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ABSTRACT 

 

Stochastic geometry is a mathematical discipline that combines 

geometry and probability. In particular, it model complex systems with a 

large number of elements distributed over a geographical area and has 

numerous applications in telecommunications. Based on stochastic 

geometry, mathematical models are designed to represent aspects of 

wireless networks. Talking about stochastic geometry models of wireless 

networks will not be detached from the important role of the continuum 

percolation. That is an extension of the percolation theory at 𝑅2. It model a 

random network and analyse their behavior.  

 

We apply these theories to our model "the connectivity of multi-

hop D2D (Device-to-Device) networks" to predict some of their 

characteristics, such as to estimate minimum density of devices in a 

territory ensuring a long-distance communication called critical 

percolation threshold, to model percolation probability that a given devices 

is in the large connected component and to find the ratio of distance of two 

devices who want to communicate and the number of hops necessary to 

establish communication. We interpret the D2D communication refers to a 

random graph. Using Monte-Carlo simulation, we generate the data and 

propose some methods to get the best representation model for both urban 

and rural areas. We model the street systems as a Poisson-Voronoi 

tessellation and Poisson-Delaunay tessellation with varying street lengths. 

 

Our results show that the estimated value of critical percolation 

threshold �̂�𝐶 with selected method is almost same to the critical value 𝜆𝐶 

of Poisson Boolean model (PBM) for Poisson-Voronoi tessellation (PVT) 

model and is quite different for Poisson-Delaunay tessellation (PDT) 

model, e.g for radius 0.225 km, �̂�𝐶 PVT is 1.42 users/km of street, 1.51 

users/km of street for PDT and 1.418 users/km of street for PBM. We 

notice also that PVT gives a very good representation for urban areas, 

meanwhile PDT is good for rural areas. 

 

Keywords: Multi-Hop D2D Networks, Poisson Point Process, Percolation 

Threshold, Percolation Probability, Tessellation, and Random Graph.   



Acknowledgements

In the name of Allah, the entirely merciful, the especially merciful. All praise and thanks
are due to Allah, who has given the convenience and has guided the author to complete this
thesis.

Firstly, I would like to begin by thanking Mr. Arnaud Guyader, the head of the statistics
department in UPMC, who motivated me to work a lot and more seriously to study and also
Mr. Michel Broniatowski for his wise advice during my Master. I also thank Ms. Lammart,
the Statistics Secretariat, thank you for her help and generosity.

Second, I would like to express my gratitude to the entire OLN/NMP/MSA team at
Orange Labs for their warm and friendly welcome throughout these six months. More
specifically, I would like to sincerely thank my internship tutor, Mr. Elie Cali for his
hospitality and his invaluable help, since the first day of my arrival at the company and to
have given me all his confidence to work with him during all this period, not to mention his
participation in the progress of this report and for Mr. Taoufik En Najjary as well.

Then, the more precious, I also thank my parents who have always supported me to go
further, who always pray tirelessly for me, it is thanks to their love and affection that I was
able to get to this point.

Finally, of course, I thank all my friends and especially Herfian Setiawan, Karen Alexan-
dra Vásquez Vivas, David Garcia, and Kimsy Tor, thank you for being there in difficult
times.



Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Background of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Significance of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 5
2.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Point Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Random Tessellations . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Random Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Continuum Percolation . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Mathematical Model of Mobile Network D2D . . . . . . . . . . . . . . . . 8
2.2.1 Orange Street System Models : PVT, PDT . . . . . . . . . . . . . 9
2.2.2 Users Model on the Streets . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Graph Communication Network . . . . . . . . . . . . . . . . . . . 10

3 Methodology 11
3.1 Identification and introduction phase . . . . . . . . . . . . . . . . . . . . . 11
3.2 Simulation phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Evaluation phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Results 13
4.1 Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13



viii

4.1.1 The First Type of Road: Poisson-Voronoi Tessellation (PVT) . . . . 13
4.1.2 The Second Type of Road: the Poisson-Delaunay Tessellation (PDT) 33

4.2 Outcome Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Estimation of the Percolation Threshold (λ̂c) . . . . . . . . . . . . 35
4.2.2 Estimation of the Percolation Probability (θ0(λ ) function) . . . . . 36
4.2.3 Estimation of the Stretch Factor (µ(λ ) function) . . . . . . . . . . 39

4.3 Error Analysis of the Simulation Result . . . . . . . . . . . . . . . . . . . 41

5 Conclusion and Suggestion 45
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Conclusion of the Research Results . . . . . . . . . . . . . . . . . 45
5.1.2 Conclusion of Researchers . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Suggestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

References 47

Appendix A R Codes 49

Appendix B Slide of WIAS 79



List of Figures

3.1 Flowchart of Methodology Research . . . . . . . . . . . . . . . . . . . . . 12

4.1 Poisson Process 1 x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Poisson Process 5 x 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Poisson-Voronoi Tessellation . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 City Roads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Users on the Roads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Gilbert Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7 The Non Percolate System . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.8 The Percolate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.9 The λ̂c Value by the Window Crossing Method . . . . . . . . . . . . . . . 18
4.10 The λ̂c Value by the Cluster Method . . . . . . . . . . . . . . . . . . . . . 23
4.11 θ f (λ ) Function for s = 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.12 The Function θ f (λ ) for s = (5, 10, 15, 20, 25) . . . . . . . . . . . . . . . . 30
4.13 Poisson-Delaunay Tessellation . . . . . . . . . . . . . . . . . . . . . . . . 34
4.14 The length of the Tessellation . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.15 The Function θ0(λ ) PVT . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.16 The Function θ0(λ ) PDT . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.17 The Function θ0(λ ) r Varied PVT . . . . . . . . . . . . . . . . . . . . . . 38
4.18 The Function θ0(λ ) r Varied PDT . . . . . . . . . . . . . . . . . . . . . . 38
4.19 The Function θ0(λ ) PDT s = 5 . . . . . . . . . . . . . . . . . . . . . . . . 39
4.20 The Function θ0(λ ) PDT s = 30 . . . . . . . . . . . . . . . . . . . . . . . 39
4.21 The Function µ(λ ) PVT . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.22 The Function µ(λ ) PDT . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.23 The Function µ(λ ) PVT r Varied . . . . . . . . . . . . . . . . . . . . . . . 40
4.24 The Function µ(λ ) PDT r Varied . . . . . . . . . . . . . . . . . . . . . . . 41
4.25 Confidence Interval for θ f (λ ) PVT s = 5 . . . . . . . . . . . . . . . . . . 42
4.26 Confidence Interval for θ f (λ ) PVT s = 25 . . . . . . . . . . . . . . . . . . 42



x

4.27 Confidence Interval for λ̂c . . . . . . . . . . . . . . . . . . . . . . . . . . 42



List of Tables

4.1 λ̂c : The First Two Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 λ̂c : Cluster Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 λ̂c : Tore + Union-Find Method . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 λ̂c : Method 2: p = 0.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 λ̂c : Tore + Union-Find Method . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 λ̂c by the Simulations for γ = 20 . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 λ̂c by the Calculations for r = 0.3km . . . . . . . . . . . . . . . . . . . . . 37





Chapter 1

Introduction

1.1 Background of the Study

Human needs related to technology of telecommunications increase year by year, especially,
in terms of the speed of information diffusion, the increased capacity, the effectiveness and
the profitability. That makes all sectors in the telecommunications field constantly evolve
trying to provide better service, which leads to an increase in the speed of data transfer,
expand the range of connectivity, but at a minimum cost. To meet those needs, a new
generation of mobile network communication technology (the fifth generation: 5G) is being
specified. It will bring many advanced features, including faster response times, a great
capacity, a ubiquitous connectivity etc. Moreover, it concerns different applications with
very heterogeneous needs. One of the technologies that will serve 5G is called device to
device (D2D). The D2D feature allows direct communication between devices that are close
to each other without necessarily going through the base stations. There are two types
of D2D communication: (1) Direct communication between two devices, (2) Multi-hop
communication. The D2D multi-hop communication is the communication that occurs
between two devices which are distant using several nearby devices serving as relay. With
the D2D multi-hop, a new operator could build a mobile network even if it does not have any
base stations.

To anticipate this, the TEMS (The Effects of Marketization on Societies in Europe)
research group in "Modelling and Statistical Analysis" (MSA) department, decided to study
the D2D connectivity. It is important for Orange, a telecommunication company in France,
to prepare for possibles consequences of this new feature.

In preparation for the arrival of this generation of mobile networks and in particular
the technology of D2D, this research aims to model mathematically the D2D feature using
stochastic geometric models that have been used for a long time [1], [2], [8], [9], [16] and



2

[17]. Stochastic geometry is a mathematical discipline combining geometry and probabilities.
It particularly allows to model complex system with a large number of elements distributed
over a geographical area and has many applications in telecommunications. In this research,
these stochastic geometry models propose a representation of the morphology of street
system and use the theory of percolation (specifically continuum percolation) in order to look
for the value of some critical thresholds allowing to assure connectivity over long distances.
The continuum percolation is an extension of the percolation theory on Rd . It allows us
to model random networks and to analyse their behavior, particularly the phase transition
phenomenon [14]. These theories can be applied to modeling D2D networks to predict some
of their characteristics.

1.2 Statement of the Problem

Based on the description above, the statement of the problem to be discussed in this study
are as follows:

1. What is the minimum density of devices in the territory to ensure long-distance
communications? → Percolation Threshold

2. What is the probability that a given device is in the large connected component? →
Fonction θ0

3. What is the ratio between the distance of two users who want to communicate and the
number of hops necessary to establish communication? → Fonction µ

1.3 Objectives of the Study

The purpose of this research is to answer the three questions bellow:

1. To know the minimum density of devices in the territory that ensure long-distance
communications.

2. To know the probability that a given device is in the large connected component.

3. To know the minimum hops that it takes to establish communication between two
devices.
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1.4 Scope and Limitations

This research will be done by simulation using software R to know the characteristics of
D2D communication and only focus on communication between mobile phone.

1.5 Significance of the Study

The finding of this study will help TEMS (The Effects of Marketization on Societies in
Europe) organization and specifically for Orange company in their participation in future
generation of mobile phone (5G). In addition, the company can also use it as a reference to
find other related factors that need to be examined as this research is the first step in towards
analysing D2D connectivity in multi-hop wireless networks. The most important is that the
result of this research can help an Orange company in decision making about the need to
build a BTS (Base Transceiver Station) in a certain region or not.





Chapter 2

Literature Review

2.1 Mathematical Model

In the first part, let us start by laying out some useful definitions, found in [12], [1] and [3].

2.1.1 Point Process

Point processes play an important role in stochastic geometry. These are random variables
whose realization is a set of points in a certain space. Here, we will be in the context where
the space is Rd .

Let S , the finite set or countable locally finite parts of Rd: Φ ∈S if Φ⊂ Rd is at most
countable and for any compact K ⊂ Rd , K ∩Φ is finite. Each Φ ∈ S defines a discrete
measure ϕ = ∑x∈Φ δx, where δx denotes the Dirac measure in x, for any Borel set A of Rd ,

δx(A) = 1A(x) =

{
1 if x ∈ A
0 otherwise

.

It could then, in an equivalent way, work with all these measures, it will be noted S. This
set S suggests that the most important is to count the number of points in each Borel set,
because if ϕ ∈ S and A⊂ Rd is a Borel set of Rd , the number of points of ϕ that belongs to
A is ϕ(A).

For each Borel set A ⊂ Rd we will note N(A) : S→ N, the application that at each
ϕ associates ϕ(A). The Borel algebra on S is the smallest σ -algebra such that N(A) is
measurable for any Borelian A⊂ Rd .

A random variable φ with values on S is a point process.
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2.1.1.1 Poisson point process

Let µ be a measure fixed on Rd . A Poisson point process with intensity µ is a point process
φ such that for all Borel set A of Rd , the random variable N(A) ◦ φ follows a Poisson
distribution with intensity µ(A) and for any sequence A1, ...,Ak of pairwise disjoint Borel,
N(A1)◦φ , ...,N(Ak)◦φ are mutually independent.

Sometimes the intensity measure is given by:

µ(A) =
∫

A
λ (x)dx (2.1)

where λ : Rd → R+ is a measurable function called the region intensity of the Poisson point
process [3]. If λ is a constant, the Poisson point process is called a homogeneous Poisson
process or a stationary Poisson process. Its intensity becomes a real λ and:

µ(A) = λ |A| where |A| denotes the Lebesgue measure of A. (2.2)

Properties 2.1.1 (The homogeneous Poisson point process [4]) The homogeneous Poisson
point process φ with intensity λ > 0 has the following properties:

1. The number of points N(A) = #(φ ∩A), contained in any region A is a Poisson random
variable,

2. The expected number of points in A is E[N(A)] = λ |A|,

3. If A1,A2 are two disjoint sets N(A1) et N(A2) are two independent random variables,

4. If N(A) = n, the n points are independent and uniformly distributed over A.

2.1.1.2 Cox process

Now, considering a rich class of point process, a Cox process. The Cox process is a
generalization of the Poisson process, where an intensity field is itself given by a random
process and is independent of the underlying Poisson process [20].

2.1.2 Random Tessellations

A tessellation is the division of a surface into a pattern that covers the surface without overlap.

