

TUGAS AKHIR - TE1599

PEMANFAATAN SEMEN KONDUKTIF SEBAGAI MEDIA PEMBUMIAN ELEKTRODA BATANG

Bimo Prajanuarto NRP 2210100032

DosenPembimbing Dr.Eng. I Made Yulistya Negara, ST., M.Sc. Ir. R. Wahyudi.

JURUSAN TEKNIK ELEKTRO Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2014

FINAL PROJECT - TE 141599

UTILIZATION OF CONDUCTIVE CEMENT AS GROUNDING MEDIA ON ROD ELECTRODE

Bimo Prajanuarto NRP 2210100032

Advisor Dr.Eng. I Made Yulistya Negara, ST., M.Sc. Ir. R. Wahyudi

ELECTRICAL ENGINEERING DEPARTEMENT Faculty of Industrial Technology Institut Teknologi Sepuluh Nopember Surabaya 2015

PEMANFAATAN SEMEN KONDUKTIF SEBAGAI MEDIA PEMBUMIAN ELEKTRODA BATANG

Nama : Bimo Prajanuarto

Pembimbing I : Dr.Eng. I Made Yulistya Negara, ST., M.Sc.

Pembimbing II: Ir. R. Wahyudi

ABSTRAK

Pada studi ini dilakukan metode pembumian dengan elektroda batang serta kombinasi peletakan semen konduktif untuk mengetahui penurunan resistansi pembumian sebelum dan setelah pemberian semen konduktif disekitar elektroda batang. Pada studi ini hasil pengujian secara langsung yang telah diperoleh akan dibandingkan dengan perhitungan matematik yang dilakukan. Studi ini dilakukan agar pembumian dapat dilakukan pada tanah yang tidak dapat digali dengan kedalaman yang cukup sehingga pemberian semen konduktif ini memungkinkan untuk dilakukannya pembumian yang baik.

KataKunci: Metode Pembumian, Resistansi Pembumian, Jenis -

jenis Elektroda, Semen Konduktif.

Halaman ini sengaja dikosongkan

UTILIZATION OF CONDUCTIVE CEMENT AS GROUNDING MEDIA ON ROD ELECTRODE

Name : Bimo Prajanuarto

1st Advisor : Dr.Eng. I Made Yulistya Negara, ST., M.Sc.

2nd Advisor : Ir. R. Wahyudi

ABSTRACT

In this study was conducted a grounding method with an electrode stems as well as a combination of the laying of cement conductive to know the decline in the Earth resistance before and after the provision of cement electrodes conductive around a stem. In the present study the results of testing directly that which has accrued will be compared with mathematical calculation is performed. The study is done to make earth resistance may be conducted in a land that is can be developed with a considerable depth so that the provision of this cement conductive possible to undertake good earth resistance.

Key Words: Grounding Method, Grounding Resistance, types of

electrodes, Cement conductive.

Halaman ini sengaja dikosongkan

KATA PENGANTAR

Puji syukur penulis panjatkan kepada Allah SWT yang senantiasa melimpahkan rahmat dan hidayah-Nya. Shalawat serta salam selalu tercurah kepada Nabi Besar Muhammad SAW, keluarga, dan sahabat serta kita semua selaku umatnya. Alhamdulillah penulis dapat menyelesaikan tugas akhir "Pemanfaatan Semen Konduktif Sebagai Media Pembumian Elektroda Batang"ini tepat waktu.

Tugas Akhir ini disusun untuk memenuhi salah satu persyaratan menyelesaikan pendidikan sarjana pada Bidang Studi Teknik Sistem Tenaga, Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember Surabaya.Pelaksanaan dan penyelesaian Tugas Akhir ini tidak lepas dari bantuan berbagai pihak. Untuk itu penulis mengucapkan terima kasih kepada:

- Bapak Dr.Eng.I Made Yulistya Negara.ST.,M.Sc. dan Bapak Ir. R. Wahyudi, atas segala pengetahuannya dan waktunya dalam membimbing penulis sampai terselesaikannya Tugas Akhir ini.
- 2. Kedua Orang tua penulis yang selalu memberikan nasehat, semangat, dan doa kepada penulis sehingga Tugas Akhir ini bisa terselesaikan tepat pada waktunya.
- 3. Kakak dan adik penulis Yudistiro dan Ariyok yang selalu memberikan semangat dan hiburan kepada penulis selama mengerjakan Tugas Akhir.
- 4. Seluruh Dosen, dan Staff Karyawan JurusanTeknikElektro-FTI,ITS yang tidak dapat penulis sebutkan satu per satu.
- 5. Teman-teman Angkatan 2010.
- 6. Teman-teman Laboratorium Tegangan Tinggi yang mengingatkan dan mendukung penulis agar penulis bisa wisuda ke-111.
- 7. Teman-teman Kontrakan GAP-KERAH yang selalu mendukung penulis dalam penyelesaian Tugas Akhir.

Penulis berharap semoga Tugas Akhir ini bermanfaat dan berguna bagi penulis khususnya dan juga bagi para pembaca pada umumnya.

Surabaya, Juli 2014

Penulis

Halaman ini sengaja dikosongkan

DAFTAR ISI

Halaman
HALAMAN JUDUL
PERNYATAAN KEASLIAN TUGAS AKHIR
HALAMAN PENGESAHAN
ABSTRAKi
ABSTRACTiii
KATA PENGANTARv
DAFTAR ISIvii
DAFTAR GAMBARix
DAFTAR TABELxi
DAD 1 DENDAHIH HAN
BAB 1 PENDAHULUAN
1.1 Latar Belakang Masalah
1.2 Permasalahan 1
1.3 Batasan Masalah
1.4 Tujuan
1.5 Metodologi
1.5.1 Metode Pengukuran resistansi pembumian dengan
menggunakan Earth Resistance Tester yang akan dilakukan .2
1.5.2 Posisi peletakan semen konduktif terhadap elektroda
utama
1.6 Sistematika penulisan
BAB 2 Pemanfaatan Semen Konduktif Sebagai Media Pembumian
Elektroda Batang5
2.1 Sistem pembumian5
2.2 Resistansi pembumian5
2.3 Jenis tanah6
2.4 Tanah sebagai konduktor7
2.5 Macam-macam elektroda pembumian
2.6 Jenis penggunaan elektroda untuk sistem pembumian 10
2.7 Sistem pembumian mengguanakan elektroda batang
2.8 Penanaman elektroda batang pembumian tegak lurus dengan
permukaan tanah13

	2.9 Sifat kimia semen	14
	2.9.1 Semen konduktif	14
	2.10 Resistivitas semen konduktif	15
BAE	3 3 METODOLOGI PENELITIAN	
	3.1 Studi literatur	
	3.2 Tempat dan waktu penelitian	
	3.3Rencana penelitian	
	3.4 Rangkaian pengukuran	
	3.4.1 Rangkaian pengukuran resistansi semen konduktif	
	3.4.2 Rangkaian pengukuran resistansi pembumian	
	3.4.3 Rangkaian pengukuran resistivitas tanah	
	3.5Langkah-langkah pengukuran	
	3.5.1Pengukuran resistivitas semen konduktif	
	3.5.2 Pengukuran resistivitas tanah	
	3.5.3 Pengukuran resistansi pembumian	
	3.5.4 Pengukuran resistansi elektroda batang	
	3.6Analisa hasil pengujian	
	3.7Diagram	25
BAE	3 IV DATA DAN ANALISIS PENELITIAN	
	4.1 Pengukuran kerapatan partikel semen konduktif	
	4.2 Pengukuran resistivitas semen konduktif	
	4.3Pengukuran resistansi tanah ketel	
	4.4 Pengukuran resistansi elektroda batang	
	4.5Pengukuran resistansi tanah lempung	
	4.6Pengaruh peletakan semen konduktif disekitar elektroda b	
	terhadap nilai resistansi pembumian berdasarkan a	
	matematis dan hasil pengukuran	
	4.6.1Model peletakan semen konduktif pada posisi 1	
	4.6.2Model peletakan semen konduktif pada posisi 2	
	4.7Persebaran medan terhadap peletakan semen konduktif dis	
	kombinasi elektroda jaring dan elektroda batang terhadap	
	resistansi pembumian berdasarkan analisa simulasi	
	perangkat lunak dan hasil pengukuran	
	4.8 Mengetahui Persebaran medan dengan menggunakan pera	
	lunak	
	4.8.1Model peletakan posisi 1 dengan elektroda gabungan	53

	4.8.2 Model peletakan posisi 2 dengan elektroda gabu	ngan54
BAI	B 5 PENUTUP	57
	5.1 Kesimpulan	5
	5.2 Saran	
DAl	FTAR PUSTAKA	59
RIW	WAYAT HIDUP	6

DAFTAR TABEL

	Hala	man
Tabel 2.1	Nilai resistivitas beberapa jenis tanah	6
Tabel 2.2	Dimensi standar elektroda batang	
Tabel 2.3	Luas penampang minimum elektroda batang	
	pembumian standar berdasarkan bahan	12
Tabel 2.4	Susunan Unsur Semen	
Tabel 4.1	Hasil pengukuran resistansi semen konduktif	28
Tabel 4.2	Hasil pengukuran resistansi tanah ketel	
Tabel 4.3	Hasil pengukuran resistansi pembumian dalam medium tanah dengan komposisi 50% volume semen konduktif 50% volume tanah	
Tabel 4.4	Hasil perhitungan nilai resistansi pembumian dengan model peletakan semen konduktif pada posisi 1	
Tabel 4.5	untuk setiap lapisan ($l = 3 cm$)	
	untuk setiap lapisan $(l = 3 cm)$	44
Tabel 4.6	Perbandingan nilai resistansi pembumian antara hasil pengukuran dengan dengan analisa matematik	51
Tabel 4.7	Hasil pengukuran resistansi tanah disekitar elektroda batang dan jaring	52

Halaman ini sengaja dikosongkan

DAFTAR GAMBAR

	Halaman
Gambar2.1	C I
	tanah8
	Elektroda batang9
Gambar2.3	
Gambar2.4	Elektroda pita9
Gambar2.5	$sel-sel\ tanah\ sebagai\ elektroda\ pembumian\13$
Gambar3.1	Variasi pemodelan peletakan semen konduktif pada obyek uji
Gambar3.2	Pengukuran resistivitas semen konduktif20
Gambar3.3	Pengukuran resisitansi pembumian dengan Earth
	Resistance Tester21
Gambar3.4	Pengukuran resistivitas tanah menggunakan metode
	empat titik dengan Earth Resistance Tester22
Gambar3.5	Elektroda batang dan bayangannya
Gambar4.1	
Gambar 4.2	
	pada setiap tebal lapisan tanah yang sesusai dengan
	model peletakan semen konduktif pada posisi 1
Gambar4.3	* * *
	Grafik fungsi resistansi pembumian terhadap jarak pada
	setiap tebal lapisan tanah yang sesuai dengan model
	peletakan semen konduktif pada posisi 2
Gambar4.5	Model Peletakan Posisi 1 Dengan Kombinasi Elektroda
	Batang dan Jaring
Gambar 4.6	Model Persebaran Medan Pada Kombinasi Elektroda
Gumbur 110	Batang dan Jaring
Gambar4.7	Model Peletakan Posisi 1 Dengan Kombinasi
Gambai 4.7	Elektroda Batang dan Jaring
Gambar 4 8	Model Persebaran Medan Pada Kombinasi Elektroda
Gambar 4.0	Batang dan Jaring55
	Dataile Gail Jaling

Halaman ini sengaja dikosongkan

BAB I PENDAHULUAN

1.1. Latar Belakang Masalah

Suatu sistem distribusi tenaga listrik merupakan sistem yang luas yang menghubungkan satu titik ke titik lain sehingga sangat peka terhadap berbagai gangguan ,diantaranya adalah gangguan tanah[1]. Dari gangguan tersebut memiliki banyak dampak yang dapat menurunkan tegangan cukup besar, menurunkan stabilitas sistem , membahayakan manusia dan dapat merusak peralatan elektronik. Dan salah satu faktor yang berpengaruh agar kestabilan sistem dan keamanan peralatan listrik tetap terjaga adalah dengan pentanahan pada peralatan yang baik [2].

Dalam suatu sistem pentanahan yang baik, semakin kecil nilai resistansi pembumian maka kemampuan mengalirkan arus ketanah semakin besar sehingga arus gangguan yang mungkin terjadi tidak mengalir ke peralatan dan merusaknya. Ini berarti pentanahan yang baik, nilai resistansi tanahnya harus 1-5 ohm atau lebih rendah [3].

Dengan kondisi dimana suatu lokasi memiliki resistansi tanah yang tinggi, dengan kondisi tanah yang berbatu itu bisa menjadi tidak mungkin untuk melakukan pembumian dengan batang vertikal (rod). Karena struktur tanah yang kering ,kadar air yang terkandung dalam tanah, temperatur tanah dan ukuran butiran material[4]. Mengacu pada penelitian sebelumnya yang telah dilakukan untuk mengurangi resistansi pada tanah menggunakan semen konduktif sebagai media pentanahan elektroda jenis batang, metode tersebut mampu mengurangi resistansi tanah seminim mungkin [5]. Pada tugas akhir ini dilakukan perubahan treatment yang dilakukan pada tanah menggunakan semen konduktif sebagai indikator campuran tanah untuk menurunkan resistansi tanah.Dan diharapkan metode ini dapat menurunkan resistansi tanah dengan lebih efektif lagi.

1.2. Permasalahan

Permasalahan yang dibahas dalam tugas akhir ini adalah bagaimana pengaruh peletakan semen konduktif disekitar elektroda batang terhadap nilai resistansi pembumian dengan volume yang sama.

1.3. Batasan Masalah

Untuk menyelesaikan masalah dalam tugas akhir ini, maka perlu diberi batasan-batasan dan asumsi sebagai berikut :

- 1. Ukuran partikel semen konduktif dibuat seragam semapai tercapai satu ukuran tertentu
- 2. Elektroda pembumian adalah elektroda batang (rod) tunggal
- 3. Jari jari elektroda batang pembumian dibuat tetap
- 4. Kedalaman penanaman elektroda batang dibuat tetap
- 5. Metode pengukuran resistansi tanah memakai metode 3 titik
- 6. Variabel dalam penelitian ini adalah peletakan semen konduktif,volume semen konduktif yang ditanam bersama elektroda batang.

1.4. Tujuan

Tujuan yang ingin dicapai dalam tugas akhir ini adalahMencari pengaruhpemberian semen konduktif terhadap perubahan resistansi tanah pada sistem pembumian.

1.5. Metodologi

Paada studi ini dilakukan dengan menggunakan elektroda batang (rod) yang ditanam kedalam tanah dengan kedalaman tetap , yang sebelumnya tanah telah di treatment dengan dengan mencampurkan semen konduktif pada tanah sebagai medium penurun resistansi tanah dengan volume dan posisi yang berbeda . Untuk mengetahui parameter tahanan yang akan diukur memakai alat earth resistance tester. Pengujian ini dilaukan berulang kali untuk mengetahui nilai rata – rata yang ditentukan analisa data dengan pengujian serta perhitungan manual.

1.5.1.Metode pengukuran resistansi pembumian dengan menggunakan Earth Resistance Tester yang akan dilakukan.

Rangkaian pengukuran resistansi pembumian dengan menggunakan elektroda batang dengan metode tiga titik. Satu elektroda sebagai elektroda utama dan elektroda lainnya sebagai elektroda bantu. Darirangkain tersebut, arus mengalir dari sumber tegangan yang berasal dari *Earth Resistance Tester* ke elektroda utama, kemudian melalui tanah dan menuju ke elektroda bantu. Dengan menggunakan *Earth Resistance Tester*, maka akan diketahui besar resistansi pembumian.

1.5.2.Posisi peletakan semen konduktif terhadap elektroda utama.

Dibuat seragam dengan perbandingan 50% semen konduktif dan 50% tanah, pada ke dalaman 30 cm dari permukaan tanah yang rata serta berdiameter 30 cm. Dan menngunakan lima macam posisi peletakan.

1.6. Sistematika Penulisan

Sistematika penulisan terdiri dari lima bagian,dan masing – masing dari bab akan berisis sebagai berikut :

- 1. BAB I : merupakan pendahuluan yang terdiri dari latar belakang masalah, permasalahan, batasan masalah, tujuan dan metodologi.
- 2. BAB II: menjelaskan landasan teori mengenai dasar teori yang digunakan untuk dasar penelitian yang dilakukan dan untuk mendukung permasalahan yang diungkapkan.
- 3. BAB III: Dalam bab ini akan dibahas mengenai metode penelitian yang akan dilakukan meliputi studi literatur, tempat penelitian, waktu penelitian, peralatan yang digunakan untuk penelitian, model rangkaian penelitian, langkah penelitian dan teknik pengumpulan data.
- 4. BAB IV : Dalam bab ini akan dibahas mengenai analisa serta pembahasan terhadap masalah yang diajukan dalam tugas akhir.
- 5. BAB V : Dalam bab ini berisi mengenai kesimpulan dan saran dari hasil penelitian dari sang penulis.

