

BACHELOR THESIS - (ME 141502)

RISK AND ECONOMICAL ASSESSMENT OF PASSENGER SHIP RETROFITTED WITH DUAL FUEL ENGINE

ANDIKA CANDRA PRABANA NRP. 04211441000018

Supervisor A.A.B Dinariyana DP, S.T., MES, Ph.D Dr. Dhimas Widhi Handani, S.T., M.Sc.

DOUBLE DEGREE PROGRAM MARINE ENGINEERING DEPARTMENT FACULTY OF MARINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2018

BACHELOR THESIS - (ME 141502)

RISK AND ECONOMICAL ASSESSMENT OF PASSENGER SHIP RETROFITTED WITH DUAL FUEL ENGINE

ANDIKA CANDRA PRABANA NRP. 04211441000018

Supervisor A.A.B Dinariyana DP, S.T., MES, Ph.D Dr. Dhimas Widhi Handani, S.T., M.Sc.

DOUBLE DEGREE PROGRAM MARINE ENGINEERING DEPARTMENT FACULTY OF MARINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2018

SKRIPSI - (ME 141502)

PENILAIAN RESIKO DAN EKONOMI PADA KAPAL PENUMPANG DENGAN MENGGUNAKAN MESIN DUAL FUEL

ANDIKA CANDRA PRABANA NRP. 04211441000018

Dosen Pembimbing :

A.A.B Dinariyana DP, S.T., MES, Ph.D

Dr. Dhimas Widhi Handani, S.T., M.Sc.

DOUBLE DEGREE PROGRAM MARINE ENGINEERING DEPARTMENT FACULTY OF MARINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2018

APPROVAL FORM

RISK AND ECONOMICAL ASSESSMENT OF PASSENGER SHIP RETROFITTED WITH DUAL FUEL ENGINE

BACHELOR THESIS

Proposed to Fulfill One of the Requirements for Obtaining a Bachelor Engineering Degree On

Reliability, Availability, Management and Safety (RAMS) Laboratory Study Program Bachelor Double Degree of Marine Engineering Department Faculty of Marine Technology Institut Teknologi Sepuluh Nopember

Prepared By:

ANDIKA CANDRA PRABANA

NRP. 04211441000018

Suppervisors :

A.A.B Dinariyana DP, S.T., MES, Ph.D

Dr. Dhimas Widhi Handani, S.T., M.Sc.

SURABAYA July, 2018

APPROVAL FORM

RISK AND ECONOMICAL ASSESSMENT OF PASSENGER SHIP RETROFITTED WITH DUAL FUEL ENGINE

BACHELOR THESIS

Proposed to Fulfill One of the Requirements for Obtaining a Bachelor Engineering Degree On

Reliability, Availability, Management and Safety (RAMS) Laboratory Study Program Bachelor Double Degree of Marine Engineering Department Faculty of Marine Technology Institut Teknologi Sepuluh Nopember

Prepared By:

ANDIKA CANDRA PRABANA

NRP. 04211441000018

DECLARATION OF HONOUR

I hereby who signed below declare that:

This final project has been written and developed independently without any plagiarism act. All contents and ideas drawn directly from internal and external sources are indicated such as cited sources, literatures, and other professional sources.

Name	: Andika Candra Prabana
NRP	: 04211441000018
Bachelor Thesis Title	: Risk and Economical Assessment of Passenger Ship Retrofitted with Dual Fuel Engine
Department	: Double Degree Marine Engineering

If there is plagiarism act in the future, I will be fully responsible and receive the penalty given by ITS and Hochschule Wismar according to the regulation applied.

Surabaya, July 2018

Andika Candra Prabana

RISK AND ECONOMICAL ASSESSMENT OF PASSENGER SHIP RETROFITTED WITH DUAL FUEL ENGINE

Student Name : Andika Candra Prabana

NRP	: 04211441000018
Department	: Double Degree Marine Engineering
Supervisor 1	: A.A.B Dinariyana DP, S.T., MES, Ph.D
Supervisor 2	: Dr. Dhimas Widhi Handani, S.T., M.Sc.
Abstract	

Indonesia produces about twice amount of natural gas consumed. In 2016, Indonesia has 144 TSCF (Trillion of Standard Cubic Feet) of natural gas reserves that consist of 101.2 TSCF proven gas reserves and 42.8 TSCF of potential gas reserves. LNG offers huge advantages, especially to obey IMO regulation adopted a revised Annex VI about the International Convention for the Prevention of Pollution from ships (MARPOL). Annex VI contains regulations for the prevention of air pollution. all industrial components, manufacturing industry, and shipping industries in Indonesia are highly dependent on fuel oil. This is one reason for runs out of indonesia's oil supplies. This condition also affects in shipping sector because oil consumption is quite large as the fuel of ship. In addition, the occurrence fluctuations in the price of petroleum to make industry players go to use alternative fuels. safety record of LNG carriers is extremely good. Even though most of the principles remain the same, using LNG as fuel for conventional ships introduces new systems on board together with their associated risks. To located LNG tank also need many consideration for safety reason and economical aspect. In order to design, build and operate a gas-fuelled vessel in a safe and sustainable way, the risks will have to be thoroughly investigated and minimized. This thesis will analysis about risk and economical aspect of placement LNG tank inside and outside compartement.

Keyword : Dual Fuel, Passenger Ship, Fuel System, HAZOP, LNG, Risk Assesment, Economical Assesment

PENILAIAN RESIKO DAN EKONOMI PADA KAPAL PENUMPANG DENGAN MENGGUNAKAN MESIN DUAL FUEL

Nama	: Andika Candra Prabana		
NRP	: 04211441000018		
Departmen	: Double Degree Marine Engineering		
Supervisor 1	: A.A.B Dinariyana DP, S.T., MES, Ph.D		
Supervisor 2	: Dr. Dhimas Widhi Handani, S.T., M.Sc.		

Abstrak

Pada tahun 2016, Indonesia memiliki cadangan gas alam sebesar 144 TSCF (Trillion of Standard Cubic Feet) yang terdiri dari 101,2 cadangan gas terbukti TSCF dan 42,8 TSCF cadangan gas potensial. . LNG menawarkan keuntungan yang sangat besar, terutama untuk mematuhi peraturan IMO yang mengadopsi Lampiran VI revisi tentang Konvensi Internasional untuk Pencegahan Pencemaran dari kapal (MARPOL). Lampiran VI berisi peraturan untuk pencegahan pencemaran udara. Semua komponen industri, manufaktur, dan industri pelayaran di Indonesia sangat bergantung for bahan bakar minyak. Inilah salah satu alasan mahalnya pasokan minyak di indonesia. Kondisi ini juga berdampak for sektor pelayaran karena konsumsi minyak cukup besar seperti bahan bakar kapal. Selain itu, terjadinya fluktuasi harga minyak bumi membuat pelaku industri menggunakan bahan bakar alternatif. Meskipun sebagian besar prinsipnya tetap sama, menggunakan LNG sebagai bahan bakar untuk kapal konvensional memperkenalkan sistem baru di kapal beserta risiko yang terkait dengannya. Dalam peletakan tangki LNG membutuhkan banyak pertimbangan secara keamanan dan ekonomi. Dalam mendesain, membangun dan mengoperasikan kapal berbahan bakar gas dengan aman, maka resikonya harus bisa di invertigasi dan di perkecil. Thesis ini akan menganalisa aspek resiko dan ekonomi dalam peletakan tangki LNG di dalam dan diluar kompartemen tempat cargo

Keyword : Dual Fuel, Kapal Penumpang, Sistem Bahan Bakar, HAZOP, LNG, Analisa Resiko, Analisa Ekonomi

PREFACE

This bachelor thesis is a gift for Indonesia and to fulfill the requirement to obtain Bachelor Degree of Engineering in Department of Marine Engineering, Institut Teknologi Sepuluh Nopember and Hochschule Wismar.

The author is grateful to express gratitude for those who contribute and who give supports in accomplishing this bachelor thesis;

- 1. Author's parent and sister. (Budi Sarwono, Illa Ariyani, Adinda Lintang Pambayun)
- 2. A.A.B Dinariyana DP, S.T., MES, Ph.D and Dr. Dhimas Widhi Handani, S.T., M.Sc. as supervisor
- 3. All part who gave access to technical data, design, and recommendation.
- 4. All students in Double Degree Marine Engineering especially batch 2014.
- 5. Ramadhana as my best friend who always spent time in my hard time until i can standing here today.
- 6. Azka, Cide, Fatiya, Jujui, Mayong, Kemas, Riri, Wisnu. Thanks for all mock that you all give to me.
- 7. Every person who spent more than 2 hours with me at least once in a lifetime to discuss particular topic.
- 8. Whoever you are that ever come in my life and leave traces in my heart.

This thesis proves that your supports have a big role.

Surabaya, July 2018

LIST OF CONTENT

APPROV	/AL FORMv	1
DECLAI	RATION OF HONOUR in	Х
ABSTRA	ACTxii	i
ABSTRA	ΔΚΧΥ	V
PREFAC	Έxii	i
LIST OF	FIGURESxx	i
LIST OF	TABLESxxii	i
CHAPT	ER 1	1
1.1	Background	1
1.2	Research Limitation	4
1.3	Reseach Objectiveness	4
1.4	Research Benefit	4
CHAPT	ER 2	5
2.1	PT. PELNI	5
2.2	Research Before	б
2.3	Liqufied Natural Gas	7
2.4	Boil of Gas	8
2.5	Dual Fuel Concept	8
2.6	Regasification	0
2.7	Risk Assessment	3
2.8	Economical Analysis	9
CHAPT	ER 3	5
CHAPT	ER 42	1
4.1	Data Analysis	3
CHAPT	ER 5	9
5.1	Risk Analysis	9
5.2	Hazard Identification	9
5.3	HAZOP	9
5.4	Frequency Analysis4	7
5.5	Mitigation	б
CHAPT	ER 6	9
6.1	Economic Analysis	9
CHAPT	ER 7	9
7.1	Conclution	9
REFER	ENCE	1
		~
ATTACI	1MENT8	3

LIST OF FIGURE

Figure 1.1 Location of Indonesia Gas Production Center	1
Figure 1.2 Resource Energy in 5 years in Indonesia	2
Figure 1.3 Scenario Graph Feasibility KM. Gunung Dempo Variation Price LNG 3	
USD and HSD Rp 3.000/liter with Maintenance DF20% <diesel engine<="" td=""><td>3</td></diesel>	3
Figure 2.1 KM. GunungDempo	5
Figure 2.2 General Arrangement KM. Gunung Dempo	6
Figure 2. 3 step suction of Dual Fuel	9
Figure 2.4 Compresion Step of Dual Fuel	9
Figure 2.5 Combustion Steps	9
Figure 2.6 Dispose Step of Dual Fuel	9
Figure 2.7 Open Rack Vaporizer Flow Scheme	11
Figure 2.8 Submerged Combustion Vaporizers	11
Figure 2.9 Ambient Air Vaporizer	12
Figure 2.10 Glycol-Water Intermediate Fluid Vaporizer	.13
Figure 2.11 IFV LNG Vaporizer in Rankine Cycle	13
Figure 2.12 FTA Applications	17
Figure 2.13 ETA Applications	17
Figure 2.14 Aloha Software	18
Figure 4.1 KM. Gunung Dempo	23
Figure 42 General Arrangement KM. Gunung Dempo	24
Figure 4.3 LNG Fuel System	25
Figure 4.4 P&ID LNG tank inside and outside comparemet	26
Figure 5.1 LNG Fuel Gas System	40
Figure 5.2 FTA Storage System bore 1-3 mm	43
Figure 5.3 ETA for Storage Tank bore 1-3 mm.	43
Figure 5.4 Result of aloha simulation	44
Figure 5.5 Threat Zone Storage Tank bore 1-3 mm with Hazard Gas Dispersion	46
Figure 5.6 BLEEVE Bore 1-3 mm	56
Figure 5.7 Explosion Bore 1-3 mm	57
Figure 5.8 Flash Fire Bore 1-3 mm	58
Figure 5.9 Jet Fire Bore 1-3 mm5	59
Figure 5.10 Gas Dispersion Bore 1-3 mm	60
Figure 5.11 BLEEVE Bore 1-3 mm	51
Figure 5.12 Explosion Bore 1-3 mm	52
Figure 5.13 Flash Fire Bore 1-3 mm	53
Figure 5.14 Jet Fire Bore 1-3 mm	54
Figure 5.15 Gas Dispersion Bore 1-3 mm6	55
Figure 5.16 Gas Dispersion Bore 10-50 mm6	57
Figure 5.16 Gas Dispersion Bore 10-50 mm6	67

LIST OF TABLE

Table 1.2 Specification age of ship and DWT	1
Table 2.1 Information KM Gunung Dempo	5
Table 2.3 Thermo – physical properties of LNG.	7
Table 2.4 Classification of LNG	7
Table 2.5 Basic Guide Words and Meanings	15
Table 2.6 Guide Words relating to Clock Time and Order or Sequence	.15
Table 2.7 Example of HAZOP Assessment	16
Table 4.1 Information KM Gunung Dempo	.23
Table 4.2 Information Pilot Fuel Supply.	.29
Table 4.3 Information Main Fuel Supply	.30
Table 4.4 Information Fuel oil Separator	.31
Table 4.5 Information Separator Heater	.31
Table 4.6 Information Main MDO Cooler	.32
Table 4.8 LP pump	.33
Table 4.9 LP pump 2	34
Table 4.10 FW pump	.34
Table 4. 10 Exhaust gas economizer	.36
Table 4.11 BOG Compresor	.37
Table 5.1 HAZOP Guide Word	.42
Table 5.2 List of Abbreviations	.43
Table 5.3 HAZOP Node 1 Storage System	.44
Table 5.4 HAZOP node 2 Fuel System	.45
Table 5.5 HAZOP node 4 GVU System	46
Table 5.6 Component Leak Frequency Based on DNV GL	.47
Table 5.7 Gas Release Frequency Fuel Supply System	.48
Table 5.8 Gas Release Frequency Storage System	49
Table 5.9 Gas Release Frequency BOG System	49
Table 5.10 Gas Release Frequency GVU System	.49
Table 5.11 Flow Release and Ignition Probability Fuel System Gas Release	50
Table 5.12 Flow Release and Ignition Probability Storage System	.50
Table 5.13 Flow Release and Ignition Probability BOG system	51
Table 5.14 Flow Release and Ignition Probability GVU	51
Tabel 5.15 Ignition Probability	51
Tabel 5.16 Result ETA Storage System bore 1-3 mm	52
Tabel 5.17 Result of ALOHA	55
Table 5.18 BLEEVE Scenario bore 1-3 mm	56
Table 5.19 Explosion Bore Hole 1-3 mm.	57
Table 5.20 Scenario Flash Fire Bore 1-3	58
Table 5.21 Scenario Jet Fire Bore 1-3	.59
Table 5.22 Scenario Gas Dispersion Fire Bore 1-3	.60
Table 5.23 Scenario BLEEVE Fire Bore 1-3	.61
Table 5.24 Scenario Explosion Fire Bore 1-3	.62
Table 5.24 Scenario Flash Fire Bore 1-3	.63
Table 5.25 Scenario Jet Fire Bore 1-3	.64

Table 5.26 Scenario Gas Dispersion Bore 1-3	64
Table 5.27 LOPA Storage System Bore Hole 10-50 mm	65
Table 5.28 LOPA Storage System Bore Hole 10-50 mm after mitigated	68
Table 6.1 CAPEX KM. Gunung Dempo Conversion	70
Table 6.2 OPEX KM. Gunnung Dempo	72
Table 6.3 Revenue KM. Gunung Dempo	73
Table 6.4 Depresiation Table	73
Table 6.5 Tax Businnes Entity	74
Table 6.6 Economic Calculation	76
Table 6.7 Cash Flow	77
Table 6.8 NPV Calculation	78
Table 6.9 Net Cash Flow	79

CHAPTER 1 **INTRODUCTION**

I.1 Background

Indonesia has huge natural gas reserves and largest gas reserves in the Asia Pacific region (after Australia and the People's Republic of China), contributes 1.5% of the world's total gas reserves. (BP Statistical Review of World Energy 2015). The biggest ones are:

- 1. Blok Arun, Aceh Sumatera
- 2. Bontang, East Kalimantan
- 3. Tangguh, Papua
- 4. Natuna Island

Figure 1.1 Location of Indonesia Gas Production Center (source : http://www.indonesia-investments.com/id/bisnis/komoditas/gasalam/item184?)

Indonesia produces about twice amount of natural gas that consumed. In 2016, Indonesia has natural gas reserves of 144 TSCF (Trillion of Standard Cubic Feet) consisting of 101.2 TSCF proven gas reserves and 42.8 TSCF of potential gas reserves.

Year	Potential	Proven
2016	42,80	101,20
2015	53,34	97,99
2014	49,00	100,30
2013	48,90	101,50
2012	47,40	103,30

Table 1.1 Indonesia's Gas Reserves Last 5 Years

Figure 1.2 Resource Energy in 5 years in Indonesia (Source : <u>http://statistik.migas.esdm.go.id/index.php?r=cadanganGasBumi/index</u>)

LNG as a fuel is proven and available for commercial solution. One of the main reason that makes LNG become the preferable fuel is the lower price compared to Heavy Fuel Oil (HFO), Marine Diesel Oil (MDO) and Low Sulphur Heavy Fuel Oil (LSHFO). DNV GL was made fuel price scenario for the basic assumption. Starting year 2010 for the fuel price scenario is 650 \$/t (=15.3 \$/mmBTU) for HFO and 900 \$/t (=21.2 \$/mmBTU) for MGO. LNG is set at 13 \$/mmBTU which includes small-scale distribution costs of 4 \$/mmBTU. (leonardo,2017)

LNG offers huge advantages, especially to obey regulation of IMO adopted a revised Annex VI about International Convention for the Prevention of Pollution form ships (MARPOL) and Presidential Decree no.12 of 2012 on pollution prevention regulations air from the ship. Annex VI contains regulations for the prevention of air pollution. The main emission product from a diesel engine are NOx, SOx, CO2 and particulate matter (PM). These emissions can increasing the temperature on earth, affect the air quality, global warming and other health problems that can impact the environmental. The use of LNG as marine fuel is the proven solution and will contribute to a reduction of these emissions. These reductions will have significant environmental benefits such as improved local air quality, reduced acid rain and contribute to limit global warming.

Indonesian shipping industry has to take this challenge to adjust its vessels to comply with the regulation. Passenger ships operated by PELNI is still using high speed diesel (HSD) oil as their fuel. Although HSD produces less emission than the heavy fuel oil (HFO), its sulfur is found to be 0.25% m/m on the HSD oil that distributed in Indonesia. (Ariana,2017)

Last research compair passenger ships of PT. Pelni with dynamic analysis method. determinant variable is based on variables about OPEX (Operational Expenditure) and CAPEX (Capital Expendicture) variables.

No.	Ship	Age of Ship	DWT
1.	KM. Gunung Dempo	9 Year	4.018 Ton
2.	KM. Labobar	14 Year	3.482 Ton
3.	KM. Dobonsolo	24 Year	3.500 Ton

Table 1.2 Specification age of ship and DWT

Figure 1.3 Scenario Graph Feasibility KM. Gunung Dempo Variation Price LNG 3 USD and HSD Rp 3.000/liter with Maintenance DF20%<Diesel Engine

In all industrial components, manufacturing industry, and shipping industries in the world are highly dependent on fuel oil. This is the strongest reason for the deplection of world oil supplies. This condition also affects in shipping sector because oil consumption is quite large as the fuel of ship. In addition, the occurrence fluctuations in the price of petroleum to make industry players began to use alternative fuels. Some industry players have managed to commercialize engines into machines that can use 2 types of fuel or which can be called dual fuel by combining fuel oil and LNG.

The safety record of LNG carriers is extremely good. Even though most of the principles remain the same, using LNG as fuel for conventional ships introduces new systems on board together with their associated risks. To located LNG tank also need many consideration for safety reason and economical aspect. In order to design, build and operate a gas-fuelled vessel in a safe and sustainable way, these risks will have to be thoroughly investigated and minimised

1.2 STATEMENT OF PROBLEMS

Based on the description above statement problem of this thesis are:

- 1. How to design tank LNG inside and outside compartement for dual fuel system in passenger ship?
- 2. Which is more economically profitable for location of LNG tanks inside and outside compartement?
- 3. What are risks and failures that can be generate for LNG tank inside and outside compartement on fuel system that uses natural gas?

1.3 RESEARCH LIMITATION

- 1. The ship that will be design is KM Gunung Dempo whiches especially in fuel system with LNG tank inside and outside compartement.
- 2. Data that are not listed in detail, such as P&ID, will be assumed to follow project guide from the machine manufacture and class regulation which used by ship.
- 3. The feasibility economic analysis only focuses on the most profitable design LNG tank.

1.4 RESEARCH OBJECTIVES

The objectives of this thesis are:

- 1. To design LNG tank inside and outside compartement of KM Gunung Dempo.
- 2. To Analysis economical aspect on comparing profit of LNG tank inside and outside compartement.
- 3. To risk assessment on the fuel system that uses natural gas as fuel.
- 4. To propose mitigation if risk is not acceptable.

1.5 RESEARCH BENEFITS

The final result of this thesis is Design alternative fuel system inside and outside LNG tank of KM Gunung Dempo based in risk assessment and economic analysis.

CHAPTER II BASIC THEORY

2.1 PT. Pelayaran Nasional Indonesia (PELNI)

PT. Pelayaran Nasional Indonesia (PT PELNI) is a national shipping company providing marine transportation services, passenger and inter-island freight services. The ship that was used as design for P&ID design of Fuel system using Dual Fuel Diesel Engine is KM Gunung Dempo.

Figure 2. 1 KM. GunungDempo (Sumber:www.marinetraffic.com/en/ais/details/ships/vessel:GUNUNG_DEMP)

Ship Name	KM. Gunung Dempo			
Dock Building	Jos L. Mayer, Papaenburg,			
	Germany			
Year Built	2008			
IMO Number	9401324			
Call Sign	YBMG			
Туре	2000 Pax			
Loa	147,00 m			
Lpp	130,00 m			
Breadth	23,40 m			
Draught	5,90 m			
Gros Tonnage	14,017 GT			
DWT	4.018 Ton			
Service Speed	17 Knot			
Main Engine	2 Unit MAK Catterpillar 6M43			
	Spec 6000 KW/ 500 Rpm			
Auxilliary Engine	4 Unit Yanmar 6N21L-EV			
	Spec. 750 KW/ 750 Rpm			

Table2. 1 Information KM Gunung Dempo

Figure 2. 2 General Arrangement KM. Gunung Dempo

2.2 The Feasibility Study for Determining Age of Passenger Ship Conversion Into a Dual Fuel Engine Diesel Engine with System Dynamics Method

In the study of feasibility studies on determining the life of passenger ships can be known that the variable - the determinant variable is based on variables about OPEX (Operational Expenditure) and CAPEX (Capital Expendicture) variables. On OPEX and CAPEX will affect the Potential Cummulative Profit that determines the eligibility of the vessel. Operational Expendicture variable consist of variable of Fuel, Lubricant variable, maintenance cost variable, overhaul variable and weight difference variable. While at variable of Capital Expendicture consist of docking cost variable, LNG tank cost variable and variable purchase cost of dual fuel engine based on power used. The most influential cost effect is on the difference in the cost of LNG fuel and the cost of fuel oil. At the cost of fuel is very influential in the change of determination of eligibility.

Modeling on determining the life of passenger ships is illustrated through causal loop diagram which is a big picture modeling that will be done in more detail through the model image on each variable.

2.3 Liquified Natural Gases

Liquified natural gas is a liquid substance, a mixture of light hydrocarbons primarily composed of methane (CH₄, 85-98% by volume), with smaller quantities of ethane (C₂H₆), propane (C₃H₈), higher hydrocarbons (C4+) and nitrogen as an inert component. The composition of LNG depends on the traits of the natural gas source and treatment of gas at the liquefaction facility. It can also vary with storage conditions and customer requirements (Benito, 2009; British Petrol and International Gas Union, 2011). LNG producers determine the quality of their LNG based on composition of field gas and more importantly, market demand. Liquefied natural gas is a colourless, odourless, non-corrosive and non-toxic liquid, lighter than water. Typical thermo-physical properties of LNG are presented in Table 2.3.

Parameter	Value	
	-160°C do -	
Boiling point	162°C	
Molecular		
weight	16–19 g/mol	
Density	425 - 485 kg/m ³	
Specific heat	2,2-3,7	
capacity	kJ/kg/°C	
	0,11 - 0,18	
Viscosity	mPa•s	
Higher heat		
value	38 - 44 MJ/m ³	

Table 2.3 Thermo - physical properties of LNG

Composition	LNG	LNG	LNG
(%)	Light	Medium	Heavy
Methane	98.00	92.00	87.00
Propane	1.40	6.00	9.50
Propane	0.40	1.00	2.50
Butane	0.1	0.00	0.50
Nitrogen	0.10	1.00	0.50
Density			
(kg/m3)	427.74	445.69	464.83

Table 2.4	Classification	of LNG
-----------	----------------	--------

LNG may be classified in accordance with several criteria: Density, Heat Value, Methane or Nitrogen amount, etc. The parameter most commonly used for classification is density. Accordingly, we differentiate between heavy, medium or light LNG's. The typical composition and density of three typical LNG qualities are depicted in Table 2.3.

The produced LNG is stored in cryogenic tanks below the boiling point at the pressure of 0.05-0.2 bar until an LNG tanker arrives to transport product. Upon the arrival of tanker, LNG from storage tank is loaded from the loading plant into LNG tanker, which will transport gas to the receiving terminal. For safety reasons, storage tanks at loading and receiving terminals in which liquefied gas is stored usually consist of two tanks designed to be fully loaded. The inside of the container in which liquefied gas is stored usually made of stainless steel resistant to low temperatures. The outer tank is made of pre-stressed concrete and designed to fully contain LNG in case of spillage and fully loaded in the event of damage to inner tank. Apart from safety aspects, LNG tanks are also designed to minimise ingress of heat into tanks to prevent the boiling (evaporation) of a fraction of the LNG. The usual tank volumes range from 80.000 to 160.000 m.

