

TUGAS AKHIR - TE 141599

PERBAIKAN REGULASI TEGANGAN PADA JARINGAN DISTRIBUSI MENGGUNAKAN SOLID-STATE TAP CHANGER BERBASIS GEOGRAPHICAL INFORMATION SYSTEM (GIS)

Mochammad Samodro Utomo NRP 07111440000017

Dosen Pembimbing Prof. Ir. Ontoseno Penangsang, M.Sc., Ph.D. Dr. Rony Seto Wibowo, ST., MT.

DEPARTEMEN TEKNIK ELEKTRO Fakultas Teknologi Elektro Institut Teknologi Sepuluh Nopember Surabaya 2018

FINAL PROJECT - TE 141599

IMPROVEMENT OF VOLTAGE REGULATION ON DISTRIBUTION NETWORK USING SOLID-STATE TAP CHANGER BASED ON GEOGRAPHICAL INFORMATION SYSTEM (GIS)

Mochammad Samodro Utomo NRP 07111440000017

Advisor Prof. Ir. Ontoseno Penangsang, M.Sc., Ph.D. Dr. Rony Seto Wibowo, ST., MT.

ELECTRICAL ENGINEERING DEPARTMENT Faculty of Electrical Technology Institut Teknologi Sepuluh Nopember Surabaya 2018

PERNYATAAN KEASLIAN TUGAS AKHIR

Dengan ini saya menyatakan bahwa isi keseluruhan tugas akhir saya dengan judul "**Perbaikan Regulasi Tegangan Pada Jaringan Distribusi Menggunakan** *Solid-State Tap Changer* **Berbasis** *Geographical Information System* (GIS)" adalah benar-benar hasil karya intelektual mandiri, diselesaikan tanpa menggunakan bahanbahan yang tidak diizinkan dan bukan karya pihak lain yang saya akui sebagai karya sendiri.

Semua referensi yang dikutip maupun dirujuk telah ditulis secara lengkap pada daftar pustaka. Apabila ternyata pernyataan ini tidak benar, saya bersedia menerima sanksi sesuai peraturan yang berlaku.

> Surabaya, Juli 2018 <u>Mochammad Samodro Utomo</u> NRP. 07111440000017

EXAMPLES ULASI TEGANGAN PADA JARINGAN EXAMPLES I MENGGUNAKAN SOLID-STATE TAP EXAMPLE BERBASIS GEOGRAPHICAL INFORMATION SYSTEM (GIS)

TUGAS AKHIR

Diajukan guna Memenuhi Sebagai Persyaratan Untuk Memperoleh Gelar Sarjana Teknik

> pada Bidang Teknik Sistem Tenaga Departemen Teknik Elektro Institut Teknologi Sepuluh Nopember

> > Menyetujui:

Dosen Pembimbing II Dosen Pembimbing I Dr. Rony Seto Wibowo, ST., MT. Omoseno Penangsang, M.Sc., Ph.D. MIP. 194907151974121001 NIP. 197411292000121001 OLOGI / OGI SEPU NOLO

PERBAIKAN REGULASI TEGANGAN PADA JARINGAN DISTRIBUSI MENGGUNAKAN SOLID-STATE TAP CHANGER BERBASIS GEOGRAPHICAL INFORMATION SYSTEM (GIS)

Nama: Mochammad Samodro UtomoPembimbing I: Prof. Ir. Ontoseno Penangsang, M.Sc., Ph. D.Pembimbing II: Dr. Rony Seto Wibowo, ST., MT.

ABSTRAK

Peningkatan kebutuhan daya listrik pada saat ini membuat sistem distribusi menjadi semakin luas dan semakin kompleks. Hal ini mengakibatkan munculnya permasalahan seperti regulasi tegangan yang berada di luar batas toleransi dan rugi daya yang semakin besar. Untuk menjaga agar regulasi tegangan masih dalam batas yang telah ditentukan, dapat dilakukan aplikasi Solid-State On-Load Tap Changer. Pemasangan Solid-State OLTC dapat memperbaiki regulasi tegangan dan penentuan lokasi Solid-State OLTC yang tepat dapat membantu mengurangi rugi daya saluran. Power Loss Index (PLI) dan Quantum Swarm Evolutionary Algorithm (QSE) digunakan sebagai metode untuk menentukan jumlah, lokasi, dan tap position dari Solid-State OLTC. Metode yang direkomendasikan diaplikasikan ke sistem distribusi radial IEEE 33 bus dan sistem distribusi radial kota Surabaya pada penyulang Basuki Rahmat. Berdasarkan yang telah dipaparkan di atas, maka dirancang sebuah simulator penentuan lokasi dan optimal tap position Solid-State OLTC untuk memperbaiki regulasi tegangan dengan mempertimbangkan rugi daya saluran. Penelitian ini berbasis Geographical Information System (GIS). Dengan terintegrasinya GIS diharapkan dalam penentuan lokasi diperoleh lokasi secara geografis sehingga sesuai dengan kondisi yang ada di lapangan.

Kata kunci: GIS, Regulasi Tegangan, Solid-State On-Load Tap Changer, Quantum Swarm Evolutionary Algorithm

---Halaman ini sengaja dikosongkan---

IMPROVEMENT OF VOLTAGE REGULATION ON DISTRIBUTION NETWORK USING SOLID-STATE TAP CHANGER BASED ON GEOGRAPHICAL INFORMATION SYSTEM (GIS)

Nama	: Mochammad Samodro Utomo
Advisor I	: Prof. Ir. Ontoseno Penangsang, M.Sc., Ph. D.
Advisor II	: Dr. Rony Seto Wibowo, ST., MT.

ABSTRACT

The increasing demand for electrical power at this time makes the distribution system becomes increasing widespread and complex. This causes problems such as voltage regulation beyond tolerable operating limits and increased power losses. To keep the voltage regulation within tolerable operating limits, Solid-State On-Load Tap Changer application can be performed. Solid-State OLTC are to be placed at the optimal location to reduce the power losses and the installation of Solid-State OLTC with optimal tap setting to improve voltage regulation. Power Loss Index (PLI) and Quantum Swarm Evolutionary Algorithm (QSE) are utilized as methods to determine the number, location, and tap position of Solid-State OLTC. The proposed method is examined for IEEE 33-bus radial distribution network and Surabaya radial distribution network on Basuki Rahmat feeder. Based on the above, it is designed a simulator for determining location and optimum tap position Solid-State OLTC to improve voltage regulation by considering the power losses. This research is based on Geographical Information System (GIS). With the integration of GIS is expected in determining the location obtained geographically so that the location in accordance with existing conditions in the field.

Keywords: GIS, Solid-State On-Load Tap Changer, Quantum Swarm Evolutionary Algorithm, Voltage Regulation

---Halaman ini sengaja dikosongkan---

KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Allah SWT yang selalu memberikan rahmat dan hidayah-Nya sehingga tugas akhir ini dapat terselesaikan tepat watu. Shalawat serta salam semoga selalu dilimpahkan kepada Rasulullah Muhammad SAW, keluarga, sahabat, dan umat muslim yang senantiasa meneladani beliau.

Tugas akhir ini disusun untuk memenuhi sebagian persyaratan guna menyelesaikan pendidikan Sarjana pada Bidang Studi Teknik Sistem Tenaga, Departemen Teknik Elektro, Fakultas Teknologi Elektro, Institut Teknologi Sepuluh Nopember yang berjudul:

PERBAIKAN REGULASI TEGANGAN PADA JARINGAN DISTRIBUSI MENGGUNAKAN SOLID-STATE TAP CHANGER BERBASIS GEOGRAPHICAL INFORMATION SYSTEM (GIS)

Pada kesempatan ini penulis menyampaikan ucapan terimakasih kepada:

- 1. Allah S.W.T. atas segala limpahan rahmat dan karunia-Nya.
- 2. Ibu Susiana, Ayah Budi Utomo, Adik Mochammad Satrio Utomo, dan Adik Safrina Devi Utomo di Pekalongan yang selalu mendoakan, mendukung dan memberikan semangat kepada penulis hingga Tugas Akhir ini dapat diselesaikan tepat pada waktunya.
- 3. Prof. Ir. Ontoseno Penangsang, M.Sc, Ph. D. dan Dr. Rony Seto Wibowo, ST., MT. selaku dosen pembimbing yang telah memberikan arahan, bimbingan dan perhatiannya selama proses penyelesaian penelitian tugas akhir ini.
- 4. Dosen beserta teman-teman asisten dan member lab PSSL B103 yang telah menciptakan dan memberikan dukungan, penjelasan, dan juga suasana kondusif dalam menyelesaikan tugas akhir.
- 5. Seluruh dosen dan karyawan yang telah memberikan banyak ilmu dan bantuanya selama proses perkuliahan di Teknik Elektro ITS.
- 6. Mbak Indri, Mas Aji, Mas Febri, Mas Indrawan, Mas Bibur, Mas Tony, dan member GIS-GIS Club yang telah memberikan banyak bimbingan dan arahan sejak awal pengajuan tugas akhir ini hingga selesainya tugas akhir ini.
- 7. Seluruh keluarga besar e-54, terima kasih atas semangat dan motivasi selama 4 tahun di kampus ini.

- 8. Penghuni Indekost Pondok Isna yang telah menemani perjalanan kehidupan kampus selama ini.
- 9. Teman-teman BEM FTI-ITS khususnya Departemen Pengembangan Sumber Daya Mahasiswa yang terus memberikan hiburan dan wejangan-wejangan yang berarti.
- 10. Teman-teman ITS Jazz yang bersedia menjadi tempat menghilangkan rasa penat selama masa kuliah.
- 11. Segenap keluarga besar Arek Pekalongan yang telah menjadi saudara seperantauan dan memberikan informasi-informasi perkuliahan.
- 12. Jajaran Deezer Cloth yang menjadi partner berwirausaha untuk bertahan hidup selama di kota besar ini.
- 13. Pihak-pihak lain yang belum bisa penulis sebutkan satu per satu yang ikut membantu dalam penyelesaian tugas akhir ini.

Penulis menyadari bahwa tugas akhir ini masih memiliki banyak kekurangan, oleh karena itu saran dan masukan sangat diharapkan untuk perbaikan di masa yang akan datang. Semoga tugas akhir ini bermanfaat bagi pembaca dan masyarakat pada umumnya.

Surabaya, Juli 2018

Penulis

DAFTAR ISI

HALA	\mathbf{M}	AN JUDUL	
PERN	YA	TAAN KEASLIAN	
HALA	M	AN PENGESAHAN	
ABST	RA	К	i
ABST	RA	СТ	iii
KATA	A PI	ENGANTAR	v
DAFT	'AR	LISI	vii
TABL	E C	OF CONTENT	ix
DAFT	'AR	GAMBAR	xi
DAFT	'AR	TABEL	.xiii
BAB I	[PE	NDAHULUAN	1
1	.1	Latar Belakang	1
1	.2	Perumusan Masalah	2
1	.3	Tujuan	2
1	.4	Batasan Masalah	3
1	.5	Metodologi	3
1	.6	Sistematika Penulisan	4
1	.7	Relevansi	5
BAB 1	II S	ISTEM DISTRIBUSI RADIAL, S <i>OLID-STATE ON-LC</i>)AD
TAP	C_{2}	HANGER, QUANTUM SWARM EVOLUTIONA	RY
ALGO	RIT	<i>[HM</i>	7
2	.1	Sistem Distribusi Radial	7
2	.2	Analisis Aliran Daya	8
		2.2.1 Pengertian Analisis Aliran Daya	8
-		2.2.2 Analisis Aliran Daya Topology Network	8
2	.3	Rugi Daya Saluran	11
2	.4	Deviasi Tegangan	12
2	.5	Solid-State On-Load Tap Changer	12
2	.6	Power Loss Index (PLI)	14
2	.7	Quantum Swarm Evolutionary Algorithm	15
		2.7.1 Definisi Quantum Swarm Evolutionary Algorithm	15
		2.7.2 Quantum-inspired Evolutionary Algorithm	15
		2.7.3 Particle Swarm Optimization	16
~	0	2.7.4 Quantum Swarm Evolutionary Algorithm	1 /
2	.8	Geographical Information System (GIS)	17

BAB III	IMPLEMENTASI PLI DAN QSE UNTUK OPTIMAL
	Alur Koria Sistem Ontimasi Lokasi dan Tanning OLTC 10
3.1	Inisialisasi Data Bahan dan Jaringan
3.2	Analisis Aliran Dava atau Load Flow
3.5	Penentuan Lokasi Solid State OLTC 24
3.4	Implementaci Quantum Swarm Evolutionary Algorithm Pada
5.5	Penentuan Tanning Solid-State OI TC 24
	3 5 1 Parameter PSO 26
	3.5.2 Fungsi Objektif 27
	3 5 3 Constraint 27
BABIVS	SIMULASI DAN ANALISIS
4.1	Kondisi Awal Sistem
	4.1.1 Sistem Distribusi IEEE 33 Bus Radial
	4.1.2 Sistem Distribusi Kota Surabaya Penyulang Basuki
	Rahmat
4.2	Hasil Penentuan Lokasi Solid-State OLTC Menggunakan PLI
	4.2.1 Penempatan Solid-State OLTC Sistem IEEE 33 Bus 46
	4.2.2 Penempatan Solid-State OLTC Sistem Penyulang Basuki
	Rahmat
4.3	Hasil Optimasi QSE Untuk Penentuan Tapping Solid-State
	OLTC
	4.3.1 Penerapan Metode QSE Pada Sistem IEEE 33 Bus54
	4.3.2 Penerapan Metode QSE Pada Sistem Basuki Rahmat56
4.4	Analisis Perbandingan Hasil Metode QSE dengan Metode
	PGSA dan DPSO
BAB V P	ENUTUP
5.1	Kesimpulan
5.2	Saran
DAFTAR	R PUSTAKA61
LAMPIR	AN
BIODAT	A PENULIS