Halaman ini sengaja dikosongkan

BABII

Pemanfaatan Semen Konduktif Sebagai Media Pembumian Elektroda Batang

2.1. Sistem Pembumian

Sistem pembumian adalah suatu tindakan dasar yang sangat penting untuk menjamin keamanan dan keandalan dari operasi sistem tenaga listrik serta memastikan keselamatan manusia dari gangguan yang terjadi pada jaringan listrik dan peralatan. Dalam penerapannya tidak semua sistem jaringan listrik di hubungkan langsung dengan sistem pembumian. Sistem pembumian digunakan untu menyalurkan arus ganguuan yang terjadi pada sistem kelistrikan seperti hubung singkat, petir , maupun arus bocor, sehingga sistem kelistrikan tersebut aman bagi peralatan maupun bagi manusia. Seperti yang telah diketahui bahwa semakin kecil nilai dari suatu resistansi maka pembumiannya akan semakin baik, karena berdasarkan sifat dasar arus yang cenderung akan mengalir pada resistansi yang lebih kecil dibandingkan suatu nilai resistansi yang besar.

Suatu sistem yang diketanahkan adalah sistem yang dihubungkan dengan suatu sistem pembumian langsung dengan netral atau penghantar padat yang langsung menuju ke tanah. Agar suatu sistem pembumian dapat bekerja semaksimal mungkin , maka harus memenuhi berbagai persyaratan sebagai berikut :

- 1. Membuat jalur impedansi rendah ke tanah untuk pengaman personil maupun peralatan.
- 2. Dapat menyebarkan arus gangguan secara berulang akibat surja hubung (*surge current*)
- 3. Menggunakan elektroda yang tahan korosi terhadap pengaruh kimia tanah serta suhu sehingga menjamin kontinuitas pengamanan sepanjang umur objek yang diamankan.
- Menggunakan bahan yang tahan terhadap dampak pengaruh mekanis.

2.2 Resistansi Pembumian

Menurut komposisi dari resistansi dalam sistem pembumian adalah sebagai berikut :

- 1. Resistansi elektroda batang
- 2. Resistansi kontak antara permukaan elektroda batang dan tanah disekitarnya

3. Resistansi bagian tanah di sekitar elektroda batang pembumian

Pada umumnya resistansi elektroda batang dan resistansi kontak antara elektroda batang dengan tanah disekitarnya nilainya sangat kecil sehingga dapat diabaikan dengan resistansi pada bagian tanah disekitar elektroda pembumian. Hal ini dapat diabaikan jika elektroda batang pembumian bebas dari berbagai macam kontaminasi seperti minyak maupun cat dan tidak ada rongga udara amtara elektroda batang dengan tanah disekitarnya. Maka dengan demikian resistansi yang paling menentukan nilai suatu resistansi sistem pembumian tersebut adalah resistivitas tanah itu sendiri. Komponen yang dapat mempengaruhi resistivitas tanah adalah jenis tanah, koposisi kimia yang terkandung dalam tanah,kadar air yang terkandung dalam tanah, konsentrasi kimia garam yang terkandung di dalam tanah, suhu atau temperatur tanah, ukuran butiran material serta distribusinya, kepadatan dan tekanan tanah [6].

2.3 Jenis Tanah

Dalam suatu sistem pembumian yang baik jenis tanah juga sangat menentukan resistivitas tanah tersebut. Tidak semua tanah memiliki nilai resistivitas yang baik untuk suatu sistem pembumian ini dipengaruhi oleh kerapatan serta kontaminasi yang dimiliki oleh tanah tersebut serta tempat dan kondisi dimana tanah itu berada. Sehubungan dengan sistem pembumian tanah dibagi dalam beberapa jenis . Berikut adalah tabel dari beberapa jenis tanah serta perkiraan nilai resistivitasnya dan dapat diperoleh data sebagai berikut [6].

Tabel 2.1 Nilai resistivitas beberapa jenis tanah [6]

Jenis Tanah	Resistivitas dalam (ohm- cm)
Tanah liat, tanah kebun, dll	500 - 5.000
Tanah liat	800 - 5.000
Campuran tanah liat, pasir dan kerikil	4.000 – 25.000
Pasir dan kerikil	6.000 - 10.000
Batu tulis, pasir berbatu, dll	1.000 - 50.000

Batu karang	20.000 - 1.000.000
-------------	--------------------


Nilai resistivitas yang berada di dalam Tabel 2.1 adalah suatu perkiraan untuk nilai resistivitas yang diharapkan. Berbagai macam penelitian dari waktu ke waktu yang mengukur nilai resistivitas berbagai jenis tanah baik melalui pengambilan sampel contoh dan mengukurnya dalam penelitian khusus maupun dengan pengukuran yang tidak berpengaruh pada massa tanah. Penelitian tersebut bukan termasuk masalah yang tidak mudah tetapi memungkinkan untuk memberikan hasil yang akurat. Sangat sulit untuk dapat memastikan bahwa contoh sampel yang diambil dari tanah dalam kondisi yang sama ketika diukur sebagaimana ia ditempatkan.

2.4 Tanah Sebagai Konduktor

Dalam perkembangan dari suatu sistem tenaga listrik, tanah dapat digunakan sebagai konduktor listrik. Pada penerapannya tanah berguna sebagai konduktor yang baik, meskipun tanah memiliki banyak kelemahan jika digunakan sebagai onduktor. Karena dimensi lintasan arus yang melalui tanah sangat besar, resistansi beberapa lintasan diabaikan. Bentuk elektroda yang akan digunakan sangat berpengaruh dalam menentukan besarnya resistansi tanah yang dilewati arus keluar dan masuk tanah.

Sifat sebagian besar tanah dan batu ketika dalam kondisi sangat kering bukan merupakan konduktor listrik. Namun apabila tanah dan batu mengandung mineral tertentu, maka menjadi bersifat konduktor listrik karena kandungan metaliknya. Pasir dan batu mempunyai resistivitas yang tinggi ini berarti dengan kata lain bahawa pasir dan batu bukan merupakan suatu konduktor yang baik.

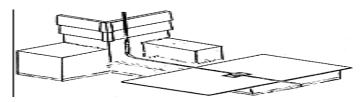
Untuk mengatasi permasalah tersebut maka yang harus dilakukan adalah mengkondisikan tanah agar menjadi lebih konduktif, yaitu dengan melakukan *treatment* yang khusus pada tanah tersebut dengan tujuan memperbaiki sifat – sifat kimia dasar dari tanah. Karena resistivitas tanah ditentukan oleh kadar air serta perlakuan terhadap tanah tersebut.

Gambar 2.1Grafik fungsi resistivitas terhadap kadar air dalam tanah[6]

Gambar 2.1 menunjukkan hubungan resistivitas tanah dengan kadar air yang dikandungnya untuk beberapa jenis tanah. Pada persentase air yang besar, kelembaban tinggi, maka resistivitasnya kecil. Dari gambar dapat dilihat bahwa resistivitas akan turun dengan cepat ketika terjadi penambahan kelembaban/kadar air. Dan untuk mengkondisikan tanah menjadi lebih konduktif perlu dilakukan treatment khususterhadap tanah, treatment khusus tersebut bertujuan untuk memeperbaiki sifat-sifat kimia dasar dari tanah [7]. Resistivitas tanah ditentukan oleh kadar air dalam tanah serta perlakuan terhadap tanah.

2.5 Macam – Macam Elektroda Pembumian

Pada dasarnya ada 3 jenis macam elektroda yang digunakan pada sistem pembumian yaitu :


1. Elektroda Batang

Gambar 2.2 Elektroda batang

Elektroda batang terbuat dari batang atau pipa logam . Biasanya dibuat dari bahan tembaga, *stainless steel* atau *galvanised steel*. Perlu di perhatikan juga bahawa bahan juga harus anti korosi.

2. Elektroda Pelat

Gambar 2.3 Elektroda Pelat

Bentuk elektroda pelat biasanya empat persegi atau persegi panjang yang terbuat dari tembaga, timah atau pelat baja yang ditanam ditanah .

3. Elektroda Pita

Gambar 2.4 Elektroda Pita

elektroda pita jenis ini terbuat dari bahan metal berbentuk pipa atau juga kawat BCC. Elektroda pita bisa dipasang pada struktur tanah yang mempunyai tahanan jenis rendah pada permukaan dan pada daerah yang tidak mengalami kekeringan.

Hal ini cocok untuk daerah – daerah pegunungan dimana harga tahanan jenis tanah makin tinggi dengan kedalaman.

2.6 Jenis Penggunaan Elektroda untuk Sistem Pembumian

Jenis - jenis elektroda untuk penggunaan sistem pembumian adalah sebagai berikut :

- 1. Pembumian batang vertikal (*grounding rod*) *Grounding rod* adalah pembumian yang dilakukan dengan cara menanam batang elektroda pembumian tegak lurus dengan permukaan tanah.
- 2. Pembumian kisi-kisi (*grounding grid*) *Grounding grid* adalah pembumian yang dilakukan dengan cara menanam batang elektroda pembumian sejajar dengan permukaan tanah serta elektroda pembumian tersebut dihubungkan satu dengan yang lain sehingga berbentuk jaring atau *mesh*.

2.7 Sistem Pembumian Menggunakan Elektroda Batang (Rod)

Tujuan utama sistem pembumian adalah mendapatkan nialai resistansi yang rendah sehingga memungkinkan untuk arus gangguan yang terjadi dapat dengan cepat tersalurkan ke tanah. Elektroda pembumian yang digunakan untuk melewatkan arus gangguan ke tanah adalah elektroda pembumian jenis batang. Seperti yang dijelaskan sebelumnya elektroda batang adalah elektroda yang terbuat dari tembaga, besi baja profil atau pipa yang dipancangkan kedalam bumi. Dalam penggunaanya, elektroda batang sangat dipengaruhi oleh ukuran, dimensi dan bahan dari elektroda batang tersebut, karena pada dasarnya pembumian dengan elektroda batang perlu memperhatikan panjang dan ukuran elektrodanya agar dalam melakukan instalasi pembumian bisa diperoleh hasil dan nilai yang baik, meskipun pengaruh ukuran diameter terhadap resistansi pembumiannya adalah kecil yang hanya berpengaruh sekitar 10% [7].

Ukuran dimensi standar dari elektroda batang yang pada umumnya dipakai pada sistem pembumian dapat dilihat pada Tabel 2.2.

Tabel 2.2Dimensi standar elektroda batang[8]

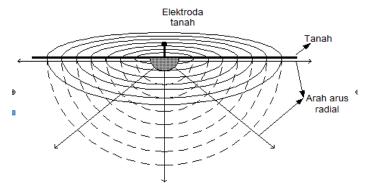
	Elektroda Batang				
No.	Diameter (inchi)	Panjang (ft)	Diameter (mm)	Panjang (m)	Ukuran Klem* (mm²)
1	3/8		9,53		6-10
2	1/2		12,7		6-16
3	5/8	5-40	15,88	1,5-12,2	6-16
4	3/4		19,05		25-50
5	1		25,4		25-50

Pada umumnya elektroda batang menggunakan silinder yang terbuat dari tembaga murni, batang tembaga telanjang dan berlapis (copper-clad steel), batang besi tahan karat (stainless rod), kawat tembaga yang dimasukkan ke dalam batang pipa yang digalvanisasi dan dapat berupa baja yang sudah disepuh oleh tembaga.

Tabel 2.3 Luas penampang minimum elektroda batang pembumian standar berdasarkan bahan [9]

	Bahan		
Jenis elektroda	Baja berlapis seng dengan proses pemanasan	Baja berlapis tembaga	Tembaga
Elektroda batang	Pipa baja berdiameter 1 inchi:	Baja bulat:	Pipa tembaga:
	Baja profil: L 65x65x7 U 6 ½ T 6 X 50x3 atau batang profil lain yang setara	Berdiameter 15 mm dilapisi tembaga setebal 2,5 mm	Luas penampang: 50 mm² Tebal: 2 mm Hantaran pilin: (bukan kawat halus) Luas penampangnya: 35 mm²

Kalau tanahnya sangat korosif sebaiknya digunakan ukuranukuran minimum 1,5x ukuran yang diberikan pada Tabel 2.5. Kalau elektroda yang dimaksudnya untuk mengatur gradient tegangan, luas penampang minimum yang boleh digunakan adalah sebagai berikut:


Untuk baja berlapis tembaga :minimum 16 mm²
 Untuk tembaga :minimum 10 mm²

Adapun beberapa hal yang penting dan perlu diperhatikan dalam pemilihan elektroda batang dalam sistem pembumian yang baik adalah sebagai berikut:

- 1. Memiliki daya hantar jenis (*conductivity*)yang cukup baik sehingga tidak akan memperbesar beda potensial lokal yang sangat membahayakan.
- 2. Tahan terhadap peleburan darikeburukan suatu sambungan sistem kelistrikan,walaupun konduktor tersebut akan terkena *magnitude* arus gangguan dalam waktu yang cukup lama.
- 3. Tahan terhadap korosi
- 4. Memiliki kekuatan secara mekanis yang sangat kuat ,terutama bi la digunakan didaerah yang tidak terlindung oleh kerusakan fisik

2.8 Penanaman Elektroda Batang Pembumian Tegak Lurus dengan Permukaan Tanah.

Dalam sebuah sistem pe mbumian menggunakan elektroda batang persebaran arus dapat dimodelkan sebagai sebuah setengah lingkaran,stengah ellips atau setengah tabung. Elektroda ini dapat digambarkan sebagai konduktor yang tersusun dari lapisan berupa selsel tanah yang tebalnya sama seperti yang dilihatkan pada Gambar 2.5, berupa penanaman satu elektroda batang pembumian tegak lurus dengan permukaan tanah.

Gambar 2.5sel – sel tanah sebagai elektroda pembumian

Arus yang diterima oleh elektroda batang dalam sistem pembumian akan melintasi sel – sel ini ke semua arah. Sel tanah yang terdekat dengan batang elektroda pembumian mempunyai permukaan paling kecil sehingga memberikan resistansi yang paling besar. Hal ini diketahui sebagai resistansi efektif dan jarak ini ditentukan oleh

kedalaman penanaman dan diameter elektroda batang pembumian yang dipakai.

2.9Sifat Kimia Semen

Semen adalah suatu jenis bahan yang memiliki sifat adhesif dan kohesif yang memungkinkan melekatnya fragmen-fragmen mineral menjadi satu massa yang padat. Meskipun definisi ini dapat diterapkan untuk banyak jenis bahan, semen yang dimaksudkan untuk konstruksi beton adalah bahan jadi dan mengeras dengan adanya air yang dinamakan semen hidraulis. Hidraulis berarti semen bereaksi dengan air dan membentuk suatu bahan massa.

Bahan dasar penyusun semen terdiri dari bahan-bahan yang terutama mengandung kapur, silika dan oksida besi, maka bahan-bahan itu menjadi unsur-unsur pokok semennya.

Tabel 2.4Susunan Unsur Semen [12]

Oksida	Persen (%)
Kapur (CaO)	60 – 65
Silika (SiO ₂)	17 – 25
Alumina (Al ₂ O ₃)	3 - 8
Besi (Fe ₂ O ₃)	0,5-6
Magnesia (MgO)	0,5-4
Sulfur (SO ₃)	1 - 2
Potash $(Na_2O + K_2O)$	0,5 – 1

2.9.1 Semen Konduktif (Grounding Enhancement Material)

Jenis semen yang akan digunakan dalam penelitian kali ini adalah semen konduktif atau semen grounding (*ground Enhancement Material*). Semen grounding adalah bahan pengurukan atau *backfill* yang meningkatkan konduktivitas tanah disekitar elektroda batang dan sistem pembumian kisi –kisi. Pada umumnya semen grounding digunakan pada

kondisi dengan resistansi tinggi termasuk berbatu dan berpasir tanah, serta medan kering ,pegunungan , dan tanah beku agar resistansi menurun untuk menciptakan sistem pentanahan yang handal. Sistem pentanahanyang handal akan memberikan jalan impedansi yang cukup rendah untuk mengalirkan arus ke tanah .

Selain itu semen konduktif memiliki beberapa kelebihan yang sangat menguntungkan bagi sistem pembumian diantaranya adalah :

- 1. Konduktivitas listrik yang stabil.
- Memiliki efisiensi yang sangat tinggi untuk menurunkan resistansi.
- 3. Sangat baik ketahanannya terhadap korosi.

