

Tugas Akhir - TM 141585

PEMODELAN DAN ANALISA REDUKSI RESPON GETARAN SISTEM UTAMA TERHADAP GETARAN TRANSLASI, *PITCHING*, DAN *ROLLING* DENGAN PENAMBAHAN MEKANISME *TRANSLASIONAL MASS VIBRATION ABSORBER* (TMVA)

NIRA ASFARINA NRP 02111440000022

Dosen Pembimbing Dr. Wiwiek Hendrowati ST., MT.

PROGRAM SARJANA DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER ..

TUGAS AKHIR - TM141585

PEMODELAN DAN ANALISA REDUKSI RESPON GETARAN SISTEM UTAMA TERHADAP GETARAN TRANSLASI, *PITCHING*, DAN *ROLLING* DENGAN PENAMBAHAN MEKANISME *TRANSLATIONAL MASS VIBRATION ABSORBER* (TMVA)

NIRA ASFARINA NRP 02111440000022

Dosen Pembimbing Dr. Wiwiek Hendrowati, ST., MT.

PROGRAM SARJANA DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA, 2018

FINAL PROJECT - TM141585

MODELLING AND ANALYSIS OF TRANSLATION, PITCHING, AND ROLLING VIBRATION RESPONSE REDUCTION ON MAIN SYSTEM BY TRANSLATIONAL MASS VIBRATION ABSORBER (TMVA) MECHANISM

NIRA ASFARINA NRP 02111440000022

Advisory Lecturer Dr. Wiwiek Hendrowati, ST., MT.

UNDERGRADUATE PROGRAM MECHANICAL ENGINEERING DEPARTEMENT FACULTY OF INDUSTRIAL ENGINEERING SEPULUH NOPEMBER INSTITUTE OF TECHNOLOGY SURABAYA, 2018

PEMODELAN DAN ANALISA REDUKSI RESPON GETARAN SISTEM UTAMA TERHADAP GETARAN TRANSLASI, *PITCHING*, DAN *ROLLING* DENGAN PENAMBAHAN SISTEM *TRANSLATIONAL MASS VIBRATION ABSORBER* (TMVA)

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Program Studi S-1 Departemen Teknik Mesin Fakultas Teknologi Industri

Institut Teknologi Sepuluh Nopember

Oleh: <u>NIRA ASFARINA</u> NRP. 02111440000022

Disetujui oleh Tim Penguji Tugas Akhir :

10

	and the second s	
1.	Dr. Wiwiek Hendrowati, ST., MT.	(Pembimbing)
	NIP. 197004121997032003	1
2.	Dr. Eng. Harus Laksana Guntur, ST. M.Eng	(Penguji I)
	NIP. 197505111999031001	
3.	Aida Annisa Amin Daman, ST., MT.	(Penguji II)
	NIP. 198907052015042005	
4.	Latifah Nurahmi, ST., M.Sc, Ph.D.	(Penguii III)
	NIP. 1986201712037) (
		/

SURABAYA JULI, 2018

PEMODELAN DAN ANALISA REDUKSI RESPON GETARAN SISTEM UTAMA TERHADAP GETARAN TRANSLASI, *PITCHING*, DAN *ROLLING* DENGAN PENAMBAHAN SISTEM *TRANSLASIONAL MASS VIBRATION ABSORBER* (TMVA)

Nama Mahasiswa	: Nira Asfarina
NRP	: 02111440000022
Dosen Pembimbing	: Dr. Wiwiek Hendrowati, ST., MT.
Laboratorium	: Vibrasi dan Sistem Dinamis

ABSTRAK

Getaran yang dihasilkan oleh peralatan mekanik ketika dioperasikan dapat terjadi ke segala arah, namun cenderung ke arah translasi dan rotasi. Dampak yang ditimbulkan dari getaran yang terjadi dapat bervariasi dan bersifat merugikan komponen mekanik penyusun sistem tersebut, terlebih apabila getaran yang dihasilkan berlebih. Contoh dari dampak yang dihasilkan mulai dari keausan roda gigi, kerusakan bantalan dan poros, hingga berakibat pada berkurangnya umur penggunaan mesin. Getaran dalam sistem tidak hanya dapat terjadi ke arah translasi saja, melainkan dapat ke arah rotasi. Oleh karena itu, penelitian ini bertujuan untuk merancang sistem TMVA (Translational Mass Vibration Absorber) yang dapat meredam getaran baik translasi maupun rotasi dari sistem yang bergetar dengan prinsip DVA (Dynamic Vibration Absorber).

Dalam penelitian ini, sistem utama dirancang untuk dapat bergetar ke arah translasi dan rotasi berupa pitching dan rolling. Getaran tersebut kemudian diredam dengan sebuah sistem TMVA (Translational Mass Vibration Absorber) vang terdiri dari massa-pegas-redaman. Untuk mendapatkan arah getar secara translasi, pitching, dan rolling, sistem utama berupa plat datar ditumpu oleh mekanisme pegasredaman dengan empat buah nilai konstanta kekakuan (K_{4} , K_{B} , K_{C} , dan K_{D}) dan redaman (C_{A} , C_{B} , C_{C} , dan C_{D}) yang berbeda. Motor DC digunakan untuk memberikan gaya eksitasi yang diletakkan tegak lurus pusat massa utama (center of gravity). TMVA yang dirancang merupakan sistem massa-pegas-redaman, dengan massa berupa koin dengan nilai tertentu yang dihubungkan pada pegas yang bergerak bebas (free to bounce), kemudian dibungkus dengan selongsong transparan sebelum diletakkan diatas plat datar sistem utama. Variasi-variasi yang dilakukan pada penelitian ini adalah variasi rasio massa absorber terhadap massa utama sebesar 1/40; 1/20; 3/40, dan variasi peletakan posisi TMVA diatas plat datar massa utama.

Dari penelitian yang dilakukan, didapatkan hasil reduksi getaran sistem utama yang optimal adalah dengan kombinasi massa absorber dengan perbandingan 1:20 dan posisi terjauh dari pusat massa sistem utama, namun terdekat dengan koefisien pegas sistem utama terkecil. Persentase reduksi untuk getaran translasi sebesar 98,76% untuk ratarata percepatan translasi, 97,64% untuk rata-rata percepatan rolling, dan 98,56% untuk rata-rata percepatan pitching pada frekuensi natural 39,5954 rad/s dan amplitudo 0,02 m.

Kata Kunci : Getaran, Translasi, Pitching, Rolling, vibration absorber, pengaruh posisi, variasi massa, reduksi respon

MODELLING AND ANALYSIS OF TRANSLATION, *PITCHING*, AND *ROLLING* VIBRATION RESPONSE REDUCTION ON MAIN SYSTEM BY TRANSLATIONAL MASS *VIBRATION ABSORBER* (TMVA) SYSTEM

Student's Name	: Nira Asfarina
NRP	: 02111440000022
Advisory Lecturer	: Dr. Wiwiek Hendrowati, ST., MT.
Laboratorium	: Vibrasi dan Sistem Dinamis

ABSTRACT

Vibration produced by mechanical equipment when operated can occur in all directions, but tends to be translational and rotational. The impact of the vibrations that occur can vary and are detrimental to the mechanical components that make up the system, especially if the vibration produced is excessive. The examples is gear damage, bearing and shaft damage, that could reduced engine life. Vibration in the system can not only occur in the direction of translation, but can be in the direction of rotation. Therefore, this study aims to design a TMVA system (Translational Mass Vibration Absorber) that could reduce both translational and rotational vibrations of a system that vibrates with the DVA principle (Dynamic Vibration Absorber).

In this study, the main system is designed to vibrate in the direction of translation and rotation in the form of pitching and rolling. The vibration is then damped with a TMVA system (Translational Mass Vibration Absorber) which consists of mass-spring-damper. To get vibration direction in translation, pitching, and rolling, the main system in the form of a flat plate is supported by a spring-damping mechanism with four spring constant values (KA, KB, KC, and KD) and damper constant values (CA, CB, CC, and CD). DC motors are used to provide an excitation force that is placed perpendicular to the center of gravity. TMVA is designed as a mass-springdamper system, with a mass in the form of coins with a certain value connected to a spring that moves freely (free to bounce), then wrapped with transparent sleeves before being placed on the flat plate of the main system. The variations made in this study are variations in the ratio of the mass absorber to the main mass of 1/40; 1/20; 3/40, and variations of TMVA position on the main mass.

From the research conducted, the optimal main system vibration reduction is obtained by combining the mass absorber with a ratio of 1:20 and the farthest position from the center of mass of the main system, but closest to the smallest main system spring coefficient. The percentage reduction for translational vibration is 98.76% for average translational acceleration, 97.64% for rolling average acceleration, and 98.56% for average pitching acceleration at natural frequencies of 39.5954 rad / s and amplitude 0.02 m.

Keywords : Vibration, Translation, Pitching, Rolling, vibration absorber, influence of TMVA position, absorber mass, response reduction

KATA PENGANTAR

Puji syukur penulis sampaikan kepada Tuhan Yang Maha Esa, karena atas berkat dan rahmat-Nya, sehingga Tugas Akhir yang berjudul "Pemodelan dan Analisa Reduksi Respon Getaran Sistem Utama Terhadap Getaran Translasi, *Pitching*, Dan *Rolling* Dengan Penambahan Sistem *Translasional Mass Vibration Absorber* (TMVA)" dapat selesai dengan baik dan lancar.

Penyusunan Tugas Akhir ini merupakan persyaratan akademis pada mata kuliah "Tugas Akhir" pada tahun ajaran 2017—2018, program studi S1 (Strata Satu) untuk Departemen Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember, Surabaya.

Tersusunnya Tugas Akhir ini juga karena bantuan dan dukungan dari berbagai pihak terkait yang terlibat, baik secara langsung maupun tidak langsung, untuk itu penulis mengucapkan terimakasih kepada:

- 1. Ibu Dr. Wiwiek Hendrowati, ST., MT., selaku dosen pembimbing yang memberikan bimbingan dan pengarahan selama menyusun Tugas Akhir ini.
- 2. Bapak Dr. Eng. Harus Laksana Guntur, ST., M.Eng., Bapak Ari Kurniawan Saputra, ST., MT., dan Ibu Aida Annisa Amin Daman, ST., MT., selaku dosen penguj yang memberikan kritik, saran, dan masukan dari Seminar Proposal Tugas Akhir.
- 3. Keluarga penulis yang tiada henti menyemangati baik dalam segi moril maupun materiil.
- 4. Erfan Nurbahari Amsyah, teman sekaligus penyemangat disegala kondisi yang memberikan banyak dukungan *real-time*, kritik serta saran.

5. Serta semua pihak yang telah membantu penyusunan Tugas Akhir ini: Intan Mahardhika, Rifqi Rizaldi, Kartika Firdausi, Firas Rahmad Hidayatullah, teman-teman Lab. Vibrasi dan Sistem Dinamis, teman-teman M57, serta seluruh dosen dan karyawan Departemen Teknik Mesin, FTI-ITS.

Penulis menyadari bahwa penulisan Tugas Akhir ini masih memiliki banyak kesalahan dan kekurangan hingga jauh dari kata sempurna, sehingga kritik dan saran yang membangun sangat diharapkan. Guna penambahan wawasan serta keperluan studi lainnya untuk pengembangan yang lebih lanjut, semoga Tugas Akhir ini dapat memberikan pengetahuan, dan dapat bermanfaat bagi siapapun yang membacanya.

Surabaya, Juli 2018

Penulis

Daftar Isi

Abstrak	i
Abstract	iii
Kata Pengantar	v
Daftar Isi	vii
Daftar Gambar	ix
Daftar Tabel	xiii
BAB PENDAHULUAN	1
1.1.Latar Belakang	1
1.2.Rumusan Masalah	3
1.3.Batasan Masalah	4
1.4. Tujuan Penelitian	5
1.5.Manfaat Penelitian	5
BAB II TINJAUAN PUSTAKA	7
2.1.Penelitian Terdahulu	7
2.2.Multidegree-Of-Freedom (M-Dof)	22
2.3.Base-Motion Vibration	25
2.4.Dynamic Vibration absorber	27
2.4.1 Undamped-Dynamic Vibration absorber	27
2.4.2 Damped-Dynamic Vibration absorber	31
BAB III METODE PENELITIAN	35
3.1.Flowchart Penelitian	36
3.2.Penjelasan Tahap Penelitian	37
3.2.1Studi Literatur	37
3.2.2Identifikasi Masalah	37
3.2.3Perancangan Mekanisme TMVA	37
3.2.4Pemodelan Sistem Dinamis	40
3.2.5Penurunan Persamaan Gerak	41
3.2.6Pembuatan Blok Simulasi	52
3.2.7Simulasi	52
3.2.8Reduksi Respon Sistem Utama	53
3.2.9Analisa Hasil	53
3.2.10kesimpulan	53

3.3.Parameter Penelitian	53
BAB IV ANALISA DAN PEMBAHASAN	63
4.1.Pembuatan Blok Simulasi	64
4.1.1Sistem Utama Tanpa TMVA	64
4.1.2.Sistem Utama Dengan TMVA	67
4.2.Analisa Respon	68
4.2.1. Analisa Respon Sistem Utama Tanpa TMVA	68
4.2.2. Analisa Respon Sistem Utama Dengan TMVA .	77
BAB V KESIMPULAN DAN SARAN	115
5.1.Kesimpulan	115
5.2.Saran	116
Daftar Pustaka	117
Lampiran	119
<u>.</u>	

Daftar Gambar

Gambar 2.2 Sistem utama dengan damped DVA pada peredam absorber yang terhubung ke tanah(a), dan peredam absorber yang terhubung pada massa utama(b)......11 Gambar 2.3 Sistem utama dengan damped DVA pada peredam absorber yang terhubung ke tanah(a), dan peredam Gambar 2.4 Model dinamis sistem(a) dan hasil simulasi(b) Gambar 2.5 Pemodelan dinamis sistem utama 2-DoF(a). sistem utama dengan single DVA(b), dan sistem utama dengan *dual* DVA yang disusun seri(c)16 Gambar 2.6 Model dinamis sistem tanpa penambahan DVA (a) dan dengan penambahan DDVA(b)......17 Gambar 2.7 Rancangan assembly DVA(a), rancangan Gambar 2.8 Parameter yang divariasikan pada penelitian. 20 Gambar 2.9 Pada nilai Ma1 dan Ka1 dengan b bervariasi. Gambar 2.10 Pada nilai Ma1 dan Ka2 dengan b bervariasi Gambar 2.11 Pada nilai Ma1 dan Ka3 dengan b bervariasi 21 Gambar 2.12 Model of *Full-Vehicle system*(a) dan *free-body diagram of quarter car model*(b)......22 Gambar 2.14 *Base excitation*(a), dan *free body diagram*(b) Gambar 2.15 Grafik hubungan Amplitudo ratio dengan frequency ratio(a), dan phase angle dengan frequency *ratio*(b)......25

Gambar 2.16 Pemodelan dinamis sistem utama dengan
penambahan undamped DVA27
Gambar 2.17 Pengaruh undamped vibration absorber
terhadap respon dari sistem utama
Gambar 2.18 Pemodelan dinamis sistem utama dengan
penambahan damped DVA
Gambar 2.19 Pengaruh dari damped vibration absorber
terhadap respon sistem utama31
Gambar 3.1 Flowchart Penelitian
Gambar 3.2 Rancangan TMVA
Gambar 3.3 Sistem Utama tampak isometri(a), dan tampak
belakang(b)
Gambar 3.4 Rancangan Sistem Gabungan 39
Gambar 3.5 Pemodelan dinamis sistem utama tanpa
TMVA(a) dan dengan TMVA(b)40
Gambar 3.6 Free-body diagram Sistem Utama tanpa TMVA
Gambar 3.7 Free-body diagram Gerak Rolling oleh Massa
Utama
Gambar 3.8 Free-body diagram Gerak Pitching oleh Massa
Utama
Gambar 3.9 <i>Free-body diagram</i> TMVA dan sistem utama
Gambar 3.10 Free-body diagram sistem utama dengan
TMVA untuk gerak <i>rolling</i>
Gambar 3.11 Free-body diagram sistem utama dengan
TMVA untuk gerak <i>pitching</i>
Gambar 3.12 Pengujian dengan beban 0.1675Kg(a);
0.335Kg(b), dan 0.5025Kg(c)
Gambar 3.13 Amplitudo K2 pada pemberian beban
20.065Kg
Gambar 3.14 Hasil <i>smoothing</i> dan <i>filtering</i>
Gambar 3.15 Variasi peletakan TMVA
Gambar 4.1 Desain TMVA

Gambar 4.3Block diagram sistem utama tanpa TMVA72 Gambar 4.4Bode diagram sistem utama tanpa TMVA......74 Gambar 4.5Respon displacement sistem tanpa TMVA......75 Gambar 4.6Respon acceleration sistem tanpa TMVA......76 Gambar 4.7Distribusi simpangan pada plat datar massa Gambar 4.8Pembagian titik tinjauan plat datar massa utama Gambar 4.9Penempatan TMVA diatas plat datar massa Gambar 4.10Bode diagram sistem utama tanpa dan dengan TMVA pada node 183 Gambar 4.11Bode diagram sistem utama tanpa dan dengan Gambar 4.12Bode diagram sistem utama tanpa dan dengan Gambar 4.13Bode diagram sistem utama tanpa dan dengan Gambar 4.14 Respon displacement sistem utama tanpa dan Gambar 4.15 Respon acceleration sistem utama tanpa dan Gambar 4.16 Grafik acceleration terhadap variasi massa Gambar 4.17 Grafik acceleration terhadap variasi posisi Gambar 4.18 Grafik persen reduksi getaran translasi96 Gambar 4.19 Respon rolling displacement sistem utama tanpa dan dengan TMVA......97 Gambar 4.20 Respon rolling acceleration sistem utama tanpa Gambar 4.21 Grafik rolling acceleration terhadap variasi massa TMVA......101

Gambar 4.22 Grafik rolling acceleration terhadap variasi
posisi TMVA 102
Gambar 4.23Grafik persen reduksi rolling acceleration 104
Gambar 4.24Respon pistching displacement sistem utama
tanpa dan dengan TMVA106
Gambar 4.25Respon pitching acceleration sistem utama tanpa
dan dengan TMVA 108
Gambar 4.26 Grafik pitching acceleration terhadap variasi
massa TMVA109
Gambar 4.27 Grafik pitching acceleration terhadap variasi
massa
Gambar 4.28 Grarik persen reduksi getaran pitching
acceleration111
Gambar 4.29 Grafik respon acceleration untuk 3-Dof111
Gambar 4.30 Rasio perpindahan TMVA terhadap rasio RMS
acceleration112

Daftar Tabel

"Halaman ini sengaja dikosongkan"

BAB I PENDAHULUAN

1.1 Latar Belakang

Getaran merupakan gerakan osilatif atau bolak-balik disekitar posisi kesetimbangan dari sebuah sistem dinamis. Dalam kehidupan sehari-hari, sering ditemukan kasus yang berkaitan dengan getaran. Misalnya, getaran yang ditemukan pada saat mengoperasikan mesin bubut, mesin bor, turbin, kendaraan bermotor, hingga mesin kapal. Getaran tersebut dapat terjadi kearah translasi maupun rotasinya. Dampak yang dihasilkan dari getaran yang terjadi dapat merugikan komponen permesinan yang menyusun sistem tersebut, contohnya adalah kerusakan pada bantalan, poros, keausan roda gigi, dan kerusakan mekanik lainnya. Getaran vang dihasilkan akan semakin bertambah ketika frekuensi operasi hampir mendekati atau sama dengan frekuensi naturalnya, sehingga terjadi resonansi. Getaran yang dihasilkan pada saat sistem beresonansi sangat berbahaya bahkan mampu menghancurkan sistem tersebut. Oleh karenanya, getaran yang terjadi harus direduksi atau dikurangi. Salah satu metode yang telah dikenal dan diteliti sebelumnya untuk mampu meredam getaran berlebih dari sistem yang beroperasi adalah DVA (Dynamic Vibration Absorber). Prinsip kerja dari metode DVA adalah penambahan sistem yang terdiri dari massa, pegas, dan damper tambahan pada sistem utama. Sistem tersebut dapat meredam getaran yang terjadi pada sistem utama dengan menghasilkan getaran baru yang berlawanan arah getar dengan sistem utama

Dalam penelitian terdahulu dengan topik DVA, terbukti bahwa penambahan sistem massa-pegas tambahan pada sistem utama mampu mereduksi getaran berlebih dari sistem utama yang diberi getaran harmonik sehingga bergerak translasi dan rotasi. Sistem utama yang dirancang dalam skala laboratorium dengan massa berupa plat datar yang ditopang oleh empat buah pegas dengan dua nilai koefisien yang berbeda sehingga menghasilkan gerakan translasi dan rotasi. Pada studi tersebut sistem utama dijalankan dan disimulasikan. Hasilnya menunjukkan nilai redaman yang berbeda, dimana nilai redaman sistem pada frekuensi natural 36,7 m/s dan amplitudo 0.3 m dari studi eksperimental lebih kecil, dengan nilai redaman 75,71% arah translasi dan 97,36% arah rotasi. Sedangkan nilai redaman dari studi simulasinya sebesar 99.1% arah translasi dan 97.6% arah rotasi. Hasil tersebut mengindikasikan sistem utama pada kenyataannya mengalami getaran yang menyebar, tidak hanya translasi dan rotasi pada satu sumbu melainkan memungkinkan getaran translasi dan rotasi yang menyebar pada dua sumbu, yang dikenal dengan istilah pitching dan rolling. Hal tersebut menyebabkan perbedaan nilai redaman yang cukup signifikan dibandingkan dengan pada sistem utama pengujian simulasinya. Oleh karena itu, dengan perkembangan teknologi perlu dilakukan penelitian lebih lanjut mengenai DVA dalam mereduksi getaran arah translasi dan rotasi (pitching dan rolling) agar reduksi getaran yang dihasilkan lebih maksimal.

Berdasarkan latar belakang tersebut, pada studi penelitian simulasi ini akan dirancang dan diteliti sistem DVA yang dapat mereduksi getaran berlebih, baik arah translasi maupun rotasi (*pitching* dan *rolling*) pada sistem utama suatu simulator getaran skala laboratorium. Untuk menggambarkan kondisi *real*, dimodelkan suatu sistem utama simulator getaran berupa plat datar yang ditumpu oleh empat buah pegas dan mendapat gaya *base-motion* dari motor DC yang diletakkan pada pusat massa (*center of gravity*) plat datar. Untuk menggambarkan arah translasi dan rotasi (*pitching* dan *rolling*) secara bersamaan digunakan pegas dengan empat nilai koefisien yang berbeda.

Penelitian ini akan dititik-beratkan pada pemodelan sebuah mekanisme TMVA (Translational Mass Vibration Absorber) berupa sistem massa-pegas-redaman dengan massa berupa koin pada besaran tertentu ditumpu oleh sebuah pegas yang bergerak bebas kearah translasi. TMVA diharapkan dapat mereduksi getaran berlebih yang terjadi pada simulator getaran, baik pada arah translasi, *pitching*, maupun rolling. TMVA dirancang berbentuk selongsong tabung transparan yang didalamnya terdapat sistem massa-pegas-redaman, dengan massa berupa koin yang ditempatkan pada wadah tabung dan pegas yang dibiarkan bergerak bebas. Variasi yang dilakukan pada simulasi ini adalah variasi rasio massa TMVA terhadap massa utama, dan variasi posisi TMVA yang ditempatkan pada node tertentu di atas plat datar simulator getar. Masing-masing variasi dilakukan sebanyak tiga kali. Hasil yang diharapkan pada simulasi penelitian ini adalah pengaruh dari variasi-variasi tersebut terhadap reduksi getaran sistem utama simulator getar.

