

TUGAS AKHIR - KS 1501

PENGUJIAN MODEL USE CASE POINT (UCP)
DENGAN STUDI KASUS PROYEK
PENGEMBANGAN PERANGKAT LUNAK
KEPEMERINTAHAN BERSKALA MEDIUMLARGE

USE CASE POINT (UCP) MODEL TESTING WITH CASE OF MEDIUM-LARGE GOVERNMENT SOFTWARE DEVELOPMENT PROJECT

Ragesa Mario Junior NRP 052 11440000 130

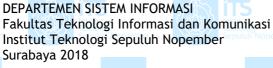
Dosen Pembimbing 1: Sholiq, S.T, M.Kom., M.SA

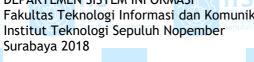
DEPARTEMEN SISTEM INFORMASI Fakultas Teknologi Informasi dan Komunikasi Institut Teknologi Sepuluh Nopember Surabaya 2018

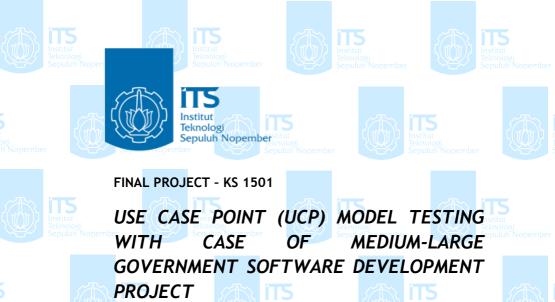
PENGUJIAN MODEL USE CASE POINT (UCP) **KASUS PROYEK** DENGAN Sepular STUDI PENGEMBANGAN PERANGKAT LUNAK KEPEMERINTAHAN BERSKALA MEDIUM-

LARGE

Ragesa Mario Junior NRP 052 11440000 130


Sholiq, S.T, M.Kom, M.SA





Ragesa Mario Junior NRP 052 11440000 130

Supervisor 1: Sholiq, S.T, M.Kom, M.SA

PENGUJIAN MODEL USE CASE POINT (UCP)
DENGAN STUDI KASUS PROYEK PENGEMBANGAN
PERANGKAT LUNAK KEPEMERINTAHAN
BERSKALA MEDIUM-LARGE

TUGAS AKHIR

Disusun untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer pada Departemen Sistem Informasi Fakultas Teknologi Informasi dan Komunikasi

Oleh:

Institut Teknologi Sepuluh Nopember

Ragesa Mario Junior 052 11440000 130

Surabaya, Juli 2018

KEPALA
DEPARTEMEN SISTEM INFORMASI

Dr. Ir. Aris Tjahyanto, M.Kom NIP 19650310 199102 1 001

PENGUJIAN MODEL USE CASE POINT (UCP)
DENGAN STUDI KASUS PROYEK PENGEMBANGAN
PERANGKAT LUNAK KEPEMERINTAHAN
BERSKALA MEDIUM-LARGE

TUGAS AKHIR

Disusun untuk Memenuhi Salah Satu Syarat
Memperoleh Gelar Sarjana Komputer
pada
Departemen Sistem Informasi
Fakultas Teknologi Informasi dan Komunikasi
Institut Teknologi Sepuluh Nopember

Oleh:
Ragesa Mario Junior
052 11440000 130

Disetujui Tim Penguji: Tanggal Ujian

Periode Wisuda

: 4 Juli 2018 : September 2018

Sholiq, S.T, M.Kom, M.SA

(Pembimbing 1)

Dr. Apol Pribadi Subriadi, S.T, M.T

(Penguji 1)

Anisah Herdiyanti, S.Kom, M.Sc, ITIL

Anisah Herdiyanti, S.Kom, M.Sc, ITIL (Penguji 2)
PENGUJIAN MODEL USE CASE POINT (UCP)
DENGAN STUDI KASUS PROYEK PENGEMBANGAN
PERANGKAT LUNAK KEPEMERINTAHAN
BERSKALA MEDIUM-LARGE

Nama Mahasiswa : Ragesa Mario Junior NRP : 052 11440000 130

Departemen : Sistem Informasi FTIK-ITS Dosen Pembimbing 1: Sholiq, S.T, M.Kom, M.SA

ABSTRAK

Pertumbuhan ekonomi di Indonesia diikuti juga dengan perkembangan teknologi informasi dan komunikasi, salah satunya pemenuhan kebutuhan akan perangkat lunak. Mengikuti Instruksi Presiden Republik Indonesia Nomor 3 tahun 2003 tentang Kebijakan dan Strategi Nasional Pengembangan E-Government dengan persentase kegagalan proyek teknologi informasi yang tinggi menurut berbagai survey yang penyebab utamanya adalah kurangnya perencanaan proyek yang baik, diperlukannya metode estimasi usaha dan juga biaya agar perencanaan proyek teknologi informasi tidak mengalami kelebihan maupun kekurangan anggaran dana. Salah satu metode estimasi usaha perangkat lunak khususnya pengembang yang menggunakan dokumentasi use case diagram pada Unified Modelling Language (UML) adalah Use Case Point (UCP), studi terhadap metode estimasi Use Case Point (UCP) memunculkan beberapa model yang menggabungkan metode Use Case Point (UCP) dengan metode penghitungan biaya dari aktivitas dalam pengembangan perangkat lunak. Salah satu model yang diusulkan oleh studi Sholiq et al hanya mengemukakan implementasi dari model yang menggabungkan metode Use Case Point (UCP) dengan Owner Estimate Cost (OEC) yang memiliki komponen: personnel direct cost, non-personnel direct cost dan taxes, namun belum teruji efektif dan valid.

Oleh karena itu perlu dilakukannya pengujian dari usulan model studi Sholiq et al tersebut dengan membandingkan usaha dan biaya aktual proyek dengan estimasi usaha dan biaya proyek dengan objek proyek pengembangan perangkat lunak tertentu untuk mengukur akurasi dan efektivitas model tersebut. Objek yang digunakan pada tugas akhir ini adalah proyek pengembangan perangkat lunak kepemerintahan berskala medium-large berjumlah 6 proyek. Dalam menghasilkan estimasi biaya tersebut pula perlu diidentifikasi persentase distribusi usaha pada tiap tahapan pengembangan perangkat lunak

Hasil dari penelitian ini berupa rangkaian proses tahapan dalam menguji model Use Case Point (UCP) yang dijabarkan dalam 17 tahapan dengan 3 langkah utama; estimasi usaha, estimasi biaya, dan pengujian model. Nilai dari hasil validasi model sendiri untuk menentukan tingkat akurasi model diperoleh nilai sebesar 17.14%.

Kata kunci: Use Case Point (UCP), Proyek Pengembangan Perangkat Lunak, Owner Estimate Cots (OEC), Distribusi Usaha PENGUJIAN MODEL USE CASE POINT (UCP) DENGAN STUDI KASUS PROYEK PENGEMBANGAN PERANGKAT LUNAK KEPEMERINTAHAN BERSKALA MEDIUM-LARGE

Name : Ragesa Mario Junior NRP : 052 11440000 130

Department : Sistem Informasi FTIK-ITS Supervisor 1 : Sholiq, S.T, M.Kom, M.SA

ABSTRACK

Economic growth in Indonesia is followed by the development of information and communication technology, one of which is the fulfillment of the need for software. Following the Presidential Instruction of the Republic of Indonesia Number 3 of 2003 on National Policy and Strategy of E-Government Development with a high percentage of failure of information technology projects according to various surveys the main cause is the lack of good project planning, effort estimation methods and cost is needed for planning technology projects doesn't experience any excess or lack of budget. One method of software effort estimation especially developers that using use case diagram documentation in Unified Modeling Language (UML) is Use Case Point (UCP), a study of Use Case Point (UCP) estimation method raises several models that incorporate Use Case Point (UCP) with the method of calculating the cost of the activity in software development. One of the models proposed by the Sholiq et.al only suggests the implementation of a model that incorporates the Use Case Point (UCP) method with Owner Estimate Cost (OEC) that has components: personnel direct cost, non-personnel direct cost and taxes, but not yet tested it effectivity and validity. It is therefore necessary to examine the proposed model by Sholiq et

al by comparing the actual effort and cost of the project with estimated effort and project cost with the object of a particular software development project to measure the accuracy and effectiveness of the model. The object used in this final project is a medium-large governmental software development project amounting to 6 projects. In generating these cost estimates too, it's needs to be identified the percentage of business distribution at each stage of software development. The expected result of this final project is the standard deviation value of the Use Case Point (UCP) model that becomes the benchmark of the model's accuracy, which in the process of obtaining standard deviation also obtained any activity and the business distribution value of the specified research object.

The result of this research is a series of process stages in testing Use Case Point (UCP) model outlined in 17 stages with 3 main steps; effort estimation, cost estimation, and model testing. The value of the validation of the model itself to determine the level of model accuracy obtained value of 17.14%.

Keywords: Use Case Point (UCP), Software Development, Owner Estimate Cots (OEC), Effort Distribution

KATA PENGANTAR

Segala puji dan syukur penulis panjatkan kepada Allah SWT yang telah memberikan rahmat dan ridhonya kepada penulis sehingga dapat menyelesaikan buku tugas akhir dengan judul

"PENGUJIAN MODEL USE CASE POINT (UCP) DENGAN STUDI KASUS PROYEK PENGEMBANGAN PERANGKAT LUNAK KEPEMERINTAHAN BERSKALA MEDIUM-LARGE"

Sebagai salah satu syarat untuk untuk memperoleh gelar Sarjana Komputer di Departemen Sistem Informasi — Fakultas Teknologi Informasi dan Komunikasi — Institut Teknologi Sepuluh Nopember Surabaya.

Pada kesempatan ini, penulis ingin menyampaikan terima kasih kepada semua pihak yang telah memberikan doa, dukungan bimbingan, arahan, bantuan, dan semangat dalam menyelesaikan tugas akhir ini, yaitu kepada:

- 1. Narasumber dari studi kasus penelitian ini yang membantu dalam pengisian kuisioner dan pengambilan data.
- 2. Bapak Dr. Ir. Aris Tjahyanto M.Kom selaku Kepala Departemen Sistem Informasi ITS.
- 3. Bapak Sholiq, S.T, M.Kom., M.SA selaku dosen pembimbing yang telah meluangkan waktu dan pikiran untuk mendukung dan membimbing dalam penyelesaian tugas akhir penulis.
- 4. Ibu Nur Aini Rakhmawati S.Kom, M.Sc.Eng selaku dosen wali yang telah memberikan bimbingannya selama penulis menempuh masa perkuliahan dan penelitian tugas akhir.
- 5. Pak Hermono, selaku admin laboratorium MSI yang membantu dan mendukung penulis baik dalam hal berkas administrasi penyelesaian dan penyelesaian tugas akhir.
- 6. Bapak dan ibu penulis, Sutjipto Mario dan Gondho Sari, serta Hanggara Mario Junior selaku kakak penulis yang

- telah mendoakan dan senantiasa mendukung serta selalu mengingatkan dan memberikan semangat dalam penyelesaian tugas akhir ini.
- 7. Teman-teman kontrakan E-Home yang senantiasa menghibur, memberikan naungan, menemani selama masa kuliah disaat resah, lelah, dan senang.
- 8. Teman-teman Begundal; Akmal, Satria, Arif, Dhimas, Fikry, Hendro, Ilham, Bintang, Ayik, Gradi, dan Guntur yang senantiasa menghibur, menemani selama masa kuliah disaat resah, lelah, dan senang.
- 9. Teman-teman seperjuangan Lab MSI dan OSIRIS yang tidak dapat disebutkan namanya satu per satu, terima kasih telah memberi semangat dan mendukung untuk segera menyelesaikan tugas akhir.
- 10. Pihak-pihak lain yang telah mendukung dan membantu dalam kelancaran penyelesaian tugas akhir

Penyusunan laporan ini masih jauh dari sempurna, untuk itu itu penulis menerima adanya kritik dan saran yang membangun untuk perbaikan di masa mendatang semoga buku tugas akhir ini dapat memberikan manfaat bagi para pembaca dan menjadi sebuah kontribusi bagi ilmu pengetahuan.

Surabaya, Juli 2018

DAFTAR ISI

ABSTRAK	X
ABSTRACK	xii
KATA PENGANTAR	xiv
DAFTAR ISI	xvi
DAFTAR TABEL	XX
DAFTAR GAMBAR	xxiv
BAB I	26
1 PENDAHULUAN	26
1.1Latar Belakang	
1.2Rumusan Masalah	
1.3Batasan Masalah	
1.4Tujuan	
1.5Manfaat	
1.6Relevansi	
1.7Target Luaran	
BAB II	32
2 TINJAUAN PUSTAKA	32
2.1Penelitian Sebelumnya	
2.2Proyek Perangkat Lunak	
2.2.1 Jenis-Jenis Perangkat Lunak	37
2.3Model Use Case Point (UCP)	
2.3.1 Personnel Direct Cost	
2.3.1.1 Use Case Point (UCP)	
2.3.1.1.1 Perhitungan Use Case Point (UCP)	
2.3.1.1.2 Perhitungan Effort	
2.3.1.1.3 Menghitung Nilai Biaya	
2.3.1.2 Aktivitas Pengembangan Perangkat Lunak	
2.3.1.3 Effort Distribution	

2.3.2 Non-Personnel Direct Cost	47
2.3.3 Taxes	
2.4Perbedaan Use Case Point Dengan Owner Estimate Co	st 49
2.4.1 Owner Estimate Cost (OEC)/Harga Perkiraan Send	
(HPS)	
BAB III	54
3 METODOLOGI PENELITIAN	54
3.1 Desain Penelitian	54
3.2Metodologi Penelitian	
3.2.1 Tahap Perancangan dan Penggalian Kebutuhan	55
3.2.1.1 Studi Literatur Metode Estimasi Biaya Proyek	
Pengembangan Perangkat Lunak	56
3.2.1.2 Menyusun Instrumen Penelitian	57
3.2.1.3 Mengumpulkan Data dan Informasi Terkait Proye	k
Pengembangan Perangkat Lunak Dalam Studi Kasus	58
3.2.2 Tahap Pengujian Model	59
3.2.2.1 Penghitungan Estimasi Biaya Dengan Model UCF	P60
3.2.2.2 Validasi Model Dengan Menghitung Perbandinga	n
Besar Biaya dan Effort	63
BAB IV	64
4 PERANCANGAN	64
4.1Perancangan Studi Kasus	
4.1.1 Tujuan Studi Kasus	
4.1.2 Persiapan Pengumpulan Data	
4.1.3 Metode Pengolahan Data	
4.2Instrumen Penelitian	66
4.2.1 Interview Protocol	66
4.2.2 Kuisioner	
4.2.2.1 Identitas Proyek	67
4.2.2.2 Distribusi Usaha Proyek	67
4.2.2.3 Complexity Factor	68
4.2.2.4 Unadjusted Actor Weight	
BAB V	72
5 IMPLEMENTASI	72

5.1Ide	entifikasi Studi Kasus	72
5.1.1	Subjek Penelitian	72
5.1.2	Objek Penelitian	72
5.2Ha	asil Wawancara	72
5.2.1	Operasional	72
5.2.2	Sumber Daya Manusia	77
5.2.3	Keuangan Proyek	77
5.3Ha	asil Kuisioner	78
	Identitas Proyek	
	Distribusi Usaha Proyek	
	Complexity Factor	
5.3.4	Unadjusted Actor Weight	86
5.4Ha	ambatan	86
BAB	VI	88
6	HASIL DAN PEMBAHASAN	88
6.1Ta	ahapan Pengujian Model Use Case Po	
	Implementasi Tahapan Pengujian M	
	(UCP)	
6.1.1.	.1 Estimasi Usaha	
6.1.1.	.2 Estimasi Biaya	93
	.3 Pengujian Model	
6.1.2	Pembahasan Hasil Implementasi Tal	hapan Pengujian 104
6.2Fa	aktor-Faktor Ketidakpastian	Estimasi Biaya
	engembangan Perangkat Lunak	
BAB	VII	112
7	KESIMPULAN DAN SARAN	112
,	esimpulan	
	aran 114	112
8	DAFTAR PUSTAKA	116
BIOD	DATA PENULIS	120
LAM	PIRAN A	A - 1 -
LAM	PIRAN B	B - 1 -

(halaman ini sengaja dikosongkan)

DAFTAR TABEL

Tabel 2.1 Penelitian Sebelumnya32
Tabel 2.2 Relevansi Studi Sebelumnya dengan Tugas Akhir.35
Tabel 2.3 Kategori Ukuran Proyek Perangkat Lunak36
Tabel 2.4 Klasifikasi Surat Ijin Usaha Perdagangan36
Tabel 2.5 Kompleksitas Unadjusted Use Case Weight (UUCW)
41
Tabel 2.6 Kompleksitas Unadjusted Actor Weight (UAW)42
Tabel 2.7 Kategori Pemberian Skor Pada Faktor Kompleksitas
43
Tabel 2.8 Daftar Technical Complexity Factor (TCF)43
Tabel 2.9 Daftar Environmental Complexity Factor (ECF)44
Tabel 2.10 Effort Distribution Pada Tiap Aktivitas46
Tabel 2.11 Kategori Non-Personnel Direct Cost47
Tabel 2.12 Data dan Informasi Sebagai Dasar Menyusun HPS
51
Tabel 3.1 Data/ Informasi yang Digali dari Studi Literatur dan
Paper
Tabel 3.2 Input, Proses, dan Output Aktivitas Studi literatur
metode estimasi biaya proyek pegembangan perangkat lunak
Tabal 22 Insut Press day Outsut Altivities Management
Tabel 3.3 Input, Proses, dan Output Aktivitas Menyusun
instrumen penelitian57 Tabel 3.4 Data/ Informasi yang Digali pada Interview Protocol
dan Kuisioner Proyek Perangkat Lunak58
Tabel 3.5 Input, Proses, dan Output Aktivitas Mengumpulkan
data dan informasi metode estimasi biaya proyek
pengembangan perangkat lunak
Tabel 3.6 Input, Proses, dan Output Aktivitas Penghitungan
estimasi biaya dengan model UCP
Tabel 3.7 Input, Proses, dan Output Aktivitas Validasi model
dengan menghitung perbandingan besar biaya dan effort actual
dengan hasil estimasi
Tabel 4.1 Persiapan Pengumpulan Data
Tabel 4.2 Interview Protocol
Tabel 4.3 Rancangan Kuisioner Identitas Proyek67

Tabel 4.4 Rancangan Kuisioner Distribusi Usaha Proyek	.67
Tabel 4.5 Deskripsi Technical Complexity Factor	.68
Tabel 4.6 Deskripsi Environmental Complexity Factor	.69
Tabel 4.7 Rancangan Kuisioner Unadjusted Actor Weight	.70
Tabel 5.1 List Aktivitas Primandari	.73
Tabel 5.2 List Aktivitas	.75
Tabel 5.3 Sumber Daya Manusia	.77
Tabel 5.4 Non-Personnel Direct Cost	.78
Tabel 5.5 Hasil Kuisioner Identitas Proyek	.80
Tabel 5.6 Hasil Kategori Ukuran Proyek	.81
Tabel 5.7 Hasil Kuisioner Distribusi Usaha	.82
Tabel 5.8 Hasil Kuisioner Technical Complexity Factor	.85
Tabel 5.9 Hasil Kuisioner Environmental Complexity Factor	.85
Tabel 5.10 Aktor/User Proyek	
Tabel 6.1 Perhitungan Unadjusted Actor Weight (UAW)	.89
Tabel 6.2 Perhitungan Unadjusted Use Case Weight (UUC	(W
	.90
Tabel 6.3 Perhitungan Unadjusted Use Case Point (UUCP)	.90
Tabel 6.4 Perhitungan Technical Complexity Factor (TCF).	.91
Tabel 6.5 Perhitungan Environmental Complexity Factor (Ed	CF)
Tabel 6.6 Perhitungan Use Case Point (UCP)	
Tabel 6.7 Perhitungan Effort	
Tabel 6.8 Aktivitas Yang Berbeda	.93
Tabel 6.9 Aktivitas Acuan Yang Tidak Teridentifikasi	.94
Tabel 6.10 Hasil Distribusi Usaha	.95
Tabel 6.11 Pay Rate Hour Per Tahapan	.95
Tabel 6.12 Detail Pay Rate	
Tabel 6.13 Estimasi Biaya Per Tahapan	
Tabel 6.14 Profit	
Tabel 6.15 Personnel Direct Cost	
Tabel 6.16 Non-Personnel Direct Cost	
Tabel 6.17 Pajak Pertambahan Nilai	
Tabel 6.18 Owner Estimate Cost	
Tabel 6.19 Deviasi Biaya (Profit 20%)	
Tabel 6.20 Deviasi Biaya (Profit 10%)	
Tabel 6.21 Biaya Estimasi & Aktual	108

Tabel 8.1 Unadjusted Use Case Weight
Tabel 8.2 Unadjusted Actor Weight Aplikasi E-RAB A - 1 -
Tabel 8.3 Unadjusted Actor Weight Aplikasi Pengadaan A - 1 -
Tabel 8.4 Unadjusted Actor Weight Aplikasi Prasarana Utilitas
Tabel 8.5 Unadjusted Actor Weight Aplikasi Aset Bangunan A
-2-
Tabel 8.6 Unadjusted Actor Weight Aplikasi Asset A - 2 -
Tabel 8.7 Unadjusted Actor Weight Aplikasi Laporan
Penyelenggaraan
Tabel 8.8 Hasil Perhitungan Technical Complexity FactorA - 4
-
Tabel 8.9 Hasil Perhitungan Environmental Complexity Factor
Tabel 8.10 Aplikasi E-RAB B - 1 -
Tabel 8.11 Aplikasi Pengadaan B - 1 -
Tabel 8.12 Aplikasi Prasarana Utilitas B - 2 -
Tabel 8.13 Aplikasi Aset Bangunan B - 2 -
Tabel 8.14 Aplikasi Asset B - 3 -
Tabel 8.15 Aplikasi Laporan Penyelenggaraan

(halaman ini sengaja dikosongkan)

DAFTAR GAMBAR

Gambar 1.1 Relevansi Usulan Tugas Akhir dengan	Roadmap
Lab. MSI	31
Gambar 2.1 Klasifikasi Sistem Perangkat Lunak	37
Gambar 3.1 Desain Penelitian	54
Gambar 3.2 Metodologi Penelitian	55
Gambar 3.3 Langkah Penghitungan Estimasi Biaya	a Dengan
Model UCP	62
Gambar 6.1 Faktor Ketidakpastian Proyek	106
Gambar 6.2 Ketidakpastian Sumber Daya Pada Fase	Perangkat
Lunak	110

(halaman ini sengaja dikosongkan)

BAB I PENDAHULUAN

1.1 Latar Belakang

Pertumbuhan ekonomi di Indonesia diikuti juga dengan perkembangan teknologi informasi dan komunikasi, salah satunya ialah pemenuhan kebutuhan akan perangkat lunak. Sesuai dengan Instruksi Presiden Republik Indonesia Nomor 3 2003 tentang Kebijakan dan Strategi Nasional Tahun Pengembangan E-Government [1] kebutuhan akan masterplan menjadi keharusan bagi tiap-tiap pimpinan daerah di Indonesia, estimasi biaya perangkat lunak tidak bisa lepas dari penyusunan masterplan tersebut. Studi dari Standish Group mengemukakan dari 50.000 proyek di seluruh dunia mulai dari perangkat tambahan kecil hingga implementasi sistem re-engineering massal di tahun 2015 sebesar 52% proyek masuk dalam kategori challenged (terlambat, anggaran yang berlebihan, dan atau dengan fitur dan fungsi yang dibutuhkan kurang) atau diragukan dan sebesar 19% proyek masuk dalam kategori failed (dibatalkan sebelum proyek selesai atau sudah disampaikan namun tidak pernah digunakan) atau gagal, sedangkan 29% sisanya masuk ke dalam kategori succesfull (disampaikan tepat waktu, sesuai anggaran, dengan fitur dan fungsi yang dibutuhkan) [2]. Persentase penyebab terbesar kegagalan proyek pengembangan perangkat lunak adalah kurangnya perencanaan proyek yang baik, yaitu sebesar 39% [3] [4].

