

TUGAS AKHIR - MO141326

## STUDI NUMERIK DAN EKSPERIMEN OLAH GERAK CLASSIC SPAR DILENGKAPI HELICAL STRAKES DENGAN VARIASI HEADING GELOMBANG

SEPTIAN AGUNG PRIAMBODO NRP. 043114 40000 021

Dosen Pembimbing : Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. Dr. Eng. Rudi Walujo Prastianto, S.T., M.T.

DEPARTEMEN TEKNIK KELAUTAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 60111 2018



TUGAS AKHIR - MO141326

## NUMERICAL AND EXPERIMENTAL STUDY OF CLASSIC SPAR MOTION WITH HELICAL STRAKES ON HEADING VARIATION

SEPTIAN AGUNG PRIAMBODO NRP. 043114 40000 021

Supervisors :

Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D.

Dr. Eng. Rudi Walujo Prastianto, S.T., M.T.

DEPARTEMENT OF OCEAN ENGINEERING FACULTY OF MARINE TECHNOLOGY SEPULUH NOPEMBER INSTITUTE OF TECHNOLOGY SURABAYA 60111 2018

### STUDY NUMERIS DAN EKSPERIMEN OLAH GERAK CLASSIC SPAR DILENGKAPI HELICAL STRAKES DENGAN VARIASI HEADING GELOMBANG

#### TUGAS AKHIR

Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik Pada Program Studi S-1 Jurusan Teknik Kelautan Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya

| Oleh :                                        |                     |
|-----------------------------------------------|---------------------|
| SEPTIAN AGUNG PRIAMBODO                       | NRP. 04311440000021 |
| Disetujui oleh :                              |                     |
| 1. Prof. Ir, Eko Budi Djatmiko, M.Sc., Ph.D.  | (Pembimbing 1)      |
| 2. Dr. Eng. Rudi Walujo Prastiano, S.T., M.T. | (Pembimbing 2)      |
| 3. Ir. Murdiito, M.Sc. Eng<br>Poeerig         | (Penguji 1)         |
| 4. Yoyok Setyo Hadiwidodo, S.T., M.T., Ph.D   | (Penguji 2)         |

SURABAYA, JULI 2018

#### STUDI NUMERIK DAN EKSPERIMEN OLAH GERAK GERAK CLASSIC SPAR DILENGKAPI HELICAL STRAKES DENGAN VARIASI HEADING GELOMBANG

| Nama             | : Septian Agung Priambodo                   |
|------------------|---------------------------------------------|
| NRP              | : 043114 40000 021                          |
| Departemen       | : Teknik Kelautan FTK – ITS                 |
| Dosen Pembimbing | : Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. |
|                  | Dr. Eng. Rudi Walujo Prastianto, S.T., M.T. |

#### ABSTRAK

SPAR merupakan bangunan apung dengan struktur utama berbentuk silinder. Dalam perkembangannya SPAR telah mengalami perubahan konsep terutama konsep bentuk lambungnya. Helical strakes pada SPAR memiliki pengaruh dalam mengurangi VIV (vortex induced vibration). Dalam Tugas Akhir ini, dilakukan study numeris dan ekperimen olah gerak SPAR dilengkapi helical strakes dengan variasi *heading* gelombang dengan arah gelombang datang yang berbeda (  $0^{\circ}, 22.5^{\circ}, 45^{\circ}$ ) dan 3 mode gerakan yaitu surge, pitch, heave . Tali tambat berjumlah 4 buah dengan spesifikasi yang sama. Metode numeris dianalisis dengan software ANSYS AQWA. Ekperimen dilakukan di Laboratorium Hidrodinamika FTK ITS. Karakteristik gerak SPAR menghasilkan nilai yang bervariasi pada kondisi tertambat dengan variasi heading 0°, 22.5° dan 45°. Pada surge dan pitch nilai terbesar terjadi pada arah 0 derajat sebesar 1.367 m/m dan 4.276 deg/m. Pada gerakan heave arah datang tidak mempengaruhi tinggi RAO. Tali yang inline dengan arah datang gelombang mengalami nilai RAO tension yang paling besar yaitu 287.907 ton/m. Helical strakes meredam gerakan secara signifikan pada *heave* dan *pitch* namun membesar pada *surge*.

# Kata kunci : RAO, SPAR, *Heading* gelombang, *helical strakes*, tegangan tali.

#### NUMERICAL AND EXPERIMENTAL STUDY OF CLASSIC SPAR MOTION WITH HELICAL STRAKES ON HEADING VARIATION.

| Name        | : Septian Agung Priambodo                   |
|-------------|---------------------------------------------|
| NRP         | : 043114 40000 021                          |
| Departement | : Teknik Kelautan FTK – ITS                 |
| Supervisors | : Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D. |
|             | Dr. Eng. Rudi Walujo Prastianto, S.T., M.T  |

#### ABSTRACT

SPAR is floating structure with shaped of main structure is cylinder. In development SPAR has undergone changes of concept in shape of hull. Helical strakes on SPAR has influence in reduce VIV (vortex Induced Vibration). In this final project, is done numerical and experimental study of SPAR motion with helical strakes with variation of heading ( $0^{\circ}, 22.5^{\circ}, 45^{\circ}$ ) in 3 modes of motion (*surge, pitch, heave*). 4 mooring line with same specification. Experimental and numerical study analized by ANSYS AQWA. Experimental study is done in hydrodynamic laboratory FTK ITS. Characteristics of spar motion produced witch variety value in tethered condition with variation of heading ( $0^{\circ}, 22.5^{\circ}, 45^{\circ}$ ). In surge and pitch bigest value of RAO occured in heading  $0^{\circ}$  amount 1.367 m/m of surge and 4.276 deg/m of pitch. In the heave heading not influence RAO. Mooring lines that inline with heading have bigest RAO tension with value 287.907 ton/m. Helical strakes reduced motion in heave and pitch but increase in surge.

#### Keywords : RAO, SPAR, heading, helical strakes, tension

#### KATA PENGANTAR

#### Assalamu'alaikum Wr. Wb.

Alhamdulillah puji syukur kepada Allah SWT berkat limpahan rahmat-Nya penulis dapat menyelesaikan Tugas Akhir ini. Sholawat serta salam juga penulis haturkan kepada Nabi Muhammad SAW yang dinanti-nantikan syafaatnya kelak.

Tugas akhir ini berjudul "Study Numeris Dan Eksperimen Olah Gerak Classic Spar Dilengkapi Helical Strakes Dengan Variasi Heading Gelombang". Tugas akhir ini merupakan salah satu syarat dalam menyelesaikan studi kesarjanaan (S-1) di Teknik Kelautan FTK-ITS Surabaya.

Tugas akhir ini membahas tentang olah gerak dan tegangan tali *classic* SPAR yang pada *hull* ditambahkan helical strakes. Pada studi eksperimen *helical strakes* dimodelkan dengan bentuk silinder yang berdiameter 1 inch. Pada studi eksperimen dan numeris SPAR berada dalam 3 derajat kebebasan (*Surge, Heave, Pitch*). Hasil dari metode numeris divalidasikan dengan hasil metode eksperimen.

Penulis menyadari masih terdapat kekurangan pada penulisan laporan tugas akhir ini ini. Oleh karena itu penulis mengharapkan saran dan kritik yang bersifat membangun serta menambah informasi dan pengetahuan pada penulisan laporan ini.

> Surabaya, 2018 Septian Agung Priambodo

#### UCAPAN TERIMA KASIH

Pada kesempatan ini penulis menyampaikan terima kasih sebesar-besarnya kepada semua pihak yang telah membantu dan mendukung pelaksanaan Tugas Akhir dan juga dalam penulisan laporan ini hingga selesai dengan baik, meliputi :

- 1. Allah SWT karena berkat rahmat-Nya tugas akhir ini dapat terselesaikan.
- Bapak dan Ibu dirumah yang selalu memberikan doa dan motivaasi hingga tugas akhir ini selesai.
- Prof. Eko Budi Djatmiko, M.Sc., Ph.D dan Dr. Eng. Rudi Walujo Prastianto, S.T., M.T. selaku dosen pembimbing yang telah memberikan banyak bimbingan dan ilmu.
- 4. Silvianita, S.T., M.Sc., Ph.D selaku dosen wali yang telah membimbing selama kuliah.
- Bapak Condro, Pak Rudi, dan Pak Dwi Hendra selaku teknisi Laboratorium Hidrodinamika FTK ITS yang telah memberikan bantuan selama pengerjaan tugas akhir.
- 6. Bapak Bahrudin Ali yang telah membantu dalam pembuatan program matlab.
- Teman teman tim TA SPARTA yang bahu-membahu memberikan bantuan hingga tugas akhir ini selesai.
- 8. Teman-teman Maelstrom P54-L32 yang selalu memberikan motivasi satu sama lain selama 4 tahun kuliah di Departemen Teknik Kelautan
- Teman-teman pengurus Laboratorium Hidrodinamika FTK-ITS yang selalu memberikan motivasi satu sama lain selama pengerjaan tugas akhir ini.
- 10. Yudo dan teman teman PPNS yang telah membantu dalam pembuatan instrumen eksperimen.

Surabaya, 2018 Septian Agung Priambodo

#### DAFTAR ISI

| COVER                                   |       |
|-----------------------------------------|-------|
| HALAMAN JUDUL                           |       |
| LEMBAR PENGESAHAN                       | i     |
| ABSTRAK                                 | ii    |
| KATA PENGANTAR                          | iv    |
| UCAPAN TERIMAKASIH                      | v     |
| DAFTAR ISI                              | vi    |
| DAFTAR GAMBAR                           | ix    |
| DAFTAR TABEL                            | xiv   |
| DAFTAR LAMPIRAN                         | xviii |
| BAB I PENDAHULUAN                       |       |
| 1.1 LATAR BELAKANG                      | 1     |
| 1.2 RUMUSAN MASALAH                     |       |
| 1.3 TUJUAN PENELITIAN                   | 4     |
| 1.4 MANFAAT                             | 4     |
| 1.5 BATASAN MASALAH                     | 4     |
| 1.6 SISTEMATIKA PENULISAN               | 9     |
| BAB II TINJAUAN PUSTAKA DAN DASAR TEORI |       |
| 2.1 TINJAUAN PUSTAKA                    | 7     |
| 2.2 DASAR TEORI                         |       |
| 2.2.1 Gerak Bangunan Apung              |       |
| 2.2.2 Teori Gelombang Airy              | 11    |
| 2.2.3 Beban Hidrodinamika               | 11    |
| 2.2.4 Gaya Reaksi                       |       |
| 2.2.5 Respon Amplitude Operator (RAO)   |       |

| 2.2.6 Sistem Tambat                        | 18 |
|--------------------------------------------|----|
| 2.2.7 Teori Pemodelan                      | 20 |
| 2.2.8 Hukum Model Froude                   | 21 |
| BAB III METODOLOGI PENELITIAN              |    |
| 3.1 DIAGRAM ALIR                           | 25 |
| 3.2 PENJELASAN DIAGRAM ALIR                | 28 |
| 3.2.1 Studi Literatur Dan Pengumpulan Data | 28 |
| 3.2.2 Pemodelan Eksperimen Dan Numerik     | 29 |
| 3.2.3 Validasi Model                       | 32 |
| 3.2.4 Kalbrasi Model                       | 33 |
| 3.2.5 Rancang Sistem Tambat                | 33 |
| 3.2.6 Parameter Sistem Tambat              | 35 |
| 3.2.7 Instrumen Laboratorium               | 36 |
| BAB IV ANALISIS DAN PEMBAHASAN             |    |
| 4.1 PEMODELAN STRUKTUR                     |    |
| 4.1.1 Pemodelan Numerik                    |    |
| 4.1.2 Pemodelan Eksperimen                 | 41 |
| 4.1.3 Pemodelan Tali Tambat                | 48 |
| 4.2 VALIDASI MODEL                         | 51 |
| 4.2.1 Validasi Model Numerik               | 51 |
| 4.2.2 Validasi Model Eksperimen            | 52 |
| 4.3 INSTRUMEN PENGKURAN                    | 56 |
| 4.3.1 Kalibrasi Gyroscope                  | 56 |
| 4.3.2 Kalibrasi Image Processing           | 60 |
| 4.3.3 Kalibrasi Load Cell                  | 62 |
|                                            | 03 |

| 4.4.1 RAO Terapung Bebas Metode Numeris                                            | 69  |
|------------------------------------------------------------------------------------|-----|
| 4.4.2 RAO Terapung Bebas Metode Ekperimen                                          | 70  |
| 4.4.3 Perbandingan RAO Metode Numeris Dan Ekperimen Kondisi                        |     |
| Terapung Bebas                                                                     | 75  |
| 4.5. RAO TERTAMBAT                                                                 | 78  |
| 4.5.1 RAO Tertambat Metode Numeris                                                 | 78  |
| 4.5.2 RAO Tertambat Metode Ekperimen                                               | 80  |
| 4.5.3 Perbandingan RAO Metode Numeris Dan Ekperimen Kondisi                        | 85  |
|                                                                                    | 05  |
| 4.0. TEGANGAN TALI                                                                 |     |
| 4.6.1 Metode Numeris                                                               |     |
| 4.6.2 Metode Ekperimen                                                             | 90  |
| 4.6.3 Perbandingan RAO Tension Metode Numeris Dan Ekperimen                        | 95  |
| 4.7. STUDI PARAMETRIS                                                              | 99  |
| 4.7.1 RAO numeris tertambat                                                        | 99  |
| 4.7.2 RAO eksperimen kondisi tertambat                                             | 102 |
| 4.7.3 RAO tension numeris tertambat                                                | 104 |
| 4.7.4 RAO tension eksperimen tertambat                                             | 107 |
| 4.7.5 RAO spar dengan helical srakes dan tanpa helical strakes                     | 110 |
| 4.7.6 RAO tension tali tambat spar dengan helical srakes dan tanpa helical strakes | 112 |
| BAB IV PENUTUP                                                                     | 112 |
| 5.1 KESIMPIILAN                                                                    | 117 |
| 5.2 SARAN                                                                          | 118 |
|                                                                                    | 110 |
|                                                                                    | 119 |
|                                                                                    |     |
| BIODATA PENULIS                                                                    |     |

#### DAFTAR GAMBAR

| Gambar 1.1. Neptune Spar (Rigzone, 1999)1                           |
|---------------------------------------------------------------------|
| Gambar 1.2. Perkembangan Spar Platform2                             |
| Gambar 2.1. Desain Anjungan Spar7                                   |
| Gambar 2.2. Perbandingan RAO Spar Tanpa Dan Dengan Helical Strakes9 |
| Gambar 2.3. Enam Mode Gerakan Bangunan Apung10                      |
| Gambar 2.4. Beban Hidrodinamika Pada Spar12                         |
| Gambar 2.5. Persamaan Added Mass                                    |
| Gambar 2.6. Bentuk Umum Grafik Respon Gerakan Bangunan Apung17      |
| Gambar 2.7. Sistem Tambat Catenery                                  |
| Gambar 2.8. Sistem Tambat Taut                                      |
| Gambar 3.1. Diagram Alir Pengerjaan25                               |
| Gambar 3.2. Set Up Model Terapung Bebas                             |
| Gambar 3.3. Set Up Model Tertambat                                  |
| Gambar 3.4.Pemodelan Helical Strakes Tampak Atas                    |
| Gambar 3.5.Pemodelan Helical Strakes Tampak Samping                 |
| Gambar 3.6.Rencana Sistem Tambat Eksperimen                         |
| Gambar 3.7.Rencana Sistem Tambat Ekperimen Dengan Variasi           |
| Gambar 3.8.Rencana Sistem Tambat Tampak Samping35                   |
| Gambar 3.9.Rencana Jangkar Tampak Atas                              |
| Gambar 3.10.Diagram Mekanisme Kerja Accelerogyro37                  |
| Gambar 3.11.Diagram Metodologi Umum Ekperimen Bangunan Terapung37   |
| Gambar 3.12.Instrumen Image Processing                              |
| Gambar 4.1. Meshing Model Pada Ansys Aqwa40                         |
| Gambar 4.2. Meshing Model Tanpak Atas40                             |
| Gambar 4.3. Meshing Model Tanpak Samping41                          |

| Gambar 4.4. Tampak Model Dengan Helical Strakes                     | . 42 |
|---------------------------------------------------------------------|------|
| Gambar 4.5. Desiain Pemberat Dan Ulir                               | . 44 |
| Gambar 4.6. Katalog Property Wire Rope                              | . 49 |
| Gambar 4.7. Skenario Tes Pendulum Kondisi 1                         | . 53 |
| Gambar 4.8. Skenario Tes Pendulum Kondisi 2                         | . 53 |
| Gambar 4.9. Instrumen Gyroscope                                     | . 57 |
| Gambar 4.10. Geladak Dan Busur                                      | . 57 |
| Gambar 4.11. Gyroscope Pada Geladak                                 | . 57 |
| Gambar 4.12. Gyroscope Pada Geladak Pada Proses Kalibrasi           | . 58 |
| Gambar 4.13. Keluaran Arduino Pada Sudut 0 Derajat Searah Jarum Jam | . 58 |
| Gambar 4.14. Keluaran Arduino Dengan Sudut Yang Dibentuk            | . 60 |
| Gambar 4.15. Sketsa Model Fisik Dalam Image Processing              | . 61 |
| Gambar 4.16. Kamera Dan Bola                                        | . 61 |
| Gambar 4.17. Konfigurasi Geladak Dengan Objek Yang Ditinjau         | . 62 |
| Gambar 4.18. Webcamp Logtech                                        | . 62 |
| Gambar 4.19. Proses Kalibrasi Image Processing                      | . 63 |
| Gambar 4.20. Keluaran Kalibrasi Image Procesing                     | . 63 |
| Gambar 4.21. Konfigurasi Loadcell                                   | . 64 |
| Gambar 4.23. Beban Kalibrasi                                        | . 64 |
| Gambar 4.24. Grafik Kalibrasi Load Cell 1                           | . 65 |
| Gambar 4.25. Grafik Kalibrasi Load Cell 2                           | . 66 |
| Gambar 4.26. Grafik Kalibrasi Load Cell 3                           | . 67 |
| Gambar 4.27. Grafik Kalibrasi Load Cell 4                           | . 68 |
| Gambar 4.28. Grafik RAO Terapung Bebas Heave                        | . 69 |
| Gambar 4.29. Grafik RAO Terapung Bebas Surge                        | . 69 |
| Gambar 4.30. Grafik RAO Terapung Bebas Pitch.                       | . 70 |

| Gambar 4.31. Time History Surge Free Floating Ekperimen                        | 71 |
|--------------------------------------------------------------------------------|----|
| Gambar 4.32. FFT Gerakan Surge Free Floating Eksperimen                        | 71 |
| Gambar 4.33. Grafik RAO Free Floating Surge Eksperimen                         | 72 |
| Gambar 4.34. Time History Heave Free Floating Ekperimen                        | 73 |
| Gambar 4.35. FFT Gerakan Heave Free Floating Eksperimen                        | 73 |
| Gambar 4.36. Grafik RAO Free Floating Heave Eksperimen                         | 74 |
| Gambar 4.37. Time History Pitch Free Floating Ekperimen                        | 74 |
| Gambar 4.38. FFT Gerakan Pitch Free Floating Eksperimen                        | 74 |
| Gambar 4.39. Grafik RAO Free Floating Pitch Eksperimen                         | 75 |
| Gambar 4.40. Perbandingan RAO Surge Secara Numeris Dan Eksperimen              | 76 |
| Gambar 4.41. Perbandingan RAO Heave Secara Numeris Dan Eksperimen              | 77 |
| Gambar 4.42. Perbandingan RAO Pitch Secara Numeris Dan Eksperimen              | 77 |
| Gambar 4.43. Kondisi Tertambat Dalam Ansys Aqwa                                | 78 |
| Gambar 4.44. RAO Surge Tertambat Numeris                                       | 78 |
| Gambar 4.45. RAO Heave Tertambat Numeris                                       | 79 |
| Gambar 4.46. RAO Pitch Tertambat Numeris                                       | 79 |
| Gambar 4.47.Konfigurasi Eksperimen Tertambat                                   | 80 |
| Gambar 4.48. RAO Surge Tertambat Eksperimen                                    | 82 |
| Gambar 4.49. RAO Heave Tertambat Eksperimen                                    | 83 |
| Gambar 4.50. RAO Pitch Tertambat Eksperimen                                    | 84 |
| Gambar 4.51. Perbandingan RAO Tertambat Surge Secara Numeris Dan               |    |
| Eksperimen                                                                     | 85 |
| Gambar 4.52. Perbandingan RAO Tertambat Heave Secara Numeris Dan<br>Eksperimen | 86 |
| Gambar 4.53. Perbandingan RAO Tertambat Pitch Secara Numeris Dan<br>Eksperimen | 87 |
| Gambar 4.54. Posisi Line A, B, C, Dan D                                        | 88 |

| Gambar 4.55. Pemodelan Tali Tambat Dengan Ansys Aqwa                  | 38 |
|-----------------------------------------------------------------------|----|
| Gambar 4.56. RAO Tension Line A Dan B                                 | 39 |
| Gambar 4.57. RAO Tension Line C Dan D8                                | 39 |
| Gambar 4.58. Time History Instrumen Load Cell Line A9                 | 90 |
| Gambar 4.59. Time History Instrumen Load Cell Line B9                 | 90 |
| Gambar 4.60. Time History Instrumen Load Cell Line C9                 | 90 |
| Gambar 4.61. Time History Instrumen Load Cell Line D9                 | 90 |
| Gambar 4.62. Grafik Rao Tension Line A Eksperimen9                    | 92 |
| Gambar 4.63. Grafik RAO Tension Line B Eksperimen9                    | )3 |
| Gambar 4.64. Grafik RAO Tension Line C Eksperimen9                    | 94 |
| Gambar 4.65. Grafik RAO Tension Line D Eksperimen9                    | )5 |
| Gambar 4.66. Perbandingan RAO Tension Line A Eksperimen Dan Numeris 9 | )6 |
| Gambar 4.67. Perbandingan RAO Tension Line B Eksperimen Dan Numeris 9 | )7 |
| Gambar 4.68. Perbandingan RAO Tension Line C Eksperimen Dan Numeris9  | )8 |
| Gambar 4.69. Perbandingan RAO Tension Line D Eksperimen Dan Numeris 9 | 9  |
| Gambar 4.70. Variasi Heading SPAR tertambat9                          | 9  |
| Gambar 4.71 RAO Surge Variasi Heading Metode Numeris                  | )0 |
| Gambar 4.72. RAO Heave Variasi Heading Metode Numeris                 | )1 |
| Gambar 4.73. RAO PitchVariasi Heading Metode Numeris                  | )1 |
| Gambar 4.74 RAO Surge Variasi Heading Metode Ekperimen                | )2 |
| Gambar 4.75. RAO Heave Variasi Heading Metode Eksperimen              | )3 |
| Gambar 4.76. RAO PitchVariasi Heading Metode Eksperimen               | )4 |
| Gambar 4.77. RAO Tension Line A Variasi Heading Metode Numeris        | )5 |
| Gambar 4.78. RAO Tension Line B Variasi Heading Metode Numeris        | )5 |
| Gambar 4.79. RAO Tension Line C Variasi Heading Metode Numeris        | )6 |
| Gambar 4.80. RAO Tension Line D Variasi Heading Metode Numeris        | )7 |

| Gambar 4.81. RAO Tension Line A Variasi Heading Metode Eksperimen108 |
|----------------------------------------------------------------------|
| Gambar 4.82. RAO Tension Line C Variasi Heading Metode Eksperimen109 |
| Gambar 4.83. RAO Tension Line D Variasi Heading Metode Eksperimen109 |
| Gambar 4.84 RAO Surge SPAR Dengan Helical dan Tanpa Helical110       |
| Gambar 4.85 RAO Heave SPAR Dengan Helical dan Tanpa Helical111       |
| Gambar 4.86 RAO Pitch SPAR Dengan Helical dan Tanpa Helical112       |
| Gambar 4.87. RAO Tension Line A Dengan Helical dan Tanpa Helical113  |
| Gambar 4.88. RAO Tension Line B Dengan Helical dan Tanpa Helical113  |
| Gambar 4.89. RAO Tension Line C Dengan Helical dan Tanpa Helical114  |
| Gambar 4.90. RAO Tension Line D Dengan Helical dan Tanpa Helical115  |

#### DAFTAR TABEL

| Tabel 2.1.a. Model to Prototype Multiplier for The Variables Commonly    |    |
|--------------------------------------------------------------------------|----|
| Used in Mechanics Under Froude Scaling                                   | 21 |
| Tabel 3.1.a. Data Small SPAR (Deep Oil Technology Inc., 1995)            | 28 |
| Tabel 3.1.b. Data Small SPAR lanjutan                                    | 28 |
| Tabel 3.1.c Data <i>Towing Tank</i> Laboratorium Hidrodinamika FTK-ITS   | 29 |
| Tabel 3.1.d Data Lingkungan                                              | 29 |
| Tabel 4.1 Data Dimensi Mini SPAR (Joint Industry Project, 1995)          | 39 |
| Tabel 4.2 Data Distribusi Massa Mini SPAR (Joint Industry Project, 1995) | 39 |
| Tabel 4.3 Hasil Penskalaan Model SPAR                                    | 41 |
| Tabel 4.4 Hasil Penimbangan Berat Material                               | 43 |
| Tabel 4.5 Perhitungan Momen Inersia massa PVC                            | 44 |
| Tabel 4.6 Perhitungan momen inersia massa Blok A                         | 45 |
| Tabel 4.7 Perhitungan momen inersia massa Blok B                         | 45 |
| Tabel 4.8 Perhitungan momen inersia massa topside                        | 46 |
| Tabel 4.9 Perhitungan momen inersia massa ulir                           | 46 |
| Tabel 4.10 Perhitungan momen inersia helical                             | 46 |
| Tabel 4.11 Posisi COG setiap material                                    | 46 |
| Tabel 4.12 Posisi COG model                                              | 47 |
| Tabel 4.13 Perhitungan momen inersia terhadap pusat massa                | 48 |
| Tabel 4.14 Perhitungan jari-jari girasi                                  | 48 |
| Tabel 4.15. Properti mooring line wire rope                              | 48 |
| Tabel 4.16. Spesifikasi tali tambat eksperimen                           | 50 |
| Tabel 4.17 Spesifikasi tali tambat model fisik skala penuh               | 50 |
| Tabel 4.18. Perbandingan kekakuan prototype dengan data kekakuan wire    |    |
| <i>rope</i> acuan                                                        | 50 |

| Tabel 4.19 Data property tali tambat yang digunakan pada model fisik                     | 51  |
|------------------------------------------------------------------------------------------|-----|
| Tabel 4.20. Perbandingan dan validasi model numerik dengan data                          | 51  |
| Tabel 4.21. Sarat dan displacement model                                                 | .52 |
| Tabel 4.22. Ukuran – ukuran yang digunakan pada pendulum test                            | 54  |
| Tabel 4.23. Periode dan frekuensi gerak pendulum model fisik kondisi 1 dan 2             |     |
|                                                                                          | 54  |
| Tabel 4.24. Validasi model fisik                                                         | .56 |
| Tabel 4.25. Kalibrasi searah jarum jam                                                   | .59 |
| Tabel 4.26. Kalibrasi berlawanan jarum jam                                               | .59 |
| Tabel 4.27. Persamaan trendline Arduino                                                  | .60 |
| Tabel 4.28. Data kalibrasi load cell 1 percobaan 1                                       | .65 |
| Tabel 4.29. Data kalibrasi load cell                                                     | .66 |
| Tabel 4.30. Data kalibrasi load cell 3                                                   | .67 |
| Tabel 4.31. Data kalibrasi load cell 4                                                   | .68 |
| Tabel 4.32. Persamaan Kalibrasi Keluaran Load cell dengan Beban                          | .68 |
| Tabel 4.33. Periode lingkungan dan periode eksperimen                                    | .70 |
| Tabel 4.34. Respon gerak dan RAO gerakan surge hasil eksperimen                          | 71  |
| Tabel 4.35. Respon gerak dan RAO gerakan <i>heave</i> hasil eksperimen                   | .73 |
| Tabel 4.36. Respon gerak dan RAO gerakan pitch hasil eksperimen                          | .75 |
| Tabel 4.37. Perbandingan RAO surge terapung bebas                                        | .76 |
| Tabel 4.38. Perbandingan RAO heave terapung bebas                                        | .76 |
| Tabel 4.39. Perbandingan RAO <i>pitch</i> terapung bebas                                 | .77 |
| Tabel 4.40. Periode lingkungan dan periode eksperimen model fisik tertambat              |     |
| yang digunakan                                                                           | 81  |
| Tabel 4.41. Respon gerak dan RAO gerakan <i>surge</i> hasil eksperimen kondisi tertambat | .81 |

| Tabel 4.42. Respon gerak dan RAO gerakan <i>heave</i> hasil eksperimen kondisi  |   |
|---------------------------------------------------------------------------------|---|
| tertambat                                                                       | 2 |
| Tabel 4.43. Respon gerak dan RAO gerakan pitch hasil eksperimen                 | 3 |
| Tabel 4.44. Perbandingan RAO surge tertambat                                    | 5 |
| Tabel 4.45. Perbandingan RAO heave tertambat                                    | 6 |
| Tabel 4.46. Perbandingan RAO <i>pitch</i> tertambat                             | 7 |
| Tabel 4.47. RAO <i>Tension</i> maksimum tiap tali tambat pada Ansys Aqwa        | 9 |
| Tabel 4.48. RAO Tension line A eksperimen                                       | 1 |
| Tabel 4.49. RAO Tension line B eksperimen                                       | 2 |
| Tabel 4.50. RAO Tension line B eksperimen                                       | 3 |
| Tabel 4.51. RAO Tension line D eksperimen                                       | 4 |
| Tabel 4.52. Perbandingan Tension Line A 9                                       | 6 |
| Tabel 4.53. Perbandingan Tension Line B                                         | 7 |
| Tabel 4.54. Perbandingan Tension Line C                                         | 8 |
| Tabel 4.55. Perbandingan Tension Line D 9                                       | 9 |
| Tabel 4.56. Variasi Heading RAO surge tertambat                                 | 0 |
| Tabel 4.57. Variasi Heading RAO heave tertambat                                 | 0 |
| Tabel 4.58. Variasi Heading RAO pitch tertambat                                 | 1 |
| Tabel 4.59. Variasi <i>Heading</i> RAO <i>surge</i> tertambat metode eksperimen | 2 |
| Tabel 4.60. Variasi <i>Heading</i> RAO <i>heave</i> tertambat metode eksperimen | 3 |
| Tabel 4.61. Variasi <i>Heading</i> RAO <i>pitch</i> tertambat metode eksperimen | 3 |
| Tabel 4.62. Variasi Heading RAO Tension Line A 10                               | 4 |
| Tabel 4.63. Variasi Heading RAO Tension Line B 10                               | 5 |
| Tabel 4.64. Variasi Heading RAO Tension Line C                                  | 6 |
| Tabel 4.65. Variasi Heading RAO Tension Line D                                  | 7 |
| Tabel 4.66. Variasi Heading RAO Tension Line A metode eksperimen                | 8 |

| Tabel 4.67. Variasi <i>Heading</i> RAO <i>Tension Line</i> C metode eksperimen                 | .109 |
|------------------------------------------------------------------------------------------------|------|
| Tabel 4.68. Variasi <i>Heading</i> Tension <i>Line D</i> metode eksperimen                     | .110 |
| Tabel 4.69 Perbandingan RAO surge free floating SPAR helical strakes dan tanpa helical strakes | .110 |
| Tabel 4.70 Perbandingan RAO heave free floating SPAR helical strakes dan tanpa helical strakes | .111 |
| Tabel 4.71 Perbandingan RAO pitch free floating SPAR helical strakes dan tanpa helical strakes | .112 |

#### DAFTAR LAMPIRAN

LAMPIRAN A (TABULASI DISTRIBUSI MASSA)

LAMPIRAN B (DESAIN TALI TAMBAT)

LAMPIRAN C (PENGUKURAN GERAK PENDULUM SPAR)

LAMPIRAN D (INPUT DAN OUTPUT ANSYS AQWA)

LAMPIRAN E (SCRIPT MATLAB)

LAMPIRAN F (TERTAMBAT 0 DEGREE, TERTAMBAT 22,5 DEGREE, TERTAMBAT 45 DEGREE)

#### BAB I

#### PENDAHULUAN

#### 1.1. Latar belakang

Permintaan minyak dan gas dunia yang tinggi pada saat ini tela mendorong teknologi untuk industri minyak dan gas dunia berkembang dengan cepat. Ada beberapa teknologi untuk menunjang ekplorasi dan ekploitasi minyak dan gas bumi di lepas pantai. Salah satu teknologi adalah *offshore platform* yang memiliki struktur besar yang digunakan untuk keperluan pengeboran dan memproses minyak dan gas bumi dari sumur yang berada di bawah laut. *Offshore platform* dibuat dan di desain untuk laut dengan lingkungan yang keras. Salah satunya adalah SPAR (Philip, 2015).

SPAR merupakan bangunan apung dengan struktur utama berbentuk silinder yang daya apung silinder digunakan untuk menahan beban dari bangunan atas (Deep Oil Technology Inc (1995) dalam Herdayandita, 2017). Bentuk dari SPAR Platform biasanya berupa silinder panjang yang berongga dengan diameter yang besar. Normalnya ditambat dengan *conventional spread chains*. Karena dalam *draft*nya, silinder dari SPAR secara umum di berikan *helical strakes* untuk mengurangi VIV (*vortex induced vibration*) akibat arus dan untuk menunjukan karakteristik gerakan yang bagus pada kondisi laut yang ekstrim. SPAR platform dianggap sebaga alternatif teknologi strutur lepas pantai terapung untuk laut dalam (Rho, et al 2003).



