Deteksi Red Small Dots pada Citra Fundus Retina Menggunakan Mathematical Morphology dan Dictionary Learning

Riza, Ozzy Secio (2018) Deteksi Red Small Dots pada Citra Fundus Retina Menggunakan Mathematical Morphology dan Dictionary Learning. Masters thesis, Institut Teknologi Sepuluh Nopember.

[img]
Preview
Text
5116201030-Master_Thesis.pdf - Accepted Version

Download (2MB) | Preview

Abstract

Diabetic retinopathy merupakan penyakit yang disebabkan oleh komplikasi penyakit diabetes, yang menyebabkan kerusakan pada retina dan dapat berakibat kebutaan. Salah satu tanda awal dari diabetic retinopathy adalah munculnya microaneurysm yang merupakan pembengkakan atau tonjolan pada pembuluh darah yang terlihat sebagai titik – titik kemerahan pada retina. Sebelum mendeteksi red small dots, pembuluh darah perlu dihilangkan karena memiliki nilai intensitas yang mirip dengan red small dots. Penelitian ini mengusulkan penggunaan gabungan mathematical morphology untuk mengekstraksi kandidat red small dots dari citra fundus retina dan klasifikasi kandidat red small dots menggunakan dictionary learning. Proses ekstraksi kandidat memiliki dua tahapan utama, yaitu segmentasi pembuluh darah, kemudian segmentasi dark area yang berfungsi menghapus pembuluh darah dan menghasilkan kandidat red small dots. Karena pada proses ekstraksi kandidat masih mengalami over-segmentasi berupa pembuluh darah yang ikut terdeteksi sebagai kandidat red small dots, maka dilakukan klasifikasi terhadap kandidat hasil segmentasi tersebut menggunakan dictionary learning. Terdapat dua tahapan utama dalam klasifikasi, yaitu dictionary construction dan classification. Pada tahap dictionary construction, red small dots yang ditandai oleh pakar digunakan sebagai training sample red small dots dan sisanya dijadikan training sample non-red small dots. Dictionary tersebut kemudian di pelajari dengan dictionary learning yang kemudian dijadikan sebagai training sample untuk proses klasifikasi. Kandidat yang diklasifikasi sebagai non-red small dots diubah menjadi background. Tahap terakhir adalah menggabungkan kembali patches menjadi citra utuh. Citra fundus retina yang digunakan sebagai uji coba diambil dari dataset DiaretDB1. Berdasarkan uji coba, nilai sensitivity, specificity dan accuracy yang didapatkan setelah deteksi red small dots menggunakan metode usulan masing – masing 74.38%, 99.93%, dan 99.92%. =============================================================================================== Diabetic retinopathy is a disease caused by complication of diabetes, which causes damage to the retina and can result in blindness. One of the early signs of the desease is the appearance of microaneurysm. Before detecting red small dots, blood vessels need to be removed because the blood vessels have similar intensity value with red small dots. This study proposed mathematical morphology to extract the candidates of red small dots from retinal fundus images and classifiy candidates using dictionary learning. The candidate extraction step consist of two parts, the first part is the process to segment the blood vessels. The second part is dark area segmentation that serves to remove blood vessels and produce candidates of red small dots. Because of the over segmentation on candidate extraction process which detect blood vessels as red small dots candidate, the classification is needed to classify the red small dots candidate using dictionary learning method. There are two main parts in dictionary learning method; dictionary construction and classification. In dictionary construction, red small dots marked by an expert are used as the training sample of red small dots and the rest as the training samples of non-red small dots. The dictionary learned using dictionary learning is used for the classification stage. Candidates that classified into non-red small dots are converted into background. The last stage is to merge patches back into a complete image. Data testing of retina fundus images are taken from DiaretDB1 dataset. Based on the experimental result, the sensitivity, specificity and accuracy value of the detection of red small dots using proposed method is 74.38%, 99.93%, and 99.92% respectively.

Item Type: Thesis (Masters)
Uncontrolled Keywords: citra fundus, red small dots, mathematical morphology, dictionary learning, segmentasi, klasifikasi.
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA1637 Image processing--Digital techniques
T Technology > TA Engineering (General). Civil engineering (General) > TA174 Computer-aided design.
Divisions: Faculty of Information and Communication Technology > Informatics > 55101-(S2) Master Thesis
Depositing User: OZZY SECIO RIZA
Date Deposited: 21 Jul 2021 23:15
Last Modified: 21 Jul 2021 23:15
URI: https://repository.its.ac.id/id/eprint/57329

Actions (login required)

View Item View Item