1.2 Rumusan Masalah

Dari uraian latar belakang di atas, permasalahan yang terjadi adalah memodelkan rancang mekanisme TMVA (*Translational Mass Vibration Absorber*) yang mampu mereduksi getaran dari arah translasi maupun rotasi (*pitching* dan *rolling*) pada sistem utama. TMVA berbentuk selongsong yang didalamnya terdapat sistem massa-pegas DVA, dengan massa berupa koin sebagai massa *absorber* yang ditempatkan pada selongsong tabung dan pegas yang dibiarkan bergerak bebas. Massa utama simulator getaran diberi gaya *base-motion* oleh motor DC sebagai sumber getar. Dari uraian tersebut, maka dapat dirumuskan permasalahan sebagai berikut:

1. Bagaimana memodelkan rancangan mekanisme simulator getaran yang merepresentasikan getaran arah translasi, *pitching*, dan *rolling* ?

- 2. Bagaimana memodelkan rancangan mekanisme TMVA yang dapat mereduksi getaran arah translasi, *pitching*, dan *rolling* pada sistem utama ?
- 3. Bagaimana pengaruh variasi rasio massa TMVA terhadap massa utama, dan letak posisi TMVA terhadap reduksi getaran yang terjadi?

1.3 Batasan Masalah

Untuk membatasi penelitian ini agar tidak memiliki cakupan bahasan yang terlalu luas dan untuk memfokuskan penelitian sesuai dengan ruang lingkup seperti pada penjelasan latar belakang di atas, maka diberikan beberapa pembatasan masalah. Adapun batasan maslaah dari penelitian ini adalah sebagai berikut:

- 1. Gaya eksitasi oleh motor DC dianggap sebagai *base-motion*.
- 2. Getaran yang terjadi pada sistem utama dianggap sinusoidal.
- 3. Getaran dari luar mekanisme diabaikan.
- 4. Sumber getaran terletak tepat di bawah *center of gravity* (pusat massa) dari massa utama.
- 5. Penelitian simulasi ini berfokus pada proses reduksi getaran sistem utama.
- Gerakan translasi yang diamati hanya ke arah sumbu vertikal (sumbu x) dari massa utama, sementara gerakan arah sumbu horizontal diabaikan.
- Gerakan rotasi yang diamati pada dua arah, ke arah α untuk menggambarkan gerakan *rolling*, dan β untuk menggambarkan gerakan *pitching*.

8. Gaya gesek yang terjadi pada semua komponen sistem diabaikan.

1.4 Tujuan Penelitian

Dari latar belakang dan rumusan masalah yang telah dibuat sebelumnya, maka dapat ditentukan tujuan dari penelitian ini adalah sebagai berikut:

- 1. Memodelkan rancangan mekanisme simulator getaran yang merepresentasikan getaran ke arah translasi, *pitching*, dan *rolling*.
- 2. Memodelkan rancangan mekanisme TMVA yang dapat mereduksi getaran arah translasi, *pitching*, dan *rolling* pada sistem utama.
- 3. Mengetahui pengaruh variasi rasio massa TMVA terhadap massa utama, dan letak posisi DVA terhadap reduksi getaran sistem utama.

1.5 Manfaat Penelitian

Manfaat yang dapat diperoleh dari penelitian ini adalah sebagai berikut:

- Sebagai penerapan ilmu pengetahuan untuk perkembangan teknologi khususnya di bidang industri dalam mereduksi getaran yang berlebih dan dapat diterapkan di kehidupan nyata.
- 2. Memberikan kontribusi dalam memperpanjang usia pakai mesin-mesin industri.
- 3. Dapat digunakan sebagai referensi dan studi literatur dalam melakukan penelitian selanjutnya tentang topik DVA (*Dynamic Vibration Absorber*) dan variasi-variasinya.

"Halaman ini sengaja dikosongkan"

BAB II

TINJAUAN PUSTAKA

2.1 Penelitian Terdahulu

Sebelumnya telah dilakukan penelitian oleh beberapa mahasiswa dan akademisi terkait dengan penelitian ini. Sistem utama yang digunakan dalam penelitian simulasi ini berupa sistem multi-DoF vang mempunyai tiga arah getar, vaitu translasi, pitching, dan rolling. Dengan tiga buah arah getar artinya sistem utama tersebut merupakan sistem 3-DoF. Pemodelan sistem utama simulator getar dengan 3-DoF yang bergetar translasi, *pitching*, dan *rolling* termuat dalam jurnal ilmiah "Active suspension control of ground vehicle based on a full-vehicle model" oleh Scott Ikenaga, dkk (Ikenaga, 2009). Dalam penelitian ini dimodelkan sistem suspensi kendaraan roda empat yang menitikberatkan pada reduksi respon getaran translasi, pitching, dan rolling pada sistem utama. Model dari sistem *full-vehicle* ini merupakan sistem linear dengan tujuh derajat kebebasan. Gerakan tersebut meliputi gerakan massa di atas *carbody* (sprung mass = m_s) vang dibuat sedemikian hingga mampu menghasilkan getaran translasi, *pitching*, dan *rolling*. Untuk menghasilkan getaran dengan arah yang dikehendaki tersebut, sprung mass ditumpu oleh empat buah suspensi (front-left, front-right, rear-left, dan rear-right wheels) vang merupakan sistem pegasredaman(viscous) dengan nilai koefisien yang bervariasi. Suspensi kemudian menghubungkan sprung mass dengan unsprung mass. Unsprung mass dimodelkan sebagai pegas vang bergetar bebas. Pemodelan sistem tersebut ditampilkan pada gambar 2.1 berikut.

Gambar 2.1 Model dinamis *full-vehicle system* (Ikenaga, 2009).

Model dinamis di atas kemudian dituliskan dalam persamaan matematis menghasilkan persamaan gerak sebagai berikut.

$$\begin{split} m_{s}\ddot{z} &= -m_{s}g - (2K_{sf} + 2K_{sr})z - (2B_{sf} + 2B_{sr})\dot{z} + (2aK_{sf} - 2bK_{sr})\theta + (2aB_{sf} - 2bB_{sr})\dot{\theta} + K_{sf}z_{ufl} + B_{sf}\dot{z}_{ufl} + K_{sf}z_{ufr} + B_{sf}\dot{z}_{ufr} + K_{sr}z_{url} + B_{sr}\dot{z}_{url} + K_{sr}z_{urr} + B_{sr}\dot{z}_{urr} + f_{fl} + f_{fr} + f_{rl} + f_{rr} \end{split}$$

$$\begin{split} I_{yy}\ddot{\theta} &= \left(2aK_{sf} - 2bK_{sr}\right)z + \left(2aB_{sf} - 2bB_{sr}\right)\dot{z} - \left(2a^{2}K_{sf} + 2b^{2}K_{sr}\right)\theta - \left(2a^{2}B_{sf} + 2b^{2}B_{sr}\right)\dot{\theta} - aK_{sf}z_{ufl} - aB_{sf}\dot{z}_{ufl} - aK_{sf}z_{ufr} - aB_{sf}\dot{z}_{ufr} + bK_{sr}z_{url} + bB_{sr}\dot{z}_{url} + bK_{sr}z_{urr} + bB_{sr}\dot{z}_{urr} - af_{fl} - af_{fr} + bf_{rl} + bf_{rr} \end{split}$$

$$\begin{split} I_{xx}\ddot{\varphi} &= -0.25w^2(2K_{sf} - 2K_{sr})\varphi - 0.25w^2(2B_{sf} + 2B_{sr})\dot{\varphi} + \\ 0.5wK_{sf}z_{ufl} - 0.5wB_{sf}\dot{z}_{ufl} - 0.5wK_{sf}z_{ufr} - 0.5wB_{sf}\dot{z}_{ufr} + \\ 0.5wK_{sr}z_{url} + 0.5wB_{sr}\dot{z}_{url} - 0.5wK_{sr}z_{urr} - 0.5wB_{sr}\dot{z}_{urr} + 0.5wf_{fl} - \\ 0.5wf_{fr} + 0.5wf_{rl} - 0.5wf_{rr} \\ m_u\ddot{z}_{ufl} &= -m_ug + K_{sf}z + B_{sf}\dot{z} - aK_{sf}\theta - aB_{sf}\dot{\theta} + 0.5wK_{sf}\varphi + \end{split}$$

$$0.5wB_{sf}\varphi - (K_{sf} + K_u)z_{ufl} - B_{sf}\dot{z}_{ufl} + K_u z_{rfl} - f_{fl}$$
$$m_u \ddot{z}_{ufr} = -m_u g + K_{sf}z + B_{sf}\dot{z} - aK_{sf}\theta - aB_{sf}\dot{\theta} - 0.5wB_{sf}\dot{\varphi} - (K_{sf} + K_u)z_{ufr} - B_{sf}\dot{z}_{ufr} + K_u z_{rfr} - f_{fr}$$

$$\begin{split} m_u \ddot{z}_{ufr} &= \\ -m_u g + K_{sr} z + B_{sr} \dot{z} + b K_{sr} \theta + b B_{sr} \dot{\theta} + 0.5 w K_{sr} \varphi + 0.5 w B_{sr} \dot{\varphi} - \\ (K_{sr} + K_u) z_{url} - B_{sf} \dot{z}_{url} + K_u z_{rrl} - f_{rl} \end{split}$$

$$m_{u}\ddot{z}_{urr} = -m_{u}g + K_{sr}z + B_{sr}\dot{z} + bK_{sr}\theta + bB_{sr}\dot{\theta} - 0.5wK_{sr}\varphi - 0.5wB_{sr}\dot{\varphi} - (K_{sr} + K_{u})z_{urr} - B_{sf}\dot{z}_{urr} + K_{u}z_{rrr} - f_{rr}$$

$$(2.1)$$

Dimana parameter-parameter yang berhubungan dengan persamaan di atas meliputi :

z: *displacement* akibat getaran translasi (sepanjang sumbu z)

θ: sudut getar yang mengakibatkan gerakan *rolling*(terhadap sumbu y)

 φ : sudut getar yang mengakibatkan gerakan *pitching* (terhadap sumbu x)

 m_u : massa unsprung

m_s: massa *sprung*.

k: nilai koefisien kekakuan pegas

B: viscous damping

 $I_{XX} = I_{YY}$: momen inersia terhadap sumbu

Pada pemodelan dinamis sistem kendaraan roda empat tersebut, untuk medapatkan getaran sistem utama ke arah translasi, *pitching*, dan *rolling* dilakukan dengan cara memberikan variasi nilai koefisien pegas pada masing-masing sistem suspensi sebagai penumpu *body* utama. Dalam sistem ini digunakan dua buah nilai koefisien pegas yang berbeda. Untuk menyederhanakan persamaan diasumsikan bahwa nilai sudut *pithing* dan *rolling* yang kecil akibat dari dua nilai variasi koefisien pegas suspensi, sehingga dapat diabaikan. Parameter yang diberikan meliputi, $m_s = 1500 \text{ kg}$, $m_u = 59 \text{ kg}$, $K_{sf} = K_{sfl} = K_{sfr} = 35000 \text{ N/m}$, $K_{sr} = K_{srl} = K_{srr} = 38000 \text{ N/m}$, $K_u = K_{ufl} = K_{ufr} = K_{urr} = K_{url} = 190000 \text{ N/m}$, $B_{sf} = B_{sfl} = B_{sfr} = 1000 \text{ N/m/s}$, $B_{sr} = B_{srl} = B_{srr} = 1100 \text{ N/m/s}$, $I_{XX} = 460 \text{ kg.m}^2$, $I_{YY} = 2160 \text{ kg.m}^2$, serta a = 1.4 m, b = 1.7 m, dan w = 3 m.

Pengujian simulasi kemudian dilakukan dengan penambahan sistem kontrol *filtered feedback* dan sebuah input berupa *decoupling transformation* untuk mereduksi getaran sistem utama pada tiga arah getar yang telah diformulasikan, serta untuk menambah kenyamanan berkendara. Penelitian diuji pada tiga nilai frekuensi operasi yaitu, 9 rad/s; 57 rad/s (frekuensi natural = frekuensi roda); dan 150 rad/s. Hasilnya dari simulasi yang dilakukan menunjukkan bahwa dengan penambahan sistem di atas maka getaran pada tiga arah getar mampu diredam lebih baik.

Dalam jurnal ilmiah yang diterbitkan tahun 2010, oleh Kefu Liu beserta Gianmarc Coppola, termuat penelitian mengenai DVA dengan judul penelitian "Optimal design of damped dynamic vibration absorber for damped primary system" (Liu, 2010). Dynamic vibration absorber telah secara luas digunakan sebagai kontrol pasif getaran sebuah sistem. Ketika sebuah sistem massa-pegas dijadikan sebagai sistem utama, kemudian diberikan eksitasi harmonik pada frekuensi konstan, respon pada kondisi steady state sistem utama tersebut dapat diredam dengan menggunakan sistem massapegas tambahan yang dikenal dengan DVA. Sistem DVA yang terdiri dari massa-pegas ini pertama kali diperkenalkan pada tahun 1883 oleh Watts. Namun sejalan penelitian dilakukan lebih lanjut, ternyata sistem DVA yang hanya terdiri dari massa-pegas memiliki rentang operasi yang sempit, bahkan signifikan ketika frekuensi menurun secara eksitasi

divariasikan. Oleh karenanya, berlatar belakang fenomena tersebut diperkenalkan metode baru untuk mampu meredam getaran secara lebih baik, yaitu dengan penambahan DVA yang terdiri dari massa-pegas-redaman. Pada penelitian ini, berfokus pada desain optimum *damped* DVA untuk sistem utama dengan peredam. Parameter kunci yang diteliti adalah *tuning ratio* dan *damping ratio*. Berbeda dengan desain lainnya, *damped* DVA didesain dengan peredam yang dihubungkan langsung ke *ground*, bukan pada massa utama. *Damped* DVA dihubungkan pada sistem utama yang tersusun dari massa-pegas-peredam pada kondisi *steady-state* dengan pemberian frekuensi eksitasi yang konstan. Pada gambar 2.2 berikut dimodelkan sistem utama yang telah ditambahkan *damped* DVA.

Gambar 2.2 (a)Sistem utama dengan *damped* DVA pada peredam *absorber* yang terhubung ke tanah, dan (b)peredam *absorber* yang terhubung pada massa utama (Liu, 2010).

Adapun sistem utama terdiri dari massa utama m, koefisien kekakuan pegas k, dan koefifien redaman c terhubung dengan *damped* DVA yang terdiri dari massa absorber m_a , koefisien kekakuan pegas k_a , serta koefisien redaman c_a dalam dua model, yang terhubung langsung ke tanah (pada gambar 2.2 (a)) dan yang dihubungkan melalui massa utama (pada gambar 2.2 (b)). Persamaan gerak dari sistem model A dan model B berturut-turut adalah sebagai berikut.

$$\begin{bmatrix} m & 0\\ 0 & m_a \end{bmatrix} \begin{bmatrix} \ddot{x}\\ \ddot{x}_a \end{bmatrix} + \begin{bmatrix} c & 0\\ 0 & c_a \end{bmatrix} \begin{bmatrix} \dot{x}\\ \dot{x}_a \end{bmatrix} + \begin{bmatrix} k+k_a & -k_a\\ -k_a & k_a \end{bmatrix} \begin{bmatrix} x\\ x_a \end{bmatrix} = \begin{bmatrix} F_0\\ 0 \end{bmatrix} \sin(\omega t)$$

$$\begin{bmatrix} m & 0\\ 0 & m_a \end{bmatrix} \begin{bmatrix} \ddot{x}\\ \ddot{x}_a \end{bmatrix} + \begin{bmatrix} c+c_a & -c_a\\ -c_a & c_a \end{bmatrix} \begin{bmatrix} \dot{x}\\ \dot{x}_a \end{bmatrix} + \begin{bmatrix} k+k_a & -k_a\\ -k_a & k_a \end{bmatrix} \begin{bmatrix} x\\ x_a \end{bmatrix} = \begin{bmatrix} F_0\\ 0 \end{bmatrix} \sin(\omega t)$$

$$(2.2)$$

Dengan rasio damping sistem utama sama dengan nol pada model A, optimal *tuning parameter* diberikan pada persamaan berikut.

$$\beta^* = \frac{1}{\sqrt{1-\mu}} \tag{2.3}$$

Untuk rasio *damping* optimum *absorber* ditentukan berdasarkan persamaan berikut.

$$\zeta_a^* = \frac{1}{2} \sqrt{\frac{3\mu}{2-\mu}}$$
(2.4)

Sedangkan untuk sistem model B,

$$\beta^* = \frac{1}{1+\mu} \tag{2.5}$$

Dengan rasio *damping* optimum *absorber* ditentukan berdasarkan persamaan berikut.
$$\zeta_a^* = \sqrt{\frac{3\mu}{8(1+\mu)}}$$
(2.6)

Selanjutnya dilakukan simulasi untuk mendapatkan desain optimum *damped* DVA. Variasi yang dilakukan pada penelitian berbasis simulasi ini adalah rasio massa(µ) pada nilai antara 1/20 sampai dengan 1/4 dan rasio $damping(\zeta)$ pada nilai antara 0 sampai dengan 0.4. Variasi yang dilakukan bertujuan untuk mengetahui nilai rasio tuning dan rasio frekuensi yang mampu menghasilkan nilai redaman getar sistem utama tertinggi. Setelah dilakukan simulasi didapatkan bahwa parameter yang mampu mendapatkan redaman optimum pada sistem utama dengan rasio massa 0.25 dan Setelah simulasi dijalankan damping ratio 0.4. dan dibandingkan dengan hasil analisa secara perhitungan numerik, terjadi perbedaan pada sistem model A. Kemudian dilakukan simulasi lanjutan dengan menambahkan kriteria parameter untuk $G(r_1)$, $G(r_2)$, dan $G(r_3)$.

$$\frac{dG}{dr}\Big|_{r=r1} = 0; \frac{dG}{dr}\Big|_{r=r2} = 0; \frac{dG}{dr}\Big|_{r=r3} = 0$$

$$G(r_1) - G(r_3) = 0; 2L - \left(\left(G(r_2) + G(r_3)\right) = 0; 2\Delta - \left(G(r_1) - G(r_2)\right) = 0\right)$$

Hasil tersebut ditunjukkan pada gambar 2.3 di bawah ini. Kesimpulan yang dapat diambil adalah semakin tinggi mass ratio dan damping ratio sistem utama, maka nilai tuning ratio nya akan menurun dengan optimum damping rasio absorber yang meningkat. Dengan nilai damping ratio yang tinggi diharapkan menghasilkan redaman getar sistem utama secara lebih optimal.

Gambar 2.3 Grafik rasio frekuensi vs rasio amplitudo untuk rasio massa 0.35 (Liu, 2010).

Pada tahun 2016, penelitian serupa dilakukan dalam jurnal ilmiah yang berjudul "Optimum design of damped dynamic vibration absorber – a simulation approach". **Pachpute** melakukan penelitian melalui simulasi untuk mengetahui respon dari suatu sistem yang dikondisikan dalam keadaan tertentu (Pachpute, 2016). Diantaranya adalah sistem tanpa DVA, sistem dengan tambahan *undamped* DVA, serta sistem dengan tambahan *damped* DVA. Dalam sistem dengan tambahan *damped* DVA. Dalam sistem dengan koefisien kekakuan k, peredam dengan koefisien redaman c, dan massa *absorber* dengan massa m dipasangkan pada sebuah sistem utama yang terdiri dari massa M dan koefisien kekakuan pegas K yang bergetar translasi. Beberapa variasi yang diteliti pada penelitian ini adalah rasio massa *absorber* terhadap massa utama, rasio redaman (*damping ratio*), serta rasio *tuning* (f). Variasi dilakukan untuk mengetahui komposisi optimum yang mampu meredam getaran sistem utama dengan nilai redaman terbaik. Hasil dari penelitian simulasi pada sistem utama dengan *damped* DVA ditampilkan dalam gambar 2.4 berikut.

Gambar 2.4 (a)Model dinamis sistem dan (b)hasil simulasi (Pachpute, 2016).

Pada grafik hasil simulasi di atas ditampilkan dua garis berwarna hijau dan biru, dimana garis hijau menunjukkan respon sistem utama, sedangkan garis berwarna biru menunjukkan respon dari sistem berperedam. Dapat disimpulkan bahwa semakin besar massa *absorber*, maka jarak yang memisahkan dua frekuensi natural sistem juga akan semakin besar. Hal tersebut menyebabkan rentang frekuensi operasi yang aman akan semakin lebar. Akan tetapi massa *absorber* yang besar membuat sistem sangat tidak praktis terlebih apabila digunakan pada mesin-mesin industri berdimensi besar, sehingga masih diperlukan peredam tambahan agar reduksi getaran semakin efektif.

Penelitian terkait mekanisme peredaman DVA pada sistem utama oleh mahasiswa dilakukan pada tahun 2013, **Aini Lostari** dalam "Studi perbandingan pengaruh penambahan SDVA dan DDVA tersusun seri terhadap respon getaran translasi sistem utama" (Lostari, 2013). Pada penelitian tersebut, sistem utama berupa balok *beam* (M_b) dihubungkan pada motor listrik dengan massa *unbalance* sebagai sumber eksitasi sehingga bergetar translasi. Getaran berlebih yang diamati pada saat rasio frekuensi sama dengan 1 diredam dengan batang *cantilever*. Hasil dari penelitian simulasi yang dilakukan diverifikasikan hasilnya dengan metode eksperimen.

Gambar 2.5 (a)Pemodelan dinamis sistem utama 2-DoF, (b)sistem utama dengan *single* DVA, dan (c)sistem utama dengan *dual* DVA yang disusun seri (Lostari, 2013).

simulasi, frekuensi eksitasi Pada proses vang diberikan bervariasi antara 0 Hz sampai dengan 30 Hz, serta pemberian massa absorber yang divariasikan senilai 1/10, 1/20, dan 1/40. Hal ini dilakukan untuk mengetahui respon displacement yang mampu mereduksi getaran yang dihasilkan dari sistem SDVA dan DDVA yang disusun seri. Hasilnya, reduksi getaran oleh SDVA dengan massa absorber 1/10, 1/20, dan 1/40 menghasilkan getaran pada rasio frekuensi sama dengan 1, dengan masing-masing absorber rms displacement yang dihasilkan sebesar 0.0001206 m, 0.0002436 m, dan 0.0007506 m. Sedangkan DDVA seri dengan massa absorber Ma1=1/20 dan Ma2=1/40, Ma1=2/30 dan Ma2=1/30, dan Ma1=3/40 dan Ma2=1/40 menghasilkan getaran dengan rasio frekuensi sama dengan 1, dengan masing-masing massa absorber rms displacement yang dihasilkan sebesar 0.001484 m, 0.002691 m, dan 0.001343 m. Sehingga getaran berlebih frekuensi dengan tunggal lebih optimum diredam menggunakan dikarenakan pada SDVA. **DDVA** seri. kemampuan meredam getaran pada absorber 1 berkurang dikarenakan adanya absorber 2.

Penelitian lanjutan mengenai DDVA dilakukan oleh Esthi Kusumadewayanti dengan menggunakan sistem utama yang bergetar translasi dan rotasi (Kusumadewayanti, 2015). Peredam yang digunakan adalah Dual DVA-Independent yang dipasang terpisah pada sistem utama sejauh panjang lengan momen tertentu dengan posisi simetri terhadap pusat massa sistem utama. Kemudian dari sistem yang dibuat dipelajari pengaruh massa dan perubahan lengan momen dual DVA-Independent terhadap respon getaran yang dihasilkan. Parameter yang divariasikan meliputi rasio massa absorber sebesar 1/80; 1/40; dan 1/20 dari massa utama dengan variasi konstanta kekakuan yang sama. Pengamatan perubahan lengan momen dilakukan pada 0.02 m, 0.13 m, dan 0.26 m. Untuk mendapatkan respon tersebut, maka dibuatlah pemodelan dinamis dari sistem utama tanpa DVA dan dengan DVA seperti yang ditunjukkan pada gambar 2.6 sebagai berikut.

Gambar 2.6 Model dinamis (a)sistem tanpa penambahan DVA dan (b)dengan penambahan DDVA (Kusumadewayanti, 2015).

