

TUGAS AKHIR - MO141326

ANALISIS KELELAHAN PADA STRUKTUR BRAVO WELLHEAD PLATFORM DENGAN PENAMBAHAN LUAS SUB-CELLAR DECK MENGGUNAKAN METODE CUMMULATIVE DAMAGE DAN FRACTURE MECHANICS

Bagus Panuntun NRP. 04311440000079

Pembimbing :

Nur Syahroni, S.T., M.T., Ph.D

Dr. Eng. Rudi Walujo Prastianto, S.T., M.T.

DEPARTEMEN TEKNIK KELAUTAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2018

FINAL PROJECT - MO141326

FATIGUE LIFE ANALYSIS OF BRAVO WELLHEAD PLATFORM STRUCTURE WITH SUB-CELLAR DECK EXTENSION USING CUMMULATIVE DAMAGE AND FRACTURE MECHANICS METHODS

Bagus Panuntun NRP. 04311440000079

Supervisors :

Nur Syahroni, S.T., M.T., Ph.D

Dr. Eng. Rudi Walujo Prastianto, S.T., M.T.

DEPARTMENT OF OCEAN ENGINEERING FACULTY OF MARINE TECHNOLOGY INSTITUTE TECHNOLOGY SEPULUH NOPEMBER SURABAYA 2018

ANALISIS KELELAHAN PADA STRUKTUR *BRAVO WELLHEAD PLATFORM* DENGAN PENAMBAHAN LUAS *SUB-CELLAR DECK* MENGGUNAKAN METODE *CUMMULATIVE DAMAGE* DAN *FRACTURE MECHANICS*

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik

pada Program Studi S-1 Departemen Teknik Kelautan

Fakultas Teknologi Kelautan

Institut Teknologi Sepuluh Nopember

Oleh :

BAGUS PANUNTUN

NRP. 04311440000079

	Disetujui Oleh :	
1.	Nur Syahroni, S.T., M.T., Ph.D	(Pembimbing 1)
2.	Dr. Eng. Rudi Walujo Prastianto, S.T., M.T.	(Pembimbing 2)
3.	Yeyes Mulyadi, S.T., M.Sc.	(Penguji 1)
	Manchi	
4.	Ir. Mas Murtedjo, M.Eng.	(Penguji 2)
5.	Ir. Imam Rochani, M.Sc.	(Penguji 3)

SURABAYA, JULI 2018

ANALISIS KELELAHAN PADA STRUKTUR *BRAVO WELLHEAD PLATFORM* DENGAN PENAMBAHAN LUAS *SUB-CELLAR DECK* MENGGUNAKAN METODE *CUMMULATIVE DAMAGE* DAN *FRACTURE MECHANICS*

Nama Mahasiswa	: Bagus Panuntun
NRP	: 04311440000079
Departemen	: Teknik Kelautan FTK – ITS

Dosen Pembimbing : Nur Syahroni, S.T., M.T., Ph.D

Dr. Eng Rudi Walujo Prastianto, S.T., M.T.

ABSTRAK

Offshore fixed platform didefinisikan sebagai platform yang berada di atas permukaan air dan ditopang Piles dari dasar laut, dan juga lebih sering menerima beban berulang sehingga menyebabkan kelelahan struktur. Kelelahan sturktur merupakan suatu proses dari kumulatif kerusakan yang disebabkan oleh pengulangan fluktuasi beban yang dapat mengakibatkan keruntuhan meskipun beban yang diterima tidak melebihi batas maksimum untuk beban statik. Tugas akhir ini bertujuan untuk menganalisis kelelahan struktur Bravo Wellhead Platform yang beroperasi di Selat Madura dengan kedalaman perairan di lokasi tersebut adalah 180.0 ft terhadap MSL (Mean Sea Level). Dalam tugas akhir ini penulis menggunakan metode cumulative damage d an fracture mechanics. Pada metode cummulative damage didapatkan umur kelelahan terpendek dibawah MSL sebesar 89,342 tahun pada tubular joint 303. Selanjutnya, dilakukan analisa lokal dan penambahan crack menggunakan metode fracture mechanics terhadap tubular joint 303. Tubular joint paling kritis selanjutnya dianalisa menggunakan metode fracture mechanics dengan memberikan crack sebesar a = 0.25 mm, a/2c=0.15 dan didapatkan umur kelelahannya. Kemudian diketahui selisih umur kelelahan dari kedua metode ini sebesar 22,241 tahun. Kesimpulan dari tugas akhir ini adalah retak yang nantinya ditambahkan ke dalam struktur dapat mengurangi service life struktur secara signifikan.

Kata Kunci : *cumulative damage, fracture mechanics,* retak (*crack*), *fatigue life, offshore platform, tubular joint*

(Halaman ini sengaja dikosongkan)

FATIGUE LIFE ANALYSIS OF BRAVO WELLHEAD PLATFORM STRUCTURE WITH SUB-CELLAR DECK EXTENSION USING CUMMULATIVE DAMAGE AND FRACTURE MECHANICS METHODS

Name of Student	: Bagus Panuntun
NRP	: 04311440000079
Department	: Ocean Engineering FTK – ITS
Supervisor	: Nur Syahroni, S.T., M.T., Ph.D
	Dr. Eng Rudi Walujo Prastianto, S.T., M.T

ABSTRACT

Offshore fixed platform is defined as a platform that is above the surface of the water and sustained Piles from the seabed, and also more often receives repeated loads causing structural fatigue. Structure fatigue is a process of cumulative damage caused by the repetition of fluctuations in loads that may result in collapse even though the load received does not exceed the maximum limit for static load. This final project aims to analyze the fatigue of the Bravo Wellhead Platform structure operating in the Madura Strait with the depth of the waters at the site is 180.0 ft against MSL (Mean Sea Level). In this final project the author uses cumulative damage and fracture mechanics method. In the method of cummulative damage obtained the shortest fatigue life under MSL of 89.342 years in tubular joint 30. Furthermore, local analysis and the addition of crack using fracture mechanics method to tubular joint 303. The most critical tubular joints were then analyzed using the fracture mechanics method by giving crack a = 0.25 mm, a / 2c = 0.15 and obtained fatigue life. Then the difference in fatigue life of both methods is 22,241 years. The conclusion of this final project is that the crack which is added to the structure can reduce the service life structure significantly.

Key Words : cumulative damage, fracture mechanics, crack, fatigue life, offshore platform, tubular joint

(Halaman ini sengaja dikosongkan)

KATA PENGANTAR

Assalamu'alaikum Wr. Wb.

Alhamdulillahirabbil 'alamin, segala puji bagi Allah Subhanallahu wa ta'ala, Tuhan semesta alam, karena berkat limpahan rahmat dan karunia-Nya penulis dapat menyelesaikan tugas akhir ini dengan sebaik-baiknya. Tugas akhir ini berjudul "Analisis Kelelahan Pada Struktur *Bravo Wellhead Platform* Dengan Penambahan Luas *Sub-Cellar* Deck Menggunakan Metode *Cummulative Damage* Dan *Fracture Mechanics*"

Tugas akhir ini disusun dalam rangka memenuhi salah satu persyaratan dalam menyelesaikan program pendidikan Strata 1 (S-1) di Departemen Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember. Semoga tugas akhir ini dapat menambah wawasan dan referensi untuk pembaca.

Penulis sadar bahwa dalam Laporan Tugas Akhir yang dibuat masih banyak kekurangan. Oleh karena itu, kritik dan saran guna membuat kemampuan menyusun laporan yang lebih baik lagi ke depannya sangatlah dibutuhkan. Penulis juga berharap semoga Tugas Akhir ini bisa bermanfaat bagi perkembangan teknologi di bidang rekayasa kelautan.

Wassalamu'alaikum Wr. Wb.

Surabaya, 24 Juli 2018

Bagus Panuntun

(Halaman ini sengaja dikosongkan)

UCAPAN TERIMA KASIH

Pada kesempatan ini penulis menyampaikan terima kasih kepada semua pihak yang telah membantu selama pengerjaan tugas akhir ini, diantaranya kepada:

- 1. Allah Jalla Jalaluh yang telah memberikan kemudahan dan kelancaran selama pengerjaan tugas akhir ini.
- 2. Orang tua saya yang selalu memberikan doa dan dukungan.
- Bapak Nur Syahroni, S.T., M.T., Ph.D dan Dr. Eng. Rudi Walujo Prastianto, S.T., M.T. yang telah menjadi dosen pembimbing dan memberikan saran serta masukan selama masa pengerjaan tugas akhir ini.
- Seluruh staff pengajar Departemen Teknik Kelautan FTK ITS yang telah memberikan saran dan masukan dalam rangka menyempurnakan tugas akhir ini.
- 5. Direksi dan karyawan PT. Pertamina EP Asset IV Field Poleng khususnya Bapak Banu Dwipa Manggala selaku Manager Divisi RAM yang telah memberikan kesempatan penulis untuk kerja praktek di PT Pertamina EP Asset IV Field Poleng sehingga bisa menemukan salah satu topik untuk digunakan dalam tugas akhir ini.
- 6. Mas Dicky, Mas Lukman, dan Mas Sofyan yang telah memberikan bimbingan dan pembelajaran kepada penulis selama kerja praktek sehingga bisa memberikan kemudahan saat melakukan pengerjaan tugas akhir ini.
- Teman-teman angkatan 2014 "MAELSTROM" Teknik Kelautan ITS yang telah memberikan bantuan dan dukungan selama pengerjaan tugas akhir ini sehingga bisa selesai tepat waktu.
- Seluruh angkatan yang ada di Departemen Teknik Kelautan (2017, 2016, 2015, 2014, 2013, 2012, 2011) yang telah memberikan bantuan selama perngerjaan tugas akhir ini.
- 9. Seluruh karyawan Departemen Teknik Kelautan ITS atas bantuan administrasi yang diberikan kepada penulis.
- 10. Pihak-pihak lain yang tidak bisa penulis sebutkan satu persatu.

(Halaman ini sengaja dikosongkan)

DAFTAR ISI

ABSTRAKi
ABSTRACTiii
KATA PENGANTAR v
UCAPAN TERIMA KASIHvii
DAFTAR ISIix
DAFTAR TABEL
DAFTAR GAMBAR xv
DAFTAR LAMPIRANxvii
BAB I PENDAHULUAN 1
1.1 Latar Belakang 1
1.2 Rumusan Masalah
1.3 Tujuan
1.4 Manfaat
1.5 Batasan Masalah4
1.6 Sistematika Penulisan4
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI
2.1 Tinjauan Pustaka 5
2.2 Dasar Teori
2.2.1 Hydrocyclone
2.2.2 Perencanaan Pembebanan
2.2.3 Kombinasi Pembebanan 10
2.2.4 Analisa In-Place 11
2.2.5 Analisis <i>Fatigue</i> 12
BAB III METODOLOGI PENELITIAN

	3.1 D	iagram Alir Penelitian	. 25
	3.2 Pe	enjelasan Diagram Alir	. 27
	3.3 D	ata Struktur Bravo Wellehead Platform	. 29
	3.3.1	Lokasi Platform	. 30
	3.3.2	Orientasi Platform	. 30
	3.3.3	Kedalaman Air	. 30
	3.4 Pa	arameter Desain	. 33
	3.4.1	Faktor Kontingensi	. 33
	3.4.2	Properti Material	. 33
	3.4.3	Tegangan Ijin	. 33
	3.4.4	Data Lingkungan	. 34
	3.4.5	Live Load	. 37
	3.4.6	Splash Zone	. 38
	3.4.7	Corrosion Allowance	. 38
	3.4.8	Dynamic Amplification Factor (DAF)	. 38
	3.4.9	Desain Umur Kelelahan	. 38
BAB	IV AN	ALISIS DAN PEMBAHASAN	. 39
	4.1 Pe	ermodelan Struktur	. 39
	4.1.1	Permodelan Jacket	. 40
	4.1.2	Permodelan Topside	. 42
	4.1.3	Permodelan Hydrocyclone's Support Structur	. 44
	4.2 Pe	embebanan	. 45
	4.2.1	Beban Mati	. 46
	4.2.2	Beban Hidup	. 47
	4.3 A	nalisis <i>In-place</i>	. 52
	4.3.1	Strengthening Struktur Bravo Wellhead Platform	. 52
	4.3.2	Member Stress Check	. 52

4.3.3	Joint Punching Shear Check	55
4.3.4	Faktor Keamanan Pile	55
4.3.5	Periode Natural Struktur	55
4.4 A	nalisa Fatigue Menggunakan Metode Cummulative Damage	56
4.4.1	Beban Fatigue	57
4.4.2	Dynamic Amplification Factor	57
4.4.3	Validasi Parameter Tubular Joint	58
4.4.4	Fatigue Life Member Kritis	60
4.5 A	nalisa Fatigue dengan Menggunakan Metode Fracture Mechanics	61
4.5.1	Permodelan Lokal Joint Kritis	61
4.5.2	Permodelan Elemen Hingga (Finite Element Model)	63
4.5.3	Kondisi Batas dan Pembebanan	64
4.5.4	Meshing Sensitivity Analysis	65
4.5.5	Posisi Retak	66
4.5.6	Initial Crack Joint Kritis	. 67
4.5.7	Perhitungan SIF (Stress Intensity Factor)	68
4.5.8	Validasi Stress Intensity Factor	70
4.5.9	Perhitungan Umur Kelelahan	71
4.5.10	Selisish Umur Kelelahan Menggunakan Metode Cummulative Dama	age
	dan Fracture Mechanics	. 74
BAB V PEN	NUTUP	76
5.1 K	esimpulan	76
5.2 Sa	aran	76
DAFTAR P	USTAKA	78 <u>7</u>

(Halaman ini sengaja dikosongkan)

DAFTAR TABEL

Tabel 3.1 Faktor Kontingensi (Berdasarkan Offshore Standar DNV-OS-H102) 3	3
Tabel 3.2 Spesifikasi Baja Struktural 3	3
Tabel 3.3 Desain Tegangan yang Bekerja	3
Tabel 3.4 Platform Water Level 3	4
Tabel 3.5 Kecepatan Angin	4
Tabel 3.6 Data Gelombang 3	5
Tabel 3.7 Data Arus	5
Tabel 3.8 Marine Growth Profile 3	6
Tabel 3.9 Current Blockage Factor 3	7
Tabel 3.10 Jumlah Kejadian Gelombang Individual 100 Tahunan di Sekitar Platform	m
	7
Tabel 4.1 Validasi COG Berdasarkan Offshore Standard DNV-OS-H102	9
Tabel 4.2 Validasi Selfwight Berdasarkan Offshore Standard DNV-OS-H102	2,
January 2012, Page 18 - Sec.3	9
Tabel 4.3 Perbandingan Wall Thickness 4	0
Tabel 4.4 Detail Spesifikasi equipment Hydrocyclone	4
Tabel 4.5 Rangkuman Berat Struktural Selama Analisa In-place pada Kondis	si
Tabel 4.5 Rangkuman Berat Struktural Selama Analisa In-place pada Kondis Operasi 5	si 1
Tabel 4.5 Rangkuman Berat StrukturalSelama Analisa In-place pada KondisOperasi5Tabel 4.6 Rangkuman Berat StrukturalSelama Analisa In-place pada Kondisi Bada	si 51 ai
Tabel 4.5 Rangkuman Berat Struktural Selama Analisa In-place pada Kondis Operasi	si 1 ai
Tabel 4.5 Rangkuman Berat Struktural Selama Analisa In-place pada Kondis Operasi 5 Tabel 4.6 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Bada	si 1 ai 13
Tabel 4.5 Rangkuman Berat Struktural Selama Analisa In-place pada Kondis Operasi 5 Tabel 4.6 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Bada	si 51 61 53 53
Tabel 4.5 Rangkuman Berat Struktural Selama Analisa In-place pada Kondis Operasi 5 Tabel 4.6 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Bada 5 Tabel 4.7 Member Stress Check untuk Analisa In-place in Operating Condition 5 Tabel 4.8 Member Stress Check untuk Analisa In-place in Storm Condition	si 51 ai 51 53 54 55
Tabel 4.5 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Operasi 5 Tabel 4.6 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Bada 5 5 Tabel 4.7 Member Stress Check untuk Analisa In-place in Operating Condition 5 Tabel 4.7 Member Stress Check untuk Analisa In-place in Storm Condition	si 51 51 53 54 55
Tabel 4.5 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Operasi 5 Tabel 4.6 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Bada	si 51 51 53 54 55 56
Tabel 4.5 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Operasi 5 Tabel 4.6 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Bada	si 51 51 53 54 55 56 m
Tabel 4.5 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Operasi 5 Tabel 4.6 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Bada	si 31 31 31 31 31 31 31 31 31 31 31 31 31
Tabel 4.5 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Operasi 5 Tabel 4.6 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Bada	si 31 31 33 34 35 35 36 m 78
Tabel 4.5 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Operasi 5 Tabel 4.6 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Bada	si i i i i i i i i i i i i i i i i i i
Tabel 4.5 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Operasi 5 Tabel 4.6 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Bada	si ai 31 34 35 36 m 78 90
Tabel 4.5 Rangkuman Berat Struktural Selama Analisa In-place pada Kondis Operasi 5 Tabel 4.6 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Bada	si 31 31 31 31 31 31 31 31 31 31 31 31 31

Tabel 4.18 Dimensi Tubular Joint 403	62
Tabel 4.19 Ukuran Fillet Weld Bedasarkan AWS D.1/D.1.1 : 2015	62
Tabel 4.20 Pembebanan Maksimum Tiap Member	64
Tabel 4.21 Pembebanan Minimum Tiap Member	65
Tabel 4.22 Meshing Sensitivity	65
Tabel 4.23 Nilai SIF	68
Tabel 4.24 Nilai SIF (Lanjutan)	69
Tabel 4.25 Validasi Nilai SIF	71
Tabel 4.26 Perhitungan Jumlah Cycle	72
Tabel 4.27 Umur kelelahan	74
Tabel 4.28 Selisih Umur Kelelahan	74

DAFTAR GAMBAR

Gambar 1.1 Peta Lokasi dan Fasilitas Produksi1
Gambar 1.2 Rencana penambahan luas sub-cellar deck2
Gambar 2.1 Bagian-bagian hydrocyclone (Allen,1990)6
Gambar 2.2 Beban – beban yang bekerja pada struktur anjungan lepas pantai 8
Gambar 2.3 Daerah aplikasi teori stream function, Stokes 5 th dan Airy9
Gambar 2.4 Kurva S-N berdasarkan API RP2A 21st edition
Gambar 2.5 Sketsa sambungan las yang menggunakan weld profile control (a) dan
yang tidak menggunakan weld profile control (b)14
Gambar 2.6 Ilustrasi daerah yang mengalami tegangan hot spot pada sambungan 16
Gambar 2.7 Parameter Utama Tubular Joint17
Gambar 2.8 Mode displacement pada permukaan retak (Barsom dan Rolfe, 1987)
Gambar 2.9 Grafik perbandingan a/2c dan $\sigma/\sigma ys$ (Barsom dan Rolfe, 1987) 21
Gambar 2.10 Perbandingan nilai tebal material dan fracture toughness
Gambar 2.11 Kurva perambatan retak (Barsom dan Stanley, 1999)23
Gambar 3.1 Diagram Alir Pengerjaan Tugas Akhir (Lanjutan)
Gambar 3.2 Struktur Bravo Wellhead Platform
Gambar 3.3 Schematic diagram lapangan poleng
Gambar 3.4 Arah Orientasi Offshore Fixed Platform
Gambar 3.5 Bravo Wellhead Platform Tampak Isometri
Gambar 3.6 Bravo Wellhead Platform Tampak Atas
Gambar 3.7 Lokasi Mezzanine deck baru di Bravo Wellhead Platform 32
Gambar 4.1 Titik Letak Berat Struktur
Gambar 4.2 Permodelan jacket leg dan Input data dimensi tubular pada tiap elevasi
Gambar 4.3 Permodelan bracing di tiap elevasi jacket dan input dimensi baja tubular
Gambar 4.4 Detail permodelan struktur Jacket Bravo Wellhead Platform
Gambar 4.5 Detail model cellar deck dan input data member properties dari data as
build (Autocad)
Gambar 4.6 Detail model sub-cellar deck dan input data member properties dari data
as build (Autocad)

Gambar 4.7 Detail lengkap Struktur Topside Bravo Wellhead Platform setelah
dimodelkan berdasarkan data as build (Autocad)43
Gambar 4.8 Detail equipment tampak samping (South)44
Gambar 4.9 Perletakkan Model Support Structure di Sub-Cellar Deck
Gambar 4.10 Load Condition 4 : Equipment Load (Existing) pada Cellar Deck (+)
29"-0"
Gambar 4.11 Load Condition 13 : Live Load at Cellar Deck
Gambar 4.12 Validasi Teori Gelombang (API RP 2A-WSD tahun 2000)49
Gambar 4.13 Strengthening pada Sub-Cellar Deck
Gambar 4.14 Member Stress Check struktur untuk Analisa In-place in Operating
Condition
Gambar 4.15 Member Stress Check struktur untuk Analisa In-place in Operating
Condition
Gambar 4.16 Parameter Utama Tubular Joint58
Gambar 4.17 Lokasi Validasi Tubular Joint59
Gambar 4.18 Tubular Joint 30361
Gambar 4.19 Permodelan Lokal Joint 303 Berdasarkan Fillet Weld Requirement
(AWS D1.1: 2015)
Gambar 4.20 Meshing Pada Permodelan Analisa Lokal63
Gambar 4.21 Pembebanan Maksimum dan Kondisi Batas64
Gambar 4.22 Grafik Meshing Sensitivity Analysis
Gambar 4.23 Letak Tegangan Maksimum67
Gambar 4.24 Letak Tegangan Maksimum (Lanjutan)67
Gambar 4.25 (a) Permodelan <i>Crack</i> pada Titik Acuan (b) Bentuk <i>Meshing</i> pada68

DAFTAR LAMPIRAN

- LAMPIRAN A Computer Model
- LAMPIRAN B Loading Plot
- LAMPIRAN C Inplace Analysis Output Kondisi Operasi & Kondisi Badai
- LAMPIRAN D Fatigue Analysis Output
- LAMPIRAN E ANSYS Report

(Halaman ini sengaja dikosongkan)

BAB I PENDAHULUAN

1.1 Latar Belakang

Offshore fixed platform merupakan anjungan paling tua dan paling banyak dibangun. Struktur *offshore fixed platform* banyak digunakan dalam eksplorasi migas di Indonesia, khususnya di laut jawa. Suatu *offshore fixed platform* dikategorikan sebagai anjungan terpancang bila anjungan tersebut dalam operasinya bersifat menahan gaya-gaya lingkungan tanpa mengalami *displacement* / deformasi yang berarti. Di laut yang dangkal anjungan dapat dipancangkan ke dasar laut. Salah satu perusahaan yang mempunyai fasilitas *offshore fixed platform* adalah perusahaan X di field Poleng seperti yang ditunjukkan pada Gambar 1.1.

Gambar 1.1 Peta Lokasi dan Fasilitas Produksi

Terdapat beberapa rencana yang akan dikerjakan oleh Perusahaan X untuk meningkatkan kinerja dari eksploitasi minyak dan gas, diantaranya yaitu menambahkan *deck* di bagian *sub-cellar deck* pada elevasi (+) 18'-7", untuk memindahkan *equipment Hydro cyclone* dari *cellar deck* seperti ditunjukkan pada Gambar 1.2.

Gambar 1.2 Rencana penambahan luas sub-cellar deck

Platform BW di-*install* pada tahun 1977 dan telah beroperasi selama 41 tahun. Tugas akhir ini akan menganalisa *fatigue service life* struktur *Bravo Wellhead Platform* 4 kaki menggunakan metode *cummulative damage* dan metode *fracture mechanics*. Perlu diketahui suatu analisis struktur *offshore fixed platform* berbeda dengan perhitungan struktur di daratan, hal ini dikarenakan banyaknya beban-beban yang lebih kompleks yang menggambarkan suatu kondisi perairan di lokasi kajian. Dalam suatu analisis struktur, diperlukan suatu desain struktur yang aman dan dapat memenuhi kebutuhan selama panjang umur layannya. Umumnya, sebuah *offshore fixed platform* terdiri dari topside sebagai penopang area operasi dari *platform* tersebut dan *jacket* yang menopang *topside*. *Offshore fixed platform* di-*design* untuk mampu menerima beban-beban sejak saat struktur tersebut di-*install*, saat operasi dan saat kondisi maksimum. Selama masa operasi *platform* terdapat beberapa environmental loads yang menerpa terus-menerus, di antaranya angin dan gelombang. Beban-beban tersebut dapat menyebabkan sambungan di struktur tersebut gagal secara *fatigue*.

Analisis *fatigue* pada *offshore fixed platform* adalah hal lazim yang dilakukan oleh para *structural engineer*. Analisa ini merupakan suatu cara yang dapat dilakukan untuk memperkirakan risiko terjadinya kerusakan yang diakibatkan oleh beban berulang dan usia dari suatu bangunan dalam menghadapi beban tersebut. *Output*-nya, akan muncul masa layan atau *fatigue service life* dari masing-masing sambungan. Analisa *fatigue life* struktur *Bravo*

Wellhead Platform diawali dengan menganalisa secara global menggunakan metode *cummulative damage*. Dan *joint* yang memiliki *fatigue life* yang kecil akan dianalisa secara lokal. Sehingga mendapatkan nilai *stress intensity factor* dan besarnya perambatan retak yang digunakan untuk menentukan umur kelelahan dari struktur. Pada akhirnya diketahui selisih hasil perhitungan umur kelelahan yang menggunakan metode *cummulative damage* dengan metode *fracture mechanics*.

1.2 Rumusan Masalah

Permasalahan yang menjadi kajian tugas akhir ini adalah

- 1. Bagaimana respons dan kekuatan struktur *Bravo Wellhead Platform (member unity check, joint unity check)* dalam analisa *inplace* ?
- 2. Berapa sisa umur kelelahan struktur *Bravo Wellhead Platform (Fatigue Life)* menggunakan metode *cummulative damage*?
- 3. Berapa sisa umur kelelahan struktur *Bravo Wellhead Platform (Fatigue Life)* menggunakan metode *fracture mechanics?*

1.3 **Tujuan**

Adapun tujuan yang dicapai dalam penelitian tugas akhir ini adalah

- 1. Mengetahui respons dan kekuatan struktur *Bravo Wellhead Platform (member unity check, joint unity check)* dalam analisa *inplace*.
- 2. Mengetahui berapa sisa umur kelelahan struktur *Bravo Wellhead Platform* (*Fatigue Life*) menggunakan metode *cummulative damage*?
- 3. Mengetahui berapa sisa umur kelelahan struktur *Bravo Wellhead Platform* (*Fatigue Life*) menggunakan metode *fracture mechanics*?

1.4 Manfaat

Dari analisis ini dapat mengetahui nilai kekuatan dan umur kelayakan struktur *offshore fixed platform*. Analisis dari tugas akhir ini bermanfaat untuk perencanaan keselamatan selama operasi struktur *Bravo Wellhead Platform* tersebut berlangsung. Hasil yang didapatkan dapat dimanfaatkan oleh suatu praktisi atau perusahaan yang akan melakukan modifikasi platform atau penambahan umur kelayakan platform bisa beroperasi.

1.5 Batasan Masalah

Untuk memudahkan analisis yang ingin dicapai sesuai tujuan dan untuk memfokuskan ruang lingkup dari permasalahan yang telah dijabarkan di atas, maka permasalahan akan dibatasi pada hal-hal berikut:

- Acuan spesifikasi berdasarkan API RP 2A WSD, AISC 9th Edition 1989, dan AWS D1.1 tahun 2000. Offshore Standard DNV
- 2. Analisis kelelahan dilakukan dengan metode deterministik yang berdasarkan data kejadian gelombang selama 100 tahun.
- 3. Bantuan *software* yang digunakan sebagai penunjang untuk tugas akhir ini menggunakan SACS 5.6. V8i, Solidwork dan ANSYS Workbench.
- 4. Mode pembebanan dalam menentukan SIF menggunakan mode I
- 5. Analisis dilakukan pada daerah sambungan tubular (local analysis)
- 6. Jenis retakan yang digunakan adalah semi-eliptical

1.6 Sistematika Penulisan

Sistematika penulisan yang digunakan dalam penelitian tugas akhir ini sebagai berikut:

BAB 1 PENDAHULUAN. Di dalam bab ini menjelaskan tentang hal yang melatarbelakangi untuk dilakukannya studi *cummulative damage* dan *fracture mechanic* ini, permasalah apa saja yang akan dibahas, tujuan yang ingin dicapai, manfaat yang ingin diperoleh dalam studi ini, batasan-batasan masalah yang diterapkan, dan sistematika penulisan yang digunakan dalam pengerjaan tugas akhir ini.

BAB II DASAR TEORI. Proses pengerjaan tugas akhir ini penulis menggunakan dasar-dasar teori yang di dalamnya terdapat persamaan dan rumus yang nantinya akan dicantumkan di dalam tinjauan pustaka.

BAB III METODOLOGI PENELITIAN. Bab ini menguraikan tentang tahapan-tahapan dan metode dalam pengerjaan dan penyelesaian tugas akhir ini.

BAB IV ANALISIS DAN HASIL PEMBAHASAN. Pada bab ini membahas bagaimana proses pengerjaan dan penyelesaian dari permasalahan yang diteliti di dalam tugas akhir ini. Selain itu, validasi, pengolahan, analisis, dan pembahasan data hasil dari *output* hasil *running software* juga akan dibahas pada bab ini.

BAB V PENTUP. Berisi kesimpulan dari hasil analisis tugas akhir ini, pembahasan yang telah dilakukan, dan saran-saran yang diberikan untuk penelitian lebih lanjut.

BAB II

TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 **Tinjauan Pustaka**

Fatigue adalah kerusakan pada struktur karena sebagai tempat konsentrasi tegangan yang terjadi akibat beban siklis dari lingkungan (gelombang, angin, arus dan lain-lain) yang bekerja secara terus menerus. Analisis kekuatan *fatigue* diterapkan pada semua struktur yang secara dominan menerima beban siklis, untuk memastikan integritas struktur dan untuk penelaian kemungkinan kerusakan akibat *fatigue* sebagai dasar metode inspeksi yang efesien. Gelombang merupakan sumber penyebab terjadinya *fatigue cracking*. Akan tetapi, beban siklis lainnya juga berpengaruh pada *fatigue failure* dan harus diperhitungkan. (Bastian, 2011)

Mekanika kepecahan merupakan suatau analisis penyelesaian dengan cara mendefinisikan kondisi lokal dari tegangan dan regangan di sekitar retakan yang dikorelasikan dengan parameter-parameter global yang dapat menyebabkan retakan merambat. (Puspitorini, 2017).

Fracture mechanics adalah suatu analisis penyelesaian dengan cara mendefinisikan kondisi lokal dari tegangan dan regangan di sekitar retakan yang dikorelasikan dengan parameter-paremeter globalnya (beban-beban, geometri dan sebagainya) dimana retakan akan merambat. *Fracture mechanics* terbagi menjadi dua kategori, yakni *linear-elastic* (LEFM) dan *elastic-plastic* (EPFM). LEFM adalah metode yang menunjukkan hubungan antara medan tegangan dan distribusinya di sekitar ujung retak dengan ukuran, bentuk, orientasi retak dan material properti akibat tegangan nominal yang dikenakan pada struktur. Metode ini menggunakan parameter K, atau SIF untuk menunjukkan karakteristik dari medan tegangan yang terjadi. EPFM lebih sering digunakan pada material yang bersifat *ductil*, dimana terjadi perilaku *elastic-plastic* pada material akibat pembebanan yang terjadi. Metode ini merupakan pengembangan dari LEFM, dengan penambahan analisa yang dapat menunjukkan deformasi plastis dari material. (Naess, 1985)

2.2 Dasar Teori

2.2.1 Hydrocyclone

Pada dasarnya hydrocyclone merupakan gabungan dari dua kata yaitu hydro dan cyclone.Hydro dapat diartikan air ataupun cairan, sedangkan cyclone dapat diartikan sebagai pusaran.Sehingga hydrocyclone diartikan sebagai pusaran air.