2.10 Resistivitas Semen Konduktif

Semen konduktif memiliki sifat listrik yaitu resistivitas. Resistivitas adalah salah satu faktor yang menentukan resistansi suatu bahan. Penelitian resistivitas dapat memberi informasi yang bermanfaat mengenai sifat semen konduktif. Untuk mengukur resistivitas semen konduktif dapat dilakukan dengan menggunakan Ohmmeter dan diperoleh dari hasil pengukuran, dengan persamaan (2-1) [G.F. Tagg, 1964: 16]:

$$R = \frac{\rho \cdot l}{A} \quad ohm \tag{2-1}$$

$$\rho = \frac{A \cdot R}{l}$$

$$\rho = \frac{\pi r^2 \cdot R}{l} \quad ohm - cm$$
(2-2)

dengan:

R = nilai resistansi hasil pengukuran (ohm)

l = tinggi semen konduktif dalam tabung ukur (cm)

A = luas penampang tabung ukur (cm^2)

r = jari –jari tabung ukur (cm)

ρ = nilai resistivitas semen konduktif (ohm-cm)

Resistivitas semen konduktif sangat dipengaruhi oleh kerapatan partikelnya. Kerapatan adalah suatu besaran turunan dalam fisika yang secara umum lebih dikenal sebagai massa jenis. Maka dalam penelitian

kali ini perlu juga diketahui kerapatan dari partikel semen konduktif yang digunakan dalam penelitian. Dalam kerapatan semen konduktif dapat dihitung dengan menggunakan persamaan (2-3) [Gaguk A, 2004: 1]:

$$K = \frac{m}{V} \tag{2-3}$$

dengan:

K = kerapatan semen konduktif (gram/cm³)

m = massa semen konduktif (gram)

V = volume semen konduktif dalam tabung ukur (cm³)

BAB III METODOLOGI PENELITIAN

Metode penelitian yang diterapkan pada tugas akhir ini adalah metode pengujian yang dilakukan secara langsung. Adapun metode yang digunakan adalah sebagai berikut :

3.1 Studi Literatur

Tugas akhir ini dibuat dengan memanfaatkan beberapa referensi baik dari buku maupun hasil penelitian — penelitian mengenai sistem pembumian. Studi literatur ini mempelajari :

- 1. Sistem pembumian
- 2. Resistansi tanah
- 3 Jenis tanah
- 4. Tanah sebagai konduktor
- 5. Macam- macam elektroda pembumian
- 6. Jenis penggunaan elektroda untuk sistem pembumian
- 7. Sistem pembumian menggunakan elektroda batang (rod)
- 8. Penanaman elektroda batang pembumian tegak lurus dengan permukaan tanah
- 9. Sifat kimia semen
- 10. Semen konduktif (Grounding Enhancement Material)
- 11 Resistivitas semen konduktif

3.2 Tempat dan Waktu Penelitian

Penelitian dilakukan di wilayah tanah terbuka di sekitar Jurusan Teknik Elektro Fakultas Teknik Industri Institut Teknologi Sepuluh Nopember pada bulan Oktober 2014.

3.3 Rencana Penelitian

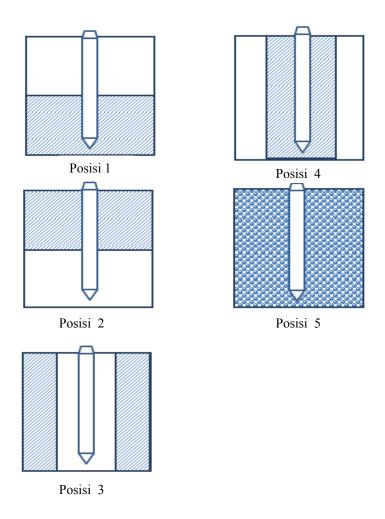
Dalam memulai penelitian harus menentukan langkah – langkah yang akan dilakukan untuk menentukan batasan - batasanya. Perencanaan elektroda sebagai alat untuk mencari karakteristik pengaruh pemberian semen konduktif terhadap perubahan nilai dari resistansi pembumian ini meliputi langkah – langkah sebagai berikut :

- Memilih tempat yang akan digunakan untuk melakukan penelitian.
- 2. Mempersiapkan medium tanah yang akan dipergunakan untuk pengujian.

Medium tanah yang dipergunakan untuk pengujian yaitu pasir tanah atau tanah ketel (karena tempat yang dipergunakan untuk pengujian bertepatan dengan daerah taman), agar kondisi saat dilakukan pengujian satu ke pengujian lainnya tidak jauh berbeda atau seragam, dengan tujuan agar data yang diambil pada semua pemodelan penelitian lebih akurat karena jenis tanah yang diuji adalah sama. Medium tanah yang dipergunakan untuk penelitian berbentuk tabung dengan ukuran diameter 30 cm dengan ketinggian 30 cm.

3. Mempersiapkan material tambahan yaitu semen konduktif.

Semen konduktif yang digunakan adalah GEM (Grounding Enhancement Material). Ukuran partikel semen konduktif telah seragam , ini menguntungkan karena nilai tahanan kontak antara permukaan elektroda batang dan tanah disekitarnya menjadi sangat kecil sehingga dapat diabaikan.


4. Pemilihan bentuk elektroda

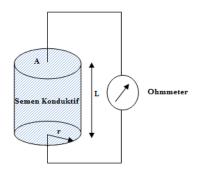
Elektroda yang digunakan dalam penelitian ini adalah elektroda batang *(rod)*. Elektroda yang digunakan terbuat dari baja bulat yang dilapisi dengan sepuhan tembaga berdiameter 16 mm.

5. Metode pengukuran

Dalam penelitian ini digunakan metode 3 (tiga) titik untuk mengukur besarnya resistansi pembumian disekitar elektroda batang yang ditanam.

Obyek yang diuji adalah mencari karakteristik pengaruh pemberian semen konduktif terhadap perubahan suatu nilai resistansi pembumian dengan menggunakan elektroda batang yang ditanam bersama sebagai satu kesatuan. Variabel yang diubah — ubah pada penelitian kali ini adalah posisi peletakan semen konduktif terhadap elektroda batang untuk mengetahui posisi paling efektif terhadap penurunan resistansi pembumian. Berikut Posisi peletakan semen konduktif terhadap elektroda utama. Dengan perbandingan 50% semen konduktif dan 50% tanah, pada kedalaman 30 cm dari permukaan tanah dan berdiameter 30 cm. Dengan kondisi pengujian dilakukan saat kondisi kering pada media tanah atau obyek uji.

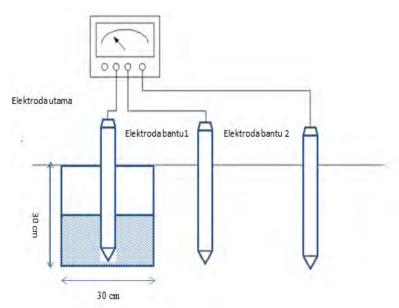
Gambar 3.1 Variasi pemodelan peletakan semen konduktif pada obyek uji


Keterangan:

3.4 Rangkaian Pengukuran

3.4.1 Rangkaian Pengukuran Resistansi Semen Konduktif

Semen Konduktif yang akan digunakan sebagai media untuk memperkecil nilai resistansi pembumian dimasukan dalam pipa ukur plastik dan diberi tutup pada setiap ujung pipa dan dipasang kawat tembaga serta dipasang seri dengan ohmmeter untuk dapat mengetahui nilai resistansinya. Pengukuran yang dilakukan ditunjukan pada Gambar 3.2

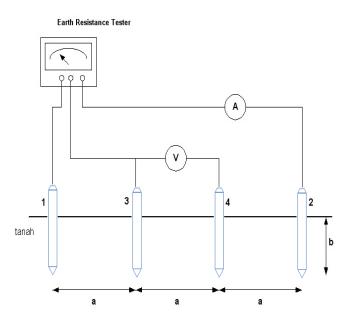


Gambar 3.2 Pengukuran resistivitas semen konduktif

Dari rangkaian pada Gambar 3.2 maka diperoleh nilai resistansi dengan menggunakan ohmmeter.

3.4.2 Rangkaian Pengukuran Resistansi Pembumian

Earth Resistance Tester



Gambar 3.3 Pengukuran Resistansi Pembumian dengan Earth Resistance Tester

Rangkaian Pengukuran resistansi pembumian yang digunakan dalam penelitian menggunakan elektroda batang dengan metode tiga titik,satu elektroda sebagai utama dan dua elektroda lainnya digunakan sebagai elektroda bantu. Dari rangkaian tersebut, arus mengalir dari sumber tegangan yang berasal dari *Earth Resistance Tester* ke elektroda utama, kemudian melalui tanah dan menuju elektroda bantu lainnya. Dengan menggunakan *Earth Resistance Tester*, maka akan diketahui besar resistansi pembumian.

3.4.3 Rangkaian Pengukuran Resistivitas tanah

Pada Rangkaian pengukuran resistivitas tanah dapat diketahui menggunakan empat buah elektroda batang yang dihubungkan dengan *Earth Resistance Tester*, seperti yang ditunjukkan dalam Gambar 3.4.

Gambar 3.4 Pengukuran resistivitas tanah menggunakan metode empat titik dengan *Earth Resistance Tester*

Earth Resistance Tester selain digunakan untuk mengukur nilai resistansi pembumian, dapat juga digunakan untuk menghasilkan sumber tegangan, yang dibutuhkan dalam pengukuran resistivitas tanah. Arus I dapat mengalir dan dapat terbaca pada Ampermeter karena adanya lebih dari satu buah elektroda batang yang dimasukkan ke tanah sehingga membentuk loop tertutup, arus masuk ke tanah melalui salah satu buah elektroda batang dan kembali ke elektroda batang yang lain. Setelah itu dapat diketahui nilai tegangan dan arus yang terbaca pada masing-masing alat ukur Voltmeter dan Ampermeter.

3.5 Langkah-langkah pengukuran

3.5.1 Pengukuran Resistivitas Semen konduktif

Semen konduktif yang akan digunakan dalam penelitian akan diukur resistivitasnya, dengan menggunakan persamaan (2-2) dan hasil resistansi semen konduktif yang telah diperoleh pada rangkaian pengujian resistansi. Setelah resistivitas semen konduktif telah diketahui nilainya maka dapat diterapkan pada hitungan matematis tentang pengaruh pemberian semen konduktif sebagai media penurunan resistansi pembumian dengan menggunakan elektroda batang (rod).

3.5.2 Pengukuran Resistivitas Tanah

Pengukuran resistivitas tanah menggunakan metode 4 titik dengan menggunakan "Earth Resistance Tester" yang rangkaiannya ditunjukkan pada Gambar 3.4. Pada pengukuran resistansi tanah besar arus yang mengalir ke tanah akan terbaca pada Ampermeter dan hasil pengukuran pada Voltmeter juga terbaca, lalu untuk mendapatkan nilai resistansi tanahnya dapat dihitung dengan memakai Persamaan:

$$\rho = \frac{4\pi a U}{\left(1 + \frac{2a}{\sqrt{(a^2 + 4b^2)}} - \frac{2a}{\sqrt{(4a^2 + 4b^2)}}\right)I} = \frac{4\pi a U}{n I}$$

Persamaan (3-1)

dengan

a = jarak antara elektroda batang yang dimasukkan ke tanah (cm)

b = kedalaman penanaman elektroda batang (cm)

 ρ = resistivitas tanah (ohm-cm)

U = tegangan yang terukur pada Voltmeter (volt)
I = arus yang terukur pada Amperemeter (ampere)

n = memiliki nilai antara 1 s ampai 2 t ergantung oleh perbandingan b/a

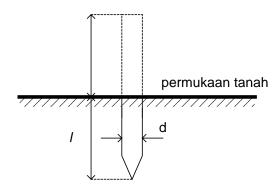
3.5.3 Pengukuran Resistansi Pembumian

Pengukuran resistansi pembumian jenis elektroda batang (tanpa dan dengan semen konduktif) untuk berbagai perubahan variabel menggunakan metode tiga titik dengan memakai alat ukur resistansi pembumian yaitu "Earth Resistance Tester" yang rangkaiannya ditunjukkan pada Gambar 3.3. Dan pemodelan beberapa variasi peletakan semen konduktif terhadap elektroda batang pembumian

dengan peletakan elektroda batang utama simetris terhadap luasan tanah yang digunakan sebagai variabel dalam penelitian ini , ditunjukan pada Gambar 3.1. Variasi yang ditunjukan akan memiliki resistansi pembumian yang mungkin akan berbeda — beda karena posisi peletakannya terhadap elektroda utama yang akan diuji.

3.5.4 Pengukuran Resistansi Elektroda Batang

Secara teori resistansi dalam sistem pembumian adalah komposisi dari resistansi elektroda batang, resistansi kontak antara permukaan elektroda batang dan tanah disekitarnya, resistansi bagian tanah di sekitar elektroda batang pembumian. Untuk mengetahui pengaruh nilai resistansi elektroda batang terhadap resistansi pembumian pada penelitian ini, dilakukan perhitungan resistansi elektroda batang yang tegak lurus dengan tanah dapat ditentukan dengan persamaan (3-2) [6]:

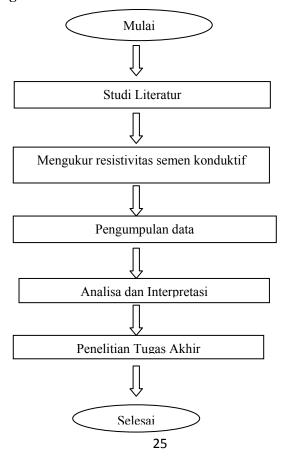

$$R = \frac{\rho}{2\pi l} \log_e \frac{4l}{d} \tag{3-2}$$

Elektroda batang terbuat dari bahan baja sepuhan tembaga

ρ (resistivitas elektroda batang)

l (panjang elektroda batang dalam tanah)

d (diameter elektroda batang)


Gambar 3.5 Elektroda batang dan bayangannya

3.6 Analisa Hasil pengujian

Analisa data, adalah pengolahan data yang telah dikumpulkan dengan berbagai macam metode yang diperoleh dari semua literatur yang ada. Sehingga dapat mengetahui bagaimana suatu karakteristik pengaruh pemberian semen konduktif terhadap perubahan suatu nilai dari resistansi pembumian. Sehingga dari pengujian tersebut dapat diketahui beberapa hal, yaitu:

- a. Pengaruh peletakan semen konduktif di sekitar elektroda batang.
- b. Pengaruh volume semen konduktif yang seragam dengan beberapa model variasi peletakan semen konduktif terhadap nilai resistansi pembumian.

3.7 Diagram

Halaman ini sengaja dikosongkan

BAB IV DATA DAN ANALISIS PENELITIAN

Data – data yang ada dalam penelitian adalah data – data yang didapatkan dari hasil pengambilan data berupa pengukuran secara langsung baik dilapangan maupun di laboratorium. Langkah – langkah setelah memperoleh data – data tersebut adalah menganalisa, menghitung dan menginterpretasikannya. Data – data yang telah diperoleh bertujuan untuk dapat mengetahui karakteristik pengaruh pemeberian semen konduktif terhadap perubahan nilai resistansi pembumian. Sebelum melakukan pengambilan data tersebut perlu dilakukan pengujian tentang karakteristik sifat – sifat kalistrikan semen konduktif, sehingga dari pengujian tersebut dapat dianalisis:

- a. Pengaruh peletakan semen konduktif di sekitar elektroda batang (*rod*).
- b. Pengaruh volume semen konduktif yang seragam dengan beberapa model variasi peletakan semen konduktif terhadap nilai resistansi pembumian.

4.1 Pengukuran Kerapatan Partikel Semen Konduktif

Dalam menentukan kerapatan suatu partikel, ukuran daro suatu partikel tersebutlah yang memepengaruhi kerapatannya. Semen konduktif yang digunakan memiliki ikuran partikel yang seragam karena diproduksi secara masal oleh suatu pabrik. Dengan demekian diperoleh data analisisnya.

