendah dari bracing Z.

	Bracing K	Bracing X	Bracing Z
Joint kritis 1	5	5	5
σ_{aksial}	90%	100%	76%
obending	20%	1%	100%
Tgeser	29%	68%	100%
Joint kritis 2	58	58	31
σ _{aksial}	85%	100%	80%
obending	100%	88%	99%
Tgeser	47%	100%	100%

Tabel 4.9 Prosentase σ_{aksial} , $\sigma_{bending}$ dan τ_{geser} akibat beban gelombang

4.3.4 σ_{aksial} akibat beban kombinasi

Dari gambar 4.7 diketahui bahwa semakin bertambah tinggi gelombang maka σ_{aksial} akibat beban kombinasi akan semakin besar pula, hal ini berlaku pada masing-masing tipe bracing. Seperti halnya σ_{aksial} akibat beban gelombang maka besarnya σ_{aksial} akibat beban kombinasi yang terjadi pada suatu struktur tidak hanya dipengaruhi oleh besar gaya yang terjadi pada struktur tersebut, tapi juga pada luas penampang struktur yang terkena gaya tersebut. Sehingga apabila kita berbicara tentang luasan maka hal ini terkait erat dengan besarnya nilai D/t. Prosentase σ_{aksial} akibat beban gelombang pada joint kritis 1 dan 2 dapat dilihat pada tabel 4.10. dari tabel tersebut dapat disimpulkan bahwa σ_{aksial} akibat beban kombinasi yang terjadi pada kaki jack-up bracing K adalah 18.5% lebih rendah dari bracing X dan Z.
4.3.5 σ_{bending} akibat beban kombinasi

Dari gambar 4.8 diketahui bahwa semakin bertambah tinggi gelombang maka $\sigma_{bending}$ akibat beban kombinasi akan semakin besar pula, pada tiap-tiap tipe *bracing*. Prosentase $\sigma_{bending}$ pada joint kritis 1 dan 2 dapat dilihat pada tabel 4.10. Dari tabel tersebut dapat dianalisa bahwasannya $\sigma_{bending}$ yang terjadi pada bracing K adalah 79% lebih tinggi dari bracing X dan 76% lebih tinggi dari bracing Z.

	Bracing K	Bracing X	Bracing Z
Joint kritis 1	5	5	5
σ_{aksial}	81%	100%	100%
σ _{bending}	100%	25%	25%
Joint kritis 2	58	58	31
σ _{aksial}	82%	100%	998
σ _{bending}	100%	17%	23%

Tabel 4.10 Prosentase σ_{aksial} dan $\sigma_{bending}$ akibat beban gelombang

4.4 Perhitungan Fatigue Life

4.4.1 Penentuan joint kritis

Setelah mendapatkan tegangan pada tiap *joint*, maka dicari *joint* yang paling kritis untuk mendapatkan *fatigue life* 'yang terkecil, dengan cara melihat stress kombinasi (aksial stress dan bending stress) terbesar yang terjadi pada *joint*. Maka didapat *joint* kritis untuk masing-masing tipe bracing dapat dilihat pada tabel di bawah ini:

	Joint	Tipe Sambungan	Member Chord	Member Brace
Bracing K	5	Т	2 - 11	7-5
	58	Т	52 - 64	58 - 63
Bracing X	5	Т	2-11	5 - 6
	58	Т	52 - 64	58-60
Bracing Z	5	Т	2 - 8	5-6
	31	Т	28 - 34	31 - 33

Tabel 4.11 Joint Kritis pada Masing-Masing Tipe Bracing

4.4.2 Stress Concentration Factor

Telah dikatakan bahwasannya *fatigue life* dihitungan dengan menggunakan SCF dari rumusan API dan rumusan Kuang. Nilai SCF untuk kedua rumusan tersebut pada joint kritis adalah sebagai berikut:

Bracing	Joint	Tipe	SCF	API	SCF K	luang
system			Aksial	IPB	Aksial	IPB
			load		load	
	5	T chord	6.232	2.444	5.341	1.867
Bracing		T brace	9.164	4.430	7.761	2.098
K	58	T chord	6.323	2.444	5.341	1.867
		T brace	9.164	4.430	7.761	2.098
	5	T chord	4.993	1.958	5.527	1.626
Bracing		T brace	9.749	4.659	8.792	2.235
Х	58	T chord	4.993	1.958	5.527	1.626
		T brace	9.749	4.659	8.792	2.235
	5	T chord	5.193	2.036	5.059	1.607
Bracing		T brace	8.486	4.164	7.997	2.098
Z	31	T chord	5.193	2.036	5.059	1.607
		T brace	8.486	4.164	7.997	2.098

Tabel 4.12 SCF pada joint kritis

4.4.3 Perhitungan fatigue life

Tabel perhitungan *fatigue life* dengan menggunakan SCF rumusan API dan rumusan Kuang dapat dilihat pada lampiran. Hasil dari perhitungan *fatigue life* adalah sebagai berikut:

	Joint	Tipe	SCF API		SCF Kuang		Fatigue Life (tahun)		
Tipe Bracing			Aksia l load	IPB	Aksi al load	IPB	Dengan rumusan API	Dengan rumusan Kuang	
	5	T chord	6.232	2.444	5.341	1.867	49	88	
Bracing		T brace	9.164	4.430	7.761	2.098			
K	58	T chord	6.323	2.444	5.341	1.867	50	92	
		T brace	9.164	4.430	7.761	2.098			
	5	T chord	4.993	1.958	5.527	1.626	30	24	
Bracing		T brace	9.749	4.659	8.792	2.235			
Х	58	T chord	4.993	1.958	5.527	1.626	25	21	
		T brace	9.749	4.659	8.792	2.235			
Bracing Z	5	T chord	5.193	2.036	5.059	1.607	29	33	
		T brace	8.486	4.164	7.997	2.098			
	31	T chord	5.193	2.036	5.059	1.607	29	34	
		T brace	8.486	4.164	7.997	2.098			

Tabel 4.13 Fatigue life pada joint kritis dengan rumusan SCF API dan Kuang

Sehingga dari tabel 4.13 dapat dilihat bahwa umur kelelahan terpendek pada bracing K terjadi pada *joint* 5 yaitu 49 tahun, umur kelelahan pada bracing X terjadi pada *joint* 58 sebesar 21 tahun dan umur kelelahan pada bracing Z terjadi pada *joint* 5 dan 31 sebesar 29 tahun.

BAB V KESIMPULAN DAN SARAN

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari hasil analisa maka dapat diambil kesimpulan bahwa:

- 1. Pengaruh beban gelombang terhadap kekuatan struktur (σ_{aksial} , $\sigma_{bending}$, τ_{geser}) kaki jack-up masing-masing tipe bracing adalah:
 - σ_{aksial} rata-rata yang terjadi akibat beban gelombang pada jack-up bracing K adalah 12.5% lebih rendah jika dibandingkan dengan tipe bracing X dan 9.5% lebih tinggi dibanding tipe bracing Z. Sehingga kaki jack-up dengan pola bracing Z memiliki respon yang baik dalam menahan beban aksial akibat beban gelombang.
 - σ_{bending} rata-rata yang terjadi pada kaki jack-up tipe K adalah 15.5% lebih tinggi dari bracing X dan 39.5% lebih rendah dari bracing Z. Sehingga pola kaki dengan bracing X memiliki respon yang baik untuk menahan moment bending akibat beban gelombang.
 - τ_{geser} yang terjadi akibat beban gelombang pada kaki jack-up bracing K adalah 46% lebih rendah dari bracing X dan 62% lebih rendah dari bracing Z. Dapat disimpulkan bahwasannya kaki dengan pola bracing K memiliki ketahanan yang baik terhadap gaya geser akibat beban gelombang.

- σ_{aksial} akibat beban kombinasi yang terjadi pada kaki jack-up bracing K adalah 18.5% lebih rendah dari bracing X dan Z. Sehingga dapat disimpulkan bahwa kaki dengan pola bracing K memiliki ketahanan yang lebih baik dalam menahan gaya aksial akibat beban kombinasi.
- σ_{bending} yang terjadi pada bracing K adalah 79% lebih tinggi dari bracing X dan 76% lebih tinggi dari bracing Z. sehingga jack-up dengan pola bracing X memiliki respon yang baik untuk menahan momen bending akibat gaya kombinasi.
- 3. Umur kelelahan kaki jack-up bracing K adalah 233% lebih lama dibanding kaki jack-up bracing X, dan 167% lebih lama dibanding kaki jack-up bracing Z. Sehingga perbandingan umur kelelahan pada bracing K : bracing X : bracing Z adalah 2 : 0.8 : 1.2. Sehingga dapat disimpulkan bahwa pada kondisi lingkungan yang sama dengan perbandingan berat struktur kaki yang sama maka jack-up dengan pola bracing K merupakan struktur yang tepat dan sangat effisien.

5.2 Saran

Pada persamaan berat struktur kaki yang sama maka jack-up dengan pola bracing K lebih effisien untuk digunakan karena memiliki respon yang baik terhadap beban aksial akibat gaya kombinasi (σ_{aksial} dan $\sigma_{bending}$) dan mempunyai umur kelelahan yang lebih lama dibanding dengan kaki jack-up tipe bracing yang lain.

DAFTAR PUSTAKA

DAFTAR PUSTAKA

- American Petroleum Institute, 1993, Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platform, API Production Dept, Washington D.C, USA
- Badu Kaswir., 2000, *Teknik Pemboran di Darat dan Lepas Pantai*, Pusat Pengembangan tenaga Perminyakan dan Gas Bumi, Cepu, Indonesia
- Dowson, 1983, Offshore Structural Engineering, Prentice-Hall, Inc, Englewood Cliffs, New Jersey
- Djatmiko, 1994, *Struktur Bangunan Laut*, Jurusan Teknik Kelautan FTK-ITS, Surabaya, Indonesia
- Graff.W.J, 1981, *Introduction to Offshore Structures*, Gulf Publishing Company, Houston, Texas
- Hsu, 1984, *Applied Offshore Structural Engineering*, Gulf Publishing Company, Houston Texas
- Marshall, 1992, *Design of Welded Tubular Connection*, Elsevier Science Publishers B.V, Amsterdam, Netherlands
- Murdjito, 1996, *Pengantar Bangunan Lepas Pantai*, Kursus Segitiga Biru FTK-ITS, Surabaya, Indonesia
- Murdjito, 1997, *Inovasi dalam Perancangan Jack-up Platform untuk Perairan Dalam*, Lembaga Penelitian ITS Surabaya, Surabaya, Indonesia Niemi and Mäkeläinen, 1990, *Tubular Structures*, Elsevier Science Publishing

Co.Inc, New York, USA

- Reddy and Arockiasamy, 1991, *Offshore Structure*, Volume 2, Krieger Publishing Company, Malabar, Florida
- Salmon. Charles.G and Johnson. John E, 1992, Struktur Baja Desain dan Perilaku, Edisi Ketiga, PT. Gramedia Pustaka Utama, Jakarta, Indonesia
- Soedjono.J.J, 1999, Perencanaan Sistem Bangunan Laut, P2T2-ITS, Surabaya, Indonesia
- Svenningsen.Klaus.B, 1983, Dynamics of Jack-up Platforms Part Report no.5 Fatigue Evaluation, Det norske Veritas, Norway

LAMPIRAN

Lampiran 1

Evaluasi Kemajuan Tugas Akhir

)}

DEPARTEMEN PENDIDIKAN NASIONAL INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA FAKULTAS TEKNOLOGI KELAUTAN JURUSAN TEKNIK KELAUTAN

Kampus ITS, Sukolilo Surabaya 60111 Telp/Fax. 031-5928105, 5994251-5 Pes 1104-1105

FORMULIR EVALUASI KEMAJUAN TUGAS AKHIR

Kami, dosen pembimbing Tugas Akhir dari mahasiswa :

Nama	:	Rina Radityaningsih
NRP	:	4397 100 036
Judul TA	:	Studi Umur Kelelahan Kaki Jack-Up Dengan Berbagai
		Konfigurasi Bracing

Setelah mempertimbangkan butir-butir berikut :

a. Keaktifan mahasiswa dalam mengadakan asistensi.

b. Proposi Materi T A yang telah diselesaikan sampai saat ini.

c. Prospek penyelesaian T A dalam jangka waktu yang relevan.

d. Masa Studi yang Tersisa.

Dengan ini kami mengusulkan agar T A mahasiswa tersebut diputuskan untuk :

O Dibatalkan keseluruhannya dan mengajukan judul baru.

O Diperkenankan menyelesaikan tanpa perubahan.

Orbiperkenankan mengikuti Ujian Tugas Akhir dengan judul tetap/berubah.

Selanjutnya mahasiswa diatas diharuskan untuk dapat menyelesaikan Tugas Akhimya dan dapat mengikuti ujian Tugas Akhir untuk Wisuda _____

Surabaya, 29/01/82 Dasen Pembimbing I

r. Jusuf Sutomo, MSc NIP. 131 287 547

DEPARTEMEN PENDIDIKAN NASIONAL INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA FAKULTAS TEKNOLOGI KELAUTAN JURUSAN TEKNIK KELAUTAN

Kampus ITS, Sukolilo Surabaya 60111 Telp/Fax. 031-5928105, 5994251-5 Pes 1104-1105

FORMULIR EVALUASI KEMAJUAN TUGAS AKHIR

(ami, dosen pembimbing Tugas Akhir dari mahasiswa :

Nama	;	Rina Rádityaningsih
NRP	:	4397 100 036
Judul TA	• :	Studi Umur Kelelahan Kaki Jack-Up Dengan Berbagai
		Konfigurasi Bracing

etelah mempertimbangkan butir-butir berikut :

a Keaktifan mahasiswa dalam mengadakan asistensi.

b Proposi Materi T A yang telah diselesaikan sampai saat ini.

c Prospek penyelesaian T A daiam jangka waktu yang relevan.

d Masa Studi yang Tersisa.

engan ini kami mengusulkan agar T A mahasiswa tersebut diputuskan untuk :

O Dibatalkan keseluruhannya dan mengajukan judul baru.

O Diperkenankan menyelesaikan tanpa perubahan

Ø Diperkenankan mengikuti Ujian Tugas Akhir dengan judul tetap/berubah.

elanjutnya mahasiswa diatas diharuskan untuk dapat menyelesaikan Tugas Akhimya dan apat mengikuti ujian Tugas Akhir untuk Wisuda

Surabaya, 29-01-2002

Dosen Pembimbing II

Ir. Murdjito, MSc. MEng NIP. 132 149 376

DEPARTEMEN PENDIDIKAN NASIONAL INSTITUT TEKNOLOGI SEPULUH NOPEMBER FAKULTAS TEKNOLOGI KELAUTAN JURUSAN TEKNIK KELAUTAN

JURUSAN TEKNIK KELAUTAN Kampus ITS-Sukolilo, Surabaya 60111 Telp./Fax 5928105, 5994251 Psw. 1104-1105

LEMBAR PRESENSI KEMAJUAN TUGAS AKHIR

Nama Mahasiswa	;	1	RINA RADITYANINGSIH
NRP	;		4397 100 036
Dosen Pembimbing I	:		Ir. JUSUF SUTOMO, MSc
NIP	:		131 287 547
Tanggal Mulai	•		
Tanggal Selesai	:		
Judul Tugas Akhir	:		

"Studi Umur Kelelahan Kaki Jack-Up dengan Berbagai Konfigurasi Bracing"

NO	TANGGAL	MATERI ASISTENSI	PARAF
1.	14/11 -01	Arton jel.	j.~
2.	11/12-01	kubitana	62
3.	21/01-02	Frique	AI
4.	28/07-02	Draft Capacity	(M
5.	20107-02	Goven Atlin	Fi
6.			. /
7.			
8.			
9.			
10.			

DEPARTEMEN PENDIDIKAN NASIONAL INSTITUT TEKNOLOGI SEPULUH NOPEMBER FAKULTAS TEKNOLOGI KELAUTAN JURUSAN TEKNIK KELAUTAN

Kampus ITS-Sukolilo, Surabaya 60111 Telp./Fax 5928105, 5994251 Psw. 1104-1105

LEMBAR PRESENSI KEMAJUAN TUGAS AKHIR

Nama Mahasiswa	:	RINA RADITYANINGSIH
NRP	:	4397 100 036
Dosen Pembimbing	II :	Ir. MURDJITO, MSc. Eng
NIP	:	132 149 376
Tanggal Mulai	÷	
Tanggal Selesai	:	
Judul Tugas Akhir	:	

"Studi Umur Kelelahan Kaki Jack-Up dengan Berbagai Konfigurasi Bracing"

NO	TANGGAL	MATERI ASISTENSI	PARAF
1.	10/1001	Rusenhan dala lighy	Mi
2.	3/11 01	Renwidela	Part
3.	17/11 01	Audise perublem.	Ach
4.	F/01 02	Analisa Spelile	Auch
5.	21/02	Analisa Amelita,	Jack
6.	28/0102	Laporan	Dal
7.			1
8.	,		
9.			
10.			