Dalam penggunaanya secara nyata hydrocyclone dapat diartikan sebagai suatu alat yang dapat memisahkan material ataupun partikel dari suatu komposisi campuran baik berbentuk padatan dengan cairan ataupun cairan dengan cairandengan memanfaatkan gaya setrifugal aliran dan gayagravitasi bumi.(Bradley, 1965)

2.2.1.1 Prinsip Kerja Hydrocyclone

Prinsip kerja dari hydrocyclone adalah terdapatnya kumpulan partikel dan air yang masuk dalam arah tangensial ke dalam siklon pada bagian puncaknya. Kumpulan air dan partikel ditekan ke bawah secara spiral (primary vortex) karena bentuk dari siklon. Gaya sentrifugal menyebabkan partikel terlempar ke arah luar, membentur dinding dan kemudian bergerak turun ke dasar hydrocyclone. Dekat dengan bagian dasar hydrocyclone, air bergerak membalik dan bergerak ke atas dalam bentuk spiral yang lebih kecil (secondary vortex) partikel yang lebih ringan bergerak keluar dari bagian puncak hydrocyclone sedangkan partikel yang berat keluar dari dasar hydrocyclone.

Ada beberapa alasan mengapa hydrocyclone dipakai sebagai alat pemisah, yaitu:

- 1. Biaya operaional yang relatif murah
- 2. Prosesnya dapat dilakukan pada satu tempat
- 3. Desain ataupun modelnya sederhana, berupa kombinasi konstruksi silinder dan kerucut
- 4. Tidak memiliki bagian yang bergerak
- 5. Minim biaya perawatan

2.2.1.2 Bagian-bagian dari Hydrocyclone

Secara umum bagian-bagian dari Hydrocyclone ditunjukkan pada Gambar 2.1.

Gambar 2.1 Bagian-bagian hydrocyclone (Allen, 1990)

Keterangan:

- 1. Lubang masuk
- 2. Cylindrical section
- 3. Vortex finder
- 4. Cone section
- 5. Lubang keluar

2.2.2 Perencanaan Pembebanan

Platform atau anjungan adalah struktur yang khusus didesain untuk kegiatan eksplorasi dan ekploitasi minyak dan gas bumi di lepas pantai. Struktur ini menjadi subjek terhadap berbagai macam pembebanan, dimana menurut API RP2A beban yang dapat diterima oleh struktur anjungan lepas pantai adalah sebagai berikut :

A. Beban Mati

Beban mati struktur adalah berat struktur itu sendiri, semua perlengkapan yang permanen dan perlengkapan struktur yang tidak berubah selama beroperasinya struktur. Beban matir terdiri dari :

- 1. Beban *platform* di udara.
- 2. Beban perlengkapan yang permanen.
- 3. Gaya angkat hidrostatik di bawah permukaan garis air, termasuk tekanan dan gaya angkat.

B. Beban Hidup

Beban hidup adalah beban yang mengenai struktur dan berubah selama operasi *platform* berlangsung. Beban hidup terdiri dari :

- 1. Beban perlengkapan pengeboran dan perlengkapan produksi yang bisa dipasang dan dipindahkan dari *platform*.
- 2. Berat tempat tinggal (*living quarters*), *heliport*, dan perlengkapan penunjang lainnya yang bisa dipasang dan dipindahkan dari *platform*.
- 3. Berat dari suplai kebutuhan dan benda cair lainnya yang mengisi tangki penyimpanan.
- 4. Gaya yang mengenai struktur selama operasi seperti pengeboran, penambatan kapal, dan beban helikopter.

C. Beban Lingkungan

Beban lingkungan yang mengenai struktur dikarenakan fenomena alam seperti angin, arus, gelombang, gempa bumi, salju, es, dan pergerakan kerak bumi. Beban lingkungan juga didalamnya termasuk variasi tekanan hidrostatik dan gaya angkat pada setiap elemen karena perubahan tingga air yang disebabkan oleh perubahan gelombang dan pasang surut.

D. Beban Konstruksi

Beban konstruksi dihasilkan dari beban-beban pada saat fabrikasi, *loadout*, tranportasi dan instalasi.

E. Beban Dinamik

Beban dinamik ini disebabkan karena adanya gaya yang berulang-ulang seperti gelombang, angin, gempa bumi, atau getaran mesin, juga gaya akibat benturan kapal pada struktur dan pengeboran.

Gambar 2.2 Beban – beban yang bekerja pada struktur anjungan lepas pantai.

Gambar 2.2 menunjukkan bahwa terdapat beberapa beban lingkungan laut yang dapat mempengaruhi kestabilan struktur. Perhitungan beban-beban lingkungan yang bekerja pada struktur mengacu pada rekomendasi yang diberikan oleh API RP2A dan dilakukan berdasarkan data oseanografi dan meteorologi seperti tinggi gelombang, periode gelombang, kecepatan angin, arus, kondisi tanah, dan lain sebagainya.

2.2.2.1 Gelombang

Gelombang pada dasarnya adalah manifestasi dari gaya-gaya yang bekerja pada fluida. Dalam bahasan ini media perambatan gelombang tersebut adalah fluida air. Tiupan angin pada durasi dan kecepatan tertentu membangkitkan sebagian besar dipermukaan lautan. Ketika gelombang terbentuk, gaya gravitasi dan tegangan permukaan akan bereaksi untuk menimbulkan rambatan gelombang.

2.2.2.1.1 Pemilihan Teori Gelombang

Gambar 2.3 Daerah aplikasi teori stream function, Stokes 5th dan Airy

Dalam perencanaan desain gelombang suatu struktur anjungan lepas pantai perlu ditentukan teori gelombang yang sesuai. Barltrop et al (1990) menawarkan suatu diagram yang diperoleh dari hasil membandingkan kecepatan partikel air, percepatan, tinggi gelombang, dan panjang gelombang yang dihitung dari teori gelombang yang sering digunakan. Gambar 2.3 adalah diagram daerah aplikasi dari Stream Function, *Stokes 5th order*, dan teori gelombang linier yang telah dimodifikasi API RP2A untuk keperluan desain.

2.2.2.2 Faktor Kinematika Gelombang

Kinematika gelombang umum dua dimensi dari teori gelombang *Stream Function* atau *Stokes* 5 tidak memperhitungkan penyebaran arah gelombang atau ketidakseragaman dalam bentuk profil gelombang. Karakteristik nyata ini dapat dimodelkan dalam analisis gelombang deterministik dengan mengalikan kecepatan dan percepatan mendatar dari penyelesaian gelombang dua dimensi umum dengan faktor kinematika gelombang. Pengukuran kinematika gelombang memiliki faktor berkisar antara 0,85 sampai 0,95 untuk badai tropis dan 0,95 sampai 1,00 untuk badai bukan tropis.

2.2.3 Kombinasi Pembebanan

Kombinasi pembebanan ini terdiri dari beban lingkungan, beban mati dan beban hidup yang sesuai. Beban lingkungan harus dikombinasikan dengan cara yang sesuai dengan kemungkinan kejadian tersebut terjadi bersamaan selama kondisi pembebanan yang sedang dipertimbangkan.

Pembagian beban yang dikombinasikan :

1. Beban Gravitasi

Beban gravitasi terdiri dari :

- a. Berat sendiri platform
- b. Beban peralatan
- c. Beban lain-lain (perubahan desain, perubahan fabrikasi, dll)

2. Beban Angin

- a. Dianalisis untuk kondisi operasi dan kondisi ekstrim.
- b. Beban angin ini bekerja pada 8 mata angin.

3. Beban Gelombang dan Arus

- a. Dianalisis untuk kondisi operasi dan kondisi ekstrim.
- b. Dianalisis pada 8 arah mata angin.

2.2.4 Analisa In-Place

Analisa *inplace* merupakan tahapan untuk mengetahui kemampulayanan struktur. Adapun tahapan yang dilakukan sebelum melakukan analisis in-place ini adalah :

1. Melakukan permodelan struktur

2. Melakukan input beban-beban yang bekerja

Setelah kedua tahap tersebut dilakukan, maka selanjutnya dilakukan analisis terhadap kemampuan struktur menahan beban-beban yang bekerja. Analisis *inplace* merupakan analisis statik struktur anjungan lepas pantai. Analisis dilakukan dengan anggapan bahwa struktur dan *pile* memiliki kekakuan linier, sedangkan tanah mempunyai kekakuan non linier. Analisis *inplace* dapat dibagi menjadi dua kondisi, yaitu :

1. Kondisi Operasi

Pada kondisi ini, anjungan beroperasi secara normal sehingga struktur menerima seluruh beban kerja yang ada. Beban lingkungan yang terjadi pada struktur seperti beban gelombang, angin dan arus diambil harga ekstrim.

2. Kondisi Badai

Kondisi ini merupakan kondisi terjadinya badai pada lokasi struktur. Pada kondisi ini tidak ada beban work over rig live. Selain itu dianggap crane tidak bekerja, akibatnya hanya ada nilai beban crane vertikal saja. Allowable stress dari tiap batang dinaikkan harganya sebesar 133% menurut AISC.

Input beban dalam analisis *inplace* ini dapat dibagi menjadi 2 (dua), yaitu beban dasar dan beban kombinasi. Beban dasar meliputi : berat struktur di udara, *bouyancy*, peralatan, kelengkapan *deck* dan *jacket*, *crane*, angin, gelombang, dan arus. Selain beban-beban diatas, penting juga untuk memperhatikan pengaruh *marine growth*. Beban lingkungan yang bekerja seperti beban gelombang, angin dan arus dianggap sebagai beban statik dan dikombinasikan dari 8 arah penjuru mata angin.

Pengecekan yang dilakukan untuk kondisi statik inplace berdasarkan API-WSD adalah sebagai berikut:

 Kekuatan member pada struktur harus memenuhi kondisi *combined unity check* (perbandingan tegangan yang terjadi pada elemen dengan tegangan yang diizinkan untuk elemen tersebut) lebih kecil dari 1 (Combined UC < 1).

- Kekuatan dari joint pada struktur harus memenuhi nilai UC < 1 (untuk pembebanan normal dan *punching shear*).
- Nilai safety factor dari pile harus lebih dari atau sama dengan 2 (SF ≤ 2) untuk kondisi operasi, sedangkan untuk kondisi badai SF ≥ 1.5.

Jika semua parameter diatas terpenuhi, maka struktur anjungan lepas pantai bisa dikatakan kuat menahan beban-beban yang bekerja.

2.2.5 Analisis Fatigue

Struktur baja yang mengalami fluktuasi tegangan dalam jumlah yang banyak dapat mengalami retak bahkan pada tegangan yang kecil. Fluktuasi tegangan disebabkan oleh beban lingkungan seperti angin dan gelombang, atau getaran dari mesin. Retak kecil dapat berkembang menjadi lebih besar dan dapat mengakibatkan kerusakan struktur. Retak kecil tersebut diakibatkan oleh karena cacat pada bahan, titik dari ketidakhomogenan lokal, dan titik perubahan drastis dari geometri struktur. Struktur yang menggunakan sambungan las juga rentan terhadap *fatigue* sehingga memerlukan pengawasan yang kontinu.

Berdasarkan API RP 2A 21st edition section 5, pada analisis *fatigue* struktur dimodelkan sebagai *space frame* untuk mendapatkan respon struktur berupa tegangan nominal member untuk gaya gelombang yang bekerja.

Dengan melakukan analisis *fatigue*, kita dapat menentukan sisa masa layan dari sambungan las elemen silinder sebuah struktur. Terdapat beberapa parameter yang berhubungan dengan analisis *fatigue*.

2.2.5.1 Kurva S-N

Kurva S-N adalah karakteristik *fatigue* yang umum digunakan dari suatu bahan yang mengalami tegangan berulang dengan besar yang sama. Kurva tersebut diperoleh dari tes spesimen baja yang diberi beban berulang dengan jumlah N siklus sampai terjadi kegagalan. Besarnya N berbanding terbalik dengan rentang tegangan S (tegangan maksimum – tegangan minimum). Kurva ini menyediakan informasi karakteristik fatigue dengan amplitudo pembebanan konstan. Kurva S-N yang digunakan berdasarkan API RP2A 21st edition (WSD) section 5.4 ditunjukkan pada Gambar2.4.

Gambar 2.4 Kurva S-N berdasarkan API RP2A 21st edition

Secara matematis, persamaan kurva dapat dituliskan sebagai berikut :

$$N = 2 \times 10^6 \left(\frac{\Delta_{\sigma}}{\Delta_{\sigma ref}}\right)^{-m}$$
(2.1)

Dengan

:

 $\begin{array}{ll} m & : \mbox{ kemiringan kurva S-N yang dipakai} \\ N & : \mbox{ banyaknya siklus beban sampai member mengalami kegagalan.} \\ \Delta \sigma & : \mbox{ rentang tegangan (tegangan maksimum - tegangan minimum)} \\ \Delta \sigma_{\rm ref} & : \mbox{ rentang tegangan pada siklus sebanyak 2 x 10⁶ kali.} \end{array}$

Kurva X dapat digunakan untuk profil las terkontrol dan memiliki cabang sambungan kurang dari 25 mm. Untuk profil las terkontrol yang sama tetapi ketebalannya lebih besar, perlu menggunakan koreksi efek skala. Kurva X' dapat digunakan untuk profil las tanpa kontrol, tetapi sesuai dengan profil dasar standar pelat (ANSI/AWS) dan memiliki ketebalan cabang sambungan kurang dari 16 mm Sketsa sambungan las yang menggunakan weld profile control ditunjukkan pada Gambar 2.5. Untuk profil pelat yang sama tetapi ketebalannya lebih besar, perlu menggunakan koreksi efek skala. Adapun rumus koreksi efek skala diberikan sebagai berikut :

Tegangan Izin =
$$So = \left\{\frac{t}{to}\right\}^{-0.25}$$
 (2.2)

Dengan :

- S_o : tegangan izin dari kurva S-N
- t : ketebalan member cabang
- to : ketebalan batas cabang

Gambar 2.5 Sketsa sambungan las yang menggunakan weld profile control (a) dan yang tidak menggunakan weld profile control (b)

untuk member yang berada dibawah permukaan air laut dan terdapat perlindungan katodik serta amplitudo yang konstan, batas ketahanan terhadap *fatigue* (*endurance limit*) terjadi sampai 2 x 10^8 siklus. Sambungan didaerah *splash zone* dapat diabaikan pada perhitungan *fatigue* karena beban siklik yang terjadi akibat *sea states* dianggap tidak signifikan. Untuk sambungan yang mengalami beban siklik dengan amplitudo berubah seperti yang umumnya terjadi pada beban lingkungan, batas ketahanan terhadap *fatigue* dapat diasumsikan sebesar 10^7 untuk kurva X dan 2 x 10^7 untuk kurva X'. Kurva X dan X' digunakan dengan rentang tegangan *hot spot* yang sesuai dengan *Stress Concentration Factor* nya.

2.2.5.2 Aturan Miner

Kurva S-N hanya menyediakan informasi untuk pembebanan dengan amplitudo konstan. Untuk pembebanan lingkungan dengan amplitudo yang bervariasi, kurva S-N dilengkapi dengan peraturan yang disebut aturan Miner. Aturan ini memungkinkan
perhitungan kerusakan *fatigue* (D) dengan beberapa amplitudo pembebanan berbeda. Konsep kerusakan *fatigue* adalah dasar dari peraturan ini.

Kerusakan *fatigue* (D) untuk join yang mengalami pembebanan dengan amplitudo konstan dapat dirumuskan secara sederhana sebagai berikut :

$$\mathbf{D} = \frac{n}{N} \tag{2.3}$$

Dengan :

- D : Kerusakan dalam 1 tahun
- n : Jumlah siklus pada rentang tegangan yang bekerja
- N : Jumlah siklus pada rentang tegangan yang diizinkan sesuai kurva S-N

Apabila join mengalami pembebanan dengan amplitudo yang bervariasi, siklus pembebanan dapat dibagi menjadi beberapa grup yang memiliki rentang tegangan yang sama. Kerusakan fatigue yang terjadi adalah penjumlahan dari kerusakan fatigue dari masing-masing grup. Aplikasi dari Aturan Miner dapat dirumuskan sebagai berikut :

$$\mathbf{D} = \sum_{i=1}^{m} \frac{n_i}{N_i} \tag{2.4}$$

Dengan :

- D : Kerusakan dalam 1 tahun
- ni : Jumlah siklus pada rentang tegangan yang bekerja pada grup ke-i
- Ni: Jumlah siklus pada rentang tegangan grup ke-i yang diizinkan sesuai kurva S-N
- m : Jumlah pembagian grup rentang tegangan

Kegagalan sambungan struktur akan terjadi apabila nilai persamaan Plamgren-Miner diatas lebih dari 1.

2.2.5.3 Faktor Konsentrasi Tegangan

Pada kondisi tegangan yang kompleks, terkadang tidak begitu pasti tegangan mana yang harus digunakan untuk kurva S-N. Untuk itu sebuah efek konsentrasi tegangan dapat digunakan pada perhitungan tegangan berupa SCF. *Stress Concentration Factor* (SCF) adalah perbandingan antara tegangan didaerah *hot spot* dengan tegangan nominal pada penampang. Faktor ini dipengaruhi oleh besaran-besaran dari sambungan, konfigurasi sambungan, dan *load* *path* gaya. Tegangan daerah *hot spot* adalah tegangan di sekitar diskontinuitas struktur seperti ditunjukkan pada Gambar 2.6.

Gambar 2.6 Ilustrasi daerah yang mengalami tegangan hot spot pada sambungan

Stress Concentration Factor diperoleh dari analisis elemen hingga, pengetesan model, atau persamaan empiris tertentu. Terdapat beberapa pendekatan empirik untuk menentukan besaran SCF pada *brace* dan *chord*. Salah satu persamaan SCF yang sering digunakan adalah persamaan Efthymiou sebagai berikut:

1. SCF akibat beban aksial

$$SCF Chord = 1.45 c \tag{2.5}$$

SCF Brace = 1+
$$\left[0.65\beta\tau^{0.4}\gamma^{(1.09-0.77\beta)}(sin\theta)^{(0.06\gamma-1.16)}\right]$$
 (2.6)

2. SCF akibat momen in-plane

SCF *Chord* =
$$\gamma \tau \beta (1.7 - 1.05\beta^3) (sin\theta)^{1.6}$$
 (2.7)

SCF Brace =
$$\tau^{(-0.54)}\gamma^{(-0.05)}(0.99 - 0.47\beta + 0.08\beta^4)SCF chord$$
 (2.8)

3. SCF akibat momen out-plane

SCF Chord =
$$\gamma^{0.2}\tau \{2.65 + 5(\beta - 0.65)^{0.2}\} + \tau\beta(0.5Ca - 3)sin\theta$$
 (2.9)

SCF Brace =
$$3 + \gamma^{1.2} \{ 0.12 \exp(-4\beta) + 0.011\beta^{0.2} - 0.045 \} + \tau \beta (0.2Ca - 1.2)$$
 (2.10)

Dengan parameter-paramater pada joint yang ditunjukkan pada Gambar 2.7.

$$\beta = d/D$$
 $a = 2L/D$ $\gamma = D/2T$

$$\tau = t / T$$
 $\zeta = g / D$

Gambar 2.7 Parameter Utama Tubular Joint

(sumber. API RP 2A, 21st edition, American Petroleum Institute, 2005)

Keterangan :

θ	= Sudut Brace (dari Chord)	g	= Gap
t	= Tebal Brace	Т	= Tebal Chord
d	= Diameter Brace	D	= Diameter Chord

2.2.5.4 Dynamic Amplification Factor (DAF)

Dalam ilmu dinamika struktur dinyatakan bahwa setiap benda atau struktur seperti *fixed* offshore platform memiliki periode/frekuensi natural tersendiri tanpa adanya gaya eksternal. Sehingga apabila terdapat gaya eksternal terhadap suatu struktur berupa beban siklis yang juga memiliki periode tersendiri mendekati periode naturalnya, maka dipastikan terdapat potensi terjadinya resonansi dari struktur tersebut. Resonansi tersebut menyebabkan adanya amplifikasi atau pembesaran beban yang terjadi pada struktur.

Dynamic Amplification Factor (DAF) harus dipertimbangkan untuk memasukkan pengaruh dari resonansi gelombang pada struktur. Semakin dekat periode gaya dengan periode alami struktur, maka nilai DAF akan semakin besar. Persamaan berikut ini digunakan untuk menghitung nilai DAF untuk masing-masing periode gelombang.

$$DAF = \frac{1}{\sqrt{(1 - \Omega^2)^2 + (2\xi\Omega^2)^2}}$$
(2.11)

Dimana :

rasio frekuensi
$$\Omega = \frac{\omega}{\omega_s} = \frac{\text{frekuensi gaya luar}}{\text{frekuensi natural}}$$

 $\omega = \frac{2\pi}{T_w}$, $T_s = \text{periode natural}$
 $\omega_s = \frac{2\pi}{T_s}$, $T_w = \text{periode gelombang (gaya luar)}$
rasio redaman $\xi = 0.05$

Dapat diketahui bahwa jika rasio T_s/T_w mendekati nilai 1, maka nilai DAF akan semakin besar. Hal ini logis sebab ketika periode gelombang T mendekati periode natural strukturnya akan terjadinya resonansi akibat adanya pembesaran beban struktur tersebut. DAF dapat memperbesar beban suatu struktur hingga tiga kali lipatnya untuk rasio redaman 0.05.

2.2.5.5 Metoda Analisis Fatigue

Berikut beberapa metoda analisis fatigue :

A. Metode *Deterministic*

Dalam metode ini, umum diterapkan karena lebih sederhana dibandingkan metode lain, energi gelombang laut disimulasikan berdasarkan frekuensi dan tinggi gelombangnya dengan jumlah kejadian tertentu secara terus menerus. Struktur akan merespons dan tegangan maksimum (*Hot Spot Stress* – HSS) dihasilkan berdasarkan frekuensi dan tinggi gelombang tertentu sehingga tiap kejadian dijumlahkan untuk mendapatkan total kerusakan atau hasil kelelahan selama umur struktur tersebut.

B. Fracture Mechanics

Fracture mechanics adalah suatu analisis penyelesaian dengan cara mendefinisikan kondisi lokal dari tegangan dan regangan di sekitar retakan yang dikorelasikan dengan parameterparemeter globalnya (beban-beban, geometri dan sebagainya) dimana retakan akan merambat. *Fracture mechanics* terbagi menjadi dua kategori, yakni *linear-elastic* (LEFM) dan *elasticplastic* (EPFM). LEFM adalah metode yang menunjukkan hubungan antara medan tegangan dan distribusinya di sekitar ujung retak dengan ukuran, bentuk, orientasi retak dan material properti akibat tegangan nominal yang dikenakan pada struktur. Metode ini menggunakan parameter K, atau SIF untuk menunjukkan karakteristik dari medan tegangan yang terjadi. EPFM lebih sering digunakan pada material yang bersifat *ductil*, dimana terjadi perilaku *elastic-plastic* pada material akibat pembebanan yang terjadi. Metode ini merupakan pengembangan dari LEFM, dengan penambahan analisa yang dapat menunjukkan deformasi plastis dari material.

A. Linear Elastic Fracture Mechanics (LEFM)

LEFM merupakan metode yang menunjukan hubungan antara medan tegangan dengan distribusinya pada sekitar ujung retakan berdasarkan ukuran, bentuk, orientisai dan material property. Parameter yang digunakan dalam metode LEFM adalah SIF dimana SIF merupakan *Stress Intensity Factor* yang digunakan untuk menentukan karakteristik dari suatu retakan yang terjadi pada *tubular joint*.

B. Elastic Plastic Fracture Mechanics (EPFM)

EPFM adalah lanjutan dari metode LEFM dimana yang dianalisa adalah bagian material yang mendekati batas *plastic* dari suatu material. Umumnya sering digunakan pada material yang bersifat *ductil* yang memiliki sifat elastis-plastis.

2.2.5.6 Stress Intensity Factor (SIF)

Parameter yang digunakan untuk *fracture toughness* salah satunya adalah *stress intensity factor* (SIF) yang menentukan kepecahan dari materi. SIF adalah satu fungsi tegangan, geometri, dan ukuran retak. Bentuk retak pada SIF dapat dilihat pada Gambar 2.8. SIF dapat diwakili dengan persamaan sebagai berikut:

$$K = \sigma_{nom} \sqrt{\pi \alpha} f_{(g)}$$
(2.12)

dengan:

K = *stress intensity factor* (ksi/in)

 α = panjang retak awal

 σ_{nom} = tegangan nominal

 $f_{(g)}$ = fungsi koreksi terhadap dimensi, geometrid an posisi retak

Berikut adalah beberapa mode pembebanan yang terjadi untuk menentukan SIF:

a. Mode I, merupakan keadaan yang tegangan tarik arahnya lurus dengan bidang rambatan retak sehingga mengakibatkan terjadi retakan tegak lurus dengan bidang retak.

- b. Mode II, disebut juga sebagai *in-plane shear* yang merupakan keadaan dimana tegagan geser searah dengan bidang rambat retak sehingga *displacement* sejajar dengan bidang retak.
- c. Mode III, dapat disebut *out-plane shear* yang merupakan kombinasi dari mode I dan II sehingga perambatan retak saling berjauhan dengan arah yang berbeda.

Gambar 2.8 Mode displacement pada permukaan retak (Barsom dan Rolfe, 1987)

Pada pengerjaan tugas akhir, penulis menggunakan mode I (*opening mode*). Dalam menentukan tegangan dan displasmen pada retak, maka dilakukan dengan persamaan Irwin yaitu:

$$\sigma_x = \frac{K_1}{\sqrt{2\pi r}} \cos\frac{\theta}{2} \left[1 - \sin\frac{\theta}{2} \sin\frac{3\theta}{2} \right]$$
(2.13)

$$\sigma_y = \frac{\kappa_1}{\sqrt{2\pi r}} \cos\frac{\theta}{2} \left[1 + \sin\frac{\theta}{2} \sin\frac{3\theta}{2} \right]$$
(2.14)

$$\sigma_z = v \big[\sigma_x + \sigma_y \big] = 0 \tag{2.15}$$

$$\tau_{xy} = \frac{\kappa_1}{\sqrt{2\pi r}} \sin\frac{\theta}{2} \cos\frac{\theta}{2} \cos\frac{3\theta}{2}$$
(2.16)

$$\tau_{xy} = \tau_{yz} = 0 \tag{2.17}$$

dengan :

- σ_x = tegangan normal (MPa)
- τ_{xy} = tegangan geser bidang x arah sumbu y (MPa)
- r = jarak *cracktip* dengan *node* yang ditinjau (m)
- θ = sudut antara node yang ditinjau dengan sumbu x (degree)

20

Pada perhitungan retak menggunakan *semi-eliptical* yang memiliki persamaan SIF sebagai berikut:

$$K_1 = 1.12\sigma \sqrt{\pi \frac{a}{\varrho}} M_k$$
(2.18)

Nilai dari Q dapat ditentukan dengan menggunakan grafik sesuasi Gambar 2.9 dengan menghubungkan nilai a/2c dan σ/σ_{ys} .

$$M_k = 1.0 + 1.2 \left(\frac{a}{t} - 0.5\right) \tag{2.19}$$

Keterangan:

K₁ = *Stress Intensity Factor*

Q = Faktor koreksi *front free surface*

M_k = Faktor koreksi *back free surface*

a = Kedalaman retak

t = Ketebalan material

Gambar 2.9 Grafik perbandingan a/2c dan σ/σ ys (Barsom dan Rolfe, 1987)

2.2.5.7 Fracture Toughness (K_{1C})

Fracture toughness merupakan kemampuan material untuk menahan beban atau deformasi yang terjadi akibat retak dengan memperhatikan faktor cacat material, geometri material, kondisi pembebanan, dan tentunya property material yang digunakan. Pengertian

yang lebih mudah fracture toughness bisa disebut sebagai ketangguhan retak suatu material untuk mengevaluasi kemampuan komponen yang mengandung cacat untuk melawan *fracture* (pecah/patah).

Besarnya nilai *fracture toughness* dipengaruhi oleh ketebalan suatu material, semakin tebal suatu material maka nilai fracture toughness akan semakin besar akan tetapi jika tebal material melebihi batas kritis maka akan menyebabkan nilai fracture toughness cenderung konstan. Ketebalan suatu material dipengaruhi oleh kondisi pembebanan, jika beban yang diberikan merupakan *plane strain* (regangan/tarikan) maka akan membutuhkan nilai ketebalan yang lebih besar sedangkan jika beban yang diberikan merupakan *plane strain* (tekanan) maka membutuhkan nilai ketebalan yang relatif lebih kecil. Grafik perbandingan nilai tebal material dan *fracture toughness* ditunjukkan pada Gambar 2.10.

Gambar 2.10 Perbandingan nilai tebal material dan fracture toughness

2.2.5.8 **Perambatan Retak** (*Crack Propagation*)

Pada kegagalan akibat retakan ditandai dengan munculnya retak awal atau disebut *initial crack*. Pada tahap ini menjadi indikasi awal terjadinya kegagalan struktur. Perjalanan retakan ini terus berlanjut dengan diikuti perambatan retak yang diakibatkan tegangan geser (*micro crack growth stage*) yang terus merambat sehingga didominasi oleh adanya tegangan tarik (*macro crack growth stage*) sampai sisa penampang komponen tidak mampu lagi mendukung tegangan kerja hingga patah (*final fracture*). Gambar 2.11 menunjukan wilayah perambatan retak sesuai Rolfe, 1999.

Region I : perambatan retak pada region ini menunjukkan karakteristik "*fatigue treshold*" yang merupakan fluktuasi kenaikan nilai *stress intensity factor* dengan parameter ΔK_{th} . Nilai ΔK harus lebih besar dari nilai ΔK_{th} untuk memungkinkan terjadinya perambatan retak.

Nilai da/dN antara region I dan region II adalah :

$$\frac{da}{dN} = c(\Delta K^m - \Delta K + h^m) \tag{2.20}$$

Region II : perambatan-perambatan retak mulai terjadi. Kecepatan perambatan retak dapat dihitung menggunakan hukum Paris-Erdogan:

$$\frac{da}{dN} = c(\Delta K)^m \tag{2.21}$$

Nilai da/dN antara region II dan region III (bila efek R diperhitungkan) adalah:

$$\frac{da}{dN} = \frac{\Delta K^2}{4\pi\sigma_Y} \left\{ \frac{(\Delta K - \Delta K + h)(1-R)}{(1-R)K_C - \Delta K} \right\} \frac{1}{2}$$
(2.22)

dengan:

da/dN	= kecepatan perambatan retak

 ΔK = range faktor intensitas tegangan

R = rasio tegangan (min/max)

Gambar 2.11 Kurva perambatan retak (Barsom dan Stanley, 1999)

2.2.5.9 Kedalaman Retak Kritis

Panjang kedalaman retak yang telah melewati nilai retak kritis menunjukan struktur tersebut mengalami kelelahan. Pada matematis, dapat ditulis dengan rumus sebagai berikut:

$$a_{cr} = \left(\frac{KIC}{\sigma max\sqrt{\pi}}\right)^2 \tag{2.23}$$

2.2.5.10 Analisa Umur Kelelahan

Hasil perhitungan perambatan retak ini umumnya ditunjukkan sebagai umur kelelahan dari struktur yang ditinjau. Dengan memberikan masukan berupa besar retak awal dan retak akhir akan diketahui jumlah batas siklus yang masih aman dengan mengintegralkan persamaan laju keretakan berikut :

$$N = \int_{a_0}^{a_f} \frac{da}{C(\Delta K)^m}$$
(2.24)

dengan:

 a_0 = panjang retak awal (*initial crack*)N= Jumlah cycleaf= panjang retak akhir (*final crack*) ΔK = perubahan stress intensity factorC dan m= konstanta material

BAB III

METODOLOGI PENELITIAN

3.1 **Diagram Alir Penelitian**

Alur penelitian yang digunakan dalam pengerjaan tugas akhir ini ditunjukkan pada Gambar 3.1.