Hasil dari penelitian ini menunjukkan bahwa *dual* DVA-*Independent* dapat mereduksi getaran sistem maksimum sebesar 93.78% (pada rasio massa dan kekakuan 1/20) pada getaran arah translasi dan sebesar 94.03% (pada rasio massa 1/20 dan rasio kekakuan 1/5) di ujung sistem pada arah getaran rotasi. Penurunan getaran optimum sebesar 72.69% (pada rasio massa dan kekakuan 0.01967); 88.44% (pada rasio massa 1/20 dan rasio kekakuan 0.0561); dan 89.75% (pada rasio massa 1/20 dan rasio kekakuan 0.0474). Dari hasil tersebut dapat disimpulkan bahwa nilai percepatan dan percepatan sudut semakin menurun dengan pertambahan rasio massa *dual* DVA-*independent*, sedangkan nilai percepatan sistem cenderung sama terhadap perubahan jarak *dual* DVA-*independent* dengan pusat gravitasi, dan penurunan getaran arah rotasi dan translasi yang sama.

Selanjutnya pada tahun 2017, **Vincent** melakukan studi simulasi lanjutan tentang *dynamic vibration absorber* dengan *beam* sebagai pegas, dan massa silinder yang ditambahkan pada kedua ujung lengan *beam* yang diletakkan pada massa utama simulator getar berupa plat datar (Vincent, 2017). Sistem utama berupa plat datar tersebut ditumpu oleh empat buah pegas yang diberi dua nilai koefisien berbeda sehingga mampu menghasilkan getaran rotasi, selain dari translasi. Gambar 2.7 adalah desain DVA model *beam* yang dirancang oleh peneliti.

(c)

Gambar 2.7 (**a**)Rancangan *assembly* DVA, (**b**)rancangan tumpuan DVA, dan (**c**)rancangan pegas DVA (Vincent, 2017).

Keterangan : 1. Tumpuan DVA 3. Massa *absorber* 5. Baut m6

2. Pegas DVA model *beam* 4. Baut m3

Massa utama berupa plat seberat 7 kg yang ditumpu oleh empat buah pegas dengan dua buah nilai koefisien berbeda, yaitu 3311,24 N/m, dan 1897 N/m dihubungkan pada sebuah pegas penunjuk yang terhubung pada motor sebagai pemberi gaya eksitasi. Getaran translasi dan rotasi yang dihasilkan kemudian diredam dengan menempatkan sistem pegas-massa di atas sistem utama. Parameter yang divariasikan pada penelitian ini adalah parameter massa *absorber*, pegas *absorber*, dan jarak dari pusat massa ke DVA.

Pemberian variasi dimaksudkan untuk mengetahui pengaruh besarnya peredaman oleh sistem pegas-massa model *beam* terhadap perubahan kondisi yang diberikan.

Dari hasil pengujian simulasi didapatkan data berupa grafik hubungan antara frekuensi yang diberikan dengan amplitudo massa utama yang terjadi. Grafik hasil simulasi antara sistem tanpa DVA dan dengan DVA kemudian dibandingkan untuk mengetahui nilai redaman yang terjadi. Nilai redaman terbaik ditunjukkan oleh nilai amplitudo massa utama terendah pada sistem utama dengan DVA. Pada nilai Ma yang tetap, Ka tertentu dan variasi posisi DVA, nilai redaman terbaik didapatkan pada nilai parameter berikut.

Parameter yang divariasikan	Simbol	Rasio	Nilai	Satuan
Massa absorber	Ma _l	(1/10) x M1	0,7	
	Ma ₂	(1/20) x M1	0,35	kg
	Ma ₃	(1/30) x M1	0,233	
Pegas aborber	Kal	(1/10) x Keq	1041,6	
	Ka ₂	(1/20) x Keq	520,8	N/m
	Ka ₃	(1/30) x Keq	347,2	
Jarak dari pusat massa ke DVA	b1		0	
	b2		0,1	m
	b3		0,2	

Gambar 2.8 Parameter yang divariasikan pada penelitian (Vincent, 2017).

Gambar 2.9 Pada nilai Ma₁ dan Ka₁ dengan b bervariasi (Vincent, 2017).

Gambar 2.10 Pada nilai Ma₁ dan Ka₂ dengan b bervariasi (Vincent, 2017).

Gambar 2.11 Pada nilai Ma₁ dan Ka₃ dengan b bervariasi (Vincent, 2017).

Pengujian simulasi ini menunjukkan hasil bahwa semakin jauh letak posisi DVA dari pusat massa utama maka memiliki nilai redaman yang lebih baik dibandingkan dengan yang lainnya. Kombinasi yang terbaik untuk menghasilkan nilai redaman tertinggi adalah pada nilai Ma₁ dengan Ka terbesar serta posisi terjauh. Untuk getaran arah translasi dapat diredam secara maksimal sebesar 99.1%, dan peredaman getaran rotasi maksimal sebesar 97.6%.

2.2 Multidegree-of-freedom (M-DOF)

Derajat kebebasan (*Degree Of Freedom*) dapat diartikan sebagai jumlah gerakan independen yang dapat dibuat suatu objek terhadap sistem koordinat yang dapat menyebabkan perubahan posisi atau orientasi. Terdapat enam gerakan independen yang dapat dibuat oleh suatu objek; tiga gerakan translasi (sepanjang aksis X, Y, dan Z), serta tiga

gerakan rotational (pada aksis X, Y, dan Z) (Mahala, 2010). Berikut ini adalah contoh sistem multi-DOF.

Gambar 2.12 (a)*Model of Full-Vehicle system* dan (b)*freebody diagram of quarter car model* (Mahala, 2010).

Sistem *full-vehicle system* merupakan sebuah sistem 7-DoF yang dapat disederhanakan dalam seperempat model sistem dengan 2-DoF. Dari gambar 2.12(b) di atas, *quarter car model* terdiri dari sebuah pegas (dengan kostanta k_s), sebuah *damper* (dengan kostanta c_s), dan sebuah gaya aktif aktuator (F_a). Massa utama di atas suspensi disimbolkan dengan m_b dan massa suspensi disimbolkan dengan m_u. Konstanta pegas kt merupakan kekakuan dari ban. Perpindahan secara vertikal massa utama, suspensi, pada profil jalan digambarkan dengan z_b, z_{ax}, dan z_r.

Dengan rumus *standard second-order*, sistem di atas dapat dituliskan dengan persamaan 2.10 berikut.

$$M\ddot{z} + C\ddot{z} + Kz = Az_r + BF_a \tag{2.8}$$

Atau

$$\begin{bmatrix} m_b & 0\\ 0 & m_u \end{bmatrix} \begin{bmatrix} \ddot{z}_b\\ \ddot{z}_{ax} \end{bmatrix} + \begin{bmatrix} c_s & -c_s\\ -c_s & c_s \end{bmatrix} \begin{bmatrix} \dot{z}_b\\ \dot{z}_{ax} \end{bmatrix} + \begin{bmatrix} k_s & -k_s\\ -k_s & k_s + k_t \end{bmatrix} \begin{bmatrix} z\\ z_{ax} \end{bmatrix} = \begin{bmatrix} 0\\ k_t \end{bmatrix} z_r + \begin{cases} 1\\ -1 \end{bmatrix} F_a$$

$$(2.9)$$

Melalui penyederhanaan setengah model sistem dengan 4-DoF dapat dituliskan ke dalam persamaan matematis.

$$\begin{split} m_{b}\ddot{z}_{b} &= -k_{sf}(z_{bf} - z_{axf}) - c_{sf}(\dot{z}_{bf} - \dot{z}_{axf}) + F_{af} - k_{sr}(z_{sr} - z_{axr}) - C_{br}(\dot{z}_{axr}) + F_{ar} \\ m_{uf}\ddot{z}_{axf} &= k_{sf}(z_{bf} - z_{axf}) + c_{sf}(\dot{z}_{bf} - \dot{z}_{axf}) - F_{af} - k_{tf}(z_{axf} - z_{rf}) \\ m_{ur}\ddot{z}_{axr} &= k_{sr}(z_{br} - z_{axr}) + c_{sr}(\dot{z}_{br} - \dot{z}_{axr}) - F_{ar} - k_{tr}(z_{axr} - z_{rr}) \\ I_{\theta}\ddot{\theta} &= l_{r}(-k_{sr}(z_{br} - z_{axr}) - C_{sr}(\dot{z}_{br} - \dot{z}_{axr}) + F_{ar}) - l_{f}(-k_{sf}(z_{bf} - z_{axf}) - C_{sf}(\dot{z}_{bf} - \dot{z}_{axf}) + F_{af}) \end{split}$$

$$\theta = \frac{(z_{bf} - z_{br})}{l_f + l_r} \tag{2.10}$$

Gambar 2.13 Half-vehicle model (Mahala, 2010).

24

Gambar 2.14 Skema Base excitation (Rao, 2011).

Sistem yang bergetar pada suatu massa akibat gerakan harmonik dan *base* sebuah pegas dapat disebut dengan *Base Excitation* yang dimodelkan seperti pada gambar 2.14 (Rao, 2011). Pada gambar 2.14(a), y(t) merupakan simpangan dari *base* dan x(t) merupakan simpangan dari massa pada posisi *static equilibrium* saat waktu t. Maka total simpangan dari pegas adalah x - y dan kecepatan relatif dari *damper* adalah $\dot{x} - \dot{y}$. Dari *free body diagram* pada gambar 2.14(b), didapatkan persamaan gerak sebagai berikut.

$$m\ddot{x} + c(\dot{x} - \dot{y}) + k(x - y) = 0 \tag{2.11}$$

Jika $y(t) = Ysin\omega t$ maka persamaan (2.12) menjadi:

$$m\ddot{x} + c\dot{x} + kx = c\dot{y} + ky \tag{2.12}$$

0 1 1

$$kY\sin\omega t + c\omega Y\cos\omega t = A\sin(\omega t - \alpha)$$
(2.13)

Dimana $A = Y\sqrt{k^2 + (c\omega)^2}$ dan $\alpha = tan^{-1}\left[-\frac{c\omega}{k}\right]$ maka respon dari massa, $x_p(t)$ menjadi:

$$x_p(t) = \frac{Y\sqrt{k^2 + (c\omega)^2}}{\sqrt{(k - m\omega^2)^2 + (c\omega)^2}} \sin(\omega t - \emptyset_1 - \alpha)$$
(2.14)

$$\phi_1 = tan^{-1} \left(\frac{c\omega}{k - m\omega^2} \right) \tag{2.14}$$

Dengan menggunakan identitas trigonometri, maka persamaan di atas dapat ditulis ulang sebagai berikut.

$$x_p(t) = X\sin(\omega t - \emptyset) \tag{2.15}$$

Dimana nilai X dan Ø didapat dari:

$$\frac{X}{Y} = \frac{\sqrt{k^2 + (c\omega)^2}}{\sqrt{(k - m\omega^2)^2 + (c\omega)^2}}$$
(2.16)

$$\emptyset = \left[\tan \right] \left((mc\omega^2) / (k(k - m\omega^2) + (c\omega)^2) \right)$$

Dimana : $\frac{x}{y}$ adalah displacement transmibility.

Gambar 2.15 (a)Grafik hubungan *Amplitudo ratio* dengan *frequency ratio*, dan (b)*phase angle* dengan *frequency ratio* (Rao, 2011).

2.4 Dynamic Vibration Absorber

Dynamic Vibration Absorber (DVA) adalah sistem yang ditambahkan pada sistem utama yang terdiri dari massa absorber dan pegas yang berfungsi untuk mereduksi getaran atau menghilangkan getaran yang tidak diinginkan. DVA umumnya digunakan pada mesin dengan kecepatan operasi konstan secara kontinu dikarenakan getaran DVA dikondisikan pada satu frekuensi tertentu. Oleh karena itu DVA hanya akan efektif digunakan pada mesin dengan rentang frekuensi operasi yang sempit. DVA dapat menyerap getaran dari berbagai arah eksitasi. Hal tersebut bergantung pada komponen dan mekanisme DVA yang menyesuaikan dengan arah eksitasi dari sistem utama. Tanpa penambahan DVA, getaran yang tidak diinginkan pada sistem utama akan sulit untuk dikontrol dan dapat menurunkan efisiensi dari sistem utama itu sendiri.

2.4.1 Undamped-Dynamic Vibration Absorber

Ketika sistem yang terdiri dari massa utama (m_1) berupa mesin dan massa *absorber* (m_2) yang dihubungkan

dengan pegas yang memiliki kekakuan k_2 . Karena ada massa *absorber* yang ditambahkan pada massa utama di atas, maka sistem tersebut memiliki dua derajat kebebasan. Pemodelan sederhana dari sistem utama yang dipasangi DVA dapat dilihat pada gambar 2.16 di bawah ini.

Gambar 2.16 Pemodelan dinamis sistem utama dengan penambahan *undamped* DVA (Rao, 2011).

Berdasarkan gambar 2.16 di atas didapatkan persamaan gerak dari m_1 dan m_2 , adalah sebagai berikut.

$$m_1 \ddot{x}_1 + k_1 x_1 + k_2 (x_1 - x_2) = F_0 \sin \omega t$$
(2.18)

$$m_2 \ddot{x}_2 + k_2 (x_2 - x_1) = 0 \tag{2.19}$$

Dengan asumsi persamaan harmonik, didapatkan:

$$x_j(t) = X_j \sin\omega t, \quad j = 1,2 \tag{2.20}$$

Sehingga diperoleh amplitudo *steady state* m_1 dan m_2 , sebagai berikut.

$$X_1 = \frac{(k_2 - m_2 \omega^2) F_0}{(k_1 + k_2 - m_1 \omega^2)(k_2 - m_2 \omega^2) - k_2^2}$$
(2.21)

$$X_2 = \frac{k_2 F_0}{(k_1 + k_2 - m_1 \omega^2)(k_2 - m_2 \omega^2) - k_2^2}$$
(2.22)

Reduksi amplitudo dari massa utama (X_1) menjadi hal yang paling penting untuk meredam getaran. Nilai nol didapatkan jika numerator dari persamaan 2.20 untuk X_1 bernilai nol juga. Sehingga persamaan menjadi seperti berikut.

$$\omega_2 = \frac{k_2}{m_2} \tag{2.23}$$

Ketika massa utama tanpa DVA beroperasi di daerah resonansi, maka $\omega_1 \approx \omega_2 = \frac{k_1}{m_1}$. DVA didesain agar memiliki frekuensi natural yang bernilai sama dengan frekuensi natural dari massa utama. Sehingga persamaan 2.21 menjadi :

$$\omega_2 = \frac{k_2}{m_2} = \frac{k_1}{m_1} \tag{2.24}$$

Ketika pengoperasian dilakukan pada frekuensi resonansi, maka amplitudo getaran mesin menjadi nol. Hal tersebut mendefinisikan,

$$\delta_{st} = \frac{F_0}{k_1}, \, \omega_1 = \left(\frac{k_1}{m_1}\right)^{\frac{1}{2}} \tag{2.25}$$

sebagai frekuensi natural dari sistem utama, dan

$$\omega_2 = \left(\frac{k_2}{m_2}\right)^{\frac{1}{2}}$$

sebagai frekuensi natural sistem DVA. Sehingga didapatkan persamaan berikut.

$$\frac{X_1}{\delta_{st}} = \frac{1 - \left(\frac{\omega}{\omega_2}\right)^2}{\left[1 + \frac{k_2}{k_1} - \left(\frac{\omega}{\omega_1}\right)^2\right] \left[1 - \left(\frac{\omega}{\omega_2}\right)^2\right] - \frac{k_2}{k_1}}$$
(2.26)

$$\frac{X_2}{\delta_{st}} = \frac{1}{\left[1 + \frac{k_2}{k_1} - \left(\frac{\omega}{\omega_1}\right)^2\right] \left[1 - \left(\frac{\omega}{\omega_2}\right)^2\right] - \frac{k_2}{k_1}}$$
(2.27)

Gambar 2.17 Pengaruh *undamped vibration absorber* terhadap respon dari sistem utama (Rao, 2011).

Gambar 2.17 di atas menunjukkan variasi amplitudo getaran massa utama (X_1/δ_{st}) dengan kecepatan sudut (ω/ω_1) . Ketika $X_1 = 0$ pada $\omega = \omega_1$ maka,

$$\omega_2 = \left(\frac{k_2}{m_2}\right)^{\frac{1}{2}} \tag{2.28}$$

Hal ini menunjukkan bahwa pegas berlawanan dengan

gaya eksitasi dan berusaha untuk meniadakan gaya eksitasi di X_1 , sehingga X_1 berkurang hingga mendekati nol. Sehingga didapatkan parameter dari sistem DVA sebagai berikut. $k_2X_2 = m_2\omega^2X_2 = -F_0$

2.4.2 Damped-Dynamic Vibration Absorber

Undamped-dynamic vibration absorber seperti yang dijelaskan di atas menghasilkan dua puncak baru sehingga massa utama mengalami amplitudo yang besar di puncak pertama selama *start-up* dan *stopping*. Amplitudo yang besar ini dapat diredam atau diresuksi dengan menambahkan *damped-dynamic vibration absorber* seperti yang terlihat pada gambar 2.18.

Berdasarkan gambar di atas, didapatkan persamana gerak dari

massa m_1 dan m_2 yaitu:

$$m_1 \ddot{x}_1 + k_1 x_1 + k_2 (x_1 - x_2) + c_2 (\dot{x}_1 - \dot{x}_2) = F_0 \sin \omega t$$

$$m_2 \ddot{x}_2 + k_2 (x_2 - x_1) + c_2 (\dot{x}_2 - \dot{x}_1) = 0$$
(2.31)

Dengan mengasumsikan penyelesaian harmonik, maka: $x_j(t) = X_j e^{i\omega t}, \quad j = 1,2$ (2.32)

Sehingga didapatkan amplitudo steady state dari massa m_1 dan m_2 sebagai berikut.

$$X_{1} = \frac{F_{0}(k_{2} - m_{2}\omega^{2} + ic_{2}\omega)}{[(k_{1} - m_{1}\omega^{2})(k_{2} - m_{2}\omega^{2}) - m_{2}k_{2}\omega^{2}] + i\omega c_{2}(k_{1} - m_{1}\omega^{2} - m_{2}\omega^{2})}$$
(2.33)

$$X_2 = \frac{X_1(k_2 + i\omega c_2)}{(k_2 - m_2\omega^2 + i\omega c_2)}$$
(2.34)

Dimana:

$$\mu = \frac{m_2}{m_1} = mass \ ratio = absorber \ mass/main \ mass$$

$$\delta_{st} = \frac{F_0}{k_1} = static \ deflection \ of \ the \ system$$

$$\omega_a{}^2 = \frac{k_2}{m_2} = square \ of \ natural \ frequency \ of \ the \ absorber$$

$$\omega_n{}^2 = \frac{k_1}{m_1} = square \ of \ natural \ frequency \ of \ main \ mass$$

$$f = \frac{\omega_a}{\omega_n} = ratio \ of \ natural \ frequency$$

$$g = \frac{\omega}{\omega_n} = forced \ frequency \ ratio$$

$$cc = 2m\omega_n = critical \ damping \ constant$$

$$\zeta = \frac{c_2}{c_c} = damping \ ratio \tag{2.35}$$

Sehingga nilai X1 dan X2 dapat dinyatakan dalam :

$$\frac{X_1}{\delta_{st}} = \left[\frac{(2\zeta g)^2 + (g^2 - f^2)^2}{(2\zeta g)^2 (g^2 - 1 + \mu g^2)^2 + \{\mu f^2 g^2 - (g^2 - 1)(g^2 - f^2)\}^2}\right]^{\frac{1}{2}}$$
(2.36)

$$\frac{X_2}{\delta_{st}} = \left[\frac{(2\zeta g)^2 + f^4}{(2\zeta g)^2 (g^2 - 1 + \mu g^2)^2 + \{\mu f^2 g^2 - (g^2 - 1)(g^2 - f^2)\}^2}\right]^{\frac{1}{2}}$$
(2.37)

Persamaan 2.31 menunjukkan nilai amplitudo getaran dari massa utama yang merupakan fungsi dari μ , f, g, dan ζ . Gambar 2.19 di bawah ini menunjukkan grafik hubungan antara $\left|\frac{x_1}{\delta_{st}}\right|$ terhadap *forced frequency ratio* (g) dengan nilai $f = 1, \mu = \frac{1}{20}$, dan variasi ζ adalah 0, 0.1, dan ∞ .

Gambar 2.19 Pengaruh dari *damped vibration absorber* terhadap respon sistem utama (Rao, 2011).

1

Dari grafik 2.19, dapat diketahui ketika redaman bernilai nol ($\zeta = 0$), maka resonansi terjadi pada dua frekuensi natural yang tidak teredam dari sistem. Ketika redaman tak terhingga ($\zeta = \infty$), massa utama dan massa *absorber* bekerja bersama-sama seolah-olah menjadi SDOF. Sedangkan saat redaman bernilai ($\zeta = 0.1$), maka puncak dari X₁ bernilai minimum.

BAB III METODE PENELITIAN

1.1. Flowchart Penelitian

Langkah-langkah yang dilakukan dalam penelitian digambarkan dengan *flowchart* di bawah ini.

Gambar 3.1 Flowchart Penelitian

3.2 Penjelasan Tahap Penelitian

3.2.1 Studi Literatur

Sebelum melakukan penelitian ini, langkah pertama yang dilakukan adalah studi literatur dan mencari referensi yang terkait dengan penelitian ini. Materi tersebut yang bersangkutan adalah getaran *multi degree of freedom, base motion vibration,* dan *dynamic vibration absorber*. Teori yang didapatkan, bersumber dari buku, tugas akhir sebelumnya, dan jurnal internasional.

3.2.2 Identifikasi Masalah

Pada penelitian ini, masalah yang diidentifikasi dibagi menjadi dua bagian, yaitu *input* dan *output*. *Input* yang diberikan adalah variasi rasio massa TMVA terhadap massa utama, dan variasi posisi TMVA terhadap *center of gravity* massa utama. Sedangkan *output*nya yaitu reduksi respon getaran sistem utama.

3.2.3 Perancangan Mekanisme TMVA

TMVA yang dirancang merupakan sistem massa-pegas yang ditempatkan di dalam selongsong. Massa yang digunakan merupakan beberapa buah koin yang disusun vertikal di atas sebuah pegas. Kemudian TMVA dipasang di atas sistem utama yang berupa plat datar ditopang dengan empat buah pegas dengan dikenai gaya eksitasi di bawah plat oleh motor DC sebagai sumber getar. Gaya eksitasi di bawah plat dihubungkan dengan massa eksentrik pada motor DC sehingga dapat memeberikan getaran yang kontinyu. Rancangan TMVA dapat dilihat pada gambar 3.2.

Gambar 3.3 (a)Sistem Utama tampak isometri, dan (b)tampak belakang (Vincent, 2017).

Keterangan:

- 1. Massa Utama
- 2. Pegas sistem Utama
- 5. Pegas Eksentris
- 6. Massa eksentris

- 3. Penumpu
- 4. Motor Listrik

Skema rancangan sistem gabungan ditampilkan pada gambar 3.4 sebagai berikut.

Gambar 3.4 Rancangan Sistem Gabungan.

3.2.4 Pemodelan Sistem Dinamis

Pemodelan yang disederhanakan untuk analisa model dinamis dari sistem utama tanpa TMVA dapat dilihat pada gambar 3.5(a), dan 3.5(b) untuk sistem utama yang ditambahkan TMVA.

Gambar 3.5 Skema (a)sistem utama tanpa TMVA dan (b)dengan ditambahkan TMVA.

Keterangan:

m_1	: massa utama
co	: konstanta redaman eksitasi
m ₂	: massa TMVA
ci	: konstanta redaman m ₁ pada titik i
Xo	: displacement eksitasi disk
c_2	: konstanta redaman m ₂
X ₁	: <i>displacement</i> massa utama (m ₁)
ko	: konstanta pegas eksitasi
X ₂	: <i>displacement</i> massa TMVA (m ₂)
\mathbf{k}_2	: konstanta pegas m ₂
ki	: konstanta pegas m ₁ pada titik i
i	: A, B, C, atau D

3.2.5 Penurunan Persamaan Gerak

Persamaan gerak terlebih dahulu diturunkan dengan membangun *free-body diagram* dari model fisik sistem yang telah disederhanakan. Berdasarkan *free-body diagram* didapatkan permodelan matematis sistem tanpa dan dengan TMVA yang telah disusun dan dijumlahkan menurut hukum newton. Setelah didapatkan persamaan gerak untuk masingmasing kondisi, persamaan tersebut diubah dalam bentuk persamaan *state variable* dengan cara merubah bentuk persamaan tersebut ke dalam persamaan diferensial orde satu.