Definition 2.1.2 (Tessellation) Let S be a connected region of Rd (S ⊂ Rd), called tessel-
lation of S a countable collection {Ci}, where Ci are compacts of Rd and called cells such
as:
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1. S is the reunion of Ci,

2. The interior of each Ci is of dimension d,

3. The interiors of Ci are mutually disjoint,

4. Any compact of Rd is intersected by finite number of Ci.

Definition 2.1.3 (Random tessellation) If the Ci are randomly closed, S is a random tessel-
lation.

A random tessellation is stationary if its distribution is invariant by translation (same
distribution) on Rd and isotropic if its distribution is invariant by rotation around the origin.

2.1.2.1 Poisson-Voronoi tessellation (PVT)

Let {xi} ∈ Rd be a realization of a point process φ . It calls Voronoi tessellation of Rd with
nuclei xi, the tessellation with cells:

Ci = {y ∈ Rd : ∥xi− y∥ ≤
∥∥x j− y

∥∥ for all i ̸= j}, (2.3)

where ∥.∥ is the Euclidean norm.
The segments in a Voronoi tessellation correspond to all the points of the plane equidistant

from the two nearest nuclei. If φ is a homogeneous Poisson point process with finite intensity
and λ positive, the Voronoi tessellation is called Poisson-Voronoi tessellation.

2.1.2.2 Poisson-Delaunay tessellation (PDT)

Let {xi} be the nuclei of the Poisson-Voronoi tessellation, the Poisson-Delaunay tessellation
is constructed by connecting all pairs of nuclei xi that belong to neighboring cells. This
tessellation is dual of the Poisson-Voronoi tessellation.

2.1.3 Random Graph

Some definitions about graphs that can be found in [13] [7].

Definition 2.1.4 (Network and graph) A network is a set of interacting entities and a graph
is a mathematical represenation of the network.

Definition 2.1.5 (Graph) A graph G = (V,E) is composed of a set V = {v1,v2 . . . ,vn} of
nodes and a set E of pairs of V xV which are called edges.
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When for all i, j the edge e = {vi,v j} ∈ E is equal to the edge e = {v j,vi} ∈ E, this graph
is called an undirected graph.

Definition 2.1.6 (Path) A path is a sequence of nodes such that each node is connected to
the next by an edge.

Definition 2.1.7 (Chemical distance) The length of the path is the number of edges visited
to go from the first node of the path to the last one. The shortest length from node A to node
B is called the chemical distance from A to B.

Definition 2.1.8 (Random graph) A random graph is a graph in which nodes and /or edges
are generated by a random process.

Definition 2.1.9 (Random geometric graph) A random geometric graph is a graph such
that the nodes are distributed randomly and an edge occurs if and only if the distance between
two nodes is smaller than the radius r. It is a Gilbert graph.

2.1.4 Continuum Percolation

Let φ be a homogeneous Poisson point process with intensity λ on R2. In each point of
φ , we consider the sphere of radius ρ centered at this point, where ρ is a random variable
identically distributed on each point of φ , such that the values taken by ρ at two distinct
points are independent. This model is called the Boolean model. In this model, we can match
to the Gilbert graph of radius 2ρ . Then, the connected component of the occupied region of
the Boolean model is equal to the connected component of the Gilbert graph.

It is said that the graph percolated if there is an infinite connected component in this
graph. The probability:

Θ(λ ) = P(∃ an infinite connected component in the graph ) (2.4)

is called percolation function and the critical intensity of the graph:

λc = in f{λ : P(G(φ)percolates)> 0} (2.5)

in other words for λ < λc the system does not percolate and for λ > λc the system percolates.

2.2 Mathematical Model of Mobile Network D2D

The D2D mobile network discussed in the introduction is a complex system. It is impossible
to treat this complex system without describing the interactions between their components.
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This description will be made through mathematical models. The purpose of this part is to
present these models.

The different components that we had to model were: The territory’s street, Users of
mobile devices located on the street, and Communications between mobiles. A model
development requires clearly the initial hypothesis. To obtain an efficient and a simulable
model, we introduced some simplifications associated to the reality. Therefore, the following
hypotheses are made:

1. The users are located on a limited territory, urban or rural,

2. There is only one type of users, mobile device,

3. The users are on the streets and immobile,

4. Neither buildings nor interferences are taken into account,

5. The radius communication of a mobile is constant,

2.2.1 Orange Street System Models : PVT, PDT

If the impasses are eliminated, the territory road constitute a certain tessellation of this
territory. To model roads, Orange has developed a number of models based on random
tessellations. If a good model is chosen for a given territory, the morphological characteristics
of the roadways (number of intersections, road segments, house blocks or kilometers of
roads) are found by calculating the average of the corresponding characteristics (number of
nodes, edges, faces, or total length of edges) of the random tessellation.

One of the simplest models of point process is the Poisson point process which has
a single parameter. In particular, Orange uses two tessellation models based on Poisson
processes: Poisson-Voronoi Tessellation (PVT), Poisson-Delaunay Tessellation (PDT).

2.2.2 Users Model on the Streets

Having modeled the streets, the location of the users on the streets constitutes a set of random
points on these streets. So we can model it through a point process on R2. The position of
the users can be modeled as the realization of a linear Poisson process (on the streets, in other
words on the edges of the previous random tessellation) because the users are independent of
each other and are uniformly distributed at random on the territory street.

We have modeled the roads and users using Poisson processes. Hence, the user model is
a double stochastic Poisson process. This type of point process is called Cox process.
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2.2.3 Graph Communication Network

The D2D mobile network is formed by the possibility of communication between users. The
principle of D2D is that users communicate directly with each other without going through
base station. These links form a graph whose nodes are the users and an edge exists between
two users when they can communicate with each other. The interactions are reciprocal and
the links between the users are undirected.

A mobile can communicate directly with another mobile if the signal-to-noise ratio is
above a certain threshold. As a first approximation (except in particular power adaptation),
this corresponds to a constant maximum distance between the two users. We will then plot
an edge of the graph if the distance between the two nodes is less than a given distance r. As
a consequence, in our modeling, at any moment, the mobile network corresponds exactly to
a Gilbert graph.

All devices on the territory constitutes a network that can route communications. Thus, if
a user A wants to communicate with another user B on the territory, another users will be
used as relays to route his communications. Communication will be possible immediately
after there is a related path from user A to user B.

The objective of this study is to determine to which conditions the network formed (and
the Gilbert graph corresponding) ensures the connection of a large part of the users on the
territory. The answer is provided by the theory of continuum percolation [14] : below the
percolation threshold, long-distance communications are not possible, beyond that, there is
an infinite connected component and we can give indications the percentage of connected
user pairs.



Chapter 3

Methodology

In this section will be described the steps of research that will be carried out during the study.
These steps can be seen in Figure 3.1. In that Figure, the phase is divided into three phases
that are identification and introduction phase, simulation phase and evaluation phase.

3.1 Identification and introduction phase

It is organized by conducting a preliminary study, determining the issues to be discussed and
looking for literature sources related to the research and meeting with the various parties
involved in the project.

3.2 Simulation phase

After determining the parameters necessary for modeling system D2D mobile network and its
characteristic, we consider that the characteristics of D2D communication can be represented
by using simulation technique where to generate the data, we will use Monte Carlo simulation.
Simulation is done because it is a simple way to facilitate research by not spending costs
and time-consuming when compared with real experiments but it still can give accurate
results. In using simulation, it is important to pay attention to the hardware and the software
that will be used. Therefore, this will affect the time and the results of research. There are
many programming languages that exist, but in this study, researchers will chose R Software
version 3.4.1 and use Windows 7 enterprise. It is a Windows operating system for business.
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3.3 Evaluation phase

This is the most important point when doing research, especially in performing simulations.
The statistical method will be used in this study.

Fig. 3.1 flowchart of methodology research



Chapter 4

Results

4.1 Analytical Methods

In this part, using mathematical models, we simulate random graph to estimate critical
percolation threshold (λ̂c), percolation probabilities by origin device (θ0) function), and
stretch factor (µ function).

4.1.1 The First Type of Road: Poisson-Voronoi Tessellation (PVT)

4.1.1.1 Critical Percolation Threshold

In this study, the mobile network D2D is represented by Gilbert random graph. The objective
is to find the percolation threshold in the graph and that will be studied by simulation.

In theory, the random network considered, naturally lives on an infinite graph while in
simulation, only a finite graphs can be simulated. Consequently, when doing the simulation,
a new method should be found which allows to find the percolation threshold in a finite graph.
This method should fulfill the following criteria: it must be fast in execution time and be fair,
that is, it gives the best estimate value of λc.

Obviously, an error would be obtained because of the simulation and the finite graph.
Preferably this error should be as small as possible. Hence, we propose to try several methods
and to compare them to find the best one according to the criteria and the errors. In order to
obtain a good approximation of the percolation threshold value for the urban road network,
the Monte Carlo method is used by simulating graphs and searching for a potentially infinite
connected component.
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Methods proposed

First, we will determine a sufficiently large square. We observe a region of the city of finite
size represented by a square window s side. Unless otherwise indicated, the window size
would be s = 5, that is 5 km by 5 km makes 25 km2. We begin by simulating Poisson point
process with intensity ζ in this window, where ζ is the expected number of points in a
window of a unit area. For example, if we want to simulate Poisson point process on a 1x1
window and if we set the intensity of the Poisson point process ζ = 100, then there will be
an average of 100 points in the window as shown in Figure 4.1. In our case, we consider a
size of 25 km2. The number of points in the window is on average 100x25 (see Figure 4.2).
From this, we draw the Poisson-Voronoi tessellation associated with these points. The edge
of this tessellation will be the streets of the city.

Fig. 4.1 Poisson process on a surface of 1
km2

Fig. 4.2 Poisson process on a surface of 25
km2

We measure the total length of streets. We will call γ the average length of streets per
km2. For the Poisson-Voronoi tessellation, we can show that γ = 2

√
ζ [19]. As a result, for

ζ = 100, γ is 20 km/km2.
Then we will put some points on each street. In other words, users are placed on the

streets. For each street, we place the points that follow the distribution of linear Poisson point
process with intensity λ . Since random tessellation is obtained by Poisson point process,
then each street segment is independent of the others, so that users can be distributed to each
street segment independently. More precisely, the product λγ describes the spatial intensity
of users, in other words the number of users per unit area. This realization can be seen in
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Figure 4.5 for an intensity λ = 0.79 (λ = 0.79 means that there are 0.79 users per km of
street).

Fig. 4.3 Poisson-Voronoi Tessellation Fig. 4.4 Simulated roads

Fig. 4.5 Users on the roads by using Cox
process

Fig. 4.6 Gilbert graph

After distributing the users on the streets, a Gilbert graph is created as a realization of the
D2D mobile network. This is done by placing a disc on each point (users) with a fixed radius.
An edge of the graph is drawn between two vertices once the Euclidean distance between
these vertices is less than this radius.

d(A,B) = ∥A−B∥ ≤ r (4.1)
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where ∥.∥ is the Euclidean norm and r is the radius which is fixed at 300m. It’s within reach
of a mobile to be able to communicate. This means that two users A and B are connected by
an edge if and only if A is contained in the disc of radius equal to 300m centered in B. As a
consequence, we have a graph driven by three parameters: the Poisson-Voronoi tessellation γ ,
the users λ , and the radius r. This graph is then a Gilbert graph with the parameters (γ,λ ,r)
illustrated in Figure 4.6. Besides, if A and B are in the same connected component of the
graph, they can communicate by a finite number of jumps (hops).

We tested three methods to find λ̂c.

Method 1: Crossing Window

In this method, we try to determine if there is a connected component that crosses the
observation window. For γ and r given, the function Θ(λ ) is either 0 or 1 in an infinite graph
(see Formula 2.4). However, we have finite graph G f (γ,λ ,r), we define the function:

θ f (γ,λ ,r) = P(∃ a connected component that crosses the window s in G f (γ,λ ,r)) (4.2)

Algorithm 1: Percolation Algorithm
Input: Graph
Output: State of percolation
create a small window s
1. The flow function

Z1 := {points beyond the upper limit of s}
for (xi,y j) ∈ Z1 do

search all connected points with points in Z1 ;
puts the attribute 1 at the connected points ;

end
2. The percolation function
Z2 := {points below the lower limit of s}
for (xi,y j) ∈ Z2 do

if a point has the attribute 1 in Z2 then
percolate ;

else
does not percolate ;

end
end
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where 0 ≤ θ f (λ )≤ 1 for γ and r given and the curve function θ f (λ ) is represented in
the Figure 4.9. We then know by definition θ f and Θ that:

lim
s→∞

θ f (λ ) = Θ(λ ) (4.3)

To determine if there is a connected component that crosses the window, we consider the
points that are in a bandwidth r/2 at the top or bottom of the window [18]. In other words,
we consider the set Z1 of the coordinates points (x,y) such that y≥ 5− r/2 and the set of the
Z2 of coordinates points (x,y) such that y≤ r/2. After we search if there is a vertical path
(see definition 2.1.6) from a point of Z1 to a point of Z2 (see Algorithm 1).

Since it is a simulation of a random process, the result can vary from one simulation to
another as can be seen in the Figures (4.8) and (4.7), the system percolate and the system
does not percolate for the same value λ = 0.79.