Salah satu metode estimasi usaha di awal langkah pengembangan perangkat lunak yang kini populer dan banyak digunakan adalah metode Use Case Point (UCP). Use Case Point (UCP) merupakan metode untuk mengestimasi usaha pengembangan perangkat lunak berdasarkan jumlah dan kompleksitas *use case* yang di inisialisasi oleh Gustav Karner pada tahun 1993 [5]. Beberapa studi sebelumnya yang telah dilakukan oleh beberapa peneliti terhadap metode ini memberikan hasil seperti berikut: (i) Perbandingan Use Case

Point dengan usaha aktual memiliki deviasi sebesar 19%, sedangkan estimasi para ahli sebesar 20% [6]. (ii) Pada studi lain dilaporkan estimasi Use Case Point memiliki deviasi sebesar 6% [7] dan 9% [8] dibandingakan dengan usaha aktual. Studi lain yang menggunakan Use Case Point (UCP) untuk mengestimasi biaya dengan memodelkan Use Case Point (UCP) dilakukan oleh Dewi et al, 2016 [9] [10] yang membentuk model dengan mengintegrasikan antara Use Case Point (UCP) dengan Activity Based Costing (ABC) yang kemudian disebut sebagai UCPabc. Model UCPabc diujikan pada 5 aplikasi layanan publik skala kecil dan menengah dengan deviasi 2,16%. Studi lain yang diusulkan oleh Sholiq et al, 2018 [11] yang membentuk model dengan menggabungkan Use Case Point (UCP) dengan Owner Estimate Cost (OEC) yang memiliki 3 komponen biaya: personnel direct cost, nonpersonnel direct cost, dan taxes, model ini dapat digunakan untuk: (i) Pejabat Pembuat Komitmen (PPK) dapat menentukan Owner Estimate Cost (OEC) relatif mudah dari sebelumnya dan (ii) manajer proyek perangkat lunak dapat menggunakan model ini untuk menentukan biaya, jumlah personil, dan sumber daya lain yang diperlukan untuk melaksanakan proyek, model ini diimplementasikan pada 9 proyek pengembangan perangkat lunak yang mendapatkan hasil berupa estimasi biaya dari Owner Estimate Cost (OEC) beserta komponen biaya penyusunnya, namun penelitian ini masih memiliki beberapa kelemahan yaitu belum teruji dan tervalidasinya model tersebut sehingga belum diketahui efektivitasnya pada jenis proyek perangkat lunak tertentu. Maka dari itu perlu dilakukan penelitian lebih lanjut terhadap pengujian model yang diusulkan oleh Sholiq et al.

Penelitian ini bertujuan untuk menguji dan memvalidasi model Use Case Point (UCP) yang diusulkan oleh Sholiq et al [11] untuk mengetahui akurasi dari model tersebut dilihat dari gap atau deviasi yang dihasilkan dengan membandingkan hasil perhitungan estimasi biaya model Use Case Point (UCP) dengan biaya aktual atau sesungguhnya dari proyek

pengembangan perangkat lunak dalam studi kasus. Jenis proyek pengembangan perangkat lunak yang menjadi data uji atau objek pada penelitian ini adalah proyek pengembangan perangkat lunak kepemerintahan berskala medium-large. Untuk menghitung estimasi biaya pada proyek pengembangan perangkat lunak, perlu dilakukan identifikasi terhadap persentase usaha pada proyek pengembangan perangkat lunak yang disebut distribusi usaha. Pada studi kasus kali ini yang menggunakan proyek berskala *medium-large* sudah terdapat acuan distribusi usaha oleh penelitian Kassem Saleh [12] namun tidak spesifik dan jelas jumlah dan jenis proyek pengembangan perangkat lunak yang digunakan sebagai data uji, maka dari itu pada penelitian tugas akhir ini juga dilakukan identifikasi distribusi usaha pada objek penelitian proyek pengembangan perangkat lunak kepemerintahan berskala medium-large.

Pemilihan objek proyek pengembangan perangkat lunak kepemerintahan berskala medium-large ini didasari oleh Chaos Report [2] dimana tingkat kegagalan untuk proyek perangkat lunak berskala medium sebesar 26% masuk dalam kategori challenged dan 31% masuk dalam kategori failed, sedangkan untuk skala large 17% masuk dalam kategori challenged dan 24% masuk dalam kategori failed di lihat dari lima jenis skala yang didefinisikan dalam Chaos Report (small, moderate, medium, large, dan grand). Karakekteristik unik dari proyek pengembangan perangkat lunak kepemerintahan atau biasa disebut e-government dilihat dari tujuannya: (i) menggunakan ICT (Information and Communication Technology) untuk memperluas akses ke informasi pemerintah, (ii) perluasan partisipasi masyarakat dalam pemerintah, dan (iii) membuat layanan pemerintah tersedia secara online [13]. Pertimbangan implementasi e-government menurut Wirtz dan Piehler [14] [15] mengidentifikasi empat kelompok relevan hubungan pemerintah dengan banyak stakeholder: (1) Governtment-to-Government (G2G), (2) Government-to-Business (G2B), (3) Government-to-NPO (G2N), dan (4) Government-to-Citizen (G2C), yang kemudian ditambahkan oleh Milakovich [16] menjadi lima kelompok (5) *Government-to-Employee* (G2E).

1.2 Rumusan Masalah

Berdasarkan latar belakang tersebut, permasalahan yang akan dibahas pada penelitian tugas akhir ini adalah sebagai berikut:

- 1. Bagaimana tahapan proses dalam menguji model Use Case Point (UCP)?
- 2. Bagaimanakah hasil keakuratan model Use Case Point (UCP) mengestimasi biaya proyek pengembangan perangkat lunak kepemerintahan berskala *medium-large*?

1.3 Batasan Masalah

Berdasarkan deskripsi permasalahan diatas, adapun batasan masalah yang perlu diperhatikan dari pengerjaan penelitian tugas akhir ini adalah sebagai berikut:

- 1. Proyek pengembangan perangkat lunak yang digunakan adalah perangkat lunak kepemerintahan berskala *mediumlarge* yang telah berjalan (data empiris).
- 2. Data-data proyek pengembangan perangkat lunak dikumpulkan dari kota Surabaya dengan jumlah 9 buah proyek perangkat lunak. Penentuan jumlah proyek sendiri berdasar penelitian sebelumnya tidak ditentukan harus berjumlah sekian proyek [9] [11] [17].
- 3. Proyek perangkat lunak yang digunakan adalah proyek baru, bukan proyek pengembangan atau perbaikan (enchancement).
- 4. Biaya *non-personnel direct cost* yang digunakan untuk menghitung estimasi biaya perangkat lunak pada penelitian tugas akhir ini menggunakan dokumen keuangan proyek yang dikeluarkan oleh instansi masing-masing proyek pengembangan perangkat lunak.

1.4 Tujuan

Tujuan dari penelitian tugas akhir ini adalah sebagai berikut:

- 1. Mengetahui tahapan proses apa saja dalam menguji model Use Case Point (UCP).
- 2. Mengetahui keakuratan model Use Case Point (UCP) mengestimasi biaya proyek pengembangan perangkat lunak kepemerintahan berskala *medium-large*.

1.5 Manfaat

Manfaat yang dapat diperoleh dari tugas akhir ini adalah sebagai berikut:

1. Untuk teoritis:

Penelitian tugas akhir ini mendukung teori teknik estimasi biaya perangkat lunak Use Case Point yang dikembangkan oleh Gustav Karner [5].

Penelitian tugas akhir ini memperkuat usulan model Use Case Point (UCP) dengan gabungan terori estimasi biaya Owner Estimate Cost oleh Sholiq et.al [11].

2. Untuk praktis:

Rangkaian tahapan proses pengujian model Use Case Point (UCP) dapat digunakan sebagai acuan atau referensi dalam melakukan pengujian model estimasi biaya dengan teknik estimasi biaya Use Case Point (UCP).

Nilai keakuratan model Use Case Point (UCP) dalam bentuk nilai deviasi dapat dijadikan pembanding terhadap model estimasi biaya Use Case Point (UCP) lainnya dengan studi kasus yang berbeda: kriteria skala proyek perangkat lunak, bidang proyek (sosial, kesehatan, dll), metode pengembangan proyek.

1.6 Relevansi

Penelitian tugas akhir ini memiliki relevansi terhadap disiplin ilmu yang ada pada Departemen Sistem Informasi, Fakultas Teknologi Informasi dan Komunikasi, Institut Teknologi Sepuluh Nopember. Penghitungan besar nilai distribusi usaha, estimasi biaya dan validasi model yang dihasilkan dari tugas

Strategi Manajemen Proyek
Proyek
Non 11

Arsitektur Arsitektur Arsitektur Informasi In

akhir ini memiliki relevansi dengan mata kuliah Manajemen Pengadaan dan Investasi Teknologi Informasi.

Gambar 1.1 Relevansi Usulan Tugas Akhir dengan Roadmap Lab. MSI

(Sumber: [18])

Berdasarkan usulan tugas akhir yang diajukan, relevansi mata kuliah diatas sesuai dengan ranah penelitian pada Laboratorium Manajemen Sistem Informasi (MSI) yang ada pada Departemen Sistem Informasi ITS. Oleh karena itu, topik tugas akhir yang diajukan peneliti merupakan topik untuk Laboratorium MSI.

1.7 Target Luaran

Target luaran dari pengerjaan tugas akhir ini adalah sebagai berikut:

- 1. Tahapan pengujian model estimasi biaya Use Case Point (UCP).
- 2. Persen deviasi biaya antara hasil estimasi biaya proyek dengan biaya proyek actual atau sesungguhnya.
- 3. Dokumentasi berupa buku tugas akhir dan jurnal ilmiah.

BAB II TINJAUAN PUSTAKA

Bab ini menjelaskan mengenai penelitian sebelumnya dan dasar teori yang menjadi acuan atau landasan dalam pengerjaan tugas akhir ini. Dasar teori memberikan gambaran secara umum dari tugas ini.

2.1 Penelitian Sebelumnya

Pada bagian ini terdapat penelitian sebelumnya yang berhubungan dengan tugas akhir ini dimana akan dijelaskan melalui Tabel 2.1 berikut.

Tabel 2.1 Penelitian Sebelumnya

(Sumber: [11], [17], [12])

Judul	A Model of Owner Estimate Cost for
	Software Development Project in Indonesia
	Sholiq, Apol Pribadi Subriadi, Feby
Penulis, tahun	Artwodini Muqtadiroh, Renny Sari Dewi,
	Unpublished
	Metode yang digunakan pada penelitian ini
	adalah Use Case Point (UCP) dan model
	Owner Cost Estimate.
	Use Case Point (UCP) digunakan untuk
	menghitung nilai usaha dari proyek
	pengembangan perangkat lunak dengan
	memperhatikan kompleksitas Use Case,
Metode	Technical Factor, dan Enviromental
	Factor.
	Model Owner Estimate Cost digunakan
	untuk menghitung estimasi biaya proyek
	pengembangan perangkat lunak dengan
	memperhatikan tiga komponen; personnel
	direct cost, non-personnel direct cost, dan
	taxes.
	Berdasarkan metode diatas didapatkan dari
Hasil Penelitian	penelitian ini sebuah model untuk
	menentukan Owner Estimate Cost yang

	diujikan pada sembilan proyek		
	pengembangan perangkat lunak.		
Kelebihan	Penelitian ini mengusulkan model yang mencakup tidak hanya biaya <i>personnel direct cost</i> yang dihitung menggunakan Use Case Point (UCP), namun juga <i>non-personnel direct cost</i> dan <i>taxes</i> .		
Kekurangan	Kekurangan dari penelitian ini adalah belum terujinya efektivitas dari model yang diusulkan dengan cara membandingkan actual cost dengan estimasi biaya proyek sehingga didapatkan standar deviasi yang menunjukkan keakuratan model.		
Judul	Estimasi Biaya Proyek Pengembangan Perangkat Lunak Kepemerintahan Berskala Small-Medium Dengan Metode Use Case Point (UCP)		
Penulis, tahun	Putu Linda Primandari Ambarini, 2015		
Metode	Metode yang digunakan pada penelitian ini adalah Use Case Point (UCP) dengan memperhatikan distribusi usaha yang nantinya akan dihitung biayanya dengan menjumlah hasil perkalian dari persen distribusi usaha tiap aktivitas pengembangan perangkat lunak dengan pay rate dan juga nilai effort yang didapatkan dari Use Case Point (UCP).		
Berdasarkan metode diatas didapat di penelitian ini sebagai berikut: Nilai distribusi usaha untuk masing-masi tahapan pengembangan perangkat lunak. Deviasi estimasi biaya pengembang perangkat lunak dan deviasi usaha (efformore) proyek perangkat lunak.			
Kelebihan	Kelebihan dari penelitian ini adalah identifikasi nilai distribusi usaha dari proyek pengembangan perangkat lunak yang berpengaruh pada perhitungan estimasi biaya yang nantinya akan dibandingkan untuk validasi.		

Kekurangan	Kekurangan dari penelitian ini adalah penggunaan <i>pay rate</i> dari standar gaji pekerja IT yang mengacu pada Kelly Service, sedangkan untuk tiap proyek gaji dari pekerja IT sendiri berbeda satu sama lain.		
Judul	Effort and Cost Allocation in Medium to Large Software Development Projects		
Penulis, tahun	Kassem Saleh, 2011		
Metode	Metode yang digunakan pada penelitian ini adalah software engineering dan teknik estimasi biaya dan usaha; Function Point (FP), Use Case Point (UCP) dan tambahan masukan dari opini ahli: Software engineering dipergunakan untuk mengidentifikasi berbagai fase dan aktivitas pada proyek perangkat lunak. Teknik estimasi biaya dan usaha digunakan untuk mengalokasikan distribusi usaha dari tiap aktivitas dalam proyek perangkat lunak.		
Hasil Penelitian	Berdasarkan metode diatas didapatkan dari penelitian ini berupa <i>guidelines</i> untuk alokasi yang tepat bagi anggaran dan sumber daya manusia dari berbagai kegiatan pengembangan perangkat lunak berskala <i>medium-large</i> .		
Kelebihan	Kelebihan dari penelitian ini adalah penggunaan tiga teknik estimasi biaya dan usaha; Function Point (FP), Use Case Point (UCP) dan opini ahli untuk mempertimbangkan alokasi nilai biaya dan usaha.		
Kekurangan	Kekurangan dari penelitian ini adalah belum terujinya <i>guidelines</i> tersebut untuk berbagai macam tipe pengembangan perangkat lunak sehingga belum diketahui <i>margin of error guidelines</i> ini.		

Berdasarkan Tabel 1 telah didapatkan penjelasan mengenai studi sebelumnya yang dijadikan acuan dalam penelitian ini. Penelitian tersebut membahas terkait penggunan Use Case Point (UCP) dan *effort distribution* pada proyek pengembangan perangkat lunak. Selanjutnya, akan dijelaskan relevansi dari tiap penelitian dalam kaitannya pada penelitian ini. Relevansi tiap penelitian dapat dilihat melalui Tabel 2.2 berikut.

Tabel 2.2 Relevansi Studi Sebelumnya dengan Tugas Akhir

(Sumber: [11], [17], [12])

	Penelitian 1	Penelitian 2	Penelitian 3
	Penelitian 1	Penelitian 2 dan	Penelitian 3
	dan tugas akhir	tugas akhir memiliki	menghasilkan
	memiliki	metode dan output	output berupa
	persamaan	yang sama berupa	guidelines alokasi
	dengan metode	penggunan Use	distribusi usaha
	yang digunakan	Case Point (UCP)	proyek
	berupa model	dan output berupa	pengembangan
-5	Owner	nilai distribusi usaha	perangkat lunak
ans	Estimate Cost	dan deviasi biaya	berskala <i>medium</i> -
Relevansi	yang didasari	dan usaha proyek	large yang
Rel	oleh teknik	pengembangan	memiliki skala
	estimasi biaya	perangkat lunak.	yang sama
	dan usaha Use		dengan objek
	Case Point		penelitian tugas
	(UCP).		akhir yang
			menjadi acuan
			perbandingan
			output nilai
			distribusi usaha.

2.2 Proyek Perangkat Lunak

Proyek perangkat lunak merupakan disiplin manajerial dan teknis yang berkaitan dengan pembuatan dan pemeliharaan produk perangkat lunak secara sistematis, termasuk segala aktifitas pengembangan dan modifikasi perangkat lunak yang dilakukan pada waktu yang tepat dan dengan mempertimbangkan faktor biaya. Tujuan dari perancangan

perangkat lunak adalah untuk memperbaiki kualitas produk perangkat lunak, meningkatkan produktivitas, serta memuaskan teknisi perangkat lunak [19]. Proyek pengembangan perangkat lunak memiliki beberapa kategori ukuran yang dilihat dari beberapa variabel [20]. Kategori ukuran proyek dapat dilihat pada Tabel 2.3 berikut:

Tabel 2.3 Kategori Ukuran Proyek Perangkat Lunak

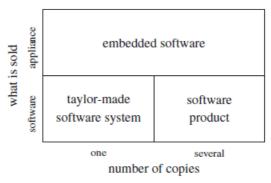
(Sumber: [20])

Kategori	Jumlah	Lama	Jumlah	Contoh
220008022	Programmer	Pengerjaan	Baris	Proyek
Trivial	1	1-4	500	Keperluan
		minggu		pribadi
				seorang
				programmer
Kecil	1	1-6 bulan	1K-2K	Penyelesaian
				numeric
				masalah
				sains
Menengah	2-5	1-2 tahun	5K-	Compiler
			50K	berukuran
				tidak terlalu
				besar
Besar	5-20	2-3 tahun	50K-	Paket
			100K	database
Sangat	100-1K	4-5 tahun	1M	Sitem
Besar				operasi besar
Ekstra	2K-5K	5-10 tahun	1M-	Sistem
Besar			10M	pertahanan
				balistik

Berdasarkan Peraturan Menteri Perdagangan Republik Indonesia tentang klasifikasi Surat Ijin Usaha Perdagangan (SIUP) bidang perdagangan komputer sub bidang Software dan Hardware terhadap proyek perangkat lunak kepemerintahan [21] disajikan pada Tabel 2.4 sebagai berikut:

Tabel 2.4 Klasifikasi Surat Ijin Usaha Perdagangan

(Sumber: [21])


Biaya Proyek Perangkat Lunak (Rupiah)	Klasifikasi SIUP
25.000.000 - 200.000.000	SIUP Kecil
201.000.000 - 500.000.000	SIUP Menengah
>501.000.000	SIUP Besar

Klasifikasi biaya proyek perangkat lunak tersebut yang dapat digunakan sebagai acuan atau parameter dalam penelitian ini.

2.2.1 Jenis-Jenis Perangkat Lunak

Jenis-jenis perangkat lunak dapat dibedakan menjadi dua klasifikasi; berdasarkan penyilangan 'what is sold' dengan 'number of copies' dan kedekatan hubungan perangkat lunak dengan perangkat keras.

Klasifikasi pertama dengan cetusan dua kriteria yang diusulkan untuk mengklasifikasikan sistem perangkat lunak (softwaredominated system atau software-intensive system): 'what is sold' dan 'number of copies'. Xu dan Brinkkemper pada tahun 2007 [22] menyilangkan kedua kriteria ini yang akhirnya menghasilkan asal muasal dari jenis sistem perangkat lunak yang ditunjukkan pada Gambar 2 berikut:

Gambar 2.1 Klasifikasi Sistem Perangkat Lunak

(*Sumber*: [22])

Dari Gambar 2.1 tersebut dapat kita bagi menjadi tiga jenis perangkat lunak:

1. Embedded Software (Perangkat Lunak Tertanam)

Kapanpun *final customer* membeli alat yang diberikan yang mencakup perangkat lunak, ini biasanya disebut sebagai perangkat lunak tertanam. Istilah ini digunakan, baik untuk alat yang unik (misalnya, satelit atau pesawat ulang alik), atau untuk perangkat yang diproduksi dalam jumlah besar (misalnya, seperangkat televisi atau ponsel). Perangkat lunak ini sesuai dengan sistem heterogen (yang mencakup bagian dengan teknologi yang berbeda), yang jarang disebut juga sebagai 'produk perangkat lunak'.

2. Taylor-Made Software System

Jika sistem dikembangkan dengan permintaan klien tertentu untuk memenuhi kebutuhan dan harapannya sendiri, tujuan utamanya adalah untuk memenuhi kebutuhan spesifik klien tersebut, tanpa memedulikan apakah hal itu sama bergunanya bagi klien lain.

3. Software Product

Jika sebuah sistem perangkat lunak diproduksi untuk dikomersialisasikan, atau tersedia untuk umum pada umumnya, maka produk tersebut ditunjuk sebagai produk perangkat lunak, yang juga disebut produk *mass-market*.

Adapun klasifikasi kedua jenis perangkat lunak dilihat dari kedekatan hubungan perangkat lunak dengan perangkat keras [23] adalah sebagai berikut:

- 1. Perangkat Lunak Sistem (*System Software*)
 Perangkat Lunak Sistem terdiri dari program yang berinteraksi secara langsung dan intens dengan perangkat keras komputer. Maka, normal bila perangkat lunak sistem tidak secara eksplisit digunakan oleh *end user*. Jenis perangkat lunak ini mencakup sistem operasi, utilitas untuk memonitor sumber daya (untuk menganalisa, konfigurasi, dan optimalisasi komputer), driver perangkat dan perangkat lunak jaringan (*web server*, *email server*, *network routers*).
- 2. Perangkat Lunak Aplikasi (Application Sofware)
- 3. Perangkat Lunak Aplikasi adalah produk perangkat lunak yang dikembangkan untuk mendukung realisasi tugas individu dari seseorang dan eksekusi dari proses organisasi

(pemerintah, industri, perdagangan, dan jasa). Aplikasi ini dijalankan menggunakan komputer (*hardware*) dan perangkat lunak sistem (*system software*), contohnya ialah sistem operasi. Oleh karena itu, bisa dikatakan, dari sudut pandang pengguna aplikasi ini berada diatas tingkatan perangkat keras. Aplikasi ini pada dasarnya dilihat sebagai alat produktivitas, yaitu alat untuk meningkatkan kemampuan manusia atau organisasi.

2.3 Model Use Case Point (UCP)

Model perhitungan estimasi biaya proyek pengembangan perangkat lunak yang didasari dengan metode Use Case Point (UCP) untuk menentukan Owner Estimate Cost (OEC) dari sebuah proyek [11]. Langkah-langkah dari model Use Case Point (UCP) ini terbagi menjadi tiga komponen utama yaitu:

- a. Personnel Direct Cost
- b. Non-Personnel Direct Cost
- c. Taxes

2.3.1 Personnel Direct Cost

Komponen ini menggunakan gaji pokok sesuai harga pasar di masing-masing bidang keahlian dan jasa konsultansi. Komponen ini mencakup biaya umum (overhead), biaya sosial, tunjangan tugas, biaya kompensasi lainnya, dan keuntungan. Untuk mendapatkan komponen personnel direct cost menggunakan prosedur pada metode Use Case Point (UCP) yang telah dikembangkan oleh Gustav Karner pada tahun 1993. Langkah-langkah perhitungan komponen personnel direct cost akan dijelaskan pada point selanjutnya. Untuk persamaan dari personnel direct cost sendiri ditunjukkan pada persamaan di bawah ini:

Personnel direct cost = personnel direct cost before profit + profit (1)

Profit pada persamaan diatas dihitung berdasar keuntungan yang diharapkan oleh tim pengembang perangkat lunak, keuntungan bisa dalam bentuk persentase dari *personnel direct cost* atau bisa dalam bentuk nilai uang tertentu. Sedang untuk *personnel direct cost berfore profit* didapat dari jumlah *cost in activity* pada persamaan 10.