Gambar 1.1 Neptune SPAR (Rigzone, 1999)

Teknologi spar telah dimanfaatkan untuk strukture *offshore* seperti kapal riset, stasiun komunikasi dan *storage offloading platforms* (Le e, dkk 2002). Lambung SPAR pada umumnya berfungsi sebagai tempat penyimpanan produk minyak dan gas (Mansouri, et al., 2009)

Dalam perkembangannya SPAR telah mengalami perubahan konsep terutama konsep bentuk lambungnya. SPAR generasi pertama adalah *clasic SPAR. Clasic SPAR* memiliki gerakan *heave* sangat kecil dan gaya gelombang *vertical* yang bekerja juga kecil karena *draft*nya yang besar (Liu et all, 2003). Pada generasi kedua bagian lambung SPAR digantikan dengan struktur truss yang ditambahkan dengan plat horizontal untuk mengurangi beban struktur, biaya dan mengurangi gaya drag akibat arus serta untuk mengurangi gerak heave yang terjadi ( Mansouri et all, 2009). Generasi ketiga dari SPAR adalah *cell* SPAR yang konstruksinya berbeda. Hull terdiri dari banyak *ring-stiffened* tubes atau *cells* yang disambung oleh plat horisontal dan vertikal. Kontruksi ini lebih murah dan lebih mudah prosesnya (Lim et all, 2005).



Gambar 1.2. Perkembangan SPAR Platform (Kumar, 2015)

Pada tahun 2017, Herdayandita, dkk telah melakukan eksperiment *clasic* SPAR dengan dan dinamika tegangan tali tambat. Namun SPAR yang dieksperimen merupakan *Classic SPAR* tanpa dilengkapi dengan *helical strakes*.

Pada tugas akhir ini akan dilakukan studi numerical, dan eksperimental olah gerak Cassic SPAR dilengkapi *helical strakes*. Data model dari Mini SPAR dari deep oil tecknology Inc. (1995) kemudian akan ditambahkan *helical strakes*. Saat kondisi tertambat mempunyai 4 tali taambat dengan spesifiksi yang identik dengan sudut masing-masing 30° terhadap fairlead.

#### 1.2. RUMUSAN MASALAH

- 1. Bagaimana hasil numerik dan eksperimental respon gerakan surge, pitch, dan heave SPAR dengan helical strakes pada kondisi terapung bebas?
- Bagaimana hasil numerik dan eksperimen respon gerakan surge, pitch, dan heave SPAR dengan *helical strakes* pada kondisi tertambat dengan variasi arah datang gelombang 0°, 22.5°, dan 45°?
- 3. Bagaimana tegangan *mooring line* SPAR *Helical Strakes* yang dihasilkan dari keadaan tertambat dengan tiga variasi arah datang gelombang dan arah datang gelombang yang menyebabkan tegangan tali paling tinggi ?

#### 1.3. TUJUAN PENELITIAN

- 1. Menghitung secara numerik dan eksperimental respon gerakan surge, pitch, dan heave SPAR dengan *helical strakes* pada kondisi terapung bebas.
- Menghitung secara numerik dan melakukan eksperimental respon gerakan surge, pitch, dan heave SPAR dengan *helical strakes* pada kondisi tertambat dengan variasi arah datang gelombang (0°, 22.5°, dan 45°).
- 3. Mengetahui Bagaimana tegangan *mooring line* SPAR *Helical Strakes* yang dihasilkan dari keadaan tertambat dengan tiga variasi arah datang gelombang dan arah datang gelombang yang menyebabkan tegangan tali paling tinggi.

#### 1.4. MANFAAT

Manfaat dari tugas akhir ini adalah memberikan informasi hasil analisis kepada semua peneliti tentang karakteristik gerakan dan tegangan tali tambat SPAR *Helical Strakes* akibat beban gelombang dengan variasi arah datang gelombang.

#### 1.5. BATASAN MASALAH

Dalam tugas akhir ini, perlu adanya batasan-batasan masalah sebagai asumsi sebagai berikut :

- 1. Gelombang reguler.
- 2. Studi numeris dan ekperimen dilakukan pada model SPAR dari JIP.
- Studi ekperimen dilakukan dengan menyesuaikan keadaan Laboratorium Hidrodinamika FTK ITS.
- 4. Tiga variasi arah datang gelombang  $(0^{\circ}; 22, 5^{\circ}; 45^{\circ})$
- 5. Pada studi eksperimen dan numeris SPAR berada dalam 3 derajat kebebasan (*Surge, Heave, Pitch*).
- 6. Pada studi eksperimen dan numeris menggunakan sistem tambat taut berjumlah 4 *lines*
- 7. Pada studi eksperimen dan numeris beban yang diperhitungkan hanya beban gelombang.
- 8. Pada studi eksperimen efek hidrodinamika dari sub-struktur tidak diperhitungkan.
- 9. Pada studi eksperimen dan numeris interaksi sistem tambat dengan tanah diabaikan.
- 10. Pada studi eksperimen dan numeris tidak meninjau biaya pada struktur.
- 11. Pada studi eksperimen dan numeris arus diabaikan.
- 12. Helical strakes dimodelkan dengan bentuk silinder pejal.

#### 1.6. SISTEMATIKA PENULISAN

Sistematika penulisan yang di gunakan dalam penelitian ini sebagai berikut :

#### **BAB 1 PENDAHULUAN**

Bab ini berisi tentang latar belakang permasalahan yang diambil oleh penulis, perumusan masalah, tujuan dan manfaat penelitian, batasan masalah serta sistematika penulisan laporan.

#### BAB II TINJAUAN PUSTAKA

Bab ini berisi landasan teori yang berhubungan dengan penilitan yang dilakukan oleh penulis. Tinjauan pustaka diambil dari literatur yang berasal dari jurnal,buku teks, laporan tugas akhir dan referensi lain yang digunakan sebagai dasar dalam melakukan penelitian.

#### BAB III METODOLOGI PENELITIAN

Metodologi Penelitian menjelaskan tentan bagaimana penelitian ini dilakukan mulai dari *start* penelitian, pengumpulan data, analisis, hingga penarikan kesimpulan dan saran.

#### BAB IV ANALISIS DAN PEMBAHASAN

Bab ini berisi tentang pemodelan struktur dan tali tambat beserta validasinya, penggunaan instrument dalam ekperimen, studi numeris dan studi ekperiment.

#### BAB V KESIMPULAN DAN SARAN

Bab ini merupakan bab terakhir. Berisi kesimpulan yang ditarik dari analisis dalam penelitian sesuai dengan perumusan masalah yang telah dirumuskan. Kemudian dimasukan saran-saran yang berisi kekurangan dalam penilitian untuk disarankan kepada peneliti selanjutnya.

#### DAFTAR PUSTAKA

Berisi tentang referensi-referensi yang dipakai selama penelitian.

(halaman ini sengaja dikosongkan)

#### **BAB II**

#### TINJAUAN PUSTAKA DAN DASAR TEORI

#### 2.1. Tinjauan Pustaka

SPAR merupakan bangunan apung dengan struktur utama berbentuk silinder yang daya apung silinder digunakan untuk menahan beban dari bangunan atas (Deep Oil Technology Inc( 1995) dalam Herdayandita, 2017).



Gambar 2.1. Desain Anjungan SPAR (Global Security, 2000).

Untuk mengoptimalan fungsinya maka terus dilakukan penelitian-penelitian dengan maksud mengetahui parameter-parameter yang mempengaruhi olah gerak

SPAR. Helical strakes merupakan struktur yang ditambahkan pada silinder SPAR yang digunakan untuk meredam VIV.

Liqin Liu pada taun 2014 menganalisis perilaku dinamis dari SPAR. SPAR yang di analisis menggunakan *helical strakes*. Studi yang dilakukan adalah dengan simulasi numerik dan ekperimen. Variable yang digunakan untuk analisis adalah varael gelombang dengan perbedaan frekuensi.

Pada penelitian Montasir dkk (2015), suatu *truss* SPAR dimodelkan sebagai *rigid body* dengan tiga derajat kebebasan lalu dilakukan analisis respon dinamis dari platform dengan analisis *time-domain* dengan menghitung kinematik gelombang dan gaya gelombang menggunakan teori gelombang *Airy* dan persamaan morison. Perbedaan respon gerakan yang terjadi ternyata tidak signifikan dengan penggantian konfigurasi tali tambat dengan kondisi sudut azimuth. Namun *offset* awal dari platform terpengaruh secara signifikan dengan konfigurasi tali tambat (Montasir, et al., 2015).

Ding, dkk pada tahun 2017 telah melakukan penelitian SPAR. Dalam penelitiannya menggunakan floating SPAR wind turbin dengan penambahan helical strakes. Penelitian dilakukan dengan tujuan mengetahui dampak dari penambahan helical strakes ditinjau dari respon dinamis. Analisis ini di fokuskan pada perbandingan RAO dan gaya eksitasi gelombang pada frekuensi domain pada SPAR normal dan dengan penambahan *helical strakes*. Hasil penelitian menunjukkan bahwa helical strakes secara efektif dapat menekan respon dinamik dari platform namun memperbesar kekuatan gelombang dan Helical strakes secara signifikan dapat mengurangi respon gerakan platform dalam heave and pitch. Interaksi antara tinggi dan rasio pitch, dan jumlah heliks straff pasti berpengaruh pada pitch RAO. Kombinasi parameter terbaik adalah dua helai heliks dengan tinggi 15% D dan rasio pitch 5. Tinggi dan rasio pitch heliks memiliki pengaruh yang signifikan terhadap respon pitch, sedangkan jumlah dan interaksi rasio tinggi dan pitch memiliki sedikit efek.





Gambar 2.2 Perbandingan RAO SPAR dengan *helical strakes* dan tanpa *helical strakes* : (a) Heave, (b) Surge, (c) pitch

#### 2.2. Dasar Teori

#### 2.2.1.Gerak Bangunan Apung

SPAR dapat bergerak dalam 6 derajat kebebasan. Gerak bangunan tersebut dibagi menjadi 2 kelompok yaitu gerak translasi dan gerak rotasi. Gerak-gerak tersebut dijelaskan pada uraian berikut (Journee & Massie, 2001):

#### 1. Gerakan translasi

Gerakan translasi adalah gerakan yang searah dengan arah sumbu. Gerakan translasi terdiri dari :

- *Surging* : gerakan translasi pada arah sumbu x
- *Swaying* : gerakan translasi pada arah sumbu y
- *Heaving* : gerakan translasi pada arah sumbu z

#### 2. Gerakan rotasional

Gerakan rotasional adalah gerakan yang membentuk sudut terhadap sumbu, gerakan rotasional ini terdiri dari :

- *Rolling* : gerakan rotasional terhadap sumbu x
- *Pitching* : gerakan rotasional terhadap sumbu y
- *Yawing* : gerakan rotasional terhadap sumbu z



**Gambar 2.3.** Enam Mode Gerakan Bangunan Apung (Journee & Massie, 2001).

#### 2.2.2 Teori Gelombang Airy

Dengan mengasumsikan kondisi dasar laut adalah rata dan batasan horisontal pada permukaan bernilai tak hingga maka teori gelombang linear atau yang lebih dikenal dengan teori gelombang Airy dapat diterapkan. Teori gelombang Airy merupakan teori gelombang yang paling sering digunakan dalam menghitung beban gelombang (*wave load*) yang terjadi pada struktur. Teori gelombang Airy juga bisa disebut dengan teori gelombang amplitudo kecil, yang menjelaskan bahwa asumsi tinggi gelombang atau kedalaman laut. Periode gelombang diasumsikan sebagai variable konstan yang tidak berubah terhadap waktu. Jadi jika dilaut diukur periode gelombang adalah 10 detik, maka periodenya akan tetap 10 detik selama gelombang tersebut menjalar. Nama Teori Gelombang Airy merupakan penghargaan kepada Sir.George Biddell Airy (1845) yang telah menemukan teori ini.

Adapun persamaan-persamaan dari teori gelombang Airy adalah sebagai berikut :

• Kecepatan potensial (Ø)

$$(\phi) (\mathbf{x}, \mathbf{z}, \mathbf{d}, \mathbf{t}) = \frac{g\zeta o}{\omega} e^{kz} \sin(\omega t - kx)$$
(2.1)

• Kecepatan fluida ( $v_z$ )

$$\dot{u} = -\frac{g\zeta o}{\omega}k \ e^{kz} \cos(\omega t - kx) \tag{2.2}$$

• Percepatan fluida  $(a_z)$ 

$$\ddot{u} = g\zeta o \ k \ e^{kz} \sin(\omega t - kx) \tag{2.3}$$

dengan,

- $\zeta o$  = amplitudo gelombang
- $\omega$  = frekuensi alami gelombang
- k = angka gelombang

d =kedalaman laut

#### 2.2.3 Beban Hidrodinamika

Suatu struktur terapung yang mengenai air akan menerima beban hidrodinamika. Beban hidrodinamika yang diterima oleh struktur terapung dapat dipahami sebagai 2 sub-masalah diantaranya (Faltinsen, 1990):

- Gaya dan momen yang dirasakan struktur terapung saat benda ditahan untuk berosilasi yang berada serta menerima gelombang datang. Beban ini disebut sebagai beban akibat eksitasi gelombang. Beban ini secara umum terdiri dari gaya tekanan (yang biasa disebut Froude Krylov Force) dan gaya difraksi.
- 2. Gaya dan momen yang dirasakan struktur terapung saat struktur digetarkan dengan frekuensi yang sama dengan gaya eksitasi gelombang yang datang. Namun, pada kali ini, tidak ada gelombang yang mengenai struktur. Beban hidrodinamika yang didapat dari sub masalah ini adalah beban massa tambah (*added mass*), beban redaman (*damping*) dan beban kekakuan (*restoring force*). Beban ini bisa juga dianggap sebagai beban reaksi akibat pergerakan struktur.



Gambar 2.4. Beban hidrodinamika pada struktur (Faltinsen, 1990) Sub masalah 1 dan 2 tersebut dapat dihubungkan secara linear sehingga gaya hidrodinamik total pada strukutur terapung merupakan penjumlahan submasalah 1 dan sub-masalah 2.

#### 2.2.4 Gaya Reaksi

Gaya reaksi pada struktur dipengaruhi added mass, redaman dan kekakuan. Berikut penjelasan masing-masing komponen tersebut.

#### a. Added Mass

Bessel (1828) melakukan eksperimen osilasi dalam bentuk pendulum di air dan di udara. Ia menemukan bahwa walaupun dengan massa pendulum yang sama, pendulum yang di dalam air mempunyai masssa yang lebih besar daripada pendulum yang di udara. Bessel kemudian menginterpertasikan hal ini sebagai masa tambah (*added mass*) (Sarpkaya, 2010).

Sebenarnya tidak ada massa yang ditambahkan ke dalam sistem, efek penambahan massa ini diakibatkan oleh ikut bergeraknya fluida di sekitar benda terapung (Newman, 1977). Ikut bergeraknya fluida tersebut menambah energi kinetik, sehingga diperlukan gaya eksternal. Gaya tersebut jika dibagi dengan percepatan benda maka akan menghasilkan komponen massa. Massa inilah yang dianggap sebagai massa tambah (Sarpkaya, 2010). Massa tambah bergantung terhadap bentuk benda serta mode gerak.

Persamaan (2.3) merupakan formula dari gaya masa tambah, dimana merupakan perkalian antara massa tambah dengan percepatan gerak benda terapung. Sarpkaya (2010) menemukan beberapa nilai masa tambah untuk beberapa bentuk sederhana. Untuk gerak silinder, dengan beberapa orientasi dapat dilihat pada Gambar 2.5.

$$F_a = a_i \ddot{\xi}_i \tag{2.6}$$

dengan,

*i* = Mode gerak struktur dengan 1 (surge), 2 (sway), 3 (heave), 4 (roll), 5 (pitch) dan 6 (yaw)

- *a* = Koefisien massa tambah
- ξ
- = Respon percepatan gerak struktur



Gambar 2.5. Persamaan *added mass* untuk beberapa bentuk benda (Sarpkaya, 2010).

#### b. Redaman

Redaman merupakan dampak yang didapat akibat adanya disipasi energi dari struktur (Newman, 1977). Redaman akan membuat struktur kehilangan energi kinetiknya. Jika struktur digetarkan di air yang tenang, maka energi kinetik struktur (gerakan) semakin lama akan semakin mengecil, hal inilah yang disebut sebagai redaman. Nilai redaman dapat dicari dengan menggunakan analisis numeris (Chakrabarti, 2005).

$$F_b = b_i \dot{\xi}_i \tag{2.7}$$

dengan,

| i | = Mode gerak struktur dengan                              |  |  |
|---|-----------------------------------------------------------|--|--|
|   | 1 (surge), 2 (sway), 3 (heave), 4 (roll), 5 (pitch) dan 6 |  |  |
|   | (yaw)                                                     |  |  |
| b | = Nilai redaman sistem                                    |  |  |
| ξ | = Respon kecepatan gerak struktur                         |  |  |

#### c. Kekakuan

Ketika struktur terapung bergerak di permukaan air tenang, tanpa gelombang, struktur tersebut mempunyai kekauan untuk kembali ke posisi awalnya. Gaya reaksi yang berfungsi untuk mengembalikan posisi benda disebut gaya pengembali (*restoring force*) yang mempunyai persamaan (2.8). Persamaan ini merupakan perkalian antara kekakuan dengan displacement gerak.

$$F_c = c_i \xi_i \tag{2.8}$$

dengan

*i* =

= Mode gerak struktur dengan

1 (surge), 2 (sway), 3 (heave), 4 (roll), 5 (pitch) dan 6 (yaw)

c = Kekakuan struktur

 $\xi$  = Respon posisi gerak struktur
Nilai c dari heave, pitch dan roll adalah sebagai berikut :

$$c_3 = \rho g A_{wp} \tag{2.9}$$

$$c_4 = \rho g V \overline{GM_T} \tag{2.10}$$

$$c_5 = \rho g V \overline{GM_L} \tag{2.11}$$

dengan,

| ρ                 | = Massa jenis air sekitar struktur |
|-------------------|------------------------------------|
| g                 | = Percepatan gravitasi struktur    |
| $A_{wp}$          | = Luas permukaan di garis air      |
| V                 | = Volume displacement struktur     |
| $\overline{GM_T}$ | = Panjang metacentre melintang     |
| $\overline{GM_L}$ | = Panjang metacentre memanjang     |

#### d. Massa / Displacement SPAR

Massa dari sebuah struktur yang beroperasi di laut dapat dihitung dengan menerapkan konsep hukum Archimedes. Pada penelitian ini, struktur yang dianalisis berupa SPAR dimana massa dari SPAR ini dapat dihitung dengan meninjau bagian struktur SPAR yang terendam di air atau disebut juga *volume displacement* dikalikan dengan massa jenis perairan tersebut. Secara matematis, perhitungan massa/displacement dari struktur SPAR dapat menggunakan persamaan 2.12 berikut ini.

$$(\Delta) = \frac{1}{4} x \pi x D^2 x T x \rho$$
 (2.12)

dengan,

 $\triangle \qquad = \text{massa dari struktur yang tercelup (displacement)}$ 

- D = diameter struktur
- T = Sarat air
- $\rho$  = Massa jenis air

#### 2.2.5 Response Amplitude Operator (RAO)

Response Amplitude Operator (RAO) atau disebut juga dengan Transfer Function merupakan fungsi respon yang terjadi akibat gelombang dalam rentang frekuensi yang mengenai sruktur. RAO merupakan alat untuk mentransfer gaya gelombang menjadi respon gerakan dinamis struktur.

RAO memuat informasi tentang karakteristik gerakan bangunan laut yang disajikan dalam bentuk grafik, dimana absisnya adalah parameter frekuensi, sedangkan ordinatnya adalah rasio antara amplitudo gerakan pada mode tertentu,  $\zeta_{k0}$ , dengan amplitudo gelombang,  $\zeta_0$ . Secara matematis RAO dapat dituliskan sesuai dengan persamaan 2.21:

$$RAO(\omega) = \frac{\zeta_{k0}(\omega)}{\zeta_0(\omega)} \qquad (m/m)$$
(2.21)

dengan:

 $\zeta_{k0}(\omega) = \text{amplitudo struktur (m)}$  $\zeta_0(\omega) = \text{amplitudo gelombang (m)}$ 

Respons gerakan RAO untuk gerakan translasi (*surge, sway, heave*) merupakan perbandingan langsung antara amplitudo gerakan dibanding dengan amplitudo gelombang insiden (keduanya dalam satuan panjang) (Djatmiko, 2012). Persamaan RAO untuk gerakan translasi sama dengan persamaan 2.21 di atas. Sedangkan untuk respons gerakan RAO untuk gerakan rotasi (*roll, pitch, yaw*) merupakan perbandingan antara amplitudo gerakan rotasi (dalam radian) dengan kemiringan gelombang, yakni yang merupakan perkalian antara gelombang  $(k_w=\omega^2/g)$  dengan amplitudo gelombang insiden (Djatmiko, 2012):

$$RAO(\omega) = \frac{\zeta_{k0}(\omega)}{kw\zeta_0(\omega)} = \frac{\zeta_{k0}}{(\omega^2 / g)\zeta_0} (rad/rad)$$
(2.22)



Gambar 2.6. Bentuk umum grafik respons gerakan bangunan apung (Djatmiko, 2012)

Berdasarkan Gambar 2.5, kurva respons gerakan bangunan apung pada dasarnya dapat dibagi menjadi tiga bagian:

- Pertama adalah bagian frekuensi rendah, atau gelombang (dengan periode) panjang, yang disebut daerah sub-kritis. Pada daerah ini bangunan laut akan bergerak mengikuti pola atau kontur elevasi gelombang yang panjang sehingga amplitudo gerakan kurang lebih akan ekuivalen dengan amplitudo gelombang, atau disebut sebagai *contouring*. Dalam korelasi persamaan hidrodinamis, di daerah frekuensi rendah, atau  $\omega^2 < k/(m+a)$ , gerakan akan didominasi oleh faktor kekakuan (Djatmiko, 2012).
- Kedua adalah daerah kritis, meliputi pertengahan lengan kurva di sisi frekuensi rendah sampai dengan puncak kurva dan diteruskan ke pertengahan lengan kurva di sisi frekuensi tinggi. Puncak kurva berada pada frekuensi alami, yang merupakan daerah resonansi, sehingga respons gerakan mengalami magnifikasi, atau amplitudo gerakan akan beberapa kali lebih besar daripada amplitudo gelombang. Secara hidrodinamis di daerah frekuensi alami, yakni k/(m+a)<ω<sup>2</sup><k/a, gerakan akan didominasi oleh faktor redaman (Djatmiko, 2012).</li>
- Ketiga adalah daerah super kritis, yaitu daerah frekuensi tinggi, atau gelombang-gelombag (dengan periode) pendek. Pada daerah ini respons

gerakan akan mengecil. Semakin tinggi frekuensi, atau semakin rapat antara puncak-puncak gelombang yang berurutan, maka akan memberikan efek seperti bangunan laut bergerak di atas air yang relatif datar. Oleh karena itu gerakan bangunan laut diistilahkan sebagai *platforming*. Dalam hal korelasi hidrodinamis, gerakan di daerah frekuensi tinggi ini, dimana  $\omega^2 < k/a$ , gerakan akan didominasi oleh faktor massa (Djatmiko, 2012).

#### 2.2.6 Sistem Tambat (*Mooring System*)

Sistem tambat (*mooring system*) pada struktur terapung lepas pantai seperti SPAR, TLP, Kapal dan lain-lain berfungsi untuk menjaga posisi struktur supaya tetap berada pada posisinya terhadap gaya-gaya yang bekerja seperti angin, arus dan gelombang ketika beroperasi. Secara garis besar, konfigurasi sistem tambat pada SPAR berupa jenis tambat menyebar (*spread mooring*) yang terdiri dari *catenary mooring* atau *taut mooring*. Sistem tambat pada umumnya terangkai dari sejumlah *lines* yang terbuat dari *chain*, kabel (*wire*), atau tali sintetik (*syntetic rope*). Bagian atas dari *mooring line* ini dipasang pada badan struktur terapung di titik-titik yang berbeda sedangkan bagian bawah *mooring line* nya ditambatkan ke dasar laut. Kabel-kabel *mooring* terangkai dari rantai baja (*steel chain*), tali ataupun kombinasi dari keduanya. Gaya tension yang terjadi pada kabel tergantung dari berat kabel, *property* elastisitasnya sendiri dan sistem tambatnya.

Tipe-tipe dari sistem tambat pada struktur bangunan apung lepas pantai utamanya SPAR adalah sebagai berikut :

#### • Catenary Line Mooring

Merupakan sistem tambat pertama yang paling umum. Ketika berada di dasar laut posisi *mooring* horizontal sehingga pada *catenary mooring* ini jangkar hanya dikenakan beban horizontal. Pada catenary mooring, gaya pengembali dihasilkan oleh berat *mooring lines* sendiri.



Gambar 2.7. Sistem tambat tipe *catenary* (Hammoutene, 2006)

• Taut Mooring System

Sistem tambat ini memiliki konfigurasi mooring lines dengan tali yang tegang. Perbedaan utamanya dengan *catenary mooring* adalah posisi *anchorleg. Taut mooring* ketika berada di dasar laut posisi *mooring* nya bersudut sehingga jangkar harus mampu menahan beban yang terjadi baik beban horizontal maupun vertikal. Pada *taut mooring*, gaya pengembali dihasilkan oleh berat *mooring lines* sendiri. Keuntungan dari *taut mooring* jika dibandingkan dengan *catenary mooring* adalah radius tambatannya lebih kecil.



Gambar 2.8. sistem tambat tipe *taut* (Hammoutene, 2006).

#### 2.2.7 Teori Pemodelan

Dalam melakukan pemodelan suatu prototipe dengan skala kecil, terdapat tiga hal penting yang harus diperhatikan sehingga model dapat merepresentasikan perilaku geometri struktur, aliran fluida dan interaksi antara keduanya. Oleh karena itu, harus dicari kesamaan dalam geometri, kinematika fluida, dan dinamika dari struktur yang dikenai oleh fluida di sekitarnya (Munson, et al., 2009).

#### • Kesamaan geometri

Dalam hal kesamaan geometri, model yang akan dibuat harus memiliki kesamaan dalam bentuk, tetapi berbeda dimensi. Model yang dibuat harus disesuaikan dengan suatu faktor skala sehingga sebanding dengan prototipe yang dijadikan acuan, terutama pada bagian yang terendam. Rasio skala tersebut dapat dengan mudah diasumsikan dengan rasio skala konstan diantara dimensi model dan prototipe.

$$\frac{l_p}{l_m} = a \tag{2.24}$$

Dimana  $l_p$  dan  $l_m$  dua dimensi yang bersesuaian dari dua struktur yang dinamakan prototipe dan model, dan *a* merupakan rasio skala diantara keduanya. Jika seluruh bentuk dan dimensi (diameter, panjang, dll) dari suatu model sudah sebanding dengan prototipe, maka dapat dikatakan keduanya sama secara geometri. Rasio ini selanjutnya akan digunakan sebagai faktor skala untuk model yang didefinisikan sebagai  $\lambda$ .

• Kesamaan Kinematik

Dalam hal kesamaan kinematika, rasio dari kecepatan dan percepatan yang digunakan dalam model harus dijaga. Rasio dari kecepatan pada prototipe dengan kecepatan model yang bersesuaian harus konstan. Hal ini berlaku pada seluruh kecepatan termasuk kecepatan partikel fluida, angin, towing, model pada arah tertentu. Sama seperti sebelumnya, rasio dari percepatan model harus sama dengan prototipe, tetapi dengan rasio yang berbeda dengan kecepatan. Ketika percepatan dan kecepatan model sudah sama dengan prototipe, maka keduanya dapat dikatakan memiliki kesamaan kinematik.

#### • Kesamaan Hidrodinamik

Hukum skala dalam kesamaan hidrodinamik ditentukan oleh rasio dari gaya. Ada beberapa hukum skala dalam kesamaan hidrodinamik berdasarkan masalah interaksi struktur dengan fluida. Kesamaan dinamik antara model dan prototipe didapatkan dengan memenuhi hukum kesamaan tersebut. Dalam kebanyakan kasus, hanya satu dari beberapa hukum skala tersebut yang dapat memenuhi model struktur. Oleh karena itu, hal penting yang perlu dipahami adalah proses fisik yang dialami oleh struktur. Kemudian memilih hukum skala yang paling penting yang mengatur proses tersebut (Chakrabarti, 1994).

#### 2.2.8 Hukum Model Froude

Bilangan froude didefinisikan sebagai perbandingan antara gaya inersia terhadap gaya gravitasi yang dihasilkan oleh benda pada suatu medium (Chakrabarti, 1994). Bilangan froude didefinisikan dengan persamaan,

$$Fr = \frac{u^2}{(gD)} \tag{2.25}$$

Model froude harus memenuhi hubungan,

$$\frac{u_p^2}{(gD_p)} = \frac{u_m^2}{(gD_m)}$$
(2.26)

Dengan mengasumsikan faktor skala kesamaan geometri adalah  $\lambda$ , hubungan antara model dengan prototipe untuk bermacam parameter dapat diperoleh. Tabel berikut merupakan faktor skala dari variabel-variabel yang umum digunakan dan memenuhi persyaratan model Froude

**Tabel 2.1.a.** Model to Prototype Multiplier for The Variables Commonly Used inMechanics Under Froude Scaling

| VARIABLE | UNII  | T SCALE<br>FACTOR | REMARKS                              |
|----------|-------|-------------------|--------------------------------------|
|          |       | <u>GEOME</u>      | <u>TRY</u>                           |
| Length   | L     | λ                 | Any Characteristic dimension of the  |
|          |       |                   | object                               |
| Area     | $L^2$ | $\lambda^2$       | Surface area or projected area on a  |
|          |       |                   | plane                                |
| Volume   | $L^3$ | $\lambda^3$       | For any portion of the object        |
| Angle    | None  | 1                 | e.g., between members or solid angle |

| Mec                         | manics 0 | naer Frouae      | Scaling (lanjutan)                                                         |  |  |
|-----------------------------|----------|------------------|----------------------------------------------------------------------------|--|--|
| VARIABEL                    | UNIT     | SCALE<br>FACTOR  | REMARKS                                                                    |  |  |
| Radius of Gyration          | L        | λ                | Measured from a fixed point                                                |  |  |
| Moment of Inertia Area      | $L^4$    | $\lambda^4$      |                                                                            |  |  |
| Moment of Inertia<br>Mass   | $ML^2$   | $\lambda^5$      | Taken about fixed point                                                    |  |  |
| Center of Gravity           | L        | λ                | Measured from a reference point                                            |  |  |
|                             | KIΛ      | EMATICS &        | DYNAMICS                                                                   |  |  |
| Time                        | Т        | $\lambda^{1/2}$  | Same reference point (e.g., starting time)<br>is considered as zero time   |  |  |
| Acceleration                | $LT^2$   | 1                | Rate of change of velocity                                                 |  |  |
| Velocity                    | $LT^{1}$ | $\lambda^{1/2}$  | Rate of change of displacement                                             |  |  |
| Displacement                | L        | λ                | Position at rest is considered as zero                                     |  |  |
| Spring Constant<br>(Linear) | $MT^2$   | $\lambda^2$      | Force per unit length of extension                                         |  |  |
| Damping Coefficient         | $MT^{1}$ | $\lambda^{5/2}$  | Resistance (viscous) against oscillation                                   |  |  |
| Damping Factor              | None     | 1                | Ration of damping and critical damping coefficient                         |  |  |
| Natural Period              | Т        | $\lambda^{1/2}$  | Period at which inertia force = restoring<br>force                         |  |  |
|                             | 1        | WAVE MEC         | HANICS                                                                     |  |  |
| Wave Height                 | L        | λ                | Consecutive crest to trough distance                                       |  |  |
| Wave Period                 | Т        | $\sqrt{\lambda}$ | Time between two successive crests passing a point                         |  |  |
| Wave Length                 | L        | λ                | Distance between two successive crests<br>at a given time                  |  |  |
| Particle Velocity           | $LT^{1}$ | $\sqrt{\lambda}$ | Rate of change of movement of a water<br>particle                          |  |  |
| Wave Elevation              | L        | λ                | Form of wave (distance from still<br>waterline)                            |  |  |
| Particle Acceleration       | $LT^2$   | 1                | Rate of change of velocity of a water particle                             |  |  |
| <u>STABILITY</u>            |          |                  |                                                                            |  |  |
| Displacement (Volume)       | $L^3$    | $\lambda^3$      | Volume of water moved by a submerged<br>object (or part thereof)           |  |  |
| Natural Period              | Т        | $\sqrt{\lambda}$ | Period of free oscillation in still water<br>due to an initial disturbance |  |  |

**Tabel 2.1.a.** Model to Prototype Multiplier for The Variables Commonly Used inMechanics Under Froude Scaling (lanjutan)

| VARIABLE           | UNIT | SCALE<br>FACTOR | REMARKS                                                    |
|--------------------|------|-----------------|------------------------------------------------------------|
| Metacenter         | L    | λ               | Instantaneous center of rotation                           |
| Center of Buoyancy | L    | λ               | Distance of C.G. of displaced volume<br>from a fixed point |

**Tabel 2.1.a.** Model to Prototype Multiplier for The Variables Commonly Used inMechanics Under Froude Scaling (lanjutan)

(halaman ini sengaja dikosongkan)

#### **BAB III**

## METODOLOGI PENELITIAN

## **3.1 DIAGRAM ALIR**

Diagram alir pengerjaan tugas akhir ini adalah sebagai berikut:



Gambar 3.1. Diagram Alir Pengerjaan



Gambar 3.1. Diagram Alir Pengerjaan (lanjutan)



Gambar 3.1. Diagram Alir Pengerjaan (lanjutan)

#### 3.2. PENJELASAN DIAGRAM ALIR

#### 3.2.1 Studi Literatur dan Pengumpulan Data

Data Small SPAR diambil dari Mini SPAR *Joint Industry Project* (1995). Tabel 3.1.a. merupakan *principle dimension* dari Small SPAR, Tabel 3.1.b. merupakan distribusi massa Small SPAR, Tabel 3.1.c. merupakan data *Towink Tank* Laboratorium Hidrodinamika-FTK ITS, dan Tabel 3.1.d merupakan data Lingkungan.

| Description    | Prototype | Unit |  |  |
|----------------|-----------|------|--|--|
| Hull           |           |      |  |  |
| Diameter       | 16.00     | m    |  |  |
| Draft          | 135.03    | m    |  |  |
| Length         | 154.23    | m    |  |  |
| Fairlead Depth | 12.74     | m    |  |  |
| Deck           |           |      |  |  |
| Length         | 50.29     | m    |  |  |
| Width          | 50.29     | m    |  |  |
| Height         | 19.57     | m    |  |  |

Tabel 3.1.a. Data Small SPAR (Deep Oil Technology Inc., 1995).