2.4 Boil of Gas

Liquefied natural gas is stored and transported in a tank with a cryogenic material (liquid brittle), as a liquid at a temperature below the boiling point. As with other liquids, LNG (Liquefied Natural Gas) evaporates at temperatures above its boiling point by producing BOG (Boil Off Gas). The formation of BOG with the inclusion of heat into the LNG tank during storage, delivery and loading and unloading operations and also by the existence of sloshing or movement on the ship while sailing. The number of BOGs depends on the design and operational conditions of LNG tank usage. An increase in the number of BOGs can increase the pressure in the LNG tank. Given the increased pressure in the tank it can be bad condition to excess pressure and there may be an explosion. Therefore there is a need for maintenance to maintain the BOG with a certain amount. In the LNG supply chain, BOGs can be safely guarded in a way that can be utilized for fuel or re-melted into liquid by descending. (Dobrota Dorde, 2013)

2.5 Dual Fuel Engine Concept

In this research with comparison of machining system which in pure air Engine gas which is inhaled will be mixed with LNG gas so that only LNG gas is needed for explosion. Operation with gas mode This engine can reduce nitrogen oxide (NOx) emissions approaching 85%. In addition, when operating with natural gas and low sulfur fuel, gas - fueled diesel motors produce SOx levels almost zero. (ABS, 2014). The working principle on gas Engine is actually not much different from conventional engine working system (diesel engine). Gas Engine currently mostly uses 4 steps, namely (Eribson, 2016):

a. Suction Step

At this step, the air is mixed with the gas before the inlet valve and the mixture is compressed into the combustion chamber during the compressing phase. At the time of this suction step, the gas will also be atomized into the combustion chamber

Figure 2. 3 step suction of Dual Fuel Figure 2. 4 Compresion Step of Dual Fuel (Sumber: https://www.youtube.com/watch?v=6oj3_fO-_L8&t=142s)

b. Compression Step

The compression step of the piston moves from the TMB (bottom dead point) to the TMA (the top dead point). The inlet and outlet valve positions are closed so that air or gas in the combustion chamber is compressed shortly before the piston reaches the TMA position (top dead point). The purpose of this compression step is to increase the temperature so that the mixture of air and gas fuel (LNG) can collaborate.

c. Burning Steps

This step begins by turning on the spark plug which causes the burning of fuel (a mixture of air and fuel gas LNG). The combustion process will cause an explosion that will push the piston down (crankshaft).

Figure 2.5 Combustion Steps Figure 2.6 Dispose Step of Dual Fuel (Sumber: https://www.youtube.com/watch?v=6oj3_fO-_L8&t=142s)

d. Dispose Step

In this step the piston will move up to TMA and push the exhaust gas out through the open exhaust valve. At the end of the fresh air exhaust step and the gas fuel mix (LNG), it will enter and push the remaining exhaust gas out and the next work process will begin. In this step, the exhaust valve opens and the inlet valve is closed.

Utilization of Diesel Engine as main engine in the vessel due to high thermal efficiency achieved (up to 48%) and the low emission of NOx (up to 3 Kg / kWh). Dual Fuel Diesel Engine (DFDE) utilizes gas as fuel based on the concept of otto cycle and diesel oil based on the concept of diesel - cycle. Gas fuel used here as main fuel, while diesel oil is used as a pilot fuel (fuel at the beginning of diesel engine operation). Utilization of this type of diesel engine as marine application becomes better considering

low gas supply pressure needed (about 5 bar) and excellent safety characteristics. This type of diesel can not be categorized as a gas engine that only uses gas as a fuel for diesel. Furthermore, this application allows LNG vessel to operate even when the ship does not carry cargo at all. (Soegiono & Artana, 2006)

Since dual-fuel uses two type of fuel which is gas fuel and liquid fuel, in this case marine diesel fuel (MDO) and liquefied natural gas (LNG), a storage for those fuel is required. To calculate the requirement of the storage, we could use engine project guide specific fuel oil consumption to determine the liquid fuel volume requirement;

$$Vmdo = \frac{SFOC\left[\frac{g}{kWh}\right] \times Load[kW] \times Time[h]}{\rho \times 1000}$$

To calculate the NG volume required;

NG consumption $[kJ] = SFOC\left[\frac{kJ}{kWh}\right] \times Load\left[kW\right] \times Time\left[h\right]$

In the equation 4, we could see that the calculation output is in kilojoule and needs to be converted to volume unit. Based on Alberta Energy website, 1 gigajoule [GJ] of natural gas is equal with 26.84 cubic meters $[m^3]$ of natural gas.

 $Vng [m^3] = NG \ consumption [k] \times 26.84 \times 10^{-6}$

The natural gas volume may be reduced $\frac{1}{600th}$ or 0.001667 from its original volume by liquefying the natural gas, then to convert the natural gas volume to liquefied natural gas volume we could use Equation 6;

 $Vlng \ [m^3] = Vng \ [m^3] \times 0.001667$ (Source: DOE Office of Fossil Energy) Or using a table from Natural Gas Conversion Guide, International Gas Union (IGU) $1 \ ft^3 = 1055 \ kJ$

Therefore, the specific storage volume can be calculated by determining how long the engine will work and the load the engine needs to be produced. After the volume is calculated, the other equipment like heater, insulation, pump, etc can be determined too.

2.6 Regasification

caused by seawater.

To utilize LNG, the LNG must be converted to gas form by heating up the LNG from -161° C back to natural gas at atmospheric temperature. There are several methods to regasification, the LNG user can use according to LNG Vaporizer Selection Based on Site Ambient Condition Article (Patel, 2013) such as; 2.6.1 Open Rack Vaporizer (ORV)

Open rack vaporizer (ORV) is a vaporizer which uses seawater as its heat source. The heat is distributed to LNG using heat exchanger. An ORV is usually constructed with a material that is able to work in extremely cold environment like aluminium alloy. For the seawater pipe, ORV panels are coated with zinc alloy to increase corrosion protection

For large ORV plant, there are several considerations like seawater chemical content, seawater particles (e.g. sand, suspended solids) which have potential to damage the pipe, chlorination to slow down the marine growth, temperature, backup system, and environmental impact.

Figure 2.7 Open Rack Vaporizer Flow Scheme¹

2.6.2 Submerged Combustion Vaporizers (SCV)

Submerged combustion vaporizer uses fuel gas combustion as heat sources and is usually used during winter times, fuel gas for SCV methods usually come from the LNG storage boil-off gas due to high cost of fuel.

In SCV method, LNG flows through stainless steel tube coil submerged in a water tank. The water tank is heated by hot-flue gas from submerged gas burner. The heat from the gas burner is transferred by water to the stainless steel tube coil. Due to its combustion process, SCV submerged inside the water baths is vulnerable to corrosion by acid as the combustion gas products (CO₂) that are condensed in the water.

Figure 2.8 Submerged Combustion Vaporizers²

2.6.3 Ambient Air Vaporizers (AAV)

Ambient air vaporizer uses air as its heat source, air is a free and permit-free heat source, unlike SCVs which produce greenhouse gases and ORV which may damage the environment.

Direct ambient air vaporizer uses vertical heat exchanger where the LNG pipes is exposed to an open air. Due to low heat transfer, AAV is usually used in smaller terminals and requires more vaporizers to achieve the same performance level with other regasification methods. In this method, air is flowing from the upper side of the heat exchanger and flowing to the downside of the heat exchanger due to its increasing density as the decreasing air temperature.

AAV methods require monitoring every 4-8 hours to clean the ice build-up on the LNG pipes, the ice build-up occurs because of the extreme temperature difference and creates a condensation process, then condenses water frosted. The performance of AAV is highly depending on the environment such as temperature, relative humidity, altitude, wind, solar radiation and its structure.

Figure 2.9 Ambient Air Vaporizer³

2.6.4 Intermediate Fluid Vaporizers (IFV)

An intermediate fluid vaporizer uses heat transfer fluid (HTF) in a closed loop to vaporize the LNG, there are several types of heat transfer fluid which can be utilized in this regasification method like Glycol-Water, Hydrocarbon Based Fluid, and Hot Water. 2.7.4.1 Glycol-Water Intermediate Fluid Vaporizer

This IFV method uses ethylene glycol or propylene glycol as heat transfer media. The intermediate fluid flows in shell and tube exchanger where warm glycol-water flows to the vaporizer to reject its heat.

To warm the glycol-water, several heat sources may be used like air heater, reverse cooling tower, seawater heater, and waste heat recovery system.

Figure 2.10 Glycol-Water Intermediate Fluid Vaporizer⁴

2.6.4.2 Intermediate Fluid (Hydrocarbon) in Rankine Cycle

In intermediate fluid vaporizer which uses hydrocarbon as heat transfer media, propane, butane or other hydrocarbon refrigerant may be used as heat transfer fluid (HTF).

This type of vaporizer uses 2 stage heat exchangers where the first stage, the LNG is heated partially using the propane, and the second heat exchanger is heated using seawater to heat the LNG. This method reduces the amount of seawater used in ORV method and avoids sea water freezing since the seawater is exposed to the LNG at the second stage.

Figure 2.11 IFV LNG Vaporizer in Rankine Cycle⁵

2.7 Gas Valve Unit

The main function of gas valve unit (GVU) is to regulate the flow of natural gas to the engine. The other function of GVU is to ease the process of shutdown of the gas supply. Based on International Code of Safety for Ships Using Gas Fuels (IGF Code) statement that every gas-consuming equipment needs to be provided with aset of "double block and bleed" valves.

Double block and bleed valves are a valve consisting of two quick acting closing valves and a vent valves between the quick acting closing valves. The block valves are arranged in series to create a redundant system as written in The Wartsila Gas Valve Unit Enclosed Design for Marine Application Publication (Karlsson, 2013).

2.8 Risk assessment

Risk assessment can be facilitated through several formal techniques. These different methods may contain similar approaches to answer the basic risk assessment questions; however, some techniques may be more appropriate than others for risk analysis depending on the situation.

Risk assessment techniques develop processes for identifying risk that can assist in decision making about the system. The logic of modeling the interaction of a system's components can be divided into two general categories: induction and deduction.

Induction provides the reasoning of a general conclusion from individual cases. Inductive analysis answers the question, "what are the system state(s) due to some event?" In reliability and risk studies this "event" is often some fault in the system. Deductive approaches provide reasoning for a specific conclusion from general conditions. This technique attempts to identify what modes of a system/ subsystem/component failure can be used to contribute to the failure of the system. Deductive logic answers the question, "how can a system state occur?". (Wilcox, Burrows, Ghosh, & Ayyub, 2000)

2.8.1 Hazop Method

Hazard and Operability or HAZOP is an analysis technique which used to exam safety factor on new system or modification to knowing the potential failure on their operability. The HAZOP study should preferably be carried out as early in the design phase as possible - to have influence on the design.

HAZOP studies may also be used more extensively, including:

- At the initial concept stage when design drawings are available.
- When the final piping and instrumentation diagrams (P&ID) are available.
- During construction and installation to ensure that recommendations are implemented.
- During commissioning.
- During operation to ensure that plant emergency and operating procedures are regularly reviewed and updated as required/

The basis of HAZOP is a "guide word examination" which is a deliberate search for deviations from the design intent. To facilitate the examination, a system is divided into parts in such a way that the design intent for each part can be adequately defined. The size of the part chosen is likely to depend on the complexity of the system and the severity of the hazard. In complex systems or those which present a high hazard the parts are likely to be small.

The design intent for a given part of a system is expressed in terms of elements which convey the essential features of the part and which represent natural divisions of the part. The selection of elements to be examined is to some extent a subjective decision in that there may be several combinations which will achieve the required purpose and the choice may also depend upon the particular application. Elements may be discrete steps or stages in a procedure, individual signals and equipment items in a control system, equipment or components in a process or electronic system, etc.

The identification of deviations from the design intent is achieved by a questioning process using predetermined "guide words". The role of the guide word is to stimulate imaginative thinking, to focus the study and elicit ideas and discussion, thereby maximizing the chances of study completeness.

Guide Word	Meaning
NO or NOT	Complete negation of the design intent
MORE	Quantitative increase
LESS	Quantitative decrease
AS WELL AS	Qualitative modification/ increase
PART OF	Qualitative modification/ decrease
REVERSE	Logical opposite of the design intent
OTHER THAN	Complete substitution

Table 2.5 Basic Guide Words and Meanings

Table 2.6 Guide Words relating to Clock Time and Order or Sequence

Guide Word	Meaning
EARLY	Relative to the clock time
LATE	Relative to the clock time
BEFORE	Relating to order and sequence
AFTER	Relating to order and sequence

Some examples of combinations of guide-words and parameters:

• NO FLOW

Wrong flow path - blockage - incorrect slip plate – incorrectly fitted return valve - burst pipe - large leak - equipment failure- incorrect pressure differential - isolation in error.

• MORE FLOW

Increase pumping capacity - increased suction pressure - reduced delivery head - greater fluid density - exchanger tube leaks - cross connection of systems - control faults.

The technical process of HAZOP assessment is to list the critical coponents that lead into potential hazard and what kind of guide words to lead into the deviations as seen in Table 2.2 is the typical british standard form that will be used in this thesis.

STUDY TITLE: PROCESS EXAMPLE SHEET: 1 of 4										
Draw	ing No.:		REV. No.: DATE: December 17, 1998							
TEAN	COMPOSITI	ON:	LB, DH, EK, NE, MG, JK MEETING DATE: December 15, 1998					5, 1998		
PART	CONSIDERE	D:	Transfer line from supply tank A to reactor							
DESI	GN INTENT:		Material: A	I: A Activity: Transfer continuously at a rate greater than B						
			Source: Tank for A	Destination	Reactor					
No.	Guide word	Element	Deviation	Possible causes	Consequences	Safeguards	Co	mments	Actions required	Action allocated to
1	NO	Material A	No Material A	Supply Tank A is empty	No flow of A into reactor Explosion	None shown	Situatio	on not able	Consider installation on tank A of a low-level alarm plus a low/low-level trip to stop pump B	MG
2	NO	Transfer A (at a rate >B)	No transfer of A takes place	Pump A stopped, line blocked	Explosion	None shown	Situatio accepta	on not able	Measurement of flow rate for material A plus a low flow alarm and a low flow which trips pump B	JK
3	MORE	Material A	More material A: supply tank over full	Filling of tank from tanker when insufficient capacity exists	Tank will overflow into bounded area	None shown	Remark have be identifie examin tank	k: This would een ed during ation of the	Consider high-level alarm if not previously identified	EK

Table 2.7 Example of HAZOP Assessment

2.8.2 Fault Tree Analysis (FTA)

Figure 2.12 FTA Applications

Fault Tree Analysis (FTA) is a method to determining cause of specific top event incident that caused by several basics cause, using logical Figure depiction that called Bolean Logic Gate. The fault tree is a Figureal model that displays the various combinations of equipment failures and human errors that can result in the main system failure of interest (called the Top event). The purpose of an FTA is to identify combinations of equipment failures and human errors that can result in an accident.

2.8.3 Event Tree Analysis (ETA)

Event Tree Analysis is a method to predict the posible outcomes by showing it into graphs that show the probability of various scenarios and the consequences. The results of the Event Tree Analysis are accident sequences; that is, sets of failures or errors that lead to an accident.

2.8.4 Consequences Modelling Using Process Hazard Analysis Software Tools

Consequences modelling is one of the method to numerical and computational based modelling to predict what an accident can affect and what its physical outcome to surrounding, and also show what its potential impact to people, assets or safety function. There are several approaching method to do consequences modelling they are: release approach, dispersion in air and water approach, fire and thermal radiation, explosion approach, smoke and gas ingress approach, and toxicity approach. All the approaches are making consequences modelling has a lot of aspect to explore, but also for the same reason the various approach that exist make it are quite hard to cover all the approach in one hit. It makes the tools (e.g. Software) to do an approach is have their own boundaries/limits to calculation. For example for certain software which concerning about thermal and radiation approach are cannot to be used in smoke or toxicity approach. This limitation make the approach to overcome an event are have to be specifically determined and chosen to do such an analysis.

Process Hazard Analysis Software Tools is one of most comprehensive hazard analysis software for all stages including process industry, design, and operation will be very comply with the problem above, since Process Hazard Analysis Software Tools is can analyze the present potential hazard that may occur accurately and also provide clear illustration of the outcomes that may results from the modelling process. Process Hazard Analysis Software Tools is also in compliance with the safety regulations that is strictly monitored in oil and gas industry.

2.8.5 ALOHA

ALOHA is a software that use to make plan and respon hazard condition from chemical substance, for example methane. This software can detect threat zone from hazard. ALOHA simulate hazard potency from toxic vapour, BLEEVE, pool fire, and vapour cloud expansions.

Figure 2.14 Aloha Software

Red zone is the worst area, yellow zone and orange zone show decresing of hazard.

2.8.6 Risk Evaluation

Risk Evaluation can do by many way, for example by risk matrix, F-N cuve, risk profile and etc. Some of them can chose for risk evaluation.

2.8.7 F-N Curve

F-N curve is a method risk representative which form of Figure.

Figure 2.15 F-N Curve ACDS Tolerability of Transport Risk Framework (DNV, 2013)

Figure 2.15 above is a F-N Curve owned by Advisory Committee on Dangerous Substances (ACDS). Where the x-axis axis shows a representation of death rate. While y-axix strategy shows frequency of hazards that appear within a year. The F-N Standard Curve is chosen because it can be applied to special transport areas for the transport of dangerous goods.

2.8.8 Layer Of Protection (LOPA)

LOPA is a method that used to perform risk mitigation. Risk mitigation is an action to reduce value of frequency or value of consequences an unacceptable or tolerant risk. Risk mitigation using LOPA there are several ways that can be done such as adding components to process diagram in order to reduce frequency of risk or in other words provide redundancy on the system. Addition of safety components such as relief valve, safety valve, and others. Provide independent protection or so-called independent protection layer (IPL) such as gas detector, flamebale detector, smoke detector, pressure alarm, temperature and others.

In this study will be used addition of IPL to reduce the frequency value if risk is not acceptable. The value of IPL frequency is obtained from Geun Woong Yun's thesis entitled "Bayesian-LOPA methodology For Risk Assessment Of An LNG Importation Terminal". (Geun Woong Yun)

2.9 Economical Analysis

Economical study is feasibility of investing whether conversion made a favorable outcome or not. Some of techniques used in this economic assessment are Net Present Value (NPV), Internal Rate Return (IRR) and to know return period of an investment using Payback.

2.9.1 Net Present Value

Net Present Value (NPV) is a method of assessment an investment that will be done by focusing on present value (Present Value) and expenditure will be compared with present value (Present Value) income / acceptance. NPV shows the net benefits received from a given business period at a certain discount rate rate. Often the term discount rate is also called the Minimum Attractive Rate of Return (MARR).

If t NPV value is more than 0, the investment can be said profitable. If NPV value is equal to 0, it can be said that the investment can be returned exactly the same. But if NPV is less than 0, then project is said not to do.

2.9.2 Internal Rate Return

IRR is used to calculate the interest rate at the NPV value is equal to 0. The IRR is useful to know the interest rate of some fixed investments giving profit.

2.9.3 Payback Period

Payback Periods is period required to recover all costs incurred in the investment of a project.

2.9.4 Feasibility of Conversion Project

Financial feasibility of a ship project can be determined by determining what parameters used as a reference in assessing project feasible to run or not. A common term used in assessing financial feasibility of a project is with a feasibility study. Project feasibility study steps from financial aspect is first to prepare project cash flow by determining CAPEX and OPEX of a project, where CAPEX is initial investment of a project and amount of CAPEX is the amount of operational costs incurred in a project. OPEX includes operational costs, shipping costs or voyage costs as well as cash flow terminals, for further explanation will be explained in explanation below. (Soeharto, 2001)

2.9.5 Cash Flow

Cash flow during age of vessel investment is a model to be analyzed in order to assess the financial feasibility. Broadly speaking, cash flow is divided into three main sections, namely initial cash flow, operational cash flow and cash flow terminal. A more detailed explanation of t parts of cash flow arrangement is as follows (Stopford, 2009):

A. Capital Expenditure

The initial cash flow will involve Capital Expenditure calculations (CAPEX), costs to be incurred for investment, interest (interest) and project costs. One of the considerations is from where the vessel's investment capital is obtained, whether by own capital or loan. Surely this will affect the financial sustainability of the project forward.

B. Operational Expendicture

In the operating cash flow will be taken into account the cash inflows from income and cash flow out of opperating expenditure (OPEX) as well as taxes. Revenue will be highly dependent on load capacity, productivity and freight rate. While operating expenditure (OPEX) that is borne by ship owner will be related to ship charter type. Charges for voyage charter types include operational costs and voyage costs.

CHAPTER 3 RESEARCH METHODOLOGY

In order to solve the problem above, that will be used dataanalysis from literatures.

1. Statement of Problems

Identifying the problems is to determine what problem formulation to be taken. Formulation of the problem is an early stage in the implementation of the final project. This stage is a very important stage, which at this stage is why there is a problem that must be solved so worthy to be used as ingredients in the final work. Problem formulation is done by digging information about problems that occur at this time. From this stage, the purpose of why this thesis done is knowable. In this thesis, the problem to be addressed in conceptual of dual fuel engine and risk assessment.

2. Literatur Review

Once a problem is already known, the next step is to collect reference materials related to the final project from any resources. The references of this thesis are received from books, journals, thesis report, and informations from internet.

3. Data Collection

To support the thesis, we need to collect some data such as: ship size, engine data, lng data, and other data. The collected data shall cover general plan drawings.

4. Design of Dual Fuel System

The data that have we collect, then we draw in autocad. The design in here is kind of conceptual design.

5. Economical Analysis

The methods for analysis the profit of each design of inside and outside LNG Tank. The analysis using method of benefit cost analysis

6. Hazard Identification

Potential cause of failure describes how a processfailure could occur, in terms of something that can be controlled or correccted. The goal is to describes direct relationship that exist between cause and resulting process failure mode.

7. Frequency Analysis and Concequence Analysis

Analysis of the data in order to determine thelevels of risk. By using FTA for frequency analysis and ALOHA for concequence analysis

8. Risk Representation

This stage willbe determined whether the risk are acceptableor not, the decision are made based on risk matrix

9. Mitigation

Make conclution based on the result obtained and sugestion for further research development

CHAPTER 4 DATA ANALYSIS AND FINDINGS

4.1 Data Analysis

On this chapter will be discussed further on about all data that required. Analyze data will be appropriated to the scope of problems which had determined.

4.1.1 Ships data

The ship that was used as design for P&ID design of Fuel system using Dual Fuel Diesel Engine is KM Gunung Dempo.

Figure 4. 1 KM. Gunung Dempo

(Sumber:www.marinetraffic.com/en/ais/details/ships/vessel:GUNUNG_DEMP)

Table4. T Information KW Ounding Dempo				
Ship Name	KM. Gunung Dempo			
Dock Building	Jos L. Mayer, Papaenburg,			
	Germany			
Year Built	2008			
IMO Number	9401324			
Call Sign	YBMG			
Туре	2000 Pax			
Loa	147,00 m			
Lpp	130,00 m			
Breadth	23,40 m			
Draught	5,90 m			
Gros Tonnage	14,017 GT			
DWT	4.018 Ton			
Service Speed	17 Knot			
Main Engine	2 Unit MAK Catterpillar 6M43			
	Spec 6000 KW/ 500 Rpm			
Auxilliary Engine	4 Unit Yanmar 6N21L-EV			
	Spec. 750 KW/ 750 Rpm			

Figure 4. 2 General Arrangement KM. Gunung Dempo

4 P&ID

To convert fuel system to be dual fuel engine needs P&ID design of fuel system in KM. Gunung Dempo that consist :

- P&ID of Gas Storage and Supply System
- □ P&ID of lng tank inside and outside compartment

Figure 4.3 LNG Fuel System

Figure 4.4 P&ID LNG tank inside and outside comparemet

From the figure design of P&ID above explain about how gas fuel can generate to main engine which through Vaporizing process. First step LNG will transfer from LNG bunkering with manifold in compartement LNG tank. After transfer finish, boil of gas from LNG tank will transfer with compresor to GVU before enter engine. LNG with form of liquid will pump to regasification process with vaporizer, then enter in GVU system before enter engine. All LNG must be form of gas when enter in engine.

4.1.2 Fuel System

The system that has been designed need calculation for chosing component of fuel system. Fuel supply system is a designed system to match the requirement of the engine when operated at specific load. In this design, the calculations are done for static load which is the daily average load.

The gas fuel supply system process begins at the LNG storage where the natural gas is in liquid phase. The LNG will be transported to the vaporizer using low pressure pump while the boil-off gas inside the storage will be compressed to the main gas fuel lines or to the gas combustion unit. The LNG inside vaporizer will be heated by temperatureregulated fresh water, in the outlet of vaporizer, natural gas will have phase changed from liquid into gas phase.

The natural gas from the vaporizer will be received by the engine's gas-valve unit located on the main deck, near the engines. Where every connection in the open spaces will use a double pipe flow line.

All calculation to determine the requirement for fuel supply system is below.

