

TUGAS AKHIR - SM 141501

PENGEMBANGAN PERANGKAT LUNAK UNTUK PREDIKSI TINGKAT PRODUKSI PADI MENGGUNAKAN GAUSSIAN COPULA MARGINAL REGRESSION

GANDES GOLDESTAN NRP. 06111440000100

Dosen Pembimbing Dr. Imam Mukhlash, S.Si., MT. Dr. Sutikno, S.Si., M.Si.

DEPARTEMEN MATEMATIKA Fakultas Matematika, Komputasi, dan Sains Data Institut Teknologi Sepuluh Nopember Surabaya 2018

TUGAS AKHIR - SM141501

PENGEMBANGAN PERANGKAT LUNAK UNTUK PREDIKSI TINGKAT PRODUKSI PADI MENGGUNAKAN *GAUSSIAN COPULA MARGINAL REGRESSION*

GANDES GOLDESTAN NRP 06111440000100

Dosen Pembimbing Dr. Imam Mukhlash, S.Si., MT. Dr. Sutikno, S.Si., M.Si.

DEPARTEMEN MATEMATIKA

Fakultas Matematika, Komputasi, dan Sains Data Institut Teknologi Sepuluh Nopember Surabaya 2018

FINAL PROJECT - SM141501

SOFTWARE DEVELOPMENT TO PREDICT THE LEVEL OF PADDY PRODUCTION USING GAUSSIAN COPULA MARGINAL REGRESSION

GANDES GOLDESTAN NRP 06111440000100

Supervisors

Dr. Imam Mukhlash, S.Si, MT.

Dr. Sutikno, S.Si, M.Si.

DEPARTMEN OF MATHEMATICS

Faculty Of Mathematics, Computation, and Data Science Sepuluh Nopember Institute of Technology Surabaya 2018

PENGEMBANGAN PERANGKAT LUNAK UNTUK PREDIKSI TINGKAT PRODUKSI PADI MENGGUNAKAN GAUSSIAN COPULA MARGINAL REGRESSION

Nama : Gandes Goldestan NRP : 06111440000100

Departemen : Matematika

Dosen Pembimbing: 1. Dr. Imam Mukhlash, S.Si, MT.

2. Dr. Sutikno, S.Si, M.Si

ABSTRAK

Pengambilan keputusan yang tepat dalam manajemen produksi padi sangat dibutuhkan untuk mendukung upaya ketahanan pangan nasional, terutama di Jawa Timur yang merupakan provinsi penghasil padi terbesar di Indonesia. Penelitian ini bertujuan untuk mengembangkan sistem pendukung keputusan berbasis web untuk memprediksi tingkat produksi padi di lima kabupaten sentra penghasil padi di Jawa Timur, yaitu Lamongan, Ngawi, Banyuwangi, Bojonegoro, dan Jember. Sistem pendukung keputusan berbasis web dibuat agar informasi mudah diakses dan dipahami. Metode yang digunakan dalam penelitian ini adalah Gaussian Copula Marginal Regression (GCMR), yaitu regresi berdasarkan Copula. Variabel prediktor (curah hujan) dan variabel respon (luas panen) diidentifikasi hubungannya dengan korelasi Copula, kemudian dilanjutkan dengan menyusun model luas panen menggunakan model GCMR. Hasil penelitian menunjukkan bahwa model GCMR mampu memodelkan luas panen padi di lima kabupaten sentra penghasil padi di Jawa Timur. Selanjutnya, sistem juga mampu memprediksi tingkat produksi padi dalam jangka pendek sebagai pendukung keputusan untuk membantu pihak berwenang memberikan pertimbangan dalam mengambil kebijakan terkait dengan hal pertanian dan ketahanan pangan di Jawa Timur.

Kata kunci: Curah Hujan, Luas Panen, Gaussian Copula Marginal Regression, Sistem Pendukung Keputusan, Sistem Prediksi, Tingkat Produksi Padi

SOFTWARE DEVELOPMENT TO PREDICT THE LEVEL OF PADDY PRODUCTION USING GAUSSIAN COPULA MARGINAL REGRESSION

Name of Student : Gandes Goldestan NRP : 06111440000100 Department : Mathematics

Supervisor : 1. Dr. Imam Mukhlash, S.Si, MT.

2. Dr. Sutikno, S.Si, M.Si

ABSTRACT

Appropriate decision making in rice production management is needed to support national food security efforts, especially in East Java which is the largest rice production province in Indonesia. This study aims to develop a web-based decision support system to predict rice production levels in five districts of rice production centers in East Java, covering districts: Lamongan, Ngawi, Banyuwangi, Bojonegoro, and Jember. A web-based decision support system is constructed to make information accessible and understandable. The method used in this study is Gaussian Copula Marginal Regression (GCMR), which is regression based on Copula. Predictor variables (rainfall) and response variables (harvested area) are identified their correlation using Copula correlation. Estimation of harvested area is constructed using GCMR model. The results showed that the GCMR model used was able to model the area of rice harvest in five districts of rice production centers in East Java. Furthermore, the system is also able to predict the level of rice production in the short term as decision support to help the authorities give consideration in taking policy related to agriculture and food security in East Java.

Keywords: Rainfall, harvest field, Gaussian Copula Marginal Regression, Decision Support System, Prediction System, Development, Level Production

KATA PENGANTAR

Alhamdulillahirabbilalamin, segala puji dan syukur bagi Allah SWT yang telah memberikan rahmat, kasih saying, dan petunjuk-Nya, sehingga penulis dapat menyelesaikan Tugas Akhir yang berjudul:

PENGEMBANGAN PERANGKAT LUNAK UNTUK PREDIKSI TINGKAT PRODUKSI PADI MENGGUNAKAN GAUSSIAN COPULA MARGINAL REGRESSION

Sebagai salah satu syarat kelulusan Program Sarjana Departemen Matematika FMKSD Institut Teknologi Sepuluh Nopember (ITS) Surabaya.

