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ABSTRACT 
 

 

Precipitation in Indonesia is affected by a wide range of weather variability. 

Understanding the characteristics of precipitation in the area is essential in order to 

predict heavy precipitation event. Characteristics of precipitation, e.g. its shape and 

pattern are important feature to predict extreme rainfall events obtained from radar 

images. This study applied the Gaussian Mixture Model (GMM) for high 

dimensional data clustering (hereafter denoted as HDDC) to cluster the shapes 

appearing in the radar images associated with heavy precipitation events in 

Surabaya. Another method used for this analysis is K-means clustering with 

principal component analysis (PCA). Using ITS precipitation data, the Hill Plot and 

Mean Residual Life Plot (MRLP) suggested that the extreme event is characterized 

with the precipitation above 1.5 mm per ten minutes. According to the Bayesian 

Information Criterion (BIC), the HDDC suggested 10 clusters to characterize the 

heavy precipitation patterns. Another clustering method, K-means with PCA is also 

applied to the data. However, out of the 10 clusters, several clusters show similar 

pattern, suggesting that 10 clusters are too many for the data. Reviewing the value 

of Pseudo-F and Silhouette of K-means and the BIC value of HDDC, 2 clusters are 

deemed best for radar images data. The analysis for both K-means and HDDC 

shows some inconsistency in terms of the cluster members, due to the small sample 

size. Hence, ensemble-based HDDC is proposed to overcome the problem. This 

method generated better results with robust cluster. It resulted in two clusters 

representing the pattern of precipitation system in Surabaya. 

 

Keywords: Radar image, Heavy precipitation, Cluster, Gaussian Mixture Model, 

K-means 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background  

Due to its location and landscape, precipitation in Indonesia is affected by a 

wide range of weather variability. Located at 11oS – 6oN and 95o – 141oE, Indonesia 

is a tropical country with two seasons, i.e., wet and dry season. Several climate 

variabilities such as El Nino Southern Oscillation (ENSO), Madden-Jullian 

Oscillation (MJO) and Indian Ocean Dipole (IOD) affect the precipitation in 

Indonesia (Hendon, 2003; D'Arrigo & Wilson, 2008; Hidayat & Kizu, 2010). Islam, 

Hayashi, Terao, Uyeda & Kikuchi (2005) argued that understanding the 

characteristics of precipitation such as shape, size, and direction of precipitation 

systems are very important. Weather radar systems and satellites have provided 

information on spatial patterns of precipitation which can be used to study the 

characteristics of the system (AghaKouchak, Nasrollahi, Li, Imam, & Sorooshian, 

2010), which might provide useful information to predict heavy precipitation event. 

Research using radar data for precipitation prediction has been carried out since a 

long time ago. Harrison (2000) worked on improving precipitation estimates from 

weather radar using quality control and correction techniques. Wang et al. (2009) 

used rainfall radar imaging in a nowcasting system.  

There are only few research involving radar images in Indonesia. Ilhamsyah 

(2013) utilized weather radar images to support marine and fisheries activities near 

Aceh area. By interpreting the weather radar images, Ilhamsyah was able to get 

information on potential hazardous areas, which was valuable information for 

fisherman to prepare for their activities in the sea. Paski (2017) studied about 

assimilating model from global forecast system output to radar and satellite image 

observation data. The result of the study was the rainfall predictions with the 

assimilation of satellite data shown to be the best results. With the development of 

the radar system in Indonesia, radar image now can be used as a tool to help on 

understanding weather system in Indonesia. Unfortunately, the weather radar data 

of the Meteorological Office Indonesia (BMKG) are available only on several spots 
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over Indonesia. As of 2016, there are 40 weather radars installed and 20 other radars 

were planned to be installed in 2017, 2018 and 2019 (BMKG, 2017). Most of radars 

are located in big cities in Indonesia, such as Tangerang, which is located near 

Jakarta, Semarang, and Surabaya.  

Surabaya as the second biggest city in Indonesia is the center of economy of  

East Java. Its strategic location also made Surabaya the center for economic activity 

in Eastern Indonesia. As the city is currently growing and being home of offices 

and business centers, it rapidly transforms into trading center. Several major 

industries in Indonesia are based in Surabaya, and several area in Surabaya have 

become business center, with plenty of shopping mall, apartment and office 

building (Ostojic, Bose, Krambeck, Lim, & Zhang, 2013). 

However, Surabaya has the risk of flooding. As the center of economic 

activity, flooding can disturb the flow of economy in the area. There are several 

causes of flood in Surabaya. One of them is sea level rise. Because Surabaya is 

located in the coastal area, such problem cannot be avoided. Imaduddina and 

Subagyo (2014) made flood risk zone map which identifies 5 risk levels according 

to the National Disaster Mitigation Guidance for coastal area in Surabaya. Another 

cause of flood in Surabaya is heavy rain. In the recent years, heavy rain has been 

the cause of flood in several areas in Surabaya. Five hours of rain caused flood in 

Surabaya in April 2016 (TEMPO, 2016). In May 2016, heavy rain of three hours 

straight caused flood in a number of regions in Surabaya (TEMPO, 2016; 

REPUBLIKA, 2016). Flood caused by heavy rain also happened in Surabaya on 

February 2017 (KOMPAS, 2017a). In November 2017, a flood with the level of 50 

cm happened in Surabaya. There has been also a report of high precipitation 

intensity on the day it happened (KOMPAS, 2017b). Flood has become one of 

recurring problems in Surabaya every year. Due to the serious impacts of flood 

induced by heavy precipitation happened in Surabaya, thus predicting the heavy 

precipitation pattern in Surabaya is extremely important. Surabaya is located in 

region A or monsoonal regime. Region A has single peak of monthly rainfall around 

December-January, which is the peak of the wet season in Indonesia (Aldrian & 

Susanto, 2003). 
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As mentioned above, characteristics of precipitation system such as its shape 

are important factor to predict extreme rainfall events. In order to get a clear image 

of the shape of precipitation system at the time of heavy precipitation, the 

availability of radar images in Surabaya provided by BMKG can be a useful 

resource. However, radar image is updated every ten minutes, resulting in more 

than a hundred images available for a single day. Combining all the data for wet 

season of 2017/2018, from October 2017 to March 2018, there are more than ten 

thousand images. Furthermore, in a case where rain did not happen, the image will 

not contain any useful information. Analyzing all the images will be difficult and 

inefficient. Therefore, a step to filter the necessary data is important. Because the 

purpose of the analysis is to predict heavy precipitation in Surabaya through the 

characteristics of precipitation system, identifying the event of heavy precipitation 

in Surabaya is important for selecting the images for the analysis. 

One of the methods used to analyze extreme event is Extreme Value Theory 

(EVT) introduced by Fisher and Tippett (1928). The aim of EVT is to predict the 

occurrence of rare events. The EVT has been widely applied in various field of 

research. Marimotou, Raggad & Trabelsi (2006) used EVT to manage energy price 

risks. Gilli and Kellezi (2006) applied EVT for measuring financial risk in major 

stock market indices. Among applications of EVT in climate are by Goldstein, 

Mirza, Etkin, & Milton (2003), by using EVT for constructing extreme climate 

scenarios. Cooley (2005) used EVT for developing models in several cases based 

on the issues in climate and weather studies. Rahayu (2013) used block maxima 

with Generalized Extreme Value (GEV) distribution approach to identify climate 

change in Indramayu. In the case of application of EVT to precipitation event, 

Montfort and Witter (1986) used GPD to fit rainfall series in Dutch. Langousis, 

Mamalakis, Puliga, & Deidda (2016) studied about estimating the threshold for 

Generalized Pareto Distribution for NOAA NCDC daily rainfall data. By applying 

EVT to the precipitation data, the heavy precipitation threshold as the criteria for 

selecting radar images can be determined. 

The next step of analysis after identifying the event of heavy precipitation is 

clustering the shape of radar images when heavy precipitation occurs. Clustering 

the shape will be useful to understand the characteristics of precipitation in the same 
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clusters. Clustering methods are techniques of grouping based on similarities or 

distances between the objects (Johnson & Wichern, 2007). Generally, clustering 

method is divided into hierarchical and nonhierarchical cluster. Hierarchical 

clustering methods are either a series of successive mergers or a series of successive 

divisions. Single linkage, complete linkage, and average linkage are examples of 

hierarchical clustering method. 

On the other hand, nonhierarchical clustering methods are clustering 

techniques that are designed to group items into collection of K clusters. K-means 

is a popular nonhierarchical clustering method. Aside from the popular hierarchical 

and nonhierarchical clustering methods, there is also clustering method based on 

statistical model, namely mixture model. The most common mixture model is 

Gaussian Mixture Model (GMM), with each mixture following normal distribution. 

The GMM has been widely used for clustering problem. Ling and Zhu (2017) 

used GMM to predict precipitation events in Shanghai. In the case of image data, 

GMM is usually applied for the case of image segmentation. Kalti and Mahjoub 

(2014) used GMM to classify pixels based on weighted similarity distance. 

However, classical GMM has certain problems when faced with high dimensional 

data. Bouveyron (2007b) found that the classical GMM show a disappointing 

behavior when the size of the dataset is too small compared to the numbers of 

parameter to be estimated. 

Image processing is a problem of high dimensional spaces. High dimensional 

data clustering (HDDC) is a method for clustering based on Gaussian Mixture 

Model designed for high dimensional data (Bergé, Bouveyron, & Girard, 2012). 

However, due to small number of images in heavy precipitation event, HDDC may 

not perform well, hence a new method of modified HDDC by using bootstrap 

resampling is proposed. This study adopted the ensemble concept applied to HDDC 

to obtain optimal cluster member for identifying the shape of precipitation system 

in Surabaya, East Java. 
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1.2 Research Questions 

Based on the background described on the first section, the problem in this 

study is to find the cluster of heavy precipitation over Surabaya observed from radar 

images. The performance of several clustering approaches are evaluated. 

1.3 Objective of The Study 

The goal of this research are described below. 

1. To examine the shape or pattern of radar image associated with heavy 

precipitation in Surabaya through cluster analysis. 

2. To evaluate the performance of several clustering methods for identifying the 

radar image pattern of heavy precipitation in Surabaya.  

1.4  Significance of The Study 

This research is expected to be a significant material for: 

1. For the student, to learn about application of GMM in radar image for heavy 

precipitation in Surabaya. 

2. For BMKG, to help on optimizing the usage of radar image for heavy 

precipitation prediction. 

3. For the next research, this research is expected to help on improving 

knowledge about application of statistics to climate data using extreme value 

analysis and clustering method.  

1.5 Scope and Limitation 

The limit of this study are described below.  

1. Data used in this research spans from October 18, 2017 to March 31st, 2018, 

corresponding to rainy season in Indonesia. 

2. The area of analysis is limited to 150×150 pixels in Surabaya area and only 

focused on R (red) component of the image. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Extreme Value Analysis 

Extreme value analysis is the branch of statistics which attemps to 

characterize the tail of a distribution (Cooley D. , 2009). Extreme value theory is 

one of the most important statistical method. Extreme value analysis usually require 

estimation of the probability of events that are more extreme than any observed 

value (Coles, 2001). Throughout the year, extreme value analysis has been widely 

used in various disciplines such as insurance industry, risk assessment, assessment 

of meteorological change and more.  

Peaks Over Threshold (POT) is a method for identifying extreme value by 

using a threshold. For the practical applications, the POT models are generally 

preferred because it is more efficient to use since all observations above the 

threshold are used to estimate parameters of the tail (Marimotou, Raggad, & 

Trabelsi, 2006). The data exceeding the threshold can be estimated well using 

Generalized Pareto Distribution (GPD) (Leadbetter, 1991; Beirlant, Goegebeur, 

Teugels, Waal, & Ferro, 2014). If Y is a random variable distributed as GPD with 

scale parameter σ and shape parameter ξ, the function is written in Equation 2.1. 

𝐺𝜉,𝛽(𝑦) = {
1 − (1 +

𝜉𝑦

𝛽
)
−

1

𝜉
if 𝜉 ≠ 0 

1 − exp (−
𝑦

𝛽
) if 𝜉 = 0

 (2.1) 

where 𝛽 > 0; 𝑦 ≥ 0 when 𝜉 ≥ 0 and  0 ≤ 𝑦 ≤ −𝛽/𝜉 when 𝜉 < 0. 

y  = observation exceeding threshold u 

β = scale parameter 

ξ = shape parameter 

For a Pareto distribution, the tail index α is the reciprocal value of 𝜉  when 

𝜉 > 0. The special case happened when 𝜉 = 0, as the GPD is the same as the 

exponential distribution with mean β (Ghosh & Resnick, 2010). The shape 

parameter 𝜉 is important for determining the qualitative behavior of GPD. If 𝜉 < 0, 

the excess distribution has an upper bound defined by 𝑢 − 𝛽/𝜉 and if 𝜉 > 0 then 
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the GPD has no upper limit. Parameter of GPD can be estimated using maximum 

likelihood. Solving likelihood function of GPD is quite complicated so log-

likelihood is used instead.  

