13712/H/01

TUGAS AKHIR (KP 1701)

ANALISA BRITTLE CRACK INITIATION PADA BAJA KEKUATAN TINGGI AKIBAT PENGARUH TEMPERATUR

OLEH :

MOHAN BAWAFI

NRP. 4195 100 033

JURUSAN TEKNIK PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER S U R A B A Y A

> 2001 Tel. T. g/2/01 Tel. T. g/2/01 H No. Agenda 129. 21-2979

LEMBAR PENGESAHAN TUGAS AKHIR (KP 1701)

ANALISA BRITTLE CRACK INITIATION PADA BAJA KEKUATAN TINGGI AKIBAT PENGARUH TEMPERATUR

> Surabaya, Januari 2001 Mengetahui dan Menyetujui Dosen Pembimbing

Ir. Soeweyfy, M.Eng NIP. 131 368 597

Demi masa,

Sesungguhnya manusia itu benar-benar berada dalam kerugian, Kecuali orang-orang yang beriman dan mengerjakan amal sholeh dan nasehat menasehati supaya mentaati kebenaran dan nasehat menasehati supaya menetapi kesabaran. (QS Al'Ashr)

> Kupersembahkan Untuk bapakku Kanafi dan ibuku Sumijah

dan Sesearang yang masih sangat mesterius bagiku

INSTITUT TEKNOLOGI SEPULUH NOPEMBER (ITS)

ABSTRAK

FAKULTAS TEKNOLOGI KELAUTAN JURUSAN TEKNIK PERKAPALAN

Sarjana Teknik (S1)

ANALISA BRITTLE CRACK INITIATION PADA BAJA KEKUATAN TINGGI AKIBAT PENGARUHTEMPERATUR

Oleh : Mohan Bawafi Nrp. 4195 100 033 Dosen Pembimbing : Ir. Soeweyfy, M.Eng

Brittle fracture adalah kepecahan yang terjadi secara tiba-tiba dengan sedikit atau tanpa deformasi. Seringkali harga dari tegangan nominal yang bekerja pada material pada saat brittle fracture terjadi dibawah yield point atau yield strength dari material tersebut. Proses timbulnya brittle fracture dapat dibagi menjadi dua yaitu crack initation dan crack propagation.

Kepekaan terhadap brittle fracture adalah masalah besar pada baja. Penjalaran retak brittle fracture mempunyai kecepatan yang tinggi bahkan pada bangunan baja diperkirakan mepunyai kecepatan beberapa ribu kali perdetik. Brittle fracture kemungkinan terjadi pada temperatur rendah, keadaan ini bukan karena bertambahnya beban akibat penurunan temperatur tetapi karena berubahnya sifat material pada temperatur rendah

Dalam tugas akhir ini untuk mengetahui proses terjadinya brittle crack diselidiki dengan memperhatikan perambatan pada brittle crack dengan metode crack tip opening displacement (CTOD) pada suhu ruangan dan suhu -50°C dengan menggunakan material high tensile (A 516 grade 70) dan mild steel (SS 41 grade A). sehingga nantinya akan didapatkan fracture toughness (K_{lc}), bukaan ujung retak (CTOD/δ), energi minimum perunit perpanpanjangan retak (J_{lc}) dari material tersebut yang nantinya dapat digunakan sebagai acuan dalam mendesain sebuah konstruksi.

i

SEPULUH NOPEMBER INSTITUTE OF TECHNOLOGY(ITS)

ABSTRACT

FACULTY OF MARINE TECHNOLOGY DEPARTMENT OF NAVAL ARCHITECTURE AND SHIPBUILDING

Degree in Engineering (S1)

BRITTLE CRACK INITIATION ANALYSIS AT HIGH STRENGHT STEEL CAUSE EFFECT OF TEMPERATURE

By	: Mohan Bawafi Nrp. 4195 100 033
Supervisor	: Ir. Soeweyfy, M.Eng

Brittle fracture is a fracture that happens suddenly with little or without deformation. Frequently the value of the nominal strain working on a material at brittle fracture is under the yield point or yield strength of the respective material. The process of brittle fracture is divided into two circumstances: crack initiation and crack propagation.

The sensitivity to brittle fracture is a big problem for steel. The crack propagation of brittle fracture has a high speed; even at a steel construction it is assumed to have a speed of thousands times per second. Brittle fracture may occur at a low temperature. This is not because of the increase of the load due to the decrease in the temperature, but it is because the characteristic of material changes in low temperature.

In this final project, to study the process of brittle crack is observed by examining the spread on the brittle crack using crack tip opening displacement method (CTOD) at room temperature and -50° C applied to high tensile material (A 516 grade 70) and mild steel (SS 41 grade A). From this it can be yielded the values of fracture toughness (Kic), crack tip opening (CTOD/ δ), and the minimum energy per unit crack extension (Jic) of the respective material which later can used as a reference in designing a construction.

KATA PENGANTAR

Segala puji dan syukur bagi Allah SWT yang menciptakan kita dalam keadaan mencintai agama-Nya dan berpegang pada syariat-Nya. Shalawat dan salam semoga tercurah atas junjungan kita Nabi Muhammad SAW, yang berjihad untuk menyiarkan ajaran-ajaran Islam dalam akhlak mulia, dan semoga terlimpah pula atas keluarga dan para sahabatnya yang mengikuti petunjuknya, sehingga mereka beruntung mendapat ridha Allah SWT dan pahala-Nya.

Buku ini adalah tugas akhir penulis yang berjudul "Analisa Brittle Crack Initiation pada Baja Kekuatan Tinggi Akibat Pengaruh Temperatur", yang mana berisi tentang bagaimana proses terjadinya brittle fracture yang disertai dengan penentuan harga fracture toughness (K_{lc}), Crack Tip Opening Displacement (CTOD) dan energi minimum perunit perpanjangan retak (J_{lc}). Semoga Allah memberikan manfaat yang sebesar-besarnya bagi siapa saja yang membaca dan mempelajarinya.

Penulis menyadari bahwa masih banyak terdapat kekurangan dalam penulisan tugas akhir ini. Oleh karenanya masukan dan saran akan selalu penulis terima dengan lapang dada.

Semoga Allah SWT memberi taufik kepada kita untuk mensyukuri nikmat-Nya dan membela agama-Nya. Dan semoga Allah melimpahkan shalawat dan salam atas junjungan kita Nabi Muhammad SAW, keluarga dan para sahabat-sahabatnya.

Surabaya, 17 Januari 2001

penulis

UCAPAN TERIMA KASIH

Semoga Allah SWT memberikan kasih sayang, kemudahan taufik dan hidayah-Nya kepada mereka yang telah memberi nasehat-nasehat kepada penulis dalam menyelesaikan tugas akhir ini. Tugas akhir ini tidak akan pernah terselesaikan tanpa bimbingan, bantuan dan dukungan yang diberikan kepada penulis dari :

- Ir. Soeweyfi, M.Eng, selaku dosen pembimbing yang menuntun kami dalam meyelesaikan tugas akhir ini.
- 2. Ir. Djauhar Manfaat, MSc., PhD., selaku Ketua Jurusan Teknik Perkapalan FTK-ITS.
- Ir. Andjar Soeharto (almarhum), selaku dosen wali pertama penulis sewaktu menempuh studi.
- Ir. I.K.A. Arya Priya Utama MSc., PhD., selaku dosen wali pengganti penulis sewaktu menempuh studi.
- Wing Wiryanto, ST, M.Eng, selaku kapala laboratorium Konstruksi dan Kekuatan yang telah memberi ijin penulis untuk menggunakan laboratorium.
- Bapak Mujito, Bapak sunaryo dan Mas Didik yang telah membantu penulis dalam melaksanakan pengujian di laboratorium Konstruksi dan Kekuatan.
- 7. Bapak Hardiman, yang telah membantu penulis dalam pembuatan spesimen.
- 8. Keluarga Norman di Perak dan Ir. Chairudin Norman sekeluarga.
- 9. Segenap jiwa ragaku di Bukit Mas, IIs Norman, Sriyadi, Gupong, Nasir, terima kasih atas semua bantuannya.
- Seluruh komunitas P-35 "Segawon", Nur Hari (konco KP), Andri Karjo (konco seperjuangan), Yuli (konco Lab), Angga, Darsono, Dwi Parcok, Dwi Monot, Heri Uju, Fajar dan seluruhnya yang tidak bisa kami sebutkan satu-persatu. "Vivat Segawon"
- 11. Yoga (Mesin '95), Yuli (Tekkim '95), Nanang Si-Pek (Sipil '94), Icha (Kapal '95) terima kasih atas semua dukungannya.
- 12. Yoes (TI '95), Adi (Tekkim '95), temanku waktu pertama kali menginjakkan kaki di surabaya.
- 13. PT. PAL Indonesia yang telah memberikan bantuan material.
- 14. Yang paling utama kedua orang tuaku (Kanafi/Sumijah Kanafi) dan semua guru-guruku, semoga Allah SWT memberikan maghfiroh dan rohmat-Nya. Amiin !

DAFTAR ISI

		DAFTAR ISI	
Abstra	k		i
Abstra	ct		ii
Kata pe	engar	ntar	III
Ucapar	n Teri	ma Kasih	iv
Daftar i	si		v
Daftar	Gamb	bar	viii
Daftar ⁻	Tabel		×
Daftar (Grafik	c I I I I I I I I I I I I I I I I I I I	xi
Daftar I	Votas	i	
			xii
BABI	Per	ndahuluan	
	1.1.	Latar Belakang	I – 1
	1.2.	Tujuan	1-4
	1.3.	Batasan Masalah	I - 4
	1.4.	Metodologi Penelitian	I – 5
BAB II	Fra	cture Mechanics	
	2.1	Filosofi Design Struktur	II – 1
	2.2	Prinsip Dasar Fracture Mechanics (Mekanika	
		Kepecahan)	II – 3
		2.2.1. Pendahuluan	II – 3
		2.2.2. Ketegaran Material	II – 3
		2.2.3. Ukuran Retak (a)	II - 4
		2.2.4. Level Tegangan (σ)	II – 4
		2.2.5. Final Fracture	II – 5
	2.3	Ductile Fracture	II – 5
	2.4	Brittle Fracture	II – 8
		2.4.1. Pendahuluan	II – 8
		2.4.2. Teori Griffith Tentang Brittle Fracture	II — 10
		2.4.3. Low - Strenght Tensile Fracture	- 12

	2.5	Linea	r Elastic Fracture Mechanics (LEFM)	II – 18
		2.5.1.	Pendahuluan	II – 18
		2.5.2.	Tegangan Ujung Retak (Stress Intensity	
			Factor)	II – 18
		2.5.3.	Daerah Plastis Ujung Retak (Zona Plastik	
			Irwin)	II – 22
BAB III	Pla	ne-Stra	in Fracture Toughness	
	3.1.	Penda	ahuluan	III — 1
	3.2.	Latar	Belakang Metode Pengetesan Kic	III – 3
	3.3.	Ukura	n Spesimen	III – 5
	3.4.	Prose	dur Test K _{lc}	III – 9
	3.5.	Penga	ruh dari Temperatur, Loading Rate	
		dan Ke	etebalan Pelat pada Fracture Toughness	III – 15
		3.5.1.	Pendahuluan	III – 15
		3.5.2.	Perilaku Plane-Strain pada Transisi	
			Temperatur	III – 16
		3.5.3.	Pengaruh Temperatur dan Beban	
			pada K _{lc} dan K _{ld}	III – 20
		3.5.4.	Pengaruh Ketebalan pada Fracture	
			Toughness	III – 23
BAB IV	Ela	stic-Pla	stic Fracture Mechanics	
	4.1.	Penda	huluan	IV – 1
	4.2.	Fractu	re Dibawah General Yield	IV – 2
	4.3.	Crack	Opening Displacement	IV – 4
		4.3.1.	Crack Tip Opening Displacement (CTOD)	IV – 5
		4.3.2.	Crack Tip Opening Displacement	
			Pendekatan Dugdale	IV – 7
		4.3.3.	Analisis CTOD dari Hasil Percobaan	IV – 9
	4.4.	J – Inte	egral	IV – 11
	4.5.	Analisis	s Data J – Integral Untuk Single Spesimen	IV – 17

BAB V	B V Pelaksanaan Dan Hasil Pengujian		
	5.1.	Pendahuluan	V - 1
	5.2.	Spesimen Uji Tarik	V – 2
	5.3.	Spesimen Three Point Bending	V – 3
	5.4.	Kalibrasi	V – 4
BAB VI	Ana	lisa Data dan Pembahasan	
	6.1.	Langkah Perhitungan pada Penentuan	
		Fracture Toughness (K _{lc})	VI – 1
	6.2.	Langkah Perhitungan pada Penentuan Crack	
		Tip Opening Displacement (CTOD/8)	VI – 9
	6.3.	Penentuan Harga JI _c dengan Menggunakan	
		J – Integral	VI – 15
	6.4.	Tabulasi Harga Perhitungan	VI - 51
BAB VII	Kesi	impulan dan Saran	
	7.1.	Kesimpulan	VII – 1
	7.2.	Saran	VII – 2

Daftar Pustaka

Lampiran A	Material Uji tarik
Lampiran B	Material uji CTOD
Lampiran C	Grafik Load-Displacement
Lampiran D	Grafik J-Crack Extension
Lampiran E	Spesifikasi Material

DAFTAR GAMBAR

Gambar 2.1	Skema pada design struktur	II – 2
Gambar 2.2	Karateristik profil macroscopic fracture	II – 6
Gambar 2.3	Proses terjadinya fracture	II – 7
Gambar 2.4	Karateristik proses brittle fracture	II – 9
Gambar 2.5	Model spesimen Griffith	II – 11
Gambar 2.6	Variasi dari derajat kebebasan deformasi plastis	II – 13
Gambar 2.7	Macam mode brittle fracture	II – 15
Gambar 2.8	Macam bentuk pembebanan	II – 20
Gambar 2.9	Distribusi tegangan elastik disekitar ujung retak	II – 21
Gambar 2.10	Perkiraan pertama ukuran zona plastik	II – 23
Gambar 2.11	Perkiraan kedua ukuran zona plastik	II – 24
Gambar 2.12	Koreksi zona plastik Irwin	II – 25
Gambar 3.1	Macam geometri retak	III – 2
Gambar 3.2	Dimensi dan bentuk notch-bend specimen	III – 4
Gambar 3.3	Dimensi dan bentuk compact-tension specimen	III – 4
Gambar 3.4	Proses fracture didaerah ujung retak	III – 6
Gambar 3.5	Skematik dari ukuran zona plastik	III – 8
Gambar 3.6	Macam bentuk kurva load-displacement	III – 12
Gambar 3.7	Pembuatan offset 5%	III – 13
Gambar 3.8	Hubungan antara notch-toughness dan level dari	
	struktur untuk bermacam-macam pembebanan	III – 16
Gambar 3.9	Skema hubungan antara 15-ft-lb transition	
	temperatur dan temperatur operasi	III – 17
Gambar 3.10	Perilaku transisi plane-strain fracture toughness	
	sebagai fungsi temperatur	III – 18
Gambar 3.11	Pengaruh dari transisi plane-strain pada zona	
	plastik dan ekstrapolasi K _{lc}	III – 19
Gambar 3.12	Pengaruh dari temperatur dan loading rate pada K_{Ic}	III – 21
Gambar 3.13	Fractrographic dari K _{lc} spesimen pada beberapa	
	temperatur	III – 22

Gambar 3.14	Ketegaran material merupakan fungsi ketebalan	III – 23
Gambar 4.1	Fracture dibawah general yield	IV – 3
Gambar 4.2	Hubungan antara perilaku test K _{Ic} dan test COD	IV – 5
Gambar 4.3	Crack opening displacement	IV – 6
Gambar 4.4	Model Dugdale strip yield	IV – 7
Gambar 4.5	Tipe dari beban-clip gage displasemen	IV – 10
Gambar 4.6	Sistem koordinat crack-tip dan panjang lintasan	
	integral	IV – 12
Gambar 4.7	Interpretasi dari J – integral	IV – 13
Gambar 4.8	Skema dari kurva load-displacement untuk	
	berbagai macam retak	IV – 14
Gambar 4.9	Energi yang diserap pada kurva defleksi-crack	
	length material NiCrMoV	IV – 15
Gambar 4.10	Skematik diagram J - Δ yang didapat dari kurva	
	load-displacement	IV – 16
Gambar 4.11	Prosedur untuk menentukan J	IV – 18
Gambar 4.12	Definisi untuk kualifikasi data	IV – 20
Gambar 5.1	Dimensi spesimen uji tarik	V – 3
Gambar 5.2	Bentuk dan dimensi three-point bend specimens	V-3
Gambar 5.3	Bentuk retak pada three-point bend specimens	V – 4
Gambar 5.4	Pelaksanaan kalibrasi dengan jangka sorong	V – 5
Gambar A.1	Dimensi Material Uji Tarik ASTM E 8M – 94a	L-A
Gambar B.1	Dimensi Spesimen Three-Pont Bending	L – B
Gambar B.2	Gambar Retak Awal dan Konfigurasi Retak Fatigue	L-B

DAFTAR TABEL

Tabel 5.1	Kalibrasi I	V - 6
Tabel 5.2	Kalibrasi II	V – 7
Tabel 5.3	Hasil Pengujian Tarik	V – 10
Tabel 5.4	Data Pengujian Spesimen S 1.1	V - 12
Tabel 5.5	Data Pengujian Spesimen S 1.2	V – 13
Tabel 5.6	Data Pengujian Spesimen S 1.3	V – 14
Tabel 5.7	Data Pengujian Spesimen S 1.4	V – 15
Tabel 5.8	Data Pengujian Spesimen A 1.1	V – 16
Tabel 5.9	Data Pengujian Spesimen A 1.2	V – 17
Tabel 5.10	Data Pengujian Spesimen A 1.3	V – 18
Tabel 5.11	Data Pengujian Spesimen A 1.4	V – 19
Tabel 5.12	Data Pengujian Spesimen S 2.1	V – 20
Tabel 5.13	Data Pengujian Spesimen S 2.2	V – 21
Tabel 5.14	Data Pengujian Spesimen S 2.3	V – 22
Tabel 5.15	Data Pengujian Spesimen S 2.4	V – 23
Tabel 5.16	Data Pengujian Spesimen A 2.1	V – 24
Tabel 5.17	Data Pengujian Spesimen A 2.2	V – 25
Tabel 5.18	Data Pengujian Spesimen A 2.3	V – 26
Tabel 5.19	Data Pengujian Spesimen A 2.4	V – 27

DAFTAR GRAFIK

Grafik 5.1	Kalibrasi I	V – 8
Grafik 5.2	Kalibrasi II	V – 8
Grafik 5.3	Grafik Load-Displacement Spesimen S 1.1	V – 28
Grafik 5.4	Grafik Load-Displacement Spesimen S 1.2	V – 28
Grafik 5.5	Grafik Load-Displacement Spesimen S 1.3	V – 29
Grafik 5.6	Grafik Load-Displacement Spesimen S 1.4	V - 29
Grafik 5.7	Grafik Load-Displacement Spesimen A 1.1	V - 30
Grafik 5.8	Grafik Load-Displacement Spesimen A 1.2	V – 30
Grafik 5.9	Grafik Load-Displacement Spesimen A 1.3	V – 31
Grafik 5.10	Grafik Load-Displacement Spesimen A 1.4	V – 31
Grafik 5.11	Grafik Load-Displacement Spesimen S 2.1	V – 32
Grafik 5.12	Grafik Load-Displacement Spesimen S 2.2	V – 32
Grafik 5.13	Grafik Load-Displacement Spesimen S 2.3	V – 33
Grafik 5.14	Grafik Load-Displacement Spesimen S 2.4	V – 33
Grafik 5.15	Grafik Load-Displacement Spesimen A 2.1	V – 34
Grafik 5.16	Grafik Load-Displacement Spesimen A 2.2	V – 34
Grafik 5.17	Grafik Load-Displacement Spesimen A 2.3	V – 35
Grafik 5.18	Grafik Load-Displacement Spesimen A 2.4	V – 35
Grafik A.1	Grafik Hasil Uji Tarik SS 41 Temperatur Ruang	L-A
Grafik A.2	Grafik Hasil Uji Tarik A 516 Temperatur Ruang	L-A
Grafik A.3	Grafik Hasil Uji Tarik SS 41 Temperatur –50°C	L-A
Grafik A.4	Grafik Hasil Uji Tarik A 516 Temperatur –50°C	L-A

xi

A	Luas penampang
а	Panjang retak awal
a _{eff}	Panjang retak efektif
ao	Panjang retak spesimen uji
В	Tebal spesimen
b, b _o	Uncrack ligamnet
E	Modulus elastisitas pada tarikan (tension) dan desakan (compresion)
G	Modulus elastisitas pada geser (shear)
Gic	Crack extension force
Jic	Energi minimum perunit perpanpanjangan retak
J _{el}	Komponen elastik dari J
Ja	Harga J perhitungan
J _{max}	Energi maximum perunit perpanpanjangan retak
J_{pl}	Komponen plastik dari J
К	Faktor intensitas tegangan (SIF)
Kc	Fracture toughness plane-stress
Kic	Fracture toughness plane-strain
Ka	Fracture toughness perhitungan
K_{I},K_{II},K_{II}	Faktor intensitas tegangan mode I, mode II, mode II
L	Panjang spesimen
N	Lebar retak
Р	Beban atau gaya luar
P _{max}	Beban maximum
Pa	Beban pada offset 5%
R	Strenght ratio
r	Koordinat kutub
rp*	Ukuran daerah plastik
ry	Jari-jari zona plastik
S	Jarak tumpuan beban
u, v, w	Komponen perpindahan dalam arah x, y, z
Vp	Komponen plastik clip gage displacement
W	Lebar spesimen
z	Jarak permukaan retak terhadap ujung alat pengukur
β _{ic}	Irwin plane-strain
δ	Crack tip opening displacement (CTOD)
γ	Regangan geser
Δ	displacemet

DAFTAR NOTASI

$\Delta a_{p \min}$	Crack extension minimum
$\Delta a_{p max}$	Crack extension maximum
θ	Koordinat kutub
υ	Rasio poisson
σ	Tegangan normal, tegangan sesungguhnya
σ _F	Tegangan fracture
oflow	Setengah dari jumlah tegangan yield dan tegangan ultimate
onet	Net section stress
σ _{ult}	Tegangan ultimate (maksimum)
σ _{y.} σ _{ys}	Tegangan yield (luluh)
σ _x , σ _y , σ _z	Komponen tegak lurus dari tegangan yang sejajar dengan sumbu-sumbu
	x, y, z
τ _{xy} , τ _{xz} , τ _{yz}	Komponen tegangan geser dalam koordinat persegi panjang

•

1 (a BAB I PENDAHULUAN 360 CCC . -E The

BAB I

PENDAHULUAN

1.1 Latar Belakang

Sejalan dengan perkembangan teknologi di bidang konstruksi, maka seorang *engineer* atau perencana dalam mendesain suatu konstruksi harus mempertimbangkan kekuatan kontruksi rancangannya. Pertimbangan tersebut salah satu di antaranya adalah pemilihan material yang akan digunakan, karena pemilihan ini sangat erat kaitannya dengan kondisi lingkungan kerja dan pembebanan yang terjadi pada konstruksi. Hal lain yang diperhatikan apakah material mempunyai cacat atau tidak, karena dengan adanya cacat suatu konstruksi akan mengalami kegagalan meskipun beban yang diterimanya dibawah *ultimate strength*.

Kemampuan beroperasi suatu konstruksi adalah kriteria utama dalam memilih material yang didasarkan pada *material properties*. *Material properties* secara umum terdiri dari *phisycal properties* (sifat fisik), *mechanical properties* (sifat mekanis) dan *chemical properties* (sifat kimia). *Mechanical properties* dibedakan menjadi tiga yaitu, *static properties* disebabkan beban statis, *dynamic properties* disebabkan beban berulang dan impact yang disebabkan beban seketika. *Static properties* meliputi *tensile strength* (kekuatan tarik), *yield strength* (kekuatan luluh), *ultimate strength*, *elongation* (kemuluran) dan *reduction area* (pengurangan luas). *Dinamic properties* adalah *fatigue* (kelelahan) pada material. Dengan adanya cacat yang terjadi pada material maka konsep yang hanya didasarkan pada mechanical properties saja tidak cocok lagi digunakan untuk perancangan suatu struktur, hal ini disebabkan karena konsep tersebut diatas hanya cocok untuk perencanaan struktur yang tidak mempunyai cacat. Sehingga untuk menganalisa struktur yang mempunyai cacat dikembangkan konsep mekanika kepecahan yang mampu diterapkan pada semua perilaku material.

Brittle fracture adalah suatu kepecahan yang terjadi secara tibatiba pada bagian yang mengalami retak dengan sedikit atau tanpa deformasi, biasanya tegangan nominal yang bekerja pada material dibawah *yield point* dan *yield strength* material tersebut. Brittle fracture kemungkinan terjadi pada temperatur rendah, keadaan ini bukan karena bertambahnya beban akibat penurunan temperatur pada suhu rendah. Terdapat tiga buah faktor yang medukung terjadinya patah jenis pembelahan getas. Ketiga faktor tersebut adalah (1) keadaan tegangan tiga sumbu, (2) suhu rendah dan (3) laju tegangan yang tinggi atau laju pembebanan yang cepat. Ketiga faktor diatas tidak perlu terjadi secara bersamaan pada waktu terjadi brittle fracture. Sebagian besar *brittle fracture* disebabkan tegangan tiga sumbu, seperti yang terdapat pada takik dan oleh suhu yang rendah.

Untuk suatu rekayasa struktur penggunaan material *high* strenght (kekuatan tinggi) tidak dapat dihindari terutama untuk konstruksi yang memerlukan kekuatan tinggi seperti bejana pratekan, offshore dan lain-lain. Keuntungan penggunaan material *high tensile* disamping mempunyai kekuatan tinggi adalah mempunyai berat yang lebih ringan

1 - 2

dibanding dengan *low strength material*. Tetapi bila ditinjau dari proses pembentukannya yaitu terbentuk dari butir-butir *martensit* karbon tinggi yang sangat *brittle*, maka material *high strength* akan bersifat *brittle*. Sehingga konstruksi yang didasari dengan *high strength material* mempunyai *low fractute toughness* (ketahanan terhadap retak yang rendah) yaitu bila ada retak kemampuan material yang tersisa (bagian yang tidak mengalami keretakan) kecil kemungkinan dalam menerima beban yang berulang.

Pada awalnya untuk menentukan kepekaan terhadap *brittle fracture* seringkali digunakan pengujian *impact*, yang menggunakan beban jauh lebih besar dari yield material. Namun ada fenomena yang menunjukkan bahwa dengan tegangan yang kecil (bahkan jauh dibawah σ yield) sebuah struktur dapat mengalami *brittle fracture*. Misalnya patahnya poros propeller dan pecahnya kapal sewaktu dipelabuhan yang dapat disebabkan oleh keadaan tegangan tiga sumbu, suhu rendah dan laju tegangan yang tinggi. Hal ini yang mendorong berkembangnya ilmu *fracture mechanic* yang menjelaskan bahwa *brittle fracture* juga dapat terjadi bila terdapat pembebanan statis yang kontinyu.

Seperti disebutkan diatas bahwa *brittle fracture* mudah terjadi pada temperatur rendah, dimana pada temperatur rendah baja karbon menjadi lebih getas. Dengan dasar tersebut maka dalam tugas akhir ini akan dianalisa terjadinya *brittle fracture* akibat perubahan temperatur (terutama temperatur rendah) pada *high strength material* dan *low strength material* sebagai pembanding dengan menggunakan metode *Crack Tip* *Opening Displacement* (CTOD) dengan menggunakan three point bending spesimen atau SE(B) sehingga nantinya akan didapatkan *fracture toughness* (K_{Ic}), bukaan ujung retak (CTOD/δ), energi minimum perunit perpanpanjangan retak (J_{Ic}) dari material tersebut yang nantinya dapat digunakan sebagai acuan dalam mendesain sebuah konstruksi

1.2 Tujuan

Tujuan penulisan tugas akhir ini adalah untuk memberikan tinjauan akademis mengenai proses terjadinya *brittle fracture* akibat perubahan temperatur (terutama pada temperatur rendah). Tinjauan dilakukan dengan menganalisa data dari pengujian spesimen dengan metode *Crack Tip Opening Displacement* (CTOD) berdasarkan konsep mekanika kepecahan.

Hasil dari analisa tersebut yang berupa *fracture toughness* (K_{ic}), bukaan ujung retak (CTOD/δ), energi minimum perunit perpanjangan retak (J_{ic}) diharapkan dapat memberikan masukan lebih lanjut mengenai proses terjadinya *brittle fracture* sehingga nantinya dapat digunakan sebagai pertimbangan dalam desain struktur agar kegagalan akibat *brittle fracture* sedapat mungkin bisa dihindari.

1.3 Batasan Masalah

Dalam analisa mengenai brittle fracture akibat pengaruh temperatur dengan uji crack tip opening displacement (CTOD), terdapat beberapa batasan yang diberlakukan, antara lain

- Material dasar yang digunakan adalah baja kekuatan tarik rendah (mild steel) jenis SS 41 grade A dan baja kekuatan tarik tinggi (high tensile steel) jenis A 516 grade 70.
- Tegangan sisa akibat proses mekanis pada waktu pembentukan spesimen uji diabaikan.
- Spesimen secara umum berada dalam kondisi plane-strain, sehingga pengaruh daerah plastis yang terjadi pada ujung retak lebih kecil dari total material spesimen.
- Kondisi keretakan adalah kondisi dominan elastis sehingga dapat digunakan konsep *Linear Elastic Fracture Mechanics* (LEFM) dan bukaan retak linear dengan laju pembebanan.
- Dimensi struktur yang ditinjau relatif lebih besar dibandingkan retak yang ada.

1.4 Metodologi Penelitian

Untuk mendapatkan hasil analisa yang mendasari pengambilan kesimpulan mengenai proses terjadinya *brittle fracture* dengan menggunakan uji *Crack Tip Opening Displacement*, maka disusun metodologi sebagai berikut :

- Studi literatur mengenai konsep mekanika kepecahan dan brittle fracture.
- Studi mengenai pengujian material terdiri dari uji tarik (statis) untuk penentuan mechanical properties dan uji Crack Tip Opening Displament untuk mengetahui K_{Ic}, CTOD, J_{Ic} material.

- Penentuan material yaitu *mild steel* jenis SS 41 dan *high tensile* jenis A 516 grade 70 dan penentuan standart uji yang digunakan dalam tes spesimen adalah standart ASTM (American Society Testing Material).
- 4. Pelaksanaan pengujian.
 - Persiapan spesimen sesuai standart ASTM E 8M-94 untuk tension test dengan spesimen plat type dan ASTM E 399-90, E 1290-93, E 813-89 untuk crack tip opening displacement dengan three point bending- spesimen SE (B).
 - Pengujian untuk tension test
 Untuk mengetahui tensile strenght, yield strengh, ultimate strength, reduction area dan elongatioan pada temperatur ruang (30° C) dan
 -50° C untuk penentuan kondisi pada pengujian CTOD
 - Pengujian CTOD

Diguanakan spesimen *three point bending* pada temperatur ruang (30° C) dan -50°C

5. Anlisa data

Penyusunan data pengujian menjadi diagram skematik antara beban dan displasemen yang nantinya dapat digunakan untuk menentukan harga dari *fracture toughness* (K_{Ic}), Bukaan ujung retak (CTOD/δ), energi minimum perunit perpanjangan retak (J_{Ic}) dengan menggunakan J-integral.

6. Kesimpulan dan Saran.

BAB II

FRACTURE MECHANICS

2.1 Filosofi Design Struktur

Sebelum struktur dibuat atau dibangun maka kita perlu mendesain struktur sesuai dengan kondisi lingkungan kerja. Semua desain struktur yang mengalami kepecahan diprediksi jika nilai tegangan operasi (σ) kurang dari tegangan fracture propagation (σ_F). Padahal implementasi dari variasi prinsip ini akan tergantung dari yield strenght material (σy). Untuk material high-strenght ($\sigma_{Y} \ge E/150$), σ_{F} dihitung pada bagian dasar struktur yang mempunyai cacat dengan ukuran tertentu. Pendekatan dari ukuran cacat ini harus sesuai dengan kaidah teknik. Sebagai contoh, mungkin bahwa ukuran retak terbesar tidak dapat diketahui pada nondestrutive test yang telah dilakukan pada komponen struktur. Atau ukuran retak dapat diperkirakan dengan pendekatan lain yaitu dengan maximum-sized fatigue crack yang dapat berkembang selama perencanaan struktur. Pada kasus lain atau beberapa kasus tertentu pemilihan tegangan operasi harus lebih kecil dari oF yang dihitung sesuai asumsi diatas. Jika pada perhitungan tegangan operasi tidak ditemukan spesifikasi desain yang sesuai maka harus didesain ulang atau mengganti material yang mempunyai nilai resistante fracture yang lebih tinggi.

Untuk *low-strenght material* ($\sigma_Y < E/300$), prosedur dalam mendesain berbeda. Tegangan *fracture* masih dapat dihitung pada struktur

yang mempunyai cacat dengan ukuran tertentu, tetapi jika disertai tegangan yang tinggi atau perambatan retak, ketelitian dari perhitungan nilai σ_F tidak akan lebih besar untuk *high-strenght material*.