TABLE OF CONTENT

COVER	
ORIGIN	ALITY AGREEMENT
LEGAL	ITY
ABSTR	ACTi
ABSTR	ACTiii
PREFA	CE v
TABLE	OF CONTENT vii
TABLE	OF CONTENTix
LIST O	F FIGURESxi
LIST O	F TABLExiii
BAB I I	NTRODUCTION1
1.1	Background1
1.2	Problems2
1.3	Purpose2
1.4	Scope of Problems
1.5	Methodology
1.6	Systemathic Writing4
1.7	Relevance5
BAB II	POWER DISTRIBUTION RADIAL SYSTEM, SOLID-
STATE	ON-LOAD TAP CHANGER, QUANTUM SWARM
EVOLU	TIONARY ALGORITHM7
2.1	Power Distribution Radial System7
2.2	Power Flow Analysis8
	2.2.1 Definition of Power Flow Analysis
	2.2.2 Topology Network Power Flow
2.3	Power Losses11
2.4	Voltage Deviation
2.5	Solid-State On-Load Tap Changer 12
2.6	Power Loss Index (PLI)14
2.7	Quantum Swarm Evolutionary Algorithm15
	2.7.1 Definisi Quantum Swarm Evolutionary Algorithm 15
	2.7.2 Quantum-inspired Evolutionary Algorithm
	2.7.3 Particle Swarm Optimization
	2.7.4 Quantum Swarm Evolutionary Algorithm
. -	

BAB III	IMPLEMENTATION OF PLI AND QSE FOR OPTIMA	\mathbf{L}
LOCATI	ON AND TAPPING OF SOLID-STATE OLTC	19
3.1	Flowchart of Optimation of Location and Tapping OLTC	19
3.2	Initialization Load and Branch Data	21
3.3	Power Flow Analysis	23
3.4	Determination of Location Solid-State OLTC	24
3.5	Implementation of Quantum Swarm Evolutionary Algorith	m
	for Determining Tapping Solid-State OLTC	24
	3.5.1 PSO Parameters	26
	3.5.2 Objective Function	27
	3.5.3 Constraints	27
BAB IV S	SIMULATION AND ANALYSIS	29
4.1	Base Case	29
	4.1.1 IEEE 33 Bus System	29
	4.1.2 Basuki Rahmat Feeder System	36
4.2	Result of Location of Solid-State OLTC Using PLI	46
	4.2.1 Location of Solid-State OLTC IEEE 33 Bus System4	46
	4.2.2 Location of Solid-State OLTC Basuki Rahmat Feed	er
	System	50
4.3	Result of QSE for Optimal Tapping Solid-State OLTC	54
	4.3.1 Implementation of QSE for IEEE 33 Bus System	54
	4.3.2 Implementation of QSE for Basuki Rahmat Feed	er
	System	56
4.4	Comparison Result of QSE with PGSA and DPSO	58
BAB V C	CLOSING	59
5.1	Conclusion	59
5.2	Suggestion	50
REFERE	ENCE	51
ATTACE	HMENT	
BIOGRA	АРНУ	

DAFTAR GAMBAR

Gambar 2.1 Jaringan Distribusi Radial	7
Gambar 2.2 Contoh Single Line Diagram Radial	8
Gambar 2.3 Model Saluran Sederhana	. 11
Gambar 2.4 Model Sederhana Solid-State OLTC	. 13
Gambar 2.5 Thyristor Anti-Paralel	. 13
Gambar 2.6 Pemodelan Solid-State On-Load Tap Changer	. 14
Gambar 2.7 Pemodelan Sistem Tenaga Listrik Kota Surabaya	. 18
Gambar 3.1 Diagram Alir Sistem Secara Keseluruhan	. 20
Gambar 3.2 Sistem Distribusi Radial IEEE 33 Bus	. 21
Gambar 3.3 Penyulang Basuki Rahmat	. 22
Gambar 3.4 Analisis Aliran Daya Melalui GIS	. 23
Gambar 3.5 Flowchart Quantum Swarm Evolutionary Algorithm	. 26
Gambar 4.1 Pembagian Zona PLI Sistem IEEE 33 Bus	. 48
Gambar 4.2 Grafik PLI Sistem IEEE 33 Bus	. 49
Gambar 4.3 Penempatan Solid-State OLTC	. 49
Gambar 4.4 Pembagian Zona PLI Sistem Penyulang Basuki Rahmat	. 52
Gambar 4.5 Grafik PLI Sistem Penyulang Basuki Rahmat	. 53
Gambar 4.6 Penempatan Solid-State OLTC	. 53
Gambar 4.7 Profil Tegangan Sebelum dan Sesudah Pemasangan Sol	lid-
State OLTC Sistem IEEE 33 Bus	. 55
Gambar 4.8 Plot Kurva Konvergensi Fungsi Objektif -33 Bus	. 55
Gambar 4.9 Profil Tegangan Sebelum dan Sesudah Pemasangan Sol	lid-
State OLTC Sistem Penyulang Basuki Rahmat	. 57
Gambar 4.10 Plot Kurva Konvergensi Fungsi Objektif -Basuki Rahi	mat
	. 57

---Halaman ini sengaja dikosongkan---

DAFTAR TABEL

Tabel 4.1 Tegangan Sistem IEEE 33 Bus	. 29
Tabel 4.2 Tegangan Sistem IEEE 33 Bus (Lanjutan)	. 30
Tabel 4.3 Tegangan Sistem IEEE 33 Bus (Lanjutan)	. 31
Tabel 4.4 Arus Saluran Sistem IEEE 33 Bus	. 31
Tabel 4.5 Arus Saluran Sistem IEEE 33 Bus (Lanjutan)	. 32
Tabel 4.6 Rugi Daya Aktif Sistem IEEE 33 Bus	. 33
Tabel 4.7 Rugi Daya Aktif SIstem IEEE 33 Bus (Lanjutan)	. 34
Tabel 4.8 Rugi Daya Reaktif Sistem IEEE 33 Bus	. 34
Tabel 4.9 Rugi Daya Reaktif Sistem IEEE 33 Bus (Lanjutan)	. 35
Tabel 4.10 Rugi Daya Reaktif Sistem IEEE 33 Bus (Lanjutan)	. 36
Tabel 4.11 Tegangan Sistem Penyulang Basuki Rahmat	. 36
Tabel 4.12 Tegangan Sistem Penyulang Basuki Rahmat (Lanjutan)	. 37
Tabel 4.13 Tegangan Sistem Penyulang Basuki Rahmat (Lanjutan)	. 38
Tabel 4.14 Arus Saluran Sistem Penyulang Basuki Rahmat	. 39
Tabel 4.15 Arus Saluran Sistem Penyulang Basuki Rahmat (Lanjutan))40
Tabel 4.16 Arus Saluran Sistem Penyulang Basuki Rahmat (Lanjutan))41
Tabel 4.17 Rugi Daya Aktif Penyulang Basuki Rahmat	. 41
Tabel 4.18 Rugi Daya Aktif Penyulang Basuki Rahmat (Lanjutan)	. 42
Tabel 4.19 Rugi Daya Aktif Penyulang Basuki Rahmat (Lanjutan)	. 43
Tabel 4.20 Rugi Daya Reaktif Penyulang Basuki Rahmat	. 44
Tabel 4.21 Rugi Daya Reaktif Penyulang Basuki Rahmat (Lanjutan).	. 45
Tabel 4.22 Rugi Daya Reaktif Penyulang Basuki Rahmat (Lanjutan).	. 46
Tabel 4.23 Nilai Indeks PLI Sistem IEEE 33 Bus	. 46
Tabel 4.24 Nilai Indeks PLI Sistem IEE 33 Bus (Lanjutan)	. 47
Tabel 4.25 Nilai Indeks PLI Sistem IEE 33 Bus (Lanjutan)	. 48
Tabel 4.26 Nilai Indeks PLI Penyulang Basuki Rahmat	. 50
Tabel 4.27 Nilai Indeks PLI Penyulang Basuki Rahmat (Lanjutan)	. 51
Tabel 4.28 Nilai Indeks PLI Penyulang Basuki Rahmat	. 52
Tabel 4.29 Hasil Optimasi Tapping Solid-State OLTC	. 54
Tabel 4.30 Perbandingan Sebelum dan Sesudah Terpasang OLTC Sist	em
IEEE 33 Bus	. 54
Tabel 4.31 Hasil Optimasi Tapping Solid-State OLTC	. 56
Tabel 4.32 Perbandingan Sebelum dan Sesudah Terpasang OLTC Sist	em
Penyulang Basuki Rahmat	. 56
Tabel 4.33 Perbandingan dengan PGSA dan DPSO	. 58

---Halaman ini sengaja dikosongkan---

BAB I PENDAHULUAN

1.1 Latar Belakang

Salah satu tugas terpenting dari sistem distribusi adalah menjaga besaran tegangan yang diberikan kepada pelanggan agar tetap konstan dalam batas yang telah ditentukan. Namun dengan adanya peningkatan kebutuhan daya listrik pada saat ini membuat sistem distribusi menjadi semakin luas dan semakin kompleks. Hal ini menyebabkan beberapa permasalahan seperti regulasi tegangan yang buruk serta rugi daya yang semakin tinggi. Permasalahan ini muncul karena adanya fluktuasi tegangan yang merupakan hasil dari perubahan beban yang berbeda tiap waktu. Untuk menjaga agar regulasi tegangan masih dalam batas yang telah ditentukan yaitu \pm 5%, dapat dilakukan aplikasi *Solid-State On-Load Tap Changer*.

Solid-State On-Load Tap Changer memiliki kinerja yang lebih baik dibandingkan dengan On-Load Mechanical Tap Changer. Mechanical OLTC mempunyai beberapa kelemahan diantaranya menimbulkan arcing, membutuhkan perawatan rutin, biaya perawatan mahal, dan reaksi cenderung lambat [1]. Sedangkan Solid-State OLTC tidak membutuhkan pergantian oli secara teratur dengan umur pemakaian yang sama dengan Mechanical OLTC, dan tahan terhadap gangguan tegangan dan arus tinggi. Solid-State OLTC juga memiliki harga yang kompetitif dengan Mechanical OLTC [2]. Pada [3] dan [4], dilakukan penelitian penggunaan Solid-State OLTC dengan power electronic switch dan tap windings dalam jumlah sedikit dan dibandingkan dengan mechanical tap-changers.

Selain regulasi tegangan yang buruk, Solid-State OLTC juga dapat mengurangi rugi daya. Banyak penelitian telah menunjukkan bahwa pemilihan lokasi yang tidak tepat dari *voltage regulator* dapat menyebabkan kerugian sistem lebih besar daripada kerugian tanpa *voltage regulator* [5][6]. Dengan menggunakan metode *Power Loss Index* (PLI), dapat diperoleh jumlah dan lokasi penempatan Solid-State OLTC yang optimal [7].

Pada penelitian ini, *Quantum Swarm Evolutionary Algorithm* (QSE) diharapkan mampu menjadi solusi untuk penentuan nilai optimal tap position *Solid-State* OLTC sebagai *voltage regulator*. Sehingga *Solid*-

State OLTC mampu memperbaiki regulasi tegangan yang tidak berada dalam batas yang telah ditentukan.

Penelitian ini terintegrasi dengan Geographical Information System (GIS). GIS merupakan sistem informasi yang memuat *database* tentang tata ruang umum yang menggunakan sistem koordinat sebagai referensi [8]. Penggabungan antara metode PLI dan QSE *Algorithm* dengan GIS diharapkan mampu memudahkan untuk mengetahui lokasi secara geografis dan gambaran yang lebih realistis sesuai dengan kondisi di lapangan.

1.2 Perumusan Masalah

- 1. Bagaimana menentukan penempatan lokasi *Solid-State* OLTC menggunakan *Power Loss Index* (PLI) yang tepat sehingga dapat mengurangi permasalahan rugi daya.
- 2. Bagaimana menentukan nilai *tap position* yang tepat menggunakan *Quantum Swarm Evolutionary Algorithm* sebagai kontrol tegangan *Solid-State* OLTC pada sistem distribusi radial sehingga dapat memperbaiki profil tegangan.
- 3. Bagaimana perbandingan penentuan nilai *tap position* menggunakan metode QSE dengan penentuan nilai *tap position* menggunakan metode PGSA dan DPSO pada sistem IEEE radial.
- 4. Bagaimana penerapan metode QSE dan PLI untuk penentuan lokasi dan nilai *tap position Solid-State* OLTC pada sistem tenaga listrik radial kota Surabaya yang berbasis *Geographical Information System* (GIS).

1.3 Tujuan

Penelitian ini bertujuan untuk

- 1. Mendapatkan lokasi *Solid-State* OLTC yang tepat, guna mengurangi permasalahan rugi daya
- 2. Mendapatkan nilai *tap position Solid-State* OLTC yang optimal untuk memperbaiki profil tegangan.
- 3. Mengetahui perbandingan hasil *tap position* dengan menggunakan metode QSE pada penelitian ini dengan hasil *tap position* dengan menggunakan metode lain.
- 4. Mendapatkan hasil penerapan pada sistem distribusi radial kota Surabaya yang berbasis *Geographical Information System* (GIS).

1.4 Batasan Masalah

Diperlukan batasan masalah dalam menyelesaikan tugas akhir ini, diantaranya:

- 1. Optimasi fungsi objektif pada penelitian ini adalah meminimalkan rugi daya dengan mempertimbangkan nilai tegangan.
- 2. Menggunakan sistem distribusi radial IEEE 33-bus dan sistem distribusi kota Surabaya pada penyulang Basuki Rahmat (untuk sistem GIS).
- 3. Analisis dilakukan dalam kondisi steady-state dan seimbang.
- 4. Penentuan nilai tap *position Solid-State* OLTC menggunakan *Quantum Swarm Evolutionary Algorithm* (QSE).
- 5. Penentuan lokasi *Solid-State* OLTC menggunakan *Power Loss Index* (PLI).
- 6. Tidak memperhatikan kualitas daya listrik selain profil tegangan dan rugi-rugi daya.
- 7. Tidak memperhatikan elektronika daya.
- 8. Software GIS yang digunakan adalah *Smallworld* versi 4.3.4 General Electric.

1.5 Metodologi

Metodologi yang digunakan pada penelitian tugas akhir ini adalah sebagai berikut:

1. Studi Literatur

Studi literatur yang menjadi referensi pada penelitian tugas akhir ini diambil dari artikel ilmiah, jurnal, dan text book. Pada studi literatur dipelajari teori-teori tentang *Placement Solid-State* OLTC, *Quantum Swarm Evolutionary Algorithm* yang digunakan untuk penentuan nilai *tap position* yang optimal, analisis aliran daya pada sistem distribusi radial, dan perancangan simulasi pada GIS.