Free-body diagram sistem utama tanpa TMVA dapat dilihat pada gambar 3.6, sedangkan gambar 3.9 untuk sistem utama yang telah ditambahkan TMVA. Selanjutnya, gambar-gambar tersebut diturunkan ke dalam persamaan gerak berikut ini.

a. Sistem Utama tanpa TMVA

Gambar 3.6 Free-body diagram Sistem Utama tanpa TMVA.

Keterangan:

- Fk_o: Gaya eksitasi pegas dari motor penggerak (N)
- Fc_o: Gaya eksitasi redaman dari motor penggerak (N)
- Fk_i : Gaya pegas dari massa utama (m₁) pada titik i (N); i: A, B, C, D
- Fc_i : Gaya redaman dari massa utama (m₁) pada titik i (N)

Dimana besarnya masing-masing gaya yaitu:

$$Fk_{o} = k_{o}(x_{1} - x_{o}) \qquad Fk_{C} = k_{c}(x_{1} + b\alpha + a\beta)$$

$$Fc_{o} = c_{o}(\dot{x}_{1} - \dot{x}_{o}) \qquad Fc_{C} = c_{C}(\dot{x}_{1} + b\dot{\alpha} + a\dot{\beta})$$

$$Fk_{A} = k_{A}(x_{1} - b\alpha - a\beta) \qquad Fk_{D} = k_{D}(x_{1} - b\alpha + a\beta)$$

$$Fc_{A} = c_{A}(\dot{x}_{1} - b\dot{\alpha} - a\dot{\beta}) \qquad Fc_{D} = c_{D}(\dot{x}_{1} - b\dot{\alpha} + a\dot{\beta})$$

$$Fk_{B} = k_{B}(x_{1} + b\alpha - a\beta) \qquad Fc_{B} = c_{B}(\dot{x}_{1} + b\dot{\alpha} - a\dot{\beta})$$

Massa utama pada sistem tanpa DVA menerima gaya eksitasi oleh k_o , k_A , k_B , k_C , k_D , c_o , c_A , c_B , c_C , dan c_D . Sistem utama memiliki 3 arah pergerakan, yaitu translasi, *rolling*, dan *pitching*. Setiap arah pergerakan yang berbeda memiliki 1 derajat kebebasan, sehingga sistem tersebut memiliki 3-DoF (*degree of freedom*). Berikut ini dijabarkan persamaan gerak dari massa utama (m₁).

1. Persamaan gerak translasi massa utama (M_1)

Translasi merupakan pergerakan massa ke arah vertikal sepanjang sumbu x. Pergerakan translasi sepanjang sumbu lain diabaikan. Persamaan gerak translasi massa utama ditunjukkan dalam persamaan 3.1 berikut.

$+\uparrow \sum Fx_1 = m_1\ddot{x}_1$

 $Fk_o + Fc_o - Fk_A - Fc_A - Fk_B - Fc_B - Fk_c - Fc_C - Fk_D - Fc_D = m_1 \ddot{x}_1$

$$k_o(x_1 - x_o) + c_o(\dot{x}_1 - \dot{x}_o) - k_A(x_1 - b\alpha - a\beta) - c_A(\dot{x}_1 - b\dot{\alpha} - a\dot{\beta}) - k_B(x_1 + b\alpha - a\beta) - c_B(\dot{x}_1 + b\dot{\alpha} - a\dot{\beta}) - k_c(x_1 + b\alpha + a\beta) - c_C(\dot{x}_1 + b\dot{\alpha} + a\dot{\beta}) - k_D(x_1 - b\alpha + a\beta) - c_D(\dot{x}_1 - b\dot{\alpha} + a\dot{\beta}) = m_1\ddot{x}_1$$

$$m_{1}\ddot{x}_{1} + (k_{A} + k_{B} + k_{C} + k_{D} - k_{o})x_{1} - (k_{A}b - k_{B}b - k_{C}b + k_{D}b)\alpha - (k_{A}a + k_{B}a - k_{C}a - k_{D}a)\beta + (c_{A} + c_{B} + c_{C} + c_{D} - c_{o})\dot{x}_{1} - (c_{A}b - c_{B}b - c_{C}b + c_{D}b)\dot{\alpha} - (c_{A}a + c_{B}a - c_{C}a - c_{D}a)\dot{\beta} = -k_{o}x_{o} - c_{o}\dot{x}_{o}$$
(3.1)

2. Persamaan gerak rotasi M₁

Gerak rotasi massa pada sumbu y yang ditinjau dari tampak depan sistem disebut dengan *rolling*. Gambar 3.7 adalah *free body* diagram gerak *rolling* dari massa utama.

Gambar 3.7 *Free-body diagram* Gerak *Rolling* oleh Massa Utama.

Dengan: α = sudut *rolling*, dan $b = \frac{l_1}{2}$

Sehingga didapatkan persamaan gerak sebagai berikut.

+ $\mathcal{O} M_y = J_y \ddot{\alpha}_1$ $Fk_A b + Fc_A b - Fk_B b - Fc_B b - Fk_C b - Fc_C b + Fk_D b + Fc_D b = J_y \ddot{\alpha}_1$

$$\begin{aligned} k_A(x_1 - b\alpha - a\beta)b + c_A(\dot{x}_1 - b\dot{\alpha} - a\dot{\beta})b - k_B(x_1 + b\alpha - a\beta)b - c_B(\dot{x}_1 + b\dot{\alpha} - a\dot{\beta})b - k_c(x_1 + b\alpha + a\beta)b - c_C(\dot{x}_1 + b\alpha + a\dot{\beta})b + k_D(x_1 - b\alpha + a\beta)b + c_D(\dot{x}_1 - b\dot{\alpha} + a\dot{\beta})b = J_y\ddot{\alpha}_1 \\ J_y\ddot{\alpha}_1 - (k_Ab - k_Bb - k_Cb + k_Db)x_1 + (k_Ab^2 + k_Bb^2 + k_Cb^2 + k_Db^2)\alpha + (k_Aab - k_Bab + k_Cab - k_Dab)\beta - (c_Ab - c_Bb - c_Cb + c_Db)\dot{x}_1 + (c_Ab^2 + c_Bb^2 + c_Cb^2 + c_Db^2)\dot{\alpha} + (c_Aab - c_Bab + c_Cab - c_Dab)\dot{\beta} = 0 \end{aligned}$$
(3.2)

Pitching merupakan gerak rotasi massa pada sumbu z yang ditinjau dari tampak samping sistem. *Free-body diagram* gerak *pitching* dari massa utama dapat dilihat pada gambar 3.8.

Gambar 3.8 *Free-body diagram* Gerak *Pitching* oleh Massa Utama.

Dengan: β = sudut *pitching*, dan $a = \frac{l_2}{2}$ Sehingga didapatkan persamaan gerak sebagai berikut.

$$+ \mathfrak{O} M_{z} = J_{z}\ddot{\beta}_{1}$$

$$Fk_{A}a + Fc_{A}a + Fk_{B}a + Fc_{B}a - Fk_{C}a - Fc_{C}a - Fk_{D}a - Fc_{D}a = J_{z}\ddot{\beta}_{1}$$

$$k_{A}(x_{1} - b\alpha - a\beta)a + c_{A}(\dot{x}_{1} - b\dot{\alpha} - a\dot{\beta})a + k_{B}(x_{1} + b\alpha - a\beta)a + c_{B}(\dot{x}_{1} + b\dot{\alpha} - a\dot{\beta})a - k_{C}(x_{1} + b\alpha + a\beta)a - c_{C}(\dot{x}_{1} + b\dot{\alpha} + a\dot{\beta})a - k_{D}(x_{1} - b\alpha + a\beta)a - c_{D}(\dot{x}_{1} - b\dot{\alpha} + a\dot{\beta})a = J_{z}\ddot{\beta}_{1}$$

$$J_{z}\ddot{\beta}_{1} - (k_{A}a + k_{B}a - k_{C}a - k_{D}a)x_{1} + (k_{A}ab - k_{B}ab + k_{C}ab - k_{D}ab)\alpha + (k_{A}a^{2} + k_{B}a^{2} + k_{C}a^{2} + k_{D}a^{2})\beta - (c_{A}a + c_{B}a - c_{C}a - c_{D}a)\dot{x}_{1} + (c_{A}ab - c_{B}ab + c_{C}ab - c_{D}ab)\dot{\alpha} + (c_{A}a^{2} + c_{B}a^{2} + c_{C}a^{2} + c_{D}a^{2})\dot{\beta} = 0$$
(3.3)

Persamaan (3.1), (3.2), dan (3.3) di atas, dapat disederhanakan ke dalam matriks 3x3, sebagai berikut.

$$\begin{bmatrix} m_{1} & 0 & 0 \\ 0 & J_{y} & 0 \\ 0 & 0 & J_{z} \end{bmatrix} \begin{pmatrix} \ddot{x}_{1} \\ \ddot{\beta} \\ \ddot{\beta} \end{pmatrix} \\ + \begin{bmatrix} (c_{A} + c_{B} + c_{C} + c_{D} - c_{o}) & -(c_{A} - c_{B} - c_{C} + c_{D})b & -(c_{A} + c_{B} - c_{C} - c_{D})a \\ -(c_{A} - c_{B} - c_{C} + c_{D})b & (c_{A} + c_{B} + c_{C} + c_{D})b^{2} & (c_{A} - c_{B} + c_{C} - c_{D})ab \\ -(c_{A} + c_{B} - c_{C} - c_{D})a & (c_{A} - c_{B} + c_{C} - c_{D})ab & (c_{A} + c_{B} + c_{C} + c_{D})a^{2} \end{bmatrix} \begin{pmatrix} \dot{x}_{1} \\ \dot{\alpha} \\ \dot{\beta} \end{pmatrix} \\ + \begin{bmatrix} (k_{A} + k_{B} + k_{C} + k_{D} - k_{o}) & -(k_{A} - k_{B} - k_{C} + k_{D})b & -(k_{A} + k_{B} - k_{C} - k_{D})a^{2} \\ -(k_{A} - k_{B} - k_{C} + k_{D})b & (k_{A} + k_{B} + k_{C} + k_{D})b^{2} & (k_{A} - k_{B} + k_{C} - k_{D})ab \\ -(k_{A} + k_{B} - k_{C} - k_{D})a & (k_{A} - k_{B} + k_{C} - k_{D})ab & (k_{A} + k_{B} + k_{C} + k_{D})a^{2} \end{bmatrix} \begin{pmatrix} x_{1} \\ \alpha \\ \beta \end{pmatrix} \\ = \begin{cases} -k_{o}x_{o} - c_{o}\dot{x}_{o} \\ 0 \end{cases}$$
 (3.4)

b. Sistem Utama dengan TMVA

Gambar 3.9 Free-body diagram TMVA dan sistem utama.

Keterangan:

$$\begin{aligned} Fk_o &= k_o(x_1 - x_o) & Fk_c &= k_c(x_1 + b\alpha + a\beta) \\ Fc_o &= c_o(\dot{x}_1 - \dot{x}_o) & Fc_c &= c_c(\dot{x}_1 + b\dot{\alpha} + a\dot{\beta}) \\ Fk_A &= k_A(x_1 - b\alpha - a\beta) & Fk_D &= k_D(x_1 - b\alpha + a\beta) \\ Fc_A &= c_A(\dot{x}_1 - b\dot{\alpha} - a\dot{\beta}) & Fc_D &= c_D(\dot{x}_1 - b\dot{\alpha} + a\dot{\beta}) \\ Fk_B &= k_B(x_1 + b\alpha - a\beta) & Fk_2 &= k_2(x_1 + q\alpha - p\beta - x_2) \\ Fc_B &= c_B(\dot{x}_1 + b\dot{\alpha} - a\dot{\beta}) & Fc_2 &= c_2(\dot{x}_1 + q\dot{\alpha} - p\dot{\beta} - \dot{x}_2) \end{aligned}$$

Massa utama pada sistem yang ditambahkan DVA menerima gaya eksitasi oleh k_0 , k_A , k_B , k_C , k_D , k_2 , c_0 , c_A , c_B , c_C , c_D , dan c_2 . Pada sistem gabungan ini, terjadi 4 arah pergerakan, yaitu 3 arah pergerakan sistem utama dan 1 arah pergerakan DVA. Seperti yanng telah dibahas sebelumnya, bahwa sistem utama mengalami pergerakan translasi, *rolling*, dan *pitching*. Sedangkan DVA hanya mengalami gerak translasi, sehingga sistem tersebut memiliki 4-DoF (*degree of freedom*). Berikut ini dijabarkan persamaan gerak dari massa utama (m₁) dan massa DVA (m₂).

1. Persamaan Gerak Translasi massa utama (M₁)

$$+ \uparrow \sum Fx_{1} = m_{1}\ddot{x}_{1}$$

$$Fk_{o} + Fc_{o} - Fk_{A} - Fc_{A} - Fk_{B} - Fc_{B} - Fk_{c} - Fc_{C} - Fk_{D} - Fc_{D} - Fk_{2} - Fc_{2} = m_{1}\ddot{x}_{1}$$

$$k_{o}(x_{1} - x_{o}) + c_{o}(\dot{x}_{1} - \dot{x}_{o}) - k_{A}(x_{1} - b\alpha - a\beta) - c_{A}(\dot{x}_{1} - b\dot{\alpha} - a\dot{\beta}) - k_{B}(x_{1} + b\alpha - a\beta) - c_{B}(\dot{x}_{1} + b\dot{\alpha} - a\dot{\beta}) - k_{C}(x_{1} + b\alpha + a\beta) - c_{C}(\dot{x}_{1} + b\dot{\alpha} + a\dot{\beta}) - k_{C}(x_{1} + b\alpha + a\beta) - c_{C}(\dot{x}_{1} + b\dot{\alpha} + a\dot{\beta}) - k_{2}(x_{1} + q\alpha - p\beta - x_{2}) - c_{2}(\dot{x}_{1} + q\dot{\alpha} - p\dot{\beta} - \dot{x}_{2}) = m_{1}\ddot{x}_{1}$$

$$m_{1}\ddot{x}_{1} + (k_{A} + k_{B} + k_{C} + k_{D} + k_{2} - k_{o})x_{1} - (k_{A}b - k_{B}b - k_{C}b + k_{D}b - k_{2}q) \propto -(k_{A}a + k_{B}a - k_{C}a - k_{D}a + k_{2}p)\beta - k_{2}x_{2} + (c_{A} + c_{B} + c_{C} + c_{D} + c_{2} - c_{o})\dot{x}_{1} - (c_{A}b - c_{B}b - c_{C}b + c_{D}b - c_{2}q)\dot{\alpha} - (c_{A}a + c_{B}a - c_{C}a - c_{D}a + c_{2}p)\dot{\beta} - c_{2}\dot{x}_{2} = -k_{0}x_{0} - c_{0}\dot{x}_{0}$$

$$(2.5)$$

(3.5)
2. Persamaan Gerak *Rolling* massa utama (M₁)

Gerak rotasi massa pada sumbu y yang ditinjau dari tampak depan sistem disebut dengan *rolling*. Gambar 3.10 adalah *free body* diagram gerak *rolling* dari massa utama yang telah ditambahkan TMVA.

Gambar 3.10 Free-body diagram sistem utama dengan TMVA untuk gerak rolling.

Sehingga, didapatkan persamaan gerak sebagai berikut.

 $+ \mathfrak{G} M_y = J_y \ddot{\alpha}_1$

 $Fk_Ab + Fc_Ab - Fk_Bb - Fc_Bb - Fk_Cb - Fc_Cb + Fk_Db + Fc_Db - Fk_2q - Fc_2q = J_y\ddot{\alpha}_1$

$$\begin{aligned} k_A(x_1 - b\alpha - a\beta)b + c_A(\dot{x}_1 - b\dot{\alpha} - a\dot{\beta})b - k_B(x_1 + b\alpha - a\beta)b - c_B(\dot{x}_1 + b\dot{\alpha} - a\dot{\beta})b - k_c(x_1 + b\alpha + a\beta)b - c_C(\dot{x}_1 + b\dot{\alpha} + a\dot{\beta})b + k_D(x_1 - b\alpha + a\beta)b + c_D(\dot{x}_1 - b\dot{\alpha} + a\dot{\beta})b - k_2(x_1 + q\alpha - p\beta - x_2)q - c_2(\dot{x}_1 + q\dot{\alpha} - p\dot{\beta} - a\beta)d \end{aligned}$$

$$\dot{x}_{2})q = J_{y}\ddot{\alpha}_{1}$$

$$J_{y}\ddot{\alpha}_{1} - (k_{A}b - k_{B}b - k_{C}b + k_{D}b - k_{2}q)x_{1} + (k_{A}b^{2} + k_{B}b^{2} + k_{C}b^{2} + k_{D}b^{2} + k_{2}q^{2})\alpha + (k_{A}ab - k_{B}ab + k_{C}ab - k_{D}ab - k_{2}pq)\beta - k_{2}qx_{2} - (c_{A}b - c_{B}b - c_{C}b + c_{D}b - c_{2}q)\dot{x}_{1} + (c_{A}b^{2} + c_{B}b^{2} + c_{C}b^{2} + c_{D}b^{2} + c_{2}q^{2})\dot{\alpha} + (c_{A}ab - c_{B}ab + c_{C}ab - c_{D}ab - c_{2}pq)\dot{\beta} - c_{2}q\dot{x}_{2} = 0$$
(3.6)

3. Persamaan Gerak *Pitching* massa utama (M₁)

Pitching merupakan gerak rotasi massa pada sumbu z yang ditinjau dari tampak samping sistem. *Free-body diagram* gerak *pitching* dari massa utama yang telah ditambah TMVA dapat dilihat pada gambar 3.11.

Gambar 3.11 *Free-body diagram* sistem utama dengan TMVA untuk gerak *pitching*.

Dari *free-body diagram* didapatkan persamaan gerak sebagai berikut.

$$+ \mathfrak{G} M_z = J_z \ddot{\beta}_1$$

$$Fk_A a + Fc_A a + Fk_B a + Fc_B a - Fk_C a - Fc_C a - Fk_D a - Fc_D a + Fk_2 p + Fc_2 p = J_z \ddot{\beta}_1$$

$$k_A (x_1 - b\alpha - a\beta)a + c_A (\dot{x}_1 - b\dot{\alpha} - a\dot{\beta})a + k_B (x_1 + b\alpha - a\beta)a + c_B (\dot{x}_1 + b\dot{\alpha} - a\dot{\beta})a - k_C (x_1 + b\alpha + a\beta)a - c_C (\dot{x}_1 + b\dot{\alpha} + a\dot{\beta})a - k_D (x_1 - b\alpha + a\beta)a - c_D (\dot{x}_1 - b\dot{\alpha} + a\dot{\beta})a + k_2 (x_1 + q\alpha - p\beta - x_2)p + c_2 (\dot{x}_1 + q\dot{\alpha} - p\dot{\beta} - \dot{x}_2)p = J_z \ddot{\beta}_1$$

$$J_z \ddot{\beta}_1 - (k_A a + k_B a - k_C a - k_D a + k_2 p)x_1 + (k_A a b - k_B a -$$

$$J_{z}\beta_{1} - (k_{A}a + k_{B}a - k_{C}a - k_{D}a + k_{2}p)x_{1} + (k_{A}ab - k_{B}ab + k_{C}ab - k_{D}ab - k_{2}pq)\alpha + (k_{A}a^{2} + k_{B}a^{2} + k_{C}a^{2} + k_{D}a^{2} + k_{2}p^{2})\beta + k_{2}px_{2} - (c_{A}a + c_{B}a - c_{C}a - c_{D}a + c_{2}p)\dot{x}_{1} + (c_{A}ab - c_{B}ab + c_{C}ab - c_{D}ab - c_{2}pq)\dot{\alpha} + (c_{A}a^{2} + c_{B}a^{2} + c_{C}a^{2} + c_{D}a^{2} + c_{2}p^{2})\dot{\beta} + c_{2}p\dot{x}_{2} = 0$$
(3.7)

4. Persamaan Gerak Translasi M₂

$$+\downarrow \sum Fx_{2} = m_{2}\ddot{x}_{2}$$

$$Fk_{2} + Fc_{2} = m_{2}\ddot{x}_{2}$$

$$k_{2}(x_{1} + q\alpha - p\beta - x_{2}) + c_{2}(\dot{x}_{1} + q\dot{\alpha} - p\dot{\beta} - \dot{x}_{2}) = m_{2}\ddot{x}_{2}$$

$$m_{2}\ddot{x}_{2} - k_{2}x_{1} - k_{2}q\alpha + k_{2}p\beta + k_{2}x_{2} - c_{2}\dot{x}_{1} - c_{2}q\dot{\alpha} + c_{2}p\dot{\beta} + c_{2}\dot{x}_{2} = 0$$
(3.8)

Persamaan (3.5) sampai dengan (3.8) dapat digabungkan ke dalam suatu matriks 4x4, sebagai berikut.

$$\begin{cases} m_1 & 0 & 0 & 0 \\ 0 & J_y & 0 & 0 \\ 0 & 0 & m_2 \\ 0 & 0 & m_2 \\ 0 & 0 & 0 \\ 0 & 0 & m_2 \\ \end{cases} \begin{cases} \ddot{x}_1 \\ \ddot{p} \\ \ddot{x}_2 \\ \end{cases} + \begin{cases} (c_A + c_B + c_c + c_b + c_2 - c_o) & -(c_A b - c_B b - c_c b + c_b b - c_2 q) & -(c_A a + c_B a - c_c a - c_D a + c_2 p) & -c_2 \\ -(c_A b - c_B b - c_c b + c_b b - c_2 q) & (c_A b^2 + c_B b^2 + c_c b^2 + c_b b^2 + c_2 q^2) & (c_A a b - c_B a b + c_c a b - c_b a b - c_2 p q) & -c_2 q \\ -(c_A a + c_B a - c_c a - c_D a + c_2 p) & (c_A a b - c_B a b + c_c a b - c_b a b - c_2 p q) & (c_A a^2 + c_B a^2 + c_c a^2 + c_D a^2 + c_2 p^2) & c_2 p \\ -c_2 & -c_2 q & -c_2 q & c_2 p & c_2 \\ -(c_A b - k_B b - k_c b + k_D b - k_2 q) & (k_A b - k_B b - k_c b + k_D b - k_2 q) & -(k_A a + k_B a - k_c a - k_D a + k_2 p) & -c_2 \\ -(k_A b - k_B b - k_c b + k_D b - k_2 q) & (k_A b^2 + k_B b^2 + k_c b^2 + k_D b^2 + k_2 q^2) & (k_A a b - k_B a b + k_c a b - k_D a b - k_2 p q) & -k_2 \\ -(k_A a - k_B a - k_c a - k_D a + k_2 p) & (k_A a b - k_B a b + k_c a b - k_D a b - k_2 p q) & (k_A a^2 + k_B a^2 + k_c a^2 + k_D a^2 + k_2 p^2) & k_2 \\ -k_2 & -k_2 q & k_2 p & k_2 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix}$$

3.2.6 Pembuatan Blok Simulasi

Persamaan *state variable* yang telah didapatkan dari persamaan gerak pemodelan sistem dinamis, baik dengan TMVA maupun tanpa TMVA, diubah ke dalam blok-blok diagram simulasi yang terdapat pada *software* Simulink Matlab. *Software* ini digunakan untuk mendapatkan penyelesaian dari persamaan matematis yang telah didapat. Hasil dari simulasi *software* ini berupa respon sistem utama pada setiap kondisi.