Gambar 2.1 Skema pada design struktur

Untuk *low-strenght material* harga dari $\sigma_{\rm Y}$ kurang dari $\sigma_{\rm F}$ (hal ini tidak berlaku untuk *high-strenght material*) dan desain yang didasarkan pada harga σ kurang dari $\sigma_{\rm Y}$. Hal itu dalam proses pemilihan material dibuat sebagai dasar dari pencegahan meluasnya daerah plastis dalam rangka mencegah terjadinya *fracture*. Skema dari ilustrasi diatas dapat dilihat pada gambar.2.1. Pendekatan perhitungan $\sigma_{\rm F}$ digunakan sebagai dasar untuk mengetahui *fracture toughness* (ketegaran) sehingga nantinya dapat digunakan untuk memperkirakan ukuran cacat material yang diijinkan.¹

II - 2

2.2 Prinsip Dasar Fracture Mechanics (Mekanika Kepecahan)

2.2.1 Pendahuluan

Seperi filosofi diatas bahwa dasar dalam mendesain struktur adalah safety faktor (faktor keamanan), seperti yield strenght (kekuatan tarik), yield stress (batas mulur) buckling stress (tegangan mulur), dengan asumsi asalkan tegangan nominal pada struktur tidak melebihi tegangan yield maka desain struktur tersebut aman. Hal tersebut nampaknya benar dengan asumsi bahwa pada struktur tidak ada cacat (diskontinuitas). Sedang pada kenyataannya untuk mendesain struktur dimana pelat yang digunakan sebagai komponen utama dalam perencanaan struktur dapat dianggap mempunyai cacat. Sehingga untuk mengatasi masalah tersebut maka dikembangkan konsep mekanika kepecahan yang merupakan salah satu metode matematis yang digunakan untuk mempelajari semua perilaku material termasuk adanya cacat pada material.

Retak adalah merupakan bagian daripada kegagalan yang terjadi pada konstruksi. Dengan adanya retak, kegagalan pada konstruksi dapat terjadi lebih cepat. Sedang kegagalan akhir, adalah merupakan proses akhir yang terjadi pada konstruksi.

2.2.2 Ketegaran Material

Material toughness dapat diartikan sebagai kemampuan suatu material menahan suatu beban dan dapat diuraikan dalam istilah *critical* stress intensity faktor dalam kondisi plane-stress (K_c) atau plane-strain (K_{lc}) untuk kondisi pembebanan perlahan dan bersifat *elastic linear*. Prinsip dasarnya disini adalah, dimana retak yang tidak stabil terjadi bilamana faktor intensitas tegangan (K) diujung retak mencapai harga kritis (K_c), dimana K_c adalah suatu faktor yang menunjukkan kemampuan suatu bahan untuk memikul tegangan tertentu pada ujung retak dan menghambat penjalaran retak. Maka harga (K_c) dapat dinyatakan sebagai *fracture toughness* atau ketegaran retak. Sehingga harga (K_c) ini dapat dipakai sabagai standart atau kriteria dalam perancangan kekuatan dari struktur.

2.2.3 Ukuran Retak (a)

Brittle fracture dimulai dari diskontinuitas yang bervariasi. Diskontinuitas ini dapat terjadi karena adanya retak yang sangat kecil sampai pada retak yang mengalami pembebanan. Untuk struktur mengalami pengelasan yang sangat kompleks pasti terjadi diskontinuitas (misalnya porositas, *lack of fusion* dan lain-lain). Dengan inspeksi dan fabrikasi yang baik maka ukuran retak dapat diminimalkan

2.2.4 Level Tegangan (σ)

Tegangan tarik, baik itu berupa *nominal stress, residual stress* ataupun keduanya sangat berpengaruh dalam terjadinya *brittle fracture*. Ketiga faktor diatas yang sangat mempegarui terjadinya kerusakan. Dengan mengontrol faktor-faktor tersebut diatas, pengaruh *brittle fracture* dapat dikurangi.

II - 4

2.2.5 Final Fracture

Final fracture adalah proses akhir kerusakan pada struktur saat mengalami pembebanan, sehingga pada struktur tersebut mengalami kegagalan. Ketika terjadi penjalaran retak, penampamg pada bagian tersebut akan berkurang. Sampai pada kondisi dimana penampang pada bagian tersebut tidak mampu menahan beban yang terakhir kalinya. Pada tahap ini penjalaran retak yang terjadi sangat cepat sehingga struktur akan pecah menjadi dua. Pada proses akhir *(final fracture)* ini, retak yang terjadi dapat merupakan *brittle fracture (cleavage), ductile fracture (rupture)* atau kombinasi keduanya.

2.3 Ductile Fracture

Permukaan ductile fracture akan mempunyai ciri-ciri khusus pada kedua tigkat *macroscopic* atau *microscopic*. Gambar 2.2a memperlihatkan secara skematis untuk dua karateristik dari profil *macroscopic fracture*. Konfigurasi yang terlihat pada gambar 2.2a dipakai untuk baja lunak, seperti emas murni dan hal penting pada temperatur ruangan, dan baja lainnya, polymers, dan kaca *inorganic* pada temperatur menaik. Hal tersebut membuat *highly ductile material neck* turun pada titik *fracture*, terlihat 100% pengurangan luas.

II - 5

Gambar 2.2 Karateristk profil macroscopic fracture

Macam tipe paling umum dari *tensile fracture* profil untuk *ductile metal* terlihat pada gambar 2.2b dimana fracture diawali hanya oleh *necking* biasa. Proses *fracture* biasanya terjadi dalam beberapa tahap gambar 2.3. Pertama , setelah necking terjadi, rongga kecil atau *microvoid*, bentuk bagian dalam penampang melintang, diperlihatkan gambar 2.3b. Selanjutnya deformasi terjadi, *microvoid* menjadi semakin besar, secara bersamaan dan bergabung menjadi retak bentuk elip, dimana mempunyai sumbu tegak lurus searah dengan arah tegangan. Retak terus berkembang atau menjalar dalam arah paralel sumbu utama oleh proses penggabungan *microvoid* gambar 2.3c. Akhirnya, *fracture* terjadi dengan penjalaran retak yang cepat sepanjang sisi luar *necking* gambar 2.3d, oleh deformasi geser pada sudut sekitar 45° dengan sumbu tarik pada sudut ini tegangan geser adalah maksimum. Kadang-kadang *fracture* karateristik permukaan yang lebih dikenal *cup-and-cone fracture* karena satu dari pasangan permukaan tersebut adalah berbentuk *cup*, dan yang lain berbentuk *cone*². Dalam tipe ini dari spesimen *fracture*, tengah dari daerah dalam dari permukaan berbentuk *irregular* dan kelihatan berserat, dimana ada indikasi deformasi plastis.

Gambar 2.3 Proses terjadinya fracture

Banyak informasi mengenai mekanika *fracture* didapatkan dari pegujian *microscopic*, biasanya menggunakan *electron microscopy*. Ilmu tentang ini dinamakam *fractographic*. Electron microscopis ini dipakai untuk pengujian *fractrographic* ketika hal ini menghasilkan resolusi yang paling baik dan kedalaman dari bidang *optical microscope*, sifat ini penting untuk menampakkan ciri-ciri *toprographic* dari permukaan *fracture*. Umumnya , *scanning electron microscope* (*SEM*) digunakan, dimana spesimen dilihat secara langsung.

2.4 Brittle Fracture (Cleavage)

2.4.1 Pendahuluan

Brittle fracture adalah kepecahan yang terjadi secara tiba-tiba dengan sedikit atau tanpa deformasi dan dengan kecepatan perambatan retak yang sangat tinggi. Sering kali harga dari tegangan nominal pada saat terjadinya *brittle fracture* berada dibawah *yield point* atau *yield strength* dari material. Arah dari gerakan retak akan tegak lurus dengan arah tegangan tarik dan relatif dengan bidang datar dari permukaan fracture seperti terlihat pada gambar 2.1c. Proses terjadinya *brittle fracture* terbagi menjadi dua bagian pokok yaitu *crack initiation* dan *crack propagation.* Kecepatan penjalaran retak *brittle fracture* bisa mencapai ribuan kaki perdetik, keadaan sungguh sangat berbahaya karena *failure* (kegagalan) dari struktur terjadi tanpa adanya peringatan awal sehingga menimbulkan kerugian yang sangat besar³.

Karateristik utama dari *brittle fracture* pada baja adalah adanya *cevron patem* pada permukaan *fracture*. *Cevron patem* adalah garis lengkung pada permukaan *fracture* yang berawal dari pusat sampai pada bagian tepi dari pelat. Kalau kita perhatikan lebih mendalam yaitu dengan pembesaran dengan mikroskop mulai dari permukaan awal sampai akhir *cevron patem*, maka kita akan dapat mengenali bagaimana mekanisme panjalan retak pada permukaan baja. Dengan adanya petunjuk ini maka penyebab timbulnya *failure* akan dapat dianalisa.

Pada gambar 2.4 kita dapat mengetahui bahwa cevom patem mempunyai bentuk simetri, dan bentuk ini tidak akan simetri lagi jika pada baja tersebut dikenakan beban kombinasi misalnya beban tarik dan beban bending.

Gambar 2.4 Karateristik proses brittle fracture

Karateristik selanjutnya dari permukaan *brittle fracture* adalah daerah *shear slip*. *Shear slip* ini berada ditepi permukaan *fracture* seperti terlihat pada gambar 2.4. Daerah *shear slip* ini ujung-ujungnya tajam seperti gergaji membentuk sudut 45° dengan arah pembebanan. Ukuran dari shear slip ini tergantung dari *fracture toughness* atau tingkat kegetasan dari material baja. Sehingga dari sini dapat diketahui apakah material tersebut cenderung pada *plane-stress* atau *plane-strain*.

Dalam praktek apabila kita menemukan permukaan fracture yang rata, ini menunjukkan pelat tersebut mempunyai tingkat kegetasan yang

tinggi dan apabila kita menemukan permukaan *fracture* membentuk sudut, ini menunjukkan bahwa pelat tersebut mempunyai tingkat keuletan yang tinggi. Akan tetapi kebanyakan permukaan *fracture* pada pelat merupakan gabungan antara keduanya.

ITS

2.4.2 Teori Griffith Tentang Brittle Fracture

Selama terjadinya perambatan retak terdapat pelepasan dari apa yang disebut *elastic strain energy*. Berapa energi yang dipunyai material seperti deformasi elastis. Selanjutnya, selama proses berlangsungnya retak, maka permukaan baru terbentuk pada muka retak, dimana akan memberikan kenaikan energi permukaan sistem.

Griffith⁴ menyatakan bahwa bahan-bahan yang getas mengandung retak-retak yang halus yang menyebabkan terjadinya pemisahan tegangan yang cukup besar, sehingga kekuatan kohesi pada daerah pemusatan bila diberi *nominal stress* akan lebih rendah dari harga teoritisnya. Suatu retak yang merambat akan menambah luasan permukaan retak pada ujung-ujungnya. Pertambahan ini membutuhkan energi untuk mematahkan gaya kohesi atomnya atau dengan kata lain diperlukan tambahan energi permukaan. Sumber tambahan energi permukaan diperoleh dari energi regangan elastis yang dilepaskan pada saat perambatan retak. Teori Griffith tentang *brittle fracture* adalah sebagai berikut " suatu retakan akan menjalar bila pengurangan energi regangan elastik minimal sama dengan energi yang dibutuhkan untuk membentuk permukaan baru ".⁴ Penggambaran dari teori Griffith dapat dilihat pada model eksperimen dibawah ini.

Gambar.2.5 Model spesimen Griffith

Ketebalan pelat diabaikan, sehingga masalah dianggap sebagai *plane-stress*. Retak diasumsikan berbentuk elips dengan panjang 2c untuk retak ditengah dan panjang retak c untuk retak pada sisi. Pengurangan *strain energi* disebabkan oleh pembentukan retak baru.

Sesuai teori Griffith bahwa tidak ada perubahan total energi sistem sehingga penambahan energi permukaan dikompensasikan dengan pengurangan *elastic strain energi*.

$$\sigma = \left(\frac{2E\gamma S}{\pi c}\right)^{1/2}$$
 2.1

Untuk pelat yang tebalnya tidak diabaikan (*plane-strain*) persamaan diatas menjadi :

$$\sigma = \left[\frac{2E\gamma S}{(1-\upsilon)^2 \pi c}\right]^{1/2}$$
 2.2

2.4.3 Low-Strenght Tensile Fracture

Low-strenght tensile fracture dari material diawali oleh adanya derajat kebebasan dari deformasi plastik. Berbagai variasi dari derajat kebebasan deformasi plastis dapat dilihat dalam gambar 2.6. Gambar 2.6a menunjukkan kasus dimana *fracture* didahului atau diawali dengan *macroscopic yielding*; proses *fracture* terjadi dengan memisahnya ikatan atom yang memotong permukaan *fracture*. Jika pemisahan ikatan atom terjadi karena *tensile separation* (pemisahan tarik), mekanisme kepecahan tersebut disebut *cleavage* (jika *fracture* terjadi bersama grain) atau *brittle intergranular fracture* (BIF, jika *fracture* terjadi sepanjang batas *grain*).

Gambar 2.6b dan c menggambarkan *fracture* yang tidak disertai *tensile fracture* (kepecahan tarik) dari ikatan atom. Pemisahan batang menjadi dua bagian hanya dipengaruhui oleh proses deformasi plastik oleh adanya pergeseran atom. *Fracture* yang terlihat pada gambar 2.6b terjadi oleh *tensile deformation* (deformasi tarik) dari kristal tunggal yang disesuaikan seperti satu sistem *slip* yang aktif (misal, zinc dengan struktur *crystal hexagonal*). Pemisahan dari kristal tercapai ketika perpindahan relatif atom melebihi daerah *slip* aktif yang besarnya sama dengan diameter batang. Dikatakan *rupture fracture* apabila mengalami *reduction area* (pengurangan luas) sebesar 100 % dan dapat diteliti dalam *single crystal* (gambar 2.6c) atau *polycrystals* (gambar 2.6d). *Rupture* dapat terjadi dalam *single crystal* jika proses *slip* terjadi secara berulang. Jika terjadi dalam *polycrystalline* dikategorikan sebagai *necking tensile instability*.

Gambar 2.6 Variasi dari derajat kebebasan deformasi plastis

Pengurangan 100% luasan dapat diteliti didalam beberapa *polycrystalline metal* murni pada temperatur rendah. Dengan kata lain sejauh ini *fracture mode* pada temperatur tinggi lebih banyak dibicarakan, yang kemudian digolongkan dalam *dynamic recrystallization. Rupture fracture* umumnya seperti terlihat pada gambar 2.6b, yang hanya disebabkan oleh proses deformasi plastis. Selanjutnya hal ini merupakan perbedaan yang mendasar dari *fracture* yang diperlihatkan pada gambar 2.6a dimana meliputi pemisahan ikatan atom.

Dengan tergantung pada tingkat aplikasi tegangan, bagian tegangan, temperatur, ukuran *grain material*, rata-rata regangan dan seterusnya. Material dapat menunjukkan apakah *brittle* atau *ductile*. Jika deformasi plastis diawali *ductile fracture*, maka dikelompokkan dalam tipe pengurangan luasan tertentu dari material tes tarik, rupture dalam kasus tersebut merupakan proses *ductile fracture*. Selain itu transfer dari *brittle* sampai *ductile fracture* terjadi secara bertahap. Untuk *brittle fracture* mungkin disertai oleh plastisitas material dan kita dapat membagi *brittle fracture* kedakam 3 kategori yaitu *mode I brittle fracture, mode II brittle fracture* jada luas deformasi plastis yang mendahului proses *fracture*.¹

Mode | Briitle Fracture

Mode I brittle fracture terjadi pada material brittle, pada temperatur rendah dan pada terjadi pada tingkat tegangan yang rendah. Model fracture dapat dalam dua bagian yang tergantung apakah perambatan retak yang terjadi memotong grain (Cleavage 1, gambar 2.7a) atau sepanjang grain boundary (gambar 2.7b; Brittle intergranular fracture *I, BIF I*). *Fracture model* dimulai dengan adanya retak atau cacat, dimana cacat tersebut mempunyai ukuran yang lebih besar dari *grain* material.

Gambar 2.7 Macam mode brittle fracture

Tegangan tingkat rendah membantu *clevage* I, BIF I dapat menggambarkan kenyataan bahwa keduanya baik *microscopic* maupun *macroscopic yielding* yang terjadi pada material yang diahului terjadinya patah. Dengan kata lain, seperti yang kita lihat konsentrasi tegangan yang besar menyebabkan terjadinya retak yang kemungkinan dapat menyebabkan aliran daerah plastis dan dibatasi disekitar ujung retak.

Mode II Brittle Fracture

Mode II fracture diawali dengan microscopic yielding, yang dapat merambat dalam transgranular (clevage II, gambar 2.7c) atau intergranular (BIF II, gambar 2.7d). Mode II brittle fracture terjadi pada tingkat tegangan lebih tinggi dari pada mode I. Ini terjadi dalam "flaw-free" material atau berisi cacat yang mempunyai ukuran kurang dari grain size. Tegangan tingkat tinggi mode II fracture adalah hal yang sangat utama untuk aktif slip atau twinning pada slip system atau dalam ukuran tertentu dari grain yang disesuaikan dengan sumbu tarik. Jika localized yielding setempat ini tidak diikuti dengan general yielding, dimana akan terjadi ketidakcocokan pengelompokan dengan localized flow, microvielding diakomodasikan dengan formasi microcrack. Bentuk microcrak cirinya adalah boundary diantara deformasi dan non deformasi grain dan kecepatan perambatannya yang memotong grain. Ukuran grain mode II fracture mempunyai ukuran cacat yang sama dengan mode I fracture. Untuk kasus yang sama, tegangan untuk merambatnya microcrack adalah kurang dari microyield, perambatan retak terjadi seketika, dimana bentuknya berbatasan satu sama lain. Untuk kasus lain perambatan tegangan fracture lebih besar dari yield strenght. Jika ini terjadi, tegangan harus ditingkatkan dimana hal ini penting untuk awal retak dan fracture ditentukan berdasarkan perambatan retak.

Mode III Brittle Fracture

Aliran tegangan akan menurun dengan menaiknya temperatur dan akan sangat menarik untuk beberapa jenis material tertentu (contoh transisi bcc metal). Dengan naiknya temperatur, apakah macroscopic atau general yielding terjadi sebelum fracture. Kasus ini disebut mode III fracture (gambar 2.7e dan f) yang mana final fracture masih akan tetap brittle yang mekanisme terjadinya seperti pada mode I dan mode II fracture. Jika microscopic plastic strain mendahului 1-10 % mode III fracture, akan agak jelas terlihat sehingga akan sangat tidak cocok untuk menyebutkan semata-mata cleavage III atau BIF III fracture. Sebelumnya telah disebutkan, klasifikasi ini akan tetap konsisten pada fracture mechanic atom. Untuk yang mengalami fracture dengan mode II pengerjaan pengerasan akan mengiringi aliran plastis yang cukup untuk menaikkan aliran tegangan yang mana fracture akan terjadi. Crack initiation pada mode III dapat terjadi dengan proses yang sama yang menyebabkan initiation pada mode II fracture yang mana initiation tersebut disebabkan oleh plastis strain incompatibility.

Mode III " *brittle* " *fracture* akan lebih dahulu terjadi pada temperatur tinggi dengan *ductile fracture*. Meskipun mode III dan *ductile fracture* keduanya didahului *macroscopic yielding* sebelum *fracture* terjadi, tetapi proses dari perambatan retak dan mata rantainya berbeda. Untuk mode III mata rantai terjadi oleh *cleavage*. Selama ductile *fracture* apakah *nucleate*, pertumbuhan dan mata rantainya akan diikuti mekanisme aliran plastik.

2.5 Linear-Elastic Fracture Mechanics (LEFM)

2.5.1 Pedahuluan

Seperti yang telah dijelaskan diawal bahwa *fracture mechanics* adalah suatu metode matematis yang digunakan untuk analisa perilaku material dengan menggunakan analisa struktur yang dalam perkembangannya dapat dibagi dua yaitu *Elastic Plastic Fracture Mechanics (EPFM)* dan *Linear Elastis Fracture Mechanics (ELFM)*.

Elastic Plastic Fracture Mechanics (EPFM) adalah suatu konsep yang didasarkan pada keseimbangan energi yang disediakan sistem tersebut untuk terjadinya retak. Konsep ini digunakan jika daerah plastis yang timbul pada ujung retak lebih besar bila dibandingkan dengan ukuran retak. Sedangkan *Linear Elastic Fracture Mechanics* (ELFM) didasarkan pada prosedur analistis yang menghubungkan besarnya medan tegangan serta distribusinya disekitar ujung retak dengan tegangan nominal yang bekerja terhadap struktur, bentuk, ukuran dan orientasi dari retak tersebut atau diskontinuitas. Pembahasan lebih lanjut mengenai EPFM akan dibahas pada bab IV.

2.5.2 Tegangan Diujung Retak (Stres Intensity Faktor)

Untuk menganalisa tegangan pada sebuah retak, maka perlu dilakukan pendifinisian jenis retak menurut gerakan relatif dari kedua permukaan. Westergaard dan Irwin⁵ mengemukakan bahwa distribusi tegangan didaerah ujung retak terdiri dari tiga mode seperti terlihat pada gambar 2.8

Mode I : Opening Mode

Crack opening mode, retak dibuka lebar pada permukaan retakan akibat adanya tegangan tarik yang tegak lurus terhadap bidang penjalaran retak.

$$\sigma_{\mathbf{x}} = \frac{K_{I}}{\sqrt{2\pi r}} \left[\cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right) \right]$$

$$\sigma_{\mathbf{y}} = \frac{K_{I}}{\sqrt{2\pi r}} \left[\cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right) \right]$$

$$\tau_{\mathbf{xy}} = \frac{K_{I}}{\sqrt{2\pi r}} \left[\sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{3\theta}{2} \right]$$

$$\sigma_{\mathbf{y}} = \upsilon(\sigma_{\mathbf{x}} + \sigma_{\mathbf{y}}), \quad \tau_{\mathbf{xz}} = \tau_{\mathbf{yz}} = 0$$

$$U = \frac{K_{I}}{G} \left[\frac{r}{(2\pi)} \right]^{\frac{1}{2}} \cos \frac{\theta}{2} \left[1 - 2\upsilon + \sin^{2} \frac{\theta}{2} \right]$$

$$V = \frac{K_{I}}{G} \left[\frac{r}{(2\pi)} \right]^{\frac{1}{2}} \sin \frac{\theta}{2} \left[2 - 2\upsilon + \cos^{2} \frac{\theta}{2} \right]$$

$$W = 0$$

Mode II : Sliding Mode

In plane mode, bagian retak searah dengan bidang penjalaran retak yang diakibatkan oleh tegangan geser.

$$\sigma_{x} = -\frac{K_{II}}{\sqrt{2\pi r}} \left[\sin \frac{\theta}{2} \left(2 + \cos \frac{\theta}{2} \cos \frac{3\theta}{2} \right) \right]$$

$$\sigma_{y} = \frac{K_{II}}{\sqrt{2\pi r}} \left[\sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{3\theta}{2} \right]$$

$$\tau_{xy} = \frac{K_{II}}{\sqrt{2\pi r}} \left[\cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right) \right]$$

$$\sigma_{y} = \upsilon (\sigma_{x} + \sigma_{y}), \ \tau_{xz} = \tau_{yz} = 0$$

$$U = \frac{K_{II}}{G} \left[\frac{r}{(2\pi)} \right]^{\frac{1}{2}} \sin \frac{\theta}{2} \left[2 - 2\upsilon + \cos^{2} \frac{\theta}{2} \right]$$

2.3

$$V = \frac{K_{II}}{G} \left[\frac{r}{(2\pi)} \right]^{\frac{1}{2}} \cos \frac{\theta}{2} \left[-1 + 2\upsilon + \sin^2 \frac{\theta}{2} \right]$$
$$W = 0$$
 2.4

Gambar 2.8 Macam bentuk pembebanan

Mode III : Tearing mode

Anti plane shearing mode, perambatan retak seperti robekan karena permukaan retak bergeser terhadap penjalaran lainnya dalam arah sejajar tepi takikan. Retak yang diakibatkan tegangan geser yang bekerja pada arah melintang dan membentuk sudut dengan arah penjalaran retak.

$$\tau_{xz} = -\frac{K_{III}}{\sqrt{2\pi r}} \sin \frac{\theta}{2}$$

$$\tau_{xz} = \frac{K_{III}}{\sqrt{2\pi r}} \cos \frac{\theta}{2}$$

$$\sigma_{x} = \sigma_{y} = \sigma_{z} = \tau_{xy} = 0$$

$$U = \frac{K_{III}}{G} \left[\frac{2r}{(\pi)}\right]^{\frac{1}{2}} \sin \frac{\theta}{2}$$

$$U = V = 0$$
2.5

Gambar 2.9 Distribusi tegangan elastis disekitar ujung retak

Dimana komponen-komponen tegangan dan sistem koordinat r dan θ dapat dilihat pada gambar 2.9 diatas, u, v dan w displasemen kearah x, y, dan z, υ adalah *poison ratio*, G adalah modulus geser elastisitas. Sedangkan K_I, K_{II}, K_{III} adalah faktor intensitas tegangan (SIF) untuk masing masing gerakan relatif perambatan retak yang tergantung pada tipe tegangan dan ukuran dari retak yang terjadi. Mode I dan mode II merupakan kasus plane strain dimana displasemen kearah z adalah sama dengan nol (w = 0), serta mengabaikan penggunaan pangkat yang lebih tinggi, sehingga akan dihasilkan perhitungan pendekatan untuk radius (r) yang mendekati nol pada ujung retak.

2.5.3 Daerah Plastis Ujung Retak (Zona Plastik Irwin)

Setiap struktur pasti akan mengalami tegangan yang kesemuanya akan tergantung pada bentuk retak, ukuran retak, serta konfigurasi dari struktur dengan macam pembebanan atau mode seperti terlihat pada gambar 2.8, yang kesemuanya akan sangat berpengaruh pada *stress intensity faktor (SIF)*. Dengan adanya tegangan tersebut maka akan terdapat daerah yang mengelilingi retak pada metal, dimana deformasi plastis muncul. Untuk ukuran zona plastis sementara pertimbangan dibatasi pada *plane-stress*.

Apabila kita memperhatikan gambar 2.10 besarnya tegangan diujung retak ini dapat ditentukan dengan pendekatan secara matematis dari persamaan yang dikembangkan oleh Irwin⁶. Dari gambar 2.10 dapat diketahui harga σ_y pada θ = 0. Sampai jarak rp^{*} dari ujung retak, dan dapat dilihat bahwa *stress* lebih besar dari *yield stress* (σ_{ys}). Untuk perkiraan pertama rp^{*} adalah ukuran daerah plastis.

$$\sigma_y = \frac{K_I}{\sqrt{2\pi r p^*}} = \sigma_{ys} \qquad \text{atau}$$

$$rp^* = \frac{K_I^2}{2\pi\sigma_{ys}^2} = \frac{\sigma^2 a}{2\sigma_{ys}^2}$$
 2.6

Irwin berasumsi bahwa munculnya plastisitas membuat retak lebih panjang dari ukuran retak fisik. Akibat plastisitas pada ujung retak ini, displasemen akan lebih besar dan kekakuan lebih kecil dari kasus elastis. Sehingga ukuran retak sebenarnya atau retak efektif sama dengan ukuran retak phisik ditambah koreksi δ (a + δ).

Gambar 2.10 Perkiraan pertama ukuran zona plastik

Dengan mengganti ukuran retak phisik a dengan ukuran retak yang lebih besar yaitu a + δ (gambar 2.11) sehingga distribusi tegangan elastis (σ_y) pada ujung retak efektif dapat diketahui. Tegangan dari ujung retak efektif dibatasi oleh σ_{ys} . Dengan cara yang sama tegangan yang bekerja pada δ di depan retak phisik besarnya sama dengan tegangan *yield*. Sehingga δ harus cukup besar untuk mengganti beban yang hilang oleh potongan pada daerah A (gambar 2.12) oleh distribusi tegangan elastis. Dalam hal ini luas pada daerah A sama dengan daerah B sehingga besarnya λ pada gambar 2.12 dapat dicari dengan cara sebagai berikut :

$$\sigma_{ys} = \frac{K}{\sqrt{2\pi\lambda}} = \sigma_{\sqrt{\frac{a+\delta}{2\lambda}}} \quad \text{atau } \lambda = \frac{\sigma^2(a+\delta)}{2\sigma_{ys}^2} \approx r_p * \qquad 2.7$$

Jika δ amat kecil apabila dibandingkan dengan ukuran retak a, maka dapat diabaikan dan $\lambda = r_p^*$ seperti persamaan 2.6. Dengan luas B sama dengan $\sigma_{vs}\delta$, dan dengan ketentuan B = A maka akan didapatkan

$$\delta = r_{p}^{*} \text{ dan } r_{p} = \lambda + \delta = 2r_{p}^{*}$$
2.8

Gambar 2.11 Perkiraan kedua ukuran zona plastik

Seperti kita lihat pada gambar 2.11 besarnya daerah zona plastis adalah dua kali lebih besar dari perkiran zona plastik yang pertama (r_p^*) , jadi panjang retak dalah a + r_p^* , sebab $\delta = r_p^*$. Kuantitas r_p^* ditetapkan sebagai koreksi daerah plastik Irwin⁶. Sembarang asumsi menunjukkan bahwa zona plastik memiliki bentuk *circular*, kondisi ini digambarkan oleh gambar 2.12, dimana retak efektif berakhir pada pusat zona plastik.

Koreksi zona plastik pada persamaan pada persamaan 2.6 bukan untuk kondisi *plane-strain*. Koreksi daerah plastik tersebut digunakan dalam menentukan harga *crack opening displacement* (COD).

Gambar 2.12 Koreksi zona plastik Irwin

Harga COD ditentukan dengan persamaan berikut :

$$COD = \frac{4\sigma}{E} \sqrt{\left(a + r_p^*\right)^2 - x^2}$$
 2.9

Jika harga x = a maka harga *crack tip opening displacement* adalah

$$COD = \frac{4\sigma}{E} \sqrt{\left(a + r_p^*\right)^2 - a^2} \approx \frac{4\sigma}{E} \sqrt{2ar_p^*} = \frac{4}{\pi} \frac{K^2}{E\sigma_{ys}}$$
2.10

Pembahasan lebih lanjut mengenai CTOD akan dijelaskan pada bab IV

BAB III

TOUGHNESS

C

Q

El a

6

E

PLANE-STRAIN FRACTURE

(66))

BAB III

PLANE-STRAIN FRACTURE TUOGHNESS

3.1 Pendahuluan

Pada bab II kita telah dapat mengetahui hubungan antara stress intensity factor (K_I) atau faktor intensitas tegangan dalam *elastic body* dengan berbagai macam bentuk retak. Faktor intensitas tegangan (K_I, K_{II}, K_{III} untuk *opening mode, sliding mode*, maupun *tearing mode*) adalah merupakan fungsi dari beban, ukuran retak, dan geometri spesimen. Secara ideal sebuah faktor intensitas tegangan untuk K_I dihubungkan dengan geometri retak spesifik (gambar 3.1) dapat digunakan sebagai model geometri retak utama dalam sebuah struktur.

Pemilihan untuk harga faktor intensitas tegangan (K_I) didasarkan pada perbedaan level pembebanan dalam hal ini secara umum sama dengan ragam pemilihan tegangan (σ). Dimana tegangan dihitung dengan formula σ = P/A untuk pembebanan (P) yang bervariasi. Sedang untuk faktor intensitas tegangan dihitung dengan formula K_I = c $\sigma \sqrt{a}$ untuk variasi pembebanan nominan (σ).

Bagaimanapun, karena struktur material nyata untuk mencapai harga limit karateristik tertentu (seperti *yielding* pada *ductile material*, fracture pada *brittle material*) adalah tercapainya harga limit dari tegangan (σ) dan faktor intensitas tegangan (K_i). Faktor intensitas tegangan kritis dinotasikan dengan (K_c), untuk mode I dinotaskan dengan K_{ic}, yang terjadi bilamana penjalaran retak yang terjadi tidak stabil untuk kondisi pembebanan statis dalam temperatur yang nyata dan tergantung pada ketebalaan spesimen.

Gambar 3.1 Macam geometri retak

Setelah mempertimbangkan dari hasil-hasil penelitian dan percobaan yang dilakukan komite khusus ASTM yang membahas masalah *test fracture*, Komite E-24 mempersiapkan "*Recommended Method of Test for Plane-Strain Fracture Toughness of Metalic Material* " (ASTM *designation E 399 – 90*) yang digunakan untuk membahas masalah K_{lc}.

3.2 Latar Belakang Metode Pengetesan K_{lc}

Metode ini pertama kali diperkenalkan oleh J.G Kaufman⁷ yang menyatakan bahwa pada awal perkembangannya metode pengetesan *elastic fracture mechanics* merupakan suatu analisa yang terbaik dimana ketahanan atau ketangguhan dari material ketika perambatan retak tidak stabil terjadi. Meskipun pada kenyataannya tidak semua struktur material mengalami elastik murni ketika mengalami kerusakan, tetapi dengan adanya suatu modifikasi diharapkan akan dapat dihitung ukuran berhingga yang sesuai dari struktur dan spesimen.