2. Pengumpulan Data

Pengumpulan data plant yang menjadi objek penelitian ini yaitu sistem distribusi radial IEEE 33-bus dan sistem distribusi kota Surabaya khususnya penyulang Basuki Rahmat. Data yang digunakan meliputi data bus, data saluran, serta data hasil penelitian dengan metode yang berbeda.

- 3. Pemodelan Program
 - Pemodelan program dilakukan pada sistem distribusi, aliran daya, serta metode PLI untuk mengetahui lokasi *Solid-State* OLTC dan metode *Quantum Swarm Evolutionary Algorithm* untuk mengetahui nilai optimal *tap position* menggunakan MATLAB. Setelah validasi dengan program MATLAB, dilakukan pemrograman ulang pada software GIS sehingga diperoleh gambaran secara geografis dan realistis dan sesuai dengan yang terjadi di lapangan.
- 4. Simulasi dan Analisis

Setelah pemodelan program dengan menggunakan MATLAB, simulasi yang pertama adalah analisis aliran daya yang dilakukan pada sistem IEEE 33 bus radial untuk mengetahui tegangan, arus, dan rugi daya sebelum terpasang Solid-State OLTC. Kemudian dengan base case, dilakukan simulasi PLI yang hasilnya menjadi acuan untuk penempatan Solid-State OLTC. Setelah diketahui jumlah dan lokasi Solid-State OLTC, program QSE dijalankan. Diharapkan dengan QSE, bisa mendapatkan nilai tapping OLTC yang optimal sehingga mampu memperbaiki regulasi tegangan dan menurunkan rugi daya saluran. Hasil dari simulasi MATLAB menggunakan OSE dijadikan pembanding dengan hasil metode lain. Setelah simulasi menggunakan software MATLAB selesai dan valid, dilakukan simulasi menggunakan software GIS dengan plant sistem distribusi kota Surabaya pada penyulan Basuki Rahmat. Diharapkan dengan adanya integrasi dengan software GIS, didapatkan hasil yang lebih sesuai dengan kondisi di lapangan.

5. Penulisan Laporan

Laporan pada penelitian ini berisi permasalahan, metode yang digunakan, hasil dan analisis sebelum dan sesudah adanya *Solid-State* OLTC khususnya pada nilai profil tegangan dan rugi daya, serta kesimpulan dan saran.

1.6 Sistematika Penulisan

Laporan tugas akhir ini disusun sesuai dengan sistematika sebagai berikut:

BAB I Pendahuluan.

Pada bab ini dijelaskan mengenai latar belakang permasalahan, tujuan, batasan masalah, metodologi

penelitian, sistematika penulisan dan relevansi pengerjaan tugas akhir.

- BAB II Landasan Teori
 Dasar teori berisi tentang sistem distribusi radial, studi aliran daya, analisis aliran daya *Topology Network*. rugi rugi saluran dan profil tegangan sistem sistribusi, *Solid-State* OLTC, metode *Power Loss Index* (PLI) untuk penentuan lokasi *Solid-State* OLTC, metode *Quantum Swarm Evolutionary Algorithm* untuk menentukan nilai *tap position* yang optimal, dan *Geographical Information System* (GIS).
- BAB III Perancangan dan Pemodelan Pada tahap ini menjelaskan mengenai penerapan metode *Power Loss Index* (PLI) untuk menentukan lokasi *Solid-State* OLTC pada sistem distribusi radial, metode *Quantum Swarm Evolutionary Algorithm* untuk menentukan nilai *tap position* yang optimal pada sistem distribusi radial.
- BAB IV Simulasi dan Analisis .

Pada tahap ini menunjukkan simulasi dan analisis mengenai hasil dari pengaplikasian metode *Power Loss Index* (PLI) untuk penentuan lokasi *Solid-State* OLTC dan metode *Quantum Swarm Evolutionary Algorithm* untuk menentukan nilai *tap position* yang optimal. Sehingga diperoleh rugi – rugi jaringan yang paling rendah dan profil tegangan yang sesuai dengan batas yang telah ditentukan pada sistem IEEE 33 bus, yang selanjutnya diaplikasikan pada sistem distribusi Kota Surabaya penyulang Basuki Rahmat.

BAB V Penutup. Pada tahap akhir ini memberikan penjelasan mengenai kesimpulan dan saran dari hasil penelitian pada tugas akhir ini.

1.7 Relevansi

Penelitian ini diharapkan dapat memberikan manfaat sebagai berikut:

- 1. Berkontribusi dalam perkembangan sistem tenaga listrik, terutama pada permasalahan kualitas daya listrik.
- 2. Dapat meningkatkan Ilmu Pengetahuan dan Teknologi (IPTEK) dalam bidang sistem tenaga listrik.
- 3. Dapat digunakan sebagai referensi bagi peneliti maupun mahasiswa dalam melakukan penelitian dengan topik serupa.

---Halaman ini sengaja dikosongkan---

BAB II

SISTEM DISTRIBUSI RADIAL, SOLID-STATE ON-LOAD TAP CHANGER, QUANTUM SWARM EVOLUTIONARY ALGORITHM

2.1 Sistem Distribusi Radial

Secara umum sistem tenaga listrik dibagi menjadi tiga bagian, yang terdiri dari pembangkit, transmisi, dan distribusi. Jaringan distribusi terdiri dari distribusi primer (tegangan menengah) dan distribusi sekunder (tegangan rendah) yang berguna untuk menyalurkan energi listrik ke konsumen. Di Indonesia, tingkat tegangan yang digunakan pada sistem distribusi primer (tegangan menengah) yaitu 20 kV, sedangkan pada sistem distribusi sekunder (tegangan rendah) 380/220 V.

Terdapat berbagai macam bentuk sistem jaringan distribusi, namun secara umum jaringan distribusi yang banyak digunakan adalah loop dan radial. Di Indonesia, bentuk jaringan distribusi yang paling banyak digunakan adalah jaringan distribusi radial. Pada **Gambar 2.1** merupakan bentuk jaringan distribusi radial yang memiliki ciri khas satu garis yang ditarik radial dari titik sumber yang selanjutnya disalurkan ke titik beban. Bentuk yang sederhana ini membuat jaringan distribusi radial memiliki keunggulan yaitu mempermudah penyaluran energi listrik. Meskipun keandalan jaringan distribusi radial lebih rendah daripada jaringan distribusi loop.

Gambar 2.1 Jaringan Distribusi Radial

2.2 Analisis Aliran Daya

2.2.1 Pengertian Analisis Aliran Daya

Studi aliran daya merupakan sebuah *tool* yang sangat penting untuk analisis sistem distribusi, perencanaan sebuah sistem tenaga listrik, serta dibutuhkan untuk operasi sistem tenaga listrik. Analisis aliran daya bertujuan untuk mencari daya aktif dan reaktif yang mengalir pada tiap saluran bersama dengan besar dan sudut fase tegangan pada setiap bus dari sebuah sistem [9]. Terdapat berbagai macam metode untuk melakukan studi aliran daya, diantaranya adalah *Newton-Raphson*, *Gauss-Seidel, Topology Network, Forward-Backward*, dll. Pada tugas akhir ini, analisis aliran daya menggunakan metode *Topology Network*.

2.2.2 Analisis Aliran Daya Topology Network

Topology Network merupakan salah satu metode analisis aliran daya listrik yang cocok diaplikasikan pada sistem distribusi radial [9]. Metode ini memodelkan bentuk topologi jaringan menjadi bentuk persamaan matematika, yang selanjutnya perhitungan iterasi memperoleh nilai arus, tegangan, serta rugi daya. Berikut diberikan contoh sistem distribusi radial pada **Gambar 2.2**.

Gambar 2.2 Contoh Single Line Diagram Radial

Adapun langkah pertama dalam menganalisis aliran daya menggunakan metode *Topology Network* adalah memodelkan matrik BIBC (*Bus Injection Branch Current*) untuk menghitung arus yang mengalir pada saluran. Persamaan di bawah ini merepresentasikan besar arus saluran:

$$I_i^k = \left(\frac{P_i + jQ_i}{V_i^{(k)}}\right)^* \tag{1}$$

Dengan menggunakan *Kirchoff Current Laws* pada Gambar 2.2, didapatkan injek arus pada setiap bus pada persamaan di bawah ini:

$$B_{5} = I_{6}$$

$$B_{4} = I_{5}$$

$$B_{3} = I_{4} + I_{5}$$

$$B_{2} = I_{3} + I_{4} + I_{5} + I_{6}$$

$$B_{2} = I_{2} + I_{3} + I_{4} + I_{5} + I_{6}$$
(2)

Persamaan (2) dapat dimodelkan menjadi matrik BIBC. Angka 1 menyatakan adanya hubungan antara arus dan saluran sedangkan angka 0 menyatakan tidak ada hubungan antara arus dan saluran. Berikut hasil pemodelan ke dalam matrik BIBC:

$$\begin{bmatrix} B_1 \\ B_2 \\ B_3 \\ B_4 \\ B_5 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \end{bmatrix}$$
(3)

Persamaan (3) dapat disederhanakan menjadi model persamaan dengan komponen matrik BIBC.

$$[B] = [BIBC][I] \tag{4}$$

Langkah berikutnya adalah memodelkan matrik BCBV (*Branch Current to Bus Voltage*) untuk menghitung nilai drop tegangan pada setiap bus. Berdasarkan jalur injek arusnya didapatkan persamaan:

$$V_{2} = V_{1} - B_{1} Z_{12}$$

$$V_{3} = V_{2} - B_{2} Z_{23}$$

$$V_{4} = V_{3} - B_{3} Z_{34}$$

$$V_{5} = V_{4} - B_{4} Z_{45}$$

$$V_{6} = V_{5} - B_{5} Z_{26}$$
(5)

Selanjutnya Persamaan (5) dapat dibentuk dan diselesaikan menggunakan suatu bentuk matrik dengan komponen matrik BCBV.

$$\begin{bmatrix} V_1 \\ V_1 \\ V_1 \\ V_1 \\ V_1 \\ V_1 \end{bmatrix} - \begin{bmatrix} V_2 \\ V_3 \\ V_4 \\ V_5 \\ V_6 \end{bmatrix} = \begin{bmatrix} Z_{12} & 0 & 0 & 0 & 0 \\ Z_{12} & Z_{23} & 0 & 0 & 0 \\ Z_{12} & Z_{23} & Z_{34} & 0 & 0 \\ Z_{12} & Z_{23} & Z_{34} & Z_{45} & 0 \\ Z_{12} & Z_{23} & 0 & 0 & Z_{36} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ B_3 \\ B_4 \\ B_5 \end{bmatrix}$$
(6)

Persamaan (6) dapat disederhanakan menjadi model persamaan dengan komponen matrik BCBV.

$$[\Delta V] = [BCBV][B] \tag{7}$$

Sehingga dengan mensubtitusikan Persamaan (4) ke Persamaan (7) untuk mendapatkan nilai drop tegangan, didapatkan persamaan (8) dan disederhanakan menjadi persamaan (9) sebagai berikut:

$$[\Delta V] = [BCBV][BIBC][I]$$
(8)

$$[\Delta V] = [DLF][I] \tag{9}$$

Selanjutnya dengan menggunakan matrik BIBC, BCBV, dan ΔV , didapatkan persamaan untuk menghitung tegangan pada tiap bus:

$$[V_i] = [V_i] - [\Delta V] \tag{10}$$

Untuk mempertimbangkan adanya perubahan level tegangan akibat adanya transformator, maka dibentuk matrik tap yang berisi besar perubahan tegangan.

$$Tap = \begin{bmatrix} tap \ trafo \ 1\\ tap \ trafo \ 2\\ \vdots\\ tap \ trafo \ n \end{bmatrix} = \begin{bmatrix} tap1 * rasio * tegangan\\ tap2 * rasio * tegangan\\ \vdots\\ tapn * rasio * tegangan \end{bmatrix}$$
(11)

2.3 Rugi Daya Saluran

Rugi daya saluran merupakan selisih antara daya kirim dengan daya terima. Apabila suatu penghantar dialiri arus secara terus-menerus maka akan menimbulkan panas. Penyebab panas adalah semakin besarnya arus pada saluran, sehingga semakin banyak daya yang terbuang menjadi panas. Selain itu, rugi daya juga dipengaruhi oleh Panjang saluran. Suatu penghantar memiliki hambatan atau impedansi saluran sehingga membuat tegangan yang disalurkan tidak sesuai dengan tegangan yang disuplai oleh sumber.

Rugi daya saluran diperoleh setelah mengetahui nilai tegangan dan arus pada setiap bus dan saluran. Pada Error! Reference source not found. bus k dan bus m terhubung oleh sebuah saluran. Arus saluran I_{ij} terukur pada bus *i* bernilai positif, sedangkan arus saluran I_{ji} terukur pada bus *j* bernilai negatif karena datang dari arah berlawanan [10].

Gambar 2.3 Model Saluran Sederhana

 $i \rightarrow j$ dapat ditulis

$$I_{ij} = I_{\ell} + I_{i0} = Z_{ij} (V_i - V_j) + Z_{i0} V_i$$
(12)

 $j \rightarrow i$ dapat ditulis menjadi

$$I_{ji} = -I_{\ell} + I_{j0} = Z_{ij} (V_j - V_i) + Z_{j0} V_j$$
(13)

Daya kompleks S_{ij} dari bus *i* ke *j* dan S_{ji} dari bus *j* ke *i* adalah sebagai berikut

$$S_{ij} = V_i * I_{ij}^* \tag{14}$$

$$S_{ji} = V_j * I_{ji}^* \tag{15}$$

Rugi daya saluran i - j adalah penjumlahan dari persamaan (14) dan (15)

$$S_{l\,ij} = S_{ij} + S_{ij} \tag{16}$$

$$P_{l\,ij} = real\left(S_{l\,ij}\right) \tag{17}$$

2.4 Deviasi Tegangan

Deviasi tegangan merupakan salah satu gangguan dalam sistem distribusi. Deviasi tegangan berupa penyimpangan tegangan dimana terdapat batas maksimum dan minimumnya. Standar deviasi tegangan yang ditentukan oleh PLN sebesar +5% dan -10%. Deviasi tegangan dapat ditentukan berdasarkan persamaan berikut [11]:

$$\Delta Deviasi Tegangan = \left(\frac{V_i - V^{spek}}{V_i^{max} - V_i^{min}}\right)^2 \tag{18}$$

2.5 Solid-State On-Load Tap Changer

Tap Changer adalah alat bantu utama dari tranformator yang berfungsi untuk mendapatkan rasio yang efektif dengan cara mengurangi atau menambah jumlah belitan primer atau sekunder. Secara umum, tap changer bekerja berdasarkan perbandingan jumlah lilitan dan tegangan pada kumparan primer dan sekunder.

$$\frac{V_1}{V_2} = \frac{N_1}{N_2}$$
(19)

Keterangan:

 V_1 = tegangan pada sisi primer V_2 = tegangan pada sisi sekunder N_1 = jumlah lilitan pada sisi primer N_2 = jumlah lilitan pada sisi sekunder

Berdasarkan pembebanan, tap changer dibagi menjadi dua tipe yaitu Load Tap Changer (LTC) dan On-Load Tap Changer (OLTC).