Determining threshold of extreme value is a bit tricky. There are several 

methods to decide the threshold value, two of them are visual assessment of 

threshold choice plot which require prior experience for interpretation, namely Hill 

plot and Mean Residual Life Plot. 

2.1.1 Hill Plot  

Hill plot is one of methods for determining threshold for extreme value 

theory. Identifying the threshold or tail index α of a dataset is really important for 

extreme value cases. Hill plot is very efficient when the dataset is from Pareto 

distribution (Drees, Haan, & Resnick, 2000). 

The Hill estimator is the conditional maximum likelihood estimator for 

heavy-tailed distributions. If the data exceeding threshold u and follows Pareto 

distribution with index α, the distribution exceeding u is given in Equation 2.2. 

𝐹[𝑢](𝑥) = 1 − (
𝑢

𝑥
)
𝛼

, 𝑥 ≥ 𝑢 (2.2) 

The data is denoted by {𝑥𝑖}𝑖=1
𝑁 , with sample size of N whose k largest value 

exceeds the threshold u. The parameter of Hill estimator can be estimated by 

equation below. 

𝜉𝑘,𝑁 = (𝛼̂𝑘,𝑁)
−1

=
1

𝑘
∑ [𝑙𝑛 𝑥𝑁−𝑖+1 − 𝑙𝑛 𝑥𝑁−𝑘]

𝑘
𝑖=1  (2.3) 

with 𝑥(𝑖) as the order statistics of the series 𝑥, with 𝑥(𝑁) > 𝑥(𝑁−1) > ⋯ > 𝑥(1). 

Under some additional restrictions on the behavior of underlying distribution 

function, 𝜉𝑘,𝑁 is asymptotically Gaussian with mean 𝜉 and variance (𝜉2𝑘)−1. The 

(1 − 𝑥)% confidence intervals can be computed as Equation 2.4. 

𝜉 ± 𝜆𝑥/2
𝜉̂

√𝑘
 (2.4) 

where 𝜆𝑥/2 is the (1 −
𝑥

2
) standard Normal quantile. Each different threshold value 

might lead to a different Hill estimator (Alfarano & Lux, 2010).  The value of Hill 

estimator is then plotted in the figure, called Hill plot. 
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Based on simulation by Alfarano and Lux (2010), the appropriate tail fraction 

for the “best” estimator for the ‘true’ parameter α is not immediately obvious. The 

possible approach is searching for a region in the Hill plot where the estimated 

values are approximately constant, called eyeball method. This approach relied 

heavily on subjective graphical data analysis. 

2.1.2 Mean Residual Life Plot 

Mean Residual Life Plot (MRLP) is one of visual procedures to determine 

threshold in extreme value analysis. MRLP is subjective and sometimes difficult to 

interpret (Thompson, Cai, Reeve, & Stander, 2009). Mean excess function is a tool 

to help determining the threshold choice of u. The mean excess function of a 

random variable 𝑋 with threshold u and endpoint 𝑥𝐹 is defined as 

𝑒(𝑢) = 𝐸(𝑋 − 𝑢|𝑋 > 𝑢), 0 ≤ 𝑢 < 𝑥𝐹  (2.5) 

The value 𝑒(𝑢) is the mean excess over the threshold value u. An appropriate 

value of the high threshold can be found by plotting the empirical mean excess 

function (Embrechts, Klüppelberg, & Mikosch, 1997). A mean excess plot, or can 

also be called MRLP in reliability cases, consist of the graph 

{(𝑋𝑘,𝑛, 𝑒𝑛(𝑋𝑘,𝑛)) : 𝑘 = 1, … , 𝑛}. For X following GPD with parameters 𝜉 < 1 and 

𝛽, for 𝑢 < 𝑥𝐹, the mean excess function is defined as  

𝑒(𝑢) = 𝐸(𝑋 − 𝑢|𝑋 > 𝑢) =
𝛽+𝜉𝑢

1−𝜉
, 𝛽 + 𝑢𝜉 > 0 (2.6) 

From the function above, it can be inferred that the mean excess function of 

a GPD is linear. The empirical mean excess function of a given sample 𝑋1, … , 𝑋𝑛 

is defined by 

𝑒𝑛(𝑢) =
1

𝑁𝑢
∑ (𝑋𝑖 − 𝑢)𝑖∈𝛥𝑛(𝑢) , 𝑢 > 0 (2.7) 

where 𝑁𝑢 = card{𝑖: 𝑖 = 1,… , 𝑛, 𝑋𝑖 > 𝑢} = cardΔ𝑛(𝑢). This suggests a graphical 

approach for choosing u, choose u > 0 such that en(u) is approximately linear for 

x ≥ u. However, this is difficult because the term approximately is subjective to the 

observer.   
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2.2 Principal Component Analysis 

Principal Component Analysis (PCA) is a method with the purpose of 

explaining variance-covariance structure of a set of variables through a few linear 

combinations of these variables. The linear combinations is called as principal 

components (PC). The objectives of PCA is for data reduction and interpretation 

(Johnson & Wichern, 2007). The PCA is the most popular and one of the oldest 

multivariate statistical technique and able to incorporate a large number of another 

multivariate methods, such as canonical analysis and linear disciminant analysis 

(Abdi & Williams, 2010) and also important in other statistical methods, such as 

linear regression (Joliffe & Cadima, 2016). 

Suppose there are 𝑝 random variable, denoted by 𝑋1, 𝑋2, … , 𝑋𝑝. Random 

vector 𝑿′ = [𝑋1 𝑋2 … 𝑋𝑝] has variance and covariance matrix with eigen 

value 𝜆1 ≥  𝜆2 ≥ ⋯ ≥ 𝜆𝑝 ≥ 0. Each eigenvalue has eigenvector denoted by 

𝒂𝑖 , 𝑖 = 1,… , 𝑝. Let 𝑌𝑖 = 𝒂𝑖
′𝑿 = 𝑎1𝑋1 + 𝑎2𝑋2 + ⋯ + 𝑎𝑝𝑋𝑝. Principal component is 

linear combinations which maximizes 𝑉𝑎𝑟(𝑎𝑖
′𝑋), subject to 𝑎𝑖

′𝑎𝑖 = 1 and 

𝐶𝑜𝑣(𝑎𝑖
′𝑋, 𝑎𝑘

′ 𝑋), k≠i. 

Other than using the original data, principal components can also be 

computed using the standardized variables. The matrix notation for standardized 

variables is written below. 

𝒁 = (𝑽1/2)
−1

(𝑿 − 𝝁) (2.8) 

where 

𝐕1/2 =

[
 
 
 
 √𝜎11 0 ⋯ 0

0 √𝜎22 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ √𝜎𝑝𝑝]

 
 
 
 

 

E(𝐙) = 𝟎 

Cov(𝐙) = (𝐕1/2)
−1

𝚺(𝐕1/2)
−1

= 𝝆 

The i-th principal components of 𝐙 with Cov(𝐙) = 𝝆 is given by 

𝑌𝑖 = 𝑒𝑖
′(𝐕1/2)

−1
(𝐗 − 𝝁),  𝑖 = 1,2,…𝑝. 
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with  ∑ Var (𝑌𝑖)
𝑝
𝑖=1 = ∑ Var (𝑍𝑖)

𝑝
𝑖=1 = 𝑝 and 𝜌𝑌𝑖,𝑍𝑘

= 𝑒𝑖𝑘√𝜆𝑖. The pair 

(𝜆1, 𝑒1), (𝜆2, 𝑒2), … , (𝜆𝑝, 𝑒𝑝) are eigenvalue and eigenvector of 𝝆 with 𝜆1 ≥ 𝜆2 ≥

⋯ ≥ 𝜆𝑝 ≥ 0. 

Determining number of selected PC is essential for PCA. Jolliffe (2002) 

explained about several methods for deciding the number of principal components 

to be used. Let m be the number of chosen PCs. The first rule for finding appropriate 

m is cumulative percentage of total variation. The formula for this rule is written in 

Equation 2.9.  

Percentage of variance up to PC-m  =
∑ 𝜆𝑖

𝑚
𝑖=1

𝑝
  (2.9) 

This is the most obvious criteria for choosing the optimal m. The number of 

PCs, m, is the smallest value of m exceeding the chosen percentage. The total 

percentage usually can be set at 70%, 80% or 90%, depended on the desired value 

of contribution by PCs.  

Another popular rule for determining number of PCs is using the scree graph 

or scree plot. Scree graph is a figure plotting eigenvalue or variance against 

component. It is even more subjective than the first rule, because it require visual 

observation to determine the optimal number of m. The optimal number, m, is 

selected by deciding where is the steep point of the graph. Figure 2.1 shows the 

example of scree graph (Jolliffe, 2002, fig 6.1). 

 

Figure 2.1 Scree graph 
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The number of selected PCs is not fixed, as different rule will produce 

different result of m. However, selecting optimal number of PCs should also 

consider the objectives of PCA, because it will set different requirements for how 

many PCs are needed. Simple rules of selection, as mentioned above, usually work 

well in application. 

2.3 K-means Clustering 

K-means is a clustering technique belong to nonhierarchical clustering 

methods. There are two common starting points for nonhierarchical clustering 

methods, the first is initial partition of items divided into groups or initial set of 

seed points to be core of the clusters (Johnson & Wichern, 2007). General procedure 

for K-means method is described below. 

1. Partitioning the items into 𝐾 initial clusters. Specify 𝐾 initial centroids for 

each cluster. 

2. Assigning an item to the cluster whose centroid is the nearest. Suppose there 

are 𝑝 variable. For every single observation, let 𝐜i = [𝑐𝑖1 𝑐𝑖2 … 𝑐𝑖𝑝] as 

the centroid for each variable in cluster i, and 𝐱 = [𝑥1 𝑥2 … 𝑥𝑝] as the 

observation value for each variable, 𝑖 = 1,… , 𝐾.  The distance is calculated 

using Euclidean distance: 

𝑑(𝑐𝑖, 𝑥) = √(𝑐𝑖1 − 𝑥1)2 + (𝑐𝑖2 − 𝑥2)2 + ⋯+ (𝑐𝑖𝑝 − 𝑥𝑝)
2
 (2.10) 

3. Repeating step 2 until there are no more changes in cluster member. 

The result of final clusters is dependent to the value of initial centroid. 

2.4 Gaussian Mixture Model 

Mixture model is a method that can be used in problem where the population 

of sampling unit consists of a number of subpopulations within each of which a 

relatively simple model applies (Gelman, et al., 2013). 

𝑓(𝑦|𝜽, 𝝅) = ∑ 𝜋𝑗𝑝𝑗(𝑦|𝜽𝑗)
𝐾
𝑗=1  (2.11) 

where 

𝑓(𝑦|𝛉, 𝛑) = density function of mixture distribution 

𝑝𝑗(𝑦|𝛉𝑗) = density function j of K component of mixture distribution 
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𝛉𝑗 = vector parameter of each component of mixture distribution 

(𝜃1, 𝜃2, … , 𝜃𝐾), 𝑗 = 1,2,… , 𝐾 

𝛑 = vector parameter of proportion (𝜋1, 𝜋2, … , 𝜋𝐾) 

𝜋𝑗 = proportion parameter of mixture distribution component, ∑ 𝜋𝑗 = 1𝐾
𝑗=1  

and 0 ≤ 𝜋𝑗 ≤ 1, 𝑗 = 1,2,… , 𝐾 

𝐾 = number of distribution in the mixture distribution 

Based on Equation 2.15, 𝑝𝑗(𝑦|𝛉𝑗) depends on the distribution used for the 

model. In case of Gaussian Mixture Model (GMM), 𝑝𝑗(𝑦|𝛉𝑗) follows normal 

distribution. 

There are several approaches to estimate the parameters of mixture model, 

namely Expectation and Maximization (EM), Neural Network, Maximum 

Likelihood and Bayesian. The approach used in this study is EM algorithm. There 

are two steps in EM algorithm, which done repeatedly for cluster forming, namely 

Expectation (E-step) and Maximization (M-step). 

• E-step will generate expectation of parameter of the data based on data 

distribution. 

• M-step will calculate parameter estimation using expected value of the 

previous E-step. The formulation for M-step will be obtained through 

Maximum Likelihood Estimation (MLE). 

Those two steps will be repeated continuously until converge or reach certain 

tolerance value. 