Faktor intensitas tegangan kritis untuk penjalaran retak tidak stabil (K_c) merupaka sifat yang tergantung pada ketebalan material yang nantinya akan dijelaskan lebih lanjut. Dalam kondisi *plane-strain* yang sempurna, retak yang tidak stabil menyebabkan kerusakan seketika. Setelah terjadinya kerusakan awal penjalaran retak ini akan merupakan kejadian yang tiba-tiba dan cenderung diyakini bahwa faktor intensitas tegangan kritis pada taraf yang lebih rendah. Sehingga untuk mengetahui material maka dikembangkan suatu metode untuk menentukan K_{lc} karena ada kemungkinan hal ini merupakan sifat-sifat dasar yang dapat memberikan dasar-dasar perkembangan seluruh progam *fracture*. K_{lc} merupakan suatu pendekatan untuk masalah *fracture* dan bahwa pengaruh material didalam kegagalan struktur dapat dilihat dengan kondisi *plane-strain*.

Pada sekitar tahun 1960-an berbagai desain spesimen, metodemetode dan lain-lain telah digunakan pada penelitian untuk mempelajari berbagai parameter yang mungkin mempengarui *fracture plane-strain*.

Gambar 3.3 Bentuk dan dimensi Compact-tension spesimen

Pengaruh *notch*, temperatur, level tegangan selama retak awal, ketebalan dan lain telah diteliti dan dihasilkan standarisasi. Untuk *plane-strain K_{lc} test* ada dua metode yaitu dengan menggunakan *notch-bend spesimen SE (B)* (Gambar 3.2) *dan compact-tension spesimen CTS* (gambar 3.3). Dalam tugas akhir ini metode yang digunakan adalah SE (B). Dengan menggunakan kedua metode tersebut maka diharapkan bahwa prosedur *test* yang dianjurkan memberikan hasil yang sesuai. Hasil dari pengetesan yang dilakukan diberbagai laboratorium yang bebrbeda didapatkan suatu nilai K_{lc} dengan perbedaan kurang lebih 15%.

3.3 Ukuran Spesimen

Keuntungan utama pengukuran ketegaran material yang mempunyai *notch* dalam bentuk K_{lc}, adalah bahwa nilai K_{lc} dapat dibandingkan langsung dengan berbagai tingkat K_{lc} yang dihitung untuk berbagai struktur pada pembebanan yang berbeda. Metode pengetesan standart ASTM mempunyai ukuran spesimen sangat terbatas, agar didapatkan sifat-sifat *plain-strain* elastis. Keterbatasan ini karena K_{ic} hanya dapat diterapkan pada material yang mendekati *brittle*, atau temperatur pengetesan dibawah temperatur normal atau rata-rata pembebanan yang sangat tinggi.

Brown dan Srawley⁷ mengemukakan bahwa sifat-sifat *fracture* material tergantung bagaimana kondisi tegangan dan regangan yang dinyatakan dengan SIF, disamping daerah proses kepecahan yang sebenarnya. Dari gambar 3.4 dapat dijelaskan bahwa daerah dimana terjadinya proses retak adalah sangat kecil tepat diujung retak. Harga K_I dapat ditentukan secara pasti pada regangan plastis sama dengan nol, yang mana hanya terjadi pada material yang benar-benar *brittle* seperti kaca.

Gambar 3.4 Proses fracture didaerah ujung retak

Untuk kebanyakan material tingkat ketepatan ini bisa didapatkan apabila daerah plastis diujung retak relatif kecil dibandingkan dengan daerah disekitar retak dimana faktor intensitas tegangan menghasilkan suatu pendekatan tegangan elastis yang pasti. Sehingga untuk mendapatkan kondisi tersebut maka standart ASTM dipakai dengan ukuran spesimen dipilih sedemikain rupa sehingga sifat-sifat dari material tidak terabaikan.

Pada bab II telah dijelaskan bahwa dengan adanya distribusi daerah tegangan elastis didepan ujung retak, maka perluasan daerah plastis di depan ujung retak dapat diperkirakan dengan ekspresi ke arah Y, dimana σ_y diekspresikan :

$$\sigma_{y} = \frac{K_{II}}{\sqrt{2\pi r}} \left[\sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{3\theta}{2} \right]$$
 3.4

untuk $\theta = 0$ (sepanjang sumbu x)

$$\sigma_{y} = \frac{K_{II}}{\sqrt{2\pi r}}$$
3.2

Dimana $\sigma_y = \sigma_{ys}$ (yield stress) dari material pada temperatur utama dengan kondisi *loading rate*, diperkirakan *yielding* diujung retak adalah :

$$r_{y} = \frac{1}{2\pi} \left[\frac{K_{I}}{\sigma_{ys}} \right]^{2}$$
3.3

Pada kondisi tidak stabil $K_1 = K_{1c}$ harga batas r_y (daerah plastis) adalah sebesar :

$$r_{y} = \frac{1}{2\pi} \left[\frac{Kc}{\sigma_{ys}} \right]^{2}$$
3.4

Harga r_y diperkirakan jari-jari zona plastis pada ketidakstabilan dibawah kondisi *plane-stress*, seperti ditunjukkan gambar 3.5 harga ini diperkirakan muncul pada permukaan dari pelat dimana *lateral constrain* adalah nol dan adanya kondisi *plane-stress*. Oleh karena itu penambahan *tensile stress* untuk *plastic yielding* dalam kondisi plane-strain, jari-jari *plastic zone* pada pusat akan memiliki constrian yang lebih besar dalam kondisi *plane-strain*. Jari-jari plastik *plane-strain* diperkirakan sama dengan 1/3 dari harga jari-jari plastik *plane-stress*.

$$r_{y}(plane - strain) = \frac{1}{6\pi} \left[\frac{K_{IC}}{\sigma_{ys}} \right]^{2}$$
3.5

Untuk memenuhi sarat-sarat ukuran spesimen pada pengetesan K_{Ic}, ukuran spesimen harus cukup besar dibandingkan dengan daerah plastis r_y sehingga pengaruh daerah plastis pada analisa K_I dapai diabaikan.

SPECIMEN CROSS-SECTION

Gambar 3.5 Skematik dari ukuran zona plastik

Ukuran spesimen untuk pengetesan K_{ic} meliputi, panjang retak (a), ketebalan (B), Dan panjang spesimen yang tidak retak (W–a), dimana W adalah lebar material keseluruhan. Untuk memenuhi sifat-sifat *planestrain* elastis diperlukan ukuran spesimen minimum sebagai berikut :

$$a \ge 2.5 \left(\frac{K_{IC}}{\sigma_{ys}}\right)^2$$
$$B \ge 2.5 \left(\frac{K_{IC}}{\sigma_{ys}}\right)^2$$
$$W \ge 5 \left(\frac{K_{IC}}{\sigma_{ys}}\right)^2$$

3.6

Perhitungan berikut ini memperlihatkan bahwa untuk spesimen-spesimen yang memenuhi syarat diatas, tebal spesimen kurang lebih 50 kali radius zone *plastic plane-strain*

$$\frac{tebalspesimen}{ukurandaerahplastis} = \frac{B}{r_y} \approx \frac{2.5 \left(\frac{K_{IC}}{\sigma_{ys}}\right)^2}{\frac{1}{6\pi} \left(\frac{K_{IC}}{\sigma_{ys}}\right)^2} \approx 2.5(6\pi) \approx 47 \qquad 3.7$$

Dengan berpedoman pada ukuran-ukuran spesimen diatas (a, B, W) dua kondisi penting berikut ini sudah terpenuhi

- Spesimen *test* cukup besar sehingga sifat-sifat elastis linear yang akan di test terjadi pada daerah tegangan yang cukup besar sehingga beberapa pengaruh zona plastis pada ujung retak dapat diabaikan.
- Terdapat bidang tegangan tarik triaksial, sehingga tegangan geser sangat rendah dibandingkan dengan tegangan normal maksimum dan sifat-sifat *plane-strain* pada mode I terpenuhi.

Sebelum spesimen untuk pengetasan dibuat, nilai K_{lc} harus diketahui atau paling tidak diperkirakan.

3.4 Prosedur Test K_{IC}

Secara umum prosedur pekerjaan untuk mengetahui besarnya K_{lc} pada suatu material adalah sebagai berikut :

 Menentukan ukuran dimensi dari spesimen seperti yang telah dibicarakan diatas, yaitu :

$$a = panjangretak \ge 2.5 \left(\frac{K_{IC}}{\sigma_{ys}}\right)^2$$

$$B = ketebalanspesimen \ge 2.5 \left(\frac{K_{IC}}{\sigma_{vs}}\right)^2$$

$$W = lebarspesimen \ge 5 \left(\frac{K_{IC}}{\sigma_{ys}}\right)^2$$

 Memilih metode pengetesan spesimen dan mempersiapkan gambar bentuk spesimen yang akan ditest.

Terdapat dua desain spesimen, yaitu *Slow-Bend Spesimen SE (B)* dan *Compact-Tension Spesimen (CTS)*. Gambar kerja untuk kedua spesimen dapat dilihat pada gambar 3.2 dan gambar 3.3.Panjang retak awal diperkirakan sebesar $0,45 \le a/W \le 0,55$. Dalam penulisan ini standart yang digunakan adalah *Slow- Bend Specimen* SE (B).

3. Fatigue crack test spesimen.

Pemberian *notch* pada spesimen diharapkan agar *crack* bidang sesuai dengan asumsi-asumsi untuk analisa K_{I.} Retak fatigue cenderung terjadi minimal (0,05W) diatas notch yang dibuat dengan mesin dengan maksud untuk mengeleminasi pengaruh-pengaruh geometris dari *notch* tersebut.

4. Test fixture dan displacement gage

Spesimen test untuk *side bend test fixture* untuk *side-bend testing* dan *tension testing fixture* menggunakan ASTM standart E 399-90⁸, bentuk dan ukuran sesuai lampiran B. Suatu hal penting dalam test K_{Ic} adalah kekauratan pengukuran besaran-besaran yang berhubungan dengan awal perkembangan retak dari retak kelelahan, yaitu untuk pertumbuhan retak tidak stabil.

- 5. Prosedur pengetesan.
 - a. Three-Point Bend Spesimen

Pengetesan harus di set sedemikian rupa sehingga beban tepat diantara rol penyangga. Spesimen harus diletakkan tepat ditengah notch dintara rol dengan toleransi 5% dari jarak dan luas rol dari pusat rol dengan sudut 2°. Spesimen seharusnya diberi beban rata-rata dengan rata-rata peningkatan *stress intensity factor* sebesar 30-150 ksi $\sqrt{in/min}$ (0,55-2.75 Mpa $\sqrt{m/s}$), sesuai ketentuan tersebut maka rata-rata beban untuk 1 inch tebal spesimen adalah 4,0000 dan 20,000 lb/min (0.03-015 kN/sec). Rata-rata beban diperkirakan 10⁻⁵ in./in./sec dan merupakan beban statis.

b. Test record

Dari percobaan ini akan dihasilkan suatu *record* yang menghubungkan antara beban dengan displasemen yang didapatkan selama pengetesan. *Slope* awal untuk perbandingan linier kedua *output* (perbandingan antara displaseman dan beban) tersebut antara 0,5 dan 1,5. Biasanya kita menggambarkan beban dalam sumbu x dan displaseman dalam sumbu y. Pilihlah sebuah titik dari hasil percobaan sehingga beban maksimum dapat ditentukan dengan keakuratan kurang lebih 1%.

C TTS -

c. Pengukuran

Pengukuran ukuran spesimen, bentuk dan permukaan retak harus dibuat sesuai dengan kebutuhan untuk menghitung K_Q (B, S, W, a dalam gambar 3.2 dan gambar 3.3). Panjang retak harus diukur pada tengah antara ujung retak terdepan dengan tengah-tengah retak terbelakang dengan toleransi 0.5%.

6. Analisa record P-Δ

Apabila suatu material benar-benar elastis sampai terjadi kegagalan kurva beban-displaseman akan mendekati garis lurus sampai terjadi kegagalan. Pada kebanyakan material yang sangat getas kurva yang terjadi tidak linier. Suatu kurva beban displaseman yang diperlihatkan. pada gambar 3.6 menunjukkan bahwa untuk material-material yang berbeda kurva yang terjadi juga bervariasi. Untuk menjamin bahwa K_{lc} yang telah didapatkan (memenuhi batasan untuk *plane-strain*),

Gambar 3.6 Macam bentuk kurva load-displacement

Pertama kali diperlukan perhitungan harga K_Q yang termasuk dalam record pengetesan, kemudian harus dilihat apakah nilai K_Q ini sesuai dengan ukuran *yield strenght* sesuai dengan persaman 3.6. Apabila nilai K_Q ini sesuai maka K_Q = K_{Ic}, apabila tidak maka pengetesan dianggap gagal, dan apabila hal ini kemudian digunakan untuk memperkirakan ketegaran retak akan tidak sesuai dengan *standart* ASTM.

Gambar 3.7 Pembutan offset 5%

Setelah dilakukan percobaan dipilih sebuah *scant offset* 5% untuk mendifinisikan K_{lc} sebagai faktor intensitas tegangan kritis dimana retak mencapai panjang efektif 2% lebih besar dari K_{lc} pada waktu pengetesan. Prosedur ini terdiri dari mengambar suatu garis *scant* dari titik pusat dengan slope 5% kurang dari tangen *original slope*. Beban P₅ adalah beban pada perpotongan antara *scant* dengan *record* pengetesan (gambar 3.7). Apabila beban pada setiap titik dalam

record P- Δ lebih rendah dibandingkan P₅ maka P_Q adalah P₅ (gambar 3.6 tipe 1). Jika beban maksimum lebih besar dibandingkan P₅ maka beban ini adalah P_Q (gambar 3.6 tipe 2 dan 3).

7. Pehitungan kondisional K_{lc} (K_Q)

Setelah menentuksn P_Q kemudian menghitung K_Q, dengan menggunakan rumus sesuai *standart* ASTM E 399-90, untuk *Three-Point Bending Specimen* adalah :

$$K_{Q} = \frac{P_{Q}S}{BW^{\frac{3}{2}}} f\left(\frac{a}{W}\right)$$

$$f\left(\frac{a}{W}\right) = \frac{3(a/W)^{\frac{1}{2}} \left[1.99 - (a/W)(1 - a/W)x(2.15 - 3.93a/W + 2.7a^{2}/W^{2})\right]}{2(1 + 2a/W)(1 - a/W)^{\frac{3}{2}}}$$

Dimana

P_Q = Beban yang ditentukan, klbf (kN)

B = Tebal spesimen, in (cm)

S = Jarak tumpuan beban, in (cm)

W = lebar spesimen, in (cm)

A = panjang retak, in (cm)

8. Pengecekan akhir K_{lc}

Apabila harga perhitungan sesuai dengan ketentuan diatas maka harga $K_{Q} = K_{lc}$. Dengan kata lain untuk menentukan K_{lc} agar memenuhi hal tersebut diatas digunakan spesimen lebih besar ukuran spesimen dapat diperkirakan berdasarkan K_{Q} . Apabila K_{Q} tidak memenuhi maka dipakai strenght ratio R untuk menghitung ketegaran material dengan syarat spesimen yang diuji dan spesimen tadi mempunyai ukuran sama. Untuk *Three-Point Bending Specimen*

$$R = \frac{6P_{\max}W}{B(W-a)^2\sigma_{ys}}$$

3.5 Pengaruh dari Temperatur, Loading Rate, dan Ketebalan Pelat pada Fracture Toughness

3.5.1 Pendahuluhan

Seperti telah dijelaskan sebelumnya bahwa metode pengujian standart ASTM digunakan untuk menentukan harga kritis *plane-strain* (K_{IC}). Selanjutnya akan dijelaskan perilaku dari material yang mengalami beban statis atau beban dinamis *fracture toughness* sebagai fungsi temperatur.

Kenyataan menunjukkan bahwa harga *fracture toughness* dari berbagai struktur material meningkat sejalan dengan meningkatnya temperatur. Peningkatan ini dapat diukur menggunakan berbagai *notchtoughness specimen* seperti *V-notch impact specimen*, dan tentunya diharapkan harganya akan sama jika menggunakan *fracture mechanics* tipe spesimen. Kita tidak banyak mengetahui bahwa perilaku *fracture* tougness dapat berkurang secara berarti dengan meningkatnya beban. Sebelum *engineer* membangun struktur maka nilai kritis *fracture toughness*, beban dan tebal pelat harus diketahui, sehingga dapat menjelaskan pengaruh umum dari ketiga variabel tersebut yang nantinya akan dapat digunakan sebagai dasar desain struktur.

3.5.2 Perilaku Plane-Strain pada Transisi Temperatur

Terdapat berbagai macam tipe pengetesan *fracture toughness* untuk menentukan *notch-toughness* dari struktur material. Untuk struktur baja terdapat beberapa spesimen sperti *charpy V-notch (CVN) impact specimen, dynamic tear (DT) test specimen, precrack impact (PCI) spesimen* dan lain-lain yang diuji pada beberapa kondisi temparatur untuk menentukan perilaku *notch-toughness* dalam interval temperatur transisi. Interval temperatur ini adalah daerah dimana *notch-toughness* dari material berubah dari *brittle* menjadi *ductile*, seperti terlihat pada gambar 3.8, dan untuk struktur baja diperkirakan bahwa temperatur memberikan pengaruh yang penting pada perilaku *notch-toughness* dari struktur material.

Harga notch-toughness akan meningkat seiring dengan meningkatnya temperatur, dan dari perilaku tersebut desain *engineer* dapat menggunakannya pada pendekatan rancang bangun dari temperatur transisi, sehingga dapat dipilih material yang mempunyai *toughness* yang cocok untuk struktur tertentu.

Gambar 3.9 memperlihatkan secara sistematis dari dua baja dengan perbedaan 15-ft-lb transition temperatur. Dari gambar terlihat baja A seharusnya sesuai dengan keinginan karena 15-ft-lb transition temperatur seharusnya dibawah suhu operasi, sedangkan baja B tidak masuk kriteria. Pendekatan temperatur transisi ini telah digunakan oleh material engineer untuk menentukan berbagai spesifikasi ketegaran.

TEST TEMPERATURE

Gambar 3.9 Skema hubungan antara 15-ft-lb transition temperatur

dan temperatur operasi.

Dengan kata lain notch-toghness dari berbagai struktur material memperlihatkan perubahan pada plane-strian fracture tuoghness, seperti terlihat pada gambar 3.10. Hasil percobaan yang diperlihatkan pada gambar 3.10 sesuai dengan standart ASTM untuk ketebalan minimum spesimen pada pengujian *plane-strain fracture toughness* sesuai dengan persamaan 3.6. Standart ASTM ini dapat dijelaskan pada istilah Irwin *plane-strain* β dengan nilai sebagai berikut

Gambar 3.10 Perilaku transisi plane-strain fracture toughness

sebagai fungsi dari temperatur.

Kurva pada gambar 3.10 digambar dari titik-titik tersebut dimana temperatur transisi K_{IC} tidak dipengarui dari geometri spesimen , berarti rata-rata peningkatan K_{IC} dengan temperatur tidak konstan tetapi meningkat secara *gradual* pada interval temperatur tertentu untuk pengujian tertentu dan kondisi pengujian tertentu. Pada kasus tersebut perubahan meningkatnya harga K_{ic} terjadi pada interval –150° F sampai – 100° F dan dikelompokkan dengan perubahan *microscopic fracture mode*.

dan extrapolasi Kic.

Gambar 3.11 (a) memperlihatkan berbagai macam dari parameter ($K_{IC} I \sigma_{ys}$)², dimana ini adalah proporsional untuk ukuran zona plastic seperti fungsi dari temperatur. Pada temperatur diatas -40° F, besaran dari zona plastik meningkat. Perilaku ini menunjukkan bahwa nilai K_{IC} untuk material tertentu mengabaikan ukuran spesimen. Patut dicatat bahwa pertumbuhan awal *fracture mechanics* tidak sama dengan *planestrain transition*, berarti dapat dikatakan dengan meningkatnya K_{IC} dengan temperatur seperti gambar 3.11 (b) mengakibatkan berkurangnya *throughthickness constrain* dan pada akhirnya *plane-strain* menjadi *plane-stress*, atau tebal transisi. Selanjutnya dapat dikatakan bahwa makin tebal spesimen yang digunakan perubahan *toughness* pada temperatur tinggi dapat ditentukan dengan ekstrapolasi dari hasil pengujian K_{IC} pada temperatur rendah seperti terlihat pada gambar 4.11 (b).

3.5.3 Pengaruh Temperatur dan Beban pada K_{IC} dan K_{Id}

Secara umum ketegaran retak dari strukur material khusunya baja meningkat dengan meningkatnya temperatur dan berkurangnya beban. Ada dua tipe umum dari perilaku tersebut yang digambarkan secara sistematis pada gambar 3.12. Ketegaran retak yang diukur pada impact test K_{Id} umumnya lebih kecil dari pada ketegaran retak yang diukur pada statis test K_{IC}. Pada temperatur konstan pengujian ketegaran retak pada beban tinggi umumnya menghasilkan nilai ketegaran yang rendah.

Gambar 3.12 Pengaruh dari temperatur dan loading rate pada KIC

Rata-rata peningkatan harga K_{IC} dengan temperatur adalah tidak konstan tetapi meningkat secara *gradual* diatas pengujian temperatur yang diberikan. Analisa *fractographic* memperlihatkan bahwa *fracture toughness transition temperatur* dikelompokkan dengan perubahan pada *microscopic fracture mode* pada ujung retak. Pada akhir dari interval transisi temperatur mode dari awal retak adalah *cleavage*, dan diatasnya *fracture initiation* adalah *ductile*. Pada daerah transisi temperatur berubah secara kontinu pada *fracture mode*.

Terdapat dua perubahan pada perilaku *fracture* dengan temperatur, yang dinamakan K_{IC} temperatur transisi yang digambarkan, dimana mengacu pada *plane-strain* transisi dengan temperatur, dan perubahan dari *plane-strain* menjadi *plane-stress (elastic plastic)* pada ujung retak berkurang. Plane-strain umumnya mengacu untuk *microscopic state* dari *stress* pada daerah transisi *plane-strain*, perilaku *microscopic fracture* dapat berubah dengan meningkatnya temperatur dari 100%

cleavage atau quasi-cleavage menjadi campuran dari quasi-cleavage, tear dimple, dan large flat tear area. Selanjutnya perilaku microscopic fracture dapat berubah ketika macroscopic state dari stress masih sama dengan plane-strain. Perubahan perilaku microscopic fracture ini diawali dengan meningkatnya secara cepat dari plane-strain fracture toughness. Gambar 3.10 menggambarkan macroscopic plane-strain transisi dari struktur baja yang mempunyai σ_{ys} 100 ksi. Gambar 3.13 adalah gambar dari hasil fractograpic dari perubahan perilaku microscopic untuk spesimen pengujian yang sama. Pada temperatur -250° F permukaan fracture adalah 100% quasi-cleavage dan pada temperatur -75° F adalah 100% tear dimple. Pada -140° F fracture adalah mendekati 90% quasi-cleavage dan pada temperatur -50° F (mendekati dari plane-strain transisi dimana titik pada plane-strain constraint pada ujung retak menurun secara drastis) fracture mendekati 90% tear dimple.

Gambar 3.13 Fractographic dari Kic spesimen pada beberapa temperatur
3.5.4 Pengaruh Ketebalan pada Fracture Toughness

Ketebalan pelat mempunyai pengaruh terhadap tegangan pada ujung retak. Untuk menjaga kondisi tetap *plane-strain* pada ujung retak, maka ketebalan pelat harus cukup besar. Untuk menentukan K_{lc} suatu material pada kondisi *plane-strain* maka dibutuhkan spesimen yang tebal yang tergantung pada perbandingan K_{lc}²/σ_{ys}². Pada spesimen yang tipis, dimana ukuran zona plastis dibandingkan dengan ketebalan adalah besar akan terjadi kondisi *plane-stress*. Pada kondisi ini dapat diterapkan intensitas tegangan yang lebih tinggi sebelum terjadi perambatan retak. Intensitas tegangan kritis untuk keretakan biasanya dinyatakan dengan K_c tetapi disini dinyatakan dengan K_{lc} untuk menyatakan kondisi pembebanan mode I.

Gambar 3.14 Ketegaran material merupakan fungsi ketebalan Ketergantungan K_{Ic} pada ketebalan dinyatakan dengan diagram pada gambar 3.14. Dari gambar terlihat bahwa terdapat batas perubahan dimana akan dimulainya kondisi *plane-strain* dan ketegaran material K_{lc} tidak tergantung pada ketebalan. Kita juga dapat melihat adanya ketebalan optimum dimana keuletan material akan mencapai harga yang tertinggi. Harga ini biasanya dinyatakan sebagai *plane-stress fracture toughness* yang sebenarnya. Keuletan material mempunyai nilai diantara daerah ketebalan optimum dan daerah transisi *plane-stress plane-strain*. Sedangkan untuk daerah dibawah ketebalan optimum harga ketegaran material tidak menentu.

BAB IV

ELASTIC – PLASTIC FRACTURE MECHANICS

4.1 Pendahuluan

Dalam mendesain struktur material yang akan kita gunakan akan menyesuaikan dengan keperluan, material dapat berupa *low strenght material, medium strenght* material ataupun *high strenght material* seperti pada pembangunan jembatan, kapal, pressure vessel dan lain sebagainya, yang kesemuanya tidak mempunyai cukup ketebalan untuk mencapai kondisi *plane-strain* dibawah *slow loading* (beban rendah) pada temperatur normal. Untuk beberapa aplikasi struktur, analisa *linear elastic* yang digunakan untuk menghitung harga K_{lc} akan tidak valid pada daerah zona plastis yang besar dan perilaku *elastic-plastic*. Sehingga untuk analisa *fracture* pada material tersebut digunakan metode korelasi empiris untuk menghitung harga K_{lc} digunakan metode *elastic-plastis fracture mechanics* yang merupakan pengembangan dari analisa *linear-elastic*.

Terdapat tiga cara pada metode *elastic-plastic fracture mechanics* yang merupakan pengembangan dari *linear-elastic fracture mechanics* yaitu :

1. Crack-opening displacement (COD)

- 2. Analisa Kurva-R
- 3. J-Integral

Ketiga metode diatas semuanya adalah baru, dan masingmasing metode dapat digunakan untuk mencari harga material toughness pada kondisi tegangan ijin atau ukuran retak. Dalam tugas akhir kali ini pembahasan akan ditekankan pada dua metode yaitu *crack-opening displacement* dan J-Integral.

4.2 Fracture dibawah General Yield

Linear - elastic fracture mechanis dapat dipakai atau diterapkan sejauh zona plastis kecil apabila dibandingkan dengan ukuran retak (a). Ini dapat digunakan untuk kasus dimana material yang mengalami fracture mempunyai tegangan dibawah tegangan yield dan dalam kondisi planestrain. Dalam kondisi tersebut diatas fracture dapat dihitung dengan menggunakan K_{lc} atau G_{lc}. Dalam kondisi plane-stress zona retak plastis akan lebih besar apabila dibandingkan dengan plane-strain. Jika fracture terjadi pada tegangan yang mempunyai perbandingan dengan tegangan yield yang kecil maka konsep diatas dapat diterapkan untuk menyelesaikan masalah tersebut. Jika zona plastis lebih besar apabila dibandingkan dengan ukuran retak (high fracture stress atau high crack resistante) maka linear-elastic fracture mechanics tidak akan dapat digunakan untuk memecahkan masalah ini.

Masalah tersebut terdiri dari dua aspek, pertama adalah apabila terjadi pada *low toughness material* atau material dengan ketegaran yang rendah dengan retak yang sangat cepat. Besarnya tegangan *fracture* adalah $\sigma_c = K_{lc} \sqrt{\pi a} \cdot \sigma_c$ mempunyai harga tak terhingga jika ukuran retak mendekati nol (gambar 4.1). Hal ini dalam kenyataan tidak mungkin terjadi, *fracture stress* yang seharusnya terjadi di A pada (a/W)₁ dalam

Gambar 4.1 Fracture dibawah general yield

kenyataan terjadi di B, dan diprediksi oleh K_{lc}. Dalam kasus (a/W) mendekati nol *fracture stress* tidak dapat diprediksi oleh *linear-elastic fracture mechanics*. Zona plastis akan menjadi besar dan membentang lewat seksi retak jika *net section stress* (σ_{net}) sama dengan *yield stress* (σ_{vs})

$$\sigma_{net} = \sigma \frac{w}{w - u} \ge \sigma_{ys} \tag{4.1}$$

Dimana σ_{net} diperoleh dengan membagi beban dengan seksi area dari material yang tak mengalamii retak (W–a) dalam retak kecil $\sigma_{net} \approx \sigma$. Disini diharapkan bahwa K_{lc} yang dapat diprediksi terjadi pada σ_c mendekati *yield stress*. Dalam praktek σ_c harus lebih rendah 66% *yield*. Kedua adalah kasus dimana *linear-elastic fracture mechanics* tak dapat diterapkan dimana terjadi pada *high toughness material* (gambar 4.1). Kondisi *net section* yang dihasilkan dari persamaan 4.1 dapat ditulis sebagai berikut.

$$\sigma = \sigma_{1S} \left(1 - \frac{a}{w} \right) \tag{4.2}$$

Garis lurus dari σ_{ys} ke a/w = 1 digambarkan gambar 4.1. Untuk material *high toughness, high K*_{lc}, *fracture stress* selalu lebih tinggi dari *stress net section yield*. Hal ini berarti K_{lc} tidak dapat diukur, dimana *general yield* muncul pada C dan D tak pernah dapat dicapai.

Dibawah *general yield* zona plastis membentang lewat jumlah sisi retak. Deformasi plastis pada *crack tip* muncul secara bebas. Retak akan menjalar jika *plastic strain* (regangan plastik) pada *crack tip* melampaui harga kritis. Kondisi *fracture* dicapai atas kemunculan *plastic strain* secara cukup. Sebuah bentuk pengukuran *plastic strain* pada *crack tip* adalah CTOD. Dapat dibayangkan *fracture* muncul pada harga CTOD yang kritis. Kriteria ini diusulkan pertama kali oleh Wells⁶.

4.3 Crack opening Dispacement

Pada tahun 1961 Wells⁷ mengemukakan bahwa tingkah laku fracture dalam daerah sekitar retak tajam dapat diprediksi pada karateristik bukaan dari permukaan takik (COD). Seperti terlihat pada gambar 4.2.

Selanjutnya ditunjukkan bahwa konsep COD adalah analog dengan gaya pertumbuhan retak kritis (*crack extension force*) *G*_{*lc*}, dan kemudian harga COD dihubungkan ke K_{lc}. Pengukuran COD dapat dilaksanakan, waktu ada perimbangan aliran plastik kesebuah retak, dan diharapkan untuk mengetahui tingkah laku *elastic-plastic*. Untuk ini dapat digunakan untuk menetapkan tegangan kritis dalam cara kwantitatif.

CLIP GAGE DISPLACEMENT, inches

Gambar 4.2 Hubungan antara perilaku tes Kic dan tes COD

4.3.1. Crack Tip Opening Displacement (CTOD)

Dalam kasus LEFM, penyesuaian elastik COD masih dapat digunakan. Displasemen dari permukaan retak seperti terlihat pada gambar 4.3 adalah sebagai berikut :

$$COD = 2\upsilon = \frac{4\sigma}{E}\sqrt{a^2 - x^2}$$
4.3

Dengan cara memasukkan koreksi zona plastis rp bentuknya akan menjadi

$$COD = \frac{4\sigma}{E} \sqrt{(a+rp^*)^2 - x^2}$$
 4.4

Dimana $a + rp^{*}$ adalah retak efektif dan pusat sistem koordinat adalah pusat retak. CTOD pada ujung retak fisik yang besar x = a untuk $rp^{*} << a$ sehingga

Gambar 4.3 Crack opening displacement

20 20ett = 20+2ro"

Pada analisa disini disebutkan adanya pengaruh zona plastis, sehingga panjang retak tidak lagi *a* tetapi diganti panjang retak efektif (*a_{eff}*) dengan harga COD akan menjadi

$$COD = \frac{4\sigma}{E} \sqrt{2a_{eff}r}$$
 4.6

Untuk menghitung harga CTOD, maka harga $r = rp^{*}$ dan $a_{eff} \cong a$ sesuai dengan persamaan 4.5 dengan mensubtitusikan harga $rp^{*} = \sigma^{2} a/2\sigma_{ys}^{2}$ sehingga menghasilkan

$$CTOD = \frac{4\sigma}{\pi} \frac{K_I^2}{E\sigma_{vs}} \text{ atau } CTOD = \frac{4\sigma^2 a}{\pi E\sigma_{vs}}$$
 4.7

Persaman 4.7 adalah kondisi dalam batas LEFM, fracture muncul jika $K_l = K_{lc}$. Pengukuran langsung CTOD adalah sukar, dan secara *virtual* adalah tak mungkin. CTOD dapat diperoleh secara tak langsung dengan

pengukuran K dan penggunaan persamaan 4.7 yang mana faktor $4/\pi$ muncul dengan adanya koreksi daerah plastis, $4/\pi$ ini masih diragukan. Cara lain dalam menentukan CTOD adalah manipulasi persamaan dengan cara mensubtitusi persamaam 4.5 kedalam persamaan 4.4 dan mengabaikan harga rp^{*2} , maka diperoleh

$$COD = \frac{4\sigma}{E} \sqrt{a^2 - x^2 + \frac{E^2}{16\sigma^2} (CTOD)^2}$$
 4.8

Dari pengukuran COD, maka dapat diperoleh harga CTOD mis pada x = 0, pada pusat retak diukur COD tanpa asumsi tentang ukuran koreksi zona plastis.