Lampiran 2

Pemodelan Kaki Jack-Up

Lampiran 3

Output Gaya Gelombang

 $\hat{\mathbf{x}}$

* *	Wave Description For Load Cas	se 2 * *
	Water Depth (M)	22.39
	Mudline Elevation (M)	.00
	Wave Theory	Stokes 5th
	Height (M) Period (Sec)	.31
	Length (M)	31.63
	Direction X TO Y (Deg).	.00
	Celerity (M/Sec)	7.03
	No. of Segments Max	10
	Min	1
	Wave Step Size (M)	.15
	No. of Steps	1
	Crest Position Determined By	Maximum Moment
	Crest Elevation (M)	22.54
	Trough Elevation (M)	22.24

Step

No

1 2

: * * * Wave Position Summary Report * * * Crest Phase /-----Resultant Loads----/ Position Angle Force(X) Force(Y) Force(Z) Moment(X) Moment(Y) Moment(Z) Horizontal Overturning (M) (Deg) /----- (KN) ------ (KN-M) -----/ Shear(KN)Moment(KN-M)

.15	1.7	.39	.03	49	-1.09	7.94	40	.39	8.01
.31	3.5	.37	.03	50	-1.11	7.56	38	.37	7.64

Note: Moments are about Mudline at Elevation (M) .00 Wave Loads calculated with only one segment

-

:

* *	Wave Description For Load Ca	se 3 * *
	Water Depth (M)	22.39
	Mudline Elevation (M)	.00
	Wave Theory Height (M) Period (Sec) Length (M)	Stokes 5th .92 5.10 40.72
	Direction X TO Y (Deg). Celerity (M/Sec)	.00 7.98
	No. of Segments Max Min	10 1
	Wave Step Size (M) No. of Steps Crest Position Determined By	.46 1 Maximum Moment
	Crest Elevation (M) Trough Elevation (M)	22.86 21.95

* * * Wave Position Summary Report * * *

Step	p Crest	Phase	//			/	****	/	/Resultant Loads/		
No	Position	Angle	Force(X)	Force(Y)	Force(Z)	Moment(X)	Moment(Y)	Moment(Z)	Horizontal	Overturning	
	(M)	(Deg)	/	(KN)	/	/	(KN-M)	/	Shear(KN)Moment(KN-M)
1	.46	4.0	1.45	.06	-1.44	-2.76	29.04	-1.60	1.45	29.17	
2	.92	8.1	1.28	.07	-1.51	-2.92	26.50	-1.40	1.28	26.66	
1 2	(M) .46 .92	(Deg) 4.0 8.1	1.45 1.28	(KN) .06 .07	-1.44 -1.51	-2.76 -2.92	(KN-M) 29.04 26.50	-1.60 -1.40	Shear(KN 1.45 1.28)Moment(KN-M 29.17 26.66	[

Note: Moments are about Mudline at Elevation (M) .00 Wave Loads calculated with only one segment .

* *	Wave Description For Load Ca:	se 4 * *								
	Water Depth (M)	22.39								
	Mudline Elevation (M)00									
	Wave Theory	Stokes 5th								
	Height (M)	1.52								
	Period (Sec)	5.60								
	Length (M)	49.10								
	Direction X TO Y (Deg).	.00								
	Celerity (M/Sec)	8.77								
	No. of Segments Max 10									
	Min	1								
	Wave Step Size (M)	.76								
	No. of Steps	1								
	Crest Position Determined By	Maximum Moment								
	Crest Elevation (M)	23.19								
	Trough Elevation (M)	21.66								

* * * Wave Position Summary Report * * *

Step No	Crest Position (M)	Phase Angle (Deg)	/ Force(X) /	Force(Y) (KN)	Force(Z)	/ Moment(X) /	Moment(Y) (KN-M)	Moment(Z)	/Resu Horizontal Shear(KN	ltant Loads/ Overturning)Moment(KN-M)	/
1 2	.76	5.6 11.2	3.18 2.79	.09	-2.32	-4.11	62.36	-3.61	3.19	62.50	

Note: Moments are about Mudline at Elevation (M) .00 Wave Loads calculated with only one segment Page 46

*

;

*	Wave Description For Load Ca	se 5 * *
	Water Depth (M)	22.39
	Mudline Elevation (M)	.00
	Wave Theory	Stokes 5th
	Period (Sec)	2.13
	Length (M)	56.25
	Celerity (M/Sec)	.00 9.38
	No. of Segments Max	10
	Min	1
	Wave Step Size (M)	1.07
	No. of Steps	1
	Crest Position Determined By	Maximum Moment
	Crest Elevation (M)	23.52
	Trough Elevation (M)	21.39

Page 49

* * * Wave Position Summary Report * * *

Step No	Crest Position (M)	Phase Angle (Deg)	/ Force(X) /	Force(Y) (KN)	Force(Z)	/ Moment(X) /	Moment(Y) (KN-M)	Moment(Z)	/Resu Horizontal Shear(KN	ltant Loads Overturning)Moment(KN-M	/
1	1.07	6.8	5.85	.11	-3.16	-5.37	112.00	-6.73	5.85	112.13	
2	2.13	13.7	5.13	.13	-3.58	-6.36	101.77	-5.84	5.13	101.96	

Note: Moments are about Mudline at Elevation (M) .00 Wave Loads calculated with only one segment

 $\sim_{\rm N}$

* *	Wave Description For Load Ca	se 6 * *
	Water Depth (M)	22.39
	Mudline Elevation (M)	.00
	Wave Theory	Stokes 5th 2.74
	Period (Sec)	6.30
	Length (M)	61.89
	Direction X TO Y (Deg).	.00
	Celerity (M/Sec)	9.82
	No. of Segments Max	10
	Min	1
	Wave Step Size (M)	1.37
	No. of Steps	1
	Crest Position Determined By	Maximum Moment
	Crest Elevation (M)	23.87
	Trough Elevation (M)	21.12

* * * Wave Position Summary Report * * *

Step No	Crest Position (M)	Phase Angle (Deg)	/ Force(X) /	Force(Y) (KN)	Force(Z)	/ Moment(X) /	Moment(Y) (KN-M)	Moment(Z)	/Resu: Horizontal Shear(KN	ltant Loads Overturning)Moment(KN-M)
1	1.37	8.0	9.62	.13	-4.04	-6.78	181.59	-11.17	9.62	181.72	
2	2.74	16.0	8.43	.18	-4.82	-8.58	164.76	-9.69	8.43	164.99	

Note: Moments are about Mudline at Elevation (M) .00 Wave Loads calculated with only one segment StrucAD*3D Ver. 3.40 KAKI JACK-UP BRACING K

*

-

*	Wave Description For Load Case	e 7 * *
	Water Depth (M)	22.39
	Mudline Elevation (M)	.00
	Wave Theory	Stokes 5th
	Height (M)	3.36
	Period (Sec)	6.60
	Length (M)	67.63
	Direction X TO Y (Deg).	.00
	Celerity (M/Sec)	10.25
	No. of Segments Max	10
	Min	1
	Wave Step Size (M)	1.68
	No. of Steps	1
	Crest Position Determined By N	Maximum Moment
	Crest Elevation (M)	24.22
	Trough Elevation (M)	20.86

:

-

Page 55

* * * Wave Position Summary Report * * *

Step No	Crest Position (M)	Phase Angle (Deg)	/ Force(X) /	Force(Y) (KN) -	Force(Z)	/ Moment(X) /	Moment(Y) (KN-M)	Moment(Z)	/Resu Horizontal Shear(KN	ltant Loads Overturning)Moment(KN-M	/
1	1.68	8.9	15.71	.18	-5.70	-9.52	299.28	-18.33	15.71	299.43	
2	3.36	17.9	13.78	.26	-7.18	-12.97	271.40	-15.92	13.79	271.71	

Note: Moments are about Mudline at Elevation (M) .00 Wave Loads calculated with only one segment

•

* *	Wave Description For Load Ca	se 8 * *
	Water Depth (M)	22.39
	Mudline Elevation (M)	.00
	Wave Theory Height (M) Period (Sec) Length (M)	Stokes 5th 3.96 6.90 73.44
	Direction X TO Y (Deg). Celerity (M/Sec)	.00 10.64
	No. of Segments Max Min	10 1
	Wave Step Size (M) No. of Steps Crest Position Determined By	1.98 1 Maximum Moment
	Crest Elevation (M) Trough Elevation (M)	24.58 20.61

Page 58

* * * Wave Position Summary Report * * *

Step No	Crest Position (M)	Phase Angle (Deg)	/ Force(X) /	Force(Y) (KN)) Force(Z)	/ Moment(X) /	Moment(Y) (KN-M)	Moment(Z)	/Resu Horizontal Shear(KN	ltant Loads Overturning)Moment(KN-M)
1	1.98	9.7	22.56	.21	-6.79	-11.42	423.59	-26.39	22.56	423.74	
2	3.96	19.4	19.70	.33	-9.02	-16.52	381.29	-22.80	19.70	381.65	

Note: Moments are about Mudline at Elevation (M) .00 Wave Loads calculated with only one segment

Page 61

	5								
*	*	*	Wave	Position	Summary	Report	*	*	*

No	Crest Position (M)	Phase Angle (Deg)	/ Force(X) /	Force(Y) (KN) -	Force(Z)	/ Moment(X) /	Moment(Y) (KN-M)	Moment(Z)	/Resul Horizontal Shear(KN	ltant Loads Overturning)Moment(KN-M	/
1 2	2.29 4.57	10.4 20.8	31.02 26.90	.25	-8.00 -11.14	-13.55 -20.72	575.77 513.24	-36.34 -31.18	31.02 26.90	575.93 513.66	

Note: Moments are about Mudline at Elevation (M) .00 Wave Loads calculated with only one segment
•

* *	Wave Description For Load Ca	se 10 * *
	Water Depth (M)	22.39
	Mudline Elevation (M)	.00
	Wave Theory	Stokes 5th
	Period (Sec)	7.50
	Length (M)	85.17
	Direction X TO Y (Deg).	.00
	Celerity (M/Sec)	11.36
	No. of Segments Max	10
	Min	1
	Wave Step Size (M)	2.59
	No. of Steps	1
	Crest Position Determined By	Maximum Moment
	Crest Elevation (M)	25.32
	Trough Elevation (M)	20.14

Page 64

* * * Wave Position Summary Report * * *

No	Crest Position (M)	Phase Angle (Deg)	/ Force(X) /	Force(Y) (KN)	Force(Z)	/ Moment(X) /	Moment(Y) (KN-M)	Moment(Z)	/Resu Horizontal Shear(KN	ltant Loads Overturning)Moment(KN-M	./
1 2	2.59 5.18	11.0 21.9	41.38 35.58	.30	-9.36 -13.61	-16.16	761.34 670.80	-48.51 -41.25	41.38 35.58	761.52 671.29	

Note: Moments are about Mudline at Elevation (M) .00 Wave Loads calculated with only one segment •

:

* *	Wave Description For Load Ca	se 11 * *
	Noton Donth (M.)	
	water Depth (M)	22.39
	Mudline Elevation (M)	.00
	Wave Theory	Stokes 5th
	Height (M)	5.80
	Period (Sec)	7.80
	Length (M)	91 08
	Direction X TO X (Dec)	.00
	Coloritu (M/Corr.)	.00
	celerity (M/Sec)	11.68
	No. of Segments Max	10
	Min	1
	Wave Step Size (M)	2.90
	No. of Steps	1
	Crest Position Determined By	Maximum Moment
	Crest Elevation (M)	25.71
	Trough Elevation (M)	19.92

Page 67

			* * * Wa	ve Position	Summary Repor	t * * *			
Crest Position (M)	Phase Angle (Deg)	/ Force(X) /	Force(Y) (KN) -	Force(Z)	/ Moment(X) /	Moment(Y) (KN-M)	Moment(Z)	/Resu Horizontal Shear(KN	ltant Loads/ Overturning)Moment(KN-M)
	-								
2.90 5.80	11.5 22.9	53.82 45.76	.38	-10.93 -16.49	-19.40 -31.75	984.61 854.99	-63.15 -53.16	53.83 45.77	984.80 855.58
	Crest Position (M) 2.90 5.80	Crest Phase Position Angle (M) (Deg) 2.90 11.5 5.80 22.9	Crest Phase / Position Angle Force(X) (M) (Deg) / 2.90 11.5 53.82 5.80 22.9 45.76	* * * Wa Crest Phase /	<pre>* * * Wave Position : Crest Phase // Position Angle (Deg) / (KN) Force(Y) Force(Z) (M) (Deg) 11.5 53.82 .38 -10.93 5.80 22.9 45.76 .66 -16.49</pre>	* * * Wave Position Summary Report: Crest Phase Position Angle (M) (Deg) / (KN) 2.90 11.5 5.80 22.9 45.76 .66 -16.49 -31.75	* * * Wave Position Summary Report * * * Crest Phase /// Position Angle /// (M) (Deg) /(KN) 2.90 11.5 53.82 .38 -10.93 -19.40 984.61 5.80 22.9 45.76 .66 -16.49 -31.75 854.99	* * * Wave Position Summary Report * * * Crest Phase Position Angle (M) (Deg) /	*** * Wave Position Summary Report * * * Crest Phase Position Angle (M) (Deg) /(KN) 2.90 11.5 53.82 .38 -10.93 -19.40 984.61 -63.15 53.83 5.80 22.9 45.76 .66 -16.49 -31.75 854.99 -53.16 45.77

Note: Moments are about Mudline at Elevation (M) .00 Wave Loads calculated with only one segment

ITS

~

* *	Wave Description For Load Case 12 * *
	Water Depth (M) 22.39
	Mudline Elevation (M)00
	Wave Theory Stokes 5th
	Height (M) 6.41
	Period (Sec) 8.10
	Length (M) 97.02
	Direction X TO Y (Deg)00
	Celerity (M/Sec) 11.98
	No. of Segments Max 10
	Min 1
	Wave Step Size (M) 3.20
	No. of Steps 1
	Crest Position Determined By Maximum Moment
	Crest Elevation (M) 26.11
	Trough Elevation (M) 19.71

* * * Wave Position Summary Report * * *

Step No	Crest Position (M)	Phase Angle (Deg)	/ Force(X) /	Force(Y) (KN) -	Force(2)	/ Moment(X) /	Moment(Y) (KN-M)	Moment(Z)	/Resul Horizontal Shear(KN	ltant Loads Overturning }Moment(KN-M	/
1 2	3.20 6.41	11.9 23.8	71.78 57.95	.64	-14.12 -20.07	-29.99 -44.98	1336.90 1079.68	-84.64 -66.04	71.79 57.96	1337.23 1080.62	

Note: Moments are about Mudline at Elevation (M) .00 Wave Loads calculated with only one segment •

:

*	Wave Description For Load Ca	se 13 * *
	Water Depth (M)	22 30
	Mudline Elevation (M)	.00
	Wave Theory	Stokes 5th
	Height (M)	7.01
	Period (Sec)	8.40
	Length (M)	103.01
	Direction X TO Y (Deg).	.00
	Celerity (M/Sec)	12.26
	No. of Segments Max	10
	Min	1
	Wave Step Size (M)	3.51
	No. of Steps	1
	Crest Position Determined By	Maximum Moment
	Crest Elevation (M)	26.53
	Trough Elevation (M)	19.51

.