Main problems in GMM is determining probability of a single observation of 

𝑥𝑖 belong to certain group. GMM belong to soft clustering, using probability to 

assign observation to certain cluster. However, standard GMM has been proven to 

have disappointing result when the size of dataset is too small compared to the 

number of parameter. A method called High Dimensional Data Clustering (HDDC) 

has been developed by Bouveyron (2007) to address this issue. This method uses 

reparameterization to limits the number of parameters to estimate while proposing 

a flexible modeling of the data (Bouveyron, Girard, & Schmid, High-Dimensional 

Data Clustering, 2007a). 
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In the classical GMM model, the class are assumed to follow normal 

distribution 𝑁𝑝(𝜇𝑘, Σ𝑘). Let 𝑄𝑘 be the orthogonal matrix with the eigenvectors of 

Σ𝑘 as columns and Δ𝑘 be the diagonal matrix which contains the eigenvalues of Σ𝑘 

such that Δ𝑘 = 𝑄𝑘
𝑡Σ𝑘𝑄𝑘. The matrix Δ𝑘 is covariance matrix of the k-th class in its 

eigenspace. In the sequence of HDDC, the model will be denoted as [𝑎𝑘𝑗𝑏𝑘𝑄𝑘𝑑𝑘], 

with each parameter denotes: 

𝑎𝑘1, 𝑎𝑘2, … , 𝑎𝑘𝑑𝑘
 = model of variance of the actual data of k-th class 

𝑏𝑘 = model of variance of noise. 𝑎𝑘𝑗 > 𝑏𝑘 , 𝑗 = 1,… , 𝑑𝑘 

𝑑𝑘 = intrinsic dimension of latent subspace of the k-th group 

which spanned by the 𝑑𝑘 first column vectors of 𝑄𝑘. 𝑑𝑘 is 

equal to (𝑝 − 1) for all 𝑘 = 1,… , 𝐾 

There are several types of model as well, the details of full available model 

can be found in works by Bouveyron (2007). The advantages of this model over the 

classical GMM is in the number of parameter to be estimated. The model in HDDC 

had much less parameters than the classical GMM. Table 2.1 gave information 

about the number of parameters used in classical GMM and model [𝑎𝑘𝑗𝑏𝑘𝑄𝑘𝑑𝑘] in 

HDDC. 

Table 2.1. Number of parameters used in classical GMM and HDDC 

Clustering method Number of parameters Asymptotic order 

Full GMM (Classical GMM) 𝜌 + 𝐾𝑝(𝑝 + 1)/2 𝐾𝑝𝑑 

Model [𝑎𝑘𝑗𝑏𝑘𝑄𝑘𝑑𝑘] 𝜌 + 𝜏̅ + 2𝐾 + 𝐷 𝐾𝑝2/2 

Information of number of parameters in Table 2.1 contain details of notation 

where: 

𝐾 = number components in the mixture model 

𝑝 = number of variables 

𝜌 = number of parameters for estimating means and proportions,  

𝜌 = 𝐾𝑝 + 𝐾 − 1 

𝜏̅ = number of parameters required for estimating orientation matrices 𝑄𝑘 

 𝜏̅ = ∑ 𝑑𝑘[𝑝 − (𝑑𝑘 + 1)/2]𝐾
𝑘=1  

𝐷 = sum of intrinsic dimensions, 𝐷 = ∑ 𝑑𝑘
𝐾
𝑘=1  
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The process of maximizing the likelihood in HDDC is also using EM 

algorithm. The EM algorithm will stops when the difference between estimated 

values of the likelihood at two consecutive iterations is smaller than a certain 

threshold (Bergé, Bouveyron, & Girard, 2012). 

2.5 Clusters Evaluation 

Evaluating the result of clustering is an important aspect of the clustering 

methods. This also include the problem of determining the best number of clusters 

for the data. There are several methods available for evaluating cluster results. The 

detail for each method will be described below. 

1. Silhouette 

Silhouette value is based on comparison of cluster tightness and separation, 

showing which objects fit well within the cluster and which objects are 

somewhere between the clusters. The average Silhouette width contain 

information about evaluation of clustering validity. The value can be used to 

help determine an appropriate number of clusters (Rousseeuw, 1987). The 

Silhouette width 𝑠(𝑖) for each 𝑖 𝜖 𝐼 is defined as written in Equation 2.12. 

𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

𝑚𝑎𝑥(𝑎(𝑖),𝑏(𝑖))
 (2.12) 

where 

𝑎(𝑖) = the average distance between i and other entities of the cluster to 

which i belongs 

𝑏(i) = minimum of the average distances between i and all the entities in 

each other cluster. 

The range of Silhouette width value lies between -1 and 1. If the value is 

closer to 1, it means the observations are well clustered (Kodinariya & 

Makwana, 2013). 

2. Pseudo-F statistic  

Pseudo-F statistic, also known as Calinski-Harabasz index is an informal 

indicator for suggesting best number of clusters using variance ratio criterion 

(Calinski & Harabasz, 1974). It is one of clustering evaluation method 
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calculated using sum squares of within and between clusters. The formula is 

given below. 

𝐶 =
𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝐾−1
𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛

𝑁−𝐾

 (2.13) 

with K as the number of clusters and N the number of observations 

(Desgraupes, 2013). Normally, the best number of clusters are chosen based 

on the highest value of C. Relatively large values indicate a good split of data 

(Soldek, Saeed, & Pejas, 2012). 

3. Bayesian Information Criterion (BIC) 

Bayesian Information Criterion (BIC) is a criterion for model selection. BIC 

is closely related to Akaike Information Criterion (AIC) and the difference 

between them are BIC is giving bigger penalty term for the number of 

parameter in the model compared to AIC (Schwarz, 1978). The preferred 

model is the model with lowest BIC value. BIC for GMM is calculated using 

formula below. 

𝐵𝐼𝐶 = 2 𝑙𝑛 𝐿𝑚𝑎𝑥 − 2 𝑙𝑛(𝑁) (𝐾
1

2
(𝑝 + 1)(𝑝 + 2) − 1) (2.14) 

2.6 Bootstrap 

Bootstrap is a data-based simulation method to draw a conclusion based on 

the data (Efron & Tibshirani, 1993). Bootstrap is a repeated sampling procedure 

from a set of the data. The advantage of using nonparametrical approach is no 

assumption of data distribution need to be fulfilled. Each bootstrap sampling would 

result in a different value. Theoretically, because the sample of bootstrap is taken 

repeatedly, the asymptotic distribution would follow the actual distribution of the 

data.  

Take 𝐹̂ as the original empirical distribution of a set of data, 𝑥, then each 

point of the data has the same probability of being taken as sample. A sample of 

bootstrap is defined as n random sample taken from 𝐹̂. The sample of 𝑥∗ =

(𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗). The asterisk mark indicates that those are not actual data, but the 

resampling data from 𝑥. Measurement taken from bootstrap can be shown in 

Equation 2.15. 

𝜃∗ = 𝑠(𝑥∗) (2.15) 
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where 𝑠(𝑥∗) are the result of applying function 𝑠(. ) to 𝑥∗. Function 𝑠(. ) can be 

replaced with any function needed for the analysis, such as mean, median or other 

measurement. 

2.7 Precipitation 

Precipitation is amount of liquid water depth of the water substance that has 

fallen at given point over a specified period of time, usually expressed in 

millimeters or inches (American Meteorological Society, 2018). Precipitation is 

usually measured using rain gauge in meteorological or observational station. 

2.8 Radar image 

Radar image describe potential intensity of rainfall detected by weather radar. 

The precipitation intensity is measured based on the amount of radar energy 

reflected by droplets in the clouds, described by reflectivity product in dBZ. 

(BMKG, 2018). The range of dBZ scale is 5-75, denoted by color gradation of sky 

blue to light purple. The range of precipitation intensity can be described using 

Table 2.2. 

Table 2.2 Rainfall intensity based on dBZ score 

Precipitation Intensity dBZ score mm/hr 

Light rain 30 to 38 1 to 5 

Medium rain 38 to 48 5 to 10 

Heavy rain 48 to 58 10 to 20 

Very heavy rain >58 >20 
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CHAPTER 3  

RESEARCH METHODOLOGY 

 

3.1 Data Source  

There are two sets of data used in this research. The first is radar image 

precipitation over East Java, taken from BMKG site 

(http://radar.bmkg.go.id/bmkg2/imageQC/). The image is usually updated every 10 

minutes and stays in the web for a day before replaced by new image. There are 

two types of image i.e, the normal colored image and the image with black 

background. Illustration of radar images are given in Figure 3.1. 

 

(a) 

  

(b) 

Figure 3.1. (a) Radar image with colored background (b) Radar image with black background 

http://radar.bmkg.go.id/bmkg2/imageQC/
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Figure 3.1 shows the radar image in East Java on October 18, 2017 at 10.01 

a.m UTC time. The image used in this study is image with black background, as it 

is easier to process without the problem of background noise. In the black image, 

the color of radar reflectivity can be clearly seen. 

The second dataset is precipitation data  recorded from rain gauge installed at 

the Institut Teknologi Sepuluh Nopember (ITS) Surabaya. The data can be accessed 

online at http://www.pskbpi.its.ac.id/its-weather-station/. There are several 

variables available, such as temperature, dew point, humidity, wind direction, wind 

speed, wind gust, pressure and accumulation of precipitation. The data is updated 

every 5 minutes. The precipitation data shown in the website is the accumulation of 

precipitation which will be reset by midnight. To obtain the precipitation for each 

5 minutes period, the difference between each period is calculated. 

3.2 Research Variable 

The variable used in this research is described as follows. 

1. Precipitation data from ITS, obtained from ITS Weather Station. The station 

is located in S 7°16‘48”, E 112°47’41, 28m above the sea level. The data is 

recorded per five minutes in WIB time (UTC+7), starting from 18-10-2017 

to 31-03-2018. 

2. Radar images of East Java, obtained from BMKG site. The image is updated 

every ten minutes in UTC time, starting from 18-10-2017 to 31-03-2018.  

3.3 Step of Analysis 

The steps of analysis in this research are described below. 

1. Describing the precipitation data. 

2. Aggregating the precipitation data for every 10 minutes to match the 

frequency of radar images. 

3. Determining threshold for extreme precipitation by using MRLP and Hill 

Plot.  

4. Selecting aggregated data that exceeds the threshold.  

5. Using the date and time from the selected data to choose corresponding 

images at the time.  

http://www.pskbpi.its.ac.id/its-weather-station/
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6. Preprocessing step for radar images. 

(i). Cutting the area of images. The original image is 600×800 pixels. For this 

analysis, the chosen area is smaller, size of 150×150 pixels with Surabaya 

as the center.  

(ii). Separating the components of the image. There are three component of R 

(Red), G (Green) and B (Blue) for each image. The red component is 

chosen because it signify the region of heavy precipitation.  

(iii). The process is done repeatedly on all selected images. 

7. Obtaining the value of R component from the images, stored in matrix X. The 

size of X is 150×150. There are 161 matrices X available, correspond to each 

selected image. The structure of matrix X is shown on Table 3.1. 

Table 3.1 Structure of matrix X 

Pixels 1 2 ... 150 

1 𝑥1,1 𝑥1,2 ... 𝑥1,150 

2 𝑥2,1 𝑥2,2 ... 𝑥2,150 

... ... ... ... ... 

150 𝑥150,1 𝑥150,2 ... 𝑥150,150 

 

8. Convert matrix X to vector. Each vector is then put in matrix of R component 

data called Y. The size of matrix Y is 161×22,500. The structure of Y is 

shown in Table 3.2. 

Table 3.2 Structure of matrix Y 

Observation Y1 Y2 ... Y22500 

zoomBlack_20180110_1341.png 𝑦1,1 𝑦1,2 ... 𝑦1,22500 

zoomBlack_20180111_1021.png 𝑦2,1 𝑦2,2 ... 𝑦2,22500 

... ... ... ... ... 

zoomBlack_20180108_1401.png 𝑦160,1 𝑦160,2 ... 𝑦160,22500 

zoomBlack_20180108_1551.png 𝑦161,1 𝑦161,2 ... 𝑦161,22500 

 

9. Running HDDC on the dataset, with K starting from 2 to 10. The best number 

of cluster is selected using BIC value, and the average image for each cluster 

is displayed. 

10. Running PCA and K-means on the dataset. 
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(i). Applying PCA to the dataset. Choosing number of components used for 

the next analysis. 

(ii). Running K-means clustering analysis using selected PCs for K starting 

from 2 to 10. The result of each K is stored. 

(iii). Calculating Pseudo-F and Silhouette of K-means result. 

(iv). Comparing the value obtained from (iii) for evaluating K-means result. 