4.3.2. Crack Tip Opening Displacement Pendekatan Dugdale

Dugdale⁷ membuat model *strip yield* seperti terlihat pada gambar 4.4 dibawah ini :

Gambar 4.4 Model Dugdale strip yield

Model plastisitas pada ujung retak yang diasumsikan Dugdale menunjukkan analisa model *strip yield*. Model ini menghubungkan COD ke tegangan aplikasi (σ) serta panjang retak (a). Model *strip yield* terdiri dari sebuah *through-thickness crack* dalam bidang pelat yang terbatas yang dipengarui oleh tegangan tarik normal kebidang retak. Retak dipertimbangkan memiliki panjang 2a + 2p. Pada tiap-tiap ujung retak ada sebuah panjang p yang dipengaruhi *yield-point stress* yang menbentang untuk menutup retak, dengan kata lain mencegah adanya bukaan retak, sehingga panjang real akan menjadi 2a.

Asumsi lain dari model ini adalah bahwa daerah *yield* dari panjang p membentang dari ujung retak real, a, sebagaimana bertambahnya beban. Displasemen pada *crack-tip*, δ , yang mana adalah CTOD, bertambah sebagai panjang retak (a) sebagaimana bertambahnya beban aplikasi (σ). Sehingga ini menjadi dasar dari persaman yang dikembangkan Dugdale⁷ yaitu :

$$\delta = 8 \frac{\sigma_{ys}a}{\pi E} \ln \sec \left(\frac{\pi}{2} \frac{\sigma}{\sigma_{ys}}\right)$$
4.9

dengan menggunakan deret ekspansi untuk *In sec* $(\pi/2 \sigma/\sigma_{ys})$ maka persamaan 4.9 akan menjadi

$$\delta = 8 \frac{\sigma_{ys}a}{\pi E} \left[\frac{1}{2} \left(\frac{\pi \sigma}{2\sigma_{ys}} \right)^2 + \frac{1}{12} \left(\frac{\pi \sigma}{2\sigma_{ys}} \right)^4 + \frac{1}{45} \left(\frac{\pi \sigma}{2\sigma_{ys}} \right)^6 + \dots \right]$$
 4.10

Untuk harga tegangan nominal kurang dari 3/4 σ_{ys} , sebuah pendekatan δ , dapt dipakai bentuk pertama dari deret ekspansi diatas, sehingga

$$CTOD = \delta = \frac{\pi \sigma^2 a}{E \sigma_{vs}}$$
 atau $CTOD = \delta = \frac{K^2}{E \sigma_{vs}}$ 4.11

Jika $K^2 = \sigma^2 \pi a$, dari persaman 4.11 didapat hubungan $\delta E \sigma_{ys} = K_1^2$ dan jika $E = \sigma_{ys}/\epsilon_{ys}$. Strain energi release rate G dapat ditulis dalam bentuk sebagai berikut

$$G = \frac{\pi \sigma^2 a}{E}$$

$$G = \delta \sigma_{ys}$$
4.12

Terjadi perbedaan antara CTOD (pendekatan LEFM) dan CTOD (Dugdale) yaitu harga 1 da $4/\pi$. Hal ini disebabkan aleh pertimbangan dalam pembuatan asumsi.

4.3.3. Analisis CTOD Dari Hasil Percobaan.

Harga CTOD dapat dicari dengan menggunakan kurva *loaddisplacement* seperti pada pengujian *fracture toughness* atau kurva beban dan komponen plastik dari *clip gage displacement* vp, untuk menentukan harga beban dan komponen plastik dari *clip gage* (vp). Cara menentukannya adalah sebagai berikut ; dari kurva *load-displacement* dari hasil percobaan maka dilakukan offset yang sejajar dengan original *slope* pada *pop-in* apabila tidak terdapat *pop-in* maka dilakukan *offset* pada beban maksimum seperti terlihat pada gambar 4.5 sehingga akan didapat harga dari Pc dan vp.

IV - 10

Gambar 4.5 Tipe dari beban lawan clip gage displasemen

Untuk menentukan harga CTOD (δ), maka harga dari *clip* sangatlah penting untuk mengkonversikan harga CTOD yang sebenarnya dari hasil percobaan . Untuk menentukan harga δ pada *pengujian three-point bending* SE (B) dengan panjang retak 0.45 \leq a/W \leq 0.55 sesuai standart ASTM E 1290-93⁸ maka dipakai rumus sebagai berikut :

$$\delta = \frac{K^2 (1 - \upsilon^2)}{2\sigma_{ysE}} + \frac{r_p (W - a_o) v_p}{[r_p (W - a_o) + a_o + z]}$$
4.13

dimana

 $K = YP / [BW]^{1/2}$

Y dtentukan dengan persamaan sebagai berikut

Untuk SE (B) spesimen dengan S = 4W

$$Y = \frac{6(a_o/W)^{1/2}(1.99 - a_o/W[1 - a_o/W] * [2.15 - 3.93a_o/W + 2.7(a_o/W)^{1/2}])}{(1 + 2a_o/W)(1 - a_o/W)^{3/2}}$$

P = Beban sesuai gambar 4.5

v = Angka poisson

σys = Tegangan yield pada temperatur pengujian

E = Modulus *young* pada temperatur pengujian

vp = Komponen plastik dari clip gage opening displacement

z = Jarak permukaan retak terhadap ujung alat pengukur.

 r_p = Faktor rotasi plastik = 0.4 (1+ α)

Untuk SE (B) spesimen $\alpha = 0.1$ dan r_p = 0.44.

4.4 J - Integral.

J – Integral pertama kali diperkenalkan oleh Rice⁷, merupakan suatu metode untuk menentukan karateristik bidang *stress-strain* pada ujung retak dengan cara mengintegralkan lintasan yang diambil dari jarak secukupnya dari ujung retak. Berdasarkan yielding yang terjadi disekitar ujung retak, maka daerah dari ujung retak dapat dianalisa, dengan demikian perilaku daerah pada ujung retak dapat diketahui. Teknik ini dapat digunakan untuk memperkirakan karateristik kepecahan dari material yang memiliki perilaku *elastic-plastic* dan ini secara langsung berarti memberikan konsep *fracture mechanic* dari perilaku *linear-elastic* (K_{1c}), menjadi *elastic-plastic*

Untuk perilaku *linear-elastic*, J – integral identik dengan G, yaitu energi rata-rata yang dibutuhkan perunit perpanjangan retak. Sedangkan

kriteria kegagalan J untuk kasus *linear-elastic* identik dengan K_{Ic}, kriteria kegagalan untuk kondisi *linear-elastic plane-strain* adalah sebagai berikut

$$J_{Ic} = G_{Ic} = \frac{(1 - \upsilon^2)K_{Ic}^2}{E}$$
 4.14

Integral garis energi J didefinisikan untuk elastik yang lain atau perilaku elastic-palstic adalah sebagai berikut

$$J = \int_{R} W dy - T \left(\frac{\partial U}{\partial x}\right) dx$$
 4.15

dimana

R = Bentuk bidang yang mengelilingi ujung retak seperti gambar 4.6 (sebagai catatan integral dihitung pada bidang yang berlawanan arah jarum jam degan cara dimulai dari permukaan *notch* terbawah dan menerus sepanjang lintasan orbit R sampai permukaan datar teratas)

Gambar 4.6 Sistem koordinat crack-tip dan panjang lintasan integral

W = Strain energy density = $\int_0^{\epsilon} \sigma d \in$

T = Fraksion vektor didefinisikan berdasarkan arah normal n sepanjang

 $R,T = \sigma_{ij}n_j$

S = Panjang busur sepanjang R

Untuk *linear-elastic* atau *elastic-plastic* material yang dipakai oleh teori deformasi dari plastisitas, Rice memperkenalkan cara penyelesaian dengan J-integral.

Dari sudut pandang fisik J-integral dapat dijelaskan sebagai perbedaan energi potensial antara dua bentuk beban yang berdekatan dengan ujung retak.

$$J = -\frac{1}{B}\frac{\partial U}{\partial a}$$
 4.16

Definisi ini diperlihatkan secara skematis pada gambar 4.7, dimana luasan yang diarsir adalah ∂ U = JB da. Sebagai catatan ∆ adalah ukuran dari fungsi beban

Gambar 4.7 Interpretasi dari J-integral

Berdasarkan perkembangan dari J-integral sebagai metode analisa untuk *elastic-plastic*. Analisa bidang *elastic-plastic* ujung retak yang diperkenalkan Begley dan Landes⁷ yang menggunakan teknik gabungan. Dalam metode ini beberapa spesimen yang mempunyai panjang retak yang bervariasi untuk mendapatkan kurva *load-displacement*, seperti gambar 4.8. Harga dari energi potensial perunit tebal (luasan dibawah kurva P-Δ) ditentukan untuk perbedaan panjang awal retak pada berbagai macam harga dari defleksi. Harga ini digambarkan pada gambar 4.9 untuk baja 1190 NiCrMoV yang mempunyai tegangan *yield* 135 ksi. Slope atau derajat kemiringan dari kurva pada gambar 4.9 adalah perubahan energi potensial perunit tebal, perunit perubahan panjang retak dan ini sama dengan harga dari J-integral.

Gambar 4.8 Skema dari kurva load-displacement untuk berbagai macam retak

Bucci et al⁷ memberikan catatan prosedur tersebut untuk menghitung J-integral sebagai fungsi dari δ dari kurva *load-displacement*;" Memberikan konfigurasi tipe pengujian spesimen (gambar 4.10a), kurva *load-displacement* (P- Δ) ditentukan untuk berbagai macam pengujian spesimen, yang mempunyai perbedaan panjang retak sendiri (gambar 4.10b). Untuk memberikan harga defleksi Δ luasan dibawah setiap *record load-displacement* dapat menunjukkan energi *pseudo-potensial* dari bentuk material *displacement* tersebut. Energi dapat digambar pada gambar 4.10c sebagai energi normal *pseudo-potensial* perunit tebal, U/B, lawan panjang retak, a, untuk harga Δ yang konstan. Dari J =-(1/B) (∂ U/ ∂ a), J mungkin dapat diperkirakan sebagai luasan antara kurva *load-displacemet* yang berdekatan dengan ukuran retak atau lebih sederhananya sebagai *slope* negatif dari kurva U/B lawan panjang retak untuk harga Δ konstan.

Gambar 4.9 Energi yang diserap pada kurva defleksi-crack length,

material NiCrMoV

Perhitungan dari J lawan Δ ini dihubungkan dengan fungsi ukuran retak (a) [gambar 4.10d]. Hubungan antara J- Δ untuk ukuran retak yang diberikan , secara percobaan dapat digunakan untuk menentukan harga displasemen

kepecahan kritis, dimana karateristik dari kepecahan tersebut tidak stabil pada pengujian spesimen tersebut, mungkin juga dapat digunakan untuk menentukan harga J kritis (J_{Ic})".

Gambar 4.10 Skematik diagram dari J-δ yang didapat dari kurva load-displacement

Metode untuk menentukan J dari *design* tunggal spesimen (untuk retak awal yang sama) yang dikembangkan oleh Bucci hampir sama dengan metode yang dikembangkan oleh Rice.

Metode pengembangan dari Rice⁷, untuk menentukan harga J pada *notch* yang dalam pada *side-bend specimen* memperlihatkan secara sederhana teknik *design single* spesimen dan untuk menentukan J secara lebih lanjut dikembangkan oleh Landes dan Begley⁷. Teknik ini dapat digunakan untuk *side-bend* spesimen, *ben bar* atau *compact specimen* yang mempunyai retak (a/W \ge 0,6). Dari grafik *load-displacment* maka harga J dapat ditentukan sebagai fungsi dari displasemen

$$J = \frac{2A}{B.b}$$
 4.17

dimana

A = Luasan dibawah kurva *load-displacement* untuk berbagai perpanjangan retak.

B = Tebal spesimen

Nilai kritis dari J diberi notasi J_{Ic} yang merupakan perpanjangan retak pada bidang pertama. Berdasarkan pengujian Landes-Begley memperlihatkan bahwa harga J_{Ic} (dikonversikan pada harga K_{Ic}) mendekati sama dengan harga K_{Ic} untuk tebal spesimen lebih besar dari 12 in.

4.5 Analisis Data J-integral Untuk Single Spesimen.

Untuk menetukan harga J dari percobaan dapat dilakukan dengan cara sebagai berikut :

 Dari kurva load-displacement pada pengujian *fracture* maka untuk menentukan luasan dibawah kurva tersebut sedikitnya dibagi menjadi
 4 bagian lusan sesuai *standart* ASTM E 813-89⁸ (seperti terlihat pada gambar 4.11a).

Gambar 4.11 Prosedur untuk menentukan J

 Menentukan harga J, untuk three-point bend harga J sesuai persamaan berikut :

$$J = J_{el} + J_{pl} \tag{4.18}$$

Dimana

Jel = Komponen elastik dari J

J_{pl} = Komponen plastik dari J

Untuk *three-point* bend spesimen, dari harga v₁ dan P_i pada kurva load-displacement maka dapat ditentukan harga dari

$$J_{PL(i)} = \frac{2A_{PL(i)}}{B_N b_o}$$
$$J_{EL(i)} = \frac{(K_{(i)})^2 (1 - \upsilon^2)}{E}$$

Dari metode pengetesan ASTM E 399

$$K_{(i)} = \left[P_{(i)} S / \left((BB_n)^{1/2} W^{3/2} \right) \right] . f(a_o / W)$$

Dengan

$$f(a_o/W) = \frac{3(a_o/W)^{\frac{1}{2}} \left[1.99 - (a_o/W)(1 - a_o/W)x(2.15 - 3.93a_o/W + 2.7a_o^2/W^2) \right]}{2(1 + 2a_o/W)(1 - a_o/W)^{\frac{3}{2}}}$$

Dimana

1 = Point pada kurva beban (P) versus displacement (v)

A_{PL(i)} = Luas A seperti gambar 4.11a

B_N = Tebal Spesimen

bo = W-ao

S = Bend span = 4W

- Membuat titik untuk pembuat kurva J lawan crack extension (gambar 4.11 c)
- Membuat blunting line dengan formula J = 2σ_{flow}∆a [gambar 4.11d].
 (σ_{flow} dapat ditentukan dari setengah dari jumlah tegangan *yield* dan tegangan *ultimate*)
- Membuat kurva J-Crack extension dengan cara regresi untuk mendapatkan kurva yang stream line (gambar 4.11 d)
- Anlisis data

Untuk menentukan harga J_Q , minimum *crack* ($\Delta a_p min$), maksimum *crack* ($\Delta a_p max$), maka dibutlah garis yang sejajar *blunting line* sepanjang 0.15 mm, 0.2 mm, dan 1.5 mm seperti terlihat pada gambar 4.12, diamana

Harga J_Q didapat dari perpotongan kurva J-∆ dengan offset
 0.2 mm blunting line

- Harga ∆a_{p min} didapat dari perpotongan kurva J-∆ dengan offset
 0.15 mm blunting line
- Harga $\Delta a_{p max}$ didapat dari perpotongan kurva J- Δ dengan offset

0.15 mm blunting line

Gambar 4.12 Definisi untuk kualifikasi data

Validasi harga J_Q

Harga J_Q = J_{Ic} jika,

Tebal B > 25 J_Q / σ_y

Sisa lebar $b_o > 25 J_Q / \sigma_y$

BAB V

6

र्(

5

٤(

PELAKSANAAN DAN HASIL

PENGUJIAN

BAB V

PELAKSANAAN DAN HASIL PENGUJIAN

5.1 Pendahuluan

Pengujian *fracture* (kepecahan) dilakukan untuk mendapatkan harga *fracture toughness* atau ketegaran material (K_{ic}) yang selanjutnya dapat digunakan untuk mengetahui harga *crack tip opening displecement* atau bukan pada ujung retak (CTOD/ δ) dan *energy release rate per unit crack extension* atau pelepasan energi per unit perpanjangan retak (J) dengan menggunakan standart *ASTM* (*American Society for Testing and Materials*) yaitu ASTM *standart test* E 399 – 90, E 1290 – 93, E 813 – 89⁸. Persiapan material dan pengujian material sepenuhnya dilakukan dilaboratorium FTK-ITS, yaitu dilaboratorum teknologi mekanik dan laboratorium konstruksi dan kekuatan. Semua bentuk spesimen dan ukuran telah disesuaikan mengacu pada standart yang digunakan yaitu ASTM.

Material yang akan digunakan dalam pengujian adalah A 516 grade 70 yang merupakan jenis material *high tensile* sesuai standart ASTM dan sebagai material pembanding digunakan material jenis SS 41 grade A yang merupakan jenis material *mild steel* sesuai Standart *JIS* (*Japanese Industrial Standard*). Pengujian dilakukan dalam dua kondisi yaitu, pada temperatur ruang (30° C) dan temperatur – 50° C. Material didapat dari PT. PAL Indonesia.

5.2 Spesimen Uji Tarik

Untuk Mengetahui *mechanical properties* (sifat mekanis) dari material A 516 dan SS 41 maka dilakukan uji tarik . Hasil dari uji tarik tersebut nanti akan digunakan untuk pengujian *fracture test*, yaitu sebagai acuan dalam menentukan skala pembebanan. Demensi spesimen sesuai standart ASTM E 8 – 94a⁸, dapat dilihat pada lampiran A. Dalam pembuatan spesimen uji tarik, dimensi disesuaikan dengan standart dan menyesuaikan dengan peralatan yang tersedia dilaboratirium.

Proses pembuatan spesimen dilakukan dilaboratorium konstruksi dan laboratorium teknologi mekanik dengan cara sebagai berikut, material dipotong dengan gergaji sesuai dengan dimensi yang sesuai dengan standart dan dilebihkan sekitar 2–3 mm. Setelah mendapatkan bentuk yang dikehendaki dilakukan penyekrapan sampai ukuran yang diinginkan yang diikuti dengan pengikiran dan diakhiri dengan penghalusan dengan kertas gosok untuk menghindari terjadinya cacat pada permukaan spesimen. Proses pembuatan lebih lanjut dapat dilihat pada lampiran A.

Bentuk dan ukuran spesimen uji tarik yang akan digunakan dalam pengujian seperti pada gambar 5.1. Keterangan pada gambar 5.1 dan dan dimensi hasil pekerjaan, untuk lebih jelasnya dapat dilihat pada lampiran A

Gambar 5.1 Dimensi spesimen uji tarik

5.3 Spesimen Three Point Bending

Material yang dipakai untuk uji *fracture* adalah sama dengan material yang digunakan untuk uji tarik. Bentuk material yang digunakan adalah *three point bending SE (B)*, bentuk dan ukuran sesuai standart ASTM E 399 – 90, E 1290 – 93, E 813 – 89⁸. Bentuk dan ukuran spesimen seperti terlihat pada gambar 5.2.

Gambar 5.2 Bentuk dan dimensi three-point bend specimens

Untuk proses pembuatan masing-masing material adalah sama, yaitu dengan memotong material dengan gergaji mesin sesuai dengan panjang dan lebar yang dibutuhkan dan dilebihkan (± 2) sesuai standart yang digunakan. Kemudian dilakukan pengukuran ulang untuk mendapatkan bentuk yang dikehendaki. Setelah sesuai dengan dimensi yang diinginkan maka dilakukan penyekrapan sampai ukuran yang sebenarnya.

Gambar 5.3 Macam dan bentuk retak pada three point bend specimens

Untuk pembuatan retak dilakukan dengan menggunakan gergaji mesin sesuai dengan panjang retak yang diinginkan dan untuk pembuatan retak fatigue pembuatannya dengan menggunakan gergaji tangan yang telah digerinda mata gergajinya sehingga mendapatkan bentuk retak fatigue yang diinginkan. Bentuk dan ukuran retak yang digunakan adalah *straight throughnotch*, bentuk dan ukuran retak pada percobaan *three point bending* dapat dilihat pada gambar 5.3.

5.4 Kalibrasi

Sebelum *clip gauge* dipasang pada spesimen *three point bending* pada saat melakukan percobaan yang sesungguhnya, maka diperlukan suatu kalibrasi untuk mengecek kebenaran dari penentuan *displacement* relatif dari *knife edge* dengan pembacaan secara langsung strain indikator pada amplifier. Kalibrasi dilakukan dengan menempatkan *clip gauge* pada jangka sorong, seperti terlihat pada gambar 5.4.

Gambar 5.4 Pelaksanaan kalibrasi dengan jangka sorong

Pelaksanaan kalibrasi ini dilakukan sebanyak 2 kali yaitu kalibrasi I dan kalibrasi II, masing-masing kalibrasi dilakukan sebanyak 3 kali eksperimen, sehingga didapatkan rata-rata dari ketiga eksperimen tersebut. Dari data-data tersebut dapat dihasilkan persamaan regresi. Untuk mendapatkan hasil yang lebih baik, dalam pelaksanaan kalibrasi tersebut step atau pertambahan displacemet pada jangka sorong harus kecil. Semakin kecil step yang diberikan semakin baik data yang diberikan. Dari pelaksanaan kalibrasi didapat data-data sebagai berikut :

Kalibrasi I

Skala pada jangka sorong yang digunakan

- Minimum : 7.00 mm
- Maksimum : 9.80 mm
- Step atau langkah : 0.20 mm

Tabel 5.1 Kalibrasi I

No	Skala Jangka	kala Jangka Displacement		Exp 2	Exp 3	Harga rata ²	
	Sorong	(mm)	SI	SI	SI	SI	
1	7	0.0	1543	1437	1629	1536.3333	
2	7.2	0.2	1971	1981	2061	2004.3333	
3	7.4	0.4	2480	2548	2400	2476.0000	
4	7.6	0.6	2791	2963	2983	2912.3333	
5	7.8	0.8	3218	3214	3198	3210.0000	
6	8	1.0	3585	3458	3664	3569.0000	
7	8.2	1.2	4181	4128	4040	4116.3333	
8	8.4	1.4	4842	4878	4838	4852.6667	
9	8.6	1.6	5626	5676	5496	5599.3333	
10	8.8	1.8	5948	6060	5958	5988.6667	
11	9	2.0	6256	6265	6153	6224.6667	
12	9.2	2.2	6452	6472	6508	6477.3333	
13	9.4	2.4	6727	6898	6740	6788.3333	
14	9.6	2.6	7039	7048	6989	7025.3333	
15	9.8	2.8	7274	7272	7270	7272.0000	

Dari tabel 5.1 kalibrasi I maka didapatkan persamaan regresi sebagai berikut :

Y = 0.000461042 X - 0.753158

Kalibrasi I

Skala pada jangka sorong yang digunakan

- Minimum : 6.00 mm
- Maksimum : 9.40 mm
- Step atau langkah : 0.2 mm

Tabel 5.2 Kalibrasi II

No	Skala Jangka	Displacement	Exp 1	Exp 2	Exp 3	Harga rata ²	
	Sorong	(mm)	SI	SI	SI	SI	
1	6	-1.0	-1479	-1370	-1442	-1430.3333	
2	6.2	-0.8	-685	-568	-557	-603.3333	
3	6.4	-0.6	-332	-326	-206	-288.0000	
4	6.6	-0.4	172	228	222	207.3333	
5	6.8	-0.2	925	995	1044	988.0000	
6	7	0.0	1543	1657	1487	1562.3333	
7	7.2	0.2	1806	1919	1948	1891.0000	
8	7.4	0.4	2398	2491	2316	2401.6667	
9	7.6	0.6	2707	3082	2886	2891.6667	
10	7.8	0.8	3073	3298	3246	3205.6667	
11	8	1.0	3463	3576	3612	3550.3333	
12	8.2	1.2	4095	4086	4149	4110.0000	
13	8.4	1.4	4838	4834	4781	4817.6667	
14	8.6	1.6	5417	5581	5598	5532.0000	
15	8.8	1.8	5952	5978	5947	5959.0000	
16	9	2.0	6163	6291	6212	6222.0000	
17	9.2	2.2	6354	6412	6572	6446.0000	
18	9.4	2.4	6818	6863	6752	6811.0000	

Dari tabel 5.2 kalibrasi II maka didapatkan persamaan regresi sebagai berikut :

Y = 0.000410357 X - 0.537322

V - 7

Grafik 5.1 Kalibarasi I

5.5 Pelaksanaan Pengujian

5.5.1 Pengujian Tarik

Pengujian tarik merupakan pengujian statis yang dilakukan mendapatkan *mechanical properties* (sifat mekanis statis) material, yaitu tegangan *ultimate*, tegangan *yield*, *elongation* dan *reduction area*. Jumlah spesimen uji delapan buah yang mewakili spesimen-spesimen untuk pengujian fracture (kepecahan) yaitu pengujian pada temperatur ruang dan temperatur –50° C. Pengujian dilakukan dengan mesin uji statis *(universal Testing Machine)*. Dari pengujian statis tersebut akan didapatkan *stress-strain diagram* (diagram tegangan-regangan)

Dari grafik dapat diketahui tegangan *ultimate* (σ_{utt}) dan tegangan *yield* (σ_{ys}). Tegangan *ultimate* merupakan tegangan yang tertinggi yang dapat diterima material, sedangkan tegangan *yield* adalah merupakan batas daerah elastis dengan daerah plastis. Secara grafis tegangan *yield* dapat ditentukan dari diagram tegangan-regangan dimana pada titik tersebut beban tertahan atau turun sedikit, kemudian naik lagi hingga mencapai beban maksimum. Pada beberapa material titik yield tidak terlihat. Untuk mengetahui besarnya tegangan yield (σ_{ys}) pada material tersebut, yaitu dengan menggunakan metode *offset* yang mengacu pada ASTM E 8M – 94a⁸, dimana untuk bahan yang tidak mempunyai titik luluh yang tidak dapat ditentukan secara baik, maka dengan menggunakan metode *offset* ini dapat ditentukan besarnya *yield* strenght (offset = 0.2%).

Tabel 5.3 Hasil Pengujian tarik

Material : SS 41

Temperatur : ruang (30° C)

No	Tebal (mm)	Luas (mm)	P Yield (kN)	P Ultimate (kN)	Yield stress (Mpa)	Ult stress (Mpa)	ε (%)	Α%	E (Mpa)
1	25	317.5	90	146.5	283.4646	461.4173	39	57.57	726.83
2	25	312.5	84.5	143	270.4000	457.6000	33.8	55.00	800.00

Material : A 516

Temperatur : ruang (30° C)

No	Tebal (mm)	Luas (mm)	P Yield (kN)	P Ultimate (kN)	Yield stress (Mpa)	Ult stress (Mpa)	ε (%)	Α%	E (Mpa)
1	20	250	84.5	130.3	338.0000	521.2000	37	63	913.51
2	20	250	74.5	129.3	298.0000	517.2000	33.2	64.23	897.59

Material : SS 41

Temperatur : - 50° C

No	Tebal (mm)	Luas (mm)	P Yield (kN)	P Ultimate (kN)	Yield stress (Mpa)	Ult stress (Mpa)	ε (%)	Α%	E (Mpa)
1	25	326.3	105.5	165.2	323.3716	506.3602	32	49.958	1010.54
2	25	326.3	105	166	321.8391	508.8123	32	55.31	1005.75

Material : A 516

Temperatur : - 50° C

No	Tebal (mm)	Luas (mm)	P Yield (kN)	P Ultimate (kN)	Yield stress (Mpa)	Ults tress (Mpa)	ε (%)	Α%	E (Mpa)
1	20	254	90	144.2	354.3307	567.7165	28	62.057	1265.47
2	20	250	88	142.2	352.0000	568.8000	29	58.462	1213.79

Untuk grafik uji tarik dapat dilihat pada lampiran A

5.5.2 Pengujian Kepecahan (Fracture Test)

Pengujian kepecahan (*fracture test*) dilkakukan dengan menggunakan metode *Crack Tip Opening displacement* (CTOD) yang selanjutnya nanti dapat digunakan untuk menentukan harga *fracture toughness* (K_{lc}), CTOD (δ) dan harga dari J – Integral. Pengujian dilakukan pada dua macam kondisi temperatur, yaitu temperatur ruang (30° C) dan temperatur – 50° C. Pengujian dilakukan dengan mesin uji statis (*universal Testing Machine*). Bentuk spesimen adalah *Three-Point Bend Spesimen* atau SE (B) spesimen sesuai dengan standart ASTM E 399 – 90, E 1290 – 93, E 813 – 89⁸.

Pada standart ASTM tersebut dijelaskan bahwa bentuk dan ukuran spesimen three point bending yang digunakan merupakan fungsi dari tebal spesimen. Pelaksanaan pembuatan spesimen SE (B) untuk fracture test telah dijelaskan diatas untuk dimensi yang lebih jelas dapat dilihat pada lampiran B. Spesimen yang digunakan untuk pengujian sebanyak 16 buah dengan perincian sebagai berikut :

- Material SS 41, Temperatur ruang (30° C), jumlah 4 buah, kode S 1.1, S 1.2, S 1.3, S 1.4.
- Material A 516, Temperatur ruang (30° C), jumlah 4 buah, kode A 1.1, A 1.2, A 1.3, A 1.4.
- Material SS 41, Temperatur 50° C , jumlah 4 buah, kode S 2.1, S 2.2, S 2.3, S 2.4.
- Material A 516, Temperatur 50° C , jumlah 4 buah, kode A 2.1, A 2.2, A 2.3, A 2.4.