Gambar 2.4 Model Sederhana Solid-State OLTC

Gambar 2.5 Thyristor Anti-Paralel

OLTC umumnya menggunakan resistansi dan reaktansi selama operasi switching untuk membatasi arus yang bersirkulasi di transisi tap. Untuk membatasi arus yang bersirkulasi pada transisi tap, dapat digunakan *thyristor bidirectional* sebagai elemen switching. Tipe dari *tap changer* ini disebut *Solid-State On-Load Tap Changer* [2].

Solid-State On-Load Tap Changer memiliki kinerja yang lebih baik dibandingkan dengan On-Load Mechanical Tap Changer. Mechanical OLTC mempunyai beberapa kelemahan diantaranya menimbulkan arcing, membutuhkan perawatan rutin, biaya perawatan mahal, dan reaksi cenderung lambat [1]. Sedangkan Solid-State OLTC tidak membutuhkan pergantian oli secara teratur dengan umur pemakaian yang sama dengan Mechanical OLTC, dan tahan terhadap gangguan tegangan dan arus tinggi. Solid-State OLTC juga memiliki harga yang kompetitif dengan Mechanical OLTC [2]. Strategi pengendalian tegangan oleh OLTC dilakukan dengan mempertimbangkan pengukuran daerah sekitar, sehingga deviasi tegangan yang berada di luar batas toleransi dapat dikurangi.

Gambar 2.6 Pemodelan Solid-State On-Load Tap Changer

Untuk menggambarkan prinsip operasi *Solid-State* OLTC menggunakan dua *thyristor* anti-paralel untuk tiap tap dapat dilihat pada **Gambar 2.6**. *Switching up* terjadi ketika operasi *thyristor* TH3 dan TH4 (operasi normal) berpindah ke *thyristor* TH1 dan TH2, tegangan akan naik dari VB ke VA. *Switching down* terjadi ketika *thyristor* TH5 dan TH6 bekerja and *thyristor* yang lain dalam keadaan *off* atau tidak bekerja. Sehingga tegangan akan turun ke VC.

OLTC memiliki lebih banyak variasi *tap position* dibandingkan LTC. Mulai dari 5 step, 17 step, 33 step, bahkan ada yang lebih dari 100 step. Jumlah *tap position* ditentukan berdasarkan rentang pengaturan tegangan yang diinginkan. Untuk 5 step, memiliki kenaikan per-stepnya adalah 2,5%. Untuk 17 step, memiliki kenaikan per-stepnya adalah 1,25%. Sedangan untuk 33 step, memiliki kenaikan per-stepnya adalah 0,625% [7].

2.6 Power Loss Index (PLI)

Penetuan lokasi optimal dari *Solid-State* OLTC bertujuan agar tidak hanya memperbaiki profil tegangan, melainkan juga untuk mengurangi rugi-rugi daya. Maka dari itu *Solid-State* OLTC perlu ditempatkan pada lokasi yang optimal dan dioperasikan dengan
pengaturan tap yang optimal juga untuk meningkatkan perfomansi sistem. *Power Loss Index* (PLI) berguna dalam menentukan jumlah kandidat node untuk penempatan *Solid-State* OLTC [12].

Persamaan Power Loss Index (PLI) adalah sebagai berikut

$$PLI[n] = \frac{(loss reduction [n] - min.reduction)}{(max.reduction - min.reduction)}$$
(20)

2.7 Quantum Swarm Evolutionary Algorithm

2.7.1 Definisi Quantum Swarm Evolutionary Algorithm

QSE adalah hibridisasi dari *Quantum-inspired Evolutionary Algorithm* (QEA) dan *Particle Swarm Optimization* (PSO) [13]. Algoritma QSE ini menggunakan mekanisme "novel quantum bit *expression*" yang disebut sudut quantum dan mengadopsi PSO untuk memperbarui Q-bit secara otomatis. Pendekatan QEA lebih baik dibandingkan dengan *classical evolutionary algorithm* seperti *Genetic Algorithm* (GA), bukan menggunakan biner, representasi numerik atau simbolik. QEA menggunakan Q-bit sebagai representasi probabilistic, yang didefinisikan sebagai unit terkecil dari informasi.

2.7.2 Quantum-inspired Evolutionary Algorithm

Q-bit tidak hanya bernilai 0 dan 1, tetapi juga dalam superposisi linier dari basis state. Q-bit dapat didefinisikan sebagai $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$, dimana α dan β adalah bilangan kompleks yang menunjukkan amplitude probabilitas. $|\alpha|^2$ dan $|\beta|^2$ adalah kemungkinan masing-masing Q-bit akan bernilai "0" dan "1", yang akan memenuhi persamaan di bawah ini

$$|\alpha|^2 + |\beta|^2 = 1 \tag{21}$$

dan m-Q-bits didefinisikan sebagai berikut

$$\begin{bmatrix} \alpha_1 & \alpha_2 \\ \beta_2 & \beta_2 \end{bmatrix} \dots \begin{bmatrix} \alpha_m \\ \beta_m \end{bmatrix}$$
(22)

Dimana $|\alpha_i|^2 + |\beta_i|^2 = 1$, (i = 1, 2, ..., m) dan m adalah jumlah atribut. Pada QEA berlaku fungsi Q(t) dan P(t) yang didefinisikan pada Persamaan 23 dan 24

$$Q(t) = \{q_1^t, q_2^t, \cdots, q_n^t\}, q_j^t = \left[\theta_{j1}^t | \theta_{j1}^t | \dots | \theta_{jm}^t |\right]$$
(23)

$$P(t) = \{X_1^t, X_2^t, \cdots, X_n^t\}, B^t \in X_j, X_j^t = \{x_{j1}^t, x_{j2}^t, \dots, x_{jm}^t\}$$
(24)

Dimana i = 1, 2, ..., m, j = 1, 2, ..., n. n adalah jumlah populasi atau jumlah data dan m adalah jumlah atribut.

Pada langkah "inisialisasi **Q(0)** pada t = 0", $\begin{bmatrix} \alpha_{ji}^0 \\ \beta_{ji}^0 \end{bmatrix}$ dari semua q_{ji}^0

pada $\mathbf{Q}(\mathbf{0})$ diinisialisasi dengan $1/\sqrt{2}$. Artinya bahwa setiap *m*-*Q*-*bits*, q_j^0 merepresentasikan superposisi linier dari semua state yang memungkinkan dengan kemungkinan yang sama [14]. Untuk mendapatkan string biner, $\mathbf{P}(t)$ dapat diimplementasikan untuk setiap individu *Q*-*bits*. Ketika mencari $\mathbf{Q}(t)$, nilai $x_{ji}^t = 0$ atau 1 dari $\mathbf{P}(t)$ ditentukan oleh probabilitas $|\alpha_{ii}^t|^2$ atau $|\beta_{ii}^t|^2$ [15].

Quantum gate (Q-gate) U(t) adalah operator variabel dari QEA. Dapat ditentukan berdasarkan permasalahan. Modified *rotation gate* atau operator variabel yang digunakan QEA adalah sebagai berikut

$$\begin{bmatrix} \alpha_{ji}^{0} \\ \beta_{ji}^{0} \end{bmatrix} = \begin{vmatrix} \cos(\xi(\Delta\theta_{i})) & -\sin(\xi(\Delta\theta_{i})) \\ \sin(\xi(\Delta\theta_{i})) & \cos(\xi(\Delta\theta_{i})) \end{vmatrix} \begin{bmatrix} \alpha_{i} \\ \beta_{i} \end{bmatrix}$$
(25)

dimana $\xi(\Delta \theta_i) = s(\alpha_i, \beta_i) * \Delta \theta_i, s(\alpha_i, \beta_i)$ dan $\Delta \theta_i$ merepresentasikan sudut dan arah rotasi.

2.7.3 Particle Swarm Optimization

PSO adalah strategi optimasi berbasis populasi yang diperkenalkan oleh Kennedy dan Eberhart [16]. Dan telah menunjukkan kinerja yang baik dalam banyak masalah optimasi fungsi dan masalah optimasi parameter dalam beberapa tahun terakhir. PSO diinisialisasi dengan sekelompok partikel acak dan kemudian memperbarui kecepatan dan posisi mereka dengan rumus sebagai berikut

$$v(t+1) = v(t) + c_1 * rand * (pbest(t) - present(t)) + c_2 * rand() * (gbest(t) - present(t)), present(t+1) = present(t) + v(t+1)$$
(26)

v(t) adalah kecepatan partikel, present(t) merupakan posisi partikel saat ini. pbest(t) dan gbest(t) didefinisikan sebagai individu terbaik dan kelompok terbaik. Rand() adalah bilangan random antara [0,1]. c_1 dan c_2 adalah *learning factors*. Umumnya $c_1 = c_2 = 2$.

2.7.4 Quantum Swarm Evolutionary Algorithm

Alur kerja QSE adalah sebagai berikut:

1. Menggunakan quantum angle untuk mengkodekan Q-bits.

$$Q(t) = \{q_1^t, q_2^t, \cdots, q_n^t\}, q_j^t = \left[\theta_{j1}^t | \theta_{j1}^t | \dots | \theta_{jm}^t |\right]$$
(27)

- 2. Membuat setiap $x_{ji}^t = 0$ atau 1 dari **P**(t) dengan mengamati keadaan $\mathbf{Q}(t)$ melalui $|\cos(\theta_{ji})|^2$ atau $|\sin(\theta_{ji})|^2$.
- 3. Update $\mathbf{Q}(t)$ dengan formula *improved* PSO sebagai berikut

$$v_{ji}^{t+1} = \chi * (\omega * v_{ji}^{t} + c_{1} * rand() * (\theta_{j1}^{t}(pbest) - \theta_{j1}^{t}) + c_{2} * rand() * (\theta_{j1}^{t}(gbest) - \theta_{j1}^{t})), \theta_{j1}^{t+1} = \theta_{j1}^{t} + v_{j1}^{t+1}$$
(28)

 v_{ji}^t , θ_{ji}^t , θ_{ji}^t (*p*best), dan θ_{ji}^t (*g*best) adalah kecepatan, posisi saat ini, individu terbaik, dan kelompok terbaik dari *i*th Q-bit dari *j*th m-Qbits. Atur $\chi = 0.99$, $\omega = 0.7298$, $c_1 = 1.42$, dan $c_2 = 1.57$, yang memenuhi kondisi konvergensi partikel: $W > (C_1+C_2)/2-1$. Jika $C_2 > C_1$, partikelpartikel akan lebih cepat menyatu menjadi satu kelompok posisi optimal daripada posisi optimal lokal setiap partikel [17].

2.8 Geographical Information System (GIS)

Geographical Information System (GIS) merupakan salah satu pengembangan teknologi informasi dan penyediaan data sistem informasi geografis yang memuat database tentang tata ruang umum yang menggunakan sistem koordinat sebagai referensinya [18]. Kemampuan ini membedakan GIS memiliki database skala besar yang akan memudahkan pengguna dalam mengakses data dan menggunakannya sebagai bahan analisis. Pada database tersebut berisi tentang informasi peralatan, kondisi eksisting suatu sistem, serta data geografis suatu sistem.

Gambar 2.7 Pemodelan Sistem Tenaga Listrik Kota Surabaya

BAB III IMPLEMENTASI PLI DAN QSE UNTUK OPTIMAL LOKASI DAN TAPPING SOLID-STATE OLTC

3.1 Alur Kerja Sistem Optimasi Lokasi dan Tapping OLTC

Berikut diagram alir untuk mengetahui parameter-parameter yang dibutuhkan dalam pembuatan program optimasi dengan metode QSE.

Gambar 3.1 Diagram Alir Sistem Secara Keseluruhan

3.2 Inisialisasi Data Beban dan Jaringan

Gambar 3.2 Sistem Distribusi Radial IEEE 33 Bus

Gambar 3.3 Penyulang Basuki Rahmat

Plant atau objek yang digunakan pada penelitian tugas akhir ini adalah sistem distribusi IEEE 33 bus radial dan sistem distribusi kota Surabaya khususnya penyulang Basuki Rahmat. Sistem distribusi IEEE 33 bus radial merupakan *plant* yang akan digunakan sebagai pembanding dengan metode lain, selain itu *plant* ini juga digunakan sebagai validasi hasil metode PLI dan QSE. Setelah hasil yang didapat valid, metode ini akan diimplementasikan ke sistem distribusi kota Surabaya pada penyulang Basuki Rahmat dengan menggunakan *Geographical Information System* (GIS) sehingga hasil yang didapat sesuai dengan yang ada di lapangan. Data beban diambil dari *Supervisory Control and Data Acquisition* (SCADA), sedangkan data jaringan diambil dari *database* GIS.

Bentuk single line diagram sistem distribusi IEEE 33 bus dan sistem distribusi kota Surabaya penyulang Basuki rahmat ditunjukkan pada Gambar 3.2 dan Gambar 3.3.

3.3 Analisis Aliran Daya atau Load Flow

Untuk mengetahui nilai tegangan, arus, dan rugi daya, dilakukan analisis aliran daya. Pada tugas akhir ini analisis aliran daya menggunakan metode *Topology Network*. Kondisi awal dari sistem sebelum terpasang *Solid-State* OLTC perlu diketahui sebagai pembanding dengan kondisi sistem setelah terpasang *Solid-State* OLTC.