2.3.1.1 Use Case Point (UCP)

Use Case Point (UCP) merupakan teknik estimasi ukuran suatu proyek pengembangan perangkat lunak yang diadaptasi dari Function Point Analysis (FPA). Use Case Point (UCP) didesain untuk kebutuhan spesifik dari sistem yang berdasarkan Use Case [24]. Metode Use Case Point (UCP) dapat menentukan man-hour dari proyek pengembangan perangkat lunak [5]. Perhitungan dari Use Case Point (UCP) sendiri terbagi atas tiga variabel yang didefinisikan dari perhitungan yang berbeda-beda disesuaikan dengan nilai pembobotan dan nilai *subjective* untuk masing-masing variabel:

- a. Unajusted Use Case Points (UUCP)
- b. Technical Complexity Factor (TCF)
- c. Environmental Complexity Factor (ECF)

2.3.1.1.1 Perhitungan Use Case Point (UCP)

Persamaan dari Use Case Point (UCP) adalah sebagai berikut sesuai dengan variabel-variabel yang telah dijelaskan sebelumnya:

$$UCP = UUCP * TCF * ECF$$
 (2)

Dimana,

- UCP (Use Case Point), estimasi effort dalam satuan man/hour.
- UUCP (Unadjusted Use Case Point), kompleksitas Use Case dengan komponen penyusun Unadjusted Use Case Weight dan Unadjusted Actor Weight.
- *TCF* (*Technical Complexity Factor*), 13 faktor kompleksitas teknis.

- ECF (Environmental Complexity Factor), 8 faktor kompleksitas lingkungan.
- a. Unadjusted Use Case Points (UUCP)

Perhitungan *Unadjusted Use Case Points* (UUCP) didapatkan dari gabungan perhitungan *Unadjusted Use Case Weight* (UUCW) dan *Unadjusted Actor Weight* (UAW), didapatkan dengan memperhatikan use case diagram dengan menentukan kompleksitas dari tiap use case dilihat dari jumlah transaksi dan interaksi aktor yang menjadi pertimbangan dalam pemberian bobot. Persamaan dari *Unadjusted Use Case Points* (UUCP) adalah sebagai berikut:

UUCP = UUCW + UAW(3)

1. Unadjusted Use Case Weight (UUCW)

Perhitungan *Unadjusted Use Case Weight* (UUCW) memperhatikan jumlah transaksi yang terjadi dalam deskripsi *use case*. Transaksi menurut Ivar Jcobson, didefinisikan sebagai *round trip* dari aktor kedalam sistem, kemudian sistem kepada aktor. Terjadinya satu transaksi apabila jika sistem menunggu masukan baru atau stimulus baru [25]. Transaksi yang digunakan untuk menentukan kompleksitas *use case* merupakan skenario sukses dari sebuah *use case* [26]. Ketentuan kompleksitas dan pembobotan *use case* ditunjukkan pada Tabel 2.5.

Tabel 2.5 Kompleksitas Unadjusted Use Case Weight (UUCW)

(*Sumber:* [5])

(84111001: [3])				
Kompleksitas	Definisi	Bobot		
Simple	Jumlah transaksi tidak lebih dari	5		
-	$3 \text{ (Transaksi } \leq 3)$			
Average	Jumlah transaksi antara 4 hingga 10			
	7			
Complex	Jumlah transaksi lebih dari 7	15		
_	(Transaksi > 7)			

Persamaan dari *Unadjusted Use Case Weight* (UUCW) adalah sebagai berikut:

UUCW = (Simple Use Cases x 5) + (Average Use Case x 10) + (Complex Use Cases x 15) (4)

2. *Unadjusted Actor Weight* (UAW)

Perhitungan *Unadjusted Actor Weight* (UAW) memperhatikan interaksi yang dilakukan olek aktor dalam deskripsi *use case*. Penentuan kompleksitas dan pembobotan aktor ditunjukkan pada Tabel 2.6.

Tabel 2.6 Kompleksitas Unadjusted Actor Weight (UAW)

(*Sumber*: [5])

Kompleksitas	Definisi	Bobot
Simple	Berinteraksi melalui Application	1
	Programming Interface (API)	
Average	Berinteraksi dengan protokol komunikasi atau <i>line terminal</i> (e.g. TCP/IP, FTP, HTTP, database)	2
Complex	Berinteraksi melalui Graphical	3
	User Interface (GUI)	

Persamaan dari *Unadjusted Actor Weight* (UAW) adalah sebagai berikut:

$$UAW = (Simple actors x 1) + (Average actors x 2) + (Complex actors x 3) (5)$$

b. *Technical Complexity Factor* (TCF)

Faktor yang digunakan untuk menghitung fungsi-fungsi yang tidak fungsional yang biasa digunakan untuk mempermudah pekerjaan seorang programmer [8]. Pemberian rating skor disimbolkan (R) dengan jangkauan dari 0 (nol) sampai 5 dengan kriteria; 0 (nol) menandakan tingkat paling rendah atau tidak mempengaruhi, 3 menandakan rata-rata, hingga 5 yang menandakan tingkat paling maksimal atau memberikan pengaruh yang besar,

kategori pemberian skor terhadap pengaruhnya ditunjukkan pada Tabel 2.7 [8]. Dari pemberian skor tersebut barulah dikalikan dengan pembobotan yang ada sesuai pada Tabel 2.8 yang kemudian dijumlahkan menjadi nilai TF pada persamaan dibawah Tabel 2.8. Faktor yang berkontribusi pada kompleksitas *Technical Complexity Factor* (TCF) ditunjukkan pada Tabel 2.8.

Tabel 2.7 Kategori Pemberian Skor Pada Faktor Kompleksitas (Sumber: [8])

		1				
Leverage	Irrelevant	Very	Low	Mean	High	Very
		Low				High
Rating	0	1	2	3	4	5
1	1	I	I		ı	I

Tabel 2.8 Daftar Technical Complexity Factor (TCF)
(Sumber: [5])

	(Sumber: [3])	
Fi	Factors Contributing to Complexity	Wi
F1	Distributed systems.	2
F2	Application performance objectives, in either	1
	response or throughput.	
F3	End user efficiency (on-line).	1
F4	Complex internal processing.	1
F5	Reusability, the code must be able to reuse in other	1
	application.	
F6	Installation ease.	
F7	Operational ease, usability.	
F8	Portability.	
F9	Changeability.	
F10	Concurrency.	
F11	Special security features.	
F12	Provide direct access for third parties.	
F13	Special user training facilities.	1
_		1

$$TF = \sum (Wi * R)$$
(6)
$$TCF = 0.6 + (0.01 * TF)(7)$$

c. Environmental Complexity Factor (ECF)

Sama halnya dengan perhitungan pembobotan pada *Technical Complexity Factor* (TCF), *Enviromental Complexity Factor* (ECF) juga dilakukan pemberian skor dengan jangkauan 0 (nol) sampai dengan 5. Perhitungan nilai EF sendiri pada persamaan dibawah Tabel 8 didapatkan dari penjumlahan perkalian pemberian skor dengan bobot dari masing-masing faktor yang ditunjukkan pada Tabel 2.9 sama dengan persamaan 6.

Tabel 2.9 Daftar Environmental Complexity Factor (ECF)

(*Sumber*: [5])

Fi	Factors Contributing to Complexity	Wi
F1	Familiar with Objectory.	1.5
F2	Part time workers.	-1
F3	Analyst capability.	0.5
F4	Application experience.	0.5
F5	Object oriented experience.	1
F6	Motivation.	1
F7	Difficult programming language.	-1
F8	Stable requirements.	2

$$ECF = 1,4 + (-0,03 * EF)$$
 (8)

2.3.1.1.2 Perhitungan Effort

Effort = UCP x ER
$$(9)$$

Dari persamaan diatas untuk dapat menghitung nilai estimasi *Effort* dibutuhkan nilai ER (*Effort Rate*) yang didefinisikan sebagai jumlah *man-hours* usaha per *use case point* berdasarkan proyek-proyek di masa lalu. Jika proyek tersebut merupakan proyek baru dan tidak terdapat data histori yang telah terkumpul, maka digunakan nilai yang berkisar antara 15 sampai 30. Namun, nilai yang paling sering dipakai adalah nilai 20 [27]. Sedang pada penelitian ini menggunakan nilai ER yang dikemukakan Subriadi et.al, sebesar 8,2 *man/hours* [28].

2.3.1.1.3 Menghitung Nilai Biaya

Penghitungan nilai biaya estimasi perangkat lunak menggunakan persamaan sebagai berikut:

Cost in activity_i = Effort x percentage_i x payRate_i (10) Dimana.

- Cost in activity_i adalah biaya yang dibutuhkan untuk aktivitas terkait dalam proyek pengembangan atau aktivitas i.
- *Effort*: usaha yang dibutuhkan untuk menyelesaikan proyek pengembangan perangkat lunak.
- *Percentage*_i: persentase aktivitas terkait dari distribusi usaha.
- Pay rate_i: upah rata-rata untuk aktivitas i.

Pay rate bisa ditentukan dengan diturunkannya gaji per bulan menjadi gaji per minggu, menjadi gaji per hari. Gaji per bulan disebut Person Month Rate (PMR), gaji per minggu disebut Person Week Rate (PWR) dan gaji per hari disebut Person Day Rate (PDR), sedangkan gaji per jam disebut Person Hour Rate (PHR) [29]. Persamaaan dari PMR, PWR, PDR, dan PHR adalah sebagai berikut [29]:

PWR = PMR/4,1 $PDR = PMR/22 \times 1,1$ $PHR = PDR/8 \times 1,3$ (11)

2.3.1.2 Aktivitas Pengembangan Perangkat Lunak

Aktivitas pada proyek pengembangan perangkat lunak dibagi menjadi 2 tipe aktivitas [12] yaitu sebagai berikut:

- (i) software development
 - a. Requirements
 - b. Specification
 - c. Design
 - d. Implementation
 - e. Integration testing
 - f. Acceptance and deployment
- (ii) ongoing activites
 - a. Project management
 - b. Configuration management
 - c. Quality assurance
 - d. Documentation

- e. Training and support
- f. Evaluation and testing

Software Development Life Cycle (SDLC) merupakan model klasik yang digambarkan sebagai urutan linier yang bisa dijadikan acuan dalam menentukan daftar aktivitas dalam pengembangan perangkat lunak, terdapat tujuh proses pada Software Development Life Cycle (SDLC) [27] yaitu sebagai berikut:

- 1. Requirement definition
- 2. Analysis
- 3. Design
- 4. Coding
- 5. System tests
- 6. Installation and conversion
- 7. Operation and maintenance

2.3.1.3 Effort Distribution

Effort distribution adalah distribusi usaha yang dialokasikan pada setiap aktivitas yang ada pada siklus pengembangan perangkat lunak proyek. Berikut ditunjukkan pada Tabel 2.10 merupakan distribusi udaha dari hasil penelitian Kassem Saleh [12] untuk proyek pengembangan *medium-large* dan Primandari [17] untuk proyek pengembangan *small-mediums*.

Tabel 2.10 Effort Distribution Pada Tiap Aktivitas

(Sumber: [12], [17]) Distribution per project size (%) No Activity Medium-Small large [12] [17] Software development phase Requirements 7.5 1.17 1 **Specifications** 7.5 6.75 3 Design 10 5.57 Implementation 4 10 55.65 Integration Testing 5 7.5 6.42 6 Acceptance & deployment 7.5 5.6

No	Activity	Distribution per project size (%)	
No	Activity	Medium-	Small
		large [12]	[17]
Ong	oing activities & quality and testin	g	
7	Project management	8.34	2.55
8	Configuration management	4.16	3.58
9	Quality assurance	8.34	0.66
10	Documentation	4.16	9.76
11	Training & support	4.16	0.6
12	Evaluation & testing	20.84	1.67

2.3.2 Non-Personnel Direct Cost

Komponen biaya kedua adalah non-personnel direct cost yang secara langsung dikeluarkan dengan mempertimbangkan dan didasari oleh kewajaran harga pasar yang dapat dipertanggungjawabkan. Non-personnel direct cost sendiri terdiri dari tiga komponen; reimbursable, fixed unit rate, dan lumpsum [29].

- Reimbursable adalah penggantian biaya aktual yang dikeluarkan untuk mendukung pelaksanaan proyek.
- *Fixed unit rate* adalah biaya aktual dimana setiap elemen pekerjaan dengan taksiran volume didasarkan pada harga tetap dan harga satuan tetap.
- Lumpsum adalah pengeluaran sebenarnya untuk setiap elemen pekerjaan dengan batas waktu tertentu, jumlah dan harga sudah ditetapkan, dan pembayaran dilakukan sekaligus.

Daftar kategori *non-personnel direct cost* ditunjukkan pada Tabel 2.11.

Tabel 2.11 Kategori Non-Personnel Direct Cost

(Sumber: [11])

Kategori non-personnel direct cost

Reimbursable - Documents for travel abroad
- Flight ticket
- Excess baggage

Kategori non-personnel	Со	st driver	
direct cost			
	-	Local/inland travel Local/inland	
		travel	
	-	The cost of purchasing project	
		needs	
	-	Installation cost of phone/internet	
Fixed unit rate	-	Rent a vehicle	
	-	Rent the project office	
	-	Rent office equipment	
	-	Rent office furniture	
	-	Operational cost of the project	
		office	
	-	Office stationary costs	
	-	Communication costs	
	-	- Per diem allowance	
	-	- Housing allowance	
	-	- Temporary lodging	
	-	Relocation allowance	
	-	Out of station allowance	
	-	External task lodging	
	-	Annual leave	
	-	Reporting costs	
	-	Rent supporting equipment	
Lumpsum	-	Secondary data collection	
	-	- Seminars, workshops,	
		socialization, training,	
		dissemination, discussions,	
		coordination among agencies, and	
		Focus Group Discussion	
	-	Survey	
	-	Laboratoty test	

2.3.3 Taxes

Komponen biaya terkahir adalah *taxes* (pajak). Pajak menyesuaikan peraturan negara setempat dimana proyek pengembangan perangkat lunak dilakukan. Di Indonesia, proyek pengembangan perangkat lunak dikenai pajak pertambahan nilai sebesar 10% dari nilai proyek.

2.4 Perbedaan Use Case Point Dengan Owner Estimate Cost

Perbedaan mendasar dari teori estimasi biaya Use Case Point (UCP) dan Owner Estimate Cost (OEC)/Harga Perkiraan Sendiri (HPS) dijelaskan dalam beberapa poin berikut ini:

- Use Case Point (UCP)
 - Dikembangkan oleh Gustav Karner dengan memperhatikan perhitungan estimasi usaha dan estimasi biaya.
 - Komponen usaha: Unadjusted Use Case Point (UUCP); Unadjusted Use Case Weight (UUCW) & Unadjusted Actor Weight (UAW), Complexity Factor; Technical Complexity Factor (TCF) & Environmental Complexity Factor (ECF), dan Effort Rate (ER).
 - Komponen biaya: software development activities, distribusi usaha (effort distribution), dan pay rate per activities.
- Owner Estimate Cost (OEC)/Harga Perkiraan Sendiri (HPS)
 - Dokumen dalam rencana pelaksanaan pengadaan barang/jasa yang menjadi sesuai Peraturan Presiden Republik Indonesia Nomor 54 Tahun 2010 dan Nomor 70 Tahun 2012 tentang Pengadaan Barang/Jasa Pemerintah dan Perubahan Keduanya.
 - Dengan memperhatikan perhitungan estimasi biaya dengan pertimbangan data dan informasi dari Tabel 2.12, dengan komponen utamanya: Biaya Langsung Personil (Remuneration), Biaya Langsung Non Personil (Direct Reimbursable Cost), dan Pajak Pertambahan Nilai (PPN).

2.4.1 Owner Estimate Cost (OEC)/Harga Perkiraan Sendiri (HPS)

Harga perkiraan sendiri merupakan dokumen rencana pelaksanaan pengadaan barang/jasa yang menjadi tanggung jawab dari PPK (Pejabat Pembuat Komitmen). Peraturan Presiden Republik Indonesia Nomor 70 Tahun 2012 tentang perubahan kedua atas Peraturan Presiden Republik Indonesia Nomor 54 Tahun 2010 tentang Pengadaan Barang/Jasa Pemerintah merupakan kebijakan ekonomi yang diterbitkan untuk mengatur pengadaan publik, dimana salah satunya pada regulasi baru ini mengatur tentang penetapan rencana pelaksanaan pengadaan barang/jasa yang salah satunya meliputi pembuatan Harga Perkiraaan Sendiri (HPS) [30].

Ketentuan umum mengenai HPS:

- a. Disusun dan ditetapkan olek PPK sebagai bagian dari rencana pelaksanaan pengadaan, ekculai untuk kontes/sayembara, Tim Juri/Tim Ahli dapat memberikan masukan dalam penyusunan HPS
- b. ULP/pejabat pengadaan mengumumkan nilai total HPS sesuai ketetapan PPK
- c. Nilai HPS bersifat terbuka dan tidak rahasia
- d. HPS disusun paling lama 28 hari kerja sebelum batas akhir pemasukan penawaran
- e. HPS bukan sebagai dasar untuk menentukan besaran kerugian Negara
- f. PPK menetapkan Harga Perkiraan Sendiri (HPS) barang/jasa kecuali untuk kontes/sayembara
- g. Riwayat HPS harus didokumentasikan dengan baik

Sedangkan untuk penyusunan HPS didasarkan pada data harga pasar setempat yang diperoleh berdasarkan hasil survey menjelang dilaksanakannya pengadaan. Data-data dan informasi yang perlu dipertimbangkan dalam menyusun HPS dapat dilihat pada Tabel 2.12 berikut ini.

D.1 HPS Barang/Pekerjaan Konstruksi/Jasa Lainnya HPS digunakan sebagai:

- a. Alat untuk menilai kewajaran penawaran termasuk rinciannya;
- b. Dasar untuk menetapkan batas tertinggi penawaran yang sah untuk pengadaan barang/pekerjaan

- konstruksi/jasa lainnya dan pengadaan jasa konsultansi yang menggunakan metode pagu anggaran;
- c. Dasar untuk negosiasi harga dalam Penunjukan Langsung dan Pengadaan Langsung;
- d. Dasar untuk menetapkan besaran nilai Jaminan Penawaran:
- e. Dasar untuk menetapkan besaran nilai jaminan pelaksanaan bagi penawaran yang nilainya lebih rendah dari 80% nilai total HPS.

HPS disusun dengan memperhitungkan:

- a. Pajak Pertambahan Nilai (PPN); dan
- b. keuntungan dan biaya overhead yang dianggap wajar bagi penyedia maksimal 15% (lima belas per seratus) tidak termasuk pajak.

Tabel 2.12 Data dan Informasi Sebagai Dasar Menyusun HPS

No	Data/Informasi	Non	Konsultansi
NO	Data/Informasi		Konsultansi
		Konsultansi	
1	Informasi biaya satuan yang		
	dipublikasikan secara resmi	1	,
	oleh Badan Pusat Statistik	$\sqrt{}$	V
	(BPS)		
2	Informasi biaya satuan yang		
	dipublikasikan secara resmi		
	oleh asosiasi terkait dan	$\sqrt{}$	
	sumber data lain yang dapat	,	,
	dipertanggungjawabkan		
3	Daftar biaya/tarif barang/jasa	,	
	yang dikeluarkan oleh	$\sqrt{}$	
	pabrikan/distributor tunggal;		
4	Biaya kontrak sebelumnya		
	atau yang sedang berjalan	ا	ا
	dengan mempertimbangkan	V	V
	faktor perubahan biaya		
5	Inflasi tahun sebelumnya,		
	suku bunga berjalan dan/atau	$\sqrt{}$	
	kurs tengah Bank Indonesia	*	•
-			
6	Hasil perbandingan dengan		
	kontrak sejenis, bagi yang	V	V

No	Data/Informasi	Non	Konsultansi
		Konsultansi	
	dilakukan dengan instansi lain maupun pihak lain		
7	Perkiraan perhitungan biaya yang dilakukan oleh konsultan perencana (engineer's estimate)	V	V
8	Norma indeks	V	V
9	Informasi lain yang dapat dipertanggung-jawabkan	√	√

D.2 HPS Jasa Konsultansi

Ketentuan dalam penyusunan Harga Perkiraan Sendiri (HPS) adalah sebagai berikut:

- a. PPK menyusun HPS yang dikalkulasikan secara keahlian dan berdasarkan data yang dapat dipertanggung-jawabkan.
- b. Dalam penyusunan HPS, PPK memperhatikan dan memahami KAK dan seluruh tahapan pekerjaan yang akan dilaksanakan, menguasai informasi/kondisi lapangan dan lingkungan di lokasi pekerjaan, serta memahami alternatif metodologi pelaksanaan pekerjaan.
- c. HPS digunakan sebagai:
 - 1) Acuan/alat untuk menilai kewajaran penawaran termasuk rinciannya;
 - 2) Dasar untuk negosiasi harga.
- d. HPS jasa konsultansi terdiri dari komponen:
 - 1) Biaya Langsung Personil (Remuneration);
 - 2) Biaya Langsung Non Personil (Direct Reimbursable Cost); dan
 - 3) Pajak Pertambahan Nilai (PPN).
- e. Biaya Langsung Personil didasarkan pada harga pasar gaji dasar (*basic salary*) yang terjadi untuk setiap kualifikasi dan bidang jasa konsultansi.
- f. Biaya Langsung Personil telah memperhitungkan biaya umum (overhead), biaya sosial (social charge),

- keuntungan (profit) maksimal 10%, tunjangan penugasan, dan biaya-biaya kompensasi lainnya.
- g. Biaya Langsung Personil dapat dihitung menurut jumlah satuan waktu tertentu (bulan, minggu, hari, atau jam), dengan konversi menurut satuan waktu sebagai berikut:

SBOM = SBOB/4,1

 $SBOH = (SBOB/22) \times 1,1$

 $SBOJ = (SBOH/8) \times 1,3$

Dimana:

SBOB = Satuan Biaya Orang Bulan

SBOM = Satuan Biaya Orang Minggu

SBOH = Satuan Biaya Orang Hari

SBOJ = Satuan Biaya Orang Jam

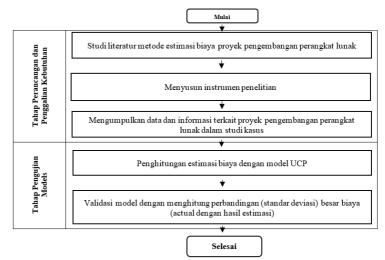
h. Biaya Langsung Non Personil yang dapat diganti adalah biaya yang sebenarnya dikeluarkan penyedia untuk pengeluaran-pengeluaran yang sesungguhnya (at cost), yang meliputi antara lain biaya untuk pembelian ATK, sewa peralatan, biaya perjalanan, biaya pengiriman dokumen, biaya pengurusan surat ijin, biaya komunikasi, biaya pencetakan laporan, biaya penyelenggaraan seminar/workshop/lokakarya, dan lain-lain.

Biaya Langsung Non Personil pada prinsipnya tidak melebihi 40% (empat puluh persen) dari total biaya, kecuali untuk jenis pekerjaan konsultansi yang bersifat khusus, seperti pekerjaan penilaian aset, survei untuk memetakan cadangan minyak bumi, pemetaan udara, survei lapangan, pengukuran, penyelidikan tanah dan lain-lain

BAB III METODOLOGI PENELITIAN

Pada bab ini akan dijelaskan mengenai langkah-langkah penelitian yang digunakan peneliti dalam pengerjaan tugas akhir agar dapat diselesaikan secara sistematis, jelas, dan terarah. Bagian ini menyajikan tahapan pelaksanaan tugas akhir dan jadwal kegiatan.