73 Page

* * * Wave Position Summary Report * * *

No	Crest Position (M)	Phase Angle (Deg)	/ Force(X) /	Force(Y) (KN)	Force(Z)	/ Moment(X) /	Moment(Y) (KN-M)	Moment(Z)	/Resu Horizontal Shear(KN	ltant Loads, Overturning)Moment(KN-M)
1 2	3.51 7.01	12.3 24.5	89.91 73.89	.57	-16.55 -25.91	-30.54 -62.31	1672.69 1392.25	-105.76 -85.78	89.91 73,90	1672.97 1393.64	

Note: Moments are about Mudline at Elevation (M) Wave Loads calculated with only one segment .00

	-													
I	2	.0	35	.5	.5	.00	.00	.0	03	.00	.00	03	.00	.000
	3		-1.38	1.5	3.1	.00	.00	3	12	.00	.00	13	.00	.001
	4		-2.79	2.4	7.0	.00	.00	-1.5	24	.00	.01	25	.00	.001
	5		-4.75	3 0	13 2	- 01	.00	-3 1	- 41	.00	.02	- 43	0.0	002
	6		-7 36	27	21 6	- 01	.00	-5 1	- 64	- 01	03	- 67	01	003
	7		11.40	5.7	21.0	01	.00	0,1	1 00	.01	.05	1.05	.01	.005
	/		-11.49	5.0	33.9	02	.00	-0.1	-1.00	01	.05	-1.05	.01	.005
	8		-15.82	6.7	47.6	03	01	-12.3	-1.38	01	.08	-1.45	.01	.007
	9		-21.00	7.6	63.6	04	01	-17.8	-1.83	01	.10	-1.93	.02	.010
	10		-27.14	8.5	82.1	05	01	-24.9	-2.36	01	.13	-2.49	.03	.013
	11		-34.33	9.2	103.1	07	01	-33.7	-2.98	01	.16	-3.15	.04	.016
	12		-44.46	12.1	130.6	10	01	-45.3	-3.86	02	.21	-4.07	.05	.021
	13		-54.57	12.9	158.5	12	01	-57.2	-4.74	02	.25	-4.99	.07	.025
	14		-65.82	13.9	189.2	15	01	-71.4	-5.72	02	. 30	-6.02	.08	.031
	15		-22 01	45 3	-77 0	07	- 04	0	-1.91	- 07	- 12	-2 05	02	010
	16		-66 36	125 0	-229 1	.07	- 12	- 3	-5 77	- 21	- 35	-6.19	04	031
	17		111 00	100.0	200 5	. 44	.15	1 5	0.60	41	50	-0.15	.09	.051
	1/		-111.09	220.1	-380.5	. 37	22	-1.5	-9.00	30	60	-10.35	.08	.052
	18		-156.37	316.3	-529.3	.51	30	-3.1	-13.59	50	83	-14.56	.11	.073
	19		-202.30	406.4	-675.9	. 66	39	-5.1	-17.58	64	-1.06	-18.83	.14	.095
	20		-249.75	497.8	-818.6	.80	48	-8.1	-21.71	78	-1.29	-23.22	.17	.117
	21		-340.72	677.8	-1114.9	1.09	65	-12.3	-29.62	-1.07	-1.76	-31.67	.23	.160
	22		-432.54	857.8	-1408.9	1.38	82	-17.8	-37.60	-1.35	-2.22	-40.19	.29	.203
	23		-525.32	1037.6	-1700.4	1.66	-1.00	-24.9	-45.66	-1.63	-2.68	-48.80	.36	.247
	24		-619.15	1217.4	-1989.4	1.94	-1.17	-33.7	-53.82	-1.92	-3.13	-57.49	. 42	.291
	25		-715 92	1399 2	-2271 9	2 21	-1.34	-45 3	-62.23	-2.20	-3.58	-66.43	49	336
	26		-910 67	1570 0	-2554 1	2 19	-1 51	-57 2	-70 64	-2 19	-1 02	-75 37	55	201
	20		010 55	1250.0	2033.2	0 75	1 60	71 4	70.15	2 77	1 16	-01 10	62	107
	21	0.0	-910.55	1759.0	-2033,3	2.15	-1.09	-/1.4	-15.15	-2.11	-4.40	-04.40	.02	. 427
	2	2.0	35	3	1.0	.00	.00	.0	03	.00	.00	03	.00	.000
	3		-1.38	-1.0	4.2	.00	.00	3	12	.00	.01	-,13	.00	.001
	4		-2.79	-1.2	8.6	.00	.00	-1.5	24	.00	.01	26	.00	.001
	5		-4.75	-1.7	14.6	.01	.00	-3.1	41	.00	.02	44	.00	.002
	6		-7.36	-2.1	23.0	.01	.00	-5.1	64	.00	.04	68	.01	.003
	7		-11.49	-3.2	36.6	.02	.00	-8.1	-1.00	.01	.06	-1.06	.01	.005
	8		-15.82	-3.9	52.2	.03	01	-12.3	-1.38	.01	.08	-1.46	.02	.007
	9		-21,00	-4.6	71.8	.05	01	-17.8	-1.83	.01	.11	-1.94	.02	.010
	10		-27.14	-5.2	96.2	.07	01	-24.9	-2.36	.01	.15	-2.51	.03	.013
	11		-34 33	-5 9	125.9	.10	01	-33.7	-2.98	.01	.20	-3.18	.04	.016
	12		-11 16	-7.6	167 1	13	- 01	-45 3	-3.86	01	26	-4 13	06	021
	12		-54 57	-9.3	210 0	19	- 01	-57 2	-4 74	01	33	-5 07	08	026
	10		CE 02	10.5	250.1	. 10	.01	-71 4	-5 72	.01		-6 13	10	021
	14		-65.02	-10.5	239.1	. 23	01	-/1.4	-3.72	.02	. 41	-0.13	.10	.031
	15		-22.01	-41.5	12.3	.07	04	.0	-1.91	.07	. 11	-2.04	.02	.010
	16		-66.36	-124.6	218.2	.23	13	3	-5.11	.20	. 34	-0.10	.05	.031
	17		-111.09	-207.1	365.2	. 38	22	-1.5	-9.66	.33	. 58	-10.32	.08	.052
	18		-156.37	-289.9	513.9	.53	30	-3.1	-13.59	.46	.81	-14.52	.11	.073
	19		-202.30	-372.7	664.9	. 68	39	-5.1	-17.58	.59	1.05	-18.78	.14	.095
	20		-249.75	-456.2	821.2	.84	48	-8.1	-21.71	.72	1.29	-23.19	.17	.117
	21		-340.72	-621.6	1122.1	1.15	65	-12.3	-29.62	.98	1.77	-31.64	.24	.160
	22		-432.54	-787.0	1427.0	1.46	82	-17.8	-37.60	1.24	2.25	-40.16	.31	.203
	23		-525.32	-952.4	1736.7	1.78	-1.00	-24.9	-45.66	1.50	2.74	-48.78	.37	.246
	24		-619.15	-1117.7	2051.7	2.11	-1.17	-33.7	-53.82	1.76	3.23	-57.50	.45	.291
	25		-715 92	-1284.2	2378.2	2.44	-1.34	-45.3	-62.23	2.02	3.75	-66.49	.52	.336
	26		-812 67	-1450 5	2706 3	2 78	-1 51	-57.2	-70.64	2.29	4.26	-75.47	.60	381
	20		-910 55	-1616 5	3040 7	3 13	-1 69	-71 4	-79.15	2 55	4 79	-84 57	67	427
	21		-910.33	-1010.3	3040.7	3.13	-1.03	-/1.4	12.13	6.00	1.15	04.57	.07	. 74/

IB 2	.0	.05	5	.0	.00	.00	.0	.01	.00	.00	.01	.00	.000
3		.23	-1.7	.0	.00	.00	.0	.04	.01	.ũ0	.05	.00	.000
4		.53	-2.4	.0	.00	.00	. 2	.09	.01	.00	.10	.00	.000
5		.99	-3.6	.2	.00	.00	. 3	.17	.02	.00	.18	.00	.000
D		1.62	-3.8	.6	.00	01	. 3	.27	.02	.ú0	.29	.00	.000
7		2.58	-4.9	1.2	01	01	. 5	.43	.02	.01	.45	.01	.000
8		3.71	-4.3	2.3	01	02	.7	.62	.02	.01	.64	.01	.000
9		5.12	-3.3	3.9	02	03	. 8	.86	.01	.02	.88	.01	.000 s
10		6.84	-1.7	6.1	02	05	. 9	1.15	.01	.03	1.17	.02	.000 s
11		8.88	.4	8.9	03	07	1.1	1.49	.00	.04	1.53	.03	.000 s
12		11.50	.3	12.2	05	09	1.6	1.93	.00	.05	1.98	.04	.000 S
13		14.37	2.5	16.6	06	11	1.7	2.41	01	.07	2.48	.05	.000
14		17.60	5.4	21.8	08	14	1.8	2.95	02	.09	3.05	.06	.001
15		.13	-110.1	.5	.00	.11	1.0	.02	.46	.00	.49	.04	.002
16		.45	-330.5	1.6	.00	.32	3.1	.08	1.39	.01	1.47	.11	.005
17		.90	-550.3	2.6	.00	.53	5.3	.15	2.32	.01	2.47	.19	.008
18		1.50	-770.8	3.9	01	.74	7.5	.25	3.25	.02	3.51	.26	.011
19		2.29	-990.2	5.4	01	.94	9.7	.38	4.18	.02	4.56	.34	.014
20		3.39	-1210.4	7.0	01	1.15	11.9	. 57	5.11	.03	5.68	.41	.017
21		4.82	-1648.3	10.2	02	1.56	16.2	.81	6.96	.04	7.76	.56	.024
22		6.52	-2085.6	13.9	03	1.98	20.5	1.09	8.80	.06	9.90	.71	.030
23		8.53	-2522.4	18.2	04	2.38	24.8	1.43	10.65	.08	12.08	.85	.036
24		10.88	-2958.7	23.1	05	2.79	29.1	1.82	12.49	.10	14.31	1.00	.042
25		13.79	-3397.2	28.5	06	3.19	33.7	2.31	14.34	.12	16.65	1.14	049
26		16.95	-3833.4	35.1	08	3.59	38.0	2.84	16.18	.15	19.02	1.28	.055
27		20.48	-4268.8	42.3	~,10	3.98	42.3	3.43	18.02	.18	21.45	1 43	061
2	2.0	.05	2	.0	.00	.00	.0	01	.00	- 00	.01	00	000
3		.23	-1.8	.1	.00	.00	.0	04	.01	.00	.05	00	000
4		.53	-5.6	~1.1	.00	.00	2	09	.02	.00	.03	.00	000
5		.99	-12.4	-3.2	.00	01	3	17	05	- 01	22	.00	.000
б		1.62	-22.3	-6.3	00	- 01		27	09	- 03	37	.00	.000
7		2.58	-36.3	-11.0	- 01	02	.5	43	15	- 05	5.9	.01	.001
8		3.71	-55.0	-18.4	- 01	- 03	7	62	23	- 08		01	.001
9		5.12	-78.7	-28 8	- 02	- 04	9	.02	.23	- 12	1 21	.02	.001
10		6.84	-108 2	-42 9	- 02	- 06	. 0	1 15		. 12	1 64	.02	.001
11		8.88	-143 6	-61 0	- 03	- 09	1 1	1 19	.40	10	2.15	.02	.002
12		11.50	-185 7	-82 3	- 05	- 10	1.1	1 93	.01	- 25	2.15	.03	.002
13		14.37	-234 8	-110 1	- 06	- 12	1.0	2 41	. 70	55	2.15	.04	.003
1.4		17,60	-290.7	-141.6	- 08	- 15	1 9	2 95	1 23		1 21	.05	.004
15		.13	101.8	- 5	.00	11	1.0	02	- 43		4.51	.00	.003
16		.45	304.2	-1.5	.00	. 32	3 1	.02	~1 28	- 01	1 36	11	.001
17		.90	504.4	-3.7	.00	53	5 3	15	-2 13	- 02	2 28	19	.007
18		1.50	701.6	-6.9	- 01		7 5	25	-2.96	- 02	2.20	.15	.007
19		2 29	895 7	-11 1	- 01	9.1	0.7	.20	-2.90	05	3.21	.20	.010
20		3 39	1085 6	-16.8	- 01	1 15	11 0	. 50	-1 59	05	4.10	. 34	.015
21		4 82	1474 9	-26.3	.01	1.56	16.0	.07	-4.00	07	2.15	. 41	.015
22		6 52	1850 2	-20.0	.02	1 07	20 5	1.00	7 05	11	7.05	. 30	.021
23		8 53	2027 7	-55 0	03	2 20	20.5	1 42	-1.05	10	0.94	. /0	.027
20		10.00	2231.1	-35.0	04	2.38	24.8	1,43	-9.44	23	10.88	.85	.032
25		13 70	2010.3	-10.6	~.05	2.18	29.1	1.84	-11.02	32	12.85	. 99	.037
20		16.05	2970.1	-99.0	06	3.18	33.7	2.31	-12.56	42	14.88	1.14	.043
20		20.40	3535.0	-128.5	08	3.38	38.0	2.84	-14.08	54	16.93	1.28	.048
21		20.40	208/.T	-102.2	10	3.97	42.3	3.43	-15.56	68	19.01	1.42	.053

8-	63 HB	2	. 0	.02	- 6	-4.4	01	.01	3	00	00	- 02	02	00	000	
		3		.07	- 5	-19.1	.03	01	1 3	01	.00	- 02	.02	.00	.000	
		4		.12	1.5	-41.5	06	02	2 9	02	- 01	- 18	.05	.01	.000	
		5		.19	5.5	-72.8	.00	.02	5.2	03	- 02	- 31	34	.05	.001	
		6		.26	11.9	-112.8	17	02	8 2	04	- 05	- 18	52	.03	002	
		7		.27	26.0	-160.6	24	02	12 7	05	- 11	- 69		11	.002	
		8		.35	39.2	-217.9	23	01	16.9	06	- 17	- 02		15	002	
		9		.44	55 4	-283 2	43	01	21 5	.00	- 23	1 20	1 29	19	.005	
		10		.54	74 9	-357 5	54	.00	26.7	.00	- 32	-1.51	1 63	.15	.004	
		11		.65	97 9	-441 2	.54	- 01	20.7	11	- 41	1.01	2.02	. 29	.005	
		12		. 62	135.8	-534 3	81	- 03	10 9	10	- 57	-1.00	2.02	.25	.008	
		13		.74	168.8	-637 9	.01	- 05	17 9	12	- 71	-2.20	2.45		.000	
		14		.84	205.9	-753 0	1 15	- 07	56.0	14	- 97	-2.09	2.51	.45	.005	
		15		.12	103.3	-2.7	1.10	- 10	1 3	.19	- 44	- 01	5.44	.04	.011	
		16		.36	311 2	-13 8	.00	- 31	4.2	.02	-1 31	01	1 30	.04	.001	
		17		62	521 0	-32 8	.02	52	7.0	10	-2.20	06	1.30	. 11	.004	
		18	~	. 88	732 9	-60 5	.05	- 73	12.0	.10	-2.20	14	2.31	.19	.007	
		19		1 15	947 1	-97 0	15	- 94	12.0	10	-4.00	20	4 01	. 41	.010	
		20		1 36	1169 0	-141 3	.10	1 16	22.4	.10	4.00	41	4.21	. 30	.014	
		21		1 83	1597 8	-191 5	. 22	-1 50	23.9	.20	-6 74	60	3,20	.45	.017	
		22		2 32	2029 7	-249 8	.30	-2.02	10 0	. 20	-0.74	1.05	7.10	.01	.023	
		23		2.81	2464 8	-317 2	.40	-2.02	40.0	. 55	-10.40	-1.05	10.02	. /0	.025	
		24		3.32	2903 5	-303 8	.50	-2.90	59 0	. 47	-12 25	-1.54	10.90	1 12	.035	
		25		3.68	3357 0	-479 9	76	-3 35	71.0	. 50	-14 17	-2.03	14 92	1.12	.042	
		26		4.19	3805 6	-576 5	91	-3.80	92.0	.02	-16.06	-2.03	16 05	1.49	.040	
		27		4.69	4258.3	-684 5	1 08	-4 25	93 9	79	-17 97	-2.95	19 99	1.40	.050	
		2	2.0	.02	-3.1	4.3	0.00	- 01	33.5	00	01	02	10,99	1.00	.002	
		3		.07	-8.7	20 4	01	- 02	1 2	.00	04	.02	10	.00	.000	
		4		.12	-14.4	46.0	03	- 03	2 9	02	06	19	.10	.02	.000	
		5		.19	-21.2	82.4	.05	05	5 2	.03	.09	25	39	.02	.001	
		6		.26	-30.0	129.7	07	- 06	8.2	.04	13	55	.55	05	002	
		7		.27	-44.9	190.5	.11	09	12.7	.05	19		.01	07	003	
		8		.35	-59.2	258.4	.14	11	16.8	.06	25	1.09	1 18	10	.004	
		9		.44	-75.9	336.3	.19	- 14	21 5	.00	32	1 42	1 53	.10	.004	
		10		.54	-95.5	425.4	24	17	26.7	.09	40	1 80	1 93	15	.005	
		11		. 65	-118.3	526 1	29	- 20	32 7	11	50	2 22	2 39	19	008	
		12		. 62	-153.4	643.3	.36	25	40.8	10	.65	2 71	2 90	23	.000	
		13		.74	-185.9	767.2	.43	30	47.9	12	78	3 24	3 46	.28	011	
		14		.84	-222.0	904.7	.51	35	56.0	14	.94	3 82	4 07	32	013	
		15		.12	-113.2	2.6	.00	11	1.3	.02	.48	01	50	.04	002	
		16		.36	-338.8	15.1	.01	34	4.2	.06	1.43	.06	1.49	.12	.005	
		17		. 62	-564.6	37.2	.02	57	7.8	.10	2.38	.16	2.49	.21	.008	
		18		.88	-791.6	70.1	.04	80	12.0	.15	3.34	.30	3.50	.29	.011	
		19		1.15	-1020.5	113.9	.06	-1.03	17.0	.19	4.31	.48	4.53	.38	.015	
		20		1.36	-1255.6	171.2	.09	-1.26	23.4	.23	5.30	.72	5.58	.47	.018	
		21		1.83	-1710.0	232.0	.12	-1.71	31.4	. 31	7.22	. 98	7.59	. 64	.025	
		22		2.32	-2166.9	302.9	.16	-2.17	40.0	.39	9.15	1.28	9.62	.81	.031	
		23		2.81	-2626.8	385.0	.20	-2.63	49.1	.47	11.09	1.63	11.68	.99	.038	
		24		3.32	-3089.9	478.7	.25	-3.09	59.0	.56	13.04	2.02	13.75	1.16	.045	
		25		3.68	-3565.1	588.8	.31	-3.57	71.0	, 62	15.05	2.49	15.87	1,35	.052	
		26		4.19	-4037.9	705.7	.37	-4.04	82.0	.70	17.04	2.98	18.00	1.53	.058	
		27		4.69	-4514.2	836.2	. 44	-4.52	93.9	.79	19.05	3.53	20.16	1.72	.066	
								100.00								

¢.