Gambar 3.1 Diagram Alir Pengerjaan Tugas Akhir

Gambar 3.1 Diagram Alir Pengerjaan Tugas Akhir (Lanjutan)

3.2 Penjelasan Diagram Alir

Berikut penjelasan diagaram alir yang digunakan dalam pengerjaan tugas akhir ini :

1. Studi Literatur

Pada tahap ini penulis melakukan pembelajaran dan pengumpulan literatur yang digunakan sebagai referensi pengerjaan tugas akhir.

2. Pengumpulan Data

Pengumpulan data dilakukan oleh penulis dengan tujuan menunjang dalam menganalisa studi kasus yang dapat diambil dari data yang telah dikumpulkan seperti data struktur, lingkungan, dan inspeksi sebelumnya.

3. Permodelan Global Struktur

Permodelan struktur digunakan sebagai objek penelitian tugas akhir yang dimodelkan menggunakan perangkat lunak SACS 5.7 V8i.

4. Validasi Berat Struktur

Validasi dilakukan untuk meninjau ulang struktur apakah sudah memenuhi kesamaan atau tidak.

5. Analisa In-place

Pada tahap ini, penulis melakukan analisa terhadap model struktur untuk menentukan kondisi tiap *member* pada tiap pembebanan yang diterima struktur.

6. Validasi Kekuatan Member, *Joint*, dan *Safety Factor Pile* Apakah sudah memenuhi UC ?

Tahap ini dilakukan untuk melihat nilai dari *member*, *joint*, dan *safety factor* dari *pile* yang tertinggi.

7. Perhitungan Umur Kelelahan

Perhitungan umur kelelahan ini menggunakan mmetode *cumulative damage* yang dibantu oleh perangkat lunak SACS.

8. Permodelan Lokal Joint

Melakukan permodelan terhadap sambungan *tubular* pada *joint* menggunakan permodelan 3D dengan *software SolidWorks*.

9. Penentuan Titik Acuan

Penentuan dilakukan dengan mengambil titik yang dapat mewakili daerah tegangan maksimum tersebut.

10. Validasi Titik Acuan Retak

Melakukan validasi titik acuan retak dengan menghitung nilai K/ SIF. Perhitungan ini menggunakan *software* ANSYS dan divalidasi dengan perhitungan manual nilai K.

11. Menghitung Kedalaman Retak Kritis

Pada tahap ini, penulis melakukan perhitungan kedalaman kritis untuk mengetahui kemampuan struktur setelah mengalami retakan.

12. Permodelan Retak Semi-eliptical

Penulis melakukan permodelan dengan menggunakan jenis retak semieliptical yang sudah tervalidasi pada titik acuan.

13. Perhitungan SIF Mengunakan Software ANSYS

Pada perhitungan ini, penulis akan mengerjakan secara manual dan program ANSYS.

14. Perhitungan Cepat Rambat Retak

Perhitungan ini dilakukan dengan 2 metode yaitu secara manual dan *running* menggunakan *software* ANSYS.

15. Menghitung Umur Kelelahan

Pada tahap ini, akan didapatkan 2 umur kelelahan yaitu *cumulative damage* dan *fracture mechanic*.

16. Kesimpulan dan Laporan

Kesimpulan akan didapatkan setelah analisis selesai dan menjawab semua rumusan permasalahan, lalu hasil yang ada dimasukkan ke dalam laporan analisis tersebut.

3.3 Data Struktur Bravo Wellehead Platform

Objek studi yang digunakan oleh penulis adalah Struktur *Bravo Wellhead Platform* yang ditunjukkan pada Gambar 3.3. *Bravo Wellhead Platform* adalah jaket konvensional berkaki empat.

Gambar 3.2 Struktur Bravo Wellhead Platform

Merupakan platform penghasil minyak yang cukup besar pada awalnya dan bersifat *natural flow*. Terdapat 7 sumur di platform BW tetapi hanya BW-04 yang masih bekerja dan yang lainnya di nonatifkan seperti ditunjukkan pada Gambar 3.3. Bagian atas memiliki 2 level dengan dimensi rencana keseluruhan 58 ft dengan 44 ft. Jarak kaki dek adalah 35 ft sampai 40 ft. Ada 9 slot konduktor, 8 slot konduktor yang ada dan 1 slot konduktor masa depan dengan diameter 30 inci. Platform ini dirancang untuk mengakomodasi *Jack-Up Rig* untuk aktivitas pengeboran dan derek / krane untuk penanganan material.

Gambar 3.3 Schematic diagram lapangan poleng

3.3.1 Lokasi Platform

Struktur Bravo Wellhead Platform terletak di West Madura Offshore. Koordinat Bravo Wellhead Platform adalah:

- *Latitude* : 6° 41' 09.08" Selatan
- *Longitude* : 112° 54' 36.34" Timur

3.3.2 Orientasi Platform

"*Platform North*" harus didefinisikan sebagai arah utara sumbu utama struktur. Perbedaan sudut antara "*Platform* Utara" dan "*True North*" adalah 170,7 derajat searah jarum jam seperti ditunjukkan pada Gambar 3.4.

Gambar 3.4 Arah Orientasi Offshore Fixed Platform

3.3.3 Kedalaman Air

Datum referensi adalah *Mean Sea Level*. Kedalaman air di lokasi adalah 180,0 ft atau sama dengan 54,864 meter.

3.3.3.1 Jacket

Jacket terdiri dari 4 kaki dengan dua *double battered leg* dan dua *single battered leg*, dengan 30" *Piles* dalam kaki jacket. Memiliki 5 (lima) *jacket horizontal frame, including the jacket walkway*. Jaket ini dirancang untuk menampung sump caisson 20 inci dan 3 (tiga) *risers*, terdiri dari 2 unit 6,625 inci OD dan 1 unit 12,75 inci tabung OD. Elevasi *jacket frame* ditunjukkan pada Gambar 3.5.

Gambar 3.5 Bravo Wellhead Platform Tampak Isometri

3.3.3.2 Deck

Bagian atas *Bravo Wellhead Platform* didukung dengan 4 kaki dek yang terintegrasi dengan pelat balok. *Topside* dek memiliki 2 dek tingkat yang terletak di

- Cellar Deck : EL. (+) 29'-0"
- Sub CellarDeck : EL. (+) 18'-7"

EL. (+) 16'-8"

Flare boom dipasang di sisi timur platform el. (+) 29'-0 ". Tampilan sisi atas Bravo *Wellhead Platform* dapat ditunjukkan pada Gambar 3.6 dan tampilan penambahan *sub-cellar deck* ditunjukkan pada Gambar 3.7.

Gambar 3.6 Bravo Wellhead Platform Tampak Atas

Penambahan Sub-cellar deck baru

Gambar 3.7 Lokasi Mezzanine deck baru di Bravo Wellhead Platform

3.4 **Parameter Desain**

3.4.1 Faktor Kontingensi

Kontingensi berat berikut harus digunakan untuk mencakup berat apapun atau beban bervariasi atau ketidakakuratan dalam teknik perancangan ditujukan pada Tabel 3.1.

Tabel 3.1 Faktor Kontingensi (Berdasarkan Offshore Standar DNV-OS-H102)

Deskripsi	Kontingensi (%)
Structural Self weight	3

3.4.2 Properti Material

Sifat mekanis bajanya adalah:

- Young modulus E = 29,000 ksi,
- Shear modulus G = 11,600 ksi
- *Poisson ratio* v = 0.3
- Volumetric mass $\rho = 490 \text{ lb/ft}_3$

Semua baja struktural yang digunakan dalam penelitian ini harus didasarkan pada spesifikasi berikut dan kekuatan hasil yang sesuai, ditunjukkan pada Tabel 3.2:

Tabel 3.2 Spesifikasi Baja Struktural

Deskripsi	Spesifikasi	Yield Stress (ksi)	
Semua Tubular	ASTM A36	36	

3.4.3 Tegangan Ijin

Merangkum tegangan ijin yang dipertimbangkan untuk setiap analisis menurut API RP 2A-WSD, ditunjukkan pada Tabel 3.3 :

Tabel 3.3 Des	ain Tegangan	yang	Bekerja
---------------	--------------	------	---------

Tipe Analisis	Kondisi	Tegangan Ijin Yang disyaratkan sesuai Pedoman
Analisis	Operasi 1 Tahun	Basic AISC-API
Struktural	Badai 100 Tahun	Basic AISC-API + 1/3 increase

3.4.4 Data Lingkungan

3.4.4.1 Water Level

Berikut Tabel 3.4 water level yang harus dipertimbangkan dalam perencanaan desain.

Deskrinsi	In-place		
Deskipsi	Operasi (ft)	Badai (ft)	
Mean Sea Level (MSL)	180	180	
Storm Surge (SS)	1.12	2.77	
Highest High Water Level (HHWL)	2.56	2.56	
Lowest Low Water Level (LLWL)	-3.38	-3.38	
Max. Water depth (MSL+SS+HHWL)	183.68	185.33	
Min. Water depth (MSL+LLWL-Storm surge)	175.50	173.85	

Tabel 3.4 Platform Water Level

3.4.4.2 Kecepatan Angin

Tabel 3.5 menunjukkan kecepatan yang digunakan untuk desain struktural 1 jam angin berkelanjutan akan digunakan untuk beban angin perancangan.

Tabel 3.5 Kecepatan Angin

Angin		Periode Ulang			
8	1 Tahu	nan	100 Tahunan		
1-hour wind	25.84 M/hour	11.55 m/s	38.01 M/hour	16.99 m/s	

3.4.4.3 Gelombang dan Arus

Untuk analisa *In-Place* beban gelombang dan arus dihasilkan dalam 8 arah pembebanan (0°, 45°, 90°, 135°, 180°, 225°, 270° dan 315°). Beban gelombang dan arus untuk kondisi operasi dan badai untuk setiap arah dihasilkan oleh SACS dalam *single load case*. Beban gelombang dihasilkan untuk kedalaman air minimum dan maksimum. Teori gelombang untuk perhitungan struktural menggunakan teori gelombang *Airy* untuk gelombang operasi 1 tahun dan menggunakan teori gelombang *Stoke's order 5th* untuk gelombang badai 100 tahun. Tabel 3.6 menampilkan data desain gelombang dan Tabel 3.6 menampilkan data *Platform*.

Tabel 3.6	Data	Gelom	bang
-----------	------	-------	------

Parameter Gelombang	Periode Ulang			
Turumeter Gerombung	1-Ta	hun	100-Tahun	
Hmax (ft/s)	12.34 ft/s	3.76 m/s	30.05 ft/s	9.16 m/s
Periode (s)	5.81 sec		9.15	sec

Tabel 3.7 Data Arus

Current	1-yr Return Period		100-yrs Return Period	
	ft/s	m/s	ft/s	m/s
Current El. 0% (Surface)	1.96	0.60	3.37	1.03
Current El. 10%	1.93	0.59	3.32	1.01
Current El. 20%	1.90	0.58	3.27	1.00
Current El. 30%	1.86	0.57	3.20	0.98
Current El. 40%	1.82	0.56	3.14	0.96
Current El. 50%	1.77	0.54	3.05	0.93
Current El. 60%	1.72	0.52	2.96	0.90
Current El. 70%	1.65	0.50	2.84	0.87
Current El. 80%	1.56	0.47	2.68	0.82
Current El. 90%	1.41	0.43	2.43	0.74
Current El. 100% (Bottom)	1.24	0.38	2.13	0.65

Catatan: Data kedalaman gelombang dan kedalaman air meter (m) dan diubah menjadi *feet* (ft). Satuan data kecepatan saat ini adalah meter per detik (m / s) dan diubah menjadi *feet* per detik (*feet* / detik).

3.4.4.4 Marine Growth

data *marine growth* terakhir dari Laporan Akhir Inspeksi Bawah Air *Platform Bravo Wellhead* Poleng oleh PT AB, 2015. *Marine Growth* yang ditunjukkan pada Tabel 3.8 telah dipertimbangkan dari *mudline* ke permukaan dan diaplikasikan dengan ketebalan maksimal dari masing-masing elevasi berdasarkan laporan *Underwater Inspection*. Kepadatan marine growth adalah 83,33 lb / ft³.

Flovosi () ft	Upper Zone jarak dari	Maximum Marine
Elevasi (-) It.	Mudline (ft.)	Growth Thickness (in)
MSL	180	2.0 *)
5	175	2.0 *)
10	170	3.5
15	165	2.0 *)
20	160	4.0
25	155	3.0
40	140	3.0
55	125	3.0
70	110	3.5
85	95	3.0
100	80	3.0
115	65	3.0
130	50	2.0
145	35	1.50
160	20	1.50
175	5	0.25

Tabel 3.8 Marine Growth Profile

Catatan: *) Masukan sebagai *marine growth* untuk disain (2 inch), tidak ada *marine growth* untuk elevasi ini.

Ketebalan *Marine growth* dimodelkan dalam software SACS sesuai dengan data pada Tabel 3.8. Member dengan ketebalan *marine growth* lebih besar dari 2 inch berdasarkan inspeksi bawah air merekomendasikan untuk dibersihkan. Member dengan ketebalan *marine growth* yang lebih tebal akan memiliki dampak gelombang yang lebih besar dan mempengaruhi hasil analisis kelelahan.

3.4.4.5 Current Blockage Factor

Kecepatan saat ini di sekitar platform berkurang dari "arus bebas" yang ditentukan. Berdasarkan API Sect. 2.3.1.b, faktor untuk mengurangi "arus bebas" saat ini ditunjukkan pada Tabel 3.9 di bawah ini:

Number of Legs	Heading	Factor
	end-on	0.80
4	diagonal	0.85
	broadside	0.80

Tabel 3.9 Current Blockage Factor

3.4.4.6 Faktor Kinematika Gelombang

API memungkinkan penggunaan faktor kinematika gelombang di kisaran :

- a. 0.85 0.95 untuk badai tropis
- b. 0.95 1.00 untuk badai tropis ekstra

dan faktor kinematik gelombang 1.00 digunakan untuk analisis kelelahan. Faktor 1.00 digunakan untuk analisis inplace kondisi operasi dan diterapkan secara otomatis oleh program *SACS SEASTATE*. Dan faktor 0.90 digunakan untuk analisis inplace kondisi badai.

3.4.4.7 Data Sebaran Gelombang

Umur kelelahan struktur sangat dipengaruhi oleh data gelombang yang diterima oleh struktur. Data ini dapat dilihat pada Tabel 3.10.

Significant	Periode		Number of Waves Occurrences								
Wave	Gelomba	N NE		E	SE	S	SW	W	NW	Total	
Height (ft)	ng (s)	315°	270°	225°	180°	135°	90°	45°	0 ⁰		
0,8200	2,541	82806	292128	4495824	11263740	362378	858938	67307182	1317144	85980140	
2,4605	4,123	5670	11802	1272606	3975144	41310	122702	59298466	22034	64749734	
4,1009	4,789	910	3064	180574	317748	8516	13430	13747482	2742	14274466	
5,7413	5,224	0	2	45236	98292	524	198	2370530	24	2514806	
7,3817	5,556	0	0	10106	19442	60	10	456690	0	486308	
9,0221	5,819	0	0	2128	3976	0	4	76350	0	82458	
10,663	6,034	0	0	422	4384	0	0	11924	0	16730	
12,303	6,201	0	0	54	1450	0	0	2474	0	3978	
Tot	al	89386	306996	6006950	15684176	412788	995282	143271098	1341944	168108620	

Tabel 3.10 Jumlah Kejadian Gelombang Individual 100 Tahunan di Sekitar Platform

3.4.5 Live Load

Live load diterapkan langsung pada *cellar deck, sub-cellar deck, jacket walkway,* dan *access platform baru*. Beban ini diterapkan di area dek kosong dengan peralatan. Beban hidup berikut dipertimbangkan untuk analisis platform selama kondisi operasi. sedangkan untuk kondisi badai, pengurangan 25% dipertimbangkan.

- *Live load on cellar deck* : 100 psf
- *Live load on sub-cellar deck* : 75 psf
- *Live load on jacket walkway* : 75 psf
- Live load on access platform : 50 psf

3.4.6 Splash Zone

Area splash zone berada pada elevasi antara (-) 9'-6" dan (+) 12'-0".

3.4.7 Corrosion Allowance

Semua member di splash zone harus memiliki ketebalan dinding tambahan 1/8 inci untuk analisa inplace sebagai antisipasi terhadap korosi yang mungkin terjadi.

3.4.8 Dynamic Amplification Factor (DAF)

Dynamic Amplification Factor adalah bilangan berdimensi yang menggambarkan berapa kali defleksi atau tekanan harus dikalikan dengan defleksi atau tekanan yang disebabkan oleh beban statis saat beban dinamis diterapkan pada struktur.

3.4.9 Desain Umur Kelelahan

Platform ini dipasang pada tahun 1977 dan dimaksudkan untuk memiliki masa pakai 10 tahun. Sudah beroperasi selama 41 tahun terakhir, membuatnya memiliki masa kerja 10 tahun yang tersisa. Oleh karena itu, umur layan minimum platform berdasarkan *API Recomended Practice 2A-WSD* tahun 2000 dihitung dengan rumus sebagai berikut:

 $L \geq (SF1 \times L1) + (SF2 \times L2)$

Joint fatigue life $\geq (1 \text{ x Umur Operasi}) + (2 \text{ x Umur Perpanjangan yang direncanakan})$

Joint Fatigue life $\geq (1 \times 41) + (2 \times 10)$

Maka dari itu, Joint Fatigue Life harus bisa bertahan lebih dari 61 tahun

BAB IV

ANALISIS DAN PEMBAHASAN

4.1 **Permodelan Struktur**

Analisis global platform dilakukan dengan menggunakan software SACS versi 5.7. Gambar 4.1 dibawah ini menunjukkan letak dari *center of gravity* (titik berat) dari struktur *jacket*. Letak titik berat struktur didapatkan dari hasil analisis SACS 5.7 pada file *saclst.bwplatform* pada bagian *summary of seastate generated dead and bouyancy loads*.

Gambar 4.1 Titik Letak Berat Struktur

Tabel 4.1 menampilkan optimasi COG bertujuan untuk menjadikan struktur sestabil mungkin. Jadi semakin mendekati nol nilai X_0 , Y_0 , Z_0 maka semakin stabil berdasarkan *Handbook of Offshore Engineering – Chapter* 10. Kemudian untuk validasi *selfweight* DNV merekomendasikan toleransi dibawah 3% seperti ditunjukkan pada Tabel 4.2 dibawah ini.

Tabel 4.1 Validasi COG Berdasarkan Offshore Standard DNV-OS-H102

Letak titik berat struktur (Center of Gravity)								
Sumbu		Darbitungan Manual						
Koordinat	Output SACS 5.7	Pernitungan Manuai						
Х	0,46	0,46						
Y	1,19	1,19						
Z	-75,64	-75,64						

Tabel 4.2Validasi Selfwight Berdasarkan Offshore Standard DNV-OS-H102,
January 2012, Page 18 - Sec.3

Validasi	Report	Model	Selisih	
Selfweight	810,17	828,68	2,23%	

Struktur telah diinstal selama 41 tahun, dan tentunya struktur ini akan mengalami degradasi pada ketebalannya. Pada Tabel 4.3 ditunjukkan data ketebalan pada struktur sebelum beroperasi (tahap desain) dan sesudah beroperasi selama 41 tahun. Data ini diambil dari *report "Struture BW Platform Comple Inspection* tahun 2018".

Elevasi (feet)	Readings mm (setelah 41 Tahun)	Initial mm (awal)	Observasi
MSL	25.8	27.38	Splash Zone
11102	,0	27,00	Sleeve
-15	25.6	26 547	Boat landing
15	23,0	20,317	supt.
-30	25,8	26,116	Node
-55	12,9	14,479	Between node
-75	25,2	25,2	Node
-100	12,5	13,763	Between node
-125	25,5	25,816	Node
-150	13,0	13,316	Between node
-175	25,6	25,4	Node

Tabel 4.3 Perbandingan Wall Thickness

4.1.1 **Permodelan** Jacket

Untuk model analisis struktur platform *Bravo Wellhead*, tersedia gambar umum asbuild menyediakan OD (Outside Diameter) member jaket. Data ketebalan struktur didapat dari laporan *inspkesi ultrasonic wall thickness* Bravo Wellhead Platform.

Keempat kaki *jacket* (*leg*) ini membentuk suatu segiempat dengan dimensi yang berubah hingga *mudline*, dengan kemiringan leg 1:14. Dimensi keempat *leg* sama pada bentang kedalaman (z) -14.813 ft hingga -180 ft yaitu sebesar 34" OD x 1" WT. Dibagian dalam *leg* terdapat *pile* sebesar 30" OD x 0.75" WT. *Pile* tersebut dipancang / penetrasi sampai kedalaman 220 ft di bawah *mudline* seperti ditunjukkan pada Gambar 4.2

Gambar 4.2 Permodelan jacket leg dan Input data dimensi tubular pada tiap elevasi

Kaki *jacket* memiliki 5 (lima) penahan lateral (*horizontal framing*) yaitu pada elevasi (+) 12 ft, (-) 30 ft, (-) 75 ft, (-) 125 ft, dan (-) 180 ft seperti ditunjukkan pada Gambar 4.3. Dimensi penahan lateral berbeda di setiap kedalaman yang bervariasi dari 15.75" OD – 18" OD. Struktur *jacket* untuk anjungan ini juga didukung oleh penahan vertikal tambahan yang bervariasi tiap level elevasinya. Untuk elevasi *jakcet level* 1 berbentuk *K-Brace Down*, Untuk elevasi *jakcet level* 2 berbentuk *Diagonal Up*, Untuk elevasi *jakcet level* 3 berbentuk *Diagonal Down*, Untuk elevasi *jacket level* 4 berbentuk *K-Brace Up*. *Bracing* ini berfungsi sebagai penguat struktur *jacket* dan juga sebagai pelindung peralatan *conductor* yang berada di bagian dalam *jacket*.

Gambar 4.3 Permodelan bracing di tiap elevasi jacket dan input dimensi baja tubular

Jaket terdiri dari 4 kaki, dengan piles 30 inch di kaki jaket. Memiliki 5 (lima) *jacket horizontal frame*, termasuk *jacket walkway*. Jaket ini dirancang untuk menampung *sump caisson* 20 inci dan 3 (tiga) *risers*, terdiri dari 2 unit 6,625 inci OD dan OD 12,75 inci. Detail lengkap struktur *jacket* ditunjukkan pada Gambar 4.4.

Gambar 4.4 Detail permodelan struktur Jacket Bravo Wellhead Platform

4.1.2 **Permodelan** *Topside*

Bagian atas memiliki 2 level dengan dimensi rencana keseluruhan 58 ft dengan 44 ft. Jarak kaki dek adalah 35 ft sampai 40 ft. *Platform* ini dirancang untuk mengakomodasi *Jack-Up Rig* untuk aktivitas pengeboran dan derek / krane untuk penanganan material seperti ditunjukkan pada Gambar 4.5. Bagian atas ini memiliki 2 *deck* tingkat yang terletak di:

1. Cellar Deck : EL. (+) 29'-0 "

Gambar 4.5 Detail model cellar deck dan input data member properties dari *data as build* (Autocad)

2. Sub-Cellar Deck : EL. (+) 18'-7 "

sales) 📑 🖻 릚	8	SACS(c) P	recede (x64): D:\	1\Tugas Akhir Bagus	Panuntun W	isuda 118 Aa	amiin\03 BWP\00 M	/lodel\01-Inpla	ice\Model	\sacinp.bw-	new-6oct2	016.orig.bak	c - Active Structure	_	- 0
	Home Dis	olay	Joint Member	Plate She	Il/Solid Property	Load	Weight	Environment	Options	Misc	Window	Help				
8	🔍 Find 🔍 Distance	_	% Relative X Intersection ↓	• +	vis Relative ★ Intersection	9	\$	🙈 Rename/Merg 😵 Merge Multip	e 🛄 Grid e 🚺 Mesh	4	Fixities Springs	A	8	🗠 Manual Design	-	• ×
Joint Propertie	🕎 Angle	Add	Re Along a Line to a	lative Absolut	* 👌 Move Joint Rela	ive • •	te Translate / Rotate	🚯 Reorder 🛛 Ed	t Member Gro	up AD2				Member name	0062-0064	× E
G	eneral		Add Joint		Move Joint		Ad	tions	Cormoni						of last month	
01	🔚 🖪 🖻 🤅) 2	党 🗢 🗢 🖑	Q 🖬 🕀 🖻	l 🗳 🖓 🖓 🖓) 🗇 🗇 🕻	000() 🖪 🕶 🖕	Current 1	~	Prev N	evi	Delete		es or last membe	er selecteu
Actin	e Structure								Number of 1			Ad	d Seament	General Offsets Br	ace Other	1
	_													Group label		Edit
									Group type Tu	bular (OD &	wT) ~	Reorde	r Segments	Length (ft) 💌	3.	
					× _×	. ×	x x	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	General Misce	aneous				A release		
		×	XX_X_X	×××××	Ă×Ĩ ↓	× *	<u>ès</u>	XXXXX						B release		
	×,,	x, x		* 7/	X AN A	× *	*	××.	Section label		⊒	E	dit	Buckling option	K factor	~
	XXX	~		× /×××	×		×	××	Outside diame	ter (in) 🗾	6.375			Ку		
	- AN	_			× ×	×× × ×	×	X	Wall thickness	: (in) 🔳	0.155			Кz		
		ČĘ,			× × ×	**	₩£	×	E (ksi) 🗾		29000.		_	Lb (ft) 💌		
		1			X X X	×^	×	×××	G (ksi) 🗾		11600.		_	Reference joint		Select
				<u></u>		Ž.	×	*	Fy (KSI)		36.		_	Orient. angle (deg)	•	
		~		See 1	STA Z	27°	*	×	Density (Ib/Ita	비고	490.		_	Member type	Standard	~
						* *			Segment lengt	h (it) 🗾				Stress output	Default	\sim
						***			Tensile streng	th (ksi) 🗾				Reverse joints		
					*-				\$ 🗌 Flooded	Imember						
									Color		Select (Color Re	eset Color	Note: Enter an @ symbol	in any field whe	re that entry
								-			6 1		-	is to be removed for	r all selected me	mbers.
									opy group		. Segment	1 ~	Сору	Status		
					,			\$	 Common quan Status 	tities for all :	segments in t	he group.		Member 0062-0064 ha	s been selected.	
Z									Edit group AD2,	segment 1.				Member List	_	
X											Án	olu	Close	Save Load	Screen	
											Ар	PT	0,000	ОК	Apply	Close

Gambar 4.6 Detail model sub-cellar deck dan input data member properties dari *data as build* (Autocad)

Flare boom dipasang di sisi timur platform. el. (+) 29'-0 ".

Gambar 4.7 Detail lengkap Struktur *Topside Bravo Wellhead Platform* setelah dimodelkan berdasarkan data *as build* (*Autocad*)

4.1.3 **Permodelan** *Hydrocyclone's Support Structur*

Detail spesifikasi dari *hydrocyclone* yang dipindahkan dari cellar deck ke area subcellar deck ditunjukkan pada Tabel 4.4.

Deskripsi	Desain	Operasi	Dimensi
	Kapasitas Katup : 52 USGPM		
	Pressure : 260 Psig	Tekanan : 100 Psig	
	Temperature : 85 °F	Temperature : 85 °F	
	Orifice Area : - inch ²		
Hydrocyclone	Fluida : Gas Hydrocarbon		D 18 ft x 6 ft
PSV-404	Merek : Farris Engineering		7 inch
	Type : Conventional		
	Model : 26DA 33 - 120 / 1" x 1"		
	Nomor Seri : 433244 - 1 - KE		
	Tahun Pembuatan : 2000/2001		

Tabel 4.4 Detail Spesifikasi equipment *Hydrocyclone*

Gambar 4.8 Detail equipment tampak samping (South)

a. Perletakkan equipment Hydrocyclone Tampak Samping (South)

b. Perletakkan equipment Hydrocyclone Tampak Samping (West)

Gambar 4.9 Perletakkan Model Support Structure di Sub-Cellar Deck

Dengan mengacu pada basis desain maka untuk permodelan support struktur equipment Hydrocyclone seperti pada Gambar 4.9 diletakkan di area *sub-cellar deck* dengan menggunakan properti material M10 x 9.

4.2 Pembebanan

Struktur anjungan ini menerima berbagai macam kondisi pembebanan seperti berat sendiri, beban mati, beban hidup, dan beban lingkungan. Data pembebanan diambil dari gambar struktural *Bravo Wellhead Platform* dan parameter desain.

4.2.1 Beban Mati

Beban mati merupakan beban yang keberadaannya di platform bersifat permanen dan akan ada pada semua kombinasi pembebanan. Pada anjungan ini, yang termasuk beban mati adalah berat sendiri struktur, beban dek, dan beban tambahan.

4.2.1.1 Berat Sendiri (*Selfweight*) Struktur

Berat sendiri struktur diperhitungkan secara otomatis oleh SACS dengan memasukkan input yang diminta. Beberapa input data untuk perhitungan otomatis berat sendiri model struktur diantaranya:

- 1. Berat jenis baja, sebesar 7850 kg/m³.
- 2. Berat jenis air laut, sebesar 1025 kg/ m³ pada kondisi standar.
- 3. Kerapatan air untuk berat struktur nominal : $64,4 / 1,00 = 64,4 \text{ lb/ft}^3$

4.2.1.2 Beban Dek

Beban yang termasuk dalam beban dek adalah berat dari struktur dek dan berat dari semua *equipment* yang ada diatas dek seperti yang ditunjukkan pada Gambar 4.10. Seluruh beban dek dikategorikan kedalam beban mati karena *platform* ini hanyalah suatu sistem pendukung sehingga semua *equipment* yang ada diatas dek dianggap statis dan dianggap tidak ada beban hidup yang signifikan diatas dek.

Gambar 4.10 Load Condition 4 : Equipment Load (Existing) pada Cellar Deck (+) 29"-0'

4.2.2 **Beban Hidup**

Beban hidup merupakan beban yang keberadaan dan besarnya dapat berubah bergantung pada kondisi yang terjadi. Pada anjungan ini yang termasuk beban hidup adalah beban hidup *deck*, beban angin, beban gelombang, beban arus. Karena ketidakpastian beban hidup cukup besar maka pada perhitungannya, beban hidup harus diperhitungkan untuk berbagai arah dan diperhitungkan dengan faktor pengali tertentu. Analisis berikut menggunakan 8 arah (setiap 40°) untuk mendapatkan kondisi pembebanan yang menghasilkan kondisi paling berbahaya bagi struktur.

4.2.2.1 Beban Hidup pada Dek

Beban hidup pada dek dapat terjadi akibat adanya proses produksi pada dek, beban hidup diasumsikan merata pada lokasi-lokasi tertentu seperti yang ditunjukkan pada Gambar 4.11.

Gambar 4.11 Load Condition 13 : Live Load at Cellar Deck

4.2.2.2 Beban Angin

Beban angin bekerja pada paltform di bagian atas atau beban yang mengenai bagian atas platform yang ada di atas permukaan air laut. Daerah yang dianggap mengalami beban

angin adalah daerah di sekitar dek. Berdasarkan data parameter desain, perhitungan beban angin menggunakan data angin desain pada Tabel 3.5.

4.2.2.3 Beban Gelombang dan Arus

Beban gelombang dan arus merupakan beban lingkungan yang berasal dari pergerakan air laut. Data gelombang berupa tinggi gelombang maksimum dan periode gelombang telah diberikan pada Tabel 3.6. Data arus berupa kecepatan arus pada berbagai kedalaman telah diberikan pada Tabel 3.7.