3.1 Desain Penelitian


Gambar 3.1 Desain Penelitian

(Sumber: Penulis, 2018)

Gambar 3.1 menunjukkan desain penelitian dari penelitian tugas akhir secara umum.

3.2 Metodologi Penelitian

Pada bagian ini tediri dari tahapan penelitian tugas akhir dan uraian tahapan yang digunakan ditunjukkan pada Gambar 3.2.

Gambar 3.2 Metodologi Penelitian (Sumber: Penulis, 2018)

3.2.1 Tahap Perancangan dan Penggalian Kebutuhan

Tahapan perancangan dan penggalian kebutuhan merupakan tahapan awal dari pengerjaan penelitian tugas akhir ini. Tahapan ini bertujuan untuk merancang instrumen penelitian dan menggali data dan informasi mengenai kebutuhan untuk menerapkan model Use Case Point (UCP) khususnya pada proyek pengembangan perangkat lunak kepemerintahan skala *medium-large*. Data/informasi yang dibutuhkan berupa literatur maupun *paper* berupa penelitian terkait sebelumnya yang membahas tentang penerapan Use Case Point (UCP) dan data terkait proyek pada studi kasus. Data tersebut didapatkan melalui aktivitas berikut dan selanjutnya menjadi input untuk tahapan pengujian model.

3.2.1.1 Studi Literatur Metode Estimasi Biaya Proyek Pengembangan Perangkat Lunak

Aktivitas bertujuan untuk mendapatkan data dan informasi penerapan metode Use Case Point (UCP) yang bersangkutan dengan studi kasus yang peneliti ambil. Dengan melihat komponen distribusi usaha dan konversi estimasi biaya dengan studi kasus. Gambaran umum data/informasi yang digali adalah sebagai berikut:

Tabel 3.1 Data/ Informasi yang Digali dari Studi Literatur dan Paper (Sumber: [Penulis, 2018])

No	Komponen (UCP)	Data/ Informasi yang Digali
	- , , ,	(Studi Kasus)
1	Distribusi Usaha	 Bidang (kepemerintahan, rumah sakit, dll) Skala proyek (small, medium, large) Model pengembangan (waterfall, iterative, lean, dll) Aktivitas tahapan pengembangan (requirements, specification, design, dll)
2	Konversi Biaya	 Metode perhitungan biaya.

Tabel 3.2 Input, Proses, dan Output Aktivitas Studi literatur metode estimasi biaya proyek pegembangan perangkat lunak

(Sumber: [Penulis, 2018])

Input	Proses/ Aktivitas	Output
Literatur Paper	 Mengidentifikasi tahapan-tahapan penerapan metode Use Case Point (UCP) Perhitungan biaya dari hasil perhitungan 	Data hasil penelitian terkait yang berhubungan dengan penelitian tugas akhir.

Input	Proses/ Aktivitas	Output
	metode Use Case	
	Point (UCP)	

3.2.1.2 Menyusun Instrumen Penelitian

Aktivitas ini bertujuan untuk merancang instrumen penelitian yang dipergunakan untuk menggali kebutuhan penelitian tugas akhir pada aktivitas berikutnya, instrumen yang peneliti gunakan berdasarkan teknik penggalian data adalah sebagai berikut:

1. Studi dokumen

Studi dokumen dilakukan untuk menggali data/informasi melalui dokumen-dokumen terkait proyek pengembangan perangkat lunak dalam studi kasus. Studi dokumen dilakukan terhadap dokumentasi UML, dokumen administrasi, dan dokumen terkait lainnya.

2. Wawancara

Wawancara dilakukan untuk menggali data/informasi secara langsung kepada pihak terkait mengenai kondisi proyek yang sudah selesai. Wawancara dilakukan kepada project leader dari proyek pengembangan perangkat lunak dalam studi kasus.

Tabel 3.3 Input, Proses, dan Output Aktivitas Menyusun instrumen penelitian

(Sumber: [Penulis, 2018])

	() = = = = = 1)					
	Input	Proses/ Aktivitas		Output		
•	Data hasil	•	Merancang	•	Interview	
	penelitian terkait		instrumen		protocol da	n
yang			penelitian		kuisioner dat	a
berhubungan		•	Validasi		proyek	
	dengan		rancangan		perangkat	
	penelitian tugas		instrumen		lunak.	
	akhir.		penelitian			

3.2.1.3 Mengumpulkan Data dan Informasi Terkait Proyek Pengembangan Perangkat Lunak Dalam Studi Kasus

Aktivitas ini bertujuan untuk memperoleh data dan informasi terkait tahapan-tahapan yang dilakukan dalam proses pengembangan perangkat lunak. Luaran dari aktivitas ini berupa data-data proyek perangkat lunak yang nantinya akan dijadikan dasar perhitungan dalam aktivitas berikutnya. Pengumpulan data dilakukan dengan melakukan wawancara kepada *project leader* proyek terkait yang sesuai dengan model Use Case Point (UCP) yang akan diterapkan pada penelitian tugas akhir ini. Instrumen yang digunakan untuk mendukung aktivitas ini berupa *interview protocol* dan kuisioner dimana poin-poin pertanyaan di dalamnya adalah sebagai berikut:

Tabel 3.4 Data/ Informasi yang Digali pada Interview Protocol dan Kuisioner Proyek Perangkat Lunak

(Sumber: [Penulis, 2018])

No	Komponen (Model	Data/ Informasi yang Digali
110	UCP)	(Studi Kasus)
1	Unadjusted Use Case Point (UUCP)	 Unadjusted Use Case Weight (UUCW) Undadjusted Actor Weight (UAW)
2	Techcnical Complexity Factor (TCF)	Tiga belas faktor TCF dan pembobotannya
3	Enviromental Complexity Factor (ECF)	Delapan faktor ECF dan pembobotannya
4	Proses pengembangan perangkat lunak	 Tahapan dan aktivitas proyek pengembangan perangkat lunak sesuai fase: software development dan (ii) ongoing activities.
5	Effort Distribution	Distribusi usaha pada tiap tahapan dan aktivitas proyek pengembangan perangkat lunak berdasar

No	Komponen (Model UCP) Data/ Informasi yang Digal (Studi Kasus)		
		tiap pekerja IT (jumlah jam pengerjaan untuk tiap pekerja terlibat dalam tiap tahapan aktivitas), untuk mengetahui actual <i>effort</i> dalam bentuk matriks dua dimensi.	
6	Owner Estimate Cost (OEC)	 Personnel Direct Cost Non-Personnel Direct Cost; Reimbursable, Fix Unit Rate, Lump sum. Taxes 	

Tabel 3.5 Input, Proses, dan Output Aktivitas Mengumpulkan data dan informasi metode estimasi biaya proyek pengembangan perangkat lunak

(Sumber: [Penulis, 2018])

Input	Proses/ Aktivitas	Output		
• Interview	 Mengumpulkan 	• Data dan		
protocol data	data-data	dokumen		
proyek	kebutuhan	proyek		
perangkat	pengujian model	perangkat lunak		
lunak	Use Case Point	dan		
 Hasil 	(UCP) administrasi			
kuisioner		studi kasus		
		yang		
		terkandung		
		disalamnya		
		komponen pada		
		Tabel 15.		

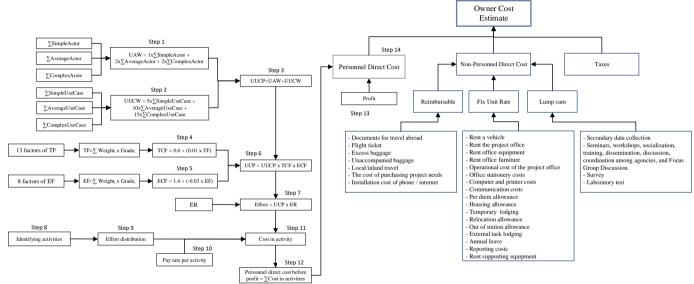
3.2.2 Tahap Pengujian Model

Tahapan selanjutnya adalah tahap pengujian model, menguji model Use Case Point (UCP) dengan masukan dari aktivitas sebelumnya pada tahap perancangan dan penggalian kebutuhan. Tujuan dari tahapan ini ialah untuk mencari deviasi estimasi biaya proyek pengembangan perangkat lunak, dimulai dengan aktivitas menyusun tahapan-tahapan estimasi biaya

sesuai dengan langkah-langkah yang ada pada model Use Case Point (UCP) sehingga di dapat hasil estimasi biaya yang kemudian akan di bandingkan untuk mendapatkan keakuratan dari model Use Case Point (UCP) membuktikan validitas model tersebut.

3.2.2.1 Penghitungan Estimasi Biaya Dengan Model UCP

Aktivitas ini bertujuan untuk menghitung data-data proyek pengembangan perangkat lunak menggunakan model Use Case Point (UCP) dengan memperhatikan komponen-komponen yang ada pada aktivitas mengumpulkan data dan informasi terkait proyek pengembangan perangkat lunak dalam studi kasus. Output dari aktivitas ini berupa hasil estimasi *effort* dan biaya tiap proyek perangkat lunak pada studi kasus, yang kemudian akan dipergunakan aktivitas berikutnya.


Tabel 3.6 menunjukkan Input, Proses, dan Output Aktivitas Mengumpulkan data dan informasi metode estimasi biaya proyek pengembangan perangkat lunak.

Tabel 3.6 Input, Proses, dan Output Aktivitas Penghitungan estimasi biaya dengan model UCP (Sumber: [Penulis, 2018])

Proses/ Aktivitas Input Output Data dan Penghitungan Estimasi biaya effort dokumen estimasi (rupiah) pada provek dan biaya tiap gambar proyek dari studi (ditunjukkan perangkat lunak dan kasus dengan pada kotak administrasi model Use Case Owner Estimate studi kasus. Point (UCP) Cost pada Gambar 4) Estimasi effort (man/hour) (ditunjukkan pada *step* 7 pada Gambar 4) tiap provek perangkat lunak

Input	Proses/ Aktivitas	Output	
		pada	studi
		kasus.	

Berikut pada Gambar 3.3 merupakan langkah-langkah dari penghitungan estimasi biaya dengan model Use Case Point (UCP).

Gambar 3.3 Langkah Penghitungan Estimasi Biaya Dengan Model UCP (Sumber: [11])

3.2.2.2 Validasi Model Dengan Menghitung Perbandingan Besar Biaya dan Effort

Aktivitas ini bertujuan untuk memvalidasi model Use Case Point (UCP) dengan menghitung keakuratannya, standar deviasi sebagai *margin of error* dari hasil perbandingan nilai biaya proyek dengan hasil estimasi biaya dihitung dengan model Use Case Point pada aktivitas sebelumnya menjadi tolak ukur keakuratan dari model tersebut.

Tabel 3.7 Input, Proses, dan Output Aktivitas Validasi model dengan menghitung perbandingan besar biaya dan effort actual dengan hasil estimasi

(Sumber: [Penulis, 2018])

_	(Suite et . [1 ettitis, 2010])				
	Input	Proses/ Aktivitas	Output		
•	Estimasi biaya	 Menghitung 	 Deviasi 		
	dan nilai proyek	standar deviasi	estimasi biaya.		
	tiap proyek pada	estimasi biaya			
studi kasus (hasil		dan <i>biaya actual</i>			
	perhitungan	proyek dan hasil			
	estimasi dan data	estimasi.			
	actual proyek).				

Berikut merupakan persaman deviasi (*relative percentage difference*) yang digunakan untuk memvalidasi model Use Case Point (UCP):

$$Deviation = \frac{(selisih)}{actual} \times 100$$
 (12)

Dimana.

- *Selisih*, selisih dari nilai estimasi biaya dengan biaya actual proyek.
- Actual, realisasi biaya sesungguhnya

BAB IV PERANCANGAN

Pada bagian ini dijelaskan mengenai perancangan penelitian tugas akhir. Dimana perancangan yang dibuat termasuk perancangan studi kasus dan hal-hal lain yang akan dilakukan untuk mengerjakan tugas akhir ini.

4.1 Perancangan Studi Kasus

Pada bagian perancangan studi kasus ini dijelaskan mengenai tujuan dari studi kasus dan kategori studi kasus yang diangkat dan.

4.1.1 Tujuan Studi Kasus

Yin [31] mengemukakan tiga kategori studi kasus, yaitu exploratory, descriptive dan explanatory. Studi kasus exploratory diatur untuk mengeksplorasi setiap fenomena dalam data yang berfungsi sebagai titik perhatian bagi peneliti. Studi kasus descriptive diatur untuk mendeskripsikan fenomena alami yang dimana terjadi dalam data pada pertanyaan. Tujuan yang ditentukan oleh peneliti ialah untuk mendeskripsikan saat terjadinya data, McDonough dan McDonough [32] menyatakan bahwa studi kasus descriptive mungkin dalam bentuk narasi. Studi kasus explanatory memeriksa data secara dekat baik di permukaan dan tingkat dalam untuk menjelaskan fenomena dalam data.

Dalam penelitian tugas akhir ini hanya melibatkan satu perusahaan, kategori studi kasus yang digunakan adalah studi kasus *exploratory* karena melibatkan kegiatan penggalian data mengenai aktivitas, distribusi usaha, dan perhitungan model UCP pada proyek pengembangan perangkat lunak di bidang kepemerintahan.

4.1.2 Persiapan Pengumpulan Data

Pada bagian ini dijelaskan mengenai persiapan pengumpulan data dalam penelitian tugas akhir ini. Tabel 4.1 menunjukkan data yang diperlukan berdasar metode pengumpulan data

wawancara dan studi dokumen, instrumen penelitian disusun berdasar data atau informasi yang digali pada aktivitas ini.

Tabel 4.1 Persiapan Pengumpulan Data

Tabel 4.1 Persiapan Pengumpulan Data						
Metode	Data/Informasi	Instrumen				
	Yang Digali	Penelitian/Dokumen				
	Informasi	Interview Protocol				
	operasional dan					
	pekerja studi kasus					
	Deskripsi proyek	Kuisioner (Identitas				
	pengembangan	Proyek)				
	perangkat lunak					
	Proses	Kuisioner (Distribusi				
	pengembangan	Usaha Proyek)				
Wawancara	perangkat lunak					
	(aktivitas, distribusi					
	usaha)					
	Unadjusted Actor	Kuisioner				
	Weight (UAW)	(Complexity Factor)				
	Technical &	Kuisioner				
	Enviromental	(Unadjusted Actor				
	Complexity Factor	Weight)				
	(TCF & ECF)					
	Use Case &	Dokumen laporan				
	Unadjusted Use	dan user guide				
	Case Weight	aplikasi				
Studi Dokumen	(UUCW)					
	Non-Personnal	Dokumen				
	Direct Cost	administrasi				
		operasional				

4.1.3 Metode Pengolahan Data

Pengolahan hasil pengumpulan data dilakukan dengan merekapitulasi data-data dari tiap proyek menggunakan tools *Microsoft Excel* dengan pengolahan tersebut akan didapatkan komponen-komponen data yang diperlukan dari model Use Case Point (UCP) sesuai pada Tabel 3.4.

4.2 Instrumen Penelitian

Instrumen penelitian merupakan sekumpulan perangkat yang mendukung penelitian tugas akhir. Instrumen pada penelitian tugas akhir ini meliputi *interview protocol* dan kuisioner.

4.2.1 Interview Protocol

Interview protocol dirancang berdasar metode pengumpulan data wawancara, lebih spesifik menggunakan teknik wawawancara tidak terstruktur. Informasi yang diperoleh dari perangkat penelitian ini berupa informasi umum dari perusahaan yang terlibat dalam studi kasus penelitian tugas akhir, yang berperan sebagai informasi awal untuk merancang instrumen penelitian kuisioner beserta penentuan pengolahan data tertentu.

Interview protocol ditujukan kepada founder dari perusahaan yang mengerjakan proyek pengembangan perangkat lunak kepemerintahan, poin-poin penting yang digali ialah sebagai berikut pada Tabel 4.2

Tabel 4.2 Interview Protocol

Hal	Informasi	Detail	
	Aktivitas	Detail aktivitas pada	
Operasional	pengembengan	tiap tahapan	
	perangkat lunak	pengembangan [12]	
	Jumlah dan jenis	Personil tim	
Sumber daya	pekerja serta upah	pengembang dan	
manusia	per bulan.	administratif serta	
		upah per bulan.	
Keuangan proyek	Non-personnel direct cost (biaya tidak langsung) proyek	Biaya tidak langsung sesuai pada Tabel 2.11	
	Profit (keuntungan) dari proyek	Dalam bentuk persentase atau nilai nominal tertentu.	

4.2.2 Kuisioner

Metode studi dokumen digunakan untuk memperoleh informasi dari dokumen-dokumen yang dihasilkan perusahaan pada studi kasus, data-data tersebut dijabarkan pada Tabel 4.1, berikut merupakan rancangan perangkat penelitian kuisioner.

4.2.2.1 Identitas Proyek

Tabel 4.3 menjelaskan identitas proyek pengembangan perangkat lunak kepemerintahan yang menjadi studi kasus pada penelitian tugas akhir ini.

Tabel 4.3 Rancangan Kuisioner Identitas Provek

Tabel 4.5 Kancangan Kuisionel Identitas Floyek				
Nama proyek	(isi dengan nama poyek)			
SKPD pengguna	(isi dengan nama skpd)			
Jumlah perkerja yang terlibat	(tuliskan jumlah perkerja			
	masing-masing posisi)			
	(a) Project manager:			
	(b) Analis:			
	(c) Programmer:			
	(d) Tester:			
	(e) Dokumentasi:			
Teknologi	(isi dengan teknologi yang			
	digunakan dalam pengerjaan)			
Waktu pengerjaan	(tuliskan waktu pengerjaan)			
Metode pengembangan	(tuliskan metode			
	pengembangan)			
Nilai proyek (Rupiah)	(tuliskan nilai proyek sesuai			
	dengan laporan keuangan)			

4.2.2.2 Distribusi Usaha Proyek

Tabel 4.4 menjelaskan rancangan kuisioner dari distribusi usaha proyek mengacu pada hasil interview protocol pada Tabel 4.2 mengenai list aktivitas dan daftar tahapan pada Tabel 2.10. Rancangan kuisioner ini juga mengacu pada kuisioner yang sama pada [33].

Tabel 4.4 Rancangan Kuisioner Distribusi Usaha Provek

Fase	•	Variabel	Jenis	Jenis Pekerja
		Tahapan	Aktivitas	Waktu Pengerjaan

			Pekerja 1		Pekerja n	
			Jam	Hari	Jam	Hari
Fase 1	Tahapan 1	Aktivitas 1				
	Tahapan 2	Aktivitas 2				
Fase n	Tahapan n	Aktivitas n				

4.2.2.3 Complexity Factor

Tabel 4.5 dan Tabel 4.6 menjelaskan mengenai deskripsi dari *technical* dan *enviromental complexity factor* pada Tabel 2.8 dan Tabel 2.9 yang menjadi rancangan kuisioner yang nantinya akan diberikan skor penilaian.

Tabel 4.5 Deskripsi Technical Complexity Factor

Fi	Deskripsi
F1	Semakin kompleks kebutuhan arsitektur, maka nilai semakin tinggi
F2	Semakin pentingnya peningkatan waktu respon, maka nilai semakin tinggi
F3	Semakin optimal efisiensi pengguna, maka nilai semakin tinggi
F4	Semakin kompleks algoritma (resources leveling, OLAP cubes, etc) maka nilai semakin tinggi. Namun database sederhana, maka nilai semakin rendah
F5	Semakin tinggi tingkat penggunaan ulang kode, maka nilai semakin rendah
F6	Semakin tinggi tingkat kompetensi pengguna dalam instalasi proyek perangkat lunak ini, maka nilai semakin rendah
F7	Semakin besar pentingnya kegunaan, semakin tinggi nilai yang diberikan
F8	Semakin banyak platform yang harus didukung, semakin tinggi nilai yang diberikan
F9	Semakin mudah perubahan atau penyesuaian aplikasi Anda, maka nilai semakin tinggi

Fi	Deskripsi
F10	Semakin tinggi perhatian yang diberikan untuk menyelesaikan permasalahan dalam data atau aplikasi, maka nilai semakin tinggi
F11	Apabila kode kustom keamanan lebih dilakukan, maka nilai semakin tinggi
F12	Apabila kebutuhan kontrol dari pihak ketiga tidak terlalu penting, maka nilai semakin tinggi
F13	Semakin lama waktu yang dibutuhkan pengguna untuk penguasaan aplikasi, maka semakin nilai tinggi yang diberikan

Tabel 4.6 Deskripsi Environmental Complexity Factor

	Tabel 4.0 Deskripsi Environiental Complexity Factor
Fi	Deskripsi
F1	Semakin familiar (menguasai) maka nilai semakin tinggi
F2	Semakin banyak waktu yang digunakan anggota tim untuk bekerja paruh waktu, maka nilai semakin tinggi
F3	Semakin besar kapabilitas dan pengetahuan, maka nilai semakin tinggi
F4	Semakin banyak pengalaman dalam membuat perubahan pada proyek pengembangan perangkat lunak maka nilai semakin tinggi
F5	Semakin banyak pengalaman dalam Object Oriented programming, maka nilai semakin tinggi
F6	Semakin besar motivasi, maka nilai semakin tinggi
F7	Semakin sulit bahasa pemrograman maka nilai semakin tinggi
F8	Semakin besar perubahan akan kebutuhan, maka nilai semakin tinggi

4.2.2.4 Unadjusted Actor Weight

Tabel 4.7 menjelaskan rancangan kuisioner Unadjusted Actor Weight dari tiap proyek.

Tabel 4.7 Rancangan Kuisioner Unadjusted Actor Weight

Nam	Nama Proyek:			
No	Aktor	Jumlah	Kompleksitas	
		Aktor		
1				
2				
n				

(halaman ini sengaja dikosongkan)

BAB V IMPLEMENTASI

Pada bab ini dijelaskan tentang implementasi setiap tahapan dan proses di dalam metodologi tugas akhir yang dapat berupa hasil, waktu pelaksanaan dan lampiran terkait yang memuat pencatatan tertentu dengan implementasi proses.

5.1 Identifikasi Studi Kasus

Pada bagian ini dijelaskan subjek dan objek penelitian serta hasil dari implementasi perancangan studi kasus. Hasil yang dijabarkan adalah hasil wawancara dan hasil pengisian kuisioner dengan narasumber.

5.1.1 Subjek Penelitian

Subjek pada penelitian tugas akhir ini adalah pihak yang berkaitan langsung dengan proyek pengembangan perangkat lunak kepemerintahan, yakni founder sekaligus direktur pada salah satu perusahaan pengembang perangkat lunak yang berpusat di kota Surabaya.

5.1.2 Objek Penelitian

Objek penelitian pada tugas akhir ini adalah 6 proyek perangkat lunak kepemerintahan berskala *medium-large* yang didapatkan dari satu perusahaan pengembang. Objek penelitian yang dikumpulkan adalah data-data berupa identitas proyek sesuai pada kuisioner pada Tabel 4.3.

5.2 Hasil Wawancara

Berdasarkan perancangan studi kasus yang telah dilakukan terhadap narasumber, di dapatkan hasil sebagai berikut dari instrumen penelitian interview protocol:

5.2.1 Operasional

Di dapatkan hasil list aktivitas dari tahap pengembangan perangkat lunak ditunjukkan pada Tabel 5.2, mengacu pada list

aktivitas penelitian sebelumnya oleh Primandari [17] dengan bidang proyek perangkat lunak kepemerintahan pada Tabel 5.1.