Fig. 4.7 Non percolated Fig. 4.8 Percolated

For each value λ , a number of Gilbert graphs are randomly generated by running al-
gorithm 1 many times and counting the percentage of percolation times is done. If the
experiment is repeated a lot of times and the average is calculated: If we note yi the results of
each simulation, that could be written:

y1 + y2 + · · ·+ yn

N
= ȳ (4.4)

where yi be 1 if in simulation i, the finite graph percolate and 0 otherwise and N is the
number of simulations. We search ȳ for different values of λ . Then, when we trace ȳ in
function of λ , this defines the function θ f (λ ). This function seems like a logistic function
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curve. Since we have data that are binary random variables, we will estimate the percolation
threshold using the logistic model. Recall the logistic model: y is a dependent variable and x
is an explanatory variable. We denote p the probability of the dependent variable equal to 1
(percolate): p = P(y = 1|x). Then:

logit(p) = ln
(

p
1− p

)
= β0 +β1xi (4.5)

Here, the xi are the values of λ and the yi are the results of simulations contained in {0,1}.
We then consider that the value p is a good approximation for θ f (λ ). Since the curve θ f (λ )

is approximately symmetrical, we assume that we have percolation for θ f (λ̂c)≈ 0.5, that is
to say that the critical value is at this probability. Therefore, replacing p by 0.5, we found
that:

λ̂c ≈
−β0

β1

In consequence, we find λ̂c looking at the value of λ corresponding to p = 0.5.

Fig. 4.9 λ̂c method 1: First algorithm with 250 iterations

To test the method in the simulations, we put in constant the parameters of the Gilbert
graph γ and r at 20km/km2 and 0.3km respectively and we vary λ . As the road network is
dense, it is known from [5] that λc for the standard Boolean model is

λc ≈
4.51
πγr2 (4.6)
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Here, it gives λc ≈ 0.8km−1. It is thought that the λ̂c value obtained by simulation will be
close because the road for γ = 20km/km2 is quite dense. For that reason, we will vary λ from
0.5km−1 à 1.3km−1. Figure 4.9 shows the estimated value of the percolation threshold λ̂c. It
expresses θ f (λ ) as a function of λ in G f (γ,λ ,r) = G f (20,λ ,0.3) where 0.5≤ λ ≤ 1.3 et
N = 250.

The function θ f (λ ) obtained by simulation is represented in green, while the function
θ f (λ ) obtained by the logistic model is represented in blue. This graph clearly shows that the
logistic model is a good approximation to find the percolation threshold accurately. Note that
when N (the number of simulations) is larger, the function θ f (λ ) obtained by the simulation
coincides better with the function θ f (λ ) obtained by the logistic model. In addition, the
value θ f (λ ) increases when λ increases, and if λ is superior than 1.1, the probability is equal
to one, which means that the model always percolate for λ ≥ 1.1. Conversely, for λ ≤ 0.5
the probability is zero, the model never percolate. Therefore, the percolation threshold will
be in the intervalle 0.5≤ λ ≤ 1.1.

Algorithm 2: Percolation Algorithm
Input: Graph
Output: State of percolation
create a small window s
1. The flow function

Z3 = {points lying on the left side of s}
for (xi,y j) ∈ Z3 do

search all connected points with points in Z3 ;
puts the attribute 1 at the connected points ;

end
2. The percolation function
Z4 = {points lying on the right side of s}
for (xi,y j) ∈ Z4 do

if a point has the attribute 1 in Z4 then
percolate ;

else
does not percolate ;

end
end

On the other hand, we can also have percolation with a horizontal path. In the same way,
with the same parameters as the previous algorithm, we examine the position of points to
the left or right of the window. We consider the set Z3 of the coordinate points (x,y) such
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that x≤ r/2 and the set Z4 of the coordinate points (x,y) such that x≥ 5− r/2. After that
we search if there is a horizontal path from a point of Z3 to a point of Z4 (see Algorithm 2).

We will combine these two algorithms and look at the percolation of vertical path or of
horizontal path simultaneously. We suppose that we will have a better estimate of the critical
threshold 3).
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Algorithm 3: Percolation Algorithm
Input: Graph
Output: State of percolation
create a small window s
Z1 = {points beyond the upper limit of s}
Z2 = {points below the upper limit of s}
Z3 = {points lying on the left side of s}
Z4 = {points lying on the right side of s}
1. The flow function

for (xi,y j) ∈ Z1 do
search all connected points with points in Z1;
puts the attribute 1 at the connected points ;

end
2. The percolation function
for (xi,y j) ∈ Z2 do

if a point has the attribute 1 in Z2 then
percolate ;

else
does not percolate ;

end
end

if does not percolate then
1. The flow function

for (xi,y j) ∈ Z3 do
search all connected points with points in Z3;
puts the attribute 1 at the connected points ;

end
2. The percolation function
for (xi,y j) ∈ Z4 do

if a point has the attribute 1 in Z4 then
percolate ;

else
does not percolate ;

end
end

end



22

Method 2: Torus

As in the previous method, we carry out the three algorithms (see the algorithms [1, 2, 3]) to
find λ̂c. On the other hand, in this method, we position the road network on a torus, which
makes it possible to simulate an infinite connected component.

In the first algorithm, before the roadway is drawn, the set of coordinate points (x,y) such
that y≤ r/2 are copied beyond the upper limit of s where now all ordinates y for each copied
point are larger than s. After that, we can trace the tessellation from these points. The points
(users) are then placed on all the edges of the tessellation, except the edges of the points
copied. We copy again all the points (users) of coordinates (x,y) such that y≤ r/2 on the
edges which lie beyond the upper limit of s. If we wind this graph of the tessellation with
user points, it’s a cylinder.

Then in the second algorithm, we do the same for the set of coordinate points (x,y) such
that x ≤ r/2 which are copied beyond the upper limit of s where all the x-coordinates for
each copied point are larger than s. We proceed in the same way as with the first algorithm
to put users on the street. We do the same for the third algorithm that combines the two
previous algorithms. By this algorithm, we obtain a torus. we only consider the components
that crosses the window by passing through both a user and his copy. At the end, we can
search for λ̂c in the same way as in method 1.

Method 3: Cluster

From the point of view of graph theory, the infinite connected component can be expressed
as the largest cluster of the graph. Hence, by this method, we estimate λc by looking at
the largest cluster and the second largest. When λ reaches the critical value λc, the largest
clusters of the graph begin to merge to form the infinite connected component. Thus, in a
finite window, the size of the second largest cluster begins to decrease. The second cluster
merging with the larger one is the third, smaller one becomes second, and so on.

The algorithm of this method allows to define the largest cluster and the second larger
by counting the number of points in each cluster. Then we look for the percentages and we
draw the curves of the two clusters illustrated in Figure 4.10. We also look for the maximum
of the second cluster. The value λ̂c is obtained by the maximum of the curve of the second
cluster associated with the value of λ [11].

This figure emphasizes that the cluster size increases progressively as λ increases. It is
easy to see by looking at the first curve.
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Fig. 4.10 Cluster Method: (Ψ(λ ) = percentage of points in the cluster)

Comparison of the three methods

In order to compare these three methods, we look at the values λ̂c obtained by each method
using the logistic model for p = 0.5, as well as the number of simulations and the simulation
time. These values λ̂c are given in the following Tables:

Table 4.1 λ̂c : The First Two Methods

The number of simulations Method 1 Method 2

Alg. 1 Alg. 2 Alg. 3 Alg. 1 Alg. 2 Alg. 3

50 0.813 0.825 0,787 0.818 0.830 0.777
100 0.820 0.835 0,767 0.836 0.843 0.779
150 0.816 0.827 0,772 0.836 0.834 0.775
200 0.820 0.833 0,803 0.838 0.836 0.770

It is found that the critical values obtained by the three methods are not very dissimilar.
For the first two methods, the λ̂c values obtained by the first algorithm and second algorithm
are almost identical. Which is logical because the observation window is symmetrical. Fur-
thermore, the values of λ̂c are stable even with different numbers of simulations. Besides, we
find that the estimated percolation threshold decreases when we combine the two algorithms
(see the results of the third algorithm). On the other hand, by observing the execution time in
simulation with R software of each algorithm of all the methods, these two methods are very
long whereas the cluster method is very fast to make simulations. It is clear in the table that
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the cluster method can achieve simulations up to N = 2000, we vary N, even for large values
of N, we find that the cluster method λ̂c is unstable. This is due to the fact that the maximum
value of the curve of the second cluster is difficult to determine because the interval of the
maximum value is large especially when N the simulation number becomes large, this curve
becomes very flat, consequently to specify the value λ̂c is very difficult.

Table 4.2 λ̂c : Cluster Method

The number of simulations Cluster

500 0.77
1000 0.75
1500 0.78
2000 0.80

In conclusion, among the three methods, method 2 with the third algorithm (combination
of the two algorithms) is chosen. This is the best method for estimating λ̂c because there is
an infinite path in the graph and the estimate value of λ̂c is stable for different values of N.

4.1.1.2 Percolation Probabilities by Origin Point (θ0 Function)

After estimating the percolation threshold, we want to determine the probability that a given
node of the graph (which we choose at random as the origin point of R2) belongs to the
infinite connected component. We note this function θ0. It also depends on the parameters
(γ,λ ,r). Thus for γ and r given, the function θ0 becomes θ0(λ ). We write [10]:

θ0(λ ) = P(Percolation of the origin point) (4.7)

To estimate this probability, we will use the following method: we simulate a Poisson-
Voronoi tessellation. At first, we create a single user on the edges of the tessellation according
to a uniform distribution. Then, a new user is added on the road. We will also add users until
we get the percolation in the window. We will use the union-find algorithm in this method to
identify the connected components of the graph.

The union-find algorithm works very differently from the algorithms of the previous
methods. It is an algorithm that will perform two crucial operations:

1. Find : It is used to determine if two points belong to the same connected component
related.

2. Union : Gathers two points (or connected components) into a single connected compo-
nent.
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Algorithm 4: Union-Find Algorithm
Input: Poisson-Voronoi tessellation
Output: Percolation Graph
p(.) : parent
r(.) : rank
add a point on the Poisson-Voronoi tessellation
1. MakeSet Function
(x : the point that is added)
p(x) := x ;
r(x) := 1 ;
2. Find Algorithm
i := x
while p(i) ̸= i do

i := p(i) ;
p(x) := i ;

end
return p(x) ;
3. Union Algorithm
merge two points i and j
search p(i) et p( j) by using Find algorithm
if p(i) = p( j) then

break ;
end
else

if r(i) < r( j) then
p(i) := j ;

end
if r(i) > r( j) then

p( j) := i ;
end
if r(i) = r( j) then

p( j) := i ;
r(i) := r(i) + 1 ;

end
end
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In each of these simulations, one point is added at a time, stopping as soon as the graph
crosses the window. The connected components are followed at each step using the union-find
algorithm [15]. Ideally, in this algorithm, each connected component is represented only
by one of its members, called "parent" and has a weight called "rank". For each new point
added, the parent of that point is equal to itself, while the rank is set to one. We associate at
this point all the points which are at a distance less than r (see Equation (4.1)). During the
union of two points (i) and ( j), we look for the parents of (i) and ( j). If they have the same
parent, they are in the same connected component. Otherwise we associate them with the
parent with the highest rank. On the other hand, if the two ranks are equal, one of them is
declared as the parent of the other and one is added to his rank. The union-find algorithm is
shown in the Algorithm 4. To find the probability θ0, it follows the following reasoning (see
Appendix 2).

Recall that we have two sources of randomness. These are the T roads and devices (the
number of users J and the position of users on the road). We know that T has a complicated
distribution with the average street length ν1(T ) equal to γ per unit area, and for T given, J
follows a Poisson distribution of parameter λν1(T ) where λ is the average of the number
users per km of street. Using the definition of discrete conditional probability, we have:

θ0(γ,λ ,r) = P(Percolation of the origin point)

= ∑
j,s
P(Percolation of the origin point |J = j,T = t)P(J = j |T = t)P(T = t)

(4.8)

We will estimate the three probabilities. We simulate a tessellation t. For each simulation,
we draw at random the origin point and we add one by one points drawn uniformly on the
streets until the connected component passing the origin crosses the window. As a result, we
then have percolation the origin point for J = j and T = t, that is:

P(Percolation of the origin point |J = j,T = t) = 1

then, for a given tessellation t, users follow a Poisson distribution, we have:

P(J = j |T = t) = e−λν1(t)λν1(t) j

j!

and the last probability is a probability to generate roads or tessellation. We simulate
some tessellations t1, . . . , tm, where m is the number of tessellations. These tessellations are
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generated randomly and independently of each other. As a result, the probability of the road
generated:

P(T = t) =
1
m

The algorithm is described below:

Algorithm 5: θ0 Function Algorithm
Input: Roads
Output: Percolation Graph
n := the number of simulations
m := the number of Poisson-Voronoi tessellation

1. generate a Poisson-Voronoi graph t, i← 0,

2. j← 0,

3. place a point uniformly at random somewhere on one of the streets of t, j← j+1,

4. use the union-find algorithm to check the percolation that goes through the origin,

(a) if the graph does not percolate, we add another point uniformly randomly
somewhere and we continue until it is percolated,

(b) if the graph percolated, we note the number of points added and we calculate the
probabilities θ0(λ ) by the following formula,

Xi,t ← Σ
∞

j′≥ jP(J = j′|T = t) = Σ
∞

j′≥ j e−λν1(t)λν1(t) j′

j′!
(4.9)

where ν(t) is the road length of t in the window s.