Cana	लम्म	Und'	- LUar	LT OIL	Porce	*Bending	Moment*	*Shear H	Force*	Torsion	Axial	Bending	Stress	Comb.	Shear	Comb	
A-	JB	ID	Case	End	Fx	My	Mz	FY	FZ	MX	Stress	Y	Z	Stress	Stress	Unity	
				(M)	(KN)) / (KN-	-MM)/	/ (KN	1) -1	(KN-MM)	/		(MN/M^2)	/	Chack	
8-	64	CH	2	.0	25	-3.0	-6.8	.00	00	- 6	- 03	01	- 01	- 04	.00	000	
			3		-1.11	-8.5	-18.5	.00	01	. 0	- 12	.01	.01	04	.00	.000	
			4		-2.45	-13.6	-30.4	01	02	20	- 20	.02	.04	10	.00	.001	
			5		-4 43	-18.4	-44 7	- 02	02	0.0	43	.113	.06		.01	.002	
			6		-7 14	-23 3	-62 0	.02	.0.	-0.0	4/	.03	08	57	.02	.003	
			7		-11 29	-24 7	-02.0	04	.03	-14.1	//	.04	12	-,89	,02	.004	
			8		-15 08	-29 1	102.2	07	.02	-35.8	-1.22	.05	16	-1.38	.05	.007	
			G		-21 /5	-21 2	127 0	11	.02	-48.4	-1.71	.05	20	-1.92	.07	,009	
			10		-27 02	-24 7	154 7	10	.03	-68.7	-2.30	.06	24	-2.55	.10	.013	
			11		-25 49	-39.2	-196 1	21	.03	-93.8	-2.99	.07	29	-3.30	.13	.016	
			12		-45 90	-11 1	-100.1	20	.03	-117.9	-3.80	.07	35	-4.17	.17	.021	
			12		-56 54	-99.9 - 60 /	-220.8	33	.04	-103.8	-4.92	.08	43	-5,36	,23	.027	
			14		-60 12	-52.4	-270.0	39	.05	-189.8	-6.06	.10	51	-6.58	,26	.033	
			15		-21 74	-61.4	-313.5	40	.06	-228.9	-1.34	.12	61	-7.95	. 32	.040	
			15		-65 80	-3.0	-0.8	.00	.00	7.0	-2.33	.01	01	-2.35	.00	.012	
			17		-00.00	-8.0	-18.5	.00	.01	9	-7.03	.02	04	-7.07	.00	.037	
			10		-109.90	-13.0	-30.4	01	.02	-3.8	-11.78	.03	06	-11.85	.01	.061	
			10		-154.86	-18.4	-44.7	02	.02	-8.8	-16.60	.03	08	-16.70	.02	.087	
			1.9		-200.55	-23.3	-62.0	04	.03	-14.1	-21.50	.04	12	-21.63	.02	.112	
			20		-247.78	-24./	-81.9	07	.02	-35.8	-26.57	.05	16	-26.73	.05	.139	
			21		-338.34	-28.1	-103.4	11	.02	-48.4	-36.28	.05	20	-36.48	.07	.189	
			22		-429.77	-31.3	-127.3	16	.03	-68.7	-46.08	.06	24	-46.33	.10	.240	
			23		-522.21	-34.7	-154.7	21	.03	-93.8	-55.99	.07	29	-56.29	.13	.292	
			24		-615.73	-39.3	-186.2	26	.03	-117.9	-66.02	.07	35	-66.38	.17	.344	
			25		-712.11	-44.5	-226.9	33	.04	-163.8	-76.35	.08	43	-76.79	.23	.398	
			26		-808.71	-52.5	-270.1	39	,05	-189.8	-86.71	.10	51	-87.23	.26	.452	
			27		-906.55	-61.5	-319.6	46	.06	-228.9	-97.20	.12	61	-97.82	.32	.507	
			2	2.0	25	4.2	5.0	.01	.00	6	03	01	.01	04	.00	.000	
			3		-1.11	12.4	12.7	.03	.01	9	12	02	.02	15	.01	.001	
			4		-2.45	19.3	20.6	.06	.02	-3.8	26	04	.04	32	.02	.002	
			5		-4.43	24.7	30.1	.11	.02	-8.8	47	05	.06	55	.03	.003	
			6		-7.14	29.2	39.7	.16	.03	-14.1	77	06	.08	- 86	.05	004	
			7		-11.39	21.4	39.3	.21	.02	-35.8	-1.22	04	.07	-1 31	08	007	
			8		-15.98	20.9	37.2	.28	.02	-48.4	-1.71	04	.07	-1.79	11	009	
			9		-21.45	20.6	30.7	. 34	.03	-68.7	-2.30	04	06	-2.37	14	012	
			10		-27.93	21.9	20.5	. 41	.03	-93.8	-2.99	- 04	.04	-3 05	18	016	
			11		-35.49	25.6	8.3	.49	.03	-117.9	-3.80	05	.02	-3.86	22	020	
			12		-45.90	35.3	-7.3	. 58	.04	-163.8	-4.92	07	01	-4.99	.28	026	
			13		-56.54	47.0	-21.9	. 68	,05	-189.8	-6.06	09	04	-6.16	33	032	
			14		-68.42	59.1	-33.9	.79	.06	-228.9	-7.34	11	06	-7.47	39	039	
			15		-21.74	4.2	5.0	.01	.00	6	-2.33	01	01	-2 34	.00	012	
			16		-65.58	12.4	12.7	.03	.01	- 9	-7.03	- 02	.02	-7.06	.00	027	
			17		-109.90	19.3	20.6	.06	02	-3.8	-11.78	- 04	04	-11 84	02	.051	
			18		-154.86	24.7	30.1	.11	02	-8.8	-16.60	- 05	.04	-16 68	.02	.001	
			19		-200.55	29.2	39.7	.16	03	-14 1	-21 50	- 06	.00	-21.60	.05	112	
			20		-247.78	21.4	39.3	.21	02	-35 8	-26 57	- 04	.00	-24.60	.00	138	
			21		-338.34	20.9	37.2	.28	02	-48 4	-36 29	- 04	.07	-26.05	.00	.130	
			22		-429.77	20.6	30 7	34	03	-69 7	-16 00	.04	.07	46 15		.107	
			23		-522.21	21.9	20 6	41	03	-02.0	-55 00	04	.06	-40.15	.14	.240	
			24		-615.73	25.6	8.4	40	.03	-117 0	-66 00	04	.04	-30.05	.10	. 291	
			25		-712 11	35 3	-7 0	50	04	_162 0	-76 25	05	.02	-00.07	. 66	. 343	
			26		-808 71	47.0	-21 0	. 50	,09	-103.8	-10.33	07	01	-/6.42	. 28	. 397	
			27		-906.55	59 1	-21.9	. 00	.05	-189.8	-00.71	09	04	-86.81	.33	.451	
			the f		200.00	59.1	-33.0	. 19	.00	-228.9	-97.20	11	06	-97.33	.39	.506	

enne	ber G	P Load	From	Force	*Bendin	g Moment*	*Shear	Force*	Torsion	Axial	Bending	Stress	Como.	Shear	Comb.
A-	JB II) Case	End	Fx	My	Mz	FV	Fz	Mx	Stress	Y	Z	Stress	Stress	Unity
			(M)	(KN) / (KN	-MM)/	/ (KN) -/	(KN-MM)	/	+	(MN/M^2)	/	Check
5-	11 CH	1 2	.0	24	.2	.0	.00	.00	1	03	.00	.00	03	.00	.000
		3		-1.08	. 7	. 4	.00	.00	4	12	.00	.00	12	.00	.001
		4		-2.32	1.7	1.1	.00	.00	-1.7	25	.00	.00	25	.00	.001
		5		-4.09	2.6	1.9	.00	.00	-6.4	44	.00	.00	44	.01	.002
		6		-6.45	3.6	2.0	01	.00	-11.7	69	01	.00	70	.01	.004
		7		-10.02	4.7	2.7	01	.00	-19.2	-1.07	01	.01	-1.09	.02	.006
		8		-14.02	5.6	2.7	02	.00	-29.4	-1.50	01	.01	-1.51	.03	.008
		9		-18.83	7.4	2.6	03	.00	-43.1	-2.02	01	.00	-2.03	.05	.011
		10		-24.57	9.1	. 8	04	.00	-60.8	-2.63	02	.00	-2.65	.07	.014
		11		-31.33	11.0	-1.6	05	.00	-82.8	-3.36	02	.00	-3.38	.09	.018
		12		-40.45	14.4	-3.6	07	.00	-110.3	-4.34	03	01	-4.37	.12	.023
		13		-50.00	16.6	-7.6	10	.00	-140.2	-5.36	03	01	-5.40	.15	.028
		14		-60.70	19.1	-12.4	13	.00	-175.6	-6.51	04	02	-6.55	.19	.034
		15		-21.75	19.7	-33.7	.02	01	1	-2.33	04	06	-2.41	.01	.012
		16		-65.62	59.2	-100.8	.07	04	4	-7.04	11	19	-7.26	.02	.037
		17		-109.89	99.1	-167.6	.11	07	-1.7	-11.78	19	32	-12.15	.03	.062
		18		-154.69	138.9	-234.3	.16	09	-6.4	-16.59	26	44	-17.10	.04	.088
		19		-200.07	178.8	-301.6	.20	12	-11.7	-21.45	34	57	-22.12	.06	.113
		20		-246.68	219.0	-368.4	.24	15	-19.2	-26.45	42	70	-27.26	,08	.140
		21		-336.73	297.8	-503.3	. 32	20	-29.4	-36.10	56	95	-37.21	.11	.191
		22		-427.59	377.4	-638.3	. 41	25	-43.2	-45.85	72	-1.21	-47.25	.14	.242
		23		-519.39	457.1	-775.0	. 49	30	-60.8	-55.69	87	-1.47	-57.39	.18	.294
		24		-612.21	536.9	-912.4	.56	36	-82.8	-65.64	-1.02	-1.73	-67.65	.22	.347
		25		-707.39	618.2	-1049.3	. 63	41	-110.3	-75.85	-1.17	-1.99	-78.15	.27	.401
		26		-802.99	698.3	-1188.3	.70	46	-140.2	-86.10	-1.32	-2.25	-88.71	.31	.455
		27		-899.75	778.7	-1328.0	.76	51	-175.6	-96.47	-1.48	-2.52	-99.39	.36	.510
		2	2.0	24	. 0	.3	.00	.00	1	03	.00	.00	03	.00	.000
		3		-1.08	.0	2.2	.00	.00	4	12	.00	.00	12	.00	.001
		4		-2.32	.0	5.0	.01	.00	-1.7	25	.00	.01	26	.00	.001
		5		-4.09	1.5	7.1	.01	.00	-6.4	44	.00	.01	45	.01	.002
		6		-6.45	2.2	11.1	.02	.00	-11.7	69	.00	.02	71	.01	.004
		7		-10.02	3.2	17.2	.03	.00	-19.2	-1.07	01	.03	-1.11	.02	.006
		8		-14.02	4.6	24.3	.04	.00	-29.4	-1.50	01	.05	-1.55	.04	.008
		9		-18.83	6.2	33.5	.06	.00	-43.1	-2.02	01	.06	-2.08	,05	.011
		10		-24.57	8.1	44.7	.08	.00	-60.8	-2.63	02	.08	-2.72	.08	.014
		1.1		-31.33	10.6	58.0	.12	.00	-82.8	-3.36	02	.11	-3.47	.10	.018
		12		-40.45	13.7	76.2	.16	.00	-110.3	-4.34	03	.14	-4.48	.14	.023
		13		-50.00	16.7	95.2	.20	.00	-140.2	-5.36	03	.18	-5.54	.18	.028
		14		-60.70	20.3	116.7	.26	.00	-175.6	-6.51	04	.22	-6.73	.22	.034
		15		-21.75	-6.9	12.2	.02	01	1	-2.33	.01	.02	-2.36	.01	.012
		1.6		-65.62	-20.6	37.8	.07	04	4	-7.04	.04	.07	-7.12	.02	.037
		1/		-109.89	-34.4	64.5	.12	07	-1.7	-11.78	.07	.12	-11.92	.03	.062
		18		-154.69	-46.6	90.3	.17	09	-6.4	-16.59	.09	.17	-16.78	.05	.087
		19		-200.07	-59.6	118.1	.22	12	-11.7	-21.45	.11	.22	-21.70	.07	.112
		20		-246.68	-72.4	148.0	.28	-,15	-19.2	-26.45	.14	.28	-26.76	.09	.138
		21		-336.73	-98.4	202.8	. 38	20	-29.4	-36.10	.19	.38	-36.53	.12	.189
		44		-427.59	-124.3	259.5	. 49	25	-43.2	-45.85	.24	.49	-46.39	.16	.240
		63		-519.39	-149.8	318.3	.61	30	-60.8	-55.69	.28	.60	-56.36	.20	.291
		24		-012.21	-174.9	3/9.2	. 73	36	-82.8	-65.64	. 33	.72	-66.43	.25	.343
		25		-707.39	-199.3	445.0	.86	41	-110.3	-/5.85	.38	.84	-76.77	.31	.397
		20		-802.99	-223.7	511.5	1.00	46	-140.2	-86.10	. 42	.97	-87.16	.37	.451
		21		-899.75	-247.5	580.7	1.15	51	-175.6	-96.47	. 47	1.10	-97.67	. 44	.505

enn	IP	GRP	Load	From	Force	*Bending N	foment*	*Shear Fo	orce*	Torsion	Axial	Bending	Stress	Comb.	Shear	Max
4-	UD	10	case	Erid	FX	My	Mz	FY	FZ	Mx	Stress	Y	Z	Stress	Stress	Unity
				(121)	(KN) / (KN-MN	()/	/ (KN) -1	(KN-MM)	/		(MN/M^2)	/	Check
5-	6	HB	2	. 0	.01	2	.0	.00	.00	.0	.00	.00	.00	.01	00	000
			3		.04	9	.0	.00	.00	.0	.01	.01	.00	.03	.00	.000
			4		.07	-2.2	.1	.00	.00	.0	.03	.03	.00	.06	.00	.000
			5		.13	-4.4	-1.1	.00	.00	.1	.05	.06	02	.12	.00	.000
			0		. 20	-7.4	-3.5	.01	.00	.1	.08	.11	05	.20	.01	.000
			/		. 30	-11.8	-6.4	.01	.01	.2	.12	.17	09	.32	.01	.001
			8		. 42	-18.9	-11.0	.02	.01	. 3	.17	.28	-,16	.49	.02	.001
			10		. 55	-25.8	-17.4	.03	.01	. 4	.23	.38	26	.68	.03	.002
			10		. /1	-34.2	-26.2	.05	.02	. 5	.29	.50	38	.93	.05	.002
			10		.90	-44.3	-37.4	.07	.02	.7	.37	.65	55	1.22	.06	.003
			12		1.15	-57.1	-51.3	.09	.03	.9	. 47	.84	75	1.60	.09	.004
			10		1.41	-/1.0	-68.1	.12	.04	1.1	.58	1.04	-1.00	2.02	.11	.005
			14	-	1.70	-86.7	-87.9	.15	.05	1.3	.70	1.27	-1.29	2.51	.14	.006
			10		.83	/	.0	.00	.00	.0	.34	.01	.00	.35	.00	.000
			10		2.51	-2.4	.0	.00	.00	.0	1.04	.04	.00	1.08	.00	.000
			10		4.21	-4.8	.1	.00	.00	. 0	1.74	.07	.00	1.81	.00	.000
			10		5.91	-8.0	-1.1	.00	.00	. 1	2.44	.12	02	2.56	.00	.001
			20		7.04	-12.0	-3.5	.01	.00	. 1.	3.16	.18	05	3.34	.01	.001
			20		2.39	-11.4	-6.4	.01	.01	.2	3.88	.26	09	4.15	.01	.001
			22		16.01	-20.0	-11.0	.02	.01	. 3	5.29	.39	16	5.72	.02	.002
			22		10.20	-35.6	-11.4	.03	.01	. 4	6.72	. 52	26	7.30	.03	.003
			24		22 01	-40.0	-26.2	.05	.02	.5	8.15	.68	38	8.92	.05	.004
			25		20.21	-58.1	-31.4	.07	.02	.7	9.59	.85	55	10.60	.06	.006
			26		20.11	-73.0	-51.3	.09	.03	.9	11.06	1.07	75	12.37	.09	.008
			27		32.03	106.7	-08.1	.12	.04	1.1	12.53	1.30	-1.00	14.18	.11	.010
			2	4 0	55.93	-106.7	-87.9	.15	.05	1.3	14.02	1.56	-1.29	16.05	.14	.012
			2	4.0	.01	.2	.0	.00	.00	.0	.00	.00	.00	.01	.00	.000
			4		.04		.0	.00	.00	.0	.01	01	.00	.03	.00	.000
			5		.07	2.2 A A	.0	.00	.00	.0	.03	03	.00	.06	.00	.000
			6		,13	4.4	9	.00	.00	.1	.05	06	01	.12	.00	.000
			7		.20	11 0	-1.3	01	.00	.1	.08	11	02	.19	.01	.000
			é		. 30	11.8	-2.0	~.01	.01	.2	.12	17	03	.30	.01	.001
			0		. 42	10.5	-3.0	02	.01	. 3	.17	23	04	.40	.02	.001
			10			22.0	-4.7	02	.01	. 4	.23	32	07	.56	.02	.001
			11		. /1	29.9	-7.0	~.04	.01	. 5	.29	44	10	.74	.04	.002
			12		1 15	51 7	-10.1	~.05	.02	- 1	. 37	58	-,15	.97	.05	.002
			13		1 11	61 0	-14.0	07	.02	.9	.47	76	20	1.26	.07	.003
			14		1 70	79 9	-10.0	09	.03	1.1	.58	95	-,27	1.57	.09	.003
			15		83	- 3	-24.2	12	.04	1.3	. 70	-1.17	36	1.93	.11	.004
			16		2 51	5	.0	.00	.00	.0	. 34	.01	.00	.35	.00	.000
			17		4 21	- 4	.0	.00	.00	.0	1.04	.01	.00	1.05	.00	,000
			18		5 92	.4	.0	.00	.00	.0	1.14	.01	.00	1.74	.00	.000
			19		7 64	2.8	-1 2	.00	.00	- 1	2.44	01	01	2.46	.00	.000
			20		9.39	6.2	-2.0	01	.00	- 1	3.16	04	02	3.20	.01	.000
			21		12 81	7 9	-2.0	01	.01	. 2	3.88	09	03	3.98	.01	.001
			22		16 25	12 2	1.7	02	.01	. 3	5.29	12	-,04	5.42	.02	.001
			23		19.72	18 1	-7 0	02	.01	- 4	0.12	18	07	6.91	.02	.002
			24		23,21	25.6	-10 1	- 06	.01	. 5	8.15	27	10	8.43	.04	.003
			25		26.77	35.8	-13 9	05	.02	- /	9.59	38	15	9.99	.05	.004
			26		30.33	47.0	-18 6	- 09	.02	. 9	11.00	53	20	11.63	.07	.005
			27		33,93	59.9	-24 2	~ 12	.0.5	1.1	12.03	69	21	13.28	.09	.007
			2.6				-1.4	. 16	.04	1.3	14.02	88	35	14.97	.11	.008