11. Determining the number of K for the next step using Pseudo-F and Silhouette 

value from step 10(iii) and BIC from step 9. 

12. Running modified HDDC with 𝐾 = 2 and 𝐾 = 3 on the dataset.  

(i). Selecting 70% of the total observations for each of bootstrap replications. 

(ii). Running modified HDDC on selected data. Calculating average value of 

each cluster and sorting the cluster number by smallest to largest. 

(iii). Storing the result on matrix B. The dimension of B is 161×1000. The 

result is stored based on the replication sequence, with the remaining 

unselected images of 49 labelled as NA. 

(iv). Repeating steps (i)-(iii) for 1000 replication. 

(v). Determining final cluster of each observation using majority vote. 

13. Comparing the result of modified HDDC using 2 and 3 clusters. 
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CHAPTER 4  

RESULTS AND DISCUSSION 

4.1 Characteristics of Precipitation in ITS Surabaya 

Precipitation data in ITS is obtained from observational rain gauge installed 

in ITS in which the record is updated every five minutes. To match the frequency 

of radar images, precipitation data is aggregated to ten minutes period. Because the 

image is time-stamped in Coordinated Universal Time (UTC) and the precipitation 

data is recorded in Indonesia Western Standard Time (WIB, UTC+7), a time 

adjustment is made for the precipitation data. The time series plot of the 

precipitation in the period of 10 minutes is depicted in Figure 4.1. 

 

Figure 4.1 Time series plot of aggregated precipitation in ITS 

Aggregated precipitation in Figure 4.1 shows that precipitation in Surabaya 

is relatively low in October and increased in November until mid-February. 

Precipitation in late-February and March is gradually lower, which is consistent 

with the ending of wet season in Indonesia.  

After being aggregated for 10 minutes to match the time span of radar images, 

the next step is finding threshold for extreme precipitation. BMKG (2018) 

described that precipitation is categorized as heavy rainfall if the intensity is greater 

than 10 mm/hr. Since the dataset is updated every 10 minutes, the average of rain 
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intensity for each 10 minutes is around 1.67 mm. To check the proper threshold for 

the analysis, Mean Residual Life Plot (MRLP) and Hill Plot for the aggregated data 

is shown in Figure 4.2.  

 

(a) (b) 

Figure 4.2 (a) Hill Plot (b) Mean Residual Life Plot (MRLP) 

According to the Hill plot of aggregated data, shown in Figure 4.2 (a), the 

threshold for heavy precipitation is between 1.3 mm and 1.8 mm. Meanwhile, from 

MRLP in Figure 4.2 (b), the point of where the plot look linear cannot be seen 

clearly, but from the plot it suggests that the threshold would be somewhere 

between 1 and 2 mm.  Determining threshold value by using plots is relatively 

subjective, as it needed judgement and common sense (Embrechts, Klüppelberg, & 

Mikosch, 1997). Another value to consider for threshold selection is percentile 

value. For non-zero data (time where precipitation happened), the upper percentile 

are given in Table 4.1. 

Table 4.1 Percentile of precipitation data 

Percentile 

75% 80% 85% 90% 95% 

1.125 1.5 2 3 4.3 

Based on the previous value of average per ten minutes and value suggested 

by MRLP and Hill plot, the value of 80% percentile is inside the threshold range. 

Therefore, the value precipitation of 1.5 mm per ten minutes is set as threshold of 

extreme precipitation in ITS, Surabaya. However, when this value is calculated to 

an hour period, 1.5×6 is equal to 9 mm/hr. This value is below the range of heavy 
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precipitation in the definition of BMKG, and actually is in the upper bound of 

medium rain. 

The next step is to check whether threshold of 1.5 mm per 10 minutes is a 

good fit for the precipitation data in ITS. After fitting the data into Generalized 

Pareto Distribution, the shape parameter of the precipitation data is -0.114 and the 

scale parameter is 3.471. Figure 4.3 shows plot of excess distribution of GPD of the 

precipitation data compared to its empirical value. 

 

Figure 4.3 Plot of excess distribution of GPD of the precipitation data to its empirical value 

Based on Figure 4.3, it can be seen that GPD function fits well to the empirical 

value, therefore the choice of threshold 1.5 mm/10 minutes is suitable for 

determining heavy precipitation data in ITS. There are 193 observations of 

precipitation selected by using this threshold. The date and time for selected data is 

then noted for selecting radar images of heavy precipitation in Surabaya. 

4.2 Preprocessing of Radar Images 

Radar images contain different kind of data structure compared to the usual 

dataset. Image is defined as instant illusion of a picture on flat surface. Picture are 

set of pixels, the smallest element of picture, arranged in rectangular array to form 

a complete image. Each pixel is represented in RGB (abbreviation for Red, Green, 

Blue), indicating how much of each red, green and blue included in the color (Graf, 

1999). 

The size of radar images in East Java is 600×800 pixels, covering entire East 

Java area. The center of the image is the weather radar located in BMKG Juanda. 
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The radius of radar coverage is 240 km (BMKG, 2018). However, because the 

analysis is focused on Surabaya and the image selection process is done using 

precipitation data in ITS Surabaya, using the whole image is not reasonable. 

Precipitation in Banyuwangi, for example, is less likely to be affected by 

precipitation in Surabaya. Therefore, the image is cut into smaller area, focusing in 

Surabaya. The illustration of radar image of November 22, 2017 at 9.32 UTC can 

be seen on Figure 4.4. 

 

Figure 4.4 Process of selecting Surabaya area 

The image is then separated into three component in RGB color model. The 

three components are Red (R), Green (G) and Blue (B). Each component has values 

of 0-255. The value of RGB is often denoted in (R,G,B) format. For example, the 

RGB value of white is (255,255,255) and black is (0,0,0). The RGB value of red is 

(255,0,0), green is (0,255,0) and blue is (0,0,255). With each image having three 

sets of data, the number of data for analysis are multiplied by three. Table 4.2 gives 

information about the legend in radar images and its color in R, G and B 

representation. 

Table 4.2 Properties of legend in radar image 

Image Properties 

dBZ  

Legend  

R component  

G component  

B component  
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Based on the description of dBZ scale in BMKG website, the color gradation 

in the image contains information about intensity of rainfall. Heavy precipitation is 

denoted by dBZ scale of 48 and above, and it is red in color. Out of the three 

components, G and B components mainly consist of zero values for the mentioned 

dBZ range, so the two components were not closely related to heavy precipitation 

event. On the other hand, R components in the dBZ range of 48 and above contain 

non-black color. Figure 4.5 shows comparison of images in RGB, R, G and B 

component. 

  
(a) (b) 

  
(c) (d) 

Figure 4.5 (a) RGB image (b) R component (c) G component (d) B component 

Figure 4.5 (a) shows the cut image in Surabaya. From the picture, it can be 

seen that R area are spread across the maps from west to east. This red and orange 

area is where heavy precipitation happened. From the three images in (b), (c) and 

(d), the central area is represented better using R, in accordance with the result of 

identification in Table 4.2. Therefore, to simplify the process of analysis, only data 

from R component of the image will be used for further analysis. 
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The data from R component is in rectangular array sized 150×150, listed by 

its names containing information about the date and time for each images. The 

selected date and images from Section 4.1 is then used for selecting radar images. 

From 193 selected dates, there are only 161 images available. The 161 images are 

used as final data for clustering to check the shape of precipitation system. Figure 

4.6 shows several chosen images in R component by matching the selected extreme 

dates to the radar images. 

 

Figure 4.6 Several chosen images from the threshold 

The complete selected images can be found in Enclosure 9. The focus in this 

study is to find general shape of precipitation system of heavy precipitation event 

in East Surabaya.  

4.3 Gaussian Mixture Model for Heavy Precipitation Radar Images in 

Surabaya 

Image data, as a set of pixels, is usually classified as high dimensional data. 

In the case of heavy precipitation radar images data, there are 161 observations with 

22,500 features. Bouveyron (2007b) found that the classical GMM show a 

disappointing behavior when the size of the dataset is too small compared to the 

numbers of parameter to be estimated. Therefore, he proposed a specialized 
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Gaussian Mixture Model called High Dimensional Data Clustering (HDDC). The 

advantage of HDDC over the classical GMM is in parameter estimation. By using 

the subspace clustering in GMM, HDDC allowed for estimating less number of 

parameters. The comparison between number of parameters in the HDDC model 

and Classical GMM are shown in Table 4.3. 

Table 4.3 Comparison between number of parameters between HDDC and Classical GMM 

Number of clusters (K) HDDC (model [𝑎𝑘𝑗𝑏𝑘𝑄𝑘𝑑𝑘]) Classical GMM 

2 157,501 506,317,501 

3 202,504 759,476,252 

4 427,484 1,012,635,003 

5 607,440 1,265,793,754 

6 674,964 1,518,952,505 

7 1,124,813 1,772,111,256 

8 1,327,303 2,025,270,007 

9 1,372,356 2,278,428,758 

10 1,484,809 2,531,587,509 

The numbers for HDDC model shown in Table 4.3 were calculated using 

formula shown in Table 2.1, with the details of 𝑑𝑘 for each cluster shown in 

Enclosure 10. From the numbers in Table 4.3, it can be seen that the number of 

parameters that need to be estimated in HDDC are much less than parameters for 

Classical GMM. The result of HDDC for K starting from 2 to 10 can be compared 

using the value of BIC generated by each model. Details on the BIC value of the 

HDDC is shown in Table 4.4. 

Table 4.4 Result of HDDC in radar image data 

Number of clusters BIC 

2 39,636,666 

3 39,466,383 

4 39,932,456 

5 40,156,657 

6 36,619,357 

7 27,589,760 

8 27,960586 

9 27,398,505 

10 22,296,092 

Based on the lowest BIC value shown in Table 4.4, the result shows 10 

clusters as the optimum clusters. The images were grouped into their respective 
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cluster, and the average image for each cluster were displayed. The average images 

are displayed in contour plot in order to get clearer information about pattern shown 

in the image. The result for HDDC with 10 clusters are shown in Table 4.5. 

Table 4.5 Contour plot of cluster member for 10 clusters in HDDC 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

    

Cluster 5 Cluster 6 Cluster 7 Cluster 8 

    

 Cluster 9 Cluster 10  

 

  

 

 

Based on the result of clustering stored in Table 4.5, it can be seen that several 

clusters shows similar pattern. For example, pattern in Cluster 1 was similar to 

Cluster 5, and pattern in Cluster 2 was similar to Cluster 4. The only cluster with 

clear different pattern is Cluster 7, with small circle on the eastern side of Surabaya. 

Because of these similar patterns, it could be concluded that 10 clusters are not 

suitable for the radar image data in Surabaya. It is suggested that the number of 

optimal clusters should be smaller than 10, to avoid the grouping of similar pattern. 
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There is also second problem of HDDC, with the method showing inconsistency of 

cluster member. When the process is repeated, an image could be clustered into 

different cluster. 

4.4 PCA and K-means clustering for Heavy Precipitation Radar Images in 

Surabaya 

To evaluate the result of HDDC, another clustering method will be applied to 

the data. K-means is one of the most popular clustering method. However, K-means 

is distance-based clustering method, therefore it often does not work well for high 

dimensional data. This problem is caused by the curse of dimensionality, mainly 

for K-means with squared Euclidean distance. Aside than using alternative distance 

function, another way to solve the problem of high dimensionality for K-means is 

by employing dimension reduction. One of the way to do this is by using Principal 

Component Analysis (PCA) (Wu, 2012). The complete result of PCA is written in 

Enclosure 11. Selecting the number of components is an essential step for PCA. 

The usual method for selecting the number of components is by using the help of 

scree graph. Figure 4.7 shows screeplot for the first 50 PCs. 

 

Figure 4.7 Screeplot for first 50 PCs 

The first PC explain 20.92% variance of the data, which is the largest 

proportion out of all the 161 PCs. However, using only 20.92% is too small to 

represent all the data, therefore additional component are used. By using 41 

components, 80,15% of variance in the selected radar images are explained. The 

new variable obtained by using the chosen 41 PCs were used for K-means 

clustering. The result of PCA and K-means for radar image data is shown in Table 

4.6. 
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Table 4.6 Result of PCA and K-means for radar image data 

Number of clusters Silhouette Pseudo-F 

2 0.33 37.74 

3 0.25 26.56 

4 0.23 22.71 

5 0.23 19.43 

6 0.21 17.74 

7 0.22 16.97 

8 0.23 16.47 

9 0.18 14.93 

10 0.19 14.52 

Table 4.6 shows that average Silhouette value for 2 clusters is the largest, 

with the trend of decreasing with the increase of cluster number. Similar conclusion 

can be drawn for the value of Pseudo-F. However, the Silhouette values for K 

starting from 3 to 10 are similar and the Pseudo-F values for K starting from 5 to 

10 are also in the similar range, so taking consideration of GMM result and in order 

to compare the results generated by both methods, 10 clusters will be used. The 

contour plots for average images for each cluster are shown in Table 4.7. 