**Tabel 3.1.b.** Data distribusi massa Small SPAR (Deep Oil Technology Inc.,1995).

| Description    | Prototype | Unit |
|----------------|-----------|------|
| Mass           |           |      |
| Weight         | 2653.16   | Ton  |
| KG             | 62.02     | m    |
| Pitch Gyradius | 61.47     | m    |
| Roll Gyradius  | 61.47     | m    |

| Deskripsi                             | Kuantitas | Satuan |
|---------------------------------------|-----------|--------|
| Panjang                               | 50        | m      |
| Lebar                                 | 3         | m      |
| Kedalaman (penuh)                     | 2         | m      |
| Kedalaman (operasi)                   | 1.8       | m      |
| Temperatur                            | 27        | °C     |
| Jendela Observasi<br>(Toughned Glass) | 4         | buah   |

Tabel 3.1.c Data Towing Tank Laboratorium Hidrodinamika FTK-ITS.

Tabel 3.1.d Data Lingkungan

| Deskripsi | Kuantitas | Satuan |
|-----------|-----------|--------|
| Kedalaman | 750       | m      |

## 3.2.2 Pemodelan Eksperimen dan Numerik.

Langkah selanjutnya adalah pemodelan Small SPAR. Langkah ini terdiri dari dua kondisi pemodelan yaitu kondisi terapung bebas dan kondisi tertambat. Kedua kondisi tersebut nantinya akan dianalisis melalui pemodelan eksperimen dan numerik.

• Pemodelan Eksperimen

Pada pemodelan eksperimen terlebih dahulu dilakukan persiapan model fisik dari Small SPAR. Tahap ini meliputi penskalaan model dari segi geometri prototipe, kinematik, dan hidrodinamik sistem. Penskalaan Geometri dilakukan dengan menyesuaikan kondisi Laboratorium Hidrodinamika serta material model yang tersedia di pasaran. Selain itu pada tahap penskalaan hidrodinamik, digunakan Hukum Model Froude karena hanya terbatas memperhatikan gaya inersia dan gravitasi. Pada eksperimen ini model yang kami gunakan adalah model eksperimen dari Ivandito dkk (2017). Kemudian setelah dilakukan pengecekan ulang maka dilanjutkan dengan penambahan *helical strakes* pada model tersebut.

*Helical Strakes* dimodelkan dengan berbentuk silinder dengan diameter 0.1 dari diameter *hull* SPAR. Gambar set up model tanpa tali tambat dan dengan tali tambat dapat dilihat pada Gambar 3.2 dan Gambar 3.3. Gambar tampak samping model dapat dilihat pada Gambar 3.5. Gambar model *helical strakes* dapat di lihat pada Gambar 3.4. Besar sudut antara *helical* dengan aksis silinder sebesar 60°, 3 *helic*, dan 1 *pitch helical*. Model ini bedasarkan rekomendasi dari Wilson dan Tinsley (1989) mengenai dimensi dari *helical strakes* tersebut.



Gambar 3.2. Setup model tanpa tali tambat (free floating).



Gambar 3.3. Setup model dengan tali tambat (mooring).



Gambar 3.4. Permodelan model dengan helical strakes tampak atas



Gambar 3.5. Permodelan model dengan helical strakes tampak samping

Pada perhitungan eksperimen ini model ditinjau dalam 3 gerakan yaitu heave, pitch dan surge. Perhitungan 3 gerakan tersebut menggunakan *accelero+gyro*. Kemudian hasil perhitungan disajikan dalam bentuk grafik RAO gerakan

• Pemodelan Numerik

Model SPAR menggunakan perangkat lunak SOLIDWORKS dan kemudian di analisis menggunakan perangkat lunak ANSYS AQUA untuk mendapatkan output RAO.

## 3.2.3 Validasi Model

Pada tahap ini, model dikatakan valid jika *error* yang didapatkan pada pemodelan numerik dan eksperimen adalah tidak lebih dari 5% terhadap data acuan. Parameter-parameter yang perlu dilakukan validasi diantaranya:

• Displacement

- Titik pusat masa (*Centre of Gravity*) sumbu x (LCG), sumbu y (TCG) dan sumbu z (VCG)
- Jari-jari girasi sumbu x  $(R_x)$ , sumbu y  $(R_y)$  dan sumbu z  $(R_z)$
- Jari-jari metacenter melintang (BM<sub>T</sub>)
- Jari-jari metacenter memanjang (BM<sub>L</sub>)
- Tinggi metacenter melintang (GM<sub>T</sub>)
- Tinggi metacenter memanjang (GM<sub>L</sub>)

Pada uji eksperimen ini, data yang diperoleh adalah *displacement*, KG, Rx, dan Ry. Sehingga validasi hanya lakukan pada parameter-parameter tersebut.

### 3.2.4 Kalibrasi Model

Kalibrasi dilakukan untuk memenuhi parameter dimensi yang sudah disesuaikan dengan hasil pemodelan geometri. Jadi dari dalam pembuatan dan pengGambaran model dilakukan kalibrasi terus menerus agar mendekati dengan model aslinya. Pada awalnnya dimensi harus disesuaikan seperti panjang, lebar dan draft. Setelah itu baru distribusi massa dari model SPAR seperti COG dan radius girasi. Dan pada penelitian ini model dinyatakan valid / sesuai jika error yang terjadi kurang dari 5% dari model aslinya.

#### 3.2.5 Rancang Sistem Tambat

Pada tahap ini, dilakukan perancangan sistem tambat yang akan digunakan pada model SPAR sebelum dilakukan eksperimen di laboratorium hidrodinamika ITS. Gambar 3.6 dan Gambar 3.7 menunjukkan layout dari sistem tambat. Gambar 3.8 merupakan Tampak Samping, dan Gambar 3.9 merupakan Rencana Jangkar. Secara garis besar, tahap ini terdiri atas dua point utama yaitu setup sistem tambat dan penggabungan model dengan sistem tambat. Berikut ini merupakan penjelasan untuk tiap point utama yang dibahas.

• Setup sistem tambat

Sistem tambat yang digunakan pada model terdiri dari empat buah mooring line yang dihubungkan dengan menggunakan fairlead. Alat-alat yang diperlukan dalam setup sistem tambat ini antara lain :

- 1. Mooring line sebanyak 4 buah
- 2. Load Cell sebanyak 4 buah untuk pengukuran tegangan tali
- 3. Jangkar di dasar untuk peletakan load cell serta pengaturan sudut tali
- 4. *Fairlead* berupa kait untuk memasang mooring line di model SPAR yang akan diuji sebanyak 4 buah

Berikut merupakan Gambar tampak atas dari setup model mooring yang akan diatur di laboratorium hidrodinamika ITS.



Gambar 3.6. Tampak Atas Rencana Sistem Tambat pada Eksperimen.



Gambar 3.7. Tampak Atas Rencana Sistem Tambat pada Eksperimen dengan variasi arah datang gelombang.



Gambar 3.8. Tampak Samping Rencana Sistem Tambar dan Model SPAR.



Gambar 3.9. Tampak Atas Rencana Jangkar.

## **3.2.6** Parameter Sistem Tambat

Pada tahap ini, parameter – parameter untuk sistem tambat yang digunakan pada model SPAR akan dijelaskan secara detail. Parameter sistem tambat yang digunakan antara lain kekakuan tali tambat, posisi tambat, sudut tambat dan pretension tali tambat. Berikut ini adalah p+enjelasan dari tiap parameter sistem tambat yang digunakan.

#### • Kekakuan tali tambat

Kekakuan tali tambat tergantung dari karakteristik material tali tambat. Modulus elastisitas material mempengaruhi kekakuan tali tambat dan juga mempengaruhi periode natural struktur. Material yang memiliki kekakuan akan menyebabkan periode natural struktur menjadi semakin besar.

• Letak Fairlead

*Fairlead* menyambungkan *mooring line* dengan struktur terapung (model spar). Posisi *fairlead* pada model SPAR yang dibuat mengacu pada laporan *Joint Integrated Project* (1995), 12.74 m yaitu dibaawah garis air.

• Sudut Fairlead

Sudut *fairlead* dari *mooring line* yang digunakan pada analisis model SPAR ini sebesar 30 derajat. Sudut ini merupakan sudut ketika tali tambat berada pada dalam keadaan *tension* (tegang).

Jenis Sistem Tambat

Pada tugas akhir ini, jenis sistem tambat yang diteliti pada eksperimen yang dilakukan adalah sistem tambat *taut*.

#### 3.2.7 Instrumen Laboratorium

Pada tugas akhir ini, akan dilakukan eksperimen model Small SPAR yang akan diuji pada dua kondisi yaitu kondisi terapung bebas dan tertambat. Pada kondisi terapung bebas, akan dilakukan analisis respon berupa gerakan. Sedangkan pada kondisi tertambat, akan dilakukan analisis respon berupa gerakan dan tegangan tali. Untuk mengukur perubahan gerak yang terjadi pada model Small SPAR, terdapat dua opsi instrumen yang dapat digunakan yaitu sensor *accelero* + *gyro*. Sensor *accelero* + *gyro* akan mengeluarkan *output* berupa percepatan gerak linier benda pada sumbu x, y, dan z dan perubahan sudut. Mekanisme kerja *accelero gyro* dapat dilihat pada Gambar 3.10.



Gambar 3.10. Diagram Mekanisme Kerja Sensor accelero + gyro.

Selanjutnya pengukuran tegangan tali dilakukan dengan menggunakan load cell dengan diagram pengukuran seperti Gambar 3.11. Load Cell mengukur tegangan yang diberikan oleh tali. Perubahan tegangan tali ini akan memberi sinyal tegangan listrik. Tegangan listrik yang dihasilkan loadcell akan diperbesar menggunakan amplifier yang kemudian akan didigitasi menggunakan microcontroller yang kemudian akan berubah menjadi data digital di laptop.



Gambar 3.11. Diagram Metodologi Umum Eksperimen Bangunan Terapung

Image Processing digunakan untuk menangkap respon gerakan dari model.Image Processing mengukur displacement dari titik yang ditempelkan oleh tanda warna. Gambar 3.12 merupakan instrumen Image Processing.



Gambar 3.12. Instrumen Image Processing

Laboratorium yang digunakan untuk melakukan uji adalah Laboratorium Hidrodinamika FTK ITS. Laboratorium Hidrodinamika tersebut mempunyai instrumen yang masih berfungsi dengan baik.

## BAB IV

#### ANALISIS DAN PEMBAHASAN

# 4.1 PEMODELAN STRUKTUR

## 4.1.1 Pemodelan Numerik

Pemodelan numerik dilakukan dengan menggunakan perangkat lunak Solidwork dan ANSYS AQWA. Mula-mula model numeris dimodelkan di solid work. Setelah itu model dari solid work diimport ke ANSYS AQWA untuk mendapatkan RAO dan tegangan tali tambat. Pemodelan mumeris dapat dilihat pada Gambar. 4.1, Gambar 4.2, dan Gambar 4.3.

Pemodelan numerik disesuaikan dengan dimensi dari SPAR yang diambil dari data Mini SPAR Joint Industry Project (1995) dengan tambahan piranti berupa helical strakes. Pada Tabel 4.1 dan Tabel 4.2 merupakan dimensi Mini SPAR Joint Industry Project dan distribusi massa yang digunakan dalam pemodelan numerik.

| Deskripsi           | Prototype |
|---------------------|-----------|
| Diameter (m)        | 16.00     |
| Sarat (m)           | 135.03    |
| Tinggi (m)          | 154.23    |
| Posisi Fairlead (m) | 12.74     |
| Panjang Geladak (m) | 50.29     |
| Lebar Geladak (m)   | 50.29     |

Tabel 4.1 Data Dimensi Mini SPAR

Tabel 4.2 Data Distribusi Massa Mini SPAR

| Deskripsi            | Prototype |
|----------------------|-----------|
| Massa Total (ton)    | 265315.2  |
| Keel to Gravity (m)  | 62.02     |
| Radius Girasi YY (m) | 61.47     |
| Radius Girasi XX (m) | 61.47     |



Gambar 4.1 Meshing Model Pada Ansys Aqwa



Gambar 4.2 Meshing Model Tampak Atas



Gambar 4.3 Meshing Model Tampak Depan

## 4.1.2 Pemodelan Eksperimen

Dalam melakukan studi eksperimen, SPAR dimodelkan menggunakan skala 1:125. Proses penskalaan yang dilakukan mengikuti aturan Froude sesuai Tabel 4.3.

| Deskripsi            | Prototype          | Faktor<br>skala | Model     |
|----------------------|--------------------|-----------------|-----------|
| Massa (kg)           | 26531524.910<br>kg | $\lambda^3$     | 13.584 kg |
| Diameter (m)         | 16.000 m           | λ               | 0.128 m   |
| Sarat (m)            | 135.010 m          | λ               | 1.080 m   |
| Panjang (m)          | 154.210 m          | λ               | 1.234 m   |
| Keel to Gravity (m)  | 62.022 m           | λ               | 0.496 m   |
| Radius Girasi YY (m) | 61.470 m           | λ               | 0.492 m   |

 Tabel 4.3 Hasil Penskalaan Model SPAR.

| Deskripsi             | Prototype       | Faktor<br>skala | Model               |
|-----------------------|-----------------|-----------------|---------------------|
| Radius Girasi XX (m)  | 61.470 m        | λ               | 0.492 m             |
| Doriodo colombong (a) | 40, 35, 30, 25, | 2 1/2           | 3.6, 3.1, 2.7, 2.2, |
| renode gerombang (s)  | 20, 10, 5.5 (s) | λ               | 1.8, 0.9, 0.5 (s)   |

Tabel 4.3 Hasil Penskalaan Model SPAR. (lanjutan)

Pipa yang digunakan sebagai lambung yaitu pipa PVC 5". Helical dimodelkan dengan pipa selang ukuran <sup>1</sup>/<sub>2</sub>". Kemudian dipasang pada hull dengan lem. Setelah dimensi utama dari model fisik terpenuhi, distribusi massa dari model fisik juga dimodelkan. Distribusi massa dari SPAR terdapat pada Tabel 4.2.



Gambar 4.4 Tampak Model dengan helical

Langkah-langkah yang dilakukan untuk mendapatkan distribusi massa yang diinginkan adalah sebagai berikut:

1. Menghitung massa total

Setiap material model yang digunakan ditimbang untuk mendapatkan massa total struktur. Proses menimbang material dilakukan di Laboratorium Mekanika Tanah Departemen Teknik Kelautan, hasil penimbangan yang didapat ditampilkan pada Tabel 4.4

|          |                 |            | Berat   |        |           |
|----------|-----------------|------------|---------|--------|-----------|
| Bagian   |                 | Tebal (cm) | (g)     | Jumlah | Total (g) |
|          | Ballast 1       | 2          | 1628.49 | 1      | 1628.49   |
|          | Ballast 2       | 2          | 1623.09 | 1      | 1623.09   |
| Blok A   | Ballast 3       | 2.5        | 2094.09 | 1      | 2094.09   |
|          | Ballast 4       | 1          | 663.59  | 1      | 663.59    |
|          | Cap             | 0.3        | 47.46   | 1      | 47.46     |
|          | Ballast 1       | 2.5        | 2096.69 | 1      | 2096.69   |
| Blok B   | Ballast 2       | 0.8        | 465.99  | 1      | 465.99    |
|          | Ballast 3       | 0.5        | 179.49  | 1      | 179.49    |
| Topside  |                 | 0.3        | 599.50  | 1      | 599.50    |
|          | Ulir (130 cm)   |            | 352.09  | 1      | 352.09    |
| Tambahan | Pipa            | -          | 4087.53 | 1      | 4087.53   |
| Tumbunun | Penyambung      | -          |         | 1      | 0.00      |
|          | Helical Strakes |            | 96.64   | 3      | 289.91    |
|          | Mur             | -          |         | 2      | 0.00      |
| Total    |                 |            |         |        |           |

 Tabel 4.4 Hasil Penimbangan Berat Material

2. Distribusi beban untuk pemenuhan jari-jari girasi

Material yang digunakan dihitung momen inersia massanya. Kemudian di gabungkan secara keseluruhan untuk mencari inersia massa total. Dari

momen inersia masa total yang didapat kemudian digunakan untuk menghitung jari-jari girasi model fisik. Gambar 4.5 merupakan sistem yang ada pada SPAR yang digunakan untuk mengatur distribusi massa SPAR.



Gambar 4.5 Desain Pemberat dan Ulir

Perhitungan dari setiap blok sebagai berikut:

a. Pipa PVC (Silinder Berongga)

Persamaan 4.1 merupakan persamaan momen inersia massa dari silinder berongga relatif terhadap pusat massanya.

$$Iox = Ioy = \frac{1}{12} m (6r^2 + l^2)$$
(4.1)

Tabel 4.5 Perhitungan Momen Inersia massa PVC

| Komponen | Berat (g) | <i>Iox</i> (g.cm <sup>2</sup> ) | <i>Ioy</i> (g.cm <sup>2</sup> ) |
|----------|-----------|---------------------------------|---------------------------------|
| PVC      | 4087.53   | 5287070.00                      | 5287070.00                      |

b. Blok A (Lingkaran Pejal)

Blok A terdiri dari material-material yang berbentuk silinder pejal. Persamaan 4.2 digunakan untuk menghitung momen inersia massa dari silinder pejal relatif terhadap pusat. Masing momen inersia silinder pejal pada blok A dihitung. Hasil perhitungan terlampir pada Tabel 4.6

$$Iox = Ioy = \frac{1}{12} m (3r^2 + l^2)$$
(4.2)

| Komponen  | Berat (g) | <i>Iox</i> (g.cm <sup>2</sup> ) | <i>Ioy</i> (g.cm <sup>2</sup> ) |
|-----------|-----------|---------------------------------|---------------------------------|
| Ballast 1 | 1628.49   | 16446.05                        | 16446.05                        |
| Ballast 2 | 1623.09   | 16391.52                        | 16391.52                        |
| Ballast 3 | 2094.09   | 20624.60                        | 20624.60                        |
| Ballast 4 | 663.59    | 6825.99                         | 6825.99                         |
| Сар       | 47.46     | 471.32                          | 471.32                          |

Tabel 4.6 Perhitungan momen inersia massa Blok A

c. Blok B (Lingkaran Pejal)

Blok B terdiri dari material-material yang berbentuk silinder pejal, sehingga persamaan yang digunakan sama dengan perhitungan blok A (Persamaan 4.2). Blok B hanya terdiri dari pemberat berbahan besi. Ukuran dan hasil perhitungan material-material di blok B terlampir di Tabel 4.7.

 Tabel 4.7 Perhitungan momen inersia massa Blok B.

| Komponen  | Berat (g) | <i>Iox</i> (g.cm <sup>2</sup> ) | <i>Ioy</i> (g.cm <sup>2</sup> ) |
|-----------|-----------|---------------------------------|---------------------------------|
| Ballast 5 | 2096.7    | 20748.49                        | 20748.49                        |
| Ballast 6 | 465.99    | 4556.90                         | 4556.90                         |
| Ballast 7 | 179.49    | 1756.57                         | 1756.57                         |

## d. Topside

*Topside* terdiri dari geladak berbahan akrilik. Bentuk dari geladak merupakan balok dengan panjang 40 cm, lebar 40 cm dan tebal 0.3 cm. Persamaan 4.3 digunakan untuk menghitung momen inersia massa dari topside relatif terhadap pusat massanya. Perhitungan Momen inersia topside dapat dilihat pada Tabel 4.8.

$$Iox = \frac{1}{12} m \left( l^2 + t^2 \right)$$
(4.3a)

$$Ioy = \frac{1}{12} m \left( p^2 + t^2 \right)$$
(4.3b)

| Komponen | Berat (g) | $Iox (g.cm^2)$ | <i>Ioy</i> (g.cm <sup>2</sup> ) |
|----------|-----------|----------------|---------------------------------|
| Geladak  | 599.5     | 79937.8        | 79937.8                         |

 Tabel 4.8 Perhitungan momen inersia massa topside.

e. Ulir

Pemberat blok A dan blok B dimasukkan ke dalam ulir. Ulir merupakan baut yang berbentuk silinder pejal sehingga untuk menghitung momen inersia massanya dapat menggunakan persamaan 4.2. Hasil perhitungan momen inersia dari ulir ditampilkan pada Tabel 4.9.

 Tabel 4.9 Perhitungan momen inersia massa ulir.

| Komponen | Berat (g) | <i>Iox</i> (g.cm <sup>2</sup> ) | <i>Ioy</i> (g.cm <sup>2</sup> ) |
|----------|-----------|---------------------------------|---------------------------------|
| Ulir     | 352.09    | 495873.99                       | 495873.99                       |

f. Helical Strakes

*Helical strakes* terbuat dari selang plastik dengan panjang 117 cm. Hasil perhitungan momen inersia helical ditampilkan pada Tabel 4.10

| Komponen  | Berat (g) | <i>Iox</i> (g.cm <sup>2</sup> ) | <i>Ioy</i> (g.cm <sup>2</sup> ) |
|-----------|-----------|---------------------------------|---------------------------------|
| Helical 1 | 352.09    | 101469.2                        | 101469.2                        |
| Helical 2 | 96.64     | 101469.2                        | 101469.2                        |
| Helical 2 | 96.64     | 101469.2                        | 101469.2                        |

 Tabel 4.10 Perhitungan momen inersia helical

## g. Momen inersia terhadap pusat masa

Setelah mencari momen inersia pada tiap-tiap komponen kemudian mencari momen inersia masa terhadap pusat masa. Langkah pertama adalah mencari COG dari model. Perhitungan COG model dapat dilihat pada Tabel 4.11 dan pusat masa model pada Tabel 4.12

|          |               | Donat (g) | LCG  | TCG  | VCG    |
|----------|---------------|-----------|------|------|--------|
|          |               | Derat (g) | (cm) | (cm) | (cm)   |
| Blok A   | Cap           | 47.46     | 0.00 | 0.00 | 0.15   |
|          | Ballast 1     | 1628.5    | 0.00 | 0.00 | 6.50   |
|          | Ballast 2     | 1623.1    | 0.00 | 0.00 | 4.50   |
|          | Ballast 3     | 2094.1    | 0.00 | 0.00 | 3.0    |
|          | Ballast 4     | 663.59    | 0.00 | 0.00 | 1.25   |
| Blok B   | Ballast 5     | 2096.7    | 0.00 | 0.00 | 109.75 |
|          | Ballast 6     | 465.99    | 0.00 | 0.00 | 111.40 |
|          | Ballast 7     | 179.49    | 0.00 | 0.00 | 112.05 |
| Tambahan | Topside       | 599.50    | 0.00 | 0.00 | 123.55 |
|          | Helical 1     | 96.64     | 0.00 | 0.00 | 54     |
|          | Helical 2     | 96.64     | 0.00 | 0.00 | 54     |
|          | Helical 3     | 96.64     | 0.00 | 0.00 | 54     |
|          | Ulir (130 cm) | 352.09    | 0.00 | 0.00 | 65.30  |
| PVC      | PVC           | 4087.5    | 0.00 | 0.00 | 61.70  |
|          | Total         | 14127.93  |      |      |        |

 Tabel 4.11 Posisi COG setiap material

Tabel 4.12 Posisi COG model

| LCG (cm) | TCG (cm) | VCG (cm) |
|----------|----------|----------|
| 0.00     | 0.00     | 49.11    |

Setelah didapatkan COG model langkah selanjutnya adalah mentabulasi momen inersia masa terhadap pusat masa. Setelah di dapatkan momen inersia terhadap pusat masa kemudian jari-jari girasi dihitung dengan persamaan 4.4. Hasil perhitungan momen inersia terhadap pusat masa dapat dilihat pada Tabel 4.13 dan 4.14

$$Jari - jari girasi = \sqrt{\frac{Inersia massa total gerak yang ditinjau}{massa total model}}$$
(4.4)

| Komponen | Berat (g) | $Ix (g.cm^2)$ | $Iy (g.cm^2)$ |
|----------|-----------|---------------|---------------|
| TOTAL    | 14127.93  | 32835461.92   | 32835461.92   |

 Tabel 4.13 Perhitungan momen inersia terhadap pusat massa

Tabel 4.14 Perhitungan jari-jari girasi

| Rxx (cm) | Ryy (cm) |
|----------|----------|
| 48.209   | 48.209   |

### 4.1.3 Pemodelan Tali Tambat

Tali tambat yang digunakan pada eksperimen mengacu pada tali tambat pada katalog dari Balmoral Marine (2010). Data tali tambat yang dijadikan acuan adalah data kekakuan *wire rope*. Tali kemudian akan dimodelkan dengan tali nilon seperti Gambar 4.6. Properties dari *wire rope* yang digunakan dijelaskan pada Tabel 4.15.

 Tabel 4.15. Properti mooring line wire rope

| Diameter           | 115   | Mm   |
|--------------------|-------|------|
| Masa jenis (udara) | 65    | kg/m |
| Masa jenis (air)   | 55    | kg/m |
| MBF                | 11760 | kN   |
| Kekakuan           | 1175  | MN   |

WIRE ROPE



## ROPE SPECIFICATIONS

#### SPIRAL STRAND

4.34



- Tensile grades of wire optimised to improve wire ductility
   Rope, size, mass and MBF may be customised according to
- Supply includes: Quality plan Fatigue design calculations
   Wear design calculation Corrosion design calculation

| Wire rope dia  |                | Mass (unsheathed) |                   | Mass (sheathed) |                   | Metallic                | MBF   | Stiffness | Torque        | Turns        |
|----------------|----------------|-------------------|-------------------|-----------------|-------------------|-------------------------|-------|-----------|---------------|--------------|
| Uncoated<br>mm | Sheathed<br>mm | Air<br>kg/m       | Séá wáter<br>kg/m | Air<br>kg/m     | Sea water<br>kg/m | Area<br>mm <sup>a</sup> | kN    | MN        | 25% MBF<br>Nm | 25% MB<br>Nm |
| 77             | 91             | 29                | 25                | 32              | 25                | 3440                    | 5480  | S25       | 750           | 0.5          |
| 83             | 99             | 34                | 29                | 37              | 29                | 4000                    | 6370  | 610       | 950           | 0.5          |
| 89             | 105            | 39                | 33                | 42              | 33                | 4600                    | 7330  | 700       | 1200          | 0.4          |
| 96             | 114            | 46                | 38                | 49              | 38                | \$350                   | 8530  | 820       | 1500          | 0.4          |
| 102            | 122            | 51                | 43                | 55              | 43                | 6040                    | 9360  | 925       | 1750          | 0.4          |
| 108            | 128            | 58                | 49                | 61              | 48                | 6770                    | 10490 | 1035      | 2100          | 0.4          |
| 115            | 137            | 65                | 55                | 69              | 54                | 7680                    | 11760 | 1175      | 2500          | 0.3          |
| 121            | 145            | 72                | 61                | 76              | 60                | 8500                    | 12720 | 1300      | 2850          | 0.3          |
| 127            | 151            | 80                | 67                | 84              | 66                | 9370                    | 13930 | 1435      | 3300          | 0.3          |
| 134            | 160            | 89                | 75                | 93              | 73                | 10430                   | 15510 | 1595      | 3850          | 0.3          |
| 140            | 168            | 97                | 82                | 101             | 79                | 11390                   | 16930 | 1740      | 4400          | 0.3          |
| 147            | 175            | 107               | 90                | 112             | 88                | 12550                   | 18660 | 1920      | 5100          | 0.3          |

Gambar 4.6 Katalog property wire rope

Kemudian tali tambat dimodelkan ke dimensi skala eksperimen. Properti tali nylon dapat dilihat pada Tabel 4.16.



Gambar 4.6. Bahan tali tambat

| Keterangan             | Simbol | Model (Tali<br>Nilon) | Satuan           |
|------------------------|--------|-----------------------|------------------|
| Modulus<br>elastisitas | Е      | 2000000000            | N/m <sup>2</sup> |
| Diameter tali          | D      | 0,62                  | Mm               |
| Luas Tali              | А      | 0,3019                | $mm^2$           |
| Panjang Tali           | L      | 1,8                   | М                |

Tabel 4.16. Spesifikasi tali tambat eksperimen

Kemudian, penskalaan dilakukan kembali pada senar pancing sesuai dengan skala model untuk mendapatkan spesifikasi tali tambat yang digunakan pada model fisik. Skala model yang digunakan adalah 1:125, maka dari hasil skala didapatkan properties tali tambat model numeris dijelaskan pada Tabel 4.17.

Tabel 4.27 Spesifikasi tali tambat model fisik skala penuh

| Keterangan          | Simbol | Model       | Satuan           |
|---------------------|--------|-------------|------------------|
| Modulus elastisitas | Е      | 25000000000 | N/m <sup>2</sup> |
| Diameter tali       | D      | 77,50       | Mm               |
| Luas Tali           | А      | 4717,30     | mm <sup>2</sup>  |
| Panjang Tali        | L      | 225         | М                |

Dari Tabel 4.17 di atas, kekakuan tali dapat dihitung dengan Persamaan 4.5.

$$K = E X A$$
  

$$K = 250.000 MN/m^2 X 0,00472 m^2$$

$$K = 1179,32 MN$$
(4.5)

 Tabel 4.18. Perbandingan kekakuan prototype dengan data kekakuan wire rope

 acuan

| Stiffness model asli | Stiffness wire rope acuan | Error |
|----------------------|---------------------------|-------|
| ( <b>MN</b> )        | ( <b>MN</b> )             | (%)   |
| 1179,32              | 1175                      | 0,37  |
Dari perbandingan kekakuan pada Tabel 4.18, didapatkan persentase error yang terjadi sebesar 0,37 % memenuhi syarat dari validasi (<5%). Sehingga untuk analisis eksperimen, dan numerik data properties tali tambat ditunjukkan pada Tabel 4.19.

|                      | Model fisik | Prototype     | Satuan |
|----------------------|-------------|---------------|--------|
| Length               | 1.8         | 225           | m      |
| Diameter             | 0,62        | 115           | mm     |
| Axial Stiffness (EA) | 603,814     | 1,175,000,000 | Ν      |
| MBF                  | 222,41      | 11,760,000    | Ν      |

Tabel 4.19 Data property tali tambat yang digunakan pada model fisik

## 4.2 Validasi Model

## 4.2.1 Validasi Model Numerik

Model yang dibuat di Ansys AQWA dapat dilihat parameter hidrostatisnya dan distribusi massanya. Parameter ini yang akan digunakan untuk memvalidasi model fisik, sehingga bisa dilakukan analisis. Pada penelitian ini batas maksimum error yang diijinkan adalah 5 %. Tabel 4.20 menampilkan perbandingan antara model numerik dan data. Berdasar Tabel 4.20 maka model numerik yang dibuat di Ansys AQWA bisa dilanjutkan untuk analisis gerak dan tali tambat.

Tabel 4.20. Perbandingan dan validasi model numerik dengan data

|                | Prototype   |    | Model Numer | ik | Error |
|----------------|-------------|----|-------------|----|-------|
|                |             |    |             |    | (%)   |
| Diameter       | 16.00       | m  | 16.00       | Μ  | 0.00  |
| Draft          | 135.03      | m  | 131.78      | Μ  | 2.40  |
| Length         | 154.23      | m  | 154.23      | М  | 0.00  |
| Fairlead depth | 12.74       | m  | 12.74       | m  | 0.00  |
| Weight         | 26531524.91 | kg | 26837614.91 | kg | 1.154 |
| KG             | 62.03       | m  | 62.03       | m  | 0.00  |
| Roll Gyrasi    | 61.48       | m  | 59.26       | m  | 3.61  |
| Pitch Gyrasi   | 61.48       | m  | 59.26       | m  | 3.61  |

#### 4.2.2 Validasi Model Eksperimen

Setalah melakukan proses perencanaan, model fisik yang sudah dibuat dilakukan validasi. Validasi diperlukan karena pada pembuatan, selain material utama yang dipakai, pada model juga terdapat material pendukung seperti lem, dempul, resin dan sebagainya. Proses ini dilakukan sebagai berikut:

## 1. Displacemen

Perhitungan displacemen dilakukan dengan melihat sarat yang dimiliki struktur ketika keadaan terapung. Berdasar pengamatan yang didapat sarat model fisik sesuai dengan Tabel 4.21. Dengan sarat dan diameter lambung yang diketahui, maka displacemen dapat dihitung sebagai perkalian antara volume tercelup dan massa jenis air, sehingga didapat displacement model sesuai Tabel 4.21.

 Tabel 4.21. Sarat dan displacement model fisik

| Sarat Model fisik  | 105.4 | Cm |
|--------------------|-------|----|
| Displacement Model | 13.56 | Kg |

## 2. Jarak KG dan Jari-jari Girasi

Jarak KG dan jari-jari girasi dihitung dengan menggunakan metode tes pendulum dengan mengayunkan model ekperimen. Tes pendulum dilakukan dengan 2 kondisi. Yaitu kondisi dengan massa tambahan dan tanpa massa tambahan. a. Kondisi ketika tidak ada massa tambah



Gambar 4.7 Skenario tes pendulum kondisi 1

b. Kondisi ketika beban dikenai massa tambah



Gambar 4.8 Skenario tes pendulum kondisi 2

Pada Gambar 4.7 dan 4.8 diatas, model digantung menggunakan tali pada suatu tumpuan untuk mengetahui radius girasi gerak *pitch* dan *roll* dari model yang dinamakan dengan *pendulum test*. Dari uji validasi ini didapatkan periode/frekuensi gerak pendulum dari model yang digunakan dalam perhitungan momen inersia massa dan radius girasi gerak *pitch* dan *roll* model. Simbol-simbol yang ada pada Gambar 4.7 dan 4.8 diatas adalah sebagai berikut :

- L merupakan panjang tali yang digunakan untuk mengikat model.
- ▶ h merupakan jarak titik berat model dari titik tumpuan.
- ➢ G merupakan titik berat dari model.

| NO. | BESARAN                                         | BESAR  | SATUAN                        |
|-----|-------------------------------------------------|--------|-------------------------------|
| 1.  | Berat Model (m)                                 | 14.127 | Kg                            |
| 2.  | Percepatan gravitasi (g)                        | 9.81   | m/s <sup>2</sup>              |
| 3.  | Jarak massa tambah (a)                          | 0,1525 | m (dari titik pusat<br>model) |
| 4.  | Berat massa tambah (m)                          | 1,552  | Kg                            |
| 5.  | Panjang tali (L)                                | 2.178  | М                             |
| 6.  | Panjang tali terhadap jarak<br>massa tambah (r) | 2.115  | М                             |

**Tabel 4.22.** Ukuran – ukuran yang digunakan pada pendulum test

Tes pendulum dilakukan sebanyak 50 kali.. Rata-rata periode yang didapat ditampilkan dalam Tabel 4.23.