3.2.7 Simulasi

Pada pemodelan sistem utama tanpa TMVA, proses simulasi dimulai dengan memberi *input* berupa gaya sinusoidal pada sistem utama. *Output* yang didapat berupa *displacement* dan sudut kemiringan pada massa utama. Sedangkan, pada pemodelan sistem utama dengan TMVA, proses simulasi dimulai dengan memberi *input* berupa gaya sinusoidal pada sistem utama. *Output* yang didapat berupa *displacement* dan sudut kemiringan pada massa utama yang akan menjadi *input* pada sistem *absorber*. Pada sistem *absorber*, *output* yang didapat berupa *displacement* pada massa *absorber*. Dari kedua pemodelan di atas kemudian dibandingkan untuk mendapatkan reduksi respon sistem utama.

3.2.8 Reduksi Respon Sistem Utama

Setelah simulasi berikut dengan variasinya dijalankan, maka akan didapatkan nilai reduksi respon sistem utama. Hasil ini kemudian diolah menjadi grafik respon terhadap variasi. Grafik yang didapatkan berupa reduksi respon sistem utama terhadap massa *absorber*, posisi TMVA, dan frekuensi eksitasi yang diberikan.

3.2.9 Analisa Hasil

Dari grafik simulasi yang diperoleh, dilakukan analisa data dan pembahasan sesuai dasar teori yang ada. Selanjutnya, dapat diketahui hubungan variasi massa dan posisi terhadap reduksi respon sistem utama. Hasil grafik tersebut dapat dijadikan acuan penelitian serupa melalui pengujian eksperimen.

3.2.10 Kesimpulan

Dari analisa hasil, dapat ditarik kesimpulan dan saran mengenai penelitian yang telah dilakukan. Kesimpulan menyangkut poin-poin penting pembahasan hasil eksperimen serta menjawab tujuan penelitian. Saran yang dibuat dapat digunakan sebagai masukan untuk penelitian selanjutnya.

3.3 Parameter Penelitian

Parameter penelitian digunakan untuk merancang bangun komponen-komponen DVA. Parameter ini meliputi massa, konstanta pegas dan redaman, serta frekuensi operasi.

a. Massa Sistem Utama (M1) dan Massa Absorber (Ma)

Massa sistem utama (M_1) mencakup plat *exciter*, *spring rod* suspensi, selongsong penunjuk, serta engsel yang terhubung langsung pasa plat *exciter*. Plat *exciter* yang

digunakan terbuat dari material aluminium dengan panjang (p) x lebar (l) x tinggi (t) yaitu 500 mm x 500 mm x 6 mm.

Komponen	Massa
Plat exciter	5,9 Kg
Spring rod suspensi	0,6 Kg
Poros Penggerak	0,2 Kg
Massa Total	6,7 Kg

Tabel 3.1 Parameter massa utama yang dikehendaki

Massa *absorber* (Ma) yang digunakan dalam penelitian ini direncanakan sesuai dengan referensi. Berdasarkan teori *vibration absorber* pada referensi tersebut, rasio perbandingan optimal dari massa *absorber* terhadap massa utama yaitu.

 $M_a = \frac{1}{20}M_1$

Hasil perhitungan persamaan (3.10) di atas, dapat digunakan untuk memperkirakan dimensi dan material yang akan digunakan. Jika massa *absorber* merupakan perkalian volume dengan massa jenis material, maka dari volume tersebut akan diketahui dimensi *absorber*. Massa *absorber* merupakan jumlah total dari massa koin yang digunakan dalam setiap percobaan. Dalam penelitian ini Koin didesain dengan massa seberat 0,08375 Kg. Bahan yang digunakan untuk membuat massa koin berupa besi dengan massa jenis sebesar 7850 kg/m³. Dengan memperhitungkan bahwasanya,

$$\rho = \frac{m}{v}$$

Sehingga :

7850
$$\frac{kg}{m^3} = \frac{0.08375 \ Kg}{V}$$

 $V = \frac{0.08375}{7850} m^3$
 $V = 1.06x 10^{-5} m^3 = 10.67 cm^3$

Dengan diameter yang telah ditentukan sebesar 44 mm, maka:

$$V = \pi r^{2} t = \pi (2)^{2} t$$

10.67 = $\pi (2)^{2} t$
 $t = \frac{10.67}{\pi (2)^{2}} = 0.849 \ cm \ (tinggi tiap koin) = 8 \ mm$

Dengan diketahui massa satuan koin yang didesain, variasi massa ditentukan berdasarkan jumlah tumpukan koin yang akan ditunjukkan pada tabel 3.2 berikut.

Tabel 3.2 Variasi massa absorber dalam pengujian

Massa Koin [Kg]	Jumlah Koin	Ma _i [Kg]	Rasio [Ma _i /M ₁]
	2	0,1675	1/40
0.08375	4	0,335	1/20
	6	0,5025	3/40

Skema pengujian digambarkan pada ilustrasi gambar 3.12 berikut.

Gambar 3.12 Pengujian dengan beban (a)0,1675Kg; (b)0,335Kg; dan (c)0,5025Kg.

b. Konstanta Kekakuan Pegas (k_o, k_A, k_B, k_C, k_D, k₂)

Konstanta pegas eksitasi (k_o) ditentukan dengan mempertimbangkan gaya dan respon yang dapat dihasilkan terhadap massa utama. Sedangkan konstanta pegas utama $(k_A, k_B, k_C, dan k_D)$ ditentukan dengan kondisi awal pegas utama sudah terdefleksi sebagian. Nilai k_o , k_A , k_B , k_C , dan k_D didapatkan dari hasil perhitungan menggunakan Hukum Hooke pada sesuai persamaan (3.11). Besarnya gaya berat massa utama (F) dan defleksi statis (δ_{st}) didapat dari pengujian pembebanan dan pengukuran.

$$k = \frac{F}{\delta_{st}}$$

Untuk mendapatkan respon getaran translasi, *pitching*, dan *rolling* pada massa utama diberikan empat buah kosntanta

pegas yaitu sebesar $k_A = 1896$ N/m, $k_B = 2510$ N/m, $k_C = 3311$ N/m, dan $k_D = 3956$ N/m. Berdasarkan referensi^[4] mengenai *vibration absorber*, diperoleh rasio perbandingan optimal konstanta pegas *absorber* terhadap konstanta pegas total yaitu:

$$k = \frac{1}{20}(k_{total})$$

Hal ini berdasarkan pada frekuensi natural sistem utama. Dimana, frekuensi TMVA yang digunakan sama dengan frekuensi natural sistem utama. Sehingga perbandingannya massa *absorber* dan pegas *absorber* terhadap massa dan koefisien pegas *equivalent* sistem utama bernilai sama. Sehingga k_2 optimal yang mampu meredam getaran sistem utama sebesar 583,65 N/m.

c. Konstanta *Damping* TMVA (c₀, c_A, c_B, c_C, c_D, c₂)

Besarnya konstanta *damping* didapatkan dari perhitungan hasil uji *damper* untuk komponen *linear* bushing motor, massa utama, dan DVA. Pengujian dilakukan dengan memasang *probe accelerometer* pada komponen kemudian dilakukan pembebanan. Hasilnya, akan diamati penurunan logaritmik dari respon getarannya. Persamaan (3.13) berikut ini merupakan rumus untuk mendapatkan nilai kostanta *damping*:

$$c = 2. m \sqrt{\frac{k}{m}} \sqrt{\frac{1}{\left[\frac{2\pi}{ln\left(\frac{x_1}{x_{n+1}}\right)}\right]^2 + 1}}$$

Dimana :

 x_1 = rata-rata amplitudo puncak 1 dengan lembah terdekat.

 x_{n+1} = rata-rata amplitudo puncak 1+n dengan lembah terdekat.

Berdasarkan sumber referensi yang telah tervalidasi didapatkan nilai redaman pada masing-masing titik plat exciter senilai; $c_A = 1,0761$ N.s/m, $c_B = 0,7$ N.s/m, $c_C = 0,4$ N.s/m, dan $c_D = 0.362$ N.s/m (Adhytia, 2017). Untuk nilai redaman pegas eksentris didapatkan dari referensi dengan nilai sebesar 1,8 N.s/m. Nilai redaman dari pegas TMVA diketahui dengan melakukan pengujian secara langsung pada pegas tersebut. Pegas diberi beban dengan sebuah massa, kemudian diberi simpangan awal untuk membiarkannya bergetar bebas. Respon getaran yang terjadi dari sistem pegas-massa diambil dengan accelerometer dan ditampilkan pada osciloscope. Kemudian data yang telah didapatkan diolah menggunakan persamaan incremental degreement. Berikut adalah grafik vang didapatkan dari pengujian, ditunjukkan pada gambar 3.13.

Gambar 3.13 Hasil pengujian redaman pegas TMVA dengan pemberian beban 20,065 Kg.

Sebelum melakukan pengolahan data dengan menggunakan *incremental degreement* maka terlebih dahulu data hasil pengukuran dilakukan *filter* dan *smoothing* guna menghilangkan *noise* getaran yang terjadi. Gambar berikut memperlihatkan grafik hasil *filter* dan *smoothing* dari gambar 3.13 yang diperoleh dari osciloscope.

Gambar 3.14 Hasil smoothing dan filtering.

Berdasarkan grafik perngujian yang telah dilakukan *smoothing* dan *filtering*, maka nilai redaman dari pegas TMVA sebagai berikut.

• Rata-rata amplitudo puncak pertama :

$$x_1 = \frac{0.0023 + 0.001419}{2} = 0,00185 \ volt$$

• Rata-rata amplitudo puncak terdekat :

$$x_{n+1} = \frac{0.002 + 0.0018}{2} = 0,0019 \ m$$

• Redaman pegas TMVA :

$$c = 2. m \sqrt{\frac{k}{m}} \sqrt{\frac{1}{\left[\frac{2\pi}{ln\left(\frac{x_1}{x_{n+1}}\right)}\right]^2 + 1}} = \frac{1}{2 x (20,065) \sqrt{\frac{583,65}{20,065}} x \sqrt{\frac{1}{\left[\frac{2x3,14}{ln\left(\frac{0.00185}{0.0019}\right)}\right]^2 + 1}} = 0,295 N.s/m$$

Sehingga, redaman pegas TMVA yang didesain bernilai 0,295 N.s/m.

d. Frekuensi Operasi (ω_f)

Besarnya frekuensi operasi dalam penelitian ini sama dengan frekuensi natural sistem agar terjadi efek resonansi, dimana amplitudo yang dihasilkan mencapai nilai maksimal. Hal ini bertujuan untuk mengetahui respon redaman TMVA pada kondisi resonansi. Frekuensi natural diperoleh dari persamaan berikut ini.

$$\omega_f = \omega_n = \sqrt{\frac{k_{eq}}{m_{eq}}}$$

Sehingga frekuensi natural dari sistem utama yang dirancang adalah sebagai berikut.

 $\omega_{n1} = 39,5954 \ rad/s$ $\omega_{n2} = 68,8749 \ rad/s$

 $\omega_{n3} = 76,5577 \ rad/s.$

e. Posisi TMVA (p,q)

Nilai posisi TMVA di atas plat datar massa utama dinyatakan dalam koordinat (p,q) dimana p adalah perpindahan dari pusat massa utama sepanjang sumbu y, sedangkan q adalah perpindahan dari pusat massa utama sepanjang sumbu z. Sumbu koordinat tersebut ditunjukkan pada gambar 3.15 berikut.

Gambar 3.15 Variasi peletakan TMVA.

Kombinasi pengambilan data dalam pengujian ini ditunjukkan pada tabel 3.3 berikut.

Tabel 3.3 Kombinasi pengambilan data pengujianacceleration.

Acceleration [m/s ²]				
Node	Massa	Sebelum TMVA	Sesudah TMVA	Reduksi (%)
1	Ma1			

	Ma2		
	Ma3		
2	Ma1		
	Ma2		
	Ma3		
3	Ma1		
	Ma2		
	Ma3		
4	Ma1		
	Ma2		
	Ma3		
5	Ma1		
	Ma2		
	Ma3		
6	Mal		
	Ma2		
	Ma3		
7	Mal		
	Ma2		
	Ma3		
8	Mal		
	Ma2		
	Ma3		
9	Mal		
	Ma2		
	Ma3		

BAB IV

ANALISA DAN PEMBAHASAN

4.1 Translational Mass Vibration Absorber (TMVA)

Translational mass vibration absorber atau disingkat dengan TMVA adalah sebuah sistem yang terdiri dari massa dan pegas peredam yang dirancang untuk mereduksi getaran translasi, *pitching*, dan *rolling* sistem utama. Massa TMVA dirancang berupa koin silinder dengan dimensi diameter 44 mm dan tinggi satuan koin 8 mm dengan massa 0,08375 Kg. Pegas yang dirancang memiliki dimensi diameter dalam sebesar 45 mm dan diameter luar sebesar 49 mm dengan jumlah lilitan 6,5 setinggi 750 mm. Massa koin dan pegas terbuat dari material baja. Massa dan pegas tersebut kemudian ditempatkan dalam selongsong akrilik yang di atasnya ditempatkan lempengan baja sebagai media peletakkan *probe accelerometer* pada saat pengujian eksperimen dilakukan. Berikut adalah desain dari TMVA tersebut ditunjukkan pada gambar 4.1.

Gambar 4.1 Desain TMVA.

Sistem TMVA memiliki satu buah derajat kebebasan yang merepresentasikan getaran translasi ketika sistem bergetar. Untuk mengetahui pengaruh dari penggunaan TMVA yang dirancang pada plat datar massa utama, digunakan variasi seperti yang telah disebutkan dalam bab III. Variasi yang dilakukan berupa penggunaan massa dalam 3 buah variasi, dan posisi peletakan TMVA yang akan divariasikan berdasarkan titik defleksi maksimum dari plat datar massa utama yang telah digetarkan.

4.2 Pembuatan Blok Simulasi

4.2.1. Sistem Utama Tanpa TMVA

Dalam penelitian berbasis simulasi ini, dibutuhkan persamaan *state space* dan blok simulasi untuk mendapatkan respon getaran dari sistem yang dirancang. Dari persamaan gerak yang telah dirumuskan pada subbab 3.2.5 poin (a) untuk sistem utama tanpa TMVA, dibuat persamaan *state space* sebagai berikut.

$$(1)\ddot{x}_{1} = \frac{1}{m_{1}} \Big[-(k_{A} + k_{B} + k_{C} + k_{D} - k_{o})x_{1} + (k_{A}b - k_{B}b - k_{C}b + k_{D}b)\alpha + (k_{A}a + k_{B}a - k_{C}a - k_{D}a)\beta - (c_{A} + c_{B} + c_{C} + c_{D} - c_{o})\dot{x}_{1} + (c_{A}b - c_{B}b - c_{C}b + c_{D}b)\dot{\alpha}_{1} + (c_{A}a + c_{B}a - c_{C}a - c_{D}a)\dot{\beta}_{1} - k_{o}x_{o} - c_{o}\dot{x}_{o} \Big]$$

$$(2)\ddot{\alpha}_{1} = \frac{1}{J_{y}} \Big[(k_{A}b - k_{B}b - k_{C}b + k_{D}b)x_{1} - (k_{A}b^{2} + k_{B}b^{2} + k_{C}b^{2} + k_{D}b^{2})\alpha - (k_{A}ab - k_{B}ab + k_{C}ab - k_{D}ab)\beta + (c_{A}b - c_{B}b - c_{C}b + c_{D}b)\dot{x}_{1} - (c_{A}b^{2} + c_{B}b^{2} + c_{C}b^{2} + c_{D}b^{2})\dot{\alpha}_{1} - (c_{A}ab - c_{B}ab + c_{C}ab - c_{D}ab)\dot{\beta}_{1} \Big]$$

$$(3)\ddot{\beta}_{1} = \frac{1}{J_{z}} \Big[(k_{A}a + k_{B}a - k_{C}a - k_{D}a)x_{1} - (k_{A}ab - k_{B}ab + k_{C}ab - k_{D}ab)\alpha - (k_{A}a^{2} + k_{B}a^{2} + k_{C}a^{2} + k_{D}a^{2})\beta + (k_{A}ab - k_{A}ab)\alpha - (k_{A}a^{2} + k_{B}a^{2} + k_{C}a^{2} + k_{D}a^{2})\beta + (k_{A}ab - k_{A}ab)\alpha - (k_{A}a^{2} + k_{B}a^{2} + k_{C}a^{2} + k_{D}a^{2})\beta + (k_{A}ab - k_{A}ab)\alpha - (k_{A}a^{2} + k_{B}a^{2} + k_{C}a^{2} + k_{D}a^{2})\beta + (k_{A}ab - k_{A}ab)\alpha - (k_{A}a^{2} + k_{B}a^{2} + k_{C}a^{2} + k_{D}a^{2})\beta + (k_{A}ab - k_{A}ab)\alpha - (k_{A}a^{2} + k_{B}a^{2} + k_{C}a^{2} + k_{D}a^{2})\beta + (k_{A}ab - k_{A}ab)\alpha - (k_{A}a^{2} + k_{B}a^{2} + k_{C}a^{2} + k_{D}a^{2})\beta + (k_{A}ab - k_{A}ab)\alpha - (k_{A}a^{2} + k_{B}a^{2} + k_{C}a^{2} + k_{D}a^{2})\beta + (k_{A}ab - k_{A}ab)\alpha - (k_{A}a^{2} + k_{B}a^{2} + k_{C}a^{2} + k_{D}a^{2})\beta + (k_{A}ab - k_{A}ab)\alpha - (k_{A}a^{2} + k_{B}a^{2} + k_{C}a^{2} + k_{D}a^{2})\beta + (k_{A}ab - k_{A}b)\alpha - (k_{A}a^{2} + k_{B}a^{2} + k_{C}a^{2} + k_{D}a^{2})\beta + (k_{A}ab - k_{A}b)\alpha - (k_{A}a^{2} + k_{A}b^{2} + k_{D}a^{2})\beta + (k_{A}b - k_{A}b)\alpha - (k_{A}b -$$

$$(c_{A}a + c_{B}a - c_{C}a - c_{D}a)\dot{x}_{1} - (c_{A}ab - c_{B}ab + c_{C}ab - c_{D}ab)\dot{\alpha}_{1} - (c_{A}a^{2} + c_{B}a^{2} + c_{C}a^{2} + c_{D}a^{2})\dot{\beta}_{1}]$$

Dimana :

m_1	: massa utama;
ko	: konstanta pegas eksitasi;
k _A	: konstanta pegas titik A;
k _B	: konstanta pegas titik B;
k _C	: konstanta pegas titik C;
k _D	: konstanta pegas titik D;
co	: koefisien redaman pegas eksentris;
c_{A}	: koefisien redaman pegas A;
c _B	: koefisien redaman pegas B;
$c_{\rm C}$: koefisien redaman pegas C;
c _D	: koefisien redaman pegas D;
$J_y = J_z$: inersia sumbu y dan z sistem.

Berdasarkan persamaan *state space* di atas, dibuat blok-blok simulasi yang menggambarkan sistem utama tanpa TMVA. Blok-blok simulasi kemudian disusun dengan pemberian *sinusoidal input* yang menggambarkan gaya eksitasi dari motor listrik sebagai sumber getar sistem utama. Blok diagram simulasi untuk sistem utama tanpa TMVA ditunjukkan pada gambar 4.3. Nilai inersia sumbu y dan z dari plat datar massa utama didapatkan berdasarkan perhitungan berikut :

Gambar 4.2 Momen Inersia plat datar massa utama.

Dikarenakan nilai l_1 sama dengan l_2 , maka besarnya momen inersia J_y sama dengan J_z dengan nilai sebagai berikut.

$$J_{y} = J_{z}$$

$$J_{y} = \frac{1}{12}x (m) x (l_{1}^{2} + t^{2})$$

$$J_{y} = \frac{1}{12}x (6,7) x (0,5^{2} + 0,006^{2})$$

$$J_{y} = 0,1396 Kg.m^{2} (sama dengan J_{z})$$

Gambar 4.3 Block diagram sistem utama tanpa TMVA.

4.2.2. Sistem Utama Dengan TMVA

Seperti halnya sistem utama tanpa TMVA, untuk mendapatkan respon getaran sistem utama dengan TMVA diperlukan blok-blok simulasi yang didapatkan dari persamaan *state space*. Berikut adalah persamaan *state space* untuk sistem utama dengan TMVA berdasarkan persamaan gerak sistem utama dengan TMVA dalam subbab 3.2.5 (b).

$$(1)\ddot{x}_{1} = \frac{1}{m_{1}} \Big[-(k_{A} + k_{B} + k_{C} + k_{D} + k_{2} - k_{o})x_{1} + (k_{A}b - k_{B}b - k_{C}b + k_{D}b - k_{2}q)\alpha + (k_{A}a + k_{B}a - k_{C}a - k_{D}a + k_{2}p)\beta - k_{2}x_{2} - (c_{A} + c_{B} + c_{C} + c_{D} + c_{2} - c_{o})\dot{x}_{1} + (c_{A}b - c_{B}b - c_{C}b + c_{D}b - c_{2}q)\dot{a}_{1} + (c_{A}a + c_{B}a - c_{C}a - c_{D}a + c_{2}p)\dot{\beta}_{1} - c_{2}\dot{x}_{2} - k_{o}x_{o} - c_{o}\dot{x}_{o} \Big]$$

$$(2)\ddot{a}_{1} = \frac{1}{J_{y}} \Big[(k_{A}b - k_{B}b - k_{C}b + k_{D}b - k_{2}q)x_{1} - (k_{A}b^{2} + k_{B}b^{2} + k_{C}b^{2} + k_{D}b^{2} + k_{2}q^{2})\alpha - (k_{A}ab - k_{B}ab + k_{C}ab - k_{D}ab - k_{2}pq)\beta + k_{2}qx_{2} + (c_{A}b - c_{B}b - c_{C}b + c_{D}b - c_{2}q)\dot{x}_{1} - (c_{A}b^{2} + c_{B}b^{2} + c_{C}b^{2} + c_{D}b^{2} + c_{2}q^{2})\dot{a}_{1} - (c_{A}ab - c_{B}ab + c_{C}ab - c_{D}ab - c_{2}pq)\dot{\beta}_{1} + c_{2}q\dot{x}_{2} \Big]$$

$$(3)\ddot{\beta}_{1} = \frac{1}{J_{z}} \Big[(k_{A}a + k_{B}a - k_{C}a - k_{D}a + k_{2}p)x_{1} - (k_{A}ab - k_{B}ab + k_{C}ab - k_{D}ab - k_{2}pq)\alpha - (k_{A}a^{2} + k_{B}a^{2} + k_{C}a^{2} + k_{D}a^{2} + k_{2}p^{2})\beta - k_{2}px_{2} + (c_{A}a + c_{B}a - c_{C}a - c_{D}a + c_{2}p)\dot{x}_{1} - (c_{A}ab - c_{B}ab + c_{C}ab - c_{D}ab - c_{2}pq)\dot{a}_{1} - (c_{A}a^{2} + c_{B}a^{2} + c_{C}a^{2} + c_{D}a^{2} + c_{2}a^{2})\beta - k_{2}px_{2} + (c_{A}a + c_{B}a - c_{C}a - c_{D}a + c_{2}p)\dot{x}_{1} - (c_{A}ab - c_{B}ab + c_{C}ab - c_{D}ab - c_{2}pq)\dot{a}_{1} - (c_{A}a^{2} + c_{B}a^{2} + c_{C}a^{2} + c_{D}a^{2} + c_{2}a^{2})\beta - k_{2}px_{2} + (c_{A}a + c_{B}a - c_{C}a - c_{D}a + c_{2}p)\dot{x}_{1} - (c_{A}ab - c_{B}ab + c_{C}ab - c_{D}ab - c_{2}pq)\dot{a}_{1} - (c_{A}a^{2} + c_{B}a^{2} + c_{C}a^{2} + c_{D}a^{2} + c_{2}p^{2})\dot{\beta}_{1} - c_{2}p\dot{x}_{2} \Big]$$

Dengan cara yang sama pada sistem utama tanpa TMVA, blok-blok simulasi kemudian disusun dalam *software* Matlab Simulink dengan *sinusoidal input* untuk menggambarkan gaya eksitasi dari motor listrik sebagai sumber getar sistem. Melalui proses *running*, akan didapatkan respon getaran dalam RMS *displacement* dan *acceleration*.