Gambar 3.4 Analisis Aliran Daya Melalui GIS

3.4 Penentuan Lokasi Solid-State OLTC

Power Loss Index (PLI) tiap bus digunakan untuk menentukan lokasi *Solid-State* OLTC pada jaringan distribusi. Nilai PLI tiap node atau bus (kecuali swing bus) dihitung dengan menaikkan tegangan tiap node sebesar 1.05 p.u yang kemudian pengurangan rugi daya aktif dapat diketahui melalui *running load flow*. Berikut merupakan alur untuk mengetahui bus kandidat yang paling cocok untuk penempatan *Solid-State* OLTC.

- Step 1. Inisialisasi data jaringan sistem distribusi.
- Step 2. Jalankan load flow untuk melihat rugi daya aktif dari base case.
- Step 3. Atur tegangan tiap node ke batas maksimum tegangan yaitu sebesar 1.05 p.u dan jalankan *load flow* untuk melihat rugi daya aktif pada setiap case.
- Step 4. Hitung penurunan rugi daya aktif menggunakan persamaan PLI.

$$PLI[n] = \frac{(loss \ reduction \ [n] - Min. \ reduction}{(max. \ reduction - min. \ reduction}$$
(29)

Step 5. Pilih node kandidat (PLI > batas toleransi).

Nilai PLI akan bervariasi dalam kisaran 0 sampai 1. Node atau bus yang memiliki PLI lebih besar dari batas toleransi PLI dipilih sebagai bus optimal untuk menempatkan *Solid-State* OLTC. Nilai toleransi PLI terbaik dipilih berdasarkan penurunan maksimum rugi daya aktif.

3.5 Implementasi Quantum Swarm Evolutionary Algorithm Pada Penentuan Tapping Solid-State OLTC

Quantum Swarm Evolutionary Algorithm (QSE) pada tugas akhir ini digunakan sebagai metode untuk menentukan tapping Solid-State OLTC. Koordinasi tapping Solid-State OLTC dibutuhkan agar dapat memperbaiki regulasi tegangan serta dapat menurunkan rugi daya saluran. Pemodelan program dilakukan dengan MATLAB dan divalidasi dengan ETAP.

Berikut ini adalah diagram alir metode *Quantum Swarm Evolutionary Algorithm* (QSE) yang digunakan untuk menentukan tapping *Solid-State* OLTC.

Gambar 3.5 Flowchart Quantum Swarm Evolutionary Algorithm

3.5.1 Parameter PSO

Inisialisasi parameter PSO yang digunakan pada tugas akhir ini

adalah

- 1. Parameter PSO Jumlah Populasi : 200 Jumlah Tap : 33 Jumlah Iterasi : 500
- 2. Parameter *improved* PSO Gamma = 0.99Omega = 0.7298c1 = 1.42c2 = 1.57

Jumlah partikel merupakan banyaknya individu kandidat solusi. Jumlah tap merupakan parameter yang akan dioptimasikan. Terdapat 32 step *tap position*. Untuk setiap perubahan step akan mengubah level tegangan untuk setiap perubahan per-stepnya adalah 0.625%. Parameter ini digunakan pada sistem distribusi radial IEEE 33 bus dan sistem distribusi kota Surabaya.

3.5.2 Fungsi Objektif

Fungsi objektif yang digunakan pada tugas akhir ini adalah meminimalkan rugi daya. Rugi daya yang diminimalkan adalah total rugi daya aktif pada sistem yang direpresentasikan pada persamaan di bawah ini

$$Ploss = \sum_{j=1}^{nb} Ploss_j = \sum_{j=1}^{nb} |I_{bj}|^2 \cdot R_j \qquad j = 1, 2, 3, \dots nb \quad (30)$$

Dimana *nb* adalah jumlah saluran pada sistem.

3.5.3 Constraint

Batasan constraint pada dasarnya faktor pembatas yang perlu dirumuskan secara matematis yang harus dilalui pada proses seleksi. Pada tugas akhir ini terdapat dua batasan constraint yang harus dipenuhi yaitu antara lain constraint tegangan dan constraint tap regulator. Tegangan bus pada sistem harus berada pada batas toleransi selama proses optimasi. Batas toleransi tegangan bus adalah

$$0.95 \text{ p. u} < \text{Tegangan} < 1.05 \text{ p. u}$$
 (31)

Solid-State OLTC pada tugas akhir ini berfungsi sebagai voltage regulator. Setiap tap position, perubahan besarnya tegangan sebesar \pm 0.625%.

$$tap_{VR}^{min} \le tap_{VR} \le tap_{VR}^{max} \tag{32}$$

$$V_j = V_j \pm (tap \ x \ V_{jrated}) \tag{33}$$

---Halaman ini sengaja dikosongkan---

BAB IV SIMULASI DAN ANALISIS

Simulasi dan analisis memiliki tujuan untuk memperoleh kesimpulan. Simulasi dan analisis diharapkan mampu mennjawab permasalahan yang dipaparkan pada BAB I. Permasalahan yang dipaparkan pada BAB I berfokus pada analisis aliran daya, sehingga perlu adanya validasi analisis aliran daya. Pada tugas akhir ini, analisis aliran daya menggunakan metode *Topology Network*. Analisis aliran daya dimodelkan dengan software MATLAB dan GIS. Sedangkan untuk validasi menggunakan software ETAP dengan metode *Modified Newton Raphson*. Untuk memudahkan analisis, pada bab ini dibagi menjadi beberapa kasus antara lain:

- 1. Kondisi awal sistem
- 2. Hasil Penentuan lokasi Solid-State OLTC menggunakan PLI.
- 3. Hasil Optimasi QSE untuk penentuan tapping *Solid-State* OLTC.
- 4. Analisis perbandingan metode QSE dengan metode GA dan BPSO.

4.1 Kondisi Awal Sistem

4.1.1 Sistem Distribusi IEEE 33 Bus Radial

Hasil analisis aliran daya pada sistem distribusi IEEE 33 bus ditunjukkan pada Tabel

	Tegangan (p.u)		
Bus	Topology Network (MATLAB)	Modified Newton Raphson (ETAP)	% Error
1	1,00000000	1,00000000	0,000000000
2	0,997032260	0,997032246	0,000001377
3	0,982937984	0,982937896	0,000008865
4	0,975456414	0,975456272	0,000014498

Tabel 4.1 Tegangan Sistem IEEE 33 Bus

	Tegangan (p.u)			
Bus	Topology	Modified Newton		
	Network	Raphson (ETAD)	% Error	
5	(\mathbf{MATLAB})	(EIAP)	0.000020447	
5	0,968059233	0,968059035	0,00020447	
6	0,949658178	0,949657856	0,000033910	
7	0,946172614	0,946172263	0,000037174	
8	0,941328438	0,941310317	0,001925136	
9	0,935059373	0,935041125	0,001951569	
10	0,929244424	0,929226058	0,001976436	
11	0,928384418	0,928366035	0,001980142	
12	0,926884838	0,926866424	0,001986625	
13	0,920771749	0,920753211	0,002013336	
14	0,918504994	0,918486410	0,002023341	
15	0,917092681	0,917074068	0,002029606	
16	0,915724761	0,915706120	0,002035695	
17	0,913697547	0,913678865	0,002044761	
18	0,913090481	0,913071786	0,002047483	
19	0,996503896	0,996503882	0,000001378	
20	0,992926300	0,992926286	0,000001388	
21	0,992221796	0,992221782	0,000001390	
22	0,991584377	0,991584363	0,000001392	
23	0,979352258	0,979352170	0,000008932	
24	0,972681101	0,972681013	0,000009057	
25	0,969356113	0,969356024	0,000009121	
26	0,947728911	0,947728588	0,000034056	
27	0,945165165	0,945164841	0,000034251	
28	0,933725582	0,933725254	0,000035133	
29	0,925507479	0,925507148	0,000035781	

Tabel 4.2 Tegangan Sistem IEEE 33 Bus (Lanjutan)

Bus	Tegangan (p.u)		
	Topology Network (MATLAB)	Modified Newton Raphson (ETAP)	% Error
30	0,921950059	0,921949727	0,000036065
31	0,917788888	0,917788554	0,000036401
32	0,916873467	0,916873133	0,000036476
33	0,916589823	0,916589489	0,000036499

Tabel 4.3 Tegangan Sistem IEEE 33 Bus (Lanjutan)

Tabel 4.1 menunjukkan tegangan bus pada sistem IEEE 33 bus sebelum terpasangan *Solid-State* OLTC. Dapat dilihat bahwa tegangan bus pada selain bus 1 sampai dengan bus 5 dan bus 19 sampai dengan bus 25, berada dibawah batas toleransi yaitu 0.95 p.u (dicetak dengan huruf tebal). Artinya pada bus tersebut dalam kondisi *undervoltage* sehingga diperlukan *voltage regulator* seperti *Solid-State* OLTC.

Di bawah ini merupakan nilai arus setiap saluran pada sistem IEEE 33 bus.

	Arus (A)		
Saluran	Topology Network (MATLAB)	Modified Newton Raphson (ETAP)	% Error
1	210,365254	210,365282	0,000013
2	187,131165	187,131192	0,000015
3	134,627371	134,627396	0,000019
4	127,888460	127,888485	0,000020
5	124,769470	124,769495	0,000020
6	58,387936	58,387947	0,000019
7	47,612652	47,612662	0,000020
8	36,782856	36,782864	0,000022

 Tabel 4.4 Arus Saluran Sistem IEEE 33 Bus

	Arus (A)		
Saluran	Topology Network (MATLAB)	Modified Newton Raphson (ETAP)	% Error
9	33,719300	33,719307	0,000022
10	30,640391	30,640398	0,000022
11	28,009235	28,009242	0,000023
12	24,605622	24,605627	0,000023
13	21,184622	21,184627	0,000023
14	14,189682	14,189686	0,000024
15	11,212563	11,212565	0,000024
16	8,066896	8,066898	0,000024
17	4,919110	4,919111	0,000025
18	18,087086	18,087086	0,000001
19	13,579831	13,579831	0,000001
20	9,056332	9,056332	0,000001
21	4,529621	4,529621	0,000001
22	48,481899	48,481901	0,000004
23	43,695630	43,695631	0,000004
24	21,885222	21,885223	0,000004
25	65,351107	65,351121	0,000021
26	62,486168	62,486182	0,000021
27	59,641304	59,641317	0,000022
28	56,981144	56,981156	0,000022
29	50,583913	50,583924	0,000022
30	23,348858	23,348863	0,000023
31	15,128551	15,128555	0,000023
32	3,587834	3,587835	0,000023

Tabel 4.5 Arus Saluran Sistem IEEE 33 Bus (Lanjutan)

Tabel 4.4 menunjukkan nilai arus pada setiap bus untuk sistem IEEE 33 bus. Saluran pertama mempunyai nilai arus saluran yang paling besar dikarenakan karakteristik dari sistem distribusi radial yang merupakan akumulasi dari semua arus saluran yang ada. Dengan dilakukan validasi menggunakan ETAP, error paling besar ada pada saluran 17 yaitu 0,0025%. Arus saluran sangat berpengaruh terhadap rugi daya. Berikut ini menunjukkan rugi daya saluran pada sistem IEEE 33 bus.

Rugi Daya Aktif (kW)			
Saluran	Topology Network	Modified Newton Raphson	% Error
1	12,240424100	12,240530000	0,000865159
2	51,791233670	51,791730000	0,000958319
3	19,900476140	19,900730000	0,001275632
4	18,698941810	18,699200000	0,001380754
5	38,248623040	38,249160000	0,001403848
6	1,914517564	1,914581000	0,003313310
7	4,837964984	4,858563000	0,423952844
8	4,180536917	4,180706000	0,004044365
9	3,560914126	3,561058000	0,004040204
10	0,553701877	0,553724200	0,004031429
11	0,881134460	0,881169900	0,004021926
12	2,666235704	2,666343000	0,004024088
13	0,729161733	0,729191200	0,004041053
14	0,356973985	0,356988600	0,004093968
15	0,281466635	0,281478200	0,004108666
16	0,251634086	0,251644500	0,004138378
17	0,053135866	0,053138070	0,004147685
18	0,160954198	0,160954300	0,000063372

Tabel 4.6 Rugi Daya Aktif Sistem IEEE 33 Bus

	Rugi Daya Aktif (kW)			
Saluran	Topology Network	Modified Newton Raphson	% Error	
19	0,832176689	0,832177200	0,000061405	
20	0,100758064	0,100758100	0,000035729	
21	0,043634494	0,043634520	0,000059586	
22	3,181629061	3,181628000	0,000033348	
23	5,143675363	5,143673000	0,000045940	
24	1,287452299	1,287452000	0,000023224	
25	2,600896428	2,600895000	0,000054904	
26	3,328993767	3,328993000	0,000023040	
27	11,300856120	11,300850000	0,000054155	
28	7,833349818	7,833346000	0,000048740	
29	3,895668641	3,895669000	0,000009215	
30	1,593638068	1,593635000	0,000192516	
31	0,213195195	0,213195200	0,00002345	
32	0,013168619	0,013168620	0,000007594	
Total	202,677123507	202,699964610	0,011268423	

Tabel 4.7 Rugi Daya Aktif SIstem IEEE 33 Bus (Lanjutan)

 Tabel 4.8 Rugi Daya Reaktif Sistem IEEE 33 Bus

	Rugi Daya Reaktif (kVAR)		
Saluran	Topology Network	Modified Newton Raphson	% Error
1	6,239695585	6,239749000	0,000856044
2	26,378861630	26,379110000	0,000941540
3	10,135105880	10,135240000	0,001323304
4	9,523654169	9,523785000	0,001373729
5	33,018042100	33,018510000	0,001417084

Rugi Daya Reaktif (kVAR)			VAR)
Saluran	Topology Network	Modified Newton Raphson	% Error
6	6,328544182	6,328755000	0,003331113
7	1,598827059	1,598892000	0,004061625
8	3,003492547	3,003614000	0,004043562
9	2,524019595	2,524122000	0,004057054
10	0,183065219	0,183072600	0,004031734
11	0,291358030	0,291369700	0,004005221
12	2,097753572	2,097838000	0,004024524
13	0,959784714	0,959823500	0,004040951
14	0,317712888	0,317725900	0,004095354
15	0,205546451	0,205554900	0,004110337
16	0,335967621	0,335981500	0,004130882
17	0,041666649	0,041668380	0,004154229
18	0,153593487	0,153593600	0,000073571
19	0,749855261	0,749855600	0,000045209
20	0,117711008	0,117711100	0,000078157
21	0,057693062	0,057693090	0,000048533
22	2,173972161	2,173971000	0,000053405
23	4,061670599	4,061668000	0,000063988
24	1,007402686	1,007402000	0,000068096
25	1,324791576	1,324791000	0,000043479
26	1,694952135	1,694952000	0,000007965
27	9,963748184	9,963745000	0,000031956
28	6,824228882	6,824226000	0,000042232
29	1,984296236	1,984297000	0,000038502
30	1,574993284	1,574991000	0,000145017

Tabel 4.9 Rugi Daya Reaktif Sistem IEEE 33 Bus (Lanjutan)

Saluran	Rugi Daya Reaktif (kVAR)		
	Topology Network	Modified Newton Raphson	% Error
31	0,248487410	0,248487400	0,000004024
32	0,020475079	0,020475080	0,000004884
Total	135,140968941	135,142670350	0,001258972

Tabel 4.10 Rugi Daya Reaktif Sistem IEEE 33 Bus (Lanjutan)

Pada Error! Reference source not found. sampai **Tabel 4.10** menampilkan rugi daya aktif dan reaktif pada sistem IEEE 33 bus. Total rugi daya mencapai 202,677123507 kW dan 135,140968937 kVAR. Dari hasil validasi dengan software ETAP, didapatkan error sebesar 0,001258975%.