Tabel 4.23. Periode dan frekuensi gerak pendulum model fisik kondisi 1 dan 2

| 1. | Periode gerak tanpa massa tambah (To)              | 3,4752   | Detik |
|----|----------------------------------------------------|----------|-------|
| 2. | Periode gerak dengan masa tambah (T <sub>1</sub> ) | 3,434    | Detik |
| 3. | Frekuensi tanpa massa tambah ( $\omega_0$ )        | 1,812979 | rad/s |
| 4. | Frekuensi dengan massa tambah ( $\omega_1$ )       | 1,829912 | rad/s |

Dari data-data pada Tabel 4.23 dapat ditentukan jarak dari titik tumpuan tali ke titik berat model (h) dengan menggunakan persamaan 4.6.

$$h = \frac{2m(r^{2}\omega_{1}^{2} - Lg)}{\left[1 - \left(\frac{\omega_{1}^{2}}{\omega_{o}^{2}}\right)^{2}\right]Mg}$$

$$h = 2.900231 m$$
(4.6)

Dari hasil perhitungan diatas, dapat diketahui titik berat model adalah sebagai berikut :

KG = panjang total (dari ujung tali sampai keel) - h

$$KG = 341.2 \text{ cm} - 290,0231$$

KG = 51.17 cm dari keel

Dari hasil perhitungan di atas, dapat ditentukan momen inersia massa gerak *pitch* dan *roll* model fisik terhadap titik gantung dengan persamaan 4.7.

$$I_{44} = I_{55} = \frac{mgh}{\omega_o^2}$$

$$I_{44} = I_{55} = \mathbf{142.1579} \, \mathbf{kg.m^2}$$
(4.7)

Kemudian dapat ditentukan momen inersia massa gerak *pitch* dan *roll* model relatif terhadap titik berat dengan Persamaan 4.8.

$$I_m = I - mh^2$$

$$I_m = 4.0127 \ kgm^2$$
(4.8)

Nilai momen inersia yang diketahui dapat digunakan untuk mencari jari-jari girasi sesuai dengan Persamaan 4.9. Karena massa terdistribusi merata relatif terhadap sumbu z, maka radius girasi *pitch* dan *roll* adalah identik dengan nilai 49.461 cm.

$$Radius \ girasi = \sqrt{\frac{I_m}{m}}$$
(4.9)

### Radius girasi = 0,49461 m

Tabel 4.24 menunjukkan perbandingan parameter model antara prototype, target dan model fisik. Model fisik valid apabila error yang terukur kurang dari 5%.

|                        | Data        |    | Konversi | Target |    | Achieved |    | Error  |
|------------------------|-------------|----|----------|--------|----|----------|----|--------|
| Diameter               | 16.00       | m  | 125      | 12.80  | cm | 12.80    | cm | 0.0%   |
| Draft                  | 135.03      | m  | 125      | 108.00 | cm | 105.4    | cm | 2.41 % |
| Length                 | 154.23      | m  | 125      | 123.4  | cm | 123.40   | cm | 0.0%   |
| Fairlead<br>Depth      | 12.74       | m  | 125      | 10.2   | cm | 10.20    | cm | 0.0%   |
| Weight                 | 26531524.91 | kg | 1953125  | 13.58  | kg | 14.127   | kg | 4.027% |
| KG                     | 62.03       | m  | 125      | 49.6   | cm | 51.176   | cm | 3.17%  |
| <i>Roll</i><br>Gyrasi  | 61.48       | m  | 125      | 49.2   | cm | 49.46    | cm | 0.52%  |
| <i>Pitch</i><br>Girasi | 61.48       | m  | 125      | 49.2   | cm | 49.46    | cm | 0.52%  |

Tabel 4.24. Validasi model fisik

## 4.3 INSTRUMEN PENGUKURAN

Pengukuran gerak model fisik menggunakan gyroscope dan image processing, sedangkan pengukuran tegangan tali menggunakan instrumen *loadcell*. Sebelum dilakukan pengukuran pada percobaan/ eksperimen, ketiga instrumen ini harus dilakukan kalibrasi.

#### 4.3.1 Kalibrasi Gyroscope

Kalibrasi gyroscope dilakukan untuk menyesuaikan nilai keluaran dari sensor dengan nilai sudut yang terjadi (Gambar 4.9, Gambar 4.10, dan Gambar 4.11). Angka yang perlu dilihat dari keluaran gyroscope adalah angka pada  $\langle FR \rangle$  (*Filtered Roll*). Kalibrasi dilakukan dengan mengukur sudut 0°, 10°, 30°, 40°, 50°, dan 60° di atas meja dengan bantuan busur (Gambar 4.12). Proses ini dilakukan dengan dua arah pengukuran yaitu searah dan berlawanan jarum jam relatif terhadap gyroscope.



Gambar 4.9. Instrumen gyroscope



Gambar 4.10. Geladak dan busur



Gambar 4.11. Gyroscope pada geladak model fisik



Gambar 4.12. Gyroscope dan geladak saat proses kalibrasi

| 1     |    |             |    |   |      |   |         |
|-------|----|-------------|----|---|------|---|---------|
| Angle | of | inclination | in | x | axis | - | 358.74° |
| Angle | of | inclination | in | x | axis | - | 359.36* |
| Angle | of | inclination | in | x | axis | = | 359.82° |
| Angle | of | inclination | in | x | axis | = | 359.34° |
| Angle | of | inclination | in | x | axis | = | 359.27* |
| Angle | of | inclination | in | x | axis | = | 359.18° |
| Angle | of | inclination | in | х | axis | - | 0.29*   |
| Angle | of | inclination | in | x | axis | = | 359.59° |
| Angle | of | inclination | in | x | axis | - | 0.17°   |
| Angle | of | inclination | in | x | axis | = | 359.58* |
| Angle | of | inclination | in | x | axis | = | 359.87° |
| Angle | of | inclination | in | x | axis | - | 0.20*   |
| Angle | of | inclination | in | x | axis | = | 0.18°   |
| Angle | of | inclination | in | x | axis | = | 0.33°   |
| Angle | of | inclination | in | х | axis | = | 359.77* |
| Angle | of | inclination | in | x | axis | = | 359.86° |
| Angle | of | inclination | in | x | axis | = | 359.62° |
| Angle | of | inclination | in | x | axis | = | 359.12° |

Gambar 4.13. Keluaran Arduino pada sudut 0° searah jarum jam

Gambar 4.13 merupakan tampilan output di komputer. Tabel 4.25 menunjukkan sudut yang dibuat dengan hasil keluaran *gyroscope* saat *gyroscope* diputar searah jarum jam. Tabel 4.26 menunjukkan sudut yang dibuat dengan hasil keluaran *gyroscope* diputar berlawanan arah jarum jam.

| Sudut (deg) | Keluaran Gyroscope (satuan) |
|-------------|-----------------------------|
| 0°          | 0.13                        |
| 10°         | 10.11                       |
| 20°         | 20.05                       |
| 30°         | 30.17                       |
| 40°         | 40.13                       |
| 50°         | 50.06                       |
| 60°         | 60.38                       |

 Tabel 4.25. Kalibrasi searah jarum jam

 Tabel 4.26.
 Kalibrasi berlawanan jarum jam

| Sudut (deg) | Output Giro (satuan) |
|-------------|----------------------|
| -0°         | -0.45                |
| -10°        | -10.26               |
| -20°        | -20.42               |
| -30°        | -30.85               |
| -40°        | -40.33               |
| -50°        | -50.42               |
| -60°        | -59.73               |

Tabel 4.25 dan Tabel 4.26 dapat dibuat grafik seperti Gambar 4.14. Berdasarkan hasil kalibrasi *gyroscope* yang dilakukan, keluaran yang dihasilkan oleh Arduino mempunyai persamaan sesuai Tabel 4.27. Kalibrasi dilakukan antara sudut 0° hingga 60° searah dan berlawanan arah jarum jam karena gerakan SPAR diasumsikan tidak akan bergerak *pitch* lebih dari 60°. Keluaran yang dihasilkan memiliki hubungan secara linier yang dapat disimpulkan bahwa sensor terkalibrasi untuk digunakan pada studi eksperimen kali ini.



Gambar 4.14. Keluaran Arduino dengan sudut yang dibentuk

| Tabel 4.27. | Persamaan | trendline | Arduino |
|-------------|-----------|-----------|---------|
|             |           |           |         |

| Searah Jarum Jam          | y=0.997x-0.068 |
|---------------------------|----------------|
| Berlawanan Arah Jarum Jam | y=1.006x+0.556 |

### 4.3.2 Kalibrasi Image Processing

Digital image processing merupakan proses pengambilan atribut-atribut pada Gambar yang telah di ambil dengan suatu kamera.Pada penelitian ini, dipasang tiga buah bola berwarna merah pada model fisik yang terapung di air yang digunakan untuk merekam gerak pada objek (Gambar 4.15 dan Gambar 4.17). Warna merah dipilih untuk mendapatkan kontras warna pada Gambar yang direkam (Gambar 4.16). Selain itu bentuk lingkaran juga lebih mudah dibedakan oleh program. Objek yang ditinjau adalah bola berwarna merah yang berada di titik pusat model sedangkan bola yang diletakkan di ujung model digunakan untuk perhitungan skala *pixel* dan validasi data yang dihasilkan. Proses *image processing* ini dilakukan dengan menggunakan satu buah kamera webcam logitech c270 yang merekam gambar kemudian diolah menggunakan bantuan perangkat lunak visual basic C++ (Gambar 4.16 dan Gambar 18)



Gambar 4.15. Sketsa model fisik dalam Image Processing.



Gambar 4.16. Kamera dan bola yang ditinjau.



Gambar 4.17. Konfigurasi geladak dengan objek yang ditinjau.



Gambar 4.18. Webcam Logitech c270 dengan lensa fixed focus.

Proses kalibrasi *image processing* dilakukan dengan cara merekam kertas yang diberi Gambar lingkaran berwarna merah. Pada proses kalibrasi kertas tersebut di gerakkan ke atas dan ke kanan sesuai dengan ukuran penggaris yang telah di siapkan dalam proses kalibrasi. Kemudian dilihat pada keluaran computer yang telah menangkap perpindahan dari objek lingkaran berwarna merah yang ditinjau. Proses kalibrasi dan hasil yang dikeluarkan dari instrumen *image processing* dapat dilhat pada Gambar 4.19 dan 4. 20.



Gambar 4.19. Proses kalibrasi image processing

| · 0 | mm | y I | = | Θ | mm | 11   |
|-----|----|-----|---|---|----|------|
| 3   | mm | 1y  | = | 2 | mm | 11   |
| 0   | mm | ly. | = | θ | mm |      |
| 3   | mm | ly. | = | 2 | mm | 11_  |
| 1   | mm | y   | = | 2 | mm | 11   |
| 0   | mm | y.  | = | Θ | mm | 11   |
| 0   | mm | y.  | = | Θ | mm | 11   |
| 2   | mm | 1y  | = | 1 | mm | 11   |
| 2   | mm | 1y  | = | 1 | mm | 11   |
| 0   | mm | 1y  | = | 0 | mm | 11   |
| 1   | mm | y.  | = | Θ | mm | 11   |
| 1   | mm | ly. | = | 1 | mm | 11   |
| 0   | mm | y   | = | 0 | mm | 11   |
| - 4 | mm | 1y  | = | 1 | mm | 11   |
| 1   | mm | y.  | - | 1 | mm | 11   |
| 0   | mm | y.  | = | 0 | mm | 11   |
| 1   | mm | 1y  | = | 1 | mm | 11   |
| 1   | mm | 1y  | = | 1 | mm | 11   |
| 3   | mm | y.  | - | 2 | mm | ii_  |
| • 0 | mm | ly. | = | Θ | mm | 11   |
| 2   | mm | 1y  | = | 2 | mm | 11   |
| θ   | mm | 1y  | = | Θ | mm | i i  |
| 1   | mm | ly. | = | 1 | mm | 11   |
| 1   | mm | 1y  | = | 1 | mm | i i  |
| 3   | mm | 1v  | = | 3 | mm | ii – |
| 1   | mm | 1y  | = | 1 | mm | ii_  |
| θ   | mm | 1v  | = | θ | mm | ii_  |
| 0   | mm | İv  | = | θ | mm | ii   |

Gambar 4.20. Keluaran dari proses kalibrasi *image processing* 

# 4.3.3 Kalibrasi Load cell

Tegangan tali diukur menggunakan instrumen *Load cell*. Instrumen ini memanfaatkan *strain-gauge* yang terpasang pada *load cell*. Jika *load cell* mengalami tarikan maka *strain-gauge* akan mengalami perubahan bentuk. Perubahan bentuk ini akan menghasilkan perubahan tegangan listrik. Tegangan yang sudah diamplifikasi akan diterima oleh *microcontroller* Arduino UNO untuk kemudian ditransfer ke laptop (Gambar 4.21).



Gambar 4.21. Konfigurasi *Load cell* (A), HX711 (B) dan Arduino UNO (C) (Lay ad Circuit, 2010)

Kalibrasi dilakukan dengan menimbang beberapa beban terukur sehingga dapat dicari regresi linear dari nilai-nilai yang keluar. Pada kalibrasi ini digunakan 5 buah beban, 1000 gram, 500 gram, 200 gram, 100 gram dan 50 gram (Gambar 4.22). Beban yang digunakan untuk pengukuran merupakan besi timbangan yang ada dipasaran.

Besi timbangan ditali dan digantungkan di sisi pengukuran *load cell*. Pada layar akan terlihat keluaran angka. Kemudian, setelah diberikan beban, angka yang muncul tersebut diolah untuk dicari regresi linear kalibrasi *load cell*. Setiap *load cell* akan diuji 2 kali untuk menemukan persamaan regresi linear dari setiap *load cell*.



Gambar 4.22. Beban Kalibrasi 1000 g (A), 500 g (B), 200 g (C), 100 g (D) dan 50 g (E)

Data yang ditunjukan dari proses kalibrasi dengan 5 timbangan pada setiap *load cell* dengan 2 percobaan yang berbeda.

# • Load cell 1

Data pada Tabel 4.28 kemudian di-*plot* menjadi Gambar 4.24. Gambar 4.24 menunjukkan *Load cell* 1 mempunyai persamaan linier. sehingga bisa digunakan dengan koreksi berdasar persamaan regresi linearnya.

| Beban |                  |
|-------|------------------|
| (kg)  | Output Percobaan |
| 1     | 0.94             |
| 0,5   | 0.51             |
| 0,2   | 0.26             |
| 0,1   | 0.18             |
| 0,05  | 0.07             |
| 0     | 0                |

Tabel 4.28. Data kalibrasi load cell 1 percobaan 1



Gambar 4.24. Grafik kalibrasi Load cell 1

• Load cell 2

Data pada Tabel 4.29 kemudian di-*plot* menjadi Gambar 4.25. Gambar 4.25 menunjukkan *Load cell* 2 mempunyai persamaan linier sehingga bisa digunakan dengan koreksi berdasar persamaan regresi linearnya.

| Beban |                  |
|-------|------------------|
| (kg)  | Output Percobaan |
| 1     | 1.01             |
| 0.5   | 0.56             |
| 0.25  | 0.28             |
| 0.1   | 0.17             |
| 0.05  | 0.06             |
| 0     | 0                |

Tabel 4.29.Data kalibrasi load cell 2



Gambar 4.25. Grafik kalibrasi Load cell 2

• Load cell 3

Data pada Tabel 4.30 kemudian di-*plot* menjadi Gambar 4.26. Gambar 4.26 menunjukkan *Load cell* 3 mempunyai persamaan linier sehingga bisa digunakan dengan koreksi berdasar persamaan regresi linearnya.

| Beban<br>(kg) | Output Percobaan |
|---------------|------------------|
| 1             | 1.02             |
| 0.5           | 0.56             |
| 0.25          | 0.27             |
| 0.1           | 0.18             |
| 0.05          | 0.067            |
| 0             | 0                |

Tabel 4.30. Data kalibrasi *load cell* 3



Gambar 4.26. Grafik kalibrasi Load cell 3

# • Load cell 4

Data pada Tabel 4.31 kemudian di-*plot* menjadi Gambar 4.27. Gambar 4.27 menunjukkan *Load cell* 4 mempunyai persamaan linier sehingga bisa digunakan dengan koreksi berdasar persamaan regresi linearnya.

| Beban<br>(kg) | Output Percobaan |
|---------------|------------------|
| 1             | 0.97             |
| 0.5           | 0.51             |
| 0.25          | 0.23             |
| 0.1           | 0.14             |
| 0.05          | 0.09             |
| 0             | 0                |

Tabel 4.31. Data kalibrasi load cell 4



Gambar 4.27. Grafik kalibrasi Load cell 4

Persamaan yang digunakan untuk mengkalibrasi keluaran *load cell* ditampilkan dalam Tabel 4.32.

Tabel 4.32. Persamaan Kalibrasi Keluaran Load cell dengan Beban

| LOAD CELL 1 | y = 1,09x - 0.04  |
|-------------|-------------------|
| LOAD CELL 2 | y = 1.00x - 0.04  |
| LOAD CELL 3 | y = 0.99x - 0.04  |
| LOAD CELL 4 | y = 1.09x - 0,.04 |

## 4.4 RAO TERAPUNG BEBAS

#### 4.4.1 Metode Numeris Kondisi Terapung Bebas

Perhitungan numeris dari respon gerak bangunan apung pada kondisi terapung bebas (*free floating*) dilakukan dengan menggunakan perangkat lunak ANSYS AQWA.

# 4.4.1.1 Mode Gerak *Heave*

RAO pada mode gerak *heave* dari SPAR ditampilkan pada Gambar 4.28 .



Gambar 4.28 Grafik RAO free floating gerakan heave

# 4.4.1.2 Mode Gerak *Surge*

RAO pada mode gerak *surge* dari SPAR ditampilkan pada Gambar 4.29.



Gambar 4.29 Grafik RAO free floating gerakan surge

## 4.4.1.3 Mode Gerak *Pitch*

RAO pada mode gerak *pitch* dari SPAR ditampilkan pada Gambar 4.30.



Gambar 4.30 Grafik RAO free floating gerakan pitch

# 4.4.2 Metode Eksperimen Kondisi Terapung Bebas

Analisis eksperimen dilakukan di Laboratorium Hidrodinamika FTK ITS. Model eksperimen SPAR diletakkan di kolam dengan dimensi panjang 100 m, kedalaman 1.8 dan lebar 3 m.

Model akan dikenai gelombang yang berasal dari wave maker. Model akan dikenai tujuh gelombang dengan karakteristik seperti pada Tabel 4.33. Variasi gelombang yang terjadi adalah variasi periode gelombang, tinggi gelombang konstan yaitu 5 cm.

| No. | Kode | Periode<br>Gelombang | Periode<br>Gelombang | Amplitudo<br>Gelombang |
|-----|------|----------------------|----------------------|------------------------|
|     |      | Lingkungan (s)       | Eksperimen (s)       | ( <b>cm</b> )          |
| 1   | FF1a | 40                   | 3.6                  |                        |
| 2   | FF1b | 29.5072              | 2.6                  |                        |
| 3   | FF1c | 23.3754              | 2.1                  |                        |
| 4   | FF1d | 19.3573              | 1.7                  | 2.5                    |
| 5   | FF1e | 14.4009              | 1.3                  |                        |
| 6   | FF1f | 12.7665              | 1.1                  |                        |
| 7   | FF1g | 5.6789               | 0.5                  |                        |

Tabel 4.33. Periode lingkungan dan periode eksperimen

## 1. Mode Gerak Surge

Setiap time history pada gerak *surge* dianalisis tinggi respon dan periode respon dari gerak yang terjadi. Analisis dilakukan dengan cara FFT respon yang terjadi untuk melihat respon gerak setiap variasi periode. FFT dilakukan dengan bantuan *software* Matlab. Dalam analisis FFT dicocokan pula periode respon yang terjadi dengan periode gelombang Nilai puncak harus berada pada periode yang di*running*. Contoh *time history* dan FFT pada gerakan *surge* dapat dilihat pada Gambar 4.31 dan 4.32. Gambar 4.31 dan Gambar 4.32 merupakan contoh *time history* dan FFT gerakan *surge* yang di*running* pada periode 2.1 detik. Hasil respon gerak dan RAO dapat dilihat pada Tabel 4. 34.



Gambar 4.31. *Time history* instrumen *image processing* untuk gerakan *surge* 



Gambar 4.32. FFT gerakan surge free floating

| No. | Kode | Periode<br>Gelombang<br>Eksperimen (s) | Respon Gerak<br>(mm) | RAO<br>(mm/mm) |
|-----|------|----------------------------------------|----------------------|----------------|
| 1   | FF1a | 3.6                                    | 24.56                | 0.9823         |
| 2   | FF1b | 2.6                                    | 19.833               | 0.7734         |
| 3   | FF1c | 2.1                                    | 22.25                | 0.9120         |
| 4   | FF1d | 1.7                                    | 12.33                | 0.4934         |
| 5   | FF1e | 1.3                                    | 12.21                | 0.4884         |

Tabel 4.34. Respon gerak dan RAO gerakan surge hasil eksperimen

| No. | Kode | Periode<br>Gelombang<br>Eksperimen (s) | Respon Gerak<br>(mm) |        |
|-----|------|----------------------------------------|----------------------|--------|
| 6   | FF1f | 1.1                                    | 10.03                | 0.4133 |
| 7   | FF1g | 0.5                                    | 3.32                 | 0.1328 |

 Tabel 4.34. Respon gerak dan RAO gerakan surge hasil eksperimen

 (lanjutan)

Kolom RAO pada Tabel 4.34 dapat di-*plot* untuk membuat suatu grafik RAO dari gerak *surge* yang disajikan pada Gambar 4.33 berikut ini.



Gambar 4.33 Grafik RAO free floating gerakan surge eksperimen

# 2. Mode Gerak Heave

Setiap *time history* pada gerak *heave* dianalisis tinggi respon dan periode respon dari gerak yang terjadi. Analisis dilakukan dengan cara FFT. FFT dilakukan dengan bantuan *software* Matlab. Dalam analisis FFT dicocokan pula periode respon yang terjadi dengan periode gelombang. Puncak pada FFT adalah nilai respon. Nilai puncak harus berada pada periode yang di*running*. Contoh *time history* dan FFT pada gerakan *heave* dapat dilihat pada Gambar 4.34 dan 4.35. Gambar 4.34 dan Gambar 4.35 merupakan contoh *time history* dan FFT gerakan *heave* yang di*running* pada periode 2.1 detik. Hasil respon gerak dan RAO dapat dilihat pada Tabel 4. 35.



Gambar 4.34. Time history instrumen image processing untuk gerakan heave



Gambar 4.35. FFT gerakan *heave* free floating heave

| No. | Kode | Periode<br>Gelombang<br>Eksperimen<br>(s) | Respon<br>Gerak<br>(mm) | RAO (mm/mm) |
|-----|------|-------------------------------------------|-------------------------|-------------|
| 1   | FF1a | 3.6                                       | 9.03                    | 0.3613      |
| 2   | FF1b | 2.6                                       | 20.0                    | 0.800       |
| 3   | FF1c | 2.1                                       | 90.42                   | 0.36211     |
| 4   | FF1d | 1.7                                       | 08.34                   | 0.3336      |
| 5   | FF1e | 1.3                                       | 5.80                    | 0.2320      |
| 6   | FF1f | 1.1                                       | 9.22                    | 0.3688      |
| 7   | FF1g | 0.5                                       | 10.60                   | 0.4240      |

Tabel 4.35. Respon gerak dan RAO gerakan heave hasil eksperimen

Kolom RAO pada Tabel 4.35 dapat di-*plot* untuk membuat suatu grafik RAO dari gerak *surge* yang disajikan pada Gambar 4.36 berikut ini.



Gambar 4.36 Grafik RAO free floating gerakan heave eksperimen

## 3. Mode Gerak *Pitch*

Setiap *time history* pada gerak *pitch* dianalisis tinggi respon dan periode respon dari gerak yang terjadi. Analisis dilakukan dengan cara FFT pada setiap periode. FFT dilakukan dengan bantuan *software* Matlab Dalam analisis FFT dicocokan pula periode respon yang terjadi dengan periode gelombang. Nilai puncak harus berada pada periode yang di*running*. Contoh *time history* dan FFT pada gerakan *pitch* dapat dilihat pada Gambar 4.37 dan 4.38. Gambar 4.37 dan Gambar 4.38 merupakan contoh *time history* dan FFT gerakan *heave* yang di*running* pada periode 2.1 detik. Hasil respon gerak dan RAO dapat dilihat pada Tabel 4. 36.



Gambar 4.37. Time history instrumen image processing untuk gerakan pitch



Gambar 4.38. FFT gerakan pitch free floating

| No. | Kode | Periode<br>Gelombang<br>Eksperimen (s) | Respon<br>Gerak (cm) | RAO<br>(cm/cm) |
|-----|------|----------------------------------------|----------------------|----------------|
| 1   | FF1a | 3.6                                    | 5.726                | 0.2291         |
| 2   | FF1b | 2.6                                    | 3.784                | 0.1514         |
| 3   | FF1c | 2.1                                    | 4.491                | 0.1774         |
| 4   | FF1d | 1.7                                    | 6.082                | 0.2433         |
| 5   | FF1e | 1.3                                    | 3.58                 | 0.2543         |
| 6   | FF1f | 1.1                                    | 5.398                | 0.2158         |
| 7   | FF1g | 0.5                                    | 2.897                | 0.1159         |

 Tabel 4.36. Respon gerak dan RAO gerakan pitch hasil eksperimen

Kolom RAO pada Tabel 4.36 dapat di-*plot* untuk membuat suatu grafik RAO dari gerak *surge* yang disajikan pada Gambar 4.39 berikut ini.



Gambar 4.39 Grafik RAO free floating gerakan pitch eksperimen

# 4.4.3. Perbandingan RAO Metode Numeris dan Eksperimen Kondisi Terapung Bebas

Gambar 4.40, 4.41 dan 4.42 menunjukkan perbandingan RAO terapung bebas pada arah datang gelombang 0 derajat dengan metode numeris dan eksperimen untuk tiap gerakan *surge*, *heave* dan *pitch* yang terjadi.

Metode perhitungan eksperimen dan numerik menunjukkan hasil pola yang konsisiten untuk gerak *surge*. Tabel 4.37 menunjukkan perbandingan dari 2 metode analisis gerak *surge*.

| Metode     | Frekuensi (rad/s) | RAO Terbesar (m/m) |
|------------|-------------------|--------------------|
| Numeris    | 0.157             | 1.378              |
| Eksperimen | 0.157             | 0.9823             |

 Tabel 4.37. Perbandingan RAO surge terapung bebas



Gambar 4.40. Perbandingan RAO surge secara numeris dan eksperimen

Metode perhitungan eksperimen dan numerik menunjukkan hasil pola yang konsisiten untuk gerak *heave*. Peristiwa resonansi juga tertangkap oleh metode eksperimen dan numeris di frekuensi yang sama. Namun terjadi perbedaan nilai yang signifikan. Hal ini dikarenakan tali drif penahan yang menahan gerakan pada periode natural. Tabel 4.38 menunjukkan perbandingan dari 2 metode analisis gerak *heave*.

| Metode     | Frekuensi (rad/s) | RAO Terbesar (m/m) |
|------------|-------------------|--------------------|
| Numeris    | 0.251             | 10.4024            |
| Eksperimen | 0.251             | 3.6231             |

Tabel 4.38. Perbandingan RAO heave terapung bebas





Metode perhitungan eksperimen dan numerik menunjukkan hasil pola yang konsisiten untuk gerak *pitch* Tabel 4.39 menunjukkan perbandingan kedua metode gerak *pitch*.

Tabel 4.39. Perbandingan RAO pitch terapung bebas

MetodeFrekuensi (rad/s)RAO Terbesar (deg/m)Numeris0.43630.2398Eksperimen0.43630.2543



Gambar 4.42. Perbandingan RAO *pitch* secara numeris dan eksperimen

# 4.5. RAO TERTAMBAT

# 4.5.1 Metode Numeris Kondisi Tertambat

Perhitungan numeris dari gerak bangunan apung di kondisi tertambat dilakukan dengan menggunakan perangkat lunak Ansys Aqwa.. Mooring line berjumlah 4 buah dengan spesifikasi yang sama. Dalam analisis numeris dilakukan perhitungan dari arah datang gelombang 0 derajat.



Gambar 4.43. Kondisi tertambat dalam Ansys Aqwa

1. Mode Gerak Surge

Gambar 4.44 menunjukkan RAO mode gerak *surge* dari SPAR dengan arah datang gelombang 0 derajat. RAO tertinggi dari *surge* tertambat secara numeris sebesar 1.367 m/m pada frekuensi 0.19014 rad/s.



Gambar 4.44. RAO surge tertambat metode numerik

## 2. Mode Gerak *Heave*

Gambar 4.45 menunjukkan RAO mode gerak *heave* dari SPAR dengan arah datang gelombang 0 derajat. RAO tertinggi dari *heave* tertambat secara numeris sebesar 0.778 m/m pada frekuensi 0.324589 rad/s.



Gambar 4.45. RAO heave tertambat metode numerik

3. Mode Gerak Pitch

Gambar 4.46 menunjukkan RAO mode gerak *pitch* dari SPAR dengan arah datang gelombang 0 derajat. RAO tertinggi dari *pitch* tertambat secara numeris sebesar 4.27684 deg/m pada frekuensi 0.15708 rad/s. Pada frekuensi 0.2129 terjadi pembesaran yaitu sebesar 2.095 deg/m.



Gambar 4.46. RAO pitch tertambat metode numerik

### 4.5.2 Metode Eksperimen Kondisi Tertambat

Analisis eksperimen dilakukan di Laboratorium Hidrodinamika FTK ITS. Model fisik diletakkan di kolam dengan dimensi panjang 100 m, kedalamann 1.8 dan lebar 3 m. Pada kondisi tertambat model fisik diletakkan dengan konfigurasi seperti pada Gambar 4.47. SPAR dalam kondisi tertambat di laboratorium Hidrodinamika ITS ditunjukkan pada Gambar 4.66.



Gambar 4.47. Konfigurasi eksperimen model fisik tertambat

Tali tambat yang digunakan sebanyak empat buah yang diatur dengan panjang yang sama dan tali dipasang dalam kondisi *taut*. Tali tambat dihubungkan pada *load cell*.

Model akan dikenai gelombang yang berasal dari *wave maker*. Model akan dikenai 7 gelombang dengan periode yang berbeda yang ditunjukan pada Tabel 4.40. Variasi gelombang yang terjadi adalah variasi periode gelombang, sedangkan tinggi gelombang konstan.

Respon dari benda yang terkena gelombang akan dicatat dengan instrumen *image processing* dan *gyroscope*. *Image processing* akan mencatat mode gerak *surge* dan *heave* sedangkan *gyroscope* akan mencatat gerak *pitch* struktur. FFT dilakukan dengan bantuan *software* Matlab Dalam analisis FFT dicocokan pula periode respon yang terjadi dengan periode gelombang. Puncak pada FFT adalah nilai respon. Nilai puncak harus berada pada periode yang di*running*. Contoh FFT respon gerakan dapat dilihat pada sub-bab RAO *free floating*.

| No. | Kode | Periode Gelombang<br>Lingkungan (s) | Periode<br>Gelombang<br>Eksperimen (s) | Amplitudo<br>Gelombang<br>(cm) |
|-----|------|-------------------------------------|----------------------------------------|--------------------------------|
| 1   | TT1a | 40                                  | 3.                                     |                                |
| 2   | TT1b | 29.5072                             | 2.6                                    |                                |
| 3   | TT1c | 23.3754                             | 2.1                                    |                                |
| 4   | TT1d | 19.3573                             | 1.7                                    | 2.5                            |
| 5   | TT1e | 14.4009                             | 1.3                                    |                                |
| 6   | TT1f | 12.7665                             | 1.1                                    |                                |
| 7   | TT1g | 5.6789                              | 0.5                                    |                                |

 Tabel 4.40. Periode lingkungan dan periode eksperimen model fisik tertambat

 yang digunakan

# 1. Mode Gerak Surge

Setiap time history pada gerak *surge* dianalisis tinggi respon dan periode respon dari gerak yang terjadi. Analisis dilakukan dengan cara FFT respon yang terjadi untuk melihat respon gerak setiap variasi periode. Tabel 4.41 menunjukkan hasil eksperimen yang dilakukan pada mode gerak *surge*.

 Tabel 4.41. Respon gerak dan RAO gerakan surge hasil eksperimen kondisi tertambat

| No. | Kode | Periode<br>Gelombang<br>Eksperimen<br>(s) | Respon<br>Gerak (mm) | RAO (mm/mm) |
|-----|------|-------------------------------------------|----------------------|-------------|
| 1   | TT1a | 3.6                                       | 10.42                | 0.417       |
| 2   | TT1b | 2.6                                       | 15.12                | 0.605       |
| 3   | TT1c | 2.1                                       | 12.35                | 0.494       |
| 4   | TT1d | 1.7                                       | 11.84                | 0.474       |
| 5   | TT1e | 1.3                                       | 7.57                 | 0.303       |
| 6   | TT1f | 1.1                                       | 5.38                 | 0.215       |
| 7   | TT1g | 0.5                                       | 0.27                 | 0.011       |

Kolom RAO pada Tabel 4.41 dapat di-*plot* untuk membuat suatu grafik RAO dari gerak *surge* model tertambat yang disajikan pada Gambar 4.48. RAO tertinggi dari *surge* tertambat secara eksperimen sebesar 0.605 m/m pada frekuensi 0.2129 rad/s.



Gambar 4.48. Grafik RAO surge tertambat eksperimen

2. Mode Gerak *Heave* 

Setiap *time history* pada gerak *heave* dianalisis tinggi respon dan periode respon dari gerak yang terjadi. Analisis dilakukan dengan cara FFT respon yang terjadi untuk melihat respon gerak setiap variasi periode. Tabel 4.42 menunjukkan hasil eksperimen yang dilakukan pada mode gerak *heave*.

