Analisis Aliran Fluida Refrigeran 134a Pada Single Blade Rotor Radial Berbasis Computational Fluid Dynamics

Putu, Rika Puspita Dewi Ni (2018) Analisis Aliran Fluida Refrigeran 134a Pada Single Blade Rotor Radial Berbasis Computational Fluid Dynamics. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 02311440000038_Undergraduate_Theses.pdf]
Preview
Text
02311440000038_Undergraduate_Theses.pdf - Accepted Version

Download (2MB) | Preview

Abstract

Pemusnahan eksergi pada turbin gas terjadi karena adanya gesekan antara fluida kerja dengan sudu – sudu turbin yang menyebabkan terjadinya pembangkitan entropi pada fluida kerja. Untuk sistem turbin gas dengan fluida kerja yang bertekanan dan temperature rendah, jenis radial turbin tepat diaplikasikan karena mampu beroperasi pada kecepatan tinggi. Dalam penelitian ini dilakukan studi desain geometri rotor turbin tipe radial dengan menggunakan fluida kerja bantu R-134a untuk meningkatkan daya keluaran turbin. Perancangan geometri blade rotor turbin radial menggunakan dua cara yaitu dengan pendekatan numerik dan simulasi CFD. Perancangan dengan pendekatan numerik dan simulasi 3D menggunakan metode yang disarankan oleh Aungier dan Baines. Dari hasil perhitungan Baines, diperoleh daya output rotor turbin hasil perancangan sebesar 10,497 kW. Selain prediksi performansi daya output, dalam perancangan diperoleh penampang meridional dan segitiga kecepatan rotor yang digunakan sebagai input perancangan 3D blade rotor radial. Dengan variasi sudut inlet rotor 0o dan 70o diperoleh perbedaan profil aliran. Pada sudut inlet 70o menghasilkan performa yang lebih baik berdasarkan profil aliran kecepatan dan distribusi tekanan. Karakteristik aliran yang terjadi pada area blade dan sekitarnya yang dibatasi oleh penampang hub dan shroud menyebabkan terjadi aliran turbulen karena nilai densitas dan viskositas fluida kerja yang rendah.
======================================================================================================
The exhaustion of the gas turbine exhaust occurs because of the friction between the working fluid and the turbine blades leading to the generation of entropy in the working fluid. For gas turbine systems with low pressure and low temperature working fluids, the radial turbine type is appropriately applied because of its capability of operating at high speeds. In this research, a radial turbine rotor geometry design study was conducted by using R-134a auxiliary working fluid to increase turbine output power. The geometry design of the radial turbine rotor blade uses two methods, namely numerical approach and CFD. Design with a numerical approach and 3D simulation are using the method suggested by Aungier and Baines. From Baines’ calculation, the result of the turbine rotor output of the designer is 10.497 kW. In addition to output power performance predictions, the design obtains the cross section and rotor speeds used as the radial blade 3D rotor input. With the angle of the inlet angle rotor of 0o and 70o, a difference of flow profile is known. At the 70o inlet angle, it gives better performance based on velocity and distribution of flow pressure profiles. Flow characteristics that occur in the blade and its surrounding areas which are surrounded by cross section of hubs and shrouds causes a turbulent flow due to the low density and viscosity values of working fluids.

Item Type: Thesis (Undergraduate)
Additional Information: RSF 621.433 Put a-1 3100018077222
Uncontrolled Keywords: Airfoil, Blade, Radial, Refrigeran, Twist, Vortex,
Subjects: Q Science > QC Physics > QC151 Fluid dynamics
T Technology > TJ Mechanical engineering and machinery > TJ266 Turbines. Turbomachines (General)
T Technology > TJ Mechanical engineering and machinery > TJ778 Gas turbines
Divisions: Faculty of Industrial Technology > Physics Engineering > 30201-(S1) Undergraduate Thesis
Depositing User: Rika Puspita Dewi Ni Putu
Date Deposited: 05 Nov 2020 08:14
Last Modified: 10 Nov 2020 03:51
URI: http://repository.its.ac.id/id/eprint/55696

Actions (login required)

View Item View Item