Table 4.7 Contour plot of cluster member for 10 clusters in PCA and K-means 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

    

Cluster 5 Cluster 6 Cluster 7 Cluster 8 
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Table 4.7 Contour plot of cluster member for 10 clusters in PCA and K-means (cont’d) 

 Cluster 9 Cluster 10  

 

  

 

Based on figures shown in Table 4.7, there are also clusters with similar 

pattern. For example, cluster 1 and cluster 2. There is also similarity between cluster 

6, cluster 8 and cluster 10. The result of K-means are showing the same conclusion 

with HDDC. K-means also suggested that the number of optimal clusters should be 

smaller than 10. The second problem faced by K-means clustering is also in terms 

of inconsistency of cluster member.  

4.5 Modified High Dimensional Data Clustering 

The previous description about the result of HDDC and K-means suggest that 

10 clusters are noticeably too big for clustering the radar images. In order to 

determine best number of cluster, the result of HDDC and K-means for 2 to 10 

clusters will be reviewed. Figure 4.8 shows the plot of Pseudo-F and Silhouette of 

K-means and BIC for HDDC for K starting from 2 to 10. 

  

(a) (b) 

Figure 4.8 Evaluation criteria for clustering result (a) Pseudo-F (b) Silhouette (c) BIC 
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(c) 

Figure 4.8 Evaluation criteria for clustering result (a) Pseudo-F (b) Silhouette (c) BIC (cont’d) 

In Figure 4.8 (a), the highest value of Pseudo-F was obtained when 𝐾 = 2 

clusters. When 𝐾 = 3 clusters, the value of Pseudo-F dropped. This was the largest 

drop of Pseudo-F value, suggesting that 2 clusters might be suitable for radar 

images. Looking at Figure 4.8 (b), the largest Silhouette value also happened when 

𝐾 = 2. Because 2 clusters were more reasonable and supported by the value of 

Pseudo-F and Silhouette, it is decided that the method will be applied using 𝐾 = 2.  

The other problem of HDDC and K-means is inconsistency of cluster 

member.  With the observation classified into different cluster whenever the process 

is replicated, it is difficult to get a conclusion of which cluster exactly is the pattern 

belong. To fix this problem, a new method is proposed, i.e. by applying ensemble 

concept to HDDC. The HDDC is chosen because K-means require PCA for 

reducing the dimension of the data. PCA as a form of feature transformation is 

indeed useful for identifying important features but in the case of high dimensional 

data, it does not help since the relative distance and the effect of irrelevant 

dimension were still there (Parsons, Haque, & Liu, 2004). 

In the modified HDDC, bootstrap resampling process were applied to the data 

to select sample from the observations. Because the total observations are 161 

images, the sample for each replication is decided to be less than the total 

observations. Each replication would select 70% number of sample from total data, 

about 112 images, to build an HDDC model with 𝐾 = 2. The illustration for the 

resampling process is shown in Figure 4.9. 
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Figure 4.9 Illustration for resampling process of HDDC 

Each replication resulted in cluster member for each observation. After 

replicating the process for 1,000 times, there would be hundreds of cluster member 

for each observation, and the majority vote were used to decide which cluster does 

the observation belong to. In the case of 𝐾 = 2, the illustration of this process is 

shown in Figure 4.10. 

 

Figure 4.10 Illustration for selecting final cluster of modified HDDC 

From the total of 161 images, there were 70 images belong to cluster 1 and 

91 images belong to cluster 2. Figure 4.11 shows the average image of radar images 

for each cluster.  
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(a) (b) 

Figure 4.11 Average image of cluster member of (a) Cluster 1 and (b) Cluster 2 

The image in Figure 4.11 (a) shows small white area near the eastern part of 

Surabaya, and Figure 4.11 (b) shows white area in wider and bigger area compared 

to Cluster 1. However, the difference between clusters in terms of their shapes 

cannot be seen clearly using the average image. Therefore, contour plot will be 

employed to help identify the shape. The contour plot of average images of both 

clusters are shown in Figure 4.12. 

  

(a) (b) 

Figure 4.12 Contour plot of average image of (a) Cluster 1 and (b) Cluster 2 

Based on contour plot in Figure 4.12, the pattern of the shape is clearer than 

the average image in Figure 4.11. Figure 4.12 (a) suggested that the shape in Cluster 

1 is smaller circle, with the center part of the circle is in eastern part of Surabaya. 

This is expected because the heavy precipitation is selected using the precipitation 

data of ITS, which is located in East Surabaya. Meanwhile, Figure 4.12 (b) shows 

bigger circle and more smaller circle inside, spreading across Surabaya area.The 

figure suggests that the pattern in this cluster mostly are small circle near center 
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part of Surabaya, several big circles can be seen in the plot. The range of circle is 

wider compared to the contour image in cluster 1, with the outermost part of the 

circle is spread across the area of Surabaya, from the western part to the eastern part 

of Surabaya. 

The next point in the analysis is duration of heavy precipitation event. Several 

images are a sequence of events happening consecutively, therefore the duration of 

heavy precipitation event can be calculated by looking at the time of heavy 

precipitation event started until it ended. The comparison of precipitation duration 

between clusters are shown in Figure 4.10. 

 

Figure 4.13 Comparison of precipitation duration between clusters in 𝐾 = 2 

Based on Figure 4.13, it can be seen that the average duration of precipitation 

between clusters are slightly different, though it is not statistically significant. The 

average of precipitation duration is 20.49 minutes for Cluster 1 and 40.8 minutes 

for Cluster 2. In other words, if the shape of cloud in radar images belong to cluster 

1, then there will be heavy precipitation happening for an average of 20.49 minutes. 

Meanwhile, if the shape belong to Cluster 2, the heavy precipitation will last longer, 

with the average of 40.8 minutes. 

Based on the shape of precipitation system captured in the average image of 

each cluster member, Cluster 1 is a cluster for radar images on the occasion of heavy 

precipitation with small circle shape and short period of heavy rain. Meanwhile for 
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Cluster 2, the area of the circle is bigger, almost covering entire area of Surabaya 

and the period of rain is longer. 

To further confirm whether 𝐾 = 2 is suitable for clustering the pattern in 

heavy precipitation radar images in Surabaya, the HDDC is then applied again to 

the data for 𝐾 = 3. By using three clusters, there were 63 images belong to cluster 

1, 76 images belong to cluster 2, and 22 images belong to cluster 3. Figure 4.14 

shows the average image of radar images for each cluster in 𝐾 = 3.  

   

(a)  (b)  (c) 

Figure 4.14 Average image of cluster member of (a) Cluster 1 (b) Cluster 2, and (c) Cluster 3 

The image in Figure 4.14 (a) is similar to the image in Figure 4.11 (a) and the 

image in Figure 4.14 (b) is similar to the image in Figure 4.11 (b). The white area 

in the image for Cluster 3 in Figure 4.14 (c) is bigger than Cluster 2, showing larger 

area of heavy precipitation. The contour plot of average image of the three clusters 

are shown in Figure 4.15. 

   

(a)  (b) (c) 

Figure 4.15 Contour plot of average image of (a) Cluster 1, (b) Cluster 2 and (c) Cluster 3 

Figure 4.15 (a) and (b) suggested that the pattern is similar to the contour plot 

shown in Figure 4.12. The area with bigger circle and more complicated pattern 
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that belong to Cluster 3 is shown in Figure 4.15 (c). The pattern in Cluster 3 almost 

covered entire maps area. Figure 4.10 depicted the comparison of precipitation 

duration between clusters are shown in. 

 

Figure 4.16 Comparison of precipitation duration between clusters in 𝐾 = 3 

Based on Figure 4.16, the average duration of precipitation between the three 

clusters are also slightly different but not statistically significant. The average of 

precipitation duration is 27.61 minutes for Cluster 1, 33.03 minutes for Cluster 2, 

and 44.56 minutes for Cluster 3. However, the range of precipitation duration in 

Cluster 2 and Cluster 3 did not differ much. The number of radar images in Cluster 

3 is also the smallest between clusters. With the similar pattern and similar range 

of precipitation duration between Cluster 2 and Cluster 3, it can be concluded that 

the addition of another cluster did not give significant change on the clustering 

result of radar images. Hence, the suitable number of cluster for the heavy 

precipitation radar images are 2 clusters. 
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CHAPTER 5  

CONCLUSION AND SUGGESTION 

5.1 Conclusion 

A threshold of 1.5 mm per 10 minutes was determined for heavy precipitation 

in ITS. This threshold was then used as criteria for selecting radar images for the 

clustering process to identify the shape of precipitation system in Surabaya, East 

Java. The result of both HDDC and K-means came with 10 clusters which was 

noticeably too big for radar images data, as there were several clusters having the 

same pattern of precipitation system. The second problem with those two method 

was inconsistent cluster member when the analysis is replicated. To solve this 

problem, ensemble concept was applied to HDDC. By using 2 clusters, this method 

provided consistent cluster member. In addition, there were remarkable different 

characteristics found in each cluster. The first cluster was represented by small-

shaped precipitation system in the center of Surabaya with shorter duration of heavy 

precipitation. The second cluster had bigger circle-shaped precipitation system, 

almost covering the entire area of Surabaya and had longer duration of heavy 

precipitation. 

5.2 Suggestion 

The problem faced in this research is the lack of dates and time of heavy 

precipitation event. The current data used in this research is precipitation data in 

ITS, so the precipitation recorded in this dataset is only rainfall happened in ITS 

area. Surabaya is a big city consisted of several districts, and the change of weather 

in some districts can be really different in similar time. The addition of precipitation 

data in other area of Surabaya will help on increasing the number of selected 

samples and will help to capture more shapes of precipitation system in Surabaya. 
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ENCLOSURE 

Enclosure 1. Precipitation data in ITS 

No Date UTC Precip Accumulation 

1 2017-10-18 0:03 0 

2 2017-10-18 0:09 0 

3 2017-10-18 0:14 0 

4 2017-10-18 0:19 0 

5 2017-10-18 0:24 0 

6 2017-10-18 0:30 0 

7 2017-10-18 0:35 0 

8 2017-10-18 0:40 0 

9 2017-10-18 0:46 0 

10 2017-10-18 0:51 0 

11 2017-10-18 0:56 0 

12 2017-10-18 1:02 0 

13 2017-10-18 1:07 0 

14 2017-10-18 1:12 0 

15 2017-10-18 1:18 0 

16 2017-10-18 1:23 0 

⋮ ⋮ ⋮ ⋮ 

41415 2018-03-31 22:18 0 

41416 2018-03-31 22:24 0 

41417 2018-03-31 22:29 0 

41418 2018-03-31 22:34 0 

41419 2018-03-31 22:40 0 

41420 2018-03-31 22:45 0 

41421 2018-03-31 22:50 0 

41422 2018-03-31 22:55 0 

41423 2018-03-31 23:01 0 

41424 2018-03-31 23:06 0 

41425 2018-03-31 23:11 0 

41426 2018-03-31 23:17 0 

41427 2018-03-31 23:22 0 

41428 2018-03-31 23:27 0 

41429 2018-03-31 23:33 0 

41430 2018-03-31 23:38 0 

41431 2018-03-31 23:43 0 

41432 2018-03-31 23:49 0 

41433 2018-03-31 23:55 0 
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Enclosure 2. Example of radar image 

 

 

... 
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Enclosure 3. Syntax of R for preprocessing precipitation data and radar image 

keputih=read.csv('d:/Radar/precipITS-UTC.csv',header=T) 

#Data of precipitation in keputih 

keputih[,2]=substr(gsub(":","",keputih[,2]),1,3) 

keputih[,1]=gsub("-","",keputih[,1]) 

 

#Radar image 

library(png) 

library(grid) 

library(gridExtra) 

library(imager) 

library(magick) 

 

setwd('d:/Radar/colorcut') 

library(data.table) 

file1=list.files(pattern='.png',full.names=FALSE) 

files=file1 

files=gsub("zoomBlack_","",files) 

files=gsub(".png","",files) 

files=substr(files,1,12) 

 

precip=aggregate(keputih[,4],list(keputih[,1],keputih[,2]),'sum') 

time=paste(precip[,1],'_',substr(precip[,2],1,3)) 

time=gsub(" ","",time) 

data=cbind(precip,time) 

 