1. Pemilihan Teori gelombang

Pemilihan teori gelombang dilakukan berdasarkan API RP2A 21th edition (WSD) untuk kondisi operasional dan kondisi ekstrem. Karena gelombang dan arus yang dihitung arahnya sejajar, maka perlu dihitung besarnya *apparent wave period*. Besarnya *apparent wave period* dapat dihitung dengan Gambar 4.12 apabila nilai $d/gT^2 > 0,01$.

a. Kondisi Operasional

Diketahui data sebagai berikut :

$$- d = 180 \text{ ft}$$

- g =
$$32,175 \text{ ft/sec}^2$$

- T =
$$5,81 \text{ sec}$$

- H =
$$12,34$$
 ft

$$\frac{d}{gT^2} = \frac{180}{32,175 x \, 5,81^2} = 0.168492 > 0,01$$

$$\frac{H}{gT^2} = \frac{12,34}{32,175 \, x \, 5,81^2} = 0.011361$$

Dengan memplot nilai d/gT^2 dan H/ gT^2 pada grafik Gambar 4.12, dapat disimpulkan bahwa bisa menggunakan Teori Gelombang *linear/airy*.

b. Kondisi Badai (Storm)

Diketahui data sebagai berikut :

-
$$d = 180 \text{ ft}$$

- g = $32,175 \text{ ft/sec}^2$
- T = 9,15 sec
- H = 30,05 ft

$$\frac{d}{gT^2} = \frac{180}{32,175 \times 9,15^2} = 0.067934 > 0,01$$
$$\frac{H}{gT^2} = \frac{12,34}{32,175 \times 9,15^2} = 0.004580$$

Dengan memplot nilai d/gT^2 dan H/ gT^2 pada grafik Gambar 4.12, dapat disimpulkan bahwa bisa menggunakan Teori Gelombang *Stokes* 5th Order.

Gambar 4.12 Validasi Teori Gelombang (API RP 2A-WSD tahun 2000)

2. Check Validitas Persamaan Gaya Hidrodinamik

API RP2A 21st edition (WSD) menyebutkan bahwa perhitungan gaya hidrodinamik akibat gelombang dan arus dapat menggunakan persamaan Morison apabila nilai perbandingan antara panjang gelombang dengan diamter elemen (D/ λ) lebih kecil dari 0,2.

a. Kondisi Operasional

Diketahui data sebagai berikut :

-
$$D = 34$$
" atau 2,5 ft

- g = 32,175 ft/sec²
- T = 5,81 sec

$$\lambda = \frac{gT^2}{2\pi} = \frac{32,175 \times 5,81^2}{2\pi} = 172,9462$$

 $\frac{D}{\lambda} = \frac{2,5}{172,9462} = 0,01445$

Karena nilai (D/ λ) = 0,01445 < 0,2 maka persamaan Morison dapat digunakan

b. Kondisi Operasional

Diketahui data sebagai berikut :

- D = 34" atau 2,5 ft
- g = 32,175 ft/sec²
- T = 9,15 sec

$$\lambda = \frac{gT^2}{2\pi} = \frac{32,175 \times 9,15^2}{2\pi} = 428,9444$$

 $\frac{D}{\lambda} = \frac{2,5}{428,9444} = 0,005828$

Karena nilai $(D/\lambda) = 0,005828 < 0,2$ maka persamaan Morison dapat digunakan.

Dengan input utama seperti tinggi gelombang, periode gelombang, arah, pemilihan teori gelombang, *wave kinematic factor*, dan kecepatan arus pada beberapa kedalaman air, maka SACS akan menghitung secara otomatis besarnya beban gelombang dan arus yang terjadi.

4.2.2.4 **Beban Equipment dan Perpipaan**

Berat semua peralatan, perpipaan, listrik, instrumen dll. Didefinisikan sebagai beban peralatan. Peralatan dan berat perpipaan digunakan untuk desain platform.

4.2.2.5 Rangkuman Berat (*Weight Summary*)

Tabel 4.5 dan Tabel 4.6 menunjukkan berat struktural yang dihasilkan selama analisis struktural untuk masing-masing kondisi operasi dan kondisi badai.
				Op	erating			
No.	Load Condition	Description	Net Weight (kips)	Weight Allowance	Gross Weight (kips)	SACS Output Weight (kips)		
BASIC LOAD CASE								
1	101	Self-weight (at Max. Water Depth for Operating Condition).	810,17	1,05	850.680	850.680		
2	102	Self-weight (at Min. Water Depth for Operating Condition).	832,18	1,05	873.790	873.790		
3	3	Non Generated Dead Load (Existing)	29.61	1,05	31.091	31.091		
4	4	Equipment Load (Existing)	155.81	1,05	163.596	163.596		
5	5	Deck Appurtenances (Existing)	52.71	1,05	55.349	55.349		
6	6	Jacket Appurtenances (Existing)	159.71	1,05	167.696	167.696		
7	701	Live Load 100 psf at Cellar Deck	67.91	1,00	67.905	67.905		
8	702	Live Load 75 psf at Jacket Walkway	56.65	1,00	56.652	56.652		
9	703	Live Load 75 psf at Sub-Cellar Deck	9,65	1,00	9.652	9.652		
10	801	Equipment Load (New)	32.89	1,20	39.463	39.463		
11	802	Piping Load (New)	22.39	1,20	26.868	26.868		
12	803	Live Load (New)	26,28	1,00	26.280	26.280		
13	804	Deck Appurtenances (New)	8,68	1,20	10.412	10.412		
14	805	Live Load at Access Platform	12.25	1,00	12.252	12.252		
15	806	Appurtenances at Access Platform	0,89	1,20	1.068	1.068		
16	11	Crane Self weight (Un-operational)	40,00	1,00	40,00	40.000		
17	12	Crane Boom Rest (Un-operational)	4,70	1,00	4,70	4.700		
18	901	Live Load ad dog house extension (New)	12.859	1,00	12.859	12.859		
		SUBTOTAL WEIGHT						
TOTAL CRANE WEIGHT (CRN) : [11] + [12] =								
TOTAL LIVE LOAD (LL-EXST) : [701] + [702] + [703] =								
TOTAL ADDITIONAL LOAD (ADD) : [801] + [802] + [803] + [804] + [805] + [806] + [901] =								
TOTAL TOPSIDE WEIGHT FOR OPERATING CONDITION (TOP1) : [3]+[4]+[5]+[LL-EXST]+[CRN]+[ADD] =								
		TOTAL WEIGHT						
	TO	TAL WEIGHT AT MAXIMUM WATER DEPTH - OPERATING	CONDITION (1100) : [101]	+ [TOP1] + [6] =	1563.66		
	TO	TAL WEIGHT AT MINIMUM WATER DEPTH - OPERATING	CONDITION (1200) : [102] -	+ [TOP1] + [6] =	1586.77		

Tabel 4.5 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Operasi

Tabel 4.6 Rangkuman Berat Struktural Selama Analisa In-place pada Kondisi Badai

			Storm					
No.	Load Condition	Description	Net Weight	Weight	Gross Weight	SACS Output		
	(kips) Allowance (kips) V							
1	201	Self-weight (at Max. Water Depth for Storm Condition)	806.91	1,05	847.257	847.257		
2	202	Self-weight (at Min. Water Depth for Storm Condition)	825,20	1,05	866.463	866.463		
3	3	Non Generated Dead Load (Existing)	29.61	1,05	31.091	31.091		
4	4	Equipment Load (Existing)	155.81	1,05	163.596	163.596		
5	5	Deck Appurtenances (Existing)	52.71	1,05	55.349	55.349		
6	6	Jacket Appurtenances (Existing)	159.71	1,05	167.696	167.696		
7	701	Live Load 100 psf at Cellar Deck	67.91	0,75	50.929	50.929		
8	702	Live Load 75 psf at Jacket Walkway	56.65	0,75	42.489	42.489		
9	703	Live Load 75 psf at Sub-Cellar Deck	9,65	0,75	7.239	7.239		
10	801	Equipment Load (New)	32.89	1,20	39.463	39.463		
11	802	Piping Load (New)	22.39	1,20	26.868	26.868		
12	803	Live Load (New)	26,28	0,75	19.710	19.710		
13	804	Deck Appurtenances (New)	8,68	1,20	10.412	10.412		
14	805	Live Load at Access Platform	12.25	0,75	9.189	9.189		
15	806	Appurtenances at Access Platform	0,89	1,20	1.068	1.068		
14	11	Crane Self weight (Un-operational)	40,00	1,00	40.000	40.000		
15	12	Crane Boom Rest (Un-operational)	4,70	1,00	4.700	4.700		
16	901	Live Load ad dog house extension (New)	12.859	1,00	12.859	12.859		
		SUBTOTAL WEIGHT						
		Т	DTAL CRANE	NEIGHT (CRI	N):[11] + [12] =	44.70		
TOTAL LIVE LOAD (LL-EXST) : [701] + [702] + [703] =								
TOTAL ADDITIONAL LOAD (ADD) : [801] + [802] + [803] + [804] + [805] + [806]+[901] =								
TOTAL TOPSIDE WEIGHT - STORM CONDITION (TOP2) : [3]+[4]+[5]+[LL-EXST]+[CRN]+[ADD] =								
		TOTAL WEIGHT						
		TOTAL WEIGHT AT MAXIMUM WATER DEPTH -STORM	CONDITION (2	2100) : [101] ·	+ [TOP1] + [6] =	1517.05.00		
		TOTAL WEIGHT AT MINIMUM WATER DEPTH - STORM	CONDITION (2	2200) : [102] ·	+ [TOP1] + [6] =	1536.26.00		

4.3 Analisis In-place

Pada tahap ini dilakukan analisis terhadap kemampuan struktur *Bravo Wellhead Platform* menahan beban yang bekerja. Output yang dihasilkan dari analisa *in-place* ini adalah:

- 1. Unity check member untuk kondisi operasi dan badai.
- 2. Joint punching shear check untuk kondisi operasi dan badai.
- 3. Pile safety factor untuk kondisi operasi dan badai.
- 4. Periode natural struktur

4.3.1 Strengthening Struktur Bravo Wellhead Platform

Pada analisa *inplace* inplace ini penulis melakukan *strengthening* pada bagian *Topside Platform* supaya memenuhi kondisi *combined unity check* lebih kecil dari 1 (UC < 1) seperti yang ditampilkan pada Gambar 4.13. Penulis menambahkan dua member tubular dengan properti materialnya ditentukan sebesar OD 6.65" dan WT 0.20".

Gambar 4.13 Strengthening pada Sub-Cellar Deck

4.3.2 Member Stress Check

Analisis *in-place* diperiksa di kedalaman air minimum dan kedalaman air maksimum baik untuk kondisi operasi dan kondisi badai. Stress unity checks telah dilakukan sebagai pengganti persyaratan AISC. Tekanan yang diizinkan meningkat 1/3 untuk kondisi badai. Ringkasan member utama ditunjukkan dalam Tabel 4.7 dan Tabel 4.8, dan tampilan member untuk kondisi badai dan operasi ditunjukkan pada Gambar 4.14 dan Gambar 4.15

			Member Stress Check – In place Analysis					
N	lo	Description	Operating					
			Member	Member Properties	Group	UC		
1		Topside/Deck						
	Α	Cellar Deck El. (+) 29'-0"						
		Main Member	1016-1024	W33X118	W01	0,41		
		Secondary Member	1110-2028	C6X3X18	CH2	0,44		
		Extension Deck	DE28-1001	W33X118	WN1	0,5		
	в	Maintenance Access Platform						
		El. (+) 36'-1"	AC50-AC30	W6X12	AP2	0,34		
		El. (+) 39'-10"	AC76-AC26	W6X12	AP5	0,24		
		El. (+) 42'-0"	AC16-AC10	W6X12	AP7	0,41		
	С	Sub Cellar Deck El. (+) 18'-7"						
		Existing	0039-709	8.625 in Ø x 0.322 in thk.	F01	0,67		
		Extension Sub Cellar (new)	0037-0038	W6X12	MP2	0,74		
		Extension Dog House	0085-0040	C4X2X9	MZN	0,72		
	D	Sub Cellar Deck El. (+) 16'-8"	8057-5058	C6X3X18	CH6	0,69		
	Ε	Deck Support						
		Deck Leg	0000-1001	30 in Ø x 0.75 in thk.	DLG	0,65		
		Deck Bracing	713-0003	4.5 in Ø x 0.237 in thk.	BR1	0,67		
2		Jacket & Pile						
	Α	Jacket Leg	901-503	33.75 in Ø x 0.875 in thk.	LG4	0,33		
	В	Jacket Walkway	3066-3065	6.375 in Ø x 0.155 in thk.	AD2	0,16		
	С	Jacket Plan Bracing	301-309	14 in Ø x 0.375 in thk.	C01	0,55		
	D	Jacket Diagonal Bracing	423-535	13.75 in Ø x 0.25 in thk.	S14	0,45		

Tabel 4.7 Member Stress Check untuk Analisa In-place in Operating Condition

Gambar 4.14 Member Stress Check struktur untuk Analisa In-place in Operating Condition

			Member Stress Check – In place Analysis					
N	lo	Description	Storm					
			Member	Member Properties	Group	UC		
1		Topside/Deck		•				
	Α	Cellar Deck El. (+) 29'-0"						
		Main Member	1080-0001	W33X118	W01	0,26		
		Secondary Member	1110-2028	C6X3X18	CH2	0,32		
		Extension Deck	DE17-1075	W18X55	WN2	0,46		
	В	Maintenance Access Platform						
		El. (+) 36'-1"	AC34-0029	W6X12	AP2	0,26		
		El. (+) 39'-10"	AC76-AC26	W6X12	AP5	0,20		
		El. (+) 42'-0"	AC16-AC10	W6X12	AP7	0,14		
	С	Sub Cellar Deck El. (+) 18'-7"						
		Existing	JW05-8000	C4X2X9	MZ1	0,52		
		Extension Sub Cellar (new)	0037-0038	W6X12	MP2	0,65		
		Extension Dog House	0085-0040	C4X2X9	MZN	0,45		
	D	Sub Cellar Deck El. (+) 16'-8"	8057-8058	C6X3X18	CH6	0,55		
2		Jacket & Pile						
	Α	Jacket Leg	307-407	34 in Ø x 1.00 in thk.	LG9	0,32		
	В	Jacket Walkway	555-505	12.5 in Ø x 0.25 in thk.	E07	0,06		
	С	Jacket Plan Bracing	301-309	14 in Ø x 0.375 in thk.	C01	0,34		
	D	Jacket Diagonal Bracing	303-405	16 in Ø x 0.375 in thk.	R01	0,39		

Tabel 4.8 Member Stress Check untuk Analisa In-place in Storm Condition

Gambar 4.15 Member Stress Check struktur untuk Analisa In-place in Operating Condition

4.3.3 Joint Punching Shear Check

Punching shear check berdasarkan API RP-2A telah dilakukan untuk semua sambungan (*Joints*) tubular. Tekanan yang diizinkan ditingkatkan 1/3 untuk kondisi badai menurut AISC. Ringkasan *punching shear check* untuk analisa *inplace* ditunjukkan pada Tabel 4. 9.

No.Load ConditionJoint No.Load UCLocationRemark1In-place Operating1550.499El. (-) 180'Ok

145

Tabel 4.9 Joint Punching Shear Check untuk Analisa In-place

0.785

El. (-) 180'

Ok

4.3.4 Faktor Keamanan Pile

In-place Storm

2

Pile memiliki kapasitas tertentu dalam menahan beban axial yang terjadi. Rasio antara kapasitas aksial *pile* dengan beban maksimum yang terjadi merupakan nilai *safety factor* untuk *pile*. *Safety factor* untuk kondisi *operating* disyaratkan minimum 2.0 sedangkan untuk kondisi ekstrem. Ringkasan hasil analisis untuk nilai minimum *pile safety factor* ditunjukkan pada Tabel 4.10.

Pile Head Joint	Pile Safety Factor			
	Operating	Storm		
102	3.02	1.67		
104	3.29	1.69		
106	4.49	1.81		
108	3.86	1.73		

 Tabel 4.10 Pile Safety Factor Summary

Catatan : Diperlukan faktor keamanan minimum adalah 2,0 untuk analisa *inplace* kondisi operasi, 1,50 untuk analisa *inplace* kondisi badai.

4.3.5 Periode Natural Struktur

Analisis modal dilakukan pada struktur untuk mengetahui ragam getar (*mode shape*) dari beberapa mode pertama. Dari sini dapat diketahui periode struktur untuk masing-masing mode. Periode dari mode pertama struktur diambil sebagai periode natural. Tabel 4.11 berikut ini merupakan hasil dari analisa *dynamic extract modeshape*.

Tabel 4.11 Tabel Periode Natural

MODE	FREQ.(CPS)	GEN. MASS	EIGENVALUE	PERIOD(SECS)
1	0.460093	4.7441879E+03	1.1966014E-01	2.1734749
2	0.461829	4.7091092E+03	1.1876214E-01	2.1653041
3	0.944587	5.5234224E+03	2.8389377E-02	1.0586632
4	1.514707	7.7719404E+03	1.1040349E-02	0.6601935
5	1.519880	8.1466805E+03	1.0965335E-02	0.6579469
6	1.984375	4.2663644E+03	6.4326895E-03	0.5039369
7	2.446309	7.4212816E+03	4.2327026E-03	0.4087792
8	2.543548	2.7540304E+03	3.9152568E-03	0.3931516
9	2.587205	5.9344303E+03	3.7842381E-03	0.3865175
10	3.418988	3.4412749E+03	2.1669306E-03	0.2924842

Dari hasil Tabel 4.11 menunjukkan bahwa nilai peroide natural terbesar adalah 2 sekon.

4.4 Analisa *Fatigue* Menggunakan Metode *Cummulative Damage*

Analisis fatigue yang dilakukan dalam tugas akhir ini dilakukan dengan cara deterministik (berdasarkan API RP2A). Analisis deterministik sesuai untuk digunakan pada struktur yang memiliki rentang antara perioda natural dan periode gelombang yang cukup lebar. Pada kondisi ini, respon struktur tidak akan berada dekat dengan periode naturalnya. Struktur tetap (*fixed platform*) yang berada di laut dangkal dan memiliki periode natural relatif kecil biasanya dapat menggunakan analisis deterministik.

Analisis *fatigue* dilakukan dengan cara deterministik karena model struktur yang digunakan memenuhi kriteria sebagai berikut :

- 1. Perioda struktur 2 detik < 3 detik
- 2. Kedalaman perairan lokasi yang direncanakan adalah 180 ft < 400 ft
- 3. Tersusun dari material baja yang getas (*ductile*)

Ada beberapa parameter yang harus ditentukan dalam analisis *fatigue* pada model struktur yang direncanakan, yaitu :

- 1. Design life struktur adalah 61 tahun
- Usia desain *fatigue* untuk *joint* dan *member* sebaiknya minimum dua kali usia service yang diharapkan (*Life Safety Factor* = 2,0)
- 3. Interval waktu pengambilan data kejadian gelombang adalah 100 tahun

- 4. Jenis persamaan SCF (Stress Concentration Factor), yaitu persamaan Efthymiou.
- 5. Batas splash zone atas = elv. (+) 12'-0'' dan splash zone bawah = elv. (-) 9'-6''

4.4.1 Beban Fatigue

Kondisi *fatigue* diperoleh dari akumulasi beban siklus, bekerja pada struktur sehingga menyebabkan terjadinya kerusakan *fatigue*. Prosedur perhitungan *fatigue* tergantung kepada tipe analisis. Untuk setiap analisis *fatigue*, digunakan gelombang dengan arah tertentu. Data kejadian gelombang individu (*individual wave*) dari berbagai arah dapat dilihat pada Tabel 4.12.

Tabel 4.12 Jumlah Kejadian Gelombang Individual 100 Tahunan di Sekitar Platform

Significant	Periode		Number of Waves Occurrences							
Wave	Gelomba	N	NE	E	SE	S	SW	W	NW	Total
Height (ft)	ng (s)	315°	270 ⁰	225°	180°	135°	90°	45°	0 ^o	
0,8200	2,541	82806	292128	4495824	11263740	362378	858938	67307182	1317144	85980140
2,4605	4,123	5670	11802	1272606	3975144	41310	122702	59298466	22034	64749734
4,1009	4,789	910	3064	180574	317748	8516	13430	13747482	2742	14274466
5,7413	5,224	0	2	45236	98292	524	198	2370530	24	2514806
7,3817	5,556	0	0	10106	19442	60	10	456690	0	486308
9,0221	5,819	0	0	2128	3976	0	4	76350	0	82458
10,663	6,034	0	0	422	4384	0	0	11924	0	16730
12,303	6,201	0	0	54	1450	0	0	2474	0	3978
Tot	al	89386	306996	6006950	15684176	412788	995282	143271098	1341944	168108620

4.4.2 Dynamic Amplification Factor

Analisa *fatigue* ini dilakukan dengan memasukkan data kejadian gelombang. Nilai dari perhitungan DAF (*Dynamic Amplification Factor*) ini akan menunjukkan bagaimana pengaruh osilasi struktur terhadap adanya perbesaran gelombang.

Berikut ini merupakan persamaan yang digunakan untuk menghitung nilai DAF.

$$DAF = \frac{1}{\sqrt{(1 - (\frac{Tn}{T})^2)^2 + 2\beta(\frac{Tn}{T})^2}}$$
(4.1)

Dengan:

Tn : Periode natural struktur (detik)

T : Periode gelombang (detik)

 β : Damping ratio (2%) Berdasarkan API RP2A

Nilai periode natural yang mendekati dengan nilai periode dari gelombang, maka akan terjadi penambahan nilai DAF (*Dynamic Amplification Factor*) yang cukup tinggi. Periode struktur

yang didapatkan dari analisa menggunakan SACS adalah 2.1734749 secs dan $\beta = 0.05$ akan dimasukkan kedalam analisa seperti pada Tabel 4.13.

Wave Height (ft)	Periode Gelombang (sec)	Tn/T	$(Tn/T)^2$	DAF
0,8200	2,541	0,85536	0,731644	2,624507
2,4605	4,123	0,52716	0,277896	1,349353
4,1009	4,789	0,45385	0,205977	1,239328
5,7413	5,224	0,41606	0,173102	1,194316
7,3817	5,556	0,39119	0,153033	1,168288
9,0221	5,819	0,37351	0,139512	1,151336
10,663	6,034	0,36020	0,129747	1,139373
12,303	6,201	0,35050	0,122853	1,131065

Tabel 4.13 Nilai DAF (Dynamic Amplification Factor)

4.4.3 Validasi Parameter Tubular Joint

Berdasarkan API RP 2A WSD tubular joint dapat diklasifikan menjadi tipe K, T, Y dan

Х

Gambar 4.16 Parameter Utama Tubular Joint

(sumber. API RP 2A, 21st edition, American Petroleum Institute, 2005)

Keterangan parameter utama :

D	= diameter luar chord	L	= panjang chord
d	= diameter luar brace	Т	= ketebalan chord
t	= ketebalan brace		

58

Pada Tabel 4.14 menunjukkan syarat yang harus dipenuhi oleh *tubular joint* untuk menggunakan formula Effthymiou dalam menganalisa nilai SCF.

Tabel 4.14 Rentang Batasan Formula SCF oleh Efthymiou

Keterangan	Formula	Rentang Batasan
Rasio Diameter	eta=d/D	$0.2 \le \beta \le 1$
Rasio Ketebalan	au=t/T	$0.2 \le \tau \le 1$
Rasio Kelangsingan Chord	$\gamma = D/2T$	$8 \le \gamma \le 32$
Rasio Gap dan Diameter	$\zeta = g/D$	$20 \le \theta \le 90$
Rasio Panjang dan Diameter	$\alpha = 2L/D$	$4 \le \alpha \le 40$
Sudut Orientasi	θ	$20 \le \theta \le 90$

(sumber: Marine Structural Design Calculations, El Reedy, 2014)

Stess Concentration Factor (SCF) merupakan parameter terhadap kekuatan sambungan yang nilainya akan berbeda tergantung geometrinya. Proses analisa yang penulis lakukan, menggunakan metode analisa berdasarkan Efthymiou. SCF merupakan parameter terhadap kekuatan sambungan yang nilainya akan berbeda tergantung geometrinya. Beberapa joint kritis yang ditinjau diketahui memiliki geometri sambungan T dan K antara *chord* dengan *brace*-nya. Dari data didapatkan parameter utama dari *joint 403* yang dapat dilihat pada Gambar 4.17.

Gambar 4.17 Lokasi Validasi Tubular Joint

Tabel 4.15 menerangkan parameter utama *tubular joint* pada *joint* 403 dengan data sebagai berikut:

Keterangan	Nilai	Satuan	Nilai	Satuan
L	15.225	ft	4.64	m
D	34	in	0.86	m
d416	14	in	0.36	m
d441	14	in	0.36	m
d301	16	in	0.41	m
Т	1	in	0.03	m
t416	0.366	in	0.009296	m
t441	0.375	in	0.009525	m
t301	0.375	in	0.009525	m

Tabel 4.15 Parameter Utama Tubular Joint

Tabel 4.16 Turunan Sambungan K-T Joint

Keterangan	Nilai	Rentang Batasan	Validitas <i>range</i>
α	10.7471	$4 \le \alpha \le 40$	Sesuai
β416	0.41176	$0.2 \le \beta \le 1$	Sesuai
β441	0.41176	$0.2 \le \beta \le 1$	Sesuai
β301	0.47059	$0.2 \le \beta \le 1$	Sesuai
τ416	0.366	$0.2 \le \tau \le 1$	Sesuai
τ441	0.375	$0.2 \le \tau \le 1$	Sesuai
τ301	τ301 0.375		Sesuai
γ	17	$8 \le \gamma \le 32$	Sesuai
θ	49,2648	$20 \le \theta \le 90$	Sesuai

4.4.4 Fatigue Life Member Kritis

Berikut hasil dari analisa fatigue deterministik, akan didapatkan usia layan dari masingmasing *joint* pada *jacket* yang dimodelkan.

	Location	laint	Droce Member	Brace Size	Chord Size	Fatigue Life (SF =2)
NO.	VO. LOCATION JOINT BIACE		Brace Member	(OD × WT)	(OD × WT)	Service Life (years)
1	EL (+) 12	544	544-3005	6.38" x 0.149"	13.75" x 0.305"	45.848
2	EL (-) 180	145	145-203	16.00" x 0.368"	18.00" x 0.50"	231.826
3	EL (-) 180	133	133-135	16.00" x 0.50"	20.00" x 0.50"	95.307
4	EL (+) 12	540	540-549	12.50" x 0.246"	13.75" x 0.305"	139.138
5	EL (-) 75	328	301-328	12.75" x 0.368"	14.00" x 0.352"	204.893
6	EL (+) 12	509	509-516	12.50" x 0.250"	15.75" x 0.250"	292.601
7	EL (-) 30	303	303-205	16.00" x 0.375"	34.00" x 1.00"	89.342
8	EL (-) 180	150	146-150	16.00" x 0.50"	20.00" x 0.50"	399.865
9	EL (-) 30	409	418-409	14.00" x 0.366"	14.00" x 0.374"	311.757
10	EL (-) 180	145	145-203	16.00" x 0.368"	18.00" x 0.50"	232.829
11	EL (-) 75	333	303-333	12.50" x 0.362"	14.00" x 0.352"	465.514
12	EL (+) 12	3052	3058-3052	6.38" x 0.155"	15.75" x 0.250"	102.407
13	EL (-) 180	127	127-128	12.75" x 0.375"	18.00" x 0.50"	164.251
14	EL (+) 12	512	512-522	12.50" x 0.250"	15.75" x 0.296"	358.834
15	EL (-) 180	147	147-148	18.00" x 0.50"	20.00" x 0.50"	560.933
16	EL (-) 125	201	201-203	14.00" x 0.370"	34.00" x 1.00"	40.155
17	EL (+) 12	514	514-517	12.50" x 0.250"	15.75" x 0.250"	865.493
18	EL (+) 12	507	552-507	12.50" x 0.250"	34.00" x 1.00"	58.716

Tabel 4.17 Hasil Joint dan Member Dengan Umur Kelelahan Struktur

4.5 Analisa *Fatigue* dengan Menggunakan Metode *Fracture Mechanics*

4.5.1 Permodelan Lokal Joint Kritis

Gambar 4.18 Tubular Joint 303

Hasil analisa *fatigue* menggunakan metode *cummulative damage* akan didapatkan umur kelelahan terendah yang akan dimodelkan menggunakan perangkat lunak SOLIDWORK. *Joint* yang digunakan dalam analisa lokal adalah *joint* **303** seperti ditunjukkan pada Gambar 4.18.

Tabel 4.18 menunjukan dimensi dari *joint-joint* yang berhubungan dengan *joint* 303.

No Mombo		Length	Outside	Wall Thickness
INO.	IVIEITIDEI	(m)	Diameter (m)	(m)
1	205- 303	2.0	0.4572	0.0094
2	334- 303	2.0	0.3556	0.0090
3	405- 303	2.0	0.4064	0.0095
4	333- 303	2.0	0.3239	0.0092
5	314- 303	2.0	0.3556	0.0095
6	203- 303	2.5	0.8636	0.0254
7	403- 303	2.5	0.8636	0.0254

Tabel 4.18 Dimensi Tubular Joint 403

Gambar 4.19 dibawah ini menunjukkan model geometri *joint* 303 menggunakan *software* Solidwork dan disesuaikan dengan aturan *fillet weld* berdasarkan AWS D.1/D1.1 : 2015.

Tabel 4.19 Ukuran Fillet Weld Bedasarkan AWS D.1/D.1.1:2015

Base Metal Thickness (T) ^a		Minimu of Fillet	m Size Weld ^b
in mm		in	mm
$T \leq 1/4$	$T \leq 6$	1/8⊆	35
$1/4 < T \le 1/2$	$6 < T \leq 12$	3/16	5
$1/2 < T \leq 3/4$	$12 < T \leq 20$	1/4	6
3/4 < T	20 < T	5/16	8

Minimum Fillet Weld Sizes (see 5.13)

Gambar 4.19 Permodelan Lokal *Joint* 303 Berdasarkan Fillet Weld Requirement (AWS D1.1: 2015)

4.5.2 Permodelan Elemen Hingga (Finite Element Model)

Permodelan menggunakan *software* SOLIDWORK selanjutnya akan di-*import* ke *software* ANSYS untuk dilakukan permodelan selanjutnya. Meshing sensitivity adalah proses dimana mengukur keakuratan *output* dari permodelan ANSYS akibat dari penggunaan jumlah elemen. Jenis elemen yang digunakan adalah solid dengan *node tetrahedron* seperti ditunjukkan Gambar 4.20.

Gambar 4.20 Meshing Pada Permodelan Analisa Lokal

4.5.3 Kondisi Batas dan Pembebanan

Pemberian kondisi batas yang berupa tumpuan diberikan pada kedua ujung member chord dan kondisi yang diberikan berupa *fixed support*. Setelah diberikan kondisi batas pada ujung member tersebut, selan jutkan diberikan beban pada tiap brace berupa gaya dan momen. Tabel 4.20 dan Gambar 4.21 menunjukkan nilai gaya dan momen yang didapat dari analisa *inplace*.

Gaya	Member							
	205- 303	303- 334	303- 405	303- 333	303- 314			
Mx (kN.m)	69347.77474	-413818.06	161248.03	-43726.018	791027.25			
My (kN.m)	702596.6017	-865090.14	-298475.67	-1950856.5	-2950683.3			
Mz (kN.m)	1719504.542	1040661.44	2450124.9	538101.37	1660209.7			
fx (kN)	1370274.664	83448.6372	1032432.2	100173.95	57826.881			
fy (kN)	15702.22225	7295.08342	23575.574	2268.593	16458.42			
fz (kN)	4003.39944	14723.6135	13033.289	21084.57	-29892.049			

Tabel 4.20 Pembebanan Maksimum Tiap Member

Gambar 4.21 Pembebanan Maksimum dan Kondisi Batas

Pada tabel 4.21 dapat diketahui gaya dan momen minimum yang diberikan pada tiap brace.