Tugas Akhir ini dapat terselesaikan dengan baik berkat bantuan dan dukungan dari berbagai pihak. Oleh karena itu, penulis menyampaikan ucapan terima kasih kepada :

- 1. Dr. Imam Mukhlash, S.Si, MT, selaku Kepala Departemen Matematika ITS sekaligus dosen pembimbing atas segala bimbingan, dukungan serta motivasi kepada penulis dalam mengerjakan Tugas Akhir ini sehingga dapat terselesaikan dengan baik.
- 2. Dr. Sutikno, S.Si, M.Si selaku dosen pembimbing Tugas Akhir yang telah memberikan bimbingan dan motivasi kepada penulis.
- 3. Bapak Dr. Didik Khusnul Arif, S.Si, M.Si selaku Kaprodi S1 Departemen Matematika dan Bapak Drs. Iis Herisman, M.Sc selaku Sekretaris Prodi S1 Departemen Matematika yang telah memberikan banyak bantuan dalam proses pengumpulan Tugas Akhir ini.
- 4. Bapak Drs. Nurul Hidayat, M.Kom., Bapak Drs. Daryono Budi Utomo, M.Si, dan Prof. DR. Mohammad Isa

- Irawan, MT. selaku dosen penguji atas saran yang telah diberikan demi perbaikan Tugas Akhir ini.
- 5. Ibu Endah Rokhmati Merdika Putri, S.Si, M.Si, Ph.D selaku dosen wali yang telah memberikan arahan akademik.
- Bapak Ibu dosen serta seluruh staf Tenaga Kependidikan Jurusan Matematika Institut Teknologi Sepuluh Nopember.
- 7. Keluarga Pambudi (Ayah, Ibu dan Gandang) tercinta, terima kasih atas doa-doa dan dukungannya yang selalu dicurahkan kepada penulis.
- 8. Teman-teman mahasiswa Matematika ITS angkatan 2014 yang telah memberikan masa-masa berkesan bagi penulis selama menjadi bagian dari mereka.
- 9. Semua pihak yang tidak bisa penulis sebutkan satupersatu, terima kasih telah memberikan saran, dukungan, motivasi dan membantu sampai terselesaikannya Tugas Akhir ini.

Penulis juga menyadari bahwa dalam Tugas Akhir ini masih terdapat kekurangan. Oleh sebab itu, kritik dan saran yang bersifat membangun sangat penulis harapkan demi kesempurnaan Tugas Akhir ini. Akhirnya, penulis berharap semoga Tugas Akhir ini dapat bermanfaat bagi banyak pihak.

Surabaya, Agustus 2018

Penulis

DAFTAR ISI

	Ha	alaman
HAL	AMAN JUDUL	. i
TITL	LE PAGE	. iii
	IBAR PENGESAHAN	
ABS	TRAK	. vii
ABS	TRACT	. ix
KAT	A PENGANTAR	. xi
DAF	TAR ISI	. xiii
DAF	TAR TABEL	. xvii
DAF	TAR GAMBAR	. xix
DAF	TAR LAMPIRAN	. xxi
BAB	I PENDAHULUAN	
1.1	Latar Belakang	. 1
1.2	Rumusan Masalah	. 3
1.3	Batasan Masalah	. 4
1.4	Tujuan Penelitian	. 4
1.5	Manfaat Penelitian	. 5
1.6	Sistematika Penulisan Tugas Akhir	. 5
BAB	II TINJAUAN PUSTAKA	
2.1	Penelitian Terdahulu	. 7
2.2	Luas Panen dan Produktivitas	. 8
2.3	Curah Hujan	. 9
2.4	Sistem Pendukung Keputusan	. 10
	2.4.1 Tahapan Sistem Pendukung Keputusan	. 12
	2.4.2 Pengembangan Sistem Pendukung Keputusan	. 13
2.5	Korelasi	. 14
	2.5.1 Korelasi Pearson	. 14
	2.5.2 Korelasi Tau Kendall	. 15

2.6	Uji Kenormalan Data	16
	2.6.1 Uji Kolmogorov Smirnov	16
	2.6.2 Uji Anderson Darling	17
2.7	Konsep Dasar Copula	18
	2.7.1 Copula Gaussian	18
	2.7.2 Copula Archimedean	19
2.8	Estimasi Parameter Copula	20
2.9	Gaussian Copula Marginal Regression (GCMR)	21
BAB	III METODE PENELITIAN	
3.1	Objek Penelitian	23
3.2	Peralatan	23
3.3	Tahap Penelitian	24
3.4	Alur Penelitian	25
BAB	IV ANALISIS DAN PEMBAHASAN	
4.1	Fase Perencanaan	27
4.2	Fase Analisis	27
4.3	Fase Desain	29
	4.3.1 Desain Basis Data	29
	4.3.2 Desain Proses	36
	4.3.3 Desain Antarmuka Pengguna	43
4.4	Fase Implementasi	
	4.4.1 Basis Data	53
	4.4.2 Estimasi Parameter θ	54
	4.4.3 Estimasi Parameter Copula	55
	4.4.4 Fitting Copula dengan Menggunakan	
	Maximum Likelihood Estimation (MLE)	55
	4.4.5 Pemodelan Luas Panen Padi di Jawa Timur	
	dengan Gaussian Copula Marginal	
	Regression	55
	4.4.6 Perhitungan Prediksi Jumlah Produksi Padi	
	(GKG) dan Beras Tiap Periode	56
	1	