Tabel 5.1 List Aktivitas Primandari

(Sumber: [17])

(Sumber: [17])			
Variabel Tahapan	Jenis Aktivitas		
Penggalian	Survey ke SKPD terkait		
Kebutuhan	Rapat kick-off		
Analisis Spesifikasi	Rapat hasil analisis dengan tim pengembang		
Kebutuhan	Analisis proses bisnis aplikasi berdasarkan kebutuhan		
	Penyusunan dokumen SKPL		
	Rapat hasil analisis dengan stakeholder		
	Perbaikan dokumen SKPL		
Perancangan	Sosialisasi hasil analisis kebutuhan ke internal		
Hase Pengembangan Implementasi	Pembagian SDM dan jobdesk		
	Benchmark template aplikasi		
	Pembuatan prototipe		
	Rapat kesepakatan desain prototip dengan stakeholder		
	Sosialisasi prototip		
	Pembelian template dan plugin		
	Eksekusi kode program		
	Rapat internal		
	revisi program		
	rapat dengan stakeholder		
	peluncuran versi beta		
	penyusunan user guide versi beta		
Pengujian & Integrasi	Pembuatan checklist integrasi sistem		
	Variabel Tahapan Penggalian Kebutuhan Analisis Spesifikasi Kebutuhan Perancangan Implementasi		

Fase	Variabel Tahapan	Jenis Aktivitas
		Pembuatan User Acceptance Test Plan
		Rapat koordinasi dengan stakeholder
		Pengujian dan integrasi dengan metode blackbox
		Penyesuaian SKPL
		Perbaikan dan melengkapi user guide
	Penerimaan & Penyebaran	Rapat penilaian kesiapan aplikasi oleh stakeholder
	·	Instalasi ke server SKPD
		User training ke SKPD
		Penyusunan dokumen laporan akhir
		Serah terima aplikasi, database, dan laporan akhir
	Manajemen	Penentuan target proyek
	Proyek	Rekruitmen programmer
ధ్య		Penghitungan gaji/upah pegawai
unsgu		Penyusunan dokumen penawaran
erla		Penyusunan dokumen
a B		perencanaan proyek
dan		Evaluasi tengah proyek
s Se		Rapat penutupan proyek Penentuan target proyek
vitas	Manajemen	
ktiv	Konfigurasi	Pengaturan konfigurasi server internal
Fase Aktivitas Sedang Berlangsung	<i>g.</i>	Pengaturan konfigurasi server SKPD
		Uji coba akses aplikasi ke server
		Penyusunan dokumen konfigurasi

Fase	Variabel Tahapan	Jenis Aktivitas
	Penjaminan Mutu	Pemeriksaan aplikasi oleh pengguna
		Penandatanganan software quality
		Maintenance aplikasi secara berkala
		Pembuatan user guide aplikasi
		Pembuatan video tutorial
		Penataan laporan akhir proyek
	Pelatihan &	Persiapan untuk login user
	Dukungan Teknis	Pemberian materi pelatihan
	Evaluasi &	Maintenance data
	Pengujian	Maintenance hardware internal

Tabel 5.2 List Aktivitas

Fase	Variabel Tahapan	Jenis Aktivitas
	Penggalian Kebutuhan	Survey ke SKPD terkait
		Rapat kick-off
	Analisis Spesifikasi	Rapat hasil analisis dengan tim pengembang
gan	Kebutuhan	Analisis proses bisnis aplikasi berdasarkan kebutuhan
Fase Pengembangan		Rapat hasil analisis dengan stakeholder
Penge	Perancangan	Sosialisasi hasil analisis kebutuhan ke internal
ase		Pembagian SDM dan jobdesk
Ľ.		Pembuatan prototipe
		Rapat kesepakatan desain prototip dengan stakeholder
	Implementasi	Sosialisasi prototip
		Pembelian template dan plugin

Eksekusi kode program Testing internal Revisi program hasil testing Rapat dengan stakeholder Peluncuran versi beta Pengujian & Pembuatan checklist integrasi sistem Pembuatan User Acceptance Test Plan Rapat koordinasi dengan stakeholder Pengujian dan integrasi dengan metode blackbox Penyebaran Penerimaan & Instalasi ke server SKPD User training ke SKPD Penyusunan dokumen laporan akhir Serah terima aplikasi, database, dan laporan akhir Serah terima aplikasi, database, dan laporan akhir Penentuan target proyek Penyusunan dokumen Proyek Penyusunan dokumen Pengaturan konfigurasi server internal Pengaturan konfigurasi server SKPD Uji coba akses aplikasi ke server SKPD Uji coba akses aplikasi ke server Pemandatanganan software quality Maintenance aplikasi secara berkala Pembuatan user guide aplikasi	Fase	Variabel Tahapan	Jenis Aktivitas
Testing internal Revisi program hasil testing Rapat dengan stakeholder Peluncuran versi beta Pengujian & Pembuatan checklist integrasi sistem Pembuatan User Acceptance Test Plan Rapat koordinasi dengan stakeholder Pengujian dan integrasi dengan metode blackbox Penyebaran Penerimaan & Instalasi ke server SKPD User training ke SKPD Penyusunan dokumen laporan akhir Serah terima aplikasi, database, dan laporan akhir Serah terima aplikasi, database, dan laporan akhir Penentuan target proyek Penyusunan Manajemen Konfigurasi Manajemen Konfigurasi Pengaturan konfigurasi server internal Pengaturan konfigurasi server SKPD Uji coba akses aplikasi ke server SKPD Uji coba akses aplikasi ke server Penjaminan Mutu Pemeriksaan aplikasi oleh pengguna Penandatanganan software quality Maintenance aplikasi secara berkala Pembuatan user guide aplikasi			Eksekusi kode program
Revisi program hasil testing Rapat dengan stakeholder Peluncuran versi beta Pengujian & Pembuatan checklist integrasi sistem Pembuatan User Acceptance Test Plan Rapat koordinasi dengan stakeholder Pengujian dan integrasi dengan metode blackbox Penerimaan & Instalasi ke server SKPD Penyusunan dokumen laporan akhir Serah terima aplikasi, database, dan laporan akhir Serah terima aplikasi, database, dan laporan akhir Manajemen Proyek Penyusunan dokumen Proyek Penyusunan dokumen Pengaturan konfigurasi server internal Pengaturan konfigurasi server SKPD Uji coba akses aplikasi ke server Penjaminan Mutu Pemeriksaan aplikasi oleh pengguna Penandatanganan software quality Maintenance aplikasi secara berkala Pembuatan user guide aplikasi			
Rapat dengan stakeholder Peluncuran versi beta Pengujian & Pembuatan checklist integrasi sistem Pembuatan User Acceptance Test Plan Rapat koordinasi dengan stakeholder Pengujian dan integrasi dengan metode blackbox Penerimaan & Instalasi ke server SKPD Penyusunan dokumen laporan akhir Serah terima aplikasi, database, dan laporan akhir Serah terima aplikasi, database, dan laporan akhir Manajemen Proyek Penyusunan dokumen penawaran Manajemen Konfigurasi Pengaturan konfigurasi server internal Pengaturan konfigurasi server SKPD Uji coba akses aplikasi ke server Penjaminan Mutu Pemeriksaan aplikasi oleh pengguna Penandatanganan software quality Maintenance aplikasi secara berkala Pembuatan user guide aplikasi			
Pengujian & Pembuatan checklist integrasi sistem Pembuatan User Acceptance Test Plan Rapat koordinasi dengan stakeholder Pengujian dan integrasi dengan metode blackbox Penerimaan & Instalasi ke server SKPD Penyebaran Penyusunan dokumen laporan akhir Serah terima aplikasi, database, dan laporan akhir Serah terima aplikasi, database, dan laporan akhir Penyusunan dokumen penawaran Manajemen Proyek Penyusunan dokumen penawaran Manajemen Konfigurasi Pengaturan konfigurasi server internal Pengaturan konfigurasi server SKPD Uji coba akses aplikasi ke server Penjaminan Mutu Pemeriksaan aplikasi oleh pengguna Penandatanganan software quality Maintenance aplikasi secara berkala Pembuatan user guide aplikasi			
Pengujian & Pembuatan checklist integrasi sistem Pembuatan User Acceptance Test Plan Rapat koordinasi dengan stakeholder Pengujian dan integrasi dengan metode blackbox Penerimaan & Instalasi ke server SKPD Penyebaran Penyusunan dokumen laporan akhir Serah terima aplikasi, database, dan laporan akhir Manajemen Proyek Penyusunan dokumen penawaran Manajemen Konfigurasi Manajemen Proyek Pengaturan konfigurasi server internal Pengaturan konfigurasi server SKPD Uji coba akses aplikasi ke server Penjaminan Mutu Pemeriksaan aplikasi oleh pengguna Penandatanganan software quality Maintenance aplikasi secara berkala Pembuatan user guide aplikasi			
Integrasi Sistem		Penguijan &	
Pembuatan User Acceptance Test Plan Rapat koordinasi dengan stakeholder Pengujian dan integrasi dengan metode blackbox Penerimaan Penyebaran Penyebaran Banajemen Proyek Penyusunan dokumen laporan akhir Serah terima aplikasi, database, dan laporan akhir Penentuan target proyek Penyusunan dokumen Penyusunan dokumen penawaran Manajemen Konfigurasi Pengaturan konfigurasi server internal Pengaturan konfigurasi server sKPD Uji coba akses aplikasi ke server Penjaminan Mutu Pemeriksaan aplikasi oleh pengguna Penandatanganan software quality Maintenance aplikasi secara berkala Pembuatan user guide aplikasi			
Penerimaan & Instalasi ke server SKPD Penyebaran & Instalasi ke server SKPD User training ke SKPD Penyusunan dokumen laporan akhir Serah terima aplikasi, database, dan laporan akhir Manajemen Proyek Penyusunan dokumen Proyek Penyusunan dokumen Proyek Penyusunan dokumen Penentuan target proyek Penyusunan dokumen penawaran Manajemen Konfigurasi Pengaturan konfigurasi server internal Pengaturan konfigurasi server SKPD Uji coba akses aplikasi ke server Penjaminan Mutu Pemeriksaan aplikasi oleh pengguna Penandatanganan software quality Maintenance aplikasi secara berkala Pembuatan user guide aplikasi			Pembuatan User Acceptance
Penerimaan & Instalasi ke server SKPD Penyebaran Wanajemen Proyek Manajemen Proyek Manajemen Konfigurasi Manajemen Konfigurasi Pengaturan konfigurasi server SKPD Penyusunan dokumen laporan akhir Penentuan target proyek Penyusunan dokumen penawaran Pengaturan konfigurasi server internal Pengaturan konfigurasi server SKPD Uji coba akses aplikasi ke server Penjaminan Mutu Pemeriksaan aplikasi oleh pengguna Penandatanganan software quality Maintenance aplikasi secara berkala Pembuatan user guide aplikasi			1
Penerimaan & Instalasi ke server SKPD Penyebaran User training ke SKPD Penyusunan dokumen laporan akhir Serah terima aplikasi, database, dan laporan akhir Penentuan target proyek Penyusunan dokumen penawaran Manajemen Proyek Penyusunan dokumen penawaran Manajemen Konfigurasi Manajemen Konfigurasi Pengaturan konfigurasi server internal Pengaturan konfigurasi server SKPD Uji coba akses aplikasi ke server Penjaminan Mutu Pemeriksaan aplikasi oleh pengguna Penandatanganan software quality Maintenance aplikasi secara berkala Pembuatan user guide aplikasi			
Penyusunan dokumen laporan akhir Serah terima aplikasi, database, dan laporan akhir Manajemen Proyek Penyusunan dokumen penawaran Manajemen Pengaturan konfigurasi server internal Pengaturan konfigurasi server SKPD Uji coba akses aplikasi ke server Penjaminan Mutu Pemeriksaan aplikasi oleh pengguna Penandatanganan software quality Maintenance aplikasi secara berkala Pembuatan user guide aplikasi		Penerimaan &	
Akhir Serah terima aplikasi, database, dan laporan akhir Manajemen Proyek Penyusunan dokumen penawaran Manajemen Konfigurasi Pengaturan konfigurasi server internal Pengaturan konfigurasi server SKPD Uji coba akses aplikasi ke server Penjaminan Mutu Pemeriksaan aplikasi oleh pengguna Penandatanganan software quality Maintenance aplikasi secara berkala Pembuatan user guide aplikasi		Penyebaran	User training ke SKPD
Manajemen Penentuan target proyek Penyusunan dokumen penawaran			_
Proyek Penyusunan dokumen penawaran Manajemen Konfigurasi Pengaturan konfigurasi server internal Pengaturan konfigurasi server SKPD Uji coba akses aplikasi ke server Penjaminan Mutu Pemeriksaan aplikasi oleh pengguna Penandatanganan software quality Maintenance aplikasi secara berkala Pembuatan user guide aplikasi			
Manajemen Konfigurasi Pengaturan konfigurasi server internal Pengaturan konfigurasi server SKPD Uji coba akses aplikasi ke server Penjaminan Mutu Pemeriksaan aplikasi oleh pengguna Penandatanganan software quality Maintenance aplikasi secara berkala Pembuatan user guide aplikasi		· ·	Penentuan target proyek
Pembuatan user guide aplikasi	ad	Proyek	1 -
Pembuatan user guide aplikasi	unsau		
Pembuatan user guide aplikasi	Berlaı		
Pembuatan user guide aplikasi	edang		1 -
Pembuatan user guide aplikasi	s Se	Penjaminan Mutu	Pemeriksaan aplikasi oleh
Pembuatan user guide aplikasi	/ita		
Pembuatan user guide aplikasi	Aktiv		
Pembuatan user guide aplikasi	Fase		Maintenance aplikasi secara
Penataan laporan akhir proyek			Penataan laporan akhir proyek

Fase	Variabel Tahapan	Jenis Aktivitas
	Pendokumentasia	Pembuatan user guide aplikasi
	n	Penataan laporan akhir proyek
	Pelatihan &	Persiapan untuk login user
	Dukungan Teknis	Pemberian materi pelatihan
	Evaluasi &	Maintenance data
	Pengujian	Maintenance hardware internal

5.2.2 Sumber Daya Manusia

Di dapatkan hasil keterangan personil kerja pada perusahaan studi kasus ditunjukkan pada tabel Tabel 5.3, dengan upah untuk selain Project Manager sebesar UMK Surabaya tahun 2015 dan 2017 sesuai dengan Peraturan Gubernur Jawa Timur Nomor 72 Tahun 2014 dan Peraturan Gubernur Jawa Timur Nomor 121 Tahun 2016.

Tabel 5.3 Sumber Daya Manusia

		Builiber Buyu Muliu	
Posisi	Jumlah	Upah (2015)	Upah (2017)
Project	2	Rp 5.000.000,00	Rp 5.000.000,00
Manager (PM)			_
Programmer	4	Rp 2.710.000,00	Rp 3.296.212,50
Web (PW)		•	•
Programmer	2	Rp 2.710.000,00	Rp 3.296.212,50
Android (PA)		•	•
Designer (DG)	2	Rp 2.710.000,00	Rp 3.296.212,50
Tester (TS)	1	Rp 2.710.000,00	Rp 3.296.212,50
Implementator	1	Rp 2.710.000,00	Rp 3.296.212,50
(IM)			-

5.2.3 Keuangan Proyek

Di dapatkan hasil keuangan proyek berupa biaya tidak langsung proyek (*non-personnel direct cost*) berupa biaya operasional untuk keseluruhan proyek yang ditunjukkan pada Tabel 5.4, untuk profit yang diambil oleh perusahaan pada studi kasus sebesar 20 – 30 persen dari nilai aktual proyek.

No Kategori (Fixed Unit Rate) Biaya

1 Biaya Operasional Kantor Proyek Rp 6.000.000,00

2 Biaya Komunikasi Rp 750.000,00

3 Tunjangan Perumahan Rp 6.000.000,00

Total Rp 12.750.000,00

Tabel 5.4 Non-Personnel Direct Cost

5.3 Hasil Kuisioner

Berdasarkan perancangan studi kasus yang telah dilakukan terhadap narasumber, di dapatkan hasil sebagai berikut dari instrumen penelitian kuisioner:

5.3.1 Identitas Proyek

Di dapatkan hasil identitas proyek mengenai deskripsi tiap proyek sesuai pada Tabel 4.3 sebagai berikut pada Tabel 5.5. untuk teknologi yang digunakan tiap proyek ialah sama yaitu; PHP, MySQL, dan Java dengan metode pengembangan *Prototype*. Untuk cara dari menyusun rencana umum dan pengadaan/barang dalam hal ini proyek pengembangan perangkat lunak ialah melalui swakelola, yaitu pengadaan barang/jasa dimana pekerjaannya direncanakan, dikerjakan dan/atau diawasi sendiri oleh K/L/D/I sebagai penanggung jawab anggaran, instansi pemerintah lain dan/atau kelompok masyarakat [30].

Tata cara dari pelaksanaan pengadaan barang/jasa melalui swakelola dijelaskan secara rinci pada Lampiran VI Perpres 54/2010 yang secara umum prosesnya bisa dikelompokkan dalam tiga 3 (tiga) tahapan utama, yaitu:

- 1. Mengidentifikasi apakah Barang/Jasa yang dibutuhkan memenuhi karakteristik untuk dapat diadakan melalui swakelola (lihat pasal 26 ayat 2 atau Lampiran VI halaman 1 pada Perpres 54/2010).
- 2. Menetapkan pelaksana swakelola. Pelaksana swakelola dapat dilakukan oleh:

- K/L/D/I penanggung jawab anggaran
- Instansi lain yang bukan penanggung jawab anggaran
- Kelompok masyarakat
- 3. Proses pelaksanaan swakelola yang meliputi:
 - Perencanaan swakelola
 - Pelaksanaan swakelola
 - Pengawasan dan evaluasi

Tabel 5.5 Hasil Kuisioner Identitas Proyek

No	Nama Proyek	SKPD	Juml	ah Pek	erja ya	ng Ter	libat	•	Waktu	Nilai kontrak
		Pengguna	PM	PW	PA	DG	TS	IM	Pengerjaa n (Bulan)	proyek (Rupiah)
I	Aplikasi E-RAB	PELINDO	1	2	0	1	1	1	19	Rp 190.000.000,00
II	Aplikasi Pengadaan	LP2A surabaya	1	2	0	1	1	1	8	Rp 40.000.000,00
III	Aplikasi Prasarana Utilitas	DCKTR Surabaya	2	2	1	2	1	1	24	Rp 150.000.000,00
IV	Aplikasi Aset Bangunan	DPBT Surabaya	1	2	0	1	1	1	12	Rp 70.000.000,00
V	Aplikasi Asset	DPBT Surabaya	1	0	1	1	1	1	16	Rp 45.000.000,00
VI	Aplikasi Laporan Penyelenggaraan	Pemerintaha n Surabaya	1	2	0	1	1	1	8	Rp 30.000.000,00
VII	Aplikasi Bangunan	DCKTR Surabaya	1	1	0	1	1	1	6	Rp 40.000.000,00
VII I	Aplikasi Parkir	Dishub Surabaya	1	2	0	1	1	1	6	Rp 90.000.000,00
IX	Aplikasi E-SDM	Dishub Surabaya	1	1	0	1	1	1	6	Rp 35.000.000,00

Mengacu pada Tabel 2.3 dengan melihat kriteria jumlah programmer dan lama waktu pengerjaan, dapat ditentukan kategori ukuran proyek perangkat lunak dari Tabel 5.5 sebagai berikut ditunjukan

Tabel 5.6, untuk nilai kontrak proyek tidak dapat dijadikan acuan ukuran proyek dikarenakan nilainya berdasarkan kesepakatan harga pemberi kontrak yaitu klien dan perusahan pengembang selaku kontraktor atau pihak yang dipilih untuk mengerjakan proyek tersebut.

Pada kode proyek III aplikasi prasarana utilitas masuk dalam kategori ukuran proyek besar dengan tambahan pertimbangan terdirinya proyek tersebut atas sub proyek *multiplatform* yaitu sub proyek untuk *platform website* dan *platform mobile apps* atau *android* digunakan sebagai acuan ukuran proyek besar. Sedangkan untuk acuan dari ukuran proyek menengah digunakan kode proyek V dengan pertimbangan rasio antara jumlah personil tim dengan waktu pengerjaan proyek, dengan mengasumsikan acuan terhadap kode proyek V kode proyek I dan IV dapat dikategorikan ke dalam ukuran proyek menengah. Untuk kode proyek II dan VI yang tidak dapat dibandingan dengan acuan ukuran proyek menengah pada kode proyek V, dengan pertimbangan keterbatasan sumber daya manusia pada perusahaan pengembang dan jika dilakukan perngurangan terhadap personil tim dapat menambah lama waktu pengerjaan.

Tabel 5.6 Hasil Kategori Ukuran Proyek

Kode Proyek	Jumlah Personil Tim	Waktu Pengerjaan (bulan)	Kategori
I	6	19	Menengah
II	6	8	Menengah
III	9	24	Besar
IV	6	12	Menengah

Kode Proyek	Jumlah Personil Tim	Waktu Pengerjaan (bulan)	Kategori
V	5	16	Menengah
VI	6	8	Menengah

5.3.2 Distribusi Usaha Proyek

Di dapatkan hasil distribusi usaha pada masing-masing proyek dalam bentuk persentase dari tiap tahapan pada Tabel 5.7, perolehan tiap distribusi usaha proyek berdasarkan pembagian bobot persentase tiap tahapan yang diisikan secara subjektif oleh narasumber perusahaan pengembang berdasar pada realisasi pembagian fase pekerjaan sesungguhnya yang terdapat pada Lampiran B untuk tiap pengisian distribusi usaha, pengisian dari kuisioner sendiri hanya pada tingkatan tahapan-tahapan pengembangan dikarenakan dari narsumber sendiri hanya memberikan. Khusus pada kode proyek III terdiri atas dua sub proyek sehingga dilakukan rata-rata dari dua distribusi usaha sub proyek.

Tabel 5.7 Hasil Kuisioner Distribusi Usaha

Fase	Variabel Tahapan	I	II	III	IV	V	VI	Rata-
								rata
Fase	Penggalian Kebutuhan	4%	2%	3.0%	4%	4%	4%	3.50%
Pengembangan	Analisis Spesifikasi Kebutuhan	4%	4%	4.0%	4%	4%	4%	4.00%
	Perancangan	9%	10%	9.5%	9%	9%	9%	9.25%
	Implementasi	20%	29%	24.5%	20%	20%	20%	22.25%

Fase	Variabel Tahapan	Ι	II	III	IV	V	VI	Rata- rata
	Pengujian & Integrasi	7%	5%	6.0%	7%	7%	7%	6.50%
	Penerimaan & Penyebaran	6%	5%	5.5%	6%	6%	6%	5.75%
Fase Aktivitas	Manajemen Proyek	7%	15%	11.0%	7%	7%	7%	9.00%
Sedang	Manajemen Konfigurasi	2%	4%	3.0%	2%	2%	2%	2.50%
Berlangsung	Penjaminan Mutu	32%	14%	22.5%	31%	31%	32%	27.08%
	Pendokumentasian	3%	2%	3%	4%	4%	3%	3.17%
	Pelatihan & Dukungan Teknis	2%	5%	3.5%	2%	2%	2%	2.75%
	Evaluasi & Pengujian	4%	5%	4.5%	4%	4%	4%	4.25%
	Total Persen	100%	100%	100%	100%	100%	100%	100%

Dari hasil rata-rata distribusi usaha yang diperoleh yang akan dipergunakan dalam penelitian tugas akhir ini memiliki perbedaan dengan penelitian sebelumnya yang dilakukan oleh Kassem Saleh dengan ukuran proyek yang sama dengan penelitian tugas akhir (*medium-large*) [12] dan Primandari dengan bidang proyek yang sama (kepemerintahan) [17], perbedaan hasil persentase usaha (*effort*) yang terjadi disebabkan oleh beberapa faktor yang mempengaruhi hasil penelitian sebagai berikut (mengacu pada Tabel 2.10).