Tabel 4.42. Respon gerak dan RAO gerakan heave hasil eksperimen kondisi

tertambat

| No. | Kode | Periode<br>Gelombang<br>Eksperimen<br>(s) | Respon<br>Gerak (mm) | RAO (mm/mm) |
|-----|------|-------------------------------------------|----------------------|-------------|
| 1   | TT1a | 3.6                                       | 1.613                | 0.0645      |
| 2   | TT1b | 2.6                                       | 4.945                | 0.1978      |
| 3   | TT1c | 2.1                                       | 4.450                | 0.1779      |
| 4   | TT1d | 1.7                                       | 7.392                | 0.2956      |

| No. | Kode | Periode    | Respon     | RAO (mm/mm) |
|-----|------|------------|------------|-------------|
|     |      | Gelombang  | Gerak (mm) |             |
|     |      | Eksperimen |            |             |
|     |      | <b>(s)</b> |            |             |
| 5   | TT1e | 1.3        | 2.041      | 0.0826      |
| 6   | TT1f | 1.1        | 2.032      | 0.0812      |
| 7   | TT1g | 0.5        | 1.667      | 0.0666      |

Kolom RAO pada Tabel 4.42 dapat di-*plot* untuk membuat suatu grafik RAO dari gerak *heave* model tertambat yang disajikan pada Gambar 4.49. RAO tertinggi dari *heave* tertambat secara eksperimen sebesar 0.2956 m/m pada frekuensi 0.3245 rad/s.



Gambar 4.49. Grafik RAO heave tertambat eksperimen

# 3. Mode Gerak Pitch

Setiap *time history* pada gerak *pitch* dianalisis tinggi respon dan periode respon dari gerak yang terjadi. Analisis dilakukan dengan cara FFT respon yang terjadi untuk melihat respon gerak setiap variasi periode. Tabel 4.43 menunjukkan hasil eksperimen yang dilakukan pada mode gerak *pitch*.

| No. | Kode | Periode<br>Gelombang<br>Eksperimen<br>(s) | Respon<br>Gerak (cm) | RAO (deg/mm) |
|-----|------|-------------------------------------------|----------------------|--------------|
| 1   | TT1a | 3.6                                       | 1.613                | 0.0645       |
| 2   | TT1b | 2.6                                       | 4.945                | 0.1978       |
| 3   | TT1c | 2.1                                       | 4.450                | 0.1779       |
| 4   | TT1d | 1.7                                       | 7.392                | 0.2956       |
| 5   | TT1e | 1.3                                       | 2.401                | 0.0816       |
| 6   | TT1f | 1.1                                       | 2.032                | 0.0812       |
| 7   | TT1g | 0.5                                       | 1.667                | 0.0066       |

 Tabel 4.43. Respon gerak dan RAO gerakan pitch hasil eksperimen

Kolom RAO pada Tabel 4.43 dapat di-*plot* untuk membuat suatu grafik RAO dari gerak *pitch* model tertambat yang disajikan pada Gambar 4.50. RAO tertinggi dari *pitch* tertambat secara eksperimen sebesar 0.1736 deg/m pada frekuensi 0.3245 rad/s, namun di frekuensi 0.35 rad/s juga terdapat RAO cukup tinggi sebesar 0.740.



Gambar 4.50. Grafik RAO pitch tertambat eksperimen

# 4.5.3 Perbandingan RAO Metode Eksperimen dan Numeris Pada Kondisi Tertambat

Gambar 4.51, 4.52, dan 4.53 menunjukkan perbandingan RAO tertambat pada arah datang gelombang 0 derajat dengan metode numeris dan eksperimen untuk tiap gerakan *surge*, *heave* dan *pitch* yang terjadi. Pada metode numeris dan eksperimen RAO surge memberikan pola yang sama. Nilai puncak gerakan surge terjadi pada frekuensi yang sama pada metode numeris dan eksperimen. Namun terjadi perbedaan nilai puncak antara eksperimen dan numeris.



Gambar 4.51. Perbandingan RAO *surge* tertambat metode numeris dan eksperimen

Tabel 4.44 menunjukan perbandingan RAO *surge* dari setiap metode perhitungan yang dilakukan. Metode numeris RAO tertinggi terjadi pada frekuensi 0.1904 rad/s sebesar 1.367 m/m sedangkan pada metode eksperimen sebesar 0.605 pada frekuensi 0.2129.

Tabel 4.44.Perbandingan RAO surge tertambat

| Metode     | Frekuensi (rad/s) | RAO Terbesar (m/m) |
|------------|-------------------|--------------------|
| Numeris    | 0.1904            | 1.367              |
| Eksperimen | 0.2129            | 0.605              |



Gambar 4.52. Perbandingan RAO *heave* tertambat secara numeris dan eksperimen

Gerak *heave* tertambat terbesar dari setiap metode analisis ditampilkan dalam Tabel 4.45. Metode numeris RAO tertinggi terjadi pada frekuensi yang sama yaitu 0.324 rad/s sebesar 0.778 m/m sedangkan pada metode eksperimen sebesar 0.2956 pada frekuensi 0.324. terjadi perbedaan yang cukup signifikan pada frekuensi rendah antara metode numeris dan eksperimen. Hal ini dikarenakan pada metode eksperimen gelombang hanya dibangkitkan selama 10 detik sementara periode gelombang adalah 3.6 detik sehingga tidak cukup untuk membangkitkan gelombang secara konsisten.

Tabel 4.45. Perbandingan RAO heave tertambat

| Metode     | Frekuensi (rad/s) | RAO Terbesar (m/m) |
|------------|-------------------|--------------------|
| Numeris    | 0.324             | 0.778              |
| Eksperimen | 0.324             | 0.295              |


Gambar 4.53. Perbandingan RAO *pitch* tertambat secara analitis, numeris dan eksperimen

Gerak *pitch* terbesar dari setiap metode analisis ditampilkan dalam Tabel 4.46. Metode numeris menghasilkan nilai RAO paling tinggi sebesar 4.276 deg/m dengan frekuensi di 0.15708 rad/s. Metode eksperimen menghasilkan RAO terbesar pada frekuensi 0.212 rad/s sebesar 0.281 deg/m. Terjadi perbedaan letak RAO tertinggi antara metode numeris dan eksperimen. Seharusnya pada metode eksperimen terjadi RAO tertinggi pada frekuensi 0.15708. Hal ini dikarenakan pada metode eksperimen gelombang hanya dibangkitkan selama 10 detik sementara periode gelombang adalah 3.6 detik sehingga tidak cukup untuk membangkitkan gelombang secara konsisten.

| Metode     | Frekuensi (rad/s) | RAO Terbesar (deg/m) |
|------------|-------------------|----------------------|
| Numeris    | 0.157             | 4.276                |
| Eksperimen | 0.212             | 0.281                |

Tabel 4.46. Perbandingan RAO pitch tertambat

#### 4.6 TEGANGAN TALI

#### 4.6.1 Metode Numeris

Tegangan tali yang terjadi dianalisis menggunakan bantuan perangkat lunak ANSYS AQWA. Properties tali tambat yang ada pada Gambar 4.6 dan Tabel 4.19 dimasukkan pada program ANSYS AQWA sehingga dihasilkan tegangan tali yang terjadi per satuan waktu, selanjutnya perlu dicari amplitude tegangan pada periode tertentu yang diplot pada frekuensi domain sehingga dihasilkan respon tegangan tali yang terjadi dalam bentuk RAO tension. Gambar 4.54 dan 4.55 berikut ini merupakan permodelan dari tali tambat yang digunakan pada model dengan menggunakan ANSYS AQWA. Tabel 4.47 merupakan nilai maksimum RAO *tension* pada tiap-tiap tali tambat pada arah datang gelombang 0 derajat.



Gambar 4.54. Posisi Line A,B,C, dan D



Gambar 4.55. Permodelan tali tambat dengan menggunakan Ansys Aqwa

|                | Frekuensi (rad/s) | RAO Tension (ton/m) |
|----------------|-------------------|---------------------|
| Mooring Line A | 0.15707           | 224.881             |
| Mooring Line B | 0.15707           | 224.881             |
| Mooring Line C | 0.15707           | 213.299             |
| Mooring Line D | 0.15707           | 217.333             |

Tabel 4.47. RAO Tension maksimum tiap tali tambat pada Ansys Aqwa



Gambar 4.56. RAO Tension tali tambat A dan B metode numerik



Gambar 4.57 RAO Tension tali tambat C dan D metode numeric

Dari Gambar grafik di atsas dapat dilihat bahwa RAO *tension* yang terjadi pada tali tambat A dan tali tambat B memiliki pola yang sama, sedangkan tali tambat C memiliki pola dan besar yang sama dengan tali tambat D namun pada tali tambat C dan D memiliki nilai lebih kecil dari tali tambat A dan B.

## 4.6.2 Metode Eksperimen Kondisi Tertambat

Analisis eksperimen dilakukan di Laboratorium Hidrodinamika FTK ITS. Model fisik diletakkan di kolam dengan dimensi panjang 100 m, kedalamann 1.8 m dan lebar 3 m. Pada kondisi tertambat model fisik diletakkan dengan konfigurasi seperti pada Gambar 4.60 dengan menggunakan empat buah tali tambat. *Load cell* dengan kapasitas 1 kg diletakan pada ujung jangkar dan dikaitkan dengan tali tambat eksperimen. Model dikenai gelombang dengan 7 periode yang berbeda. *Time history* dari tiap tiap *load cell* dapat dilihat pada Gambar 4.58, 4.59, 4.60, 4.61. *Time respon* kemudian dianalisis dengan menggunakan FFT untuk mendapatkan respon tegangan maksimal. Respon tegangan pada tiap-tiap periode kemudian disajikan dalam bentuk RAO *tension*.



Gambar 4.58. Time history instrumen load cell tali tambat A



Gambar 4.59. Time History instrumen load cell tali tambat B



Gambar 4.60. Time history instrumen load cell tali tambat C



Gambar 4.61. Time history instrumen load cell tali tambat D

## 1. Load cell A

Setiap *time history* pada tali tambat A dianalisis besarnya tegangan dengan cara FFT. Tegangan yang terjadi pada tiap-tiap periode kemudian disajikan dalam bentuk RAO *tension*. Tabel 4.48 menunjukkan respon tegangan tali tambat dan dari setiap gerakan beserta RAO *tension* tali tambat.

| No. | Kode | Periode<br>Gelombang<br>Eksperimen<br>(s) | Frekuensi<br>Gelombang<br>(rad/s) | RAO Tension<br>(ton/m) |
|-----|------|-------------------------------------------|-----------------------------------|------------------------|
| 1   | TT1  | 3.6                                       | 0.1570                            | 55.224                 |
| 2   | TT2  | 2.6                                       | 0.21293                           | 95.982                 |
| 3   | TT3  | 2.1                                       | 0.2687                            | 93.571                 |
| 4   | TT4  | 1.7                                       | 0.3245                            | 117.313                |
| 5   | TT5  | 1.3                                       | 0.4363                            | 50.149                 |
| 6   | TT6  | 1.1                                       | 0.4921                            | 44.776                 |
| 7   | TT7  | 0.5                                       | 0.1064                            | 1.658                  |

Tabel 4.48. RAO Tension line A eksperimen

Kolom RAO pada Tabel 4.48 dapat di-*plot* untuk membuat suatu grafik RAO dari tegangan tali tambat *Line* A yang disajikan pada Gambar 4.62.





#### 2. Load cell B

Setiap *time history* pada tali tambat B dianalisis besarnya tegangan dengan cara FFT. Tegangan yang terjadi pada tiap-tiap periode kemudian disajikan dalam bentuk RAO *tension* Tabel 4.49 menunjukkan respon tegangan tali tambat dan dari setiap gerakan beserta RAO *tension force* tali tambat.

| No. | Kode | Periode<br>Gelombang<br>Eksperimen (s) | Frekuensi<br>Gelombang<br>(rad/s) | RAO Tension (ton/m) |
|-----|------|----------------------------------------|-----------------------------------|---------------------|
| 1   | TT1  | 3.6                                    | 0.1570                            | 56.061              |
| 2   | TT2  | 2.6                                    | 0.21293                           | 97.346              |
| 3   | TT3  | 2.1                                    | 0.2687                            | 94.998              |
| 4   | TT4  | 1.7                                    | 0.3245                            | 119.091             |
| 5   | TT5  | 1.3                                    | 0.4363                            | 50.909              |
| 6   | TT6  | 1.1                                    | 0.4921                            | 45.455              |
| 7   | TT7  | 0.5                                    | 0.1064                            | 1.684               |

 Tabel 4.49. RAO Tension line B eksperimen

Kolom RAO pada Tabel 4.49 dapat di-*plot* untuk membuat suatu grafik RAO dari tegangan tali tambat *Line* B yang disajikan pada Gambar 4.63.



Gambar 4.63. Grafik RAO tension tali tambat load cell B hasil eksperimen

3. Load cell C

Setiap *time history* pada tali tambat C dianalisis besarnya tegangan dengan cara FFT. Tabel 4.50 menunjukkan respon tegangan tali tambat dan dari setiap gerakan beserta RAO *tension* tali tambat.

|     |      | Periode        | Frekuensi |                     |
|-----|------|----------------|-----------|---------------------|
| No. | Kode | Gelombang      | Gelombang | RAO Tension (ton/m) |
|     |      | Eksperimen (s) | (rad/s)   |                     |
| 1   | TT1  | 3.6            | 0.1570    | 42.520              |
| 2   | TT2  | 2.6            | 0.21293   | 58.493              |
| 3   | TT3  | 2.1            | 0.2687    | 76.040              |
| 4   | TT4  | 1.7            | 0.3245    | 78.740              |
| 5   | TT5  | 1.3            | 0.4363    | 24.882              |
| 6   | TT6  | 1.1            | 0.4921    | 10.709              |
| 7   | TT7  | 0.5            | 0.1064    | 2.100               |

Tabel 4.50. RAO Tension line B eksperimen

Kolom RAO pada Tabel 4.58 dapat di-*plot* untuk membuat suatu grafik RAO dari tegangan tali tambat *Line* C yang disajikan pada Gambar 4.64.



Gambar 4.64. Grafik RAO tension tali tambat load cell B hasil eksperimen

4. Load cell D

Setiap *time history* pada tali tambat D dianalisis besarnya tegangan dengan cara FFT. Tabel 4.51 menunjukkan respon tegangan tali tambat dan dari setiap gerakan beserta RAO *tension force* tali tambat.

|     |      | Periode        | Frekuensi |                     |
|-----|------|----------------|-----------|---------------------|
| No. | Kode | Gelombang      | Gelombang | RAO Tension (ton/m) |
|     |      | Eksperimen (s) | (rad/s)   |                     |
| 1   | TT1  | 3.6            | 0.1570    | 43.200              |
| 2   | TT2  | 2.6            | 0.21293   | 59.429              |
| 3   | TT3  | 2.1            | 0.2687    | 77.257              |
| 4   | TT4  | 1.7            | 0.3245    | 80.000              |
| 5   | TT5  | 1.3            | 0.4363    | 25.280              |
| 6   | TT6  | 1.1            | 0.4921    | 10.880              |
| 7   | TT7  | 0.5            | 0.1064    | 2.133               |

Tabel 4.51. RAO Tension line D eksperimen

Kolom RAO pada Tabel 4.51 dapat di-*plot* untuk membuat suatu grafik RAO dari tegangan tali tambat *Line* D yang disajikan pada Gambar 4.65.



Gambar 4.65. Grafik RAO tension tali tambat load cell D hasil eksperimen

# 4.6.3 Perbandinan RAO *Tension* Tali Tambat Metode Eksperimen Dan Numeris Kondisi Tertambat

Gambar 4.66, 4.67, 4.68, 4.69 menunjukkan perbandingan RAO Tali Tambat dari metode numerik dan metode eksperimen dari setiap *line* dengan arah gelombang 0 derajat.

RAO *tension* pada *Line* A dengan metode numerik dan eksperimen ditampilkan pada Tabel 4.52. Pada metode numeris RAO *tension* terbesar terjadi pada frekuensi 0.1570 rad/s sebesar 209.585 sedangkan pada eksperimen terjadi pada frekuensi 0.3245 sebesar 117.313. Seharusnya RAO *tension* terjadi pada frekuensi yang sama antara metode numeris dan eksperimen yaitu pada frekuensi 0.1570. Hal ini terjadi karena pada metode eksperimen gelombang hanya di bangkitkan selama 10 detik sedangan periode gelombang eksperimen 3,6 detik sehingga gelombang yang terjadi belum cukup merepresentasikan gelombang sebenarnya secara konsisten.



Gambar 4.66. Perbandingan RAO *Tension line* A tertambat metode numeris dan eksperimen

**Tabel 4.52.** Perbandingan Tension Line A

| Metode     | Frekuensi (rad/s) | RAO Terbesar (ton/m) |
|------------|-------------------|----------------------|
| Numeris    | 0.1570            | 224.811              |
| Eksperimen | 0.3245            | 117.313              |

RAO *tension* pada *Line* B dengan metode numerik dan eksperimen ditampilkan pada Tabel 4.53. Pada metode numeris RAO *tension* terbesar terjadi pada frekuensi 0.1570 rad/s sebesar 224.811 sedangkan pada eksperimen terjadi pada frekuensi 0.3245 sebesar 119.091. Seharusnya RAO *tension* terjadi pada frekuensi yang sama antara metode numeris dan eksperimen yaitu pada frekuensi 0.1570. Hal ini terjadi karena pada metode eksperimen gelombang hanya di bangkitkan selama 10 detik sedangan periode gelombang eksperimen 3,6 detik sehingga gelombang yang terjadi belum cukup merepresentasikan gelombang sebenarnya secara konsisten.



Gambar 4.67. Perbandingan RAO *Tension line* B tertambat metode numeris dan eksperimen

**Tabel 4.53.** Perbandingan Tension Line B

| Metode     | Frekuensi (rad/s) | RAO Terbesar (ton/m) |
|------------|-------------------|----------------------|
| Numeris    | 0.1570            | 224.811              |
| Eksperimen | 0.3245            | 119.091              |

RAO *tension* pada *Line* C dengan metode numerik dan eksperimen ditampilkan pada Tabel 4.54. Pada metode numeris RAO *tension* terbesar terjadi pada frekuensi 0.1570 rad/s sebesar 224.811 sedangkan pada eksperimen terjadi pada frekuensi 0.3245 sebesar 78.740. Seharusnya RAO *tension* terjadi pada frekuensi yang sama antara metode numeris dan eksperimen yaitu pada frekuensi 0.1570. Hal ini terjadi karena pada metode eksperimen gelombang hanya di bangkitkan selama 10 detik sedangan periode gelombang eksperimen 3,6 detik sehingga gelombang yang terjadi belum cukup merepresentasikan gelombang sebenarnya secara konsisten.



Gambar 4.68. Perbandingan RAO *Tension line* C tertambat metode numeris dan eksperimen

Tabel 4.54. Perbandingan Tension Line C

| Metode     | Frekuensi (rad/s) | RAO Terbesar (ton/m) |
|------------|-------------------|----------------------|
| Numeris    | 0.1570            | 213.299              |
| Eksperimen | 0.3245            | 78.740               |

. Tegangan tali pada *Line* D dengan metode numerik dan eksperimen ditampilkan pada Tabel 4.55. Pada metode numeris RAO *tension* terbesar terjadi pada frekuensi 0.1570 rad/s sebesar 213.299 sedangkan pada eksperimen terjadi pada frekuensi 0.3245 sebesar 78.741. Seharusnya RAO *tension* terjadi pada frekuensi yang sama antara metode numeris dan eksperimen yaitu pada frekuensi 0.1570. Hal ini terjadi karena pada metode eksperimen gelombang hanya di bangkitkan selama 10 detik sedangan periode gelombang eksperimen 3,6 detik sehingga gelombang yang terjadi belum cukup merepresentasikan gelombang sebenarnya secara konsisten.



Gambar 4.69. Perbandingan RAO *Tension line* D tertambat metode numeris dan eksperimen

| Metode     | Frekuensi (rad/s) | RAO Terbesar (ton/m) |
|------------|-------------------|----------------------|
| Numeris    | 0.157             | 208.639              |
| Eksperimen | 0.330             | 80.000               |

Tabel 4.55. Perbandingan Tension Line D

#### 4.7 STUDI PARAMETRIS

#### 4.7.1 Perbandinan RAO Metode Numeris Kondisi Tertambat

Pada Tugas Akhir kali ini, Ansys Aqwa digunakan untuk menghitung gerak kondisi gerak dalam kondisi tertambat dan tegangan tali dengan variasi berupa arah datang gelombang (0°, 22.5 ° dan 45°) seperti Gambar 4.89.



Gambar 4.70. Variasi headingg SPAR tertambat

Pada gerak *surge*, arah datang gelombang mempengaruhi besar gerak, rangkuman hasil terdapat pada Tabel 4.56. Gerak *surge* terbesar didapat pada arah datang gelombang 0 derajat sebesar 1.367 m/m pada frekuensi 0.1904 rad/s.

| Heading  | Frekuensi (rad/s) | RAO Terbesar (m/m) |
|----------|-------------------|--------------------|
| 0 deg    | 0.1904            | 1.367              |
| 22.5 deg | 0.1904            | 1.139              |
| 45 deg   | 0.1904            | 0.984              |

Tabel 4.56. Variasi Heading RAO surge tertambat



Gambar 4.71. Grafik RAO surge tertambat variasi heading metode numeris

Pada gerak *heave* nilai terbesar berada pada frekuensi yang sama, rangkuman hasil terdapat pada Tabel 4.57. Gerak *heave* terbesar didapat pada arah datang gelombang 0 derajat sebesar 0.778 m/m pada frekuensi 0.3245 rad/s

| Heading  | Frekuensi (rad/s) | RAO Terbesar (m/m) |
|----------|-------------------|--------------------|
| 0 deg    | 0.3245            | 0.778              |
| 22.5 deg | 0.3245            | 0.759              |
| 45 deg   | 0.3245            | 0.706              |

Tabel 4.57. Variasi Heading RAO heave tertambat





Pada gerak *pitch*, arah datang gelombang mempengaruhi besar gerak, rangkuman hasil terdapat pada Tabel 4.58. Gerak *pitch* terbesar didapat pada arah datang gelombang 0 derajat sebesar 4.276 deg/m pada frekuensi 0.157rad/s

| Heading  | Frekuensi (rad/s) | RAO Terbesar (deg/m) |
|----------|-------------------|----------------------|
| 0 deg    | 0.157             | 4.276                |
| 22.5 deg | 0.157             | 3.683                |
| 45 deg   | 0.157             | 3.100                |

Tabel 4.58. Variasi Heading RAO pitch tertambat



Gambar 4.73. Grafik RAO pitch tertambat variasi heading metode numeris

#### 4.7.2 Perbandinan RAO Metode Eksperimen Kondisi Tertambat

Metode eksperimen dilakukan di laboratorium Hidrodinamika FTK-ITS dengan dimensi panjang 100 m, kedalamann 1.8 m dan lebar 3 m. Pada metode eksperimen hanya dilakukan 2 variasi arah datang gelombang karena batas waktu eksperimen tidak mencukupi untuk dilakukan semua variasi. Variasi yang dilakukan yaitu pada arah datang gelombang 0 derajat dan 45 derajat.

Pada gerak *surge*, arah datang gelombang mempengaruhi besar gerak, rangkuman hasil terdapat pada Tabel 4.59. Gerak *surge* terbesar didapat pada arah datang gelombang 0 derajat sebesar 0.605 mm/mm pada frekuensi 0. 0.2129 rad/s. Tabel 4.61 dapat diplot menjadi sebuah grafik yang disajikan pada Gambar 4.76.

 Tabel 4.59. Variasi Heading RAO surge tertambat metode eksperimen

| Heading | Frekuensi (rad/s) | RAO Terbesar (m/m) |
|---------|-------------------|--------------------|
| 0 deg   | 0.2129            | 0.605              |
| 45 deg  | 0.2129            | 0.382              |



Gambar 4.74. Grafik RAO *surge* tertambat variasi *headingg* metode eksperimen

Pada Tabel 4.60. Gerak *heave* terbesar didapat pada arah datang gelombang 0 derajat sebesar 0.292 mm/mm pada frekuensi 0.325 rad/s. Pada metode eksperimen terjadi perbedaan gerakan *heave*. Hal ini dikarenakan *error* 

pada saat *setting* di kolam. Error terjadi karena *setting* variasi dilakukan pada hari yang berbeda sehingga menyebabkan *setting* model eksperimen dikolam tidak sama dengan kondisi dasar. Tabel 4.60 dapat diplot menjadi sebuah grafik yang disajikan pada Gambar 4.76.

| Heading | Frekuensi (rad/s) | RAO Terbesar (m/m) |
|---------|-------------------|--------------------|
| 0 deg   | 0.3245            | 0.295              |
| 45 deg  | 0.3245            | 0.282              |

Tabel 4.60. Variasi Heading RAO heave tertambat metode eksperimen



Gambar 4.75. Grafik RAO *heave* tertambat variasi *heading* metode eksperimen

Pada gerak *pitch*, arah datang gelombang mempengaruhi besar gerak, rangkuman hasil terdapat pada Tabel 4.61. Gerak *pitch* terbesar didapat pada arah datang gelombang 0 derajat sebesar 0.2815 deg/mm pada frekuensi 0.2129 rad/s. Tabel 4.61 dapat diplot menjadi sebuah grafik yang disajikan pada Gambar 4.76.

| Heading | Frekuensi (rad/s) | RAO Terbesar (deg/m) |
|---------|-------------------|----------------------|
| 0 deg   | 0.2129            | 0.2815               |
| 45 deg  | 0.2129            | 0.089                |

Tabel 4.61. Variasi *Heading* RAO *pitch* tertambat



Gambar 4.76. Grafik RAO *pitch* tertambat variasi *heading* metode eksperimen

#### 4.7.3 Perbandinan RAO Tension Tali Tambat Metode Numeris

Tegangan tali tambat dihitung dengan menggunakan Ansys Aqwa kemudian disajikan dalam bentuk RAO *tension*. Variasi dilakukan terhadap arah datang gelombang yaitu 0 derajat, 22,5 derajat, 45 derajat.

RAO *tension* pada tali *Line A* mengalami kenaikan signifikan seiring dengan berubahnya arah *heading* gelombang dari 0 deg menuju 45 deg. RAO *tension* terbesar terjadi di arah 0 deg dengan besar 287.902 ton/m pada frekuensi 0.157 rad/s. Nilai maksimal RAO *tension Line A* pada tiap-tiap arah dapat dilihat pada Tabel 4.62. Gambar 4.72 merupakan grafik RAO *tension* pada *line* A.

| Heading  | Frekuensi (rad/s) | RAO Tegangan (ton/m) |
|----------|-------------------|----------------------|
| 0 deg    | 0.157             | 224.811              |
| 22.5 deg | 0.157             | 264.749              |
| 45 deg   | 0.157             | 287.902              |

Tabel 4.62. Variasi Heading RAO Tension Line A





RAO *tension* pada *Line B* mengalami penurunan seiring dengan berubahnya arah *heading* gelombang dari 0 deg menuju 45 deg. RAO *tension* terbesar terjadi di arah 0 deg dengan besar 224.881 ton/m. Nilai maksimal RAO *tension Line B* pada tiap-tiap arah dapat dilihat pada Tabel 4.63. Gambar 4.78 merupakan grafik RAO *tension* pada *line* B

Tabel 4.63. Variasi Heading RAO Tension Line B

| Heading  | Frekuensi (rad/s) | RAO Tegangan (ton/m) |
|----------|-------------------|----------------------|
| 0 deg    | 0.157             | 224.881              |
| 22.5 deg | 0.157             | 178.825              |
| 45 deg   | 0.157             | 140.275              |



Gambar 4.78. Grafik RAO Tension line B variasi heading metode numeris

RAO *tension Line C* mengalami kenaikan seiring dengan berubahnya arah *heading* gelombang dari 0 deg menuju 45 deg. RAO *tension* terbesar terjadi di arah 45 deg dengan besar 288.763 ton/m. Nilai maksimal RAO *tension Line C* pada tiap-tiap arah dapat dilihat pada Tabel 4.64. Gambar 4.79 merupakan grafik RAO *tension* pada *line* C.

| Heading  | Frekuensi (rad/s) | RAO Tegangan (ton/m) |
|----------|-------------------|----------------------|
| 0 deg    | 0.157             | 213.299              |
| 22.5 deg | 0.157             | 247.516              |
| 45 deg   | 0.157             | 259.458              |

Tabel 4.64. Variasi Heading RAO Tension Line C



Gambar 4.79. Grafik RAO Tension line C variasi heading metode numeris

RAO *tension Line D* mengalami penurunan seiring dengan berubahnya arah *heading* gelombang dari 0 deg menuju 45 deg. RAO *tension* terbesar terjadi di arah 0 deg dengan besar 208.639 ton/m. Nilai maksimal RAO *tension Line D* pada tiap-tiap arah dapat dilihat pada Tabel 4.64. Gambar 4.80 merupakan grafik RAO *tension* pada *line* D.



Gambar 4.80. Grafik RAO Tension line D variasi heading metode numeris

| Heading  | Frekuensi (rad/s) | RAO Tegangan (ton/m) |
|----------|-------------------|----------------------|
| 0 deg    | 0.157             | 217.333              |
| 22.5 deg | 0.157             | 198.818              |
| 45 deg   | 0.157             | 148.091              |

Tabel 4.65. Variasi Heading RAO Tension Line D

## 4.7.4 Perbandinan RAO *Tension* Tali Tambat Metode Eksperimen

Metode eksperimen dilakukan di laboratorium Hidrodinamika FTK-ITS dengan dimensi panjang 100 m, kedalamann 1.8 m dan lebar 3 m. Pada metode eksperimen hanya dilakukan 2 variasi arah datang gelombang karena batas waktu eksperimen tidak mencukupi untuk dilakukan semua variasi. Variasi yang dilakukan yaitu pada arah datang gelombang 0 derajat dan 45 derajat.

RAO *tension Line A* mengalami kenaikan signifikan seiring dengan berubahnya arah *heading* gelombang dari 0 deg menuju 45 deg. RAO *tension* terbesar terjadi di arah 45 deg dengan besar 146.983 ton/m pada frekuensi 0.324 rad/s (Gambar 4.81).



Gambar 4.81. Grafik RAO *Tension* line A variasi *heading* metode eksperimen

| Heading | Frekuensi (rad/s) | RAO Tension (ton/m) |
|---------|-------------------|---------------------|
| 0 deg   | 0.324             | 117.313             |
| 45 deg  | 0.324             | 146.983             |

 Tabel 4.66. Variasi Heading RAO Tension Line A metode eksperimen

Pada eksperimen variasi arah datang gelombang 45 derajat load cell B mengaami kerusakan sehingga tidak memberikan respon tegangan yang valid. Namun tidak menjadi masalah karena letak *loadcell* B pada simetris dengan loadcell B sehingga nilainya mendekati *loadcell* D. Pada strudi parametris ini tegangan tali B tidak dibandingkan antara arah datang gelombang 0 derajat dengan 45 derajat.

RAO *tension Line C* mengalami kenaikan seiring dengan berubahnya arah *heading* gelombang dari 0 deg menuju 45 deg. RAO *tension* terbesar terjadi di arah 45 deg dengan besar 138.232 ton/m.



Gambar 4.82. Grafik RAO *Tension* line C variasi *heading* metode eksperimen

Tabel 4.67. Variasi Heading RAO Tension Line C metode eksperimen

| Heading | Frekuensi (rad/s) | RAO Tension ( (ton/m) |
|---------|-------------------|-----------------------|
| 0 deg   | 0.324             | 78.740                |
| 45 deg  | 0.324             | 138.232               |

RAO *tension line D* mengalami penurunan seiring dengan berubahnya arah *heading* gelombang dari 0 deg menuju 45 deg. RAO *tension* terbesar terjadi di arah 0 deg dengan besar 80.00ton/m.



Gambar 4.83. Grafik RAO Tension *line D* variasi *heading* metode eksperimen

| Heading | Frekuensi (rad/s) | RAO Tension (ton/m) |
|---------|-------------------|---------------------|
| 0 deg   | 0.324             | 80.00               |
| 45 deg  | 0.324             | 31.359              |

Tabel 4.68. Variasi *Heading* Tension *Line D* metode eksperimen

## 4.7.5 Perbandinan RAO SPAR Dengan Helical Strakes dan Tanpa Helical Strakes

Hasil RAO dari SPAR dengan helical strakes akan dibandingkan dengan SPAR tanpa helical strakes. Data kedua SPAR sama-sama diambil dari data Mini SPAR *Joint Industry Project* (1995). Kedua SPAR dibandingkan dengan kesamaan displacemen. Gerakan surge, heave, pitch kondisi free floating dapat dilihat pada Gambar 4.102, 4.103, 4.104.

Pada gerakan surge SPAR dengan *helical strakes* mengalami respon lebih besar dibandingkan dengan SPAR tanpa *helical strakes*. Perbandingan RAO surge free floating SPAR helical strakes dan tanpa helical strakes dapat dilihat pada Tabel 4.78.

**Tabel 4.69** Perbandingan RAO surge free floating SPAR helical strakes dantanpa helical strakes

| SPAR                  | Frekuensi (rad/s) | RAO Terbesar (m/m) |
|-----------------------|-------------------|--------------------|
| Helical Strakes       | 0.1571            | 1.378              |
| Tanpa Helical Strakes | 0.1571            | 1.274              |



Gambar 4.84. Grafik RAO mode gerak *surge* SPAR dengan *helical strakes* dan tanpa helical strakes kondisi *free floating* 

Pada gerakan *heave* SPAR dengan *helical strakes* mengalami penurunan respon yang signifikan dibandingkan dengan SPAR tanpa *helical strakes*. Perbandingan RAO *heave free floating* SPAR *helical strakes* dan tanpa *helical strakes* dapat dilihat pada Tabel 4.69.



Gambar 4.85. Grafik RAO mode gerak *heave* SPAR dengan *helical strakes* dan tanpa helical strakes kondisi *free floating* 

 Tabel 4.70 Perbandingan RAO heave free floating SPAR helical strakes dan tanpa helical strakes

| SPAR                  | Frekuensi (rad/s) | RAO Terbesar (m/m) |
|-----------------------|-------------------|--------------------|
| Helical Strakes       | 0.2688            | 10.4024            |
| Tanpa Helical Strakes | 0.2688            | 37.18042           |

Pada gerakan *pitch* SPAR dengan *helical strakes* memiliki respon yang lebih tinggi pada frekuensi rendah kemudian pada frekuensi tinggi membesar terhadap SPAR tanpa *helical strakes*. Perbandingan RAO *pitch free floating* SPAR *helical strakes* dan tanpa *helical strakes* dapat dilihat pada Tabel 4.80.