4.3 Analisa Respon

Penelitian pada tugas akhir ini dilakukan dengan menggunakan Simulink Matlab yang diawali dengan proses pembuatan blok-blok diagram simulasi. Blok diagram simulasi digambarkan dalam pembahasan subbab 4.2 untuk masingmasing sistem. Input yang diberikan pada penelitian simulasi ini berupa variasi massa absorber, dan posisi peletakan TMVA terhadap pusat massa sistem utama. Dari penelitian dilakukan, akan didapatkan output yang telah berupa persentase reduksi displacement sistem utama (x_1) , acceleration $(\ddot{x_1})$, pitching displacement (rad), pitching acceleration (rad/s), rolling displacement (rad), dan rolling *acceleration* (rad/s).

4.3.1. Analisa Respon Sistem Utama Tanpa TMVA

Dari rancangan sistem utama yang telah dibuat pemodelan dinamis, *free-body diagram*, hingga persamaan geraknya, dilakukan perhitungan untuk memperoleh nilai frekuensi natural dari sistem utama. Berdasarkan penurunan persamaan gerak pada subbab 3.2.5 didapatkan matriks berikut untuk analisa fundamental frekuensi natural.

$$\begin{cases} m_{1} & 0 & 0 \\ 0 & J_{y} & 0 \\ 0 & 0 & J_{z} \end{cases} \begin{cases} \ddot{x}_{1} \\ \ddot{\beta} \\ \dot{\beta} \\ \end{cases} \\ + \begin{cases} (c_{A} + c_{B} + c_{C} + c_{D} - c_{o}) & -(c_{A} - c_{B} - c_{C} + c_{D})b & -(c_{A} + c_{B} - c_{C} - c_{D})a \\ -(c_{A} - c_{B} - c_{C} + c_{D})b & (c_{A} + c_{B} + c_{C} + c_{D})b^{2} & (c_{A} - c_{B} + c_{C} - c_{D})ab \\ -(c_{A} + c_{B} - c_{C} - c_{D})a & (c_{A} - c_{B} + c_{C} - c_{D})ab & (c_{A} + c_{B} + c_{C} + c_{D})a^{2} \\ \end{cases} \begin{bmatrix} (k_{A} + k_{B} + k_{C} + k_{D} - k_{o}) & -(k_{A} - k_{B} - k_{C} + k_{D})b & -(k_{A} + k_{B} - k_{C} - k_{D})ab \\ -(k_{A} - k_{B} - k_{C} + k_{D})b & (k_{A} + k_{B} + k_{C} + k_{D})b^{2} & (k_{A} - k_{B} + k_{C} - k_{D})ab \\ -(k_{A} + k_{B} - k_{C} - k_{D})a & (k_{A} - k_{B} + k_{C} - k_{D})ab & (k_{A} + k_{B} + k_{C} + k_{D})a^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ \alpha \\ \beta \end{bmatrix} \\ = \begin{cases} -k_{o}x_{o} - c_{o}\dot{x}_{o} \\ 0 \\ 0 \end{cases} \end{cases}$$

Analisa yang dilakukan untuk menghitung frekuensi natural dari sistem menggunakan asumsi berupa gaya eksternal yang terjadi dan nilai redaman yang dimiliki oleh sistem diabaikan. Nilai \ddot{x}_1 disubstitusikan dengan $\ddot{x}_1 = -\lambda x$ dan $\lambda = \omega^2$, sehingga diperoleh persamaan sebagai berikut.

$$\begin{split} &-\omega^{2} \begin{bmatrix} m_{1} & 0 & 0 \\ 0 & J_{y} & 0 \\ 0 & 0 & J_{z} \end{bmatrix} \\ &+ \begin{bmatrix} (k_{A} + k_{B} + k_{C} + k_{D} - k_{o}) & -(k_{A} - k_{B} - k_{C} + k_{D})b & -(k_{A} + k_{B} - k_{C} - k_{D})a \\ -(k_{A} - k_{B} - k_{C} + k_{D})b & (k_{A} + k_{B} + k_{C} + k_{D})b^{2} & (k_{A} - k_{B} + k_{C} - k_{D})ab \\ -(k_{A} + k_{B} - k_{C} - k_{D})a & (k_{A} - k_{B} + k_{C} - k_{D})ab & (k_{A} + k_{B} + k_{C} + k_{D})a^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ \alpha \\ \beta \end{bmatrix} \\ &= \begin{cases} 0 \\ 0 \\ 0 \end{cases}$$

Dimana :

m_1	: massa utama	(6,7 Kg);
ko	: konstanta pegas eksitasi	(146 N/m);
k _A	: konstanta pegas titik A	(1896 N/m);
k _B	: konstanta pegas titik B	(2510 N/m);
k _C	: konstanta pegas titik C	(3311 N/m);
k _D	: konstanta pegas titik D	(3956 N/m);
co	: koefisien redaman pegas eksentris	(1,8 N.s/m);
\mathbf{c}_{A}	: koefisien redaman pegas A	(1,0761 N.s/m);

c _B	: koefisien redaman pegas B	(0,7 N.s/m);
$c_{\rm C}$: koefisien redaman pegas C	(0,4 N.s/m);
c _D	: koefisien redaman pegas D	(0,362 N.s/m);
$J_y = J_z$: inersia sumbu y dan z sistem	$(0,1396 \text{ Kg.m}^2).$

Sehingga,

 $\begin{bmatrix} -6,7\omega^2 + 11.527 & -7,75 & 715,25 \\ -7,75 & -0,1396\omega^2 + 720,4375 & -78,6875 \\ 715,25 & -78,6875 & -0,1396\omega^2 + 720,4375 \end{bmatrix} = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$

Karena $\lambda = \omega^2$, maka :

	$-6,7\omega^2 + 11.527$	-7,75	715,25		(0)	
det	-7,75	$-0,1396\omega^{2} + 720,4375$	-78,6875	= {	}0{	ł
	715,25	-78,6875	$-0,1396\omega^2 + 720,4375$		(0)	ł

Sehinga diperoleh nilai λ_1 , λ_2 , dan λ_3

 $\lambda_1 = 1567,795$ maka, $\omega_{n1} = 39,5954 \ rad/s$

 $\lambda_2 = 4743,752$ maka, $\omega_{n2} = 68,8749 \ rad/s$

 $\lambda_3 = 5861,081$ maka, $\omega_{n3} = 76,5577$ rad/s.

Dengan menggunakan *software* Matlab, maka diperoleh *bodediagram* sistem tanpa TMVA seperti ditunjukkan pada gambar berikut.

Gambar 4.4 Bodediagram sistem tanpa TMVA.

Dari bodediagram di atas, dapat dilihat bahwa sistem utama tanpa penambahan TMVA memiliki tiga buah puncak yang menunjukkan bahwa sistem tersebut memilliki tiga buah derajat kebebasan. Ketiga puncak merupakan frekuensi natural yang dimiliki oleh sistem utama tanpa TMVA. Apabila terjadi getaran pada kondisi yang sama seperti di atas (resonansi), maka akan menyebabkan getaran berlebih dan berakibat buruk pada sistem. Untuk itu, getaran yang terjadi harus direduksi. Pada frekuensi natural puncak pertama, dengan nilai 39,5954 rad/s menyebabkan terjadinya simpangan maksimum pada sistem dibandingkan dua nilai frekuensi natural lain. Untuk itu, dalam penelitian berbasis simulasi ini, dilakukan pada frekuensi natural puncak pertama. Getaran yang dihasilkan dari sistem utama dapat dilihat lebih detail pada respon displacement, pitching displacement, rolling displacement, acceleration, pitching acceleration dan rolling acceleration seperti ditunjukkan pada gambar 4.5 dan 4.6.

Gambar 4.5 Respon displacement sistem tanpa TMVA.

Dari keenam grafik di atas, dapat dilihat bahwa respon, baik *displacement, pitching displacement, rolling displacement, acceleration, pitching acceleration,* dan *rolling acceleration* mengalami perubahan nilai dari waktu ke nol. Amplitudo semakin besar seiring dengan berjalannya waktu, hingga nilainya mencapai kestabilan. Melalui simulasi yang dilakukan pada frekuensi natural puncak pertama sebesar 39,5954 rad/s, maka diperoleh RMS *displacement* sebesar 0,0176 m, RMS *rolling displacement* sebesar 0,0036 rad, RMS pitching displacement sebesar 0,0252 rad, RMS acceleration sebesar 27.5358 m/s², RMS rolling acceleration sebesar 5,6639 rad/s^2, dan RMS pitching acceleration sebesar 39,4140 rad/s^2. Dari nilai RMS yang didapatkan, diketahui bahwa nilai getaran pitching, baik displacement maupun acceleration memiliki nilai yang lebih tinggi dari dua getaran Hal tersebut dikarenakan sistem utama vang lain. menggunakan empat nilai kekakuan pegas yang berbeda pada keempat sisinya, dimana K_A<K_B<K_C<K_D, dengan selisih K_A dan K_D (sejajar sumbu *pitching*) yang jauh lebih tinggi dari K_C dan K_B (sejajar sumbu *rolling*). Melihat besarnya nilai yang diperoleh pada sistem utama tanpa TMVA, maka akan dilakukan peredaman dengan menambahkan TMVA di atas sistem utama yang bergetar. Setelah penambahan TMVA, diharapkan nilai dari tiap-tiap RMS tersebut dapat berubah secara signifikan.

Gambar 4.6 Respon acceleration sistem tanpa TMVA.

Dengan penggunaan frekuensi natural pertama menghasilkan simpangan terbesar pada sistem utama tanpa TMVA, untuk itu perlu dilakukan analisa untuk mengetahui simpangan yang terjadi pada bagian-bagian plat datar massa utama. Hal tersebut dikarenakan getaran terbesar tidak selalu terjadi di pusat massa utama. Setelah dilakukan simulasi pada frekuensi natural puncak pertama, maka diperoleh distribusi simpangan pada plat datar massa utama dengan simpangan terbesar berada di atas koefisien pegas sistem utama terkecil, yaitu 1896 N/m di titik A. Hasil dari distribusi simpangan untuk masing-masing posisi pada plat datar massa utama menjadi bahan pertimbangan untuk penempatan posisi TMVA. Berikut hasil simulasi distribusi getaran pada plat datar massa utama ditunjukkan oleh gambar 4.7.

Gambar 4.7 Distribusi simpangan pada plat datar massa

utama tanpa TMVA.

Untuk memudahkan analisa, maka plat datar massa utama dibagi dalam sembilan titik tinjauan yang diilustrasikan dalam gambar 4.8 berikut.

Gambar 4.8 Pembagian titik tinjauan plat datar massa utama.

Berdasarkan hasil simulasi yang ditunjukkan pada gambar 4.7, dimana $K_A < K_B < K_C < K_D$, maka diperoleh hasil simpangan pada titik tinjauan tersebut dengan nilai:

а	= 43,2 mm	c	= 18,11 mm
ab	= 41,63 mm	cd	= 19,68 mm
b	= 40,05 mm	d	= 21,25 mm
bc	= 29,08 mm	ad	= 34,42 mm.

Dapat dilihat bahwa seiring dengan posisi tinjauan yang mendekati pegas dengan koefisien kekauan terkecil, maka nilai simpangan yang dihasilkan dari proses simulasi akan semakin besar. Oleh karena itu, untuk mereduksi getaran yang terjadi pada sistem utama, TMVA yang telah didesain akan diujikan pada titik tinjauan dengan simpangan terbesar, yaitu yang terdekat dengan koefisien pegas sistem utama terkecil.

4.3.2. Analisa Respon Sistem Utama Dengan TMVA

Berdasarkan persamaan gerak yang telah diturunkan pada subbab 3.2.5 untuk sistem utama dengan TMVA, digunakan matriks yang telah dirumuskan untuk analisa fundamental frekuensi natural sistem dengan TMVA sebagai berikut.

$$\begin{bmatrix} m_{1} & 0 & 0 & 0 \\ 0 & J_{y} & 0 & 0 \\ 0 & 0 & J_{z} & 0 \\ 0 & 0 & m_{z} \end{bmatrix} \begin{pmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \end{pmatrix} \\ + \begin{bmatrix} (c_{A} + c_{B} + c_{c} + c_{p} + c_{2} - c_{o}) & -(c_{A}b - c_{B}b - c_{c}b + c_{D}b - c_{2}q) & -(c_{A}a + c_{B}a - c_{c}a - c_{D}a + c_{2}p) & -c_{2} \\ -(c_{A}b - c_{B}b - c_{c}b + c_{D}b - c_{2}q) & (c_{A}b^{2} + c_{B}b^{2} + c_{c}b^{2} + c_{2}d^{2}) & (c_{A}ab - c_{B}ab + c_{c}ab - c_{D}ab - c_{2}pq) & -c_{2}q \\ -(c_{A}a + c_{B}a - c_{c}a - c_{D}a + c_{2}p) & (c_{A}ab - c_{B}ab + c_{c}ab - c_{D}ab - c_{2}pq) & (c_{A}a^{2} + c_{B}a^{2} + c_{c}a^{2} + c_{D}a^{2} + c_{2}p^{2}) & c_{2}p \\ -c_{2} & -c_{2}q & -c_{2}q & -c_{2}q & c_{2}p & -c_{2} \\ (k_{A} + k_{B} + k_{c} + k_{D} + k_{2} - k_{o}) & -(k_{A}b - k_{B}b - k_{c}b + k_{D}b - k_{2}q) & -(k_{A}a + k_{B}a - k_{c}a - k_{D}a + k_{2}p) & -k_{2}q \\ -(k_{A}a - k_{B}a - k_{c}a - k_{D}a + k_{2}p) & (k_{A}ab - k_{B}ab + k_{c}ab - k_{D}ab - k_{2}pq) & (k_{A}a^{2} + k_{B}a^{2} + k_{c}a^{2} + k_{D}a^{2} + k_{2}p^{2}) & k_{2}p \\ -k_{2} & -k_{2} & -k_{2}q & k_{2}p & k_{2} \end{bmatrix} \begin{pmatrix} x_{1} \\ \alpha \\ \beta \\ x_{2} \end{pmatrix}$$

Analisa yang dilakukan untuk menghitung frekuensi natural dari sistem menggunakan asumsi berupa gaya eksternal yang terjadi dan nilai redaman yang dimiliki oleh sistem diabaikan. Nilai \ddot{x}_1 disubstitusikan dengan $\ddot{x}_1 = -\lambda x$ dan $\lambda = \omega^2$, sehingga diperoleh persamaan sebagai berikut.

$$\begin{split} &-\omega^2 \begin{bmatrix} m_1 & 0 & 0 & 0 \\ 0 & J_y & 0 & 0 \\ 0 & 0 & J_z & 0 \\ 0 & 0 & 0 & m_2 \end{bmatrix} \\ &+ \begin{bmatrix} (k_A + k_B + k_C + k_D + k_2 - k_o) & -(k_A b - k_B b - k_C b + k_D b - k_2 q) & -(k_A a + k_B a - k_C a - k_D a + k_2 p) & -k_2 \\ -(k_A b - k_B b - k_C b + k_D b - k_2 q) & (k_A b^2 + k_B b^2 + k_C b^2 + k_D b^2 + k_2 q^2) & (k_A a b - k_B a b + k_C a b - k_D a b - k_2 p q) & -k_2 q \\ -(k_A a + k_B a - k_C a - k_D a + k_2 p) & (k_A a b - k_B a b + k_C a b - k_D a b - k_2 p q) & (k_A a^2 + k_B a^2 + k_C a^2 + k_D a^2 + k_2 p^2) & k_2 p \\ & -k_2 & -k_2 q & k_2 p & k_2 \end{bmatrix} \begin{bmatrix} x_1 \\ a \\ \beta \\ x_2 \end{bmatrix} \\ &= \begin{cases} 0 \\ 0 \\ 0 \end{bmatrix} \end{split}$$

Dimana :

m_1	: massa utama	(6,7 Kg);	
m_2	: massa TMVA		
(0,167	5 Kg; 0,335 Kg; 0,5025 Kg);		
ko	: konstanta pegas eksitasi	(146 N/m);	
k _A	: konstanta pegas titik A	(1896 N/m);	
k _B	: konstanta pegas titik B	(2510 N/m);	
k _C	: konstanta pegas titik C	(3311 N/m);	
k _D	: konstanta pegas titik D	(3956 N/m);	
k ₂	: konstanta pegas TMVA	(583,65 N/m);	
co	: koefisien redaman pegas eksentris	(1,8 N.s/m);	
c _A	: koefisien redaman pegas A	(1,0761 N.s/m);	
$c_{\rm B}$: koefisien redaman pegas B	(0,7 N.s/m);	
$c_{\rm C}$: koefisien redaman pegas C	(0,4 N.s/m);	
c _D	: koefisien redaman pegas D	(0,362 N.s/m);	
c_2	: koefisien redaman pegas TMVA	(0,295 N.s/m);	
$J_y = J_z$: inersia sumbu y dan z sistem	$(0,1396 \text{ Kg.m}^2);$	
a	: jarak dari pusat massa ke pegas A-D	(0,025 m);	
b	: jarak dari pusat massa ke pegas B-C	(0,025 m);	
р	: jarak dari pusat massa ke TMVA		
(0 m; 0,1 m; 0,2 m terhadap sumbu z);			
q	: jarak dari pusat massa ke TMVA		
(0 m; 0),1 m; 0,2 m terhadap sumbu y).		

```
\begin{bmatrix} -6.7\omega^2 + 11.527 & -(7.75 - 583,65q) & -(-715,25 + 583,65p) & -583,65 \\ -(7.75 - 583,65q) & -0.1396\omega^2 + (720,4375 + 583,65q^2) & (-78,6875 - 583,65pq) & -583,65q \\ -(-715,25 + 583,65p) & (-78,6875 - 583,65pq) & -0.1396\omega^2 + (720,4375 + 583,65p^2) & 583,65p \\ -583,65 & -583,65q & 583,65p & -m_2\omega^2 + 583 \\ = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases}
```

Berdasarkan simulasi yang dihasilkan pada sistem utama tanpa TMVA, diperoleh hasil bahwasanya titik defleksi maksimum didapatkan pada daerah disekitar pegas sistem utama dengan koefisien kekakuan terkecil. Untuk itu, dibuat sembilan titik penempatan TMVA di atas plat datar massa utama guna mereduksi getaran yang terjadi. sembilan titik disebar pada dua koordinat, yaitu pada daerah defleksi maksimum serta daerah defleksi minimum.

Gambar 4.9 Penempatan TMVA di atas plat datar massa utama (Tampak Atas).

Dimana :

Node 1	: p = 0 m; q = 0 m	(0;0)
Node 2	: $p = 0 m$; $q = 0,1 m$	(0;0,1)
Node 3	: $p = 0,1 m$; $q = 0 m$	(0,1;0)
Node 4	: $p = 0 m$; $q = 0,2 m$	(0;0,2)
Node 5	: $p = 0,1 m$; $q = 0,1 m$	(0,1;0,1)
Node 6	: $p = 0,2 m$; $q = 0 m$	(0,2;0)
Node 7	: p = -0,1 m; q = 0 m	(-0,1;0)

Node 8	p = -0,1 m; q = 0,1 m	(-0,1;0,1)
Node 9	: $p = -0,2 m; q = 0 m$	(-0,2;0)

Frekuensi natural sistem utama dengan TMVA dapat dihitung dengan menggunakan matriks yang dibangun dari persamaan gerak sistem utama dengan TMVA. Dengan cara yang sama dengan sistem tanpa TMVA, maka didapatkan nilai sebagai berikut.

$$det \begin{bmatrix} -6,7\omega^2 + 11.527 & -(7,75 - 583,65q) & -(-715,25 + 583,65p) & -583,65p \\ -(7,75 - 583,65q) & -0,1396\omega^2 + (720,4375 + 583,65q^2) & (-78,6875 - 583,65pq) & -583,65q \\ -(-715,25 + 583,65p) & (-78,6875 - 583,65pq) & -0,1396\omega^2 + (720,4375 + 583,65p^2) & 583,65p \\ -583,65 & -583,65q & 583,65p & -m_2\omega^2 + \\ = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{cases}$$

Maka dengan nilai m2 = 0,1675 Kg (Ma₁), dengan p dan q untuk node 1 berlaku :

 $det \begin{bmatrix} -6,7\omega^2 + 11.527 & -(7,75) & -(-715,25) & -583,65 \\ -(7,75) & -0,1396\omega^2 + (720,4375) & (-78,6875) & 0 \\ -(-715,25) & (-78,6875) & -0,1396\omega^2 + (720,4375) & 0 \\ -583,65 & 0 & 0 & -0,16755\omega^2 + 5 \\ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix} \end{bmatrix}$

Sehingga didapatkan :

 $\omega_{n1} = 38,7857 \ rad/s \ \omega_{n3} = 68,9375 \ rad/s$

$$\omega_{n2} = 60,1863 \ rad/s \ \omega_{n4} = 76,5841 \ rad/s$$

Dengan cara yang sama seperti di atas, menggunakan Ma₂, maka didapat :

 $\omega_{n1} = 38,2255 \ rad/s \ \omega_{n3} = 68,8998 \ rad/s$

 $\omega_{n2} = 45,5977 \ rad/s \ \omega_{n4} = 76,5726 \ rad/s$

Dengan menggunakan Ma₃, akan mendapat :

 $\omega_{n1} = 31,7745 \ rad/s \ \omega_{n3} = 68,8956 \ rad/s$ $\omega_{n2} = 42,4491 \ rad/s \ \omega_{n4} = 76,5707 \ rad/s$

Dengan menggunakan *software* Matlab, maka diperoleh *bodediagram* seperti ditunjukkan pada gambar berikut.

Gambar 4.10 *Bodediagram* sistem utama tanpa TMVA dan dengan TMVA pada node 1 dengan variasi massa.

Dapat dilihat pada gambar grafik 4.10 bahwa grafik warna hijau merupakan grafik yang dibentuk oleh sistem utama yang telah ditambahkan TMVA dengan massa Ma₁, grafik warna biru merupakan sistem utama yang telah ditambahkan TMVA dengan massa Ma₂, dan grafik warna magenta merupakan sistem utama yang telah ditambahkan TMVA dengan massa Ma₃. Pada penambahan TMVA dengan massa Ma₁, frekuensi natural cenderung tidak bergeser dengan amplitudo yang masih tinggi, yang artinya kemampuan meredam TMVA kecil. Pada penambahan TMVA dengan massa Ma₂ frekuensi natural bergeser ke kiri dengan amplitudo yang rendah dan tereduksi maksimal. Sedangkan pada sistem dengan penambahan TMVA untuk Ma₃ frekuensi natural kedua mendekati frekuensi natural pertama sistem utama tanpa TMVA dengan nilai frekuensi puncak kedua yang lebih tinggi dari frekuensi puncak pertama. Reduksi getaran dilihat dengan menarik garis perpotongan(warna merah) dari ketiga sistem dengan massa TMVA yang bervariasi terhadap amplitudo puncak pertama sistem tanpa TMVA. Dari perpotongan tersebut, pada penggunaan Ma₁ terjadi kecenderungan untuk tidak meredam, pada Ma₃ sistem meredam dengan baik, namun masih lebih kecil dibandingkan dengan peredaman yang dihasilkan oleh Ma₂. Dengan demikian, pada node 1 TMVA yang mampu mereduksi getaran secara maksimal adalah dengan Ma₂.