4.1.2 Sistem Distribusi Kota Surabaya Penyulang Basuki Rahmat

Untuk menghasilkan analisis yang lebih realistis dan sesuai dengan yang ada di lapangan, maka digunakan *plant* sistem distribusi kota Surabaya pada penyulang Basuki Rahmat. Berikut ini hasil awal analisis aliran daya pada sistem penyulang Basuki Rahmat.

	Tegangan (kV)		
Bus	Topology Network	Modified Newton Raphson	% Error
1	1,00000000	1,0000000	0,00000000
2	0,999338393	0,99933880	0,000040711
3	0,999276706	0,99927740	0,000069443
4	0,999236447	0,99923730	0,000085376
5	0,999153690	0,99915470	0,000101121
6	0,998913279	0,99891450	0,000122260
7	0,998608419	0,99860970	0,000128270

 Tabel 4.11 Tegangan Sistem Penyulang Basuki Rahmat

	Tegangan (kV)			
Bus	Topology Network	Modified Newton Raphson	% Error	
8	0,998193770	0,99819520	0,000143263	
9	0,998123022	0,99812460	0,000158050	
10	0,997939231	0,99794110	0,000187253	
11	0,997938485	0,99794040	0,000191920	
12	0,997911953	0,99791390	0,000195079	
13	0,997908792	0,99791370	0,000491802	
14	0,997899611	0,99790470	0,000509950	
15	0,997877459	0,99788260	0,000515154	
16	0,997826890	0,99782900	0,000211435	
17	0,997825641	0,99782770	0,000206388	
18	0,997712742	0,99771500	0,000226330	
19	0,997492023	0,99749440	0,000238257	
20	0,997486893	0,99748930	0,000241257	
21	0,997401146	0,99740370	0,000256074	
22	0,997400175	0,99740270	0,000253149	
23	0,997334475	0,99733700	0,000253212	
24	0,997324590	0,99732720	0,000261721	
25	0,997218136	0,99722080	0,000267165	
26	0,997185578	0,99718830	0,000272929	
27	0,997185190	0,99718790	0,000271801	
28	0,997151521	0,99715420	0,000268642	
29	0,997147485	0,99715020	0,000272285	
30	0,997112110	0,99711490	0,000279781	
31	0,997030378	0,99703320	0,000282995	
32	0,997014405	0,99701730	0,000290408	

 Tabel 4.12 Tegangan Sistem Penyulang Basuki Rahmat (Lanjutan)

	Tegangan (kV)		
Bus	Topology Network	Modified Newton Raphson	% Error
33	0,997012675	0,99701550	0,000283326
34	0,996988693	0,99699160	0,000291598
35	0,996987997	0,99699090	0,000291181
36	0,996954756	0,99695770	0,000295326
37	0,996947939	0,99695090	0,000297005
38	0,996925251	0,99692830	0,000305810
39	0,996921858	0,99692480	0,000295145
40	0,996922403	0,99692540	0,000300584
41	0,996906627	0,99690960	0,000298231
42	0,996878610	0,99688160	0,000299907
43	0,996877887	0,99688100	0,000312304
44	0,996867921	0,99687100	0,000308856
45	0,996865408	0,99686840	0,000300103
46	0,996866437	0,99686950	0,000307284
47	0,996866247	0,99686930	0,000306298
48	0,996857840	0,99686090	0,000306926
49	0,996849359	0,99685240	0,000305047
50	0,996846191	0,99684930	0,000311897
51	0,996845134	0,99684820	0,000307619

Tabel 4.13 Tegangan Sistem Penyulang Basuki Rahmat (Lanjutan)

Pada **Tabel 4.11** sampai **Tabel 4.13** Tabel 4.11 dapat dilihat bahwa tegangan setiap bus berada dalam kondisi normal. Tegangan setiap bus berada dalam batas toleransi yang ditentukan oleh PLN, yaitu 0,9 p.u > tegangan > 1,05 p.u. Hal ini disebabkan karena jarak antar yang relative dekat dan impedansi saluran relatif kecil, sehingga nilai drop tegangan kecil. Nilai tegangan yang paling rendah berada pada bus 51 sebesar 0,996845134 p.u. Rendahnya nilai tegangan pada bus 51 disebabkan karena letak bus 51 berada pada penghujung saluran dan bus 51 dengan sumber memiliki jarak yang jauh. Error terbesar pada perbandingan antara metode *Topology Network* dengan *Modified Newton Raphson* adalah 0,000515154%.

Pada tabel selanjutnya menunjukkan arus saluran hasil analisis aliran daya pada sistem penyulang Basuki Rahmat.

		Arus (A)		
Saluran	Topology Network	Modified Newton Raphson	% Error	
1	319,48244363	319,43190000	0,01582297	
2	313,71054042	313,66000000	0,01611312	
3	309,09273291	309,03780000	0,01777547	
4	301,85343109	301,81550000	0,01256764	
5	297,23505512	297,19270000	0,01425174	
6	294,34026917	294,30290000	0,01269752	
7	288,56414722	288,52130000	0,01485063	
8	287,13561700	287,08760000	0,01672556	
9	279,88823932	279,85720000	0,01109113	
10	2,89762816	2,89270900	0,17005387	
11	38,93493681	38,92132000	0,03498548	
12	2,18324017	2,16959000	0,62915897	
13	36,75170311	36,75173000	0,00007317	
14	32,12752499	32,12323000	0,01337036	
15	238,05569170	238,04320000	0,00524766	
16	2,89795586	2,89303600	0,17005860	
17	235,15775057	235,15010000	0,00325348	
18	232,25948180	232,25680000	0,00115467	
19	14,46415877	14,47009000	0,04098960	

Tabel 4.14 Arus Saluran Sistem Penyulang Basuki Rahmat

		Arus (A)	1
Saluran	Topology Network	Modified Newton Raphson	% Error
20	217,79532327	217,78670000	0,00395950
21	5,78312260	5,78853800	0,09355385
22	212,01220394	211,99810000	0,00665286
23	19,97700896	19,98427000	0,03633378
24	192,03519821	192,01390000	0,01109201
25	63,10290443	63,10863000	0,00907257
26	128,93229590	128,90530000	0,02094243
27	124,57790492	124,55060000	0,02192275
28	32,15104435	32,14682000	0,01314081
29	92,42686380	92,40379000	0,02497062
30	90,11294758	90,09254000	0,02265179
31	87,92779455	87,92104000	0,00768251
32	7,25544933	7,23848200	0,23440456
33	80,67234664	80,68256000	0,01265869
34	2,90039064	2,89546400	0,17015043
35	77,77197340	77,78709000	0,01943330
36	19,98455635	19,99181000	0,03628311
37	57,78741748	57,79528000	0,01360409
38	11,88482497	11,87219000	0,10642489
39	4,35554309	4,35579500	0,00578322
40	41,54705238	41,56731000	0,04873451
41	36,91826578	36,93419000	0,04311513
42	5,78615252	5,79156700	0,09348908
43	31,13211655	31,14262000	0,03372692

Tabel 4.15 Arus Saluran Sistem Penyulang Basuki Rahmat (Lanjutan)

	Arus (A)		
Saluran	Topology Network	Modified Newton Raphson	% Error
44	9,98842602	9,99057900	0,02155010
45	21,14370446	21,15204000	0,03940775
46	4,62897606	4,63330800	0,09349553
47	16,51472917	16,50468449	0,06085959
48	11,88571546	11,88539000	0,00273835
49	7,25666415	7,25200300	0,06427396
50	2,90080632	2,89587900	0,17014922

 Tabel 4.16 Arus Saluran Sistem Penyulang Basuki Rahmat (Lanjutan)

Pada **Tabel 4.14** sampai **Tabel 4.16** dapat dilihat bahwa pada sistem penyulang Basuki Rahmat memiliki arus yang besar. Hal ini disebabkan oleh panjangnya saluran. Terdapat 51 bus dan hanya disuplai oleh satu sumber pada penyulang Basuki Rahmat, sehingga arus yang dihitung adalah arus akumulasi dari semua saluran. Hasil validasi dengan software ETAP menunjukkan error terbesar pada perhitungan ini terdapat pada saluran 12 yaitu 0,62915897%.

Pada analisis berikutnya disajikan data rugi daya aktif dan reaktif pada sistem penyulang Basuki Rahmat.

	F	Rugi Daya Aktif (kW)		
Saluran	Topology Network	Modified Newton Raphson	% Error	
1	6,576103460	6,572186000	0,059606646	
2	0,602000281	0,599150000	0,475720824	
3	0,387216794	0,386792800	0,109617789	
4	0,777124032	0,776108700	0,130823469	
5	2,223206090	2,220454000	0,123942674	

Tabel 4.17 Rugi Daya Aktif Penyulang Basuki Rahmat

	Rugi Daya Aktif (kW)		
Saluran	Topology Network	Modified Newton Raphson	% Error
6	2,791678027	2,790709000	0,034723321
7	3,722635780	3,721031000	0,0431273
8	0,631955189	0,630507700	0,229575157
9	1,600433592	1,597729000	0,169277264
10	0,000067330	0,000067026	0,453108299
11	0,033044226	0,032993850	0,152684484
12	0,003829237	0,003830237	0,026108043
13	0,010498895	0,010494860	0,038449238
14	0,022143311	0,022134290	0,040757346
15	0,832036445	0,831268900	0,092334151
16	0,000112695	0,000112237	0,407751317
17	0,835128013	0,834410400	0,086002353
18	1,594868130	1,594022000	0,053081466
19	0,002308444	0,002305311	0,135900993
20	0,615751163	0,614706200	0,169993848
21	0,000174681	0,000174907	0,129636116
22	0,439737766	0,439544600	0,043946859
23	0,006143052	0,006146320	0,053170427
24	0,695104310	0,694618200	0,069982293
25	0,063922668	0,063922320	0,000544761
26	0,132157116	0,132101700	0,041949259
27	0,130504771	0,130308000	0,151004502
28	0,004037592	0,004030331	0,180151508
29	0,113327789	0,113220000	0,095203423
30	0,229139843	0,228890000	0,109154043

Tabel 4.18 Rugi Daya Aktif Penyulang Basuki Rahmat (Lanjutan)

	Rugi Daya Aktif (kW)		
Saluran	Topology Network	Modified Newton Raphson	% Error
31	0,043697290	0,043597820	0,228153533
32	0,000390390	0,000388252	0,550722748
33	0,064527091	0,064445790	0,126154607
34	0,000062814	0,000062375	0,704704151
35	0,082108112	0,082049280	0,071703327
36	0,004237848	0,004232532	0,125587571
37	0,053046139	0,053010480	0,067268489
38	0,001254715	0,001251626	0,246831842
39	0,000385865	0,000385341	0,136129256
40	0,024074719	0,024051550	0,096330409
41	0,032179446	0,032166280	0,04093062
42	0,000130269	0,000129809	0,35472925
43	0,010354056	0,010358130	0,039330436
44	0,000780889	0,000778531	0,302921786
45	0,000976371	0,000966403	1,031422779
46	0,000027384	0,000027049	1,238973664
47	0,004416691	0,004412285	0,099862342
48	0,003136199	0,003131788	0,140848618
49	0,000715322	0,000713142	0,305789395
50	0,000095448	0,000095099	0,367158394
Total	25,402987781	25,380223449	0,089693187

 Tabel 4.19 Rugi Daya Aktif Penyulang Basuki Rahmat (Lanjutan)

	Rugi Daya Reaktif (kVAR)		
Saluran	Topology Network	Modified Newton Raphson	% Error
1	3,288051715	3,284563000	0,106215514
2	0,301147761	0,298099200	1,022666541
3	0,193465089	0,191963800	0,782068556
4	0,388698688	0,388054400	0,166030235
5	1,111603040	1,110227000	0,123942214
6	1,395968961	1,395354000	0,044072059
7	1,861317881	1,860516000	0,043099946
8	0,316101263	0,314017600	0,663549856
9	0,800216792	0,798864500	0,169276791
10	0,000033652	0,000033387	0,793039805
11	0,016522113	0,016496920	0,152714488
12	0,001914619	0,001912619	0,104568675
13	0,005247422	0,005227169	0,387447718
14	0,011070107	0,011051670	0,166828804
15	0,416018220	0,414784500	0,297436497
16	0,000056360	0,000055993	0,655387530
17	0,417564004	0,416375800	0,285368223
18	0,797514978	0,796201800	0,164930280
19	0,001154222	0,001149515	0,409474031
20	0,307946732	0,307353100	0,193143333
21	0,000087290	0,000087454	0,18700035
22	0,219936306	0,219772300	0,074625272
23	0,003072125	0,003067169	0,161569026
24	0,347496837	0,347309100	0,054054682