1. Ukuran Proyek

Pada penelitian Primandari ukuran proyek pengembangan perangkat lunak yang digunakan sebagai objek studi berukuran *small-medium*. Sedangkan pada penelitian tugas akhir ini proyek pengembangan perangkat lunak

84

yang digunakan sebagai objek studi berskala *medium-large*. Hal ini menimbulkan perbedaan yang besar antar objek studi Primandari dan penelitian ini, dikarenakan karakteristik yang membedakan antara proyek berskala *small-medium* dan proyek berskala *medium-large* mengacu pada Tabel 2.3 yang salah satunya menunjukkan perbedaan pada waktu pengerjaan. Dari lamanya waktu pengerjaan tersebut dapat juga mempengaruhi sumber daya lain yang dibutuhkan dari lamanya penyelesaian proyek.

2. Lingkup Proyek

Jumlah proyek yang menjadi objek penelitian tugas akhir ini mengambil 6 proyek dan merupakan proyek pengembangan perangkat lunak kepemerintahan di bidang bisnis, sedangkan objek penelitian pada penelitian Kassem Saleh merupakan provek pengembangan perangkat lunak secara umum dalam artian tidak hanya dibatasi oleh jenis, user, kepemilikan, maupun jumlah dan hanya melihat pada ukuran proyeknya saja. Hal ini juga berpengaruh pada perbedaaan hasil distribusi usaha yang dilakukan dalam penelitian ini dengan hasil distribusi usaha dilakukan oleh Kassem vang Saleh. pengembangan perangkat lunak kepemerintahan dibatasi oleh banyak hal termasuk aturan-aturan yang berlaku di pemerintah dibandingkan dengan proyek pengembangan perangkat lunak lain yang bersifat umum, batasan tersebut bersifat bisnis.

3. Metode Pengembangan Perangkat Lunak

Metode pengembangan yang yang digunakan tiap proyek pada penelitian ini spesifik menggunakan metode pengembangan Prototype. Berbeda dengan penelitian Primandari yang tiap proyeknya berbeda metode pengembangannya; Extreme Programming (XP), Waterfall, dan Incremental. Pada penelitian yang dilakukan oleh Kassem Saleh tidak dijelaskan metode pengembangan perangkat lunak dari proyek pengembangan perangkat lunak yang diteliti. Sehingga berpengaruh besar kepada perbedaan dari hasil distribusi usaha penelitian ini dengan penelitian sebelumnya, pada penelitian Primandari yang tersusun atas proyek dengan metode pengembangan perangkat lunak yang beragam serta penelitian Kassem Saleh yang tidak

jelas menggunakan metode pengembangan apa dibandingkan dengan penelitian tugas akhir ini yang spesifik pada metode pengembangan Prototype.

5.3.3 Complexity Factor

Berikut merupakan hasil kuisioner faktor kompleksitas untuk masing-masing proyek sekaligus untuk tiap proyeknya pada Tabel 5.8 untuk *Technical Complexity Factor* (TCF) mengacu pada

Tabel 5.9 Tabel 2.8 dan pada untuk *Environmental Complexity Factor* (ECF) mengacu pada Tabel 2.9.

Tabel 5.8 Hasil Kuisioner Technical Complexity Factor

	Kode Proyek						
Tn	I	II	III	IV	V	VI	
T1	3	4	1	3	2	3	
T2	2	2	1	2	3	4	
Т3	3	4	3	3	2	2	
T4	3	1	2	1	4	1	
T5	4	3	2	2	3	3	
T6	2	3	2	3	3	4	
T7	4	4	2	2	4	3	
Т8	3	4	2	3	4	2	
T9	2	3	2	4	3	2	
T10	3	4	4	3	5	4	
T11	3	1	2	1	2	1	
T12	4	4	3	2	4	4	
T13	4	2	2	2	2	2	

Tabel 5.9 Hasil Kuisioner Environmental Complexity Factor

En	I	II	III	IV	V	VI
E1	2	1	2	2	2	1
E2	1	0	1	1	0	0
E3	3	4	3	3	4	3
E4	4	5	3	3	3	2

En	I	II	III	IV	V	VI
E5	4	3	4	3	3	3
E6	2	4	3	3	3	2
E7	2	2	3	4	4	2
E8	5	4	2	2	2	4

5.3.4 Unadjusted Actor Weight

Berikut merupakan hasil kuisioner dari semua aktor atau user pada proyek yang telah didapat pada Tabel 5.10.

Tabel 5.10 Aktor/User Provek

No	Aktor	Kompleksitas	
1	Admin	Complex	
2	User staff	Complex	
3	User Asisten Manajer	Complex	
4	User Manajer	Complex	
5	User Cabang	Complex	
6	Kepala Dinas	Complex	
7	Kepala Bidang	Complex	
8	Kepala Seksi	Complex	
9	Staff	Complex	
10	Guest	Complex	

5.4 Hambatan

Dalam memperoleh data atau implementasi perancangan penelitian ini terdapat beberapa yang dilalui oleh peneliti. Beberapa hambatan tersebut diantaranya:

- b. Kesulitan mencari narasumber dengan spesifikasi dokumentasi use case pada proyek pengembangan perangkat lunak serta terbatasnya akses terhadap data keuangan terkait biaya proyek pengembangan perangkat lunak itu sendiri terkendala oleh kebijakan perusahaan.
- c. Tidak semua data yang dibutuhkan peneliti terdokumentasi oleh perusahaan pengembang sehingga pengisian dari

kuisioner sendiri tidak bisa secara detail dan hanya diisikan pada cakupan yang lebih sederhana atau luas.

BAB VI HASIL DAN PEMBAHASAN

Bab ini menjelaskan mengenai hasil dan pembahasan dari pengerjaan penelitian tugas akhir ini untuk menjawab rumusan masalah. Hal-hal yang termuat dalam bab ini adalah penyampaian hasil dan pembahasan pengerjaan penelitian tugas akhir mengenai; tahapan pengujian model Use Case Point (UCP) dan faktor-faktor ketidakpastian estimasi biaya pengembangan perangkat lunak.

6.1 Tahapan Pengujian Model Use Case Point (UCP)

Dari metodologi yang telah ditentukan tentang penggalian kebutuhan data dan informasi mengenai cara pengujian model estimasi biaya perangkat lunak serta studi kasus pada penelitian tugas akhir ini maka didapatkan tahapan pengujian model estimasi biaya sebagai berikut:

- Step 1: Counting Unadjusted Actor Weight (UAW)
- Step 2: Counting Unadjusted Use Case Weight (UUCW)
- Step 3: Counting Unadjusted Use Case Points (UUCPP)
- Step 4: Counting Technical Complexity Factor (TCF)
- Step 5: Counting Environmental Complexity Factor (ECF)
- Step 6: Counting Use Case Points (UCP)
- Step 7: Counting Effort
- Step 8: Identifying project activities of software development
- Step 9: Determining effort distribution per activities
- Step 10: Determining pay rate per activities
- Step 11: Determining cost per activities
- Step 12: Counting personnel direct cost before profit
- Step 13: Adding profit in project
- Step 14: Counting total of personnel direct cost
- Step 15: Adding non-personnel direct cost
- Step 16: Adding taxes to project cost estimation
- Step 17: Calculate model cost deviation

Dari tahapan satu sampai dengan tahapan empat belas didapatkan langsung dari penelitian sebelumnya pada implementasi model Use Case Point (UCP) oleh Sholiq et.al, sedangkan untuk tahapan lima belas dan enam belas tidak dituliskan sebagai tahapan pada penelitian tersebut namun ada dalam proses implementasi proses [11] yaitu perhitungan *non-personnel direct cost* dan penambahan pajak (PPH) ke dalam estimasi biaya proyek. Untuk tahapan terakhir atau tahap tujuh belas ditambahkan untuk menguji akurasi atau validitas dari model Use Case Point (UCP) spesifik pada deviasi biaya.

6.1.1 Implementasi Tahapan Pengujian Model Use Case Point (UCP)

Implementasi tahapan pengujian menggunakan data dan informasi yang telah diperoleh dari bab implementasi dari perusahaan pengembang yang menjadi studi kasus penelitian tugas akhir ini, dengan uraian dan penejelasan sebagai berikut dibagi atas tiga langkah:

- 1. Estimasi usaha
- 2. Estimasi biaya
- 3. Pengujian model

6.1.1.1 Estimasi Usaha

Langkah pertama ialah estimasi usaha yang mencakup tahapan satu sampai dengan tahapan tujuh yang merupakan perhitungan komponen dari metode estimasi Use Case Point (UCP).

• Step 1: Counting Unadjusted Actor Weight (UAW)
Pada tahap pertama dilakukan perhitungan dari pembobotan aktor Use Case mengikuti pedoman pada Tabel 2.6 dan persamaan 5 sehingga didapatkan nilai Unadjusted Actor Weight dari tiap proyek sebagai berikut pada Tabel 6.1.

Tabel 6.1 Perhitungan Unadjusted Actor Weight (UAW)

Kode Proyek	UAW
I	15
II	15

Kode Proyek	UAW
III	15
IV	15
V	15
VI	15

• Step 2: Counting Unadjusted Use Case Weight (UUCW) Pada tahap kedua dilakukan perhitungan dari pembobotan Use Case mengikuti pedoman pada Tabel 2.5 dan persamaan 4 sehingga didapatkan nilai Unadjusted Use Case Weight (UUCW) dari tiap proyek sebagai berikut pada tabel Tabel 6.2.

Tabel 6.2 Perhitungan Unadjusted Use Case Weight (UUCW)

Kode	UUCW
Proyek	
I	365
II	325
III	1360
IV	510
V	75
VI	250

• Step 3: Counting Unadjusted Use Case Points (UUCPP) Pada tahap ketiga dilakukan perhitungan Unadjusted Use Case Point dengan menjumlahkan nilai Unadjusted Actor Weight (UAW) dan Unadjusted Use Case Weight (UUCW) sesuai dengan persamaan 3 sehingga didapatkan nilai sebagai berikut pada Tabel 6.3.

Tabel 6.3 Perhitungan *Unadjusted Use Case Point* (UUCP)

i <u>bei 0.5 i erintun</u>	gan craaja	sica esc eas	croini (ccc
Kode Proyek	UAW	UUCW	UUCP
I	15	365	380
II	15	325	340

Kode Proyek	UAW	UUCW	UUCP
III	15	1360	1375
IV	15	510	525
V	15	75	90
VI	15	250	265

• Step 4: Counting Technical Complexity Factor (TCF)
Pada tahap ke empat dilakukan perhitungan dari hasil kuisioner
Complexity Factor khususnya pada 13 faktor Technical
Complexity Factor (TCF) dengan menggunakan formula pada
persamaan 6 dan 7 sehingga didapatkan nilai sebagai berikut
pada Tabel 6.4.

Tabel 6.4 Perhitungan Technical Complexity Factor (TCF)

Kode Proyek	TCF
I	1.03
II	1.04
III	0.89
IV	0.95
V	1.04
VI	0.97

• Step 5: Counting Environmental Complexity Factor (ECF) Pada tahap ke lima dilakukan perhitungan dari hasil kuisioner Complexity Factor khususnya pada 8 faktor Environmental Complexity Factor (ECF) dengan menggunakan formula pada persamaan 6 dan 8 sehingga didapatkan nilai sebagai berikut pada Tabel 6.5.

Tabel 6.5 Perhitu<u>ngan Environmental Comple</u>xity Factor (ECF)

Kode Proyek	ECF
I	1.12

Kode Proyek	ECF
II	1.01
III	1.01
IV	1.07
V	1.06
VI	1.21

• Step 6: Counting Use Case Points (UCP)

Pada tahap ke enam dilakukan perhitungan Use Case Point (UCP) dengan mengalikan nilai *Unadjusted Use Case Point* (UUCP), *Technical Complexity Factor* (TCF), dan *Environmental Complexity Factor* (ECF) sesuai dengan formula pada persamaan 2 sehingga didapatkan nilai sebagai berikut pada Tabel 6.6.

Tabel 6.6 Perhitungan Use Case Point (UCP)

Kode Proyek	UUCP	TCF	ECF	UCP
I	380	1.03	1.12	488.09
II	340	1.04	1.01	135.90
III	1375	0.89	1.01	368.55
IV	525	0.95	1.07	237.62
V	90	1.04	1.06	136.49
VI	265	0.97	1.21	116.28

• Step 7: Counting Effort

Pada tahap ke tujuh dilakukan perhitungan nilai *effort* dengan mengalikan nilai *Use Case Point* (UCP) dengan *Effort Rate* (ER), nilai *Effort Rate* (ER) yang digunakan pada penelitian ini ialah sebesar 8,2 *man/hours* oleh penelitian Subriadi et.al [28]. Sesuai dengan persamaan 9 sehingga didapatkan nilai sebagai berikut pada Tabel 6.7.

Tabel 6.7 Perhitungan Effort

Kode Proyek	UCP	ER	Effort
I	488.09	8.2	4002.35
II	135.90	8.2	1114.34
III	368.55	8.2	3022.10
IV	237.62	8.2	1948.49
V	136.49	8.2	1119.22
VI	116.28	8.2	953.52

6.1.1.2 Estimasi Biaya

Langkah kedua ialah estimasi biaya yang mencakup tahapan delapan sampai dengan tahapan enam belas yang merupakan perhitungan biaya dari metode estimasi Use Case Point (UCP) dan Owner Estimate Cost (OEC).

• Step 8: Identifying project activities of software development

Pada tahap ke delapan dilakukan identifikasi terhadap aktivitas yang ada pada tahapan pengembangan perangkat lunak yang dibagi atas tiga kelompok aktivitas: (i) software development, (ii) ongoing activities & quality testing [12], acuan yang dipakai penelitian tugas akhir dalam mengidentifikasi aktivitas berasal dari hasil identifikasi aktivitas dalam penelitian Primandari [17] (bidang yang sama dengan penelitian tugas akhir, kepemerintahan) sehingga didapatkan identifikasi aktivitas pada Tabel 5.2. Berikut merupakan perbedaan dari hasil identifikasi dengan aktivitas acuan ditunjukkan pada Tabel 6.8 dan Tabel 6.9.

Tabel 6.8 Aktivitas Yang Berbeda

Tabel 0.0 fixer rang berbeau		
Fase Pengembangan		
Tahap Implementasi		
Aktivitas Studi Kasus Aktivitas Acuan		
Testing internal Rapat internal		

Tabel 6.9 Aktivitas Acuan Yang Tidak Teridentifikasi

Fase	Variabel Tahapan	Jenis Aktivitas
Fase	Analisis Spesifikasi	Penyusunan dokumen SKPL
Pengemba	Kebutuhan	Perbaikan dokumen SKPL
ngan	Perancangan	Benchmark template aplikasi
	Implementasi	penyusunan user guide versi beta
	Pengujian &	Penyesuaian SKPL
	Integrasi	Perbaikan dan melengkapi user guide
	Penerimaan & Penyebaran	Rapat penilaian kesiapan aplikasi oleh stakeholder
Fase		Rekruitmen programmer
Aktivitas Sedang	Manajemen Proyek	Penghitungan gaji/upah pegawai
Berlangsun g		Penyusunan dokumen perencanaan proyek
		Evaluasi tengah proyek
		Rapat penutupan proyek
	Manajemen Konfigurasi	Penyusunan dokumen konfigurasi
	Pendokumentasian	Pembuatan video tutorial

Untuk aktivitas utama yang digunakan sebagai acuan dalam menentukan distribusi usaha pada tahapan berikutnya menggunakan aktivitas yang dijabarkan oleh Kassem Saleh pada Tabel 2.10 [12].

• Step 9: Determining effort distribution per activities
Pada tahap ke sembilan dilakukan penentuan distribusi usaha
pada studi kasus penelitian tugas akhir, menggunakan hasil
distribusi usaha yang dari bab implementasi ditunjukkan pada
Tabel 6.10 berikut.

Tabel 6.10 Hasil Distribusi Usaha

No	Activity	Effort Distribution (%)			
Soft	Software development phase				
1	Requirements	3.50			
2	Specifications	4			
3	Design	9.25			
4	Implementation	22.25			
5	Integration Testing	6.50			
6	Acceptance & deployment	5.75			
Ong	oing activities & quality and testin	g			
7	Project management	9.00			
8	Configuration management	2.50			
9	Quality assurance	27.08			
10	Documentation	3.17			
11	Training & support	2.75			

• Step 10: Determining pay rate per activities

Pada tahap ke sepuluh dilakukan penentuan *pay rate* pada tiap aktivitas pengembangan perangkat lunak dengan terlebih dahulu menentukan *pay rate hour* tiap pekerja yang terlibat pada tiap aktivitas pengembangan sesuai dengan formula pada persamaan 11 sehingga didapatkan nilai *pay rate* tiap aktivitas ditunjukkan pada Tabel 6.11. Detail *pay rate* tiap pekerja dapat dilihat pada Tabel 6.12.

Tabel 6.11 Pay Rate Hour Per Tahapan

Fase	Variabel Tahapan	PHR/act	PHR/act
	_	(2017)	(2015)
		Rupiah	Rupiah
Fase	Penggalian	40,625.000	40,625.000
Pengembanga	Kebutuhan		
n	Analisis	40,625.000	40,625.000
	Spesifikasi		
	Kebutuhan		
	Perancangan	33,703.363	31,321.875
	Implementasi	29,088.939	25,119.792
	Pengujian &	29,088.939	25,119.792
	Integrasi		

Fase	Variabel Tahapan	PHR/act	PHR/act
	_	(2017)	(2015)
		Rupiah	Rupiah
	Penerimaan &	33,703.363	31,321.875
	Penyebaran		
Fase Aktivitas	Manajemen	40,625.000	40,625.000
Sedang	Proyek		
Berlangsung	Manajemen	31,396.151	28,220.833
	Konfigurasi		
	Penjaminan Mutu	29,088.939	25,119.792
	Pendokumentasia	31,396.151	28,220.833
	n		
	Pelatihan &	31,396.151	28,220.833
	Dukungan Teknis		
	Evaluasi &	31,396.151	28,220.833
	Pengujian		

Tabel 6.12 Detail Pay Rate

Pekerja	Project Manager	Programmer Web & Android, Designer, Tester, dan Implementator
Tahu	ın 2015 (Rupiah)	
Person Month Rate (PMR)	5,000,000.000	2,710,000.000
Person Week Rate (PWR)	1,219,512.195	660,975.610
Person Day Rate (PDR)	250,000.000	135,500.000
Person Hour Rate (PHR)	40,625.000	22,018.750
Tahu	ın 2017 (Rupiah)	
Person Month Rate (PMR)	5,000,000.000	3,296,212.500
Person Week Rate (PWR)	1,219,512.195	803,954.268
Person Day Rate (PDR)	250,000.000	164,810.625
Person Hour Rate (PHR)	40,625.000	26,781.727

• Step 11: Determining cost per activities

Pada tahap ke sebelas dilakukan penentuan biaya per aktivitas dari 6 proyek yang menjadi objek penelitian tugas akhir ini dengan mengalikan *Pay Hour Rate* dengan hasil estimasi usaha pada Tabel 6.7 dan distribusi usaha masing-masing tahapan pada Tabel 6.10 tiap proyek sesuai dengan formula pada persamaan 10 sehingga didapatkan biaya per aktivitas sebagai berikut pada Tabel 6.13.

Tabel 6.13 Estimasi Biaya Per Tahapan

Tabel 6.13 Estimasi Diaya 1 et Tanapan						
Tohonon	Kode Proyek					
Tahapan	I (2015)	II (2017)	III (2015)	IV (2015)	V (2017)	VI (2015)
Fase Pengembangar	1					
Penggalian Kebutuhan	5,690,838.92	1,584,456.60	4,297,051.00	2,770,503.60	1,591,395.38	1,355,781.27
Analisis Spesifikasi Kebutuhan	6,503,815.91	1,810,807.54	4,910,915.43	3,166,289.83	1,818,737.58	1,549,464.31
Perancangan	11,595,897.27	3,474,032.70	8,755,855.27	5,645,296.88	3,489,246.48	2,762,598.03
Implementasi	22,369,739.31	7,212,350.46	16,890,991.29	10,890,387.91	7,243,935.39	5,329,350.22
Pengujian & Integrasi	6,534,980.02	2,106,978.79	4,934,446.89	3,181,461.64	2,116,205.84	1,556,888.83
Penerimaan & Penyebaran	7,208,260.47	2,159,533.84	5,442,828.95	3,509,238.60	2,168,991.06	1,717,290.67
Fase Aktivitas Seda	ng Berlangsung					
Manajemen Proyek	14,633,585.789	4,074,316.959	11,049,559.706	7,124,152.120	4,092,159.551	3,486,294.703
Manajemen Konfigurasi	2,823,740.073	874,652.107	2,132,155.780	1,374,697.502	878,482.457	672,725.756
Penjaminan Mutu	27,229,083.434	8,779,078.273	20,560,195.395	13,256,090.153	8,817,524.351	6,487,036.787

Pendokumentasia	3,576,737.425	1,107,892.669	2,700,730.655	1,741,283.502	1,112,744.446	852,119.291
n	3,370,737.123	1,107,092.009	2,700,730.033	1,711,203.302	1,112,711.110	032,117.271
Pelatihan & Dukungan Teknis	3,106,114.080	962,117.318	2,345,371.358	1,512,167.252	966,330.703	739,998.331
Evaluasi & Pengujian	4,800,358.123	1,486,908.582	3,624,664.827	2,336,985.753	1,493,420.177	1,143,633.785
Total	116,073,150.825	35,633,125.833	87,644,766.554	56,508,554.737	35,789,173.414	27,653,181.983

Step 12: Counting personnel direct cost before profit

Pada tahap ke dua belas dilakukan perhitungan dari personnel direct cost before profit dengan menjumlahkan

nilai
$$cost$$
 in $activity$ sehingga didapatkan nilai total biaya per aktivitas tiap proyek pada Tabel 6.13.

$$Personnel\ direct\ cost\ before\ profit = \sum_{i}^{n} Cost\ in\ activity_{i}$$

• Step 13: Adding profit in project

Pada tahap ke tigas belas dilakukan penentuan nilai profit sebesar 20% (persen profit minimal dari kisaran persen profit studi kasus) dari nilai *personnel direct cost before profit* masing-masing proyek sehingga didapatkan nilai *profit* sebagai berikut ditunjukkan pada Tabel 6.14.

Tabel 6.14 Profit

1 abel 0.14 1 roju					
Kode	Personnel Direct				
Proyek	Cost Before	Profit			
	Profit				
I	116,073,150.82	23,214,630.16			
II	35,633,125.83	7,126,625.17			
III	87,644,766.55	17,528,953.31			
IV	56,508,554.74	11,301,710.95			
V	35,789,173.41	7,157,834.68			
VI	27,653,181.98	5,530,636.40			

• Step 14: Counting total of personnel direct cost

Pada tahap ke empat belas dilakukan penambahan nilai profit pada perhitungan pada tahap 13 terhadap besar nilai *personnel direct cost before profit* masing-masing proyek sesuai dengan formula pada persamaan 1 sehingga didapatkan nilai *personnel direct cost* sebagai berikut ditunjukkan pada Tabel 6.15.