Dengan nilai m2 = 0,1675 Kg (Ma₁), dengan p dan q untuk node 2 berlaku :

$$det \begin{bmatrix} -6,7\omega^2 + 11.527 & -(7,75) & -(-656,885) & -583,65 \\ -(7,75) & -0,1396\omega^2 + (720,4375) & (-78,6875) & 0 \\ -(-656,885) & (-78,6875) & -0,1396\omega^2 + (726,274) & 58,365 \\ -583,65 & 0 & 58,365 & -0,16755\omega^2 + 58 \\ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix}$$

Sehingga didapatkan :

$$\omega_{n1} = 38,5530 rad/s \ \omega_{n3} = 69,0884 rad/s$$

 $\omega_{n2} = 60,2675 rad/s \ \omega_{n4} = 76,7745 rad/s$

Dengan cara yang sama seperti di atas, menggunakan Ma₂, maka didapat :

 $\omega_{n1} = 35,6412 \ rad/s \ \omega_{n3} = 68,9615 \ rad/s$ $\omega_{n2} = 46,2392 \ rad/s \ \omega_{n4} = 76,6795 \ rad/s$ Dengan menggunakan Ma₃, akan mendapat : $\omega_{n1} = 31,2536 \ rad/s \ \omega_{n3} = 68,9471 \ rad/s$ $\omega_{n2} = 43,0720 \ rad/s \ \omega_{n4} = 76,6639 \ rad/s$

Dengan menggunakan *software* Matlab, maka diperoleh *bodediagram* seperti ditunjukkan pada gambar berikut.

Gambar 4.11 *Bodediagram* sistem utama tanpa TMVA dan dengan TMVA pada node 2 dengan variasi massa.

Tidak berbeda dengan hasil grafik untuk Node 1, dapat dilihat pada gambar grafik 4.11 bahwa grafik warna hijau merupakan grafik yang dibentuk oleh sistem utama yang telah ditambahkan TMVA dengan massa Ma₁, grafik warna biru merupakan sistem utama yang telah ditambahkan TMVA

dengan massa Ma₂, dan grafik warna magenta merupakan sistem utama yang telah ditambahkan TMVA dengan massa Ma₃. Pada penambahan TMVA dengan massa Ma₁ frekuensi natural cenderung tidak bergeser dengan amplitudo yang masih tinggi, yang artinya kemampuan meredam TMVA kecil. Pada penambahan TMVA dengan massa Ma2 frekuensi natural bergeser ke kiri dengan amplitudo yang rendah dan Sedangkan tereduksi maksimal. pada sistem dengan penambahan TMVA untuk Ma3 frekuensi natural kedua mendekati frekuensi natural pertama sistem utama tanpa TMVA dengan nilai frekuensi puncak kedua yang lebih tinggi dari frekuensi puncak pertama. Reduksi getaran dilihat dengan menarik garis perpotongan(warna merah) dari ketiga sistem dengan massa TMVA yang bervariasi terhadap amplitudo puncak pertama sistem tanpa TMVA. Dari perpotongan tersebut, pada penggunaan Ma₁ terjadi kecenderungan untuk tidak meredam, pada Ma3 sistem meredam dengan baik, namun masih lebih kecil dibandingkan dengan peredaman yang dihasilkan oleh Ma₂. Dengan demikian, pada node 2 TMVA yang mampu mereduksi getaran secara maksimal adalah dengan Ma₂.

Gambar 4.12 *Bodediagram* sistem utama tanpa TMVA dan dengan TMVA pada node 3 dengan variasi massa.

Dengan analisa fundamental yang sama untuk mencari frekuensi natural sistem dengan TMVA, didapatkan 4 buah frekuensi natural sistem dengan TMVA untuk masing-masing penggunaan nilai massa. Keempat nilai frekuensi natural memiliki menunjukkan bahwa sistem empat derajat kebebasan, yang didapatkan dari tiga getaran sistem utama dan satu getaran TMVA. Pada node 3, reduksi getaran dilihat dengan menarik garis perpotongan dari ketiga sistem dengan massa TMVA yang bervariasi terhadap amplitudo puncak pertama sistem tanpa TMVA. Dari perpotongan tersebut, pada penggunaan Ma₁ terjadi kecenderungan untuk tidak meredam, pada Ma₃ sistem meredam dengan baik, namun masih lebih kecil dibandingkan dengan peredaman yang dihasilkan oleh Ma₂. Dengan demikian didapatkan kesimpulan bahwa dengan

penambahan TMVA dengan Ma₂ akan menghasilkan redaman yang lebih tinggi dibanding dengan dua variasi massa yang lain. Untuk memastikan pengaruh variasi massa dan posisi ini, maka diujikan pada semua titik peletakan TMVA sehingga kesimpulan secara menyeluruh dapat dihasilkan. Hasil pengujian simulasi untuk ke-enam titik lain ditunjukkan dalam gambar 4.13.

Dari hasil simulasi *bode diagram* pada semua titik, didapatkan kesimpulan bahwa dengan variasi nilai massa absorber untuk Ma_1 (1/40 M_1) menghasilkan redaman paling kecil dibandingkan dengan Ma_2 (1/20 M_1), dan Ma_3 (3/40 M_1), dimana Ma_2 mencapai redaman maksimum. Dengan semua variasi posisi, menghasilkan pergeseran frekuensi natural dengan nilai yang berbeda-beda. Namun, analisa tidak dilakukan lebih lanjut pada frekuensi natural yang baru. Hal tersebut dikarenakan akan menyebabkan terjadinya simpangan yang besar untuk sistem dengan TMVA dikarenakan oleh resonansi.

Gambar 4.13 *Bode diagram* sistem utama tanpa dan dengan TMVA pada posisi bervariasi dengan variasi massa.

4.2.2.1. Reduksi Respon Translasi

Pada analisa reduksi respon translasi, objek yang diteliti dalam penelitian ini adalah displacement dan acceleration. Blok diagram vang bersumber dari persamaan gerak dibuat pada software Matlab Simulink, kemudian simulasi dijalankan. Setelah simulasi dijalankan, maka akan didapatkan hasil berupa RMS displacement dan RMS masing-masing acceleration untuk posisi vang telah ditentukan. Dari utama TMVA. RMS sistem tanpa displacement memiliki nilai sebesar 0,0176 m dan RMS acceleration sebesar 27,5853 m/s^2. Nilai tersebut kemudian direduksi dengan cara menginputkan variasi-variasi TMVA yang digunakan dalam penelitian ini dan dicari kombinasi massa dan posisi yang dapat mereduksi getaran paling optimal.

Berikut adalah tampilan respon *displacement* untuk sistem utama tanpa dan dengan TMVA yang diwakilkan pada posisi terdekat dengan defleksi maksimum sistem utama, meliputi node 1, node 2, node 4, node 7, node 8, dan node 9 dengan massa TMVA senilai Ma₂.

Gambar 4.14 Respon *displacement* sistem utama tanpa dan dengan TMVA untuk kombinasi Ma₂ dan posisi bervariasi.

Dari simulasi yang telah dilakukan, maka didapatkan data berupa RMS *displacement* yang ditabelkan dan kemudian dibuat menjadi grafik. Garis-garis warna pada gambar 4.12 menunjukkan nilai displacement pada masing-masing posisi TMVA. Tampak pada gambar tersebut bahwa node 4 menghasilkan nilai displacement terkecil dibandingkan dengan posisi node yang lain. Dari grafik yang telah dibuat akan terlihat perbandingan dari penggunaan masing-masing kombinasi variasi, sehingga dapat ditarik kesimpulan pengaruh dari parameter yang divariasikan. Seperti yang sudah disebutkan sebelumnya, bahwa pengambilan data dilakukan untuk sembilan posisi TMVA dan tiga buah nilai massa TMVA untuk mendapatkan data yang lebih detail. Nilai dari sembilan posisi tersebut terbagi dalam dua koordinat, yaitu koordinat terdekat dengan koefisien pegas terkecil dan terdekat dengan koefisien pegas terbesar. Pembagian koordinat ini dimaksudkan untuk mengetahui perbandingan reduksi dengan penempatan TMVA didekat koefisien pegas terkecil dan terbesar. Data-data RMS dari simulasi tersebut dapat dilihat pada tabel yang ada dibagian lampiran.

Hal yang sama juga dilakukan pada respon acceleration. Simulasi sistem utama tanpa dan dengan TMVA dibandingkan hasilnya, kemudian ditarik respon reduksi yang didapatkan. Dari simulasi sistem utama tanpa TMVA didapatkan RMS acceleration sebesar 27,5358 m/s^2. Nilai tersebut adalah objek yang harus direduksi. Simulasi dilakukan dengan mengkombinasikan Ma dengan sembilan posisi node TMVA di atas plat datar sistem utama untuk diketahui posisi terbaik yang mampu mereduksi getaran. Berikut adalah tampilan respon acceleration yang diwakilkan dengan kombinasi Ma2 dan posisi TMVA bervariasi pada koordinat terdekat defleksi maksimum sistem utama, meliputi node 1, node 2, node 4, node 7, node 8, dan node 9.

Gambar 4.15 Respon *acceleration* sistem utama tanpa dan dengan TMVA untuk kombinasi Ma₂ dan posisi bervariasi.

Dari simulasi yang telah dilakukan, maka didapatkan data RMS acceleration yang kemudian ditabelkan untuk didapatkan grafik. Garis-garis warna pada gambar 4.13 menunjukkan nilai acceleration pada masing-masing posisi TMVA. Tampak pada gambar tersebut bahwa node 4 menghasilkan nilai acceleration terkecil dibandingkan dengan posisi node yang lain. Dari grafik yang telah dibuat dapat ditarik kesimpulan bagaimana pengaruh dari variasi-variasi yang telah digunakan. Seperti yang sudah disebutkan sebelumnya, bahwa pada roses pengambilan data RMS digunakan variasi tiga massa TMVA dan sembilan posisi TMVA agar didapatkan hasil yang lebih detail. Data-data RMS tersebut dapat dilihat pada tabel 4.2.

Acceleration [m/s2]					
Node	Massa	Sebelum	Sesudah	%Reduksi	
1	Ma1		8,0936	70,60699	
	Ma2		0,7917	97,12483	
	Ma3		1,6446	94,02741	
2	Ma1		6,1552	77,64655	
	Ma2		0,5634	97,95394	
	Ma3		1,3202	95,20551	
3	Ma1		8,351	69,67221	
	Ma2		0,7524	97,26756	
	Ma3		1,7893	93,50191	
4	Ma1		4,7239	82,84452	
	Ma2		0,34	98,76524	
	Ma3	27 5358	1,1816	95,70886	
5	Ma1	27,5550	6,3366	76,98778	
	Ma2		0,5469	98,01386	
	Ma3		1,4068	94,89101	
6	Ma1		8,4611	69,27237	
	Ma2		1,0637	96,13703	
	Ma3		2,1064	92,35032	
7	Ma1		7,7161	71,97793	
	Ma2		0,6989	97,46185	
	Ma3		1,6528	93,99763	
8	Ma1		10,2952	62,61158	
	Ma2		0,8656	96,85646	
	Ma3		2,2939	91,66939	

Tabel 4.1 Data-data RMS acceleration dan persen reduksinya.

9	Ma1	7,2107	73,81336
	Ma2	0,4865	98,23321
	Ma3	1,7972	93,47322

Tabel 4.1 merupakan tabel kombinasi massa TMVA pada masing-masing posisi node, serta nilai RMS *acceleration* sebelum dan sesudah reduksi yang dilengkapi dengan nilai persen reduksinya. Dari data-data tersebut, kemudian diplot dalam sebuah grafik batang, sehingga terlihat bagaimana pengaruh variasi massa TMVA dan posisi TMVA pada reduksi getaran yang terjadi. Grafik tersebut dapat dilihat pada gambar 4.16 dan 4.17.

Gambar 4.16 Grafik *acceleration* terhadap variasi massa TMVA.

Grafik 4.16 menunjukkan bahwa pada penambahan TMVA dengan massa Ma₂, menghasilkan nilai RMS *acceleration* terkecil dibandingkan dengan pada dua nilai massa TMVA yang lain. Untuk setiap posisi node peletakan TMVA, Ma₂ mampu mereduksi secara maksimal. Hal ini sebanding dengan pembahasan *bode diagram* yang telah dijelaskan sebelumnya dan senada dengan teori yang dijelaskan pada bab II, bahwasanya rasio massa absorber yang optimum dapat mereduksi getaran sistem utama adalah 1/20. Kemudian, untuk mengetahui pengaruh peletakan TMVA di

atas massa utama, maka dibangun grafik *acceleration* terhadap variasi posisi TMVA seperti ditunjukkan pada gambar 4.17 berikut.

Gambar 4.17 Grafik *acceleration* terhadap variasi posisi TMVA.

Pada grafik 4.17 menggambarkan bahwa bar berwarna merah yang merupakan kombinasi Ma₂ untuk masing-masing node memiliki nilai yang paling rendah dibandingkan dengan bar berwarna biru yang merupakan kombinasi Ma₁ untuk masing-masing node, serta bar berwarna hijau yang merupakan kombinasi Ma₃ untuk masing-masing node. Untuk pengaruh penempatan posisi TMVA, terlihat bahwa dengan menggunakan massa peredam Ma₂ pada posisi node 6 memiliki nilai RMS acceleration terbesar, dan hal ini berbanding terbalik dengan reduksinya. Nilai RMS pada node 6 masih tinggi dikarenakan posisi node 6 terletak pada koordinat koefisien kekauan pegas sistem utama terbesar (K_D) , sehingga dampaknya getaran yang disebabkan oleh nilai K_A yang lebih kecil dari koefisien kekauan lain tidak dapat teredam. Nilai RMS acceleration sistem dengan TMVA yang besar menandakan bahwa reduksi yang dihasilkan dari kombinasi tersebut memiliki nilai yang kecil. Ketika TMVA diletakkan pada node 4, dimana node 4 terdapat pada terdekat koordinat titik defleksi maksimum. maka menghasilkan reduksi yang opaling tinggi. Untuk lebih jelasnya, persentase reduksi yang dihasilkan dari masingmasing titik dan variasi massa TMVA ditunjukkan pada grafik 4.18.

Gambar 4.18 Grafik persen reduksi getaran translasi.

Untuk reduksi getaran pada masing-masing node yang ditampilkan dalam diagram titik pada gambar 4.18, terlihat bahwa reduksi tertinggi berada pada node 4 dengan menggunakan Ma₂. Untuk itu, dapat disimpulkan bahwa massa yang efektif untuk mereduksi getaran translasi sistem utama adalah dengan Ma₂ pada posisi TMVA terjauh dari pusat massa sistem utama dan terdekat dengan titik defleksi maksimum. Dari ketiga pembahasan di atas, respon getaran translasi sistem utama dengan dan tanpa TMVA yang diwakilkan dengan RMS acceleration dan displacement berbanding lurus. Dengan penggunaan massa Ma₁, Ma₂, dan Ma3 vang ditampilkan pada grafik batang, terlihat bahwa trendline RMS getaran yang dihasilkan menurun dari Ma₁ ke Ma₂ kemudian naik dari Ma₂ ke Ma₃. Hal ini berlaku untuk posisi TMVA di semua node. Sehingga dapat disimpulkan bahwa Ma₂ merupakan nilai massa yang efektif untuk mereduksi getaran yang terjadi.

4.2.2.2. Reduksi Respon Rolling

Pada analisa reduksi rolling, objek yang diteliti dalam penelitian ini adalah rolling displacement dan rolling acceleration. Dengan cara yang sama seperti analisa reduksi translasi, dilakukan proses simulasi. Dari proses simulasi akan didapatkan hasil berupa RMS displacement dan RMS acceleration untuk gerak rolling yang kemudian ditabelkan. Dari tabel vang dibuat tersebut kemudian dibuat dalam bentuk grafik utnuk mengetahui pengaruh dari masing-masing variasi parameter yang dilakukan. Setelah simulasi dijalankan, untuk tanpa **TM**VA didapatkan hilai sistem utama RMS *displacement* untuk gerak *rolling* sebesar 0,006 rad, dan RMS acceleration sebesar 5,6639 rad/s². Nilai tersebut dengan merupakan objek yar g harus direduksi cara menginpun variasi-variasi TMVA yang digunakan pada penelitian ini dan dicari kombinasi variasi yang dapat mereduksi getaran paling optimal. Berikut adalah tampilan respon *rolling displacement* yang diwakilkan oleh kombinasi posisi terdekat dengan koef sien pegas sistem utama terkecil (titik A), meliputi node 1, node 2, node 4, node 7, node 8, dan node 9 dengan massa TMVA senilai Ma₂.

Gambar 4.19 Respon *rolling displacement* sistem utama tanpa dan dengan TMVA dengan kombinasi Ma₂ dan posisi bervariasi.

Dari simulasi yang telah dilakukan, maka diperoleh data berupa RMS *rolling displacement* sistem dengan TMVA yang kemudian ditabelkan dan dibuat menjadi grafik. Garisgaris warna pada gambar 4.17 menunjukkan nilai *rolling displacement* pada masing-masing posisi TMVA. Tampak pada gambar tersebut bahwa node 4 menghasilkan nilai *rolling displacement* terkecil dibandingkan dengan posisi node yang lain. Seperti yang sudah disebutkan sebelumnya, bahwa proses pengambilan data RMS digunakan variasi tiga massa TMVA dan sembilan posisi TMVA agar mendapatkan hasil yang lebih detail. Data-data RMS tersebut dapat dilihat pada tabel di bagian lampiran dan memiliki pembahasan yang sama dengan *rolling acceleration*.

Dengan cara yang sama untuk mencari respon *rolling displacement*, melalui simulasi sistem utama tanpa TMVA didapatkan nilai RMS *rolling acceleration* sebesar 5,6639 rad/s^2. Nilai tersebut merupakan objek yang harus direduksi. Untuk itu, dicari kombinasi variasi parameter terbaik yang mampu menghasilkan nilai reduksi optimum. Berikut adalah tampilan respon *rolling acceleration* yang diwakilkan dengan kombinasi Ma₂ dengan variasi posisi pada koordinat defleksi maksimum, yaitu pada node 1, node 2, node 4, node 7, node 8, dan node 9. Dengan penambahan TMVA pada posisi-posisi tersebut diharapkan menghasilkan redaman getaran sistem utama yang baik. Simulasi dijalankan pada frekuensi natural puncak pertama sistem utama tanpa TMVA dengan nilai 39,5954 rad/s dan amplitudo sumber getar 0,02 m.

Gambar 4.20 Respon *rolling acceleration* sistem utama tanpa dan dengan TMVA dengan kombinasi Ma₂ dan posisi bervariasi.

Dari simulasi yang telah dilakukan, maka diperoleh data berupa RMS *rolling acceleration* yang kemudian ditabelkan dan dibuat menjadi grafik. Garis-garis warna pada gambar 4.20 menunjukkan nilai *rolling acceleration* pada

masing-masing posisi TMVA. Tampak pada gambar tersebut bahwa node 4 menghasilkan nilai *rolling acceleration* terkecil dibandingkan dengan posisi node yang lain. Dari grafik tersebut kemudian dilakukan analisa sehingga dapat ditarik kesimpulan bagaimana pengaruh dari variasi-variasi yang digunakan. Seperti yang sudah dijelaskan sebelumnya, bahwa pada proses pengambilan data RMS digunakan variasi tiga massa TMVA dan sembilan posisi TMVA agar mendapatkan hasil yang lebih detail. Data-data RMS tersebut dapat dilihat pada tabel di bawah ini.

Node	Massa	Sebelum	Sesudah	%Reduksi
1	Ma1		1,6589	70,71099
	Ma2		0,1715	96,97205
	Ma3		0,3505	93,81168
2	Ma1		1,3629	75,93708
	Ma2		0,2132	96,23581
	Ma3		0,1879	96,6825
3	Ma1		0,9331	83,52549
	Ma2	5 6620	0,6316	88,84867
	Ma3	5,0059	1,1297	80,05438
4	Ma1		1,1483	79,72598
	Ma2		0,1335	97,64297
	Ma3		0,0895	98,41982
5	Ma1		0,7226	87,24201
	Ma2		0,472	91,66652
	Ma3		0,8554	84,89733
6	Ma1		1,4607	74,21035

 Tabel 4.2 Data-data RMS acceleration dan persen reduksinya.

 Rolling acceleration[rad/s^2]

	Ma2	0,1766	96,88201
	Ma3	1,982	65,00644
7	Ma1	2,3323	58,82166
	Ma2	0,8636	84,75256
	Ma3	1,0813	80,90891
8	Ma1	2,8465	49,74311
	Ma2	0,2645	95,33007
	Ma3	0,8845	84,38355
9	Ma1	2,9516	47,8875
	Ma2	1,0625	81,24084
	Ma3	1,5096	73,34699

Tabel 4.2 merupakan tabel kombinasi massa TMVA pada masing-masing posisi node, serta nilai RMS *rolling acceleration* sebelum dan sesudah reduksi yang dilengkapi dengan nilai persen reduksinya. Dari data-data tersebut, kemudian diplot dalam sebuah grafik batang, sehingga terlihat bagaimana pengaruh variasi massa TMVA dan posisi TMVA pada reduksi getaran yang terjadi. Grafik tersebut dapat dilihat pada gambar 4.21.

Gambar 4.21 Grafik *rolling acceleration* terhadap variasi massa TMVA.

Grafik 4.21 menerangkan bahwa dengan penambahan TMVA pada Ma₂, nilai RMS *rolling acceleration* yang dihasilkan terkecil dibandingkan pada penggunaan dua nilai massa TMVA yang lainnya. Untuk setiap posisi node peletakan TMVA, Ma₂ mampu mereduksi secara maksimal. Hal ini sebanding dengan pembahasan *bode diagram* yang telah dijelaskan sebelumnya. Untuk mengetahui pengaruh peletakan TMVA di atas massa utama, maka dibangun grafik *acceleration* terhadap variasi posisi TMVA seperti ditunjukkan pada gambar 4.22 berikut.

Gambar 4.22 Grafik *rolling acceleration* terhadap variasi massa dan posisi TMVA.

Pada grafik 4.22 menggambarkan bahwa *bar* berwarna merah yang merupakan kombinasi Ma₂ untuk masing-masing node memiliki nilai yang paling rendah dibandingkan dengan *bar* berwarna biru yang merupakan kombinasi Ma₁ untuk masing-masing node, serta *bar* berwarna hijau yang merupakan kombinasi Ma₃ untuk masing-masing node. Untuk pengaruh penempatan posisi TMVA, terlihat bahwa dengan menggunakan massa peredam Ma₂ posisi node 9 memiliki nilai RMS *acceleration* terbesar, dan hal ini berbanding terbalik dengan reduksinya. Nilai RMS *acceleration* sistem dengan TMVA ynag besar menandakan bahwa reduksi yang dihasilkan dari kombinasi tersebut memiliki nilai yang kecil. Hal tersebut ditunjukkan pada gambar 4.23 berikut bahwa node 9 memiliki nilai reduksi terkecil, sedangkan node 4 memiliki nilai reduksi terbesar. Hal tersebut dikarenakan node 9 terletak sesumbu pengaruh getaran *rolling* sehingga tidak dapat mereduksinya. Seperti yang kita ketahui bahwa getaran rotasi, baik *pitching* maupun *rolling*, dipengaruhi oleh inersia dan panjang lengan. Ketika panjang lengan yang terjadi adalah nol untuk TMVA, maka tidak menghasilkan peredaman rotasi yang optimum. Hal tersebut berbanding terbalik dengan node 4 yang memiliki jarak terjauh dari pusat massa dan tegak lurus dengan sumbu *rolling* sehingga mampu meredam getaran *rolling*. Untuk mengetahui besar reduksi dari masing-masing node TMVA pada variasi massanya, maka dibuat grafik 4.23.

Gambar 4.23 Grafik persen reduksi getaran *rolling acceleration*.

Dari kedua pembahasan sebelumnya, respon getaran translasi sistem utama tanpa dan dengan TMVA yang diwakilkan dengan RMS rolling acceleration dan rolling displacement berbanding lurus. Dengan penggunaan massa Ma₁, Ma₂, dan Ma₃ yang ditampilkan pada grafik batang, terlihat bahwa trendline RMS getaran yang dihasilkan menurun dari Ma₁ ke Ma₂ kemudian naik dari Ma₂ ke Ma₃. Hal ini berlaku untuk posisi TMVA di semua node. Sehingga dapat disimpulkan bahwa Ma2 merupakan nilai massa yang efektif untuk mereduksi getaran yang terjadi. Untuk reduksi getaran pada masing-masing node yang ditampilkan dalam diagram titik pada gambar 4.23, terlihat bahwa reduksi tertinggi berada pada node 4 dengan menggunakan Ma₂. Untuk itu, dapat disimpulkan bahwa massa yang efektif untuk mereduksi getaran translasi sistem utama adalah Ma₂ dengan rasio 1/20 dari massa utama dan posisi TMVA terjauh dari pusat massa sistem utama, namun yang terdekat dari titik defleksi maksimum.