Data perhitungan kerapatan partikel semen konduktif, yaitu:

Ukuran partikel semen konduktif dibuat seragam

r (jari – jari tabung pengujian) = 1,25 cm l (tinggi tabung pengujian) = 5 cm m (massa semen konduktif) = 25 gram

K (Kerapatan semen konduktif)

Dengan menggunakan Persamaan (2-3), maka kerapatannya dapat dihitung, yaitu :

$$K = \frac{m}{V}$$

$$= \frac{25}{(3,14)(1,25)^2 5}$$
$$= 1.019 \ gr/cm^3$$

Jadi diperoleh kerapatan semen konduktif dari hasil pengukuran yang dilakukan adalah 1,019 gram/cm

4.2 Pengukuran Resistivitas Semen Konduktif

Pengukuran nilai resistansi yang dilakukan sesuai Gambar 3.2 bertujuan untuk mengetahui resistivitas semen konduktif melalui perhitungan matematis yang diambil berdasarkan nilai resistansinya. Dari pengambilan data resistansi semen konduktif, Selanjutnya digunakan Persamaan (2-2) untuk menghitung resistivitas semen konduktif

Data resistansi semen konduktif dari hasil pengujian:

Tabel 4.1 Hasil pengukuran resistansi semen konduktif

Resistansi	Percobaan 1	Percobaan 2	Percobaan 3	Percobaan 4	Percobaan 5	Rata-rata
Semen Konduktif	39 Ω	36 Ω	31 Ω	39Ω	38 Ω	36,6 Ω

Dari beberapa kali pengambilan sampel pengujian resistansi semen konduktif diperoleh hasil pada percobaan pertama sebesar 39 ohm, percobaan kedua 36 ohm, percobaan ketiga 31 ohm, percobaan keempat 39 ohm, percobaan kelima 38 ohm. Dan diperoleh hasil rata – rata resistansi semen konduktif sebesar 36,6 ohm. Maka nilai resistivitas semen konduktif dapat diperoleh dengan perhitungan matematis sebagai berikut.

Data – data yang diperoleh untuk perhitungan resistivitas semen konduktif, yaitu:

Ukuran partikel semen konduktif dibuat seragam R (resistansi semen konduktif) = 36,60hm l (tinggi tabung pengujian) = 5 cm r (jari – jari tabung pengujian) = 1,25 cm

Dengan menggunakan Persamaan (2-2), dan data yang diperoleh pada tabel 4.1 maka resistivitasnya dapat dihitung, yaitu:

$$\rho = \frac{\pi r^2 \cdot R}{l}$$

$$= \frac{(3,14)(1,25)^2 (36,6)}{5}$$

$$= 35.91 ohm - cm$$

Jadi resistivitas semen konduktif diperoleh sebesar 35,91 ohm-cm.

4.3 Pengukuran Resistansi Tanah Ketel

Pengukuran nilai resistansi tanah bertujuan untuk mengetahui nilai resistivitasnya melalui perhitungan matematis berdasarkan data hasil pengukuran resistansinya. Berikut hasil pengujian resistansi tanah diperoleh data sebagai berikut:

Tabel 4.2 Hasil pengukuran resistansi tanah ketel

	= + + + + + + + + + + + + +					
Resistansi	Percobaan	Percobaan	Percobaan	Percobaan	Percobaan	Rata-
Resistansi	1	2	3	4	5	rata
Tanah	3432Ω	3434Ω	3434Ω	3442Ω	3438Ω	3436Ω

Pengambilan data nilai resistansi tanah dilakukan dengan menggunakan metode yang sama dengan metode rangkaian pengukuran resistansi semen konduktif. Ohmmeter akan menunjukan nilai resistansinya. Maka diperoleh data resistansi tanah pada percobaan pertama sebesar 3432 ohm, percobaan kedua 13434 ohm, percobaan ketiga 3434 ohm, percobaan keempat 3442 ohm, percobaan kelima3438ohm, dan diperoleh resistansi tanah rata – rata sebesar 3436ohm.

Data perhitungan tanah yaitu:

Tanah dalam kondisi kering
r (jari-jari tabung pengujian) = 1,25 cm
l (tinggi tabung pengujian) = 5 cm
R(resistansi tanah) = 3436ohm

Dengan menggunakan Persamaan (2-2), maka resistivitasnya dapat dihitung, yaitu:

$$\rho = \frac{\pi r^2 . R}{l}$$

$$=\frac{(3,14)(1,25)^2(34)}{5}$$
$$=3371.57ohm-cm$$

Jadi resistivitas tanah ketel hasil perhitungan adalah 3371,57 ohm-cm

4.4 Pengukuran Resistansi Elektroda Batang

Secara teori resistansi dalam sistem pembumian adalah komposisi dari resistansi elektroda batang, resistansi kontak antara permukaan elektroda batang dan tanah disekitarnya, resistansi bagian tanah disekitar elektroda batang pembumian. Untuk mengetahui pengaruh nilai resistansi elektroda batang terhadap resistansi pembumian, pada penelitian ini dilakukan perhitungan resistansi elektroda batang. Resistansi elektroda batang dapat diketahui melalui perhitungan sesuai dengan Persamaan (3-1). Maka dengan demikian dapat ditentukan apakah pengaruh resistansi elektroda batang terhadap sistem pembumian yang diterapkan.

Dengan perhitungan resistansi elektroda batang, yaitu:

Elektroda batang terbuat dari bahan baja berlapis tembaga ρ (resisitivitas elektroda batang) =1,6x10⁻⁶ ohm-cm \int (panjang elektroda batang dalam tanah) = 30 cm d(diameter elektroda batang) = 1,6 cm

Dengan menggunakan Persamaan (3-1), maka resistansinya dapat dihitung yaitu:

$$R = \frac{\rho}{2\pi l} \log_e \frac{4l}{d}$$

$$= \frac{1,6x10^{-6}}{2(3,14)(30)} \log_e \frac{4(30)}{1,6}$$

$$= 4,2463 x10^{-9} (69,4871)$$

$$= 295,063 x10^{-9} ohm$$

Karena resistansi elektroda batang sangat kecil sekali, Maka nilai resistansi elektroda batang pada pengukuran resistansi pembumian

dapat diabaikan karena kecil sekali pengaruhnya terhadap nilai resistansi pembumian. Sedangkan kontak antara tanah dan elektroda batang pembumian pada saat penelitian dapat diabaikan karena nilai resistansinya juga sangat kecil. Dengan demikian resistansi yang paling menentukan harga resistansi sistem pembumian adalah resistansi tanah itu sendiri

4.5 Pengukuran Resistivitas Tanah Lempung

Pengukuran resistivitas tanah lempung menggunakan metode *Wenner*, metode ini adalah metode pengukuran resistivitas tanah dengan menggunakan empat buah elektroda batang pada satu garis lurus dengan jarak yang sama antar elektrodanya dapat dilihat pada Gambar 3.4. Dan hasil pengukuran tegangan dan arus masing-masing akan terbaca pada alat ukur Voltmeter dan Ampermeter, setelah didapatkan besar tegangan dan arus yang terukur maka nilai resistansi pembumian dapat dihitung menggunakan Persamaan (3-1).

Berikut data perhitungan resistivitas tanah lempung yaitu: a(jarak antara elektroda batang yang dimasukkan ke tanah) = 600 cm b(kedalaman penanaman elektroda batang) = 30 cm U(tegangan terukur pada Voltmeter) =0,077 V I(arus terukur pada Ampermeter) =0,091 A Dengan menggunakan Persamaan (3-1), maka dapat diperoleh resistivitasnya sebagai berikut :

$$\rho = \frac{4 \pi a U}{\left(1 + \frac{2 a}{\sqrt{(a^2 + 4b^2)}} - \frac{2 a}{\sqrt{(4a^2 + 4b^2)}}\right) I}$$

$$= \frac{4 (3,14) (600) (0,077)}{\left(1 + \frac{2 (600)}{\sqrt{(600^2 + 4(30)^2)}} - \frac{2 (600)}{\sqrt{(4(600)^2 + 4(30)^2)}}\right) 0,091}$$

$$\rho = 3275,16 \ ohm - cm$$

Maka resistivitas tanah hasil pengukuran yaitu 3275,16 ohm-cm

4.6 Pengaruh Peletakan Semen Konduktif Disekitar Elektroda Batang Terhadap Nilai Resistansi Pembumian Berdasarkan Analisa Matematis dan Hasil Pengukuran.

Untuk memperoleh data tentang pengaruh peletakan semen konduktif terhadap nilai resistansi pembumianya, maka perlu dilakukan pengukuran nilai resistansi pembumian dilapangan secara langsung. Pengukuran ini dilakukan dengan tujuan untung sebagai perbandingan dengan analisa matematis yang telah dilakukan. Pengujian ini dilakukan dengan menggunakan alat yang disebut *Earth Resistance Tester* menggunakan rangkaian sesuai dengan Gambar 3.3. Dengan berbagai macam jenis peletakan untuk menentukan posisi yang paling efektif ditunjukan pada Gambar 3.1 , setelah menemukan posisi yang paling efektif barulah dibandingkan dengan analisa matematisnya. Dalam pengujian ini yang digunakan sebgai obyek penelitian adalah tanah disekitar kampus Elektro ITS.

Tabel 4.3 Hasil pengukuran resistansi pembumian dalam medium tanah dengan komposisi 50% volume semen konduktif 50% volume tanah

Kondisi Tanah	Re (Ohm)
1. Sebelum Pemberian semen Konduktif	49
2.Setelah pemberian semen konduktif,	
dengan peletakan semen pada:	
-Posisi 1	18,3
-Posisi 2	20,5
-Posisi 3	35
-Posisi 4	23,3
-Posisi 5	28,3

Keterangan: Re = resistansi pembumian (Ohm)

Berdasarkan hasil pengukuran resistansi pembumian yang ditunjukkan pada Tabel 4.3, maka terlihat bahwa pemberian semen konduktif yang diletakan dalam berbagai posisi dapat menurunkan nilai resistansi tanah yang semula 49 ohm, menjadi jauh dibawah 49 ohm.

Tabel 4.3 juga menuntukan bahwa pengaruh peletakan semen konduktif yang paling tidak efektif adalah posisi 3 karena penurunanya tidak terlalu signifikan.Namun posisi peletakan yang paling efektif adalah pada posisi satu dan posisi dua, maka posisi satu dan posisi dua akan dilakukan analisa juga secara matematis untuk membandingkan hasil keakuratan yang diperoleh. Dan ini menunjukan bahwa pengkondisian tanah buatan sebagai media pembumian juga efektif untuk menurunkan resistansi tanah yang tinggi.

Kemudian berdasarkan Persamaan (2-2) dapat diketahui nilai resistansi pembumiannya melalui analisis matematis sebagai berikut, jika:

$$R_s = \frac{\rho_s \cdot l_s}{2\pi \cdot r_s \cdot h_s}$$

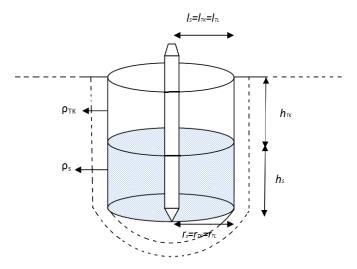
$$R_{TK} = \frac{\rho_{TK} \cdot l_{TK}}{2\pi \cdot r_{TK} \cdot h_{TK}}$$

$$R_{TL} = \frac{\rho_{TL} \cdot l_{TL}}{2\pi \cdot r_{TL}^2}$$

```
dengan:
```

 h_{TK}

 R_e = resistansi pembumian (ohm) R_{ς} = resistansi semen konduktif (ohm) R_{TK} = resistansi tanah katel (ohm) = resistansi tanah lempung(ohm) R_{TI} = resistivitas semen konduktif (ohm-cm) ρ_s = resistivitas tanah katel(ohm-cm) ρ_{TK} = resistivitas tanah lempung (ohm-cm) ρ_{TL} = tebal lapisan semen konduktif (cm) l_{s} l_{TK} = tebal lapisan tanah katel (cm) = tebal lapisan tanah lempung(cm) l_{TL} = jari-jari lapisan semen konduktif (cm) r_s = jari-jari lapisan tanah katel (cm) r_{TK} = jari-jari lapisan tanah lempung (cm) r_{TL} h_s = kedalaman penanaman elektroda batang pada lapisan semen konduktif (cm)


= kedalaman penanaman elektroda batang pada lapisan

tanah katel (cm)

Nilai resistivitas pada masing – masing lapisan telah diketahui dari hasil pengukuran sebelumnya yang telah dilakukan dan diperoleh data, yaitu:

 $\rho_s = 35,91 \text{ ohm-cm}$ $\rho_{TK} = 3371,57 \text{ ohm-cm}$ $\rho_{TL} = 3275,16 \text{ ohm-cm}$

4.6.1 Model Peletakan Semen Konduktif Pada Posisi 1

Gambar 4.1 Model Peletakan Semen Konduktif pada Posisi 1

dengan:

$$l_{\rm S} = l_{\rm TK} = l_{\rm TL} = 15 \text{ cm}$$

 $r_{\rm S} = r_{\rm TK} = r_{\rm TL} = 15 \text{ cm}$
 $h_{\rm S} = h_{\rm TK} = 15 \text{ cm}$

maka:

$$R_{TK} = \frac{(3371,57).(15)}{(6,28).(15).(15)} = 35,79 \text{ ohm}$$

$$R_S = \frac{(35,91).(15)}{(6,28).(15).(15)} = 0,38 \text{ ohm}$$

$$R_{TL} = \frac{(3275,16).(15)}{(6,28).(15)^2} = 34,768 \text{ ohm}$$

$$R_N = R_S // R_{TK} // R_{TL} = 0,371 \text{ ohm}$$

Berdasarkan Gambar 4.1 hasil perhitungan nilai resistansi pembumian untuk tiap lapisan dapat dilihat pada Tabel 4.4 yang perhitungan lengkapnya ditunjukkan pada Lampiran 1 sebagai hasil yang telah diperoleh.

Tabel 4.4 Hasil perhitungan nilai resistansi pembumian dengan model peletakan semen konduktif pada posisi 1 untuk setiap lapisan (l = 3 cm)

n	r (cm)	Rn (ohm)	Re (ohm)
1	3	0,376376	0,376376
2	6	0,187782	0,564158
3	9	0,124918	0,689075
4	12	0,093487	0,782562
5	15	0,074629	0,857191
6	18	1,810841	2,668032
7	21	1,460847	4,128879
8	24	1,207228	5,336107
9	27	1,016613	6,352719
10	30	0,869204	7,221923
11	33	0,752557	7,974481
12	36	0,658488	8,632968
13	39	0,581407	9,214376
14	42	0,517383	9,731759
15	45	0,463575	10,19533
16	48	0,417886	10,61322
17	51	0,378738	10,99196
18	54	0,344922	11,33688
19	57	0,3155	11,65238
20	60	0,289735	11,94212
21	63	0,267037	12,20915
22	66	0,246933	12,45609
23	69	0,229039	12,68512
24	72	0,21304	12,89816
25	75	0,198675	13,09684
26	78	0,185727	13,28257
27	81	0,174015	13,45658
28	84	0,163384	13,61997

Lanjutan **Tabel 4.4**

n r (cm) Rn (ohm) Re (ohm) 29 87 0,153705 13,77367 30 90 0,144867 13,91854 31 93 0,136775 14,05531 32 96 0,129346 14,18466 33 99 0,122509 14,30717 34 102 0,116204 14,42337 35 105 0,110375 14,53375 36 108 0,104976 14,63872 37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46		1		·
30 90 0,144867 13,91854 31 93 0,136775 14,05531 32 96 0,129346 14,18466 33 99 0,12509 14,30717 34 102 0,116204 14,42337 35 105 0,110375 14,53375 36 108 0,104976 14,63872 37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 <t< td=""><td>n</td><td>r (cm)</td><td>Rn (ohm)</td><td>Re (ohm)</td></t<>	n	r (cm)	Rn (ohm)	Re (ohm)
31 93 0,136775 14,05531 32 96 0,129346 14,18466 33 99 0,122509 14,30717 34 102 0,116204 14,42337 35 105 0,110375 14,53375 36 108 0,104976 14,63872 37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 50	29	87	0,153705	13,77367
32 96 0,129346 14,18466 33 99 0,122509 14,30717 34 102 0,116204 14,42337 35 105 0,110375 14,53375 36 108 0,104976 14,63872 37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50	30	90	0,144867	13,91854
33 99 0,122509 14,30717 34 102 0,116204 14,42337 35 105 0,110375 14,53375 36 108 0,104976 14,63872 37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51	31	93	0,136775	14,05531
34 102 0,116204 14,42337 35 105 0,110375 14,53375 36 108 0,104976 14,63872 37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,76308 52 156 0,053921 15,817 53	32	96	0,129346	14,18466
35 105 0,110375 14,53375 36 108 0,104976 14,63872 37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53	33	99	0,122509	14,30717
36 108 0,104976 14,63872 37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54	34	102	0,116204	14,42337
37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55	35	105	0,110375	14,53375
38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56	36	108	0,104976	14,63872
39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57	37	111	0,099966	14,73869
40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58	38	114	0,095307	14,834
41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59	39	117	0,090968	14,92497
42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	40	120	0,08692	15,01189
43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	41	123	0,083138	15,09502
44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	42	126	0,079597	15,17462
45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	43	129	0,076279	15,2509
46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	44	132	0,073165	15,32407
47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	45	135	0,070239	15,3943
48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	46	138	0,067485	15,46179
49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	47	141	0,06489	15,52668
50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	48	144	0,062443	15,58912
51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	49	147	0,060132	15,64925
52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	50	150	0,057947	15,7072
53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	51	153	0,055879	15,76308
54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	52	156	0,053921	15,817
55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	53	159	0,052064	15,86906
56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	54	162	0,050301	15,91937
57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	55	165	0,048627	15,96799
58 174 0,044077 16,10462 59 177 0,042702 16,14733	56	168	0,047035	16,01503
59 177 0,042702 16,14733	57	171	0,04552	16,06055
	58	174	0,044077	16,10462
60 180 0,041391 16,18872	59	177	0,042702	16,14733
	60	180	0,041391	16,18872