Tabel 6.15 Personnel Direct Cost

	Tubel 0:15 Tersonner Buren Cost				
Kode Proyek	Personnel Direct Cost Before Profit	Profit	Personnel Direct Cost		
I	116,073,150.82	23,214,630.16	139,287,780.99		
II	35,633,125.83	7,126,625.17	42,759,751.00		
III	87,644,766.55	17,528,953.31	105,173,719.87		
IV	56,508,554.74	11,301,710.95	67,810,265.68		
V	35,789,173.41	7,157,834.68	42,947,008.10		
VI	27,653,181.98	5,530,636.40	33,183,818.38		

• Step 15: Adding non-personnel direct cost

Pada tahap ke lima belas dilakukan perhitungan nilai *non- personnel direct cost* mengacu pada hasil kuisioner pada Tabel
5.4 dengan terlebih dahulu menentukan pembobotan persentase
tiap lama waktu pengerjaan proyek dengan total pengerjaan
keseluruhan proyek pada Tabel 5.5 untuk mendapatkan
perhitungan biaya *non-personnel direct cost* 6 proyek pada
studi kasus yang memenuhi kriteria ukuran proyek pada Tabel
5.6, dengan hasil sebagai berikut pada Tabel 6.16.

Tabel 6.16 Non-Personnel Direct Cost

Kode	Lama Waktu	Persen	Non-Personnel
Proyek	Pengerjaan		Direct Cost
I	19	18.10%	2,307,142.857
II	8	7.62%	971,428.571
III	24	22.86%	2,914,285.714
IV	12	11.43%	1,457,142.857
V	16	15.24%	1,942,857.143
VI	8	7.62%	971,428.571
VII	6	5.71%	728,571.429
VIII	6	5.71%	728,571.429
IX	6	5.71%	728,571.429
Total	105	100%	12,750,000.000

• Step 16: Adding taxes to project cost estimation

Pada tahap ke enam belas dilakukan penentuan nilai pajak jenis Pajak Pertambahan Harga sebesar 10% terhadap nilai biaya estimasi proyek, nilai biaya estimasi proyek yang dimaksudkan disini ialah gabungan dari nilai personnel direct cost dan non-personnel direct cost disebut sebagai owner estimate cost before taxes yang lalu dikenakan pajak sebesar 10% dari nilai gabungan tersebut. Sehingga didapatkan nilai pajak sebagai berikut ditunjukkan pada Tabel 6.17.

Owner Estimate Cost Before Taxes = Personnel Direct Cost + Non-Personnel Direct Cost

Tabel 6.17 Pajak Pertambahan Nilai

Kode Proyek	Personnel Direct	Non- Personnel Direct Cost	Owner Estimate Cost Before Taxes	Tax (value added tax 10%)
I	139,287,780.99	2,307,142.86	141,594,923.85	14,159,492.38
II	42,759,751.00	971,428.57	43,731,179.57	4,373,117.96
III	105,173,719.87	2,914,285.71	108,088,005.58	10,808,800.56
IV	67,810,265.68	1,457,142.86	69,267,408.54	6,926,740.85
V	42,947,008.10	1,942,857.14	44,889,865.24	4,488,986.52
VI	33,183,818.38	971,428.57	34,155,246.95	3,415,524.70

Owner Estimate Cost = Owner Estimate Cost Before Profit + (Owner Estimate Cost Before Profit x 10% (Tax))

Lalu langkah berikutnya menambahkan nilai pajak pertambahan nilai dengan nilai *owner estimate cost before taxes* sehingga didapatkan nilai *owner estimate cost* masing-masing proyek ditunjukkan pada Tabel 6.18.

Tabel 6.18 Owner Estimate Cost

Kode Proyek	Owner Estimate Cost Before Taxes	Tax (value added tax 10%)	Owner Estimate Cost
I	141,594,923.85	14,159,492.38	155,754,416.23
II	43,731,179.57	4,373,117.96	48,104,297.53
III	108,088,005.58	10,808,800.56	118,896,806.14
IV	69,267,408.54	6,926,740.85	76,194,149.40
V	44,889,865.24	4,488,986.52	49,378,851.76
VI	34,155,246.95	3,415,524.70	37,570,771.65

6.1.1.3 Pengujian Model

Langkah ketiga ialah pengujian model yang mencakup tahapan tujuh belas yang merupakan validasi dari model Use Case Point (UCP) untuk mendapatkan akurasi dari model tersebut dengan tolak ukur deviasi biaya.

• Step 17: Calculate model cost deviation

Pada tahap ke tujuh belas dilakukan pengujian terhadap model Use Case Point (UCP) dengan melakukan perhitungan nilai deviasi kepada nilai estimasi biaya dan nilai kontrak proyek untuk melihat akurasi dari model Use Case Point (UCP) pada penelitian tugas akhir ini. Nilai deviasi didapatkan dari selisih nilai estimasi dengan nilai kontrak proyek dibagi dengan nilai kontrak proyek masing-masing dikalikan 100% persen sesuai dengan formula pada persamaan 12, lalu dirata-rata untuk mendapatkan nilai deviasi keseluruhan ditunjukkan pada Tabel 6.19 dan jika disimulasikan menggunakan profit sebesar 10% sesuai dengan ketentuan pembuatan *Owner Estimate Cost* (OEC)/ Harga Perkiraan Sendiri (HPS) [30] ditunjukkan pada Tabel 6.20.

Tabel 6.19 Deviasi Biaya (Profit 20%)

	Tabei 6.19 Deviasi Biaya (Profit 20%)						
Kode Proyek	Estimasi Biaya	Nilai Kontrak Proyek	Selisih	Deviasi			
I	155,754,416.232	190,000,000.000	34,245,583.768	18.02%			
II	48,104,297.528	40,000,000.000	8,104,297.528	20.26%			
III	118,896,806.137	150,000,000.000	31,103,193.863	20.74%			
IV	76,194,149.396	70,000,000.000	6,194,149.396	8.85%			
V	49,378,851.763	45,000,000.000	4,378,851.763	9.73%			
VI	37,570,771.647	30,000,000.000	7,570,771.647	25.24%			
			Rata-rata	17.14%			

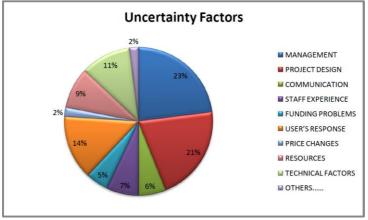
Tabel 6.20 Deviasi Biaya (Profit 10%)

Kode Proyek	Estimasi Biaya	Nilai Kontrak Proyek	Selisih	Deviasi
I	142,986,369.641	190,000,000.000	47,013,630.359	24.74%
II	44,184,653.687	40,000,000.000	4,184,653.687	10.46%
III	109,255,881.816	150,000,000.000	40,744,118.184	27.16%
IV	69,978,208.375	70,000,000.000	21,791.625	0.03%
V	45,442,042.688	45,000,000.000	442,042.688	0.98%
VI	34,528,921.629	30,000,000.000	4,528,921.629	15.10%
			Rata-rata	13.08%

6.1.2 Pembahasan Hasil Implementasi Tahapan Pengujian

Hasil implementasi tahapan pengujian terhadap model Use Case Point (UCP) yang diusulkan oleh Sholiq et.al [11] menunjukkan hasil deviasi biaya sebesar 17.14% bila menggunakan profit yang terjadi pada studi kasus penelitian tugas akhir sebesar 20% dan deviasi biaya sebesar 13.08% bila mengikuti profit sebesar 10% sesuai aturan penetapan Owner Estimate Cost (OEC)/Harga Perkiraan Sendiri (HPS) [30]. Nilai deviasi tersebut jika dibandingkan dengan penelitian sebelumnya yang dilakukan oleh Bente Anda dengan nilai deviasi sebesar 19%, sedangkan estimasi para ahli sebesar 20% dapat diterima, ahli pada penelitian tersebut merujuk pada estimator/penaksir perangkat pengembang dan berpengalaman, dengan sedikit pengalaman dengan domain aplikasi dan teknologi yang akan digunakan.

Dari hasil validasi model Use Case Point (UCP) terdapat nilai yang timpang baik nilai estimasi biaya yang lebih besar dibanding nilai kontrak proyek, maupun sebaliknya. Dengan nilai profit sebesar 20% pada kode proyek I dan III tampak nilai dari estimasi biaya masih jauh dibawah nilai kontrak proyek yang selisihnya mencapai nilai sekitar 30 juta, berbeda dengan kode proyek II, IV, V, dan VI dimana nilai estimasi sedikit lebih besar dari nilai kontrak proyek dengan selisih sekitar 4 - 8 juta. Hal yang sama terjadi juga dengan mensimulasikan dengan profit sebesar 10% sesuai dengan ketentuan pembuatan Owner Estimate Cost (OEC)/Harga Perkiraan Sendiri (HPS) Jasa Konsultansi [30]. Hal ini menjadi sebuah temuan dimana persentase dari deviasi tiap proyek tidak saling berdekatan, hal ini memunculkan pertanyaan apa yang menyebabkan terjadinya ketimpangan tersebut, dan pihak mana/stakeholder yang memiliki faktor tertentu sehingga mempengaruhi baik nilai dari estimasi biaya atau nilai kontrak proyek itu sendiri.


Penentuan dari nilai kontrak proyek didapatkan dari penetapan OEC/HPS yang dijadikan acuan/alat untuk menilai kewajaran

penawaran termasuk rinciannya dan dasar utuk negosiasi harga. Pelaksana swakelola sendiri hanya boleh dilaksanakan oleh K/L/D/I sebagai penanggung jawab anggaran, instansi pemerintah lain yang bukan penanggung jawab anggaran dan/atau kelompok masyarakat, dalam studi kasus ini pelaksana swakelola jatuh kepada kelompok masyarakat yaitu perusahaan pengembang dimana terjadinya kesepakatan harga nilai kontak proyek. Faktor yang menyebabkan terjadinya ketimpangan harga tersebut ialah sebagai berikut:

- 1. Harga dari jasa konsultansi pengembangan perangkat lunak tidak memiliki standart harga di pasar, sehingga penawaran harga maupun acuan harga pada proses negosiasi berdasarkan data historis nilai kontrak sebelumnya yang belum tentu relevan dengan nilai kontrak yang baru. Yang juga tergantung kepada pihak/stakeholder yang terlibat dalam perencanaan, pelaksanaan, dan pengawasan proyek tersebut, dimana pada studi kasus ini yang bertindak sebagai klien ialah instansi pemerintah yang pengadaan barang/jasanya sendiri oleh perusahaan pengembang melalui swakelola dan bukan melalui penyedia barang/jasa.
- 2. Persentase keuntungan dari perusahaan pengembang sendiri sebesar 20 30% berdasar keuntungan kumulatif per tahunnya, profit kumulatif didapatkan dari selisih keuntungan dari biaya nilai kontrak proyek dengan biaya operasional perusahaan pengembang terhadap proyek tersebut. Selain itu perusahaan pengembang sendiri mengerjakan multi-proyek atau banyak proyek secara bersamaan atau paralel untuk mendapatkan selisih kumulatif keuntungan tersebut, dikarenakan tidak setiap proyek didapatkan selisih keuntungan yang besar.

6.2 Faktor-Faktor Ketidakpastian Estimasi Biaya Pengembangan Perangkat Lunak

Pada penelitian tugas akhir ini salah satu tolak ukur besar kecilnya deviasi biaya model dipengaruhi oleh skala atau ukuran proyek pengembangan perangkat lunak, namun masih terdapat faktor lain yang berpengaruh terhadap nilai deviasi biaya. Faktor ketidakpastian paling umum yang mempengaruhi estimasi biaya pengembangan perangkat lunak menurut G. Rajkumar dan Dr. K. Alagarsamy [34] adalah sebagai berikut, diilustrasikan pada Gambar 6.1:

Gambar 6.1 Faktor Ketidakpastian Proyek (Sumber: [34])

3. Manajemen

Komitmen top manajemen adalah faktor yang menentukan titik kritis antara potensi keberhasilan dan kegagalan ketika mengembangkan dan menerapkan proyek dan sistem manajemen keberlangsungan bisnis. Perhatian utama istilah manajemen ketidakpastian adalah bagaimana memahami dimana dan kenapa ketidakpastian itu penting atau tidak dalam konteks proyek tertentu. Manajemen permasalahan terjadi di semua tahap proyek pengembangan perangkat lunak.

Pada studi kasus penelitian ini tidak diketahui masalah yang dihadapi oleh manajemen perusahaan pengembang, baik yang pasti maupun tidak pasti sehingga dapat berpengaruh terhadap kriteria dari masing-masing proyek.

4. Rancangan Proyek

Rancangan dikaitkan dengan kerangka kerja konseptual yang membentuk proyek dan menetapkan karakteristik dan tujuan utama proyek, sementara perencanaan adalah perumusan terperinci dari waktu, biaya, kualitas dan kuantitas proyek. Rancangan memberikan penjelasan secara keseluruhan mengenai proyek, sedangkan perencanaan sebagian terbatas pada perspektif operasional. Faktor ketidakpastian terletak pada masalah yang terkait dengan komponen yang tidak sesuai berhubungan dengan kurangnya pelatihan, pemeliharaan, komponen yang terlalu canggih, dan lain-lain.

Komunikasi

Masalah komunikasi merupakan faktor utama dalam penundaan dan kegagalan proyek perangkat lunak. Salah satu penyebab yang dapat menganggu komunikasi selama fase requirement engineering proyek pengembangan perangkat lunak digambarkan dalam situasi, dokumentasi spesifikasi mungkin begitu banyak sehingga tidak ada anggota tim yang sudah membaca keseluruhan dokumentasi, menyebabkan terjadinya gangguan terdahap koordinasi dan komunikasi selama development life cycle karena banyak terjadi kesalahpahaman dan pandangan yang bertentangan. Koordinasi dan komunikasi menjadi faktor kritis dalam kesuksekan pengembangan perangkat lunak, terutama ketika perangkat lunak dikembangkan dalam skala besar.

6. Pengalaman Staf

Kelemahan staf berkaitan dengan kualifikasi staf, pengalaman personel asing, kurangnya komitmen, *turn-over* staf yang berkualitas, dan lain-lain. Perencanaan dan persiapan harus dilakukan dengan ketersediaan dan kualitas rencana operasi yang terperinci. Perusahaan pengembang memiliki pengalaman terhadap solusi untuk permasalahan yang serupa, sehingga tim proyek tidak mengalami kehilangan yang signifikan atau transfer personil selama pengembangan proyek.

Sementara pada studi kasus penelitian ini pengalaman dari staf pekerja tim proyek sendiri terbagi atas peran masing-masing (Project Manager, Programmer Web/Android, Designer, Tester, Implementator) dengan kualifikasi SMK dan S1 dengan pengalaman 1 – 3 tahun kerja.

7. Masalah Pendanaan

Penundaan adalah salah satu dari masalah paling serius dalam penyelesaian suatu proyek. Penundaan sering terjadi dalam proyek dan cakupannya bervariasi dari proyek ke proyek, yang berakibat pada pengeluaran biaya di luar anggaran dana yang telah ditetapkan. Hal tersebut merugikan baik bagi pemilik dan kontraktor proyek. Masalah keuangan adalah masalah pembayaran, masalah arus kas, masalah sumber daya keuangan dan masalah pasar. Keterlambatan keuangan utamanya disebabkan oleh manajemen arus kas yang buruk, diikuti oleh keterlambatan pembayaran, sumber keuangan yang tidak mencukupi, dan ketidakstabilan keuangan pasar.

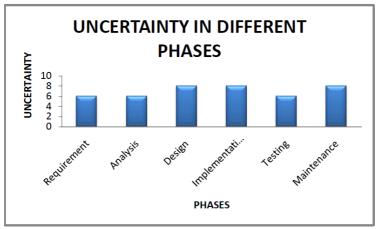
Pada studi kasus penelitian terlihat perbedaan antara beberapa proyek dimana terdapat proyek dengan nilai estimasi biaya lebih tinggi dibanding dengan biaya aktual, maupun sebaliknya ditunjukkan pada Tabel 6.21.

Tabel 6.21 Biava Estimasi & Aktual

Kode	Estimasi Biaya	Biaya Aktual	Biaya Yang
Proyek			Lebih Besar
I	155,754,416.232	190,000,000.000	Aktual
II	48,104,297.528	40,000,000.000	Estimasi
III	118,896,806.137	150,000,000.000	Aktual
IV	76,194,149.396	70,000,000.000	Estimasi
V	49,378,851.763	45,000,000.000	Estimasi
VI	37,570,771.647	30,000,000.000	Estimasi

Biaya estimasi yang lebih besar untuk proyek II, IV, V, dan VI sedangkan biaya aktual yang lebih besar untuk proyek I dan III. Terjadinya perbedaan antara masing-masing pembiayaan proyek dapat disebabkan oleh kesepakatan harga yang disetujui oleh baik pemilik proyek sendiri (dinas kepemerintahan sebagai klien) dengan perusahaan pengembang sebagai kontraktor yang tidak menentu antara satu dinas dengan dinas lainnya. Penentuan nilai proyek pun bisa saja tidak mengikuti harga yang ada di pasar, hal tersebut dapat disebabkan oleh perbedaan sumber daya keuangan yang dapat digunakan masing-masing dinas yang telah ditetapkan oleh kepala daerah, pengaruh lain

juga bisa disebabkan oleh unsur-unsur lain yang berada di lingkungan pemerintah lebih spesifiknya pada kebijakan pengadaan barang dan jasa pemerintah.


8. Respon Pengguna

Pengguna komputer meningkat pesat baik dalam jumlah maupun keragaman. Namun pengguna akhir biasanya tidak memiliki pelatihan dalam bahasa pemrograman profesional, proses pengembangan formal, atau pemodelan dan notasi diagram. Selain itu pengguna akhir seringkali kekurangan waktu atau motivasi untuk mempelajari teknik tradisional ini. Oleh karena hal tersebut untuk mendukung pengguna akhir dibutuhkan penyediaan alat yang tepat, struktur sosial, dan proses pengembangan yang tingkat penggunaanya tinggi, cepat dipelajari, dan mudah diintegrasikan seccara praktis.

Pada studi kasus penelitian yang semua penggunanya merupakan pegawai negeri atau aparat pemerintah dengan keberagaman latar belakang pendidikan, kualifikasi maupun pengalaman. Sedangkan pada sistem kepemerintahan sendiri penempatan kerja tidak mempertimbangkan latar belakang pendidikan secara spesifik, sehingga menyebabkan ketidak seuaian bidang kerja dengan keahlian dasar pemegang posisi tertentu. Hal ini berpengaruh ke pandangan terhadap perangkat lunak dalam kriteria perangkat lunak yang diinginkan dengan perangkat lunak yang dibutuhkan.

9. Sumber Daya

Sumber daya mengatur segala hal kebutuhan yang menyangkut keberlangsungan dari proyek pengembangan perangkat lunak, baik itu sumber daya manusia, finansial, maupun informasi. Termasuk dalam mengatur sumber daya tersebut dalam software development life cycle dalam tiap tahapnya, pada Gambar 6.2 merupakan tingkat ketidakpastian karena faktor sumber daya pada tiap tahap pengembangan perangkat lunak.

Gambar 6.2 Ketidakpastian Sumber Daya Pada Fase Perangkat Lunak 10. Perubahan Harga

Penentuan harga harus mempertimbangkan pertimbangan organisasi, ekonomi, politik, dan bisnis yang lebih luas, seperti peluang pasar, kesehatan keuangan, *requirement*, dan lain-lain. Oleh karena itu, mungkin tidak ada hubungan sederhana antara harga untuk pelanggan perangkat lunak dan biaya pengembangannya. Karena pertimbangan organisasi terlibat, penetapan harga proyek harus melibatkan manajemen senior, serta *project manager* perangkat lunak.

11. Faktor Teknis

Pemilihan alat yag tepat dalam memperhitungkan proses estimasi biaya berpengaruh terhadap akurasi hasil estimasi, meskipun lebih banyak studi yang menganalisa faktor teknis dibandingkan dengan faktor yang berhubungan dengan manusia dalam software engineering. Tantangan terbesar dalam menggunakan metode estimasi tradisional terletak pada tingkat akurasinya. Sehingga komunitas pengembang perangkat lunak menghadapi kesulitan dalam memperoleh hasil estimasi yang memiliki tingkat akurasi tinggi. Oleh karena itu, banyak penelitian telah dilakukan untuk mengembangkan alat otomatis untuk proses estimasi biaya. Namun, tidak ada yang mengklaim alat yang diusulkan dapat menghasilkan hasil yang akurat.

(halaman ini sengaja dikosongkan)

BAB VII KESIMPULAN DAN SARAN

Bab ini berisi kesimpulan dari keseluruhan permasalahan penelitian tugas akhir dan saran perbaikan yang dapat dikembangkan di masa mendatang.

7.1 Kesimpulan

Berdasarkan proses dan tahapan yang telah dilakukan dal mengerjakan tugas akhir ini, maka dapat diambil kesimpulan yang menjawab rumusan masalah yang telah ditentukan, yaitu:

- 1. Tahapan proses pengujian model Use Case Point (UCP) dalam penelitian tugas akhir ini dijabarkan dalam 17 tahap yang dibagi atas 3 langkah utama.
 - a. Estimasi Usaha
- Step 1: Counting Unadjusted Actor Weight (UAW)
- Step 2: Counting Unadjusted Use Case Weight (UUCW)
- Step 3: Counting Unadjusted Use Case Points (UUCPP)
- Step 4: Counting Technical Complexity Factor (TCF)
- Step 5: Counting Environmental Complexity Factor (ECF)
- Step 6: Counting Use Case Points (UCP)
- Step 7: Counting Effort b. Estimasi Biaya
- Step 8: Identifying project activities of software development
- Step 9: Determining effort distribution per activities
- Step 10: Determining pay rate per activities
- Step 11: Determining cost per activities
- Step 12: Counting personnel direct cost before profit
- Step 13: Adding profit in project
- Step 14: Counting total of personnel direct cost
- Step 15: Adding non-personnel direct cost
- Step 16: Adding taxes to project cost estimation
 c. Pengujian Model
- Step 17: Calculate model cost deviation

2. Hasil dari pengujian model Use Case Point (UCP) sebagai bentuk validasi mosel estimasi dengan mencari nilai deviasi biaya didapatkan nilai sebesar 17.14% bila menggunakan profit yang terjadi pada studi kasus penelitian tugas akhir sebesar 20% dan deviasi biaya sebesar 13.08% bila mengikuti profit sebesar 10% sesuai aturan penetapan Owner Estimate Cost (OEC)/Harga Perkiraan Sendiri (HPS) [30]. Nilai deviasi tersebut jika dibandingkan dengan penelitian sebelumnya yang dilakukan oleh Bente Anda dengan nilai deviasi sebesar 19%, sedangkan estimasi para ahli sebesar 20% dapat diterima, ahli pada penelitian tersebut merujuk pada pengembang dan estimator/penaksir dengan berpengalaman, lunak pengalaman dengan domain aplikasi dan teknologi yang akan digunakan.

Faktor yang menyebabkan terjadinya ketimpangan pada harga estimasi biaya dengan nilai kontrak proyek disebabkan oleh dua faktor yaitu:

- a. Harga dari jasa konsultansi pengembangan perangkat lunak tidak memiliki standart harga di pasar.
- b. Persentase keuntungan perusahaan pengembang pada studi kasus berdasar keuntungan kumulatif dari pengerjaan multi-proyek.