BAB	V IMPLEMENTASI	
5.1	Tampilan Halaman Utama Program	59
5.2	Persiapan Data	60
5.3	Tahapan Analisis	61
5.4	Korelasi Luas Panen dan Curah Hujan	62
	5.4.1 Hasil Korelasi Menggunakan Metode Pearson da	ın
	Tau Kendall	63
	5.4.2 Hasil Uji Normalitas Data	64
	5.4.3 Scatterplot Hasil Transformasi Variabel ke	
	Domain Uniform [0,1]	73
	5.4.4 Hasil Korelasi Menggunakan Copula	74
5.5	Pemodelan Luas Panen Padi di Sentra Produksi Padi	
	Jawa Timur	78
5.6	Perhitungan Prediksi Produksi Padi	83
5.7	Akurasi Pengukuran	85
BAB	V PENUTUP	
6.1	Kesimpulan	89
6.2	Saran	90
DAF	TAR PUSTAKA	91
LAN	IPIRAN	95
BIO	DATA PENULIS 1	29

DAFTAR TABEL

	Halaman
Tabel 2.1	Keluarga Copula Archimedean
Tabel 2.2	Estimasi Parameter Copula Archimedean 22
Tabel 5.1	Hasil Korelasi Signifikan dengan $\alpha = 0.05$ 63
Tabel 5.2	Hasil Uji Normalitas Data Out Sample 2012 65
Tabel 5.3	Keputusan Akhir Uji Normalitas Data 70
Tabel 5.4	Parameter Copula Terpilih pada Tiap
	Kabupaten untuk Data Out Sample 2012 77
Tabel 5.5	Estimasi Koefisien Marginal Model
Tabel 5.6	Model Luas Panen Padi di Sentra Produksi
	Padi di Jawa Timur
Tabel 5.7	Uji Parsial Model Luas Panen Padi di
	Lamongan untuk Data Out Sample 2012 80
Tabel 5.8	Model Terbaik Luas Panen Padi di Sentra
	Produksi Padi di Jawa Timur 81
Tabel 5.9	Error Pemodelan pada Data Out Sample 2012
	Luas Panen Padi Berdasarkan Model Terbaik. 81
Tabel 5.10	Perhitungan Akurasi Metode GCMR dengan
	MAPE 86

DAFTAR GAMBAR

	Halaman
Gambar 2.1	Skema Komponen SPK11
Gambar 2.2	Siklus Pengembangan Perangkat Lunak 14
Gambar 2.3	Plot Copula Archimedean untuk Clayton,
	Frank, dan Gumbel (dari kiri ke kanan) 20
Gambar 3.1	Diagram Alir Tahap Analisis Data dan
	Pengembangan Perangkat Lunak
Gambar 4.1	Skema Komponen SPK
Gambar 4.2	Model Data Konseptual (CDM) 32
Gambar 4.3	Model Data Fisik (PDM)35
Gambar 4.4	Diagram Model Proses36
Gambar 4.5	Scatterplot Transformasi Antara Luas Panen
	dan Curah Hujan di Lamongan ke Domain
	[0,1]37
Gambar 4.6	Flowchart Identifikasi Hubungan Antara
	Luas Panen dan Curah Hujan39
Gambar 4.7	Diagram Proses Penentuan Model Luas
	Panen Terbaik
Gambar 4.8	Tampilan Basis Data pada MySQL53
Gambar 5.1	Tampilan Halaman Utama Program59
Gambar 5.2	Data Luas Panen (Ha) Padi Per-Subround60
Gambar 5.3	Data Curah Hujan Observasi61
Gambar 5.4	Data Produktivitas Padi61
Gambar 5.5	Tampilan Diagram Proses pada Submenu
	Tahapan Analisis
Gambar 5.6	Tampilan Korelasi Antara Luas Panen dan
	Curah Hujan63
Gambar 5.7	Tampilan Uii Normalitas Data 65

Gambar 5.8	Scatterplot Transformasi Antara Luas panen		
	dan Curah Hujan Lamongan ke Domain		
	[0,1]	.74	
Gambar 5.9	Tampilan Hasil Parameter θ Copula	75	
Gambar 5.10	Tampilan Hasil Estimasi Parameter Copula	75	
Gambar 5.11	Tampilan Hasil Fitting Copula dengan MLE	77	
Gambar 5.12	Analisis Luas Panen Skenario Kabupaten	82	
Gambar 5.13	Data Prediksi Luas Panen Padi Berdasarkan		
	Model Terbaik	83	
Gambar 5.14	Tampilan Konversi Produksi Padi (GKG)		
	dan Beras	84	
Gambar 5.15	Tampilan Prediksi Jumlah Persediaan dan		
	Kebutuhan Beras Tiap Kabupaten	85	

DAFTAR LAMPIRAN

	Halaman
Lampiran 1.	Data Luas Panen Padi
Lampiran 2.	Data Curah Hujan
Lampiran 3.	Data Produktivitas Padi 104
Lampiran 4.	Korelasi Pearson dan Tau-Kendall (data <i>out</i> sample 2012)
Lampiran 5.	Scatterplot Hasil Transformasi Variabel ke Domain Uniform [0,1] (data <i>out sample</i> 2012) 110
Lampiran 6.	Estimasi Parameter θ (data out sample 2012) 112
Lampiran 7.	Estimasi Parameter Copula (data out sample
	2012)
Lampiran 8.	Fitting Copula dengan Maximum Likelihood
	Estimation (data out sample 2012) 120
Lampiran 9.	Uji Parsial Model Luas Panen Padi (data out
	sample 2012)
Lampiran 10.	Prediksi Jumlah Produksi Padi GKG – Beras
	(Ton)
Lampiran 11.	Prediksi Jumlah Persediaan dan Kebutuhan
	Beras (Ton)

BAB I PENDAHULUAN

Pada bab ini dibahas mengenai latar belakang yang mendasari penulisan Tugas Akhir ini. Di dalamnya mencakup identifikasi permasalahan pada topik Tugas Akhir kemudian dirumuskan menjadi permasalahan yang diberikan batasan-batasan dalam pembahasan pada Tugas Akhir ini.