Tabel 4.20 Rugi Daya Reaktif Penyulang Basuki Rahmat

	Rugi Daya Reaktif (kVAR)		
Saluran	Topology Network	Modified Newton Raphson	% Error
25	0,031955361	0,031901420	0,169086497
26	0,066078557	0,065801600	0,420897816
27	0,065229106	0,065153990	0,115289411
28	0,002018796	0,002015166	0,180126157
29	0,056663894	0,056609990	0,095220569
30	0,114569921	0,114445000	0,109153507
31	0,021848645	0,021798910	0,228152996
32	0,000195195	0,000193340	0,959473246
33	0,032273308	0,032222890	0,156464967
34	0,000031395	0,000031187	0,664259877
35	0,041063129	0,041024640	0,093818082
36	0,002119523	0,002110271	0,438419028
37	0,026518060	0,026455140	0,237838289
38	0,000627570	0,000625813	0,280671020
39	0,000192933	0,000192386	0,284262088
40	0,012034770	0,012025770	0,074840749
41	0,016089723	0,016083140	0,040930073
42	0,000065084	0,000064401	1,060765189
43	0,005175574	0,005179067	0,06744053
44	0,000390594	0,000389265	0,341379102
45	0,000488185	0,000483202	1,031411772
46	0,000013692	0,000013525	1,239010671
47	0,002208346	0,002202049	0,285942478
48	0,001568100	0,001563775	0,276544355
49	0,000357661	0,000356571	0,305802910

Tabel 4.21 Rugi Daya Reaktif Penyulang Basuki Rahmat (Lanjutan)

	Rugi Daya Reaktif (kVAR)		
Saluran	Topology Network	Modified Newton Raphson	% Error
50	0,000047736	0,000047549	0,393702965
Total	12,702031034	12,681528052	0,161675955

Tabel 4.22 Rugi Daya Reaktif Penyulang Basuki Rahmat (Lanjutan)

Tabel 4.17 sampai dengan Tabel 4.22 menunjukkan analisis rugi daya aktif dan reaktif. Penyulang Basuki Rahmat memiliki total rugi daya aktif dan reaktif sebesar 25,402987781 kW dan 12,702031034 kVAR. Rugi daya ini terhitung kecil karena jarak antar saluran relatif pendek.

4.2 Hasil Penentuan Lokasi *Solid-State* OLTC Menggunakan PLI

4.2.1 Penempatan Solid-State OLTC Sistem IEEE 33 Bus

Pada tugas akhir ini, penentuan lokasi *Solid-State* OLTC pada IEEE 33 bus ditentukan berdasakan nilai indeks PLI yang dibagi menjadi 4 zona sesuai pada **Gambar 4.1**. Zona 1 terdiri dari bus 1 sampai dengan bus 18, zona 2 terdiri dari bus 19 sampai dengan bus 22, zona 3 terdiri dari bus 23 sampai dengan bus 25, zona 4 terdiri dari bus 26 sampai dengan bus 33. **Tabel 4.23** menunjukkan nilai indeks PLI pada sistem IEEE 33 bus. Pada zona 1, nilai indeks PLI terbesar adalah pada bus 2 ke bus 3 dan bus 5 ke 6. Pada zona 2, nilai indeks PLI terbesar adalah pada bus 23 ke bus 24. Dan pada zona 3, nilai indeks PLI terbesar adalah pada bus 23 ke bus 24. Dan pada zona 4, nilai indeks PLI terbesar adalah pada bus 27 ke bus 28. Penempatan *Solid-State* OLTC ditunjukkan pada **Gambar 4.3**.

Bus Kirim	Bus Terima	PLI
1	2	0,18939
2	3	0,90510
3	4	0,41750
4	5	0,21549

Tabel 4.23 Nilai Indeks PLI Sistem IEEE 33 Bus

Bus Kirim	Bus Terima	PLI
5	6	1.00000
6	7	0,11954
7	8	0,37456
8	9	0,42152
9	10	0,39244
10	11	0,06682
11	12	0,11720
12	13	0,40892
13	14	0,13123
14	15	0,09942
15	16	0,09787
16	17	0,12114
17	18	0,04132
2	19	0,03117
19	20	0,47121
20	21	0,03916
21	22	0,03393
3	23	0,23033
23	24	0,41750
24	25	0,20940
25	26	0,11205
26	27	0,14718
27	28	0,51668
28	29	0,36606
29	30	0,19412
30	31	0,25416

Tabel 4.24 Nilai Indeks PLI Sistem IEE 33 Bus (Lanjutan)

Bus Kirim	Bus Terima	PLI
31	32	0,05214
32	33	0,01273

Tabel 4.25 Nilai Indeks PLI Sistem IEE 33 Bus (Lanjutan)

Gambar 4.1 Pembagian Zona PLI Sistem IEEE 33 Bus

Gambar 4.2 Grafik PLI Sistem IEEE 33 Bus

Gambar 4.3 Penempatan Solid-State OLTC

4.2.2 Penempatan *Solid-State* OLTC Sistem Penyulang Basuki Rahmat

Penentuan lokasi *Solid-State* OLTC pada sistem penyulang Basuki Rahmat ditentukan berdasakan nilai indeks PLI yang dibagi menjadi 3 zona sesuai pada **Gambar 4.4**. Zona 1 terdiri dari bus 1 sampai dengan bus 15, zona 2 terdiri dari bus 16 sampai dengan bus 3, dan zona 3 terdiri dari bus 38 sampai dengan bus 51 **Tabel 4.26** menunjukkan nilai indeks PLI pada sistem IEEE 33 bus. Pada zona 1, nilai indeks PLI terbesar adalah pada bus 1 ke bus 2. Pada zona 2, nilai indeks PLI terbesar adalah pada bus 18 ke bus 19 dan pada zona 3 nilai indeks PLI terbesar adalah pada bus 34 ke 36, bus 36 ke bus 38, dan bus 41 ke 42. Penempatan *Solid-State* OLTC pada sistem penyulang Basuki Rahmat ditunjukkan pada **Gambar 4.6**.

Bus Kirim	Bus Terima	PLI
1	2	1.00000
2	3	0.09324
3	4	0.06087
4	5	0.12511
5	6	0.36361
6	7	0.46131
7	8	0.62782
8	9	0.10712
9	10	0.27839
10	11	0.00112
10	12	0.04132
12	13	0.00479
13	14	0.01391
14	15	0.03356
10	16	0.17020
16	17	0.00188

Tabel 4.26 Nilai Indeks PLI Penyulang Basuki Rahmat
Bus Kirim	Bus	PLI
16	18	0 17298
18	19	0.33460
19	20	0.00777
19	21	0.13778
21	22	0.00147
21	23	0.10109
23	24	0.01499
23	25	0.17645
25	26	0.04938
25	27	0.04997
27	28	0.05107
28	29	0.00612
28	30	0.05977
30	31	0.12397
31	32	0.02423
32	33	0.00262
32	34	0.03900
34	35	0.00105
34	36	0.05149
36	37	0.01034
36	38	0.04477
38	39	0.00515
38	40	0.00433
38	41	0.02826
41	42	0.04251
42	43	0.00110

Tabel 4.27 Nilai Indeks PLI Penyulang Basuki Rahmat (Lanjutan)

Bus Kirim	Bus Terima	PLI
42	44	0.01622
44	45	0.00381
44	46	0.00225
46	47	0.00029
46	48	0.01305
48	49	0.01287
49	50	0.00480
50	51	0.00160

Tabel 4.28 Nilai Indeks PLI Penyulang Basuki Rahmat (Lanjutan)

Gambar 4.4 Pembagian Zona PLI Sistem Penyulang Basuki Rahmat

Gambar 4.5 Grafik PLI Sistem Penyulang Basuki Rahmat

Gambar 4.6 Penempatan *Solid-State* OLTC Sistem Penyulang Basuki Rahmat

4.3 Hasil Optimasi QSE Untuk Penentuan Tapping Solid-State OLTC

4.3.1 Penerapan Metode QSE Pada Sistem IEEE 33 Bus

Setelah menentukan lokasi *Solid-State* OLTC pada node 3, 6, 20, 24, dan 28, dilakukan optimasi tapping *Solid-State* OLTC. Hasil optimasi tapping *Solid-State* OLTC menggunakan *Quantum Swarm Evolutionary Algorithm* (QSE) pada sistem IEEE 33 Bus ditunjukkan pada **Tabel 4.29**. Nilai + merepresentasikan kenaikan tegangan, sedangkan nilai – merepresentasikan penurunan tegangan. Didapatkan nilai tapping *Solid-State* OLTC pada masing-masing node yaitu -3, +16, +8, +14, dan +4. Sehingga tegangan pada node 3 diturunkan sebesar 1,875%, sedangkan tegangan pada node 6, 20, 24, dan 28 dinaikkan masing-masing sebesar 10%, 5%, 8,75%, dan 2,5%.

No. Solid-State OLTC	Tap Position	Persentase Tap (%)
OLTC 1	-3	-1,875
OLTC 2	+16	+10
OLTC 3	+8	+5
OLTC 4	+14	+8,75
OLTC 5	+4	+2,5

Tabel 4.29 Hasil Optimasi Tapping Solid-State OLTCSistem IEEE 33 Bus

Tabel 4.30 Perbandingan Sebelum dan Sesudah Terpasang OLTCSistem IEEE 33 Bus

Parameter	Sebelum	Sesudah		
Pembanding	Solid-State OLTC	Solid-State OLTC		
Rugi Daya Aktif	202,6771 kW	155,4572 kW		
Rugi Daya Reaktif	135,1409 kVAR	103,9225 kVAR		
Tegangan Maksimum	12,66 kV / 1 p.u	13,24 kV / 1,046 p.u		
Tegangan Minimum	11,56 kV / 0,913 p.u	12,05 kV / 0,952 p.u		

Gambar 4.7 Profil Tegangan Sebelum dan Sesudah Pemasangan Solid-State OLTC Sistem IEEE 33 Bus

Gambar 4.8 Plot Kurva Konvergensi Fungsi Objektif -33 Bus

4.3.2 Penerapan Metode QSE Pada Sistem Basuki Rahmat

Setelah menentukan lokasi *Solid-State* OLTC pada node 2, 19, 36, 38, dan 42 dilakukan optimasi tapping *Solid-State* OLTC. Hasil optimasi tapping *Solid-State* OLTC menggunakan *Quantum Swarm Evolutionary Algorithm* (QSE) pada sistem penyulang Basuki Rahmat ditunjukkan pada **Tabel 4.31**. Didapatkan nilai tapping *Solid-State* OLTC pada node masing-masing node yaitu +8, -7, -6, -6, dan -3. Sehingga tegangan pada node 2 dinaikkan sebesar 5%, sedangkan tegangan pada node 19, 36, 38, dan 42 diturunkan masing-masing sebesar 4,375%, 3,75%, 3,75%, dan 1,875%.

Sistem i enjulang Busuni Hummut				
No. Solid-State OLTC	Tap Position	Persentase Tap (%)		
OLTC 1	+8	+5		
OLTC 2	-7	-4,375		
OLTC 3	-6	-3,75		
OLTC 4	-6	-3,75		
OLTC 5	-3	-1,875		

 Tabel 4.31 Hasil Optimasi Tapping Solid-State OLTC

 Sistem Penyulang Basuki Rahmat

 Tabel 4.32 Perbandingan Sebelum dan Sesudah Terpasang OLTC

 Sistem Penyulang Basuki Rahmat

Parameter Pembanding	Sebelum Solid-State OLTC	Sesudah Solid-State OLTC
Rugi Daya Aktif	56,9943 kW	49,1239 kW
Rugi Daya Reaktif	28,4984 kVAR	24,2664 kVAR
Tegangan Maksimum	19,98 kV / 0,999 p.u	20,98 kV / 1,049 p.u
Tegangan Minimum	19,905 kV / 0,995 p.u	20,052 kV / 1,002 p.u

Gambar 4.9 Profil Tegangan Sebelum dan Sesudah Pemasangan Solid-State OLTC Sistem Penyulang Basuki Rahmat

Gambar 4.10 Plot Kurva Konvergensi Fungsi Objektif -Basuki Rahmat

4.4 Analisis Perbandingan Hasil Metode QSE dengan Metode PGSA dan DPSO

Metode *Plant Growth Simulation Algorithm* (PGSA) dan *Discrete Particle Swarm Optimization* (DPSO) menjadi metode pembanding terhadap metode *Quantum Swarm Evolutionary Algorithm* (QSE). Dengan sistem yang sama namun dengan sistem penempatan lokasi OLTC yang berbeda (QSE berdasarkan pembagian zona), didapatkan hasil perbandingan sebagai berikut:

Parameter Pembanding	Tanpa OLTC	PGS	SA	DPS	50	QS	E
		Node	Тар	Node	Тар	Node	Тар
		2	0	2	0	3	-3
Optimal		3	0	3	0	6	+16
Setting Tap		4	0	4	0	20	+8
		5	+12	5	+12	24	+14
		6	+2	6	+1	28	+4
Rugi Daya Aktif (kW)	202,6771	152	,17	154,	299	155	,45
Rugi Daya Reaktif (kVAR)	135,1409	101	,88	103	,37	103	,92
Penurunan Losses (%)		24,	93	23,	88	23,	30

 Tabel 4.33 Perbandingan dengan PGSA dan DPSO

Dari **Tabel 4.33** didapatkan perbandingan dengan metode lain. Rugi daya pada metode QSE lebih besar dibandingkan dengan metode lain yaitu 155,45 kW dan 103,92 kVAR. Hal ini disebabkan karena jenis OLTC yang digunakan pada tugas akhir ini adalah *Solid-State*, sehingga rugi daya akibat komponen semikonduktor dipertimbangkan. Namun metode QSE memiliki waktu eksekusi lebih cepat yaitu dengan 500 iterasi membutuhkan waktu 67,587220 detik. Perbandingan ini menggunakan *plant* sistem distribusi IEEE 33 bus sesuai dengan referensi [7].