Selain itu juga ada faktor ketidakpastian pada proses estimasi pada tahapan pengembangan perangkat lunak yang dikemukakan oleh G. Rajkumar dan Dr. K. Alagarsamy, terdapat 9 alasan paling umum terdapatnya unsur ketidakpastian dalam proyek [34]:

- a. Manajemen
- b. Rancangan Proyek
- c. Komunikasi
- d. Pengalaman Staf
- e. Masalah Pendanaan
- f. Respon Pengguna
- g. Sumber Daya
- h. Perubahan Harga
- i. Faktor Teknis

3. Nilai distribusi usaha pengembangan perangkat lunak kepemerintahan skala *medium-large* yang didapatkan selama proses implementasi rangkaian tahapan pengujian model dengan mengacu pada fase yang dikemukakan Kassem Saleh [12] terbagi atas (i) software development dan (ii) ongoing activities diperoleh hasil hasil nilai distribusi usaha sebagai berikut:

A. Fase pengembangan perangkat lunak

a.	Pengganan Kebutunan	: 3.50%
b.	Analisis Spesifikasi Kebutuhan	: 4.00%
c.	Perancangan	: 9.25%
d.	Implementasi	: 22.25%
e.	Pengujian & Integrasi	: 6.50%
f.	Penerimaan & Penyebaran	: 5.75%

B. Fase Aktivitas Yang Sedang Berlangsung

a.	Manajemen Proyek	: 9.00%
b.	Manajemen Konfigurasi	: 2.50%
c.	Penjaminan Mutu	: 27.08%
d.	Pendokumentasian	: 3.17%
e.	Pelatihan & Dukungan Teknis	: 2.75%
f.	Evaluasi & Penguijan	• 4 25%

Nilai hasil distribusi usaha dipengaruhi oleh beberapa kriteria dengan pembanding penelitian sebelumnya oleh Kassem Saleh [12] dan Primandari [17]; ukuran proyek, lingkup proyek, dan metode pengembangan perangkat lunak.

7.2 Saran

Beberapa hal yang diharapkan dapat dikembangkan untuk penelitian untuk penelitian berikutnya, yaitu:

 Perlu dilakukan penelitian lebih lanjut terkait penentuan standart dari level use case yang digunakan dalam metode estimasi usaha Use Case Point (UCP), untuk menghindari ketimpangan yang besar dari hasil estimasi usaha dengan usaha aktual.

- 2. Perlu dilakukan penelitian lebih lanjut terkait analisis faktor-faktor yang dapat mempengaruhi perhitungan estimasi pengembangan perangkat lunak kepemerintahan berskala *medium-large*.
- 3. Jumlah studi kasus proyek pengembangan perangkat lunak yang digunakan untuk penelitian selanjutnya diharapkan dapat diperbanyak jumlahnya serta persebaran proyek tersebut lebih beragam, juga lebih spesifik terhadap kriteria perangkat lunak tertentu. Hal ini untuk mendapatkan data yang berskala nasional dan spesifik terhadap bidang maupun kriteria pengembangan perangkat lunak tertentu sehingga hasil penelitian lebih terpercaya dan spesifik.

DAFTAR PUSTAKA

- [1] Presiden_RI, "Instruksi Presiden Republik Indonesia Nomor 3 Tahun 2003," Jakarta, 2003.
- [2] J. Lynch, "Chaos Report 2015," 2015. [Online]. Available: https://www.infoq.com/articles/standish-chaos-2015. [Accessed 14 Maret 2018].
- [3] Bull, "The Bull Survey," 1998.
- [4] KPMG, "The KPMG Canada Survey," 1997.
- [5] G. Karner, "Resource Estimation for Objectory Projects," Objective Systems SF AB, 1993.
- [6] B. Anda, "Comparing effort estimates based on use cases with expert estimates," in *Proceeding of Empirical Assessment in Software Engineering (EASE)*, Keele, 2002.
- [7] S. Nageswaran, "Test Effort Estimation Using Use Case Points," June 2001. [Online]. Available: www.cognizant.com/cog.
- [8] E. R. Carrol, "Estimating Software Based on Use Case Points," in *Oriented Programming Systems Languages and Applications (OOPSLA) Conference*, San Diego, 2005.
- [9] S. a. A. P. S. R. S. Dewi, "UCPabc as an Integration Model for Software Cost Estimation," in *International Conference* on Science in Information Technology (ICSITech), Balikpapan, 2016.
- [10] A. P. S. a. S. R. S. Dewi, "Use Case Point-Activity-Based Costing: Metode Baru untuk Mengestimasi Biaya Pengembangan Perangkat Lunak," *Jurnal Sisfo*, vol. 5, pp. 318-323, 2015.
- [11] A. P. S. F. A. M. a. R. S. D. Sholiq, "A Model of Owner Estimate Cost for Software Development Project in Indonesia," Surabaya, Unpublished.
- [12] K. Saleh, "Effort and Cost Allocation in Medium to Large Software Development Projects," *International Journal of Computers*, vol. 5, pp. 74-79, 2011.
- [13] InfoDev and Center for Democracy & Technology, "The E-Government Handbook For Developing Countries,"

- 2002. [Online]. Available: http://unpan1.un.org/intradoc/groups/public/documents/ APCITY/UNPAN007462.pdf. [Accessed 14 Maret 2018].
- [14] B. W. W. a. R. Pieler, "E-Governtment," 2010.
- [15] B. W. W. (Hrsg.), E-Government: Grundlagen, Instrumente, Strategien 1. Auflage, Wiesbaden: Gabler Verlag, 2010.
- [16] M. M. Milakovich, Digital Governance: New Technologies for Improving Public Service and Participation, New York: Routledge, 2012.
- [17] P. L. P. a. Sholiq, "Effort Distribution to Estimate Cost in Small to Medium Software Development Project with Use Case Points," Procedia Computer Science, 2015.
- [18] D. S. Informasi, "Roadmap Laboratorium 2017, 1st ed," Institut Teknologi Sepuluh Nopember, Surabaya, 2017.
- [19] B. Boehm, "Software Development Cost Estimation Approaches Survey," *Annals of Software Engineerings*, vol. 10, no. 1-4, pp. 177-205, 2000.
- [20] D. L. Jonhson, Risk Management and The Small Software Project, IncNashville: LOGOS International, 2006.
- [21] K. P. R. Indonesia, *Peraturan Menteri Perdagangan Republik Indonesia no. 46/MDAG/PER/9/2009*, Jakarta: Kementerian Perdagangan Republik Indonesia, 2009.
- [22] L. X. a. S. Brinkkemper, "Concepts of product software," European Journal of Information Systems, 2007.
- [23] J. F. a. R. Machado, "Lecture Notes in Management and Industrial Engineering," in *Requirements in Engineering Projects*, Springer International Publishing Switzerland, 2016.
- [24] C. Murali, Software Estimation Best Practices, Tools and Techniques for Software Project Estimators, J.Ross Publishing, 2009.
- [25] B. A. J. J. d. J. N. M. Ochodek, "Improving the reliability of transaction identification in use cases," in *Information and Software Technology*, 2011, pp. 885-897.
- [26] G. Desy, Perbaikan Formula Unadjusted Use Case Weight pada Use Case Point Untuk Estimasi Effort Proyek

- Pengembangan Perangkat Lunak, Surabaya: ITS-JSI, 2015.
- [27] A. A. &. J. Gaffney, "Software function, sources lines of codes, and development effort prediction: a software science validation," IEEE Trans Software Eng, 1983.
- [28] S. a. P. A. N. Apol Pribadi Subriadi, "Critical Review of The Effort Rate Value In Use Case Point Method for Estimating Software Development Effort," *Journal of Theoretical and Applied Information Technology*, vol. 59, no. 3, pp. 735-744, 2014.
- [29] Inkindo, "Remuneration/Billing Rate and Direct Cost for Consultancy Services," Inkindo, Jakarta, 2016.
- [30] Lembaga Kebijakan Pengadaan Barang/Jasa Pemerintah, "Pengantar Pengadaan Barang/Jasa Di Indonesia: Pelatihan Pengadaan Barang/Pemerintah Tingkat Dasar/Pertama," Lembaga Kebijakan Pengadaan Barang/Jasa Pemerintah, Jakarta, 2010.
- [31] R. Yin, Case Study Research: Design and Methods, Beverly Hills, Calif: Sage, 1984.
- [32] J. M. a. S. McDonough, Research Methods for English Language, London: Arnold, 1997.
- [33] P. L. Primandari and Sholiq, "Effort Distribution to Estimate Cost in Small to Medium Software Development Project with Use Case Points," in *Procedia Computer Science*, 2015.
- [34] G. R. a. D. K. Alagarsamy, "The Major Uncertainty Factors Affecting In Software Cost Estimation," *IJCTA*, pp. 419-424, 2013.

(halaman ini sengaja dikosongkan)

BIODATA PENULIS

Penulis bernama lengkap Ragesa Mario biasa dipanggil Egas. Junior, Penulis dilahirkan di Surabaya, 29 Mei 1996 dan merupakan anak terakhir dari bersaudara. Penulis telah menempuh pendidikan formal di SD Al – Falah Surabaya, SMP Al – Hikmah Surabaya, dan SMA Negeri 5 Surabaya.

Pada tahun 2014, penulis diterima di Departemen Sistem Informasi – Fakultas Teknologi Informasi dan Komunikasi – Institut Teknologi Sepuluh Nopember Surabaya dan tercatat sebagai mahasiswa dengan NRP 5214100130 yang berubah menjadi 05211440000130. Selama masa perkuliahan penulis aktif di bidang akademik, minat bakat, kepanitiaan, dan organisasi. Di bidang akademik, penulis pernah menjadi asisten dosen pada mata kuliah Desain Basis Data. Di bidang nonakademik, penulis mengikuti Unit Kegiatan Mahasiswa Flag Football sebagai anggota aktif sejak resminya UKM tersebut di tahun 2015, kepala departemen PSDM UKM selama kepengurusan 2015/2016 – 2017/2017, serta sekian kepanitiaan acara tingkat departmen, fakultas, institut, maupun nasional. Penulis juga pernah melakukan kerja praktik di Telkom – Surabaya selama satu setengah bulan pada tahun 2017.

Di akhir tahun perkuliahannya penulis mengambil penjurusan bidang minat Manajaman Sistem Informasi dengan topik tugas akhir di bidang manajemen dan perencanaan instasi teknologi informasi. Untuk keperluan penelitian, dapat menghubungi penulis via email mariojr@gmail.com.

LAMPIRAN A

Lampiran ini berisikan nilai penghitungan untuk menentukan nilai Use Case Point (UCP) yang dipergunakan untuk mendapatkan nilai estimasi biaya.

Tabel 8.1 Unadjusted Use Case Weight

	Jumlah Us	Jumlah Use Case Berdasarkan Kompleksitas (Bobot)								
Kode	Simple	Average	Complex	Total						
Proyek	(5)	(10)	(15)							
I	52	12	2	410						
II	11	0	4	115						
III	53	7	4	395						
IV	44	0	0	220						
V	20	1	0	110						
VI	11	0	2	85						
Total 191		20	12	2885						

Tabel 8.2 Unadjusted Actor Weight Aplikasi E-RAB

Tuber 0.2 Chadjusted Fietor Weight Fiphkasi E Kilb										
Aplik	Aplikasi E-RAB									
No	Aktor	Weight	UAW							
1	Admin	Complex	3	3						
2	User staff	Complex	3	3						
3	User Asisten Manajer	Complex	3	3						
4	User Manajer	Complex	3	3						
5	User Cabang	Complex	3	3						

Tabel 8.3 Unadjusted Actor Weight Aplikasi Pengadaan

Aplikasi Pengadaan								
No	Aktor	Complexity	Weight	UAW				
1	Kepala Dinas	Complex	3	3				
2	Kepala Bidang	Complex	3	3				
3	Kepala Seksi	Complex	3	3				
4	Staff	Complex	3	3				

Aplil	kasi Pengadaan			
5	Guest	Complex	3	3

Tabel 8.4 Unadjusted Actor Weight Aplikasi Prasarana Utilitas

Aplikasi Prasarana Utilitas								
No	Aktor Complexity		Weight	UAW				
1	Kepala Dinas	Complex	3	3				
2	Kepala Bidang	Complex	3	3				
3	Kepala Seksi	Complex	3	3				
4	Staff	Complex	3	3				
5	Guest	Complex	3	3				

Tabel 8.5 Unadjusted Actor Weight Aplikasi Aset Bangunan

Aplikasi Aset Bangunan								
No	Aktor	Complexity	Weight	UAW				
1	Kepala Dinas	Complex	3	3				
2	Kepala Bidang	Complex	3	3				
3	Kepala Seksi	Complex	3	3				
4	Staff	Complex	3	3				
5	Guest	Complex	3	3				

Tabel 8.6 Unadjusted Actor Weight Aplikasi Asset

Aplikasi Asset								
No	Aktor	Weight	UAW					
1	Kepala Dinas	Complex	3	3				
2	Kepala Bidang	Complex	3	3				
3	Kepala Seksi	Complex	3	3				
4	Staff	Complex	3	3				
5	Guest	Complex	3	3				

Tabel 8.7 Unadjusted Actor Weight Aplikasi Laporan Penyelenggaraan

Aplikasi Laporan Penyelenggaraan							
No	Aktor	Complexity	Weight	UAW			

Aplikasi Laporan Penyelenggaraan							
1	Kepala Dinas	3	3				
2	Kepala Bidang	Complex	3	3			
3	Kepala Seksi	Complex	3	3			
4	Staff	Complex	3	3			
5	Guest	Complex	3	3			

Tabel 8.8 Hasil Perhitungan Technical Complexity Factor

	Tabel 8.8 Hasti Pernitungan Technical Complexity Factor														
No	Faktor	Deskripsi	Weig	I		II		III		IV		V		VI	
	Teknis		ht	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W
T1	Distribute d System Required	Semakin kompleks kebutuhan arsitektur, maka nilai semakin tinggi	2	3	6	4	8	1	2	3	6	2	4	3	6
T2	Response Time Is Important (Applicati on peforman ce objectives (response and throughpu t))	Semakin pentingny a peningkat an waktu respon, maka nilai semakin tinggi	1	2	2	2	2	1	1	2	2	3	3	4	4

No	Faktor	Deskripsi	Weig	I		II		III		IV		V		VI	
	Teknis		ht	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W
Т3	End User Efficiency	Semakin optimal efisiensi pengguna, maka nilai semakin tinggi	1	3	3	4	4	3	3	3	3	2	2	2	2
T4	Complex Internal Processin g Required	Semakin kompleks algoritma (resources leveling, OLAP cubes, etc) maka nilai semakin tinggi. Namun database sederhana	1	3	3	1	1	2	2	1	1	4	4	1	1

No	Faktor	Deskripsi	Weig	I		II		III		IV		V		VI	
	Teknis		ht	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W
		, maka nilai semakin rendah													
T5	Reusable Code Must Be A Focus	Semakin tinggi tingkat pengguna an ulang kode, maka nilai semakin rendah	1	4	4	3	3	2	2	2	2	3	3	3	3
Т6	Installatio n Easy (ease)	Semakin tinggi tingkat kompeten si pengguna	0.5	2	1	3	1.5	2	1	3	1.5	3	1.5	4	2

No	Faktor	Deskripsi	Weig	I		II		III		IV		V		VI	
	Teknis		ht	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W
		dalam instalasi proyek perangkat lunak ini, maka nilai semakin rendah													
T7	Usability	Semakin besar pentingny a kegunaan, semakin tinggi nilai yang diberikan	0.5	4	2	4	2	2	1	2	1	4	2	3	1.5

No	Faktor	Deskripsi	Weig	I		II		III		IV		V		VI	
	Teknis		ht	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W
Т8	Cross- Platform Support (Portabilit y)	Semakin banyak platform yang harus didukung, semakin tinggi nilai yang diberikan	2	3	6	4	8	2	4	3	6	4	8	2	4
Т9	Easy To Change (Changea bility)	Semakin mudah perubahan atau penyesuai an aplikasi Anda, maka nilai	1	2	2	3	3	2	2	4	4	3	3	2	2

No	Faktor	Deskripsi	Weig	I		II		III		IV		V		VI	
	Teknis		ht	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W
		semakin tinggi													
T10	Highly Concurren t (Concurre ncy)	Semakin tinggi perhatian yang diberikan untuk menyelesa ikan permasala han dalam data atau aplikasi, maka nilai semakin tinggi	1	3	3	4	4	4	4	3	3	5	5	4	4

No	Faktor	Deskripsi	Weig	I		II		III		IV		V		VI	
	Teknis		ht	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W
T11	Special Security Features (Custom Security)	Apabila kode kustom keamanan lebih dilakukan, maka nilai semakin tinggi	1	3	3	1	1	2	2	1	1	2	2	1	1
T12	Dependan ce On Third-Part Code (Provide direct access for third parties)	Apabila kebutuhan kontrol dari pihak ketiga tidak terlalu penting, maka nilai semakin tinggi	1	4	4	4	4	3	3	2	2	4	4	4	4

No	Faktor	Deskripsi	Weig	I		II		III		IV		V		VI	
	Teknis		ht	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W
T13	User Training (Special User Training Facilicities	Semakin lama waktu yang dibutuhka n pengguna untuk penguasaa n aplikasi, maka semakin nilai tinggi yang diberikan	1	4	4	2	2	2	2	2	2	2	2	2	2
			TF		43		43. 5		29		34. 5		43. 5		36. 5
			TCF		1.0		1.0 4		0.8 9		0.9 5		1.0 4		0.9 7

Tabel 8.9 Hasil Perhitungan Environmental Complexity Factor

			1 0.9 mas	11 1 611	ntunga	11 12111	ii oincii	tai Coi	присми	y raci	OI .				
N	Faktor	Deskripsi	Weig	I		II		III		IV		V		VI	
О	Teknis		ht	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W
E1	Familiarit y with the Project	Semakin familiar (menguasai) maka nilai semakin tinggi	1.5	2	3	1	1.5	2	3	2	3	2	3	1	1.5
E2	Part Time Staff	Semakin banyak waktu yang digunakan anggota tim untuk bekerja paruh waktu, maka nilai semakin tinggi	0.5	1	0.5	0	0	1	0.5	1	0.5	0	0	0	0
ЕЗ	Lead Analyst	Semakin besar kapabilitas	1	3	3	4	4	3	3	3	3	4	4	3	3

N	Faktor	Deskripsi	Weig	I		II		III		IV		V		VI	
О	Teknis		ht	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W
	Capabilit y	dan pengetahuan, maka nilai semakin tinggi													
E4	Applicati on Experienc e	Semakin banyak pengalaman dalam membuat perubahan pada proyek pengembanga n perangkat lunak maka nilai semakin tinggi	0.5	4	2	5	2.5	3	1.5	3	1.5	3	1.5	2	1

N	Faktor	Deskripsi	Weig	I		II		III		IV		V		VI	
0	Teknis		ht	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W
E5	Object Oriented Program ming Experienc e	Semakin banyak pengalaman dalam Object Oriented programming , maka nilai semakin tinggi	1	4	4	3	3	4	4	3	3	3	3	3	3
E6	Motivatio n	Semakin besar motivasi, maka nilai semakin tinggi	2	2	4	4	8	3	6	3	6	3	6	2	4
E7	Dificult Program ming Language	Semakin sulit bahasa pemrograman maka nilai	-1	2	-2	2	-2	3	-3	4	-4	4	-4	2	-2

N	Faktor	Deskripsi	Weig	I		II		III		IV		V		VI	
0	Teknis		ht	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W	G	Gx W
		semakin tinggi													
E8	Stable Requirem ents	Semakin besar perubahan akan kebutuhan, maka nilai semakin rendah	-1	5	-5	4	-4	2	-2	2	-2	2	-2	4	-4
			EF		9.5		13		13		11		11. 5		6.5
			ECF		1.1		1.0 1		1.0 1		1.0 7		1.0 6		1.2

LAMPIRAN B

Lampiran ini berisikan hasil pengisian kuisioner untuk distribusi usaha untuk tiap proyek pada studi kasus, yang dipergunakan untuk kebutuhan estimasi biaya.

Tabel 8.10 Aplikasi E-RAB

Tabel 6.10 Aplikasi E-KAD			
Fase	Variabel Tahapan	Persen	
Fase Pengembangan	Penggalian Kebutuhan	4%	
	Analisis Spesifikasi Kebutuhan	4%	
	Perancangan	9%	
	Implementasi	20%	
	Pengujian & Integrasi	7%	
	Penerimaan & Penyebaran	6%	
Fase Aktivitas Sedang Berlangsung	Manajemen Proyek	7%	
	Manajemen Konfigurasi	2%	
	Penjaminan Mutu	32%	
	Pendokumentasian	3%	
	Pelatihan & Dukungan Teknis	2%	
	Evaluasi & Pengujian	4%	
	Total Persen	100%	

Tabel 8.11 Aplikasi Pengadaan

Fase	Variabel Tahapan	Persen
Fase	Penggalian Kebutuhan	2%
Pengembangan	Analisis Spesifikasi Kebutuhan	4%
	Perancangan	10%
	Implementasi	29%
	Pengujian & Integrasi	5%
	Penerimaan & Penyebaran	5%
	Manajemen Proyek	15%
	Manajemen Konfigurasi	4%

Fase	Variabel Tahapan	Persen
Fase Aktivitas Sedang Berlangsung	Penjaminan Mutu	14%
	Pendokumentasian	2%
	Pelatihan & Dukungan Teknis	5%
	Evaluasi & Pengujian	5%
	Total Persen	100%

Tabel 8.12 Aplikasi Prasarana Utilitas

Tabel 6.12 Aplikasi Frasalana Uninas				
Fase	Variabel Tahapan	Web	Android	Rata-
				rata
Fase	Penggalian	4%	2%	3%
Pengembang	Kebutuhan			
an	Analisis	4%	4%	4%
	Spesifikasi			
	Kebutuhan			
	Perancangan	9%	10%	9.5%
	Implementasi	20%	29%	24.5%
	Pengujian &	7%	5%	6%
	Integrasi			
	Penerimaan &	6%	5%	5.5%
	Penyebaran			
Fase	Manajemen	7%	15%	11%
Aktivitas	Proyek			
Sedang	Manajemen	2%	4%	3%
Berlangsung	Konfigurasi			
	Penjaminan Mutu	31%	14%	22.5%
	Pendokumentasia	4%	2%	3%
	n			
	Pelatihan &	2%	5%	3.5%
	Dukungan Teknis			
	Evaluasi &	4%	5%	4.5%
	Pengujian			
	Total Persen	100%	100%	100%
			1	1

Tabel 8.13 Aplikasi Aset Bangunan

Tuber 0:15 riphikusi riset bungunun		
Fase	Variabel Tahapan	Persen
	Penggalian Kebutuhan	4%

Fase	Variabel Tahapan	Persen
Fase	Analisis Spesifikasi Kebutuhan	4%
Pengembangan	Perancangan	9%
	Implementasi	20%
	Pengujian & Integrasi	7%
	Penerimaan & Penyebaran	6%
Fase Aktivitas Sedang Berlangsung	Manajemen Proyek	7%
	Manajemen Konfigurasi	2%
	Penjaminan Mutu	31%
	Pendokumentasian	4%
	Pelatihan & Dukungan Teknis	2%
	Evaluasi & Pengujian	4%
	Total Persen	100%

Tabel 8.14 Aplikasi Asset

Fase	Variabel Tahapan	Persen
Fase	Penggalian Kebutuhan	4%
Pengembangan	Analisis Spesifikasi Kebutuhan	4%
	Perancangan	9%
	Implementasi	20%
	Pengujian & Integrasi	7%
	Penerimaan & Penyebaran	6%
Fase Aktivitas Sedang Berlangsung	Manajemen Proyek	7%
	Manajemen Konfigurasi	2%
	Penjaminan Mutu	31%
	Pendokumentasian	4%
	Pelatihan & Dukungan Teknis	2%
	Evaluasi & Pengujian	4%
	Total Persen	100%

Tabel 8.15 Aplikasi Laporan Penyelenggaraan

Fase	Variabel Tahapan	Persen
Fase	Penggalian Kebutuhan	4%
Pengembangan	Analisis Spesifikasi Kebutuhan	4%
	Perancangan	9%
	Implementasi	20%
	Pengujian & Integrasi	7%
	Penerimaan & Penyebaran	6%
Fase Aktivitas Sedang Berlangsung	Manajemen Proyek	7%
	Manajemen Konfigurasi	2%
	Penjaminan Mutu	32%
	Pendokumentasian	3%
	Pelatihan & Dukungan Teknis	2%
	Evaluasi & Pengujian	4%
	Total Persen	100%