The algorithm (5) is simulated for several realizations of t. For one t, if we generate n
simulations, we have X1,t ,X2,t , . . . ,Xn,t , we can take the mean of Xt . As a consequence, the
estimate of the probability θ0 for γ and r given is:

θ0(λ )≈
1
m

m

∑
k=1

Xk (4.10)

and its variance:

σ
2 :=

1
m

(
1
m

m

∑
k=1

X2
k −

( m

∑
k=1

Xk

)2)
(4.11)
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To calculate Formula (4.9), we approach it by the normal distribution. Recall that if:

X ∼P(λ )

then, for λ sufficiently large, we have:

Y ∼N (µ = λ ,σ2 = λ )

Since X is a discrete variable and Y is a continuous variable, we must apply the continuity
correction [6]. For example in this case, if j′ = x0 is a non-negative integer,

PX(X ≥ x0)≈ PY (Y > x0−0.5)

≈ P
(

Z >
(x0−0.5)−λ√

λ

) (4.12)

where Z follows a standard normal distribution and with the software R, the function pnorm
makes it possible to calculate this probability.

Method 4: Torus + Union-Find for λ̂c

The problem of the method we have chosen to estimate the critical threshold is that the
execution time of the algorithm is very long. After having simulated several times the
function θ0 by the union-find algorithm, we note that this algorithm allows us to reduce the
execution time to find the connected component of the graph. Therefore, we also tried to
apply this algorithm to find the critical threshold.

The idea of this method is the same as method two (torus). However, we look for
percolation using the union-find algorithm. In contrary at the algorithm for the function θ0

which adds the points one by one, here, for each simulation, the points are already known
and the Gilbert graph already plotted. We will look at the points one by one, and apply the
method of k-nearest neighbors. This method is based on the minimum distance from one
point to the others to determine the nearest k points. This avoids the calculation of all the
distances between the points. The algorithm follows the following steps:

1. After placing users on the streets (as in Method 2: Torus), determine the k nearest
neighbors of each user. Here, we choose k = 10,

2. Calculate the distance from each point to the neighboring points only,

3. Sort the points from the smallest to the largest distance,



4.1 Analytical Methods 29

4. Choose points that have a distance smaller than r (see Formula 4.1),

5. Use the Union-Find algorithm (see algorithm 4). Find to find two points that have a
distance smaller than r (connected), and union to join them or put them in the same
connected component,

6. To check percolation, use the union-find algorithm again. Since we choose the third
algorithm to look at the percolation path, so we look if the parents of the points at
the top and the bottom or the points to the left and the right are the same. The graph
percolate if they have the same parent and it does not percolate otherwise.

Then, we estimate λc by the logistic model. We note that in this method, the execution
time is much faster, so we can increase the size of the observation window. In addition, we
see that if the size of the window is large, we will have a more vertical curve which ensures
that we can have a better estimated value of λc. We can see in Figure 4.11 that the curve
becomes more vertical for s = 30 than the curve for s = 5.

Fig. 4.11 θ f (λ ) Function for s = 30

Besides,we see once again that for N large, the function θ f (λ ) obtained by the simulation
coincides better with the function θ f (λ ) obtained by the logistic model. The simulation
results of this method are shown in Table 4.3.

The function θ f (λ ) for s differents

As we can increase the size of the observation window, we draw the curve θ f (λ ) for several
window sizes. We execute s = (5,10,15,20,25) as illustrated in Figure 4.12.
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Table 4.3 λ̂c : Tore + Union-Find Method

The number of simulations Tore + Union-Find

50 0.79558
100 0.79769
150 0.79425
200 0.79334

Fig. 4.12 Function θ f (λ ) for s = (5, 10, 15, 20, 25)

In Figure 4.12, we see that these curves intersect in a very localized region. However,
when the width of the window s more and more, the curve of θ f (λ ) converges to Θ(λ ) when
s goes to infinity (4.3). Thus, the curve Θ(λ ) must also pass in this region. Taking as a new
value of θ f (λc), the approximate value where the curves intersect, we can obtain a better
approximation of λc. We will take the value p = 0.6. Critical threshold estimated for p = 0.6
are shown in Table 4.4.

Table 4.4 λ̂c : Method 2: p = 0.6

The number of simulations Method 2: p = 0.6

50 0.79900
100 0.80083
150 0.79763
200 0.79229
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By this table, it is also shown that the estimated values for λc with p = 0.6 for s = 5 are
close to the value λc given by the Boolean model (see Formula (4.6)).

4.1.1.3 Stretch Factor (µ Function)

As has been said throughout this paper, we want to study multi-hop D2D communication. It
will be appropriate to try to look at the number of jumps (the number of users) necessary to
establish a D2D communication. The objective of this method is to find a shorter path from
one user to another user. We look for the chemical distance to find the number of jumps. It is
recalled that the chemical distance between two nodes A and B of a graph is the number of
edges of the shortest path from A to B. In this part, we consider a Gilbert graph that percolate.
There are therefore many pairs of nodes (users) in the graph. We’re looking for the shortest
way for all couples using the Floyd-Warshall algorithm. The principle of this algorithm is
explained in algorithm 6. The objective is to calculate the shortest paths and their chemical
distance.

Algorithm 6: Floyd-Warshall Algorithm
Input: Graph
Output: Percolation Graph
J := number of users
Calculate the Euclidean distance (see (4.13))
Save in a matrix J x J
if d ≤ 0.3 then

1 ;
else

∞ ;
end

Floyd-Warshall Algorithm
for k in 1:J do

for i in 1:J do
for j in 1:J do

d[i,j] = min(d[i,j], d[i,k]+ d[k,j])
end

end
end

First, after placing the users on the streets, we calculate the Euclidean distance between
all the users. Recall that the Euclidean distance between two points (A,B) of coordinates
(x,y) is:
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d(A,B) = ∥A−B∥

=
√

(XA−XB)2 +(YA−YB)2
(4.13)

Then, we put the results in a matrix of size mxm. The elements of the matrix are
initialized to "one" if the Euclidean distance is smaller than the radius (r = 0.3km) and to
the "infinite" if the Euclidean distance is greater. We then look for the minimum between the
chemical distance from the (user) node i to node j and the chemical distance from node i to
node j through another node (node k) (see algorithm 6). This minimum value is defined as
the number of hops. The ratio between the number of hops of users want to communicate
and their Euclidean distance is called the function µ .

We have an Orange internal research report which gives us the Theorem 4.1.1. saying
that there is a value µ for a graph that percolate (that is, for a graph in which there is an
infinite connected component). This value ensures that for a very large distance, the number
of hops is proportional to the distance for a given territory.

Theorem 4.1.1 If λ > λc, let C be the infinite connected component in the Gilbert graph.
Let N(Xi,X j) be the smallest number of hops from Xi to X j with Xi,X j ∈ C. There exists
µ(γ,λ ,r) such that:

lim
|Xi−X j|→∞

N(Xi,X j)

|Xi−X j|
= µ(γ,λ ,r) (4.14)

The algorithm of the method to find the function µ follows the following steps:

1. Generate a Gilbert graph for s = 5 with the given parameters (γ,λ ,r),

2. For a percolating graph, use the Floyd-Warshall algorithm to find the shortest path of
each pair of (user) nodes in the graph and count the number of hops in each shorter
path,

In the R software, there is a function to execute the Floyd-Warshall algorithm, hence we
use this function in this method.

3. In the largest connected component, keep users who have a distance greater than 4km.
We choose this distance because we want the greatest possible distance for s = 5,

4. Calculate the function µ = number o f hops
distance (see Equation (4.14)),

5. Remake N simulations and calculate the average.
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4.1.2 The Second Type of Road: the Poisson-Delaunay Tessellation
(PDT)

We looked for the percolation threshold (λ̂c), the percolation function at a given point (θ0(λ ))

and also the ratio function of the number of hops at the distance (µ(λ )) for the first type
of road (PVT). We are now looking for the second type of road: the Poisson-Delaunay
tessellation (PDT). We proceed in the same way as for the Poisson-Voronoi tessellation. The

parameter γ (the average street length per km2) for this tessellation is γ =
32
√

ζ

3π
. Recall

that ζ is the expected number of points in a window of a unit area. We have set γ equal to
20 km/km2, therefore the value ζ must be equal to 34.69783 in order to have γ = 20 km/km2.

The road type difficulty is to plot the PDT graph. When we simulate the tessellation,
we connect together all the points that are at the edge of the window as a result that the
number of edges of this tessellation is exorbitant. In order to obtain the appropriate graph, it
is necessary to eliminate the tessellation edges on the edge of the observation window. For
this, we will increase the window size.

In the first part, to find the critical threshold, we use the torus + union-find method with
s = 30. Before the tessellation is drawn, the points of the Poisson process with coordinates
(x,y) such that x≤ 1 and the coordinate points (x,y) such that y≤ 1 are copied beyond the
upper limit of s. The size of the window is equal to the size of the previous window +1. We
draw the tessellation in this window and then we consider the tessellation in the sub-window
of size s = 30 with coordinates x and y equal to 0.5 up to x and y equal to 30.5. This avoids
having the edges that accumulate at the edge of the window. The user’s points are then placed
on the edges of the tessellation in the sub-window and then all the points of the coordinates
(x,y) users such as y≤ (r/5−0.5) are copied to the edges which are beyond the limit of the
sub-window. We do in the same way for the set of points of the users of coordinates (x,y)
such that x≤ (r/5−0.5). This is done to apply the torus concept as in the torus + union-find
PVT method. Finally, we look for the value λ̂c using the logistic model with p = 0.6.

In the second part, we use the same algorithm as for the Poisson-Voronoi tessellation
to find the function curve of θ0(λ ) of the Poisson-Delaunay tessellation. Here, we draw a
tessellation in the observation window and then we consider the tessellation for a sub-window.
For our algorithm, we only need to count the total length of the edges of the tessellation, then
we propose a calculation method: we trace the tessellation in the window size s = 6. We take
a sub window of size s = 5 so that the window is cut to size 0.5 to 5.5 (see Figure 4.13).

For all the edges that cross the limit of the sub-window, we look for the length of the
part of these edges which are in the window s = 5. We calculate this length u (see Figure
4.14) by the Formula (4.15), if the edges come from two points (A,B) such that the point A
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Fig. 4.13 Poisson-Delaunay Tessellation

Fig. 4.14 The calculation of the length of PVT

has coordinates (xA,yA) such that yA > 5.5 and the point B has coordinates (xB,yB) such that
yB < 5.5. For two points (A,B) such that point A has coordinates (xA,yA) such that yA > 0.5
and point B has coordinates (xB,yB) such that yB < 0.5, we use the Formula (4.16). Due to
these formulas, we can obtain the length of the edges.

u
d(A,B)

=
5.5− yB

yA− yB
(4.15)

u
d(A,B)

=
0.5− yB

yA− yB
(4.16)

We do the same for the edges (A,B) for which the point A has coordinates (xA,yA) such
that xA > 5.5 and the point B has coordinates (xB,yB) such that xB ≤ 5.5. It is also done for
x < 0.5.

In the last part, we look for the function curve of µ(λ ). Since we do not need to calculate
the length of the edges here, we proceed as in the first part to find the critical threshold.
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4.2 Outcome Analysis

After launching the algorithms of the methods to find λ̂c, the function θ0(λ ) and the function
µ(λ ), the following results were obtained:

4.2.1 Estimation of the Percolation Threshold (λ̂c)

We have already chosen the torus + union-find method to find λ̂c with the parameters
γ = 20 km/km2 and r = 0.3 km for the two types of roads: the Poisson-Voronoi tessellation
(PVT) and the Poisson- Delaunay tessellation (PDT). The estimated values are shown in
Table 4.5. For γ = 20 km/km2, we have λ̂c = 0.8 users/km of street be γλ = 16 users/km2.

Table 4.5 λ̂c : Tore + Union-Find Method

r λ̂c

PVT PDT PBM

0.300 0.79 0.80 0.797

Now, we also want to find the values λ̂c for different values of γ . By scale invariance,
a small value of r corresponds to a small value of γ , which makes it possible to obtain the
value of the percolation threshold for urban or rural roads. However, it is a bit difficult to
vary γ in the simulation. Consequently, instead of varying γ , we can vary r due to Formula γ .
We choose the interval of r:

500
20
≤ r < 500 (4.17)

The maximum value is 500 m, which means that users can communicate up to 500 meters on
a territory. We know that:

λc

(
γ

a
,r
)
=

1
a

λc

(
γ,

r
a

)
(4.18)

The values estimated by this algorithm for different values of r are given in Table 4.6 for
the two types of roads with the parameters γ = 20 km/km2 and r = variable and we compare
them with the values λc for the Boolean model.



36

Table 4.6 λ̂c by the Simulations for γ = 20

r (enkm) λ̂c (in users/km)

PVT PDT PBM

0.015 237 265 318.889
0.025 111.63 115.66 114.846
0.075 14.34 15.56 12.761
0.125 4.60 5.34 4.594
0.175 2.27 2.58 2.343
0.225 1.42 1.51 1.418
0.275 0.91 0.99 0.949
0.325 0.65 0.70 0.680
0.375 0.48 0.52 0.510
0.425 0.38 0.40 0.397
0.475 0.30 0.32 0.318

Some remarks in Table 4.6, we see that:

1. The λ̂c values are not very different among the three models, especially for the values
λ̂c from r = 0.225km to r = 0.475km.