Cava	Member							
Gaya	205- 303	303- 334	303- 405	303- 333	303- 314			
Mx (kN.m)	-57737.91637	-652509.6265	-125306.402	-333349.727	359772.163			
My (kN.m)	-1638680.355	-2053388.055	-1417381.33	-2705452.86	-4166115.39			
Mz (kN.m)	-1846367.822	-1129937.251	-2367121.12	-596773.41	-1582632.76			
fx (kN)	-1089058.094	-99373.27054	-1285135.7	-106312.496	-88519.6098			
fy (kN)	-15257.40009	-6538.885752	-21751.8036	-1690.32421	-15791.1867			
fz (kN)	-9252.300928	9252.300928	44.482216	16502.90214	-37898.848			

Tabel 4.21 Pembebanan Minimum Tiap Member

4.5.4 Meshing Sensitivity Analysis

Analisis *meshing sensitivity* dilakukan untuk mengukur keakuratan dari permodelan ANSYS akibat dari penggunaan jumlah elemen. Dalam melakukan analisis model *multiplanar tubular joint* dilakukan dengan membagi model menjadi elemen-elemen kecil. Pada *meshing* ini, penulis membaginya menjadi ukuran 21,1 mm. Nilai pembebanan pada analisis ini sama namun penggunaan jumlah elemen divariasikan. Pada model sambungan tubular, jumlah elemen yang digunakan bervariasi dengan nilai pembebanan yang sama. Hasil perbandingan antara ukuran elemen, jumlah elemen, dan tegangan yang terjadi pada *multiplanar tubular joint* 303 dapat dilihat pada Tabel 4.22.

Ukuran	Jumlah	Jumlah	Probe Stress
(mm)	Node	Element	(Mpa)
22,0	237201	118759	2,3128
21,9	239174	119715	2,2757
21,8	240236	120260	2,2976
21,7	241106	120682	2,2719
21,6	243017	121675	2,2082
21,5	236471	118317	2,1009
21,4	238404	119300	2,0957
21,3	245302	123105	2,1462
21,2	250295	125278	2,1517
21,1	252074	126226	2,1514

Tabel 4.22 Meshing Sensitivity

Gambar 4.22 Grafik Meshing Sensitivity Analysis

Dari Hasil pada grafik Gambar 4.22 nilai tegangan yang stabil untuk analisa ANSYS sebesar 2,1514 MPa dengan jumlah element sebanyak 126226 elemen.

4.5.5 Posisi Retak

Posisi retak awal ditentukan dari konsentrasi tegangan tertinggi yang terjadi. Tegangan tertinggi didapatkan dari penjumlahan tegangan normal dan tegangan geser. Perhitungan ini dilakukan pada kondisi pembebanan pada chord dan brace seperti pada Gambar 4.21. Hasil dari analisa dengan perangkat lunak ANSYS menunjukan tegangan maksimum terjadi pada member 303 – 205 seperti terlihat pada Gambar 4.23 dan Gambar 4.24.

Gambar 4.24 Letak Tegangan Maksimum (Lanjutan)

4.5.6 Initial Crack Joint Kritis

Pada Joint kritis tersebut, akan dimodelkan sebuah *surface crack* dengan bentuk *semi elliptical*. Berdasarkan aturan ABS "*Guide for Fatigue Assessment of Offshore Structures* tahun 2003 kedalaman retak (a0) sebesar 0.25 mm dan perbandingan dari kedalaman retak (a0) dengan panjang retak (2c) sebesar 1,67 mm.

(a) Permodelan Crack Pada Titik Acuan

(b) Bentuk Meshing Pada Crack

Gambar 4.25 (a) Permodelan *Crack* pada Titik Acuan (b) Bentuk *Meshing* pada Crack (Lanjutan)

Pada gambar 4.25 diperlihatkan model dan meshing penambahan crack pada tubular. Crack yang dimodelkan diletakan pada titik acuan yang sudah ditentukan lalu dilakukan meshing dengan ukuran 21,1 mm sesuai dengan meshing sensitivity.

4.5.7 **Perhitungan SIF** (*Stress Intensity Factor*)

Perhitungan pada software ANSYS dapat dilakukan pada tiap penambahan panjang sebuah *crack* sehingga didapatkan nilai SIF berbeda untuk setiap penambahan retak. Nilai SIF digunakan untuk menghitung nilai dan *crack propagation rate* hingga nilai *cycle* tertentu. Pada Tabel 4.23 menunjukan nilai SIF pada *increment crack growth* sebesar 0.25 mm.

Tabel 4.23 Nilai SIF

α(mm)	2c (mm)	SIF min (Mpa√mm)	SIF max (Mpa√mm)	ΔK (Mpa√mm)
0,25	1,67	47,82	48,27	0,44
0,50	3,34	55,10	55,97	0,87
0,75	5,01	58,17	59,27	1,10
1,00	6,68	60,73	61,97	1,23
1,25	8 <i>,</i> 35	71,53	72,83	1,30
1,50	10,02	74,60	75,97	1,37
1,75	11,69	80,80	82,30	1,50
2,00	13,36	87,03	88,83	1,80
2,25	15,03	91,07	93,10	2,03
2,50	16,70	97,03	99,10	2,07

Tabel 4.24 Nilai SIF (Lanjutan)

2,75	18,37	104,10	106,47	2,37
3,00	20,04	108,03	110,47	2,43
3,25	21,71	115,73	118,30	2,57
3,50	23,38	120,70	123,77	3,07
3,75	25,05	128,13	131,40	3,27
4,00	26,72	140,80	144,30	3,50
4,25	28,39	150,80	154,77	3,97
4,50	30,06	159,43	163,73	4,30
4,75	31,73	171,07	175,40	4,33
5,00	33,40	178,07	182,53	4,47
5,25	35,07	185,77	190,70	4,93
5,50	36,74	194,73	199,90	5,17
5,75	38,41	204,30	209,57	5,27
6,00	40,08	213,77	219,47	5,70
6,25	41,75	221,37	227,47	6,10
6,50	43,42	230,43	237,07	6,63
6,75	45,09	241,13	247,97	6,83
7,00	46,76	253,77	260,70	6,93
7,25	48,43	263,77	271,13	7,37
7,50	50,10	276,17	283,80	7,63
7,75	51,77	290,77	298,77	8,00
8,00	53 <i>,</i> 44	302,37	310,57	8,20
8,25	55,11	315,40	324,10	8,70
8,50	56,78	330,43	339,37	8,93
8,75	58 <i>,</i> 45	341,07	350,47	9,40
9,00	60,12	357,43	367,53	10,10
9,25	61,79	370,77	381,57	10,80
9,50	63,46	383,83	394,93	11,10

Tabel 4.23 menyatakan bahwa nilai a dimulai pada 0.25 mm dan nilai akhir a adalah 9.5 mm sesuai ketebalan tubular yang dianalisa. Nilai 2c pada Tabel 4.23 didapatkan dengan membagi nilai a dan a/2c = 0.15. Nilai a/2c didapatkan dari buku Barsom dan Rofle, 1987.

4.5.8 Validasi Stress Intensity Factor

Validasi perlu dilakukan untuk mengetahui nilai SIF pada *software* mendekati perhitungan analitik atau manual. Berdasarkan data geometri *crack* yang diketahui sebelumnya, akan dilakukan perhitungan manual SIF yang kemudian dibandingkan dengan perhitungan numerik dari *software* ANSYS. Persamaan tersebut dapat dilihat pada bagian 4.7 (Barsom, 1987):

$$K_I = 1,12\sigma \sqrt{\pi \frac{\alpha}{\varrho}}.M_k \tag{4.2}$$

$$M_k = 1,0 + 1,2 \left(\frac{\alpha}{t} - 0,5\right) \tag{4.3}$$

Dimana :

$$M_k$$
 = Faktor koreksi *back-free surface crack* (ketika $\frac{\alpha}{t} < 0.5$ maka $M_k=1$)

Gambar 4.26 Grafik Parameter Q

Dari data geometri struktur didapatkan bahwa faktor koreksi *back free crack surface* dengan ketebalan *chord* sebesar 9,5 mm dan kedalaman retak 0.25 mm maka didapatkan nilai

faktor koreksi *back-free surface* (Mk) adalah sebesar 0,463 yang mana angka tersebut kurang atau sama dengan 0,5. Maka faktor koreksi*back-free surface crack* (Mk) dapat diasumsikan sebesar 1.

Kemudian menentukan faktor *front free surface crack* (Q) berdasarkan Gambar 4.26 yaitu memasukan nilai a/2c maka akan didapatkan nilai Q. Nilai yang didapatkan dari Gambar 4.26 adalah 1,2.

Keterangan	Nilai
σ/σγ	0,2
α/2c	0,15
Q	1,2
Mk	0,4315
SIF Maks Manual (Mpa.mm^0.5)	47,62662
SIF ANSYS (Mpa.mm^0.5)	48,27
Error	1,33%
SIF Maks Manual (Mpa.mm^0.5)	47,17731
SIF ANSYS (Mpa.mm^0.5)	47,82
Error	1,34%

Tabel 4.25 Validasi Nilai SIF

4.5.9 **Perhitungan Umur Kelelahan**

Perhitungan umur kelelahan pada struktur didapatkan dari persamaan berikut:

$$N = \int_{\alpha_0}^{\alpha_f} \frac{d\alpha}{c(\Delta K)^m}$$
(4.4)

Keterangan:

 a_0 = Kedalaman Retak Awal (initial crack)

af = Kedalaman Retak Akhir (final crack)

N = Jumlah Cycle

 ΔK = Perubahan SIF

c & m = Konstanta Material

Pada struktur ini digunakan baja jenis A36 yang memiliki karakteristik keretakan yaitu *ferrite-pearlite steels* dengan rumus sesuai ASTM West Conshohocken:

$$\frac{d\alpha}{dN} = 3.6 \ x \ 10^{-10} (\Delta K)^{3.0} \tag{4.5}$$

Dengan menggunakan persamaan-persamaan diatas, maka dapat diperhitungkan umur kelelahan struktur dengan jumlah *cycle* yang didapatkan kemudian membagi dengan jumlah kejadian *cycle* pada struktur tersebut. Pada Tabel 4.26 diperlihatkan jumlah *cycle* yang terjadi agar struktur mengalami kegagalan.

Tabel 4.26 Perhitungan Jumlah Cycle

2c	α	αf	α avg	ΔΚ	Δα/ΔΝ	ΔΝ	N
1,67	0,25	0,5	0,375	0,44	3,13685E-11	7969780293	7,97E+09
3,34	0,5	0,75	0,625	0,87	2,34347E-10	1066795630	9,04E+09
5,01	0,75	1	0,875	1,10	4,7916E-10	521746389,5	9,56E+09
6,68	1	1,25	1,125	1,23	6,75373E-10	370165636,8	9,93E+09
8,35	1,25	1,5	1,375	1,30	7,9092E-10	316087594,2	1,02E+10
10,02	1,5	1,75	1,625	1,37	9,18947E-10	272050608,7	1,05E+10
11,69	1,75	2	1,875	1,50	1,215E-09	205761316,9	1,07E+10
13,36	2	2,25	2,125	1,80	2,09952E-09	119074836,2	1,08E+10
15,03	2,25	2,5	2,375	2,03	3,02641E-09	82606033,1	1,09E+10
16,70	2,5	2,75	2,625	2,07	3,17771E-09	78673089,19	1,10E+10
18,37	2,75	3	2,875	2,37	4,77215E-09	52387325,34	1,11E+10
20,04	3	3,25	3,125	2,43	5,18689E-09	48198407,78	1,11E+10
21,71	3,25	3,5	3,375	2,57	6,08711E-09	41070415,5	1,11E+10
23,38	3,5	3,75	3,625	3,07	1,03825E-08	24078963,59	1,12E+10
25,05	3,75	4	3,875	3,27	1,25492E-08	19921546,29	1,12E+10
26,72	4	4,25	4,125	3,50	1,5435E-08	16196954,97	1,12E+10
28,39	4,25	4,5	4,375	3,97	2,24688E-08	11126546,52	1,12E+10
30,06	4,5	4,75	4,625	4,30	2,86225E-08	8734381,18	1,12E+10
31,73	4,75	5	4,875	4,33	2,92933E-08	8534365,043	1,12E+10
33,40	5	5,25	5,125	4,47	3,20814E-08	7792680,616	1,12E+10
35,07	5,25	5,5	5,375	4,93	4,32239E-08	5783838,075	1,12E+10
36,74	5,5	5,75	5,625	5,17	4,96517E-08	5035077,708	1,13E+10
38,41	5,75	6	5,875	5,27	5,25908E-08	4753680,743	1,13E+10
40,08	6	6,25	6,125	5,70	6,66695E-08	3749841,757	1,13E+10
41,75	6,25	6,5	6,375	6,10	8,17132E-08	3059482,708	1,13E+10
43,42	6,5	6,75	6,625	6,63	1,05075E-07	2379260,764	1,13E+10
45,09	6,75	7	6,875	6,83	1,14868E-07	2176404,869	1,13E+10
46,76	7	7,25	7,125	6,93	1,19985E-07	2083585,216	1,13E+10
48,43	7,25	7,5	7,375	7,37	1,43918E-07	1737098,523	1,13E+10
50,10	7,5	7,75	7,625	7,63	1,6012E-07	1561330,433	1,13E+10
51,77	7,75	8	7,875	8,00	1,8432E-07	1356336,806	1,13E+10
53,44	8	8,25	8,125	8,20	1,98492E-07	1259493,559	1,13E+10
55,11	8,25	8,5	8,375	8,70	2,37061E-07	1054580,533	1,13E+10
56,78	8,5	8,75	8,625	8,93	2,56651E-07	974085,077	1,13E+10
58,45	8,75	9	8,875	9,40	2,9901E-07	836091,7673	1,13E+10
60,12	9	9,25	9,125	10,10	3,70908E-07	674020,9361	1,13E+10
61,79	9,25	9,5	9,375	10,80	4,53496E-07	551272,3896	1,13E+10
63,46	9,5	9,75	9,625	11,10	4,92347E-07	507771,7926	1,13E+10
					N =	1,128E+10	

Didapatkan dari Tabel 4.26 bahwa jumlah *cycle* yang terjadi agar struktur tersebut mengalami kegagalan adalah 1,1E+10. Umur kelelahan didapat dengan membagi jumlah kegagalan dengan jumlah kejadian gelombang yang dialami oleh struktur seperti yang ditunjukkan pada Tabel 4.27.

No.	Keterangan		Nilai		
1	Jumlah siklus sampai struktur mengalami kegagalan		1,13E+10	Siklus	
2	Jumlah kejadian gelombang struktur		1,68E+08	Siklus/Tahun	
3	Perhitungan umur kelelahan struktur				
	Umur Kelelahan Struktur $=$ $\frac{(1)}{(2)}$ $=$ $\frac{1,13E + 10 \text{ siklus}}{1,68E + 08 \text{ siklus/tahun}}$ $=$ 67,101 tahun				

4.5.10 Selisish Umur Kelelahan Menggunakan Metode *Cummulative Damage* dan *Fracture Mechanics*

Dari hasil analisa menggunakan metode cummalative damage dan fracture mechanic yang telah dilakukan, maka nilai keduanya dapat digunakan untuk mengetahui nilai perbandingan umur kelelahan platform.

Tabel 4.28 Selisih Umur Kelelahan

Selisih Umur Kelelahan					
Metode	Nilai	Selisih			
Cummulative Damage	89,342	22,241			
Fracture Mechanics	67,101				

Dari Tabel 4.28 dapat disimpulkan bahwa selisih umur kelelahan sebesar 22,241 tahun adalah akibat adanya retak di bagian struktur atau platform yang mengakibatkan pengurangan umur kelelahan yang signifikan jika dibandingkan dengan sebelum tidak adanya retak tersebut. (Halaman ini sengaja dikosongkan)

BAB V PENUTUP

5.1 Kesimpulan

Kesimpulan yang didapat dari analisis umur kelelahan Struktur *Bravo Wellhead platform* ini antara lain:

- Kekuatan *member unity check* terbesar untuk analisa *inplace* terjadi di area *extension sub-cellar deck* dengan nilai UC sebesar 0,74 pada kondisi operasi dan UC sebesar 0,65 pada kondisi badai. Hasil lebih lengkapnya ditampilkan pada Tabel 4.7 dan Tabel 4.8.
- 2. Nilai umur kelelahan Struktur *Bravo Wellhead platform* pada sambungan *joint* 303 dengan menggunakan metode *cummulative damage* ialah sebesar 89.342 tahun..
- 3. Dengan metode *fracture mechanic* diperoleh umur kelelahan Struktur *Bravo Wellhead platform* sebesar 1,1E+10 cycles atau 67,101 tahun. Dan dari perbandingan hasil perhitungan umur kelelahan, dapat disimpulkan bahwa dengan adanya retak mengakibatkan umur kelelahan berkurang signifikan. Pada analisa ini umur kelelahan berkurang 22,241 tahun.

5.2 Saran

Saran yang berguna untuk penelitian selanjutnya sebagai berikut :

1. Dianjurkan analisis selanjutnya menggunakan model retak selain semi elip untuk lebih mengakuratkan hasil mekanika kepecahan.

(Halaman ini sengaja dikosongkan)

DAFTAR PUSTAKA

- American Petrolim Institute. "*Recommended practice for planning, designing and constructing fixed offshore platforms*". API RP2A 13th Edition, 1982.
- Rolfe, S. T., & Barsom, J. M. (1987). *Fracture and Fatigue Control in Structures: Application of Fracture Mechanics*. New Jersey: Prentice- Hall, Inc.
- Rolfe, S. T., & Barsom, J. M. (1999). *Fracture and Fatigue Control in Structures: Application* of Fracture Mechanics (Third Edition). Philadelphia: ASTM.
- Puspitorini, A. (2017). Analisa Sisa Umur Kelelahan Pada UW-Pro Platform Menggunakan Metode Cummulative Damage Dan Fracture Mechanic. Surabaya: Institut Teknologi Sepuluh Nopember.
- Annastasia, R. P. (2005). Analisa Umur Kelelahan Tubular Joint Tipe T yang Memiliki Retak Semi Elliptical pada Chord dengan Metode Linear Elastic Fracture Mechanics. Surabaya: Institut Teknologi Sepuluh Nopember.
- API RP-2A-WSD. (2000). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platform.
- Chakrabarti, S. K. 1987. *Hydrodinamics of Offshore Structure*. Computational Mechanics Publications Southampton Boston, Springer Verlag, Berlin.
- Chakrabarti, S. K. 1994. *Offshore Structure Modelling*. World Scientific Publishing, Singapore.
- Gibstein, M.B. *Stress Concentration in Tubular K-Joints with Diameter Ratio Equal to One*. Steel in Marine Structures, Elsevier, Amsterdam, Netherlands, 1987, pp. 377-393.
- Ahmad, Ali Akbar. (2010). Analysis Service Life Extension. Jakarta
- Rahadrianto, P. N. (2017). Analisis Resiko Fatigue LifeE Struktur Tripod Well Support SALAWATI FIELD Pendekatan Mekanika Kepecahan Terhadap Variasi Geometri Crack pada Multiplanar Tubular Joint. Surabaya: Institut Teknologi Sepuluh Nopember.
- Syahroni, N. (2014). Fracture Mechanics An Introduction. Surabaya: Jurusan Teknik Kelautan.

American Welding Society D1.1M (2015). "Structural Welding Code-Steel".

LAMPIRAN A COMPUTER MODEL

BW Platform 3D Model

BW Platform Deck 3D Model

SUB CELLAR EXTENSION DECK

El. (+) 18'-7"

BW Platform Jacket 3D Model

Face ROW A – XZ Plane

Face ROW 1 – YZ Plane

Sub Cellar Deck & Extension Deck Framing Plan

El. (+) 18'-7"

Jacket Walkway Framing Plan

El. (+) 12'-0"

Jacket Horizontal Framing Plan

El. (-) 30'-0"

Jacket Horizontal Framing Plan

El. (-) 75'-0"

Jacket Horizontal Framing Plan

El. (-) 125'-0"

Mudline Framing Plan

El. (-) 180'-0"

ROW A

ROW B

ROW 1

	8 075 8076 8077										
	2007206920182019202020202020222023202420252026202									2029	,203D
			2006	<u>)สู้มากสุ่อกกสุ่อกกสุ่อกาญี่อกา มีอกาอ</u> ี่ [อกาสุโอกาสุโอกาสุ							2032
		ĺ	200	DADOPAR		^	^ ^	~ ^ ·	[110§	2033	2034
	UE57	DE D4 3	[2004 [2004]	,1103		_]]] 04		,	[1105	2035	2036
	DED8	D ENNO 24	200;	1990 D			11D1		1102	2037	2038
	(DED9	ĎĒ11	200	1094 1	1095	_1096_109	109	9 415 79	1099	2039	2D4D
	DE D2	D ENC IDDS	(20D)	1007	. 1091	1)))14 1)092 [109:	3.VD19	× × ,	1005	204]	2042
	DED5	DEMADE	IPE 1	< — — — — — — — — — — — — — — — — — — —] 1087] 1087]	8	, 80k	<, 90.090	719 2043	2044
		ÖD JAN DE JAN	, 133 49		1882	<u>* *</u> ,VD]4	_¥]]4	1083	1084	2045	2046
	DE D7 3		51 1	1075	WQ D8077	VD1D	 بر	1078	1079	2047	2048
	DE3D	DE29	DE18	1071 _ VD	05 1072	λ	x173		1074	2049	2050
	DE32 >	0005 (DE31)	DDD Ded s	DDD6 19067	APD2 1	D684PD 1	A P16 9	,	1070	2051	2052
	DE34	DE33	DE2	1063 (VD D4	<u></u> ¥0064}	165	_APD6	1066	2053	2154
	DE36	DE35	DE2;	1056	10467707 A	PDB68 1059). 6750 0	,10 <u>6</u> 1	1062	205	2056
	DE38	DE37	DE22	1048049		1151 771	1 052 ₇₇₃	1053 105	40 0 5 5	2057	2058
	DE40	DE39	DE2	11038 11	198040 J.1841	1042	J D49 J D44	10,42046 ;	48 4	2059	2868
	DE42	DE41	DE2	1034	435 763	۔ 765	767	7036	1037	2061	2062
	DE44	DE43	DE2	1024 J	24026 01027	1028	1029 JUSO	nga 032	1033	2063	2164
	DE46	DE45	DE26	10,0007	1018 757] 1019_759_	1820 761	1021 10	2023	2065	2066
	DE48	DE47	DE2	1001	ׅ ׀ַנַּמַנַ (פּמַמַנ	ີນຫນົມຫ2	[] D]3_]D]4	[1015 \	1003	2067	2068
	,, ,	. ,			Î	~ ~ ~	Ĩ	<u> </u>	~ —	,	
5	Ċ				11 11		1112				
*	· · · ·				*		*				

Joint Label – XY Plane

Y L

Cellar Deck

El. (+) 29'-0"

Label = Member Group

ROW A

Member Group Label – XY Plane

Cellar Deck Framing Plan

El. (+) 29'-0

Member Group Label – XY Plane Sub Cellar Deck & Extension

El. (+) 18'-7

7

Label = Member Local Coordinates

Member Local Coordinate – XZ Plane ROW A

Member Local Coordinate – XY Plane

Cellar Deck

El. (+) 29'-0"

Label = Member Local Coordinates

 $Member \ Local \ Coordinate - XY \ Plane$

Sub-Cellar & Extension Deck

El. (+) 18'-7"

LAMPIRAN B LOADING PLOT

Load Condition 3 : Non-Generated Dead Load (Existing) at Cellar Deck (+)

29"-0"

Load Condition 4 : Equipment Load (Existing) at Cellar Deck (+) 29"-0'

Load Condition 4 : Equipment load at Sub Cellar Deck EL. (+) 18'-7"(New)

Load Condition 13 : Live Load at Cellar Deck

LOAD CONDITION 703 - LL19

Load Condition 703 : Live Load at Sub-Cellar Deck EL. (+) 18'-7"

Load Condition 801 : Equipment Load

LAMPIRAN C INPLACE ANALYSIS OUPUT

IN-PLACE OPERATING OUTPUT

7.1 Basic Load Case

** SEASTATE BASIC LOAD CASE DESCRIPTIONS **

LOAD LOAD ******** DESCRIPTION *********

CASE LABEL

- 1 3 NON-GENERATED DEAD LOAD (EXISTING)
- 2 4 EQUIPMENT LOAD (EXISTING)
- 3 5 DECK APPURTENANCES (EXISTING)
- 4 6 JACKET APPURTENANCES (EXISTING)
- 5 11 CRANE SELFWEIGHT (UN-OPERATIONAL)
- 6 12 CRANE BOOM REST (UN-OPERATIONAL)
- 7 13 CRANE VERTICAL LOAD
- 8 14 CRANE MOMENT LOAD (X-DIR)
- 9 15 CRANE MOMENT LOAD (Y-DIR)
- 10 701 LIVE LOAD 100PSF AT CELLAR DECK
- 11 702 LIVE LOAD 75 PSF AT JACKET WALKWAY
- 12 703 LIVE LOAD 75 PSF AT MEZZANINE DECK
- 13 801 EQUIPMENT LOAD (NEW)
- 14 802 PIPING LOAD ESTIMATION (NEW)
- 15 803 LIVE LOAD (NEW)
- 16 804 DECK APPURTENANCES GRATING AND HANDRAILS (NEW)
- 17 805 LIVE LOAD AT ACCESS PLATFORM
- 18 806 APPURTENANCE AT ACCESS PLATFORM
- 19 901 NEW LIVE LOAD AT EXTENSION DOG HOUSE (200 PSF)

20 101 DEAD LOAD (MAXIMUM WATER DEPTH - FOR OPERATING CONDITION)

- 21 102 DEAD LOAD (MINIMUM WATER DEPTH FOR OPERATING CONDITION)
- 22 WO01 ENVIRONMENTAL 0 DEG (MAX. WD)
- 23 WO02 ENVIRONMENTAL 45 DEG (MAX. WD)
- 24 WO03 ENVIRONMENTAL 90 DEG (MAX. WD)
- 25 WO04 ENVIRONMENTAL 135 DEG (MAX. WD)
- 26 WO05 ENVIRONMENTAL 180 DEG (MAX. WD)
- 27 WO06 ENVIRONMENTAL 225 DEG (MAX. WD)
- 28 WO07 ENVIRONMENTAL 270 DEG (MAX. WD)
- 29 WO08 ENVIRONMENTAL 315 DEG (MAX. WD)
- 30 WO11 ENVIRONMENTAL 0 DEG (MIN. WD)
- 31 WO12 ENVIRONMENTAL 45 DEG (MIN. WD)
- 32 WO13 ENVIRONMENTAL 90 DEG (MIN. WD)
- 33 WO14 ENVIRONMENTAL 135 DEG (MIN. WD)
- 34 WO15 ENVIRONMENTAL 180 DEG (MIN. WD)
- 35 WO16 ENVIRONMENTAL 225 DEG (MIN. WD)
- 36 WO17 ENVIRONMENTAL 270 DEG (MIN. WD)
- 37 WO18 ENVIRONMENTAL 315 DEG (MIN. WD)

***** SEASTATE COMBINED LOAD CASE SUMMARY *****

RELATIVE TO MUDLINE ELEVATION

LOAD LOAD	FX	FY	FZ	MX	MY	MZ
CASE LABEL						

(KIPS) (KIPS) (KIPS) (FT-KIPS) (FT-KIPS) (FT-KIPS)

38	CRN	0.000	0.000	-44.700	894.000	-617.750	0.000
39	TOP1	0.000	0.000	-565.648	-3348.384	-3281.045	0.000
40	1100	0.000	0.000	-1633.647	-3227.751	-3218.419	0.000
41	1200	0.000	0.000	-1661.248	-3110.315	-3136.361	0.000
42	CNO1	0.000	0.000	-64.329	1286.580	-2492.424	0.000
43	CNO2	0.000	0.000	-64.329	303.947	-2075.591	0.000
44	CNO3	0.000	0.000	-64.329	-80.087	-1125.758	0.000
45	CNO4	0.000	0.000	-64.329	303.947	-175.924	0.000
46	CNO5	0.000	0.000	-64.329	1286.580	240.909	0.000
47	CNO6	0.000	0.000	-64.329	2269.214	-175.924	0.000
48	CNO7	0.000	0.000	-64.329	2653.247	-1125.758	0.000
49	CNO8	0.000	0.000	-64.329	2269.214	-2075.591	0.000
50	1001	133.858	-1.084	-1702.532	-1734.736	5 14431.100	460.592
51	1002	102.110	101.199	-1699.303	-18069.2	52 9963.365	552.738
52	1003	0.017	133.788	-1697.431	-23478.914	4 -4383.357	113.501
53	1004	-105.620	105.464	-1700.339	-18812.7	36 -19303.99	4 -211.685
54	1005	-136.788	-0.447	-1704.335	-1932.724	4 -23696.047	-339.854
55	1006	-99.261	-100.116	-1706.285	13932.05	68 -18204.605	5 -502.588
56	1007	0.268	-126.984	-1706.593	18569.564	4 -4249.863	-175.872
57	1008	102.435	-103.566	-1705.997	14697.0′	76 10231.96	8 195.898

58	8 1011	140.696	-1.202	-1731.670	-1599.808	15186.957	447.286
59	9 1012	106.878	104.148	-1727.531	-18042.748	10432.633	563.210
6() 1013	0.134	136.620	-1726.349	-23307.662	-4265.831	108.837
61	1014	-110.789	108.845	-1726.789	-18822.756	-19654.697	-225.729
62	2 1015	-143.965	-0.437	-1732.203	-1824.759	-24130.289	-331.117
63	3 1016	-102.511	-102.408	-1736.448	14077.836	-18313.373	-519.806
64	1017	0.320	-128.690	-1736.548	18359.150	-4166.604	-194.260
65	5 1018	106.770	-106.436	-1735.354	14870.832	10616.193	195.161

7.2 Member Unity Check Summary

SACS-IV MEMBER UNITY CHECK RANGE SUMMARY

GROUP I - UNITY CHECKS GREATER THAN 0.50 AND LESS

THAN 0.80

MAXIMUM LOAD DIST AXIAL BENDING STRESS SHEAR FORCE SECOND-HIGHEST THIRD-HIGHEST

MEMBER GROUP COMBINED COND FROM STRESS Y Z FY FZ KLY/RY KLZ/RZ UNITY LOAD UNITY LOAD

ID UNITY CK NO. END KSI KSI KSI KIPS KIPS CHECK COND CHECK COND

3065-3064 AD2 0.565 1004 0.0 0.37 -14.53 -2.71 0.37 1.82 16.8 16.8 0.557 1003 0.556 1005

3066-3065 AD2 0.590 1004 1.8 0.40 -15.38 -1.04 -0.62 -2.03 8.0 8.0 0.585 1005 0.584 1014 0037-0038 AD2 0.741 1014 0.0 0.11 -13.28 2.42 -0.35 1.66 17.2 17.2 0.738 1004 0.500 1015

0004-DE37 AP1 0.634 1014 4.1 -0.72 -13.25 1.05 0.09 -4.36 14.4 40.0 0.632 1004 0.573 1013

0027-DE22 AP1 0.593 1014 4.1 -0.64 -12.42 0.99 0.10 -4.09 14.4 40.0 0.591 1004 0.589 1013

213-205 B66 0.542 1011 10.1 1.49 -12.77 0.53 0.03 -5.79 83.4 41.6 0.536 1014 0.535 1001

2019-8064 BR1 0.592 1007 0.0 0.14 15.30 -3.94 0.19 -0.67 92.1 92.1 0.591 1017 0.591 1006

8027-1071 BR1 0.671 1003 0.0 1.62 15.92 -2.31 0.14 -1.10 60.9 60.9 0.663 1013 0.648 1002

8038-V010 BR1 0.549 1011 0.0 1.83 5.28 -11.37 0.56 -0.10 70.9 70.9 0.547 1001 0.546 1018

8046-V001 BR1 0.603 1018 0.0 1.75 -6.19 -12.68 0.61 0.24 72.8 72.8 0.603 1008 0.585 1011

702-DE01 BR3 0.614 1003 7.9 -2.69 1.18 12.98 9.81 1.27 21.7 21.7 0.612 1013 0.590 1002 0000-DE47 BR3 0.689 1001 0.0 -7.04 -9.47 2.55 -4.03 7.35 21.7 21.7 0.685 1011 0.599 1005