		UNE	цоац	FLOR	Force	*Bending	Moment*	*Shear	Force*	Torsion	Axial	Bending	Stress	Comb.	Shear	Comb.
A-	JB	ID	Case	End	FX	My	Mz	FV	FZ	Mx	Stress	Y	7.	Stress	Stress	Unity
				(M)	(KN) / (KN-	MM)/	/ (KN) -/	(KN-MM)	/		(MN/M^2)	/	Check
8-	60	HB	2	.0	.01	-4.0	5	.00	.01	.0	.01	.06	01	.07	.01	.000
			3		.06	-10.5	-7.5	.01	.02	. 0	.02	.15	- 11	21	.02	001
			4		.11	-15.8	-17.1	.03	.02	. 0	05	23	- 25	29	03	001
			5		.18	-21.1	-30.3	.05	.03	.0	08	31	- 45	62	05	002
			6		.28	-27.0	-47.4	.08	.04	. 0	12	40	- 69	92	08	003
			7		.40	-32.8	-67.8	. 12	.05	0	17	48	-1.00	1 27	.00	.003
			8		. 55	-39.5	-91.8	.16	.06	0	23	58	-1 35	1 69	14	.004
			9		.73	-46.8	-118.9	.21	.08	.0	30		1.35	2 10	10	.005
			10		.94	-54.8	-149.8	27	.09	0	39	.00	-2 20	2 73	.10	.000
			11		1.18	-63.6	-184.5	33	10	.0	19	.00	2 71	2.75	. 20	.000
			12		1.48	-72.5	-223 7	40	10		61	1 06	2.71	3.35	, 69	.010
			13		1.80	-83 5	-266.2	48	14	. 4	75	1.00	3.40	4.00	. 30	.012
			14		2.15	-95.6	- 313 3	56	16	. 1	, / 5	1.40	-3.91	4.84	, 4 I	.014
			15	-	.75	-4 0	510.5		.10	• 2	,05	1.40	-4.60	5.70	.48	.010
			16		2.25	-10.5	-7 5	.00	0.2	.0	. 31	.06	01	. 37	.01	.000
			17		3 77	-15.9	-17 1	.01	.02	.0	.93	.15	-,11	1.12	.02	.001
			18		5 30	-21 1	20.2	.05	.02	.0	1,50	. 23	25	1.90	.03	.001
			19		6 86	-27 0	-30.5	.05	.03	.0	2.19	. 31	45	2.13	.05	.002
			20		8 45	-32 0	67 8	.08	.04	.0	2.84	.40	09	3.63	.08	.003
			21		11 52	-20 6	-01.0	.12	.05	.0	3.49	.48	-1.00	4.60	.11	.004
			22		14 62	-39.5	-91.0	.10	.06	.0	4,76	.58	-1.35	6.23	.14	.006
			22		17 75	-40.8	-118.9	+ 21	.08	.0	6,04	. 69	-1.74	7.92	.19	.007
			20		20.02	-24.8	-149.0	. 21	.09	.0	1,34	.80	-2.20	9.68	.23	.009
			24		20.92	-63.6	-184.5	.33	.10	.1	8,64	.93	-2.71	11.51	.29	.012
			20		24.15	-12.5	-223.1	.40	,12	.2	9,98	1.06	-3.28	13.43	.35	.014
			20		27.40	-83.5	-266.2	. 48	.14	.1	11,32	1.23	-3.91	15.41	.41	.017
			41	4 0	30.67	-95.6	-313.3	.56	.16	.2	12,68	1.40	-4.60	17.48	.48	.021
			2	4.0	10.	-4.0	1.6	.00	01	.0	.01	.06	.02	.07	.00	.000
			3		.06	-10.3	1.9	01	01	.0	.02	.15	.03	.18	.01	.001
			4		.11	-15.4	3.9	02	02	.0	.05	.23	.06	.28	.02	.001
			5		.18	-20.4	7.0	04	03	.0	,08	.30	.10	.39	.04	.001
			6		.28	-25.9	11.2	05	04	.0	,12	.38	.16	.53	.05	.001
			7		.40	-32.3	20.4	08	05	.0	,17	.47	.30	.73	.07	.002
			8		.55	-39.0	28.5	10	05	.0	,23	.57	.42	.94	.10	.002
			9		.73	-46.4	39.7	13	07	.0	,30	.68	.58	1.20	.12	.003
			10		.94	-54.7	53.6	17	08	.0	, 39	.80	.79	1.51	,15	.004
			11		1.18	-64.1	68.9	21	09	.1	.49	.94	1.01	1.87	.19	.005
			12		1.48	-75.7	91.3	25	11	.2	.61	1.11	1.34	2.35	.22	.006
			13		1.80	-87.5	109.9	30	12	.1	.75	1.28	1.61	2.81	.27	.007
			14		2.15	-101.0	133.5	35	14	.2	.89	1.48	1.96	3.35	.31	.008
			15		.75	-4.0	1.6	.00	01	.0	, 31	.06	.02	.37	.00	.000
			16		2.25	-10.3	1.9	01	01	.0	.93	.15	.03	1.08	.01	.001
			17		3.77	-15.4	3.9	02	02	.0	1,56	.23	.06	1.79	.02	.001
			18		5.30	-20.4	7.0	04	03	. 0	2.19	. 30	.10	2.51	.04	001
			19		6.86	-25.9	11.2	05	04	. 0	2.84	.38	.16	3.25	05	002
			20		8.45	-32.3	20.4	08	05	. 0	3.49	47	.30	4.05	07	002
			21		11.52	-39.0	28.5	10	05	.0	4.76	.57	. 42	5.47	10	003
			2.2		14.62	-46.4	39.7	13	07	.0	6.04	. 68	.58	6.94	12	004
			23		17.75	-54.7	53.6	17	08	.0	7 34	80		8 46	15	.005
			24		20.92	-64.1	68.9	21	09		8 64	94	1 01	10.03	19	.003
			25		24.15	-75.7	91.3	25	- 11	.2	9 98	1 11	1 34	11 72	22	.007
			26		27,40	-87.6	109 9	- 30	- 12	. 2.	11 32	1 28	1 61	12 30	.22	.009
			27		30,67	-101.0	133 5	- 35	- 14	. 1	12 68	1 49	1.01	15.50	. 61	.010
							19919			• 2.	10.00	1,40	1.90	13.13	. 21	.015

\$

	on on	- Load	FIOM	Force	Bending	Moment*	*Shear	Force*	Torsion	Avial	Bending	Strage	Comb	Chear	Max
A-	JB ID	Case	End	FX	My	Mz	FV	Fz	Mx	Stress	V	7	Strage	Strong	COMD.
			(M)	(KN) / (KN-	-MM)/	/ (KI	N) -/	(KN-MM)) /		(MN/M^2)	/	Check
1-	34 CH	2	.0	20	-3.4	-9.8	.01	.00	-1.6	02	.01	- 02	- 04	00	000
		3		88	-9.6	-26.6	.01	.01	-5.7	09	02	- 05	- 15	.00	.000
		4		-1.94	-14.7	-42.6	.00	.02	-11.1	21	.03	- 08	- 29	.01	.001
		5		-3.49	-20.1	-60.8	02	.03	-18.9	- 37	.03	- 12	.29	.01	.001
		6		-5.62	-26.2	-82.4	04	.04	-28.9	- 60	.05	- 16	50	.02	.002
		7		-9.15	-33.1	-104.4	08	04	-57 7	90	06	20	1 10	.04	.004
		8		-12.78	-42.2	-128.7	12	05	-70.7	-1 27	.00	20	1.19	.07	.006
		9		-17.09	-53.2	-154.6	- 17	07	-86.0	-1 92	.00	24	-1.03	.10	.008
		10		-22.19	-65.9	-184.1	- 23	09	-105 4	-2 30	.10	29	-2.14	.12	.010
		11		-28.11	-79.9	-218.3	29	11	-128 3	-2.00	.12	35	-2.75	.15	.013
		12		-36.84	-98.4	-258.2	- 36	13	-178 2	-2.01	.10	41	-3.45	.19	.017
		13		-45.29	-116.6	-304.4	- 43	15	-200.9	-1.96	.19	49	-4.47	.25	.022
		14		-54.60	-136.7	-357.5	- 51	18	-200.9	-4.00	. 22	58	-5,47	.29	.027
		15	-	-21.70	2	-11.7	01	00	-2 6	-2.22	. 40	68	-0.58	.33	.033
		16		-65.37	.1	-32.2	.01	.00	-2.0	-2.33	.00	02	-2.35	.00	.012
		17		-109.43	1.5	-52 0	.01	.00	-0.0	-1.01	.00	06	-7.07	.01	.037
		18		-153.98	2.6	-73 0	.01	.00	-16.0	-11.73	.00	10	-11.83	.02	.061
		19		-199.10	3.0	-99.2	- 02	.00	-25.8	-16.31	.00	14	-16.65	.03	.086
		20		-245.63	2.5	-124 9	- 06	.01	-31.1	-21.35	01	19	-21.54	.04	.111
		21		-335.25	6.4	-156 7	00	.01	-08.3	-26.34	.00	24	-26.57	.08	.138
		22		-425.55	8 3	-190.1	09	.01	-85.4	-35.95	01	30	-36.24	.10	.188
		23		-516.63	8.6	-227 0	13	.01	-104.7	-45.63	02	36	-45.99	.13	.238
		24		-608.55	7.6	-268 7	19	.02	-127.9	-55.39	02	43	-55.82	.16	.289
		25		-703.26	2 1	-216 1	24	.02	-154.8	-65.25	01	51	-65.76	.20	.341
		26		-797 71	-3.2	-360.0	30	.03	-208.7	- 15.40	.00	60	-76.00	.26	.394
		27		-893 01	-10.3	-120 3	31	.04	-235.2	-85.53	.01	70	-86.23	.30	.447
		2	2.0	- 20	5 7	-430.3	- , 43	.05	-263.4	-95.75	.02	82	-96.56	.34	.500
		3	a U	- 29	15 5	12.0	.01	.00	-1.6	02	01	.01	04	.00	.000
		4		1.04	24.2	13.9	.04	.01	-5.7	09	03	.03	13	.01	.001
		5		-1.94	24.2	20.6	.07	.02	-11.1	21	05	.04	27	.03	.001
		6		-3.49	33.4	26.5	.11	.03	-18.9	37	06	.05	46	.04	.002
		2		-5.62	44.0	30.9	.17	.04	-28.9	60	08	.06	70	.06	.003
		0		-9.15	55.8	14.9	.21	.04	-57.7	98	11	.03	-1.09	.10	.005
		0		-12.78	12.1	1	.27	.06	-70.7	-1.37	14	.00	-1.51	.13	.008
		10		-17.09	92.2	-22.3	.33	.07	-86.0	-1.83	17	04	-2.01	.15	.010
		10		-22.19	114.0	-49.0	.39	.09	-105.4	-2.38	22	09	-2.61	.19	.013
		11		-28.11	137.2	-76.5	. 47	.11	-128.3	-3.01	26	15	-3.31	.22	.017
		12		-36.84	166.0	-111.3	.55	,13	-178.3	-3.95	31	21	-4.33	.29	.022
		1.5		-45.29	193.2	-138.0	. 64	.15	-200.9	-4.86	37	26	-5.31	.33	.027
		14		-54.60	221.8	-161.5	.75	.18	-225.1	-5.85	42	31	-6.37	.38	.032
		15		-21.70	2.5	7.8	.01	.00	-2.6	-2.33	.00	.01	-2.34	.01	.012
		16		-65.37	5.7	19.5	.04	.00	-8.6	-7.01	01	.04	-7.05	.02	.037
		1/		-109.43	8.0	29.9	.08	.00	-16.0	-11.73	02	.06	-11.79	.03	.061
		18		-153.98	10.7	39.6	.13	.00	-25.8	-16.51	02	.07	-16.59	.05	.086
		19		-199.10	14.8	47.7	.18	.01	-37.7	-21.35	03	.09	-21.44	.07	.111
		20		-245.63	20.1	35.3	.23	.01	-68.5	-26.34	04	.07	-26.41	.12	137
		21		-335.25	24.0	27.8	.30	.01	-85.4	-35.95	05	.05	-36.01	14	187
		22		-425.55	30.6	13.1	.36	.01	-104.7	-45.63	06	.02	-45.69	.18	237
		23		-516.63	39.4	-6.2	. 44	.02	-127.9	-55.39	07	01	-55.47	21	288
		24		-608.55	49.6	-26.3	.52	.02	-154.8	-65.25	09	05	-65.36	26	339
		25		-703.26	65.4	-53.7	.60	.03	-208.7	-75,40	- 12	- 10	-75 56	.20	.335
		26		-797.71	79.6	-72.9	.71	.04	-235.2	-85.53	- 15	- 14	-85 72	. 00	. 592
		27		-893.01	95.2	-89.0	.82	.05	-263.4	-95.75	- 18	- 17	-96.00		. 445
											. 10		20.00	.45	+ 3 20