Hasil dari pengujian fracture test didapatkan data-data sebagi berikut yang

nantinya dibuat menjadi kurva Load-Displacement

Tabel 5.4 SPESIMEN S 1.1

Tebal material	: 25 mm
COD Knife edge mula	: 2.1 mm
Step pembebanan	: 2 kN
Temperatur	: ruang (30° C)

No	P (kN)	SI	Regresi I	Regresi II	Rata - rata regresi	Skala jangka
1	0	-3560	-2.3944675	-1.9981943	-2.196330912	0.000000000
2	2	-3519	-2.3755648	-1.9813697	-2.178467225	0.017863687
3	4	-3479	-2.3571231	-1.9649554	-2.161039238	0.035291674
4	6	-3439	-2.3386814	-1.9485411	-2.143611251	0.052719661
5	8	-3400	-2.3207008	-1.9325372	-2.126618964	0.069711948
6	10	-3356	-2.3004149	-1.9144814	-2.107448178	0.088882734
7	12	-3313	-2.2805901	-1.8968361	-2.088713092	0.107617820
8	14	-3270	-2.2607653	-1.8791907	-2.069978006	0.126352906
9	16	-3224	-2.2395574	-1.8603143	-2.049935821	0.146395091
10	18	-3174	-2.2165053	-1.8397964	-2.028150837	0.168180075
11	20	-3120	-2.191609	-1.8176371	-2.004623055	0.191707857
12	22	-3060	-2.1639465	-1.7930156	-1.978481074	0.217849838
13	24	-2997	-2.1349009	-1.7671631	-1.951031995	0.245298917
14	26	-2923	-2.1007838	-1.7367967	-1.918790219	0.277540693
15	28	-2819	-2.0528354	-1.6941195	-1.873477453	0.322853459
16	30	-2683	-1.9901337	-1.6383109	-1.814222297	0.382108615
17	32	-2423	-1.8702628	-1.531618	-1.700940381	0.495390530
18	34	-1131	-1.2745966	-1.0014362	-1.138016401	1.058314511
19	36	-53	-0.7775934	-0.5590709	-0.668332151	1.527998760
20	38	1044	-0.2718303	-0.1089089	-0.190369608	2.005961304
21	40	2191	0.2569848	0.36177106	0.309377919	2.505708831
22	42	3722	0.96284	0.99002824	0.976434122	3.172765033
23	44	5340	1.7088059	1.65398652	1.681396196	3.877727108
24	46	6505	2.2459197	2.13205289	2.188986317	4.385317229
25	48	7274	2.600461	2.44761773	2.524039367	4.720370279
Tabel 5.5 SPESIMEN S 1.2

Tebal material	: 25 mm
COD Knife edge mula	: 2.05 mm
Step pembebanan	: 2 kN
Temperatur	: ruang (30° C)

No	P (kN)	SI	Regresi I	Regresi II	Rata - rata regresi	Skala jangka
1	0	872	-0.351130	-0.179490	-0.265310	0.00000000
2	2	909	-0.334071	-0.164307	-0.249189	0.01612089
3	4	948	-0.316090	-0.148303	-0.232197	0.03311318
4	6	986	-0.298571	-0.132710	-0.215640	0.04966976
5	8	1025	-0.280590	-0.116706	-0.198648	0.06666205
6	10	1069	-0.260304	-0.098650	-0.179477	0.08583284
7	12	1112	-0.240479	-0.081005	-0.160742	0.10456792
8	14	1156	-0.220194	-0.062949	-0.141571	0.12373871
9	16	1208	-0.196219	-0.041610	-0.118915	0.14639509
10	18	1251	-0.176395	-0.023965	-0.100180	0.16513018
11	20	1306	-0.151037	-0.001395	-0.076216	0.18909366
12	22	1367	-0.122914	0.023637	-0.049639	0.21567134
13	24	1438	-0.090180	0.052772	-0.018704	0.24660602
14	26	1520	-0.052374	0.086421	0.017023	0.28233339
15	28	1636	0.001106	0.134023	0.067565	0.33287455
16	30	1898	0.121899	0.241536	0.181718	0.44702787
17	32	2830	0.551591	0.623989	0.587790	0.85309996
18	34	4175	1.171692	1.175920	1.173806	1.43911603
19	36	5026	1.564039	1.525134	1.544586	1.80989645
20	38	5994	2.010327	1.922360	1.966344	2.23165374
21	40	6661	2.317842	2.196069	2.256955	2.52226542
22	42	7051	2.497649	2.356108	2.426878	2.69218829
23	44	7276	2.601383	2.448438	2.524911	2.79022072

Tabel 5.6 SPESIMEN S 1.3

Tebal material	: 25 mm
COD Knife edge mula	: 2.1 mm
Step pembebanan	: 2 kN
Temperatur	: ruang (30° C)

No	P (kN)	SI	Regresi I	Regresi II	Rata - rata regresi	Skala jangka
1	0	-3415	-2.327616	-1.938693	-2.133154	0.00000000
2	2	-3363	-2.303642	-1.917354	-2.110498	0.02265638
3	4	-3319	-2.283356	-1.899298	-2.091327	0.04182717
4	6	-3278	-2.264454	-1.882474	-2.073464	0.05969086
5	8	-3236	-2.245090	-1.865239	-2.055164	0.07799024
6	10	-3188	-2.222960	-1.845541	-2.034251	0.09890383
7	12	-3142	-2.201752	-1.826665	-2.014208	0.11894601
8	14	-3039	-2.154265	-1.784398	-1.969331	0.16382308
9	16	-3040	-2.154726	-1.784808	-1.969767	0.16338738
10	18	-2987	-2.130290	-1.763060	-1.946675	0.18647946
11	20	-2928	-2.103089	-1.738848	-1.920969	0.21218574
12	22	-2855	-2.069433	-1.708892	-1.889163	0.24399182
13	24	-2785	-2.037160	-1.680167	-1.858664	0.27449080
14	26	-2644	-1.972153	-1.622307	-1.797230	0.33592445
15	28	-2462	-1.888243	-1.547622	-1.717933	0.41522179
16	30	-1374	-1.386630	-1.101153	-1.243891	0.88926304
17	32	-236	-0.861964	-0.634166	-0.748065	1.38508927
18	34	952	-0.314246	-0.146662	-0.230454	1.90270048
19	36	2234	0.276810	0.379416	0.328113	2.46126746
20	38	3637	0.923651	0.955148	0.939400	3.07255411
21	40	5233	1.659474	1.610078	1.634776	3.76793079
22	42	6514	2.250069	2.135746	2.192908	4.32606207
23	44	7270	2.598617	2.445976	2.522297	4.65545103
24	46	7274	2.600461	2.447618	2.524039	4.65719383

Tabel 5.7 SPESIMEN S 1.4

Tebal material	: 25 mm
COD Knife edge mula	: 2.1 mm
Step pembebanan	: 2 kN
Temperatur	: ruang (30° C)

No	P (kN)	SI	Regresi I	Regresi II	Rata - rata regresi	Skala jangka
1	0	-3144	-2.202674	-1.827486	-2.015080	0.0000000
2	2	-3096	-2.180544	-1.807789	-1.994166	0.02091358
3	4	-3050	-2.159336	-1.788912	-1.974124	0.04095577
4	6	-3004	-2.138128	-1.770036	-1.954082	0.06099795
5	8	-2958	-2.116920	-1.751159	-1.934040	0.08104014
6	10	-2907	-2.093407	-1.730231	-1.911819	0.10326082
7	12	-2857	-2.070355	-1.709713	-1.890034	0.12504581
8	14	-2802	-2.044998	-1.687143	-1.866071	0.14900929
9	16	-2747	-2.019640	-1.664574	-1.842107	0.17297277
10	18	-2688	-1.992439	-1.640363	-1.816401	0.19867905
11	20	-2622	-1.962010	-1.613279	-1.787645	0.22743523
12	22	-2543	-1.925588	-1.580861	-1.753224	0.26185550
13	24	-2441	-1.878562	-1.539004	-1.708783	0.30629687
14	26	-2272	-1.800645	-1.469654	-1.635150	0.37993012
15	28	-1436	-1.415214	-1.126595	-1.270905	0.74417504
16	30	-210	-0.849977	-0.623497	-0.736737	1.27834285
17	32	1054	-0.267220	-0.104805	-0.186013	1.82906724
18	34	2298	0.306316	0.405679	0.355998	2.37107763
19	36	3889	1.039834	1.058558	1.049196	3.06427581
20	38	5477	1.771969	1.710205	1.741087	3.75616690
21	40	6628	2.302628	2.182527	2.242577	4.25765722
22	42	7274	2.600461	2.447618	2.524039	4.53911921

Tabel 5.8 SPESIMEN A 1.1

Tebal material	: 20 mm
COD Knife edge mula	: 2 mm
Step pembebanan	: 2 kN
Temperatur	: ruang (30° C)

No	P(kN)	SI	Regresi I	Regresi II	Rata - rata regresi	Skala jangka
1	0	-126	-0.811249	-0.589027	-0.700138	0.0000000
2	2	-79	-0.789580	-0.569740	-0.679660	0.02047788
3	4	-35	-0.769295	-0.551685	-0.660490	0.03964867
4	6	9	-0.749009	-0.533629	-0.641319	0.05881946
5	8	58	-0.726418	-0.513521	-0.619969	0.08016874
6	10	110	-0.702444	-0.492183	-0.597313	0.10282512
7	12	163	-0.678008	-0.470434	-0.574221	0.12591721
8	14	219	-0.652190	-0.447454	-0.549822	0.15031639
9	16	276	-0.625911	-0.424063	-0.524987	0.17515127
10	18	338	-0.597326	-0.398621	-0.497974	0.20216465
11	20	420	-0.559521	-0.364972	-0.462246	0.23789202
12	22	509	-0.518488	-0.328450	-0.423469	0.27666929
13	24	648	-0.454403	-0.271410	-0.362907	0.33723155
14	26	1062	-0.263532	-0.101522	-0.182527	0.51761121
15	28	1927	0.135270	0.253437	0.194353	0.89449143
16	30	2934	0.599539	0.666667	0.633103	1.33324101
17	32	4157	1.163393	1.168534	1.165963	1.86610171
18	34	5338	1.707884	1.653166	1.680525	2.38066302
19	36	6381	2.188751	2.081169	2.134960	2.83509779
20	38	7034	2.489811	2.349132	2.419471	3.11960967
21	40	7276	2.601383	2.448438	2.524911	3.22504899

Tabel 5.9 SPESIMEN A 1.2

Tebal material	: 20 mm
COD Knife edge mula	: 2.05 mm
Step pembebanan	: 2 kN
Temperatur	: ruang (30° C)

No	P(kN)	SI	Regresi I	Regresi II	Rata - rata regresi	Skala jangka
1	0	-1166	-1.2907331	-1.015799	-1.153266	0.00000000
2	2	-1103	-1.2616874	-0.989946	-1.125817	0.02744908
3	4	-1046	-1.2354080	-0.966556	-1.100982	0.05228396
4	6	-989	-1.2091286	-0.943165	-1.076147	0.07711884
5	8	-930	-1.1819272	-0.918954	-1.050441	0.10282512
6	10	-864	-1.1514984	-0.891871	-1.021685	0.13158130
7	12	-795	-1.1196865	-0.863556	-0.991621	0.16164458
8	14	-717	-1.0837252	-0.831548	-0.957637	0.19562915
9	16	-629	-1.0431535	-0.795437	-0.919295	0.23397073
10	18	-486	-0.9772245	-0.736756	-0.856990	0.29627578
11	20	-315	-0.8983864	-0.666585	-0.782485	0.37078042
12	22	3	-0.7517750	-0.536091	-0.643933	0.50933292
13	24	1215	-0.1929922	-0.038738	-0.115865	1.03740093
14	26	2756	0.5174735	0.593623	0.555548	1.70881413
15	28	4211	1.1882895	1.190693	1.189491	2.34275715
16	30	5786	1.9144306	1.837006	1.875718	3.02898414
17	32	6729	2.3491931	2.223973	2.286583	3.43984893
18	34	7278	2.6023052	2.449259	2.525782	3.67904806

V - 17

Tabel 5.10 SPESIMEN A 1.3

Tebal material	: 20 mm
COD Knife edge mula	: 2.1 mm
Step pembebanan	: 2 kN
Temperatur	: ruang (30° C)

No	P (kN)	SI	Regresi I	Regresi II	Rata - rata regresi	Skala jangka
1	0	-1665	-1.520793	-1.220567	-1.370680	0.00000000
2	2	-1615	-1.497741	-1.200049	-1.348895	0.02178498
3	4	-1571	-1.477455	-1.181993	-1.329724	0.04095577
4	6	-1528	-1.457630	-1.164348	-1.310989	0.05969086
5	8	-1483	-1.436883	-1.145882	-1.291383	0.07929734
6	10	-1431	-1.412909	-1.124543	-1.268726	0.10195372
7	12	-1381	-1.389857	-1.104026	-1.246941	0.12373871
8	14	-1327	-1.364961	-1.081866	-1.223414	0.14726649
9	16	-1272	-1.339603	-1.059297	-1.199450	0.17122997
10	18	-1214	-1.312863	-1.035496	-1.174179	0.19650055
11	20	-1146	-1.281512	-1.007592	-1.144552	0.22612813
12	22	-1067	-1.245090	-0.975173	-1.110132	0.26054841
13	24	-960	-1.195758	-0.931265	-1.063512	0.30716827
14	26	-769	-1.107699	-0.852887	-0.980293	0.39038691
15	28	-205	-0.847672	-0.621445	-0.734559	0.63612153
16	30	736	-0.413831	-0.235299	-0.324565	1.04611492
17	32	1771	0.063347	0.189421	0.126384	1.49706408
18	34	3016	0.637344	0.700316	0.668830	2.03951018
19	36	4317	1.237160	1.234191	1.235675	2.60635546
20	38	5774	1.908898	1.832082	1.870490	3.24116988
21	40	6745	2.356570	2.230539	2.293554	3.66423427
22	42	7278	2.602305	2.449259	2.525782	3.89646219

Tabel 5.11 SPESIMEN A 1.4

Tebal material	: 25 mm
COD Knife edge mula	: 2.1 mm
Step pembebanan	: 2 kN
Temperatur	: ruang (30° C)

No	P (kN)	SI	Regresi I	Regresi II	Rata - rata regresi	Skala jangka
1	0	-2256	-1.793269	-1.463088	-1.628179	0.00000000
2	2	-2206	-1.770217	-1.442570	-1.606394	0.02178498
3	4	-2164	-1.750853	-1.425335	-1.588094	0.04008437
4	6	-2116	-1.728723	-1.405638	-1.567181	0.06099795
5	8	-2069	-1.707054	-1.386351	-1.546703	0.08147584
6	10	-2016	-1.682619	-1.364603	-1.523611	0.10456792
7	12	-1963	-1.658183	-1.342854	-1.500519	0.12766000
8	14	-1907	-1.632365	-1.319874	-1.476119	0.15205919
9	16	-1844	-1.603319	-1.294021	-1.448670	0.17950827
10	18	-1773	-1.570586	-1.264886	-1.417736	0.21044294
11	20	-1688	-1.531397	-1.230005	-1.380701	0.24747742
12	22	-1549	-1.467312	-1.172966	-1.320139	0.30803967
13	24	-1288	-1.346980	-1.065862	-1.206421	0.42175729
14	26	-557	-1.009959	-0.765891	-0.887925	0.74025375
15	28	376	-0.579806	-0.383028	-0.481417	1.14676154
16	30	1390	-0.112310	0.033075	-0.039618	1.58856102
17	32	2641	0.464454	0.546432	0.505443	2.13362131
18	34	3994	1.088243	1.101645	1.094944	2.72312297
19	36	5521	1.792254	1.728261	1.760258	3.38843637
20	38	6672	2.322914	2.200583	2.261748	3.88992670
21	40	7278	2.602305	2.449259	2.525782	4.15396070

Pelaksanaan dan Hasil Pengujian

Tabel 5.12 SPESIMEN S 2.1

Tebal material	: 25 mm
COD Knife edge mula	: 2.1 mm
Step pembebanan	: 2 kN
Temperatur	: - 50° C

No	P (kN)	SI	Regresi I	Regresi II	Rata - rata regresi	Skala jangka
1	0	4938	1.52346701	1.48902284	1.506244926	0.000000000
2	2	4995	1.5497464	1.51241321	1.531079808	0.024834881
3	4	5013	1.55804516	1.51979965	1.538922402	0.032677476
4	6	5019	1.56081141	1.52226179	1.541536600	0.035291674
5	8	5027	1.56449975	1.52554465	1.545022198	0.038777271
6	10	5036	1.56864912	1.52923787	1.548943495	0.042698568
7	12	5043	1.57187642	1.53211037	1.551993392	0.045748466
8	14	5050	1.57510371	1.53498287	1.555043290	0.048798364
9	16	5056	1.57786996	1.53744501	1.557657488	0.051412562
10	18	5062	1.58063621	1.53990716	1.560271686	0.054026760
11	20	5071	1.58478559	1.54360038	1.564192983	0.057948057
12	22	5079	1.58847393	1.54688323	1.567678581	0.061433654
13	24	5090	1.59354539	1.55139717	1.572471277	0.066226351
14	26	5100	1.59815581	1.55550074	1.576828274	0.070583347
15	28	5111	1.60322727	1.56001467	1.581620970	0.075376044
16	30	5124	1.60922081	1.56534932	1.587285066	0.081040140
17	32	5139	1.61613644	1.57150468	1.593820561	0.087575635
18	34	5155	1.62351311	1.5780704	1.600791756	0.094546829
19	36	5176	1.633195	1.5866879	1.609941449	0.103696523
20	38	5244	1.66454585	1.61459221	1.639569027	0.133324101
21	40	5391	1.73231902	1.67491474	1.703616879	0.197371953
22	42	5596	1.82683261	1.75903801	1.792935313	0.286690386
23	44	5868	1.95223603	1.87065522	1.911445624	0.405200698
24	46	6062	2.04167816	1.95026456	1.995971361	0.489726435
25	48	6290	2.14679573	2.04382605	2.095310887	0.589065961
26	50	6429	2.21088056	2.10086572	2.155873142	0.649628215
27	52	6666	2.3201475	2.19812043	2.259133965	0.752889038

Tabel 5.13 SPESIMEN S 2.2

Tebal material	: 25 mm
COD Knife edge mula	: 2.05 mm
Step pembebanan	: 2 kN
Temperatur	: - 50° C

No	P (kN)	SI	Regresi I	Regresi II	Rata - rata regresi	Skala jangka
1	0	1450	-0.084647	0.057696	-0.013476	0.00000000
2	2	1480	-0.070816	0.070007	-0.000405	0.01307099
3	4	1499	-0.062056	0.077804	0.007874	0.02134928
4	6	1517	-0.053757	0.085190	0.015716	0.02919188
5	8	1533	-0.046381	0.091756	0.022688	0.03616307
6	10	1548	-0.039465	0.097911	0.029223	0.04269857
7	12	1560	-0.033933	0.102836	0.034451	0.04792696
8	14	1574	-0.027478	0.108581	0.040551	0.05402676
9	16	1586	-0.021946	0.113505	0.045780	0.05925516
10	18	1579	-0.025173	0.110632	0.042730	0.05620526
11	20	1610	-0.010881	0.123353	0.056236	0.06971195
12	22	1622	-0.005348	0.128278	0.061465	0.07494034
13	24	1634	0.000184	0.133202	0.066693	0.08016874
14	26	1646	0.005717	0.138126	0.071922	0.08539714
15	28	1659	0.011710	0.143461	0.077586	0.09106123
16	30	1674	0.018626	0.149616	0.084121	0.09759673
17	32	1690	0.026003	0.156182	0.091092	0.10456792
18	34	1709	0.034763	0.163979	0.099371	0.11284622
19	36	1732	0.045367	0.173417	0.109392	0.12286731
20	38	1766	0.061042	0.187369	0.124206	0.13768110
21	40	1867	0.107607	0.228815	0.168211	0.18168676
22	42	1929	0.136192	0.254257	0.195225	0.20870014
23	44	2091	0.210881	0.320735	0.265808	0.27928349
24	46	2360	0.334901	0.431121	0.383011	0.39648670
25	48	2690	0.487045	0.566539	0.526792	0.54026760
26	50	2850	0.560811	0.632197	0.596504	0.60997955
27	52	3172	0.709267	0.764332	0.736799	0.75027484
28	53	Patah				

Tabel 5.14 SPESIMEN S 2.3

Tebal material	: 25 mm
COD Knife edge mula	: 2.1 mm
Step pembebanan	: 2 kN
Temperatur	: - 50° C

No	P(kN)	SI	Regresi I	Regresi II	Rata - rata regresi	Skala jangka
1	0	5758	1.901521	1.825516	1.863519	0.00000000
2	2	5824	1.931950	1.852599	1.892275	0.02875618
3	4	5830	1.934716	1.855062	1.894889	0.03137038
4	6	5833	1.936100	1.856293	1.896196	0.03267748
5	8	5838	1.938405	1.858345	1.898375	0.03485597
6	10	5842	1.940249	1.859986	1.900117	0.03659877
7	12	5847	1.942554	1.862038	1.902296	0.03877727
8	14	5851	1.944398	1.863679	1.904039	0.04052007
9	16	5856	1.946704	1.865731	1.906217	0.04269857
10	18	5861	1.949009	1.867783	1.908396	0.04487707
11	20	5866	1.951314	1.869835	1.910574	0.04705556
12	22	5872	1.954080	1.872297	1.913188	0.04966976
13	24	5877	1.956385	1.874348	1.915367	0.05184826
14	26	5885	1.960074	1.877631	1.918853	0.05533386
15	28	5894	1.964223	1.881325	1.922774	0.05925516
16	30	5906	1.969756	1.886249	1.928002	0.06448355
17	32	5918	1.975288	1.891173	1.933231	0.06971195
18	34	5936	1.983587	1.898560	1.941073	0.07755454
19	36	5965	1.996957	1.910460	1.953708	0.09018983
20	38	6007	2.016321	1.927695	1.972008	0.10848922
21	40	6124	2.070263	1.975707	2.022985	0.15946608
22	42	6220	2.114523	2.015101	2.064812	0.20129325
23	44	6364	2.180913	2.074192	2.127553	0.26403400
24	46	6398	2.196588	2.088145	2.142366	0.27884779
25	48	6499	2.243153	2.1295907	2.186372	0.32285346
26	50	6629	2.303089	2.1829372	2.243013	0.37949442
27	51	Patah				

Tabel 5.15 SPESIMEN S 2.4

Tebal material	: 25 mm
COD Knife edge mula	: 2.1 mm
Step pembebanan	: 2 kN
Temperatur	: - 50° C

No	P (kN)	SI	Regresi I	Regresi II	Rata - rata regresi	Skala jangka
1	0	199	-0.661411	-0.455661	-0.558536	0.00000000
2	2	254	-0.636053	-0.433091	-0.534572	0.02396348
3	4	286	-0.621300	-0.419960	-0.520630	0.03790587
4	6	305	-0.612540	-0.412163	-0.512352	0.04618417
5	8	320	-0.605625	-0.406008	-0.505816	0.05271966
6	10	337	-0.597787	-0.399032	-0.498409	0.06012656
7	12	350	-0.591793	-0.393697	-0.492745	0.06579065
8	14	363	-0.585800	-0.388362	-0.487081	0.07145475
9	16	377	-0.579345	-0.382617	-0.480981	0.07755454
10	18	390	-0.573352	-0.377283	-0.475317	0.08321864
11	20	404	-0.566897	-0.371538	-0.469217	0.08931843
12	22	420	-0.559521	-0.364972	-0.462246	0.09628963
13	24	436	-0.552144	-0.358406	-0.455275	0.10326082
14	26	454	-0.543845	-0.351020	-0.447432	0.11110342
15	28	472	-0.535546	-0.343633	-0.439590	0.11894601
16	30	494	-0.525403	-0.334605	-0.430004	0.12853140
17	32	525	-0.511111	-0.321884	-0.416498	0.14203809
18	34	549	-0.500046	-0.312036	-0.406041	0.15249489
19	36	581	-0.485293	-0.298904	-0.392099	0.16643728
20	38	700	-0.430429	-0.250072	-0.340250	0.21828554
21	40	914	-0.331766	-0.162255	-0.247011	0.31152527
22	42	1144	-0.225726	-0.067873	-0.146800	0.41173619
23	44	1417	-0.099862	0.044154	-0.027854	0.53068220
24	46	1707	0.033840	0.163158	0.098499	0.65703511
25	48	2160	0.242692	0.349050	0.295871	0.85440706
26	49	Patah				

- IN DE UNTABAAN

Tabel 5 16 SPESIMEN A 2.1

Tebal material	: 20 mm
COD Knife edge mula	: 2 mm
Step pembebanan	: 2 kN
Temperatur	: - 50° C

No	P (kN)	SI	Regresi I	Regresi II	Rata - rata regresi	Skala jangka
1	0	321	-0.605164	-0.405597	-0.505380	0.00000000
2	2	420	-0.559521	-0.364972	-0.462246	0.04313427
3	4	455	-0.543384	-0.350609	-0.446997	0.05838376
4	6	482	-0.530936	-0.339530	-0.435233	0.07014765
5	8	503	-0.521254	-0.330912	-0.426083	0.07929734
6	10	520	-0.513416	-0.323936	-0.418676	0.08670424
7	12	533	-0.507423	-0.318602	-0.413012	0.09236833
8	14	547	-0.500968	-0.312857	-0.406912	0.09846813
9	16	559	-0.495436	-0.307932	-0.401684	0.10369652
10	18	569	-0.490825	-0.303829	-0.397327	0.10805352
11	20	581	-0.485293	-0.298904	-0.392099	0.11328192
12	22	597	-0.477916	-0.292339	-0.385127	0.12025311
13	24	609	-0.472384	-0.287414	-0.379899	0.12548151
14	26	622	-0.466390	-0.282080	-0.374235	0.13114560
15	28	639	-0.458552	-0.275104	-0.366828	0.13855250
16	30	662	-0.447948	-0.265665	-0.356807	0.14857359
17	32	706	-0.427663	-0.247610	-0.337636	0.16774437
18	34	785	-0.391240	-0.215191	-0.303216	0.20216465
19	36	978	-0.302259	-0.135992	-0.219126	0.28625469
20	38	1198	-0.200830	-0.045714	-0.123272	0.38210861
21	40	1814	0.083172	0.207066	0.145119	0.65049961
22	42	3924	1.055970	1.072920	1.064445	1.56982593
23	44	6272	2.138497	2.036440	2.087468	2.59284877
24	46	7268	2.597695	2.445156	2.521425	3.02680564

Tabel 5 17 SPESIMEN A 2.2

Tebal material	: 20 mm
COD Knife edge mula	: 2.05 mm
Step pembebanan	: 2 kN
Temperatur	: - 50° C

No	P (kN)	SI	Regresi I	Regresi II	Rata - rata regresi	Skala jangka
1	0	4581	1.3588750	1.342525	1.350700	0.0000000
2	2	4600	1.3676348	1.350322	1.358978	0.00827829
3	4	4616	1.3750115	1.356888	1.365950	0.01524949
4	6	4632	1.3823882	1.363453	1.372921	0.02222068
5	8	4647	1.3893038	1.369609	1.379456	0.02875618
6	10	4660	1.3952973	1.374943	1.385120	0.03442027
7	12	4671	1.4003688	1.379457	1.389913	0.03921297
8	14	4684	1.4063624	1.384792	1.395577	0.04487707
9	16	4697	1.4123559	1.390127	1.401241	0.05054116
10	18	4710	1.4183494	1.395461	1.406905	0.05620526
11	20	4721	1.4234209	1.399975	1.411698	0.06099795
12	22	4735	1.4298755	1.405720	1.417798	0.06709775
13	24	4751	1.4372522	1.412286	1.424769	0.07406894
14	26	4770	1.4460120	1.420083	1.433047	0.08234724
15	28	4809	1.4639926	1.436087	1.450040	0.09933953
16	30	4867	1.4907330	1.459887	1.475310	0.12461011
17	32	4998	1.5511295	1.513644	1.532387	0.18168676
18	34	5209	1.6484094	1.600230	1.624320	0.27361940
19	36	5448	1.7585984	1.698305	1.728452	0.37775162
20	38	5729	1.8881512	1.813616	1.850883	0.50018323
21	40	6045	2.0338405	1.943288	1.988564	0.63786432
22	42	6293	2.1481789	2.045057	2.096618	0.74591784
23	44	6510	2.2482250	2.134105	2.191165	0.84046467
24	46	6909	2.4321807	2.297837	2.365009	1.01430884
25	48	7390	2.6539419	2.495219	2.574581	1.22388039

Tabel 5.18 SPESIMEN A 2.3

Tebal material	: 20 mm
COD Knife edge mula	: 2.1 mm
Step pembebanan	: 2 kN
Temperatur	: - 50° C

No	P (kN)	SI	Regresi I	Regresi II	Rata - rata regresi	Skala jangka
1	0	856	-0.358506	-0.186056	-0.272281	0.00000000
2	2	905	-0.335915	-0.165949	-0.250932	0.02134928
3	4	932	-0.323467	-0.154869	-0.239168	0.03311318
4	6	949	-0.315629	-0.147893	-0.231761	0.04052007
5	8	964	-0.308714	-0.141737	-0.225226	0.04705556
6	10	978	-0.302259	-0.135992	-0.219126	0.05315536
7	12	991	-0.296266	-0.130658	-0.213462	0.05881946
8	14	1004	-0.290272	-0.125323	-0.207798	0.06448355
9	16	1020	-0.282895	-0.118757	-0.200826	0.07145475
10	18	1034	-0.276441	-0.113012	-0.194727	0.07755454
11	20	1050	-0.269064	-0.106447	-0.187755	0.08452574
12	22	1067	-0.261226	-0.099471	-0.180349	0.09193263
13	24	1085	-0.252928	-0.092084	-0.172506	0.09977523
14	26	1109	-0.241863	-0.082236	-0.162049	0.11023202
15	28	1138	-0.228492	-0.070335	-0.149414	0.12286731
16	30	1180	-0.209129	-0.053100	-0.131114	0.14116669
17	32	1275	-0.165330	-0.014116	-0.089723	0.18255816
18	34	1413	-0.101706	0.042513	-0.029596	0.24268472
19	36	1654	0.009405	0.141409	0.075407	0.34768834
20	38	1919	0.131581	0.250154	0.190868	0.46314875
21	40	2214	0.267589	0.371209	0.319399	0.59168016
22	42	2565	0.429414	0.515245	0.472330	0.74461074
23	44	2958	0.610604	0.676515	0.643560	0.91584072
24	46	3529	0.873859	0.910829	0.892344	1.16462523
25	48	4514	1.327985	1.315031	1.321508	1.59378941
26	50	6870	2.414200	2.281833	2.348017	2.62029785
27	51	Patah				

Pelaksanaan dan Hasil Pengujian

Tabel 5.19 SPESIMEN A 2.4

Tebal material	: 20 mm
COD Knife edge mula	: 2.1 mm
Step pembebanan	: 2 kN
Temperatur	: - 50° C

No	P (kN)	SI	Regresi I	Regresi II	Rata - rata regresi	Skala jangka
1	0	4040	1.109451	1.120522	1.114987	0.00000000
2	2	4077	1.126510	1.135705	1.131108	0.01612089
3	4	4126	1.149101	1.155813	1.152457	0.03747017
4	6	4155	1.162471	1.167713	1.165092	0.05010546
5	8	4162	1.165698	1.170585	1.168142	0.05315536
6	10	4180	1.173997	1.177972	1.175985	0.06099795
7	12	4196	1.181374	1.184538	1.182956	0.06796915
8	14	4211	1.188290	1.190693	1.189491	0.07450464
9	16	4223	1.193822	1.195617	1.194720	0.07973304
10	18	4238	1.200738	1.201773	1.201255	0.08626854
11	20	4253	1.207653	1.207928	1.207791	0.09280403
12	22	4270	1.215491	1.214904	1.215198	0.10021093
13	24	4289	1.224251	1.222701	1.223476	0.10848922
14	26	4314	1.235777	1.232960	1.234368	0.11938171
15	28	4347	1.250991	1.246502	1.248746	0.13375980
16	30	4382	1.267128	1.260864	1.263996	0.14900929
17	32	4494	1.318764	1.306824	1.312794	0.19780765
18	34	4697	1.412356	1.390127	1.401241	0.28625469
19	36	4955	1.531305	1.495999	1.513652	0.39866520
20	38	5269	1.676072	1.624851	1.650462	0.53547490
21	40	5600	1.828677	1.760679	1.794678	0.67969149
22	42	5939	1.984970	1.899791	1.942380	0.82739368
23	44	6243	2.125127	2.024539	2.074833	0.95984638
24	46	6515	2.250530	2.136156	2.193343	1.07835670
25	48	6843	2.401752	2.270754	2.336253	1.22126619
26	50	7260	2.594006	2.441873	2.517940	1.40295295
27	51	Patah				

V - 27

Grafik 5.4 Grafik load-displacement Spesimen SE (B) S 1.2

Grafik 5.6 Grafik load-displacement Spesimen SE (B) S 1.4

Grafik 5.8 Grafik load-displacement Spesimen SE (B) A 1.2

Grafik 5.9 Grafik load-displacement Spesimen SE (B) A 1.3

Grafik 5.10 Grafik load-displacement Spesimen SE (B) A 1.4

Grafik 5.11 Grafik load-displacement Spesimen SE (B) S 2.1

Grafik 5.12 Grafik load-displacement Spesimen SE (B) S 2.2

Grafik 5.13 Grafik load-displacement Spesimen SE (B) S 2.3

Grafik 5.14 Grafik load-displacement Spesimen SE (B) S 2.4

Grafik 5.15 Grafik load-displacement Spesimen SE (B) A 2.1

Grafik 5.16 Grafik load-displacement Spesimen SE (B) A 2.2

¢

Grafik 5.17 Grafik load-displacement Spesimen SE (B) A 2.3

Grafik 5.18 Grafik load-displacement Spesimen SE (B) A 2.4

BAB VI

ANALISA DATA DAN PEMBAHASAN

(B)

(6)

BAB VI

ANALISA DATA DAN PEMBAHASAN

Setelah percobaan selesai dilakukan, maka dilakukan analisa pada data-data yang telah diperoleh, sehingga nantinya akan didapatkan hasil yang diinginkan sesuai dengan tujuan penulisan.

6.1 Langkah Perhitungan pada Penentuan Fracture Toughness (K_{lc})

Langkah-langkah perhitungan untuk mendapatkan harga K_{lc} sesuai dengan *standart* ASTM E 399-90 adalah sebagai berikut :

- Dari hasil percobaan yang telah dilakukan maka akan didapatkan kurva *load-displacement*.
- Dari kurva *load-displacement* tersebut maka dibuatlah garis scan offset 5% sehingga didapatkan harga beban (P_Q) untuk selanjutnya digunakan untuk mendefinisikan harga K_{Ic} sebagai faktor intensitas tegangan kritis seperti yang telah dijelaskan pada bab III.
- 3. Perhitungan harga Ka menggunakan persamaam sebagai berikut :

$$K_Q = \frac{P_Q S}{B W^{\frac{3}{2}}} f\left(\frac{a}{W}\right)$$

$$f\left(\frac{a}{W}\right) = \frac{3(a/W)^{\frac{1}{2}} \left[1.99 - (a/W)(1 - a/W)x(2.15 - 3.93a/W + 2.7a^2/W^2)\right]}{2(1 + 2a/W)(1 - a/W)^{\frac{3}{2}}}$$

Dimana

P_Q = Beban yang ditentukan, klbf (kN)

- B = Tebal spesimen, in (cm)
- S = Jarak tumpuan beban, in (cm)

W = lebar spesimen, in (cm)

- a = panjang retak, in (cm)
- Menentukan kriteria ukuran dimensi dari spesimen untuk menguji harga K_Q yang diperoleh, sehingga dapat ditetapkan sebagai nilai K_{Ic} dengan formula dibawah ini :

Menentukan ukuran zona plastis dengan
$$\left(\frac{K_{IC}}{\sigma_{ys}}\right)^2$$

Daerah plastis untuk plane-strain $r_p = \frac{1}{6\rho} \left(\frac{K_{IC}}{\sigma_{ys}}\right)^2$

$$a = panjangretak \ge 2.5 \left(\frac{K_{IC}}{\sigma_{ys}}\right)^2$$

$$B = ketebalanspesimen \ge 2.5 \left(\frac{K_{IC}}{\sigma_{ys}}\right)^2$$

$$W = lebarspesimen \ge 5 \left(\frac{K_{IC}}{\sigma_{ys}}\right)^2$$

5. Apabila harga perhitungan sesuai dengan ketentuan diatas maka harga K_Q = K_{Ic}. Apabila K_Q tidak memenuhi maka dipakai *strenght ratio* R untuk menghitung ketegaran material dengan sarat spesimen yang diuji dan spesimen tadi mempunyai ukuran sama. Untuk Three-Point Bending Specimen

$$R = \frac{6P_{\max}W}{B(W-a)^2\sigma_{vs}}$$

- 6. Analisa kerusakan yang terjadi pada spesimen
 - Untuk kondisi *plane-stress*, r_p/B nilainya mendekati 1, dimana r_p didapat dari nomor 4 diatas
 - Untuk kondisi *plane-strain*, r_p/B nilainya sekitar 0.025 atau ketebalan spesimen mendekati 50 kali jari-jari *plane strain zone*.