2. When r decreases, for example for r = 0.025km up to r = 0.175km, these values λ̂c

are a little farther away from the values λc of the Boolean model. It’s normal because
the Boolean model is valid for dense roads, whereas when r is small, it is equivalent to
small γ , the road becomes less and less dense,

3. We also see that the values of λ̂c are different for PVT and PDT. The percolation
threshold depends well on the road model, it is higher for PDT,

4. For r = 0.015 (which corresponds to γ = 1 and r = 0.300), the values are very different
from the Boolean model.

This table gives the estimated values for each r (see Table 4.6). Therefore, from this table,
we can find λ̂c easily for different values of γ with the calculation by the Formula (4.18) of
the parameters γ = variable in km/km2 and r = 0.3 km (see Table 4.7).

4.2.2 Estimation of the Percolation Probability (θ0(λ ) function)

In this part, we look for the probability that a given user is in the D2D communication
graph. The Algorithm (5) is launched with the parameters γ = 20 km/km2, λ = variable,
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Table 4.7 λ̂c by the Calculations for r = 0.3km

γ λ̂c

PVT PDT PBM

1 11.85 13.25 15.94
1.67 9.32 9.36 9.55
5.00 3.59 3.72 3.19
8.33 1.91 2.19 1.91

11.67 1.32 1.48 1.37
15.00 1.06 1.11 1.06
18.33 0.83 0.89 0.87
21.67 0.70 0.74 0.74
25.00 0.60 0.65 0.63
28.33 0.54 0.57 0.56
31.67 0.48 0.51 0.50

and r = 0.3 km and we find the function θ0 shown in Figure 4.15 for the Poisson-Voronoi
tessellation and in Figure 4.16 for the Poisson-Delaunay tessellation.

From these curves, we see that if the value of λ is greater than one (λ > 1), we have a
high probability (that is, we are almost certain) that the given point (given user) is in the D2D
communication graph. On the contrary, if the value of λ is less than 0.5 (λ < 0.5), we are
almost sure that it is not in the communication graph D2D, because the probability θ0 ≈ 0.

Fig. 4.15 Function θ0(λ ) PVT Fig. 4.16 Function θ0(λ ) PDT
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In addition, instead of varying γ , it is possible to vary r also to find the curves θ0(λ ) with
different values of r in the interval (4.17). Some examples of θ0 curves can be seen in Figure
4.17 for PVT type roads and in Figure 4.18 for PDT type roads.

Fig. 4.17 The function θ0(λ ) r varied for PVT

Fig. 4.18 The function θ0(λ ) r varied for PDT

We can find the curves for different values of γ due to the Formula (4.19) for PVT type
roads and also for PDT type roads.

θ0

(
γ

a
,r,λ

)
= θ0

(
γ,

r
a
,
λ

a

)
(4.19)
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The function θ(λ ) is then compared for different window sizes. We do s = 5 and s = 30
with r = 0.475 for PDT type roads (see Figure 4.19 and Figure 4.20). From these figures, we
can see that the curve of the window s = 30 is more vertical than the curve of the window
s = 5. Seeing at Table 4.6, the value λ̂c by the torus + union find method is equal at 0.32
for PDT. Here, by the curve of θ0(λ ) with s = 5, we find that the first value of λ such that
the probability (θ0(λ )) is different from 0 is far from the value λ̂c, while for the curve of
(θ0(λ )) with s = 30, we are close to this value.

Fig. 4.19 Function θ0(λ ) PDT s = 5 Fig. 4.20 Function θ0(λ ) PDT s = 30

4.2.3 Estimation of the Stretch Factor (µ(λ ) function)

We also find the function curve µ(λ ) for the two roads types with the same parameters of
γ,λ and r (see Figure 4.21 and Figure 4.22).

It is a graph of the function µ(λ ) which represents the value µ (hops/km) as a function
of λ (users/km of street). When two users communicate, the value µ is the ratio of the
number of jumps to the distance. It can be seen that these curves decrease asymptotically
towards a value greater than 3.3 because to cross a distance of 1 km with radius r = 300 m,
at least three users are needed. In addition, by these curves, we can easily find the number of
jumps for a given distance. For example, for the function curve µ(λ ) of the PDT type road
network, we want to know how many jumps (hops) we need to cross a distance d = 2 km.
We see that for λ = 1.25, we have µ ≈ 5.35 hence there are 5.35 hopss/km times2 km, that
is about 11 jumps (11 hops) over a distance of 2 km to establish the D2D communication.
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Fig. 4.21 Function µ(λ ) PVT Fig. 4.22 Function µ(λ ) PDT

We can also vary r to find the curves µ(λ ) with different values of r in the interval(4.17).
The following curves are examples of µ curves (see Figure 4.23) for PVT type roads. Then,
it is also done to find the curves of the function µ(λ ) for PDT type roads (see Figure 4.24).

Fig. 4.23 Function µ(λ ) r varied for PVT
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Fig. 4.24 Function µ(λ ) r varied for PDT

Due to Formula (4.20), we can also plot the function of µ(λ ) with different values of γ

for Poisson-Voronoi tessellation and Poisson-Delaunay tessellation.

µ

(
γ

a
,r,λ

)
= µ

(
γ,

r
a
,
λ

a

)
(4.20)

4.3 Error Analysis of the Simulation Result

Since in this study we are doing simulations, the values found are estimated value. Therefore,
we must look at the confidence interval of these values. We simulate the algorithm of the
tore + union find PVT method with N = 200 simulations 30 times, then there are 200x30
data. For each simulation we obtained the probability θ̂ f (λ ), we then look for the mean of
30 data of the probability θ̂ f (λ ) and the confidence interval of θ̂ f (λ ). A threshold of 90%
data is set to obtain the upper limit of the interval and 10% data for the lower limit of the
interval (see Figure 4.25 and Figure 4.26). In these figures, we find that the values obtained
by simulation for s = 5 are more dispersed than the values obtained by simulation for s = 25.
This shows that the selection of the observation window size is very important to avoid the
large variance of the data.

Furthermore, we also want to see the confidence interval for the estimated value of
λc. A confidence interval provides a range of values that is likely to contain the value of
interest of the actual case. By doing N simulations and taking the mean of the results by the
Equation (4.4), we obtained an estimated value of the percolation threshold λ̂c by the logistic
model for s given. This estimate is repeated M times, so we have M values λ̂c for s given.
Let (λ i

c)1≤i≤M be the estimated values of λc. We search λ i
c for the mean and the standard

deviation S, a measure of the threshold dispersion. Suppose that M is sufficiently large (here
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Fig. 4.25 Function θ f (λ ) PVT s = 5 Fig. 4.26 Function θ f (λ ) PVT s = 25

we have M = 30), by the central limit theorem (CLT), we can construct a 95% confidence
interval given by: [

λ i
c±

tαS√
M

]
(4.21)

where tα , the confidence level coefficient for the 95% confidence interval is 1.96. In addition,
we can easily find the average as in Equation (4.4) and from this, we can find the standard
deviation S by Formula (4.22):

S =

√
∑(λ i

c−λ i
c)

2

M−1
(4.22)

Fig. 4.27 Confidence interval for λ̂c
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We try different observation window size s = (5,10,15,20). In Figure 4.27, shows that
the critical value becomes stable when the window size increases (this is also shown in Figure
4.25). We see that for a small window s, the confidence interval is wide when we enlarge the
window size, the size of the confidence interval is as well.





Chapter 5

Conclusion and Suggestion

5.1 Conclusion

5.1.1 Conclusion of the Research Results

The best method has been selected according to the closest estimated value λ̂c to λc Boolean
model and time execution in R programming. Hence, union-find + tore method is selected
based on these criteria and the smallest error as has been described in the earlier section of
chapter 4. Besides, the results obtained in this study show that critical percolation threshold
for rural and urban areas is very different. That means the length and density of the type road
is very influential on the D2D communication network. On the other side, for rural areas,
Poisson-Delaunay tessellation (PDT) is well represented on this type of road meanwhile
Poisson-Voronoi tessellation (PVT) is well for urban areas.

5.1.2 Conclusion of Researchers

This internship was very enriching for me, because it allowed me to discover new scientific
fields and the domain of probability theory and also stochastic geometry for proposing some
solutions to the problem of the communication D2D graph which will be used in the fifth
generation mobile network: 5G. It allowed me to participate concretely in this new generation
through the Orange TEMS project that I particularly appreciated and I am very proud to have
been able to contribute and participate in this revolution. With this experience, I am confident
that I will be able to bring myself for working in the future.
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5.2 Suggestion

We can also try another road type like Manhattan road type and other tessellation type like a
line tessellation model.
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Appendix A

R Codes

Here, we can find the code of some methods. We chose the Torus + Union-Find PVT method,
the function of θ f (λ ) PDT method, and the function of µ(λ ) PDT method.

Packages used by all methods

• library(spatstat)

• library(deldir)

• library(geomnet)

• library(igraph)

• library(ggraph)

• library(reshape2)

• library(ggplot2)

• library(ggthemes)

• library(foreach)

• library(plyr)

• library(Rfast)
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Torus + Union Find PVT Method

# fenêtre d’observation
win <- 5
# L’intensité de ppp
i <- 100
# Paramètres
gamma <- 2*sqrt(i)
max_rad <- .5
min_rad <- max_rad/gamma
# essayer avec différentes valeurs de radius
#seq_radius <- seq(min_rad, max_rad, .05)
seq_radius <- seq(.325, max_rad, .05)
# Itération
REPLICATE <- 2
# Lien de stockage
path = "C://Users//PZDB7620//Documents//Local//RESULTAT//M2//"
##############
## SIMULATION DU PROCESSUS DE POISSON
##############
simulate.poisson = function (i, win, image = F ){

poisson <- rpoispp(i, win = owin(c(0,win), c(0,win)))
# modifier dans une trame de données
poisson_df <- as.data.frame(poisson)
# identifier les points en bas et à gauche qui sont inférieurs au rayon/2
coord_bottom = poisson_df[poisson_df$y<=radius/2,]
coord_bottom$y = abs(coord_bottom$y-radius/2) + win
coord_left = poisson_df[poisson_df$x<=radius/2,]
coord_left$x = abs(coord_left$x-radius/2) + win
# ajouter des points
addpoint_bott = coord_bottom
addpoint_left = coord_left
# Combiner ces nouveaux points avec tous les points avant
poisson_df = rbind (poisson_df, addpoint_bott, addpoint_left)
# tracer des points de processus de Poisson en utilisant la fonction ggplot
if (image){

print(ggplot(poisson_df) +
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geom_point(aes(x,y), size = 2, color =’darkgoldenrod1’) +
labs(x="", y="") +
ggtitle("Poisson Point Process") +
theme(plot.title = element_text(hjust=.5,
face =’bold’, color =’darkgreen’, size = 14)))

# créer un fichier avec le graphique
title = paste(path,"pppn",".png",sep ="")
dev.copy(png, file = title, width = 10, height = 10, unit = "in", res = 300)
dev.off()

}
attributes(poisson_df)$i=i
attributes(poisson_df)$win=win
return(poisson_df)

}
poisson_df = simulate.poisson(i, win, image = F)
##############
## POISSON-VORONOI TESSELATION POUR LA VOIRIE
##############
simulate.voirie = function (poisson_df = NA, i = NA, win = NA, image = F,
include.poisson_df = F){

if (is.na(poisson_df)){
poisson_df = simulate.poisson(i, win)

}
# poisson-Voronoi tesselation
voirie <- deldir(poisson_df$x, poisson_df$y)
# tracer Poisson-voronoi
if (image){

print(ggplot(data = poisson_df, aes(poisson_df$x, poisson_df$y)) +
geom_segment(aes(x = x1, y = y1, xend = x2, yend = y2), size = 1,
linetype = 1, color ="darkblue", data = voirie$dirsgs) +
geom_point(fill = ’darkgoldenrod1’, pch=21, size = 2,
color = ’navyblue’) +
ggtitle(’Poisson-Voronoi Tesselation’) +
theme(

plot.title = element_text(hjust =.5, face="bold",
color = ’darkgreen’, size = 14),
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panel.background = element_rect(fill = ’ivory1’,
colour = ’springgreen4’),
axis.title.x = element_blank(), axis.title.y = element_blank()))

# créer un fichier avec le graphique poisson-voronoi
title = paste(path,"pvtn",".png",sep ="")
dev.copy(png, file = title, width = 10, height = 10, unit = "in", res = 300)
dev.off()

}
if (image){

print(ggplot(data=voirie$dirsgs) +
geom_segment(aes(x = x1, y = y1, xend = x2, yend = y2), size = 1,
linetype = 1, color= "darkblue") +
ggtitle(’Voirie : Poisson-Voronoi Tesselation’) +
theme(

plot.title = element_text(hjust =.5, face="bold",
color = ’darkgreen’, size = 14),
panel.background = element_rect(fill = ’ivory1’,
colour = ’springgreen4’),
axis.title.x = element_blank(), axis.title.y = element_blank()))

# créer un fichier avec le graphique poisson-voronoi
title = paste(path,"voirien",".png",sep ="")
dev.copy(png, file = title, width = 10, height = 10, unit = "in",
res = 300)
dev.off()