		- OFTE	HOUGH	r L OIII	Force	Benaind	Moment*	*Shear	Force*	Torsion	Axial	Bending	Stress	Comb.	Shear	Comb
A-	JB	ID	Case	End	Fx	Му	. Mz	FY	Fz	Mx	Stress	Y	Z	Stress	Stress	Unity
				(M)	(KN) / (KN-	MM)/	1 (KN) -/	(KN-MM)	/		(MN/M^2)	/	Check
5-	8	CH	2	.0	18	.8	2.0	.00	.00	.1	02	.00	.00	02	.00	.000
			3		82	4.1	10.9	01	.00	.7	09	01	.02	11	.00	.001
			4	-	-1.74	10.2	25.1	02	.00	. 3	19	02	.05	24	.00	.001
			5		-3.06	19.6	47.3	04	01	-3.5	33	04	.09	-,42	.01	.002
			6		-4.80	31.8	78.1	06	01	-7.2	51	06	.15	67	.02	.003
			7		-7,55	51.5	123.8	09	02	-13.3	81	10	.23	-1.06	.03	.005
			8		-10.49	74.2	177.4	13	03	-21.6	-1.13	14	.34	-1.49	.05	.007
			9		-14.02	104.1	242.8	19	05	-32.5	-1.50	20	.46	-2.00	.07	.009
			10		-18.22	140.2	321.0	25	06	-46.2	-1.95	27	.61	-2.62	.10	.012
			11		-23.14	183.3	413.4	33	08	-63.3	-2.48	35	.78	-3.34	.13	.015
			12		-30.14	239.7	535.3	43	10	-85.6	-3.23	45	1.01	-4.34	.18	.020
			13		-37.16	300.6	665.4	55	13	-107.4	-3.98	57	1.26	-5.37	.22	.025
			14	~	-44.93	368.8	810.7	68	16	-133.8	-4.82	70	1.54	-6.51	.28	.030
			15		-21.69	-11.9	-33.6	.02	.01	1.6	-2.33	.02	06	-2.39	.01	.012
			16		-65.35	-33.8	-95.9	.06	.02	5.2	-7.01	.06	18	-7.20	.02	.037
			17		-109.30	-53.1	-152.9	.10	.03	7.8	-11.72	.10	29	-12.03	.03	.062
			18		-153.63	-69.0	-201.9	.12	.05	7.0	-16.47	,13	38	-16.88	.03	.087
			19		-198.40	-82.1	-242.4	.15	.06	6.4	-21.27	.16	46	-21.76	.04	.112
			20		-244.17	-87.7	-267.8	.16	.06	3.2	-26.18	.17	51	-26.71	.04	.138
			21		-333.15	-115.7	-356.7	.20	.09	. 9	-35.72	.22	68	-36.43	.05	.188
			22		-422.72	-136.3	-433.7	.24	.10	-3.9	-45.32	.26	82	-46.19	.06	.238
			23		-512.96	-150.9	-497.9	.27	.12	-11.7	-55.00	.29	94	-55.99	.07	.289
			24		-603.93	-158.4	-547.9	.28	.13	-22.8	-64.75	.30	-1.04	-65.83	.09	.340
			25		-696.97	-152.6	-568.4	.27	.14	-39.0	-74.73	.29	-1.08	-75.84	.10	.392
			20		-790.03	-142.4	-580.8	.24	.14	-54.8	-84.71	.27	-1.10	-85.84	.11	.444
			21	0.0	-883.84	-124.7	-577.8	.20	.14	-75.3	-94.77	.24	-1,10	-95.89	.12	.496
			4	2.0	18	- 1	3	.00	.00	.1	02	.00	.00	02	.00	.000
			5		82	.1	-1.4	.00	.00	.7	09	.00	.00	09	.00	.000
			4		-1.74	. 3	-3.0	01	.00	.3	19	.00	01	19	.00	.001
			5		-3.06	2.1	-8.5	02	01	-3.5	33	.00	-,02	34	.01	.002
			0		-4.80	4.3	-15.3	03	01	-7.2	51	01	03	54	.01	.003
			6		-7.55	0.7	-24.6	06	02	-13.3	81	01	05	86	.03	.004
			G		-10.49	9.8	-35.4	08	03	-21.6	-1.13	02	07	-1.19	.04	.006
			10		-19.02	13.3	-48.8	10	05	-32.5	-1.50	03	09	-1.60	.05	.008
			11		-22.14	17.0	-64.8	13	06	-46.2	-1.95	03	12	-2.08	.07	.011
			12		-20.14	29 9	-107 4	10	08	-63.3	-2.48	04	16	-2.65	.10	.013
			13		-37 16	36 6	-107.4	21	10	-85.6	-3.23	06	20	-3.44	.13	.017
			14		-44 93	44 6	-164 2	25	13	-107.4	-3.98	07	25	-4.25	.16	.021
			15		-21 69	3 1	-104.2	29	16	-133.8	-4.82	08	31	-5.14	.20	.026
			16		-65 35	9 2	27 4	.02	.01	1.0	-2.33	01	.02	-2.34	.01	.012
			17		-109 30	15 4	45 0	.00	.02	5.4	-1.01	02	.05	-1.06	.02	.037
			18		-153 63	23 3	58 0	.10	.05	7.0	16 47	03	.09	-11.81	.03	.061
			19		-198.40	31.6	71.3	17	.05	6.4	-21 27	04	.11	-10.39	.04	.086
			20		-244.17	40.0	81.1	19	.06	3.2	-26 10	00	.14	-21.42	.04	.111
			21		-333.15	55.3	108 8	26	.00	3.2	-35 72	08	.15	-20.35	.05	.137
			22		-422.72	70.9	133.9	33	.10	-3.9	-45 32	- 13	25	-45 61	.00	.100
			23		-512.96	87.4	156.3	39	.12	-11 7	-55 00	- 17	.20	-45.01	.00	.230
			24		-603.93	104.7	175.8	.45	.13	-22 8	-64.75	- 20	. 30	-65 14	.10	.207
			25		-696.97	123.9	190.6	.50	.14	-39.0	-74.73	- 22	. 35	-75 16	15	. 330
			26		-790.03	142.8	202.3	.54	.14	-54.8	-84.71	- 27	38	-85 18	17	
			27		-883.84	162.9	210.8	.59	.14	-75.3	-94.77	- 31	40	-95 27	20	194
					and a second		10000						. 10	20161		. 1.7.1

embe	er	GRP	Load	From	Force	*Bending 1	Moment*	*Shear Fo	rce*	Torsion	Axial	Bending	Stress	Comb.	Shear	Max
A- 0	1B	ID	Case	End	Fx	MY	Mz	Fy	FZ	Mx	Stress	Y	Z	Stress	Stress	Unity
				(M)	(KN)	/ (KN-M	M)/	/ (KN) -/	(KN-MM)	/		(MN/M^2)	/	Check
5-	6	HB	2	.0	.02	2	1	.00	.00	.0	.01	.00	.00	.01	.00	.000
			3		.11	-1.1	4	.00	.00	.0	.03	.01	.00	.05	.00	.000
			4		.26	-2.9	8	.00	.00	.1	.09	.04	01	.12	.00	.000
			5		. 53	-6.1	-2.7	.00	.00	.3	.17	.07	03	.25	.00	.000
			6		.89	-10.5	-6.1	.01	.00	.6	.29	.13	07	. 44	.01	.000
			1		1.45	-17.3	-10.6	.01	.01	1.1	. 48	.21	13	.72	.02	.001
			8		2.10	-27.0	-16.8	.02	.01	1.7	. 69	.32	20	1.07	.03	.001
			9		2.91	-37.3	-25.4	.04	.02	2.4	.95	.45	30	1.49	.04	.002
			10		3.88	-49.7	-36.7	.05	.03	3.3	1.27	.59	44	2.01	.06	.003
			12		5.04	-64.5	-51.1	.07	.03	4.4	1.65	.77	61	2.63	.08	.003
			12		0.00	-84.0	-69.0	.10	.04	6.0	2.15	1.01	83	3.46	.11	.005
			10		0.18	-104.5	-90.2	.13	.05	7.4	2.68	1,25	-1.08	4.33	.14	.006
			14	-	9.98	-127.6	-114.9	.17	.06	9.0	3.27	1.53	-1.38	5.32	.17	.007
			15		2.24	.3	.8	.00	.00	4	.25	.00	.01	.26	.00	.000
			10		2.34	.5	2.2	.00	.00	-1.3	.77	01	.03	.79	.01	.000
			10		5.99	3	3.4	.00	.00	-2.1	1.31	.00	.04	1.35	.01	.000
			18		5.74	-2.4	3.2	.00	.00	-2.8	1.88	.03	.04	1.93	.02	.000
			19		1.59	-5.7	1.5	.00	.00	-3.4	2.49	.07	.02	2.56	.02	.000
			20		9.64	-11.5	-1.3	.01	.00	-3.8	3.16	.14	02	3.30	.03	.001
			21		13.27	-19.1	-4.2	.02	.01	-5.0	4.35	.23	05	4.58	.04	.001
			22		17.05	-21.2	-9.4	.03	.01	-6.1	5.59	.33	11	5.93	.06	.002
			23		21.00	-37.5	-17.4	.04	.01	-6.9	6.88	.45	21	7.37	.07	.003
			24		25.14	-50.2	-28.4	.06	.02	-7.6	8.23	.60	34	8.92	.09	.004
			20		29.00	-67.6	-43.0	.09	.03	-7.8	9.71	.81	51	10.67	.11	.006
			20		34.24	-86.0	-60.8	.12	.04	-8.3	11.21	1.03	73	12.47	.13	.007
			21	4 0	39.02	-106.9	-82,1	.15	.04	-8.4	12.78	1.28	98	14.39	.15	.010
			4	4.0	.02	.2	.1	.00	.00	.0	.01	.00	.00	.01	.00	.000
			3		. 11	1.0	.5	.00	.00	.0	.03	01	.01	.05	.00	.000
			4		.26	2.1	1.2	.00	.00	.1	.09	03	.01	.12	.00	.000
			5		.53	5.5	1.1	.00	.00	.3	.17	07	.01	.24	.00	.000
			0		.89	9.5	1.7	.00	.00	.6	.29	11	.02	.41	.01	.000
			1		1.45	15.7	2.9	01	.01	1.1	.48	19	.03	.67	.01	.001
			8		2.10	21.3	3.6	01	.01	1.7	.69	25	.04	.95	.02	.001
			9		2.91	30.1	4.1	02	.01	2.4	.95	36	.05	1.32	.03	.001
			10		3.88	40.9	4.3	03	.02	3.3	1.27	49	.05	1.76	.04	.002
			11		5.04	53.9	4.3	04	.03	4.4	1.65	64	.05	2.30	.06	.002
			12		6.58	70.9	4.4	06	.03	6.0	2.15	85	.05	3.01	.08	.003
			13		8.18	88.9	3.8	08	.04	7.4	2.68	-1.06	.05	3.74	.10	.004
			14		9.98	109.0	2.1	11	.05	9.0	3.27	-1.31	.03	4.57	.13	.005
			10		2.24	-1.3	/	.00	.00	4	.25	.02	01	.27	.00	.000
			17		2.34	-3.5	-2.0	.00	.00	-1.3	.77	.04	02	.81	.01	.000
			10		5.99	-4.8	-3.0	.00	.00	-2.1	1.31	.06	04	1.37	.01	.000
			10		5.74	-5.0	-4.8	.00	.00	-2.8	1.88	.06	06	1.96	.02	.000
			19		1.59	-4.0	-5.8	01	.00	-3.4	2.49	.05	07	2.57	.03	.000
			20		12 27	8	-6.4	01	.00	-3.8	3.16	.01	08	3.23	.03	.001
			22		17.05	-1.2	-9.0	02	.00	-5.0	4.35	.01	11	4.46	.04	.001
			22		21.00	1.6	-11.9	03	.00	-6.1	5.59	02	14	5.73	.05	.001
			2.5		25 14	0.4	-15.0	04	.01	-6.9	6.88	08	18	7.07	.07	.002
			24		20.14	13.4	-18.4	06	.01	-7.6	8.23	16	22	8.51	.08	.003
			26		29.00	24.4	-21.7	07	.02	-1.8	9.71	29	26	10.11	.10	.004
			20		39.29	50.4	-23.6	10	.03	-8.3	11.21	44	31	11.75	.11	.005
			4.1		39.02	20.6	-30.1	12	.03	-8.4	12.78	61	36	13.48	.13	.007

(BUK)

	GRI GRI	Load	From	Force	*Bending	Moment*	*Shear	Forcet	Torsion	Avial	Bending	Ctropp	Comb	abaan	Max	
***	JB ID	Case	End	Fx	My	Mz	FV	FZ	Mx	Stress	v	otress	COMD.	Shear	Comb.	
			(M)	(KN) / (KN-	-MM)/	1 (KN) -/	(KN-MM)	/		(MN/M^2	J	SLIESS	Check	
	22 110	~	~									11 417 11 2	,	/	GHECK	
	33 HB	2	.0	.01	-4.0	4	.00	.01	.0	.00	.05	01	.05	.00	.000	
		3		.06	-10.1	-7.6	.01	.02	.1	.02	.12	09	.17	.01	.001	
		4		.13	-15.2	-17.4	.03	.02	. 3	.04	.18	21	. 32	.03	.001	
		5		.22	-20.1	-31.0	.05	.03	.5	.07	.24	37	.51	04	001	
		6		.33	-25.5	-48.1	.08	.04	.7	.11	.30	- 58	76	.04	.001	
		1		.55	-30.3	-69.3	.12	.05	.9	.18	.36	- 83	1 08	.00	.002	
		8		.73	-36.4	-94.2	.16	.06	1.1	.24	44	-1 13	1 45	12	.003	
		9		.94	-43.0	-122.8	.21	.07	1.4	31	51	-1 47	1.45	.12	.004	
		10		1.17	-50.2	-154.9	.26	.09	1.7	38	60	-1 95	2 22	.10	.005	
		11.		1.44	-58.3	-189.8	. 32	.10	2.0	47	.00	2 27	2.33	.19	.007	
		12		1.99	-64.9	-230.7	. 39	.12	2 5	65	. 70	-2.21	2.00	.23	.008	
		13		2.36	-74.8	-274.4	. 47	.13	2 7	.00		-2.70	3.52	.28	.010	
		14		2.80	-85.6	-323.8	.55	.15	3.0		1.00	-3.28	4.18	.33	.011	
		15	2	.76	-3.9	- 4	00	01	3.2	. 56	1.02	-3.88	4.93	.39	.014	
		16		2.31	-9.8	-7.6	01	02	.1	.25	.05	01	.30	.00	.000	
		17		3.87	-14.6	-17 4	0.2	03	. 5	1 07	.12	09	.90	.01	.001	
		18		5.45	-19.3	-31 0	05	.02		1.21	.18	21	1.54	.03	.001	
		19		7.06	-24 5	-48 1	.05	.03	.8	1.78	.23	37	2.22	.04	.002	
		20		8.77	-29 2	-69 3	.08	.04	1.1	2.31	.29	58	2.96	.07	.002	
		21		11.94	-34 8	-94 2	16	.05	1.4	2.81	.35	83	3.77	.09	.003	
		22		15.14	-41.0	-122 8	21	.00	1.0	3.91	. 42	-1.13	5.11	.12	.004	
		23		18.37	-47 8	-154 9	. 21	.07	4.3	4.96	. 49	-1.47	6.51	.16	.006	
		24		21.63	-55 4	-189 9	.20	.09	2.1	6.02	.57	-1.85	7.96	.20	.007	
		25		25.16	-61 6	-230 7	. 32	.10	3.2	1.08	.66	-2.27	9.45	.24	.009	
		26		28 52	-71 2	-230.1	. 39	.11	3.9	8.24	.74	-2.76	11.10	.29	.011	
		27		31 95	-01 5	202 0	. 47	.13	4.3	9.34	.85	-3.28	12.74	.34	.014	
		2	4.0	01	-4.0	-323.2	. 55	.15	5.0	10.47	.98	-3.88	14.46	.40	.016	
		3	1.0	.06	-10.3	1.1	.00	01	.0	.00	.05	.01	.05	.00	.000	
		4		12	-10.3		01	02	.1	.02	.12	.01	.14	.01	.000	
		5		. 13	-15.5	1.4	02	02	.3	.04	.19	.01	.23	.02	.001	
		6		. 44	-20.6	1.8	-,04	03	.5	.07	.25	.02	.32	.03	.001	
		7			-20.4	2.4	06	04	.7	.11	.32	.03	.43	.05	.001	
		0			-33.3	9.0	08	05	. 9	.18	.40	.11	.59	.07	.001	
		9		. / 3	-40.4	12.3	11	06	1.1	,24	.48	.15	.74	.09	.002	
		10		. 94	-48.0	11.3	14	07	1.4	.31	.57	.21	.92	.11	.002	
		10		1.1/	-56.6	23.4	18	08	1.7	.38	.68	.28	1.12	.14	.002	
		12		1.44	-66.2	29.6	22	09	2.0	.47	.79	.35	1.34	.17	.003	
		12		1.99	-79.5	45.4	26	11	2.5	.65	.95	.54	1.75	.20	.004	
		1.4		2.30	-91.6	53.8	31	13	2.7	.77	1.10	. 64	2.04	.23	.004	
		14		2.80	-105.7	65.2	36	14	3.2	.92	1.27	.78	2.40	.27	.005	
		15		. 76	-4.1	1.1	.00	01	.1	.25	.05	.01	.30	.00	.000	
		10		2.31	-10.6	.7	01	02	. 3	.76	.13	.01	.88	.01	.000	
		1/		3.87	-16.1	1.2	02	02	.5	1.27	.19	.01	1.46	.02	001	
		18		5.45	-21.4	1.8	04	03	. 8	1.78	.26	.02	2.04	.04	.001	
		19		7.06	-27.3	2.4	-,06	04	1.1	2.31	. 33	.03	2.64	05	001	
		20		8.77	-34.5	9.0	08	05	1.4	2.87	. 41	.11	3.30	07	.002	
		21		11.94	-41.9	12.3	11	06	1.8	3,91	.50	.15	4.43	.09	002	
		2.2		15.14	-50.0	17.3	14	07	2.3	4.96	.60	.21	5.59	12	003	
		23		18.37	-59.0	23.5	18	08	2.7	6.02	.71	.28	6 78	14	.003	
		24		21.63	-69.0	29.6	22	09	3.2	7.08	.83	35	7 98	17	.003	
		25		25.16	-82.7	45.5	26	11	3.9	8.24	.99	54	9 37	21	.004	
		26		28.52	-95.3	53.9	31	13	4.3	9.34	1.14	. 64	10 65	. 41	.000	
		27		31.95	-109.8	65.2	36	15	5.0	10.47	1.31	79	11 99	.29	.007	
									2.0		+ · · · ·	. /0	11.99	. 49	.008	

Lampiran 5

Perhitungan Fatigue Life

nickness (t _b)	=		11.250	mm
hickness (t)	=		15.625	mm
adius (r _b)	=		90.000	mm
adius (R)	=		125.000	mm
t _b /t		0.720		
R/t		8 000		

NA	0.000
r _b /R	0.720
=	90 °

	 7 5
	/ -0.