8038-0043 C5N 0.762 1005 0.0 0.05 -15.81 0.60 0.09 3.26 17.5 44.3 0.761 1015 0.761 1006

8046-0046 C5N 0.781 1018 0.0 0.00 15.85 1.01 0.06 -3.27 17.5 44.3 0.781 1008 0.779 1007

301-309 C75 0.605 1015 0.0 -1.28 -13.95 -0.57 0.36 6.95 72.1 25.7 0.596 1016 0.592 1005

314- 303 C75 0.571 1012 12.9 -0.31 -14.46 -0.78 -0.36 -7.21 72.1 25.7 0.565 1011 0.565 1002

2024-2023 CH2 0.602 1013 0.0 0.13 -6.24 6.64 0.51 0.29 16.1 40.6 0.602 1003 0.602 1002

2025-2026 CH2 0.511 1002 0.0 -0.07 -8.09 -2.87 -0.21 -0.05 16.1 40.6 0.511 1012 0.510 1003

2027-2028 CH2 0.561 1002 3.2 -0.31 6.24 5.53 -0.41 2.07 16.1 40.6 0.561 1012 0.559 1011

2028-2029 CH2 0.516 1012 0.0 -0.30 6.21 4.59 0.34 -1.13 15.1 38.3 0.515 1002 0.515 1011 8037-8038 CH5 0.553 1015 3.0 -0.05 -11.49 -0.39 0.04 -1.57 15.1 38.3 0.552 1016 0.551 1006

8045-8046 CH5 0.584 1015 3.0 -0.10 11.67 0.82 -0.03 1.33 15.1 38.3 0.582 1005 0.580 1014

* * * M E M B E R G R O U P S U M M A R Y * * *

API RP2A 21ST/AISC 9TH

MAX. DIST

EFFECTIVE CM

GRUP CRITICAL LOAD UNITY FROM * APPLIED STRESSES * *** ALLOWABLE STRESSES *** CRIT LENGTHS * VALUES *

ID MEMBER COND CHECK END AXIAL BEND-Y BEND-Z AXIAL EULER BEND-Y BEND-Z COND KLY KLZ Y Z

FT KSI KSI KSI KSI KSI KSI FT FT

A01 142- 145 1017 0.15 0.0 -1.40 -0.86 0.37 18.00 101.75 27.00 27.00 HYDRO 19.8 7.8 0.85 0.85

A02 148- 144 1016 0.22 0.0 -0.88 3.47 0.05 18.00 470.60 27.00 27.00 HYDRO 8.2 10.2 0.85 0.85

A03 132- 141 1018 0.19 3.4 -1.22 -2.17 0.50 18.00 230.81 27.00 27.00 HYDRO 13.1 2.7 0.85 0.85

A04 151-153 1100 0.12 0.0 0.13 0.12 0.06 18.00 246.30 27.00 27.00 HYDRO 9.0 11.3 0.85 0.85

A05 118- 119 1018 0.14 0.0 -0.54 0.11 -2.04 18.00 134.38 27.00 27.00 HYDRO 12.2 2.4 0.85 0.85 A69 153-105 1100 0.15 0.0 0.04 0.00 -0.05 18.00 112.51 27.00 27.00 HYDRO 18.8 16.5 0.85 0.85

A80 114- 103 1100 0.17 0.0 -0.05 0.00 -0.07 18.00 107.17 27.00 27.00 HYDRO 19.3 16.5 0.85 0.85

AD2 3066-3065 1004 0.59 1.8 0.40 -15.38 -1.04 21.602341.35 27.00 27.00 TN+BN 1.5 1.5 0.85 0.85

AD4 503- 581 1008 0.30 0.0 2.75 -4.33 -0.85 21.60 29.53 25.34 25.34 TN+BN 32.5 2.5 0.85 0.85

AD5 535-3053 1008 0.28 0.0 -1.66 -4.06 3.27 19.20 93.65 27.00 27.00 C<.15 18.1 1.2 0.85 0.85

AD6 3087-3052 1008 0.19 0.4 -2.49 -1.29 0.68 19.42 121.21 25.34 25.34 C<.15 18.1 0.5 0.85 0.85

ADA 3048- 507 1003 0.43 2.6 1.64 -8.79 1.58 21.60 95.30 25.34 25.34 TN+BN 18.1 2.1 0.85 0.85

ADB 3010-3009 1017 0.15 2.8 -0.98 2.56 -0.55 19.09 95.84 25.34 25.34 C<.15 18.1 2.3 0.85 0.85

ADC 545-3010 1014 0.18 0.0 -0.71 -3.63 -0.82 19.22 95.04 25.72 25.72 C<.15 18.1 2.1 0.85 0.85 ADD 3017- 556 1016 0.23 1.6 -0.69 -4.77 1.65 18.69 70.29 26.40 26.40 C<.15 14.2 21.0 0.85 0.85

ADE 510- 511 1011 0.33 0.0 -4.65 2.57 -0.21 19.73 156.07 25.34 25.34 C>.15A 14.2 2.4 0.85 0.85

ADF 512- 513 1011 0.20 3.0 -2.33 1.73 -1.29 19.73 156.07 25.34 25.34 C<.15 14.2 2.4 0.85 0.85

AP1 0004-DE37 1014 0.63 4.1 -0.72 -13.25 1.05 19.19 93.13 23.76 27.00 C<.15 4.1 4.1 0.85 0.85

AP2 AC50-AC30 1013 0.34 0.7 -0.53 7.37 0.10 21.221964.74 23.76 27.00 C<.15 0.7 0.85 0.85

AP3 AC46-AC47 1014 0.12 0.0 -0.08 -2.09 0.33 20.43 291.03 21.60 21.60 C<.15 1.8 1.8 0.85 0.85

AP4 0027-0029 1013 0.19 3.9 -1.56 2.30 -0.03 18.40 61.16 21.60 21.60 C<.15 3.9 3.9 0.85 0.85

AP5 AC76-AC26 1003 0.27 0.0 -0.18 -5.13 -1.09 20.39 272.09 23.76 27.00 C<.15 1.8 1.8 0.85 0.85

AP6 AP18-AC50 1003 0.39 0.0 -0.53 -7.83 0.00 18.69 70.26 21.60 21.60 C<.15 3.6 3.6 0.85 0.85

JOINT CAN SUMMARY

(UNITY CHECK ORDER)

JOINT DIAMETER THICKNESS YLD STRS UC DIAMETER THICKNESS YLD STRS UC

(IN) (IN) (KSI) (IN) (KSI)

544	13.750	0.305	36.000	0.749	13.750	0.305	36.000	0.749
702	30.000	0.750	36.000	0.740	30.000	0.750	36.000	0.740
8064	4.500	0.237	36.000	0.734	4.500	0.237	36.000	0.734
514	15.750	0.250	36.000	0.732	15.750	0.250	36.000	0.732
328	14.000	0.352	36.000	0.722	14.000	0.352	36.000	0.722
333	14.000	0.352	36.000	0.721	14.000	0.352	36.000	0.721
8060	4.500	0.237	36.000	0.717	4.500	0.237	36.000	0.717
8061	4.500	0.237	36.000	0.715	4.500	0.237	36.000	0.715
529	12.500	0.250	36.000	0.690	12.500	0.250	36.000	0.690
536	13.750	0.305	36.000	0.689	13.750	0.305	36.000	0.689
530	12.500	0.250	36.000	0.680	12.500	0.250	36.000	0.680
520	12.500	0.250	36.000	0.676	12.500	0.250	36.000	0.676
423	13.750	0.250	36.000	0.645	13.750	0.250	36.000	0.645
713	8.625	0.322	36.000	0.641	8.625	0.322	36.000	0.641
521	12.500	0.250	36.000	0.631	12.500	0.250	36.000	0.631

509	15.750	0.250	36.000	0.591	15.750	0.250	36.000	0.591
531	12.500	0.250	36.000	0.587	12.500	0.250	36.000	0.587
528	12.500	0.250	36.000	0.579	12.500	0.250	36.000	0.579
516	12.500	0.250	36.000	0.578	12.500	0.250	36.000	0.578
523	12.500	0.250	36.000	0.568	12.500	0.250	36.000	0.568
526	12.500	0.250	36.000	0.565	12.500	0.250	36.000	0.565
317	12.750	0.375	36.000	0.545	12.750	0.375	36.000	0.545
318	12.750	0.375	36.000	0.544	12.750	0.375	36.000	0.544
540	13.750	0.305	36.000	0.539	13.750	0.305	36.000	0.539
3065	6.375	0.155	36.000	0.525	6.375	0.155	36.000	0.525
3078	6.625	0.280	36.000	0.522	6.625	0.280	36.000	0.522
513	15.750	0.250	36.000	0.515	15.750	0.250	36.000	0.515
525	12.500	0.250	36.000	0.514	12.500	0.250	36.000	0.514
323	12.750	0.375	36.000	0.511	12.750	0.375	36.000	0.511
517	12.500	0.250	36.000	0.509	12.500	0.250	36.000	0.509
522	12.500	0.250	36.000	0.508	12.500	0.250	36.000	0.508
3041	8.375	0.197	36.000	0.507	8.375	0.197	36.000	0.507
324	12.750	0.375	36.000	0.506	12.750	0.375	36.000	0.506
3046	6.375	0.155	36.000	0.496	6.375	0.155	36.000	0.496
319	12.750	0.375	36.000	0.494	12.750	0.375	36.000	0.494
316	12.750	0.375	36.000	0.492	12.750	0.375	36.000	0.492
3047	6.625	0.280	36.000	0.492	6.625	0.280	36.000	0.492
535	15.750	0.710	36.000	0.481	15.750	0.710	36.000	0.481
510	15.750	0.250	36.000	0.472	15.750	0.250	36.000	0.472
322	12.750	0.375	36.000	0.459	12.750	0.375	36.000	0.459
8052	8.625	0.322	36.000	0.449	8.625	0.322	36.000	0.449
325	12.750	0.375	36.000	0.439	12.750	0.375	36.000	0.439
-----	--------	-------	--------	-------	--------	-------	--------	-------
710	8.625	0.322	36.000	0.419	8.625	0.322	36.000	0.419

7.4 Pile Check

*** PILE MAXIMUM AXIAL CAPACITY SUMMA RY ***

JT PILEHEAD WEIGHT PEN. CAPACITY MAX. CRITICAL CONDITION CAPACITY MAX. CRITICAL CONDITION *MAXIMUM*

O.D. THK. (INCL. WT) LOAD LOAD LOAD SAFETY (INCL. WT) LOAD LOAD LOAD SAFETY UNITY LOAD

IN IN KIPS FT KIPS KIPS KIPS CASE FACTOR KIPS KIPS KIPS CASE FACTOR CHECK CASE

 102 PL1
 30.00
 1.00
 57.0
 230.0
 -2111.4
 -699.7
 -699.7
 1016
 3.02
 2216.5
 0.0

 0.0
 1100
 100.00
 0.66
 1016

 104 PL1
 30.00
 1.00
 57.0
 230.0
 -2111.4
 -642.2
 -642.2
 1018
 3.29
 2216.5
 0.0

 0.0
 1100
 100.00
 0.61
 1018
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 <td

106 PL1 30.00 1.00 57.0 230.0 -2098.5 -467.4 -467.4 1012 4.49 2162.9 18.0 18.0 1006 100.00 0.45 1012

 108 PL1
 30.00
 1.00
 57.0
 230.0
 -2098.5
 -543.9
 -543.9
 1014
 3.86
 2162.9
 0.0

 0.0
 1100
 100.00
 0.52
 1014
 3.86
 2162.9
 0.0

** PILE GROUP SUMMARY **

GROUP ID = PL1

FROM BENDING AXIAL BENDING AXIAL SHEAR COMB. HEAD LOAD UNITY

PILEHEAD LATERAL AXIAL ROT. MOMENT SHEAR LOAD STRESS STRESS STRESS ID CASE CHECK

FT IN IN RAD IN-KIP KIPS KIPS KSI KSI KSI KSI

0.0 $0.252 \quad 0.371 \quad 0.00145 \quad 719.1 \quad 14.1 \quad -699.7 \quad 1.12 \quad -7.68 \quad 0.31 \quad -8.80 \quad 102$ 1016 0.397 0.213 0.363 0.00141 777.5 14.1 -700.0 1.22 -7.68 0.31 -8.90 102 2.3 1016 0.401 4.6 0.175 0.356 0.00134 995.8 13.6 -700.7 1.56 -7.69 0.30 -9.25 102 1016 0.414 6.9 0.140 0.349 0.00123 1273.4 11.4 -699.5 1.99 -7.68 0.25 -9.67 102 1016 0.429 9.2 $0.108 \quad 0.341 \quad 0.00110 \quad 1488.1 \quad 7.7 \quad -696.0 \quad 2.33 \quad -7.64 \quad 0.17 \quad -9.97 \quad 102$ 1016 0.440 4.1 -692.0 2.51 -7.60 0.09 -10.11 102 11.5 0.080 0.334 0.00095 1605.0 1016 0.445 2.7 -687.5 2.53 -7.55 0.06 -10.08 102 0.056 0.327 0.00079 1619.2 13.8 1016 0.443 16.1 0.036 0.320 0.00063 1545.3 4.3 -682.5 2.42 -7.49 0.09 -9.91 102 1016 0.436

	18.4	0.021	0.313 0.00049	1406.1	6.0	-677.0	2.20	-7.43	0.13	-9.63	102
1016	0.426										
1016	20.7 0.412	0.010	0.306 0.00036	1224.9	7.0	-671.0	1.92	-7.37	0.15	-9.28	102
1016	23.0 0.397	0.004	0.299 0.00025	1022.6	7.4	-664.5	1.60	-7.29	0.16	-8.89	102
1016	25.3 0.381	0.006	0.292 0.00016	817.1	7.3	-657.6	1.28	-7.22	0.16	-8.50	102
1016	27.6 0.366	0.008	0.285 0.00009	622.2	6.7	-650.2	0.97	-7.14	0.15	-8.11	102
1016	29.9 0.352	0.009	0.278 0.00004	447.6	5.9	-642.5	0.70	-7.05	0.13	-7.75	102
1016	32.2 0.340	0.009	0.271 0.00002	299.3	4.9	-634.5	0.47	-6.96	0.11	-7.43	102
1016	34.5 0.329	0.009	0.265 0.00004	179.9	3.9	-626.1	0.28	-6.87	0.08	-7.15	102
1016	36.8 0.319	0.007	0.258 0.00005	90.2	2.9	-617.3	0.14	-6.78	0.06	-6.92	102
1016	39.1 0.311	0.006	0.252 0.00005	33.9	2.0	-608.3	0.05	-6.68	0.04	-6.73	102
1016	41.4 0.405	0.005	0.244 0.00005	35.5	1.3	-598.8	0.07	-8.69	0.04	-8.76	102
1016	43.7 0.400	0.003	0.235 0.00004	54.8	0.7	-589.0	0.11	-8.55	0.02	-8.66	102
1016	46.0 0.394	0.002	0.227 0.00004	64.4	0.3	-579.0	0.13	-8.40	0.01	-8.53	102
1016	48.3 0.387	0.001	0.219 0.00003	65.2	0.2	-568.7	0.13	-8.25	0.00	-8.38	102
1016	50.6 0.379	0.001	0.212 0.00002	60.3	0.3	-556.8	0.12	-8.08	0.01	-8.20	102

1016	52.9 0 369	0.000	0.204 0.00001	49.9	0.4	-543.2	0.10	-7.88	0.01	-7.98	102
1010	55.2	0.000	0.197 0.00001	37.4	0.4	-529.6	0.08	-7.68	0.01	-7.76	102
1016	0.359 57.5	0.000	0.189 0.00000	25.4	0.4	-516.0	0.05	-7.49	0.01	-7.54	102
1016	0.349 59.8	0.000	0.182 0.00000	15.4	0.3	-502.5	0.03	-7.29	0.01	-7.32	102
1016	0.339 62.1	0.000	0.176 0.00000	8.0	0.2	-489.0	0.02	-7.10	0.01	-7.11	102
1016	64.4 0.220	0.000	0.169 0.00000	3.0	0.2	-475.6	0.01	-6.90	0.00	-6.91	102
1016	0.320 66.7	0.000	0.162 0.00000	1.1	0.1	-462.3	0.00	-6.71	0.00	-6.71	102
1010	69.0	0.000	0.156 0.00000	2.2	0.0	-449.2	0.00	-6.52	0.00	-6.52	102
1010	71.3	0.000	0.150 0.00000	2.7	0.0	-436.2	0.01	-6.33	0.00	-6.33	102
1010	73.6	0.000	0.144 0.00000	2.6	0.0	-423.4	0.01	-6.14	0.00	-6.15	102
1010	0.285 75.9	0.000	0.138 0.00000	2.2	0.0	-410.7	0.00	-5.96	0.00	-5.96	102
1016	78.2	0.000	0.133 0.00000	1.6	0.0	-398.2	0.00	-5.78	0.00	-5.78	102
1016	0.268 80.5	0.000	0.127 0.00000	1.1	0.0	-385.9	0.00	-5.60	0.00	-5.60	102
1016	82.8	0.000	0.122 0.00000	0.7	0.0	-373.8	0.00	-5.42	0.00	-5.43	102
1016	85.1	0.000	0.117 0.00000	0.4	0.0	-361.8	0.00	-5.25	0.00	-5.25	102
1016	0.243										

	87.4	0.000	0.112 0.00000	0.2	0.0	-350.0	0.00	-5.08	0.00	-5.08	102
1016	0.235										
	89.7	0.000	0.107 0.00000	0.0	0.0	-338.4	0.00	-4.91	0.00	-4.91	102
1016	0.227										
	92.0	0.000	0.103 0.00000	0.1	0.0	-326.9	0.00	-4.74	0.00	-4.74	102
1016	0.220										
	94.3	0.000	0.098 0.00000	0.1	0.0	-315.5	0.00	-4.58	0.00	-4.58	102
1016	0.212										
	96.6	0.000	0.094 0.00000	0.1	0.0	-304.4	0.00	-4.42	0.00	-4.42	102
1016	0.204										
	98.9	0.000	0.090 0.00000	0.1	0.0	-293.4	0.00	-4.26	0.00	-4.26	102
1016	0.197										
	101.2	0.000	0.086 0.00000	0.1	0.0	-282.7	0.00	-4.10	0.00	-4.10	102
1016	0.190										

IN-PLACE STORM OUTPUT

8.1 Basic Load Case

** SEASTATE BASIC LOAD CASE DESCRIPTIONS **

LOAD LOAD ******** DESCRIPTION *********

CASE LABEL

- 1 3 NON-GENERATED DEAD LOAD (EXISTING)
- 2 4 EQUIPMENT LOAD (EXISTING)
- 3 5 DECK APPURTENANCES (EXISTING)
- 4 6 JACKET APPURTENANCES (EXISTING)
- 5 11 CRANE SELFWEIGHT (UN-OPERATIONAL)
- 6 12 CRANE BOOM REST (UN-OPERATIONAL)
- 7 13 CRANE VERTICAL LOAD
- 8 14 CRANE MOMENT LOAD (X-DIR)
- 9 15 CRANE MOMENT LOAD (Y-DIR)
- 10 701 LIVE LOAD 100PSF AT CELLAR DECK
- 11 702 LIVE LOAD 75 PSF AT JACKET WALKWAY
- 12 703 LIVE LOAD 75 PSF AT MEZZANINE DECK
- 13 801 EQUIPMENT LOAD (NEW)
- 14 802 PIPING LOAD ESTIMATION (NEW)
- 15 803 LIVE LOAD (NEW)
- 16 804 DECK APPURTENANCES GRATING AND HANDRAILS (NEW)
- 17 805 LIVE LOAD AT ACCESS PLATFORM
- 18 806 APPURTENANCE AT ACCESS PLATFORM

19 901 NEW LIVE LOAD AT EXTENSION DOG HOUSE (200 PSF)

20 201 DEAD LOAD (MAXIMUM WATER DEPTH - FOR STORM CONDITION)

21 202 DEAD LOAD (MINIMUM WATER DEPTH - FOR STORM CONDITION)

- 22 WS01 ENVIRONMENTAL 0 DEG (MAX. WD)
- 23 WS02 ENVIRONMENTAL 45 DEG (MAX. WD)
- 24 WS03 ENVIRONMENTAL 90 DEG (MAX. WD)
- 25 WS04 ENVIRONMENTAL 135 DEG (MAX. WD)
- 26 WS05 ENVIRONMENTAL 180 DEG (MAX. WD)
- 27 WS06 ENVIRONMENTAL 225 DEG (MAX. WD)
- 28 WS07 ENVIRONMENTAL 270 DEG (MAX. WD)
- 29 WS08 ENVIRONMENTAL 315 DEG (MAX. WD)
- 30 WS11 ENVIRONMENTAL 0 DEG (MIN. WD)
- 31 WS12 ENVIRONMENTAL 45 DEG (MIN. WD)
- 32 WS13 ENVIRONMENTAL 90 DEG (MIN. WD)
- 33 WS14 ENVIRONMENTAL 135 DEG (MIN. WD)
- 34 WS15 ENVIRONMENTAL 180 DEG (MIN. WD)
- 35 WS16 ENVIRONMENTAL 225 DEG (MIN. WD)
- 36 WS17 ENVIRONMENTAL 270 DEG (MIN. WD)
- 37 WS18 ENVIRONMENTAL 315 DEG (MIN. WD)

RELATIVE TO MUDLINE ELEVATION

LOAD LOAD FX FY FZ MX MY MZ DEAD LOAD BUOYANCY

CASE LABEL

(KIPS) (KIPS) (KIPS) (FT-KIPS) (FT-KIPS) (FT-KIPS) (KIPS) (KIPS)

	1 3	0.000	0.000	-35.933	172.784	407.652	0.000
0.000	0.000						
	2 4	0.000	0.000	-155.995	-1822.939	43.151	0.000
0.000	0.000						
	3 5	0.000	0.000	-53.667	-459.826	-82.619	0.000
0.000	0.000						
	4 6	0.000	0.000	-161.832	177.973	-79.114	0.000
0.000	0.000						
	5 11	0.000	0.000	-40.000	800.000	-700.000	0.000
0.000	0.000						
	6 12	0.000 0	0.000 -4	4.700 94.	000 82.25	0 0.000	0.000
0.000							
	7 13	0.000	0.000	-64.329	1286.580	-1125.758	0.000
0.000	0.000						
	8 14	0.000 0	.000 0	.000 -1366	6.667 0.00	0 0.000	0.000
0.000							
0.000	9 15	0.000 0	.000 0	.000 0.0	00 -1366.66	0.000	0.000
0.000							

0.000	10 701 0.000	0.000	0.000	-67.905	-960.466	277.524	0.000
0.000	11 702 0.000	0.000	0.000	-56.312	-265.934	-483.388	0.000
0.000	12 703 0.000	0.000	0.000	-9.652	-227.239	-122.071	0.000
0.000	13 801	0.000	0.000	-32.886	-274.871	-769.469	0.000
0.000	0.000 14 802	0.000	0.000	-22.390	-18.010	-465.080	0.000
0.000	0.000 15 803	0.000	0.000	-26.280	14.409	-615.913	0.000
0.000	0.000 16 804	0.000	0.000	-8.677	-39.605	-200.357	0.000
0.000	0.000 17 805	0.000	0.000	-12.252	-107.664	-275.033	0.000
0.000	0.000 18 806	0.000	0.000	-0.890	-8.234	-20.047	0.000
0.000	0.000	0.000	0.000	10.050	71 147	25.064	0.000
0.000	0.000	0.000	0.000	-12.839	-/1.14/	-85.004	0.000
1807.218	20 201 3 956.350	0.000	0.000	-850.869	-85.969	133.316	0.000
1807.219	21 202 901.756	0.000	0.000	-905.463	143.156	294.460	0.000
0.000	22 WS01 0.000	562.249	-1.478	-19.596	279.846	77921.555	-194.715
0.000	23 WS02 0.000	440.850	433.610	4.318 -	59198.836	60409.043	955.511

0.000	24 WS03 0.000	0.499	541.448	4.613	-74733.922	62.992	565.095
0.000	25 WS04 0.000	-443.018	436.020	-5.855	-59850.496	-60820.605	105.263
0.000	26 WS05 0.000	-562.445	-2.040	-17.657	161.091	-77749.789	256.394
940.669	27 WS06 0.000	-440.27 0.000	7 -436.7	70 -26	.678 5981	9.867 -603	86.625 -
0.000	28 WS07 0.000	-0.238	-543.125	-31.889	75351.031	108.497	-640.583
58.046	29 WS08 0.000	441.813 0.000	3 -438.20	56 -28.	144 60170).875 6085	0.961 -
0.000	30 WS11 0.000	586.820	-1.714	-14.952	324.410	76787.984	-92.459
0.000	31 WS12 0.000	467.029	458.098	-2.967 -	-59640.508	61003.531	1249.019
0.000	32 WS13 0.000	0.211	567.983	5.173	-74355.875	-47.694	866.041
0.000	33 WS14 0.000	-471.781	464.658	2.948	-60668.398	-61646.137	187.932
0.000	34 WS15 0.000	-591.122	-1.672	-19.689	19.059	-77430.219	202.247
1233.193	35 WS16 0.000	-464.98 0.000	8 -459.2	235 -29	9.645 5959	91.023 -606	510.289 -
0.000	36 WS17 0.000	-0.266	-562.525	-39.233	73918.820	126.615	-949.409
107.546	37 WS18 0.000	456.30 0.000	4 -452.7	35 -26	.693 6080	1.078 6140	51.152 -

RELATIVE TO MUDLINE ELEVATION

LOAD LOAD	FX	FY	FZ	MX	MY	MZ
CASE LABEL						

(KIPS) (KIPS) (KIPS) (FT-KIPS) (FT-KIPS) (FT-KIPS)

	38	CRN	0.000)	0.000	-4	4.700	894	.000	-617.	750	0.000)
	39	TOP2	0.000)	0.000	-52	22.548	-296	51.660	-297	6.325	0.0	000
	40	2100	0.000		0.000	-158	85.884	-286	5.055	-291	9.413	0.0	00
	41	2200	0.000		0.000	-164	3.207	-262	4.475	-275	0.213	0.0	00
	42	2001	562.249)	-1.478	-160	5.480	-258	5.209	7500	2.141	-194.	715
	43	2002	440.850	Z	433.610	-158	31.566	-6206	53.891	5748	9.629	955.	511
	44	2003	0.499	5	41.448	-158	1.271	-7759	98.977	-285	6.421	565.	095
	45	2004	-443.018	Z	136.020	-159	1.739	-6271	5.551	-6374	0.020	105.	263
	46	2005	-562.445	i	-2.040	-160	3.541	-270	3.964	-8066	9.203	256.	394
	47	2006	-440.2	277	-436.	770	-1612	2.562	56954	4.812	-6330	6.039	-
940.669													
	48	2007	-0.238	-5	543.125	-161	7.773	7248	5.977	-281	0.916	-640.	583
	49	2008	441.8	13	-438.2	266	-1614	.028	57305	5.820	57931	.547	-
58.046													
	50	2011	586.820)	-1.714	-16	58.159	-230	0.064	7403	37.773	-92.	459

51 2012	467 020	458.008	1646 174	67764 084	58252 220	1240.010
51 2012	407.029	430.090	-1040.174	-02204.904	38233.320	1249.019
52 2013	0.211	567.983	-1638.035	-76980.352	-2797.907	866.041
53 2014	-471.781	464.658	-1640.260	-63292.875	-64396.352	187.932

 54 2015
 -591.122
 -1.672
 -1662.896
 -2605.416
 -80180.430
 202.247

 55 2016
 -464.988
 -459.235
 -1672.853
 56966.547
 -63360.500

 1233.193
 -0.266
 -562.525
 -1682.441
 71294.344
 -2623.598
 -949.409

 57 2018
 456.304
 -452.735
 -1669.901
 58176.602
 58710.938

107.546

8.2 Member Unity Check Summary SACS-IV MEMBER UNITY CHECK RANGE SUMMARY

GROUP I - UNITY CHECKS GREATER THAN 0.50 AND

LESS THAN 0.80

MAXIMUM LOAD DIST AXIAL BENDING STRESS SHEAR FORCE SECOND-HIGHEST THIRD-HIGHEST

MEMBER GROUP COMBINED COND FROM STRESS Y Z FY FZ KLY/RY KLZ/RZ UNITY LOAD UNITY LOAD

ID UNITY CK NO. END KSI KSI KSI KIPS KIPS CHECK COND CHECK COND

203-214 B50 0.523 2017 0.0 -5.48 -7.83 -1.75 0.22 2.31 87.5 87.5 0.499 2007 0.477 2016

207-209 B66 0.626 2015 0.0 -5.61 -11.13 4.40 -1.54 3.60 83.4 41.6 0.600 2005 0.532 2014 209-213 B66 0.520 2014 0.0 -5.31 7.71 4.88 -2.08 -1.30 83.4 41.6 0.500 2015 0.492 2004

213-205 B66 0.621 2011 10.1 5.38 -14.88 4.81 1.78 -6.20 83.4 41.6 0.604 2015 0.604 2018

201-203 B77 0.529 2015 0.0 -6.61 -5.99 -2.38 0.39 2.01 83.4 83.4 0.499 2016 0.492 2005

8038-V010 BR1 0.518 2100 0.0 1.84 5.49 -10.31 0.49 -0.11 70.9 70.9 0.518 2200 0.419 2007

0037-0038 AD2 0.741 1014 0.0 0.11 -13.28 2.42 -0.35 1.66 17.2 17.2 0.738 1004 0.500 1015

8038-0043 C5N 0.754 2100 0.0 0.04 -15.81 0.44 0.08 3.26 17.5 44.3 0.754 2200 0.576 2005

8046-0046 C5N 0.769 2100 0.0 0.00 15.80 0.80 0.05 -3.26 17.5 44.3 0.768 2200 0.594 2001

301-309 C75 0.686 2015 0.0 -4.59 -16.90 -3.87 2.21 7.96 72.1 25.7 0.663 2016 0.645 2014

314- 303 C75 0.549 2012 12.9 -0.50 -17.71 -5.47 -2.44 -8.52 72.1 25.7 0.528 2011 0.518 2200 301-328 C99 0.534 2016 0.0 -3.43 -13.51 1.99 -0.65 4.46 36.4 45.7 0.509 2006 0.491 2017

1109-2069 CH2 0.738 2200 0.0 0.18 -15.67 0.09 0.10 3.85 14.5 36.7 0.738 2100 0.643 2001

1110-2028 CH2 0.763 2200 0.0 0.17 -14.97 1.35 0.04 3.04 14.5 36.7 0.763 2100 0.590 2001

2024-2023 CH2 0.531 2100 0.0 0.04 -5.75 5.69 0.44 0.26 16.1 40.6 0.531 2200 0.426 2003

8037-8038 CH5 0.536 2007 3.0 0.03 -11.35 -4.07 0.15 -1.50 15.1 38.3 0.533 2200 0.532 2100

8045-8046 CH5 0.579 2007 3.0 -0.19 11.81 4.65 -0.17 1.35 15.1 38.3 0.559 2200 0.558 2100

8061-8072 CH6 0.554 2200 0.0 -0.67 -5.33 -5.93 -0.63 0.83 9.2 23.3 0.554 2100 0.525 2007

8074-8061 CH6 0.627 2006 2.2 -1.49 -5.76 10.68 -0.95 -1.65 11.0 27.7 0.605 2200 0.605 2100

417-405 D62 0.558 2011 5.0 -4.78 -8.40 9.53 4.67 -4.80 77.2 38.6 0.547 2001 0.446 2018 416-403 D73 0.523 2011 3.4 -5.98 -7.18 -4.04 -1.16 -3.70 77.1 77.1 0.512 2001 0.468 2018