}
attributes(voirie)$i <- attributes(poisson_df)$i
attributes(voirie)$win <- attributes(poisson_df)$win
if (include.poisson_df){

attributes(voirie)$poisson_df = poisson_df
}
return(voirie)

}
voirie = simulate.voirie(poisson_df = poisson_df, image = F)
##############
## PROCESSUS de COX POUR LES UTILISATEURS
##############
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simulate.utilisateurs = function(lambda, voirie = NA, i = NA, win = NA,
image = F, include.voirie = F){

if (is.na(voirie)){
voirie = simulate.voirie(i = i, win = win)

}
# définir la fenêtre de la voirie
window <- owin(c(min(voirie$dirsgs$x1,voirie$dirsgs$x2),
max(voirie$dirsgs$x1, voirie$dirsgs$x2)), c(min(voirie$dirsgs$y1,
voirie$dirsgs$y2), max(voirie$dirsgs$y1,voirie$dirsgs$y2)))
# commençer par dessiner les rues que nous avons trouvées
line <- psp(voirie$dirsgs$x1, voirie$dirsgs$y1, voirie$dirsgs$x2,
voirie$dirsgs$y2, window = window)
# placer les utilisateurs sur les rues
users <- rpoisppOnLines(lambda, line)
# transformer en trame de données
users_df <- as.data.frame(users)
colnames(users_df) <- c(’userx’, ’usery’)
# supprimer des points qui traversent la fenêtre
users_df <- users_df[(users_df$userx <= win & users_df$userx >= 0 &
users_df$usery <= win & users_df$usery >= 0),]
# identifier les points en bas et à gauche qui sont inférieurs au rayon/2
coord_bottom = users_df[users_df$usery<=radius/2,]
coord_bottom$usery = abs(coord_bottom$usery-radius/2) + win
coord_left = users_df[users_df$userx<=radius/2,]
coord_left$userx = abs(coord_left$userx-radius/2) + win
# ajouter des points
addpoint_bott = coord_bottom
addpoint_left = coord_left
# Combiner ces nouveaux points avec tous les points avant
users_df = rbind (users_df, addpoint_bott, addpoint_left)
# tracer des utilisateurs sur les rues
if (image){

print(ggplot(data = voirie$dirsgs) +
geom_segment(aes(x = x1, y = y1, xend = x2, yend = y2), size = 1,
linetype = 1, color= "darkblue") +
geom_point(aes(userx, usery), fill = ’red2’, pch=21, size = 3,
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color = ’black’, data = users_df)+
ggtitle(’Utilisateur : Processus de Cox’) +
theme(

plot.title = element_text(hjust =.5, face="bold",
color = ’darkgreen’, size = 14),
panel.background = element_rect(fill = ’ivory1’,
colour = ’springgreen4’),
axis.title.x = element_blank(), axis.title.y = element_blank()))

# Pour créer un fichier avec le graphique.
title = paste(path,"utilisateurn",".png",sep ="")
dev.copy(png, file = title, width = 10, height = 10, unit = "in", res = 300)
dev.off()

}
attributes(users_df)$i = attributes(voirie)$i
attributes(users_df)$win = attributes(voirie)$win
attributes(users_df)$lambda = lambda
if (include.voirie){

attributes(users_df)$voirie = voirie
}
return(users_df)

}
users_df = simulate.utilisateurs(lambda = lambda, voirie = voirie,
win = win, image = F, include.voirie = T)
##############
## ALGORITHME UNION FIND
##############
union.find = function(users_df){

connected_nodes <- c(var1 = integer(), var2 = integer(), distance = integer()
users <- c()
weight <- c()
if (nrow(users_df) != 0){

rownames(users_df) <- seq(1:nrow(users_df))
for (index in 1:10){

var1 <- seq(1 : nrow(users_df))
var2 <- nnwhich(users_df, k = index)
distance <- nndist(users_df, k = index)
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connected_nodes <- rbind(connected_nodes, cbind(var1, var2, distance))
}
# préciser qu’il existe une arête ssi la distance entre deux points
(utilisateurs) est plus petite que le rayon r.
connected_nodes = connected_nodes[which((connected_nodes[,3] <= radius) &
connected_nodes[,1]< connected_nodes[,2]),]
## initialiser users arrays
users <- seq(1, nrow(users_df))
weight <- rep(1, nrow(users_df))

}
if (length(connected_nodes) != 0){

for (index in seq(1, nrow(connected_nodes))) { # for each connection
p <- connected_nodes[index, 1] # sample random objects
q <- connected_nodes[index, 2]
x <- users[p]; while (users[x] != x) x <- users[x] # FIND
y <- users[q]; while (users[y] != y) y <- users[y]
if (x == y) next
if (weight[x] < weight[y]) {# UNION

users[x] <- y; weight[y] <- weight[y] + weight[x];
}
else{ users[y] <- x; weight[x] <- weight[x] + weight[y]; }

}
}
return(cbind(users,weight,users_df))

}
#gr = union.find(users_df)
##########
## VERIFIER la PERCOLATION
##########
percolates.comb2r = function(users, win, radius){

users_union <- users$users
weight <- users$weight
users_df <- as.data.frame(cbind(users$userx,users$usery))
colnames(users_df) <- c("userx","usery")
reponse <- F
top <- as.numeric(rownames(users_df[users_df$usery >= win,]))
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right <- as.numeric(rownames(users_df[users_df$userx >= win,]))
bottom <- as.numeric(rownames(users_df[users_df$usery <= (radius/2),]))
left <- as.numeric(rownames(users_df[users_df$userx <= (radius/2),]))
for (p in top){

for (q in bottom){
x <- users_union[p]; while (users_union[x] != x) x <- users_union[x] # FIND
y <- users_union[q]; while (users_union[y] != y) y <- users_union[y]

if (x == y){
return (reponse = T)

}
}

}
for (p in left){

for (q in right){
x <- users_union[p]; while (users_union[x] != x) x <- users_union[x] # FIND
y <- users_union[q]; while (users_union[y] != y) y <- users_union[y]
if (x == y){

return (reponse = T)
}

}
}
return(reponse)

}
#percolates.comb2r(gr, win = win, radius = radius)
##########
## SEUIL de PERCOLATION TORE
##########
# essayer avec différentes valeurs de radius et différentes valeurs de lambda
pt = proc.time()
perc.result <- c(radius=integer(),lambda=integer(),percolates=integer())
for (radius in seq_radius){

prop_lambda <- (4.51*(1/radius^2))/(pi*gamma)
if (radius>=0.3){

seq_lambda <- sort(unique(abs(round(c(seq(prop_lambda-0.75,
prop_lambda, 0.25),
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seq(prop_lambda-(radius/2), prop_lambda+(radius/2), .01),
seq(prop_lambda,
prop_lambda+0.75, 0.25)), digits = 2))))

}else if (radius>=0.2){
seq_lambda <- sort(unique(abs(round(c(seq(prop_lambda-0.75,
prop_lambda, 0.25),
seq(prop_lambda-(radius), prop_lambda+(radius), .01),
seq(prop_lambda,
prop_lambda+0.75, 0.25)), digits = 2))))

}else if (radius>0.1){
seq_lambda <- sort(unique(abs(round(c(seq(prop_lambda-2,
prop_lambda, 0.5),
seq(prop_lambda-(radius*3), prop_lambda+(radius*6), .04),
seq(prop_lambda,
prop_lambda+2, 0.5)), digits = 2))))

}else if(radius>=0.75){seq_lambda <- sort(unique(abs(round(
c(seq(prop_lambda-3,
prop_lambda, 1), seq(prop_lambda-(radius*3)+2, prop_lambda+
(radius*8)+2, .05),
seq(prop_lambda, prop_lambda+8, 1)), digits = 2))))
}else if(radius>=0.05){seq_lambda <- sort(unique(abs(round(
c(seq(prop_lambda-3,
prop_lambda, 1), seq(prop_lambda-(radius*3)+2, prop_lambda+
(radius*8)+8, 0.5),
seq(prop_lambda, prop_lambda+12, 2)), digits = 2))))
}else {seq_lambda <- sort(unique(abs(round(c(seq(prop_lambda-16,
prop_lambda, 2.5),
seq(prop_lambda-(radius*8)-5, prop_lambda+(radius*3)-1, 0.5),
seq(prop_lambda,

prop_lambda+12, 2.5)), digits = 2))))}
perc.comb2r1 <- foreach(lambda = seq_lambda, .combine = rbind)
%do% {

voirie = simulate.voirie(i=i,win=win)
data.frame(radius,lambda, percolates = replicate(REPLICATE,
percolates.comb2r(union.find(simulate.utilisateurs(lambda = lambda,
voirie=voirie, win = win)), win, radius)))
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}
perc.result = rbind(perc.result, perc.comb2r1)
}

proc.time() - pt
perc.result
perc.result.summary= ddply(perc.result, .(radius, lambda), summarize,
mean = mean(percolates))
perc.result.summary
#title_result= paste(path,"result_summary", ".csv", sep="")
#write.csv(perc.result, file = tittle_result, row.names=FALSE)
##########
## APPROXIMATION avec REGRESSION LOGISTIQUE BINAIRE COMB II
##########
result_lambda_critique = data.frame(radius=integer(),lambda_critique=integer()
for (radius in seq_radius){

X1 = perc.result.summary[perc.result.summary$radius == radius,]
# modèle logistique
logistic.comb2.fit = glm(mean ~ lambda, family=binomial(logit), data = X1)
summary(logistic.comb2.fit)
X1$fit = logistic.comb2.fit$fitted
# estimer le seuil de percolation
lambda_crit.comb2 = - logistic.comb2.fit$coefficients[1] /
logistic.comb2.fit$coefficients[2]
#sauvegarder le lambda critique pour chaque radius
result_lambda_critique[nrow(result_lambda_critique)+1,] = c(radius,
lambda_crit.comb2)
# tracer le graphique du seuil de percolation
title= paste(path, "crit.pvt_", REPLICATE, "_", radius,".png",sep="")
print(ggplot(X1, aes(lambda, mean)) +

geom_point(size = 2) +
geom_vline(xintercept = lambda_crit.comb2, color = "red") +
geom_path(color = ’lightgreen’) +
geom_line(aes(x = lambda, y = fit), linetype = 1, col = ’blue’) +
annotate("text", label = sprintf("lambda_critique == %
.5f",lambda_crit.comb2), x = (.06+lambda_crit.comb2), y = 1,
parse = TRUE) +
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ggtitle(’Seuil de Percolation MCOMB2’) +
labs(x=expression(lambda), y="Pr_lambda(percole)") +
theme(

plot.title = element_text(hjust =.5, face="bold",
color = ’darkgreen’, size = 14)))

dev.copy(png, file =title, width=10, height=10, units="in", res=300)
dev.off()

}

The Function of θ0 PDT Method

# fenêtre d’observation
win <- 6
# L’intensité de ppp
i <- 34.69783
# Paramètres
gamma <- (32*sqrt(i))/(3*pi)
seq_radius <- .3
#seq_radius <- seq(0.125, .175, .05)
# Nombre de tessellations
ns = 10
# Nombre de simulations
n = 30
# Lien de stockage
path = "C://Users//PZDB7620//Documents//Local//RESULTAT//THETA//"
##########
## VERIFIER la PERCOLATION
##########
## a. la fonction percole
Percole = function (df, top, bottom, left, right){

reponse = F
point_origine = 1; while (df[point_origine] != point_origine)
point_origine <- df[point_origine]
for (p in top){

for (q in bottom){
x = df[p]; while (df[x] != x) x <- df[x] # FIND
y = df[q]; while (df[y] != y) y <- df[y]
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if ((x == y) & (x == point_origine)){
return (reponse = T)

}
}

}
for (p2 in left){

for (q2 in right){
x2 = df[p2]; while (df[x2] != x2) x2 <- df[x2] # FIND
y2 = df[q2]; while (df[y2] != y2) y2 <- df[y2]
if ((x2 == y2) & (x2 == point_origine)){

return (reponse = T)
}

}
}
return (reponse)

}
## b. la fonction va s’arreter quand il percole
Until_Percole = function (df, radius, users_df, line, top, bottom, left, right){

weight <- rep(1,100000)
#if (nrow(users_df) ==1)
df[1] = 1
index_users=2
while (Percole(df, top, bottom, left, right) == FALSE) {

#users_add <- as.data.frame(runifpointOnLines(1, line))
# supprimer des points qui traversent de la fenêtre
#users_add <- users_add[(users_add$x <= win & users_add$x >= 0 &
users_add$y <= win & users_add$y >= 0),]