#data which has precip>=1.5 

id=which(precip[,3]>=1.5) 

n=length(id) 

hprecip=matrix(nrow=n,ncol=3) 

for (i in 1:n){ 

  num=which(files==time[id[i]]) 

  num=ifelse(length(num)>1,num[1],ifelse(length(num)<1,NA,num)) 

  hprecip[i,1]=num 

  hprecip[i,2]=time[id[i]] 

  hprecip[i,3]=precip[id[i],3] 

} 

hprecip=transform(hprecip) 

colnames(hprecip)=c('num','name','prcp') 

hprecip.fix=na.omit(hprecip) 

 

#selecting image 

setwd('d:/Radar/colorcut') 

img=NULL 

file.precip=file1[as.numeric(levels(hprecip[,1]))] 

for (i in 1:length(file.precip)){ 

 img[[i]]=readPNG(file.precip[i]) 

} 

 

#matrix data for R 

dataclust=matrix(nrow=length(file.precip),ncol=150*150) 

for (i in 1:length(file.precip)){ 

 dataclust[i,]=as.vector(img[[i]][,,1]*255) 

} 

rownames(dataclust)=file.precip 

 

library(evir) 

cek.gpd=read.csv('d:/precip161.csv',header=FALSE) 

output=gpd(cek.gpd[,2],1.5) 

plot.gpd(output) 

param=output$par.ests 
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Enclosure 4. Syntax of R for modified HDDC 

N=length(dataclust[,1]) 

n=floor(0.7*N) 

no=c(1:N) 

nama=rownames(dataclust) 

res=matrix(ncol=100,nrow=N) 

for (i in 1:100){ 

 sampel=sample(no,n) 

 clust=hddc(dataclust[sampel,],K=2,init='mini-em') 

 res.temp=clust$class 

 nama.sampel=rownames(dataclust[sampel,]) 

 nama.id=match(nama,nama.sampel) 

 for (j in 1:N){ 

  res[j,i]=res.temp[nama.id[j]] 

 } 

} 

write.csv(res,'d:/result/2/r8.csv') 

res=read.csv('d:/result/3/gmm3.csv',header=TRUE) 

 

#sorting the cluster 

res1=res 

for (j in 1:100){ 

 m=max(res[,j],na.rm=TRUE) 

 avg=matrix(nrow=m) 

 for (i in 1:m){ 

  cl=which(res[,j]==i) 

  avg[i]=mean(as.vector(dataclust[cl,])) 

 } 

 temp=sort(avg) 

 for (k in 1:m){ 

  id.old=which(avg==temp[k]) 

  id.new=which(res[,j]==id.old) 

  res1[id.new,j]=k 

 } 

} 

write.csv(res1,'d:/result/3/gmm3-res1.csv') 

 

#function for computing SS 

ss <- function(x) sum(scale(x, scale = FALSE)^2) 

ssclust=function(x,kelas){ 

totss=ss(x) 

centers=matrix(ncol=length(x[1,]),nrow=max(kelas)) 

for (i in 1:max(kelas)){ 

 kelas.id=which(kelas==i) 

 centers[i,]=colMeans(x[kelas.id,]) 

} 

betweenss=ss(centers[kelas,]) 

output=list(totss,betweenss) 

names(output)=c('totss','betweenss') 

return(output) 

} 

 

getmode <- function(v) { 

   uniqv <- unique(na.omit(v)) 

   uniqv[which.max(tabulate(match(v, uniqv)))] 

} 

final.cl=NULL 

for (i in 1:N){ 

 final.cl[i]=getmode(t(res1[i,])) 

} 

write.csv(final.cl,'d:/result/3/gmm3-finalcl.csv') 
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Enclosure 5. Syntax of R for PCA and K-means 

#PCA 

pc=prcomp(dataclust) 

summary(pc) 

screeplot(pc,npcs=50,type='lines') 

#pilih hingga PC 41, 80% variance 

dataclust.pc=pc$x[,1:41] 

 

library(cluster) 

cl.kmeans.pc=NULL 

tabel.pc=matrix(ncol=4,nrow=10) 

for (i in 2:10){ 

 cl.kmeans.pc[[i]]=kmeans(dataclust.pc,i,iter.max=100) 

 tabel.pc[i,1]=cl.kmeans.pc[[i]]$tot.withinss 

 tabel.pc[i,2]=cl.kmeans.pc[[i]]$betweenss 

 temp=silhouette(cl.kmeans.pc[[i]]$cluster,dist(dataclust.pc)) 

 tabel.pc[i,3]=mean(temp[,3]) 

 tabel.pc[i,4]=(tabel.pc[i,2]/(i-1))/(tabel.pc[i,1]/(n-i)) 

} 

colnames(tabel.pc)=c('withinss','betweenss','silhouette','pseudoF') 
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Enclosure 6. Syntax of R for processing clustering result 

img1=NULL 

for (i in 1:length(file.precip)){ 

setwd('d:/Radar/colorcut') 

 dev.off() 

 img1[[i]]=readPNG(nama[i]) 

 grid.raster(img1[[i]][,,1]) 

 setwd('d:/result/3/finalcl') 

 name=paste(final.cl[i],'-',file.precip[i],sep='') 

 dev.print(png,filename=name,width=150,height=150) 

} 

 

library(magick) 

img2=NULL 

setwd('d:/result/2/finalcl') 

daftar=list.files(pattern='.png',full.names=FALSE) 

no.clust=substr(daftar,1,1) 

i=1 

img2=NULL 

setwd('d:/result/2/finalcl') 

no=which(no.clust==i) 

img2=image_read(daftar[no]) 

img.avg=image_average(img2) 

plot(as.raster(img.avg)) 

setwd('d:/result/2') 

name=paste('cluster',i,'.png',sep='') 

dev.copy(png,name) 

dev.off() 

 

#contour map 

a=readPNG('d:/result/2/cluster1.png') 

contour(a[,,1]) 

name=paste('contour2.png',sep='') 

dev.copy(png,name) 

dev.off() 
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Enclosure 7. Selected dates above the threshold 

No Date Time Precipitation  No Date Time Precipitation 

1 20171023 12:50 7.6  42 20171127 06:00 9.6 

2 20171023 13:00 1.5  43 20171127 06:10 4.1 

3 20171023 13:10 3.3  44 20171127 08:00 2.3 

4 20171023 13:20 4.6  45 20171129 10:00 3 

5 20171023 13:30 1.7  46 20171129 10:10 2.1 

6 20171023 14:00 1.8  47 20171203 09:20 1.5 

7 20171023 14:10 6.3  48 20171203 09:30 7.1 

8 20171023 14:20 2  49 20171205 09:10 7.6 

9 20171023 14:30 4.6  50 20171205 09:20 3.3 

10 20171023 14:40 2.5  51 20171205 09:30 5.6 

11 20171025 17:40 2  52 20171205 09:40 5.6 

12 20171104 17:40 3.3  53 20171206 12:30 3.8 

13 20171113 08:20 1.5  54 20171206 12:40 5.6 

14 20171117 10:10 3.5  55 20171206 12:50 4 

15 20171120 11:00 1.8  56 20171206 13:00 8.7 

16 20171122 09:50 3.1  57 20171206 13:20 3.3 

17 20171122 10:10 6.3  58 20171207 09:10 9.6 

18 20171122 10:20 1.8  59 20171207 09:20 2.5 

19 20171122 10:30 1.5  60 20171207 09:40 6.4 

20 20171122 10:40 1.5  61 20171207 10:00 5.6 

21 20171122 10:50 1.6  62 20171207 10:10 3 

22 20171124 04:30 4.3  63 20171207 10:20 7.9 

23 20171124 04:40 6.1  64 20171208 05:30 2.5 

24 20171124 04:50 14.2  65 20171208 08:20 1.6 

25 20171124 05:00 5.1  66 20171208 08:30 1.7 

26 20171124 05:10 13.7  67 20171208 08:50 4.9 

27 20171124 05:20 2.6  68 20171208 09:10 2.3 

28 20171124 05:30 3.3  69 20171211 10:40 3 

29 20171124 05:40 2.3  70 20171214 10:00 1.8 

30 20171124 06:00 2.3  71 20171214 10:10 1.8 

31 20171124 06:10 3.5  72 20171220 08:20 2.6 

32 20171124 06:20 1.8  73 20171220 08:30 3 

33 20171124 06:30 3.3  74 20171230 04:50 1.5 

34 20171124 06:50 2  75 20171230 05:00 5.1 

35 20171124 07:20 2.1  76 20180101 14:10 1.8 

36 20171126 05:50 1.5  77 20180102 16:50 4.3 

37 20171126 06:00 9.4  78 20180102 17:00 3.8 

38 20171127 05:10 7.3  79 20180103 20:30 2 

39 20171127 05:30 4.6  80 20180103 20:50 3.8 

40 20171127 05:40 3.8  81 20180105 12:40 1.5 

41 20171127 05:50 8.9  82 20180106 07:30 8.4 
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Enclosure 7. Selected dates above the threshold (cont’d) 

No Date Time Precipitation  No Date Time Precipitation 

83 20180106 07:40 8.9  124 20180209 08:20 1.7 

84 20180106 07:50 8.1  125 20180209 08:50 10.4 

85 20180106 08:00 4.1  126 20180209 09:00 1.8 

86 20180106 08:10 6.8  127 20180209 09:10 3 

87 20180108 14:00 5.1  128 20180210 13:40 6.1 

88 20180108 15:50 4.8  129 20180210 14:00 3.8 

89 20180110 13:40 16  130 20180210 14:10 8.1 

90 20180111 10:20 5.3  131 20180210 14:20 5.6 

91 20180111 10:30 1.8  132 20180213 06:20 2.3 

92 20180111 10:40 1.5  133 20180213 07:20 3.8 

93 20180111 11:50 4.6  134 20180213 07:30 1.5 

94 20180118 13:30 2  135 20180215 06:30 4.3 

95 20180118 13:40 8.4  136 20180215 09:30 1.5 

96 20180118 13:50 6.9  137 20180215 09:40 9.9 

97 20180118 15:10 2.5  138 20180215 09:50 7.1 

98 20180119 08:20 5.9  139 20180215 10:00 2.5 

99 20180119 08:30 11.2  140 20180215 10:10 2.1 

100 20180119 08:40 6.1  141 20180215 10:20 2.5 

101 20180119 08:50 2.8  142 20180215 10:30 2.6 

102 20180119 09:00 1.5  143 20180215 10:40 1.5 

103 20180119 11:10 1.5  144 20180215 11:30 1.5 

104 20180120 08:00 3.8  145 20180216 14:50 6.1 

105 20180120 08:10 4.1  146 20180220 13:10 5.6 

106 20180120 08:20 2.5  147 20180220 13:20 2.5 

107 20180120 15:30 5.3  148 20180220 13:30 2.3 

108 20180120 15:40 13  149 20180225 17:20 2 

109 20180122 22:30 1.5  150 20180225 17:30 4.9 

110 20180122 22:40 1.5  151 20180225 17:40 4.5 

111 20180124 12:40 2.8  152 20180225 18:10 11.2 

112 20180124 13:20 4.1  153 20180226 04:00 2.8 

113 20180125 05:50 6.1  154 20180226 04:10 1.7 

114 20180131 09:10 2.3  155 20180226 04:20 2.6 

115 20180201 03:50 2  156 20180226 04:30 5.8 

116 20180201 04:00 5.6  157 20180226 04:40 4.1 

117 20180201 04:20 8.1  158 20180227 13:00 2.3 

118 20180201 04:30 3.6  159 20180304 04:10 6.9 

119 20180202 12:30 1.5  160 20180304 04:20 4 

120 20180207 10:00 5.1  161 20180307 10:00 5.3 

121 20180208 09:00 3.8  162 20180307 10:10 2.3 

122 20180208 09:30 2.1  163 20180307 10:20 1.8 

123 20180208 09:40 1.5  164 20180307 12:20 1.8 
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Enclosure 7. Selected dates above the threshold (cont’d) 

No Date Time Precipitation  No Date Time Precipitation 

165 20180308 10:10 2.8  180 20180324 15:00 2.8 

166 20180308 10:20 3.8  181 20180329 12:10 2 

167 20180308 10:30 6.6  182 20180329 12:20 3.3 

168 20180308 10:40 12.4  183 20180329 13:50 1.5 

169 20180308 10:50 8.9  184 20180330 04:40 5.1 

170 20180308 11:00 4.3  185 20180330 04:50 2 

171 20180308 11:20 3.3  186 20180401 11:30 2 

172 20180308 11:30 1.8  187 20180401 13:00 1.6 

173 20180309 11:40 1.5  188 20180401 13:10 2.7 

174 20180313 08:40 2  189 20180402 06:20 5.6 

175 20180316 13:20 1.6  190 20180402 06:30 4.8 

176 20180317 08:30 3.3  191 20180402 06:40 2 

177 20180317 08:40 6.9  192 20180402 09:10 9.2 

178 20180320 13:10 3.3  193 20180402 09:20 5.8 

179 20180324 14:50 1.5      
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Enclosure 8. Output of gpd function in R (from ‘evir’ package) 