	1 .														
s 25 years	oaksial chord	σ _{aksial brace}	Gbending chord	o bending brace	SCFchord	SCFbrace	SCFchord	SCFbrace					Local Stress	Fatigue Life	
n	MN/m ²	MN/m ²	MN/m ²	MN/m ²	aksial	aksial	IPB	IPB	MN/m ²	N	n/N				
1	2 -	3	4	5	6	7	8	9	2x6	3x7	4 x 8	5 x 9			
130018000	1.91	0.02	0.12	0.00	6.232	9.164	2.444	4.430	11.90234	0.18329	0.293251	0	12.37887922	20489301828	0.006340
30171000	5.77	0.08	0.36	0.01	6.232	9.164	2.444	4.430	35.95628	0.733159	0.879754	0.044297	37,61348805	320900370.7	0.0940
6668800	9.66	0.15	0.60	0.02	6.232	9.164	2.444	4.430	60.19717	1.374673	1.466257	0.088594	63.12668949	46276301.6	0.14410
1474000	13.59	0.25	0.83	0.03	6.232	9.164	2.444	4.430	84.68732	2.291122	2.028322	0.132891	89.13965159	12731806.53	0.11577
325760	17.58	0.38	1.06	0.05	6.232	9.164	2.444	4.430	109.5514	3.482506	2.590387	0.221485	115.8457408	4777974.761	0.0681
72010	21.71	0.57	1.29	0.07	6.232	9.164	2.444	4.430	135.2878	5.223758	3.152452	0.310079	143.974122	2119197.907	0.0339
15914	29.62	0.81	1.76	0.11	6.232	9.164	2.444	4.430	184.5797	7.423236	4.301019	0.487267	196.7912369	658527.3123	0.02416
3518	37.60	1.09	2.22	0.16	6.232	9.164	2.444	4.430	234.3078	9.989292	5.425149	0.708752	250.4310021	267338.7147	0.01315
777	45.66	1.43	2.68	0.23	6.232	9.164	2.444	4.430	284.5344	13.10522	6.54928	1.018831	305.2077578	127575.6798	0.00609
172	53.82	1.82	3.13	0.32	6.232	9.164	2.444	4.430	335.3842	16.67937	7.648972	1.417504	361.1300535	67997.56059	0.0025
38	62.23	2.31	3.58	0.42	6.232	9.164	2.444	4.430	387.7919	21.16997	8.748665	1.860475	419.5709926	38802.78651	0.00097
9	70.64	2.84	4.02	0.54	6.232	9.164	2.444	4.430	440.1996	26.02715	9.823919	2.392039	478.4426677	23746.05552	0.00037
2	79.15	3.43	4.46	0.68	6.232	9.164	2.444	4.430	493.2304	31.43419	10.89917	3.012197	538.5759652	15250.76591	0.00013
														- 7	0 50094

		0.0000
Fatique	Life	49.0348

	58-63												and the second	i unguo Lito	
s 25 years	Taksial chord	oraksial brace	orbending chord	o bending brace	SCFchord	SCF _{brace}	SCFchord	SCFbrace					Local Stress	Fatigue Life	
n	MN/m ²	MN/m ²	MN/m ²	MN/m ²	aksial	aksial	IPB	IPB	MN/m ²	N	n/N				
1	2	3	4	5	6	7	8	9	2×6	3 x 7	4 x 8	5 x 9		a second second	
130018000	1.91	0.02	0.10	0.01	6.232	9.164	2.444	4.430	11.90234	0.18329	0.244376	0.044297	12.37430101	20517667541	0.00633
30171000	5.75	0.06	0.29	0.06	6.232	9.164	2.444	4.430	35.83165	0.549869	0.708691	0.265782	37.35598826	329251722.6	0.09163
6668800	9.64	0.10	0.48	0.14	6.232	9.164	2.444	4.430	60.07253	0.916449	1.173005	0.620158	62.78214609	47233278.28	0.14118
1474000	13.58	0.15	0.66	0.26	6.232	9.164	2.444	4.430	84.625	1.374673	1.612882	1.151722	88.76427877	12934342.05	0.1139
325760	17.59	0.19	0.84	0.41	6.232	9.164	2.444	4.430	109.6137	1.741253	2.052759	1.816178	115.223869	4875133.805	0.06682
72010	21.77	0.23	1.00	0.60	6.232	9.164	2.444	4.430	135.6617	2.107832	2.443761	2.657821	142.8711424	2181035.941	0.03301
15914	29.71	0.31	1.38	0.81	6.232	9.164	2.444	4.430	185.1406	2.840991	3.37239	3.588058	194.9419976	682195.8546	0.02332
3518	37.74	0.39	1.75	1.05	6.232	9.164	2.444	4.430	235.1802	3.57415	4.276582	4.651186	247.6821494	278605.1305	0.01262
777	45.85	0.47	2.12	1.34	6.232	9.164	2.444	4.430	285.7184	4.30731	5.180773	5.9358	301.1423135	134137.0807	0.00579
172	54.06	0.56	2.49	1.66	6.232	9.164	2.444	4.430	336.8798	5.132113	6.084965	7.353304	355.4501726	72151.0854	0.00238
38	62.58	0.62	2.84	2.03	6.232	9.164	2.444	4.430	389.9729	5.681983	6.940281	8.992294	411.5875	41693.34853	0.00091
9	71.07	0.70	3.19	2.43	6.232	9.164	2.444	4.430	442.8791	6.415142	7.795598	10.76417	467.8540605	25819.17788	0.00034
2	70.66	0.70	3.52	2.00	6 222	0.164	2111	1 120	106 1095	7 220046	0 602020	12 90194	525 0522218	16772 4032	0.00011

ada bracing K, SCF rumusan API

 $\Sigma = 0.49846$ Fatigue Life 50.15363

ness (t)		=		12.500	mm
s (r _b)		=		62.500	mm
s (R)		=		125.000	mm
	=		0.516		
	=		10.000		
2	=		0.500		

= 90 °

25 years	oaksial chord	Taksial brace	Obending chord	Obending brace	SCFchord	SCFbrace	SCFchord	SCFbrace					Local Stress	Fatigue Life	
1	MN/m ²	MN/m ²	MN/m ²	MN/m ²	aksial	aksial	IPB	IPB	MN/m ²	N	n/N				
-	2	3	4	5	6	7	8	9	2x6	3x7	4 x 8	5 x 9			
130018000	2.33	0.25	0.06	0.01	4.993	9.749	1.958	4.659	11.63395	2.437175	0.117485	0.046588	14.23519411	12149998538	0.010701
30171000	7.01	0.77	0.18	0.03	4.993	9.749	1.958	4.659	35.0017	7.506499	0.352455	0.139764	43.00041852	194521443.8	0.155104
6668800	11.72	1.31	0.29	0.04	4.993	9.749	1.958	4.659	58.51925	12.7708	0.567844	0.186352	72.04424136	28231505.47	0.236218
1474000	16.47	1.88	0.38	0.04	4.993	9.749	1.958	4.659	82.23652	18.32756	0.744071	0.186352	101.4944999	7835384.93	0.188121
325760	21.27	2.49	0.46	0.02	4,993	9.749	1.958	4.659	106.2034	24.27426	0.900718	0.093176	131.4716051	2976622.553	0.109439
72010	26.18	3.16	0.51	0.02	4.993	9.749	1.958	4.659	130.7196	30.80589	0.998622	0.093176	162.6173079	1343976.293	0.05358
15914	35.72	4.35	0.68	0.05	4.993	9.749	1.958	4.659	178.3539	42.40684	1.331496	0.23294	222.3251677	417270.6575	0.038138
3518	45.32	5.59	0.82	0.11	4.993	9.749	1.958	4.659	226.2877	54.49523	1.605628	0.512468	282.9010707	169450.1455	0.020761
777	55.00	6.88	0.94	0.21	4.993	9.749	1.958	4.659	274.621	67.07106	1.840597	0.978349	344.5110481	81099.00426	0.009581
172	64.75	8.23	1.04	0.34	4.993	9.749	1.958	4.659	323.3039	80.2318	2.036406	1.583993	407.1560676	43415.97008	0.003962
38	74.73	9.71	1.08	0.51	4.993	9.749	1.958	4.659	373.1351	94.65988	2.114729	2.37599	472.2857006	24924.66775	0.001525
9	84.71	11.21	1.10	0.73	4.993	9.749	1.958	4.659	422.9663	109.2829	2.153891	3.400927	537.8040861	15332.79017	0.000587
2	94.77	12.78	1.10	0.98	4.993	9.749	1.958	4.659	473.197	124.5884	2.153891	4.565628	604.5049319	9901.930733	0.000202
														Σ =	0.827919

Fatigue Life 30.19619

5 years	Gaksial chord	σ _{aksial brace}	Tbending chord	Obending brace	SCFchord	SCFbrace	SCFchord	SCFbrace					Local Stress	Fatigue Life	
	MN/m ²	MN/m ²	MN/m ²	MN/m ²	aksial	aksial	IPB	IPB	MN/m ²	N	n/N				
	2	3	4	5	6	7	8	9	2x6	3 x 7	4 x 8	5 x 9			
130018000	2.33	0.31	0.01	0.01	4.993	9.749	1.958	4.659	11.63395	3.022097	0.019581	0.046588	14.72221199	10713615280	0.012136
30171000	7.03	0.93	0.04	0.11	4.993	9.749	1.958	4.659	35.10156	9.066291	0.078323	0.512468	44.75864549	167446309.2	0.180183
6668800	11.78	1.56	0.06	0.25	4.993	9.749	1.958	4.659	58.81884	15.20797	0.117485	1.164701	75.30899282	23919281.93	0.278804
1474000	16.60	2.19	0.08	0.45	4.993	9.749	1.958	4.659	82.88562	21.34965	0.156647	2.096462	106.4883861	6547038.892	0.22514
325760	21.50	2.84	0.12	0.69	4.993	9.749	1.958	4.659	107.3519	27.68631	0.23497	3.214575	138.4877159	2450627.104	0.132929
72010	26.57	3.49	0.16	1.00	4.993	9.749	1.958	4.659	132.6669	34.02296	0.313293	4.658804	171.6619908	1097675.614	0.065602
15914	36.28	4.76	0.20	1.35	4.993	9.749	1.958	4.659	181.15	46.40381	0.391616	6.289385	234.2348418	343288.0798	0.046358
3518	46.08	6.04	0.24	1.74	4.993	9.749	1.958	4.659	230.0825	58.88215	0.46994	8.106319	297.5409118	140310.6698	0.025073
777	55.99	7.34	0.29	2.20	4.993	9.749	1.958	4.659	279.5642	71.55546	0.567844	10.24937	361.9368951	67432.37158	0.011523
172	66.02	8.64	0.35	2.71	4.993	9.749	1.958	4.659	329.6451	84.22877	0.685329	12.62536	427.1845726	36278.81745	0.004741
38	76.35	9.98	0.43	3.28	4.993	9.749	1.958	4.659	381.2239	97.29203	0.841975	15.28088	494.6388209	20966.09048	0.001812
9	86.71	11.32	0.51	3.91	4.993	9.749	1.958	4.659	432.9526	110.3553	0.998622	18.21592	562.5223907	12960.81803	0.000694
2	97.20	12.68	0.61	4.60	4,993	9.749	1.958	4.659	485.3303	123.6135	1.19443	21.4305	631.5687288	8405.861002	0.000238

Σ = 0.985234 Fatigue Life 25.37469

oada Bracing X, SCF rumusan API

(0)				
ness (t)	=		15.625	mm
s (r _b)	=		75.000	mm
is (R)	=		125.000	mm
		0.600		
		8.000		
R		0.600		
=		90 °		

5 years	$\sigma_{aksial \ chord}$	Taksial brace	Tbending chord	Gbending brace	SCFchord	SCF _{brace}	SCFchord	SCFbrace					Local Stress	Fatigue Life	
-	MN/m ²	MN/m ²	MN/m ²	MN/m ²	aksial	aksial	IPB	IPB	MN/m ²	N	n/N				
	2	3	4	5	6	7	8	9	2x6	3 x 7	4 x 8	5 x 9			
80018000	2.33	0.25	0.06	0.01	5.193	8.486	2.036	4.164	12.09967	2.121449	0.122188	0.041635	14.38494472	11683653258	0.0111282
30171000	7.01	0.77	0.18	0.03	5.193	8.486	2.036	4.164	36.40288	6.534064	0.366564	0.124906	43.42840994	187448005.5	0.16095663
6668800	11.72	1.31	0.29	0.04	5.193	8.486	2.036	4.164	60.86187	11.11639	0.590576	0.166542	72.73538073	27241206.45	0.2448056
1474000	16.47	1.88	0.38	0.04	5.193	8.486	2.036	4.164	85.52858	15.9533	0.773858	0.166542	102.4222803	7573211.913	0.1946334
325760	21.27	2.49	0.46	0.02	5.193	8.486	2.036	4.164	110.4549	21.12964	0.936775	0.083271	132.6046257	2882609.915	0.1130087
72010	26.18	3.16	0.51	0.02	5.193	8.486	2.036	4.164	135.9525	26.81512	1.038598	0.083271	163.8895251	1305370.642	0.05516441
15914	35.72	4.35	0.68	0.05	5.193	8.486	2.036	4.164	185.4937	36.91322	1.384798	0.208177	223.9998755	405722.0685	0.0392239
3518	45.32	5.59	0.82	0.11	5.193	8.486	2.036	4.164	235.3464	47.43561	1.669903	0.45799	284.9099078	165024.7456	0.02131801
777	55.00	6.88	0.94	0.21	5.193	8.486	2.036	4.164	285.6146	58.38229	1.914279	0.874345	346.7854819	79127.51427	0.00981959
172	64.75	8.23	1.04	0.34	5.193	8.486	2.036	4.164	336.2462	69.83811	2.117926	1.415606	409.6178904	42448.09155	0.00405201
38	74.73	9.71	1.08	0.51	5.193	8.486	2.036	4.164	388.0723	82.39709	2.199385	2.123409	474.7921946	24436.10388	0.00155508
9	84.71	11.21	1.10	0.73	5.193	8.486	2.036	4.164	439.8984	95.12579	2.240114	3.03939	540.3036628	15069.17677	0.00059725
2	94.77	12.78	1.10	0.98	5.193	8.486	2.036	4.164	492.1399	108.4485	2.240114	4.080277	606.9087533	9756.045035	0.000205
														Σ =	0.85646778

Fatigue Life 29.1896561

	31-33														
5 years	$\sigma_{aksial \ chord}$	oraksial brace	Obending chord	orbending brace	SCF _{chord}	SCF _{brace}	SCF _{chord}	SCFbrace					Local Stress	Fatigue Life	
	MN/m ²	MN/m ²	MN/m ²	Miv/m ²	aksial	aksial	IPB	IPB	MN/m ²	N	n/N				
	2	3	4	5	6	7	8	9	2x6	3 x 7	4 x 8	5 x 9		-	
0018000	2.33	0.25	0.02	0.01	5.193	8.486	2.036	4.164	12.09967	2.121449	0.040729	0.041635	14.30348602	11934455988	0.01089434
0171000	7.01	0.76	0.06	0.09	5.193	8.486	2.036	4.164	36.40288	6.449206	0.122188	0.374719	43.34898874	188735661.3	0.1598585
6668800	11.73	1.27	0.10	0.21	5.193	8.486	2.036	4.164	60.9138	10.77696	0.203647	0.874345	72.76875308	27194511.82	0.24522595
1474000	16.51	1.78	0.14	0.37	5.193	8.486	2.036	4.164	85.7363	15.10472	0.285105	1.540513	102.6666389	7506017.451	0.19637578
325760	21.35	2.31	0.19	0.58	5.193	8.486	2.036	4.164	110.8704	19.60219	0.386929	2.414858	133.2743622	2828804.83	0.11515817
72010	26.34	2.87	0.24	0.83	5.193	8.486	2.036	4.164	136.7834	24.35424	0.488752	3.455745	165.0821502	1270447.958	0.05668079
15914	35.95	3.91	0.30	1.13	5.193	8.486	2.036	4.164	186.6881	33.17947	0.61094	4.704809	225.1832871	397804.8739	0.04000454
3518	45.63	4.96	0.36	1.47	5.193	8.486	2.036	4.164	236.9562	42.08956	0.733128	6.120416	285.8993332	162898.9046	0.02159622
777	55,39	6.02	0.43	1.85	5.193	8.486	2.036	4.164	287.6398	51.0845	0.875681	7.702564	347.3025834	78687.78957	0.00987447
172	65.25	7.08	0.51	2.27	5.193	8.486	2.036	4.164	338.8427	60.07945	1.038598	9.451254	409.4120393	42527.96849	0.0040444
38	75.40	8.24	0.60	2.76	5.193	8.486	2.036	4.164	391.5516	69.92297	1.221881	11.49139	474.1878558	24552.78265	0.00154769
9	85.53	9.34	0.70	3.28	5.193	8.486	2.036	4.164	444.1566	79.25735	1.425527	13.65644	538.4959356	15259.24443	0.00058981
2	95.75	10.47	0.82	3.88	5.193	8.486	2.036	4.164	497.229	88.8463	1.669903	16.15457	603.8997719	9939.09221	0.00020123
														$\Sigma =$	0.86205187

Fatigue Life 29.0005751

pada bracing Z, SCF rumusan API

kness (t)		=		12.500	mm
us (r _b)		=		62.500	mm
us (R)		=		125.000	mm
t	=	C	.516		
t	=	10	0.000		
	-	0	500		