# sélectionner les points en top et en bottom
ifelse((users_df[index_users,]$y >= win-radius/2-0.5),
top <- append(top, index_users),ifelse( (users_df[index_users,]$y
<=(radius/2)+0.5), bottom <- append(bottom, index_users),"nothing"))
ifelse((users_df[index_users,]$x >= win-radius/2-0.5), right
<- append(right, index_users),ifelse( (users_df[index_users,]$x
<=(radius/2)+0.5),

left <- append(left, index_users),"nothing"))
df[index_users]=index_users
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# calcule la distance
#if(nrow(users_df)==1)next;
distance = nndist(users_df[1:index_users,],k=1:10)[index_users,]
V2 = nnwhich(users_df[1:index_users,], k=1:10)[index_users,]
distance_points = as.data.frame(cbind(index_users, V2, distance))
# préciser qu’il existe une arrête ssi la distance entre deux points
(utilisateur) est plus petite que le rayon r.
connected_nodes <- distance_points[which((distance_points[,3] <= radius)),]
if (nrow(connected_nodes) != 0){

for (i in 1:nrow(connected_nodes)){
#df <- Union(df,connected_nodes[i,1], connected_nodes[i,2])
p <- connected_nodes[i,1]
q <- connected_nodes[i,2]
x = df[p]; while (df[x] != x) x <- df[x] # FIND
y = df[q]; while (df[y] != y) y <- df[y]
if (x == y) next
if (weight[x] < weight[y]) # UNION
{ df[x] = y; weight[y] <- weight[y] + weight[x]; }
else{ df[y] = x; weight[x] <- weight[x] + weight[y]; }

}
}
index_users=index_users+1

}
return(index_users)

}
## sauvegarder le resultat
result <- data.frame(si = integer(), radius= integer(),n_users_percole =
integer(), total_length_street = integer())
##########
## ESTIME la PROBABILITE de la PERCOLATION THETA
##########
pt = proc.time()
for (radius in seq_radius){

for (s in 1:ns) {
### Algorihtme de fitting theta
## a. générer un graphique de Poisson-Voronoi
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poisson_df <- as.data.frame(rpoispp(i, win = owin(c(0,win), c(0,win))))
# Poisson-Voronoi Tesselation
voirie <- deldir(poisson_df$x, poisson_df$y)
window <- owin(c(min(voirie$delsgs$x1, voirie$delsgs$x2),
max(voirie$delsgs$x1,
voirie$delsgs$x2)), c(min(voirie$delsgs$y1, voirie$delsgs$y2),
max(voirie$delsgs$y1, voirie$delsgs$y2)))
for (si in 1:n) {

## b. j <- 0 ; il n y a pas d’utilisateur; 100000 array =0
df <- numeric(1000000)
# commençons par dessiner les voiries que nous avons trouvées ci-dessus
line <- psp(voirie$delsgs$x1, voirie$delsgs$y1, voirie$delsgs$x2,
voirie$delsgs$y2, window = window)
users_df <- as.data.frame(runifpointOnLines(1000000, line))
users_df <- users_df[(users_df$x <= win-0.5 & users_df$x >= 0.5 &
users_df$y <= win-0.5 & users_df$y >= 0.5),]
row.names(users_df)<- seq(1:nrow(users_df))
## c. placer un point uniformément au hasard quelque part sur l’une des
rues de s; j <- j + 1
# placer les utilisateurs sur les voiries
#users_df <- as.data.frame(runifpointOnLines(1, line))
# supprimer des points qui traversent la fenêtre
#users_df <- users_df[(users_df$x <= win & users_df$x >= 0 &
users_df$y <= win & users_df$y >= 0),]
top <- c()
bottom <- c()
left <- c()
right <- c()
nombre_users_percol <- Until_Percole(df, radius,users_df, line, top,
bottom, left, right)
## d. Tant que Percolate est FALSE, ajoute un point uniformément
au hasard quelque part et arrete quand il percole
## e. si Percolate est TRUE, calcule les probabilités de chaque n
length_street =0
for ( j in 1: length(voirie$delsgs$x1)) {

x0 <- voirie$delsgs$x1[j]
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y0 <- voirie$delsgs$y1[j]
x1 <- voirie$delsgs$x2[j]
y1 <- voirie$delsgs$y2[j]
if ((y0> win-0.5) & (y1> win-0.5) ) next;
if ((y0< 0.5) & (y1<0.5)) next;
if ((x0> win-0.5) & (x1> win-0.5) ) next;
if ((x0< 0.5) & (x1<0.5)) next;
if ((y0> win-0.5) & (y1<= win-0.5)){

ab = pairdist(rbind(c(x0, y0), c(x1, y1)))
dist = ab[2,1] * ((((win-0.5) - y1)) / (y0 - y1))

}else if ((y1> win-0.5) & (y0<= win-0.5)) {
ab = pairdist(rbind(c(x0, y0), c(x1, y1)))
dist = ab[2,1] * ((((win-0.5) - y0)) / (y1 - y0))

}else if ((y1< 0.5) & (y0>= 0.5)) {
ab = pairdist(rbind(c(x0, y0), c(x1, y1)))
dist = ab[2,1] * (abs((((0.5) - y0)) / (y0 - y1)))

}else if ((y0< 0.5) & (y1>= 0.5)) {
ab = pairdist(rbind(c(x0, y0), c(x1, y1)))
dist = ab[2,1] * (abs((((0.5) - y1)) / (y1 - y0)))

}else if ((x0> win-0.5) & (x1<= win-0.5)){
ab = pairdist(rbind(c(x0, y0), c(x1, y1)))
dist = ab[2,1] * ((((win-0.5) - x1)) / (x0 - x1) )

}else if ((x1> win-0.5) & (x0<= win-0.5)) {
ab = pairdist(rbind(c(x0, y0), c(x1, y1)))
dist = ab[2,1] * ((((win-0.5) - x0)) / (x1 - x0))

}else if ((x1< 0.5) & (x0>= 0.5)) {
ab = pairdist(rbind(c(x0, y0), c(x1, y1)))
dist = ab[2,1] * (abs((((0.5) - x0)) / (x0 - x1)))

}else if ((x0< 0.5) & (x1>= 0.5)) {
ab = pairdist(rbind(c(x0, y0), c(x1, y1)))
dist =ab[2,1] * (abs((((0.5) - x1)) / (x1 - x0)))

}else{
dist = pairdist(rbind(c(x0, y0), c(x1, y1)))
dist = dist[2,1]

}
length_street <- (length_street + dist)
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}
result[nrow(result)+1,] <- c(s, radius, nombre_users_percol, length_street)

}
}

}
title = paste(path,"Resultat_", n , ".csv",sep="")
write.csv(result, file = title, row.names=FALSE)
proc.time() -pt
##########
## La PROBABILITE THETA
##########
# calcul pour chacun des radius
for (radius in seq_radius){

#prop_lambda <- (4.51*(1/radius^2))/(pi*gamma)
if (radius==0.475){

seq_lambda <- sort(unique(abs(round(c(seq(0.30490-0.3,0.30490+0.5, 0.025),
seq(0.30490-0.1,0.30490+0.1, .01)), digits = 2))))

}else if (radius==0.425){
seq_lambda <- sort(unique(abs(round(c(seq(0.38260-0.4,0.38260+0.4, 0.025),
seq(0.38260-0.1,0.38260+0.1, .01)), digits = 2))))

}else if (radius==0.375){
seq_lambda <- sort(unique(abs(round(c(seq(0.48426-0.5,0.48426+0.5, 0.025),
seq(0.48426-0.1,0.48426+0.1, .01)), digits = 2))))

}else if (radius==0.325){
seq_lambda <- sort(unique(abs(round(c(seq(0.64763-0.6,0.64763+0.6, 0.05),
seq(0.64763-0.1,0.64763+0.1, .01)), digits = 2))))

}else if (radius==0.3){
seq_lambda <- seq(0, 1.7, .01)

}else if (radius==0.275){
seq_lambda <- sort(unique(abs(round(c(seq(0.90620-0.6,0.90620+0.6, 0.05),
seq(0.90620-0.1,0.90620+0.1, .01)), digits = 2))))

}else if (radius==0.225){
seq_lambda <- sort(unique(abs(round(c(seq(1.36199-0.8,1.36199+0.8, 0.1),
seq(1.36199-0.1,1.36199+0.1, .01)), digits = 2))))

}else if (radius==0.175){
seq_lambda <- sort(unique(abs(round(c(seq(2.27460-1,2.27460+1, 0.1),
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seq(2.27460-0.2,2.27460+0.2, .01)), digits = 2))))
}else if (radius==0.125){

seq_lambda <- sort(unique(abs(round(c(seq(4.59880-1.5,4.59880+1.5, 0.1),
seq(4.59880-0.2,4.59880+0.2, .01)), digits = 2))))

}else if (radius==0.075){
seq_lambda <- sort(unique(abs(round(c(seq(14.34265-2,14.34265+2, 0.1),
seq(14.34265-0.3,14.34265+0.3, .01)), digits = 2))))

}else if (radius==0.025){
seq_lambda <- sort(unique(abs(round(c(seq(109.79710-4,109.79710+4, 0.2),
seq(109.79710-0.5,109.79710+0.5, .01)), digits = 2))))

}
#le corps de la boucle
res = as.data.frame(result[which(result$radius==radius),])
# calculer la poisson distribution
for (lambda in seq_lambda) {

pnormal <- c()
for (t in 1: nrow(res)){

Z <- (res[t,3]-0.5 - (res[t,4]*lambda)) / sqrt(res[t,4]*lambda)
Prob_Z <- 1-pnorm(Z)
pnormal <- rbind(pnormal, Prob_Z)

}
colnames(pnormal) <-lambda
res <- cbind(res, pnormal)

}
# la moyenne de chaque n
Xbar <- aggregate(. ~ si, res[], mean)
# la probabilite de theta
theta <- data.frame(lambda = integer(), theta = integer())
index = 1
for (lambda in seq_lambda) {

theta[index, 1] <- lambda
theta[index, 2] <- ( 1/(nrow(Xbar)) * sum(Xbar[, index+4]) )
index <- index + 1
# enregistre le fichier
title= paste(path,"Theta",radius,".csv",sep="")
write.csv(theta, file =title, row.names=FALSE)
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}
# la variance de chaque n
variance <- data.frame(lambda=integer(), variance=integer())
index = 1
for (lambda in seq_lambda) {

variance[index, 1] <- lambda
variance[index, 2] <- var(Xbar[, index+3])
index <- index + 1
# enregistre le fichier
title= paste(path,"Variance",radius,".csv",sep="")
write.csv(variance, file =title, row.names=FALSE)

}
CI = cbind(theta, variance[,2], sqrt(variance[,2]))
title = paste(path,"CI",radius,".csv",sep="")
write.csv(CI, file = title, row.names=FALSE)
# tracer theta en fonction de lambda
print(ggplot(theta) +

geom_line(aes(lambda, theta), size = 1, color = ’maroon’) +
#geom_point(aes(lambda, theta), size = 1, color =’darkgoldenrod1’) +
#geom_vline(xintercept = .78, color = "gold2", size = .7) +
ggtitle("La Fonction de Theta") +
labs(x=expression(lambda), y=expression(theta)) +
theme(plot.title = element_text(hjust=.5, face =’bold’,
color =’darkgreen’, size = 14)))

title= paste(path,"Theta",radius,".png",sep="")
dev.copy(png, file =title, width=10, height=10, units="in", res=300)
dev.off()

}

The function of µ(λ ) PDT Method

# fenêtre d’observation
win <- 5
# L’intensité de ppp
i <- 34.69783
# Paramètres
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gamma <- (32*sqrt(i))/(3*pi)
lambda <- .9
radius <- .3
# Paramètres seq
#seq_radius <- seq(0.025, 0.5, .05)
seq_radius <- 0.475
# Itération
REPLICATE = 100
# Lien de stockage
path = "C://Users//PZDB7620//Documents//Local//RESULTAT//SAUTS//"
##############
## SIMULATION DU PROCESSUS DE POISSON
##############
simulate.poisson = function (i, win, image = F ){

poisson <- rpoispp(i, win = owin(c(0,win), c(0,win)))
# modification dans une trame de données
poisson_df <- as.data.frame(poisson)
# identifier les points en bas
coord_bottom = poisson_df[poisson_df$y<=1,]
coord_bottom$y = abs(coord_bottom$y-1) + win
# ajouter des points
addpoint_bott = coord_bottom
# Combiner ces nouveaux points avec tous les points avant
poisson_df = rbind (poisson_df, addpoint_bott)
# identifier les points à gauche
coord_left = poisson_df[poisson_df$x<=1,]
coord_left$x = abs(coord_left$x-1) + win
# ajouter des points
addpoint_left = coord_left
# Combiner ces nouveaux points avec tous les points avant
poisson_df = rbind (poisson_df, addpoint_left)
# tracer Poissson p.p.par utilisation de la fonction ggplot
if (image){

print(ggplot(poisson_df) +
geom_point(aes(x,y), size = 2, color =’darkgoldenrod1’) +
labs(x="", y="") +
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ggtitle("Poisson Point Process") +
theme(plot.title = element_text(hjust=.5, face =’bold’,
color =’darkgreen’, size = 14)))

# créer un fichier avec le graphique
title = paste(path,"pppd",".png",sep ="")
dev.copy(png, file = title, width = 10, height = 10, unit = "in", res = 300)
dev.off()

}
attributes(poisson_df)$i=i
attributes(poisson_df)$win=win
return(poisson_df)

}
poisson_df = simulate.poisson(i, win, image = F)
##############
## POISSON-DELAUNAY TESSELATION POUR LE VOIRIE
##############
simulate.voirie = function (poisson_df = NA, i = NA, win = NA, image = F, include.poisson_df = F){

if (is.na(poisson_df)){
poisson_df = simulate.poisson(i, win)