111



Gambar 4.86. Grafik RAO mode gerak *pitch* SPAR dengan *helical strakes* dan tanpa helical strakes kondisi *free floating* 

 Tabel 4.71 Perbandingan RAO pitch free floating SPAR helical strakes dan tanpa

 helical strakes

| SPAR                  | Frekuensi (rad/s) | RAO Terbesar (m/m) |
|-----------------------|-------------------|--------------------|
| Helical Strakes       | 0.359             | 0.239              |
| Tanpa Helical Strakes | 0.1571            | 0.287              |

## 4.7.6 Perbandinan RAO *Tension* Tali Tambat SPAR Dengan *Helical* Strakes dan Tanpa *Helical Strakes*

Perbandingan RAO *tension* SPAR dengan *helical strakes* dan tanpa *helical strakes* Tali tambat 1 pada penelitian ini memiliki pergeseran frekuensi alami. Dimana frekuensi dengan nilai RAO *tension* terbesar SPAR dengan *helical strakes* memiliki frekuensi dengan nilai RAO tegangan tertinggi, yaitu 0,1571 rad/s sedangkan pada SPAR tanpa *helical strakes* bergeser ke frekuensi yang lebih tinggi, yaitu 0,3491 rad/s. Sedangkan untuk nilai RAO *tension* tertinggi pada SPAR dengan *helical strakes* adalah 224,81 Ton/m dan nilai RAO *tension* tertinggi pada SPAR tanpa *helical strakes* adalah 282,86 Ton/m. Pebandingan RAO *tension* SPAR dengan *helical strakes* dan tanpa *helical strakes* Tali tambat A dapat dilihat pada Gambar 4.87.



Gambar 4.87 RAO tension tali tambat A tertambat

Perbandingan RAO *tension* SPAR dengan *helical strakes* dan tanpa *helical strakes* Tali tambat B pada penelitian ini memiliki pergeseran frekuensi alami. Dimana frekuensi dengan nilai RAO *tension* terbesar SPAR dengan *helical strakes* memiliki frekuensi dengan nilai RAO *tension* tertinggi, yaitu 0,1571 rad/s sedangkan pada SPAR tanpa *helical strakes* bergeser ke frekuensi yang lebih tinggi, yaitu 0,3491 rad/s. Sedangkan untuk nilai RAO *tension* tertinggi pada SPAR dengan *helical strakes* adalah 224,81 Ton/m dan nilai RAO *tension* tertinggi pada SPAR tanpa *helical strakes* adalah 282,86 Ton/m. Pebandingan RAO *tension* SPAR dengan *helical strakes* dan tanpa *helical strakes* Tali tambat B dapat dilihat pada Gambar 4.88.



Gambar 4.88 RAO tension tali tambat B tertambat

Perbandingan RAO tension SPAR dengan helical strakes dan tanpa helical strakes Tali tambat C pada penelitian ini memiliki pergeseran frekuensi alami. Dimana frekuensi dengan nilai RAO tension terbesar SPAR dengan helical strakes memiliki frekuensi dengan nilai RAO tension tertinggi, yaitu 0,1571 rad/s sedangkan pada SPAR tanpa helical strakes bergeser ke frekuensi yang lebih tinggi, yaitu 0,3491 rad/s. Sedangkan untuk nilai RAO tension tertinggi pada SPAR dengan helical strakes adalah 213,299 Ton/m dan nilai RAO tension tertinggi pada SPAR tanpa helical strakes adalah 280,17 Ton/m. Pebandingan RAO tension SPAR dengan helical strakes dan tanpa helical strakes Tali tambat C dapat dilihat pada Gambar 4.89.



Gambar 4.89 RAO tension tali tambat C tertambat

Perbandingan RAO *tension* SPAR dengan *helical strakes* dan tanpa *helical strakes* Tali tambat D pada penelitian ini memiliki pergeseran frekuensi alami. Dimana frekuensi dengan nilai RAO *tension* terbesar SPAR dengan *helical strakes* memiliki frekuensi dengan nilai RAO *tension* tertinggi, yaitu 0,1571 rad/s sedangkan pada SPAR tanpa *helical strakes* bergeser ke frekuensi yang lebih tinggi, yaitu 0,3491 rad/s. Sedangkan untuk nilai RAO *tension* tertinggi pada SPAR dengan *helical strakes* adalah 217,33 Ton/m dan nilai RAO *tension* tertinggi pada SPAR tanpa *helical strakes* adalah 280,87 Ton/m. Pebandingan RAO *tension* SPAR dengan *helical strakes* dan tanpa *helical strakes* Tali tambat C dapat dilihat pada Gambar 4.90.



Gambar 4.90 RAO tension tali tambat D tertambat

(halaman ini sengaja dikosongkan)

# BAB V PENUTUP

#### 5.1. KESIMPULAN

Dari perhitungan dan pembahasan yang telah dilakukan pada BAB IV maka dapat ditarik kesimpulan. Berikut ini adalah kesimpulan yang dapat ditarik dari penelitian ini:

- Studi Numeris dan Eksperimen gerak SPAR kondisi free floating menghasilkan RAO tertinggi pada frekuensi yang sama, ada perbedaan yang signifikan di eksperimen surge akibat adanya tali penahan drifting. Mode gerak surge pada eksperimen RAO tertinggi terjadi pada frekuensi 0.157 rad/s sebesar 0.9823 m/m sedangkan numeris pada frekuensi 0.157 sebesar 1.2742 m/m. Mode gerak heave pada eksperimen RAO tertinggi terjadi pada frekuensi 0.251 rad/s sebesar 3.6231 m/m sedangkan numeris pada frekuensi 0.251 sebesar 10.4024. Mode gerak pitch pada eksperimen RAO tertinggi terjadi pada frekuensi 0.436 rad/s sebesar 0.23983.6 deg/m sedangkan numeris pada frekuensi 0.436 sebesar 0.2543 deg/m.
- 2. Studi Numeris dan Eksperimen gerak SPAR kondisi tertambat menghasilkan nilai RAO yang sesuai pada frekuensi tinggi. Pada frekuensi rendah nilai eksperimen memiliki nilai yang jauh lebih rendah. Hal ini dikarenakan pembangkitan gelombang pada wave maker metode eksperimen terlalu singkat sehingga belum memberikan energi gelombang dengan cukup. Karakteristik gerak SPAR pada metode numeris menghasilkan nilai yang bervariasi pada kondisi tertambat dengan variasi heading 0°, 22.5° dan 45°. Nilai terbesar gerakan surge terjadi saat arah 0 dengan besar 1.367 m/m pada frekuensi 0.1904 rad/s. Gerakan heave mempunyai nilai terbesar berada di 0 derajat dengan besar 0.778 m/m terjadi di frekuensi 0.324 rad/s, semua beradapada frekuensi 0.324. Nilai terbesar gerakan pitch terjadi saat arah 0 dengan besar 4.276 deg/m terjadi pada frekuensi 0.157 rad/s
- 3. Studi Numeris dan Eksperimen gerak SPAR kondisi tertambat menghasilkan nilai RAO *tension* yang sesuai pada frekuensi tinggi. Pada

frekuensi rendah nilai eksperimen memiliki nilai yang jauh lebih rendah. Hal ini dikarenakan pembangkitan gelombang pada wave maker metode eksperimen terlalu singkat sehingga belum memberikan energi gelombang secara konsisten. Semua tali memiliki nilai terbesar pada frekuensi rendah hal ini dikarenakan pada frekuensi rendah struktur akan bergerak mengikuti pola gelombang dengan demikian akan mengakibatkan tegangan tali besar. Pada metode numeris tegangan tiap tali menunjukkan karakter yang berbeda pada arah datang 0°, 22.5° dan 45°. Tali Line A menunjukkan nilai RAO tension terbesar saat heading 45 dengan besar 287.902 ton/m pada frekuensi 0.157 rad/s. Tali Line B menunjukkan nilai RAO tension terbesar saat heading 0 dengan besar 224.881 ton/m pada frekuensi 0.157 rad/s. Tali Line C menunjukkan nilai terbesar saat heading 45 sebesar 259.458 ton/m pada frekuensi 0.157 rad/s. Tali Line D menunjukkan nilai terbesar saat heading 0 dengan besar 224.881 ton/m yang terjadi pada frekuensi 0.157 rad/s. Dengan, begitu tali yang inline dengan arah datang gelombang akan mengalami nilai RAO teganan yang paling besar dari tali lainnya.

 Pada gerakan surge SPAR dengan helical strakes mengalami respon lebih besar dibandingkan dengan SPAR tanpa helical strakes kenaikan 8%. Pada gerakan heave SPAR dengan helical strakes mengalami penurunan respon yang signifikan dibandingkan dengan SPAR tanpa helical strakes yaitu 70 %. Pada gerakan pitch SPAR dengan helical strakes mengurangi RAO 17 %

#### 5.2. SARAN

Saran yang dapat diberikan yang bersifat membangun untuk penelitian lebih lanjut mengenai Tugas Akhir ini adalah sebagai berikut:

- 1. Analisis dalam 6 mode gerakan.
- 2. Bentuk helical strakes SPAR disempurnakan menjadi silinder pipih.
- 3. Pada saat eksperimen disebelah struktur dipasang *wave probe* untuk memvalidasi gelombang yang mengenai struktur.
- 4. Pembangkitan gelombang dilakukan dalam waktu yang cukup.
- 5. Dalam melakukan perijininan penggunaan laboratorium pada jauh-jauh hari.

6. Pada studi eksperimen menggunakan load cell yang tahan air dan menyediakan cadangan bila terjadi kerusakan.

(halaman ini sengaja dikosongkan)

#### DAFTAR PUSTAKA

- Montasir, dkk. 2015. "Effect of mooring line configurations on the dynamic responses of truss spar platforms." *Ocean Engineering 96* 161-172
- Hong, dkk. 2015. "An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine." Ocean Engineering 7 559 -579
- Lim SJ, Rho JB and Choi HS (2005) An experimental study on motion characteristics of cell spar platform. *In Proceedings of the International Offshore and Polar Engineering Conference*, Seoul, Korea, June 19–24, pp.233–237.
- Le e et all. 2002. "Heave and pitch motions of a spar platform with damping plate." Japan : The International Offshore And Polar Engineering Conference. ISBN 1-880653-58-3 (set) ISSN 1098-6189
- Jose Geethu, Vivek Philip. 2015. "An Effectiveness of Mooring lines on Spar Platform" .*ISSN 2278 – 0211. Vol 4 Issue 11*
- Jun B. Rho, Hang S. Choi. 2002. "Heave and Pitch Motions of a Spar Platform with Damping Plate". Naval Architecture and Ocean Engineering. ISBN 1-880653-58-3 (Set); ISSN 1098-6189 (Set)
- Jose Geethu, Vivek Philip. 2003"An Experimental Study for Mooring Effects on the Stability of Spar Platform". *Naval Architecture and Ocean Engineering*
- Ran.Z , M.H. Kim 2015. "Nonliner coupled responses of tethred spar platform in waves." *Civil Engineering Vol. 7, No.2, June 1997 (ISSN 1053-5381)*
- N.M. Khairuddina, Mohamad Pauzib, Jaswar Kotoa. 2014. "Experimental Analysis on the Mooring Lines Force Behaviour of Semi-submersible in Regular Waves". *Department of Aeronautics, Automotive and Ocean Engineering*
- Vegard Holland, Tahsin Tezdogan, and Elif Oguz. 2017. "Full-scale CFD investigations of helical strakes as a means of reducing the vortex induced forces on a semi-submersible". *Ocean Engineering 137 338-351*.

- Liqin Liu, Bin Zhou and Yougang Tang . 2014 . "Study on the nonlinear dynamical behavior of deepsea Spar platform by numerical simulation and model experiment". *Journal of Vibration and Control 2014, Vol. 20(10)* 1528–1537
- D. H. Wood and D. Li Tang . 2002 . "Assessment of the Accuracy of Representing a Helical Vortex by Straight Segments". AIAA JOURNAL Vol. 40, No. 4, April 2002
- D. H. Wood and D. Li Tang . 2002 . "Assessment of the Accuracy of Representing a Helical Vortex by Straight Segments". AIAA JOURNAL Vol. 40, No. 4, April 2002
- Wilson, J. E., and J.C Tinsley. 1989. "Vortex Load Reduction ; Experiments in optimal helical strake geometry for rigid sylinder." Journal of Energy Resourses Technology, 3,72-76
- Blevins, Robert D. 2001. *Flow Induced Vibration*. Florida: Krieger Publishinh Company
- Rho, Jun B., and Hang S. Choi. 2003. "An Experimental Study For Mooring Effects on the Stability of SPAR Platform." *Proceedings of the Thirteenth (2003) International Offshore and Polar Engineering Conference*. Honolulu: The International Society of Offshore and Polar Engineers.
- Deep Oil Technology Inc. 1995. Spar Model Test Joint Industry Project. California: Deep Oil Technology Inc.
- Djatmiko, Eko Budi. 2012. Perilaku Dan Operabilitas Bangunan Laut Di Atas Gelombang Acak. Surabaya: ITS Press
- Journee, J.M.J, and W.W. Massie. 2001. *Offshore Hydromechanics*. 1st. Delft : TU Delft.
- Rigzone. 1999. *How Do Spars Work?*http://www.rigzone.com/training/insight.asp?insight\_id=307
- Faltinsen, O. M. 1990. *Sea Loads on Ships and Offshore Structures*. Cambridge: University of Cambridge .
- Chakrabarti, Subrata K. 1994. *Hydrodynamics of Offshore Structure*. Dorchester: Computational Mechanics Publications
- Chen, X. B. 2011. "Offshore hydrodynamics and applications." *The IES Journal Part A: Civil & Structural Engineering Vol 4, No. 3* 124-142
- Wichers, J.E.W. 1986. "Progress in Computer Simulations of SPM Moored Vessels." Proc. of Offshore Technology Conference (OTC), Paper OTC-5157. Houston, Texas, USA,: OTC.
- Wichers, J.E.W, and R.M.H Huijsmans. 1984. "On The Low Frequency Hydrodynamic Damping Force Acting on Offshore Moored Vessels." *Proc. of Offshore Technology Conference(OTC), Paper No. OTC-4813.* Houston: USA.
- Wichers, J.E.W. 1988. "Wave-Current Interaction Effects on Moored Tankers in High Seas." Proc. of Offshore Technology Conference (OTC), Paper OTC-5631,. Houston.
- Wichers, J.E.W. 1988. ""Simulation Model for Single Point Moored Tanker",." *MARIN Publication, No. 797,*. Wageningen: MARIN.
- —. 1987. "The Prediction of the Behaviour of Single Point Moored Tankers." Proc. of Workshop on Floating Structures and Offshore Operations,. Wageningen.
- Mansouri, Roozbeh and hassan Hadidi. 2009. "Comprehensive Study on The Linier Hydrodynamic Analysis of a Truss SPAR in Random Waves." International Journal of Mathematical, Computional, Physical, Electrical and Computer engineerimg.

(halaman ini sengaja dikosongkan)

#### LAMPIRAN A

#### TABULASI DISTRIBUSI MASSA

#### (TITIK BERAT DAN GIRASI)

| Dat            | a Spar      |    |
|----------------|-------------|----|
| ID             | 12.80000256 | cm |
| OD             | 14.00000256 | cm |
| Draft          | 108.0076406 | cm |
| Length         | 123.3676437 | cm |
| Fairlead Depth | 10.19124013 | cm |
| Length         | 40          | cm |
| Width          | 40          | cm |
| Height         | 15.65257456 | cm |
| Depth A        | 731.4287177 | cm |
| Depth B        | 182.8571794 | cm |
| KG             | 49.61768611 | cm |
| Pitch Radius   | 49.17639079 | cm |
| Roll Radius    | 49.17639079 | cm |

#### Perhitungan Model

| Ba       | gian           | Tebal (cm) | Berat (g) | Jumlah | Total (g)   |
|----------|----------------|------------|-----------|--------|-------------|
|          | Ballast 1      | 2          | 1628.49   | 1      | 1628.489876 |
|          | Ballast 2      | 2          | 1623.09   | 1      | 1623.089876 |
| Blok A   | Ballast 3      | 2.5        | 2094.09   | 1      | 2094.089876 |
|          | Ballast 4      | 1          | 663.5899  | 1      | 663.5898755 |
|          | Cap            | 0.3        | 47.46     | 1      | 47.46       |
|          | Ballast 1      | 2.5        | 2096.69   | 1      | 2096.689876 |
| Blok B   | Ballast 2      | 0.8        | 465.9899  | 1      | 465.9898755 |
|          | Ballast 3      | 0.5        | 179.4899  | 1      | 179.4898755 |
| Το       | pside          | 0.3        | 599.5     | 1      | 599.5       |
| Tombohon | Ulir           |            | 352.0899  | 1      | 352.0898755 |
| Tampanan | Pipa           | -          | 4087.53   | 1      | 4087.529853 |
|          | Penyambung     | -          |           | 1      | 0           |
|          | Helical Stakes |            | 96.64     | 3      | 289.92      |
|          | Mur            | -          |           | 2      | 0           |
|          | 14127.93       |            |           |        |             |

#### Perhitungan VCG

| 1. Blok A     |                      |               |           |                |
|---------------|----------------------|---------------|-----------|----------------|
| Bagian        | Tebal (cm)           | VCG from keel | Massa (g) | Momen (g.cm)   |
| Ballast 1     | 2                    | 6.8           | 1628.49   | 11073.73115    |
| Ballast 2     | 2                    | 4.8           | 1623.09   | 7790.831403    |
| Ballast 4     | 1                    | 3.3           | 2094.09   | 6910.496589    |
| Ballast 3     | 2.5                  | 1.6           | 663.5899  | 1028.564307    |
| Сар           | 0.3                  | 0.2           | 47.46424  | 7.119635947    |
|               | Total                |               | 6056.724  | 26810.74309    |
| VCG Blok A=   | Momen massa<br>massa | _ =           | 4.426608  | 3 cm dari keel |
| 3. Tambahan   |                      |               |           |                |
| Bagian        | Tebal (cm)           | VCG from keel | Massa     | Momen          |
| Ulir (130 cm) | -                    | 65.3          | 352.0899  | 22991.46887    |
| Pipa          | -                    | 61.7          | 4087.53   | 252200.5919    |
| Helical 1     | -                    | 54.0          | 96.64     | 5218.54397     |
| Helical 2     | -                    | 54.0          | 96.64     | 5218.54397     |
| Helical 3     | -                    | 54.0          | 96.64     | 5218.54397     |
| Topside       | 0.3                  | 123.55        | 599.5     | 74068.225      |
|               | Total                |               | 5329.039  | 364915.9177    |
| NCC           | Momon magaz          |               |           |                |

| VCG | Momen massa | = | 68.47687 | cm dari keel |
|-----|-------------|---|----------|--------------|
|     | massa       |   |          |              |

| 4. Total |            |               |          |             |
|----------|------------|---------------|----------|-------------|
| Bagian   | Tebal (cm) | VCG from keel | Massa    | Momen       |
| Blok A   | -          | 4.4           | 6056.724 | 26810.74309 |
| Blok B   | -          | 110.2         | 2742.17  | 302134.8265 |
| Tambahan | -          | 68.5          | 5329.039 | 364915.9177 |
|          | Total      |               | 14127.93 | 693861.4873 |

| VCG total= | Momen massa | =         | 49.11274 | cm dari keel |      |
|------------|-------------|-----------|----------|--------------|------|
|            | massa       |           |          |              |      |
|            | =           | Model-Teo | ori      | Х            | 100% |
|            |             | Teori     |          |              |      |
|            | =           | -1.0%     |          | memenuhi     |      |

#### Perhitungan Girasi

| Bag      | gian                   | LCG | TCG | VCG   | Ditinjau | Massa  | Iox       | Ioy       | $y^2+z^2$ | $x^2+z^2$ | $w^*(y^2+z^2)$ | $w^{*}(x^{2}+z^{2})$ | Ix (g.cm) | Iy (g.cm) |
|----------|------------------------|-----|-----|-------|----------|--------|-----------|-----------|-----------|-----------|----------------|----------------------|-----------|-----------|
|          | Ballast 1              | 0.0 | 0.0 | 6.5   | -42.6    | 1628.5 | 16446.1   | 16446.1   | 1815.8    | 1815.8    | 2957086.4      | 2957086.4            | 2973532.5 | 2973532.5 |
|          | Ballast 2              | 0.0 | 0.0 | 4.5   | -44.6    | 1623.1 | 16391.5   | 16391.5   | 1990.3    | 1990.3    | 3230430.5      | 3230430.5            | 3246822.0 | 3246822.0 |
| Blok A   | Ballast 3              | 0.0 | 0.0 | 3.0   | -46.1    | 2094.1 | 20624.6   | 20624.6   | 2126.4    | 2126.4    | 4452841.2      | 4452841.2            | 4473465.8 | 4473465.8 |
|          | Ballast 4              | 0.0 | 0.0 | 1.3   | -47.9    | 663.6  | 6826.0    | 6826.0    | 2290.8    | 2290.8    | 1520179.6      | 1520179.6            | 1527005.6 | 1527005.6 |
|          | Cap                    | 0.0 | 0.0 | 0.2   | -49.0    | 47.5   | 471.3     | 471.3     | 2397.4    | 2397.4    | 113788.4       | 113788.4             | 114259.7  | 114259.7  |
|          | Ballast 7              | 0.0 | 0.0 | 112.1 | 62.9     | 179.5  | 1756.6    | 1756.6    | 3961.1    | 3961.1    | 710977.1       | 710977.1             | 712733.6  | 712733.6  |
| Blok B   | Ballast 6              | 0.0 | 0.0 | 111.4 | 62.3     | 466.0  | 4556.9    | 4556.9    | 3879.7    | 3879.7    | 1807902.1      | 1807902.1            | 1812459.0 | 1812459.0 |
|          | Ballast 5              | 0.0 | 0.0 | 109.8 | 60.6     | 2096.7 | 20748.5   | 20748.5   | 3676.9    | 3676.9    | 7709270.9      | 7709270.9            | 7730019.4 | 7730019.4 |
|          | Ulir                   | 0.0 | 0.0 | 65.3  | 16.2     | 352.1  | 495874.0  | 495874.0  | 262.0     | 262.0     | 92257.2        | 92257.2              | 588131.2  | 588131.2  |
|          | Pipa                   | 0.0 | 0.0 | 61.7  | 12.6     | 4087.5 | 5287070.0 | 5287070.0 | 158.4     | 158.4     | 647624.4       | 647624.4             | 5934694.4 | 5934694.4 |
| Tambahan | Helical 1              | 7.8 | 0.0 | 54.0  | 4.9      | 96.6   | 101469.2  | 101469.2  | 83.9      | 23.9      | 8112.7         | 2308.3               | 109581.9  | 103777.5  |
|          | Helical 2              | 4.3 | 6.8 | 54.0  | 4.9      | 96.6   | 101469.2  | 101469.2  | 41.9      | 70.3      | 4053.8         | 6790.0               | 105523.1  | 108259.3  |
|          | Helical 3              | 4.3 | 6.8 | 54.0  | 4.9      | 96.6   | 101469.2  | 101469.2  | 41.9      | 70.3      | 4053.8         | 6790.0               | 105523.1  | 108259.3  |
|          | Topside                | 0.0 | 0.0 | 123.6 | 74.4     | 599.5  | 79937.8   | 79937.8   | 5540.9    | 5540.9    | 3321772.8      | 3321772.8            | 3401710.6 | 3401710.6 |
|          | Total 32835461.9 32835 |     |     |       |          |        |           |           |           |           |                | 32835129.9           |           |           |

5. Jari Jari Girasi

Rxx= 48.2095 cm

Ryy= 48.2092 cm

#### 6. Check error

Err Rxx=-1.97%memenuhiErr Ryy=-1.97%memenuhi

(halaman ini sengaja dikosongkan)

#### LAMPIRAN B

#### DESIAN TALI TAMBAT

• PEMILIHAN SPESIFIKASI WIRE ROPE

#### WIRE ROPE



#### ROPE SPECIFICATIONS

#### SPIRAL STRAND

- · Designed to improve service life
- Surface finish: hot dip galvanised
- Sheathing: HDPE yellow colour with longitudal dark stripe
- Tensile grades of wire optimised to improve wire ductility
- Rope, size, mass and MBF may be customised according to project design requirements
- Supply includes: Quality plan Fatigue design calculations Wear design calculation - Corrosion design calculation

| Wire r         | ope dia        | Mass (un    | sheathed)         | Mass (s     | heathed)          | Metallic                | MBF   | Stiffness | Torque        | Turns         |
|----------------|----------------|-------------|-------------------|-------------|-------------------|-------------------------|-------|-----------|---------------|---------------|
| Uncoated<br>mm | Sheathed<br>mm | Air<br>kg/m | Séa water<br>kg/m | Air<br>kg/m | Séá wátér<br>kg/m | Area<br>mm <sup>a</sup> | kN    | MN        | 25% MBF<br>Nm | 25% MBF<br>Nm |
| 77             | 91             | 29          | 25                | 32          | 25                | 3440                    | 5480  | S25       | 750           | 0.5           |
| 83             | 99             | 34          | 29                | 37          | 29                | 4000                    | 6370  | 610       | 950           | 0.5           |
| 89             | 105            | 39          | 33                | 42          | 33                | 4600                    | 7330  | 700       | 1200          | 0.4           |
| 96             | 114            | 46          | 38                | 49          | 38                | 5350                    | 8530  | 820       | 1500          | 0.4           |
| 102            | 122            | 51          | 43                | 55          | 43                | 6040                    | 9360  | 925       | 1750          | 0.4           |
| 108            | 128            | 58          | 49                | 61          | 48                | 6770                    | 10490 | 1035      | 2100          | 0.4           |
| 115            | 137            | 65          | 55                | 69          | 54                | 7680                    | 11760 | 1175      | 2500          | 0.3           |
| 121            | 145            | 72          | 61                | 76          | 60                | 8500                    | 12720 | 1300      | 2850          | 0.3           |
| 127            | 151            | 80          | 67                | 84          | 66                | 9370                    | 13930 | 1435      | 3300          | 0.3           |
| 134            | 160            | 89          | 75                | 93          | 73                | 10430                   | 15510 | 1595      | 3850          | 0.3           |
| 140            | 168            | 97          | 82                | 101         | 79                | 11390                   | 16930 | 1740      | 4400          | 0.3           |
| 147            | 175            | 107         | 90                | 112         | 88                | 12550                   | 18660 | 1920      | 5100          | 0.3           |

All dimensions are approximate

#### Spasifikasi wire rope dipilih

| Diameter           | 115   | mm   |
|--------------------|-------|------|
| Masa jenis (udara) | 65    | kg/m |
| Masa jenis (air)   | 55    | kg/m |
| MBF                | 11760 | kN   |
| Kekakuan           | 1175  | MN   |



| Material                                     | <u>Tensile</u><br>(Youn<br>Modulu | <u>e Modulus</u> (E)<br>g's Modulus,<br>s of Elasticity) | Ultimate Tensile<br>Strength<br>$- \sigma_u -$<br>(MPa) | <u>Yield Strength</u><br>- σ <sub>y</sub> -<br>(MPa) |
|----------------------------------------------|-----------------------------------|----------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|
|                                              | (10 <sup>6</sup> psi)             | (GPa)                                                    |                                                         |                                                      |
| ABS plastics                                 |                                   | 1.4 - 3.1                                                | 40                                                      |                                                      |
| A106 Seamless Carbon Steel<br>Pipe - Grade A |                                   |                                                          | 400                                                     | 248                                                  |
| Aluminum                                     | 10.0                              | 69                                                       | 110                                                     | 95                                                   |
| Aluminum Alloys                              | 10.2                              |                                                          |                                                         |                                                      |
| Nickel Silver                                | 18.5                              |                                                          |                                                         |                                                      |
| Nickel Steel                                 | 29                                |                                                          |                                                         |                                                      |
| Niobium (Columbium)                          | 15                                |                                                          |                                                         |                                                      |
| Nylon-6                                      |                                   | 2 - 4                                                    | 45 - 90                                                 | 45                                                   |
| Nylon-66                                     |                                   |                                                          | 60 - 80                                                 |                                                      |
| Oak Wood (along grain)                       |                                   | 11                                                       |                                                         |                                                      |
| Osmium (Os)                                  | 80                                | 550                                                      |                                                         |                                                      |
| Phenol-formaldehyde molding compounds        |                                   |                                                          | 45 - 52                                                 |                                                      |

MODULUS ELASTISITAS SENAR PANCING (NYLON 6) ENGIINERING TOOLBOX

Sesuai bahan senar pancing yaitu dengan menggunakan nylon 6. Maka modulus elastisitasnya adalah 2 Gpa.

#### LAMPIRAN C

|    | PERIODE         |                |                |                |  |  |  |  |  |
|----|-----------------|----------------|----------------|----------------|--|--|--|--|--|
| No | Dengan Mass     | a Tambahan     | Tanpa Mass     | sa Tambahan    |  |  |  |  |  |
|    | Periode 10 kali | Periode 1 kali | Periode10 kali | Periode 1 kali |  |  |  |  |  |
| 1  | 34              | 3.4            | 34.5           | 3.45           |  |  |  |  |  |
| 2  | 34.2            | 3.42           | 34.2           | 3.42           |  |  |  |  |  |
| 3  | 34.3            | 3.43           | 35.1           | 3.51           |  |  |  |  |  |
| 4  | 34.3            | 3.43           | 34.2           | 3.42           |  |  |  |  |  |
| 5  | 34.4            | 3.44           | 34.6           | 3.46           |  |  |  |  |  |
| 6  | 34.3            | 3.43           | 34.4           | 3.44           |  |  |  |  |  |
| 7  | 34.3            | 3.43           | 34.2           | 3.42           |  |  |  |  |  |
| 8  | 34.4            | 3.44           | 34.7           | 3.47           |  |  |  |  |  |
| 9  | 34.7            | 3.47           | 34.5           | 3.45           |  |  |  |  |  |
| 10 | 34.7            | 3.47           | 34.7           | 3.47           |  |  |  |  |  |
| 11 | 33.9            | 3.39           | 34.5           | 3.45           |  |  |  |  |  |
| 12 | 33.9            | 3.39           | 34.5           | 3.45           |  |  |  |  |  |
| 13 | 34.3            | 3.43           | 34.3           | 3.43           |  |  |  |  |  |
| 14 | 33.9            | 3.39           | 34.7           | 3.47           |  |  |  |  |  |
| 15 | 34              | 3.4            | 34.2           | 3.42           |  |  |  |  |  |
| 16 | 34.3            | 3.43           | 34.7           | 3.47           |  |  |  |  |  |
| 17 | 34.5            | 3.45           | 34.5           | 3.45           |  |  |  |  |  |
| 18 | 34.4            | 3.44           | 34.6           | 3.46           |  |  |  |  |  |
| 19 | 34.4            | 3.44           | 34.9           | 3.49           |  |  |  |  |  |
| 20 | 34.4            | 3.44           | 35             | 3.5            |  |  |  |  |  |
| 21 | 34.5            | 3.45           | 35             | 3.5            |  |  |  |  |  |
| 22 | 34.5            | 3.45           | 35             | 3.5            |  |  |  |  |  |
| 23 | 34.2            | 3.42           | 34.9           | 3.49           |  |  |  |  |  |
| 24 | 34.2            | 3.42           | 35             | 3.5            |  |  |  |  |  |
| 25 | 34.4            | 3.44           | 34.9           | 3.49           |  |  |  |  |  |
| 26 | 34.5            | 3.45           | 34.9           | 3.49           |  |  |  |  |  |
| 27 | 34.4            | 3.44           | 34.5           | 3.45           |  |  |  |  |  |
| 28 | 34.4            | 3.44           | 34.5           | 3.45           |  |  |  |  |  |
| 29 | 34.5            | 3.45           | 34.8           | 3.48           |  |  |  |  |  |
| 30 | 34.5            | 3.45           | 35             | 3.5            |  |  |  |  |  |
| 31 | 34.6            | 3.46           | 35             | 3.5            |  |  |  |  |  |
| 32 | 34.2            | 3.42           | 35.2           | 3.52           |  |  |  |  |  |
| 33 | 34              | 3.4            | 34.7           | 3.47           |  |  |  |  |  |
| 34 | 34.1            | 3.41           | 34.5           | 3.45           |  |  |  |  |  |
| 35 | 34.4            | 3.44           | 34.7           | 3.47           |  |  |  |  |  |

#### PENGUKURAN PERIODE GERAK PENDULUM SPAR

#### PENGUKURAN PERIODE GERAK PENDULUM SPAR

#### (LANJUTAN)

|    | PERIODE         |                |                      |                |  |  |  |  |  |
|----|-----------------|----------------|----------------------|----------------|--|--|--|--|--|
| No | Dengan Mass     | a Tambahan     | Tanpa Massa Tambahan |                |  |  |  |  |  |
|    | Periode 10 kali | Periode 1 kali | Periode10 kali       | Periode 1 kali |  |  |  |  |  |
| 36 | 34.3            | 3.43           | 34.2                 | 3.42           |  |  |  |  |  |
| 37 | 34.5            | 3.45           | 35                   | 3.5            |  |  |  |  |  |
| 38 | 34.5            | 3.45           | 35                   | 3.5            |  |  |  |  |  |
| 39 | 34.1            | 3.41           | 35.2                 | 3.52           |  |  |  |  |  |
| 40 | 34.6            | 3.46           | 35                   | 3.5            |  |  |  |  |  |
| 41 | 34.5            | 34.5 3.45      |                      | 3.45           |  |  |  |  |  |
| 42 | 34.7            | 3.47           | 34.7                 | 3.47           |  |  |  |  |  |
| 43 | 34.7            | 34.7 3.47      |                      | 3.47           |  |  |  |  |  |
| 44 | 34.6            | 3.46           | 34.7                 | 3.47           |  |  |  |  |  |
| 45 | 34.4            | 3.44           | 34.7                 | 3.47           |  |  |  |  |  |
| 46 | 34.2            | 3.42           | 34.6                 | 3.46           |  |  |  |  |  |
| 47 | 34              | 3.4            | 34.6                 | 3.46           |  |  |  |  |  |
| 48 | 34              | 3.4            | 34.5                 | 3.45           |  |  |  |  |  |
| 49 | 34.3            | 3.43           | 35                   | 3.5            |  |  |  |  |  |
| 50 | 34.4            | 3.44           | 35                   | 3.5            |  |  |  |  |  |