4.1.2.1 Calculation Liquid Fuel Oil

1. CALCULATION OF FUEL OIL'S WEIGHT

- Pilot Fuel

To calculate the fuel oil's weight, we could use basic formula; $W MDO = BHP_{mcr} \times SFOC \times Endurance \times 10^{-6} [ton]$

Where; BHP = 6300 SFOC = 2,2 g/(kw - h) MDO as a pilot fuel Endurance = 282 hours or 13 days

Therefore, the result of the calculation is: $W MDO = 6300 \times 179,5 \times 282 \times 10^{-6}$ [ton] W MDO = 318,9 [ton]

2. CALCULATION OF FUEL OIL STORAGE VOLUME

To calculate the fuel oil's volume, we could use the formula of density; $V_{storage} = WMDO \times 1,05/\rho MDO$

Where; WMDO = 318,9 [ton] $\rho MDO = 0.89 [ton/m^3]$ margin for sludge = 1,05

Therefore, the result of the calculation is: $V_{storage} = 318.9 \times 1.05 / 0.89$ $V_{storage} = 376.2 \ [m^3]$

3. CALCULATION OF PILOT FUEL SUPPLY PUMP

Pilot fuel supply pump is the pump required to supply the pilot fuel system. The pilot fuel supply system will be operated frequently compared to the main fuel supply pump due to dual-fuel mode. The formula to calculate supply pump is using the provided formula in MAN 51/60 Project Guide P. 370

- Cluster 1

 $Qp = P_1 \times br_{ISO1} \times f_3$

Where;

 $P_1 = 6300 \ kW \ (system \ output \ at \ 100\% \ MCR)$

 $br_{ISO1} = 1.8 g/(kw - h)$ (SFOC at 100% MCR)

 $f_3 = 0,00375 \ l/g$

Therefore the result of the calculation is; $Qp = 6300 \times 1.8 \times 0.00375$

 $Qp = 47 \ l/_{h}$

- **Cluster 2**
$$Qp = P_1 \times br_{ISO1} \times f_3$$

Where;

 $P_1 = 6300kW$ (system output at 100% MCR) $br_{ISO1} = 1.8 g/(kw - h)$ (SFOC at 100% MCR)

$$f_3 = 0,00375 \ l/g$$

Therefore the result of the calculation is;

$$Qp = 6300 \times 1.8 \times 0.00375$$

 $Qp = 47 l/h$

Pilot Fuel Supply Pump (Cluster 1,2,3)			
Manufacturer		IMO Pump	
Туре		3E 87P	
Q	^{m³} / _h	0,591	
Head	Bar	10	
Rotation	RPM	2850	
Weight	Kg	35	

Table 4. 2 Information Dilat Eval Sum

4. CALCULATION OF MAIN FUEL SUPPLY PUMP

Main fuel supply pump is required pump to supply the engine fuel system. As engine is dual fuel, it should be able to be operated even using MDO only. The formula to calculate the supply pump is using the provided formula in MAN 51/60 Project Guide P. 329

Cluster 1 _

 $Qp = P_1 \times br_{ISO1} \times f_3$ Where: $P_1 = 6300 \, kW \, (system \, output \, at \, 100\% \, MCR)$ $br_{ISO1} = 178,1 g/(kw - h)$ (SFOC at 100% MCR) $f_3 = 0,00375 \ l/a$

Therefore the result of the calculation is; $Qp = 36000 \times 178, 1 \times 0,00375$ Qp = 48087 l/h

Cluster 2 _

```
Qp = P_1 \times br_{ISO1} \times f_3
```

Where: $P_1 = 6300 \ kW \ (system \ output \ at \ 100\% \ MCR)$ $br_{ISO1} = 178,1 g/(kw - h)$ (SFOC at 100% MCR) $f_3 = 0,00375 \ l/a$

Therefore the result of the calculation is; $Qp = 36000 \times 178, 1 \times 0,00375$ Qp = 48087 l/h

Main Fuel Supply Pump (Cluster 1,2,3)			
Manufacturer		IMO Pump	
Туре		3D 275E	
Q	$m^3/_h$	51	
Head	bar	10	
Rotation	RPM	3500	
Weight ⁽¹⁾	Kg	162	

Table 4 3 Information Main Fuel Supply

5. CALCULATION OF SERVICE TANK CAPACITY

MDO Service Tank Capacity can be calculated by formula provided by MAN 51/60 Project Guide. The Q_p value that will be used is Q_p of pilot fuel supply pump because the system design was for dual-fuel mode and there is no scenario for liquid-mode only except during low load.

 $V_{MDST} = Q_p \times t_o \times m_s / (3 \times 1000)$

Where:

 $Q_p = 1890 [l/h]$ (3 supply pump for cluster 1,2, and 3, and 1-

- supply pump for cluster 4)

 $t_{o} = 8 [h]$ $m_{\rm s} = 1.05$

Therefore, the result of the calculation is: $V_{MDST} = 1890 \times 8 \times 1.05 / (3 \times 1000)$ $Q_n = 5,292 \ [m^3/h]$

Each service tank capacity is 5,292 $[m^3/h]$

6. CALCULATION OF SEPARATOR CAPACITY

Separator capacity can be calculated by using the formula provided by the MAN 51/60 Project Guide Page 325

$$Q_p = \frac{P_1 \times b}{\rho}$$

Where: $P_1 = 6300 [kW]$ $b = 2,2 [g/_{kW} - H]$ $\rho = 870$ @ separating temprature

Therefore, the result of the calculation is:

$$Q_p = \frac{6300 \times 2,2}{0.87 \times 10^3} = 296,681 \ l/h \ (minimum)$$

Fuel Oil Separator		
Manufacturer		Alfa Laval
Туре		MIB 303
Quantity	Unit	2
Q	m^3/h	0,76
Power	kW	0,7
Weight	Kg	68

Table 4. 4 Information Fuel oil Separator

7. CALCULATION OF SEPARATOR HEATER

Before fluid enters separator, the fluid need to be treated first, especially the temperature. Fluid temperature will affect its properties such as properties, in this case separator will work efficiently if the fluid is temperature 40 °C with specific viscosity. $P = m. c. \Delta T$

Where;

P = power required $m = 258,1124 kg/h \text{ (based on the separator flow rate, } \rho = 870 kg/m^3\text{)}$ $c = 2008,32 j/kg^{\circ}\text{C} \text{ (specific heat of oil)}$ $\Delta T = 13^{\circ}\text{C} (30^{\circ}\text{C to } 43^{\circ}\text{C})$

Therefore, the result of the calculation is;

P = 258,1124.2008,32.13 P = 6738840 J/hP = 1,8719 kW

Table 4. 5 Information Separator Hea

Separator Heater	•	
Manufacturer		AlfaLaval
Туре		Aalborg Vesta EH15
Capacity	kW	5
Weight	Kg	55

8. CALCULATION OF MAIN MDO COOLER

MDO Coolers are a cooler that reduce the temperature of main fuel outlet. To calculate main mdo cooler requirement, the formula from the project guide (MAN 51/60 DF P.331) will be used.

- Cluster 1 $P_c = P_1 \times br_{ISO1} \times f_1$ Where; Pc = heat to be dissipated $P_1 = 6300 kW$ (Cluster output at 100% MCR) $br_{ISO1} = 178,1 g/kwh$ (SFOC at 100% MCR, Liquid mode) $f_1 = 2,68 \times 10^{-5}$ (factor for heat dissipation)

Therefore, the result of the calculation is; $P_c = 6300 \times 178, 1 \times 2,68 \times 10^{-5}$

 $P_c = 6300 \times 178, 1 \times 2,68 \times 10$ $P_c = 171,831 \, kW$

- Cluster 2 $P_c = P_1 \times br_{ISO1} \times f_1$

Where;

 $\begin{array}{l} Pc = heat \ to \ be \ dissipated \\ P_1 = 6300 \ kW \ (\text{Cluster output at 100\% MCR}) \\ br_{ISO1} = 178,1 \ g/kwh \ (\text{SFOC at 100\% MCR}, \ \text{Liquid mode}) \\ f_1 = 2,68 \times 10^{-5} \ (\text{factor for heat dissipation}) \\ \text{Therefore, the result of the calculation is;} \\ P_c = 6300 \ \times 178,1 \times 2,68 \times 10^{-5} \\ P_c = 171,831 \ kW \end{array}$

Table 4. 6 Information Main MDO Cooler

Main MDO Cooler (Cluster 1,2,3)			
Manufacturer		AlfaLaval	
Туре		M15 - FM8	
Heat Surface	kw	184	
Weight	kg		

4.1.2.2 Calculation Gas Fuel Oil

1. CALCULATION OF VAPORIZER

To calculate the required vaporizer, the requirement of gas supply each cluster is needed.

- Cluster 1

Engine	Gas Consumption per hour $\frac{m^3}{h}$
MAN 6L51/60DF	562,71

The selected Vaporizer is;

Table4. 7 Information Va	aporizer
--------------------------	----------

Manufacturer		Cryoquip
Туре		VWU104
Q	Nm^3/h	1314

2. CALCULATION OF LP LNG PUMP

The LP LNG Pump design are consisting of 2 part where the first part consist of 1 pump which may supply the requirement of all engine fuel supply. The second part consist of 2 pumps arranged in series where the capacity of the pump able to supply engine requirement during lower load.

The series arrangement of second part pump is to achieve the required discharge pressure where in GVU inlet, the pressure should be 5,5 bar. Therefore, the head of pump shall be greater than the requirement considering head loss during transferring fluid.

Table 1 QID mumo

- LP LNG Pump 1

	1 able 4. 8 LF pullip	
Manufacturer		Vanzetti
Туре		DSM L 185
Q min-max	m^3/h	1,2 - 24
Head min – max	m	10 - 50
Power	kW	11
Weight	Kg	170
Quantity	unit	2

- LP LNG Pump 2

	Table 4. 9 LP pump 2	
Manufacturer		Vanzetti
Туре		DSM L 230
Q min-max	$m^3/_h$	5,4 - 72
Head min – max	m	10 - 75
Power	kW	15
Weight	Kg	270
Quantity	Unit	1

3. CALCULATION OF FRESH WATER PUMP

The fresh water will be used to heat LNG with type of vaporizer are heat exchanger. The calculation for water pump are following requirement from the vaporizer flow rate.

	Table 4. 10 FW pum	р						
Fresh Water Pump (Cluster 1,2,3)								
Manufacturer	Manufacturer Herborner							
Туре		F-PM080						
Qmax	$\frac{m^3}{h}$	180						
Head max	m	42						
Rotation	RPM	3000						
Power	kW	20						
Weight	Kg	284						

4. CALCULATION OF FRESH WATER HEATER

The requirement from the vaporizer is fresh water with 82 C temperature, therefore fresh water need to be heated before entering vaporizer. The design are to utilize exhaust gas economizer as heat source.

- Cluster 1

- $P = m.c.\Delta T$

Where; $P = power \ required$ $m = 102180 \ kg/h$ (based on the fresh water pump flow rate, $\rho = 1000 \ kg/m^3$) $c = 4179 \ j/kgK$ (specific heat of water) $\Delta T = 62 \ K \ (30^{\circ}C \ to \ 92^{\circ}C)$

Therefore, the result of the calculation is; P = 102180.4179.62

P = 26474633640 J/hP = 7359,948 kW

- Cluster 2

 $P = m. c. \Delta T$

Where; P = power required m = 51120 kg/h (based on the fresh water pump flow rate, $\rho = 1000 kg/m^3$) c = 4179 j/kgK (specific heat of water) $\Delta T = 62 \text{ K} (30^{\circ}\text{C to } 92^{\circ}\text{C})$

Therefore, the result of the calculation is; P = 51120.4179.62 P = 13245089760 J/hP = 3682,135 kW

5. AVAILABLE HEAT FROM EXHAUST GAS

Based on MAN 51/60 DF Project guide P.101, Load specific values at ISO Conditions at gas mode, the mass flow, temperature and heat content of the engine may vary depend on the operation.

Exhaust gas data4)					
kg/kWh	6.74	6.34	6.28	6.51	
°C	309	346	366	420	
kJ/kWh	945	1,152	1,284	1,730	
	kg/kWh ℃ kJ/kWh	kg/kWh 6.74 °C 309 kJ/kWh 945	kg/kWh 6.74 6.34 °C 309 346 kJ/kWh 945 1,152	kg/kWh 6.74 6.34 6.28 °C 309 346 366 kJ/kWh 945 1,152 1,284	

The engine are operated nearly around 85% load, therefore exhaust gas data that will be used is the data at 85%.

- Cluster 1

Total heat cont. = Specific heat cont. $\times P \times N$

Where;

Specific heat cont. = $1152 \frac{kJ}{kWh}$ $P = 6300 \ kW$ (Each engine) N = 2 (no. of engine)

Therefore, the result of the calculation is; Total heat cont. = 1152 .6300.2 Total heat cont. = $34903802,88 \frac{kJ}{h}$

Total heat cont. = 9703,257 kW (satisfy the requirement)

- Cluster 2

Total heat cont. = Specific heat cont. $\times P \times N$

Where; Specific heat cont. = $1152 \frac{kJ}{kWh}$ P = 5800 kW (Each engine) N = 1 (no. of engine)

Therefore, the result of the calculation is; *Total heat cont.* = 1152 .5800 .1 *Total heat cont.* = 17451901,44 ${}^{kJ}/{}_{h}$ *Total heat cont.* = 4851,6286 kW (satisfy the requirement)

Table 4	10 Exhaust	gas econo	mizer
1 auto -	10 LAnaust	gas ceono	miller

Exhaust gas Economizer					
Manufacturer		Saacke			
		Marine			
		System			
Туре		EMB/EME-			
		VST			
Design Pressure	Bar	10			
Weight	Kg	16000			
Water content	m^3	5,5			

6. CALCULATION OF BOG RATE FOR COMPRESSOR AND GCU

The calculation of BOG rate is using formula as;

 $BOG = BOG Rate \times Total capacity$

Where;

BOG rate = 0,08 %

Total Capacity = $3358,77193 m^3$

Therefore the result of the calculation is;

 $BOG = 0,08 \% \times 3358,77193$

BOG lng = 2,687 m^3/dav

Total capacity	m^3	3358,77193
BOG rate LNG	m^3	2,687
BOG rate NG	m^3	1612,211
BOG Normal Rate	Nm ³	67,175

The compressor should have minimal capacity as big as BOG normal rate with pressure more than 5,5 bar to be able merged with the gas fuel system.

1000	1. II BOO compressi					
BOG Compressor						
Manufacturer		GEA				
Туре		HG44e/770-4				
		S HC				
Q	m^3/h	67-80,4				
Pmax	bar	19				
Rotation	RPM	1450-1740				
Power	kW	5,05				
Weight	Kg	171				

Table 4. 11 BOG Compresor

4.1.3 LNG Tank

The tank that design in P&ID need to calculate for knowing the total LNG tank in KM. Gunung Dempo. When calculate LNG tank also need to observe weight of engine that has been converted. KM Gunung Dempo has heavy components such as fuel weight, MAN engine weight, Compressor Casing, Silincer MAN, SCR Control Cabinet and other systems. The weight calculation for total system of MAN 51 - 60 DF engine that will be used at KM Gunung Dempo is 262,963 Ton. Weight of fuel is not yet include LNG tank that needs to be used on the ship KM. Gunung Dempo. Scenario of filling LNG fuel are in 3 location, Sorong, Jayapura and Makasar. In that 3 location there will be LNG terminal that build by Pelindo Energy and Bachelor thesis plan of Satrio Nurahman. So, the duration of filling LNG is 72 Hours.

 FC_{Gas}

= BHP x SFGC x Endurance

= 5.355 kW x 7.106 kJ/KWH x 72 H

= $2.739.789 \times 10^{6}$ Joule Change in mmbtu (1 mmbtu = 9,47086 x 10⁻¹⁰ Joule) Then get,

 FC_{Gas}

= 2.739.789 x 10⁶ Joule x 9,47086 x 10⁻¹⁰ mmbtu/Joule

= 2.594,816 mmbtu Convert to volume (1 m³ LNG = 21,2 mmbtu), then get,

V_{Gas}

 $= 2.594,816 \text{ mmbtu} : 21,2 \text{ mmbtu/m}^{3}$

 $= 122,397 \text{ m}^3$ (Ditambah 15%)

= 140,756

Tank capacity ISO LNG 40 Feet is 33,4 m³, then found the LNG needs,

TankLNG

- $= V_{gas}$: 33,4 m³/Tanki LNG
- = 122,397 m³ : 33,4 m³/Tanki LNG
- = 4,21 (because more then 4, take more tank)
- = 5 Tanki ISO LNG 40 Feet

CHAPTER 5 RISK ASSESSMENT

5.1 Risk Analysis

The object discussed in this risk assessment is dual fuel KM Gunung Dempo system, where the P & ID design of dual fuel system can be seen in Figure 5.1. LNG used to supply duel fuel diesel engine is planned to be supplied by an LNG bunkering vessel. LNG bunkering vessel supplies LNG to the LNG tank which is placed in KM Gunung Dempo compartment. After transfer of LNG to the LNG tank is completed, the next process is BOG that occurs in the LNG tank will be transferred using the compressor to GVU before being injected into the engine. While LNG in liquid form will be converted in the form of gas through vaporizer. LNG in the form of gas after going through the vaporizer will be passed to the GVU before being injected into the engine.

5.2 Hazard Identification

Hazard is an object which has potential of safety danger. If hazard identification is process of hazard identified that probably happen in a system and effect from the hazard. There are some failure that can occur in dual fuel engine system like leakage which can triger effect of explosion, BLEEVE, flash fire, etc. In this study will asses the risk of transfer gas from LNG tank to dual fuel engine.

5.3 Hazard and Operability Study (HAZOP)

Hazard and Operability (HAZOP) study giving the detailed assessment of the potential hazard which may occur. Basic concept of HAZOP study is to take a full description of the process and to question every part of it to discover what deviations from design can occur and what the causes and consequences of these deviations might be. Based on BS IEC 61882:2001 process of HAZOP study are include in determining the nodes, deviations, safeguards, and another criteria to support the study.

5.3.1 Node Classification

The LNG fuel system facility consist of various system that divided into main division: storage tank of LNG, pump and vaporizer system, and main engine. The main division still consist of several subsystem that support the terminal activity based on P&ID classification eventhough certain process need to be separeted due to different flow direction and different operational intent. The node classification is ease us to assess the HAZOP study since every subsystem are consist of various components and also different operational intent.

The technical description of the node classification above are:

1. Node 1

This Node are concerned in LNG tank that transfer by pump. The specification of liquid line are mentioned below:

- Operational Press : 5,5 bar
- Operational Temp. : -162°C
- 2. Node 2

The concern of this node are the system of BOG compresor. The system consist with many valve that can have effect to failure

Figure 5.1 LNG Fuel Gas System

3. Node 3

The concern of this node are the system of liquid fuel system. The system consist with many valve that can have effect to failure

4. Node 4

The fuel system will finish in main engine, and before main angine it will pass GVU. In GVU will have possibility of failure.

After dividing some node, continue with HAZOP worksheet that will contain of node, keywords, safeguard and safe prevention that must do. The HAZOP worksheet can view below and others node located in attachment.

5.3.2 Systems Deviation Determination

The Process of system deviation is to choose the guide word that comply with the design. Based on BS IEC 61882:2001 the list of deviation are already provided as seen in Table 5.2. The guide word then combined with the type of deviation. The variables of deviation can be determined based on the type of system that need to be assess. For the purpose of design and operational intent in this thesis are LNG Fuel system the concerned are variables that can lead into rise of flow and temperature since that kind of deviation can lead into rupture of components and further caused the release of the LNG.

Guide Word	Meaning
NO OR NOT	Complete negation of the design intent
MORE	Quintative increase
LESS	Quantitative decrease
AS WELL AS	Qualitative modification/increase
PART OF	Qualitative modification/decrease
REVERSE	Logical opposite of the design intent
OTHER THAN	Complete substitution

Table 5.1 HAZOP Guide Word

5.3.3 Causes and Consequences Determination

The causes and consequences are variables that occur caused by the deviation implementation on the system. The detailed causes and consequences shall be determine so that the possible cause can be reduced and and the consequences can be mitigated. The operator and expertise point of view during the causes and consequences examination are something need to be considered, but the simple principle and basic knowledge due to the deviation occured are also one thing that can help the process of examination.

5.3.4 Safeguard Determination

The safeguard on the assessment are the existing facility that by the design intent it designed to overcome the consequences caused by deviation. The existing safeguard are including the indicator that shows the parameters and automatic alarm that warn the operator when certain parameters are not in safe range.

⁽Source: BS IEC 61882:2001)

5.3.5 Action Required Determination

The action need to be taken in case certain hazard occur are the recommendation that the examiners suggest so that the consequences or the effect can be reduced. The action required olso need to be examined so that any potential hazard due to failure of any safeguard can be covered and the overcome planning are determined.

5.3.6 List of Abbreviations

In Hazard and Operability (HAZOP) study the components listed in assessment are following the original identification as follows in system P&ID identification system. To ease the identification the complete definition of each components listed are explained in Table 4.11 below.

No	Abbreviation	Definition				
1	MV	Manual Valve				
2	SV	Safety Valve				
3	SDV	Shutdown Valve				
4	BV	Butterfly Valve				
5	PSV	Pressure Safety Valve				
6	PI	Pressure Indicator				
7	TI	Temperature Indicator				

Table 5.2 List of Abbreviations

Table 5.3 HAZOP Node 1 Storage System

Stud	Study Title: Node 1 Sheet: 1 of 3									
Draw	ing No :	: GFS 01/ P&ID ENGINE GAS FUEL SYSTEM						Date:		
Part (Part Considered: Discharge System									
Des	ign Intent:	Material: LNG Source: Manifold Re	Destination: Receivin cceiving Vessel Tank		g Storage Design Pressure : 5 Ba Operating Pressure : 3.5 B		ar Tempratu Bar		ure : -162 C	
No.	Guide Word	Deviation	Possible Causes	Consequences	Safeguard		Comments	Action Required		Action Allocated To
1	NO	NO FLOW (LNG)	Valve M V-01, M V-02, M V-03, M V-04, M V-05, M V-06, M V-07, M V-08, M V-09, M V-10, M V-11, M V-12, M V-13, M V-14, M V-15, M V-16 blocked	No lng supply	Flow Meter		Situation is not acceptable	condition check before operate LNG discharging		Dischargin g pipeline and valve on LNG storage tank
2	NO	NO FLOW (GAS RETURN)	Valve PV-01, PV-02, PV- 03, PV-04, PV-05, PV- 06, PV-07, PV-08, PV- 09, PV-10, PV-11, PV- 12, PV-13, PV-14, PV- 15, PV-16 blocked	No Gas return and LNG supply interrupt			Situation is not acceptable	Visual and condition check before operate LNG discharging		Dischargin g on LNG storage tank
3	NO	NO FLOW (BOG)	Valve MV-17, MV-18, MV-19, MV-20, MV-21, MV-22, MV-23, MV-24, MV-25, MV,-26, MV- 27, MV-28, MV-29, MV- 30, MV-31, MV-32 Blocked	ME Shutdown	Pressure Indicator		Situation is not acceptable	check BOG	compresor	
4	MORE	MORE TEMPRATURE	External Heat	liquid will be change to gas phase	Insert the safety valve, pressure indicator and pressure transmitter, and insert gas detector		Situation is not acceptable	check the t can affect heat and especially check the	hings that t external system y routine PI and PT	
5	NO	NO FLOW (BOG Compressor)	MV-21 Blocked	No supply BOG, ME Shutdown	Pressure indicator, Pressure Transmitter		Situation is not acceptable	Recheck p and equipn begin op	prosedure pent before peration	BOG Compresso r

÷.