1.1 Latar Belakang

Padi merupakan bahan makanan utama bagi masyarakat Indonesia. Berdasarkan Badan Pengkajian dan Penerapan Teknologi (BPPT) di tahun 2016, Indonesia menjadi negara dengan konsumsi padi per kapita tertinggi di dunia, disusul China, Jepang, dan Korea. Di sisi lain, jumlah masyarakat Indonesia yang mencapai 252,17 juta orang dengan laju pertumbuhan sebesar 1,31% dan tingkat konsumsi beras mencapai 132,98 kg/kapita/tahun menjadikan beras menjadi komoditas utama dalam sektor pertanian. Maka dari itu, pertanian merupakan sektor yang sangat penting dan peningkatan produksi beras benarbenar menjadi prioritas untuk mengurangi kekurangan suplai [1].

Menurut Angka Ramalan II (ARAM II) tahun 2017, Jawa Timur merupakan provinsi penghasil padi terbesar di Indonesia, disusul Jawa Barat, Jawa Tengah, Sumatera Selatan, dan Lampung. Kebutuhan akan pangan akan terus meningkat sejalan dengan pertumbuhan penduduk dan peningkatan konsumsi per kapita. Oleh sebab itu, manajemen produksi padi yang tepat sangat dibutuhkan untuk mendukung upaya ketahanan pangan nasional.

Produksi padi didapat berdasarkan luas panen yang dipengaruhi oleh beberapa faktor, salah satunya adalah curah hujan. Maka dari itu, dibutuhkan suatu metode yang dapat memodelkan hubungan antara curah hujan dengan luas panen sehingga bisa memprediksi tingkat produksi padi.

Penelitian tentang hubungan perubahan iklim terhadap produksi pertanian sebelumnya pernah dilakukan oleh Sutikno dkk (2013) dengan menggunakan pendekatan extreme value theory. Pada penelitian tersebut, digunakan model Ordinary Least Square (OLS) untuk memprediksi curah hujan dan selanjutnya diperoleh model Copula untuk memprediksi luas panen di suatu wilayah dengan data curah hujan [2]. Kemudian penelitian tersebut dikembangkan oleh Maulidiyah dan Mukhlash (2014) mengintegrasikannya dalam perangkat ke pendukung keputusan berbasis web sehingga hasilnya dapat direpresentasikan ke dalam bentuk informasi yang mudah diakses dan dipahami [3]. Dari penelitian tersebut, dikembangkan lagi oleh Miftachurrohmah dan Mukhlash (2015) dengan menambah indikator ENSO dan model regresi robust dengan estimasi M untuk meramalkan luas produksinya dalam Sistem Pendukung Keputusan [4]. Selanjutnya, penelitian mengenai hal yang sama dikembangkan lagi oleh Maziyah dan Mukhlash (2017) dengan menggunakan metode lain, yaitu regresi robust dengan estimasi-S dan estimasi-MM untuk menghubungkan antara luas panen dan curah hujan dalam memprediksi tingkat produksi padi telah dan berhasil diintegrasikan ke dalam perangkat lunak Sistem Pendukung Keputusan berbasis web yang telah ada [5].

Copula merupakan salah satu metode statistika yang menunjukkan hubungan antar variabel, di mana metode ini tidak terlalu ketat terhadap asumsi distribusi, khususnya distribusi normal. Selain itu Copula juga memiliki keunggulan yaitu dapat menggambarkan dependensi pada titik-titik ekstrem secara jelas. Beberapa penelitian yang menggunakan pendekatan Copula dalam bidang klimatologi, seperti yang telah dilakukan oleh Scholzel dan Friederichs (2008) dan Oktaviana (2012) menunjukkan bahwa metode Copula memiliki kinerja yang lebih baik dalam kondisi asumsi-asumsi kenormalan terlanggar [6][7]. Namun, penelitian-penelitian tersebut masih terbatas hanya pada korelasi dan tidak mengidentifikasi sampai kepada hubungan sebab akibat. Metode yang dapat digunakan untuk memodelkan

hubungan sebab akibat pada kejadian ekstrem adalah Gaussian Copula Marginal Regression (GCMR).

Di Indonesia, penelitian telah dilakukan sebelumnya oleh Dewi Ratih (2013) mengenai hubungan antara luas panen dan serta pemodelan hujan luas panen padi menggunakan metode GCMR, di mana metode ini sangat baik digunakan untuk memodelkan hubungan sebab-akibat pada kejadian ekstrem seperti iklim dan curah hujan[8]. Proses perhitungan tersebut dapat dilakukan dengan cara manual, namun hal tersebut memerlukan waktu yang lama dan memungkinkan terjadinya banyak human error sehingga sangat tidak efektif. Selain itu, model tersebut tentunya akan lebih bermanfaat apabila diintegrasikan ke dalam suatu perangkat lunak berbasis web agar hasilnya dapat direpresentasikan dalam bentuk informasi yang mudah diakses dan dipahami. Oleh karena itu, berdasarkan latar belakang tersebut penulis melakukan penelitian Tugas Akhir ini yang berjudul "Pengembangan Perangkat Lunak untuk Prediksi Tingkat Produksi Padi Menggunakan Gaussian Copula Marginal Regression".