#### LAMPIRAN D

#### INPUT DAN OUTPUT ANSYS AQWA NUMERIS DAN TERTAMBAT



#### Project

| Name                 | Project             |
|----------------------|---------------------|
| Data Folder Root     | Tugas Akhir         |
| Date of Creation     | 19/04/2018 17:13:29 |
| Last Modified        | 01/07/2018 13:18:01 |
| Global Control       | 50                  |
| Geometric Features   | 50                  |
| Connections          | 50                  |
| Environment Features | 50                  |
| Product Version      | 16.0 RELEASE        |



#### Units

#### TABLE 1

| Length              | Metre     |
|---------------------|-----------|
| Mass                | Kilograms |
| Rotational Velocity | Degrees   |
| Force               | Newton    |
| Frequency           | Hertz     |
| Time                | Second    |

**Model** (A3, B3)

Geometry

| TABLE 2                   |  |
|---------------------------|--|
| Model (A3, B3) > Geometry |  |

| Object Name           | Geometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| State                 | Fully Defined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Details of Geometry   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Attached Assembly     | $C:\Users\pc\AppData\Local\Temp\WB\_OPRESPC\_pc\_10436\_2\underschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschundlenderschund$ |  |
| Sea Geometry          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Water Depth           | 225 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Water Density         | 1025 kg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Water Size X          | 1000 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Water Size Y          | 1000 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Import Preferences    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Import Solid Bodies   | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Import Surface Bodies | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Import Line Bodies    | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

Part 3

# TABLE 3 Model (A3, B3) > Geometry > Part

| Object Name             | Part 3         |
|-------------------------|----------------|
| State                   | Fully Defined  |
| Details of Part 3       |                |
| Part Visibility Visible |                |
| Suppressed              | Not Suppressed |

| Total Structural Mass         | 26837614,91 kg             |  |
|-------------------------------|----------------------------|--|
| X Position of COG             | -6,82280340697616E-04 m    |  |
| Y Position of COG             | 6,81083125527948E-04 m     |  |
| Z Position of COG             | -69,76 m                   |  |
| Generate Internal Lid         | No                         |  |
| Current Calculation Depth     | 0.0 m                      |  |
| Fixity Options                |                            |  |
| Structure Fixity              | Structure is Free to Move  |  |
| Force Factors                 |                            |  |
| Drag Factor                   | 1                          |  |
| Mass Factor                   | 1                          |  |
| Slam Factor                   | 0.0                        |  |
| Advanced Options              |                            |  |
| Submerged Structure Detection | Program Controlled         |  |
| Override Calculated GMX       | No                         |  |
| Override Calculated GMY       | No                         |  |
| Non-Linear Roll Damping       |                            |  |
| Non-Linear Roll Damping       | Excluded from Calculations |  |

 TABLE 4

 Model (A3, B3) > Geometry > Part 3 > Body

| Object Name                    | Surface Body       |
|--------------------------------|--------------------|
| State                          | Fully Defined      |
| <b>Details of Surface Body</b> |                    |
| Body Visibility                | Visible            |
| Suppressed                     | Not Suppressed     |
| Structure Type                 | Physical Geometry  |
| Surface Type                   | Program Controlled |

 TABLE 5

 Model (A3, B3) > Geometry > Part 3 > Body

| Object Name | Surface Body  |
|-------------|---------------|
| State       | Fully Defined |

| <b>Details of Surface Body</b> |                    |
|--------------------------------|--------------------|
| Body Visibility                | Visible            |
| Suppressed                     | Not Suppressed     |
| Structure Type                 | Physical Geometry  |
| Surface Type                   | Program Controlled |

#### TABLE 6

#### Model (A3, B3) > Geometry > Part 3 > Axes

| Object Name                   | Part 3 Axes   |
|-------------------------------|---------------|
| State                         | Fully Defined |
| <b>Details of Part 3 Axes</b> |               |
| Visibility                    | Visible       |
| Alignment Method              | Global Axes   |
| Rotation About Global Z       | 0.0°          |
| Rotation About Local Y        | 0.0°          |
| Rotation About Local X        | 0.0°          |
| Unit Vector X                 | [1, 0.0, 0.0] |
| Unit Vector Y                 | [0.0, 1, 0.0] |
| Unit Vector Z                 | [0.0, 0.0, 1] |
|                               |               |

# TABLE 7 Model (A3, B3) > Geometry > Part 3 > Body

| Object Name     | Surface Body       |
|-----------------|--------------------|
| State           | Fully Defined      |
| Details of      | Surface Body       |
| Body Visibility | Visible            |
| Suppressed      | Not Suppressed     |
| Structure Type  | Physical Geometry  |
| Surface Type    | Program Controlled |

| Object Name             | Surface Body       |
|-------------------------|--------------------|
| State                   | Fully Defined      |
| Details of Surface Body |                    |
| Body Visibility         | Visible            |
| Suppressed              | Not Suppressed     |
| Structure Type          | Physical Geometry  |
| Surface Type            | Program Controlled |

TABLE 8Model (A3, B3) > Geometry > Part 3 > Body

TABLE 9Model (A3, B3) > Geometry > Part 3 > Body

| Object Name             | Surface Body       |  |
|-------------------------|--------------------|--|
| State                   | Fully Defined      |  |
| Details of Surface Body |                    |  |
| Body Visibility         | Visible            |  |
| Suppressed              | Not Suppressed     |  |
| Structure Type          | Physical Geometry  |  |
| Surface Type            | Program Controlled |  |

 TABLE 10

 Model (A3, B3) > Geometry > Part 3 > Point Mass

| Object Name                  | Point Mass              |  |
|------------------------------|-------------------------|--|
| State                        | Fully Defined           |  |
| <b>Details of Point Mass</b> |                         |  |
| Visibility                   | Visible                 |  |
| Suppressed                   | Not Suppressed          |  |
| X                            | -6,82280340697616E-04 m |  |

| Y                        | 6,81083125527948E-04 m             |
|--------------------------|------------------------------------|
| Z                        | -69,76 m                           |
| Mass Definition          | Manual                             |
| Mass                     | 26837614,91 kg                     |
| Define Inertia Values by | via Radius of Gyration             |
| Kxx                      | 59,26 m                            |
| Куу                      | 59,26 m                            |
| Kzz                      | 59,26 m                            |
| Ixx                      | 94246929749,9167 kg.m <sup>2</sup> |
| Ixy                      | 0.0 kg.m <sup>2</sup>              |
| Ixz                      | 0.0 kg.m <sup>2</sup>              |
| Іуу                      | 94246929749,9167 kg.m <sup>2</sup> |
| Iyz                      | 0.0 kg.m <sup>2</sup>              |
| Izz                      | 94246929749,9167 kg.m <sup>2</sup> |

 TABLE 11

 Model (A3, B3) > Geometry > Part 3 > Connection Point

| Object Name                          | Connection Point 5    |  |
|--------------------------------------|-----------------------|--|
| State                                | Fully Defined         |  |
| <b>Details of Connection Point 5</b> |                       |  |
| Point Visibility                     | Visible               |  |
| Туре                                 | Attached to Structure |  |
| Structure                            | Part 3                |  |
| Definition of Position               | Coordinates           |  |
| Position Coordinates                 |                       |  |
| X                                    | 8 m                   |  |
| Y                                    | 0.0 m                 |  |

# TABLE 12 Model (A3, B3) > Geometry > Part 3 > Connection Point

| Object Name                          | Connection Point 6    |  |
|--------------------------------------|-----------------------|--|
| State                                | Fully Defined         |  |
| <b>Details of Connection Point 6</b> |                       |  |
| Point Visibility                     | Visible               |  |
| Туре                                 | Attached to Structure |  |
| Structure                            | Part 3                |  |
| Definition of Position               | Coordinates           |  |
| <b>Position Coordinates</b>          |                       |  |
| X                                    | -8 m                  |  |
| Y                                    | 0.0 m                 |  |
| Z                                    | -12,74 m              |  |

# TABLE 13 Model (A3, B3) > Geometry > Part 3 > Connection Point

| Object Name                          | Connection Point 7    |  |
|--------------------------------------|-----------------------|--|
| State                                | Fully Defined         |  |
| <b>Details of Connection Point 7</b> |                       |  |
| Point Visibility                     | Visible               |  |
| Туре                                 | Attached to Structure |  |
| Structure                            | Part 3                |  |
| Definition of Position               | Coordinates           |  |
| Position Coordinates                 |                       |  |
| X                                    | 0.0 m                 |  |
| Y                                    | 8 m                   |  |



# TABLE 14 Model (A3, B3) > Geometry > Part 3 > Connection Point

| Object Name            | Connection Point 8    |  |
|------------------------|-----------------------|--|
| State                  | Fully Defined         |  |
| Details of Com         | nection Point 8       |  |
| Point Visibility       | Visible               |  |
| Туре                   | Attached to Structure |  |
| Structure              | Part 3                |  |
| Definition of Position | Coordinates           |  |
| Position Coordinates   |                       |  |
| X                      | 0.0 m                 |  |
| Y                      | -8 m                  |  |
| Z                      | -12,74 m              |  |

# TABLE 15 Model (A3, B3) > Geometry > Connection Point

| Object Name                     | Fixed Point 1 |  |
|---------------------------------|---------------|--|
| State                           | Fully Defined |  |
| <b>Details of Fixed Point 1</b> |               |  |
| Point Visibility                | Visible       |  |
| Туре                            | Fixed         |  |
| Definition of Position          | Coordinates   |  |
| <b>Position Coordinates</b>     |               |  |
| X                               | 130,55 m      |  |
| Y                               | 0.0 m         |  |
| Z                               | -225 m        |  |

 TABLE 16

 Model (A3, B3) > Geometry > Connection Point

| Object Name                 | Fixed Point 2            |  |  |
|-----------------------------|--------------------------|--|--|
| State                       | Fully Defined            |  |  |
| Details of Fixed            | Details of Fixed Point 2 |  |  |
| Point Visibility            | Visible                  |  |  |
| Туре                        | Fixed                    |  |  |
| Definition of Position      | Coordinates              |  |  |
| <b>Position Coordinates</b> |                          |  |  |
| X                           | -130,55 m                |  |  |
| Y                           | 0.0 m                    |  |  |
| Z                           | -225 m                   |  |  |

 TABLE 17

 Model (A3, B3) > Geometry > Connection Point

| Object Name                 | Fixed Point 3 |  |
|-----------------------------|---------------|--|
| State                       | Fully Defined |  |
| Details of Fixed Point 3    |               |  |
| Point Visibility            | Visible       |  |
| Туре                        | Fixed         |  |
| Definition of Position      | Coordinates   |  |
| <b>Position Coordinates</b> |               |  |
| X                           | 0.0 m         |  |
| Y                           | 130,55 m      |  |
| Z                           | -225 m        |  |

 TABLE 18

 Model (A3, B3) > Geometry > Connection Point

| Object Name                     | Fixed Point 4 |  |
|---------------------------------|---------------|--|
| State                           | Fully Defined |  |
| <b>Details of Fixed Point 4</b> |               |  |
| Point Visibility                | Visible       |  |
| Туре                            | Fixed         |  |
| Definition of Position          | Coordinates   |  |
| Position Coordinates            |               |  |
| X                               | 0.0 m         |  |
| Y                               | -130,55 m     |  |
| Z                               | -225 m        |  |

#### **Connections**

TABLE 19Model (A3, B3) > Connections



# TABLE 20 Model (A3, B3) > Connections > Catenary Data

| Object Name                     | Catenary Data |
|---------------------------------|---------------|
| State                           | Fully Defined |
| <b>Details of Catenary Data</b> |               |

| Object Name                     | Catenary Section 1    |
|---------------------------------|-----------------------|
| State                           | Fully Defined         |
| Details of Catenary S           | Section 1             |
| Section Propert                 | ties                  |
| Mass/Unit Length                | 65 kg/m               |
| Equivalent Cross-Sectional Area | 0,0104 m <sup>2</sup> |
| Stiffness, EA                   | 1175000000 N          |
| Maximum Tension                 | 11760000 N            |
| Bending Stiffness, EI           | 0.0 N.m <sup>2</sup>  |
| Axial Stiffness Coefficient k1  | 0.0 N                 |
| Axial Stiffness Coefficient k2  | 0.0 N                 |
| Axial Stiffness Coefficient k3  | 0.0 N                 |
| Section Hydrodynamic Properties |                       |
| Added Mass Coefficient          | 1                     |
| Transverse Drag Coefficient     | 1                     |
| Equivalent Diameter             | 0,115 m               |
| Longitudinal Drag Coefficient   | 0,025                 |

 TABLE 21

 Model (A3, B3) > Connections > Catenary Data > Catenary Section

# TABLE 22 Model (A3, B3) > Connections > Cable

| Object Name        | Cable 6                 |
|--------------------|-------------------------|
| State              | Fully Defined           |
| Details of Cable 6 |                         |
| Visibility         | Visible                 |
| Suppressed         | Not Suppressed          |
| Connectivity       | Fixed Point & Structure |

| Start Fixed Point                 | Fixed Point 2 (Fixed)       |  |
|-----------------------------------|-----------------------------|--|
| End Connection Point              | Connection Point 6 (Part 3) |  |
| Туре                              | Non-Linear Catenary         |  |
| Cable Dynamic                     | cs Properties               |  |
| Use Dynamics                      | Program Controlled          |  |
| Number of Elements                | 100                         |  |
| <b>Catenary Section Selection</b> |                             |  |
| Section 1: Type                   | Catenary Section 1          |  |
| Section 1: Length                 | 245,5 m                     |  |
| Section 2: Type                   | None                        |  |
| Cable Properties                  |                             |  |
| Negative dZ Range                 | 0.0 m                       |  |
| Positive dZ Range                 | 1 m                         |  |
| Number of Vertical Partitions     | 15                          |  |
| Number of X Coordinates           | 40                          |  |
| Initial Cable Data                |                             |  |
| Initial Cable Tension at Start    | 2571105,25 N                |  |
| Initial Cable Tension at End      | 2684325,25 N                |  |

TABLE 23Model (A3, B3) > Connections > Cable 6

|                                  | Section 1          |
|----------------------------------|--------------------|
| Туре                             | Catenary Section 1 |
| Section Length (m)               | 245,5              |
| Mass / Unit Length (kg/m)        | 65                 |
| Equivalent CSA (m <sup>2</sup> ) | 0,0104             |
| Stiffness, EA (N)                | 1175000000         |

| Maximum Tension (N)                          | 11760000 |
|----------------------------------------------|----------|
| Bending Stiffness, EI (N.m <sup>2</sup> )    | 0.0      |
| Axial Stiffness Coefficient k1 (N)           | 0.0      |
| Axial Stiffness Coefficient k2 (N)           | 0.0      |
| Axial Stiffness Coefficient k3 (N)           | 0.0      |
| Added Mass Coefficient                       | 1        |
| Transverse Drag Coefficient                  | 1        |
| Equivalent Diameter (m)                      | 0,115    |
| Longitudinal Drag Coefficient                | 0,025    |
| Structural Mass (kg)                         | -        |
| Displaced Mass of Water (kg)                 | -        |
| Added Mass (kg)                              | -        |
| Coefficient of Drag * Area (m <sup>2</sup> ) | -        |

 TABLE 24

 Model (A3, B3) > Connections > Cable

| Object Name               | Cable 7                     |  |
|---------------------------|-----------------------------|--|
| State                     | Fully Defined               |  |
| Details of Cable 7        |                             |  |
| Visibility                | Visible                     |  |
| Suppressed                | Not Suppressed              |  |
| Connectivity              | Fixed Point & Structure     |  |
| Start Fixed Point         | Fixed Point 4 (Fixed)       |  |
| End Connection Point      | Connection Point 8 (Part 3) |  |
| Туре                      | Non-Linear Catenary         |  |
| Cable Dynamics Properties |                             |  |
| Use Dynamics              | Program Controlled          |  |

| Number of Elements             | 100                |  |
|--------------------------------|--------------------|--|
| Catenary Section Selection     |                    |  |
| Section 1: Type                | Catenary Section 1 |  |
| Section 1: Length              | 245,5 m            |  |
| Section 2: Type                | None               |  |
| Cable Properties               |                    |  |
| Negative dZ Range              | 0.0 m              |  |
| Positive dZ Range              | 1 m                |  |
| Number of Vertical Partitions  | 15                 |  |
| Number of X Coordinates        | 40                 |  |
| Initial Cable Data             |                    |  |
| Initial Cable Tension at Start | 0.0 N              |  |
| Initial Cable Tension at End   | 0.0 N              |  |

TABLE 25Model (A3, B3) > Connections > Cable 7

|                                           | Section 1          |
|-------------------------------------------|--------------------|
| Туре                                      | Catenary Section 1 |
| Section Length (m)                        | 245,5              |
| Mass / Unit Length (kg/m)                 | 65                 |
| Equivalent CSA (m <sup>2</sup> )          | 0,0104             |
| Stiffness, EA (N)                         | 1175000000         |
| Maximum Tension (N)                       | 11760000           |
| Bending Stiffness, EI (N.m <sup>2</sup> ) | 0.0                |
| Axial Stiffness Coefficient k1 (N)        | 0.0                |
| Axial Stiffness Coefficient k2 (N)        | 0.0                |
| Axial Stiffness Coefficient k3 (N)        | 0.0                |

| Added Mass Coefficient                       | 1     |
|----------------------------------------------|-------|
| Transverse Drag Coefficient                  | 1     |
| Equivalent Diameter (m)                      | 0,115 |
| Longitudinal Drag Coefficient                | 0,025 |
| Structural Mass (kg)                         | -     |
| Displaced Mass of Water (kg)                 | -     |
| Added Mass (kg)                              | -     |
| Coefficient of Drag * Area (m <sup>2</sup> ) | -     |

 TABLE 26

 Model (A3, B3) > Connections > Cable

| Object Name                      | Cable 8                     |
|----------------------------------|-----------------------------|
| State                            | Fully Defined               |
| Details of                       | Cable 8                     |
| Visibility                       | Visible                     |
| Suppressed                       | Not Suppressed              |
| Connectivity                     | Fixed Point & Structure     |
| Start Fixed Point                | Fixed Point 1 (Fixed)       |
| End Connection Point             | Connection Point 5 (Part 3) |
| Туре                             | Non-Linear Catenary         |
| <b>Cable Dynamics Properties</b> |                             |
| Use Dynamics                     | Program Controlled          |
| Number of Elements               | 100                         |
| Catenary Section Selection       |                             |
| Section 1: Type                  | Catenary Section 1          |
| Section 1: Length                | 245,5 m                     |
| Section 2: Type                  | None                        |

| Cable Properties               |              |  |
|--------------------------------|--------------|--|
| Negative dZ Range              | 0.0 m        |  |
| Positive dZ Range              | 1 m          |  |
| Number of Vertical Partitions  | 15           |  |
| Number of X Coordinates        | 40           |  |
| Initial Cable Data             |              |  |
| Initial Cable Tension at Start | 2571105,25 N |  |
| Initial Cable Tension at End   | 2684325,25 N |  |

TABLE 27Model (A3, B3) > Connections > Cable 8

|                                           | Section 1          |
|-------------------------------------------|--------------------|
| Туре                                      | Catenary Section 1 |
| Section Length (m)                        | 245,5              |
| Mass / Unit Length (kg/m)                 | 65                 |
| Equivalent CSA (m <sup>2</sup> )          | 0,0104             |
| Stiffness, EA (N)                         | 1175000000         |
| Maximum Tension (N)                       | 11760000           |
| Bending Stiffness, EI (N.m <sup>2</sup> ) | 0.0                |
| Axial Stiffness Coefficient k1 (N)        | 0.0                |
| Axial Stiffness Coefficient k2 (N)        | 0.0                |
| Axial Stiffness Coefficient k3 (N)        | 0.0                |
| Added Mass Coefficient                    | 1                  |
| Transverse Drag Coefficient               | 1                  |
| Equivalent Diameter (m)                   | 0,115              |
| Longitudinal Drag Coefficient             | 0,025              |
| Structural Mass (kg)                      | -                  |

| Displaced Mass of Water (kg)                 | - |
|----------------------------------------------|---|
| Added Mass (kg)                              | - |
| Coefficient of Drag * Area (m <sup>2</sup> ) | - |

TABLE 28Model (A3, B3) > Connections > Cable

| Object Name                   | Cable 10                    |  |
|-------------------------------|-----------------------------|--|
| State                         | Fully Defined               |  |
| Details of                    | Cable 10                    |  |
| Visibility                    | Visible                     |  |
| Suppressed                    | Not Suppressed              |  |
| Connectivity                  | Fixed Point & Structure     |  |
| Start Fixed Point             | Fixed Point 3 (Fixed)       |  |
| End Connection Point          | Connection Point 7 (Part 3) |  |
| Туре                          | Non-Linear Catenary         |  |
| Cable Dynamics Properties     |                             |  |
| Use Dynamics                  | Program Controlled          |  |
| Number of Elements            | 100                         |  |
| Catenary Section Selection    |                             |  |
| Section 1: Type               | Catenary Section 1          |  |
| Section 1: Length             | 245,5 m                     |  |
| Section 2: Type               | None                        |  |
| Cable Properties              |                             |  |
| Negative dZ Range             | 0.0 m                       |  |
| Positive dZ Range             | 1 m                         |  |
| Number of Vertical Partitions | 15                          |  |
| Number of X Coordinates       | 40                          |  |

| Initial Cable Data             |              |
|--------------------------------|--------------|
| Initial Cable Tension at Start | 2571105,25 N |
| Initial Cable Tension at End   | 2684325,25 N |

TABLE 29Model (A3, B3) > Connections > Cable 10

|                                              | Section 1          |
|----------------------------------------------|--------------------|
| Туре                                         | Catenary Section 1 |
| Section Length (m)                           | 245,5              |
| Mass / Unit Length (kg/m)                    | 65                 |
| Equivalent CSA (m <sup>2</sup> )             | 0,0104             |
| Stiffness, EA (N)                            | 1175000000         |
| Maximum Tension (N)                          | 11760000           |
| Bending Stiffness, EI (N.m <sup>2</sup> )    | 0.0                |
| Axial Stiffness Coefficient k1 (N)           | 0.0                |
| Axial Stiffness Coefficient k2 (N)           | 0.0                |
| Axial Stiffness Coefficient k3 (N)           | 0.0                |
| Added Mass Coefficient                       | 1                  |
| Transverse Drag Coefficient                  | 1                  |
| Equivalent Diameter (m)                      | 0,115              |
| Longitudinal Drag Coefficient                | 0,025              |
| Structural Mass (kg)                         | -                  |
| Displaced Mass of Water (kg)                 | -                  |
| Added Mass (kg)                              | -                  |
| Coefficient of Drag * Area (m <sup>2</sup> ) | -                  |

Mesh

#### TABLE 30 Model (A3, B3) > Mesh

| Object Name                | Mesh             |  |
|----------------------------|------------------|--|
| State                      | Meshed           |  |
| Details of 1               | Mesh             |  |
| Defaults                   |                  |  |
| Global Control             | Basic Controls   |  |
| Mesh Parameters            |                  |  |
| Defeaturing Tolerance      | 3 m              |  |
| Max Element Size           | 6 m              |  |
| Max Allowed Frequency      | 0,831 Hz         |  |
| Meshing Type               | Combined Meshing |  |
| Generated Mesh Information |                  |  |
| Number of Nodes            | 25261            |  |
| Number of Elements         | 25281            |  |
| Number of Diff Nodes       | 25152            |  |
| Number of Diff Elements    | 25158            |  |
|                            |                  |  |

# TABLE 31Model (A3, B3) > Mesh > Mesh Sizing

| Object Name            | Mesh Sizing    |  |
|------------------------|----------------|--|
| State                  | Fully Defined  |  |
| Details of Mesh Sizing |                |  |
| Suppressed             | Not Suppressed |  |
| Select Geometry        | 3 Bodies       |  |
|                        |                |  |

#### Hydrodynamic Diffraction (A4)

### TABLE 32Model (A3, B3) > Analysis

| Object Name                         | Hydrodynamic Diffraction (A4)      |
|-------------------------------------|------------------------------------|
| State                               | Solved                             |
| Details of Hydrodynamic Diffraction |                                    |
| Analysis Type                       | Hydrodynamic Diffraction/Radiation |

 TABLE 33

 Model (A3, B3) > Hydrodynamic Diffraction (A4) > Analysis Settings

| Object Name                                | Analysis Settings  |  |
|--------------------------------------------|--------------------|--|
| State                                      | Fully Defined      |  |
| Details of Analysis Settin                 | ıgs                |  |
| Parallel Processing                        | Program Controlled |  |
| Generate Wave Grid Pressures               | Yes                |  |
| Wave Grid Size Factor                      | 2                  |  |
| Common Analysis Options                    |                    |  |
| Ignore Modelling Rule Violations           | Yes                |  |
| Calculate Extreme Low/High Frequencies     | Yes                |  |
| Calculate Drift Coefficients               | Yes                |  |
| Include Multi-Directional Wave Interaction | Yes                |  |
| Near Field Solution                        | Program Controlled |  |
| Linearized Morison Drag                    | No                 |  |
| QTF Options                                |                    |  |
| Calculate Full QTF Matrix                  | Yes                |  |
| Output File Options                        |                    |  |
| Full QTF Matrix                            | No                 |  |

| Field Point Wave Elevation       | Yes |
|----------------------------------|-----|
| Source Strengths                 | No  |
| Potentials                       | No  |
| Centroid Pressures               | No  |
| Element Properties               | No  |
| ASCII Hydrodynamic Database      | No  |
| Example of Hydrodynamic Database | No  |

TABLE 34Model (A3, B3) > Hydrodynamic Diffraction (A4) > Gravity



 TABLE 35

 Model (A3, B3) > Hydrodynamic Diffraction (A4) > Structure Selection





| Object Name | Wave Directions |
|-------------|-----------------|
|             |                 |

| State                             | Fully Defined                         |  |
|-----------------------------------|---------------------------------------|--|
| <b>Details of Wave Directions</b> |                                       |  |
| Туре                              | Range of Directions, No Forward Speed |  |
| Required                          | d Wave Input                          |  |
| Wave Range                        | -180° to 180°                         |  |
| Interval                          | 45°                                   |  |
| Number of Intermediate Directions | 7                                     |  |
| <b>Optional Wave Directions A</b> |                                       |  |
| Additional Range                  | None                                  |  |
| <b>Optional Wave Directions B</b> |                                       |  |
| Additional Range                  | None                                  |  |
| <b>Optional Wave Directions C</b> |                                       |  |
| Additional Range                  | None                                  |  |
| <b>Optional Wave Directions D</b> |                                       |  |
| Additional Range                  | None                                  |  |

#### TABLE 37

#### Model (A3, B3) > Hydrodynamic Diffraction (A4) > Wave Frequency

| Object Name                 | Wave Frequencies  |
|-----------------------------|-------------------|
| State                       | Fully Defined     |
| <b>Details of Wave Free</b> | quencies          |
| Intervals Based Upon        | Frequency         |
| Frequency/Period D          | efinition         |
| Range                       | Manual Definition |
| Definition Type             | Range             |
| Lowest Frequency Definition | Manual Definition |
| Lowest Frequency            | 0,025 Hz          |
| Longest Period              | 40 s              |

| Highest Frequency Definition  | Manual Definition |
|-------------------------------|-------------------|
| Highest Frequency             | 0,3183 Hz         |
| Shortest Period               | 3,14169 s         |
| Number of Intermediate Values | 32                |
| Interval Frequency            | 0,00889 Hz        |
| Additional Frequen            | ncies A           |
| Additional Range              | None              |
| Additional Freque             | ncies B           |
| Additional Range              | None              |
| Additional Frequen            | ncies C           |
| Additional Range              | None              |
| Additional Freque             | ncies D           |
| Additional Range              | None              |

#### Solution (A5)

# TABLE 38Model (A3, B3) > Hydrodynamic Diffraction (A4) > Solution (A5) >Hydrostatic Results

| Object Name               | Hydrostatic |
|---------------------------|-------------|
| State                     | Solved      |
| Details of Hydrostati     | с           |
| Structure                 | Part 3      |
| Graphical Representat     | ion         |
| Show Centre of Gravity    | Yes         |
| Show Centre of Buoyancy   | Yes         |
| Show Centre of Floatation | Yes         |
| Results                   |             |
| Actual Displaced Volume   |             |

| Metacentric Height GMX          |  |
|---------------------------------|--|
| Out of Balance Force/Weight, Fz |  |

# TABLE 39 Model (A3, B3) > Hydrodynamic Diffraction (A4) > Solution (A5) > Hydrodynamic Graph Results

| Object Name                  | RAOs (Response Amplitude Operators)<br>(Distance/Rotation vs Frequency) |
|------------------------------|-------------------------------------------------------------------------|
| State                        | Solved                                                                  |
| Details of RAOs (R           | esponse Amplitude Operators) (Distance/Rotation vs<br>Frequency)        |
| Presentation Method          | Line                                                                    |
| Axes Selection               | Distance/Rotation vs Frequency                                          |
| Frequency or Period<br>Scale | Frequency                                                               |
| Export CSV File              | Select CSV File                                                         |
|                              | Line A                                                                  |
| Structure                    | Part 3                                                                  |
| Туре                         | RAOs (Response Amplitude Operators)                                     |
| Component                    | Global X                                                                |
| Direction                    | $0.0^{\circ}$                                                           |
| Position of Min in X         | 0,318                                                                   |
| Position of Max in X         | 0,025                                                                   |
| Minimum Value                | 0,002                                                                   |
| Maximum Value                | 1,274                                                                   |
|                              | Line B                                                                  |
| Structure                    | Undefined                                                               |

| Hydrostatic Results                     |     |                                                   |            |                                                |     |                                                   |  |
|-----------------------------------------|-----|---------------------------------------------------|------------|------------------------------------------------|-----|---------------------------------------------------|--|
| Structure                               |     | Part 3                                            | ]          |                                                |     |                                                   |  |
| Hydrostatic Stiffness                   |     |                                                   |            |                                                |     |                                                   |  |
| Centre of Gravity (CoG) Position:       | X:  | -6.8228e-4 m                                      | <b>Y</b> : | 6.8108e-4 m                                    | Z:  | -69.760002 m                                      |  |
| Heave (Z):<br>Roll (RX):<br>Pitch (RY): |     | Z<br>2036122.1 N/<br>3958.9004 N.<br>5375.6333 N. |            | RX<br>69.095848 N<br>18544390 N<br>522.43787 N |     | RY<br>93.822502 N/<br>522.43787 N.<br>18549784 N. |  |
| Hydrostatic Displacement Properties     |     |                                                   |            |                                                |     |                                                   |  |
| Actual Volumetric Displacement:         |     | 26540.377 m <sup>2</sup>                          |            |                                                |     |                                                   |  |
| Equivalent Volumetric Displacement:     |     | 26183.039 m <sup>2</sup>                          |            |                                                |     |                                                   |  |
| Centre of Buoyancy (CoB) Position:      | X:  | -6.8241e-4 m                                      | Y:         | 6.8128e-4 m                                    | Z:  | -65.901443 m                                      |  |
| Out of Balance Forces/Weight:           | FX: | -1.1322e-6                                        | FY:        | 4.7292e-7                                      | FZ: | 1.3659e-2                                         |  |
| Out of Balance Moments/Weight:          | MX: | 4.1483e-5 m                                       | MY:        | 3.1296e-5 m                                    | MZ: | 5.5172e-6 m                                       |  |

| Cut Water Plane Properties                   |     |                          |            |             |
|----------------------------------------------|-----|--------------------------|------------|-------------|
| Cut Water Plane Area:                        |     | 202.56261 m <sup>2</sup> |            |             |
| Centre of Floatation:                        | X:  | -3.3224e-3 m             | <b>Y</b> : | 2.6254e-3 m |
| Principal 2nd Moment of Area:                | X:  | 3295.877 m <sup>4</sup>  | <b>Y</b> : | 3327.1912 m |
| Angle Principal Axis makes with X(FRA):      |     | 5.4801879°               |            |             |
| Small Angle Stability Parameters             |     |                          |            |             |
| CoG to CoB (BG):                             |     | -3.8585603 m             |            |             |
| Metacentric Heights (GMX/GMY):               |     | 3.9827437 m              |            | 3.9839237 m |
| CoB to Metacentre (BMX/BMY):                 |     | 0.1241835 m              |            | 0.1253634 m |
| Restoring Moments about Principal Axes (MX/M | Y): | 18544340 N.              |            | 18549832 N. |
|                                              |     |                          |            |             |
|                                              |     |                          |            |             |
#### TABLE 40

## Model (A3, B3) > Hydrodynamic Diffraction (A4) > Solution (A5) > RAOs (Response Amplitude Operators) (Distance/Rotation vs Frequency)

|            | Line A (m/m)         |
|------------|----------------------|
| 0,025 Hz   | 1,27423965930939     |
| 0,03389 Hz | 0,910169720649719    |
| 0,04278 Hz | 0,6917804479599      |
| 0,05166 Hz | 0,544902384281158    |
| 0,06055 Hz | 0,437321126461029    |
| 0,06944 Hz | 0,353785336017609    |
| 0,07833 Hz | 0,28790870308876     |
| 0,08722 Hz | 0,236033320426941    |
| 0,0961 Hz  | 0,195375457406044    |
| 0,10499 Hz | 0,163382187485695    |
| 0,11388 Hz | 0,137862652540207    |
| 0,12277 Hz | 0,117065563797951    |
| 0,13165 Hz | 9,96988192200661E-02 |
| 0,14054 Hz | 8,48575085401535E-02 |
| 0,14943 Hz | 7,19619914889336E-02 |
| 0,15832 Hz | 6,11772909760475E-02 |
| 0,16721 Hz | 5,12559674680233E-02 |
| 0,17609 Hz | 4,27022874355316E-02 |
| 0,18498 Hz | 3,53727526962757E-02 |
| 0,19387 Hz | 2,92303208261728E-02 |
| 0,20276 Hz | 2,41431556642056E-02 |
| 0,21165 Hz | 1,99120230972767E-02 |
| 0,22053 Hz | 1,64253227412701E-02 |
| 0,22942 Hz | 1,35675938799977E-02 |
| 0,23831 Hz | 1,12416157498956E-02 |
| 0,2472 Hz  | 9,34372097253799E-03 |
| 0,25608 Hz | 7,79184373095632E-03 |
| 0,26497 Hz | 6,49851001799107E-03 |
| 0,27386 Hz | 5,38828410208225E-03 |
| 0,28275 Hz | 4,73396899178624E-03 |
| 0,29164 Hz | 3,9525399915874E-03  |
| 0,30052 Hz | 3,31180822104216E-03 |
| 0,30941 Hz | 2,76175234466791E-03 |
| 0,3183 Hz  | 2,26745335385203E-03 |