Study Title: Node 2 Sheet: 1 of 3										
Drav	ving No :	GFS 02/ P&ID ENGIN	Date:							
Part	Considered:	Discharge System								
Design Intent:		Material: LNG Source: LNG Pump		Destination: Receiving Storage Tank		e Design Pressure : 5 Ba Operating Pressure : 3.5 E		ar Temp Bar		rature :
No.	Guide Word	Deviation	Possible Causes	Consequences	Safeguard		Comments	Action Required		Action Allocated To
1	NO	NO FLOW (FEED PUMP LNG)	MV-34 Blocked	No supply LNG, ME Shutdown Pump Failure and LNG Flowrate to vaporizer is decrease	Pressure indicator instal feed pump more than 1 set as a redundancy system to increase flowrate		Situation is not acceptable	Recheck prosedure and equipment before begin operation		LNG Feed Pump
2	MORE	MORE PRESSUR	LNG feed pump failu	Presure built up at LNG Feed Pump lead to pump	change to second pump		Situation is not acceptable	Recheck prosedure and equipment before begin		LNG Feed Pump
3	MORE	MORE PRESSURE (AT LNG FEED PUMP)	Pressure built up at LNG Feed Pump DSML-185	Pump Damaged	instal feed pump more than 1		Situation is not acceptable	Recheck prosedure and equipment before begin operation		LNG Feed Pump
5	REVERSE	REVERSE FLOW	Valve NV-02 Failure	Back flow and lead to pump damaged	close MV b	before pump	Situation is not acceptable	Recheck prosedure and equipment before begin operation		LNG Feed Pump

Table 5.4 HAZOP node 2 Fuel System

Stud	y Title: Nod	le 3						Sheet: 2 of 3	3	
Drawing No: GFS 02/ P&ID ENGINE GAS FUEL SYSTEM							Date:			
Part	Considered:	Discharge System						•		
Design Intent:		Material: LNG Source: LNG STORAGE TANK		Destination: Receiving Storage Tank		Design Pressure : 5 Ba Operating Pressure : 3.5 B		ar Temp 3ar		rature :
No.	Guide Word	Deviation	Possible Causes	Consequences	Safeguard		Comments	Action Required		Action Allocated To
6	OTHER THAN	OTHER THAN DESTINATION	Valve MV-27 Failure close	BOG supply decrease to engine, lead pipe rupture and make enviromental effect and lead the explosions	Flow Transmitter , Pressure Indicator		Situation is not acceptable	Recheck prosedure and equipment before begin operation		Vaporizer
7	NO	NO FLOW (Vaporizer)	Valve MV-24 Blocked Vaporizer 1 perfomance degradation (physica fauling	LNG cant supply to vaporizer Natural Gas supply decrease	change to Vaporizer 2		Situation is not acceptable	Recheck prosedure and equipment before begin operation		Vaporizer
8	NO	NO FLOW (Vaporizer)	Vaporizer tube rupture (Gas)	Gas supply loss, fire and explosion risk in stream	Insert safety valve		Situation is not acceptable	Visual Check all equipment and recheck the prosedure before begin operation		Vaporizer
9	NO	LESS FLOW(BOG COMPRESSOR)	BOG Compressor degradation	BOG supply decrease	second pump		Situation is not acceptable	Recheck prosedure and equipment before begin operation		BOG Compresso r
10	NO	NO FLOW (ECONOMIZER)	Feed Pump Damage Valve MV-34 blocked	No supply fresh water to economizer fresh water pump	use Economizer 2		Situation is not acceptable	Visual Check all equipment and recheck the prosedure before begin operation		Economizers

Table 5.4 HAZOP node 3 Gas Fuel System

Study	v Title: Nod	e 4		14010 515 11112		l d i d bj	stem	Sheet: 2 of 2	3	
Drawing No : GFS 02/ P&		GFS 02/ P&ID ENGIN	02/ P&ID ENGINE GAS FUEL SYSTEM							
Part (Considered	Discharge System								
Design Intent:		Material: LNG Source: GVU		Destination: Pump Cryogenic		1 0	Design Pressure : 5 Bar Dperating Pressure : 3.5 Bar		Temprature :	
No.	Guide Word	Deviation	Possible Causes	Consequences	Safeguard		Comments	Action Required		Action Allocated To
1	NO	NO FLOW	Valve SV-02 blocked	No NG Supply	Flow meter, Pressure Inidcator		Situation is not acceptable	recheck the prosedure before begin operation		
2	LESS	LESS PRESSURE	GVU Valve Close, SV - 1 blocked	Decrease needs the flow NG in engine			Situation is not acceptable	recheck the prosedure before begin operation		
3	LESS	LESS PRESSURE	SV-01 Close	Decrease needs the flow NG in engine No NG Supply	use another vaporizer flow		Situation is not acceptable	recheck the prosedure before begin operation		
4	MORE	MORE TEMPRATURE	Flow rate increase too high	Valve will be blocked and lead to pipe rupture because of overpressure and it will trigger the occurance like jet fire, flash fire, gas dispersion, explosion	safety	7 valve	Situation is not acceptable	Visual Check all equipment and recheck the prosedure before begin operation ot		
				GVU Leakage	VU Leakage ver		Situation is not acceptable	recheck the before opera	prosedure begin ation	

Table 5.5 HAZOP node 4 GVU System

5.4 Frequency Analysis

From the result of hazard identification which use HAZOP method, there are 4 node that need to do frequency analysis to know how huge the risk may accur. The analysis do by use fault tree analysis method and event tree analysis method. Data that use in frequency failure rate an component is using DNV GL.

5.4.1 Fault Tree Analysis

FTA use to identified the failure of system that form of gas release frequency. The result calculation of FTA can use if the cause of system failure more than one (not only gas release). This calculation have 3 scenario :

Scenario 1 : pipe hole which has leakage diameter 1 - 3 mm

Scenario 2 : pipe hole which has leakage diameter 3 - 10 mm

Scenario 3 : pipe hole which has leakage diameter 10 - 50 mm

Nomor	Name of Component	Scenario	Leak Frequency	
		1-3 mm	5,26E-05	
		3-10 mm	2,28E-05	
1	MV	10-50 mm	1,48E-05	
		1-3 mm	5,43E-04	
		3-10 mm	1,68E-04	
2	SV	10-50 mm	7,03E-05	
		1-3 mm	1,18E-02	
		3-10 mm	9,85E-04	
3	HE	10-50 mm	8,88E-04	
		1-3 mm	2,85E-04	
		3-10 mm	9,98E-05	
4	Pipe	10-50 mm	4,51E-04	

Table 5.6 Component Leak Frequency Based on DNV GL

Figure 5.2 FTA Storage System bore 1-3 mm
Figure 5.2 shows FTA of LNG storage system due to presence components leaked. The relationship of each component with top event gas release is OR. Where one component leaks then gas will release out of the system. By performing calculations using Relex 2009 obtained results according to the following table

	fuel supply System Gas Release				
1	Small (1-3	Medium (3-10	Large (10-50		
1	mm)	mm)	mm)		
	5,85E-06	3,12E-06	2,77E-06		
]	Table5.8 Gas R	Release Frequency S	torage System		
	Ste	orage System Gas R	elease		
2	Small (1-3	Medium (3-10	Large (10-50		
2	mm)	mm)	mm)		
	0,00000001	0 0,000000006	6 0,00068620		
	Table 5.9 Gas	Release Frequency	BOG System		
	BOG System				
2	Small (1-3	Medium (3-10	Large (10-50		
5	mm)	mm)	mm)		
	1,13E-05	0,00000468	0,00000263		
r	Fable 5.10 Gas	Release Frequency	GVU System		
		GVU			
л	Small (1-3	Medium (3-10	Large (10-50		
4	mm)	mm)	mm)		
	0,01628100	0,0000000	0,0000021		

 Table 5.7 Gas Release Frequency Fuel Supply System

Analysis using FTA only calculate until gas release happen. For calculate more risk like jet fire, flash fire, gas dispersion must do analysis using ETA.

5.4.2 Event Tree Analysis

Event tree analysis use to calculate value of component frecuency that have potency generate fire. ETA can detect frequency of flash fire, pool fire, explossion, gas dispersion and jet fire. This frequency value base on bore of pipe leakage. The data needed is to know the value of the ignition probability. The probability of ignition can be determined by calculating flow release and then mapping flow release into the probability ignition table in OGP Risk Assessment Data Directory 2010 about ignition probability. To calculate flow release using UK-HSE formula for flow release calculations for low pressure gas. Formula is as follows:

$$m = Cd. \rho. area \sqrt{2.\frac{P_{1}-P}{\rho}} + g. h....(5.4)$$

Where:

m	: Mass (kg/s)
Cd	: Koefisien (0.6 for gas)
ρ	: Density (kg/m ³)
Area	: leakage hole (m^2)
P1	: Presure (Pa)
Р	: ambient Presure (Pa)
g	: Gravity acceleration (m/s^2)
ĥ	: head statis (m)

Table 5.11 Flow Release and Ignition Probability Fuel System Gas Release

Fuel System Gas Release	Small	Medium	Large
Hole Area (m ²)	0,000007065	0,0000785	0,0019625
Flow release	0,004229660	0,046996224	1,174905606
Ignition Probablity	0,001000000	0,001000000	0,002200000

Table 5.12 Flow Release and Ignition Probability Storage System

Storage System	Small	Medium	Large
Hole Area (m ²)	0,000007065	0,0000785	0,0019625
Flow release	0,006344415	0,070493497	1,762337420
Ignition Probablity	0,001000000	0,001000000	0,002200000

BOG system	Small	Medium	Large
Hole Area (m ²)	0,000007065	0,0000785	0,0019625
Flow release	0,008190573	0,091006366	2,275159155
Ignition Probablity	0,001000000	0,001000000	0,021300000

Table 5.13 Flow Release and Ignition Probability BOG system

Table 5.14 Flow Release and Ignition Probability GVU

GVU	Small	Medium	Large
Hole Area (m ²)	0,000007065	0,0000785	0,0019625
Flow release	0,000027695	0,000307720	0,007693000
Ignition Probablity	0,001000000	0,001000000	0,002200000

From the calculation of flow release based on the formula of UK-HSE will be plotted to determine the value of ignition probability using OGP 2010 about ignition probability. The table ignition probability as below.

Release Rate (kg/s)	Ignition Probability
0.1	0.0010
0.2	0.0013
0.5	0.0019
1	0.0025
2	0.0074
5	0.0204
10	0.0339
20	0.0564
50	0.1107
100	0.1842
200	0.3065
500	0.6000

Tabel 5. 15 Ignition Probability

From calculation ploted to find probability of ignition. After find all ignition probability, ETA can make to find hazard frequency that become the effect of gas release. Type process of ETA here made base on paper "A model for estimating the impact of the domino effect on accident frequencies in QRA of storage facilities".

Figure 5.3 ETA for Storage Tank bore 1-3 mm

From gas release can become cause of fire source or ignition source. There are two types of ignition, direct ignition and delayed ignition. If after gas release give effect in direct ignition, then will follow by hazard of jet fire. But if ignition not direct happen (delayed ignition), so effect that will happen are flash fire, jet fire. When gas release happen and there is no ignition final effect, it will become BLEEVE. BLEEVE happen when LNG in liquid form disperse out change in gas phase. The result of ETA from storage tank bore 1-3 mm show in tabel below.

Storage System	BLEVE/ Fireball	1.81E-10
	Explosion	1.20E-10
	Flash Fire	1.11E-13
	Jet Fire	1.45E-05
	Gas Dispersion	1.63E-02

Tabel 5. 16 Result ETA Storage System bore 1-3 mm

Tabel above show frequency from hazard that probably happen because gas release in GVU System. For BOG system, fuel system, storage system will show in attachment.

5.4.3 Consequence Analysis

Consequences is impact from hazard that happen. Consequences analysis in here form by calculate how many passenger or crew that dead because of gas release. For knowing level of consequences use fire modelling with aloha software. Aloha is a simulation software uses for mapping hazard impact explosion, fire and gas disperse. In this simulation using aloha 5.4.6. Some data that must be complete for simulation are coordinate instalation place, time, wind direction, wind velocity, type of gas or fluid and some other data.

From figure above, threat zone show the impact BLEEVE in LNG tank that have gas release with diameter 3-10 mm. For calculate crew affected impact, result from aloha will draw in layout dual fuel system using autocad.

Figure 5.5 Threat Zone Storage Tank bore 1-3 mm with Hazard Gas Dispersion

Gas Dispersion Skenario 1-3 mm									
No Syst		Locatio n Total	Total	Protective Action Criteria (Jumlah orang terdampak/Jangkauan/Waktu)					Fata
NO. em	Total		PAC-3	PAC- 2	PAC- 1	Tolerable	F F IVI	(N)	
		deck 1	7	-	-	-	-	< 2900	-
		deck 2	418	-	-	-	-	< 2900	
	Stor	deck 3	257	-	-	-	-	< 2900	-
1	age	deck 4	431	-	-	-	-	< 2900	-
1	Syst	deck 5	490	15/10/60s	-	-	-	> 17000	15
	em	deck 6	96	-	-	-	-	< 2900	-
		deck 7	18	-	-	-	-	< 2900	-
		deck 8	14	-	-	-	-	< 2900	-
Total							15		

Tabel 5.17 Result of ALOHA

5.4.4 Risk Representation

Risk representative is a limit measure a risk that can accept or not. For knowing risk acceptable or not is using F-N curve ACDS tolerability of transport risk frame work. The frequency and consequency hazard of BLEEVE, explosion, flash fire, gas dispersion that has been calculate before, will become data to make F-N curve by enter calculation in standard F-N curve that used. The result will acceptable or not is depend of dot location in F-N curve. If result show in acceptable zone, no need mitigation to do. But, if the result not acceptable will continue with mitigation. Layer of protection (LOPA) will be method of mitigation From risk representative get result for hazard BLEEVE, explosion, flash fire, jet fire and gas dispersion scenario bore hole 1-3

BLEEVE Scenario bore 1-3 mm						
No.	System	Number of Fatalities	Frequency	Cumulative Frequency		
1	BOG System	0	0,00E+00	0,00E+00		
2	Fuel system	0	0,00E+00	0,00E+00		
3	GVU System	0	0,00E+00	0,00E+00		
4	storage	85	1,80719E-10			

Table 5.18 BLEEVE Scenario bore 1-3 mm

Figure 5.6 BLEEVE Bore 1-3 mm

Figure 5.6 show that risk of BLEEVE in fuel system locate in acceptable zone. For BOG, Fuel system, GVU cannot show because the concecuences value is 0. In level ALARP, risk is acceptable and allow to mitigate or not.

Skenario Explosion in Bore Hole 1-3 mm						
No.	System	Number of Fatalities	Frequency	Cumulative Frequency		
1	BOG System	0	0,00E+00	0,00E+00		
2	Fuel System	0	0,00E+00	0,00E+00		
3	GVU System	0	0,00E+00	0,00E+00		
4	storage	32	1,2E-10			

Table 5.19 Explosion Bore Hole 1-3 mm

Figure 5.7 Explosion Bore 1-3 mm

Figure 5.7 show that risk of explosion in fuel system locate in acceptable level. For BOG, Fuel system, GVU cannot show because the concecuences value is 0. In level ALARP, risk is acceptable and allow to mitigate or not.

Skenario Flash Fire for Bore Hole 1-3 mm						
No.	System	Number of Fatalities	Frequency	Cumulative Frequency		
1	BOG System	5	2,89E-10	2,89E-10		
2	Fuel System	5	6,43E-10	9,33E-10		
3	GVU System	2	4,91E-24	9,33E-10		
4	storage	2	6,03E-16	9,33E-10		

Table 5.20 Scenario Flash Fire Bore 1-3

Figure 5.8 Flash Fire Bore 1-3 mm

Figure 5.8 show that risk of flash fire in fuel system locate in acceptable level. . For BOG, Fuel system, GVU cannot show because risk frequency to small not exceds than 1,00-09. In level ALARP, risk is acceptable and allow to mitigate or not.

	Skenario Jet Fire For Bore Hole 1-3 mm					
No.	System	Number of Fatalities	Frequency	Cumulative Frequency		
1	BOG System	5	2,34E-09	2,34E-09		
2	Fuel Sytem	5	5,21E-09	7,55E-09		
3	GVU System	5	3,97E-23	7,55E-09		
4	storage	24	0	7,55E-09		

Table 5.21 Scenario Jet Fire Bore 1-3

Figure 5.9 Jet Fire Bore 1-3 mm

Figure 5.9 show that risk of jet fire in fuel system locate in acceptable. In level ALARP, risk is acceptable and allow to mitigate or not.

Skenario Gas Dispersion For Bore Hole 1-3 mm					
No.	System	stem Number of Frequency Cumulation Fatalities			
1	BOG System	5	2,63E-06	2,63E-06	
2	Fuel Sytem	5	5,84E-06	8,47E-06	
3	GVU System	2	4,46E-20	8,47E-06	
4	storage	2	7,03E-10	8,47E-06	

Table 5.22 Scenario Gas Dispersion Fire Bore 1-3

Figure 5.10 Gas Dispersion Bore 1-3 mm

Figure 5.10 show that risk of gas dispersion in fuel system locate in acceptable level. In level ALARP, risk is acceptable and allow to mitigate or not.

All result F-N Curve above show result of LNG tank outside compartement. Then figure below will show F-N Curve result of LNG inside compartement.

Skenario BLEEVE For Bore Hole 1-3 mm					
No.	System	Number of Fatalities	Frequency	Cumulative Frequency	
1	BOG System	0	0,00E+00	0,00E+00	
2	Fuel System	0	0,00E+00	0,00E+00	
3	GVU System	0	0,00E+00	0,00E+00	
4	storage	32	1,81E-10		

Table 5.23 Scenario BLEEVE Fire Bore 1-3

Figure 5.11 BLEEVE Bore 1-3 mm

Figure 5.11 show that risk of BLEEVE in fuel system locate in acceptable level. For BOG, Fuel system, GVU cannot show because the concecuences value is 0. In level ALARP, risk is acceptable and allow to mitigate or not

	Skenario Explosion For Bore Hole 1-3 mm					
No.	System	Number of Fatalities	Frequency	Cumulative Frequency		
1	BOG System	0	0,00E+00	0,00E+00		
2	Fuel System	0	0,00E+00	0,00E+00		
3	GVU System	0	0,00E+00	0,00E+00		
4	storage	32	1,2E-10			

 Table 5.24 Scenario Explosion Fire Bore 1-3

Figure 5.12 Explosion Bore 1-3 mm

Figure 5.12 show that risk of explosion in fuel system locate in acceptable level. For BOG, Fuel system, GVU cannot show because the concecuences value is 0. In level ALARP, risk is acceptable and allow to mitigate or not.

Skenario Flash Fire For Bore Hole 1-3 mm					
No.	System	Number of Fatalities	Frequency	Cumulative Frequency	
1	BOG System	5	2,89E-10	2,89E-10	
2	Fuel System	5	6,43E-10	9,33E-10	
3	GVU System	2	4,91E-24	9,33E-10	
4	storage	2	6,03E-16	9,33E-10	

Table 5.24 Scenario Flash Fire Bore 1-3

Figure 5.13 Flash Fire Bore 1-3 mm

Figure 5.13 show that risk of flash fire in fuel system locate in acceptable level. For BOG, Fuel system, GVU cannot show because risk frequency to small not exceds than 1,00-09. In level ALARP, risk is acceptable and allow to mitigate or not.

	Skenario Jet Fire For Bore Hole 1-3 mm					
No.	System	Number of Fatalities	Frequency	Cumulative Frequency		
1	BOG System	5	2,34E-09	2,34E-09		
2	Fuel Sytem	5	5,21E-09	7,55E-09		
3	GVU System	5	3,97E-23	7,55E-09		
4	storage	24	0	7,55E-09		

 Table 5.25 Scenario Jet Fire Bore 1-3

Figure 5.14 Jet Fire Bore 1-3 mm

Figure 5.14 show that risk of jet fire in fuel system locate in acceptable. In level ALARP, risk is acceptable and allow to mitigate or not.

	Skenario Gas Dispersion For Bore Hole 1-3 mm					
No.	System	Number of Frequency Fatalities		Cumulative Frequency		
1	BOG System	5	2,63E-06	2,63E-06		
2	Fuel Sytem	5	5,84E-06	8,47E-06		
3	GVU System	2	4,46E-20	8,47E-06		
4	storage	2	7,03E-10	8,47E-06		

Table 5.26 Scenario Gas Dispersion Bore 1-3

Figure 5.15 show that risk of gas dispersion in fuel system locate in acceptable level. In level ALARP, risk is acceptable and allow to mitigate or not.

5.4.5 Mitigation

From risk assessment result all scenarios are located at ACCEPTABLE and ALARP levels. At ACCEPTABLE level there is no need for mitigation. For ALARP level in this research will be mitigation to enter into ACCEPTABLE category even though for the level of ALARP do not need mitigation.

This mitigation is done by adding components to system processes, safety components, and components that can be installed indepen without affecting the calculation of system processes that have been done before. The addition of independent components was selected to mitigate this study.

Results from mitigation using LOPA table method from Geun Woong Yun thesis entitled "Bayesian-LOPA methodology For Risk Assessment Of An LNG Importation Terminal". Below is storage system that need to mitigate although in ALARP level.

Scenario Gas Dispersion	Scenario Gas DispersionScenario Title: Gas Dispersion on Storage System Bore Hole 10-50 mm			
Date	Description	Probability Frequence (Per Ye		
Consequence Description	LNG storage, pipe or equipment in Storage System leak because overpressure and lead to fire or explosion			
Risk Tolerance Criteria	Action Required		1,00E-02	
(Frequency)	Tolerable		1,00E-04	
Initiating Event (Frequency)	Gas Dispersion from Storage system		4,80E-04	
Enabling Event or Condition	N/A			
Conditional Modifiers	N/A			
Frequency of Unmitigate	d Consequence		4,85E-04	
	Gas Detector	5,64E-02		
	Temperature alarm	5,52E-02		
Pressure alarm		4,22E-02		
Total PFD for all IPLs		1,31E-04		
Frequency of Mitigated C		6,38E-08		
Risk Status		ACCEP	TABLE	

Table 5.27 LOPA Storage System Bore Hole 10-50 mm

Actions Required to Meet Risk Tolerance Criteria	Install gas detector, pressure, and temperature alarm as IPL to reduce risk
Notes	
References	

Table above, shows that the frequency after mitigate lower than before.

Figure 5.16 Gas Dispersion Bore 10-50 mm

Skenario Gas Dispersion For Bore Hole 10-50 mm					
		Number of		Cumulative	
No.	System	Fatalities	Frequency	Frequency	
1	BOG System	5	2,62703E-06	2,62703E-06	
2	Fuel Sytem	5	2,7679E-06	5,39493E-06	
3	GVU System	2	2,10436E-07	5,60536E-06	
4	storage	24	6,30E-08	5,67E-06	

Table 5.28 LOPA Storage System Bore Hole 10-50 mm after mitigated

Grafik above show storage risk get lower frequency after mitigated

CHAPTER 6 ECONOMICAL ASSESSMENT

6.1 Economic analysis

Economic analysis in this study will view from conversion passenger ship KM. Gunung Dempo diesel engine to be dual fuel engine so can get result of NPV, IRR and payback period. Then, this study also analys which one is more profitable between design LNG tank inside compartement or LNG tank outside compartement. Variable that will use for which one decide most feasible investment are capital expenditure CAPEX and operational expenditure (OPEX). (Abdillah,2017)

6.1.1 Capex

Capital expenditure (CAPEX) is all of initial investment costs concerning the allocation of planned funds (budget) to make purchases / repairs / replacements of everything that is categorized as corporate assets in accounting. In this study, the amount of investment is self-financed.

Ship retrofit planning will be carried out in accordance with the ship's operational rule which is 4 years once the overhaul cost is equated with the history of 4 year overhaul costs such as previous cost history. On KM. Gunuung Dempo for engine overhaul costs Rp 1,174,154,894,00 for Conventional Diesel Engine usage. In the use of Dual Fuel engine because there is no use of Dual Fuel on passenger ships it will be assumed 20% larger than the conventional Diesel Engine on the basis that the system on dual fuel diesel engine is more complex and detailed and requires good handling. Calculations on overhaul can be explained as follows:

Overhaul Diesel Engine = Rp 1.174.154.894

Cost Overhaul Dual Fuel Diesel Engine = Cost Overhaul Diesel Engine + (Cost Overhaul Diesel Engine x 20%)

= Rp 1.174.154.894 + (Rp 1.174.154.894 x 20%)

= Rp 1.408.985.872 = 97,088.3 USD

KM. Gunung Dempo with engine upgrades that previously had a power of 6,000 Kilowatts (KW). So because the Dual Fuel Engine selection using 6 L MAN B & W 51 - 60 with the closest power is 6,300 Killowatt. Engine Dual Fuel price on data engine maker is \in 655 Euro per kilowatt. Calculation of the cost requirements for the purchase of engines can be explained through the calculation as follows:

= Power x Engine Cost / power

= 6.300 KW x € 655 Euro/ Killowatt = € 4.126.500 Euro

(assumtion 1 Euro = Rp 14.608), Engine Cost = € 4.126.500 Euro x Rp 14.608/Euro

$$= Rp 58.051.602.000$$

With data from the LNG tank maker, for one LNG tank for \$ 35,000 USD. Then can be done as follows:

= number of tank required x Cost per unit tank

= 10 Tanki LNG x \$ 35.000 USD/ Tanki LNG

= \$ 350.000 USD

Table 6.1 CAPEX KM. Gunung Dempo Conversion						
CAPEX KM. Gunung Dempo Conversion						
Itoma	Scenario					
Items	Unit	Unit Price (\$)		Total Price (\$)		
LNG Tank	10	\$	35,000	\$	350,000	
Engine MAN BW	1	\$	3,999,461	\$	3,999,461	
Compressor	1	\$	150,000	\$	150,000	
Temperature Indicator	13	\$	2,000	\$	26,000	
Pressure Indicator	13	\$	2,000	\$	26,000	
Shutdown Valve	17	\$	5,000	\$	85,000	
Control Valve	14	\$	5,000	\$	70,000	
Check Valve	5	\$	5,000	\$	25,000	
Manual Valve	25	\$	3,000	\$	75,000	
Pressure Safety Valve	4	\$	7,500	\$	30,000	
Docking				\$	100,000	
				\$	4,936,461	

_ . .

6.1.2 OPEX

Operational expenditure (Opex) is all costs incurred to perform operations for a certain period. In calculation of this final assignment period is determined for 19 years. On the side of ship provider required operational costs include salary of crew ship, vessel maintenance cost, main engine fuel costs, administration, lubricating oil, crew salary, crew insurance, crew accomodation. The List of crew salary will be attach in attachement.

KM. Gunung Dempo obtained distribution of speed usage on the vessel. The ship uses 85% power from the engine used. Therefore can be obtained the number of BHP is 6300 kW. In 85% power obtained SFGC at 85% is 7106 kJ / KWH and SFOC is 2.2 g / KWH. For endurance used based on data that is 350 days or 8400 hours. Fuel Oil Consumption can be obtained by calculation that is:

FCOil = BHP x SFOC x Endurance

= 6300 kW x 2,2 gr/Kwh x 8400 H

= 98.960.400 gram

Average cost PT. PELNI for HSD is Rp 5.000,00/Liter. Below is ecconomic calculation :

FCm3 = FCOil : Density HSD = 98.960,4 Kg : 820 Kg/m³ = 120,683 m³ FCliter = 120,683m³ x 1000 Liter/m³ = 120.683 Liter

FCliter x Rp 5.000,00/Liter

= 120.683 Liter x Rp 5.000,00/Liter

= Rp 603.415.000,00

For gas fuel,

FCGas = BHP x SFGC x Endurance

= 6300 kW x 7.106 kJ/KWH x 8400 H

= 319.642.092 x 106 Joule

Change become mmbtu (1 mmbtu = 9,47086 x 10-10 Joule)

FCGas = 319.642.092 x 106 Joule x 9,47086 x 10-10 mmbtu/Joule

= 302.729 mmbtu

LNG price is USD 7 or Rp 91.000/mmbtu (kurs 1USD = Rp 13.000)

Total Gas Fuel = 302.729 mmbtu x Rp 91.000/mmbtu

= Rp 27.548.339.000,00

Total usage of fuel in this engine (MAN 6L 51/60 DF) is :

Total = Rp 603.415.000,00 (Oil) + Rp 27.548.339.000,00 (Gas) = Rp 28.151.754.000,00

OPEX KM Gunung Dempo					
Items	Price (\$)	Total Price (\$)			
Lubricating	\$ 52,364				
Fuel Oil	\$ 42,623				
Fuel Gas	\$ 1,946,026				
Maintenance	\$ 942,835				
Administration	\$ 74,375				
Salary	\$ 2,252,400				
Crew Insurance	\$ 110,100				
Crew Acomodation	\$ 68,900				
Total		\$ 5,489,623			

Table 6.2 OPEX KM. Gunnung Dempo

6.1.3 Revenue

Revenue is amount of money that a company actually receives during a specific period, including discounts and deductions for returned merchandise. It is the top line or gross income figure from which costs are subtracted to determine net income. Revenue in here is form of passenger ticket and container.