}
# poisson-delaunay tesselation
voirie <- deldir(poisson_df$x, poisson_df$y)
# tracer Poisson-delaunay
if (image){

print(ggplot(data = poisson_df, aes(poisson_df$x, poisson_df$y)) +
geom_segment(aes(x = x1, y = y1, xend = x2, yend = y2),
size = 1, linetype = 1, color ="darkblue", data = voirie$delsgs) +
geom_point(fill = ’darkgoldenrod1’, pch=21, size = 2,
color = ’navyblue’) +
ggtitle(’Poisson-delaunay Tesselation’) +
theme(

plot.title = element_text(hjust =.5, face="bold",
color = ’darkgreen’, size = 14),
panel.background = element_rect(fill = ’ivory1’,
colour = ’springgreen4’),
axis.title.x = element_blank(), axis.title.y = element_blank()))
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# créer un fichier avec le graphique poisson-delaunay
title = paste(path,"pvtd",".png",sep ="")
dev.copy(png, file = title, width = 10, height = 10, unit = "in", res = 300)
dev.off()

}
if (image){

print(ggplot(data=voirie$delsgs) +
geom_segment(aes(x = x1, y = y1, xend = x2, yend = y2), size = 1,
linetype = 1, color= "darkblue") +
ggtitle(’Voirie : Poisson-delaunay Tesselation’) +
theme(

plot.title = element_text(hjust =.5, face="bold",
color = ’darkgreen’, size = 14),
panel.background = element_rect(fill = ’ivory1’,
colour = ’springgreen4’),
axis.title.x = element_blank(), axis.title.y = element_blank()))

# créer un fichier avec le graphique poisson-delaunay
title = paste(path,"voiried",".png",sep ="")
dev.copy(png, file = title, width = 10, height = 10, unit = "in", res = 300)
dev.off()

}
attributes(voirie)$i <- attributes(poisson_df)$i
attributes(voirie)$win <- attributes(poisson_df)$win
if (include.poisson_df){

attributes(voirie)$poisson_df = poisson_df
}
return(voirie)

}
voirie = simulate.voirie(poisson_df = poisson_df, image = F)
##############
## PROCESSUS de COX POUR LES UTILISATEURS
##############
simulate.utilisateurs = function(lambda, voirie = NA, i = NA, win = NA,
image = F, include.voirie = F){

if (is.na(voirie)){
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voirie = simulate.voirie(i = i, win = win)
}
# définir la fenêtre de la voirie
window <- owin(c(min(voirie$delsgs$x1,voirie$delsgs$x2), max(voirie$delsgs$x1,
voirie$delsgs$x2)), c(min(voirie$delsgs$y1,voirie$delsgs$y2), max(voirie$delsgs
$y1,voirie$delsgs$y2)))
# commençons par dessiner la voirie que nous avons trouvées ci-dessus
line <- psp(voirie$delsgs$x1, voirie$delsgs$y1, voirie$delsgs$x2,
voirie$delsgs$y2, window = window)
# placer les utilisateurs sur la voirie
users <- rpoisppOnLines(lambda, line)
# transformer en trame de données
users_df <- as.data.frame(users)
colnames(users_df) <- c(’userx’, ’usery’)
# supprimer des points qui traversent la fenêtre
users_df <- users_df[(users_df$userx <= win+0.5 & users_df$userx >=
(0.5-(radius/2)) & users_df$usery <= win+0.5 & users_df$usery >=
(0.5-(radius/2))),]
# identifier les points en bas qui est inférieur au rayon/2
coord_bottom = users_df[users_df$usery<=0.5,]
coord_bottom$usery = abs(coord_bottom$usery-0.5) + win+0.5
coord_left = users_df[users_df$userx<= 0.5,]
coord_left$userx = abs(coord_left$userx-0.5) + win+0.5
# ajouter des points
addpoint_bott = coord_bottom
addpoint_left = coord_left
# Combiner ces nouveaux points avec tous les points avant
users_df = rbind (users_df, addpoint_bott, addpoint_left)
# tracer des utilisateurs sur la voirie
if (image){

print(ggplot(data = voirie$delsgs) +
geom_segment(aes(x = x1, y = y1, xend = x2, yend = y2), size = 1,
linetype = 1, color= "darkblue") +
geom_point(aes(userx, usery), fill = ’red2’, pch=21, size = 3,
color = ’black’, data = users_df)+
#ggtitle(’Utilisateur : Processus de Cox’) +
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theme(
plot.title = element_text(hjust =.5, face="bold",
color = ’darkgreen’, size = 14),
panel.background = element_rect(fill = ’ivory1’,
colour = ’springgreen4’),
axis.title.x = element_blank(), axis.title.y = element_blank()))

# Pour créer un fichier avec le graphique.
title = paste(path,"utilisateurd",".png",sep ="")
dev.copy(png, file = title, width = 10, height = 10, unit = "in", res = 300)
dev.off()

}
attributes(users_df)$i = attributes(voirie)$i
attributes(users_df)$win = attributes(voirie)$win
attributes(users_df)$lambda = lambda
if (include.voirie){

attributes(users_df)$voirie = voirie
}
return(users_df)

}
#users_df = simulate.utilisateurs(lambda = lambda, voirie = voirie, win = win,
image = F, include.voirie = T)
##########
## FLOYD - WARSHALL ALGORITHM
##########
# distance_points <- pairdist(users_df)
# D <- ifelse(distance_points > 3, Inf, distance_points)
# D <- ifelse(D <= 3, 1, D)
# diag(D) = 0
# Floyd.Warshall = function(d){
# n = dim(d)[1]
# for (k in 1:n){
# for ( i in 1:n){
# for ( j in 1:n){
# d[i,j] = min(d[i,j], d[i,k] + d[k,j])
# }
# }
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# }
# return(d)
# }
# DK = Floyd.Warshall(D)
##############
## l’ALGORITHME D’UNION FIND
##############
union.find = function(users_df){

connected_nodes <- c(var1 = integer(), var2 = integer(), distance = integer())
users <- c()
weight <- c()
distance_points <- pairdist(users_df)
# data manipulation
molten <- melt(distance_points)
# préciser qu’il existe une arête ssi la distance entre deux points
(utilisateurs) est plus petite que le rayon r.
connected_nodes = molten[which((molten[,3] <= radius) & molten[,1]< molten[,2]),]
# calculer le plus court chemin
users <- seq(1, nrow(users_df))
weight <- rep(1, nrow(users_df))
if (!is.null(nrow(connected_nodes))){

if (nrow(connected_nodes)!=0){
for (index in seq(1, nrow(connected_nodes))) { # pour chaque connection

p <- connected_nodes[index, 1] # Échantillons d’objets aléatoires
q <- connected_nodes[index, 2]
x <- users[p]; while (users[x] != x) x <- users[x] # FIND
y <- users[q]; while (users[y] != y) y <- users[y]
if (x == y) next
if (weight[x] < weight[y]) {# UNION

users[x] <- y; users[users==x] <- y; weight[y] <- weight[y] +
weight[x]; }

else{ users[y] <- x; users[users==y] <- x; weight[x] <- weight[x] +
weight[y]; }

}
}

}
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return(cbind(users, weight, users_df))
}
#users = union.find(users_df)
##########
## VERIFIER la PERCOLATION PDT
##########
percolates.sauts = function(users, win, radius){

users_union <- users$users
weight <- users$weight
users_df <- as.data.frame(cbind(users$userx, users$usery))
colnames(users_df) <- c("userx", "usery")
distance_points <- pairdist(users_df)
D <- ifelse(distance_points > radius, Inf, ifelse(distance_points == 0, 0, 1))
D_floyd <- floyd(D)
reponse <- F
hops <- 0
distance <-0
top <- as.numeric(rownames(users_df[users_df$usery >= win+0.5,]))
right <- as.numeric(rownames(users_df[users_df$userx >= win+0.5,]))
bottom <- as.numeric(rownames(users_df[users_df$usery <= 0.5,]))
left <- as.numeric(rownames(users_df[users_df$userx <= 0.5,]))
for (p in top){

for (q in bottom){
x <- users_union[p]; while (users_union[x] != x) x <- users_union[x] # FIND
y <- users_union[q]; while (users_union[y] != y) y <- users_union[y]
if (x == y){

reponse <- T
break()

}
}
if (x == y){

break()
}

}
# s’il n’y a pas de connection entre top et bottom, chercher pour left et right
if (reponse != T){
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for (p in left){
for (q in right){
x <- users_union[p]; while (users_union[x] != x) x <- users_union[x] # FIND
y <- users_union[q]; while (users_union[y] != y) y <- users_union[y]

if (x == y){
reponse <- T
break()
}

}
if (x == y){
break()
}

}
}
if (reponse ==T){

# calculer les distances
distance_points <- pairdist(users_df)
# sélectionner les noeuds qui sont dans la composante connexe infinie
users_percole <- which(users_union==x, arr.ind <- TRUE)
# sélectionner les noeuds de distance correspondant au noeud percole
distance_points_perc <- distance_points[users_percole, users_percole]
# calculer le plus court chemin
matrix_dist <- ifelse(distance_points_perc > radius, Inf,
ifelse(distance_points_perc == 0, 0, 1))

D_floyd <- floyd(matrix_dist)
# prendre les distances le plus élevé
# pour les distances plus grandes que 4 km
dist_perc_fin <- melt_dist_perc[which(melt_dist_perc$value>4),]
distance <- dist_perc_fin$value
# créer index matrice
mid <- cbind(dist_perc_fin$Var1, dist_perc_fin$Var2)
# algorithme Floyd - Warshall pour obtenir le nombre de sauts
hops <- D_floyd[mid]
# Proportionnalité à la distance euclidienne
proportion <- hops/distance
#calculer les moyennes
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distance <- mean(distance)
hops <- mean(hops)
proportion <- mean(proportion)
result <- as.data.frame(cbind(hops, distance, proportion))
colnames(result) = c("Nb de sauts","distance","proportion")
return(result)

}
else{

hops <- 0
distance <- 0
proportion <- 0
result <- as.data.frame(cbind(hops,distance,proportion))

colnames(result) <- c("Nb de sauts","distance","proportion")
return(result)

}
}
#percolates = percolates.sauts(users, win = win, radius = radius)
##########
## PAIRES de DEVICES CONNECTES
##########
# Essayer pour qq valeurs de lambda
pt = proc.time()
perc.result <- c(radius=integer(),lambda=integer(),Nb.de.sauts=integer(),
distance=integer(), proportion=integer())
for (radius in seq_radius){

if (radius==0.475){
seq_lambda <- seq(0.45, 1.30, 0.1)

}else if (radius==0.425){
seq_lambda <- seq(0.70, 1.50, 0.1)

}else if (radius==0.375){
seq_lambda <- seq(0.90, 1.80, 0.1)

}else if (radius==0.325){
seq_lambda <- seq(1.10, 2, 0.1)

}else if (radius==0.3){
seq_lambda <- seq(1.30, 2.10, 0.1)
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}else if (radius==0.275){
seq_lambda <- seq(1.80, 3.10 , 0.1)

}else if (radius==0.225){
seq_lambda <- seq(2.30, 3.50, 0.1)

}else if (radius==0.175){
seq_lambda <- seq(2.80, 4.10, 0.1)

}else if (radius==0.125){
seq_lambda <- seq(5.50, 6.50, 0.1)

}else if (radius==0.075){
seq_lambda <- seq(16, 17, 0.1)

}else if (radius==0.025){
seq_lambda <- seq(115, 130, 2)

}
# Chercher le seuil de percolation avec la fonction suivante :
perc_hops = foreach(lambda = seq_lambda, .combine = rbind) %do% {

voirie = simulate.voirie(i=i,win=win)
data.frame(radius, lambda, do.call("rbind", replicate(REPLICATE,
percolates.sauts(union.find(simulate.utilisateurs(lambda = lambda,
voirie = voirie, win = win)), win, radius), simplify = FALSE)))

}
perc.result = rbind(perc.result, perc_hops)

}
# Summary
hops.summary = ddply(perc.result, .(radius, lambda), summarize,
Nb.de.sauts = mean(Nb.de.sauts), distance = mean(distance),
proportion = mean(proportion))
hops.summary = hops.summary[which(hops.summary$proportion!=0),]
title_hops = paste(path,"perc_hops2",".csv",sep ="")
title_sum = paste(path,"hops2.summary",".csv",sep ="")
write.csv(perc_hops, file = title_hops, row.names = FALSE)
write.csv(hops.summary, file = title_sum, row.names = FALSE)
#hops.summary = read.csv(’hops2.summary_iter50.csv’, header = TRUE, sep = ’,’)
for (radius in seq_radius) {

hops.summary.radius = hops.summary[which(hops.summary$radius==radius),]
# tracer la fonction de proportion
print(ggplot(hops.summary.radius, aes(x = lambda, y = proportion, group = 1))+
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geom_line(size = 1, color = ’blue’)+
geom_point(size = 2, color =’violet’) +
ggtitle("La Fonction de Proportion PDT") +
labs(x=expression(lambda), y=expression(mu)) +
theme(plot.title = element_text(hjust=.5, face =’bold’,
color =’darkgreen’, size = 14)))

title = paste(path,"hops_", REPLICATE, "_", radius, ".png",sep ="")
dev.copy(png, file=title, width=10, height=10, units="in", res=300)
dev.off()

}





Appendix B

Slide of WIAS

Slides of WIAS detail the simulation method of the function θ0(λ ):
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