BAB V PENUTUP

5.1 Kesimpulan

Berdasarkan hasil simulasi dan analisis pada tugas akhir ini, maka didapatkan kesimpulan sebagai berikut:

- 1. Dalam penentuan lokasi *Solid-State* OLTC pada sistem distribusi radial, dapat dianalisis menggunakan metode *Power Loss Index* (PLI) dengan menaikkan tegangan setiap bus menjadi 1,05 p.u. Kenaikan tegangan 1,05 p.u ini merupakan pemodelan adanya *Solid-State* OLTC pada bus tersebut.
- Berdasarkan nilai PLI pada sistem IEEE 33 bus, didapatkan jumlah sebanyak 5 *Solid-State* OLTC pada node 3, 6, 20, 24, dan 28 yang masing-masing node memiliki Indeks PLI sebesar 0,90510; 1,0000; 0,21550; 0,41750; dan 0,51668.
- Dari pemasangan Solid-State OLTC pada sistem distribusi IEEE 33 bus, pada diperoleh penurunan daya aktif dan daya reaktif dari 202,6771 kW dan 135,1409 kVAR menjadi 155,4572 kW dan 103,9225 kVAR serta kenaikan profil tegangan dari 11,56 kV / 0,913 p.u menjadi 12,05 kV / 0,952 p.u untuk tegangan terendah.
- Berdasarkan nilai PLI pada sistem penyulang Basuki Rahmat, didapatkan jumlah sebanyak 5 *Solid-State* OLTC pada node 2, 19, 36, 38, dan 42 yang masing-masing node memiliki indeks PLI sebesar 1,00000; 0,3346; 0,05149; 0,04477; dan 0,04251.
- 5. Dari pemasangan Solid-State OLTC pada sistem penyulang Basuki Rahmat, pada diperoleh penurunan daya aktif dan reaktif dari 56,9943 kW dan 28,4984 kVAR menjadi 49,1240 kW dan 24,2664 kVAR serta kenaikan profil tegangan dari 19,905 kV / 0,995 p.u menjadi 20,05 kV / 1,002 p.u untuk tegangan terendah.
- 6. Hasil analisis penentuan optimal tapping *Solid-State* OLTC transformator menunjukkan bahwa dengan adanya pengaturan tapping *Solid-State* OLTC sebagai *voltage regulator* mampu memperbaiki profil tegangan dan juga mengurangi rugi daya saluran.
- 7. Hasil simulasi penentuan lokasi *Solid-State* OLTC berbasis *Geographical Information Sytem* (GIS) pada sistem distribusi

kota Surabaya penyulang Basuki Rahmat didapatkan pada bus 2, 19, 36, 38, dan 42 yaitu pada lokasi geografis Jalan Kedungsari, Jalan Kombes M Duryat, Jalan Embong Gayam 1, Jalan Embong Gayam No. 2, dan Jalan Embong Kemiri.

5.2 Saran

Saran yang diberikan untuk perbaikan dan pengembangan topik pada tugas akhir ini antara lain:

- 1. Analisis pada tugas akhir ini dilakukan pada sistem dalam kondisi *steady-state* dan seimbang. Sehingga perlu menambahkan pertimbangan pengaruh teknis seperti kestabilan transien, jaringan 3 fasa tidak seimbang, dll.
- 2. Dapat menambahkan pertimbangan rekonfigurasi jaringan, kapasitor, *static var compensator*, dll.
- 3. Perlu dilakukan analisis pada sistem distribusi mesh atau loop.

DAFTAR PUSTAKA

[1] H. Jiang, R. Shuttleworth, and B. A. T. Al Zahawi, "Fast Response GTO Assisted Novel Tap Changer," *IEEE Trans. Power Deliv.*, vol. 16, no. 1, pp. 111–115, Jan. 2001.

[2] J. Faiz and B. Siahkolah, "New solid-state onload tap-changers topology for distribution transformers," *IEEE Trans. Power Deliv.*, vol. 18, no. 1, pp. 136–141, Jan. 2003.

[3] O. Demirci, D. A. Torrey, R. C. Degeneff, F. K. Schaeffer, and R. H. Frazer, "A new approach to solid-state on load tap changing transformers," *IEEE Trans. Power Deliv.*, vol. 13, no. 3, pp. 952–961, Jul. 1998.

[4] P. Bauer and S. W. H. de Haan, "Electronic tap changer for 500 kVA/10 kV distribution transformers: design, experimental results and impact in distribution networks," 1998, vol. 2, pp. 1530–1537.

[5] J. A. Greatbanks, D. H. Popovic, M. Begovic, A. Pregelj, and T. C. Green, "On optimization for security and reliability of power systems with distributed generation," 2003, vol. 1, pp. 53–60.

[6] D. H. Popović, J. A. Greatbanks, M. Begović, and A. Pregelj, "Placement of distributed generators and reclosers for distribution network security and reliability," *Int. J. Electr. Power Energy Syst.*, vol. 27, no. 5–6, pp. 398–408, Jun. 2005.

[7] K. Muthukumar, S. Jayalalitha, K. Sureshkumar, and A. Sakthivel, "Artificial Bee Colony Algorithm Based Placement and Optimal Tap Selection of Voltage Regulators for Power Loss Minimization in Distribution System," p. 20.

[8] G. Derakhshan, A. Etemadi, K. R. Milani, H. Shayanfar, and U. Sarafraz, "Management and operation of electricity distribution networks on geographic information system platform," 2013, pp. 0108–0108.

[9] A. G. Bhutad, S. V. Kulkarni, and S. A. Khaparde, "Three-phase load flow methods for radial distribution networks," 2003, pp. 781–785.

[10] H. Saadat, *Power System Analysis*. Milwaukee: WCB McGraw-Hill, 1999.

[11] K. M. Muttaqi, A. D. T. Le, M. Negnevitsky, and G. Ledwich, "A Coordinated Voltage Control Approach for Coordination of OLTC, Voltage Regulator, and DG to Regulate Voltage in a Distribution Feeder," *IEEE Trans. Ind. Appl.*, vol. 51, no. 2, pp. 1239–1248, Mar. 2015.

[12] P. V. V. RamaRao, S. Sivanagaraju, and P. V. Prasad, "Voltage Regulator Placement In Radial Distribution Network Using Plant Growth Simulation Algorithm," p. 5, 2010.

[13] Y. Wang *et al.*, "A novel quantum swarm evolutionary algorithm and its applications," *Neurocomputing*, vol. 70, no. 4–6, pp. 633–640, Jan. 2007.

[14] Kuk-Hyun Han and Jong-Hwan Kim, "Quantum-inspired evolutionary algorithm for a class of combinatorial optimization," *IEEE Trans. Evol. Comput.*, vol. 6, no. 6, pp. 580–593, Dec. 2002.

[15] Kuk-Hyun Han, Kui-Hong Park, Ci-Ho Lee, and Jong-Hwan Kim, "Parallel quantum-inspired genetic algorithm for combinatorial optimization problem," 2001, vol. 2, pp. 1422–1429.

[16] J. Kennedy' and R. Eberhart, "Particle Swarm Optimization," p.7.

[17] "An Analysis of Particle Swarm Optimizers," p. 300, 2006.

[18] R. Vilcahuamhn, "An Application of Geographic Information System to Three-phase Distribution Power Flow," p. 5.

LAMPIRAN

1. Data saluran IEEE 33 Bus

Saluran		Impedansi		
Bus Kirim	Bus Terima	r	X	
1	2	0.0922	0.0470	
2	3	0.4930	0.2511	
3	4	0.3660	0.1864	
4	5	0.3811	0.1941	
5	6	0.8190	0.7070	
6	7	0.1872	0.6188	
7	8	0.7144	0.2351	
8	9	1.0300	0.7400	
9	10	1.0440	0.7400	
10	11	0.1966	0.0650	
11	12	0.3744	0.1238	
12	13	1.4680	1.1550	
13	14	0.5416	0.7129	
14	15	0.5910	0.5260	
15	16	0.7463	0.5450	
16	17	1.2890	1.7210	
17	18	0.7320	0.5740	
2	19	0.1640	0.1565	
19	20	1.5042	1.3554	
20	21	0.4095	0.4784	
21	22	0.7089	0.9373	
3	23	0.4512	0.3083	
23	24	0.8980	0.7091	
24	25	0.8960	0.7011	
6	26	0.2030	0.1034	
26	27	0.2842	0.1447	
27	28	1.0590	0.9337	
28	29	0.8042	0.7006	
29	30	0.5075	0.2585	
30	31	0.9744	0.9630	
31	32	0.3105	0.3619	
32	33	0.3410	0.5302	

2. Data beban IEEE 33 Bus

Dreg	Bel	Beban		
Bus	P (MW)	Q(MVAR)		
1	0.0000	0.0000		
2	0.1000	0.0600		
3	0.0900	0.0400		
4	0.1200	0.0800		
5	0.0600	0.0300		
6	0.0600	0.0200		
7	0.2000	0.1000		
8	0.2000	0.1000		
9	0.0600	0.0200		
10	0.0600	0.0200		
11	0.0450	0.0300		
12	0.0600	0.0350		
13	0.0600	0.0350		
14	0.1200	0.0800		
15	0.0600	0.0100		
16	0.0600	0.0200		
17	0.0600	0.0200		
18	0.0900	0.0400		
19	0.0900	0.0400		
20	0.0900	0.0400		
21	0.0900	0.0400		
22	0.0900	0.0400		
23	0.0900	0.0500		
24	0.4200	0.2000		
25	0.4200	0.2000		
26	0.0600	0.0250		
27	0.0600	0.0250		
28	0.0600	0.0200		
29	0.1200	0.0700		
30	0.2000	0.6000		
31	0.1500	0.0700		
32	0.2100	0.1000		
33	0.0600	0.0400		
Total	3.7150	2.3000		

Saluran		Impedansi (ohm)	
Bus Kirim	Bus Terima	r	x
1	2	0.021476	0.010738
2	3	0.002039	0.00102
3	4	0.001351	0.000675
4	5	0.002843	0.001422
5	6	0.008388	0.004194
6	7	0.010741	0.005371
7	8	0.014902	0.007451
8	9	0.002555	0.001278
9	10	0.00681	0.003405
10	11	0.002673	0.001336
10	12	0.007266	0.003633
12	13	0.000842	0.000421
13	14	0.002591	0.001295
14	15	0.007151	0.003575
10	16	0.004894	0.002447
16	17	0.004473	0.002237
16	18	0.005034	0.002517
18	19	0.009855	0.004928
19	20	0.003678	0.001839
19	21	0.004327	0.002164
21	22	0.001741	0.00087
21	23	0.003261	0.001631
23	24	0.005131	0.002566
23	25	0.006283	0.003141
25	26	0.005351	0.002675
25	27	0.00265	0.001325
27	28	0.002803	0.001401
28	29	0.001302	0.000651
28	30	0.004422	0.002211
30	31	0.009406	0.004703
31	32	0.001884	0.000942
32	33	0.002472	0.001236
32	34	0.003305	0.001653

3. Data saluran penyulang Basuki Rahmat

Saluran		Impedansi (ohm)	
Bus Kirim	Bus Terima	Bus Kirim	Bus Terima
34	35	0.002489	0.001244
34	36	0.004525	0.002263
36	37	0.003537	0.001769
36	38	0.005295	0.002647
38	39	0.002961	0.001481
38	40	0.00678	0.00339
38	41	0.004649	0.002324
41	42	0.00787	0.003935
42	43	0.001297	0.000648
42	44	0.003561	0.00178
44	45	0.002609	0.001305
44	46	0.000728	0.000364
46	47	0.000426	0.000213
46	48	0.005398	0.002699
48	49	0.0074	0.0037
49	50	0.004528	0.002264
50	51	0.003781	0.001891

Dera	Beban		
Bus	P (MW)	Q(MVAR)	
1	0.0000	0.0000	
2	0.17	0.105	
3	0.136	0.084	
4	0.213	0.132	
5	0.136	0.084	
6	0.085	0.053	
7	0.17	0.105	
8	0.042	0.026	
9	0.213	0.132	
10	0	0	
11	0.085	0.053	
12	0	0	
13	0.064	0.04	
14	0.136	0.084	
15	0.944	0.585	
16	0	0	
17	0.085	0.053	
18	0.085	0.053	
19	0	0	
20	0.425	0.263	
21	0	0	
22	0.17	0.105	
23	0	0	
24	0.587	0.363	
25	0	0	
26	1.853	1.148	
27	0.128	0.079	
28	0	0	
29	0.944	0.585	
30	0.068	0.042	
31	0.064	0.04	
32	0	0	
33	0.213	0.132	
34	0	0	

4. Data beban penyulang Basuki Rahmat

Bus	Beban	
	P (MW)	Q(MVAR)
35	0.085	0.053
36	0	0
37	0.587	0.363
38	0	0
39	0.349	0.216
40	0.128	0.079
41	0.136	0.084
42	0	0
43	0.17	0.105
44	0	0
45	0.293	0.182
46	0	0
47	0.136	0.084
48	0.136	0.084
49	0.136	0.084
50	0.128	0.079
51	0.085	0.053
Total	9.385	5.812

5. Letak Geografis Solid-State OLTC 1

6. Letak Geografis *Solid-State* OLTC 2

7. Letak Geografis Solid-State OLTC 3

8. Letak Geografis Solid-State OLTC 4

9. Letak Geografis Solid-State OLTC 5

BIODATA PENULIS

Penulis bernama lengkap Mochammad Samodro Utomo. Anak pertama dari tiga bersaudara. Kelahiran Pekalongan tanggal 18 Oktober 1996. Mengawali pendidikan di SD Ma'had Islam V Pekalongan pada tahun 2002-2008 kemudian melanjutkan pendidikan pada tingkat menengah pertama di SMP Negeri 2 Pekalongan pada tahun 2008-2011 setelah itu melanjutkan jenjang pendidikan di SMA Negeri 1 Pekalongan pada tahun 2011-2014 Sejak tahun 2014

penulis terdaftar sebagai Mahasiswa Teknik Elektro, Fakultas Teknologi Elektro, Institut Teknologi Sepuluh Nopember, bidang studi Teknik Sistem Tenaga. Selama menempuh pendidikan di ITS, penulis aktif di keorganisasian ITS yaitu BEM FTI-ITS. Penulis dapat dihubungi melalui email samodroutomo.m@hotmail.com