Table 6.3 Revenue KM. Gunung Dempo

Revenue KM. Gunung Dempo								
Year		Charge	Total * Trip	R	evenue / Year			
1	Dry Container	1829.2115	\$ 1,920.0	\$	3,512,086			
2	reefer Container	2958.5393	\$ 864.0	\$	2,556,178			
3	Passenger	20.89	\$ 48,000.0	\$	1,002,720			
				\$	7,070,984			

note : 1. Total*Trip = (total container or passenger * Sailing period/year)*Trip

- 2. Dry Container = 40
- 3. Reefer Container = 18
- 4. Passenger =800
- 5. Sailing Period = 24 /year

6.1.4 Depreciation

Depreciation is a decline value of a property because of its time and usage (Pujawan, 2012). Depreciation does not fall into cash flow, but goes into tax deductible expenses. Depreciated assets are assets with the following conditions:

a) The asset generates income

b) Has economic value

c) Has economic value of more than one year

d) The usage value of the asset decreases due to natural causes

Year	Capex	Percent (%)	Depreciation		Value
0	4,936,461.00	2.5%			4,936,461.00
1	0.00	2.5%	\$	123,412	4,813,049.48
2	0.00	2.5%	\$	123,412	4,689,637.95
3	0.00	2.5%	\$	123,412	4,566,226.43
4	0.00	2.5%	\$	123,412	4,442,814.90
5	0.00	2.5%	\$	123,412	4,319,403.38
6	0.00	2.5%	\$	123,412	4,195,991.85
7	0.00	2.5%	\$	123,412	4,072,580.33
8	0.00	2.5%	\$	123,412	3,949,168.80
9	0.00	2.5%	\$	123,412	3,825,757.28
10	0.00	2.5%	\$	123,412	3,702,345.75
11	0.00	2.5%	\$	123,412	3,578,934.23
12	0.00	2.5%	\$	123,412	3,455,522.70
13	0.00	2.5%	\$	123,412	3,332,111.18
14	0.00	2.5%	\$	123,412	3,208,699.65
15	0.00	2.5%	\$	123,412	3,085,288.13
16	0.00	2.5%	\$	123,412	2,961,876.60
17	0.00	2.5%	\$	123,412	2,838,465.08
18	0.00	2.5%	\$	123,412	2,715,053.55
19	0.00	2.5%	\$	123,412	2,591,642.03
Total Depresiation			\$	2,344,819	
Asset Value			\$	2,591,642	2,591,642.03

Table 6.4 Depresiation Table

6.1.5 Tax Value

The tax regulation in this economic study is based on Government Regulation No.43 of 2013 concerning income tax on income business entities. The amount of tax imposed is differentiated by gross or gross income which is divided into three types as shown in the table 6.5

Groos Income	Tax
Less than Rp. 4.8 M	1% x Groos income
More than Rp. 4.8 M s/d Rp. 50 M	{0.25 - (0.6 M/Groos income)} x PKP
More than Rp. 50 M	25% x PKP

Table 6.5 Tax	Businnes Entity
---------------	------------------------

Included in gross income or PFM (Taxable Income) is value of income minus expense for operations and depreciation

6.1.6 Cashflow

Cash flow is sum of income and expenditure of a business. The cash flow is capex minus income after tax and principal debt

6.1.7 Payback Period

Payback period show number of periods (years) required to recover initial investment cost. Calculation is based on both annual cash flow and residual value (Pujawan, 2012). In calculation in this final project payback period value associated with value of cummulative cashflow where value shows cash flow in certain year.

$$Pp = (n - x) + (-b/c)$$

(4.4)

Where :

Pp : payback periode

n : last year negative cash flow accumulation

x: Contruction Period

b: absolute value of the accumulated cash flow in the nth year

c: discounted cash flow value

6.1.8 NPV

NPV value is derived from discounted cash flow value and accumulated in last year of project life. NPV of this project will show in table 6.6

6.1.9 IRR

In this study the value of study seach by using function on microsoft excel is = IRR (cash flow value). So the IRR in this project is 20% and IRR value must be greater or equal to bank loan interest rate.

6.1.9 Economic Result

Calculation all of variable above will make a conclusion about feasibility of project conversion KM. Gunung Dempo. Table below will show the result of NPV, IRR and payback period.

	1 able 0.0 Economic Calculation											
Economic Analysis NPV IRR Payback Period												
	Premis :											
	1. Fuel and lu	b oil		2.00%	.00% 4. Revenue 4.00%							
	2. Salary			3.7%			5. /	Administration	1.50%			
	3. Maintenand	ce		2.50%								
Voor				Description								
Tear	CAPEX	Revenue	Lu	Ibricating		Fuel Oil		Fuel Gas	Maintenance	Adı	ministration	Salary
0	\$ 4,936,461											
1		\$ 7,070,984.0	\$	52,364.3	\$	74,374.9	\$	1,946,026.4	\$ 942,834.9	\$	42,623.0	\$ 2,431,400
2		\$ 7,353,823.4	\$	53,411.6	\$	75,862.4	\$	1,984,946.9	\$ 966,405.8	\$	43,262.3	\$ 2,521,848
3		\$ 7,647,976.3	\$	54,479.8	\$	77,379.6	\$	2,024,645.8	\$ 990,565.9	\$	43,911.2	\$ 2,615,661
4		\$ 7,953,895.4	\$	55,569.4	\$	78,927.2	\$	2,065,138.8	\$ 1,015,330.1	\$	44,569.9	\$ 2,712,963
5		\$ 8,272,051.2	\$	56,680.8	\$	80,505.8	\$	2,106,441.5	\$ 1,040,713.3	\$	45,238.5	\$ 2,813,886
6		\$ 8,602,933.2	\$	57,814.4	\$	82,115.9	\$	2,148,570.4	\$ 1,066,731.2	\$	45,917.0	\$ 2,918,562
7		\$ 8,947,050.6	\$	58,970.7	\$	83,758.2	\$	2,191,541.8	\$ 1,093,399.5	\$	46,605.8	\$ 3,027,133
8		\$ 9,304,932.6	\$	60,150.1	\$	85,433.4	\$	2,235,372.6	\$ 1,120,734.4	\$	47,304.9	\$ 3,139,742
9		\$ 9,677,129.9	\$	61,353.1	\$	87,142.0	\$	2,280,080.1	\$ 1,148,752.8	\$	48,014.4	\$ 3,256,540
10		\$ 10,064,215.1	\$	62,580.1	\$	88,884.9	\$	2,325,681.7	\$ 1,177,471.6	\$	48,734.7	\$ 3,377,684
11		\$ 10,466,783.7	\$	63,831.7	\$	90,662.6	\$	2,372,195.3	\$1,206,908.4	\$	49,465.7	\$ 3,503,334
12		\$ 10,885,455.1	\$	65,108.4	\$	92,475.8	\$	2,419,639.2	\$ 1,237,081.1	\$	50,207.7	\$ 3,633,658
13		\$11,320,873.3	\$	66,410.5	\$	94,325.4	\$	2,468,032.0	\$ 1,268,008.1	\$	50,960.8	\$ 3,768,830
14		\$11,773,708.2	\$	67,738.8	\$	96,211.9	\$	2,517,392.6	\$ 1,299,708.4	\$	51,725.2	\$ 3,909,030
15		\$ 12,244,656.5	\$	69,093.5	\$	98,136.1	\$	2,567,740.5	\$ 1,332,201.1	\$	52,501.1	\$ 4,054,446
16		\$ 12,734,442.8	\$	70,475.4	\$	100,098.8	\$	2,619,095.3	\$ 1,365,506.1	\$	53,288.6	\$ 4,205,271
17		\$13,243,820.5	\$	71,884.9	\$	102,100.8	\$	2,671,477.2	\$ 1,399,643.7	\$	54,087.9	\$ 4,361,708
18		\$13,773,573.3	\$	73,322.6	\$	104,142.8	\$	2,724,906.7	\$ 1,434,634.8	\$	54,899.2	\$ 4,523,963
19		\$ 14,324,516.2	\$	74,789.1	\$	106,225.7	\$	2,779,404.9	\$ 1,470,500.7	\$	55,722.7	\$ 4,692,254

Table 6.7 Cash Flow

Cash Flow											
Vaar		Description									
rear	CAPEX	Revenue	OPEX	Depresiation	EBT	Tax 25%	EAT				
0	\$ (4,936,461)										
1		\$ 7,070,984.0	\$ 5,489,623.4	\$ 123,411.5	\$ 1,581,360.6	\$ 364,487.3	\$ 1,216,873.3				
2		\$ 7,353,823.4	\$ 5,645,737.0	\$ 123,411.5	\$ 1,708,086.4	\$ 396,168.7	\$ 1,311,917.7				
3		\$ 7,647,976.3	\$ 5,806,643.3	\$ 123,411.5	\$ 1,841,333.1	\$ 429,480.4	\$ 1,411,852.7				
4		\$ 7,953,895.4	\$ 5,972,498.8	\$ 123,411.5	\$ 1,981,396.6	\$ 464,496.3	\$ 1,516,900.3				
5		\$ 8,272,051.2	\$ 6,143,465.5	\$ 123,411.5	\$ 2,128,585.7	\$ 501,293.5	\$ 1,627,292.1				
6		\$ 8,602,933.2	\$ 6,319,711.0	\$ 123,411.5	\$ 2,283,222.2	\$ 539,952.7	\$ 1,743,269.5				
7		\$ 8,947,050.6	\$ 6,501,408.6	\$ 123,411.5	\$ 2,445,642.0	\$ 580,557.6	\$ 1,865,084.4				
8		\$ 9,304,932.6	\$ 6,688,737.4	\$ 123,411.5	\$ 2,616,195.2	\$ 623,195.9	\$ 1,992,999.3				
9		\$ 9,677,129.9	\$ 6,881,882.9	\$ 123,411.5	\$ 2,795,247.0	\$ 667,958.9	\$ 2,127,288.2				
10		\$ 10,064,215.1	\$ 7,081,036.7	\$ 123,411.5	\$ 2,983,178.4	\$ 714,941.7	\$ 2,268,236.7				
11		\$ 10,466,783.7	\$ 7,286,397.3	\$ 123,411.5	\$ 3,180,386.4	\$ 764,243.7	\$ 2,416,142.7				
12		\$ 10,885,455.1	\$ 7,498,169.8	\$ 123,411.5	\$ 3,387,285.3	\$ 815,968.4	\$ 2,571,316.8				
13		\$ 11,320,873.3	\$ 7,716,566.5	\$ 123,411.5	\$ 3,604,306.8	\$ 870,223.8	\$ 2,734,083.0				
14		\$ 11,773,708.2	\$ 7,941,806.9	\$ 123,411.5	\$ 3,831,901.3	\$ 927,122.4	\$ 2,904,778.8				
15		\$ 12,244,656.5	\$ 8,174,118.3	\$ 123,411.5	\$ 4,070,538.2	\$ 986,781.7	\$ 3,083,756.6				
16		\$ 12,734,442.8	\$ 8,413,735.6	\$ 123,411.5	\$ 4,320,707.2	\$ 1,049,323.9	\$ 3,271,383.2				
17		\$ 13,243,820.5	\$ 8,660,902.1	\$ 123,411.5	\$ 4,582,918.4	\$ 1,114,876.7	\$ 3,468,041.7				
18		\$ 13,773,573.3	\$ 8,915,869.3	\$ 123,411.5	\$ 4,857,704.0	\$ 1,183,573.1	\$ 3,674,130.9				
19		\$ 14,324,516.2	\$ 9,178,897.5	\$ 123,411.5	\$ 5,145,618.7	\$ 1,255,551.8	\$ 3,890,066.9				

Table 6.8 NPV Calculation

Voor	i		NDV
I cai	10.25%	Cashflow Discounted	
0	1	\$ (4,936,461)	\$ (4,936,461)
1	0.907029478	\$ 1,340,285	\$ 1,215,678
2	0.822702475	\$ 1,435,329	\$ 1,180,849
3	0.746215397	\$ 1,535,264	\$ 1,145,638
4	0.676839362	\$ 1,640,312	\$ 1,110,228
5	0.613913254	\$ 1,750,704	\$ 1,074,780
6	0.556837418	\$ 1,866,681	\$ 1,039,438
7	0.505067953	\$ 1,988,496	\$ 1,004,326
8	0.458111522	\$ 2,116,411	\$ 969,552
9	0.415520655	\$ 2,250,700	\$ 935,212
10	0.376889483	\$ 2,391,648	\$ 901,387
11	0.341849871	\$ 2,539,554	\$ 868,146
12	0.31006791	\$ 2,694,728	\$ 835,549
13	0.281240735	\$ 2,857,494	\$ 803,644
14	0.255093637	\$ 3,028,190	\$ 772,472
15	0.231377449	\$ 3,207,168	\$ 742,066
16	0.209866167	\$ 3,394,795	\$ 712,453
17	0.1903548	\$ 3,591,453	\$ 683,650
18	0.172657415	\$ 3,797,542	\$ 655,674
19	0.156605365	\$ 4,013,478	\$ 628,532
	Total	1	\$ 12,342,813

Table 6.9 Net Cash Flow

i	NPV		IRR	PP	
10.25%	\$	12,342,813	33%	4.0	

Figure 6.1 Economic Statistic

Analysis performed to know parameter of project or conversion value of project. This analysis use CAPEX and OPEX which variation 7% and find value of NPV, PP and IR

CHAPTER 7 CONCLUSION

7.1 Conclusion

From reasearch about risk and economical assessment for dual fuel conversion KM. Gunung Dempo can concluted that :

- 1. Hazard and failure mode include failure component dual fuel system that can generate failure and hazard have impact in system and fatalities. Frequency analysis using FTA and ETA method to calculate frequency from hazad gas release from each component. In the calculation of FTA using software simulation relec 2009. While ETA used for deciding last impact of gas release include risk of BLEEVE, explotion, flash fire jet fire and gas dispersion.
- 2. Concequence from risk of BLEEVE, explotion, flash fire, jet fire, and gas dispersion simulate using aloha software and will show in desain layout, so concequence value can decided
- 3. From result of risk assessment with representation frequency value and concequences in Figure risk criteria FN curve BLEEVE, explosionflash fire, jet fire locate in acceptable level, while for gas dispersion locate in ALARP level. Mitigation step may to do for gas dispersion for location of risk move in acceptable zone. Mitigation method using LOPA. Result of mitigation shows all of risk enter in acceptable level, while dual fuel system conversion with design of LNG tank inside compartement and LNG tank outside compartement are safe to use in MV. Gunung Dempo.
- 4. Economical assessment of LNG tank inside compartemen and outside compatement calculate every component that include in CAPEX (Capital Expenditure) and OPEX (Operational Expenditure). The parameter of chosing design is which one is the most profitable to do. NPV, IRR (interest rate of return), payback period analyzed with CAPEX and OPEX. From the calculation shows that design LNG tank inside compartement is more profitable because the area cargo hold upper LNG tank compartement can placed more container.

"This page is intentionally left blank"

REFERENCE

- American Bureau Of Shipping. (2010). *FLOATING OFFSHORE LIQUEFIED GAS TERMINALS.* Houston, USA: ABS (American Bureau Of Shipping).
- British Petroleum. (2015, Juni). BP Statistical Review Of World Energy. Retrieved Februari 1, 2017, from British Petroleum: https://www.bp.com/content/dam/bp/pdf/energy-economics/statisticalreview-2015/bp-statistical-review-of-world-energy-2015-full-report.pdf
- Indonesia Investment. (2016, July 4). *Van der Schaar Investments B.V.* Retrieved from Gas Alam: http://www.indonesiainvestments.com/id/bisnis/komoditas/gas-alam/item184?
- Kementrian Energi dan Sumber Daya Mineral. (2016, Desember 31). Cadangan Gas Bumi Direktorat Jendral Minyak dan Gas Bumi.
- Muzhoffar, D. A. (2016). Technical Comparison of BOG (Boil off Gas) Management Between Dual Fuel Diesel Engine and Steam Turbine in LNG Carrier to Optimize Steaming On Forced Boil Off. Surabaya: ITS.
- Syahputra, K. H. (2016). Risk Assessment of fuel system on Dual Fuel Engine of Ferry Ship. Surabaya: ITS
- Prakoso, M.A (2017. Pemodelan Perbandingan Teknis dan Ekonomis Penggunaan *Boil Of Gas* (BOG) For LNG *Carrier* dengan *Dual Fuel Diesel Engine*(DFDE) dan Steam Turbine Dengan Metode Dinamika Sistem (System Dynamics) Surabaya :ITS

OGP, (2010), Risk Assessment Data Directory

Soegiono, Ketut Buda. 2006. "Transportasi LNG Indonesia". Surabaya. Airlangga

University Pers

Bernechea, E.J., Antonio, J. & Arnaldos, J., 2012. A model for estimating the impact of the domino effect on accident frequencies in quantitative risk assessments of storage facilities. *Process Safety and Environmental Protection*, 91(6), pp.423–437. *Importation Terminal*". Thesis. Texas: Texas A&M University

Rachow M, Loest S, Sitinjak. 2017. Concept for LNG Gas Handling System for a

Dual Fuel Engine. Surabaya : ITS

The International Code of Safety for Ships using Gasses or other low- flash point. IGF Code. IMO

Bond. S. 2014. LNG Dual Fuel Vessel Contruction VDR Seminar. Germany : Leer

IGF Code, (2013), Draft International Code Of Safety For Using Gases Or Other Low-Flashpoint Fuels.

Dobrota D, Branko L, Komar. Paper I Problem of Boil- off in LNG Supply Chain

Dong Lv, Wei tan, Liyan Liu. 2017. Journal of Loss Prevention in the procees

"Research on maximum explosion overpressure in LNG tank" China

 Sang-Hoon, Dae-Eun Ko. 2016. A Study on Forces Generated on Spherical Type LNG Tank with central cylindrical part under various static Loading South Korea : Dong Eui University
 Soeharto, P. 2001. Manajemen Proyek (dari konseptual

sampai operasional) Jilid 2. Jakarta : Erlangga

Stopford, M. 2009. Maritime Economics 3rd Edition. London and

New York : Routledge Taylor and Francis Group.

- Woong Yun G. "Bayesian-Lopa Methodology For Risk Assessment Of An LNG Importation Terminal". Thesis. Texas: Texas A&M University.
- DNV. (2014). DNV Process Hazard Analysis Software Tools Flyer. DNV Software.
- DNV. (2014). Failure Frequencies Guidance. Hovik, Norway: DNV.
- DNV GL. (2015). *dnvgl.com*. Retrieved from https://www.dnvgl.com/article/phast-3d-explosions-taking-hazard-analysis-one-step-further-58962
- International Association of Oil and Gas Producers (OGP) . (2010). *Storage Incident Frequencies.* Wales: OGP.

International Associations of Oil and Gas Producers (OGP). (2010). *Risk Assessment Data Directory: Consequences Modelling*. England: OGP.

I Made Ariana*, A.A. Masroeri*, AAB Dinariyana DP*. (2017). *LNG Fueled Passenger Ships in Indonesia: The aspects of engine modification and Fuel Distribution.* Proceedings of the International Symposium on Marine Engineering
ATTACHMENT FREQUENCY ANALYSIS USING FTA

(RELEX 2009)

"This page is intentionally left blank"

ATTACHMENT EVENT TREE ANALYSIS (ETA)

"This page is intentionally left blank"

Node 1 (small) (1-3) Fuel System							
flow release	0,004 kg/s						
Ignition prob.	0,001						

Node 1 (small) (3-10) Fuel Systemflow release0,047 kg/sIgnition prob.OGP

Node 1 (small) (10-50) Fuel Systemflow release1,175 kg/sIgnition prob.OGP

Node 3 (Large) (1-3) BOG Systemflow release0,008 kg/sIgnition prob.0,001

Node 3 (Large) (3-10) BOG Systemflow release0,091 kg/sIgnition prob.0,001

Node 3(Large) (10-50) BOG Systemflow release2,275 kg/sIgnition prob.0,0213

Node 4(small) (1-3) GVU Systemflow release0,000028 kg/sIgnition prob.0,001

Node 4(medium) (3-10) GVU Systemflow release0,000 kg/sIgnition prob.0,001

Node 4(Large) (10-50) GVU Systemflow release0,008 kg/sIgnition prob.0,0022

Storage System Gas Release (Leakage Hole 3-10 mm)

Flow release	0,046996 kg/s
Ignition probability OGP	0,001

Storage System Gas Release (Leakage Hole 10-50 mm)

Flow release	1,762337 kg/s
Ignition probability OGP	0,0022

CONCEQUENCES ANALYSIS (USING ALOHA)

"This page is intentionally left blank"

Flash Fire Skenario 1-3 mm											
No	System	em Location	Jumlah	rn Degree (Ju	ımlah orang	terdampak/l	Radius/Waki	Heat Flux	Fatality		
NO.	System		Orang	First	Second	Third	Tolerable	(kW/m^2)	(N)		
	deck 1	#VALUE!	5/10 m/60 s	1	1	-	> 10	5			
		deck 2	418	-	-	-	3/- / -	< 2	-		
		deck 3	257	-	-	-	4/- / -	< 2	-		
1	BOC Sustan	deck 4	431	-	-	-	4/- / -	< 2	-		
1	BOG System	deck 5	490	-	-	-	8/- / -	< 2	-		
		deck 6	96	-	-	-	5/- / -	< 2	-		
		deck 7	18	-	-	-	3/- / -	< 2	-		
		deck 8	14	-	-	-	1/- / -	< 2	-		
				Total					5		

Jet Fire Skenario 1-3 mm											
NI-	Grantaur	Logation	Jumlah	rn Degree (Ju	ımlah orang	terdampak/I	Radius/Wak	Heat Flux	Fatality		
NO. 55	System	Location	Orang	Red	Orange	Yellow	Tolerable	(kW/m^2)	(N)		
		deck 1	7	5/10 m/60 s	1	1	-	>10	5		
		deck 2	418	-	-	-	-	-	-		
		deck 3	257	-	-	-	-	-	-		
1	BOC System	deck 4	431	-	-	I	-	-	-		
1	BOG System	deck 5	490	-	-	-	-	-	-		
		deck 6	96	-	-	-	-	-	-		
		deck 7	18	-	-	-	-	-	-		
		deck 8	14	-	-	-	-	-	-		
				Total					5		

Gas Dispersion Skenario 1-3 mm											
No. Suc	System	Logation	Jumlah	Action Criteri	ia (Jumlah or	ang terdam	pak/Jangkau	DDM	Fatality		
INO.	No. System	Location	Orang	PAC-3	PAC-2	PAC-1	Tolerable	PPIVI	(N)		
		deck 1	7	5/10 m/60 s	-	-	-	> 17000	5		
		deck 2	418	-	-	-	3/- / -	< 2900	-		
		deck 3	257	-	-	-	4/- / -	< 2900	-		
1	BOC System	deck 4	431	-	-	-	4/- / -	< 2900	-		
1	BOG System	deck 5	490	-	-	-	8/- / -	< 2900	-		
		deck 6	96	-	-	-	5/- / -	< 2900	-		
		deck 7	18	-	-	-	3/- / -	< 2900	-		
		deck 8	14	-	-	-	1/- / -	< 2900	-		
				Total					5		

Flash Fire Skenario 3-10 mm											
N.	Grantana	Terretien	Jumlah	m Degree (J	umlah orang	; terdampak/	Radius/Wak	Heat Flux	Fatality		
INO.	System	Location	Orang	First	Second	Third	Tolerable	(kW/m^2)	(N)		
		deck 1	7	5/10 m/60 s	-	-	-	> 10	5		
		deck 2	418		-	-	3/- / -	< 2	-		
		deck 3	257	-	-	-	4/- / -	< 2	-		
1	POG System	deck 4	431	-	-	-	4/- / -	< 2	-		
1	BOG System	deck 5	490	-	-	-	8/- / -	< 2	-		
		deck 6	96	-	-	-	5/-/-	< 2	-		
		deck 7	18	-	-	-	3/- / -	< 2	-		
		deck 8	14	-	-	-	1/- / -	< 2	-		
				Total					5		

Jet Fire Skenario 3-10 mm											
N	Sautan	Location	Jumlah	rn Degree (J	umlah orang	; terdampak/	Radius/Wak	Heat Flux	Fatality		
INO.	System	Location	Orang	Red	Orange	Yellow	Tolerable	(kW/m^2)	(N)		
		deck 1	7	5/10 m/60 s	1	1	-	>10	5		
		deck 2	418	-	-	-	-	-	-		
		deck 3	257	-	-	-	-	-	-		
1	BOC System	deck 4	431	-	-	-	-	-	-		
1	BOG System	deck 5	490	-	-	-	-	-	-		
		deck 6	96	-	-	-	-	-	-		
		deck 7	18	-	-	-	-	-	-		
		deck 8	14	-	-	-	-	-	-		
				Total					5		