0.500 90 ° =

25 years	oaksial chord	Taksial brace	orbending chord	Obending brace	SCFchord	SCF _{brace}	SCFchord	SCF _{brace}					Local Stress	Fatigue Life	
n	MN/m ²	MN/m ²	MN/m ²	MN/m ²	aksial	aksial	IPB	IPB	MN/m ²	N	n/N				
1	2	3	4	5	6	7	8	9	2×6	3x7	4 x 8	5 x 9			
130018000	2.33	0.25	0.06	0.01	5.527	8.792	1.626	2.235	12.87708	2.198025	0.09756	0.022355	15.19501769	9519032100	0.013659
30171000	7.01	0.77	0.18	0.03	5.527	8.792	1.626	2.235	38.74177	6.769917	0.292679	0.067064	45.87142795	152752126.9	0.197516
6668800	11.72	1.31	0.29	0.04	5.527	8.792	1.626	2.235	64.77226	11.51765	0.471538	0.089418	76.85086497	22173229.65	0.300759
1474000	16.47	1.88	0.38	0.04	5.527	8.792	1.626	2.235	91.02381	16.52915	0.617878	0.089418	108.2602562	6155184.388	0.239473
325760	21.27	2.49	0.46	0.02	5.527	8.792	1.626	2.235	117.5517	21.89233	0.747957	0.044709	140.2366946	2338259.371	0.139317
72010	26.18	3.16	0.51	0.02	5.527	8.792	1,626	2.235	144.6875	27.78304	0.829257	0.044709	173.344519	1058355.302	0.06804
15914	35.72	4.35	0.68	0.05	5.527	8.792	1.626	2.235	197.4117	38.24564	1.105676	0.111773	236.8747762	329196.2973	0.048342
3518	45.32	5.59	0.82	0.11	5.527	8.792	1.626	2.235	250.4675	49.14784	1.333315	0.245901	301,1945209	134050.1443	0.026244
777	55.00	6.88	0.94	0.21	5.527	8.792	1.626	2.235	303.9654	60.48965	1.528434	0.469446	366,4529005	64376.50358	0.01207
172	64.75	8.23	1.04	0.34	5.527	8.792	1.626	2.235	357.8501	72.35899	1.691034	0.760056	432.6602151	34591.2041	0.004972
38	74.73	9.71	1.08	0.51	5.527	8.792	1.626	2.235	413.006	85.37129	1.756073	1.140084	501.2734893	19946.91796	0.001905
9	84.71	11.21	1.10	0.73	5.527	8.792	1.626	2.235	468.1619	98.55944	1.788593	1.631885	570.1418586	12324.77982	0.00073
2	94.77	12.78	1.10	0.98	5.527	8.792	1.626	2.235	523.76	112.363	1.788593	2.19075	640.1023503	7994.337506	0.00025
													1	$\Sigma =$	1.053277

Fatigue Life 23.73545

25 years	Taksial chord	Taksial brace	Tbending chord	Gbending brace	SCFchord	SCFbrace	SCFchord	SCF _{brace}					Local Stress	Fatigue Life	
n	MN/m ²	MN/m ²	MN/m ²	MN/m ²	aksial	aksial	IPB	IPB	MN/m ²	N	n/N				
1	2	3	4	5	6	7	8	9	2x6	3x7	4 x 8	5 x 9			
130018000	2.33	0.31	0.01	0.01	5.527	8.792	1.626	2.235	12.87708	2.725551	0.01626	0.022355	15.64124401	8542415422	0.01522
30171000	7.03	0.93	0.04	0.11	5.527	8.792	1.626	2.235	38.8523	8.176653	0.06504	0.245901	47.33989443	135770454.2	0.222221
6668800	11.78	1.56	0.06	0.25	5.527	8.792	1.626	2.235	65.10386	13.71568	0.09756	0.558865	79.47595643	19555708.88	0.341016
1474000	16,60	2.19	0.08	0.45	5.527	8.792	1.626	2.235	91.74228	19.2547	0.13008	1.005957	112.133011	5396995.887	0.273115
325760	21.50	2.84	0.12	0.69	5.527	8.792	1.626	2.235	118.8228	24.96956	0.195119	1.542467	145.5299772	2035696.881	0.160024
72010	26.57	3.49	0.16	1.00	5.527	8.792	1.626	2.235	146.8429	30.68443	0.260159	2.235459	180.022955	918817.0024	0.078373
15914	36.28	4.76	0.20	1.35	5.527	8.792	1.626	2.235	200.5066	41.8504	0.325199	3.01787	245.7000772	287104.1842	0.055429
3518	46.08	6.04	0.24	1.74	5.527	8.792	1.626	2.235	254.6677	53.10429	0.390239	3.889699	312.0519366	117421.2712	0.029961
777	55.99	7.34	0.29	2.20	5.527	8.792	1.626	2.235	309.4367	64.53402	0.471538	4.91801	379.3603108	56558.93709	0.013738
172	66.02	8.64	0.35	2.71	5.527	8.792	1.626	2.235	364,869	75.96375	0.569098	6.058094	447.4599152	30502.45876	0.005639
38	76.35	9.98	0.43	3.28	5.527	8.792	1.626	2.235	421.9592	87.74516	0.699177	7.332306	517.7358438	17676.26588	0.00215
9	86.71	11.32	0.51	3.91	5.527	8.792	1.626	2.235	479.2152	99.52658	0.829257	8.740645	588.3116994	10960.32225	0.000821
2	97.20	12.68	0.61	4.60	5.527	8.792	1.626	2.235	537.1897	111.4838	0.991856	10.28311	659.9485079	7131.612298	0.00028
														Σ =	1,197986

1.197986 20.86836 Σ Fatigue Life

pada bracing X, SCF rumusan Kuang

ness (1b)	6		9.375	mm
mess (t)	=		15.625	mm
is (r _b)	=		75.000	mm
us (R)	=		125.000	mm
	ε	0.600		
		8.000		
R		0.600		

0.600

90 °

-

5 years	$\sigma_{aksial \ chord}$	oraksial brace	orbending chord	G bending brace	SCFchord	SCFbrace	SCFchord	SCF _{brace}	(Local Stress	Fatigue Life	
	MN/m ²	MN/m ²	MN/m ²	MN/m ²	aksial	aksial	IPB	IPB	MN/m ²	N	n/N				
	2	3	4	5	6	7	8	9	2x6	3 x 7	4 x 8	5 x 9			
80018000	2.33	- 0.25	0.06	0.01	5.059	7.997	1.607	2.098	11.78698	1.999312	0.096447	0.020984	13.90372558	13269198039	0.00979848
0171000	7.01	0.77	0.18	0.03	5.059	7.997	1.607	2.098	35.46212	6.157881	0.289341	0.062951	41.97229754	212948536.1	0.14168212
6668800	11.72	1.31	0.29	0.04	5.059	7.997	1.607	2.098	59.28903	10.4764	0.46616	0.083934	70.31552015	30916039.42	0.2157068
1474000	16.47	1.88	0.38	0.04	5.059	7.997	1.607	2.098	83.31829	15.03483	0.61083	0.083934	99.04787934	8584091.498	0.17171299
325760	21.27	2.49	0.46	0.02	5.059	7.997	1.607	2.098	107.6005	19.91315	0.739426	0.041967	128.2950264	3261749.378	0.09987279
72010	26.18	3.16	0.51	0.02	5.059	7.997	1.607	2.098	132.4391	25.27131	0.819799	0.041967	158.5722191	1476746.495	0.0487626
15914	35.72	4.35	0.68	0.05	5.059	7.997	1.607	2.098	180.7	34.78803	1.093065	0.104918	216.6860277	459354.2303	0.03464429
3518	45.32	5.59	0.82	0.11	5.059	7.997	1.607	2.098	229.2644	44.70462	1.318108	0.230819	275.5179535	187065.921	0.0188062
777	55.00	6.88	0.94	0.21	5.059	7.997	1.607	2.098	278.2335	55.02107	1.511001	0.440655	335.2062302	89843.80375	0.00864834
172	64.75	8.23	1.04	0.34	5.059	7.997	1.607	2.098	327.5567	65.81736	1.671746	0.713441	395.759259	48279.53318	0.00356259
38	74.73	9.71	1.08	0.51	5.059	7.997	1.607	2.098	378.0434	77.65328	1.736044	1.070161	458.5029393	27844.26593	0.00136473
9	84.71	11.21	1.10	0.73	5.059	7.997	1.607	2.098	428.5302	89.64916	1.768193	1.5318	521.4793334	17206.34223	0.00052306
2	94.77	12.78	1.10	0.98	5.059	7.997	1.607	2.098	479.4216	102.2048	1.768193	2.056389	585.4510399	11161.96204	0.00017918
														$\Sigma =$	0.75526418

33.1010006 Fatigue Life 31-33 5 years SCFchord SCFbrace SCFchord SCFbrace Local Stress Fatigue Life Taksial chord **Gaksial brace** Thending chord Obending brace MN/m² MN/m² MN/m² MN/m² MN/m² MN/m² MN/m² IPB IPB MN/m² MN/m² n/N aksial aksial N 2 3 4 5 6 7 8 9 2x6 3 x 7 4 x 8 5 x 9 30018000 2.33 0.25 0.02 0.01 5.059 7.997 1.607 2.098 11,78698 1.999312 0.032149 0.020984 13.83942765 13501235490 0.00963008 30171000 7.01 0.06 5.059 7.997 2.098 35.46212 6.077909 0.096447 0.188852 215760504.4 0.1398356 0.76 0.09 1.607 41.82533261 6668800 11.73 1.27 0.10 0.21 5.059 7.997 1.607 2.098 59.33962 10.15651 0.160745 0.440655 70.09752344 31277160.19 0.21321629 0.225043 1474000 16.51 1.78 0.14 0.37 5.059 7.997 1.607 2.098 83.52064 14.2351 0.776392 98.75717596 8678976.641 0.16983569 325760 0.19 5.059 7.997 1.607 2.098 108.0052 18.47364 0.305415 1.217046 128.0012932 0.09902028 21.35 2.31 0.58 3289831.242 72010 0.24 2.098 133,2486 22,9521 0.385788 1.741635 158.3280808 1485280,892 26.34 2.87 0.83 5.059 7.997 1.607 0.04848241 15914 35.95 0.30 5.059 7.997 1.607 2.098 181.8635 31,26924 0.482234 2.371142 215,9861543 464945,884 0.03422764 3.91 1.13 3518 45.63 4.96 0.36 1.47 5.059 7.997 1.607 2.098 230.8326 39.66635 0.578681 3.084583 274.1622498 190549.0053 0.01846244 777 7.997 280.2064 92169.952 0.00843008 55.39 6.02 0.43 1.85 5.059 1.607 2.098 48.14344 0.691203 3.881958 332.9230299 392.2896978 172 65.25 7.08 0.51 2.27 5.059 7.997 1.607 2.098 330.0861 56.62052 0.819799 4.763268 49895.97348 0.00344717 2.76 7.997 2.098 38 75.40 8.24 0.60 5.059 1.607 381.4328 65.89733 0.964469 5.791462 454.0860993 28870.77366 0.00131621 9 85.53 9.34 0.70 3.28 5.059 7.997 1.607 2.098 432.6784 74.6943 1.125214 6.882607 515.3805152 17980.28679 0.00050055

1.607

2.098

484.3792

83.73119

1.318108 8.141621

pada bracing Z, SCF rumusan Kuang

95.75

10.47

0.82

3.88

5.059

7.997

2

Σ = 33.4862643 Fatigue Life

11742.31075 0.00017032

0.74657477

577.5701572

KIIESS (Lb)	=		11.250 mm
kness (t)	=		15.625 mm
us (r _b)	=		90.000 mm
ius (R)	-		125.000 mm
/t		0.720	
/t		8.000	
/R		0.720	
=		90	o

7-5.

25 years	$\sigma_{aksial \ chord}$	σaksial brace	Gbending chord	obending brace	SCFchord	SCFbrace	SCF _{chord}	SCFbrace					Local Stress	Fatigue Life	
n	MN/m ²	MN/m ²	MN/m ²	MN/m ²	aksial	aksial	IPB	IPB	MN/m ²	N	n/N				
1	2	3	4	5	6	7	8	9	2×6	3 x 7	4 x 8	5 x 9			
130018000	1.91	0.02	0.12	0.00	5.341	7.761	1.867	2.098	10.20184	0.155224	0.223999	0	10.58105991	36848194071	0.003528
30171000	5.77	0.08	0.36	0.01	5.341	7.761	1.867	2.098	30.81916	0.620894	0.671998	0.020984	32.13303793	578303252.7	0.052172
6668800	9.66	0.15	0.60	0.02	5.341	7.761	1.867	2.098	51.59672	1.164177	1.119997	0.041967	53.92286601	83430418.21	0.079932
1474000	13.59	0.25	0.83	0.03	5.341	7.761	1.867	2.098	72.58794	1.940295	1.549329	0.062951	76.1405139	22956845.49	0.064207
325760	17.58	0.38	1.06	0.05	5.341	7.761	1.867	2.098	93.89963	2.949248	1.978661	0.104918	98.93245728	8621606.938	0.037784
72010	21.71	0.57	1.29	0.07	5.341	7.761	1.867	2.098	115.9591	4.423872	2.407994	0.146885	122.9378501	3825878.036	0.018822
15914	29.62	0.81	1.76	0.11	5.341	7.761	1.867	2.098	158.2086	6.286555	3.285325	0.230819	168.0112905	1189568.479	0.013378
3518	37.60	1.09	2.22	0.16	5.341	7.761	1.867	2.098	200.832	8.459686	4.143989	0.335737	213.7713844	483218.9149	0.00728
777	45.66	1.43	2.68	0.23	5.341	7.761	1.867	2.098	243.8827	11.09849	5.002653	0.482622	260.4664183	230804.258	0.003366
172	53.82	1.82	3.13	0.32	5.341	7.761	1.867	2.098	287.4675	14.12535	5.842651	0.671474	308.1069392	123143.5822	0.001397
38	62.23	2.31	3.58	0.42	5.341	7.761	1.867	2.098	332.3876	17.92832	6.682649	0.881309	357.8798807	70336.03387	0.00054
9	70.64	2.84	4.02	0.54	5.341	7.761	1.867	2.098	377.3077	22.04175	7.50398	1.133112	407.9865697	43086.35688	0.000209
2	79.15	3.43	4.46	0.68	5.341	7.761	1.867	2.098	422.762	26.62085	8.325311	1.426882	459.1350243	27701.17134	7.22E-05
														Σ =	0 282689

Fatigue Life 88.43647

	58-63														
25 years	$\sigma_{aksial \ chord}$	σ _{aksial brace}	Thending chord	obending brace	SCFchord	SCF _{brace}	SCFchord	SCFbrace					Local Stress	Fatigue Life	
1	MN/m ²	MN/m ²	MN/m ²	MN/m ²	aksial	aksial	IPB	IPB	MN/m ²	N	n/N				
1	2	3	4	5	6	7	8	9	2 x 6	3 x 7	4 x 8	5 x 9			
30018000	1.91	0.02	0.10	0.01	5.341	7.761	1.867	2.098	10.20184	0.155224	0.186666	0.020984	10.56471024	37061921377	0.003508
30171000	5.75	0.06	0.29	0.06	5.341	7.761	1.867	2.098	30.71234	0.465671	0.541332	0.125901	31.84524029	598093075	0.050445
6668800	9.64	0.10	0.48	0.14	5.341	7.761	1.867	2.098	51.4899	0.776118	0.895998	0.29377	53.45578481	86189646.91	0.077374
1474000	13.58	0.15	0.66	0.26	5.341	7.761	1.867	2.098	72.53453	1.164177	1.231997	0.545573	75.47627254	23721615.19	0.062137
325760	17.59	0.19	0.84	0.41	5.341	7.761	1.867	2.098	93.95304	1.474624	1.567996	0.860326	97.85598846	8981697.219	0.036269
72010	21.77	0.23	1.00	0.60	5.341	7.761	1.867	2.098	116.2796	1.785071	1.866662	1.259014	121.1903223	4036316.563	0.017841
15914	29.71	0.31	1.38	0.81	5.341	7.761	1.867	2.098	158.6893	2.405966	2.575993	1.699668	165.3709333	1262170.409	0.012608
3518	37.74	0.39	1.75	1.05	5.341	7.761	1.867	2.098	201.5798	3.02686	3.266658	2.203274	210.0765431	515778.499	0.006821
777	45.85	0.47	2.12	1.34	5.341	7.761	1.867	2.098	244.8975	3.647754	3.957323	2.811797	255.3143728	248710.3335	0.003124
172	54.06	0.56	2.49	1.66	5.341	7.761	1.867	2.098	288.7494	4.346261	4.647988	3.483271	301.2268926	133996.2742	0.001284
38	62.58	0.62	2.84	2.03	5.341	7.761	1.867	2.098	334.257	4.811931	5.301319	4.259662	348.6299571	77573.13263	0.00049
9	71.07	0.70	3.19	2.43	5.341	7.761	1.867	2.098	379.6045	5.432826	5.954651	5.099005	396.0909576	48128.49559	0.000187
2	79.66	0.79	3.52	2.89	5.341	7.761	1.867	2.098	425.486	6.131332	6.570649	6.064248	444.2522655	31334.33062	6.38E-05
		-												Σ =	0.272152

<u>Σ</u> = 0.272152 Fatigue Life 91.86047

pada bracing K, SCF rumusan Kuang