1.2 Rumusan Masalah

Berdasarkan latar belakang tersebut, dapat dirumuskan permasalahan dalam Tugas Akhir ini sebagai berikut :

- 1. Bagaimana cara menyusun model luas panen padi akibat adanya iklim ekstrem dan menentukan jumlah produksi padi menggunakan *Gaussian Copula Marginal Regression*?
- 2. Bagaimana prediksi tingkat produksi padi di lima kabupaten sentra penghasil padi di Jawa Timur menggunakan *Gaussian Copula Marginal Regression*?
- 3. Bagaimana mengintegrasikan proses estimasi menggunakan *Gaussian Copula Marginal Regression* hingga penentuan tingkat produksi padi ke dalam perangkat lunak sistem pendukung keputusan berbasis web?

1.3 Batasan Masalah

Pada penelitian ini, penulis membuat Batasan masalah sebagai berikut :

- 1. Data yang digunakan dalam penelitian ini adalah data curah hujan yang diperoleh dari BMKG, data produktivitas padi tiap kabupaten dan data luas panen padi per *subround* yang diperoleh dari BPS periode 1990-2011.
- 2. Studi kasus yang diambil dalam penelitian ini adalah 5 kabupaten sentra penghasil padi di Jawa Timur, yaitu Kabupaten Jember, Lamongan, Ngawi, Bojonegoro, dan Banyuwangi.
- 3. Korelasi antara variabel prediktor dan respon menggunakan korelasi Copula.
- 4. *Copula* yang digunakan untuk pemodelan luas panen (regresi) adalah *Copula Gaussian*
- 5. Pemodelan estimasi luas panen hanya mempertimbangkan faktor curah hujan, tidak mempertimbangkan aspek lainnya, seperti jenis pupuk yang digunakan, jenis lahan, dan sebagainya.
- 6. Hasil penelitian pada Tugas Akhir ini hanya untuk menentukan tingkat produksi padi saja, tidak sampai pada penentuan langkah-langkah untuk meningkatkan hasil produksi padi

1.4 Tujuan Penelitian

Berdasarkan permasalahan yang telah dirumuskan sebelumnya, tujuan penelitian Tugas Akhir ini adalah :

- 1. Mengidentifikasi langkah-langkah penyusunan model luas panen padi akibat adanya iklim ekstrem dan menentukan jumlah produksi padi menggunakan *Gaussian Copula Marginal Regression*.
- 2. Memprediksi tingkat produksi padi di lima kabupaten sentra penghasil padi di Jawa Timur menggunakan *Gaussian Copula Marginal Regression*

3. Mengintegrasikan proses estimasi luas panen menggunakan *Gaussian Copula Marginal Regression* hingga penentuan tingkat produksi padi ke dalam perangkat lunak sistem pendukung keputusan berbasis web

1.5 Manfaat Penelitian

Setelah diperoleh prediksi tingkat produksi padi, maka Tugas Akhir ini dapat memberikan manfaat sebagai berikut :

- 1. Dapat dijadikan sebagai *early warning system* adaptasi tanaman pangan terhadap perubahan iklim serta bahan pertimbangan bagi pemerintah dalam mengambil kebijakan mengenai manajemen risiko produksi padi dan ketahanan pangan khususnya di wilayah Jawa Timur, sehingga kegagalan dan kerugian panen dapat dihindari.
- 2. Dapat dijadikan bahan pertimbangan bagi para produsen padi dalam menetapkan waktu yang tepat untuk mengawali masa tanam, benih beserta pupuk yang digunakan.
- 3. Dapat dijadikan bahan pertimbangan bagi para investor yang ingin berinvestasi di bidang pertanian.

1.6 Sistematika Penulisan Tugas Akhir

Penulisan Tugas Akhir ini disusun dalam lima bab, yaitu:

1. BAB I PENDAHULUAN

Bab ini berisi tentang gambaran umum dari penulisan Tugas Akhir yang meliputi latar belakang, rumusan masalah, batasan masalah, tujuan, manfaat, dan sistematika penulisan.

2. BAB II TINJAUAN PUSTAKA

Bab ini berisi penelitian terdahulu dan teori-teori yang terkait dengan permasalahan dalam Tugas Akhir ini seperti luas panen dan produktivitas, curah hujan, sistem pendukung keputusan (SPK), pengembangan sistem pendukung keputusan, Copula, dan *Gaussian Copula Marginal Regression*.

3. BAB III METODE PENELITIAN

Pada bab ini dibahas mengenai analisis dan rancangan sistem yang digunakan sebagai acuan untuk implementasi. Pengembangan perangkat lunak pendukung keputusan untuk analisis produksi padi dimulai dengan fase perencanaan, fase analisis, fase desain, dan fase implementasi.

4. BAB IV ANALISIS DAN PEMBAHASAN

Bab ini menjelaskan mengenai implementasi pengembangan sistem pendukung keputusan berbasis web untuk memprediksi tingkat produksi padi menggunakan metode Gaussian Copula Marginal Regression

5. BAB V PENUTUP

Bab ini berisi kesimpulan akhir yang diperoleh dari pembahasan masalah sebelumnya serta saran untuk pengembangan penelitian selanjutnya.

BAB II TINJAUAN PUSTAKA

Pada bab ini akan dijelaskan mengenai penelitian terdahulu serta dasar teori yang digunakan dalam penyusunan proposal Tugas Akhir. Dasar teori yang dijelaskan dibagi menjadi beberapa subbab yaitu luas panen dan produktivitas, curah hujan, sistem pendukung keputusan (SPK), pengembangan sistem pendukung keputusan, dan *Gaussian Copula Marginal Regression*.

2.1 Penelitian Terdahulu

Berbagai penelitian telah dilakukan dalam bidang Sistem Pendukung Keputusan (SPK). SPK memang sangat membantu memecahkan masalah di berbagai sektor karena sangat mempermudah para pihak untuk mengambil suatu keputusan tanpa harus menganalisisnya secara manual, dikarenakan proses analisis secara manual memerlukan waktu yang sangat lama dan sering menimbulkan *human error*.