PERHITUNGAN PADA PENENTUAN HARGA FRACTURE TOUGHNESS (Kic)

Material	: SS 41
----------	---------

Temperatur	: Ruang	(30° C)
------------	---------	---------

Spesimen No	B (m)	W (m)	ao (m)	S (m)	(a/W)	f (a/w)
S 1.1	0.025	0.0501	0.0252	0.2004	0.5030	2.6880
S 1.2	0.025	0.0499	0.0250	0.1996	0.5000	2.6625
S 1.3	0.025	0.0499	0.0242	0.1996	0.4840	2.5321
S 1.4	0.025	0.0505	0.0262	0.2020	0.5188	2.8290

Perhitungan Ka

Spesimen No	P max (kN)	P 5% = P _Q (kN)	P max / P 5 %	σ _{γs} (MPa)	K₀ (Mpa√m)
S 1.1	48	16.541	2.90188	276.9323	31.7825
S 1.2	44	15.601	2.82033	276.9323	29.7517
S 1.3	46	14.900	3.08725	276.9323	27.0230
S 1.4	42	14.250	2.94737	276.9323	28.7022

Pemeriksaan Plane-Strain

Spesimen No	$\left(K_{Q} / \sigma_{\gamma s} \right)^{2}$	2.5 (K _Q / σ _{γs}) ²	5 $\left(K_{Q} / \sigma_{\gamma s} \right)^{2}$	гр	rp/B
S 1.1	0.013171	0.032928	0.065857	0.000699	0.027950
S 1.2	0.011542	0.028855	0.057709	0.000612	0.024493
S 1.3	0.009522	0.023804	0.047609	0.000505	0.020206
S 1.4	0.010742	0.026855	0.053710	0.000570	0.022795

- > Ukuran B, W dan a sudah memenuhi persyaratan geometri spesimen
- Bentuk kurva *load-displacement* seperti type I sehinggga yang digunakan P_Q adalah P 5% (grafik pada lampiran C).
- Bentuk kurva adalah non linearity
- > Spesimen memenuhi persyaratan kriteria ukuran
- > Kondisi yang dicapai adalah menuju ke plane-strain

Material	: A 516

Temperatur : Ruang (30° C)

Spesimen No	B (m)	W (m)	ao (m)	S (m)	(a/w)	f (a/w)
A 1.1	0.02	0.0404	0.0188	0.1600	0.4659	2.3964
A 1.2	0.02	0.0407	0.0210	0.1620	0.5166	2.8086
A 1.3	0.02	0.0393	0.0188	0.1620	0.4777	2.4837
A 1.4	0.02	0.0393	0.0196	0.1600	0.4975	2.6411

Perhitungan K_Q

Spesimen No	P max (kN)	P 5% = P _Q (kN)	P max / P 5 %	σ _{γs} (MPa)	K₀ (Mpa√m)	Koreksi Ko (Mpa√m)
A 1.1	48	12.399	3.87128	338.0000	29.3274	25.91373
A 1.2	44	10.971	4.01057	338.0000	30.4532	26.90843
A 1.3	46	11.706	3.92961	338.0000	30.2859	26.76059
A 1.4	42	11.469	3.66205	338.0000	31.1040	25.48354

Pemeriksaan Plain-Strain

Spesimen No	(K _Q / σ _{γs}) ²	2.5 $(K_Q / \sigma_{ys})^2$	5 (K _Q / σ _{γs}) ²	rp	rp/B
A 1.1	0.007529	0.018822	0.037643	0.000399	0.019970
A 1.2	0.008118	0.020294	0.040588	0.000431	0.021533
A 1.3	0.008029	0.020072	0.040144	0.000426	0.021297
A 1.4	0.008468	0.021171	0.042342	0.000449	0.022463

- > Ukuran B, W dan a sudah memenuhi persyaratan geometri spesimen
- Bentuk kurva *load-displacement* seperti type I sehinggga yang digunakan P_Q adalah P 5% (grafik pada lampiran C).
- Bentuk kurva adalah non linearity
- > Spesimen memenuhi persyaratan kriteria ukuran
- > Kondisi yang dicapai adalah menuju ke plane-strain

Material	: SS 41
Temperatur	:-50° C

Spesimen No	B (m)	W (m)	ao (m)	S (m)	(a/w)	f (a/w)
S 2.1	0.025	0.0504	0.0243	0.2016	0.4812	2.5102
S 2.2	0.025	0.0502	0.0244	0.2006	0.4865	2.5523
S 2.3	0.025	0.0501	0.0251	0.2004	0.5000	2.6625
S 2.4	0.025	0.0495	0.0251	0.1980	0.5071	2.7233

Perhitungan Ko

Spesimen No	P max (kN)	P 5% = P _Q (kN)	P max / P 5 %	σ _{ys} (MPa)	Ko (Mpa√m)
S 2.1	48	9.770	4.91300	321.8391	17.4783
S 2.2	44	8.640	5.09259	321.8391	15.7557
S 2.3	46	8.320	5.52885	321.8391	15.8349
S 2.4	42	8.560	4.90654	321.8391	16.7642

Pemeriksaan Plain-Strain

Spesimen No	(K _Q / σ _{γs}) ²	2.5 $(K_Q / \sigma_{ys})^2$	5 (K _Q / σ _{γs}) ²	rp	rp/B
S 2.1	0.002949	0.007373	0.014747	0.000156	0.006259
S 2.2	0.002397	0.005992	0.011983	0.000127	0.005086
S 2.3	0.002421	0.006052	0.012104	0.000128	0.005137
S 2.4	0.002713	0.006783	0.013566	0.000144	0.005758

- > Ukuran B, W dan a sudah memenuhi persyaratan geometri spesimen
- Bentuk kurva *load-displacement* seperti type I sehinggga yang digunakan P_Q adalah P 5% (grafik pada lampiran C).
- Bentuk kurva adalah non linearity
- > Spesimen memenuhi persyaratan kriteria ukuran
- Kondisi yang dicapai adalah menuju ke plane-strain

Analisa Data dan Pembahasan

Material	0	A	51	6

Temperatur :-50° C

Spesimen No	B (m)	W (m)	ao (m)	S (m)	(a/w)	f (a/w)
A 2.1	0.02	0.0400	0.0188	0.1600	0.4700	2.4261
A 2.2	0.02	0.0405	0.0210	0.1620	0.5185	2.8262
A 2.3	0.02	0.0405	0.0188	0.1620	0.4630	2.3752
A 2.4	0.02	0.0400	0.0196	0.1600	0.4888	2.5700

Perhitungan K_Q

Spesimen No	P max (kN)	P 5% = P _Q (kN)	P max / P 5 %	σ _{ys} (MPa)	K₀ (Mpa√m)	Koreksi Ko (Mpa√m)
A 2.1	48	10.241	4.68704	352.0000	24.8457	21.95370
A 2.2	44	8.901	4.94326	352.0000	25.0005	22.09048
A 2.3	46	10.094	4.55716	352.0000	23.8268	21.05338
A 2.4	42	9.292	4.52002	352.0000	23.8800	21.10038

Pemeriksaan Plain-Strain

Spesimen No	(K _Q / σ _{γs}) ²	2.5 $(K_Q / \sigma_{\gamma s})^2$	5 (K _Q / σ _{γs}) ²	rp	rp/B
A 2.1	0.004982	0.012455	0.024911	0.000264	0.013216
A 2.2	0.005044	0.012611	0.025222	0.000268	0.013381
A 2.3	0.004582	0.011455	0.022910	0.000243	0.012154
A 2.4	0.004602	0.011506	0.023012	0.000244	0.012208

- > Ukuran B, W dan a sudah memenuhi persyaratan geometri spesimen
- Bentuk kurva *load-displacement* seperti type I sehinggga yang digunakan P_Q adalah P 5% (grafik pada lampiran C).
- > Bentuk kurva adalah non linearity
- > Spesimen memenuhi persyaratan kriteria ukuran
- > Kondisi yang dicapai adalah menuju ke plane-strain

ANALISI HASIL PERHITUNGAN PADA PENENTUAN HARGA FRACTURE TOUGHNESS (K_{ic})

Setelah dilakukan pengujian dan dilakukan pengamatan secara visual maka didapatkan dua macam bentuk kepecahan, yaitu kepecahan *ductile* dan kepecahan *brittle*. Kepecahan *ductile* terjadi pada pengujian temperatur ruang (30[°] C), yang mana harga *fracture toughness* (K_{Ic}) baja A 516 (*high tensile*) lebih kecil apabila dibandingkan dengan harga *fracture toughness* (K_{Ic}) baja SS 41 (*mild steel*). Kondisi ini berlawanan apabila pengujian dilakukan pengujian pada temperatur rendah (-50[°] C) yang terjadi adalah kepecahan *brittle* dan harga *fracture toughness* juga semakin kecil, kepecahan terjadi dengan tanpa/sedikit deformasi. Pada suhu –50[°] C harga *fracture toughness* (K_{Ic}) baja SS 41 (*mild steel*) baja A 516 (*high tensile*) lebih besar apabila dibandingkan dengan harga *fracture toughness* (K_{Ic}) baja SS 41 (*mild steel*) baja A 516 (*high tensile*) lebih besar apabila dibandingkan dengan harga *fracture toughness* (K_{Ic}) baja SS 41 (*mild steel*). Dari sini terlihat bahwa baja *mild steel* (SS 41) akan menjadi sangat getas apabila dioperasikan pada temperatur rendah (temperatur negatif)

6.2 Langkah Perhitungan pada Penentuan Crack Tip Opening Displacement (CTOD/δ)

Langkah-langkah perhitungan untuk mendapatkan harga CTOD sesuai standart ASTM E 1290-93 adalah sebagai berikut

- dari kurva *load-displacement* dari hasil percobaan maka dilakukan offset yang sejajar dengan original slope pada *pop-in* apabila tidak terdapat *pop-in* maka dilakukan offset pada beban maksimum seperti sehingga akan didapat harga dari Pp dan vp yang digunakan untuk mendifinisikan harga CTOD seperti dijelaska pada bab IV.
- 2. Perhitunga harga CTOD untuk *three-point bend specimen* SE (B) dengan menggunakan formula sebagai berikut

$$\delta = \frac{K^2 (1 - \upsilon^2)}{2\sigma_{ysE}} + \frac{r_p (W - a_o) v_p}{[r_p (W - a_o) + a_o + z]}$$

dimana

 $K = YP / [BW]^{1/2}$

Y dtentukan dengan persamaan sebagai berikut

Untuk SE (B) spesimen dengan S = 4W

$$Y = \frac{6(a_o/W)^{1/2} (1.99 - a_o/W [1 - a_o/W] * [2.15 - 3.93a_o/W + 2.7(a_o/W)^{1/2}])}{(1 + 2a_o/W)(1 - a_o/W)^{3/2}}$$

- P = Beban sesuai gambar 4.5
- $\upsilon = Angka poisson$
- σys = Tegangan yield pada temperatur pengujian
- E = Modulus young pada temperatur pengujian

- vp = Komponen plastik dari *clip gage opening displacement*
- z = Jarak permukaan retak terhadap ujung alat pengukur.
- r_p = Faktor rotasi plastik = 0.4 (1+ α)

Untuk SE (B) spesimen α = 0.1 dan r_p = 0.44.

PERHITUNGAN PADA PENENTUAN HARGA CRACK TIP OPENING

DISPLACEMENT (CTOD / 8)

Material : SS 41

Temperatur : Ruang (30° C)

Dimensi spesimen

Spesimen No	B (m)	w (m)	ao (m.)	S (m)	(a/w)	Y
S 1.1	0.025	0.0501	0.0252	0.2004	0.5030	10.7500
S 1.2	0.025	0.0499	0.0250	0.1996	0.5000	10.6500
S 1.3	0.025	0.0499	0.0242	0.1996	0.4840	10.1300
S 1.4	0.025	0.0505	0.0262	0.2020	0.5188	11.3200

Spesimen No	z (m)	υ	rp	E (Mpa)	σ _{vs} (MPa)
S 1.1	0.0056	0.35	0.00070	800.000	276.9323
S 1.2	0.0056	0.35	0.00061	800.000	276.9323
S 1.3	0.0056	0.35	0.00051	800.000	276.9323
S 1.4	0.0056	0.35	0.00057	800.000	276.9323

Perhitungan CTOD

Spesimen No	P (kN)	vp (m)	K (Mpa√m)	CTOD(δ) (m)	CTOD (δ) (mm)
S 1.1	46.000	0.0040000	31.782550	0.002003	2.002724
S 1.2	42.000	0.0023414	29.751698	0.001754	1.754151
S 1.3	42.000	0.0039163	27.022964	0.001448	1.447882
S 1.4	40.000	0.0038523	28.702154	0.001633	1.633160

Material	: A 516
Temperatur	: Ruang (30° C)

Dimensi spesimen

Spesimen No	B (m)	W (m)	ao (m)	S (m)	(a/w)	Y
A 1.1	0.02	0.0404	0.0188	0.1600	0.4659	9.5880
A 1.2	0.02	0.0407	0.0210	0.1620	0.5166	11.2500
A 1.3	0.02	0.0393	0.0188	0.1620	0.4777	9.9440
A 1.4	0.02	0.0393	0.0196	0.1600	0.4975	10.5800

Spesimen No	z (m)	υ	rp	E (Mpa)	σ _{γs} (MPa)
A 1.1	0.0056	0.30	0.00040	913.514	338.0000
A 1.2	0.0056	0.30	0.00043	913.514	338.0000
A 1.3	0.0056	0.30	0.00043	913.514	338.0000
A 1.4	0.0056	0.30	0.00045	913.514	338.0000

Perhitungan CTOD

Spesimen No	P (kN)	vp (m)	K (Mpa√m)	CTOD(δ) (m)	CTOD (δ) (mm)
A 1.1	38.000	0.0027391	25.913731	0.000991	0.990520
A 1.2	32.000	0.0031311	26.908435	0.001068	1.067977
A 1.3	40.000	0.0032682	26.760594	0.001056	1.056460
A 1.4 -	38.000	0.0035000	27.483537	0.001114	1.114311
Material	: SS 41				
------------	-----------				
Temperatur	: - 50° C				

Dimensi spesimen

Spesimen No	B (m)	W (m)	ao (m)	S (m)	(a/w)	Y
S 2.1	0.025	0.0504	0.0243	0.2016	0.4812	10.4000
S 2.2	0.025	0.0502	0.0244	0.2006	0.4865	10.2200
S 2.3	0.025	0.0501	0.0251	0.2004	0.5000	10.6500
S 2.4	0.025	0.0495	0.0251	0.1980	0.5071	10.8900

Spesimen No	z (m)	υ	rp	E (Mpa)	σ _{γs} (MPa)
S 2.1	0.0056	0.35	0.00016	1010.536	323.3716
S 2.2	0.0056	0.35	0.00013	1010.536	323.3716
S 2.3	0.0056	0.35	0.00013	1010.536	323.3716
S 2.4	0.0056	0.35	0.00014	1010.536	323.3716

Perhitungan CTOD

Spesimen No	P (kN)	vp (m)	K (Mpa√m)	CTOD(δ) (m)	CTOD (δ) (mm)
S 2.1	50.000	0.0005853	17.478323	0.0004102	0.410249
S 2.2	52.000	0.0006030	15.755716	0.0003334	0.333369
S 2.3	50.000	0.0003454	15.834854	0.0003367	0.336696
S 2.4	48.000	0.0007203	16.764165	0.0003774	0.377417

Material	: A 516
Temperatur	: - 50° C

Dimensi spesimen

Spesimen No	B (m)	W (m)	ao (m)	S (m)	(a/w)	Y
A 2.1	0.02	0.0400	0.0188	0.1600	0.4700	9.7040
A 2.2	0.02	0.0405	0.0210	0.1620	0.5185	11.3200
A 2.3	0.02	0.0405	0.0188	0.1620	0.4630	9.5020
A 2.4	0.02	0.0400	0.0196	0.1600	0.4888	10.2900

Spesimen No	z (m)	υ	rp	E (Mpa)	σ _{γs} (MPa)
A 2.1	0.0056	0.30	0.440000	1265.467	354.3307
A 2.2	0.0056	0.30	0.000268	1265.467	354.3307
A 2.3	0.0056	0.30	0.000243	1265.467	354.3307
A 2.4	0.0056	0.30	0.000244	1265.467	354.3307

Perhitungan CTOD

Spesimen No	P (kN)	vp (m)	K (Mpa√m)	CTOD(δ) (m)	CTOD (δ) (mm)
A 2.1	44.935	0.0029084	21.953701	0.0012934	1.293429
A 2.2	48.000	0.0011026	22.090479	0.0004954	0.495395
A 2.3	50.000	0.0024217	21.053383	0.0004503	0.450301
A 2.4	50.000	0.0012680	21.100385	0.0004520	0.452038

ANALISA HASIL PERHITUNGAN PADA PENENTUAN HARGA CRACK TIP OPENING DISPLACEMENT (CTOD/δ)

Fenomena yang terjadi pada penentuan harga *fracture toughness* juga terjadi pada penentuan harga CTOD. Pada temperatur ruang (30° C) sebelum terjadi kepecahan, maka akan didahului dengan deformasi plastis atau terjadinya bukaan pada ujung retak. Untuk baja SS 41 *(mild steel)* mempunyai harga CTOD yang lebih besar dari pada baja A 516 atau dapat dikatakan SS 41 mengalami deformasi plastis yang lebih besar. Tetapi pada temperatur –50° C kepecahan terjadi tanpa didahului/sedikit terjadi deformasi plastis. Pada temperatur –50° C Harga CTOD lebih kecil dari harga CTOD pada temperatur ruang. Harga CTOD pada temperatur –50° C, baja SS 41 lebih kecil dari pada harga CTOD baja A 516.

6.3 Penentuan Harga J_{lc} Dengan menggunakan J – integral

Langkah-langkah perhitungan untuk mendapatkan harga J_{lc} sesuai standart ASTM E 813-89 adalah sebagai berikut

- Dari kurva *load-displacement* pada pengujian *fracture* maka untuk menentukan luasan dibawah kurva tersebut sedikitnya dibagi menjadi
 4 bagian luasan sesuai standart ASTM E 813 – 89
- Menentukan harga J, untuk three-point bend harga J sesuai persamaan berikut :

 $J = J_{el} + J_{pl}$

Dimana

J_{el} = Komponen elastik dari J

J_{pl} = Komponen plastik dari J

Untuk *three-point bend specimen*, dari harga v₁ dan P_i pada kurva *load-displacement* maka dapat ditentukan harga dari

$$J_{PL(i)} = \frac{2A_{PL(i)}}{B_N b_o}$$
$$J_{EL(i)} = \frac{(K_{(i)})^2 (1 - \nu^2)}{E}$$

Dari metode pengetesan ASTM E 399

$$K_{(i)} = \left[P_{(i)} S / ((BB_n)^{1/2} W^{3/2}) \right] \cdot f(a_o / W)$$

Dengan

$$f(a_o/W) = \frac{3(a_o/W)^{\frac{1}{2}} \left[1.99 - (a_o/W)(1 - a_o/W)x(2.15 - 3.93a_o/W + 2.7a_o^2/W^2) \right]}{2(1 + 2a_o/W)(1 - a_o/W)^{\frac{3}{2}}}$$

Dimana

I = Point pada kurva beban (P) Versus displacement (v)

A_{PL(i)} = Luas A seperti gambar 4.11a

B_N = Tebal Spesimen

$$b_o = W - a_o$$

S = Bend span = 4W

3. Membuat titik untuk pembuat kurva J versus crack extension.

- Membuat kurva J-Crack extension dengan cara regresi untuk mendapatkan kurva yang stream line.
- 5. Anlisis data

Untuk menentukan harga J_Q , minimum crack ($\Delta a_p min$), maksimum crack ($\Delta a_p max$), maka dibuatlah garis yang sejajar *blunting line* sepanjang 0.15 mm, 0.2 mm, dan 1.5 mm seperti terlihat pada gambar 4.12, dimana

- Harga J_Q didapat dari perpotongan kurva J-∆ dengan offset
 0.2 mm blunting line
- Harga ∆a_{p min} didapat dari perpotongan kurva J-∆ dengan offset
 0.15 mm blunting line
- Harga ∆a_{p max} didapat dari perpotongan kurva J-∆ dengan offset
 0.15 mm blunting line
- Penentuan kriteria ukuran dimensi dari spesimen untuk menguji harga J_Q yang diperoleh, sehingga dapat ditetapkan sebagao nilai J_{Ic} dengan formula dibawah ini

Harga $J_Q = J_{lc}$ jika, Tebal B > 25 J_Q / σ_y Sisa lebar $b_0 > 25 J_Q / \sigma_y$

PERHITUNGAN PADA PENENTUAN HARGA HARGA J_{IC} DENGAN

MENGGUNAKAN J - integral

ANALISA PERHITUNGAN J - Integral Spesimen S 1.1

Material	: SS 41
Temperatur	: Ruang (30° C)

B = 0.025m a = 0.0252m W = 0.0501 m $b_0 = 0.0249 m$ Bn = 0.025m S = 0.2004m f (a/W) = 2.688 0.35 υ= $v^2 =$ 0.1225 800Mpa E = σ_{vs} = 276.9323Mpa $\sigma_{\rm u} = 459.5087 \, \text{Mpa}$

Komponen Plastik dari J (Jpl)

No	∆ _{ap} (mm)	A _{pl} (mm ²)	A _{pi} (m ²)	J _{PL}
0	0	0	0	0
1	0.274	3.92379	0.00000392379	0.01260655
2	0.548	12.19199	0.00001219199	0.03917105
3	0.822	21.25764	0.00002125764	0.06829765
4	1.096	49.03144	0.00004903144	0.15753074
5	1.371	58.52501	0.00005852501	0.18803216
6	1.645	68.36383	0.00006836383	0.21964282
7	1.919	78.53063	0.00007853063	0.25230725
8	2.193	89.00258	0.00008900258	0.28595205
9	2.467	99.78069	0.00009978069	0.32058054
10	2.741	110.83672	0.00011083672	0.35610191
11	3.015	122.12715	0.00012212715	0.39237639
12	3.289	133.62400	0.00013362400	0.42931406
13	3.563	145.31814	0.00014531814	0.46688557
14	3.837	157.22397	0.00015722397	0.50513724
15	4.112	169.37934	0.00016937934	0.54419065
16	4.386	181.83027	0.00018183027	0.58419362

No	P (kN)	K Mpa√m	K ²	(1-v ²)	J _{el} (Kpa*m)	J (Kpa*m)
0	0	0	0	0.8775	0	0
1	25.816	18.453981	340.549419	0.8775	373.540144	373.552751
2	32.457	23.201149	538.293320	0.8775	590.440485	590.479656
3	33.484	23.935277	572.897472	0.8775	628.396915	628.465212
4	34.111	24.383473	594.553777	0.8775	652.151174	652.308705
5	35.240	25.190513	634.561967	0.8775	696.035158	696.223190
6	36.522	26.106922	681.571377	0.8775	747.598604	747.818247
7	37.647	26.911103	724.207449	0.8775	794.365046	794.617353
8	38.769	27.713139	768.018069	0.8775	842.419819	842.705771
9	39.857	28.490871	811.729730	0.8775	890.366048	890.686629
10	40.786	29.154946	850.010850	0.8775	932.355651	932.711753
11	41.579	29.721804	883.385608	0.8775	968.963589	969.355965
12	42.303	30.239339	914.417595	0.8775	1003.001800	1003.431114
13	43.034	30.761877	946.293094	0.8775	1037.965237	1038.432123
14	43.863	31.354469	983.102732	0.8775	1078.340809	1078.845947
15	44.807	32.029266	1025.873884	0.8775	1125.255416	1125.799607
16	46,000	32,882055	1081,229541	0.8775	1185,973653	1186.557846

 $J_Q = 682.65 \text{kPa*m}$

 $\Delta a_{p \min} = 1.06305 \text{ mm}$

 $\Delta a_{p max} = 2.76564 mm$

 $25 J_Q/\sigma_{ys} = 0.025255$

ANALISA PERHITUNGAN J - Integral S 1.2

Material	: SS 41
Temperatur	: Ruang (30° C)

B =	0.025m
a =	0.025m
VV =	0.0499m
b _o =	0.0249m
Bn =	0.025m
S =	0.1996m
f (a/W) =	2.6625
υ =	0.35
$v^2 =$	0.123
E =	800Mpa
σ _{ys} =	276.9323Mpa
σ _u =	459.5087 Mpa

Komponen Plastik dari J ($J_{\rm pl}$)

No	Δ _{ap} (mm)	A _{pl} (mm ²)	A _{pl} (m ²)	J _{PL}
0	0	0	0	0
1	0.168	1.61494	0.00000161494	0.00518855
2	0.337	5.60365	0.00000560365	0.01800368
3	0.505	10.57925	0.00001057925	0.03398957
4	0.673	26.24054	0.00002624054	0.08430694
5	0.842	31.57639	0.00003157639	0.10145025
6	1.010	36.99718	0.00003699718	0.11886644
7	1.178	42.50181	0.00004250181	0.13655200
8	1.346	48.10111	0.00004810111	0.15454171
9	1.515	53.81768	0.00005381768	0.17290822
10	1.683	59.68112	0.00005968112	0.19174656
11	1.851	65.70091	0.00006570091	0.21108727
12	2.020	71.86097	0.00007186097	0.23087863
13	2.188	78.15116	0.00007815116	0.25108805
14	2.356	84.58433	0.00008458433	0.27175687
15	2.525	91.20118	0.00009120118	0.29301584
16	2.693	98.09450	0.00009809450	0.31516304

No	P (kN)	K Mpa√m	K²	(1-v ²)	J _{el} (Kpa*m)	J (Kpa*m)
0	0	0	0	0.8775	0	0
1	18.295	13.103947	171.713424	0.8775	188.348162	188.353350
2	28.101	20.127576	405.119334	0.8775	444.365269	444.383273
3	30.520	21.860205	477.868582	0.8775	524.162101	524.196090
4	31.417	22.502689	506.371021	0.8775	555.425714	555.510021
5	31.966	22.895915	524.222926	0.8775	575.007022	575.108472
6	32.453	23.244733	540.317606	0.8775	592.660874	592.779741
7	32.972	23.616471	557.737701	0.8775	611.768541	611.905093
8	33.589	24.058402	578.806725	0.8775	634.878626	635.033168
9	34.378	24.623530	606.318241	0.8775	665.055321	665.228229
10	35.310	25.291083	639.638881	0.8775	701.603898	701.795644
11	36.205	25.932134	672.475588	0.8775	737.621661	737.832748
12	36.987	26.492248	701.839221	0.8775	769.829896	770.060774
13	37.775	27.056660	732.062846	0.8775	802.981434	803.232522
14	38.712	27.727794	768.830560	0.8775	843.311021	843.582778
15	40.016	28.661795	821.498488	0.8775	901.081154	901.374170
16	42 000	30 082852	904 977956	0.8775	992 647695	992 962858

Komponen Elastik dari J (J_{el})

 $J_Q = 590.01 \text{ kPa*m}$

 $\Delta a_{p \min} = 0.93431 \, \text{mm}$

 $\Delta a_{p max} = 2.75825 mm$

 $25 J_Q/\sigma_{ys} = 0.02568$

Grafik dapat dilihat pada lampiran D

· .

ANALISA PERHITUNGAN J - Integral S 1.3

Material	: SS 41
Temperatur	: Ruang (30° C)

В	=	0.025m
а	=	0.0262m
W	=	0.0505m
bo	=	0.0243m
Bn	=	0.025m
S	=	0.202m
f (a/W)	=	2.829
υ	=	0.35
υ^2	=	0.123
E	=	800Mpa
σ_{ys}	=	276.9323Mpa
σ	=	459.5087 Mpa

Komponen Plastik dari J (Jpl)

No	∆ _{ap} (mm)	A _{pl} (mm ²)	A _{pl} (m ²)	J _{PL}
0	0	0	0	0
1	0.270	3.47011	0.00000347011	0.01142423
2	0.541	10.84218	0.00001084218	0.03569443
3	0.811	18.80648	0.00001880648	0.06191433
4	1.082	43.29559	0.00004329559	0.14253693
5	1.352	51.74354	0.00005174354	0.17034911
6	1.622	60.51122	0.00006051122	0.19921388
7	1.893	69.56148	0.00006956148	0.22900899
8	2.163	78.87744	0.00007887744	0.25967881
9	2.434	88.45586	0.00008845586	0.29121271
10	2.704	98.29058	0.00009829058	0.32359039
11	2.974	108.36949	0.00010836949	0.35677199
12	3.245	118.67297	0.00011867297	0.39069291
13	3.515	129.18277	0.00012918277	0.42529306
14	3.786	139.90176	0.00013990176	0.46058193
15	4.056	150.85666	0.00015085666	0.49664743
16	4.326	162.16618	0.00016216618	0.53388043

No	P (kN)	K Mpa√m	K ²	(1-v ²)	J _{el} (Kpa*m)	J (Kpa*m)
0	0	0	0	0.8775	0	0
1	23.809	16.951786	287.363032	0.8775	315.201326	315.212750
2	29.002	20.649153	426.387519	0.8775	467.693810	467.729504
3	29.805	21.220881	450.325811	0.8775	493.951124	494.013038
4	30.654	21.825362	476.346407	0.8775	522.492465	522.635002
5	31.853	22.679038	514.338780	0.8775	564.165349	564.335698
6	32.967	23.472196	550.943982	0.8775	604.316680	604.515894
7	33.964	24.182051	584.771572	0.8775	641.421318	641.650327
8	34.940	24.876953	618.862815	0.8775	678.815150	679.074829
9	35.902	25.561889	653.410144	0.8775	716.709251	717.000464
10	36.832	26.224040	687.700264	0.8775	754.321227	754.644818
11	37.703	26.844184	720.610197	0.8775	790.419310	790.776082
12	38.492	27.405944	751.085783	0.8775	823.847218	824.237911
13	39.245	27.942073	780.759458	0.8775	856.395531	856.820824
14	40.056	28.519498	813.361748	0.8775	892.156168	892.616749
15	40.990	29.184497	851.734863	0.8775	934.246677	934.743325
16	42 000	29 903608	894 225743	0.8775	980 853861	981 387742

 $J_Q = 505.155$ kPa*m

 $\Delta a_{p \min} = 0.82216 \text{ mm}$

 $\Delta a_{p max} = 2.48121 \text{ mm}$

25 J_Q/o_{ys} = 0.021987

ANALISA PERHITUNGAN J - Integral Spesimen S 1.4

Material	: SS 41
Temperatur	: Ruang (30° C)

B =	0.025m
a =	0.0242m
VV =	0.0499m
b _o =	0.0257 m
Bn =	0.025m
S =	0.1996m
f (a/W) =	2.5321
υ =	0.35
$v^2 =$	0.123
E =	800Mpa
σ _{ys} =	276.9323Mpa
σ _u =	459.5087 Mpa

Komponen Plastik dari J (J_{pl})

No	Δ _{ap} (mm)	A _{pl} (mm ²)	A _{pl} (m ²)	J _{PL}
0	0	0	0	0
1	0.266	3.23968	0.00000323968	0.01008460
2	0.532	10.09508	0.00001009508	0.03142437
3	0.798	17.47226	0.00001747226	0.05438836
4	1.064	40.35646	0.00004035646	0.12562322
5	1.331	48.25542	0.00004825542	0.15021141
6	1.597	56.42584	0.00005642584	0.17564464
7	1.863	64.85092	0.00006485092	0.20187057
8	2.129	73.50702	0.00007350702	0.22881563
9	2.395	82.38086	0.00008238086	0.25643846
10	2.661	91.47964	0.00009147964	0.28476151
11	2.927	100.81553	0.00010081553	0.31382267
12	3.193	110.39121	0.00011039121	0.34363022
13	3.459	120.20229	0.00012020229	0.37417056
14	3.725	130.24668	0.00013024668	0.40543714
15	3.992	140.52757	0.00014052757	0.43743989
16	4.258	151.04989	0.00015104989	0.47019421