Lanjutan **Tabel 4.4**

n	r (cm)	Rn (ohm)	Re (ohm)
61	183	0,040139	16,22886
62	186	0,038943	16,2678
63	189	0,0378	16,3056
64	192	0,036706	16,34231
65	195	0,03566	16,37796
66	198	0,034657	16,41262
67	201	0,033697	16,44632
68	204	0,032775	16,47909
69	207	0,031892	16,51099
70	210	0,031043	16,54203
71	213	0,030228	16,57226
72	216	0,029445	16,6017
73	219	0,028691	16,63039
74	222	0,027967	16,65836
75	225	0,027269	16,68563
76	228	0,026597	16,71223
77	231	0,02595	16,73818
78	234	0,025326	16,7635
79	237	0,024725	16,78823
80	240	0,024145	16,81237
81	243	0,023584	16,83596
82	246	0,023044	16,859
83	249	0,022521	16,88152
84	252	0,022016	16,90354
85	255	0,021528	16,92507
86	258	0,021056	16,94612
87	261	0,0206	16,96672
88	264	0,020158	16,98688
89	267	0,01973	17,00661
90	270	0,019316	17,02593
91	273	0,018914	17,04484
92	276	0,018525	17,06336
93	279	0,018148	17,08151
94	282	0,017782	17,09929
95	285	0,017428	17,11672
		•	•

Laniutan Tabel 4.4

n r (cm) Rn (ohm) Re (ohm) 96 288 0,017083 17,13381 97 291 0,016749 17,15056 98 294 0,016425 17,16698 99 297 0,01611 17,18309 100 300 0,015804 17,19889 101 303 0,015506 17,2144 102 306 0,015217 17,22962 103 309 0,014936 17,24455 104 312 0,014663 17,25922 105 315 0,014397 17,27361 106 318 0,014397 17,27361 107 321 0,013886 17,30164 108 324 0,013641 17,31528 109 327 0,013402 17,32868 110 330 0,012943 17,35479 112 336 0,012943 17,35479 113 339 0,012298 17,38002				
97 291 0,016749 17,15056 98 294 0,016425 17,16698 99 297 0,01611 17,18309 100 300 0,015804 17,19889 101 303 0,015506 17,2144 102 306 0,015217 17,22962 103 309 0,014936 17,24455 104 312 0,014663 17,25922 105 315 0,014397 17,27361 106 318 0,014397 17,27361 107 321 0,013886 17,30164 108 324 0,013886 17,30164 109 327 0,013402 17,32868 110 330 0,01317 17,34185 111 333 0,012943 17,35479 112 336 0,012723 17,36752 113 339 0,012507 17,38002 114 342 0,012298 17,39232	n	r (cm)	Rn (ohm)	Re (ohm)
98 294 0,016425 17,16698 99 297 0,01611 17,18309 100 300 0,015804 17,19889 101 303 0,015506 17,2144 102 306 0,015217 17,22962 103 309 0,014936 17,24455 104 312 0,014663 17,25922 105 315 0,014397 17,27361 106 318 0,014138 17,28775 107 321 0,013886 17,30164 108 324 0,013641 17,31528 109 327 0,013402 17,32868 110 330 0,01317 17,34185 111 333 0,012943 17,35479 112 336 0,012723 17,36752 113 339 0,012507 17,38002 114 342 0,01293 17,40441 116 348 0,011894 17,41631	96	288	0,017083	17,13381
99 297 0,01611 17,18309 100 300 0,015804 17,19889 101 303 0,015506 17,2144 102 306 0,015217 17,22962 103 309 0,014936 17,24455 104 312 0,014663 17,25922 105 315 0,014397 17,27361 106 318 0,014138 17,28775 107 321 0,013886 17,30164 108 324 0,013641 17,31528 109 327 0,013402 17,32868 110 330 0,01317 17,34185 111 333 0,012943 17,35479 112 336 0,012943 17,35479 113 339 0,012943 17,354785 114 342 0,01293 17,38002 114 342 0,01298 17,39232 115 345 0,012993 17,42801	97	291	0,016749	17,15056
100 300 0,015804 17,19889 101 303 0,015506 17,2144 102 306 0,015217 17,22962 103 309 0,014936 17,24455 104 312 0,014663 17,25922 105 315 0,014397 17,27361 106 318 0,014138 17,28775 107 321 0,013886 17,30164 108 324 0,013641 17,31528 109 327 0,013402 17,32868 110 330 0,01317 17,34185 111 333 0,012943 17,35479 112 336 0,012943 17,36752 113 339 0,012507 17,38002 114 342 0,012298 17,39232 115 345 0,012093 17,40441 116 348 0,011894 17,41631 117 351 0,011699 17,42801	98	294	0,016425	17,16698
101 303 0,015506 17,2144 102 306 0,015217 17,22962 103 309 0,014936 17,24455 104 312 0,014663 17,25922 105 315 0,014397 17,27361 106 318 0,014138 17,28775 107 321 0,013886 17,30164 108 324 0,013641 17,31528 109 327 0,013402 17,32868 110 330 0,01317 17,34185 111 333 0,012943 17,35479 112 336 0,012723 17,36752 113 339 0,012507 17,38002 114 342 0,012298 17,39232 115 345 0,012093 17,40441 116 348 0,011894 17,41631 117 351 0,011699 17,42801 118 354 0,01151 17,43952	99	297	0,01611	17,18309
102 306 0,015217 17,22962 103 309 0,014936 17,24455 104 312 0,014663 17,25922 105 315 0,014397 17,27361 106 318 0,014138 17,28775 107 321 0,013886 17,30164 108 324 0,013641 17,31528 109 327 0,013402 17,32868 110 330 0,01317 17,32868 110 330 0,012943 17,35479 112 336 0,012943 17,35479 112 336 0,012723 17,36752 113 339 0,012507 17,38002 114 342 0,012298 17,39232 115 345 0,012093 17,40441 116 348 0,011894 17,41631 117 351 0,011699 17,42801 118 354 0,011324 17,45084	100	300	0,015804	17,19889
103 309 0,014936 17,24455 104 312 0,014663 17,25922 105 315 0,014397 17,27361 106 318 0,014138 17,28775 107 321 0,013886 17,30164 108 324 0,013641 17,31528 109 327 0,013402 17,32868 110 330 0,01317 17,34185 111 333 0,012943 17,35479 112 336 0,012723 17,36752 113 339 0,012507 17,38002 114 342 0,012298 17,39232 115 345 0,012093 17,40441 116 348 0,011894 17,41631 117 351 0,011699 17,42801 118 354 0,01151 17,43952 119 357 0,011324 17,45084 120 360 0,011144 17,46198	101	303	0,015506	17,2144
104 312 0,014663 17,25922 105 315 0,014397 17,27361 106 318 0,014138 17,28775 107 321 0,013886 17,30164 108 324 0,013641 17,31528 109 327 0,013402 17,32868 110 330 0,01317 17,34185 111 333 0,012943 17,35479 112 336 0,012723 17,36752 113 339 0,012507 17,38002 114 342 0,012298 17,39232 115 345 0,012298 17,39232 115 345 0,012093 17,40441 116 348 0,011894 17,41631 117 351 0,011699 17,42801 118 354 0,01151 17,43952 119 357 0,011324 17,45084 120 360 0,011144 17,46198	102	306	0,015217	17,22962
105 315 0,014397 17,27361 106 318 0,014138 17,28775 107 321 0,013886 17,30164 108 324 0,013641 17,31528 109 327 0,013402 17,32868 110 330 0,01317 17,34185 111 333 0,012943 17,35479 112 336 0,012723 17,36752 113 339 0,012507 17,38002 114 342 0,012298 17,39232 115 345 0,012093 17,40441 116 348 0,011894 17,41631 117 351 0,011699 17,42801 118 354 0,01151 17,43952 119 357 0,011324 17,45084 120 360 0,011144 17,46198 121 363 0,010967 17,47295 122 366 0,010795 17,48375	103	309	0,014936	17,24455
106 318 0,014138 17,28775 107 321 0,013886 17,30164 108 324 0,013641 17,31528 109 327 0,013402 17,32868 110 330 0,01317 17,34185 111 333 0,012943 17,35479 112 336 0,012723 17,36752 113 339 0,012507 17,38002 114 342 0,012298 17,39232 115 345 0,012093 17,40441 116 348 0,011894 17,41631 117 351 0,011699 17,42801 118 354 0,01151 17,43952 119 357 0,011324 17,45084 120 360 0,011144 17,46198 121 363 0,010967 17,47295 122 366 0,010795 17,48375 123 369 0,010627 17,50484	104	312	0,014663	17,25922
107 321 0,013886 17,30164 108 324 0,013641 17,31528 109 327 0,013402 17,32868 110 330 0,01317 17,34185 111 333 0,012943 17,35479 112 336 0,012723 17,36752 113 339 0,012507 17,38002 114 342 0,012298 17,39232 115 345 0,012093 17,40441 116 348 0,011894 17,41631 117 351 0,011699 17,42801 118 354 0,01151 17,43952 119 357 0,011324 17,45084 120 360 0,011144 17,46198 121 363 0,010967 17,47295 122 366 0,010795 17,48375 123 369 0,010627 17,49437 124 372 0,010462 17,50484	105	315	0,014397	17,27361
108 324 0,013641 17,31528 109 327 0,013402 17,32868 110 330 0,01317 17,34185 111 333 0,012943 17,35479 112 336 0,012723 17,36752 113 339 0,012507 17,38002 114 342 0,012298 17,39232 115 345 0,012093 17,40441 116 348 0,011894 17,41631 117 351 0,011699 17,42801 118 354 0,01151 17,43952 119 357 0,011324 17,45084 120 360 0,011144 17,46198 121 363 0,010967 17,47295 122 366 0,010795 17,48375 123 369 0,010627 17,49437 124 372 0,010462 17,50484 125 375 0,010302 17,51514	106	318	0,014138	17,28775
109 327 0,013402 17,32868 110 330 0,01317 17,34185 111 333 0,012943 17,35479 112 336 0,012723 17,36752 113 339 0,012507 17,38002 114 342 0,012298 17,39232 115 345 0,012093 17,40441 116 348 0,011894 17,41631 117 351 0,011699 17,42801 118 354 0,01151 17,43952 119 357 0,011324 17,45084 120 360 0,011144 17,46198 121 363 0,010967 17,47295 122 366 0,010795 17,48375 123 369 0,010627 17,49437 124 372 0,010462 17,50484 125 375 0,010302 17,51514 126 378 0,010145 17,52528	107	321	0,013886	17,30164
110 330 0,01317 17,34185 111 333 0,012943 17,35479 112 336 0,012723 17,36752 113 339 0,012507 17,38002 114 342 0,012298 17,39232 115 345 0,012093 17,40441 116 348 0,011894 17,41631 117 351 0,011699 17,42801 118 354 0,01151 17,43952 119 357 0,011324 17,45084 120 360 0,011144 17,46198 121 363 0,010967 17,47295 122 366 0,010795 17,48375 123 369 0,010627 17,49437 124 372 0,010462 17,50484 125 375 0,010302 17,51514 126 378 0,010145 17,52528 127 381 0,009991 17,53527	108	324	0,013641	17,31528
111 333 0,012943 17,35479 112 336 0,012723 17,36752 113 339 0,012507 17,38002 114 342 0,012298 17,39232 115 345 0,012093 17,40441 116 348 0,011894 17,41631 117 351 0,011699 17,42801 118 354 0,01151 17,43952 119 357 0,011324 17,45084 120 360 0,011144 17,46198 121 363 0,010967 17,47295 122 366 0,010795 17,48375 123 369 0,010627 17,49437 124 372 0,010462 17,50484 125 375 0,010302 17,51514 126 378 0,010145 17,52528 127 381 0,009991 17,53527 128 384 0,009695 17,554812	109	327	0,013402	17,32868
112 336 0,012723 17,36752 113 339 0,012507 17,38002 114 342 0,012298 17,39232 115 345 0,012093 17,40441 116 348 0,011894 17,41631 117 351 0,011699 17,42801 118 354 0,01151 17,43952 119 357 0,011324 17,45084 120 360 0,011144 17,46198 121 363 0,010967 17,47295 122 366 0,010795 17,48375 123 369 0,010627 17,49437 124 372 0,010462 17,50484 125 375 0,010302 17,51514 126 378 0,010145 17,52528 127 381 0,009991 17,53527 128 384 0,009695 17,55481	110	330	0,01317	17,34185
113 339 0,012507 17,38002 114 342 0,012298 17,39232 115 345 0,012093 17,40441 116 348 0,011894 17,41631 117 351 0,011699 17,42801 118 354 0,01151 17,43952 119 357 0,011324 17,45084 120 360 0,011144 17,46198 121 363 0,010967 17,47295 122 366 0,010795 17,48375 123 369 0,010627 17,49437 124 372 0,010462 17,50484 125 375 0,010302 17,51514 126 378 0,010145 17,52528 127 381 0,009991 17,53527 128 384 0,009695 17,55481	111	333	0,012943	17,35479
114 342 0,012298 17,39232 115 345 0,012093 17,40441 116 348 0,011894 17,41631 117 351 0,011699 17,42801 118 354 0,01151 17,43952 119 357 0,011324 17,45084 120 360 0,011144 17,46198 121 363 0,010967 17,47295 122 366 0,010795 17,48375 123 369 0,010627 17,49437 124 372 0,010462 17,50484 125 375 0,010302 17,51514 126 378 0,010145 17,52528 127 381 0,009991 17,53527 128 384 0,009842 17,54512 129 387 0,009695 17,55481	112	336	0,012723	17,36752
115 345 0,012093 17,40441 116 348 0,011894 17,41631 117 351 0,011699 17,42801 118 354 0,01151 17,43952 119 357 0,011324 17,45084 120 360 0,011144 17,46198 121 363 0,010967 17,47295 122 366 0,010795 17,48375 123 369 0,010627 17,49437 124 372 0,010462 17,50484 125 375 0,010302 17,51514 126 378 0,010145 17,52528 127 381 0,009991 17,53527 128 384 0,009842 17,54512 129 387 0,009695 17,55481	113	339	0,012507	17,38002
116 348 0,011894 17,41631 117 351 0,011699 17,42801 118 354 0,01151 17,43952 119 357 0,011324 17,45084 120 360 0,011144 17,46198 121 363 0,010967 17,47295 122 366 0,010795 17,48375 123 369 0,010627 17,49437 124 372 0,010462 17,50484 125 375 0,010302 17,51514 126 378 0,010145 17,52528 127 381 0,009991 17,53527 128 384 0,009842 17,54512 129 387 0,009695 17,55481	114	342	0,012298	17,39232
117 351 0,011699 17,42801 118 354 0,01151 17,43952 119 357 0,011324 17,45084 120 360 0,011144 17,46198 121 363 0,010967 17,47295 122 366 0,010795 17,48375 123 369 0,010627 17,49437 124 372 0,010462 17,50484 125 375 0,010302 17,51514 126 378 0,010145 17,52528 127 381 0,009991 17,53527 128 384 0,009842 17,54512 129 387 0,009695 17,55481	115	345	0,012093	17,40441
118 354 0,01151 17,43952 119 357 0,011324 17,45084 120 360 0,011144 17,46198 121 363 0,010967 17,47295 122 366 0,010795 17,48375 123 369 0,010627 17,49437 124 372 0,010462 17,50484 125 375 0,010302 17,51514 126 378 0,010145 17,52528 127 381 0,009991 17,53527 128 384 0,009842 17,54512 129 387 0,009695 17,55481	116	348	0,011894	17,41631
119 357 0,011324 17,45084 120 360 0,011144 17,46198 121 363 0,010967 17,47295 122 366 0,010795 17,48375 123 369 0,010627 17,49437 124 372 0,010462 17,50484 125 375 0,010302 17,51514 126 378 0,010145 17,52528 127 381 0,009991 17,53527 128 384 0,009842 17,54512 129 387 0,009695 17,55481	117	351	0,011699	17,42801
120 360 0,011144 17,46198 121 363 0,010967 17,47295 122 366 0,010795 17,48375 123 369 0,010627 17,49437 124 372 0,010462 17,50484 125 375 0,010302 17,51514 126 378 0,010145 17,52528 127 381 0,009991 17,53527 128 384 0,009842 17,54512 129 387 0,009695 17,55481	118	354	0,01151	17,43952
121 363 0,010967 17,47295 122 366 0,010795 17,48375 123 369 0,010627 17,49437 124 372 0,010462 17,50484 125 375 0,010302 17,51514 126 378 0,010145 17,52528 127 381 0,009991 17,53527 128 384 0,009842 17,54512 129 387 0,009695 17,55481	119	357	0,011324	17,45084
122 366 0,010795 17,48375 123 369 0,010627 17,49437 124 372 0,010462 17,50484 125 375 0,010302 17,51514 126 378 0,010145 17,52528 127 381 0,009991 17,53527 128 384 0,009842 17,54512 129 387 0,009695 17,55481	120	360	0,011144	17,46198
123 369 0,010627 17,49437 124 372 0,010462 17,50484 125 375 0,010302 17,51514 126 378 0,010145 17,52528 127 381 0,009991 17,53527 128 384 0,009842 17,54512 129 387 0,009695 17,55481	121	363	0,010967	17,47295
124 372 0,010462 17,50484 125 375 0,010302 17,51514 126 378 0,010145 17,52528 127 381 0,009991 17,53527 128 384 0,009842 17,54512 129 387 0,009695 17,55481	122	366	0,010795	17,48375
125 375 0,010302 17,51514 126 378 0,010145 17,52528 127 381 0,009991 17,53527 128 384 0,009842 17,54512 129 387 0,009695 17,55481	123	369	0,010627	17,49437
126 378 0,010145 17,52528 127 381 0,009991 17,53527 128 384 0,009842 17,54512 129 387 0,009695 17,55481	124	372	0,010462	17,50484
127 381 0,009991 17,53527 128 384 0,009842 17,54512 129 387 0,009695 17,55481	125	375	0,010302	17,51514
128 384 0,009842 17,54512 129 387 0,009695 17,55481	126	378	0,010145	17,52528
128 384 0,009842 17,54512 129 387 0,009695 17,55481	127	381	0,009991	17,53527
129 387 0,009695 17,55481	128	384	0,009842	
	129	387	0,009695	
	130	390	0,009552	