Penelitian tentang hubungan perubahan iklim terhadap produksi pertanian sebelumnya pernah dilakukan oleh Sutikno dkk (2013) dengan menggunakan pendekatan extreme value theory. Pada penelitian tersebut, digunakan model Ordinary Least Square (OLS) untuk memprediksi curah hujan dan selanjutnya diperoleh model Copula untuk memprediksi luas panen di suatu wilayah dengan data curah hujan [2]. Kemudian penelitian tersebut dikembangkan oleh Maulidiyah dan Mukhlash (2014) mengintegrasikannya ke dalam dengan perangkat pendukung keputusan berbasis web sehingga hasilnya dapat direpresentasikan ke dalam bentuk informasi yang mudah diakses dan dipahami [3]. Dari penelitian tersebut, dikembangkan lagi oleh Miftachurrohmah dan Mukhlash (2015) dengan menambah indikator ENSO dan model regresi robust dengan estimasi M untuk meramalkan luas produksinya dalam Sistem Pendukung

Keputusan [4]. Selanjutnya, penelitian mengenai hal yang sama dikembangkan lagi oleh Maziyah dan Mukhlash (2017) dengan menggunakan metode lain, yaitu regresi *robust* dengan estimasi-S dan estimasi-MM untuk menghubungkan antara luas panen dan curah hujan dalam memprediksi tingkat produksi padi telah dan berhasil diintegrasikan ke dalam perangkat lunak Sistem Pendukung Keputusan berbasis web yang telah ada [5].

Copula merupakan salah satu metode statistika yang menunjukkan hubungan antar variabel, di mana metode ini tidak terlalu ketat terhadap asumsi distribusi, khususnya distribusi normal. Selain itu Copula juga memiliki keunggulan yaitu dapat menggambarkan dependensi pada titik-titik ekstrem secara jelas. Beberapa penelitian yang menggunakan pendekatan Copula dalam bidang klimatologi, seperti yang telah dilakukan oleh Scholzel dan Friederichs (2008) dan Oktaviana (2012) menunjukkan bahwa metode Copula memiliki kinerja yang lebih baik dalam kondisi asumsi-asumsi kenormalan terlanggar [6][7]. Namun, penelitian-penelitian tersebut masih terbatas hanya pada korelasi dan tidak sampai mengidentifikasi sampai kepada hubungan sebab akibat. Metode yang dapat digunakan untuk memodelkan hubungan sebab akibat pada kejadian ekstrem adalah Gaussian Copula Marginal Regression (GCMR).

Di Indonesia, telah dilakukan sebelumnya oleh Dewi Ratih dkk (2013) tentang hubungan antara luas panen dan curah hujan serta permodelan luas panen padi dengan menggunakan metode GCMR yang juga dibandingkan dengan metode OLS dan GLM. Hasil menunjukkan bahwa metode GCMR paling baik digunakan untuk memodelkan variabel-variabel respon yang tidak terdistribusi normal dengan *skew* yang besar. GCMR juga lebih baik ketika dibandingkan dengan metode GLM dalam menangani variabel respons yang tidak normal [8].

2.2 Luas Panen dan Produktivitas

Lahan sawah adalah lahan pertanian yang berpetak-petak dan dibatasi oleh pematang (galengan), saluran untuk

menahan/menyalurkan air, yang biasanya ditanami padi sawah tanpa memandang dari mana diperolehnya atau status lahan tersebut. Termasuk disini lahan yang terdaftar di Pajak Hasil Bumi, Iuran Pembangunan Daerah, lahan bengkok, lahan serobotan, lahan rawa yang ditanami padi dan lahan-lahan bukaan baru. Lahan sawah mencakup sawah pengairan, tadah hujan, sawah pasang surut, rembesan, lebak dan lain sebagainya. Luas lahan merupakan luas areal persawahan yang akan ditanam padi pada musim tertentu. Luas panen adalah luasan tanaman yang dipungut hasilnya setelah tanaman tersebut cukup umur.

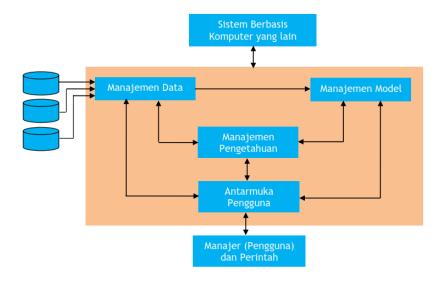
Produksi padi adalah jumlah output atau hasil panen padi dari luas lahan petani selama satu kali musim tanam dalam bentuk gabah kering panen yang diukur dalam satuan Kilogram (Kg). Produktivitas adalah perbandingan antara output dengan beberapa atau semua sumber yang digunakan untuk memproduksi input [9]. Sehingga, produktivitas padi merupakan produksi padi per satuan luas lahan yang digunakan dalam usaha tani padi. Produktivitas diukur dalam satuan ton per hektar (ton/ha).

2.3 Curah Hujan

Hujan merupakan gejala meteorologi dan juga unsur klimatologi. Hujan adalah hydrometeor yang jatuh berupa partikel-partikel air yang mempunyai diameter 0.5 mm atau lebih. Hydrometeor yang jatuh ke tanah disebut hujan sedangkan yang tidak sampai tanah disebut Virga [10]. Hujan yang sampai ke permukaan tanah dapat diukur dengan jalan mengukur tinggi air hujan tersebut berdasarkan volume air hujan per satuan luas. Hasil dari pengukuran tersebut dinamakan dengan curah hujan.