No	P (kN)	K Mpa√m	K ²	(1-v ²)	J _{el} (Kpa*m)	J (Kpa*m)
0	0	0	0	0.8775	0	0
1	22.212	15.909531	253.113174	0.8775	277.633512	277.643597
2	27.208	19.487958	379.780496	0.8775	416.571732	416.603156
3	28.184	20.187026	407.516014	0.8775	446.994128	447.048517
4	29.166	20.890392	436.408462	0.8775	478.685531	478.811155
5	30.202	21.632435	467.962256	0.8775	513.296100	513.446311
6	31.196	22.344396	499.272037	0.8775	547.639016	547.814660
7	32.110	22.999056	528.956588	0.8775	580.199258	580.401128
8	32.940	23.593551	556.655634	0.8775	610.581649	610.810465
9	33.761	24.181599	584.749721	0.8775	641.397351	641.653789
10	34.634	24.806892	615.381909	0.8775	674.997032	675.281793
11	35.536	25.452957	647.853042	0.8775	710.613805	710.927628
12	36.431	26.094009	680.897288	0.8775	746.859213	747.202843
13	37.308	26.722167	714.074223	0.8775	783.250163	783.624334
14	38.188	27.352475	748.157868	0.8775	820.635661	821.041098
15	39.087	27.996391	783.797903	0.8775	859.728325	860.165765
16	40.000	28.650335	820.841683	0.8775	900.360721	900.830916

J_Q = 447.91kPa*m

 $\Delta a_{p \min} = 0.75167 \, \text{mm}$

 $\Delta a_{p max} = 2.36631 \text{ mm}$

 $25 J_Q/\sigma_{ys} = 0.024369$

ANALISA PERHITUNGAN J - Integral Spesimen A 1.1

C)

Material	: A 516
Temperatur	: Ruang (30°

B =	0.02m
b _o =	0.0216m
Bn =	0.02m
VV =	0.0404m
S =	0.16m
f (a/W) =	2.3964
υ =	0.3
$v^2 =$	0.09
E =	913.514Mpa
σ _{ys} =	338Mpa
σ _u =	521.2Mpa

Komponen Plastik dari J (Jpl)

No	∆ _{ap} (mm)	A _{pl} (mm ²)	A _{pl} (m ²)	J _{PL}
0	0	0	0	0
1	0.195	1.80624	0.00000180624	0.00836220
2	0.390	6.11736	0.00000611736	0.02832112
3	0.585	11.13325	0.00001113325	0.05154282
4	0.780	26.92508	0.00002692508	0.12465315
5	0.975	32.37020	0.00003237020	0.14986204
6	1.170	38.02040	0.00003802040	0.17602037
7	1.365	43.81444	0.00004381444	0.20284463
8	1.560	49.76468	0.00004976468	0.23039204
9	1.755	55.85635	0.00005585635	0.25859421
10	1.950	62.08670	0.00006208670	0.28743843
11	2.145	68.46206	0.00006846206	0.31695398
12	2.340	74.98673	0.00007498673	0.34716079
13	2.535	81.65909	0.00008165909	0.37805134
14	2.730	88.48494	0.00008848494	0.40965250
15	2.925	95.49915	0.00009549915	0.44212569
16	3.120	102.76630	0.00010276630	0.47576991

No	P (kN)	K Mpa√m	K ²	(1-v ²)	J _{el} (Kpa*m)	J (Kpa*m)
0	0	0	0	0.91	0	0
1	17.519	17.259462	297.889026	0.91	296.743141	296.751503
2	24.805	24.437522	597.192495	0.91	594.895284	594.923605
3	26.457	26.065048	679.386751	0.91	676.773365	676.824908
4	27.480	27.072893	732.941538	0.91	730.122144	730.246797
5	28.370	27.949708	781.186178	0.91	778.181201	778.331063
6	29.279	28.845241	832.047956	0.91	828.847330	829.023350
7	30.131	29.684619	881.176628	0.91	877.787020	877.989864
8	30.884	30.426464	925.769708	0.91	922.208564	922.438956
9	31.592	31.123975	968.701830	0.91	964.975540	965.234134
10	32.316	31.837249	1013.610446	0.91	1009.711406	1009.998845
11	33.076	32.585990	1061.846757	0.91	1057.762168	1058.079122
12	33.842	33.340642	1111.598420	0.91	1107.322452	1107.669613
13	34.595	34.082487	1161.615902	0.91	1157.147532	1157.525583
14	35.439	34.913983	1218.986220	0.91	1214.297164	1214.706817
15	36.565	36.023302	1297.678276	0.91	1292.686517	1293.128643
16	38.000	37,437043	1401.532174	0.91	1396.140922	1396.616692

 $J_Q = 827.105 kPa^*m$

 $\Delta a_{p \min} = 1.0907 \, \text{mm}$

 $\Delta a_{p max} = 3.01497 mm$

25 J_Q/o_{ys} = 0.019043

Grafik dapat dilihat pada lampiran D

. 1 d

ANALISA PERHITUNGAN J - Integral Spesimen A 1.2

Material	: A 516		
Temperatur	: Ruang (30° C)		

B =	0.02m
a =	0.021 m
VV =	0.0407 m
b _o =	0.0197m
Bn =	0.02m
S =	0.162m
f (a/W) =	2.8086
υ =	0.3
$v^2 =$	0.09
E =	913.514Mpa
σ _{ys} =	338Mpa
σ _u =	521.2Mpa

Komponen Plastik dari J (J_{pl})

No	Δ _{ap} (mm)	A _{pl} (mm ²)	A _{pl} (m ²)	JPL
0	0	0	0	0
1	0.215	1.71955	0.00000171955	0.00872869
2	0.430	5.71325	0.00000571325	0.02900126
3	0.645	10.47622	0.00001047622	0.05317876
4	0.860	25.49638	0.00002549638	0.12942327
5	1.075	30.62292	0.00003062292	0.15544627
6	1.290	35.86103	0.00003586103	0.18203570
7	1.505	41.23265	0.00004123265	0.20930277
8	1.720	46.75345	0.00004675345	0.23732717
9	1.935	52.42886	0.00005242886	0.26613635
10	2.150	58.25554	0.00005825554	0.29571340
11	2.365	64.22301	0.00006422301	0.32600512
12	2.580	70.31648	0.00007031648	0.35693647
13	2.795	76.53104	0.00007653104	0.38848245
14	3.010	82.88388	0.00008288388	0.42073035
15	3.225	89.41642	0.00008941642	0.45389047
16	3.440	96.17541	0.00009617541	0.48820006

No	P (kN)	K Mpa√m	K ²	(1-v ²)	J _{ei} (Kpa*m)	J (Kpa*m)
0	0	0	0	0.91	0	0
1	15.119	14.914767	222.450274	0.91	221.594578	221.603306
2	21.059	20.774527	431.580982	0.91	429.920827	429.949828
3	22.893	22.583753	510.025895	0.91	508.063986	508.117165
4	23.602	23.283175	542.106260	0.91	540.020948	540.150371
5	24.088	23.762610	564.661653	0.91	562.489578	562.645024
6	24.658	24.324911	591.701277	0.91	589.425189	589.607225
7	25.323	24.980928	624.046742	0.91	621.646231	621.855534
8	26.037	25.685283	659.733741	0.91	657.195954	657.433281
9	26.754	26.392597	696.569181	0.91	693.889699	694.155835
10	27.438	27.067357	732.641834	0.91	729.823593	730.119306
11	28.060	27.680955	766.235278	0.91	763.287813	763.613818
12	28.619	28.232404	797.068634	0.91	794.002563	794.359499
13	29.204	28.809502	829.987381	0.91	826.794682	827.183164
14	29.925	29.520762	871.475392	0.91	868.123101	868.543831
15	30.882	30.464835	928.106143	0.91	924.536012	924.989902
16	32.000	31.567732	996.521715	0.91	992.688410	993.176610

 $J_{Q} = 819.715 kPa^{*}m$

 $\Delta a_{p \min} = 0.7382 \text{ mm}$

 $\Delta a_{p max} = 2.39365 mm$

 $25 J_Q/\sigma_{ys} = 0.019943$

ANALISA PERHITUNGAN J - Integral Spesimen A 1.3

Material	: A 516
Temperatur	: Ruang (30° C)

B =	0.02m
a =	0.0188m
VV =	0.0393m
b _o =	0.0205m
Bn =	0.02m
S =	0.162m
f (a/W) =	2.4837
υ =	0.3
$v^2 =$	0.09
E =	913.514Mpa
σ _{ys} =	338Mpa
σ _u =	521.2Mpa

Komponen Plastik dari J (J_{pl})

No	∆ _{ap} (mm)	A _{pl} (mm ²)	A _{pl} (m ²)	JPL
0	0	0	0	0
1	0.229	2.47362	0.00000247362	0.01206644
2	0.458	8.09380	0.00000809380	0.03948193
3	0.687	14.41253	0.00001441253	0.07030505
4	0.916	34.23804	0.00003423804	0.16701482
5	1.145	41.09187	0.00004109187	0.20044817
6	1.374	48.18429	0.00004818429	0.23504532
7	1.603	55.50317	0.00005550317	0.27074717
8	1.832	63.02454	0.00006302454	0.30743678
9	2.061	70.73451	0.00007073451	0.34504640
10	2.290	78.63419	0.00007863419	0.38358142
11	2.519	86.72289	0.00008672289	0.42303850
12	2.748	94.98533	0.00009498533	0.46334305
13	2.977	103.40350	0.00010340350	0.50440732
14	3.206	111.98361	0.00011198361	0.54626153
15	3.435	120.76334	0.00012076334	0.58908947
16	3.664	129.79025	0.00012979025	0.63312319

No	P (kN)	K Mpa√m	K ²	(1-v ²)	J _{el} (Kpa*m)	J (Kpa*m)
0	0	0	0	0.91	0	0
1	20.182	20.982653	440.271720	0.91	438.578134	438.590200
2	26.773	27.835129	774.794381	0.91	771.813992	771.853474
3	28.280	29.401914	864.472529	0.91	861.147176	861.217481
4	29.407	30.573624	934.746461	0.91	931.150787	931.317802
5	30.452	31.660080	1002.360696	0.91	998.504930	998.705379
6	31.481	32.729903	1071.246523	0.91	1067.125776	1067.360821
7	32.419	33.705115	1136.034748	0.91	1131.664781	1131.935528
8	33.260	34.579478	1195.740327	0.91	1191.140692	1191.448128
9	34.078	35.429930	1255.279926	0.91	1250.451260	1250.796307
10	34.915	36.300135	1317.699798	0.91	1312.631023	1313.014604
11	35.717	37.133952	1378.930362	0.91	1373.626052	1374.049091
12	36.427	37.872118	1434.297357	0.91	1428.780068	1429.243411
13	37.098	38.569738	1487.624699	0.91	1481.902277	1482.406684
14	37.865	39.367166	1549.773780	0.91	1543.812289	1544.358551
15	38.852	40.393322	1631.620476	0.91	1625.344147	1625.933236
16	40.000	41.586865	1729.467357	0.91	1722.814642	1723.447765

J_Q = 897.11 kPa*m

 $\Delta a_{p \min} = 1.40481 \, \text{mm}$

 $\Delta a_{p max} = 3.35765 mm$

 $25 J_Q/\sigma_{ys} = 0.02105$

ANALISA PERHITUNGAN J - Integral Spesimen A 1.4

Material	: A 516	
Temperatur	: Ruang (30° C)	

В	=	0.02m
а	=	0.0196m
W	=	0.0393m
bo	=	0.0197 m
Bn	=	0.02m
S	=	0.16m
f(a/W)	=	2.6411
υ	=	0.3
υ^2	=	0.09
E	=	913.514Mpa
σys	=	338Mpa
σι	=	521.2Mpa

Komponen Plastik dari J (J_{pl})

No	Δ _{ap} (mm)	A _{pl} (mm ²)	A _{pl} (m ²)	JPL
0	0	0	0	0
1	0.243	2.66606	0.00000266606	0.01353329
2	0.486	8.23120	0.00000823120	0.04178276
3	0.729	14.38907	0.00001438907	0.07304096
4	0.972	33.74165	0.00003374165	0.17127742
5	1.216	40.48478	0.00004048478	0.20550650
6	1.459	47.51073	0.00004751073	0.24117124
7	1.702	54.79529	0.00005479529	0.27814866
8	1.945	62.30582	0.00006230582	0.31627320
9	2.188	70.02787	0.00007002787	0.35547143
10	2.431	77.92279	0.00007792279	0.39554715
11	2.674	86.05477	0.00008605477	0.43682623
12	2.917	94.37272	0.00009437272	0.47904932
13	3.160	102.86197	0.00010286197	0.52214199
14	3.403	111.52907	0.00011152907	0.56613743
15	3.647	120.33282	0.00012033282	0.61082649
16	3.890	129.44714	0.00012944714	0.65709210

No	P (kN)	K Mpa√m	K ²	(1-v ²)	J _{el} (Kpa*m)	J (Kpa*m)
0	0	0	0	0.91	0	0
1	19.979	20.515160	420.871790	0.91	419.252829	419.266362
2	24.598	25.258116	637.972439	0.91	635.518360	635.560143
3	25.949	26.645372	709.975848	0.91	707.244795	707.317836
4	27.135	27.863200	776.357897	0.91	773.371493	773.542770
5	28.334	29.094376	846.482730	0.91	843.226578	843.432085
6	29.452	30.242379	914.601494	0.91	911.083311	911.324482
7	30.447	31.264081	977.442767	0.91	973.682853	973.961002
8	31.337	32.177965	1035.421451	0.91	1031.438511	1031.754785
9	32.192	33.055910	1092.693201	0.91	1088.489956	1088.845427
10	33.042	33.928721	1151.158108	0.91	1146.729966	1147.125513
11	33.848	34.756351	1208.003931	0.91	1203.357121	1203.793947
12	34.572	35.499780	1260.234404	0.91	1255.386680	1255.865729
13	35.274	36.220619	1311.933265	0.91	1306.886672	1307.408814
14	36.053	37.020525	1370.519250	0.91	1365.247295	1365.813433
15	37.053	38.047361	1447.601671	0.91	1442.033204	1442.644031
16	38.000	39.019775	1522.542822	0.91	1516.686080	1517.343172

 $J_Q = 828.655 \text{kPa*m}$

 $\Delta a_{p \min} = 1.08883 \, \text{mm}$

 $\Delta a_{p max} = 2.98331 mm$

 $25 J_Q/\sigma_{ys} = 0.019079$

ANALISA PERHITUNGAN J - Inte	gral Spesimen S 2.1
------------------------------	---------------------

Material	: SS 41
Temperatur	: - 50° C

B = 0.025m a = 0.0243m W =0.0504m b_o = 0.0261 m Bn = 0.025m S = 0.2016m f (a/W) = 2.5102 υ= 0.35 $v^2 =$ 0.123 E = 1010.536Mpa σ_{ys} = 321.8931 Mpa σ_u = 508.8123Mpa

Komponen Plastik dari J (Jpl)

No	∆ _{ap} (mm)	A _{pl} (mm ²)	A _{pl} (m ²)	J _{PL}
0	0	0	0	0
1	0.041	0.09223	0.0000009223	0.00028270
2	0.081	0.93492	0.0000093492	0.00286564
3	0.122	2.35060	0.00000235060	0.00720492
4	0.162	7.01808	0.00000701808	0.02151136
5	0.203	8.62649	0.00000862649	0.02644133
6	0.244	10.27623	0.00001027623	0.03149803
7	0.284	11.96303	0.00001196303	0.03666828
8	0.325	13.68054	0.00001368054	0.04193270
9	0.365	15.42411	0.00001542411	0.04727696
10	0.406	17.19045	0.00001719045	0.05269102
11	0.447	18.99660	0.00001899660	0.05822714
12	0.487	20.82486	0.00002082486	0.06383098
13	0.528	22.70657	0.00002270657	0.06959867
14	0.568	24.61883	0.00002461883	0.07546000
15	0.609	26.56800	0.00002656800	0.08143447
16	0.650	28.56866	0.00002856866	0.08756679

No	P (kN)	K Mpa√m	K ²	(1-v ²)	J _{el} (Kpa*m)	J (Kpa*m)
0	0	0	0	0.8775	0	0
1	8.920	6.357254	40.414679	0.8775	35.094129	35.094412
2	30.050	21.416534	458.667937	0.8775	398.284786	398.287651
3	37.460	26.697616	712.762717	0.8775	618.928256	618.935461
4	39.050	27.830804	774.553651	0.8775	672.584479	672.605990
5	40.140	28.607643	818.397257	0.8775	710.656120	710.682562
6	41.110	29.298959	858.429003	0.8775	745.417729	745.449227
7	41.950	29.897624	893.867937	0.8775	776.191164	776.227832
8	42.630	30.382258	923.081600	0.8775	801.558880	801.600812
9	43.270	30.838384	951.005917	0.8775	825.806990	825.854267
10	44.020	31.372906	984.259251	0.8775	854.682557	854.735248
11	44.980	32.057095	1027.657346	0.8775	892.367339	892.425566
12	45.950	32.748411	1072.458413	0.8775	931.270392	931.334223
13	46.720	33.297187	1108.702679	0.8775	962.743139	962.812738
14	47.500	33.853091	1146.031746	0.8775	995.157874	995.233334
15	48.590	34.629930	1199.232051	0.8775	1041.354414	1041.435849
16	50.000	35.634832	1269.841270	0.8775	1102.668004	1102.755571

Komponen Elastik dari J (J_{el})

 $J_Q = 856.395 \text{kPa*m}$ $\Delta a_{p \text{ min}} = 0.348006 \text{ mm}$

 $\Delta a_{p max} =$

 $25 J_Q/\sigma_{ys} = 0.020198$

ANALISA PERHITUNGAN J - Integral Spesimen S 2.2

Material	: SS 41
Temperatur	: - 50° C

0.025m B = a = 0.0244m W = 0.0502m 0.0258m $b_o =$ Bn = 0.025m S = 0.2006m f (a/W) = 2.5523 0.35 υ= $v^2 =$ 0.123 E = 1010.536Mpa σ_{ys} = 321.8931Mpa σ_u = 508.8123Mpa

Komponen Plastik dari J (Jpl)

No	∆ _{ap} (mm)	A _{pl} (mm ²)	A _{pl} (m ²)	J _{PL}
0	0	0	0	0
1	0.047	0.22872	0.0000022872	0.00070920
2	0.094	1.17766	0.00000117766	0.00365166
3	0.141	2.79551	0.00000279551	0.00866826
4	0.188	8.32620	0.00000832620	0.02581766
5	0.235	10.29740	0.00001029740	0.03192993
6	0.281	12.34474	0.00001234474	0.03827828
7	0.328	14.42675	0.00001442675	0.04473412
8	0.375	16.54624	0.00001654624	0.05130618
9	0.422	18.70548	0.00001870548	0.05800148
10	0.469	20.60786	0.00002060786	0.06390034
11	0.516	22.84456	0.00002284456	0.07083584
12	0.563	25.12284	0.00002512284	0.07790029
13	0.610	27.44596	0.00002744596	0.08510374
14	0.657	29.80964	0.00002980964	0.09243299
15	0.704	32.20658	0.00003220658	0.09986537
16	0.750	34.63194	0.00003463194	0.10738585

VI	-	37
	_	_

nponen Elastik dari J (J _{el})				() m		
No	P (kN)	K Mpa√m	K ²	(1-v ²)	J _{el} (Kpa*m)	J (Kpa*m)
0	0	0	0	0.8775	0	0
1	11.640	8.304019	68.956729	0.8775	59.878648	59.879357
2	28.860	20.588830	423.899927	0.8775	368.093948	368.097600
3	38.230	27.273423	743.839582	0.8775	645.913884	645.922553
4	40.730	29.056932	844.305287	0.8775	733.153385	733.179203
5	43.170	30.797637	948.494432	0.8775	823.626139	823.658069
6	44.030	31.411164	986.661221	0.8775	856.768311	856.806589
7	44.780	31.946217	1020.560763	0.8775	886.205013	886.249747
8	45.620	32.545476	1059.207996	0.8775	919.764379	919.815685
9	46.450	33.137601	1098.100591	0.8775	953.536805	953.594806
10	47.270	33.722592	1137.213203	0.8775	987.500283	987.564183
11	48.120	34.328985	1178.479211	0.8775	1023.333665	1023.404500
12	49.050	34.992450	1224.471587	0.8775	1063.271192	1063.349092
13	49.990	35.663050	1271.853127	0.8775	1104.415002	1104.500106
14	50.770	36.219505	1311.852525	0.8775	1139.148521	1139.240954
15	51.420	36.683217	1345.658420	0.8775	1168.503906	1168.603772
16	52.000	37.096991	1376.186762	0.8775	1195.013224	1195.120610

ſ

 $J_Q =$ 835.665kPa*m

 $\Delta a_{p \min} = 0.322839 mm$

∆a_{p max} =

 $25 J_Q/\sigma_{ys} = 0.019709$

ANALISA PERHITUNGAN J - Integral Spesimen S 2.3

Material	In TOROAR S	: SS 41
Temperatur		: - 50° C
B =	0.025m	
a =	0.0251 m	
VV =	0.0501 m	
b _o =	0.025m	
Bn =	0.025 m	
S =	0.2004m	
f (a/W) =	2.6625	
υ =	0.35	
$v^2 =$	0.123	

E = 1010.536Mpa

 $\sigma_{vs} = 321.8931 Mpa$

σ_u = 508.8123Mpa

Komponen Plastik dari J (Jpl)

No	Δ _{ap} (mm)	A _{pl} (mm ²)	A _{pl} (m ²)	J _{PL}
0	0	0	0	0
1	0.027	0.01323	0.0000001323	0.00004234
2	0.055	0.22641	0.00000022641	0.00072452
3	0.082	0.87757	0.0000087757	0.00280823
4	0.109	3.35387	0.00000335387	0.01073237
5	0.137	4.23766	0.00000423766	0.01356051
6	0.164	5.16372	0.00000516372	0.01652389
7	0.191	6.10775	0.00000610775	0.01954479
8	0.218	7.07467	0.00000707467	0.02263894
9	0.246	8.07034	0.00000807034	0.02582510
10	0.273	9.09440	0.00000909440	0.02910208
11	0.300	10.14490	0.00001014490	0.03246369
12	0.328	11.22063	0.00001122063	0.03590601
13	0.355	12.32086	0.00001232086	0.03942675
14	0.382	13.44527	0.00001344527	0.04302485
15	0.410	14.59385	0.00001459385	0.04670031
16	0.437	15.76666	0.00001576666	0.05045332

No	P (kN)	K Mpa√m	K ²	(1-v ²)	J _{el} (Kpa*m)	J (Kpa*m)
0	0	0	0	0.8775	0	0
1	1.300	0.929275	0.863553	0.8775	0.749867	0.749909
2	20.300	14.510994	210.568942	0.8775	182.847763	182.848487
3	32.460	23.203294	538.392834	0.8775	467.513984	467.516792
4	36.620	26.176975	685.234025	0.8775	595.023687	595.034420
5	38.610	27.599481	761.731372	0.8775	661.450240	661.463800
6	39.460	28.207085	795.639620	0.8775	690.894502	690.911026
7	40.250	28.771798	827.816367	0.8775	718.835214	718.854759
8	41.390	29.586701	875.372889	0.8775	760.130971	760.153609
9	42.630	30.473087	928.609035	0.8775	806.358633	806.384459
10	43.780	31.295138	979.385689	0.8775	850.450595	850.479697
11	44.860	32.067152	1028.302231	0.8775	892.927325	892.959789
12	45.910	32.817721	1077.002782	0.8775	935.216500	935.252406
13	46.930	33.546844	1125.390767	0.8775	977.234258	977.273685
14	47.950	34.275968	1174.841996	0.8775	1020.175285	1020.218310
15	48.970	35.005092	1225.356468	0.8775	1064.039580	1064.086280
16	50.000	35.741364	1277,445110	0.8775	1109.270807	1109.321260

 $J_{Q} = 1065.845 \text{kPa*m}$

 $\Delta a_{p \min} = 0.337895 \text{mm}$

 $\Delta a_{p max} =$

 $25 J_Q/\sigma_{vs} = 0.020948$

ANALISA PERHITUNGAN	J - Integral Spesimen S 2.4
Material	: SS 41
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	==0.0

Temperatur

: - 50° C

B =	0.025m
a =	0.0251 m
VV =	0.0495m
b _o =	0.0244m
Bn =	0.025m
S =	0.198m
f (a/W) =	2.7233
υ =	0.35
$\upsilon^2 =$	0.123
E =	1010.536Mpa
σ _{ys} =	321.8931 Mpa
σ _u =	508.8123Mpa

Komponen Plastik dari J (J_{pl})

No	Δ _{ap} (mm)	A _{pl} (mm ²)	A _{pl} (m ²)	J _{PL}
0	0	0	0	0
1	0.053	0.13639	0.00000013639	0.00044719
2	0.107	1.01344	0.00000101344	0.00332276
3	0.160	2.64379	0.00000264379	0.00866816
4	0.214	8.57573	0.00000857573	0.02811714
5	0.267	10.62976	0.00001062976	0.03485167
6	0.320	12.74493	0.00001274493	0.04178667
7	0.374	14.92067	0.00001492067	0.04892024
8	0.427	17.15217	0.00001715217	0.05623662
9	0.481	19.43422	0.00001943422	0.06371875
10	0.534	21.76348	0.00002176348	0.07135568
11	0.587	24.13974	0.00002413974	0.07914668
12	0.641	26.56201	0.00002656201	0.08708854
13	0.694	29.02553	0.00002902553	0.09516566
14	0.748	31.52322	0.00003152322	0.10335482
15	0.801	34.04931	0.00003404931	0.11163708
16	0.854	36.60054	0.00003660054	0.12000176

No	P (kN)	K Mpa√m	K ²	(1-v ²)	J _{el} (Kpa*m)	J (Kpa*m)
0	0	0	0	0.8775	0	0
1	4.190	3.013224	9.079518	0.8775	7.884209	7.884657
2	24.920	17.921131	321.166946	0.8775	278.885656	278.888979
3	35.270	25.364298	643.347601	0.8775	558.651567	558.660235
4	37.970	27.305993	745.617274	0.8775	647.457545	647.485662
5	39.030	28.068289	787.828829	0.8775	684.111994	684.146845
6	40.190	28.902499	835.354427	0.8775	725.380897	725.422684
7	41.280	29.686368	881.280465	0.8775	765.260820	765.309741
8	42.280	30.405515	924.495334	0.8775	802.786497	802.842734
9	43.180	31.052747	964.273080	0.8775	837.327544	837.391263
10	44.050	31.678404	1003.521293	0.8775	871.408772	871.480127
11	44.940	32.318445	1044.481862	0.8775	906.976925	907.056072
12	45.770	32.915336	1083.419358	0.8775	940.788341	940.875430
13	46.470	33.418739	1116.812102	0.8775	969.784965	969.880131
14	47.050	33.835844	1144.864323	0.8775	994.144141	994.247496
15	47.550	34.195417	1169.326545	0.8775	1015.385937	1015.497574
16	48.000	34.519033	1191.563636	0.8775	1034.695539	1034.815540

 $J_Q = 819.49$ kPa*m

 $\Delta a_{p \min} = 0.389186 \text{ mm}$

 $\Delta a_{p \max} =$

 $25 J_Q/\sigma_{ys} = 0.024159$

ANALISA	PERHITUNGAN	J - Integral	Spesimen	A 2.	1
---------	-------------	--------------	----------	------	---

: A 516
: - 50° C

B =	0.02m
a =	0.0188m
VV =	0.04m
b _o =	0.0212m
Bn =	0.02m
S =	0.16m
f (a/W) =	2.4261
υ =	0.30
$v^2 =$	0.090
E =	1265.467 Mpa
σ _{ys} =	354.3307 Mpa
σ _u =	567.7165Mpa

Komponen Plastik dari J (J_{pl})

No	∆ _{ap} (mm)	A _{pl} (mm ²)	A _{pl} (m ²)	JPL
0	0	0	0	0
1	0.191	2.94399	0.0000294399	0.01388677
2	0.381	9.80641	0.00000980641	0.04625667
3	0.572	17.22798	0.00001722798	0.08126406
4	0.763	40.15031	0.00004015031	0.18938826
5	0.954	47.93400	0.00004793400	0.22610378
6	1.144	55.82080	0.00005582080	0.26330565
7	1.335	63.78359	0.00006378359	0.30086598
8	1.526	71.80648	0.00007180648	0.33870981
9	1.716	79.88390	0.00007988390	0.37681083
10	1.907	88.01851	0.00008801851	0.41518164
11	2.098	96.21276	0.00009621276	0.45383377
12	2.288	104.46792	0.00010446792	0.49277322
13	2.479	112.91131	0.00011291131	0.53260051
14	2.670	121.29566	0.00012129566	0.57214932
15	2.861	129.75211	0.00012975211	0.61203823
16	3.051	138.28336	0.00013828336	0.65227998

No	P (kN)	K Mpa√m	K²	(1-v ²)	J _{el} (Kpa*m)	J (Kpa*m)
0	0	0	0	0.91	0	0
1	33.562	33.562000	1126.407844	0.91	810.002266	810.016153
2	37.991	37.991000	1443.316081	0.91	1037.891651	1037.937908
3	39.599	39.599000	1568.080801	0.91	1127.610225	1127.691489
4	40.483	40.483000	1638.873289	0.91	1178.517253	1178.706642
5	41.116	41.116000	1690.525456	0.91	1215.660436	1215.886540
6	41.575	41.575000	1728.480625	0.91	1242.954078	1243.217384
7	41.922	41.922000	1757.454084	0.91	1263.788954	1264.089820
8	42.215	42.215000	1782.106225	0.91	1281.516361	1281.855071
9	42.501	42.501000	1806.335001	0.91	1298.939325	1299.316136
10	42.798	42.798000	1831.668804	0.91	1317.156916	1317.572098
11	43.310	43.310000	1875.756100	0.91	1348.860184	1349.314018
12	43.437	43.437000	1886.772969	0.91	1356.782438	1357.275211
13	43.784	43.784000	1917.038656	0.91	1378.546558	1379.079158
14	44.152	44.152000	1949.399104	0.91	1401.817025	1402.389174
15	44.539	44.539000	1983.722521	0.91	1426.499066	1427.111105
16	44.935	44.935000	2019.154225	0.91	1451.978080	1452.630360

Komponen Elastik dari J (J_{el})

 $J_{Q} = 1270.165 \text{kPa*m}$

 $\Delta a_{p \min} = 1.34328 \text{mm}$

 $\Delta a_{p max} = 2.84427 \, mm$

 $25 J_Q/\sigma_{ys} = 0.019017$

ANALISA	PERHITUNGAN J	- Integral	Spesimen	A 2.2
---------	---------------	------------	----------	-------

Material	: A 516
Temperatur	: - 50° C

B =	-	0.02m
a	=	0.021 m
W =	-	0.0405m
b _o =	=	0.0195m
Bn =	=	0.02m
S	=	0.162m
f (a/W) =	=	2.8262
υ=	=	0.30
υ^2	=	0.090
E	=	1265.467 Mpa
Oys =	=	354.3307 Mpa
σu	=	567.7165Mpa

No	Δ _{ap} (mm)	A _{pl} (mm ²)	A _{pl} (m ²)	J _{PL}
0	0	0	0	0
1	0.077	0.93106	0.0000093106	0.00477465
2	0.155	3.17675	0.00000317675	0.01629101
3	0.232	5.67376	0.00000567376	0.02909621
4	0.310	13.55589	0.00001355589	0.06951737
5	0.387	16.30083	0.00001630083	0.08359402
6	0.464	19.14778	0.00001914778	0.09819374
7	0.542	22.09426	0.00002209426	0.11330391
8	0.619	25.14760	0.00002514760	0.12896206
9	0.697	28.30156	0.00002830156	0.14513621
10	0.774	31.54103	0.00003154103	0.16174887
11	0.851	34.87672	0.00003487672	0.17885496
12	0.929	38.31057	0.00003831057	0.19646449
13	1.006	41.82821	0.00004182821	0.21450365
14	1.084	45.41319	0.00004541319	0.23288813
15	1.161	49.05402	0.00004905402	0.25155910
16	1.238	52.74499	0.00005274499	0.27048713

VI - 44

No	P (kN)	K Mpa√m	K²	(1-v ²)	J _{el} (Kpa*m)	J (Kpa*m)
0	0	0	0	0.91	0	0
1	24.988	24.833274	616.691500	0.91	443.464164	443.468939
2	31.225	31.031654	962.963580	0.91	692.469150	692.485441
3	33.155	32.949704	1085.682988	0.91	780.716936	780.746032
4	34.728	34.512964	1191.144676	0.91	856.554659	856.624176
5	36.159	35.935103	1291.331636	0.91	928.599314	928.682908
6	37.400	37.168419	1381.491358	0.91	993.433362	993.531555
7	38.785	38.544843	1485.704914	0.91	1068.373550	1068.486854
8	40.181	39.932199	1594.580505	0.91	1146.666218	1146.795180
9	41.295	41.039301	1684.224222	0.91	1211.129205	1211.274342
10	42.446	42.183174	1779.420164	0.91	1279.584809	1279.746558
11	43.753	43.482081	1890.691367	0.91	1359.600166	1359.779021
12	44.942	44.663719	1994.847767	0.91	1434.499254	1434.695719
13	45.914	45.629700	2082.069527	0.91	1497.220607	1497.435110
14	46.696	46.406858	2153.596460	0.91	1548.655776	1548.888664
15	47.371	47.077678	2216.307794	0.91	1593.751629	1594.003188
16	48,000	47,702784	2275 555556	0.91	1636,356820	1636,627307