Laniutan Tabel 4.4

r (cm)	Rn (ohm)	Re (ohm)
393	0,009412	17,57377
396	0,009274	17,58305
399	0,00914	17,59219
402	0,009009	17,6012
405	0,008881	17,61008
408	0,008755	17,61883
411	0,008632	17,62747
414	0,008512	17,63598
417	0,008394	17,64437
420	0,008278	17,65265
423	0,008165	17,66081
426	0,008054	17,66887
429	0,007946	17,67681
432	0,007839	17,68465
435	0,007735	17,69239
438	0,007633	17,70002
441	0,007532	17,70755
444	0,007434	17,71499
447	0,007338	17,72232
450	0,007243	17,72957
453	0,007151	17,73672
456	0,00706	17,74378
459	0,006971	17,75075
462	0,006883	17,75763
465	0,006797	17,76443
468	0,006713	17,77114
471	0,00663	17,77777
474	0,006549	17,78432
477	0,006469	17,79079
480	0,006391	17,79718
	393 396 399 402 405 408 411 414 417 420 423 426 429 432 435 438 441 444 447 450 453 456 459 462 465 468 471 474	393 0,009412 396 0,009274 399 0,00914 402 0,009009 405 0,008881 408 0,008755 411 0,008632 414 0,008512 417 0,008394 420 0,008278 423 0,008165 426 0,008054 429 0,007946 432 0,007338 435 0,007735 438 0,007633 441 0,007532 444 0,007434 447 0,007338 450 0,007243 453 0,007151 456 0,00706 459 0,006971 462 0,006883 465 0,006797 468 0,006713 471 0,00663 474 0,006549 477 0,006469

Laniutan Tabel 4.4

n	r (cm)	Rn (ohm)	Re (ohm)
161	483	0,006314	17,8035
162	486	0,006239	17,80974
163	489	0,006165	17,8159
164	492	0,006092	17,82199
165	495	0,00602	17,82801
166	498	0,00595	17,83396
167	501	0,005881	17,83984
168	504	0,005813	17,84566
169	507	0,005747	17,8514
170	510	0,005681	17,85709
171	513	0,005617	17,8627
172	516	0,005553	17,86826
173	519	0,005491	17,87375
174	522	0,00543	17,87918
175	525	0,00537	17,88455
176	528	0,00531	17,88986
177	531	0,005252	17,89511
178	534	0,005195	17,9003
179	537	0,005139	17,90544
180	540	0,005083	17,91052
181	543	0,005029	17,91555
182	546	0,004975	17,92053
183	549	0,004922	17,92545
184	552	0,00487	17,93032
185	555	0,004819	17,93514
186	558	0,004769	17,93991
187	561	0,004719	17,94463
188	564	0,00467	17,9493
189	567	0,004622	17,95392

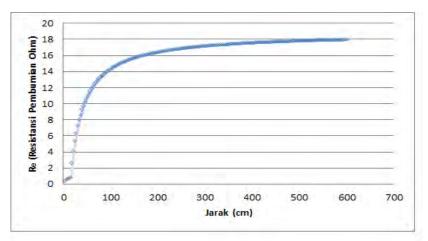
Lanjutan Tabel 4.4

n	r (cm)	Rn (ohm)	Re (ohm)
190	570	0,004575	17,95849
191	573	0,004528	17,96302
192	576	0,004482	17,9675
193	579	0,004437	17,97194
194	582	0,004393	17,97633
195	585	0,004349	17,98068
196	588	0,004306	17,98499
197	591	0,004263	17,98925
198	594	0,004221	17,99347
199	597	0,00418	17,99765
200	600	0,004139	18,00179

Keterangan:

n = lapisan tanah ke-

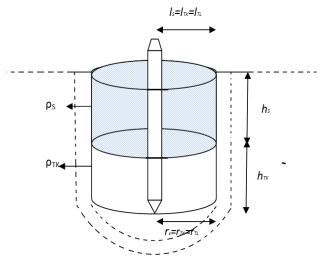
= 1, 2, 3, 4....dst


R_n = resistansi tanah pada lapisan ke-n (ohm)

R_e = resistansi pembumian (ohm)

$$R_e = \sum_{1}^{n} R_n$$

Tabel 4.4 menunjukan bahwa nilai resistansi pada setiap lapisan tanah yang tebal lapisannya sama dilakukan hingga lapisan ke 200, karena pada lapisan tanah tersebut selisih nilai resistansi pembumian terkecil antar lapisan tanah yaitu mencapai 0,000041 ohm. Terlihat bahwa resistansi setiap tebal lapisan tanah berbeda-beda. Resistansi pembumian untuk setiap lapaisan tanah memiliki kecenderungan nilainya semakin kecil.


Berdasarkan Tabel 4.4 dapat dibuat gambar grafik fungsi resistansi pembumian terhadap jarak pada setiap tebal lapisan tanah yang sama.

Gambar 4.2 Grafik fungsi resistansi pembumian terhadap jarak pada setiap tebal lapisan tanah yang sesusai dengan model peletakan semen konduktif pada posisi 1

Nilai resistansi tanah akan terus naik hingga pada nilai tertentu nilai resistansi tanah tidak mengalami perubahan dan memiliki nilai yang cenderung tetap, hal ini berarti nilai resistansi pembumian mengalami titik jenuh. Jarak pada titik itu disebut sebagai jari-jari efektif. Dan saat lapisan ke dua ratus berjarak 600 cm dari elektroda batang utama tanah yang telah diberi *treatment* mempunyai nilai resistansi pembumian sebesar 18,00179 Ohm. Karena pada jarak 600 cm resistansi tanah mulai jenuh dan menunjukan nilai yang konstan. Sehingga dapat diambil kesimpulan bahwa nilai tersebut adalah nilai dari resistansi pembumian.

4.6.2 Model Peletakan Semen Konduktif Pada Posisi 2

Gambar 4.3 Model Peletakan Semen Konduktif pada Posisi 2

dengan:

$$l_{\rm S} = l_{\rm TK} = l_{\rm TL} = 15 \text{ cm}$$

 $r_{\rm S} = r_{\rm TK} = r_{\rm TL} = 15 \text{ cm}$
 $h_{\rm S} = h_{\rm TK} = 15 \text{cm}$

maka:

$$R_{TK} = \frac{(3371,57).(15)}{(6,28).(15).(15)} = 35,79 \text{ ohm}$$

$$R_S = \frac{(35,91).(15)}{(6,28).(15).(15)} = 0,38 \text{ ohm}$$

$$R_{TL} = \frac{(3275,16).(15)}{(6,28).(15)^2} = 34,768 \text{ ohm}$$

$$R_N = R_S //R_{TK} //R_{TL} = 0,371 \text{ ohm}$$

Berdasarkan Gambar 4.3 hasil perhitungan nilai resistansi pembumian untuk tiap lapisan dapat dilihat pada Tabel 4.5 yang perhitungan lengkapnya ditunjukkan pada Lampiran 1.

Tabel 4.5 Hasil perhitungan nilai resistansi pembumian dengan model peletakan semen konduktif pada posisi 2 untuk setiap lapisan (l = 3 cm)

n	r (cm)	Rn (ohm)	Re (ohm)
1	3	0,376376	0,376376
2	6	0,187782	0,564158
3	9	0,124918	0,689075
4	12	0,093487	0,782562
5	15	0,074629	0,857191
6	18	1,810841	2,668032
7	21	1,460847	4,128879
8	24	1,207228	5,336107
9	27	1,016613	6,352719
10	30	0,869204	7,221923
11	33	0,752557	7,974481
12	36	0,658488	8,632968
13	39	0,581407	9,214376
14	42	0,517383	9,731759
15	45	0,463575	10,19533
16	48	0,417886	10,61322
17	51	0,378738	10,99196
18	54	0,344922	11,33688
19	57	0,3155	11,65238
20	60	0,289735	11,94212
21	63	0,267037	12,20915
22	66	0,246933	12,45609
23	69	0,229039	12,68512
24	72	0,21304	12,89816
25	75	0,198675	13,09684
26	78	0,185727	13,28257
27	81	0,174015	13,45658
28	84	0,163384	13,61997

Laniutan Tabel 4.5

n r (cm) Rn (ohm) Re (ohm) 29 87 0,153705 13,77367 30 90 0,144867 13,91854 31 93 0,136775 14,05531 32 96 0,129346 14,18466 33 99 0,122509 14,30717 34 102 0,116204 14,42337 35 105 0,110375 14,53375 36 108 0,104976 14,63872 37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46				
30 90 0,144867 13,91854 31 93 0,136775 14,05531 32 96 0,129346 14,18466 33 99 0,122509 14,30717 34 102 0,116204 14,42337 35 105 0,110375 14,53375 36 108 0,104976 14,63872 37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 <	n	r (cm)	Rn (ohm)	Re (ohm)
31 93 0,136775 14,05531 32 96 0,129346 14,18466 33 99 0,122509 14,30717 34 102 0,116204 14,42337 35 105 0,110375 14,53375 36 108 0,104976 14,63872 37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49	29	87	0,153705	13,77367
32 96 0,129346 14,18466 33 99 0,122509 14,30717 34 102 0,116204 14,42337 35 105 0,110375 14,53375 36 108 0,104976 14,63872 37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50	30	90	0,144867	13,91854
33 99 0,122509 14,30717 34 102 0,116204 14,42337 35 105 0,110375 14,53375 36 108 0,104976 14,63872 37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51	31	93	0,136775	14,05531
34 102 0,116204 14,42337 35 105 0,110375 14,53375 36 108 0,104976 14,63872 37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52	32	96	0,129346	14,18466
35 105 0,110375 14,53375 36 108 0,104976 14,63872 37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,03921 15,817 53 <	33	99	0,122509	14,30717
36 108 0,104976 14,63872 37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54	34	102	0,116204	14,42337
37 111 0,099966 14,73869 38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,053001 15,91937 55	35	105	0,110375	14,53375
38 114 0,095307 14,834 39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,05301 15,91937 55 165 0,048627 15,96799 56 <	36	108	0,104976	14,63872
39 117 0,090968 14,92497 40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,05301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57	37	111	0,099966	14,73869
40 120 0,08692 15,01189 41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,05301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58	38	114	0,095307	14,834
41 123 0,083138 15,09502 42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59	39	117	0,090968	14,92497
42 126 0,079597 15,17462 43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	40	120	0,08692	15,01189
43 129 0,076279 15,2509 44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	41	123	0,083138	15,09502
44 132 0,073165 15,32407 45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	42	126	0,079597	15,17462
45 135 0,070239 15,3943 46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	43	129	0,076279	15,2509
46 138 0,067485 15,46179 47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	44	132	0,073165	15,32407
47 141 0,06489 15,52668 48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	45	135	0,070239	15,3943
48 144 0,062443 15,58912 49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	46	138	0,067485	15,46179
49 147 0,060132 15,64925 50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	47	141	0,06489	15,52668
50 150 0,057947 15,7072 51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	48	144	0,062443	15,58912
51 153 0,055879 15,76308 52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	49	147	0,060132	15,64925
52 156 0,053921 15,817 53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	50	150	0,057947	15,7072
53 159 0,052064 15,86906 54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	51	153	0,055879	15,76308
54 162 0,050301 15,91937 55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	52	156	0,053921	15,817
55 165 0,048627 15,96799 56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	53	159	0,052064	15,86906
56 168 0,047035 16,01503 57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	54	162	0,050301	15,91937
57 171 0,04552 16,06055 58 174 0,044077 16,10462 59 177 0,042702 16,14733	55	165	0,048627	15,96799
58 174 0,044077 16,10462 59 177 0,042702 16,14733	56	168	0,047035	16,01503
59 177 0,042702 16,14733	57	171	0,04552	16,06055
	58	174	0,044077	16,10462
60 180 0,041391 16,18872	59	177	0,042702	16,14733
	60	180	0,041391	16,18872