Curah hujan merupakan salah satu unsur cuaca yang datanya diperoleh dengan cara mengukurnya dengan menggunakan alat penakar hujan, sehingga dapat diketahui jumlahnya dalam satuan millimeter (mm). Curah hujan 1 mm adalah jumlah air hujan yang jatuh di permukaan per satuan luas (m²) dengan catatan tidak ada yang menguap, meresap atau mengalir. Jadi, curah hujan sebesar 1 mm setara dengan 1 liter/m² [11]. Curah hujan dibatasi sebagai

tinggi air hujan yang diterima di permukaan sebelum mengalami aliran permukaan, evaporasi dan peresapan ke dalam tanah.


2.4 Sistem Pendukung Keputusan (SPK)

Sistem Pendukung Keputusan (SPK) atau *Decision Support System* (DSS) adalah sebuah sistem yang mampu memberikan kemampuan pengkomunikasian untuk masalah maupun kemampuan pengkomunikasian untuk masalah dengan kondisi semi terstruktur dan tak terstruktur dimana tidak seorangpun tahu secara pasti bagaimana keputusan seharusnya dibuat [12].

Sprague dan Watson mendefinisikan SPK sebagai sistem yang memiliki lima karakteristik utama yaitu [13] :

- 1. Sistem yang berbasis komputer.
- 2. Dipergunakan untuk membantu para pengambil keputusan.
- 3. Untuk memecahkan masalah-masalah rumit yang mustahil dilakukan dengan kalkulasi manual.
- 4. Melalui cara simulasi yang interaktif.
- 5. Data dan model analisis sebagai komponen utama

Untuk dapat menerapkan sistem pendukung keputusan ada empat subsistem yang harus disediakan yaitu subsistem manajemen data, subsistem manajemen model, subsistem manajemen pengetahuan dan subsistem antar muka pengguna, seperti ditunjukkan pada Gambar 2.1.

Gambar 2.1. Skema Komponen SPK

1. Manajemen Data

Subsistem yang menjelaskan basis data berisi data-data yang relevan dengan keadaan dan dikelola oleh perangkat lunak yang disebut dengan *Database Management System* (DBMS).

2. Manajemen Model

Berupa sebuah paket perangkat lunak yang berisi modelmodel finansial, statistik, *management science*, atau model kuantitatif, yang menyediakan kemampuan analisis dan perangkat lunak manajemen yang sesuai.

3. Manajemen Pengetahuan

Merupakan subsistem yang mendukung subsistem lain atau berlaku sebagai komponen yang berdiri sendiri. Subsistem ini menyediakan kecerdasan untuk menambah pertimbangan pengambilan keputusan.

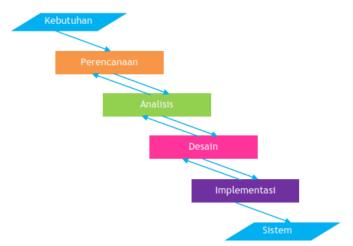
4. Dialog atau Komunikasi Merupakan subsistem yang dipakai oleh *user* untuk berkomunikasi dan memberi perintah (menyediakan *user interface*).

2.4.1 Tahapan Sistem Pendukung Keputusan

Tahapan yang dilakukan dalam pembuatan sistem pendukung keputusan yang dikemukakan oleh Efraim Turban dibagi dalam delapan tahapan, kedelapan tahapan tersebut adalah sebagai berikut [14]:

- 1. Perencanaan, dalam tahapan ini lebih difokuskan pada penaksiran kebutuhan dan diagnosa masalah dengan mendefinisikan sasaran dan tujuan dari sistem pendukung keputusan serta menentukan kunci keputusan-keputusan sistem pendukung keputusan.
- 2. Riset, penentuan *approach* yang relevan untuk keperluan *pengguna* dan ketersediaan sumber daya seperti *hardware*, *software*, *vendor system*, kasus-kasus atau pengalaman pengalaman yang relevan pada organisasi, dan *review* riset yang relevan.
- 3. Analisa dan Desain Konseptual, penentuan pendekatan terbaik dan sumber daya tertentu untuk mengimplementasi termasuk teknik, *staff*, dan *financial resource* organisasi. Misal dengan metode normatif dengan pembuatan model yang bisa menyediakan info untuk kunci keputusan.
- 4. Desain, dalam tahap desain ini ditujukan untuk menentukan spesifikasi komponen-komponen dari sistem pendukung keputusan terdiri dari subsistem dialog, subsistem pemroses problem (model base dan manajemennya), basis data dan manajemennya, serta pengetahuan dan manajemennya.
- 5. Konstruksi, dengan cara berbeda-beda tergantung pada desain dan *tool* yang digunakan, implementasi teknis dari desain, sistem dibangun, diuji secara terus menerus dan diperbaiki.

- 6. Implementasi, dalam tahap implementasi ini meliputi *testing*, evaluasi, demo, orientasi, *training*, dan produksi. Adapun *testing* data *output* dibandingkan dengan spesifikasi desain.
- 7. Perawatan dan Dokumentasi, meliputi *planning* untuk membina dukungan terhadap sistem dan komunitas pengguna termasuk pembuatan dokumentasi penggunaan dan perawatan.
- 8. Adaptasi, dalam tahap ini sistem merespon perubahanperubahan dari pengguna melalui tahapan-tahapan diatas.