 $J_Q = 1184.8$ kPa*m

 $\Delta a_{p \min} = 0.5896 \text{ mm}$

 $\Delta a_{p max} =$

 $25 J_Q/\sigma_{ys} = 0.017739$

ANALISA	PERHIT	UNGAN .	J -	Integral	Spesimen	A	2.3
---------	--------	---------	-----	----------	----------	---	-----

Material	: A 516
Temperatur	: - 50° C

B =	0.02m
a =	0.0188m
W =	0.0405m
b _o =	0.0217m
Bn =	0.02m
S =	0.162m
f (a/W) =	2.3752
υ=	0.30
$v^2 =$	0.090
E =	1265.467 Mpa
σ _{ys} =	354.3307 Mpa
σ _u =	567.7165Mpa

No	∆ _{ap} (mm)	A _{pl} (mm ²)	A _{pl} (m ²)	JPL
0	0	0	0	0
1	0.164	2.81542	0.00000281542	0.01297429
2	0.328	8.41383	0.00000841383	0.03877342
3	0.491	14.48613	0.00001448613	0.06675636
4	0.655	33.99893	0.00003399893	0.15667709
5	0.819	40.86231	0.00004086231	0.18830559
6	0.983	48.04012	0.00004804012	0.22138306
7	1.147	55.45831	0.00005545831	0.25556826
8	1.310	63.05451	0.00006305451	0.29057378
9	1.474	70.78719	0.00007078719	0.32620827
10	1.638	78.62717	0.00007862717	0.36233717
11	1.802	86.55294	0.00008655294	0.39886149
12	1.966	94.54797	0.00009454797	0.43570492
13	2.129	102.59920	0.00010259920	0.47280738
14	2.293	110.69683	0.00011069683	0.51012365
15	2.457	118.83410	0.00011883410	0.54762259
16	2.621	127.00697	0.00012700697	0.58528558

No	P (kN)	K Mpa√m	K²	(1-v ²)	J _{el} (Kpa*m)	J (Kpa*m)
0	0	0	0	0.91	0	0
1	31.200	31.006809	961.422222	0.91	691.360756	691.373731
2	35.652	35.431242	1255.372942	0.91	902.741342	902.780115
3	38.467	38.228812	1461.442063	0.91	1050.926083	1050.992839
4	40.860	40.606994	1648.928000	0.91	1185.747617	1185.904294
5	42.918	42.652251	1819.214542	0.91	1308.201030	1308.389336
6	44.633	44.356632	1967.510804	0.91	1414.841186	1415.062569
7	45.882	45.597898	2079.168320	0.91	1495.134343	1495.389911
8	46.826	46.536053	2165.604223	0.91	1557.290584	1557.581158
9	47.561	47.266502	2234.122194	0.91	1606.562001	1606.888210
10	48.144	47.845892	2289.229369	0.91	1646.189688	1646.552025
11	48.613	48.311988	2334.048167	0.91	1678.418980	1678.817842
12	48.993	48.689635	2370.680542	0.91	1704.761399	1705.197104
13	49.303	48.997715	2400.776108	0.91	1726.403184	1726.875991
14	49.562	49.255112	2426.066019	0.91	1744.589213	1745.099336
15	49.789	49.480706	2448.340268	0.91	1760.606672	1761.154295
16	50.000	49.690399	2469.135802	0.91	1775.560785	1776.146071

 $J_Q = 1262.965 \text{kPa*m}$

 $\Delta a_{p \min} = 0.68129 \text{mm}$

 $\Delta a_{p max} = 2.267405 mm$

 $25 J_Q/\sigma_{ys} = 0.018909$

ANALISA PERHITUNGAN J - Integral Spesimen A 2.4

Material	: A 516
Temperatur	: - 50° C

B =	0.02m
a =	0.0196m
VV =	0.04m
b _o =	0.0204m
Bn =	0.02m
S =	0.16m
f (a/W) =	2.57
υ =	0.30
$v^2 =$	0.090
E =	1265.467 Mpa
σ _{ys} =	354.3307 Mpa
σ _u =	567.7165Mpa

Komponen Plastik dari J (Jpl)

No	∆ _{ap} (mm)	A _{pl} (mm ²)	A _{pl} (m ²)	JPL
0	0	0	0	0
1	0.088	0.61590	0.00000061590	0.00301913
2	0.175	2.97774	0.00000297774	0.01459675
3	0.263	5.82916	0.00000582916	0.02857433
4	0.351	14.87673	0.00001487673	0.07292517
5	0.439	18.02561	0.00001802561	0.08836083
6	0.526	21.29230	0.00002129230	0.10437403
7	0.614	24.66742	0.00002466742	0.12091870
8	0.702	28.14897	0.00002814897	0.13798513
9	0.789	31.73262	0.00003173262	0.15555204
10	0.877	35.42333	0.00003542333	0.17364378
11	0.965	39.22779	0.00003922779	0.19229307
12	1.052	43.15884	0.00004315884	0.21156292
13	1.140	47.21668	0.00004721668	0.23145431
14	1.228	51.38405	0.00005138405	0.25188260
15	1.316	55.64487	0.00005564487	0.27276896
16	1.403	59.98946	0.00005998946	0.29406598

.
No	P (kN)	K Mpa√m	K ²	(1-v ²)	J _{el} (Kpa*m)	J (Kpa*m)
0	0	0	0	0.91	0	0
1	18.434	18.434000	339.812356	0.91	244.359785	244.362804
2	31.282	31.282000	978.563524	0.91	703.687103	703.701699
3	33.535	33.535000	1124.596225	0.91	808.699527	808.728102
4	35.199	35.199000	1238.969601	0.91	890.945664	891.018589
5	36.612	36.612000	1340.438544	0.91	963.912196	964.000557
6	37.890	37.890000	1435.652100	0.91	1032.380466	1032.484840
7	39.095	39.095000	1528.419025	0.91	1099.089358	1099.210277
8	40.294	40.294000	1623.606436	0.91	1167.538827	1167.676812
9	41.473	41.473000	1720.009729	0.91	1236.862639	1237.018191
10	42.710	42.710000	1824.144100	0.91	1311.745886	1311.919530
11	44.078	44.078000	1942.870084	0.91	1397.121992	1397.314286
12	45.572	45.572000	2076.807184	0.91	1493.436445	1493.648008
13	46.929	46.929000	2202.331041	0.91	1583.700916	1583.932370
14	48.077	48.077000	2311.397929	0.91	1662.131146	1662.383029
15	49.073	49.073000	2408.159329	0.91	1731.712474	1731.985243
16	50,000	50,000000	2500 000000	0.91	1797 755295	1798.049361

Komponen Elastik dari J (Jel)

 $J_Q = 1122.27 \text{ kPa*m}$

 $\Delta a_{p \min} = 0.57189 \text{mm}$

 $\Delta a_{p max} =$

 $25 J_Q/\sigma_{vs} = 0.016803$

Grafik dapat dilihat pada lampiran D

ANALISA HASIL PERHITUNGAN PADA PENENTUAN HARGA JIC

Harga J_{IC} pada temperatur ruang untuk baja SS 41 lebih kecil apabila dibandingkan dengan harga J_{Ic} pada baja A 516, hal ini disebabkan karena baja A 516 mempunyai kekuatan tarik yang lebih besar apabila dibandingkan dengan baja SS 41 sehingga diperlukan energi yang lebih besar untuk tiap milimeter perpanpanjangan retak, demikian juga berlaku untuk harga *crack extension* minimum dan maksimumnya ($\Delta a_{p min}$ dan Δa_{p} _{max}). Pada temperatur -50° C harga J_{IC} akan semakin membesar karena ketegaran material akan semakin naik, seperti fenomena pada kekuatan tarik yang mengalami kenaikan juga, tetapi harga *crack extension* minimum dan maksimumnya ($\Delta a_{p min}$ dan $\Delta a_{p max}$) akan mengecil. Baja A 516 mempunyai harga J_{IC} yang lebih besar dari pada harga J_{IC} baja SS 41 dan didahului sedikit deformasi sebelum kepecahan terjadi. Untuk baja SS 41 harga $\Delta a_{p min}$ lebih kecil apabila dibandingkan dengan baja A 516 bahkan pada baja SS 41 sudah mengalami kepecahan sebelum mencapai batas $\Delta a_{p max}$ yang telah distandartkan ASTM

6.4 Tabulasi Hasil Perhitungan

Perbandingan hasil perhitungan

Harga fracture toughness (K_{IC}) pada temperatur ruang (30°C)

Spesimen	SS 41	A 516
No	K _{ic} (Mpa√m)	K _{IC} (Mpa√m)
1	31.78254986	25.91373094
2	29.75169842	26.90843496
3	27.02296433	26.76059358
4	28.70215397	25.48353678
Rata-rata	29.31484164	26.26657407

Harga fracture toughness (K_{IC}) pada temperatur - 50°C

Spesimen No	SS 41 K _{IC} (Mpa√m)	A 516 K _{IC} (Mpa√m)
1	17.4783234	21.95370099
2	15.75571606	22.09047877
3	15.83485396	21.05338291
4	16.76416526	21.10038477
Rata-rata	16.45826467	21.54948686

Rata-rata perbandingan harga mechanical properties baja SS 41 da A 516

Harga Yield Stress

Jenis	Yield Stres	Yield Stress (Mpa)		
material	Ruang (30°C)	-50°C	Kenaikan (%)	
SS 41	276.932	322.605	14.16	
A 516	318.000	353.165	9.96	

Harga Ultimate Stress

Jenis	Ultimate Stre	Prosentase		
material	Ruang (30°C)	-50°C	Kenaikan (%)	
SS 41	459.509	507.586	10.46	
A 516	519.200	568.258	9.45	

Harga Elongation

Jenis	Elongation	Prosentase		
material	Ruang (30°C)	-50°C	Penurunan (%) 17.95	
SS 41	39.00	32.00		
A 516	33.20	28.500	14.16	

Harga Reduction Area

Jenis	Reduction Ar	Prosentase		
material	Ruang (30°C)	-50°C	Penurunan (%)	
SS 41	56.29	49.96	11.25	
A 516	63.62	58.46	8.10	

Harga Modulus Young

Jenis	Modulus You	Prosentase		
material	Ruang (30°C)	-50°C	Kenaikan (%)	
SS 41	763.416	905.552	15.696	
A 516	905.552	1008.142	10.176	

Rata-rata perbandingan harga perhitungan baja SS 41 da A 516 untuk fracture mechanics test

Harga K_{lc}

Jenis	Kic (N	Prosentase	
material	Ruang (30°C)	-50°C	Penurunan (%)
SS 41	29.315	16.458	43.86
A 516	26.267	21.549	17.96

Harga CTOD

Jenis	СТОВ	CTOD (mm)		
material	Ruang (30°C)	-50°C	Penurunan (%)	
SS 41	1.709	0.364	78.68	
A 516	1.057	0.673	36.37	

Harga J_{lc}

Jenis	J _{IC} (kP	Prosentase	
material	Ruang (30°C)	-50°C	Kenaikan (%)
SS 41	556.431	869.349	35.99
A 516	843.149	1210.050	30.32

Hubungan antara harga K_{ic}, CTOD dan J_{ic}

Fracture tuoghness (Kic) adalah sebuah harga yang menunjukkan kekuatan ketahanan material terhadap retak yang timbul, yaitu penentuan retak maksimum yang diperbolehkan dibawah kondisi pembebanan kerja. Jadi apabila dihubungkan dengan harga CTOD akan terlihat adanya hubungan yang sangat berkaitan, yaitu apabila sebuah material mempunyai harga fracture toughness (K_{lc}) yang besar maka harga CTOD juga begitu, sebab harga CTOD akan menunjukkan berapa besar kecilnyanya deformasi plastis yang terjadi. Jadi apabila harga CTOD kecil maka kepecahan yang terjadi tanpa didahului terjadinya deformasi atau terjadinya kepecahan brittle. Dan apabila kedua harga tersebut dihubungkan dengan harga J_{IC} yang merupakan energi rata-rata yang dibutuhakan perunit perpanjangan retak atau sesuai dengan teori Griffith yang menyatakan bahwa suatu retakan akan menjalar bila pengurangan energi regangan elastik minimal sama dengan energi yang dibutuhkan untuk membentuk retak baru, maka dengan kecilnya harga K_{lc} dan CTOD yang menunjukkan material tersebut brittle maka, energi yang dibutuhkan untuk membuka retak akan menjadi besar yang identik dengan naiknya harga tensile strenght. Karena pengujian yang dilakukan adalah menggunakan beban statis maka besarnya energi yang dibutuhkan juga besar apabila material tersebut berubah menjadi brittle.

BAB VII

KESIMPULAN DAN SARAN

(B)

(6)

BAB VII

KESIMPULAN DAN SARAN

7.1 Kesimpulan

Berdasarkan data yang telah diperoleh dari pengujian di laboratorium dan analisa dengan teori dari berbagai literatur dapat ditarik kesimpulan bahwa :

- Harga kekuatan tarik (tensile strenght) baja SS 41 dan A 516 pada temperatur rendah (-50°C) lebih besar dibandingakan pada temperatur ruangan (30°), tetapi harga kemuluran (elongation) dan pengurangan luas (reduction of area) mengecil. Hal ini menunjukkan kekerasan dari material bertambah seiring dengan turunnya temperatur.
- Harga fracture toughness (K_{Ic}) pada temperatur ruang (30°C) baja A 516 (high tensile) lebih kecil apabila dibandingkan dengan (K_{Ic}) baja SS 41(mild steel). Pada temperatur rendah (- 50°C) yang terjadi adalah kepecahan brittle dan harga fracture toughness juga semakin kecil. Pada suhu –50°C harga fracture toughness (K_{Ic}) baja A 516 (high tensile) lebih besar apabila dibandingkan dengan harga fracture toughness (K_{Ic}) baja SS 41(mild steel). Dari sini terlihat bahwa baja mild steel (SS 41) akan menjadi getas apabila dioperasikan pada temperatur rendah (temperatur negatif), Hal ini disebabkan karena mengecilnya daerah zona plastik dan menurunnya ikatan antar grain.
- Harga CTOD pada temperatur ruang (30°C) baja SS 41 (mild steel)
 yang lebih besar dari pada baja A 516 (high tensile) atau dapat

dikatakan SS 41 mengalami deformasi plastis yang lebih besar. Pada temperatur –50° C harga CTOD lebih kecil. Hal ini disebabkan karena daerah zona plastik akan mengecil seiring dengan turunnya temperatur. Harga CTOD pada baja SS 41 lebih kecil dari pada harga CTOD baja A 516.

Harga J_{IC} pada temperatur ruang untuk baja SS 41 lebih kecil apabila dibandingkan dengan harga J_{IC} pada baja A 516, hal ini disebabkan karena baja A 516 mempunyai kekuatan tarik yang lebih besar apabila dibandingkan dengan baja SS 41. Pada temperatur –50° C harga J_{IC} akan semakin membesar karena ketegaran material akan semakin naik, sehingga diperlukan energi yang lebih besar untuk per-milimeter perpanjangan retak. Seperti fenomena pada kekuatan tarik yang mengalami kenaikan juga. Pada temperatur –50°C baja A 516 mempunyai harga J_{IC} yang lebih besar dari pada harga J_{IC} baja SS 41.

7.2 Saran

- Untuk mengetahui fenomena perubahan temperatur terhadap harga
 K_{Ic}, CTOD dan J_{Ic}, maka dapat dilakukan percobaan untuk beberapa
 macam kondisi temperatur.
- Perlunya dilakukan percobaan dengan menggunakan jenis material yang berbeda sebagai pembanding.

DAFTAR PUSTAKA

- Courtney, Thomas H, Mechanical Behavior of Material, McGraw-Hill Publishing Company, New York, 1990
- Callister, William D, JR, Material Science and Engineering. John Wiley & Sons, 1991.
- Boyd G.M., O.B.E., F.R.I.N.A., M.I. Struct. E., F.Weld.I., Brittle Fracture in Steel Structures, Butterworths, London, 1970.
- Dieter, George E, Mechanical Metallurgy, McGraw-Hill Publishing Company, New York, 1986.
- Hetzberg, Richard W, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, 1996.
- Broek, David, Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, 1982.
- Rolfe, Stanly T. and Barsom, John M, Fracture and Fatigue Control in Structure, Practice-hall, 1nc., englewood Cliffs, New Jersey, 1977.
- Annual Book of ASTM Standart, Metal Test Methods and Analytical Procedure, Vol 03.01, 1916 Race Street/Philadelphia, PA 19103 (215) 199-5400, 1994.
- 9. Saiful, Odi, Penentuan K_{lc} Untuk SS 41, Tugas Akhir FTK ITS, 1993.
- 10. Setiawan, Yuli, Penentuan Harga Residual Strenght Untuk Load Suatu Material Untuk Melukiskan Static Failure dan Harga Panjang Retak Kritis Oleh Kurva–R Dengan Pendekatan Mekanika Kepecahan Elastic Linear, Tugas akhir FTK – ITS, 1989.

LAMPIRAN A

MATERIAL UJI TARIK

MATERIAL UJI TARIK

Dimensi material untuk uji tarik ditentukan dengan mengikuti standarisasi dari ASTM (American Society for Testing and Material). Dimana standar yang digunakan adalah E 8M – 94a⁸ tahun 1994. Dari tabel ASTM E 8M – 94a halaman 88 dipilih material berupa material uji proporsional tipe lembaran (*sheet-type*), sehingga akan didapatkan dimensi material sesuai tabel. Gambar dimensi material uji tarik secara lengkap adalah seperti pada gambar A.1 dibawah ini.

Gambar A.1 Dimensi material uji tarik menurut ASTM E 8M - 94a

Keterangan gambar diatas

- G = Gage length (panjang pengukuran)
- W = Width (lebar)
- T = Thickness (tebal)
- R = Radius of fillet (jari jari fillet)
- L = Overall length (panjang total material uji)
- A = Length of reduced section

- B = Lenght of grip section (panjang grip)
- C = Width of grip section (lebar grip)

Pengujian dilakukan untuk mengetahui besarnya harga σ_{ys} dan σ_{utt} dari masing-masing kondisi pengujian. Data-data tersebut nantinya akan digunakan dalam penganalisaan K_{lc}, CTOD dan J_{lc}.

Spesimen	L	W	С	Т	В	А	G	R
	(mm)							
TS 1.1 (SS 41)	200	12.5	21.5	25	50	75	50	12.5
TS 1.2 (SS 41)	200	12.5	21.5	25	50	75	50	12.5
TA 1.1 (A 516)	200	12.5	21.5	25	50	75	50	12.5
TA 1.2 (A 516)	200	12.5	21.5	25	50	75	50	12.5
TS 2.1 (SS 41)	200	12.5	21.5	25	50	75	70	12.5
TS 2.2 (SS 41)	200	12.5	21.5	25	50	75	70	12.5
TA 2.1 (A 516)	200	12.5	21.5	25	50	75	70	12.5
TA 2.2 (A 516)	200	12.5	21.5	25	50	75	70	12.5

Dimensi material untuk uji tarik

Grafik hasil pengujian tarik

Grafik A.1 Grafik hasil uji tari k material SS 41 temperatur ruang

Grafik A.2 Grafik hasil uji tarik material A 516 temperatur ruang

Grafik A.3 Grafik hasil uji tarik material SS 41 temperatur - 50° C

Grafik A.3 Grafik hasil uji tarik material SS 41 temperatur - 50° C

LAMPIRAN B

MATERIAL UJI CTOD

THREE-POINT BEND SPECIMEN

Material uji yang digunakan untuk pengujian kepecahan (fracture test) mengkuti standart ASTM (*American Society for Testing and Material*) tahun 1994 yaitu ASTM E 399 – 90, E 1290 – 93, E 813 – 89⁸. Dari gambar pada *standart* tersebut didapatkan bahwa bentuk spesimen adalah merupakan fungsi dari tebal material. Dimensi secara lengkap dapat dilihat pada gambar B.1 dibawah ini

Gambar B.1 Dimensi material three-point bend SE (B) yang digunakan

Keterangan gambar B.1

- B (tebal material) = W/2 ± 0.01W
- 0.01 W adalah besarnya nilai toleransi pada spesimen yang diijinkan
- W ± 0005 W

W adalah lebar spesimen yang merupakan fungsi dari tebal material. Besarnya W didapatkan sebesar dua kali tebal (2B). Lihat gambar B.1

- a (panjang retak) = antara 0.45W sampai dengan 0.55 W
 Keterangan untuk panjang retak dapat dilihat pada gambar B.2
- N (lebar retak) < W/16
- S (bend-bar) = jarak penumpu untuk pengujian
- z = jarak permukaan material dengan alat pengukur

Gambar B.2 Gambar retak awal dan konfigurasi retak fatigue

Keterangan gambar B.2 adalah sebagai berikut :

- Dari gambar B.2 ada tiga macam bentuk retak (a). Ketiga macam bentuk retak tersebut adalah Chevron notch, Straigt through notch dan slot ending in drilled hole.
- Untuk takik awal Chevron, retak fatigue akan timbul pada kedua permukaan spesimen.
- Untuk takik awal Straight through, perluasan pada masing-masing permukaan spesimen minimum 0.025W atau 1.33 mm.
- Takikan pada retak awal harus tegak lurus terhadap permukaan spesimen dan arah kemiringan perpanjangan retak adalah 2°.

- Lebar takik (N) tidak kurang dari 1.6 mm
- Panjang retak (a) adalah panjang retak awal ditambah dengan panjang retak *fatigue*.

Pada percobaan yang akan dilakukan bentuk notch yang akan digunakan adalah Straight through notch.

Dalam percobaan ini spesimen SE (B) yang digunakan adalah dua (2) buah untuk tiap jenis material pada temperatur ruangan (30° C) dan

-50° C.

Dari standarisasi diatas maka akan didapatkan dimensi dari three-point bend specimen sebagai berikut :

Dimensi Three-Point Bend Spesimen untuk uji CTOD

Material : SS 41 kode S dan A 516 kode A

Temperatur : ruang (30° C)

Spesimen No	B (mm)	W (mm)	L (mm)	S (mm)	ao (mm)	Retak awal (mm)	Retak fatigue (mm)	N (mm)	z (mm)
S 1.1	25	50.10	225	200.4	25.20	22.40	2.80	2.10	5.6
S 1.2	25	49.90	225	199.6	24.95	22.90	2.05	2.10	5.6
S 1.3	25	49.90	225	199.6	24.15	20.40	3.75	2.10	5.6
S 1.4	25	50.50	225	202.0	26.20	22.55	3.65	2.10	5.6
A 1.1	20	40.35	180	161.4	19.05	17.75	1.30	2.10	5.6
A 1.2	20	40.65	180	162.6	19.50	17.80	1.70	2.10	5.6
A 1.3	20	39.25	180	157.0	20.40	18.95	1.45	2.00	5.6
A 1.4	20	39.30	180	157.2	20.20	18.35	1.85	2.05	5.6

Material : SS 41 kode S dan A 516 kode A

Temperatur :-50° C

Spesimen No	B (mm)	W (mm)	L (mm)	S (mm)	ao (mm)	Retak awal (mm)	Retak fatigue (mm)	N (mm)	z (mm)
S 2.1	25	50.40	225	202	24.25	20.95	3.30	2.10	5.6
S 2.2	25	50.15	225	201	24.40	21.10	3.30	2.05	5.6
S 2.3	25	50.10	225	200	25.05	21.95	3.10	2.10	5.6
S 2.4	25	49.50	225	198	25.10	23.00	2.10	2.10	5.6
A 2.1	20	40.00	180	160	18.80	17.45	1.35	2.00	5.6
A 2.2	20	40.50	180	162	21.00	18.20	2.80	2.05	5.6
A 2.3	20	40.50	180	162	18.75	16.95	1.80	2.10	5.6
A 2.4	20	40.00	180	160	19.55	17.85	1.70	2.10	5.6

LAMPIRAN C

GRAFIK LOAD-DISPLACEMENT UNTUK PENENTUAN K_{ic} DAN CTOD

Grafik Load - Displacement Spesimen SE (B) A 1.2

7

Grafik Load - Displacement Spesimen SE (B) A 1.3

Displacement (mm)

P (kN)

Displacement (mm)

Grafik Load - Displacement Spesimen SE (B) S 1.1

P (kN)

Displacement (mm)

Grafik Load - Displacement Spesimen SE (B) S 1.3

P (kN)

Displacement (mm)

.

Displacement (mm)

Grafik Load - Displacement Spesimen SE (B) S 2.3

9-1 ----

LAMPIRAN D

GRAFIK J-CRACK EXTENSION

J - Integral Spesimen SE (B) S 1.1

J - Integral Spesimen SE (B) S 1.2

J - Integral Spesimen SE (B) S 1.3

J - Integral Spesimen SE (B) A 1.1

J - Integral Spesimen SE (B) A 1.2

J - Integral Spesimen SE (B) S 2.2

J - Integral Spesimen SE (B) S 2.3

J - Integral Spesimen SE (B) A 2.1

J - Integral Spesimen SE (B) A 2.2

J - Integral Spesimen SE (B) A 2.4

LAMPIRAN E

SPESIFIKASI MATERIAL

LAMPIRAN E

SPESIFIKASI MATERIAL

AUX-X 160.	/20/DIVGE/XI	1999		L/C P.C	NO	: 0	05/	/03	3/0 E. I	202	DE	VU									6	39	Don	ghu l	S	tool 9	Mul Ca. Lu
HADOLITY : PI	ATE			CLISTONE	2	. ,			:	PT	PAL	IN	DON	ESI.	A					G	TIFI	CATE	NO	Pocul	Foonk	: C-2004	-2-00021-01
ECIFICATION : AS	TH 4516-70			SIDM IS						KAZ	.O T	NDU	STR	TFS	TN	IC				u		GAIL	10.			-1-200	-2-14427-01
	1		1	3011.12		_	-						UII	100	111			1.1		DA	TE OF	1221	E	-		: JAH_05	.2000
DIMENSIONS (mm)	HEAT NO	PRODUCT No	QUAN-	WEIGHT (kgs)	CHEMICAL COMPOSITION (%) × 100:2 GRAIN Z × 100:2 SIZE × 1000:3 OIE ×						L MINI	Z L O I MEC			LETE	LE TEST		T TEST	REMARKS								
					C 2	Si 2	Mn 2	P 3	S : 3	SAL C	r Ni 2	Mo 3	Cu I	HB V	IT	CEQ 2	RRIT	VII N.	O Z	TIG	YP	TS	EL	TES		NOTCH	
13.00 x 2,100 x 9,800	1830006	224044-1,2 SUB TUTAL (1):	(2)	2.099	. 16	31	110	14	1	37	1 0	0	1	1 22	0	.35	RE	F	Т	C 1	380	512	24	TN		KACLE	
20.00 x 1,900 x 9,800 == SPECTHEN NO : 224070	1835492	224070- 1, 2, 3		2,923	. 17	.2	112	16	5	34	1 0	0	1	1 2	0	.36			т	cı	355	516	23				*
20.00 x 1,900 x 9,800 =SPHLINEH NO : 224071	1875-189	224071-2,3		2,923	. 17	.70	114	16	4	34	1 0	0	1	1 25	0	37			т	cı	359	514	24				
20.00 x 1,900 x 9,800 == SPECTHEDH NO : 224072	1875489	224072- 1, 2, 3 SIB TUTALS 20:	(8)	2.923	. 17	30	114	16	4	34	1 0	0	1	1 25	0	37			Т	ch	361	514	28				
20.00 x 2,400 x 9,800 =SIFLINEN NU : 22,028	18:25-189	223628-1, 2, 3	,	3,693 1	. 17	30	114	16	4	34	1 0	0	1	1 2	0	37			т	ch	370	523	22				-
20.00 x 2,400 x 9,800 ==SPECTHED NO : 222029	1835492	22.3629-1, 2, 3		3,693	. 17	.2	112	16	5	34	1 0	0	1	1 23	0	36			T	cı	376	518	23				
20.00 x 2,400 x 9,800	1835492	22.3630-1, 2 SUE TUTAL (3):	(8)	3.693	17	.2	112	16	5	34	1 0	0	1	1 23	0	35			Т	ca	357	518	24				
22.00 x 7.200 x 7.000 = SPECINEN NO : 22.746	1825-192	2257-16-1,2		3,868	17	:2	112	16	5	31	1 0	o	1	1 23	0	.35			т	C I	375	516	24				
22.00 x 3.200 x 7.000	1830025	223747 - 1, 2 SHB TUTAL (4):	(4)	3,868	17	0	1083	14	5	1.2	1 1	0	1	1 22	0	T			т	ch	372	511	24				
GRAND TOTAL :	1		22	72,598																							
								1		10			1.														
											1	34							1		o es	f.d.					
																					1 .			14.7			
																		K:	7.5	E-	nai	1					
WE HEARBY CEATLEY THE REALIRDEPENS O	THAT THE WAT ALLED FOR BY	RTAL DEREIN HAS BED THE ALOVE ORIAN	i kane	AND TESTED IN	AIXT	N.(**1)	CI: 2	rn;	ALEIVI	- 1 - 1197	I IFIC	ATION	AND	ALSO	וחוצ				1		1	• Ci • P(• Di	EQ:C/ OSIT IRECT	RBON ION:	EQU TO	IVALEN P(T) MIDI	F DLE(M) BOTTOM(B)
					-				-				Т		/	1	-		-	2	_	* III N	NORM	REATM	ENT I	LANK IS ENCHED	AS ROLLED CK CONTROL ROLL
														2	2/	-	77	2	E/		>	• DI • SI	B SI	ON ZE GE 14		HECK INA	AVOSTE AVALASI 2 Novi 1056
RVEYOR To:		SURVEYOR To:			SURV	EYC	OR	Tol					1	Man	ager	010	uality	y Co	niro	Tea	- m	id.	MI St	1 057 V	-thr F AD	alan: at	a Village Constant

P.T GUNAWAN DIANJAYA STFEL

Surabaya - Indonesia

MILL CERTIFICATE

HEAD OFFICE JI. Margomulyo No. 29A, TANDES SURABAYA - INDONESIA G.L. Certificate No. 2074.6/JA Certificate No. GDS/QC/ 96/4 D a t e 16th Dec. 1 Despatch Advice No. 288/LDO/12/

Purchaser

Purchaser's Order No.

Material

Ship Building Plates

D-162-96

Specification

Germanischer Lloyd Grade " A "

PT. PAL INDONESIA Jl. Ujung Surabaya

	Plate Number		Dimensions						L	adle Ana	alysis (%	6)		Tensile Test					е
Heat Number		Quan- tity	T	W #/mm	L	Weight (MT)	Test No	С	Si	Mn	Р	S	Y.S N/mm²	T.S N/mm ²	EL [%] on 200 mm	in joule (°C)			Remar
N FORFA	0 0/1 0	2	25	1828	6086	1. 376	0-2	0.1/	0-18	0.48	0.013	0-030	267	4.01	27	L	Ш	III Av	29-11-
N. 2501609 U. 2601859 B. 2679550 B. 2679345 B. 2679491	R-4 U/2-4 K/1-3 L/1-3 Q-1 N/1,3	1 3 3 1 2	24 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1829 # 1829 # #	6096 8 6096 8 8	3.501 10.503 9.453 9.453 3.151 6.302	R-4 U-2 K-1 Q-1 N-1	0.16 0.16 0.16 0.17 0.17	0.20 0.24 0.19 0.22 0.21	0.88 0.89 0.94 0.93 0.93	0.011 0.010 0.019 0.025 0.024	0.014 0.010 0.011 0.012 0.013	287 286 302 330 298	446 441 447 470 448	25 27 26 24 25				29-11- 02-12- 26-11- 29-11- 29-11-
		15	-			46.359													
Je	len 1	2 /	Nu	aily			We h approv Materi Ware	ere by red proce als of (satisfied.	certify ess and Germanis	that the tested cher Ll	e materi in accor oyd ((al was man rdance with GL) and	ufactured by the Rules the requirn	for for thents	Al	2 IND	que t	TAYA.	P)

Surveyor to G.L

50-

Manager, Quality Control

DEPARTEMEN PENDIDIKAN NASIONAL INSTITUT TEKNOLOGI SEPULUH NOPEMBER FAKULTAS TEKNOLOGI KELAUTAN JURUSAN TEKNIK PERKAPALAN

Kampus ITS -Sukoliilo, Surabaya 60111 Telp. 5047254, 5004251-5 Pes, 1173 - 1176 Fax 5047254

SURAT KEPUTUSAN TUGAS AKHIR

No.: 80a / K03.4.2/PP/2000

Nama Mahasiswa	;	Mohan Bawafi
Nomor Pokok	:	4195100033
Tanggal diberi tugas	:	01 Pebruari 2000
Tanggal selesai lugas	:	31 Juli 2000
Dosen Pembimbing	* 1	1. Ir. Soeweify, M.Eng
		2.

Uraian / judul tugas akhir yang diberikan :

#ANALISA BRITTLE CRAK INITATION PADA BAJA KEKUATAN TINGGI AKIBAT PENGARUH TEMPERATUR#

Surabaya, 28 Pebruari 2000 hinusan Teknik Perkapalan 'l'embusan : 1. Yth. Dekan FTK-FTS 2. Yth. Dosen Pembimbing MANFAAT, MSc, Ph.D. 3. Arsip 1 651 444.