$n 

[1] 161 

 

$data 

  [1] 16.0  5.3 13.0  4.1  6.1  5.1  3.8  9.9  5.6  2.8  1.7  2.6  5.8  6.9  4.0 

 [16]  2.0  2.8  2.0  3.3  5.1  2.0  3.5  9.4  3.0  7.1  7.6  3.3  5.6  5.6  5.6 

 [31]  4.0  8.7  2.5  3.0  1.6  3.0  7.6  1.8  6.3  2.0  4.6  2.5  5.1  1.8  4.3 

 [46]  3.8  2.0  3.8  8.9  8.1  4.1  2.0  5.1  4.8  5.3  1.8  4.6  2.0  8.4  6.9 

 [61]  5.9 11.2  6.1  2.8  3.8  4.1  2.5  2.8  2.3  2.0  8.1  3.8  2.1 10.4  1.8 

 [76]  3.0  6.1  3.8  8.1  2.3  4.3  7.1  6.1  2.5  2.3  2.0  4.9  4.5 11.2  4.1 

 [91]  2.3  3.3  3.3  3.3  3.5  1.8  6.3  1.8  1.6  4.3  6.1 14.2  5.1 13.7  2.3 

[106]  2.3  3.3  7.3  4.6  3.8  8.9  3.8  3.3  5.6  4.9  3.3  4.6  1.7  8.4  6.8 

[121]  5.6  3.6  1.7  5.6  2.5  2.1  2.5  2.6  1.6  6.9  3.1  2.6  3.3  1.8  2.0 

[136]  2.1  9.6  4.1  2.3  1.8 

 

$threshold 

[1] 1.5 

 

$p.less.thresh 

[1] 0.1304348 

 

$n.exceed 

[1] 140 

 

$method 

[1] "ml" 

 

$par.ests 

        xi       beta  

-0.1145074  3.4711514  

 

$par.ses 

        xi       beta  

0.07947918 0.40131937  

 

$varcov 

            [,1]        [,2] 

[1,]  0.00631694 -0.02444071 

[2,] -0.02444071  0.16105723 

 

$information 

[1] "observed" 

 

$converged 

[1] 0 

 

$nllh.final 

[1] 298.186 

 

attr(,"class") 

[1] "gpd" 
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Enclosure 9. Selected images for cluster analysis 
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Enclosure 9. Selected images for cluster analysis (cont’d) 
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Enclosure 9. Selected images for cluster analysis (cont’d) 

 

 

 



 

62 

 

Enclosure 9. Selected images for cluster analysis (cont’d) 
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Enclosure 10. Result of HDDC for 𝐾 = 2 to 10 

2 Cluster 

HIGH DIMENSIONAL DATA CLUSTERING 

MODEL: AKJBKQKDK 

  Posterior probabilities of groups 

       1     2 

   0.453 0.547 

      Intrinsic dimensions of the classes: 

       1 2 

  dim: 2 3 

      

Class       a1       a2      a3 

    1 13434150  6231530       . 

    2 23799683 10395782 9794068 

       1    2 

Bk: 1443 4385 

BIC:  -39636666  

 

3 Cluster 

HIGH DIMENSIONAL DATA CLUSTERING 

MODEL: AKJBKQKDK 

  Posterior probabilities of groups 

       1     2     3 

   0.199 0.404 0.398 

      Intrinsic dimensions of the classes: 

       1 2 3 

  dim: 1 3 3 

      

Class       a1       a2      a3 

    1 22609884        .       . 

    2 21613930 13689825 9874091 

    3 19223280  8414224 7061814 

      1    2    3 

Bk: 528 4428 2466 

BIC:  -39466383  

 

4 Cluster 

HIGH DIMENSIONAL DATA CLUSTERING 

MODEL: AKJBKQKDK 

  Posterior probabilities of groups 

        1     2     3     4 

   0.0683 0.273 0.335 0.323 

      Intrinsic dimensions of the classes: 

       1 2 3 4 

  dim: 1 4 4 6 

      

Class       a1       a2       a3      a4      a5      a6 

    1 84370750        .        .       .       .       . 

    2 23440149 11558599  7854835 6744402       .       . 

    3 14305450  9640678  5580017 5260105       .       . 

    4 16856223 12387891 10322929 7202967 6681015 5901534 

       1   2    3    4 

Bk: 3033 793 2463 3064 

BIC:  -39932456  

 

5 Cluster 

HIGH DIMENSIONAL DATA CLUSTERING 

MODEL: AKJBKQKDK 

  Posterior probabilities of groups 

       1     2     3    4      5 

   0.292 0.205 0.143 0.28 0.0807 

      Intrinsic dimensions of the classes: 

       1 2 3 4  5 

  dim: 3 2 2 3 12 

      

Class       a1       a2       a3       a4      a5      a6      a7      a8 

    1 30462564 13082696 11176745        .       .       .       .       . 

    2 17413446  6197114        .        .       .       .       .       . 

    3 38775435 15658996        .        .       .       .       .       . 

    4 20578707  9088262  7280975        .       .       .       .       . 
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Enclosure 10. Result of HDDC for 𝐾 = 2 to 10 (cont’d) 

  5 25373148 24266273 13315993 11456497 9687602 6614858 5064277 4781268 

      

Class      a9     a10     a11     a12 

    1       .       .       .       . 

    2       .       .       .       . 

    3       .       .       .       . 

    4       .       .       .       . 

    5 3924876 3201302 2611896 2463049 

       1   2    3    4     5 

Bk: 3948 521 2466 2362 1e-08 

BIC:  -34350589  

Information: b < 10e-6 

 

6 Cluster 

HIGH DIMENSIONAL DATA CLUSTERING 

MODEL: AKJBKQKDK 

  Posterior probabilities of groups 

      1     2     3     4      5      6 

   0.13 0.416 0.267 0.106 0.0559 0.0248 

      Intrinsic dimensions of the classes: 

       1 2 3 4 5 6 

  dim: 1 6 3 4 8 2 

      

Class       a1       a2       a3       a4      a5      a6      a7      a8 

    1 50750690        .        .        .       .       .       .       . 

    2  8302861  5866061  5042080  4015506 3121975 2701138       .       . 

    3 22839573 12415134 10301784        .       .       .       .       . 

    4 26093769 24725207 12922298 10411906       .       .       .       . 

    5 36345689 19737285 12845920 11279218 9975880 8028252 7690498 5110341 

    6 49913106 42972163        .        .       .       .       .       . 

       1    2    3    4     5    6 

Bk: 4352 1065 3418 1987 1e-08 1480 

BIC:  -36619357  

Information: b < 10e-6 

 

7 Cluster 

HIGH DIMENSIONAL DATA CLUSTERING 

MODEL: AKJBKQKDK 

  Posterior probabilities of groups 

       1      2     3     4      5    6     7 

   0.112 0.0435 0.242 0.199 0.0745 0.13 0.199 

      Intrinsic dimensions of the classes: 

        1 2 3 4  5 6 7 

  dim: 17 3 3 4 11 2 3 

      

Class       a1       a2       a3       a4       a5       a6      a7      a8 

    1 16809441 12559051 11680382  8260305  7812441  7209705 5551318 5187663 

    2 62938643 30668812 15794837        .        .        .       .       . 

    3 17925954 11773871  8774191        .        .        .       .       . 

    4 21609450 14980101 12817927  8275121        .        .       .       . 

    5 36651954 24018474 22732333 16125981 12100587 11168832 9682366 7789437 

    6 39412201 18048630        .        .        .        .       .       . 

    7 13448000  5960719  4009901        .        .        .       .       . 

      

Class      a9     a10     a11     a12     a13     a14     a15     a16     a17 

    1 4218283 4060392 3540960 3413633 3038300 2661918 2087905 1794286 1766535 

    2       .       .       .       .       .       .       .       .       . 

    3       .       .       .       .       .       .       .       .       . 

    4       .       .       .       .       .       .       .       .       . 

    5 6697302 6111558 5692719       .       .       .       .       .       . 

    6       .       .       .       .       .       .       .       .       . 

    7       .       .       .       .       .       .       .       .       . 

        1   2    3    4     5    6   7 

Bk: 1e-08 766 2000 3015 1e-08 3116 388 

BIC:  -27589760  

Information: b < 10e-6 
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Enclosure 10. Result of HDDC for 𝐾 = 2 to 10 (cont’d) 

8 Cluster 

HIGH DIMENSIONAL DATA CLUSTERING 

MODEL: AKJBKQKDK 

  Posterior probabilities of groups 

       1      2     3      4      5     6      7      8 

   0.224 0.0373 0.224 0.0932 0.0932 0.211 0.0807 0.0373 

      Intrinsic dimensions of the classes: 

       1 2 3  4  5 6 7 8 

  dim: 5 2 5 14 14 5 4 2 

      

Class       a1       a2       a3       a4       a5      a6      a7      a8 

    1 15686151 11772520 10979803  6456708  5299372       .       .       . 

    2 60299723 25870419        .        .        .       .       .       . 

    3  9722796  5714025  4664890  3806705  2589490       .       .       . 

    4 30155196 16967517 14912304 13267192 11126319 9737353 8982053 8549735 

    5 29568068 20948013 14307363 12811022 11110191 9068779 7520557 5628422 

    6 24158347 13940083  8905481  8454097  6548175       .       .       . 

    7 33157854 21260016 14230881 11474569        .       .       .       . 

    8 80814360 22290591        .        .        .       .       .       . 

      

Class      a9     a10     a11     a12     a13     a14 

    1       .       .       .       .       .       . 

    2       .       .       .       .       .       . 

    3       .       .       .       .       .       . 

    4 7420185 6323352 5478425 4873873 3923585 3243008 

    5 5164454 4454518 4197295 3506745 3305305 2791641 

    6       .       .       .       .       .       . 

    7       .       .       .       .       .       . 

    8       .       .       .       .       .       . 

       1    2   3     4     5    6    7   8 

Bk: 2150 1151 401 1e-08 1e-08 2092 1743 596 

BIC:  -27960586  

Information: b < 10e-6 

 

9 Cluster 

HIGH DIMENSIONAL DATA CLUSTERING 

MODEL: AKJBKQKDK 

  Posterior probabilities of groups 

        1     2     3     4     5      6     7      8      9 

   0.0621 0.087 0.193 0.149 0.149 0.0807 0.155 0.0683 0.0559 

      Intrinsic dimensions of the classes: 

       1 2 3 4 5  6 7 8 9 

  dim: 9 1 4 6 5 12 4 3 8 

      

Class       a1       a2       a3       a4       a5       a6      a7      a8 

    1 20163560 16576022 14181839 11288327  9438233  8053944 7118962 6183126 

    2 63961007        .        .        .        .        .       .       . 

    3 14360058  7292060  5327030  4659397        .        .       .       . 

    4 18199343 14616402  8954940  6530158  5502916  4436560       .       . 

    5 21841258 16063134 11184080  9816494  7654057        .       .       . 

    6 24229371 18443839 12243058  9910733  7368539  6355837 5809734 5213549 

    7 22058770 15405906 11123362  8635775        .        .       .       . 

    8 38419394 19020257 15258158        .        .        .       .       . 

    9 36989665 20439508 18914324 16065675 11975970 10376616 9540917 8544020 

      

Class      a9     a10     a11     a12 

    1 4486179       .       .       . 

    2       .       .       .       . 

    3       .       .       .       . 

    4       .       .       .       . 

    5       .       .       .       . 

    6 4346815 3471025 2790030 1444817 

    7       .       .       .       . 

    8       .       .       .       . 

    9       .       .       .       . 

        1    2   3    4    5     6    7    8     9 

Bk: 1e-08 4028 355 1078 2273 1e-08 2365 1290 1e-08 

BIC:  -27398505  

Information: b < 10e-6 
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Enclosure 10. Result of HDDC for 𝐾 = 2 to 10 (cont’d) 

10 Cluster 

HIGH DIMENSIONAL DATA CLUSTERING 

MODEL: AKJBKQKDK 

  Posterior probabilities of groups 

        1      2     3      4      5     6     7      8     9    10 

   0.0994 0.0559 0.087 0.0745 0.0683 0.199 0.087 0.0435 0.124 0.161 

      Intrinsic dimensions of the classes: 

       1 2  3 4 5 6  7 8 9 10 

  dim: 1 8 13 2 6 2 13 6 2  3 

      

Class       a1       a2       a3       a4       a5       a6      a7      a8 

   1  40869266        .        .        .        .        .       .       . 