503-518 E07 0.527 2008 0.0 -3.18 -14.47 -1.41 1.09 6.25 10.1 10.1 0.517 2018 0.485 2007

SACS-IV MEMBER UNITY CHECK RANGE

SUMMARY

GROUP I - UNITY CHECKS GREATER THAN 0.50 AND

LESS THAN 0.80

MAXIMUM LOAD DIST AXIAL BENDING STRESS SHEAR FORCE SECOND-HIGHEST THIRD-HIGHEST

MEMBER GROUP COMBINED COND FROM STRESS Y Z FY FZ KLY/RY KLZ/RZ UNITY LOAD UNITY LOAD

ID UNITY CK NO. END KSI KSI KSI KIPS KIPS CHECK COND CHECK COND

555-505 E85 0.543 2002 3.7 -4.86 -13.05 -1.22 -1.80 -4.20 8.1 8.1 0.515 2012 0.499 2001

0039-709 F01 0.585 2100 2.0 -0.55 14.97 2.11 1.37 6.01 8.3 8.3 0.584 2200 0.556 2003

303-403 L40 0.613 2018 42.6 15.87 2.01 -0.41 1.96 4.71 45.5 45.5 0.594 2008 0.537 2014

305-405 L42 0.558 2016 40.5 -11.02 -3.71 -0.49 -1.62 -10.51 45.8 45.8 0.519 2006 0.442 2012

205-305 L48 0.533 2016 26.5 -11.57 1.55 0.52 -1.09 -0.12 51.0 51.0 0.499 2006 0.468 2012

301-401 LG3 0.622 2016 40.1 16.22 -0.88 -1.73 -6.03 0.16 45.5 45.5 0.610 2012 0.589 2006

307-407 LG9 0.779 2018 5.0 -17.13 2.32 -1.08 0.69 0.32 45.8 45.8 0.754 2008 0.548 2014

507-706 LGA 0.501 2018 6.1 -11.60 1.51 -0.06 8.37 8.75 43.7 43.7 0.487 2008 0.402 2014

706-439 LGA 0.553 2018 15.6 -11.73 2.22 0.38 0.38 -0.78 43.7 43.7 0.536 2008 0.418 2014

900- 501 LGB 0.511 2016 0.0 12.66 -0.19 2.56 -12.66 -9.78 43.4 43.4 0.495 2006 0.388 2017

442-901 LGC 0.529 2018 6.2 12.72 -2.71 -1.60 -1.75 1.69 43.4 43.4 0.515 2008 0.434 2011

901- 503 LGC 0.545 2018 0.0 13.46 -0.55 -2.73 15.13 -16.82 43.4 43.4 0.522 2008 0.406 2017

0037-0038 MP2 0.716 2003 3.0 0.20 -13.74 9.82 0.76 -4.51 14.4 39.2 0.701 2100 0.697 2200

8002-8024 MZ1 0.555 2007 0.0 -0.52 5.73 -9.70 -0.42 -0.79 7.7 19.3 0.425 2003 0.401 2008

8018-8008 MZ1 0.637 2007 3.0 0.09 14.53 -3.82 0.11 1.43 23.0 57.8 0.469 2008 0.405 2006

8028-8029 MZ1 0.516 2007 0.0 -0.62 2.47 -11.71 -0.59 -0.34 11.5 28.9 0.498 2003 0.364 2008

8029-8035 MZ1 0.601 2007 3.0 0.45 -4.68 12.18 -0.35 -0.23 23.0 57.9 0.504 2006 0.390 2008

8030-8033 MZ1 0.531 2007 0.0 -0.41 2.20 -12.59 -0.42 0.00 23.0 57.8 0.417 2003 0.377 2008

8030-8036 MZ1 0.758 2007 3.0 0.24 5.63 -16.18 0.44 0.50 23.0 57.9 0.574 2003 0.570 2008

8033-8037 MZ1 0.578 2007 0.0 0.03 -3.74 12.88 0.43 0.18 23.0 57.9 0.442 2006 0.404 2008

8034-8038 MZ1 0.745 2007 3.0 0.00 11.73 -9.72 0.27 1.32 23.0 57.9 0.595 2006 0.552 2008 8035-8000 MZ1 0.535 2003 0.0 -0.67 4.60 -10.03 -0.45 -0.40 17.2 43.2 0.470 2004 0.369 2007

Joint Can Summary

JOINT CAN SUMMARY

(UNITY CHECK ORDER)

JOINT DIAMETER THICKNESS YLD STRS UC DIAMETER THICKNESS YLD STRS UC

	(IN)	(IN)	(KSI)	(IN)	(IN)	(KSI)		
154	18.000	0.49	92 36.000	0.687	18.000	0.492	36.000	0.687
530	12.500	0.25	50 36.000	0.679	12.500	0.250	36.000	0.679
151	20.000	0.50	00 36.000	0.675	20.000	0.500	36.000	0.675
8060	4.500	0.23	37 36.000	0.661	4.500	0.237	36.000	0.661
8061	4.500	0.23	36.000	0.659	4.500	0.237	36.000	0.659
141	20.000	0.50	00 36.000	0.643	20.000	0.500	36.000	0.643
150	20.000	0.50	00 36.000	0.642	20.000	0.500	36.000	0.642
525	12.500	0.25	50 36.000	0.641	12.500	0.250	36.000	0.641
529	12.500	0.25	50 36.000	0.637	12.500	0.250	36.000	0.637
136	20.000	0.50	00 36.000	0.623	20.000	0.500	36.000	0.623
544	13.750	0.30)5 36.000	0.621	13.750	0.305	36.000	0.621
540	13.750	0.30)5 36.000	0.614	13.750	0.305	36.000	0.614
144	20.000	0.50	00 36.000	0.604	20.000	0.500	36.000	0.604
702	30.000	0.75	50 36.000	0.600	30.000	0.750	36.000	0.600
301	34.000	1.00	00 36.000	0.596	34.000	1.000	36.000	0.596

514	15.750	0.250	36.000	0.589	15.750	0.250	36.000	0.589
8064	4.500	0.237	36.000	0.589	4.500	0.237	36.000	0.589
531	12.500	0.250	36.000	0.582	12.500	0.250	36.000	0.582
403	34.000	1.000	36.000	0.576	34.000	1.000	36.000	0.576
401	34.000	1.000	36.000	0.573	34.000	1.000	36.000	0.573
423	13.750	0.250	36.000	0.566	13.750	0.250	36.000	0.566
317	12.750	0.375	36.000	0.564	12.750	0.375	36.000	0.564
148	20.000	0.500	36.000	0.557	20.000	0.500	36.000	0.557
509	15.750	0.250	36.000	0.552	15.750	0.250	36.000	0.552
713	8.625	0.322	36.000	0.535	8.625	0.322	36.000	0.535
318	12.750	0.375	36.000	0.534	12.750	0.375	36.000	0.534
316	12.750	0.375	36.000	0.525	12.750	0.375	36.000	0.525
528	12.500	0.250	36.000	0.524	12.500	0.250	36.000	0.524
303	34.000	1.000	36.000	0.523	34.000	1.000	36.000	0.523
513	15.750	0.250	36.000	0.518	15.750	0.250	36.000	0.518
535	15.750	0.710	36.000	0.517	15.750	0.710	36.000	0.517
545	15.750	0.710	36.000	0.515	15.750	0.710	36.000	0.515
205	34.000	1.000	36.000	0.503	34.000	1.000	36.000	0.503
709	30.000	0.750	36.000	0.495	30.000	0.750	36.000	0.495
522	12.500	0.250	36.000	0.495	12.500	0.250	36.000	0.495

JOINT CAN SUMMARY

(UNITY CHECK ORDER)

JOINT DIAMETER THICKNESS YLD STRS UC DIAMETER THICKNESS YLD STRS UC

	(IN)	(IN) (KSI)	(IN)	(IN)	(KSI)		
319	12.750	0.375	36.000	0.494	12.750	0.375	36.000	0.494
201	34.000	1.000	36.000	0.491	34.000	1.000	36.000	0.491
510	15.750	0.250	36.000	0.481	15.750	0.250	36.000	0.481
407	34.000	0.976	36.000	0.479	34.000	0.976	36.000	0.479
323	12.750	0.375	36.000	0.477	12.750	0.375	36.000	0.477
324	12.750	0.375	36.000	0.476	12.750	0.375	36.000	0.476
523	12.500	0.250	36.000	0.472	12.500	0.250	36.000	0.472
3065	6.375	0.155	36.000	0.466	6.375	0.155	36.000	0.466
147	20.000	0.500	36.000	0.462	20.000	0.500	36.000	0.462
207	34.000	1.000	36.000	0.459	34.000	1.000	36.000	0.459
521	12.500	0.250	36.000	0.456	12.500	0.250	36.000	0.456
536	13.750	0.305	36.000	0.455	13.750	0.305	36.000	0.455
3041	8.375	0.197	36.000	0.454	8.375	0.197	36.000	0.454
203	34.000	1.000	36.000	0.449	34.000	1.000	36.000	0.449
517	12.500	0.250	36.000	0.446	12.500	0.250	36.000	0.446
520	12.500	0.250	36.000	0.442	12.500	0.250	36.000	0.442

309	14.000	0.372	36.000	0.437	14.000	0.372	36.000	0.437	
3040	8.375	0.197	36.000	0.433	8.375	0.197	36.000	0.433	
322	12.750	0.375	36.000	0.424	12.750	0.375	36.000	0.424	
8052	8.625	0.322	36.000	0.423	8.625	0.322	36.000	0.423	
325	12.750	0.375	36.000	0.411	12.750	0.375	36.000	0.411	
575	15.750	0.710	36.000	0.395	15.750	0.710	36.000	0.395	
549	12.500	0.246	36.000	0.395	12.500	0.246	36.000	0.395	
516	12.500	0.250	36.000	0.387	12.500	0.250	36.000	0.387	
327	14.000	0.368	36.000	0.386	14.000	0.368	36.000	0.386	
334	14.000	0.354	36.000	0.384	14.000	0.354	36.000	0.384	
3078	6.625	0.280	36.000	0.381	6.625	0.280	36.000	0.381	
132	18.000	0.500	36.000	0.376	18.000	0.500	36.000	0.376	
127	18.000	0.500	36.000	0.372	18.000	0.500	36.000	0.372	
3047	6.625	0.280	36.000	0.348	6.625	0.280	36.000	0.348	
0000	30.000	0.750	36.000	0.346	30.000	0.750	36.000	0.346	
533	12.500	0.229	36.000	0.341	12.500	0.229	36.000	0.341	
3036	8.375	0.197	36.000	0.338	8.375	0.197	36.000	0.338	
314	14.000	0.372	36.000	0.335	14.000	0.372	36.000	0.335	
555	12.500	0.246	36.000	0.335	12.500	0.246	36.000	0.335	
710	8.625	0.322	36.000	0.333	8.625	0.322	36.000	0.333	
541	13.750	0.305	36.000	0.325	13.750	0.305	36.000	0.325	
556	15.750	0.710	36.000	0.325	15.750	0.710	36.000	0.325	
3046	6.375	0.155	36.000	0.322	6.375	0.155	36.000	0.322	
3035	8.375	0.197	36.000	0.315	8.375	0.197	36.000	0.315	

409	14.000	0.374	36.000	0.312	14.000	0.374	36.000	0.312
131	12.750	0.375	36.000	0.307	12.750	0.375	36.000	0.307
539	13.750	0.305	36.000	0.301	13.750	0.305	36.000	0.301
3059	6.375	0.155	36.000	0.298	6.375	0.155	36.000	0.298
209	14.000	0.370	36.000	0.292	14.000	0.370	36.000	0.292
546	12.500	0.250	36.000	0.287	12.500	0.250	36.000	0.287
128	12.750	0.375	36.000	0.286	12.750	0.375	36.000	0.286
335	14.000	0.370	36.000	0.286	14.000	0.370	36.000	0.286
305	34.000	1.000	36.000	0.283	34.000	1.000	36.000	0.283
3037	8.375	0.197	36.000	0.272	8.375	0.197	36.000	0.272

LAMPIRAN D FATIGUE ANALYSIS INPUT

* * * M E M B E R F A T I G U E R E P O R T * * * (JOINT ORDER)

			ORIGI	NAL		CHORD									REQUI	RED	
JOINT	MEMBER GRUP	TYPE	OD	WT J	NT MEM	LEN.	GAP	* STRE	SS CON	C. FAC	TORS *	FATIG	UE RI	ESULTS	OD	WT	
	ID	ID	(IN)	(IN) I	YP TYP	(FT)	(IN)	AX-CR	AX-SD	IN-PL	OU-PL	DAMAGE	LOC	SVC LIFE	(IN)	(IN)	
001	001- 101 L01	TUB	34.00	1.000				5.00	5.00	5.00	5.00	.0000000	TR	INFINITE			
003	003- 103 L03	TUB	34.00	1.000				5.00	5.00	5.00	5.00	.0000000	TR	INFINITE			
005	005- 105 L05	TUB	34.00	1.000				5.00	5.00	5.00	5.00	.0000000	TR	INFINITE			
007	007- 107 L07	TUB	34.00	1.000				5.00	5.00	5.00	5.00	.0000000	TR	INFINITE			
101	101- 135 A01	TUB	18.00	0.500 I	BRC	58.11		3.38	9.11	2.80	6.55	.24272-2	L	24308.21			
101	001- 101 L01	TUB	34.00	1.000 T	CHD	58.11		5.41	8.80	2.61	6.95	.21515-2	L	27422.20			
101	101- 133 A02	TUB	20.00	0.500 I	BRC	58.11		3.44	8.95	2.76	6.77	.12973-5	R	45481.+3			
101	101- 201 LG1	TUB	34.00	1.000 T	CHD	58.11		5.69	8.69	2.59	7.42	.12207-5	R	48334.+3			
101	101- 109 A80	TUB	18.00	0.476 I	BRC	58.11		3.32	8.87	2.77	6.38	.22743-3	L	259425.2			
101	101- 201 LG1	TUB	34.00	1.000 T	CHD	58.11		5.14	8.33	2.50	6.59	.17661-3	TL	334060.5			
103	103- 142 A01	TUB	18.00	0.500 I	BRC	58.11		3.38	9.11	2.80	6.55	.0124399	L	4742.791			

* * * MEMBER FATIGUE REPORT * * * (JOINT ORDER)

JOINT	MEMBER GRUP	TYPE	ORIGI OD	NAL WT	JNT MEM	CHORD LEN.	GAP	* STRE	ss con	C. FAC	TORS *	FATIC	UE R	ESULTS	REQUIE OD	RED WT	
	ID	ID	(IN)	(IN) '	TYP TYP	(FT)	(IN)	AX-CR	AX-SD	IN-PL	OU-PL	DAMAGE	LOC	SVC LIFE	(IN)	(IN)	
103	003- 103 L03	TUB	34.00	1.000	r CHD	58.11		5.41	8.80	2.61	6.95	.0101855	L	5792.521			
103	103- 134 A02	TUB	20.00	0.500	r brc	58.11		3.44	8.95	2.76	6.77	.12383-2	L	47645.62			
103	103- 203 L52	TUB	34.00	1.000	г снр	58.11		5.69	8.69	2.59	7.42	.12348-2	L	47779.57			
103	114- 103 A80	TUB	18.00	0.476	r brc	58.11		3.32	8.87	2.77	6.38	.62035-5	L	9510777.			
103	103- 203 L52	TUB	34.00	1.000	r CHD	58.11		5.14	8.33	2.50	6.59	.57668-5	L	10231.+3			
104	104- 204 PL1	TUB	30.00	1.000				5.00	5.00	5.00	5.00	.9756244	L	60.47409			
105	149- 105 A01	TUB	18.00	0.500	Y BRC	58.53		3.39	8.98	2.80	6.47	.47456-3	R	124324.8			
105	105- 205 L55	TUB	34.00	1.000	Y CHE	58.53		5.41	8.77	2.60	6.86	.43750-3	R	134858.4			
105	105- 151 A02	TUB	20.00	0.500	Y BRC	58.53		3.46	8.81	2.76	6.68	.17324-2	L	34056.95			
105	105- 205 L55	TUB	34.00	1.000	Y CHD	58.53		5.69	8.67	2.57	7.32	.19760-2	TL	29857.59			
1.05	152 105 200	mup	10.00	0 400		E0 E2		2 27	0.01	2 70	C 40	0000670	D	2040 025			
105	103- 105 A69	TUB	18.00	0.492	r BRC	58.53		3.37	9.01	2.79	0.48	.0200679	к	2940.025			
105	105- 205 L55	TUB	34.00	1.000	r CHD	58.53		5.34	8.64	2.57	6.81	.0175250	R	3366.610			

* * * MEMBER FATIGUE REPORT * * * (JOINT ORDER)

			ORIGI	NAL		CHORD									REQUI	RED
JOINT	MEMBER GRUI	P TYPE	OD	WT	JNT MEM	LEN.	GAP	* STRE	SS CON	IC. FAG	CTORS *	FATIG	UE R	ESULTS	OD	WT
	ID	ID	(IN)	(IN)	TYP TYP	(FT)	(IN)	AX-CR	AX-SD	IN-PL	OU-PL	DAMAGE	LOC	SVC LIFE	(IN)	(IN)
107	146- 107 A03	L TUB	18.00	0.500	Y BRC	58.53		3.39	8.98	2.80	6.47	.28705-2	R	20553.92		
107	107- 207 LG	7 TUB	34.00	1.000	Y CHE	58.53		5.41	8.77	2.60	6.86	.28399-2	R	20775.53		
107	107- 150 A02	2 TUB	20.00	0.500	Y BRC	58.53		3.46	8.81	2.76	6.68	.11040-4	R	5344398.		
107	107- 207 LG	7 TUB	34.00	1.000	Y CHE	58.53		5.69	8.67	2.57	7.32	.12604-4	R	4681180.		
107	107- 152 A6) TUB	18.00	0.492	T BRC	58.53		3.37	9.01	2.79	6.48	.0212687	L	2774.026		
107	107- 207 LG	7 TUB	34.00	1.000	T CHE	58.53		5.34	8.64	2.57	6.81	.0191224	L	3085.386		
108	108- 208 PL	L TUB	30.00	1.000				5.00	5.00	5.00	5.00	.6476215	L	91.10259		
109	109- 115 A03	3 TUB	18.00	0.500	K BRC	20.10	5.00	4.40	4.44	2.70	7.39	.26284-4	BL	2244723.		
109	101- 109 A80) TUB	18.00	0.476	K CHE	20.10		9.00	8.47	3.87	14.64	.23227-2	BL	25401.35		
109	109- 133 A04	1 TUB	16.00	0.500	K BRC	20.10	5.00	3.82	3.99	2.96	6.27	.33941-3	L	173828.8		
109	101- 109 A80) TUB	18.00	0.476	K CHE	20.10		8.29	8.71	3.44	11.99	.0228577	L	2581.192		
110	110- 116 A0	5 TUB	12.75	0.375	T BRC	6.00		1.85	8.99	3.07	8.34	.17309-5	BL	34087.+3		
110	109- 110 A80) TUB	18.00	0.476	T CHE	6.00		3.67	13.72	3.85	12.54	.46074-4	BL	1280551.		

* * * MEMBER FATIGUE REPORT * * * (JOINT ORDER)

			ORIGI	NAL		CHORD									REQUI	RED
JOINT	MEMBER GRUP	TYPE	OD	WT	JNT MEM	LEN.	GAP	* STRE	ESS CON	IC. FAG	CTORS *	FATIC	GUE R	ESULTS	OD	WT
	ID	ID	(IN)	(IN)	TYP TYP	(FT)	(IN)	AX-CR	AX-SD	IN-PL	OU-PL	DAMAGE	LOC	SVC LIFE	(IN)	(IN)
111	111- 117 A05	TUB	12.75	0.375	T BRC	4.20		1.66	7.20	3.07	7.32	.42923-4	TR	1374552.		
111	111- 155 A80	TUB	18.00	0.476	T CHD	4.20		3.20	11.32	3.85	11.01	.48949-3	TR	120533.1		
112	112- 118 A05	TUB	12.75	0.375	T BRC	4.20		1.66	7.20	3.07	7.32	.83454-5	BR	7069802.		
112	155- 112 A80	TUB	18.00	0.476	T CHD	4.20		3.20	11.32	3.85	11.01	.17979-3	BR	328156.2		
113	113- 119 A05	TUB	12.75	0.375	T BRC	5.64		1.81	8.73	3.07	8.17	.64482-6	TL	91499.+3		
113	112- 113 A80	TUB	18.00	0.476	T CHD	5.64		3.58	13.39	3.85	12.29	.26595-4	L	2218483.		
114	114- 120 A03	TUB	18.00	0.500	K BRC	19.74	5.00	4.38	4.43	2.70	7.41	.25920-5	L	22762.+3		
114	114- 103 A80	TUB	18.00	0.476	K CHD	19.74		8.89	8.47	3.87	14.68	.11259-2	L	52401.75		
114	114- 134 A04	TUB	16.00	0.500	K BRC	19.74	5.00	3.72	3.87	2.96	6.44	.93870-4	TR	628531.8		
114	114- 103 A80	TUB	18.00	0.476	K CHD	19.74		7.97	8.33	3.44	12.30	.31934-2	т	18475.56		
115	115- 116 A05	TUB	12.75	0.375	T BRC	9.00		2.21	9.29	2.98	8.53	.48924-4	L	1205952.		
115	109- 115 A03	TUB	18.00	0.500	T CHD	9.00		4.20	13.15	3.60	12.46	.12391-2	L	47616.26		

* * * M E M B E R F A T I G U E R E P O R T * * * (JOINT ORDER)

JOINT	MEMBER GRUP ID	TYPE ID	ORIGII OD (IN)	WT (IN)	JNT ME TYP TY	CHORD M LEN. P (FT)	GAE (IN)	P * STRE AX-CR	SS CON AX-SD	C. FAG IN-PL	CTORS * OU-PL	FATIG DAMAGE	UE RI LOC	ESULTS SVC LIFE	REQUI OD (IN)	RED WT (IN)
116	115- 116 A05	TUB	12.75	0.375	T BR	C 7.72		2.77	4.29	2.61	5.24	.0000000	т	INFINITE		
116	116- 122 A05	TUB	12.75	0.375	т сн	D 7.72		7.15	7.05	3.59	10.07	.75661-6	TL	77980.+3		
116	116- 117 A05	TUB	12.75	0.375	T BR	c 7.72		2.85	4.33	2.61	5.60	.0207364	т	2845.244		
116	110- 116 A05	TUB	12.75	0.375	т СН	D 7.72		7.63	7.10	3.59	10.76	.2943803	Т	200.4210		
117	116- 117 A05	TUB	12.75	0.375	T BR	c 7.72		2.80	4.30	2.61	5.37	.0219637	Т	2686.251		
117	117- 123 A05	TUB	12.75	0.375	т сн	D 7.72		7.32	7.07	3.59	10.31	.2898833	Т	203.5302		
117	117- 118 A05	TUB	12.75	0.375	T BR	c 7.72		2.11	3.94	2.61	2.23	.0000000	т	INFINITE		
117	117- 123 A05	TUB	12.75	0.375	т сн	D 7.72		3.12	6.63	3.59	4.28	.33585-7	TR	17567.+5		
118	117- 118 A05	TUB	12.75	0.375	T BR	c 7.72		2.42	4.10	2.61	3.64	.32613-7	TR	18091.+5		
118	112- 118 A05	TUB	12.75	0.375	т сн	D 7.72		5.00	6.83	3.59	6.98	.15074-4	TR	3913986.		
118	118- 119 A05	TUB	12.75	0.375	T BR	c 7.72		2.79	4.30	2.61	5.35	.31094-3	в	189747.5		
118	112- 118 A05	TUB	12.75	0.375	т сн	D 7.72		7.29	7.07	3.59	10.27	.0111838	в	5275.508		
119	118- 119 A05	TUB	12.75	0.375	T BR	c 7.72		2.85	4.33	2.61	5.59	.36682-3	BR	160843.1		

* * * MEMBER FATIGUE REPORT * * * (JOINT ORDER)

JOINT	MEMBER GRUP ID	TYPE ID	ORIGI OD (IN)	WT (IN)	JNT MEM TYP TYP	CHORD LEN. (FT)	GAE (IN)	* STRE AX-CR	SS CON AX-SD	C. FAG IN-PL	CTORS * OU-PL	FATIG DAMAGE	UE RI LOC	ESULTS SVC LIFE	REQUI OD (IN)	RED WT (IN)
119	119- 125 A05	TUB	12.75	0.375	T CHE	7.72		7.62	7.10	3.59	10.74	.0144965	BR	4069.945		
119	119- 120 A05	TUB	12.75	0.375	T BRC	7.72		2.69	4.25	2.61	4.89	.30712-7	L	19211.+5		
119	113- 119 A05	TUB	12.75	0.375	T CHE	7.72		6.68	7.00	3.59	9.39	.47206-4	L	1249850.		
120	119- 120 A05	TUB	12.75	0.375	T BRC	9.00		2.21	9.29	2.98	8.69	.42895-4	L	1375459.		
120	120- 126 A03	TUB	18.00	0.500	T CHE	9.00		4.20	13.16	3.60	12.69	.70715-3	L	83433.16		
121	121- 122 A05	TUB	12.75	0.375	T BRC	9.60		2.27	9.35	2.98	8.69	.36624-2	R	16109.81		
121	121- 127 A03	TUB	18.00	0.500	T CHE	9.60		4.35	13.16	3.60	12.69	.0273377	R	2158.195		
122	121- 122 A05	TUB	12.75	0.375	T BRC	7.90		2.75	4.26	2.61	4.97	.75264-6	BR	78391.+3		
122	116- 122 A05	TUB	12.75	0.375	T CHE	7.90		6.88	7.01	3.59	9.55	.39168-3	R	150632.0		
122	122- 123 A05	TUB	12.75	0.375	T BRC	7.90		2.73	4.25	2.61	4.90	.16918-3	BL	348744.2		
122	122- 128 A05	TUB	12.75	0.375	T CHE	7.90		6.78	7.00	3.59	9.41	.39876-2	BL	14795.72		
123	122- 123 A05	TUB	12.75	0.375	T BRC	7.90		2.62	4.20	2.61	4.44	.79288-4	в	744122.1		

* * * MEMBER FATIGUE REPORT * * * (JOINT ORDER)

JOINT	MEMBER GRUP ID	C TYPE C ID (I	RIGINAL D WT N) (IN)	JNT ME TYP TY	CHORD M LEN. P (FT)	GAP (IN)	* STRE AX-CR	SS CON AX-SD	C. FAC IN-PL	TORS * OU-PL	FATIG DAMAGE	UE R LOC	ESULTS SVC LIFE	REQUI OD (IN)	RED WT (IN)
205	105- 205 L55	TUB 34	.00 1.000) ТК СН	0 106.00		2.17	2.16	1.50	1.93	.0252010	R	2341.179		
205	145- 205 P54	TUB 16	.00 0.368	TK BR	C 106.00	12.25	2.10	2.08	2.76	2.22	.0202933	BL	2907.366		
205	105- 205 L55	TUB 34	.00 1.000	ТК СН	0 106.00		2.18	2.17	1.50	1.93	.0230006	L	2565.148		
205	205- 307 Q03	TUB 18	.00 0.375	TK BR	C 106.00	12.25	2.62	2.66	2.70	3.58	.4268598	TR	138.2187		
205	205- 305 L48	TUB 34	.00 1.000) ТК СН	0 106.00		2.92	2.95	1.55	3.25	.5866150	TR	100.5770		
205	205- 303 Q47	TUB 18	.00 0.370) TK BR	C 106.00	12.25	2.58	2.61	2.69	3.48	.2314141	L	254.9542		
205	205- 305 L48	TUB 34	.00 1.000) ТК СН	0 106.00		2.84	2.87	1.52	3.14	.3433794	L	171.8216		
206	106- 206 PL1	TUB 30	.00 0.750)			1.50	1.50	1.50	1.50	.0490906	TR	1201.858		
206	206- 306 PL2	TUB 30	.00 0.750)			1.50	1.50	1.50	1.50	.0490904	TR	1201.865		
207	201- 207 B21	TUB 14	.00 0.366	K BR	. 106.00	7.24	4.30	5.14	2.60	4.94	.0103689	т.	5690.072		
207	207- 307 LG8	TUB 34	.00 1.000) К СН	0 106.00		4.43	4.56	1.94	4.14	.74896-2	Т	7877.584		
207	207- 209 B66	TUB 14	.00 0.370) K BR	C 106.00	7.25	4.44	5.02	2.61	4.99	.2922479	TL	201.8834		
207	207- 307 LG8	TUB 34	.00 1.000	K CH	0 106.00		4.47	4.56	1.97	4.21	.2059567	TL	286.4680		
207	147- 207 KNE	TUB 16	.00 0.375	Y BR	C 106.00		3.91	3.30	2.78	1.91	.28113-6	BL	20987.+4		

* * * MEMBER FATIGUE REPORT * * * (JOINT ORDER)

			ORIGI	NAL		CHORD									REQUI	RED	
JOINT	MEMBER GRUP	TYPE	OD	WT .	JNT MEM	LEN.	GAP	* STRE	SS CON	IC. FAC	TORS *	FATIC	JUE R	ESULTS	OD	WΤ	
	ID	ID	(IN)	(IN)	TYP TYP	(FT)	(IN)	AX-CR	AX-SD	IN-PL	OU-PL	DAMAGE	LOC	SVC LIFE	(IN)	(IN)	
214	203- 214 B50	TUB	14.00	0.375				1.50	1.50	1.50	1.50	.54085-4	L	1090882.			
214	214- 205 B50	TUB	14.00	0.375				1.50	1.50	1.50	1.50	.53066-4	L	1111822.			
301	301- 327 C15	TUB	14.00	0.368	T BRC	95.20		3.64	8.15	2.60	4.98	.0566473	L	1041.533			
301	201- 301 LG2	TUB	34.00	1.000	T CHD	95.20		5.01	6.08	1.96	4.19	.0176820	L	3336.723			
301	301- 309 C75	TUB	14.00	0.372	TK BRC	95.20	10.00	4.14	4.15	2.61	5.51	.4222183	TR	139.7381			
301	301- 401 LG3	TUB	34.00	1.000	TK CHD	95.20		3.85	3.85	1.98	4.66	.2549987	TR	231.3737			
301	301- 328 C99	TUB	12.75	0.368	T BRC	95.20		3.63	7.99	2.58	4.68	.1790398	L	329.5356			
301	301- 401 LG3	TUB	34.00	1.000	T CHD	95.20		4.79	5.92	1.92	3.85	.0547899	Т	1076.841			
301	203- 301 Q04	TUB	18.00	0.375	TK BRC	95.20	10.00	2.92	3.06	2.67	4.09	4.062244	TL	14.52399			
301	201- 301 LG2	TUB	34.00	1.000	TK CHD	95.20		3.22	3.29	1.70	3.71	5.211165	TL	11.32185			
301	301- 403 R04	TUB	16.00	0.375	TK BRC	95.20	10.00	2.58	2.61	2.72	3.08	1.715006	TR	34.40222			
301	301- 401 LG3	TUB	34.00	1.000	TK CHD	95.20		2.73	2.75	1.52	2.71	1.877114	R	31.43122			
302	202- 302 PL2	TUB	30.00	0.750				1.50	1.50	1.50	1.50	.0711019	BR	829.7951			
302	302- 402 PL3	TUB	30.00	0.750				1.50	1.50	1.50	1.50	.0711020	BR	829.7935			

* * * MEMBER FATIGUE REPORT * * * (JOINT ORDER)