Laniutan Tabel 4.5

n r (cm) Rn (onm) Re (onm) 61 183 0,040139 16,22886 62 186 0,038943 16,2678 63 189 0,0378 16,3056 64 192 0,036706 16,34231 65 195 0,03566 16,37796 66 198 0,034657 16,41262 67 201 0,033697 16,44632 68 204 0,032775 16,47909 69 207 0,031043 16,51099 70 210 0,031043 16,54203 71 213 0,030228 16,57226 72 216 0,029445 16,6017 73 219 0,028691 16,653039 74 222 0,027967 16,65836 75 225 0,027269 16,68563 76 228 0,026597 16,71223 77 231 0,02595 16,78823 80		, ,	D / I)	D / I \
62 186 0,038943 16,2678 63 189 0,0378 16,3056 64 192 0,036706 16,34231 65 195 0,03566 16,37796 66 198 0,034657 16,41262 67 201 0,033697 16,44632 68 204 0,032775 16,47909 69 207 0,031892 16,51099 70 210 0,031043 16,54203 71 213 0,030228 16,57226 72 216 0,029445 16,6017 73 219 0,028691 16,63039 74 222 0,027967 16,65836 75 225 0,027269 16,68563 76 228 0,026597 16,73818 78 234 0,02595 16,78823 80 240 0,024145 16,81237 81 243 0,023584 16,83596 82	n	r (cm)	Rn (ohm) Re (ohm)	
63 189 0,0378 16,3056 64 192 0,036706 16,34231 65 195 0,03566 16,37796 66 198 0,034657 16,41262 67 201 0,033697 16,44632 68 204 0,032775 16,47909 69 207 0,031892 16,51099 70 210 0,031043 16,54203 71 213 0,030228 16,57226 72 216 0,029445 16,6017 73 219 0,028691 16,63039 74 222 0,027967 16,65836 75 225 0,027269 16,68563 76 228 0,026597 16,71223 77 231 0,02595 16,73818 78 234 0,02595 16,78823 80 240 0,024725 16,78823 81 243 0,023584 16,88152 84			† · ·	
64 192 0,036706 16,34231 65 195 0,03566 16,37796 66 198 0,034657 16,41262 67 201 0,033697 16,44632 68 204 0,032775 16,47909 69 207 0,031892 16,51099 70 210 0,031043 16,54203 71 213 0,030228 16,57226 72 216 0,029445 16,6017 73 219 0,028691 16,63039 74 222 0,027967 16,65836 75 225 0,027269 16,68563 76 228 0,026597 16,71223 77 231 0,02595 16,73818 78 234 0,02595 16,78823 80 240 0,024725 16,88152 81 243 0,023584 16,859 82 246 0,023044 16,859 83			-	
65 195 0,03566 16,37796 66 198 0,034657 16,41262 67 201 0,033697 16,44632 68 204 0,032775 16,47909 69 207 0,031892 16,51099 70 210 0,031043 16,54203 71 213 0,030228 16,57226 72 216 0,029445 16,6017 73 219 0,028691 16,63039 74 222 0,027967 16,65836 75 225 0,027269 16,68563 76 228 0,026597 16,71223 77 231 0,02595 16,78818 78 234 0,02595 16,78823 80 240 0,024725 16,78823 80 240 0,024725 16,83596 82 246 0,023044 16,859 83 249 0,022521 16,88152 84	63		,	
66 198 0,034657 16,41262 67 201 0,033697 16,44632 68 204 0,032775 16,47909 69 207 0,031892 16,51099 70 210 0,031043 16,54203 71 213 0,030228 16,57226 72 216 0,029445 16,6017 73 219 0,028691 16,63039 74 222 0,027967 16,65836 75 225 0,027269 16,68563 76 228 0,026597 16,71223 77 231 0,02595 16,78818 78 234 0,02595 16,78823 80 240 0,024725 16,78823 80 240 0,024725 16,81237 81 243 0,023584 16,83596 82 246 0,023044 16,859 83 249 0,022521 16,88152 84	64	192		16,34231
67 201 0,033697 16,44632 68 204 0,032775 16,47909 69 207 0,031892 16,51099 70 210 0,031043 16,54203 71 213 0,030228 16,57226 72 216 0,029445 16,6017 73 219 0,028691 16,63039 74 222 0,027967 16,65836 75 225 0,027269 16,68563 76 228 0,026597 16,71223 77 231 0,02595 16,73818 78 234 0,02595 16,78823 80 240 0,024725 16,78823 80 240 0,024725 16,81237 81 243 0,023584 16,859 82 246 0,023044 16,859 83 249 0,022521 16,88152 84 252 0,022016 16,90354 85			0,03566	16,37796
68 204 0,032775 16,47909 69 207 0,031892 16,51099 70 210 0,031043 16,54203 71 213 0,030228 16,57226 72 216 0,029445 16,6017 73 219 0,028691 16,63039 74 222 0,027967 16,65836 75 225 0,027269 16,68563 76 228 0,026597 16,71223 77 231 0,02595 16,73818 78 234 0,025326 16,7635 79 237 0,024725 16,78823 80 240 0,024145 16,81237 81 243 0,023584 16,83596 82 246 0,023044 16,859 83 249 0,022521 16,88152 84 252 0,022016 16,90354 85 255 0,021528 16,92507 86	66	198	0,034657	16,41262
69 207 0,031892 16,51099 70 210 0,031043 16,54203 71 213 0,030228 16,57226 72 216 0,029445 16,6017 73 219 0,028691 16,63039 74 222 0,027967 16,65836 75 225 0,027269 16,68563 76 228 0,026597 16,71223 77 231 0,02595 16,73818 78 234 0,025326 16,7635 79 237 0,024725 16,78823 80 240 0,024145 16,81237 81 243 0,023584 16,83596 82 246 0,023044 16,859 83 249 0,022521 16,88152 84 252 0,022016 16,90354 85 255 0,021528 16,92507 86 258 0,021056 16,94612 87	67	201	0,033697	16,44632
70 210 0,031043 16,54203 71 213 0,030228 16,57226 72 216 0,029445 16,6017 73 219 0,028691 16,63039 74 222 0,027967 16,65836 75 225 0,027269 16,68563 76 228 0,026597 16,71223 77 231 0,02595 16,73818 78 234 0,02595 16,78823 80 240 0,024725 16,78823 80 240 0,024725 16,78823 81 243 0,023584 16,83596 82 246 0,023044 16,859 83 249 0,022521 16,88152 84 252 0,022016 16,90354 85 255 0,021528 16,92507 86 258 0,02158 16,98688 89 267 0,01973 17,00661 90	68	204	0,032775	16,47909
71 213 0,030228 16,57226 72 216 0,029445 16,6017 73 219 0,028691 16,63039 74 222 0,027967 16,65836 75 225 0,027269 16,68563 76 228 0,026597 16,71223 77 231 0,02595 16,73818 78 234 0,02595 16,78823 80 240 0,024725 16,78823 80 240 0,024725 16,81237 81 243 0,023584 16,83596 82 246 0,023044 16,859 83 249 0,022521 16,88152 84 252 0,022016 16,90354 85 255 0,021528 16,92507 86 258 0,021056 16,94612 87 261 0,0206 16,96672 88 264 0,020158 16,98688 89	69	207	0,031892	16,51099
72 216 0,029445 16,6017 73 219 0,028691 16,63039 74 222 0,027967 16,65836 75 225 0,027269 16,68563 76 228 0,026597 16,71223 77 231 0,02595 16,73818 78 234 0,025326 16,7635 79 237 0,024725 16,78823 80 240 0,024145 16,81237 81 243 0,023584 16,83596 82 246 0,023044 16,859 83 249 0,022521 16,88152 84 252 0,022016 16,90354 85 255 0,021528 16,92507 86 258 0,021056 16,94612 87 261 0,0206 16,96672 88 264 0,020158 16,98688 89 267 0,01973 17,00661 90	70	210	0,031043	16,54203
73 219 0,028691 16,63039 74 222 0,027967 16,65836 75 225 0,027269 16,68563 76 228 0,026597 16,71223 77 231 0,02595 16,73818 78 234 0,025326 16,7635 79 237 0,024725 16,78823 80 240 0,024145 16,81237 81 243 0,023584 16,83596 82 246 0,023044 16,859 83 249 0,022521 16,88152 84 252 0,022016 16,90354 85 255 0,021528 16,92507 86 258 0,021056 16,94612 87 261 0,0206 16,98688 89 267 0,01973 17,00661 90 270 0,019316 17,02593 91 273 0,018525 17,06336 93	71	213	0,030228	16,57226
74 222 0,027967 16,65836 75 225 0,027269 16,68563 76 228 0,026597 16,71223 77 231 0,02595 16,73818 78 234 0,025326 16,7635 79 237 0,024725 16,78823 80 240 0,024145 16,81237 81 243 0,023584 16,83596 82 246 0,023044 16,859 83 249 0,022521 16,88152 84 252 0,022016 16,90354 85 255 0,021528 16,92507 86 258 0,021056 16,94612 87 261 0,0206 16,96672 88 264 0,020158 16,98688 89 267 0,01973 17,00661 90 270 0,018914 17,04484 92 276 0,018525 17,06336 93	72	216	0,029445	16,6017
75 225 0,027269 16,68563 76 228 0,026597 16,71223 77 231 0,02595 16,73818 78 234 0,025326 16,7635 79 237 0,024725 16,78823 80 240 0,024145 16,81237 81 243 0,023584 16,83596 82 246 0,023044 16,859 83 249 0,022521 16,88152 84 252 0,022016 16,90354 85 255 0,021528 16,92507 86 258 0,021056 16,94612 87 261 0,0206 16,96672 88 264 0,020158 16,98688 89 267 0,01973 17,00661 90 270 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,09929	73	219	0,028691	16,63039
76 228 0,026597 16,71223 77 231 0,02595 16,73818 78 234 0,025326 16,7635 79 237 0,024725 16,78823 80 240 0,024145 16,81237 81 243 0,023584 16,83596 82 246 0,023044 16,859 83 249 0,022521 16,88152 84 252 0,022016 16,90354 85 255 0,021528 16,92507 86 258 0,021056 16,94612 87 261 0,0206 16,96672 88 264 0,020158 16,98688 89 267 0,01973 17,00661 90 270 0,019316 17,02593 91 273 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,09929	74	222	0,027967	16,65836
77 231 0,02595 16,73818 78 234 0,025326 16,7635 79 237 0,024725 16,78823 80 240 0,024145 16,81237 81 243 0,023584 16,83596 82 246 0,023044 16,859 83 249 0,022521 16,88152 84 252 0,022016 16,90354 85 255 0,021528 16,92507 86 258 0,021056 16,94612 87 261 0,0206 16,96672 88 264 0,020158 16,98688 89 267 0,01973 17,00661 90 270 0,019316 17,02593 91 273 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,09929	75	225	0,027269	16,68563
78 234 0,025326 16,7635 79 237 0,024725 16,78823 80 240 0,024145 16,81237 81 243 0,023584 16,83596 82 246 0,023044 16,859 83 249 0,022521 16,88152 84 252 0,022016 16,90354 85 255 0,021528 16,92507 86 258 0,021056 16,94612 87 261 0,0206 16,96672 88 264 0,020158 16,98688 89 267 0,01973 17,00661 90 270 0,019316 17,02593 91 273 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,08151 94 282 0,017782 17,09929	76	228	0,026597	16,71223
79 237 0,024725 16,78823 80 240 0,024145 16,81237 81 243 0,023584 16,83596 82 246 0,023044 16,859 83 249 0,022521 16,88152 84 252 0,022016 16,90354 85 255 0,021528 16,92507 86 258 0,021056 16,94612 87 261 0,0206 16,96672 88 264 0,020158 16,98688 89 267 0,01973 17,00661 90 270 0,019316 17,02593 91 273 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,08151 94 282 0,017782 17,09929	77	231	0,02595	16,73818
80 240 0,024145 16,81237 81 243 0,023584 16,83596 82 246 0,023044 16,859 83 249 0,022521 16,88152 84 252 0,022016 16,90354 85 255 0,021528 16,92507 86 258 0,021056 16,94612 87 261 0,0206 16,96672 88 264 0,020158 16,98688 89 267 0,01973 17,00661 90 270 0,019316 17,02593 91 273 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,08151 94 282 0,017782 17,09929	78	234	0,025326	16,7635
81 243 0,023584 16,83596 82 246 0,023044 16,859 83 249 0,022521 16,88152 84 252 0,022016 16,90354 85 255 0,021528 16,92507 86 258 0,021056 16,94612 87 261 0,0206 16,96672 88 264 0,020158 16,98688 89 267 0,01973 17,00661 90 270 0,019316 17,02593 91 273 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,08151 94 282 0,017782 17,09929	79	237	0,024725	16,78823
82 246 0,023044 16,859 83 249 0,022521 16,88152 84 252 0,022016 16,90354 85 255 0,021528 16,92507 86 258 0,021056 16,94612 87 261 0,0206 16,96672 88 264 0,020158 16,98688 89 267 0,01973 17,00661 90 270 0,019316 17,02593 91 273 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,08151 94 282 0,017782 17,09929	80	240	0,024145	16,81237
83 249 0,022521 16,88152 84 252 0,022016 16,90354 85 255 0,021528 16,92507 86 258 0,021056 16,94612 87 261 0,0206 16,96672 88 264 0,020158 16,98688 89 267 0,01973 17,00661 90 270 0,019316 17,02593 91 273 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,08151 94 282 0,017782 17,09929	81	243	0,023584	16,83596
84 252 0,022016 16,90354 85 255 0,021528 16,92507 86 258 0,021056 16,94612 87 261 0,0206 16,96672 88 264 0,020158 16,98688 89 267 0,01973 17,00661 90 270 0,019316 17,02593 91 273 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,08151 94 282 0,017782 17,09929	82	246	0,023044	16,859
85 255 0,021528 16,92507 86 258 0,021056 16,94612 87 261 0,0206 16,96672 88 264 0,020158 16,98688 89 267 0,01973 17,00661 90 270 0,019316 17,02593 91 273 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,08151 94 282 0,017782 17,09929	83	249	0,022521	16,88152
86 258 0,021056 16,94612 87 261 0,0206 16,96672 88 264 0,020158 16,98688 89 267 0,01973 17,00661 90 270 0,019316 17,02593 91 273 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,08151 94 282 0,017782 17,09929	84	252	0,022016	16,90354
87 261 0,0206 16,96672 88 264 0,020158 16,98688 89 267 0,01973 17,00661 90 270 0,019316 17,02593 91 273 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,08151 94 282 0,017782 17,09929	85	255	0,021528	16,92507
88 264 0,020158 16,98688 89 267 0,01973 17,00661 90 270 0,019316 17,02593 91 273 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,08151 94 282 0,017782 17,09929	86	258	0,021056	16,94612
89 267 0,01973 17,00661 90 270 0,019316 17,02593 91 273 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,08151 94 282 0,017782 17,09929	87	261	0,0206	16,96672
90 270 0,019316 17,02593 91 273 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,08151 94 282 0,017782 17,09929	88	264	0,020158	16,98688
91 273 0,018914 17,04484 92 276 0,018525 17,06336 93 279 0,018148 17,08151 94 282 0,017782 17,09929	89	267	0,01973	
92 276 0,018525 17,06336 93 279 0,018148 17,08151 94 282 0,017782 17,09929	90	270	0,019316	17,02593
93 279 0,018148 17,08151 94 282 0,017782 17,09929	91	273	0,018914	17,04484
94 282 0,017782 17,09929	92	276	0,018525	17,06336
·	93	279	0,018148	17,08151
95 285 0,017428 17,11672	94	282	0,017782	17,09929
	95	285	0,017428	17,11672

Laniutan Tabel 4.5

	Lamutai	1 1 abel 4.5	
n	r (cm)	Rn (ohm)	Re (ohm)
96	288	0,017083 17,1338	
97	291	0,016749 17,1505	
98	294	0,016425	17,16698
99	297	0,01611	17,18309
100	300	0,015804	17,19889
101	303	0,015506	17,2144
102	306	0,015217	17,22962
103	309	0,014936	17,24455
104	312	0,014663	17,25922
105	315	0,014397	17,27361
106	318	0,014138	17,28775
107	321	0,013886	17,30164
108	324	0,013641	17,31528
109	327	0,013402	17,32868
110	330	0,01317	17,34185
111	333	0,012943	17,35479
112	336	0,012723	17,36752
113	339	0,012507	17,38002
114	342	0,012298	17,39232
115	345	0,012093	17,40441
116	348	0,011894	17,41631
117	351	0,011699	17,42801
118	354	0,01151	17,43952
119	357	0,011324	17,45084
120	360	0,011144	17,46198
121	363	0,010967	17,47295
122	366	0,010795	17,48375
123	369	0,010627	17,49437
124	372	0,010462	17,50484
125	375	0,010302	17,51514
126	378	0,010145	17,52528
127	381	0,009991	17,53527
128	384	0,009842	17,54512
129	387	0,009695	17,55481
130	390	0,009552	17,56436
		•	•

Laniutan **Tabel 4.5**

r (cm)	Rn (ohm) Re (ohm)	
393	0,009412 17,5737	
396	0,009274 17,5830	
399	0,00914	17,59219
402	0,009009	17,6012
405	0,008881	17,61008
408	0,008755	17,61883
411	0,008632	17,62747
414	0,008512	17,63598
417	0,008394	17,64437
420	0,008278	17,65265
423	0,008165	17,66081
426	0,008054	17,66887
429	0,007946	17,67681
432	0,007839	17,68465
435	0,007735 17,6923	
438	0,007633	17,70002
441	0,007532	17,70755
444	0,007434 17,7149	
447	0,007338	17,72232
450	0,007243	17,72957
453	0,007151	17,73672
456	0,00706	17,74378
459	0,006971	17,75075
462	0,006883	17,75763
465	0,006797	17,76443
468	0,006713 17,77114	
471	0,00663	17,77777
474	0,006549	17,78432
477	0,006469	17,79079
480	0,006391	17,79718
	393 396 399 402 405 408 411 414 417 420 423 426 429 432 435 438 441 444 447 450 453 456 459 462 468 471 474	393 0,009412 396 0,009274 399 0,00914 402 0,009009 405 0,008881 408 0,008755 411 0,008632 414 0,008512 417 0,008394 420 0,008278 423 0,008165 426 0,008054 429 0,007946 432 0,007338 435 0,007735 438 0,007633 441 0,007532 444 0,007434 447 0,007338 450 0,007243 453 0,007151 456 0,00706 459 0,006971 462 0,006883 465 0,006797 468 0,006713 471 0,00663 474 0,006549 477 0,006469

Laniutan Tabel 4.5

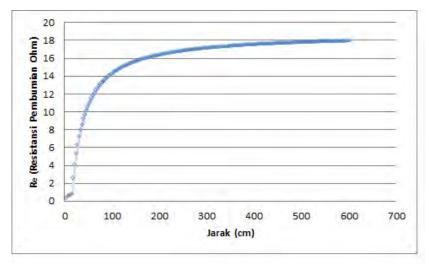
n	r (cm)	Rn (ohm) Re (ohm)	
161	483	0,006314 17,8035	
162	486	0,006239	17,80974
163	489	0,006165	17,8159
164	492	0,006092	17,82199
165	495	0,00602	17,82801
166	498	0,00595	17,83396
167	501	0,005881	17,83984
168	504	0,005813	17,84566
169	507	0,005747	17,8514
170	510	0,005681	17,85709
171	513	0,005617	17,8627
172	516	0,005553	17,86826
173	519	0,005491	17,87375
174	522	0,00543 17,8793	
175	525	0,00537	17,88455
176	528	0,00531 17,8898	
177	531	0,005252	17,89511
178	534	0,005195	17,9003
179	537	0,005139	17,90544
180	540	0,005083	17,91052
181	543	0,005029	17,91555
182	546	0,004975	17,92053
183	549	0,004922 17,92545	
184	552	0,00487	17,93032
185	555	0,004819	17,93514
186	558	0,004769 17,93991	
187	561	0,004719	17,94463
188	564	0,00467	17,9493
189	567	0,004622	17,95392

Laniutan **Tabel 4.5**

n	r (cm)	Rn (ohm)	Re (ohm)	
190	570	0,004575	17,95849	
191	573	0,004528	17,96302	
192	576	0,004482	17,9675	
193	579	0,004437	17,97194	
194	582	0,004393	17,97633	
195	585	0,004349	17,98068	
196	588	0,004306 17,9849		
197	591	0,004263	17,98925	
198	594	0,004221	17,99347	
199	597	0,00418 17,9976		
200	600	0,004139 18,00179		

Keterangan:

n = lapisan tanah ke-= 1, 2, 3, 4....dst


 R_n = resistansi tanah pada lapisan ke-n (ohm)

R_e = resistansi pembumian (ohm)

$$R_e = \sum_{1}^{n} R_n$$

Tabel 4.5 menunjukan bahwa nilai resistansi pada setiap lapisan tanah yang tebal lapisannya sama dilakukan hingga lapisan ke 200, karena pada lapisan tanah tersebut selisih nilai resistansi pembumian terkecil antar lapisan tanah yaitu mencapai 0,000041 ohm. Terlihat bahwa resistansi setiap tebal lapisan tanah berbeda-beda. Resistansi pembumian untuk setiap lapaisan tanah memiliki kecenderungan nilainya semakin kecil.