# TABLE 41 Model (A3, B3) > Hydrodynamic Diffraction (A4) > Solution (A5) > Hydrodynamic Graph Results

| Object Name                                                                     | RAOs (Response Amplitude Operators) (Distance/Rotation vs |  |
|---------------------------------------------------------------------------------|-----------------------------------------------------------|--|
| State                                                                           | Solved                                                    |  |
| Details of RAOs (Response Amplitude Operators) (Distance/Rotation vs Frequency) |                                                           |  |
| Presentation Method                                                             | Line                                                      |  |
| Axes Selection                                                                  | Distance/Rotation vs Frequency                            |  |
| Frequency or Period                                                             | Frequency                                                 |  |
| Export CSV File                                                                 | Select CSV File                                           |  |
| Line A                                                                          |                                                           |  |
| Structure                                                                       | Part 3                                                    |  |
| Туре                                                                            | RAOs (Response Amplitude Operators)                       |  |
| Component                                                                       | Global Z                                                  |  |
| Direction                                                                       | $0.0^{\circ}$                                             |  |
| Position of Min in X                                                            | 0,141                                                     |  |
| Position of Max in X                                                            | 0,043                                                     |  |
| Minimum Value                                                                   | 2,2e-4                                                    |  |
| Maximum Value                                                                   | 10,402                                                    |  |
| Line B                                                                          |                                                           |  |
| Structure                                                                       | Undefined                                                 |  |

#### TABLE 42

## Model (A3, B3) > Hydrodynamic Diffraction (A4) > Solution (A5) > RAOs (Response Amplitude Operators) (Distance/Rotation vs Frequency)

|            | Line A (m/m)         |
|------------|----------------------|
| 0,025 Hz   | 1,11430060863495     |
| 0,03389 Hz | 1,47169673442841     |
| 0,04278 Hz | 10,4024295806885     |
| 0,05166 Hz | 0,625064373016357    |
| 0,06055 Hz | 0,152812778949738    |
| 0,06944 Hz | 4,89389486610889E-02 |
| 0,07833 Hz | 1,72751415520906E-02 |
| 0,08722 Hz | 6,51185400784016E-03 |
| 0,0961 Hz  | 2,66876234672964E-03 |
| 0,10499 Hz | 1,23585166875273E-03 |
| 0,11388 Hz | 6,55088340863585E-04 |
| 0,12277 Hz | 3,92330170143396E-04 |
| 0,13165 Hz | 2,67464958596975E-04 |

| 0,14054 Hz | 2,21711728954688E-04 |
|------------|----------------------|
| 0,14943 Hz | 2,25677198613994E-04 |
| 0,15832 Hz | 2,51727818977088E-04 |
| 0,16721 Hz | 2,89440184133127E-04 |
| 0,17609 Hz | 3,2861961517483E-04  |
| 0,18498 Hz | 3,74582916265354E-04 |
| 0,19387 Hz | 4,19539079302922E-04 |
| 0,20276 Hz | 4,64058568468317E-04 |
| 0,21165 Hz | 5,06952812429518E-04 |
| 0,22053 Hz | 5,47593168448657E-04 |
| 0,22942 Hz | 5,8303406694904E-04  |
| 0,23831 Hz | 6,11881900113076E-04 |
| 0,2472 Hz  | 6,30663824267685E-04 |
| 0,25608 Hz | 6,34396739769727E-04 |
| 0,26497 Hz | 6,08757545705885E-04 |
| 0,27386 Hz | 5,31589903403074E-04 |
| 0,28275 Hz | 5,99862542003393E-04 |
| 0,29164 Hz | 5,24351955391467E-04 |
| 0,30052 Hz | 4,56246139947325E-04 |
| 0,30941 Hz | 3,93692083889619E-04 |
| 0,3183 Hz  | 3,37320700054988E-04 |

# TABLE 43 Model (A3, B3) > Hydrodynamic Diffraction (A4) > Solution (A5) > Hydrodynamic Graph Results

| Object Name                  | RAOs (Response Amplitude Operators) (Distance/Rotation vs<br>Frequency) |
|------------------------------|-------------------------------------------------------------------------|
| State                        | Solved                                                                  |
| Details of RAOs (Resp        | oonse Amplitude Operators) (Distance/Rotation vs Frequency)             |
| Presentation Method          | Line                                                                    |
| Axes Selection               | Distance/Rotation vs Frequency                                          |
| Frequency or Period<br>Scale | Frequency                                                               |
| Export CSV File              | Select CSV File                                                         |
| Line A                       |                                                                         |
| Structure                    | Part 3                                                                  |

| Туре                 | RAOs (Response Amplitude Operators) |
|----------------------|-------------------------------------|
| Component            | Global RY                           |
| Direction            | 0.0°                                |
| Position of Min in X | 0,318                               |
| Position of Max in X | 0,069                               |
| Minimum Value        | 0,004                               |
| Maximum Value        | 0,24                                |
| Line B               |                                     |
| Structure            | Undefined                           |

# TABLE 44

Model (A3, B3) > Hydrodynamic Diffraction (A4) > Solution (A5) > RAOs (Response Amplitude Operators) (Distance/Rotation vs Frequency)

|            | Line A (°/m)         |
|------------|----------------------|
| 0,025 Hz   | 0,203812978235313    |
| 0,03389 Hz | 0,189928817818477    |
| 0,04278 Hz | 0,205363444517119    |
| 0,05166 Hz | 0,224658848984324    |
| 0,06055 Hz | 0,237499204417551    |
| 0,06944 Hz | 0,23976423922063     |
| 0,07833 Hz | 0,23314231745945     |
| 0,08722 Hz | 0,220483655730316    |
| 0,0961 Hz  | 0,204439287905904    |
| 0,10499 Hz | 0,186911435010278    |
| 0,11388 Hz | 0,169084761338464    |
| 0,12277 Hz | 0,151599823908775    |
| 0,13165 Hz | 0,134746051987291    |
| 0,14054 Hz | 0,118656180695577    |
| 0,14943 Hz | 0,103433896840907    |
| 0,15832 Hz | 8,98426608260147E-02 |
| 0,16721 Hz | 7,66768108602606E-02 |
| 0,17609 Hz | 6,48748442840736E-02 |
| 0,18498 Hz | 5,44641185397201E-02 |

| 0,19387 Hz | 0,045527543052379    |
|------------|----------------------|
| 0,20276 Hz | 3,79772891932456E-02 |
| 0,21165 Hz | 3,15987996429529E-02 |
| 0,22053 Hz | 2,62682938980608E-02 |
| 0,22942 Hz | 2,18478341538469E-02 |
| 0,23831 Hz | 1,82079336306652E-02 |
| 0,2472 Hz  | 1,52133192313844E-02 |
| 0,25608 Hz | 1,27473007758925E-02 |
| 0,26497 Hz | 1,06818455677847E-02 |
| 0,27386 Hz | 8,86923158970297E-03 |
| 0,28275 Hz | 7,81815702365125E-03 |
| 0,29164 Hz | 6,55631876136774E-03 |
| 0,30052 Hz | 5,51181425032819E-03 |
| 0,30941 Hz | 4,60868306579766E-03 |
| 0,3183 Hz  | 3,7908567084829E-03  |

# Hydrodynamic Response (B4)

## TABLE 45 Model (A3, B3) > Analysis

| Object Name                      | Hydrodynamic Response (B4) |
|----------------------------------|----------------------------|
| State                            | Solved                     |
| Details of Hydrodynamic Response |                            |
| Analysis Type                    | Hydrodynamic Time Response |

## TABLE 46

## Model (A3, B3) > Hydrodynamic Response (B4) > Analysis Settings

| Object Name                  | Analysis Settings      |
|------------------------------|------------------------|
| State                        | Fully Defined          |
| Details of Analysis Settings | 5                      |
| Computation Type             | Time Response Analysis |
| Parallel Processing          | Program Controlled     |
| Use Cable Dynamics           | Yes                    |

| Time Response Specific Options                       |                       |  |
|------------------------------------------------------|-----------------------|--|
| Analysis Type                                        | Regular Wave Response |  |
| Start Time                                           | 0.0 s                 |  |
| Time Step                                            | 1 s                   |  |
| Duration                                             | 3600 s                |  |
| Number of Steps                                      | 3601                  |  |
| Finish Time                                          | 3600 s                |  |
| Starting Position                                    | Program Controlled    |  |
| Common Analysis Options                              |                       |  |
| Convolution                                          | Yes                   |  |
| Call Routine "user_force"                            | No                    |  |
| Use Linear Starting Conditions                       | No                    |  |
| Use Linear Stiffness Matrix to Calculate Hydrostatic | No                    |  |
| Account for Current Phase Shift                      | Yes                   |  |
| Use Wheeler Stretching                               | No                    |  |
| Tube Drag Coefficients                               | Defined in Geometry   |  |
| Output File Options                                  |                       |  |
| Joint Axis System for Joint Reaction Force           | Fixed Reference Axes  |  |
| Data List                                            | Yes                   |  |
| Element Properties                                   | No                    |  |

 TABLE 47

 Model (A3, B3) > Hydrodynamic Response (B4) > Regular Wave

| Object Name                      | Regular Wave 1 |
|----------------------------------|----------------|
| State                            | Fully Defined  |
| <b>Details of Regular Wave 1</b> |                |
| Visibility                       | Visible        |

| Suppressed      | Not Suppressed          |  |  |  |  |  |  |  |  |  |  |
|-----------------|-------------------------|--|--|--|--|--|--|--|--|--|--|
| Wave Definition |                         |  |  |  |  |  |  |  |  |  |  |
| Wave Type       | Airy Wave Theory        |  |  |  |  |  |  |  |  |  |  |
| Direction       | 0°                      |  |  |  |  |  |  |  |  |  |  |
| Amplitude       | 1 m                     |  |  |  |  |  |  |  |  |  |  |
| Period          | 25,1818 s               |  |  |  |  |  |  |  |  |  |  |
| Frequency       | 3,97112200081011E-02 Hz |  |  |  |  |  |  |  |  |  |  |
| Ramping Method  | Program Controlled      |  |  |  |  |  |  |  |  |  |  |

Solution (B5)

# TABLE 48 Model (A3, B3) > Hydrodynamic Response (B4) > Solution (B5) > Hydrodynamic Graph Results

| Object Name                                        | Cable Forces, Whole Cable Forces |  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------|----------------------------------|--|--|--|--|--|--|--|--|--|--|
| State                                              | Solved                           |  |  |  |  |  |  |  |  |  |  |
| <b>Details of Cable Forces, Whole Cable Forces</b> |                                  |  |  |  |  |  |  |  |  |  |  |
| Presentation Method                                | Line                             |  |  |  |  |  |  |  |  |  |  |
| Axes Selection                                     | Force/Moment vs Time             |  |  |  |  |  |  |  |  |  |  |
| Export CSV File                                    | Select CSV File                  |  |  |  |  |  |  |  |  |  |  |
|                                                    | Line A                           |  |  |  |  |  |  |  |  |  |  |
| Structure                                          | Part 3                           |  |  |  |  |  |  |  |  |  |  |
| Туре                                               | Cable Forces                     |  |  |  |  |  |  |  |  |  |  |
| SubType                                            | Whole Cable Forces               |  |  |  |  |  |  |  |  |  |  |
| Component                                          | Tension                          |  |  |  |  |  |  |  |  |  |  |
| Connection                                         | Cable 6                          |  |  |  |  |  |  |  |  |  |  |
| Position of Min in X                               | 308                              |  |  |  |  |  |  |  |  |  |  |
| Position of Max in X                               | 457                              |  |  |  |  |  |  |  |  |  |  |
| Minimum Value                                      | -149667,406                      |  |  |  |  |  |  |  |  |  |  |
| Maximum Value                                      | 3758483,25                       |  |  |  |  |  |  |  |  |  |  |

| Line B               |                    |  |  |  |  |  |  |  |  |
|----------------------|--------------------|--|--|--|--|--|--|--|--|
| Structure            | Part 3             |  |  |  |  |  |  |  |  |
| Туре                 | Cable Forces       |  |  |  |  |  |  |  |  |
| SubType              | Whole Cable Forces |  |  |  |  |  |  |  |  |
| Component            | Tension            |  |  |  |  |  |  |  |  |
| Connection           | Cable 7            |  |  |  |  |  |  |  |  |
| Position of Min in X | 3357               |  |  |  |  |  |  |  |  |
| Position of Max in X | 180                |  |  |  |  |  |  |  |  |
| Minimum Value        | -288546,094        |  |  |  |  |  |  |  |  |
| Maximum Value        | 12542441           |  |  |  |  |  |  |  |  |
|                      | Line C             |  |  |  |  |  |  |  |  |
| Structure            | Part 3             |  |  |  |  |  |  |  |  |
| Туре                 | Cable Forces       |  |  |  |  |  |  |  |  |
| SubType              | Whole Cable Forces |  |  |  |  |  |  |  |  |
| Component            | Tension            |  |  |  |  |  |  |  |  |
| Connection           | Cable 8            |  |  |  |  |  |  |  |  |
| Position of Min in X | 104                |  |  |  |  |  |  |  |  |
| Position of Max in X | 102                |  |  |  |  |  |  |  |  |
| Minimum Value        | -168373,578        |  |  |  |  |  |  |  |  |
| Maximum Value        | 3506300,25         |  |  |  |  |  |  |  |  |
|                      | Line D             |  |  |  |  |  |  |  |  |
| Structure            | Part 3             |  |  |  |  |  |  |  |  |
| Туре                 | Cable Forces       |  |  |  |  |  |  |  |  |
| SubType              | Whole Cable Forces |  |  |  |  |  |  |  |  |
| Component            | Tension            |  |  |  |  |  |  |  |  |
| Connection           | Cable 10           |  |  |  |  |  |  |  |  |
| Position of Min in X | 2565               |  |  |  |  |  |  |  |  |
| Position of Max in X | 194                |  |  |  |  |  |  |  |  |

| Minimum Value | -185135,031 |
|---------------|-------------|
| Maximum Value | 11373993    |

FIGURE 4 Model (A3, B3) > Hydrodynamic Response (B4) > Solution (B5) > Cable Forces, Whole Cable Forces



(halaman ini sengaja dikosongkan)

### LAMPIRAN E

#### SCRIPT MATLAB FFT

clc;clear; close all;

warning off MATLAB:divideByZero

sheet = 'sheet3'

A = xlsread('DATA MENTAH TERTAMBAT TEGANGAN TALI', sheet);

- t = A(:,1);
- s = A(:,2);
- h = A(:,3);
- p = A(:,4);
- f1=A(:,5);
- f2=A(:,6);
- f3=A(:,7);
- f4= A(:,8);

sfr = 1;

t = (1:length(t))/sfr;

shpf = [s,h,p,f1,f2,f3,f4];

for i=1:7

subplot(7,1,i)

plot(t,shpf(:,i));

**if** i==1

ylabel('\zeta\_x (mm)');

```
elseif i==2
```

ylabel('\zeta\_z (mm)');

elseif i==3

ylabel('\zeta\_p (deg)');

#### else

ylabel('F (gr)');

end

#### end

xlabel('t (sec)');

[xb,yb]=ginput(2);

BatasBawah = max(round(xb(1)\*sfr),1);

BatasAtas = min(round(xb(2)\*sfr),size(s,1));

k = BatasBawah:BatasAtas;lenk = length(k);

tk =(BatasBawah:BatasAtas)'/sfr;

sk = s(k);

hk = h(k);

pk = p(k);

f1k=f1(k);

f2k = f2(k);

f3k = f3(k);

f4k = f4(k);

shpfk = [sk,hk,pk,f1k,f2k,f3k,f4k];

figure;

for i=1:7

subplot(7,1,i)

plot(t,shpf(:,i),tk,shpfk(:,i),'r');

**if** i==1

ylabel('\zeta\_x (mm)');

elseif i==2

ylabel('\zeta\_z (mm)');

#### elseif i==3

ylabel('\zeta\_p (deg)');

#### else

ylabel('F (gr)');

#### end

#### end

xlabel('t (sec)');

# figure;

for i=1:7

Yf = shpfk(:,i);

lenk = length(Yf);

sr=1/sfr;

TT = (0:lenk-1)./sfr;

tmax=TT(end)-TT(1);

fdf=1/lenk/sr;

ff=(0:fdf:1/2/sr);

FF=sr\*fft(Yf);

```
fampl=2/(tmax+sr)*abs(FF);
```

TT = (0:lenk-1)./sfr;

```
tmax=TT(end)-TT(1);
```

fdf=1/lenk/sr;

```
ff=(0:fdf:1/2/sr);
```

FF=sr\*fft(Yf);

```
ampl=2/(tmax+sr)*abs(FF);
```

```
periode(:,i)=(1./(ff(1:length(ff))))';
```

```
Ampl(:,i)=ampl(1:length(ff));
```

subplot(7,1,i)

plot(periode(:,i),Ampl(:,i));

**if** i==1

ylabel('\zeta\_x (mm)');

elseif i==2

ylabel('\zeta\_z (mm)');

elseif i==3

ylabel('\zeta\_p (deg)');

#### else

ylabel('F (gr)');

end

#### end

xlabel('t (sec)');

period= periode(2:end,1)

hasil = Ampl(2:end,:)

[Amplheave,n] = max(hasil(:,2));

Period = period(n)

Amplsurge = hasil(n,1)

Amplheave

Amplpitch = hasil(n,3)

Amplf1 = 
$$hasil(n,4)$$

Amplf2 = hasil(n,5)

Amplf3 = hasil(n,6)

Amplf4 = hasil(n,7)

(halaman ini sengaja dikosongkan)

# LAMPIRAN F

# TERTAMBAT 0 Degree

## NUMERIS

| Periode |          | Frequency |        | Surge |       | Heave |       | Pitch  |        | RAO Tension A | RAO Tension B | RAO Tension C | RAO Tension D |
|---------|----------|-----------|--------|-------|-------|-------|-------|--------|--------|---------------|---------------|---------------|---------------|
| FFT (s) | Real (s) | Hz        | Rad/s  | mm    | mm/mm | mm    | mm/mm | Deg    | Deg/mm | Ton/m         | Ton/m         | Ton/m         | Ton/m         |
| 40,0111 | 40       | 0,0250    | 0,1571 | 1,937 | 0,620 | 1,350 | 0,432 | 13,363 | 4,276  | 224,811       | 224,811       | 213,299       | 217,333       |
| 38,3211 | 38       | 0,0263    | 0,1653 | 1,759 | 0,563 | 0,800 | 0,256 | 11,515 | 3,685  | 211,380       | 211,380       | 180,788       | 187,350       |
| 34,9128 | 35       | 0,0286    | 0,1795 | 3,915 | 1,253 | 1,893 | 0,606 | 4,028  | 1,289  | 147,856       | 144,869       | 107,608       | 89,946        |
| 33,0367 | 33       | 0,0303    | 0,1904 | 4,272 | 1,367 | 1,346 | 0,431 | 6,547  | 2,095  | 209,501       | 209,501       | 162,416       | 127,153       |
| 29,5164 | 29,5072  | 0,0339    | 0,2129 | 2,717 | 0,869 | 1,055 | 0,337 | 2,163  | 0,692  | 103,829       | 79,803        | 64,356        | 49,497        |
| 25,1818 | 25,1193  | 0,0398    | 0,2501 | 1,951 | 0,624 | 0,707 | 0,226 | 1,662  | 0,532  | 100,652       | 91,213        | 79,850        | 71,417        |
| 23,3831 | 23,3754  | 0,0428    | 0,2688 | 1,977 | 0,632 | 1,138 | 0,364 | 1,365  | 0,437  | 81,087        | 79,796        | 70,418        | 68,981        |
| 21,8242 | 21,8627  | 0,0457    | 0,2874 | 1,450 | 0,464 | 1,074 | 0,344 | 0,901  | 0,288  | 53,962        | 56,521        | 42,362        | 44,570        |
| 19,3602 | 19,3573  | 0,0517    | 0,3246 | 1,458 | 0,467 | 2,430 | 0,778 | 1,052  | 0,337  | 139,395       | 139,395       | 79,701        | 88,557        |
| 15,8738 | 16,0000  | 0,0625    | 0,3927 | 0,996 | 0,319 | 0,278 | 0,089 | 0,670  | 0,214  | 45,671        | 41,403        | 27,294        | 24,143        |
| 14,404  | 14,4009  | 0,0694    | 0,4363 | 0,842 | 0,269 | 0,098 | 0,031 | 0,664  | 0,212  | 44,458        | 45,627        | 21,442        | 20,910        |
| 12,7695 | 12,7665  | 0,0783    | 0,4922 | 0,575 | 0,184 | 0,172 | 0,055 | 0,405  | 0,129  | 46,646        | 68,919        | 29,499        | 26,724        |
| 5,6798  | 5,6789   | 0,1761    | 1,1064 | 0,085 | 0,027 | 0,003 | 0,001 | 0,130  | 0,041  | 7,696         | 8,036         | 7,385         | 7,743         |

## EKSPERIMEN

| Periode |          | Frequency |        | Surge |       | Heave |       | Pitch |        | RAO Tension A | RAO Tension B | RAO Tension C | RAO Tension D |
|---------|----------|-----------|--------|-------|-------|-------|-------|-------|--------|---------------|---------------|---------------|---------------|
| Eks(s)  | Real (s) | Hz        | Rad/s  | mm    | mm/mm | mm    | mm/mm | Deg   | Deg/mm | Ton/m         | Ton/m         | Ton/m         | Ton/m         |
| 3,6     | 40,2492  | 0,0248    | 0,1571 | 1,042 | 0,417 | 0,103 | 0,065 | 0,065 | 0,0783 | 55,224        | 56,061        | 42,520        | 43,200        |
| 2,6     | 29,0689  | 0,0344    | 0,2129 | 1,512 | 0,605 | 0,187 | 0,198 | 0,108 | 0,2816 | 95,982        | 97,436        | 58,493        | 59,429        |
| 2,1     | 23,4787  | 0,0426    | 0,2688 | 1,235 | 0,494 | 0,150 | 0,178 | 0,178 | 0,0962 | 93,571        | 94,988        | 76,040        | 77,257        |
| 1,7     | 19,0066  | 0,0526    | 0,3246 | 1,184 | 0,474 | 0,156 | 0,296 | 0,196 | 0,1736 | 117,313       | 119,091       | 78,740        | 80,000        |
| 1,3     | 14,5344  | 0,0688    | 0,4363 | 0,757 | 0,303 | 0,082 | 0,082 | 0,082 | 0,1492 | 50,149        | 50,909        | 24,882        | 25,280        |
| 1,1     | 12,2984  | 0,0813    | 0,4922 | 0,538 | 0,215 | 0,081 | 0,081 | 0,081 | 0,1351 | 44,776        | 45,455        | 10,709        | 10,880        |
| 0,5     | 5,5902   | 0,1789    | 1,1064 | 0,027 | 0,011 | 0,067 | 0,067 | 0,067 | 0,0015 | 1,658         | 1,684         | 2,100         | 2,133         |

# LAMPIRAN G

# TERTAMBAT 22,5 Degree

#### NUMERIS

| Periode |          | Frequency |          | S      | urge     | Н      | eave     | Р       | itch     | RAO Tension | RAO Tension | RAO Tension | RAO Tension |
|---------|----------|-----------|----------|--------|----------|--------|----------|---------|----------|-------------|-------------|-------------|-------------|
| FFT     | Real (s) | Hz        | Rad/s    | m      | m/m      | m      | m/m      | m       | Deg/m    | Ton/m       | Ton/m       | Ton/m       | Ton/m       |
| 39.091  | 40       | 0.025     | 0.15708  | 1.5601 | 0.499232 | 1.4654 | 0.468928 | 11.5085 | 3.68272  | 264.7486239 | 199.8124363 | 247.5155963 | 194.8183486 |
| 38.129  | 38       | 0.026316  | 0.165347 | 1.392  | 0.44544  | 1.6666 | 0.533312 | 9.3195  | 2.98224  | 228.4395515 | 178.8248726 | 222.4962283 | 172.359633  |
| 34.997  | 35       | 0.028571  | 0.17952  | 3.191  | 1.02112  | 1.64   | 0.5248   | 3.28    | 1.0496   | 168.3832824 | 122.0958206 | 119.7471967 | 50.9520897  |
| 33.015  | 33       | 0.030303  | 0.1904   | 3.56   | 1.1392   | 1.453  | 0.46496  | 3.91    | 1.2512   | 225.0438328 | 109.0479103 | 183.9102956 | 87.32313965 |
| 29.5164 | 29.50723 | 0.03389   | 0.212937 | 2.189  | 0.70048  | 1.658  | 0.53056  | 1.886   | 0.60352  | 89.59021407 | 76.0138634  | 70.49133537 | 35.24566769 |
| 25.1818 | 25.1193  | 0.03981   | 0.250134 | 1.3838 | 0.442816 | 0.5977 | 0.191264 | 1.2124  | 0.387968 | 102.4163099 | 43.01243629 | 82.84118247 | 28.51881753 |
| 23.3831 | 23.37541 | 0.04278   | 0.268795 | 1.2886 | 0.412352 | 1.0003 | 0.320096 | 0.6132  | 0.196224 | 71.83853211 | 45.69051988 | 41.6        | 34.28990826 |
| 21.8242 | 21.8627  | 0.04574   | 0.287393 | 1.016  | 0.32512  | 1.1788 | 0.377216 | 0.7221  | 0.231072 | 71.54169215 | 40.10927625 | 58.38287462 | 29.96909276 |
| 19.35   | 19.35734 | 0.05166   | 0.324589 | 0.8801 | 0.281632 | 2.3712 | 0.758784 | 0.684   | 0.21888  | 114.3551478 | 74.26218145 | 102.5304791 | 68.70703364 |
| 15.982  | 16       | 0.0625    | 0.392699 | 0.3752 | 0.120064 | 0.1745 | 0.05584  | 0.2695  | 0.08624  | 53.85524975 | 34.96839959 | 47.78797146 | 8.901936799 |
| 14.404  | 14.40092 | 0.06944   | 0.436304 | 0.3283 | 0.105056 | 0.4604 | 0.147328 | 0.3237  | 0.103584 | 53.53883792 | 33.62120285 | 35.91111111 | 14.80872579 |
| 12.7695 | 12.7665  | 0.07833   | 0.492162 | 0.3023 | 0.096736 | 0.6361 | 0.203552 | 0.2722  | 0.087104 | 44.24220183 | 28.83783894 | 25.11037717 | 26.38646279 |
| 5.6767  | 5.678914 | 0.17609   | 1.106406 | 0.043  | 0.01376  | 0.0031 | 0.000992 | 0.0659  | 0.021088 | 10.05798165 | 2.331433231 | 9.475392457 | 2.053545362 |

# LAMPIRAN H

# TERTAMBAT 45 Degree

## NUMERIS

| Periode |          | Frequency |          | S      | urge     | Н      | eave     | P       | itch     | RAO Tension | RAO Tension | RAO Tension | RAO         |
|---------|----------|-----------|----------|--------|----------|--------|----------|---------|----------|-------------|-------------|-------------|-------------|
| FFT     | Real (s) | Hz        | Rad/s    | m      | m/m      | m      | m/m      | m       | Deg/m    | Ton         | Ton         | Ton         | Ton         |
| 39.998  | 40       | 0.025     | 0.15708  | 1.2161 | 0.389152 | 1.7671 | 0.565472 | 9.6886  | 3.100352 | 287.9021407 | 140.2748216 | 259.4576962 | 148.0905199 |
| 37.893  | 38       | 0.026316  | 0.165347 | 1.028  | 0.32896  | 1.61   | 0.5152   | 4.158   | 1.33056  | 252.7380224 | 95.64118247 | 226.7857288 | 122.324159  |
| 35.061  | 35       | 0.028571  | 0.17952  | 2.85   | 0.912    | 1.06   | 0.3392   | 2.816   | 0.90112  | 187.8899083 | 60.41182467 | 224.7502548 | 90.03058104 |
| 33.087  | 33       | 0.030303  | 0.1904   | 3.075  | 0.984    | 0.918  | 0.29376  | 2.942   | 0.94144  | 230.9577982 | 74.76452599 | 176.733945  | 30.9529052  |
| 29.5164 | 29.50723 | 0.03389   | 0.212937 | 1.1482 | 0.367424 | 0.3447 | 0.110304 | 0.85299 | 0.272957 | 101.7215087 | 57.94576962 | 81.08623853 | 28.32603466 |
| 25.1818 | 25.1193  | 0.03981   | 0.250134 | 0.2937 | 0.093984 | 1.2038 | 0.385216 | 0.2367  | 0.075744 | 138.5720693 | 6.239836901 | 130.0159021 | 30.24440367 |
| 23.3831 | 23.37541 | 0.04278   | 0.268795 | 0.282  | 0.09024  | 1.257  | 0.40224  | 0.0631  | 0.020192 | 96.48929664 | 16.57704383 | 64.23486239 | 17.65675841 |
| 21.8242 | 21.8627  | 0.04574   | 0.287393 | 0.2191 | 0.070112 | 1.0097 | 0.323104 | 0.0339  | 0.010848 | 89.17268094 | 16.07600408 | 77.81447503 | 18.69830785 |
| 19.35   | 19.35734 | 0.05166   | 0.324589 | 0.1873 | 0.059936 | 2.2065 | 0.70608  | 0.239   | 0.07648  | 179.2587156 | 24.06165138 | 167.8841998 | 38.59571865 |
| 15.912  | 16       | 0.0625    | 0.392699 | 0.01   | 0.0032   | 0.238  | 0.07616  | 0.021   | 0.00672  | 68.01223242 | 13.77533129 | 58.16106014 | 21.60407747 |
| 14.404  | 14.40092 | 0.06944   | 0.436304 | 0.0056 | 0.001792 | 0.4771 | 0.152672 | 0.0084  | 0.002688 | 58.9961264  | 15.89724771 | 32.34087666 | 13.2945158  |
| 12.7695 | 12.7665  | 0.07833   | 0.492162 | 0.0029 | 0.000928 | 0.4946 | 0.158272 | 0.0489  | 0.015648 | 38.07054027 | 24.58878695 | 27.03461774 | 14.54678899 |
| 5.6767  | 5.678914 | 0.17609   | 1.106406 | 0.0023 | 0.000736 | 0.0036 | 0.001152 | 0.0033  | 0.001056 | 12.13390418 | 0.017957363 | 11.23457696 | 0.158225484 |

#### EKSPERIMEN

| Pe  | eriode   | Frequ   | uency    | Su    | irge  | Hea     | ave   | Pit    | ch     | RAO Tension | RAO Tension | RAO Tension | RAO Tension |
|-----|----------|---------|----------|-------|-------|---------|-------|--------|--------|-------------|-------------|-------------|-------------|
| Eks | Real (s) | Hz      | Rad/s    | mm    | mm/mm | mm      | mm/mm | Deg    | Deg/mm | Ton         | Ton         | Ton         | Ton         |
| 3.6 | 40,2492  | 0.025   | 0.15708  | 6.819 | 0.273 | 1.31    | 0.052 | 2.6    | 0.104  | 68.89139093 | 45.54826891 | 61.2422     | 20.64017508 |
| 2.6 | 29,0689  | 0.03389 | 0.212937 | 8.310 | 0.332 | 4.6     | 0.184 | 3.4    | 0.136  | 108.8118893 | 30.52584976 | 99.2313     | 24.02845139 |
| 2.1 | 23,4787  | 0.04278 | 0.268795 | 2.349 | 0.094 | 4.404   | 0.176 | 0.9296 | 0.037  | 105.3691724 | 51.64282119 | 98.23232    | 24.99398464 |
| 1.7 | 19,0066  | 0.05166 | 0.324589 | 1.680 | 0.067 | 7.65723 | 0.306 | 1.7358 | 0.069  | 146.983     | 11.91309036 | 138.232     | 31.35396811 |
| 1.3 | 14,5344  | 0.06944 | 0.436304 | -     | -     | -       | -     | -      | -      | -           | -           | -           | -           |
| 1.1 | 12,2984  | 0.07833 | 0.492162 | -     | -     | -       | -     | -      | -      | -           | -           | -           | -           |
| 0.5 | 5,5902   | 0.17609 | 1.106406 | -     | -     | -       | -     | -      | -      | -           | -           | -           | -           |

(halaman ini sengaja dikosongkan)

# **BIODATA PENULIS**



Septian Agung Priambodo yang akrab dipanggil Agung adalah putra kedua dari pasangan Suharsono dan Murni Supriyati. Penulis lahir pada tanggal 21 September 1996 di Blora, Jawa Tengah. Penulis menempuh pendidikan formal di SDN 2 Bangkle Kabupaten Blora, SMP N 1 Blora, SMA N 1 Blora. Setelah lulus SMA kemudian penulis melanjutkan *study*nya di Departemen Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh

Nopember (ITS) Surabaya. Selama menempuh pendidikan penulis aktif dalam kegiatan akademik dan organisasi. Dalam riwayat organisasinya penulis pernah menjabat di Himpunan Teknik Kelautan FTK-ITS sebagai staff Minat Bakat, Lembaga Dakwah Jurusan Teknik Kelautan FTK-ITS sebagai Kepala Departemen Mentoring, Unit Kegiatan Mahasiswa Bulutangkis ITS sebagai Kepala Departemen Pengembangan Sumber Daya Anggota. Penulis juga aktif dalam kegiatan sosial melalui organisasi Pundi Amal Pemuda Indonesia sebagai Co-Founder. Pada awal tahun keempat penulis melaksanakan kerja praktek di Pertamina EP Asset 4 Field Poleng. Selama kerja praktek penulis mendapat pekerjaan melakukan *re-modeling* BW *Platform* milik Pertamina EP. Pada tahun terakhir penulis mengerjakan Tugas Akhir yang bertopik tentang olah gerak dan tegangan tali tambat pada SPAR dengan *helical strakes*.

Email : septianagung2196@gmail.com