JOINT	MEMBER GRUP ID	TYPE ID	ORIGI OD (IN)	NAL WT (IN)	JNT ME TYP TY	CHORD M LEN. P (FT)	GAP (IN)	* STRE AX-CR	SS CON AX-SD	C. FAC IN-PL	TORS * OU-PL	FATIG DAMAGE	UE R LOC	ESULTS SVC LIFE	REQUI OD (IN)	RED WT (IN)	
303	303- 333 C10	TUB	12.75	0.362	T BF	c 95.20		3.61	7.94	2.57	4.64	.0404928	Т	1457.049			
303	303- 403 L40	TUB	34.00	1.000	T CH	D 95.20		4.71	5.82	1.89	3.79	.0146864	Т	4017.334			
303	303- 334 C44	TUB	14.00	0.354	TK BF	C 95.20	10.00	4.01	4.16	2.58	5.37	.0491667	TR	1199.999			
303	303- 403 L40	TUB	34.00	1.000	TK CH	D 95.20		3.71	3.75	1.90	4.42	.0224859	TR	2623.867			
303	314- 303 C75	TUB	14.00	0.372	T BF	C 95.20		3.66	8.16	2.61	4.99	.1207287	BR	488.6989			
303	303- 403 L40	TUB	34.00	1.000	T CH	D 95.20		5.06	6.15	1.98	4.22	.0433515	BR	1360.966			
303	205- 303 Q47	TUB	18.00	0.370	TK BF	C 95.20	10.00	2.85	3.02	2.66	3.86	.4377113	TL	89.342			
303	203- 303 L46	TUB	34.00	1.000	TK CH	D 95.20		3.12	3.22	1.66	3.48	.4608141	TL	128.0343			
303	303- 405 R01	TUB	16.00	0.375	TK BF	C 95.20	10.00	2.76	2.84	2.70	3.46	.7856283	TL	750.09913			
303	303- 403 L40	TUB	34.00	1.000	ТК СН	D 95.20		2.89	2.93	1.61	3.04	.6172215	L	95.58967			
304	204- 304 PL2	TUB	30.00	0.750				1.50	1.50	1.50	1.50	.15043-2	BR	39221.08			
304	304- 404 PL3	TUB	30.00	0.750				1.50	1.50	1.50	1.50	.15043-2	BR	39220.91			
305	333- 305 CO2	TUB	14.00	0.375	Y BF	C 95.90		3.68	8.09	2.62	4.95	.0179400	BL	3288.749			
305	305- 405 L42	TUB	34.00	1.000	Y CH	D 95.90		5.10	6.20	1.98	4.20	.78842-2	В	7483.306			

LAMPIRAN E ANSYS REPORT

Project

First Saved	Saturday, May 26, 2018
Last Saved	Monday, May 28, 2018
Product Version	16.0 Release
Save Project Before Solution	No
Save Project After Solution	No

Contents

- **Units** ٠
- Model (B4) •
 - o <u>Geometry</u>
 - Solid
 - o <u>Coordinate Systems</u>
 - o <u>Remote Points</u> •
 - Remote Point
 - Mesh 0 •
 - Mesh Controls
 - Fracture 0
 - Crack • Named Selections
 - o <u>Static Structural (B5)</u>
 - Analysis Settings
 - Loads
 - . Solution (B6)
 - Solution Information
 - . Results
 - Stress Probe .
 - Fracture Tool
 - <u>SIFS</u> (K1)
- **Material Data** ٠
 - o <u>Structural Steel</u>

Units

TABLE 1

Unit System	Metric (m, kg, N, s, V, A) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

Model (B4)

Geometry

TABLE 2 Model (B4) > Geometry

Object Name	Geometry		
State	Fully Defined		
Definition			
Source	E:\Bagus TA\TA 118\TA Final\FINAL 2_files\dp0\Geom\DM\Geom.agdb		
Туре	DesignModeler		
Length Unit	Meters		
Element Control	Program Controlled		
Display Style	Body Color		
Bounding Box			
Length X	2.4318 m		

Length Y	5. m	
Length Z	2.4318 m	
	Properties	
Volume	0.20638 m³	
Mass	1620.1 kg	
Scale Factor Value	1.	
	Statistics	
Bodies	1	
Active Bodies	1	
Nodes	252074	
Elements	126226	
Mesh Metric	None	
	Basic Geometry Options	
Parameters	Yes	
Parameter Key	DS	
Attributes	No	
Named Selections	No	
Material Properties	No	
	Advanced Geometry Options	
Use Associativity	Yes	
Coordinate Systems	No	
Reader Mode Saves Updated File	No	
Use Instances	Yes	
Smart CAD Update	No	
Compare Parts On Update	No	
Attach File Via Temp File	Yes	
Temporary Directory	C:\Users\PUSAT STUDI	
Analysis Type	3-D	
Decompose Disjoint Geometry	Yes	
Enclosure and Symmetry Processing	Yes	

		TABLE 3	
odel	(B4) >	Geometry >	Parts

Model (B4) > 0	Seometry > Parts			
Object Name	Solid			
State	Meshed			
Grap	hics Properties			
Visible	Yes			
Transparency	1			
Definition				
Suppressed	No			
Stiffness Behavior	Flexible			
Coordinate System	Default Coordinate System			
Reference Temperature	By Environment			
Material				
Assignment	Structural Steel			
Nonlinear Effects	Yes			
Thermal Strain Effects	Yes			
Bo	ounding Box			
Length X 2.4318 m				

Length Y	5. m			
Length Z	2.4318 m			
Properties				
Volume	0.20638 m ³			
Mass	1620.1 kg			
Centroid X	0.15738 m			
Centroid Y	-4.449e-004 m			
Centroid Z	-7.2372e-002 m			
Moment of Inertia Ip1	3116.1 kg⋅m²			
Moment of Inertia Ip2	636.78 kg⋅m²			
Moment of Inertia Ip3	3250.1 kg⋅m²			
Statistics				
Nodes	271767			
Elements	133026			
Mesh Metric	None			

Coordinate Systems

TABLE 4 Model (B4) > Coordinate Systems > Coordinate System					
	Global Coordinate Coordinate				
Object Name	Coordinate System	Svstem	Svstem 4		
State		Fully Defined	.,		
		Definition			
Туре		Cartesian			
Coordinate System ID	0.				
Coordinate System		Progr	am Controlled		
Suppressed			No		
		Origin			
Origin X	0. m	0.38386 m	0.58596 m		
Origin Y	0. m	2.7439e-002 m	-0.81118 m		
Origin Z	0. m	0.19775 m	6.6041e-003 m		
Define By		Geometry Selection	Global Coordinates		
Geometry	Defined				
Location			Defined		
Directional Vectors					
X Axis Data		[1. 0. 0.]	[0.65523 0.75487 -2.9057e-002]		
Y Axis Data	[0. 1. 0.]		[-0.75413 0.65588 3.3443e-002]		
Z Axis Data	[0. 0. 1.]		[4.4303e-002 0. 0.99902]		
Principal Axis					
Axis			Х		
Define By		Global X Axis	Hit Point Normal		
Hit Point Normal			Defined		
	Orientatio	n About Principal Axis			
Axis			Y		
Define By	Default				
	Tr	ansformations			

Base Configuration		Absolute
Transformed	[0.38386	[0.58596 -
Configuration	2.7439e-002 0.19775]	0.81118 6.6041e-003]

Remote Points

TABLE 5			
Model (B4) > Remote Points			
Object Name	Remote Points		
State Fully Define			
Display			
Show Connection Lines	No		

			TABLE	6	
odel ((B4) >	Remote	Points :	> Remote	Point

Model (B4) > Remote Points > Remote Point					
Object	Remot	Remot	Remot	Remot	Remote
Name	e Point	e Point 2	e Point 3	e Point 4	Point 5
State			Fully Defir	ned	
		5	Scope		
Scoping Method			Geometry Sel	ection	
Geometry			1 Face		
Coordinat e System		(Global Coordinat	e System	
Х	1.4371	2 m	1.5104	1.5651	9.7047
Coordinate	m	2.111	m	m	e-014 m
Y Coordinate	1.3909 m	- 5.4746e-004 m	-1.311 m	- 4.4041e-004 m	- 5.1903e-004 m
Z Coordinate	- 6.7788e-004 m	- 1.4842e-013 m	- 8.7656e-004 m	- 1.2452 m	-2. m
Location			Defined		
	Definition				
Suppresse d	No				
Behavior	Deformable				
Pinball Region	All				
DOF Selection	Program Controlled				

Mesh

TABLE 7 Model (B4) > Mesh	I
Object Name	Mesh
State	Solved
Display	
Display Style	Body Color
Defaults	
Physics Preference	Mechanical
Relevance	0

Sizing				
Use Advanced Size Function	Off			
Relevance Center	Coarse			
Element Size	Default			
Initial Size Seed	Active Assembly			
Smoothing	Medium			
Transition	Fast			
Span Angle Center	Coarse			
Minimum Edge Length	2.721e-003 m			
Inflation				
Use Automatic Inflation	None			
Inflation Option	Smooth Transition			
Transition Ratio	0.272			
Maximum Layers	5			
Growth Rate	1.2			
Inflation Algorithm	Pre			
View Advanced Options	No			
Patch Conforming	Options			
Triangle Surface Mesher	Program Controlled			
Patch Independent	Options			
Topology Checking	No			
Advanced				
Number of CPUs for Parallel Part Meshing	Program Controlled			
Shape Checking	Standard Mechanical			
Element Midside Nodes	Program Controlled			
Straight Sided Elements	No			
Number of Retries	Default (4)			
Extra Retries For Assembly	Yes			
Rigid Body Behavior	Dimensionally Reduced			
Mesh Morphing	Disabled			
Defeaturing	g			
Pinch Tolerance	Please Define			
Generate Pinch on Refresh	No			
Automatic Mesh Based Defeaturing	On			
Defeaturing Tolerance	Default			
Statistics				
Nodes	271767			
Elements	133026			
Mesh Metric	None			

TABLE 8Model (B4) > Mesh > Mesh Controls

Object Name	Automatic Method	Body Sizing				
State	Fully Defined					
Scope						
Scoping Method	Geometry Selection					
Geometry	1 Body					
Definition						
Suppressed		No				
Method	Automatic					
Element Midside Nodes	Use Global Setting					
Туре	Sphere of Influence					

Sphere Center	Global Coordinate System
Sphere Radius	1. m
Element Size	2.12e-002 m

TABLE 9 Model (B4) > Fracture

Object Name	Fracture						
State	Solved						

TABLE 10Model (B4) > Fracture > Crack

Object Name	Crack						
State	Fully Defined						
Scope							
Source	Crack						
Scoping Method	Geometry Selection						
Geometry	1 Body						
Defin	ition						
Coordinate System	Coordinate System 4						
Align with Face Normal	Yes						
Project to Nearest Surface	Yes						
Crack Shape	Semi-Elliptical						
Major Radius	1.67e-003 m						
Minor Radius	25.e-004 m						
Fracture Affected Zone	Program Controlled						
Fracture Affected Zone Height	2.4622e-003 m						
Largest Contour Radius	1.e-003 m						
Circumferential Divisions	8						
Mesh Contours	11						
Crack Front Divisions	15						
Solution Contours	10						
Suppressed	No						
Buffer Zone S	cale Factors						
X Scale Factor	2.						
Y Scale Factor	2.						
Z Scale Factor	2.						
Named Selections Creation							
Crack Front Nodes	NS_Crack_Front						
Crack Faces Nodes	Off						
Contact Pairs Nodes	Off						

TABLE Model (B4) > Fracture > Crack	E 11 > Named Selections					
Object Name	NS_Crack_Front					
State	Fully Defined					
Scop)e					
Geometry 31 Nodes						
Definit	tion					
Send to Solver	Yes					
Visible	Yes					
Program Controlled Inflation	Exclude					
Statist	tics					
Туре	Generated					

Total Selection	31 Nodes
Suppressed	0
Used by Mesh Worksheet	No

Named Selections

TABLE 12 Model (B4) > Named Selections > Named Selections								
Object Name	Proble matic Geometry	Proble matic Geometry 2	Proble matic Geometry 3	Proble matic Geometry 4	Proble matic Geometry 5			
State		,	Suppresse	d				
			Scope					
Scopin g Method			Geometry Sele	ction				
Geome try			No Selectio	n				
Definition								
Send to Solver	Yes							
Visible	Yes							
Progra m Controlled Inflation	Exclude							
		S	tatistics					
Туре	Manual							
Total Selection	No Selection							
Suppre ssed	0							
Used by Mesh Worksheet	No							

Static Structural (B5)

TAB Model (B4) > /	BLE 13 Analysis					
Object Name	Static Structural (B5)					
State	Solved					
Definition						
Physics Type Structural						
Analysis Type	Static Structural					
Solver Target	Mechanical APDL					
Options						
Environment Temperature	22. °C					
Generate Input Only	No					

TABLE 14 Model (B4) > Static Structural (B5) > Analysis Settings				
Object Name Analysis Settings				
State Fully Defined				
Step Controls				

Number Of Steps	1.					
Current Step Number	1.					
Step End Time	1. s					
Auto Time Stepping	Program Controlled					
Solver Controls						
Solver Type	Program Controlled					
Weak Springs	Program Controlled					
Solver Pivot Checking	Program Controlled					
Large Deflection	Off					
Inertia Relief	Off					
Fracture	On					
	Restart Controls					
Generate Restart Points	Program Controlled					
Retain Files After Full	No					
Solve	Nonlinear Controle					
Newton Bankson Option	Program Controlled					
Force Convergence	Program Controlled					
Momont Convergence Program Controlled						
Displacement Convergence	Program Controlled					
Botation Convergence	Program Controlled					
	Program Controlled					
Stabilization	Off					
	Output Controls					
Stress	Yes					
Strain	Yes					
Nodal Forces	No					
Contact Miscellaneous	No					
General Miscellaneous	No					
Store Results At	All Time Points					
	Analysis Data Management					
Solver Files Directory	E:\Bagus TA\TA 118\TA Final\FINAL 2_files\dp0\SYS\MECH\					
Future Analysis	None					
Scratch Solver Files						
Directory						
Save MAPDL db	No					
Delete Unneeded Files	Yes					
Nonlinear Solution	No					
Solver Units	Active System					
Solver Unit System	mks					

 TABLE 15

 Model (B4) > Static Structural (B5) > Loads

C bject Name	ixed Support	emote Force	emote Force 2	emote Force 3	emote Force 4	emote Force 5	oment	oment 2	oment 3	oment 4	oment 5
S tate						Fully D	efined	-		-	
						Scope					

S coping Method	eometr y Selecti on	Remote Point									
G eometry	Faces										
R emote Points		emote Point	emote Point 2	emote Point 3	emote Point 4	emote Point 5	emote Point	emote Point 2	emote Point 3	emote Point 4	emote Point 5
C oordinat e System			Glob	al Coorc	linate Sy	vstem					
X Coordin ate		.4371 m	. m	.5104 m	.5651 m	.7047e -014 m					
Y Coordin ate		.3909 m	$\begin{array}{c c} .3909 \\ m \\ $								
Z Coordin ate		6.7788 e-004 m	1.4842 e-013 m	8.7656 e-004 m	1.2452 m	2. m					
L ocation				Def	ined						
					D	efinition					
уре	ixed Support			Remot	e Force		Moment				
S uppress ed						Ν	0				
D efine By						Сс	omponer	nts			
X Compon ent		1.3091 e+006 N (ramp ed)	98172 N (ramp ed)	1.0721 e+006 N (ramp ed)	1.064e +005 N (ramp ed)	89231 N (rampe d)	125.31 N⋅m (ramp ed)	653.49 N⋅m (ramp ed)	57.738 N⋅m (ramp ed)	330.59 N⋅m (ramp ed)	73.21 N⋅m (ramp ed)
Y Compon ent		29492 N (ramp ed)	9474.7 N (ramp ed)	15257 N (ramp ed)	9875.1 N (ramp ed)	15791 N (rampe d)	1417.4 N⋅m (ramp ed)	2064.7 N⋅m (ramp ed)	1638.7 N⋅m (ramp ed)	2712.7 N⋅m (ramp ed)	4166.7 N⋅m (ramp ed)
Z Compon ent		17037 N (ramp ed)	362.7 N (ramp ed)	9296.8 N (ramp ed)	430.2 N (ramp ed)	37899 N (rampe d)	2367.1 N⋅m (ramp ed)	1129.6 N⋅m (ramp ed)	1846.4 N⋅m (ramp ed)	596.82 N⋅m (ramp ed)	1583.4 N⋅m (ramp ed)
B ehavior						D	eformab	le			
C oordinat		Global Coordinate System									

FIGURE 2 Model (B4) > Static Structural (B5) > Remote Force 2

FIGURE 3 Model (B4) > Static Structural (B5) > Remote Force 3

FIGURE 4 Model (B4) > Static Structural (B5) > Remote Force 4

FIGURE 5 Model (B4) > Static Structural (B5) > Remote Force 5

FIGURE 6 Model (B4) > Static Structural (B5) > Moment

FIGURE 7 Model (B4) > Static Structural (B5) > Moment 2

FIGURE 8 Model (B4) > Static Structural (B5) > Moment 3

FIGURE 9 Model (B4) > Static Structural (B5) > Moment 4

FIGURE 10 Model (B4) > Static Structural (B5) > Moment 5

TABLE 16 Model (B4) > Static Structural (B5) > Loads

Object Name	Displacement					
State	Fully Defined					
	Scope					
Scoping Method	Geometry Selection					
Geometry	2 Faces					
Definition						
Туре	Displacement					
Define By	Components					
Coordinate System	Global Coordinate System					
X Component	0. m (ramped)					
Y Component	0. m (ramped)					
Z Component	0. m (ramped)					
Suppressed	No					

FIGURE 11 Model (B4) > Static Structural (B5) > Displacement

Solution (B6)

TABLE 17	
Model (B4) > Static Structural (B	35) > Solution
Object Name	Solution (B6)
State	Solved
Adaptive Mesh Ref	inement
Max Refinement Loops	1.
Refinement Depth	2.
Information	ı
Status	Done
Post Process	ing
Calculate Beam Section Results	No

TABLE 18 Model (B4) > Static Structural (B5) > Solution (B6) > Solution Information

Object Name	Solution Information
State	Solved
Solution Inf	ormation
Solution Output	Solver Output
Newton-Raphson Residuals	0
Update Interval	2.5 s
Display Points	All
FE Connectio	n Visibility
Activate Visibility	Yes
Display	All FE Connectors
Draw Connections Attached To	All Nodes
Line Color	Connection Type
Visible on Results	No

Line Thickness	Single
Display Type	Lines

Model (B4)	I ABLE 19 Static Structural (B5) > Solution	on (B6) > Results				
Object Name	Maximum Principal Stress	Equivalent Stress				
State		Solved				
	Scope					
Scoping Method	Geo	metry Selection				
Geometry		All Bodies				
	Definition					
Туре	Maximum Principal Stress	Equivalent (von-Mises) Stress				
By		Time				
Display Time		Last				
Calculate Time History	Yes					
Identifier						
Suppressed		No				
	Integration Point Res	ults				
Display Option		Averaged				
Average Across Bodies		No				
	Results					
Minimum	-1.2732e+010 Pa	2.6254e+006 Pa				
Maximum	6.628e+009 Pa	1.3075e+010 Pa				
	Information					
Time		1. s				
Load Step		1				
Substep		1				
Iteration Number	Iteration Number 1					

TABLE 20

Model (B4) > Static Structural (B5) > Solution (B6) > Maximum Principal Stress

Time [s]	Minimum [Pa]	Maximum [Pa]
1.	-1.2732e+010	6.628e+009

TABLE 21

Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Stress

Time [s]	Minimum [Pa]	Maximum [Pa]
1.	2.6254e+006	1.3075e+010

TABLE 22 Model (B4) > Static Structural (B5) > Solution (B6) > Probes Object Name Stress Probe State Solved Definition Туре Stress Location Method Coordinate System Orientation **Coordinate System** Location Coordinate System

X Coordinate	0.38386 m
Y Coordinate	2.7439e-002 m
Z Coordinate	0.19775 m
Suppressed	No
O	otions
Result Selection	All
Display Time	End Time
Re	esults
Normal - X Axis	6.6068e+008 Pa
Normal - Y Axis	1.6644e+009 Pa
Normal - Z Axis	1.3797e+009 Pa
XY Shear	7.0981e+007 Pa
YZ Shear	-1.6108e+008 Pa
XZ Shear	-8.9487e+008 Pa
Equivalent (von-Mises)	1.816e+009 Pa
Maximum Principal	2.0604e+009 Pa
Middle Principal	1.5891e+009 Pa
Minimum Principal	5.5177e+007 Pa
Intensity	2.0052e+009 Pa
Maximum V	alue Over Time
Normal - X Axis	6.6068e+008 Pa
Normal - Y Axis	1.6644e+009 Pa
Normal - Z Axis	1.3797e+009 Pa
XY Shear	7.0981e+007 Pa
YZ Shear	-1.6108e+008 Pa
XZ Shear	-8.9487e+008 Pa
Equivalent (von-Mises)	1.816e+009 Pa
Maximum Principal	2.0604e+009 Pa
Middle Principal	1.5891e+009 Pa
Minimum Principal	5.5177e+007 Pa
Intensity	2.0052e+009 Pa
Minimum V	alue Over Time
Normal - X Axis	6.6068e+008 Pa
Normal - Y Axis	1.6644e+009 Pa
Normal - Z Axis	1.3797e+009 Pa
XY Shear	7.0981e+007 Pa
YZ Shear	-1.6108e+008 Pa
XZ Shear	-8.9487e+008 Pa
Equivalent (von-Mises)	1.816e+009 Pa
Maximum Principal	2.0604e+009 Pa
Middle Principal	1.5891e+009 Pa
Minimum Principal	5.5177e+007 Pa
Intensity	2.0052e+009 Pa
Info	rmation
Time	1. s
Load Step	1
Substep	1
Iteration Number	1

 TABLE 23

 Model (B4) > Static Structural (B5) > Solution (B6) > Stress Probe

ime [s]	tress Probe (NormX) [Pa]	tress Probe (NormY) [Pa]	tress Probe (NormZ) [Pa]	tress Probe (Shear XY) [Pa]	tress Prob e (She arYZ) [Pa]	tress Prob e (She arXZ) [Pa]	tress Probe (Equiv alent (von- Mises)) [Pa]	tress Probe (Maxim um Princip al) [Pa]	tress Probe (Middle Princip al) [Pa]	tress Probe (Minimu m Princip al) [Pa]	tress Probe (Intensit y) [Pa]
-	6 .6068e +008	.6644e +009	.3797e +009	.0981e +007	1.61 08e+ 008	8.94 87e+ 008	.816e+ 009	.0604e +009	.5891e +009	.5177e +007	.0052e +009

 TABLE 24

 Model (B4) > Static Structural (B5) > Solution (B6) > Fracture Tool

Object Name	Fracture I ool					
State	Solved					
Scope						
Scoping Method	Crack Selection					
Crack Selection	Crack					

		TABLE 25	
Model (B4	4) > Static Structural (B5) > Solution (B6) > Fracture Tool	> Results

Object Name	SIFS (K1)				
State	Solved				
	Definition				
Туре	SIFS				
Subtype	K1				
Contour Start	1				
Contour End	6				
Active Contour	Last				
Ву	Time				
Display Time	Last				
Suppressed	No				
Results					
Minimum	-6.1876e+007 Pa·m^(0.5)				
Maximum	-7.6562e+006 Pa·m^(0.5)				
	Information				
Time	1. s				
Load Step	1				
Substep	1				
Iteration Number	1				

TABLE 26

Model (B4) > Static Structural (B5) > Solution (B6) > Fracture Tool > SIFS (K1)

	SIES	SIFS	SIFS	SIFS	SIFS	SIFS
L	(K1) Contour 1	(K1) Contour				
ength [m]	(RT) Contour T	2	3	4	5	6
	[Fainr(0.5)]	[Pa·m^(0.5)]	[Pa·m^(0.5)]	[Pa·m^(0.5)]	[Pa·m^(0.5)]	[Pa·m^(0.5)]
0	23.20e-	38.88	47.5e	56.16	65.58	76.56
0.	003	3e-003	-003	7e-003	6e-003	2e-003
2.	48.27e-	33.76	33.68	3.362	3.357	3.352
50e-005	003	7e-003	8e-003	9e-003	7e-003	8e-003

5.	55.97e-	18.17	2.886	-	3.737	3.830
00e-005	003	8e-003	4e-003	3.673e-003	e-003	7e-003
7.	59.27e-	46.00	4.601	4.601	4.601	4.601
500-005	003	2e-003	4e-003	e-003	e-003	2e-003
1. 00e-005	61.97e-	45.63 70-003	4.954	5.009 80-003	5.010	5.010 80-003
1	72 820	70-003 52.92	5 294	5 294	5 294	5 294
25e-005	003	2e-003	e-003	5e-003	6e-003	5e-003
1	75 976-	53 22	5 498	5 499	5 499	5 499
50e-005	003	5e-003	7e-003	2e-003	3e-003	2e-003
1.	82.30e-	56.57	5,659	5.659	5.659	5.659
75e-005	003	1e-003	3e-003	5e-003	5e-003	3e-003
2.	88.83e-	58.00	5.799	5.799	5.799	5.799
00e-005	003	1e-003	4e-003	6e-003	6e-003	5e-003
2.	93.10e-	59.09	5.912	5.912	5.912	5.912
25e-005	003	e-003	2e-003	3e-003	2e-003	e-003
2.	99.10e-	60.06	6.010	6.011	6.011	6.010
50e-005	003	2e-003	8e-003	e-003	1e-003	e-003
2. 75 a 005	106.47e-	60.84	6.086	6.087	6.087	6.086
750-005	003	56-003	96-003	e-003	e-003	e-003
3. 000-005	110.47e-	61.39 20-003	6.142 20-003	6.142 5e-003	6.142 5e-003	6.142 4e-003
000-000	118 200	26-003	20-003	6 17/	6 174	6 174
25e-005	003	e-003	2e-003	4e-003	3e-003	2e-003
3	123 77e-	61 84	6 187	6 187	6 187	6 187
50e-005	003	3e-003	e-003	2e-003	2e-003	1e-003
3.	131.40e-	61.83	6.186	6.186	6.186	6.186
75e-005	003	8e-003	2e-003	3e-003	2e-003	e-003
4.	144.30e-	61.84	6.187	6.187	6.187	6.187
00e-005	003	7e-003	4e-003	7e-003	7e-003	e-003
4.	154.77e-	61.70	6.172	6.173	6.173	6.172
25e-005	003	4e-003	9e-003	e-003	e-003	8e-003
4.	163.73e-	6.137	6.140	6.141	6.141	6.141
500-005	175 400	96-003	96-003	e-003	20-003	1e-003
4. 75e-005	003	0.000 1e-003	0.000 5e-003	0.000 7e-003	0.000 7e-003	0.000 5e-003
5	182 530-	-	6 015	6.015	6.015	6 015
00e-005	003	6.011e-003	6e-003	8e-003	9e-003	8e-003
5.	190.70e-	5.918	5.920	5.921	5.920	5.920
25e-005	003	5e-003	8e-003	e-003	e-003	7e-003
5.	199.90e-	5.815	5.814	5.814	5.814	5.814
50e-005	003	1e-003	5e-003	6e-003	e-003	5e-003
5.	209.57e-	5.673	5.676	5.676	5.676	5.676
75e-005	003	8e-003	1e-003	3e-003	2e-003	e-003
6.	219.47e-	5.326	5.503	5.503	5.503	5.503
00e-005	003	96-003	e-003	8e-003	8e-003	e-003
6. 250.005	227.47e-	5.276	5.278	5.278	-	5.278
200-000	003	00-003	6-003	96-003	5.270-003	00-003 5 017
0. 50e-005	237.078-	4.009 3e-003	4.900 86-003	3.010 4e-003	5.017 e-003	3e-003
600.000	247 970-	4 620	<u> </u>	<u>4</u> 621	<u>4 621</u>	<u> </u>
75e-005	003	4e-003	6e-003	6e-003	6e-003	5e-003
7.	260.70e-	1.824	2.897	3.686	3.752	3.845
00e-005	003	e-003	4e-003	9e-003	1e-003	4e-003
7.	271.13e-	3.385		3.372	-	3.362
25e-005	003	8e-003	3.378e-003	1e-003	3.367e-003	3e-003

Material Data

Structural Steel

TABLE 27 Structural Steel > Constants

Density	7850 kg m^-3
Coefficient of Thermal Expansion	1.2e-005 C^-1
Specific Heat	434 J kg^-1 C^-1
Thermal Conductivity	60.5 W m^-1 C^-1
Resistivity	1.7e-007 ohm m

 TABLE 28

 Structural Steel > Compressive Ultimate Strength

 Compressive Ultimate Strength Pa

0

TABLE 29

Structural Steel > Compressive Yield Strength

Compressive Yield Strength Pa 2.5e+008

 TABLE 30

 Structural Steel > Tensile Yield Strength

 Tensile Yield Strength Pa

 2.5e+008

2.50+006

 TABLE 31

 Structural Steel > Tensile Ultimate Strength

 Tensile Ultimate Strength Pa

 4.6e+008

1.001000

TABLE 32 Structural Steel > Isotropic Secant Coefficient of Thermal Expansion Reference Temperature C

22

TABLE 33

Structural Steel > Alternating Stress Mean Stress

V	
Cycles	Mean Stress Pa
10	0
20	0
50	0
100	0
200	0
2000	0
10000	0
20000	0
1.e+005	0
2.e+005	0
1.e+006	0
	Cycles 10 20 50 100 2000 2000 10000 20000 1.e+005 2.e+005 1.e+006

 TABLE 34

 Structural Steel > Strain-Life Parameters

Strength Coefficient Pa	Strengt h Exponent	Ductilit y Coefficient	Ductilit y Exponent	Cyclic Strength Coefficient Pa	Cycli c Strain Hardening Exponent
9.2e+00 8	-0.106	0.213	-0.47	1.e+00 9	0.2

TABLE 35 Structural Steel > Isotropic Elasticity

Temperatur	Young'	Poisson'	Bulk Modulus Pa	Shear Modulus Pa
09	S MOUUIUS F a	5 1\alio	IVIOUUIUS F a	IVIOUUIUS F a
	2.e+01	03	1.6667e+01	7.6923e+01
	1	0.5	1	0

 TABLE 36

 Structural Steel > Isotropic Relative Permeability

 Relative Permeability

10000

BIODATA PENULIS

Bagus Panuntun, anak keempat dari enam bersaudara ini lahir di Grobogan pada tanggal 20 Juli 1995. Pendidikan formal penulis dimulai dengan menyelesaikan jenjang Pendidikan Dasar di SDN 1 Grobogan pada tahun 2007 dan SMP Negeri 3 Purwodadi pada tahun 2010. Kemudian menyelesaikan jenjang Pendidikan Menengah di SMA Negeri Sragen Bilingual Boarding School Indonesia – Turki pada tahun 2013. Setelah lulus SMA, penulis melanjutkan ke jenjang Pendidikan Tinggi Strata 1 di Departemen Teknik Kelautan pada tahun 2014, Fakultas Teknologi Kelautan,

Institut Teknologi Sepuluh Nopember (ITS) Surabaya melalu jalur SBMPTN dan terdaftar sebagai mahasiswa dengan NRP 4314100079. Selama menempuh masa perkuliahan penulis aktif di beberapa organisasi kemahasiswaan. Dalam organisasi kemahasiswaan, penulis pernah mendapatkan amanah sebagai Staff Departemen Hubungan Luar Badan Eksekutif Mahasiswa Fakultas (BEM F) ITS. Penulis pernah berkesempatan untuk melaksanakan kerja praktek di PT. Pertamina EP Field Poleng Gresik, Indonesia selama 2 bulan. Pada kegiatan Kerja Praktek tersebut, penulis menganalisa struktur milik perusahaan yang menumbuhkan kecintaan terhadap bidang analisa dan produksi bangunan lepas pantai. Selaras dengan kecintaan penulis, dalam Tugas Akhir ini penulis juga melakukan analisa umur kelelahan pada bangunan lepas pantai.

Kontak Penulis

E-mail: <u>baguspanuntun.its@gmail.com</u>

Mobile Phone: 0822 4216 8789