4.2.2.3. Reduksi Respon Pitching

Pada analisa reduksi pitching, objek yang diteliti dalam penelitian ini adalah *pitching displacement* dan *pitching* acceleration. Dengan cara yang sama seperti analisa reduksi translasi, dilakukan proses simulasi. Dari proses simulasi akan didapatkan hasil berupa RMS displacement dan RMS acceleration untuk gerak pitching yang kemudian ditabelkan. Dari tabel yang dibuat tersebut kemudian dibuat dalam bentuk grafik untuk mengetahui pengaruh dari masing-masing variasi parameter yang dilakukan. Setelah simulasi dijalankan, untuk tanpa TMVA didapatkan sistem utama nilai RMS displacement untuk gerak pitching sebesar 0,0252 rad, dan RMS acceleration sebesar 39,414 rad/s^2. Nilai tersebut merupakan objek yang harus direduksi dengan cara menginput variasi-variasi TMVA yang digunakan pada penelitian ini dan dicari kombinasi variasi yang dapat mereduksi getaran paling optimal. Berikut adalah tampilan respon rolling displacement yang diwakilkan oleh kombinasi posisi terdekat dengan defleksi maksimum, meliputi node 1, node 2, node 4, node 7, node 8, dan node 9 dengan massa TMVA senilai Ma₂.

Gambar 4.24 Respon *pitching displacement* sistem utama tanpa dan dengan TMVA dengan kombinasi Ma₂ dan posisi bervariasi.

Dari simulasi yang telah dilakukan, maka diperoleh data berupa RMS pitching displacement yang kemudian ditabelkan dan dibuat menjadi grafik. Garis-garis warna pada gambar 4.24 menunjukkan nilai pitching displacement pada masing-masing posisi TMVA. Tampak pada gambar tersebut bahwa node 9 menghasilkan nilai pitching displacement terkecil dibandingkan dengan posisi node yang lain. Seperti disebutkan sebelumnya, yang sudah bahwa proses pengambilan data RMA digunakan variasi tiga massa TMVA dan sembilan posisi TMVA agar mendapatkan hasil yang lebih detail. Data-data RMS tersebut dapat dilihat pada tabel di bagian lampiran dan memiliki pembahasan yang sama dengan pitching acceleration.

Dengan cara yang sama untuk mencari respon pitching displacement, melalui simulasi sistem utama tanpa

TMVA didapatkan nilai RMS *pitching acceleration* sebesar 39,414 rad/s^2. Nilai tersebut merupakan objek yang harus direduksi. Untuk itu, dicari kombinasi variasi parameter terbaik yang mampu menghasilkan nilai reduksi optimum. Berikut adalah tampilan respon *rolling acceleration* yang diwakilkan dengan kombinasi Ma₂ dengan variasi posisi pada koordinat terdekat dengan koefisien pegas terkecil, yaitu pada node 1, node 2, node 4, node 7, node 8, dan node 9. Simulasi dijalankan pada frekuensi natural 39,5954 rad/s dan amplitudo sumber getar 0,02 m. Hasil seimulasi pada posisi-posisi node yang ditentukan diharapkan mampu mereduksi getaran yang dihasilkan dari sistem utama tanpa TMVA. Hasil simulasi pada node yang ditentukan menghasilkan respon seperti yang ditunjukkan oleh gambar 4.25.

Gambar 4.25 Respon *pitching acceleration* sistem utama tanpa dan dengan TMVA dengan kombinasi Ma₂ dan posisi bervariasi.

Dari simulasi yang telah dilakukan, maka diperoleh data berupa RMS *pitching acceleration* yang kemudian ditabelkan dan dibuat menjadi grafik. Garis-garis warna pada gambar 4.25 menunjukkan nilai *pitching acceleration* pada masing-masing posisi TMVA. Tampak pada gambar tersebut bahwa node 9 menghasilkan nilai *pitching acceleration* terkecil dibandingkan dengan posisi node yang lain. Dari grafik tersebut akan dapat ditarik kesimpulan bagaimana pengaruh dari variasi-variasi yang digunakan. Seperti yang sudah dijelaskan sebelumnya, bahwa pada proses pengambilan data RMS digunakan variasi tiga massa TMVA dan sembilan posisi TMVA agar mendapatkan hasil yang lebih detail. Data-data RMS tersebut dapat dilihat pada tabel 4.3.

Pitching acceleration[rad/s^2]				
Node	Massa	Sebelum	Sesudah	%Reduksi
1	Ma1		11,55	70,69569
	Ma2		1,1144	97,17258
	Ma3		2,3933	93,92779
2	Ma1		9,4461	76,03364
	Ma2		1,0019	97,45801
	Ma3		1,3939	96,46344
3	Ma1		11,7979	70,06673
	Ma2		0,9535	97,58081
	Ma3		4,5925	88,34805
4	Ma1		7,9172	79,91272
	Ma2		1,688	95,71726
	Ma3	39,414	1,5343	96,10722
5	Ma1		9,6122	75,61222
	Ma2		1,4857	96,23053
	Ma3		1,9006	95,17786
6	Ma1		11,8198	70,01116
	Ma2		0,9136	97,68204
	Ma3		3,2917	91,6484
7	Ma1		11,1256	71,77247
	Ma2		0,9966	97,47146
	Ma3		2,2936	94,18075
8	Ma1		13,9662	64,56538
	Ma2		0,925	97,65312

Tabel 4.3 Data-data RMS pitching acceleration dan persenreduksinya.

	Ma3	4,0308	89,77318
9	Ma1	10,5131	73,32648
	Ma2	0,5668	98,56193
	Ma3	2,3922	93,93058

Tabel 4.3 merupakan tabel kombinasi massa TMVA pada masing-masing posisi node, serta nilai RMS *rolling acceleration* sebelum dan sesudah reduksi yang dilengkapi dengan nilai persen reduksinya. Dari data-data tersebut, kemudian diplot dalam sebuah grafik batang, sehingga terlihat bagaimana pengaruh variasi massa TMVA dan posisi TMVA pada reduksi getaran yang terjadi. Grafik tersebut dapat dilihat pada gambar 4.26.

Gambar 4.26 Grafik *pitching acceleration* terhadap variasi massa TMVA.

Gambar 4.27 Grafik *pitching acceleration* terhadap variasi massa dan posisi TMVA.

Pada grafik 4.27 menggambarkan bahwa bar berwarna merah yang merupakan kombinasi Ma₂ untuk masing-masing node memiliki nilai yang paling rendah dibandingkan dengan bar berwarna biru yang merupakan kombinasi Ma₁ untuk masing-masing node, serta bar berwarna hijau vang merupakan kombinasi Ma3 untuk masing-masing node. Untuk pengaruh penempatan posisi TMVA, terlihat bahwa dengan menggunakan massa peredam Ma₂ posisi node 9 memiliki nilai RMS acceleration terkecil, dan hal ini berbanding terbalik dengan reduksinya. Nilai RMS acceleration sistem dengan TMVA ynag kecil menandakan bahwa reduksi yang dihasilkan dari kombinasi tersebut memiliki nilai yang besar. Hal tersebut ditunjukkan pada gambar 4.28 berikut bahwa node 9 memiliki nilai reduksi terbesar, sedangkan node 4 memiliki nilai reduksi terkecil.

Gambar 4.28 Grafik persen reduksi getaran *pitching* acceleration.

Dari kedua pembahasan sebelumnya, respon getaran translasi sistem utama dengan dan tanpa TMVA yang diwakilkan dengan RMS pitching acceleration dan pitching displacement berbanding lurus. Dengan penggunaan massa Ma₁, Ma₂, dan Ma₃ yang ditampilkan pada grafik batang, terlihat bahwa trendline RMS getaran yang dihasilkan menurun dari Ma₁ ke Ma₂ kemudian naik dari Ma₂ ke Ma₃. Hal ini berlaku untuk posisi TMVA di semua node. Sehingga dapat disimpulkan bahwa Ma2 merupakan nilai massa yang efektif untuk mereduksi getaran yang terjadi. Untuk reduksi getaran pada masing-masing node yang ditampilkan dalam diagram titik pada gambar 4.28, terlihat bahwa reduksi tertinggi berada pada node 9 dengan menggunakan Ma₂. Untuk itu, dapat disimpulkan bahwa massa yang efektif untuk mereduksi getaran translasi sistem utama adalah Ma₂ dengan rasio 1/20 dari massa utama dan posisi TMVA terjauh dari pusat massa sistem utama, namun yang terdekat dari koefisien pegas sistem utama terkecil.

Untuk mengetahui posisi optimum yang dapat memberikan efek reduksi yang hampir sama pada getaran translasi, *pitching*, dan *rolling* maka disusun grafik perbandingan *acceleration* setelah ditambah dengan TMVA untuk ketiga gerak tersebut. Grafik 4.29 menggambarkan pengaruh penambahan TMVA dengan massa Ma₂ pada getaran translasi, *pitching*, dan *rolling* pada semua posisi.

Gambar 4.29 Grafik respon *acceleration* untuk 3-Dof getaran pada semua posisi TMVA.

Dari grafik di atas dapat disimpulkan bahwa titik penempatan TMVA yang menghasilkan reduksi optimum untuk semua getaran yang terjadi ada di posisi node 7. Hal tersebut

ditunjukkan dengan perbedaan nilai RMS *acceleration* yang tidak berbeda jauh, sehingga nilai reduksi yang dihasilkan tidak akan berbeda jauh pula.

Setelah di buat perbandingan percepatan translasi, *pitching*, dan *rolling* dari sistem utama yang telah ditambahkan TMVA, maka dibuat grafik rasio perpindahan terhadap rasio peletakan posisi TMVA di atas plat datar massa utama. Grafik ini bertujuan untuk mengetahui bagaimana pengaruh pergeseran TMVA di atas plat datar massa utama terhadap reduksi yang terjadi. Grafik tersebut ditunjukkan pada gambar 4.30.

Gambar 4.30 Pengaruh perpindahan TMVA terhadap respon percepatan translasi.

Gambar 4.30 di atas merupakan rasio perpindahan peletakan TMVA sepanjang sumbu putar rotasi terhadap rasio RMS *acceleration* sistem setelah ditambahkan TMVA dengan sebelum ada TMVA (a/a_o). Titik-titik merah merupakan grafik yang dibentuk dari peletakan TMVA sepanjang sumbu

Y (sumbu *roll*), sedangkan titik-titik hitam merupakan grafik yang dibentuk dari peletakan TMVA sepanjang sumbu Z (sumbu *pitch*). Rasio perpindahan bernilai negatif menandakan TMVA berada pada koordinat negatif, sedangkan rasio yang bernilai positif menandakan TMVA berada pada koordinat positif. Untuk posisi koordinat telah dijelaskan sebelumnya dalam subbab 4.3.

Rasio RMS *acceleration* yang semakin mendekati 1 menandakan bahwa tidak ada perubahan RMS *acceleration* dari sistem yang telah ditambahkan dengan TMVA maupun yang belum ditambahkan TMVA. Untuk itu, rasio yang baik untuk menyatakan sistem telah teredam dengan adanya TMVA adalah di bawah satu (<1). Dari grafik 4.30 nilai optimum peredaman pada saat TMVA diletakkan sepanjang sumbu Z adalah pada rasio q/b sama dengan 1 dengan rasio RMS *acceleration* sebesar 0,04. Sedangkan nilai optimum peredaman saat TMVA diletakkan sepanjang sumbu Y adalah pada rasio p/a sama dengan -1 dengan rasio RMS *displacement* sebesar 0,072.

"Halaman ini sengaja dikosongkan"

BAB V

KESIMPULAN DAN SARAN

5.1. Kesimpulan

Dari penelitian yang telah dilakukan, dapat ditarik kesimpulan sebagai berikut :

- 1. Telah dimodelkan rancangan sistem utama sebagai simulator getaran berdimensi 500x500x6 mm. Getaran yang terjadi pada sistem utama adalah translasi, *rolling*, dan *pitching*, akibat nilai koefisien pegas untuk masing-masing titik massa utama berbeda-beda.
- 2. Telah dimodelkan rancangan TMVA yang mampu mereduksi getaran translasi, *pitching*, dan *rolling* dengan model sistem pegas-massa yang terbungkus dalam selongsong silinder dan dibiarkan bergetar bebas. Pegas yang digunakan memiliki diameter 40 mm dan tinggi 75 mm, serta massa dengan koin besi berdiameter 44 mm dengan tebal satuan 8 mm.
- 3. Didapatkan bahwa rasio massa TMVA terhadap massa utama yang relatif mampu mereduksi getaran baik arah translasi, *rolling*, dan *pitching* berdasarkan penelitian ini adalah 1 : 20.
- 4. Didapatkan bahwa letak posisi TMVA yang relatif mampu mereduksi getaran baik arah translasi, *rolling*, dan *pitching* berdasarkan penelitian ini adalah yang terjauh dari pusat massa sistem utama, namun terdekat dari koefisien pegas sistem utama terkecil.
- 5. Pada frekuensi natural 39,5954 rad/s dan amplitudo 0,02 m :

- Didapatkan kombinasi massa TMVA Ma₂ dan posisi pada node 4 menghasilkan reduksi respon getaran translasi terbesar yang dibuktikan dengan nilai reduksi mencapai 98,76% pada RMS *acceleration*.
- Didapatkan kombinasi massa TMVA Ma₂ dan posisi pada node 4 menghasilkan reduksi respon getaran *rolling* terbesar yang dibuktikan dengan nilai reduksi mencapai 97,64% pada RMS *rolling acceleration*.
- Didapatkan kombinasi massa TMVA Ma₂ dan posisi pada node 9 menghasilkan reduksi respon getaran *pitching* terbesar yang dibuktikan dengan nilai reduksi mencapai 98,56% pada RMS *pitching acceleration*.

5.2. Saran

Adapun saran dari penelitian yang sudah dilakukan adalah sebagai berikut :

- 1. Berdasarkan penelitian berbasis simulasi yang sudah dilakukan, disarankan untuk tidak mengoperasikan sistem pada frekuensi natural yang baru, yaitu yang telah ditambahkan TMVA, dikarenakan akan menyebabkan terjadinya fenomena resonansi, sehingga fungsi dari penambahan TMVA tidak akan maksimal.
- 2. Berdasarkan penelitian yang telah dilakukan, bahwa getaran pada frekuensi natural pertama optimum diredam dengan nilai rasio massa 1:20. Untuk peredaman getaran dengan frekuensi natural kedua dan ketiga dapat dilakukan lebih mendalam.

DAFTAR PUSTAKA

- Adhytia, N. 2017. Variasi Respon Getaran Multi Nodal Multi DoF dari Mechanical Vibration Exciter. Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember, Surabaya.
- Ikenaga, S. et al. 2009. *Active Control of Ground Vehicle Based On a Full-Vehicle Model*. Arlington: Automation and Robotics Research Institute, The University of Texas.
- Kusumadewayanti, E. 2015. Studi Pengaruh Massa dan Perubahan Lengan Momen Dual Dynamic Vibration Absorber (DVA)- Independent terhadap respon getaran sistem utama 2-DoF. Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember, Surabaya.
- Liu, K. dan Granmarc Coppola. 2009. *Optimal Design of Damped Dynamic Vibration Absorber for Damped Primary System*. Transactions of the canadian society for Mechanical Engineer Vol. 34 no I.
- Lostari, A. 2013. Studi Perbandingan Pengaruh SDVA (Single Dynamic Vibration Absorber) dan DDVA (Dual Dynamic Vibration Absorber). Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember, Surabaya.
- Mahala, M. K. et al. 2010. *Mathematical Models For Designing Vehicles For Ride Comfort*. CPDM, Indian Institute of Science, Bangalore.
- Pachpute, A. Z. 2016. Optimum Design of Damped Dynamic Vibration Absorber- A simulation Approach. Late G. N. Sapkal College of Engineering, India.

- Rao, S. S. 2011. *Mechanical Vibration Fifth Edition*. Amerika: Prentice Hall.
- Vincent. 2017. Pemodelan dan Analisa Reduksi Respon Getaran Translasi dan Rotasi pada Sistem Utama oleh mekanisme Dynamic Vibration Absorber model Beam dengan Pengaruh Posisi Peletakan terhadap Pusat Massa Sistem Utama. Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember, Surabaya.
LAMPIRAN

Gambar 1. Respon *displacement* untuk sistem utama tanpa dan dengan TMVA untuk kombinasi Ma₂ dan posisi bervariasi pada koordinat defleksi minimum.

Gambar 2. Grafik persen reduksi getaran translasi[*displacement*].

Gambar 3. Grafik *displacement* untuk variasi massa pada masing-masing posisi TMVA.

Gambar 4. Respon *acceleration* untuk sistem utama tanpa dan dengan TMVA untuk kombinasi Ma₂ dan posisi bervariasi (terdekat K terbesar).

Gambar 5. Respon *rolling displacement* sistem utama tanpa dan dengan TMVA dengan kombinasi Ma₂ dan posisi bervariasi pada koordinat defleksi minimum.

Gambar 6. Grafik persen reduksi getaran *rolling[displacement]*.

Gambar 7. Grafik *rolling displacement* untuk variasi massa pada masing-masing posisi TMVA.

Gambar 8. Respon *rolling acceleration* sistem utama tanpa dan dengan TMVA dengan kombinasi Ma₂ dan posisi bervariasi pada koordinat defleksi minimum.

Gambar 9. Respon *pitching displacement* sistem utama tanpa dan dengan TMVA dengan kombinasi Ma₂ dan posisi bervariasi pada koordinat defleksi minimum.

Gambar 10. Reduksi getaran pitching displacement.

Gambar 11. Grafik *pitching displacement* untuk variasi massa pada masing-masing posisi TMVA.

Gambar 12. Respon *pitching acceleration* sistem utama tanpa dan dengan TMVA dengan kombinasi Ma₂ dan posisi bervariasi pada koordinat defleksi minimum.

Pengujian pada Ma₁ pada node 1, 2, 4, 7, 8, dan 9.

Gambar 13. Respon getaran displacement dengan Ma₁.

Gambar 14. Respon getaran *rolling displacement* dengan Ma₁.

Gambar 15. Respon pitching displacement pada Ma₁.

Gambar 16. Respon acceleration pada Ma₁.

Gambar 17. Respon rolling acceleration pada Ma₁.

Gambar 18. Respon pitching acceleration pada Ma₁.

Pengujian pada Ma₃ pada node 1, 2, 4, 7, 8, dan 9.

Gambar 20. Respon rolling displacement pada Ma₃.

Gambar 21. Respon pitching displacement pada Ma₃.

Gambar 23. Respon rolling acceleration pada Ma₃.

Gambar 24. Respon pitching acceleration pada Ma₃.

Displacement[m]					
Node	Massa	Sebelum	Sesudah	%Reduksi	
1	Ma1		0,0052	70,45455	
	Ma2		0,00104	94,40909	
	Ma3		0,0011	93,75	
2	Ma1		0,0039	77,84091	
	Ma2		0,000389	97,79125	
	Ma3		0,000858	95,12557	
3	Ma1		0,0054	69,31818	
	Ma2		0,000513	97,08636	
	Ma3		0,0012	93,18182	
4	Mal		0,003	82,95455	
	Ma2		0,000247	98,59716	
	Ma3	0.0176	0,000768	95,63693	
5	Mal	0,0170	0,0041	76,70455	
	Ma2		0,000379	97,84489	
	Ma3		0,000914	94,80511	
6	Mal		0,0054	69,31818	
	Ma2		0,000401	97,7233	
	Ma3		0,0014	92,04545	
7	Mal		0,0049	72,15909	
	Ma2		0,000474	97,30455	
	Ma3		0,0011	93,75	
8	Mal		0,0066	62,5	
	Ma2		0,000585	96,67443	
	Ma3		0,0015	91,47727	

Tabel 1. Data-data RMS displacement dan persen reduksinya.

9	Ma1	0,0046	73,86364
	Ma2	0,003457	93,35795
	Ma3	0,0012	80,18182

Tabel	2.	Data-data	RMS	rolling	displacement	dan	persen
1	redu	uksinya.					

Rolling displacement[rad]					
Node	Massa	Sebelum	Sesudah	%Reduksi	
1	Ma1		0,0011	69,44444	
	Ma2		0,000151	95,8	
	Ma3		0,00223	38,05556	
2	Ma1		0,000872	75,78611	
	Ma2		0,000137	96,19167	
	Ma3		0,000117	96,73778	
3	Ma1		0,000697	80,65	
	Ma2		0,000397	88,975	
	Ma3		0,000733	79,64722	
4	Ma1	0.0026	0,000736	79,55	
	Ma2	0,0030	1,53E-05	99,57583	
	Ma3		5,33E-05	98,51972	
5	Ma1		0,000463	87,14722	
	Ma2		0,000297	91,74167	
	Ma3		0,000548	84,78889	
6	Ma1		0,000113	74,175	
	Ma2		0,00093	96,86944	
	Ma3		0,0013	63,88889	
7	Ma1		0,0015	58,33333	
	Ma2		0.000554	92,98056	

	Ma3	0,000253	84,605
8	Ma1	0,0018	50
	Ma2	0,000167	95,36667
	Ma3	0,000569	84,20833
9	Ma1	0,0019	47,22222
	Ma2	0,000681	81,09444
	Ma3	0,00097	73,06389

Tabel 3. Data-data RMS *pitching displacement* dan persenreduksinya.

Pitching displacement[rad]						
Node	Massa	Sebelum	Sesudah	%Reduksi		
1	Ma1		0,0074	70,63492		
	Ma2		0,001525	93,94841		
	Ma3		0,0017	93,25397		
2	Ma1		0,00161	93,61111		
	Ma2		0,000931	96,30675		
	Ma3		0,000827	96,71865		
3	Ma1		0,0076	69,84127		
	Ma2	0,0252	0,000657	97,39206		
	Ma3		0,0017	93,25397		
4	Ma1		0,0051	79,7619		
	Ma2		0,001	96,03175		
	Ma3		0,003966	84,2619		
5	Ma1		0,0062	75,39683		
	Ma2		0,000859	96,58968		
	Ma3		0,000967	96,16349		

1				
6	Ma1		0,0076	69,84127
	Ma2		0,000854	96,6127
	Ma3		0,0031	87,69841
7	Ma1		0,0071	71,8254
	Ma2		0,000732	97,09663
	Ma3		0,0015	94,04762
8	Ma1		0,0089	64,68254
	Ma2		0,000962	96,18452
	Ma3		0,0026	89,68254
9	Ma1		0,00067	97,34127
	Ma2		0,000598	97,62659
	Ma3	1	0,00095	96,23016

BIODATA PENULIS

Nira Asfarina dilahirkan di Tulungagung, 26 November 1996. Menyelesaikan kuliah dalam program studi S-1 Departemen Teknik Mesin, FTI, ITS pada tahun 2018. Penulis menempuh pendidikan Tingkat Dasar sampai Sekolah Menengah Atas di Tulungagung, Jawa Timur. Terlahir dari pasangan Partam dan Haryatun, serta memiliki dua saudara perempuan bernama Noor Aisah Harimukti dan Meilia Tri Andari.

Penulis aktif dalam kegiatan akademik maupun nonakademik di lingkungan kampus Teknik Mesin. Penulis pernah menjadi anggota dan pengurus organisasi Himpunan Mahasiswa Mesin, serta Mesin ITS Autosport dalam dua periode kepengurusan, yaitu 2015-2016, dan 2016-2017. Dalam kegiatan akademik, penulis aktif menjadi grader matakuliah Dinamika Teknik dan pernah menjadi Asisten Praktikum Mekanika Getaran.

Penulis bercita-cita menjadi seorang wanita karir yang sukses, baik dalam pekerjaan maupun keluarga. Untuk menghubungi penulis dalam rangka pemenuhan kritik dan saran dari pembaca, dapat dilakukan melalui email <u>niraasfarina029@gmail.com</u>. Penulis sangat terbuka dalam segala hal terkait penelitian ini, maupun hal lainnya.