Berdasarkan Tabel 4.5 dapat dibuat gambar grafik fungsi resistansi pembumian terhadap jarak pada setiap tebal lapisan tanah yang sama.

Gambar 4.4 Grafik fungsi resistansi pembumian terhadap jarak pada setiap tebal lapisan tanah yang sesusai dengan model peletakan semen konduktif pada posisi 2

Nilai resistansi tanah akan terus naik hingga pada nilai tertentu nilai resistansi tanah tidak mengalami perubahan dan memiliki nilai yang cenderung tetap, hal ini berarti nilai resistansi pembumian mengalami titik jenuh. Jarak pada titik itu disebut sebagai jari-jari efektif. Dan saat lapisan ke dua ratus berjarak 600 c m dari elektroda batang utama mempunyai nilai resistansi pembumian sebesar 18,00179 Ohm.

Bersasarkan hasil pengukuran diketahui bahwa model peletakan posisi satu dan posisi dua lah yang paling efektif, maka selanjutnya telah dianalisa secara matematik dan diperoleh hasil seperti pada Tabel 4.6.

Tabel 4.6 Perbandingan nilai resistansi pembumian antara hasil pengukuran dengan dengan analisa matematik

Model Peletakan	Re hasil	Re hasil analisa
Semen Konduktif	Semen Konduktif pengukuran (ohm)	
Posisi 1	18,3	18,0017
Posisi 2	20,5	18,0017

Dari Tabel 4.6 terlihat bahwa prosentase kesalahan model peletakan semen konduktif pada posisi satu lebih kecil dibandingkan model peletakan semen konduktif pada posisi dua. Terbukti setelah dilakukan analisis melalui dua pendekatan yaitu secara matematik dan pengukuran secara langsung, dapat diketahui bahwa peletakan semen konduktif pada tanah dengan posisi satu mempunyai nilai resistansi pembumian yang paling kecil.

4.7 Persebaran Medan Terhadap Peletakan Semen Konduktif Disekitar Kombinasi Elektroda Jaring dan Elektroda Batang Terhadap Nilai Resistansi Pembumian Berdasarkan Analisa Simulasi Pada *Software* dan Hasil Pengukuran.

Sama dengan pengujian sebelumnya alat ukur resistansi pembumian menggunakan *Earth Resistance Tester*, dengan menggunakan metode yang sama yaitu metode tiga titik. Namun pada pengujian kali ini bukan membandingkan besar resistansi pembumian melainkan melihat persebaran medan yang ditimbulkan. Dengan data yang diperoleh dari pengujian langsung.

Data yang diperoleh adalah sebagai berikut :

Tabel 4.7 Hasil pengukuran resistansi tanah disekitar elektroda batang dan jaring

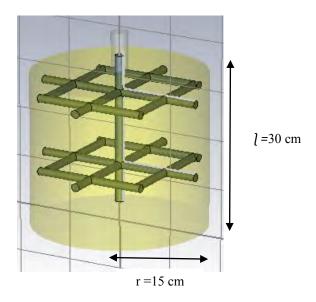
Model Peletakan	Re hasil		
Semen Konduktif	pengukuran (ohm)		
Posisi 1	25,7		
Posisi 2	24,3		

4.8 Mengetahui Persebaran Medan dengan Menggunakan Perangkat Lunak

Untuk melakukan simulasi dengan perangkat lunak maka ada beberapa komponen yang harus dipenuhi maka harus dapat dipergunakan persamaan (2-1)

$$\rho = \frac{R \cdot A}{l}$$

$$R = \text{nilai resistansi hasil pengukuran (ohm)}$$


$$l = \text{tinggi semen konduktif dalam tabung ukur (cm)}$$

$$A = \text{luas penampang tabung ukur (cm}^2)$$

$$\sigma = \text{conductivity (S/cm)}$$

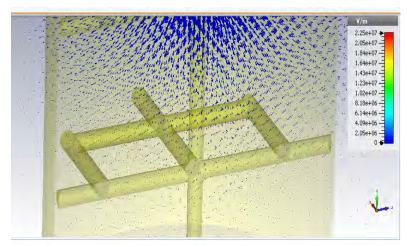
$$\rho = \text{Resistivitas (ohm-cm)}$$

4.8.1 Model Peletakan Posisi 1 Dengan Elektroda Gabungan

Gambar 4.5 Model Peletakan Posisi 1 Dengan Kombinasi Elektroda Batang dan Jaring

Re = 25,7 ohm
$$\rho = \frac{R.2\pi.r^2}{l}$$

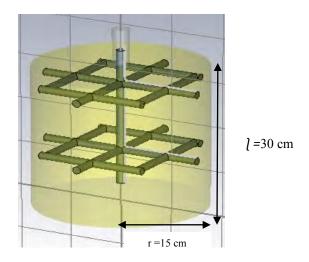
$$\rho = \frac{(25,7).2(3,14).(15)^2}{30}$$


$$\rho = 1210,47 Ω-cm$$

$$\sigma = \frac{1}{\rho}$$

$$\sigma = \frac{1}{1210,47}$$

$$\sigma = 8,261 x 10^{-4} S/cm$$


Setelah komponen terpenuhi maka program dapat di jalankan dan diperoleh bahwa persebaran medannya sebagai berikut :

Gambar 4.6 Model Persebaran Medan Pada Kombinasi Elektroda Batang dan Jaring

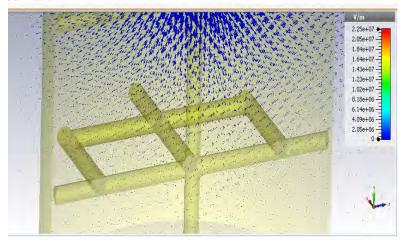
Dari gambar hasil simulasi diatas dapat diketahui bahwa persebaran medannya merata terlihat bahwa gambar panah berwarna biru menunjukan hal tersebut.

4.8.2 Model Peletakan Posisi 2 Dengan Elektroda Gabungan

Gambar 4.7Model Peletakan Posisi 1 Dengan Kombinasi Elektroda Batang dan Jaring

Re = 24,3 ohm
$$\rho = \frac{R.2\pi.r^2}{l}$$

$$\rho = \frac{(24,3).2(3,14).(15)^2}{30}$$


$$\rho = 1144,53 \Omega\text{-cm}$$

$$\sigma = \frac{1}{\rho}$$

$$\sigma = \frac{1}{1144,53}$$

$$\sigma = 8,737 \times 10^{-4} \text{ S/cm}$$

Sama seperti pada posisi 1,setelah komponen terpenuhi maka program dapat di jalankan dan diperoleh bahwa persebaran medannya sebagai berikut:

Gambar 4.8 Model Persebaran Medan Pada Kombinasi Elektroda Batang dan Jaring

Dari gambar hasil simulasi diatas dapat diketahui bahwa persebaran medannya merata dan tidak jauh berbeda dengan posisi 1,ini dikarenakan resistansi pembumiannya juga tidak jauh berbeda bahkan hampir identik. Persebaran medan terlihat merata dari atas sampai bawah elektroda yang dapat dilihat dari warna biru yang menyebar secara rata.

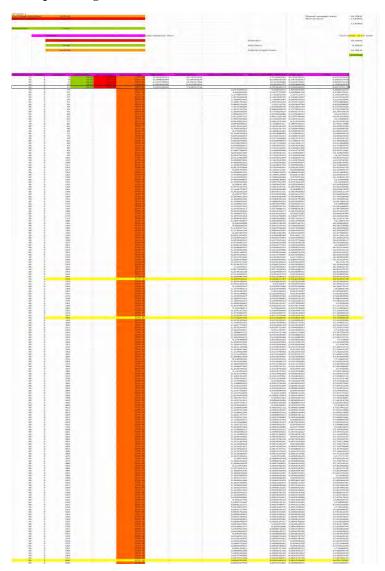
Halaman ini sengaja dikosongkan

BAB V PENUTUP

5.1 Kesimpulan

Beberapa kesimpulan yang dapat diperoleh dari studi tentang pemanfaatan semen konduktif sebagai media pembumian elektroda batang adalah sebagai berikut :

- 1. Posisi peletakan semen konduktif dalam tanah memiliki pengaruh yang sangat besar dalam memperkecil nilai resistansi pembumian. Diantara kelima model posisi peletakan semen konduktif dalam tanah, dapat diketahui bahwa semen konduktif yang diletakkan konsentris bersama elektroda batang memiliki nilai resistansi pembumian yang paling kecil, yaitu posisi 1 dengan hasil pengujian secara langsung sebesar 18,3 ohm,dan hasil analisa matematik sebesar 18,00179 ohm dari nilai resistansi pembumian sebelum pemberian semen konduktif, yaitu 49 ohm.
- 2. Pengaruh kerapatan material yang terkandung dalam tanah juga sangat mempengaruhi penurunan resistansi pembumian. Terbukti dalam dua metode penanaman elektroda yang berbeda dengan peletakan posisi yang sama, penurunan resistansi pembumian dengan elektroda batang lebih kecil dibandingkan kombinasi elektroda batang dan jaring. Ini dikarenakan saat pemasangan atau saat pengujian masih terdapat rongga antara kombinasi elektroda batang dan jaring terhadap tanah.
- 3. Posisi peletakan semen konduktif juga mempengaruhi penurunan resistansi pembumian.


5.2 Saran

Untuk dapat menurunkan resistansi pembumian secara efisien banyak faktor yang mempengaruhinya, maka ada beberapa hal yang perlu diperhatikan, antara lain adalah waktu, tempat, kondisi lingkungan serta perlakuan yang tepat saat pengambilan data. Secara teori yang sebenarnya, resistansi pembumian yang baik nilainya dibawah dari 1 ohm, sehingga perlu dilakukan penelitian lebih lanjut berupa analisis ekonomis mengenai implementasi pembumian yang memanfaatkan semen konduktif untuk memperkecil nilai resistansi pembumian agar dapat memperoleh nilai resistansi pembumian dibwah 1 ohm.

Halaman ini sengaja dikosongkan

LAMPIRAN 1

Hasil perhitungan matematik

LAMPIRAN 2

Pengukuran resistansi semen

Percobaan 1

Percobaan 4

Percobaan 2

Percobaan 5

Percobaan 3

Pengukuran resistansi pembumian

Lampiran 3

Data Sheet Semen Konduktif

34500 Solon Road Solon, Ohio 44139-2595 (440) 248-0100 Fax: (440) 248-0723

24 Hour Response Chem, Tel (1-800-255-3924)

MATERIAL SAFETY DATA SHEET

NEPA HAZARO RATING

- 4 EXTREME
- 3 HIGH 2 MODERATE 1 SLIGHT 0 INSIGNIFICANT

PAGE: 1 OF 3

PRODUCT NAME: GEM

REVISED: 4/17/08 DATE PREPARED: 11/6/90 MSDS: 768J

	_		_			
I. INGREDIENTS						
INGREDIENT8	CA8#	O8HA PEL	ACGIH TLV	96	T8CA INV.	
HYDROUS ALUMINUM SILICATES	1302-78-9	4	4		YES	
CARBON	64743-05-1	10MG/M ²	10MG/M ²		YES	
HYDRAULIC CEMENTS	85997-15-1	50MPPCF (TWA)	10MG/M ² (TWA)		YES	
HYDROUS ALLIMINUM SILICATES MAY CONTAIN	N TRACE AMOUN	TS OF THE FOLLOWING!	HAZARDOUS INGREDI	ENTS:		
MINERAL DUSTS:						
RESPIRABLE CRYSTALLINE QUARTZ ¹	14808-60-7	1.5MG/M ²	0.1MG/M ²	TR	YES	
TOTAL MASS		4MG/M ²	0.3MG/M ²	TR		
THIS PRODUCT CONTAINS A SWALL AMOUNT OF CRYSTALLING SILCA WHICH MAY CAUSE DELAYED RESERRATORY DISEASE F INHALED OVER A PROLONGED PERIOD OF TIME. AVOID BREATHING DUST. USE NOSHWISHA APPROVED RESPIRATOR WHERE FOR CRYSTALLING SILICA MAY BE EXCEEDED.						
CARBON MAY CONTAIN THE FOLLOWING HAZARDOUS INGREDIENTS:						
DEDUSTING OIL	8012-95-1	5MG/M ^{QA}	5MG/M ⁶⁴	<0.4	YES	
SULFUR	7704-34-9	N/A ^B	N/A ^a	@1	YES	

DAFTAR PUSTAKA

- [1] W,Keitz ,Switzer. 1999 .Practical Guide to Elecktrical grounding. ERICO
- [2] **Hutauruk, T.S**. 1991. Pembumian Netral Sistem Tenaga dan Pembumian Peralatan. Jakarta: Erlangga
- [3] 1982. *IEEE Green Book: Recommended Practice For Grounding of Industrial and Commercial Power Sistem ANSI.* New York: Institute of Electrical and Electronics Engineers, Inc.
- [4] **George ,Frank ,Tagg.1964.***Earth Resistances*. Pitman Publishing Corp
- [5] Yanuarianto, Yudistiro. 2008. Pemanfaatan Arang Kayu Sebagai Media Pembumian Elekroda Jenis Batang. Malang: Jurusan Teknik Elektro Fakultas Teknik Universitas Brawijaya
- [6] **Tagg, G.F.** 1964. *Earth Resistance*. London: The Whitefriars Press Ltd.
- [7] Roy B. Carpenter Jr., Mark M. Drabkin & Joseph A. Lanzoni. 1997. *Better Grounding*. Journal. USA: Lightning Eliminators & Consultants, Inc.
- [8] **Anonim.** IEEE Green book Std 142-1991: 184 (* Sesuai SPLN 102, 1993: 9)
- [9] Anonim. Pedoman Pengawasan Instalasi Listrik (Disnaker-RI), 1987: 18
- [10] **Anonim.** DISNAKER RI, 1987: 18
- [11] **Anonim.** Pabla,1988:218
- [12] **Kardiyono Tjokrodimulyoo.** 1994. Teknologi Beton.

Halaman ini sengaja dikosongkan

RIWAYAT HIDUP

Bimo Prajanuarto, dilahirkan di Kota Surabaya, 21 Januari 1992.Riwayat pendidikannya, Sekolah Dasar (lulus 2004) di SD AL-Falah Tropodo Sidoarjo, lulus Sekolah Menengah Pertama tahun 2007 di SMP Negeri 17 Surabaya. Tahun 2010 ia lulus dari SMA Negeri 16 Surabaya. Kemudian ia diterima kuliah di Jurusan Teknik Elektro Institut Teknologi Sepuluh Nopember Surabaya pada tahun 2010. Selain kegiatan perkuliahan, penulis juga aktif menjadi asisten Laboratorium Tegangan Tinggi, Jurusan Teknik Elektro

ITS mulai tahun 2013-2014. Penulis mengambil bidang studi Teknik Sistem Tenaga dan fokus pada riset mengenai sistem pembumian. Penulis dapat dihubungi melalui email bbeemoo@gmail.com.

Halaman ini sengaja dikosongkan