Gas Dispersion Skenario 3-10 mm											
No	Sustam	Logation	Jumlah	Action Criter	ia (Jumlah o	rang terdan	ıpak/Jangkaı	DDM	Fatality		
INO.	No. System	Location	Orang	PAC-3	PAC-2	PAC-1	Tolerable	FFW	(N)		
		deck 1	7	5/10 m/60 s	-	-	-	> 17000	5		
		deck 2	418	-	-	-	3/- / -	< 2900	-		
		deck 3	257	-	-	-	4/- / -	< 2900	-		
1	BOC Sustan	deck 4	431	-	-	-	4/- / -	< 2900	-		
1	BOG System	deck 5	490	-	-	-	8/- / -	< 2900	-		
		deck 6	96	-	-	-	5/-/-	< 2900	-		
		deck 7	18	-	-	-	3/- / -	< 2900	-		
		deck 8	14	-	-	-	1/- / -	< 2900	-		
Total											

Flash Fire Skenario 10-50 mm											
N	Garatana	Location	Jumlah	m Degree (Ju	umlah orang	terdampak/	Radius/Wak	Heat Flux	Fatality		
No. Syste	System	Location	Orang	First	Second	Third	Tolerable	(kW/m^2)	(N)		
	deck 1	7	5/10 m/60 s	-	-	-	> 10	5			
		deck 2	418				3/- / -	< 2	-		
		deck 3	257				4/- / -	< 2	-		
1	POC Sustan	deck 4	431				4/- / -	< 2	-		
1	BOG System	deck 5	490				8/- / -	< 2	-		
		deck 6	96				5/- / -	< 2	-		
		deck 7	18				3/- / -	< 2	-		
		deck 8	14				1/- / -	< 2	-		
	Total										

Jet Fire Skenario 10-50 mm											
NI-	Sustam	Location	Jumlah	rn Degree (J	umlah orang	terdampak/	Radius/Wak	Heat Flux	Fatality		
NO. Syst	System	Location	Orang	Red	Orange	Yellow	Tolerable	(kW/m^2)	(N)		
		deck 1	7	5/10 m/60 s	-	-	-	>10	5		
		deck 2	418	-	-	-	-	>5	-		
		deck 3	257	-	-	-	-	>2	-		
1		deck 4	431	-	-	-	-	-	-		
1	BOG System	deck 5	490	-	-	-	-	-	-		
		deck 6	96	-	-	-	-	-	-		
		deck 7	18	-	-	-	-	-	-		
		deck 8	14	-	-	-	-	-	-		
				Total					5		

Gas Dispersion Skenario 10-50 mm											
NI-	Grantana	Terretien	Jumlah	Action Criter	ia (Jumlah c	rang terdam	pak/Jangkau	DDM	Fatality		
No. System	System	Location	Orang	PAC-3	PAC-2	PAC-1	Tolerable	FFIN	(N)		
	deck 1	7	5/10 m/60 s	-		-	>17000	5			
		deck 2	418	-	-	-	3/- / -	>17001	-		
		deck 3	257	-	-	-	4/- / -	•	-		
1		deck 4	431	-	-	-	4/- / -	>17003	-		
1	BOG System	deck 5	490	-	-	-	8/- / -	>17004	-		
		deck 6	96	-	-	-	5/- / -	>17005	-		
		deck 7	18	-	-	-	3/- / -	>17006	-		
		deck 8	14	-	-	-	1/- / -	>17007	-		
	Total										

Flash Fire Skenario 1-3 mm									
No.	System	Location	Jumlah Orang	Action Criter	ia (Jumlah o	DDM	Fatality		
				PAC-3	PAC-2	PAC-1	Tolerable	PPM	(N)
1	Fuel Sytem	deck 1	7	5/10 m/60 s	-	-	-	> 17000	5
		deck 2	418	-	-	-	3/- /-	< 2900	-
		deck 3	257		-	-	-	> 17000	
		deck 4	431	-	-	-	3/- /-	< 2900	-
		deck 5	490	-	-	-	3/- /-	< 2900	-
		deck 6	96	-	-	-	3/- /-	< 2900	-
		deck 7	18	-	-	-	3/- /-	< 2900	-
		deck 8	14	-	-	-	3/- /-	< 2900	-
Total									5

Jet Fire Skenario 1-3 mm									
No.	System	Location	Jumlah	rn Degree (Ju	ımlah orang	Heat Flux	Fatality		
			Orang	Red	Orange	Yellow	Tolerable	(kW/m^2)	(N)
1	Fuel Sytem	deck 1	7	5/10 m/60 s	-	-	-	> 10	5
		deck 2	418	-	-	-	3/- /-	< 2	-
		deck 3	257		-	-	-	> 10	
		deck 4	431	-	-	-	4/- /-	< 2	-
		deck 5	490	-	-	-	8/- /-	< 2	-
		deck 6	96	-	-	-	5/- /-	< 2	-
		deck 7	18	-	-	-	3/- /-	< 2	-
		deck 8	14	-	-	-	1/- /-	< 2	-
Total									5

Gas Dispersion Skenario 1-3 mm											
N-	System	Location	Jumlah	Action Criter	ia (Jumlah o	DDM	Fatality				
INO.			Orang	PAC-3	PAC-2	PAC-1	Tolerable	PPM	(N)		
	Fuel Sytem	deck 1	7	5/10 m/60 s	-	-	-	> 17000	5		
1		deck 2	418	-	-	-	3/- /-	< 2900	-		
		deck 3	257		-	-	-	> 17000			
		deck 4	431	-	-	-	4/- /-	< 2900	-		
		deck 5	490	-	-	-	8/- /-	< 2900	-		
		deck 6	96	-	-	-	5/- /-	< 2900	-		
		deck 7	18	-	-	-	3/- /-	< 2900	-		
		deck 8	14	-	-	-	1/- /-	< 2900	-		
	Total										
Flash Fire Skenario 3-10 mm											
-----------------------------	--------------------------	----------	--------	---------------	--------------	--------------	-----------	----------	-----	--	--
No	Sustam	Logation	Jumlah	Action Criter	ia (Jumlah o	ıpak/Jangkaı	DDM	Fatality			
NO.	System	Location	Orang	PAC-3	PAC-2	PAC-1	Tolerable	PPM	(N)		
		deck 1	7	5/10 m/60 s	-	-	-	> 17000	5		
	deck 2 418 3/- /- < 2900										
		deck 3	257		-	-	-	> 17000			
1	F 16 /	deck 4	431	-	-	-	3/- /-	< 2900	-		
1	Fuel Sytem	deck 5	490	-	-	-	3/- /-	< 2900	-		
		deck 6	96	-	-	-	3/- /-	< 2900	-		
		deck 7	18	-	-	-	3/- /-	< 2900	-		
	deck 8 14 3/- /- <2900										
	Total										

Jet Fire Skenario 3-10 mm												
N-	Grantana	T time	Jumlah	rn Degree (Ju	umlah orang	terdampak/	/Radius/Wak	Heat Flux	Fatality			
NO.	System	Location	Orang	Red	Orange	Yellow	Tolerable	(kW/m^2)	(N)			
		deck 1	7	5/10 m/60 s	-	-	-	> 10	5			
	deck 2 418 3/- /- < 2											
		deck 3	257		-	-	-	> 10				
1	Eucl System	deck 4	431	-	-	-	4/- /-	< 2	-			
1	Fuel Sytem	deck 5	490	-	-	-	8/- /-	< 2	-			
		deck 6	96	-	-	-	5/- /-	< 2	-			
		deck 7	18	-	-	-	3/- /-	< 2	-			
	deck 8 14 1/-/- <2											
				Total					5			

Gas Dispersion Skenario 3-10 mm											
N-	Southern	T time	Jumlah	Action Criter	ria (Jumlah c	orang terdan	pak/Jangkau	DDM	Fatality		
NO.	System	Location	Orang	PAC-3	PAC-2	PAC-1	Tolerable	PPM	(N)		
		deck 1	7	5/10 m/60 s	-	-	-	> 17000	5		
	deck 2 418 3/- /- <2900										
		deck 3	257		-	-	-	> 17000			
1	Eucl System	deck 4	431	-	-	-	4/- /-	< 2900	-		
1	Fuel Sytem	deck 5	490	-	-	-	8/- /-	< 2900	-		
		deck 6	96	-	-	-	5/- /-	< 2900	-		
		deck 7	18	-	-	-	3/- /-	< 2900	-		
		deck 8	14	-	-	-	1/- /-	< 2900	-		
	Total 5										

Flash Fire Skenario 10-50 mm												
N-	Sautan	T = = = t := =	Jumlah	Action Criter	ia (Jumlah o	rang terdam	pak/Jangkau	DDM	Fatality			
INO.	System	Location	Orang	PAC-3	PAC-2	PAC-1	Tolerable	PPM	(N)			
		deck 1	7	5/10 m/60 s	-	-	2/-/-	< 5000	5			
		deck 2	418	-	-	-	3/- /-	< 5000	-			
	Free al Garda and	deck 3	257	-	-		-	5000-17000				
1		deck 4	431	-	-	-	4/- /-	< 5000	-			
1	Fuel Sytem	deck 5	490	-	-	-	8/- /-	< 5000	-			
		deck 6	96	-	-	-	5/- /-	< 5000	-			
		deck 7	18	-	-	-	3/- /-	< 5000	-			
	deck 8 14 1/- < 5000											
				Total					5			

Jet Fire Skenario 10-50 mm											
No	Sustam	Location	Jumlah	rn Degree (Ju	umlah orang	Radius/Wak	Heat Flux	Fatality			
INO.	System	Location	Orang	Red	Orange	Yellow	Tolerable	(kW/m^2)	(N)		
		deck 1	7	5/10 m/60 s	-		-	2.0 - 5.0	5		
		deck 2	418	-	-	-	3/-/-	< 2.0	-		
		deck 3	257		-		-	> 10			
1	Eucl System	deck 4	431	-	-	-	4/-/-	< 2.0	-		
1	Fuel Sytem	deck 5	490	-	-	-	8/- /-	< 2.0	-		
		deck 6	96	-	-	-	5/-/-	< 2.0	-		
		deck 7	18	-	-	-	3/-/-	< 2.0	-		
	deck 8 14 1/-/- < 2.0										
				Total					5		

Gas Dispersion Skenario 10-50 mm											
N-	Sautan	Terretien	Jumlah	Action Criter	ria (Jumlah c	ıpak/Jangkaı	DDM	Fatality			
INO.	System	Location	Orang	PAC-3	PAC-2	PAC-1	Tolerable	FFIVI	(N)		
		deck 1	7	5/10 m/60 s	-	-	2/-/-	< 2900	5		
		deck 2	418	-	-	-	3/- /-	< 2900	-		
	Freed Conterna	deck 3	257	-		-	-	2900-17000			
1		deck 4	431	-	-	-	4/- /-	< 2900	-		
1	Fuel Sytem	deck 5	490	-	-	-	8/- /-	< 2900	-		
		deck 6	96	-	-	-	5/- /-	< 2900	-		
		deck 7	18	-	-	-	3/- /-	< 2900	-		
		deck 8	14	-	-	-	1/- /-	< 2900	-		
Total											

Flash Fire Skenario 1-3 mm												
N-	Grant and	Terretien	Jumlah	rn Degree (Ju	ımlah orang	terdampak/l	Radius/Waki	Heat Flux	Fatality			
NO.	System	Location	Orang	First	Second	Third	Tolerable	(kW/m^2)	(N)			
		deck 1	7	2/10 m/60 s	-	-	2/- /-	< 2900	2			
	deck 2 418 >17000											
		deck 3	257	-	-	-	3/- /-	< 2900	-			
1	CVII Swatan	deck 4	431	-	-	-	3/- /-	< 2900	-			
1	GvU Systen	deck 5	490	-	-	-	3/- /-	< 2900	-			
		deck 6	96	-	-	-	3/- /-	< 2900	-			
		deck 7	18	-	-	-	3/- /-	< 2900	I			
	deck 8 14 3/- /- <2900											
				Total					2			

Jet Fire Skenario 1-3 mm											
No	Sustam	Logation	Jumlah	rn Degree (Ju	ımlah orang	terdampak/l	Radius/Wak	Heat Flux	Fatality		
NO.	System	Location	Orang	Red	Orange	Yellow	Tolerable	(kW/m^2)	(N)		
		deck 1	7	5/10 m/60 s	-	-	2/- /-	< 2.0	5		
		deck 2	418		-	-	-	> 10			
		deck 3	257	-	-	-	4/- / -	< 2.0	-		
1	CIALC .	deck 4	431	-	-	-	4/- / -	< 2.0	-		
1	GvU Systen	deck 5	490	-	-	-	8/- / -	< 2.0	-		
		deck 6	96	-	-	-	5/- / -	< 2.0	-		
		deck 7	18	-	-	-	3/- / -	< 2.0	-		
		deck 8	14	-	-	-	1/- / -	< 2.0	-		
	Total 5										

Gas Dispersion Skenario 1-3 mm											
N-	Greeterre	Terretien	Jumlah	Action Criteri	ia (Jumlah o	pak/Jangkau	DDM	Fatality			
INO.	System	Location	Orang	PAC-3	PAC-2	PAC-1	Tolerable	PPM	(N)		
		deck 1	7	2/10 m/60 s	-	-	2/- /-	< 2900	2		
	deck 2 418 > 17000										
		deck 3	257	-	-	-	3/- /-	< 2900	-		
1	CVIII Countries	deck 4	431	-	-	-	3/- /-	< 2900	-		
1	GVU Systen	deck 5	490	-	-	-	3/- /-	< 2900	-		
		deck 6	96	-	-	-	3/- /-	< 2900	-		
		deck 7	18	-	-	-	3/- /-	< 2900	-		
	deck 8 14 3/-/- <2900										
	Total 2										

Flash Fire Skenario 3-10 mm												
No	Sustan	Logation	Jumlah	rn Degree (J	umlah orang	terdampak/	Radius/Wak	Heat Flux	Fatality			
INO.	System	Location	Orang	First	Second	Third	Tolerable	(kW/m^2)	(N)			
		deck 1	7	2/10 m/60 s	-	-	2/- /-	< 2900	2			
deck 2 418 > 17000												
		deck 3	257	-	-	-	3/- /-	< 2900	-			
1		deck 4	431	-	-	-	3/- /-	< 2900	-			
1	Sv0 System	deck 5	490	-	-	-	3/- /-	< 2900	-			
		deck 6	96	-	-	-	3/- /-	< 2900	-			
		deck 7	18	-	-	-	3/- /-	< 2900	-			
deck 8 14 3/-/- < 2900												
	Total											

Jet Fire Skenario 3-10 mm											
No	Sustan	Location	Jumlah	rn Degree (J	umlah orang	terdampak/	Radius/Wak	Heat Flux	Fatality		
INO.	System	Location	Orang	Red	Orange	Yellow	Tolerable	(kW/m^2)	(N)		
		deck 1	7	5/10 m/60 s	-	-	2/- /-	< 2.0	5		
deck 2 418 > 10											
		deck 3	257	-	-	-	4/- / -	< 2.0	-		
1	CALSustan	deck 4	431	-	-	-	4/- / -	< 2.0	-		
1	GvU Systen	deck 5	490	-	-	-	8/- / -	< 2.0	-		
		deck 6	96	-	-	-	5/- / -	< 2.0	-		
		deck 7	18	-	-	-	3/- / -	< 2.0	-		
deck 8 14 1/-/- <2.0									-		
				Total					5		

Gas Dispersion Skenario 3-10 mm											
No	Swatam	Location	Jumlah	Action Criter	ia (Jumlah c	rang terdan	pak/Jangkau	DDM	Fatality		
INO.	System	Location	Orang	PAC-3	PAC-2	PAC-1	Tolerable	FFIN	(N)		
		deck 1	7	5/10 m/60 s	-	-	2/- /-	< 2900	5		
deck 2 418 > 17000											
		deck 3	257	-	-	-	3/- /-	< 2900	-		
1		deck 4	431	-	-	-	3/- /-	< 2900	-		
1	GvU Systen	deck 5	490	-	-	-	3/- /-	< 2900	-		
		deck 6	96	-	-	-	3/- /-	< 2900	-		
		deck 7	18	-	-	-	3/- /-	< 2900	-		
	deck 8 14 3/-/- < 2900										
				Total					5		

Flash Fire Skenario 10-50 mm											
N	C	Terretien	Jumlah	rn Degree (J	umlah orang	terdampak/	Radius/Wak	Heat Flux	Fatality		
INO.	System	Location	Orang	First	Second	Third	Tolerable	(kW/m^2)	(N)		
		deck 1	7	2/10 m/60 s	-	-	2/- /-	< 2900	5		
		deck 2	418		-	-	-	> 17000			
		deck 3	257	-	-	-	3/- /-	< 2900	-		
	CN II Constant	deck 4	431	-	-	-	3/- /-	< 2900	-		
1	GVU Systen	deck 5	490	-	-	-	3/- /-	< 2900	-		
		deck 6	96	-	-	-	3/- /-	< 2900	-		
		deck 7	18	-	-	-	3/- /-	< 2900	-		
deck 8 14 3/-/- <2900											
Total 5											

Jet Fire Skenario 10-50 mm											
No	System	Logation	Jumlah	rn Degree (J	umlah orang	; terdampak/	Radius/Wak	Heat Flux	Fatality		
INO.	System	Location	Orang	Red	Orange	Yellow	Tolerable	(kW/m^2)	(N)		
		deck 1	7	5/10 m/60 s	-	-	2/- /-	< 2.0	5		
		deck 2	418		-	-	-	> 10			
		deck 3	257	-	-	-	4/- / -	< 2.0	-		
	CN II Constant	deck 4	431	-	-	-	4/- / -	< 2.0	-		
1	GVU Systen	deck 5	490	-	-	-	8/- / -	< 2.0	-		
		deck 6	96	-	-	-	5/- / -	< 2.0	-		
		deck 7	18	-	-	-	3/- / -	< 2.0	-		
		deck 8	14	-	-	-	1/- / -	< 2.0	-		
				Total					5		

Gas Dispersion Skenario 10-50 mm											
No	System	Location	Jumlah	Action Criter	ia (Jumlah o	rang terdan	ıpak/Jangkaı	DDM	Fatality		
INO.	System	Location	Orang	PAC-3	PAC-2	PAC-1	Tolerable	PPNI	(N)		
		deck 1	7	2/10 m/60 s	-	-	2/- /-	< 2900	2		
		deck 2	418		-	-	-	> 17000			
		deck 3	257	-	-	-	3/- /-	< 2900	-		
1	CVII Swatan	deck 4	431	-	-	-	3/- /-	< 2900	-		
1	GvU Systen	deck 5	490	-	-	-	3/- /-	< 2900	-		
		deck 6	96	-	-	-	3/- /-	< 2900	-		
		deck 7	18	-	-	-	3/- /-	< 2900	-		
		deck 8	14	-	-	-	3/- /-	< 2900	-		
				Total					2		

BLEVE/ Fireball Skenario 1-3 mm											
Na	Grundaria	Lessian	Jumlah	rn Degree (Ju	ımlah orang	terdampak/l	Radius/Wakt	Heat Flux	Fatality		
INO.	System	Location	Orang	First	Second	Third	Tolerable	(kW/m^2)	(N)		
		deck 1	7	-	-	-	-	-	-		
		deck 2	418	-	-	-	-	-	-		
		deck 3	257	-	-	-	-	-	-		
1	Storage	deck 4	431	-	-	-	-	-	-		
1	System	deck 5	490	85/25/60s	-	-	-	-	85		
		deck 6	96	-	-	-	-	-	-		
		deck 7	18	-	-	-	-	-	-		
deck 8 14											
Total 85											

]	Explosion Ske	enario 1-3 mr	n			
Ne	Creations	Lesstian	Jumlah	ffect (Jumlah	orang terda	mpak/Jangk	auan/Waktu	Pressure	Fatality
INO.	System	Location	Orang	Red	Orange	Yellow	Tolerable	(psi)	(N)
		deck 1	7	-	-	-	-	-	-
		deck 2	418	-	-	-	-	-	-
		deck 3	257	-	-	-	-	-	-
1	Storage	deck 4	431	-	-	-	-	-	-
1	System	deck 5	490	85/25/60s	-	-	-	-	85
		deck 6	96	-	-	-	-	-	-
		deck 7	18	-	-	-	-	-	-
		deck 8	14	-	-	-	-	-	-
Total 85									

Flash Fire Skenario 1-3 mm											
No	Sugton	Location	Jumlah	rn Degree (Ju	umlah orang	terdampak/l	Radius/Wakt	Heat Flux	Fatality		
INO.	System	Location	Orang	First	Second	Third	Tolerable	(kW/m^2)	(N)		
		deck 1	7	-	-	-	-	< 2900	-		
		deck 2	418	-	-	-	-	> 17000	I		
		deck 3	257	-	-	-	-	< 2900	-		
1	Storage	deck 4	431	-	-	-	-	< 2900	-		
1	System	deck 5	490	15/10/60s	-	-	-	< 2900	15		
		deck 6	96	-	-	-	-	< 2900	-		
		deck 7	18	-	-	-	-	< 2900	-		
deck 8 14 <2900											
Total											

Jet Fire Skenario 1-3 mm										
N.	Grandana	Territori	Jumlah	rn Degree (Ju	ımlah orang	terdampak/I	Radius/Wakt	Heat Flux	Fatality	
INO.	System	Location	Orang	Red	Orange	Yellow	Tolerable	(kW/m^2)	(N)	
		deck 1	7	5/10 m/60 s	-	-	-	< 2.0	5	
		deck 2	418		-	-	-	> 10		
		deck 3	257	-	-	-	-	< 2.0	-	
1	Storage	deck 4	431	-	-	-	-	< 2.0	-	
1	System	deck 5	490	17/10/60s	-	-	-	> 10	17	
		deck 6	96	-	-	-	-	< 2.0	-	
		deck 7	18	-	-	-	-	< 2.0	-	
		deck 8	14	-	-	-	-	< 2.0	-	
Total 22										

Gas Dispersion Skenario 1-3 mm											
No	Sustan	Location	Jumlah	Action Criter	ia (Jumlah o	rang terdam	pak/Jangkau	DDM	Fatality		
10.	System	Location	Orang	PAC-3	PAC-2	PAC-1	Tolerable	PPIVI	(N)		
		deck 1	7	-	-	-	-	< 2900	-		
deck 2 418 <2900											
		deck 3	257	-	-	-	-	< 2900	-		
1	Storage	deck 4	431	-	-	-	-	< 2900	-		
1	System	deck 5	490	15/10/60s	-	-	-	> 17000	15		
		deck 6	96	-	-	-	-	< 2900	-		
		deck 7	18	-	-	-	-	< 2900	-		
deck 8 14 <2900											
Total 15											

BLEVE/ Fireball Skenario 3-10 mm											
No	Sustan	Location	Jumlah	rn Degree (J	umlah orang	terdampak/	Radius/Wak	Heat Flux	Fatality		
INO.	System	Location	Orang	First	Second	Third	Tolerable	(kW/m^2)	(N)		
		deck 1	7	-	-	-	-	-	-		
	deck 2 418										
		deck 3	257	-	-	-	-	-	-		
1	Storage	deck 4	431	-	-	-	-	-	-		
1	System	deck 5	490	85/25/60s	-	-	-	-	85		
		deck 6	96	-	-	-	-	-	-		
		deck 7	18	-	-	-	-	-	-		
deck 8 14											
Total											

Explosion Skenario 3-10 mm											
No	Swatam	Location	Jumlah	ffect (Jumlał	n orang terda	ampak/Jangl	kauan/Waktı	Pressure	Fatality		
INO.	System	Location	Orang	Red	Orange	Yellow	Tolerable	(psi)	(N)		
		deck 1	7	-	-	-	-	-	-		
deck 2 418											
		deck 3	257	-	-	-	-	-	-		
1	Storage	deck 4	431	-	-	-	-	-	-		
1	System	deck 5	490	85/25/60s	-	-	-	-	85		
		deck 6	96	-	-	-	-	-	-		
		deck 7	18	-	-	-	-	-	-		
deck 8 14											
Total 85											

Flash Fire Skenario 3-10 mm											
No	Sustan	Location	Jumlah	rn Degree (Ju	umlah orang	terdampak/	Radius/Wak	Heat Flux	Fatality		
INO.	System	Location	Orang	First	Second	Third	Tolerable	(kW/m^2)	(N)		
		deck 1	7	-	-	-	-	< 2900	-		
deck 2 418 > 17000											
		deck 3	257	-	-	-	-	< 2900	-		
1	Storage	deck 4	431	-	-	-	-	< 2900	-		
1	System	deck 5	490	16/10 m/60 s	-	-	-	> 17000	16		
		deck 6	96	-	-	-	-	< 2900	-		
		deck 7	18	-	-	-	-	< 2900	-		
deck 8 14 <2900											
Total											

Jet Fire Skenario 3-10 mm											
No	Sugtan	Location	Jumlah	m Degree (Ju	umlah orang	terdampak/	Radius/Wak	Heat Flux	Fatality		
INO.	System	Location	Orang	Red	Orange	Yellow	Tolerable	(kW/m^2)	(N)		
		deck 1	7	5/10 m/60 s	-	-	-	< 2.0	-		
deck 2 418 > 10											
		deck 3	257	-	-	-	-	< 2.0	-		
1	Storage	deck 4	431	-	-	-	-	< 2.0	-		
1	System	deck 5	490	18/10 m/60 s	-	-	-	> 10	18		
		deck 6	96	-	-	-	-	< 2.0	-		
		deck 7	18	-	-	-	-	< 2.0	-		
deck 8 14 <2.0											
Total 12											