   2  14910322 12504079  9773614  7698456  5921972  4505648 4253933 3567383 

   3  27967427 20747315 15374835 11604701  9834446  9238314 7190629 6759226 

   4  43659226 16910200        .        .        .        .       .       . 

   5  34270706 24351845 20395215 15009952 11880413 10287985       .       . 

   6   9289980  4667513        .        .        .        .       .       . 

   7  23321935 18742729 12936128  9440552  8514701  7382178 6042093 5656567 

   8  35799583 34437851 25495006 18272976 16048319 13590211       .       . 

   9  33376742 14925246        .        .        .        .       .       . 

   10 19600942 10053818  9805429        .        .        .       .       . 

      

Class      a9     a10     a11     a12     a13 

   1        .       .       .       .       . 

   2        .       .       .       .       . 

   3  6164259 5952322 4985708 3876302 3339843 

   4        .       .       .       .       . 

   5        .       .       .       .       . 

   6        .       .       .       .       . 

   7  5162021 3934019 3778506 3185260 2784079 

   8        .       .       .       .       . 

   9        .       .       .       .       . 

   10       .       .       .       .       . 

       1     2     3    4   5   6     7     8    9   10 

Bk: 4360 1e-08 1e-08 1579 942 418 1e-08 1e-08 3161 2006 

BIC:  -22296092  

Information: b < 10e-6 
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Enclosure 11. Result of PCA analysis in R 

Importance of components: 

                             PC1       PC2       PC3       PC4       PC5 

Standard deviation     4781.3952 2.511e+03 2.445e+03 2.279e+03 2.036e+03 

Proportion of Variance    0.2092 5.771e-02 5.468e-02 4.751e-02 3.791e-02 

Cumulative Proportion     0.2092 2.669e-01 3.216e-01 3.691e-01 4.070e-01 

                             PC6       PC7       PC8       PC9      PC10 

Standard deviation     1.836e+03 1.748e+03 1.609e+03 1.571e+03 1.507e+03 

Proportion of Variance 3.084e-02 2.794e-02 2.369e-02 2.258e-02 2.077e-02 

Cumulative Proportion  4.378e-01 4.658e-01 4.895e-01 5.120e-01 5.328e-01 

                            PC11      PC12      PC13      PC14      PC15 

Standard deviation     1398.8390 1.332e+03 1276.2975 1.262e+03 1.230e+03 

Proportion of Variance    0.0179 1.623e-02    0.0149 1.458e-02 1.385e-02 

Cumulative Proportion     0.5507 5.669e-01    0.5818 5.964e-01 6.103e-01 

                            PC16      PC17      PC18      PC19      PC20 

Standard deviation     1.132e+03 1.102e+03 1.072e+03 1029.6839 1.016e+03 

Proportion of Variance 1.172e-02 1.112e-02 1.051e-02    0.0097 9.450e-03 

Cumulative Proportion  6.220e-01 6.331e-01 6.436e-01    0.6533 6.628e-01 

                            PC21      PC22      PC23      PC24     PC25 

Standard deviation     1.002e+03 979.20228 948.59215 943.31120 923.4875 

Proportion of Variance 9.190e-03   0.00877   0.00823   0.00814   0.0078 

Cumulative Proportion  6.720e-01   0.68073   0.68896   0.69710   0.7049 

                            PC26      PC27      PC28      PC29      PC30 

Standard deviation     901.20721 892.06351 879.96002 875.53115 856.35847 

Proportion of Variance   0.00743   0.00728   0.00708   0.00701   0.00671 

Cumulative Proportion    0.71234   0.71962   0.72670   0.73372   0.74043 

                            PC31      PC32      PC33      PC34      PC35 

Standard deviation     838.92241 832.29866 816.14414 806.38642 784.94301 

Proportion of Variance   0.00644   0.00634   0.00609   0.00595   0.00564 

Cumulative Proportion    0.74687   0.75321   0.75930   0.76525   0.77089 

                            PC36      PC37      PC38      PC39      PC40 

Standard deviation     775.93119 759.54691 751.50161 743.61360 730.60356 

Proportion of Variance   0.00551   0.00528   0.00517   0.00506   0.00488 

Cumulative Proportion    0.77640   0.78168   0.78684   0.79190   0.79679 

                            PC41      PC42      PC43      PC44      PC45 

Standard deviation     715.68903 713.76373 704.33743 691.32892 684.73574 

Proportion of Variance   0.00469   0.00466   0.00454   0.00437   0.00429 

Cumulative Proportion    0.80147   0.80613   0.81067   0.81505   0.81934 

                            PC46      PC47      PC48      PC49      PC50 

Standard deviation     673.85239 664.51147 652.02394 648.74430 640.88782 

Proportion of Variance   0.00415   0.00404   0.00389   0.00385   0.00376 

Cumulative Proportion    0.82349   0.82753   0.83142   0.83527   0.83903 

                            PC51      PC52      PC53      PC54      PC55 

Standard deviation     633.57988 629.58827 622.41089 615.92971 608.95971 

Proportion of Variance   0.00367   0.00363   0.00354   0.00347   0.00339 

Cumulative Proportion    0.84270   0.84633   0.84988   0.85335   0.85674 

                            PC56      PC57      PC58      PC59      PC60 

Standard deviation     606.48874 599.09740 592.24642 586.06861 579.22140 

Proportion of Variance   0.00337   0.00328   0.00321   0.00314   0.00307 

Cumulative Proportion    0.86011   0.86339   0.86660   0.86974   0.87281 

                            PC61      PC62      PC63      PC64      PC65 

Standard deviation     570.95682 570.37051 561.14527 554.75708 550.18244 

Proportion of Variance   0.00298   0.00298   0.00288   0.00282   0.00277 

Cumulative Proportion    0.87579   0.87877   0.88165   0.88447   0.88724 

                            PC66      PC67      PC68      PC69      PC70 

Standard deviation     547.70924 539.53777 535.26703 534.72827 529.56877 

Proportion of Variance   0.00274   0.00266   0.00262   0.00262   0.00257 

Cumulative Proportion    0.88998   0.89265   0.89527   0.89788   0.90045 
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Enclosure 11. Result of PCA analysis in R (cont’d) 

                            PC71      PC72      PC73      PC74      PC75 

Standard deviation     516.47732 513.86873 508.11815 506.78368 504.37252 

Proportion of Variance   0.00244   0.00242   0.00236   0.00235   0.00233 

Cumulative Proportion    0.90289   0.90531   0.90767   0.91002   0.91235 

                            PC76      PC77      PC78      PC79      PC80 

Standard deviation     499.39413 494.03129 491.09791 488.12404 484.03791 

Proportion of Variance   0.00228   0.00223   0.00221   0.00218   0.00214 

Cumulative Proportion    0.91463   0.91686   0.91907   0.92125   0.92339 

                            PC81      PC82      PC83      PC84      PC85 

Standard deviation     473.93877 470.19661 466.52393 464.94782 460.76382 

Proportion of Variance   0.00206   0.00202   0.00199   0.00198   0.00194 

Cumulative Proportion    0.92545   0.92747   0.92946   0.93144   0.93338 

                            PC86      PC87      PC88      PC89      PC90 

Standard deviation     451.41851 450.03758 447.65132 445.27667 440.50776 

Proportion of Variance   0.00186   0.00185   0.00183   0.00181   0.00178 

Cumulative Proportion    0.93525   0.93710   0.93893   0.94075   0.94252 

                            PC91      PC92     PC93      PC94      PC95 

Standard deviation     437.35704 431.77461 430.4734 426.23640 420.39118 

Proportion of Variance   0.00175   0.00171   0.0017   0.00166   0.00162 

Cumulative Proportion    0.94427   0.94598   0.9477   0.94934   0.95095 

                           PC96      PC97      PC98      PC99     PC100 

Standard deviation     418.6572 410.95903 410.46789 402.45315 397.44239 

Proportion of Variance   0.0016   0.00155   0.00154   0.00148   0.00145 

Cumulative Proportion    0.9526   0.95410   0.95564   0.95713   0.95857 

                           PC101     PC102     PC103     PC104     PC105 

Standard deviation     394.71594 391.91962 389.99446 385.41945 380.32126 

Proportion of Variance   0.00143   0.00141   0.00139   0.00136   0.00132 

Cumulative Proportion    0.96000   0.96140   0.96279   0.96415   0.96548 

                          PC106     PC107     PC108     PC109     PC110 

Standard deviation     377.2296 373.99233 370.45200 365.36008 359.23297 

Proportion of Variance   0.0013   0.00128   0.00126   0.00122   0.00118 

Cumulative Proportion    0.9668   0.96806   0.96931   0.97054   0.97172 

                           PC111     PC112     PC113    PC114     PC115 

Standard deviation     355.01133 352.50170 348.38936 346.1138 339.08563 

Proportion of Variance   0.00115   0.00114   0.00111   0.0011   0.00105 

Cumulative Proportion    0.97287   0.97401   0.97512   0.9762   0.97727 

                           PC116     PC117     PC118     PC119     PC120 

Standard deviation     337.39665 331.89730 329.19305 327.03359 320.81330 

Proportion of Variance   0.00104   0.00101   0.00099   0.00098   0.00094 

Cumulative Proportion    0.97831   0.97931   0.98031   0.98128   0.98223 

                           PC121     PC122     PC123     PC124     PC125 

Standard deviation     317.41606 314.62494 306.55071 302.54390 299.39469 

Proportion of Variance   0.00092   0.00091   0.00086   0.00084   0.00082 

Cumulative Proportion    0.98315   0.98405   0.98491   0.98575   0.98657 

                          PC126     PC127     PC128     PC129     PC130 

Standard deviation     296.2917 294.47230 285.55440 283.04105 273.54878 

Proportion of Variance   0.0008   0.00079   0.00075   0.00073   0.00068 

Cumulative Proportion    0.9874   0.98817   0.98891   0.98965   0.99033 

                           PC131     PC132     PC133     PC134     PC135 

Standard deviation     269.46041 263.12607 260.19898 246.07109 238.67062 

Proportion of Variance   0.00066   0.00063   0.00062   0.00055   0.00052 

Cumulative Proportion    0.99100   0.99163   0.99225   0.99280   0.99332 

                           PC136     PC137     PC138     PC139     PC140 

Standard deviation     237.11214 230.68151 225.24613 217.90825 215.85690 

Proportion of Variance   0.00051   0.00049   0.00046   0.00043   0.00043 

Cumulative Proportion    0.99384   0.99433   0.99479   0.99522   0.99565 

                           PC141    PC142     PC143     PC144     PC145 

Standard deviation     212.36885 209.3089 206.42377 193.69258 189.68894 

Proportion of Variance   0.00041   0.0004   0.00039   0.00034   0.00033 

Cumulative Proportion    0.99606   0.9965   0.99685   0.99720   0.99753 
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Enclosure 11. Result of PCA analysis in R (cont’d) 

                          PC146     PC147     PC148     PC149     PC150 

Standard deviation     182.2520 179.05878 173.92591 169.34523 163.99489 

Proportion of Variance   0.0003   0.00029   0.00028   0.00026   0.00025 

Cumulative Proportion    0.9978   0.99812   0.99840   0.99866   0.99891 

                           PC151    PC152     PC153     PC154     PC155 

Standard deviation     155.63490 146.4362 135.85436 129.75332 112.40443 

Proportion of Variance   0.00022   0.0002   0.00017   0.00015   0.00012 

Cumulative Proportion    0.99913   0.9993   0.99950   0.99965   0.99977 

                          PC156    PC157    PC158    PC159  PC160     PC161 

Standard deviation     101.9180 84.25538 78.44677 44.37400 0.2908 1.081e-11 

Proportion of Variance   0.0001  0.00006  0.00006  0.00002 0.0000 0.000e+00 

Cumulative Proportion    0.9999  0.99993  0.99998  1.00000 1.0000 1.000e+00 

  



 

70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(this page is intentionally left blank) 

  



 

71 

 

BIOGRAPHY 
 

 

Kiki Ferawati, born in Gresik, June 21st 1993. Kiki 

completed her bachelor degree at 2015 in ITS. In 2016, she 

enrolled in master program of Statistics in ITS. In her third 

semester, she participated as an exchange student in 

Department of Earth and Environmental Science in 

Kumamoto University for 6 months, starting from October 

2017 to March 2018 to study more about meteorological aspects in order to get a 

better understanding of her thesis project. Kiki has been focused and involved on 

climate-related project since her bachelor degree. Kiki is also interested in 

computational statistics, statistical programming, and field related to data mining. 

 

kiki.ferawati@gmail.com 

 

mailto:kiki.ferawati@gmail.com