	Gas Dispersion Skenario 3-10 mm									
No	System	T	Jumlah	Action Criter	ia (Jumlah o	rang terdam	pak/Jangkau	DDM	Fatality	
10.	System	Location	Orang	PAC-3	PAC-2	PAC-1	Tolerable	PPIVI	(N)	
		deck 1	7	-	-	-	-	< 2900	-	
	Storage	deck 2	418	-	-	-	-	> 17000	-	
		deck 3	257	-	-	-	-	< 2900	-	
1		deck 4	431	-	-	-	-	< 2900	-	
1	System	deck 5	490	13/10 m/60 s	-	-	-	< 2900	13	
		deck 6	96	-	-	-	-	< 2900	-	
		deck 7	18	-	-	-	-	< 2900	-	
		deck 8	14	-	-	-	-	< 2900	-	
				Total					13	

	BLEVE/ Fireball Skenario 10-50 mm										
N-	G (T = ==ti==	Jumlah	rn Degree (J	umlah orang	; terdampak/	Radius/Wak	Heat Flux	Fatality		
INO.	System	Location	Orang	First	Second	Third	Tolerable	(kW/m^2)	(N)		
		deck 1	7	-	-	-	-	-	-		
	Storage	deck 2	418	-	-	-	-	-	-		
		deck 3	257	-	-	-	-	-	-		
1		deck 4	431	-	-	-	-	-	-		
1	System	deck 5	490	85/25/60s	-	-	-	-	85		
		deck 6	96	-	-	-	-	-	-		
		deck 7	18	-	-	-	-	-	-		
		deck 8	14	-	-	-	-	-	-		
				Total					85		

	Explosion Skenario 10-50 mm									
NT	Sectors		Jumlah	ffect (Jumlał	n orang terda	ampak/Jang	kauan/Waktı	Pressure	Fatality	
INO.	System	Location	Orang	Red	Orange	Yellow	Tolerable	(psi)	(N)	
		deck 1	7	-	-	-	-	-	-	
		deck 2	418	-	-	-	-	-	-	
	Storage	deck 3	257	-	-	-	-	-	-	
1		deck 4	431	-	-	-	-	-	-	
1	System	deck 5	490	85/25/60s	-	-	-	-	85	
		deck 6	96	-	-	-	-	-	-	
		deck 7	18	-	-	-	-	-	-	
		deck 8	14	-	-	-	-	-	-	
				Total					85	

	Flash Fire Skenario 10-50 mm									
No	Sustan	Location	Jumlah	rn Degree (Ju	ımlah orang	terdampak/	Radius/Wak	Heat Flux	Fatality	
NO.	System	Location	Orang	First	Second	Third	Tolerable	(kW/m^2)	(N)	
		deck 1	7	350/21 m/60 s	-	-	-	< 2900	-	
	Storage	deck 2	418		-	I	-	> 17000	I	
		deck 3	257	-	-	-	-	< 2900	-	
1		deck 4	431	-	-	-	-	< 2900	-	
1	System	deck 5	490	850/21 m/60 s	-	I	-	< 2900	350	
		deck 6	96	-	-	-	-	< 2900	-	
		deck 7	18	-	-	I	-	< 2900	I	
		deck 8	14	-	-	-	-	< 2900	-	
				Total					350	

Jet Fire Skenario 10-50 mm										
NT-	System	•	Jumlah	rn Degree (J	umlah orang	terdampak/	Radius/Wak	Heat Flux	Fatality	
INO.		Location	Orang	Red	Orange	Yellow	Tolerable	(kW/m^2)	(N)	
		deck 1	7	-	-	-	-	< 2.0		
		deck 2	418	-	-	-	-	> 10		
	Storage	deck 3	257	-	-	-	-	< 2.0	-	
1		deck 4	431	-	-	-	-	< 2.0	-	
1	System	deck 5	490	5/10 m/60 s	-	-	-	> 10	15	
		deck 6	96	-	-	-	-	< 2.0	-	
		deck 7	18	-	-	-	-	< 2.0	-	
		deck 8	14	-	-	-	-	< 2.0	-	
				Total					15	

	Gas Dispersion Skenario 10-50 mm									
No.	Stratam	T	Jumlah	Action Criter	ia (Jumlah o	rang terdam	pak/Jangkau	DDM	Fatality	
	System	Location	Orang	PAC-3	PAC-2	PAC-1	Tolerable	PPIVI	(N)	
		deck 1	7	-	-	-	-	< 2900		
		deck 2	418	-	-	-	-	> 17000		
	Storage	deck 3	257	-	-	-	-	< 2900	-	
1		deck 4	431	-	-	-	-	< 2900	-	
1	System	deck 5	490	38/10 m/60 s	-	-	-	< 2900	38	
		deck 6	96	-	-	-	-	< 2900	-	
		deck 7	18	-	-	-	-	< 2900	-	
		deck 8	14	-	-	-	-	< 2900	-	
				Total					38	

"This page is intentionally left blank"

RISK REPRESENTATIVE ATTACHMENT

	Skenario BLEEVE in Bore Hole 1-3 mm								
No.	System	Number of Fatalities	Frequency	Cumulative Frequency					
1	BOG System	0	0,00E+00	0,00E+00					
2	MGE System	0	0,00E+00	0,00E+00					
3	GVU System	0	0,00E+00	0,00E+00					
4	storage	85	1,80719E-10						

	Skenario BLEEVE For Bore Hole 3-10 mm									
No.	System	Number of Fatalities	Frequency	Cumulative Frequency						
1	BOG System	0	0,00E+00	0,00E+00						
2	MGE System	0	0,00E+00	0,00E+00						
3	GVU System	0	0,00E+00	0,00E+00						
4	storage	85	1,17998E-10							

	Skenario BLEEVE For Bore Hole 10-50 mm								
No.	System	Number of Fatalities	Frequency	Cumulative Frequency					
1	BOG System	0	0,00E+00	0,00E+00					
2	Fuel System	0	0,00E+00	0,00E+00					
3	GVU System	0	0,00E+00	0,00E+00					
4	storage	85	0,000123392						

	Skenario Explosion For Bore Hole 1-3 mm								
No.	System	Number of Fatalities	Frequency	Cumulative Frequency					
1	BOG System	0	0,00E+00	0,00E+00					
2	Fuel System	0	0,00E+00	0,00E+00					
3	GVU System	0	0,00E+00	0,00E+00					
4	storage	85	1,2048E-10						

	Skenario Explosion For Bore Hole 3-10 mm								
No.	System	Number of Fatalities	Frequency	Cumulative Frequency					
1	BOG System	0	0,00E+00	0,00E+00					
2	Fuel System	0	0,00E+00	0,00E+00					
3	GVU System	0	0,00E+00	0,00E+00					
4	storage	85	7,86655E-11						

	Skenario Explosion For Bore Hole 10-50 mm							
No.	System	Number of Fatalities	Frequency	Cumulative Frequency				
1	BOG System	0	0,00E+00	0,00E+00				
2	Fuel System	0	0,00E+00	0,00E+00				
3	GVU System	0	0,00E+00	0,00E+00				
4	storage	85	8,22619E-05					

	Skenario Flash Fire For Bore Hole 1-3 mm									
No.	System	Number of Fatalities	Frequency	Cumulative Frequency						
1	BOG System	5	2,89E-10	2,89E-10						
2	Fuel System	5	6,43E-10	9,33E-10						
3	GVU System	2	4,91E-24	9,33E-10						
4	storage	15	6,03E-16	9,33E-10						

	Skenario Flash Fire For Bore Hole 3-10 mm									
No.	System	Number of Fatalities	Frequency	Cumulative Frequency						
1	BOG System	5	5,15E-10	5,15E-10						
2	Fuel System	5	3,43E-10	8,58E-10						
3	GVU System	2	2,13E-19	8,58E-10						
4	storage	16	3,9372E- 16	8,58E-10						

	Skenario Flash Fire For Bore Hole 10-50 mm									
No.	System	Number of Fatalities	Frequency	Cumulative Frequency						
1	BOG System	5	2,89E-10	2,89E-10						
2	Fuel System	5	6,71E-10	9,61E-10						
3	GVU System	5	5,10E-11	1,01E-09						
4	storage	350	4,1172E- 10	1,42E-09						

	Skenario Jet Fire For Bore Hole 1-3 mm										
No.	System	Number of Fatalities	Frequency	Cumulative Frequency							
1	BOG System	5	2,34E-09	2,34E-09							
2	Fuel Sytem	5	5,21E-09	7,55E-09							
3	GVU System	5	3,97E-23	7,55E-09							
4	storage	22	0	7,55E-09							

	Skenario Jet Fire For Bore Hole 3-10 mm									
No.	System	Number of Fatalities	Frequency	Cumulative Frequency						
1	BOG System	5	4,16E-09	4,16E-09						
2	Fuel Sytem	5	2,78E-09	6,94E-09						
3	GVU System	5	1,72E-18	6,94E-09						
4	storage	18	18 0							

	Skenario Jet Fire For Bore Hole 10-50 mm										
No.	System	Number of Fatalities	Frequency	Cumulative Frequency							
1	BOG System	5	2,34E-09	2,34E-09							
2	Fuel Sytem	5	5,43E-09	7,77E-09							
3	GVU System	5	4,13E-10	8,18E-09							
4	storage	15	0	8,18E-09							

	Skenario Gas Dispersion For Bore Hole 1-3 mm										
No.	System	Number of Fatalities	Frequency	Cumulative Frequency							
1	BOG System	5	2,63E-06	2,63E-06							
2	Fuel Sytem	5	5,84E-06	8,47E-06							
3	GVU System	2	4,46E-20	8,47E-06							
4	storage	15	7,02797E-10	8,47E-06							

	Skenario Gas Dispersion For Bore Hole 3-10 mm										
No.	System	Number of Fatalities	Frequency	Cumulative Frequency							
1	BOG System	5	4,67E-06 4,67E-06								
2	Fuel Sytem	5	3,12E-06	7,79E-06							
3	GVU System	5	1,93E-15	7,79E-06							
4	storage	13	4,58881E-10	7,79E-06							

	Skenario Gas Dispersion For Bore Hole 10-50 mm										
No.	System	Frequency	Cumulative Frequency								
1	BOG System	5	2,63E-06	2,63E-06							
2	Fuel Sytem	5	2,77E-06	5,39E-06							
3	GVU System	2	2,10E-07	5,61E-06							
4	storage	38	0,00047986	4,85E-04							

CRYOGENIC CENTRIFUGAL PUMPS

DSM L SERIES

for LIQUEFIED NATURAL GAS (LNG)

Technical features

- Direct power transmission
- Mechanical seal in rulon
- Inducer to minimize required NPSH
 Low noise emission (< 80 dB)

Applications

- Road trailers unloading, storage/iso-containers loading/unloading
 Bunkering
- Process and back-up operations, petrochemical industry applications

Transferred fluids

+LNG

PERFORMANCE							
Model	DSM 160	DSM 185	DSM 230				
Transmission		Direct	ŧ.				
Min – max flow rate [lpm]	20 - 215	25 - 315	85 - 1250				
Min - max differential head [m]	5,4 - 37	7,6 - 50	8,5 - 74				
Max suction pressure [bar]		5					
Maximum allowable pressure [bar]	30	35	28				

Test and controls

Dimensional control of each mechanical component

Optional Filter

151

Model Ph/0 DN L a a b c d e b i e m n o q r b a b i e m n o q r a b a								he	rbo	rner	-F-I	PM	Dim	ens	ions	s • V	/eigi	hts						
PEQ2-EIGAN 0.3 25 0.3 38 2 160 12 222 22 20 10 103 24 10 104 15 168 4116 15 25 F032-200A1 0.5 22 0.0 10 103 24 10 104 15 168 4116 15 263 F032-200A1 0.1 22 0.0 100 100 100 100 100 100 100 100 16 16 4116 15 0.6 100 150 200 100 150 200 100 150 200 100 150 160 4116 100 100 100 100 16 46 4116 100	Model	P2 [kW]	DN ₂	DN ₁	L	a ₁	a ₂	b	c	d	е	F	g	h	i.	øk	m	n	0	q	r	5	x _{min}	m ¹⁾ [kg]
F032:E0A2 0.0 32 2 0.0 10 18 2.0 10.0 16 16.0 16.0 2.0 10.0 18 2.0 10.0	F025-160A ²)	0.37	25	50	380	80	35	12	160	132	292	122	229	70	100	138	240	190	140	15	168	4xM16	150	31
F032:2000 7.5 2.5 60 40.2 7.6 7.0 7	F032-160A ²⁾	0.37	32	50	380	80	35	12	160	132	292	122	229	70	100	138	240	190	140	15	168	4xM16	150	32
FD32-2004 I I I I<	F032-200A ²⁾	0.55	32	50	402	80	39	13	180	160	340	135	260	70	100	139	240	190	140	15	161	4xM16	150	38
F032-2004 ² 1.1 32 50 400 80 80 10 100 135 240 100 160 140 150 35 F032-2604 ² 2.2 22 50 500 100 15 147 440416 150 67 F032-2604 ² 2.2 2.2 2.2 100 13 240 100 140 15 166 440416 150 68 F040-16047 0.37 40 65 30 0 33 12 160 122 120 200 100 135 240 140 140 15 168 44M16 150 34 F040-27047 1.5 40 65 130 200 160 30 157 25 70 100 177 265 121 165 144 44M16 150 164 44M16 150 164 F040-27047 3.4 40 150 160 </td <td>F032-200A²⁾</td> <td>0.75</td> <td>32</td> <td>50</td> <td>402</td> <td>80</td> <td>39</td> <td>13</td> <td>180</td> <td>160</td> <td>340</td> <td>135</td> <td>260</td> <td>70</td> <td>100</td> <td>139</td> <td>240</td> <td>190</td> <td>140</td> <td>15</td> <td>161</td> <td>4xM16</td> <td>150</td> <td>39</td>	F032-200A ²⁾	0.75	32	50	402	80	39	13	180	160	340	135	260	70	100	139	240	190	140	15	161	4xM16	150	39
P103:250AP P1 P2	F032-200A ²⁾	1.1	32	50	430	80	39	13	180	160	340	135	260	70	100	157	240	190	140	15	166	4xM16	150	43
P303:2408 2 2 2 2 5 50 700 705 700 705 700 700	F032-250A ²⁾	1.5	32	50	438	100	46	15	225	180	405	155	260	95	125	192	320	250	190	15	147	4xM16	150	58
F032-2604" 2 32 30 502 100 101 101 101 100 101 101 101 100 101<	F032-250A4	2.2	32	50	502	100	46	15	225	180	405	155	305	95	125	192	320	250	190	15	186	4xM16	150	67
PAUA-BIGANAP O.37 AU Bos Bos Bos Bos <th< td=""><td>F032-250B ²⁾</td><td>2.2</td><td>32</td><td>50</td><td>502</td><td>100</td><td>46</td><td>15</td><td>225</td><td>180</td><td>405</td><td>155</td><td>305</td><td>95</td><td>125</td><td>192</td><td>320</td><td>250</td><td>190</td><td>15</td><td>186</td><td>4xM16</td><td>150</td><td>68</td></th<>	F032-250B ²⁾	2.2	32	50	502	100	46	15	225	180	405	155	305	95	125	192	320	250	190	15	186	4xM16	150	68
PAUE-IGAVA D.S 40 60 40 60 40 60 40 10 10 13 244 100 100 13 244 100 100 13 244 100 100 13 244 100 13 244 100 13 244 100 13 244 100 13 244 100 13 244 100 157 255 12 15 184 4xhth6 150 15 PE040-270A7 2 40 65 13 100 52 13 224 180 141 178 300 51 15 184 4xhth6 150 79 PE040-270A7 4 40 65 66 100 52 13 224 180 41 178 400 151 150 4xhth6 150 79 70 100 157 157 177 140 161 15 161	F040-160A ²⁾	0.37	40	65	380	80	33	12	160	132	292	122	232	70	100	138	240	190	140	15	168	4xM16	150	31
PAUA-PRAM O.75 A0 B5 AVM16 130 230 120 130 240 140 15 184 AXM16 150 34 FO40-220AP 15 140 65 485 100 55 13 200 160 380 157 255 170 100 157 255 121 156 15 144 AXM16 150 75 FO40-270AP 3 40 65 573 100 52 13 234 180 414 178 340 95 125 166 220 150 150 150 150 4XM16 150 96 F040-270AP 50 65 458 128 17 160 132 221 30 245 161 100 140 15 200 4XM16 150 44 150 45 177 240 100 140 15 224 4XM16 150 <td< td=""><td>F040-160A4</td><td>0.55</td><td>40</td><td>65</td><td>409</td><td>80</td><td>33</td><td>12</td><td>160</td><td>132</td><td>292</td><td>120</td><td>230</td><td>70</td><td>100</td><td>139</td><td>240</td><td>190</td><td>140</td><td>15</td><td>168</td><td>4xM16</td><td>150</td><td>33</td></td<>	F040-160A4	0.55	40	65	409	80	33	12	160	132	292	120	230	70	100	139	240	190	140	15	168	4xM16	150	33
PLAH2.2044 1.1 40 65 48 100 65 3 200 160 800 157 295 70 100 157 265 212 165 15 184 4.MM16 150 65 PCM4-270A7 3 40 65 573 100 52 13 234 180 414 178 340 95 125 160 120 150 15 197 4.MM16 150 96 PCM2-270A7 55 40 65 661 100 52 13 234 180 414 178 340 95 125 160 120 140 152 204 1401 152 204 44M16 150 49 PCM-10AA7 0.5 65 458 128 10 161 120 140 132 248 70 100 170 240 140 152 245 44 444 150 <td>F040-160A*</td> <td>0.75</td> <td>40</td> <td>65</td> <td>409</td> <td>80</td> <td>33</td> <td>12</td> <td>160</td> <td>132</td> <td>292</td> <td>120</td> <td>230</td> <td>70</td> <td>100</td> <td>139</td> <td>240</td> <td>190</td> <td>140</td> <td>15</td> <td>168</td> <td>4xM16</td> <td>150</td> <td>34</td>	F040-160A*	0.75	40	65	409	80	33	12	160	132	292	120	230	70	100	139	240	190	140	15	168	4xM16	150	34
Full Full <th< td=""><td>F040-220A²⁾</td><td>1.1</td><td>40</td><td>65</td><td>458</td><td>100</td><td>55</td><td>13</td><td>200</td><td>160</td><td>360</td><td>157</td><td>295</td><td>70</td><td>100</td><td>157</td><td>265</td><td>212</td><td>165</td><td>15</td><td>194</td><td>4xM16</td><td>150</td><td>54</td></th<>	F040-220A ²⁾	1.1	40	65	458	100	55	13	200	160	360	157	295	70	100	157	265	212	165	15	194	4xM16	150	54
PLAL-2/CAM-7 2.2 AU Bo Bo Bo AU AU AU BO AU AU BO AU AU AU BO AU AU AU BO AU AU AU AU AU AU AU AU AU AU AU	F040-220A4	1.5	40	65	485	100	55	13	200	160	360	157	295	70	100	1/6	265	212	165	15	194	4XM16	150	56
PIAL-2/CAPA 3 40 65 513 100 52 13 125 146 320 125 146 320 125 145 320 150 13 134 146 185 320 225 190 15 127 44.M16 150 45. 160 44.M16 150 44.M16 150 45. 160 44.M16 150 44.M16 150 45. 150 160 44.M16 150 44.M16 150 45. 150 160 44.M16 150 44.M16 150 45. 150 44.M16 150 45. 150 44.M16 150	F040-270A ²⁾	2.2	40	65	504	100	52	13	200	180	380	157	295	70	100	177	265	212	165	15	188	4xM16	150	71
PIAL-270A-7 A AU BO	F040-270A-9	3	40	65	513	100	52	13	234	180	414	1/8	340	95	125	196	320	250	190	15	197	4XM16	150	79
PANE-20047 S.S. 40 BS BO BO BO So	F040-270A4	4	40	65	5/3	100	52	13	234	180	414	178	340	95	125	196	320	250	190	15	197	4XM16	150	86
PHOL-HUMAP U.S.S B0 B4 B1 B1 B1 B2 D21 AXM16 B10 B4 B10	F040-270A-9	5.5	40	65	606	100	52	13	234	180	414	1/8	340	95	125	220	320	250	190	15	200	4XM16	150	90
Probe Prob< Probe Probe <th< td=""><td>F050-140A4</td><td>0.55</td><td>50</td><td>65</td><td>458</td><td>128</td><td>80</td><td>17</td><td>160</td><td>132</td><td>292</td><td>130</td><td>245</td><td>95</td><td>139</td><td>157</td><td>240</td><td>190</td><td>140</td><td>15</td><td>217</td><td>4XM16</td><td>150</td><td>48</td></th<>	F050-140A4	0.55	50	65	458	128	80	17	160	132	292	130	245	95	139	157	240	190	140	15	217	4XM16	150	48
Prose-fielda 1.1 50 60 40 17 100 10	F050-140A-7	0.75	50	00	400	120	00	47	100	132	292	130	240	95	139	137	240	190	140	15	217	4XM10	150	49
Probe-100A-1 1.5 66 4.29 1.00 160 160 161 162 160 161 162 167 165 121 165 160 140 160 360 360 132 248 70 100 177 265 212 165 15 194 4xM16 150 45 POSC-190A7 1.5 50 65 510 100 54 16 200 160 360 150 278 70 100 177 265 212 165 194 4xM16 150 55 POSC-190A7 1.5 0 65 503 100 54 16 200 160 360 150 278 70 100 177 255 212 165 154 4xM16 150 52 POSC-240A7 2.5 50 55 173 200 50 157 230 250 151 174 4xM16	F050-140A-/	1.1	50	65	489	128	80	17	160	132	292	130	245	70	157	1//	240	190	140	15	225	4XM16	150	53
FORE-100AP 1.1 5 66 401 60 64 100 </td <td>F050-160A-7</td> <td>1.1</td> <td>50</td> <td>65</td> <td>429</td> <td>100</td> <td>54</td> <td>17</td> <td>100</td> <td>160</td> <td>240</td> <td>132</td> <td>240</td> <td>70</td> <td>100</td> <td>159</td> <td>200</td> <td>212</td> <td>100</td> <td>15</td> <td>100</td> <td>4XM10</td> <td>150</td> <td>40</td>	F050-160A-7	1.1	50	65	429	100	54	17	100	160	240	132	240	70	100	159	200	212	100	15	100	4XM10	150	40
FIGE-190AP 1.3 50 65 66 67 100 107 265 121 165 15 14 4xM16 150 55 F050-190A7 3 50 65 510 100 54 16 200 160 360 150 278 70 100 177 265 121 165 15 14 4xM16 150 55 F050-240A7 3 50 65 503 100 54 17<	F050-100A-7	4.5	50	00	405	100	54	40	200	100	260	450	240	70	100	470	200	212	100	45	404	4	450	4J
Flobe-190AP L2 S <t< td=""><td>F050-190A-7</td><td>1.5</td><td>50</td><td>65</td><td>400</td><td>100</td><td>54</td><td>10</td><td>200</td><td>160</td><td>360</td><td>150</td><td>270</td><td>70</td><td>100</td><td>170</td><td>200</td><td>212</td><td>100</td><td>15</td><td>194</td><td>4XM10</td><td>150</td><td>51</td></t<>	F050-190A-7	1.5	50	65	400	100	54	10	200	160	360	150	270	70	100	170	200	212	100	15	194	4XM10	150	51
FORD-1100H 2 5 50 100 50 100 <td>F050-190A-7</td> <td>2.2</td> <td>50</td> <td>65</td> <td>510</td> <td>100</td> <td>64</td> <td>16</td> <td>200</td> <td>160</td> <td>260</td> <td>150</td> <td>270</td> <td>70</td> <td>100</td> <td>106</td> <td>203</td> <td>212</td> <td>165</td> <td>15</td> <td>104</td> <td>4×M10</td> <td>150</td> <td>62</td>	F050-190A-7	2.2	50	65	510	100	64	16	200	160	260	150	270	70	100	106	203	212	165	15	104	4×M10	150	62
Fibe-140a Lz 5 66 50 66 50 66 50 66 50 60 50 100	F050-190A-9	22	50	65	510	100	54	16	200	160	260	150	270	70	100	177	203	212	165	15	104	4×M10	150	66
Cobs-2u0A 1.3 <th1.3< th=""> 1.3 <th1.3< th=""> <th1.3<< td=""><td>F050-240A2</td><td>15</td><td>50</td><td>65</td><td>478</td><td>100</td><td>58</td><td>17</td><td>200</td><td>180</td><td>400</td><td>170</td><td>320</td><td>05</td><td>125</td><td>176</td><td>320</td><td>250</td><td>100</td><td>15</td><td>187</td><td>4×M16</td><td>150</td><td>57</td></th1.3<<></th1.3<></th1.3<>	F050-240A2	15	50	65	478	100	58	17	200	180	400	170	320	05	125	176	320	250	100	15	187	4×M16	150	57
FORD-210AP 1.2 5 65 50.3 100 65 17 220 160 100 170 220 160 170 170 180 171 180 171 180 171 180 170 170 150 120 180 171 220 180 100 170 150 220 180 171 225 180 405 150 285 95 125 177 200 250 170 15 208 4xM16 150 65 F065-202AP 2.2 65 80 515 100 34 17 225 180 405 150 255 177 320 250 170 15 194 4xM16 150 65 F065-202AP 3 65 80 570 100 50 15 250 180 430 170 16 95 125 196 320 250 190 4xM16 </td <td>F050-24043</td> <td>2.2</td> <td>50</td> <td>65</td> <td>602</td> <td>100</td> <td>60</td> <td>17</td> <td>220</td> <td>100</td> <td>400</td> <td>170</td> <td>220</td> <td>06</td> <td>125</td> <td>177</td> <td>220</td> <td>250</td> <td>100</td> <td>15</td> <td>107</td> <td>4×1416</td> <td>150</td> <td>62</td>	F050-24043	2.2	50	65	602	100	60	17	220	100	400	170	220	06	125	177	220	250	100	15	107	4×1416	150	62
Hole-ZouAR I.1 65 80 472 100 34 17 225 180 405 150 157 320 250 100 1100 110 110 110	F050-240A ³	3	50	65	513	100	58	17	220	180	400	170	320	95	125	106	320	250	190	15	107	4×M16	150	70
F065-200A ³ 1.5 65 80 499 100 34 17 225 180 405 150 285 95 125 176 320 250 170 15 208 4xM16 150 651 F065-200A ³ 2.2 65 80 515 100 50 152 101 65 177 320 250 170 15 194 4xM16 150 65 F065-220A ³ 3 65 80 510 100 50 15 250 180 430 170 316 95 125 196 320 250 190 15 194 4xM16 150 80 F065-240A ³ 4 65 80 576 100 54 17 250 204 400 184 340 120 160 196 360 280 200 19 93 4xM16 150 87 87 200	F065-200A2	11	65	80	472	100	34	17	225	180	405	150	285	95	125	157	320	250	170	15	208	4×M16	150	58
Tebes-2oux T< T< <tht<< th=""> T< T<</tht<<>	F065-200A3	1.5	65	80	400	100	34	17	225	180	405	150	285	95	125	176	320	250	170	15	208	4×M16	150	61
Flob 2003 L2 65 80 610 100 60 110 100	F065-200A ²	2.2	65	80	515	100	34	17	225	180	405	150	285	05	125	177	320	250	170	15	100	4×M16	150	65
F065-220.47 3 65 80 510 100 50 15 250 180 430 170 316 95 125 196 320 250 190 15 194 4xM16 150 73 F065-220A3 4 65 80 570 100 50 15 250 180 430 170 316 95 125 196 320 250 190 15 194 4xM16 150 80 F065-240A3 4 65 80 576 100 54 17 250 200 450 184 340 120 160 196 360 280 200 19 140 4xM16 150 97 F065-270C3 5.5 65 80 671 107 220 440 184 345 120 160 220 800 210 191 4xM16 150 97 F065-200C3	F065-220A2	22	65	80	510	100	50	15	250	180	430	170	316	95	125	177	320	250	190	15	194	4×M16	150	66
F065-220.47 4 65 80 570 100 50 15 280 180 40 170 316 95 125 196 320 280 180 430 170 316 95 125 196 320 280 180 15 196 420 180 150 180 30 120 160 196 360 280 280 190 15 194 4xM16 150 80 F065-240A7 4 65 80 574 100 52 17 240 200 440 184 445 120 160 196 360 280 200 19 188 4xM16 150 93 F065-270A7 5.5 65 80 607 100 52 17 240 200 40 184 445 120 160 250 280 200 19 184 4xM16 150 93 F065-270CA7 5.5 65 80 677 100 52 177 250	F065-220A ²	3	65	80	510	100	50	15	250	180	430	170	316	95	125	196	320	250	190	15	194	4×M16	150	73
F065-240A3 3 65 80 516 100 54 17 250 200 450 184 340 120 160 196 360 280 200 19 200 4xM16 150 80 F065-240A3 4 65 80 576 100 54 17 250 200 450 184 340 120 160 196 360 280 200 19 184 4xM16 150 37 F065-270A3 5.5 65 80 607 100 57 17 260 200 400 184 345 120 160 220 280 200 19 184 4xM16 150 97 F065-30087 15 65 80 674 102 52 50 211 402 120 160 167 320 19 34 4xM16 150 142 120 160 157 320 <td>F065-220A²⁾</td> <td>4</td> <td>65</td> <td>80</td> <td>570</td> <td>100</td> <td>50</td> <td>15</td> <td>250</td> <td>180</td> <td>430</td> <td>170</td> <td>316</td> <td>95</td> <td>125</td> <td>196</td> <td>320</td> <td>250</td> <td>190</td> <td>15</td> <td>194</td> <td>4xM16</td> <td>150</td> <td>80</td>	F065-220A ²⁾	4	65	80	570	100	50	15	250	180	430	170	316	95	125	196	320	250	190	15	194	4xM16	150	80
F065-240A3 4 65 80 576 100 54 17 250 200 450 184 340 120 160 196 360 280 200 19 200 4xM16 150 87 F065-270A3 4 65 80 574 100 52 17 240 200 440 184 345 120 160 120 280 200 19 198 4xM16 150 97 F065-270C3 5.5 65 80 607 100 52 17 240 200 440 184 345 120 160 220 360 280 200 19 18 4xM16 150 97 F065-270C3 5.5 65 80 662 125 52 15 275 255 500 211 402 120 160 260 400 163 163 163 163 163 163 163 163 163 163 163 163 163 163 163	F065-240A2	3	65	80	516	100	54	17	250	200	450	184	340	120	160	196	360	280	200	19	200	4xM16	150	80
F065-270A ³ 4 65 80 574 100 52 17 240 200 440 184 345 120 160 196 360 280 200 19 184 4xM16 150 93 F065-270A ³ 5.5 65 80 604 100 52 17 240 200 440 184 345 120 160 220 200 19 198 4xM16 150 93 F065-270C3 5.5 65 80 667 100 57 17 250 204 20 160 258 400 15 240 19 233 4xM16 150 93 F065-3006 ³⁷ 7.5 65 80 674 126 19 225 500 211 402 120 160 167 30 190 19 234 4xM16 150 165 F080-170A ³¹ 1.5 80 100	F065-240A ²⁾	4	65	80	576	100	54	17	250	200	450	184	340	120	160	196	360	280	200	19	200	4xM16	150	87
F065-270A7 5.5 65 80 604 100 52 17 240 200 440 184 345 120 160 220 360 280 200 19 19 4 xM16 150 97 F065-270C3 5.5 65 80 607 100 57 17 240 200 450 102 102 220 260 200 10 120 4xM16 150 97 F065-30087 11 65 80 746 125 52 50 211 402 120 160 250 400 15 240 19 236 4xM16 150 165 165 202 120 160 157 220 190 19 235 4xM16 150 165 50 170 160 176 320 250 190 19 255 150 140 188 48 95 125 160 15 <td>F065-270A²⁾</td> <td>4</td> <td>65</td> <td>80</td> <td>574</td> <td>100</td> <td>52</td> <td>17</td> <td>240</td> <td>200</td> <td>440</td> <td>184</td> <td>345</td> <td>120</td> <td>160</td> <td>196</td> <td>360</td> <td>280</td> <td>200</td> <td>19</td> <td>198</td> <td>4xM16</td> <td>150</td> <td>93</td>	F065-270A ²⁾	4	65	80	574	100	52	17	240	200	440	184	345	120	160	196	360	280	200	19	198	4xM16	150	93
F065-270C ³ 5.5 65 80 607 100 57 17 250 200 450 192 365 120 160 220 360 280 200 19 211 4xM16 150 99 F065-30089 7.5 65 80 662 125 62 15 275 225 500 211 402 120 160 284 400 315 240 19 233 4xM16 150 163 F065-30089 1.1 80 100 499 140 80 165 302 120 160 177 320 250 190 19 235 - 150 56 F080-170A ³ 1.5 80 100 56 140 80 19 225 180 405 165 302 120 160 177 320 250 190 19 235 - 150 56 F080	F065-270A2)	5.5	65	80	604	100	52	17	240	200	440	184	345	120	160	220	360	280	200	19	198	4xM16	150	97
F065-3008-3 7.5 65 80 662 125 62 15 275 225 500 211 402 120 160 258 400 315 240 19 233 4xM16 150 142 F065-3008-7 11 65 80 746 125 62 15 275 225 500 211 402 120 160 266 400 315 240 19 233 4xM16 150 163 F060-70A3 1.5 80 100 56 140 80 19 225 180 405 165 302 120 160 176 320 250 101 19 235 - 150 65 F080-170A3 1.5 80 100 56 140 80 19 250 160 165 302 120 160 177 320 250 16 140 84 51 15 <td>F065-270C²⁾</td> <td>5.5</td> <td>65</td> <td>80</td> <td>607</td> <td>100</td> <td>57</td> <td>17</td> <td>250</td> <td>200</td> <td>450</td> <td>192</td> <td>365</td> <td>120</td> <td>160</td> <td>220</td> <td>360</td> <td>280</td> <td>200</td> <td>19</td> <td>201</td> <td>4xM16</td> <td>150</td> <td>99</td>	F065-270C ²⁾	5.5	65	80	607	100	57	17	250	200	450	192	365	120	160	220	360	280	200	19	201	4xM16	150	99
F065-3008-Pi 11 65 80 746 125 62 15 275 225 500 211 402 120 160 260 400 315 240 19 236 4xM16 150 163 F080-170AP 1.1 80 100 499 140 80 19 225 180 405 165 302 120 160 157 320 250 100 19 225 - 150 56 59 F080-170AP 2.2 80 100 568 140 80 19 225 180 405 165 302 120 160 176 320 250 160 19 250 - 150 65 F080-210AP 4 80 100 537 125 68 17 280 190 440 188 48 95 125 100 315 140 85 165 321 100 315 240 190 240 185 480 155 250 <t< td=""><td>F065-300B²⁾</td><td>7.5</td><td>65</td><td>80</td><td>662</td><td>125</td><td>62</td><td>15</td><td>275</td><td>225</td><td>500</td><td>211</td><td>402</td><td>120</td><td>160</td><td>258</td><td>400</td><td>315</td><td>240</td><td>19</td><td>233</td><td>4xM16</td><td>150</td><td>142</td></t<>	F065-300B ²⁾	7.5	65	80	662	125	62	15	275	225	500	211	402	120	160	258	400	315	240	19	233	4xM16	150	142
F080-170A ³ 1.1 80 100 499 140 80 19 225 180 405 165 302 120 160 157 320 250 190 19 235 - 150 56 F080-170A ³ 1.5 80 100 526 140 80 19 225 180 405 165 302 120 160 177 320 250 190 19 235 - 150 56 F080-170A ³ 2.2 80 100 656 140 80 19 225 180 405 165 302 120 160 177 320 250 190 19 250 56 56 56 56 19 250 190 440 188 348 95 125 150 150 152 240 18 84 150 150 150 150 160 160 160 150	F065-300B 2)	11	65	80	746	125	62	15	275	225	500	211	402	120	160	260	400	315	240	19	236	4xM16	150	163
F080-170A3 1.5 80 100 526 140 80 19 225 180 405 165 302 120 160 176 320 250 190 19 235 - 150 59 F080-170A3 2.2 80 100 566 140 80 19 225 180 405 165 302 120 160 177 320 250 190 19 250 - 150 65 F080-210A3 5.5 80 100 630 125 69 19 250 190 440 188 348 95 125 150 244 8xM16 150 93 F080-25643 3 80 105 196 400 185 307 120 160 196 315 240 19 221 8xM16 150 98 F080-256A3 5.5 80 100 677 125 6	F080-170A3)	1.1	80	100	499	140	80	19	225	180	405	165	302	120	160	157	320	250	190	19	235		150	56
F080-170A3 2.2 80 100 566 140 80 19 225 180 405 165 302 120 160 177 320 250 190 19 250 - 150 65 F080-210A3 4 80 100 600 125 69 19 250 190 440 188 348 95 125 15 15 224 8xM16 150 86 F080-210A3 5.5 80 100 630 125 69 19 250 100 440 188 348 95 125 200 345 200 19 248 8xM16 150 93 F080-255A3 3 80 100 597 125 68 17 280 200 480 190 357 120 160 196 400 315 240 19 221 8xM16 150 160 160 204 <td>F080-170A3)</td> <td>1.5</td> <td>80</td> <td>100</td> <td>526</td> <td>140</td> <td>80</td> <td>19</td> <td>225</td> <td>180</td> <td>405</td> <td>165</td> <td>302</td> <td>120</td> <td>160</td> <td>176</td> <td>320</td> <td>250</td> <td>190</td> <td>19</td> <td>235</td> <td></td> <td>150</td> <td>59</td>	F080-170A3)	1.5	80	100	526	140	80	19	225	180	405	165	302	120	160	176	320	250	190	19	235		150	59
F080-210A ³ 4 80 100 600 125 69 19 250 190 440 188 348 95 125 196 345 280 115 224 8xM16 150 86 F080-210A ³ 5.5 80 100 630 125 69 19 280 190 440 188 348 95 125 220 215 15 224 8xM16 150 93 F080-256A ³ 3 80 100 537 125 68 17 280 200 480 190 357 120 160 196 400 315 240 19 221 8xM16 150 93 F080-256A ³ 5.5 80 100 637 125 68 17 280 200 480 190 357 120 160 194 15 15 10 160 194 15 15 16	F080-170A3	2.2	80	100	566	140	80	19	225	180	405	165	302	120	160	177	320	250	190	19	250	-	150	65
F080-210A3 5.5 80 100 630 125 69 19 250 190 440 188 348 95 125 220 345 280 215 15 224 8xM16 150 93 F080-2558A3 3 80 100 537 122 84 190 357 120 160 196 400 315 240 19 221 8xM16 150 93 F080-255A3 4 80 100 537 128 157 120 160 196 400 315 240 19 221 8xM16 150 93 F080-255A3 5.5 80 100 627 125 68 17 280 200 480 190 357 120 160 250 400 315 240 19 221 8xM16 150 182 F080-330A7 11 80 100 757 125	F080-210A ²⁾	4	80	100	600	125	69	19	250	190	440	188	348	95	125	196	345	280	215	15	224	8xM16	150	86
F080-255A3 3 80 100 537 125 68 17 280 200 480 190 357 120 160 196 400 315 240 19 221 8xM16 150 91 F080-255A3 4 80 100 597 125 68 17 280 200 480 190 357 120 160 196 400 315 240 19 221 8xM16 150 91 F080-255A3 5.5 80 100 627 125 68 17 280 200 480 190 357 120 160 196 400 315 240 19 221 8xM16 150 91 F080-350A7 15 80 100 627 125 68 17 280 505 55 452 160 230 200 357 120 160 315 240 19 221 8xM16 150 102 F080-330A7 15 80 100 757<	F080-210A2)	5.5	80	100	630	125	69	19	250	190	440	188	348	95	125	220	345	280	215	15	224	8×M16	150	93
F080-255A ³ 4 80 100 597 125 68 17 280 200 480 190 357 120 160 196 400 315 240 19 221 8xM16 150 98 F080-255A ³ 5.5 80 100 627 122 68 17 280 200 480 190 357 120 160 224 400 315 240 19 221 8xM16 150 162 F080-330A ³ 11 80 100 757 125 54 15 315 250 565 248 462 120 160 260 400 315 240 19 247 8xM16 150 186 F080-330A ³ 11 80 100 757 125 54 15 250 565 284 462 120 160 315 400 19 247 8xM16 150 214	F080-255A2)	3	80	100	537	125	68	17	280	200	480	190	357	120	160	196	400	315	240	19	221	8xM16	150	91
F080-255A3 5.5 80 100 627 125 68 17 280 200 480 190 357 120 160 220 400 315 240 19 221 8xM16 150 102 F080-330A ³ 11 80 100 757 125 54 15 315 20 160 260 400 315 240 19 221 8xM16 150 162 F080-330A ³ 11 80 100 757 125 54 15 55 248 462 120 160 260 400 315 240 19 247 8xM16 150 160 F080-330A ³ 15 80 100 877 125 555 255 256 248 462 120 160 315 400 19 247 8xM16 150 160 150 160 150 160 150 160 150	F080-255A ²⁾	4	80	100	597	125	68	17	280	200	480	190	357	120	160	196	400	315	240	19	221	8xM16	150	98
F080-330A ³ 11 80 100 757 125 54 15 315 250 565 248 462 120 160 260 400 315 240 19 247 8xM16 150 186 F080-330A ³ 15 80 100 794 125 54 15 315 250 565 248 462 120 160 313 400 315 240 19 247 8xM16 150 214 F080-330A ³ 18.5 80 100 897 125 54 15 315 250 565 253 467 120 160 315 400 315 240 19 301 8xM16 150 259	F080-255A2)	5.5	80	100	627	125	68	17	280	200	480	190	357	120	160	220	400	315	240	19	221	8xM16	150	102
F080-330A ³ 15 80 100 794 125 54 15 315 250 565 248 462 120 160 313 400 315 240 19 247 8xM16 150 214 F080-330A ³ 18.5 80 100 897 125 54 15 315 250 565 253 467 120 160 315 400 315 240 19 301 8xM16 150 259	F080-330A2)	11	80	100	757	125	54	15	315	250	565	248	462	120	160	260	400	315	240	19	247	8xM16	150	186
F080-330A7 18.5 80 100 897 125 54 15 315 250 565 253 467 120 160 315 400 315 240 19 301 8xM16 150 259	F080-330A ²⁾	15	80	100	794	125	54	15	315	250	565	248	462	120	160	313	400	315	240	19	247	8xM16	150	214
CO00 2004 2 00 400 000 405 54 45 045 050 555 070 477 400 400 050 400 045 040 10 001 0 100 100	F080-330A2)	18.5	80	100	897	125	54	15	315	250	565	253	467	120	160	315	400	315	240	19	301	8xM16	150	259
PUBU-33UA7 22 BU 100 923 125 54 15 315 250 565 270 477 120 160 350 400 315 240 19 301 8xM16 150 284	F080-330A ²⁾	22	80	100	923	125	54	15	315	250	565	270	477	120	160	350	400	315	240	19	301	8xM16	150	284

herborner.F-PM Dimensions • Weights

Dimensions with frequency converter for direct installation on request.

BOG Compressor

Standard Dimensions

VG - VL - VLG: Gas, #2 Oil, Gas/Oil Configuration

Standard Configuration

Inverted Configuration

			Burner Fr	ame Size	
	DIM	Size 1	Size 2	Size 3	Size 4
Length in inches					
Overall length	A	37 1/4	40 3/8	45 1/4	51 1/8
Width in inches					
Center line to right side (Standard)	M	14	13 5/8	16 7/8	21 7/8
Center line to left side (Standard)	N	12 7/16	13 7/8	15 1/4	15 1/4
Center line to right side (Inverted)	N	12 7/16	13 7/8	15 1/4	15 1/4
Center line to left side (Inverted)	S	14	13 5/8	16 7/8	21 7/8
Height in inches					
Center line to top (Standard)	J	9 1/2	9 1/8	8 3/8	9 3/4
Center line to bottom (Standard)	к	11 3/4	14 7/16	18 5/8	19 1/4
Center line to burner support (Standard)	Р	11 3/4	14 7/16	18 5/8	19 1/4
Center line to top (Inverted)	R	28	30 5/8	34 3/4	35 1/2
Center line to center line of main gas inlet (Inverted)	Q	6 7/8	8 7/8	10 1/8	11 3/4
Blast tube dimensions in inches					
Extension (Standard)	C STD	4	4	4	5
Extension (Maximum)	C MAX	5	5	5	6
Diameter	D STD	8 1/4	10	11 1/2	13 5/8

Panel box depth in inches							
Panel box depth	G	7 3/8	7 3/8	7 3/8	7 3/8		
Mounting flange dimensions in inches							
Diameter	н	12 7/8	15	16 3/4	17 1/2		
Bolt circle diameter	1	11 1/4	13 1/4	15 1/4	15 3/8		
Gas inlet measurement in inches							
Center line to main gas inlet	L	9 5/8	9 5/8	10 1/2	11		
Mounting flange to main gas inlet	E	6 7/8	7 1/4	7 5/8	9 1/2		

Accompanying dimensions, while sufficiently accurate for layout purposes, must be confirmed for construction.

Standard Ratings V Series

VG - VL - VLG: Gas, #2 Oil, Gas/Oil Configuration

	Gas Input MBH	Oil Input GPH	BHP @ 80% Eff.	Blower Motor HP ¹	Blower Motor HP ²	Remote Oil Pump Motor HP ³	Furnace Pressure ("w.c.)	Standard Gas Train Pipe Size (in.)	Min. Gas Pressure ("w.c.)*	
Model No. & Frame Size										
V-13-1	1,300	9.3	31	1/2	3/4	1/2	0.4	1	8.6/9.25	
V-15-1	1.500	10.7	36	1/2	3/4	1/2	0.5	1	11.4/11.75	
V-17-1	1.700	12.1	40	1/2	3/4	1/2	0.7	1	14.3/14.75	
V-20-1	2,000	14.3	48	3/4	1	1/2	0.9	1	19.7/20.2 ⁵	-
V-21-1	2,100	15.0	50	3/4	1	1/2	1.0	1	21.5/22.15	15/:
V-25-1	2,500	17.9	60	3/4	1	1/2	1.2	1 1/2	9.6/10.45	230 /
V-30-1	3,000	21.4	71	3/4	1	1/2	1.4	2	8.7	2
V-34-1	3,400	24.3	81	3/4	1	1/2	1.8	2	10.3	
V-35-2	3,500	25.0	83	1	1 1/2	1/2	1.9	2	8.1	
V-40-2	4,000	28.6	95	1	1 1/2	1/2	1.2	2	10.4	
V-42-2	4,200	30.0	100	1 1/24	2	1/2	1.3	2	11.5	
V-45-2	4,500	32.1	107	2	2	1/2	1.4	2	10.8	
V-50-2	5,000	35.7	119	2	3	3/4	1.8	2	13.6	20
V-54-2	5,400	38.6	129	3	3	3/4	2.1	2	19.2	8/2
V-55-2	5,500	39.3	131	3	3	3/4	2.2	2	19.7	30 /
V-60-3	6,000	42.9	143	5	-	3/4	2.7	2	17.6	460
V-63-3	6,300	45.0	150	5	-	3/4	1.8	2	19.3	3
V-70-3	7,000	50.0	167	5	-	3/4	2.2	2 1/2	15.7	
V-80-3	8,000	57.1	190	5	-	1	2.8	2 1/2	14.8	
V-84-3	8,400	60.0	200	7 1/2	-	1	3.1	2 1/2	15.2	
V-90-3	9,000	64.3	214	7 1/2	-	1 1/2	3.5	2 1/2	17.4	
V-100-3	10,000	71.4	238	10	-	1 1/2	2.7	2 1/2	20.5	
V-105-3	10,500	75.0	250	10	-	1 1/2	2.8	2 1/2	44.7	4
V-110-3	11,000	78.6	262	10	-	1 1/2	3.0	2 1/2	48.7	60 /
V-120-4	12,000	85.7	286	15	-	1 1/2	3.6	2 1/2	34.2	^ω
V-126-4	12,600	90.0	300	15	-	1 1/2	4.3	2	49.1	
V-147-4	14,700	105.0	350	15	-	1 1/2	4.3	2	2.5 PSI	
V-168-4	16,800	120.0	400	15	-	1 1/2	1.0	2	3.1 PSI	

Combustion Control System options:	Fuel options:
Parallel Positioning Combustion Control System with O ₂ Trim and Variable Frequency Drive (VFD)	Main Fuel: Natural gas (VG), #2 oil - pressure atomized (VL) or Combination gas/ #2 oil - pressure atomized (VLG).
	Igniter Fuel: Natural gas and/or propane. Fuel Changeover Switch: Combination
	Combustion Control System options: Parallel Positioning Combustion Control System with O ₂ Trim and Variable Frequency Drive (VFD)

ł

b

f

CB STANDARD CONFIGURATION

CB INVERTED CONFIGURATION

z	7 1/2	7 1/2	7 1/2	9 1/2
7	6	6	6	11
×	4	5 1/4	77/8	7 1/8
N	18 1/4	21 1/8	25 3/8	30 1/4
-	16 3/4	22	26 1/2	31 1/2
⊢	7 1/8	80	83/8	8 1/2
s	11 1/4	11 3/4	15 1/4	21 3/4
×	18 1/4	18 1/4	19 3/4	19 1/2
ð	7 1/4	6	10 1/4	12 1/2
٩	11 3/4	14 1/2	18 5/8	19 1/4
z	11 3/8	12	14 1/2	17
Σ	13	12 1/2	12 1/2	12 1/2
_	9 3/4	10 1/4	12 1/8	12 1/8
×	14 3/8	15 1/8	17 3/8	20 1/8
-	6 1/2	7 1/2	83/8	8 3/4
-	11 1/4	13 1/4	15 1/4	15 3/8
Ŧ	12 7/8	15	16 3/4	17 1/2
9	7 3/8	7 3/8	7 3/8	7 3/8
ш	6 1/2	7 1/8	8	8 1/4
D FIRE*	7 1/2	9 3/4	10 3/4	12 1/8
D STD*	8 1/4	10	11 1/2	13 5/8
C MAX	s	s	s	9
C STD	4	4	4	s
¥	32 3/4	37 1/4	44 1/4	50 1/4
BURNER MODEL	SIZE-1	SIZE-2	SIZE-3	SIZE-4

NOTES 1 - D STD* COLUMN TO BE USED FOR (WATERTURE, CAST IRON, FIREBOX) APPLICATIONS 1 - D FIRE* COLUMN TO BE USED FOR (FIRETURE) APPLICATIONS
AUTHORS'S BIOGRAPHY

The author's was born in Grobogan, on 5th October 1996, the author is the first child in his and has taken formal education in SD N 4 Karangrayung, SMP N 1 Karangrayung. The Author was graduated from SMA N Sragen Bilingual Boarding School in 2014, having accomplished senior high school the writter continue his study to bachelor degree at Institut Teknology Sepuluh Nopember in Departement of Marine Engineering, Double Degree Program at faculty of Marine Technology – Institut Teknologi Sepuluh Nopember with Hochschule Wismar Germany. The writter took the Marine Reliability, Availability, Maintainability and Safety (RAMS) for (RAMS) for his concern. Author's hoby are badminton,

basket, futsal, voly and reading novel. When still in Senior high school author have many achievement in sport like 1st winner badminton man single in Sragen, become delegation man single badminton in province central java bring name of Sragen regency, 3rd winner Basket ball competition in SMAN 1 Ngawi. Then the Author's achievement in college are 1st winner man single badminton in Semarang, 1 st winner ITS Badminton Competition, 1st Winner Intern Cup and become Head of Unit Badminton Activity in ITS (UKM Badminton ITS).