2.4.2 Pengembangan Sistem Pendukung Keputusan

Pengembangan sistem adalah penyusunan suatu sistem yang baru untuk menggantikan sistem yang lama secara keseluruhan atau memperbaiki sistem yang telah ada. Siklus hidup pengembangan sistem (*System Development Life Cycle / SDLC*) merupakan suatu bentuk yang digunakan untuk menggambarkan tahapan utama dan langkah-langkah di dalam tahapan tersebut untuk proses pengembangannya. SDLC dilakukan dengan pendekatan sistem secara teratur dan dilakukan secara *top-down*, oleh karenanya sering disebut pendekatan air terjun (*waterfall approach*) bagi pengembangan dan penggunaan sistem. Ada banyak siklus SDLC yang tradisional untuk sistem informasi, termasuk untuk SPK. SDLC terdiri dari empat fase, yaitu [15]:

- 1. Fase Perencanaan, pada fase ini dilakukan studi kelayakan, seperti kelayakan teknis, biaya, dan organisasi
- 2. Fase Analisis, merupakan pengembangan dari strategi atau rencana analisis. Fase analisis mengarah pada pengembangan dari model proses dan model data.
- 3. Fase Desain, merupakan pengindikasian cara kerja sistem. Pada fase ini mempertimbangkan perangkat keras, perangkat lunak, tampilan antarmuka, dan sebagainya. Fase ini mengarah pada desain arsitektur yang menuju pada desain basis data dan desain file yang menuju pada desain program. Secara keseluruhan pada fase ini mencakup spesifikasi sistem

4. Fase Implementasi, merupakan pengimplementasian dari semua fase sebelumnya, dan juga pengujian untuk verifikasi kerja sistem.

Siklus fase fase tersebut dapat dilihat pada Gambar 2.2.

Gambar 2.2. Siklus Pengembangan Perangkat Lunak

2.5 Korelasi

Korelasi dibedakan menjadi korelasi untuk statistik parametrik dan nonparametrik. Korelasi untuk statistik parametrik adalah korelasi Pearson, sedangkan korelasi untuk statistik nonparametrik contohnya adalah korelasi Tau-Kendall[7]. Keduanya dapat dijelaskan sebagai berikut.

2.5.1 Korelasi Pearson

Teknik korelasi Pearson termasuk dalam kategori statistic parametrik sehingga terdapat syarat-syarat yang harus dipenuhi. Syarat tersebut adalah data yang digunakan berskala interval atau rasio dan sebaran data mengikuti distribusi normal. Berikut adalah rumus untuk korelasi Pearson:

$$r_{xy} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$
(2.1)

Dalam hal ini:

r = koefisien korelasi Pearson

 X_i = variabel bebas ke-i

 Y_i = variabel terikat ke-i

 \bar{X} = rata-rata variabel bebas

 \overline{Y} = rata-rata variabel terikat

n =banyaknya amatan.

Pengujian hipotesis yang digunakan adalah sebagai berikut:

 H_0 : r = 0 (tidak ada korelasi antara X dan Y)

 $H_1: r \neq 0$ (ada korelasi antara X dan Y)

Statistik Uji:

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \tag{2.2}$$

Daerah penolakan : Tolak H_0 jika $\left|t_{hitung}\right| > t_{\frac{a}{2},v}$ atau $p-value < \alpha$, dan v adalah derajat bebas, v=n-1

2.5.2 Korelasi Tau Kendall

Korelasi ini dikembangkan oleh Maurice Kendall Tau yang biasanya digunakan untuk menguji korelasi antara dua variabel yang datanya tidak terdistribusi normal atau tidak diketahui distribusinya. Simbol τ sering digunakan untuk mendefinisikan korelasi Tau-Kendall. Hipotesis yang digunakan sebagai berikut :

$$\tau = \frac{2S}{n(n-1)} \tag{2.3}$$

Dengan S = P - Q

Keterangan:

P =banyaknya pasangan berurutan wajar

Q = banyaknya pasangan berurutan terbalik

n = jumlah amatan

Pengujian hipotesis yang digunakan adalah sebagai berikut :

 H_0 : Tidak ada hubungan antara kedua variabel

 H_1 : Ada hubungan antara kedua variabel

Daerah penolakan : Tolak H_0 jika $\left| \tau_{hitung} \right| > \tau_{\frac{a}{2},n}$ dengan $\tau_{\frac{a}{2}}$ diperoleh dari tabel harga-harga kritis statistik uji korelasi Tau-Kendall.

Jika ukuran sampel lebih dari 10 maka distribusi yang digunakan adalah distribusi normal, yaitu :

$$Z = \frac{3\tau\sqrt{n(n-1)}}{\sqrt{2(2n+5)}} \tag{2.4}$$

Daerah penolakan : Tolak H_0 jika $\left|z_{hitung}\right|>z_{\frac{a}{2}}$ atau $p-value<\alpha$

2.6 Uji Kenormalan Data

Uji kenormalan data dapat dilakukan dengan uji Kolmogorov-Smirnov dan uji Anderson Darling

2.6.1 Uji Kolmogorov-Smirnov

Pengujian kenormalan dapat dihitung dengan menggunakan Kolmogorov-Smirnov yang meliputi :

Hipotesis:

 H_0 : Residual berdistribusi normal

 H_1 : Residual tidak berdistribusi normal

Statistik uji:

$$D_{hitung} = \sup |F_n(x) - F_0(x)| \tag{2.5}$$

Dengan:

 $F_0(x)$: Fungsi yang dihipotesiskan yaitu berdistribusi normal

 $F_n(x)$: Fungsi distribusi kumulatif dari data asal

n : Banyaknya residual

Kriteria pengujian:

Jika $D_{hitung} > D^{1-\alpha,n}$ atau maka $p-value < \alpha$ maka H_0 ditolak.

2.6.2 Uji Anderson Darling

Metode Anderson-Darling digunakan untuk menguji apakah sampel data berasal dari populasi dengan distribusi tertentu. Anderson-Darling merupakan modifikasi dari uji Kolmogorv-Smirnov (KS). Misalkan $x_1, x_2, ..., x_n$ adalah data yang akan diuji distribusi normalnya dengan tingkat signifikan α maka uji Anderson-Darling dapat diperoleh dengan menggunakan rumus sebagai berikut :

$$A = -n - S \tag{2.6}$$

Dengan

$$S = \frac{1}{n} \sum_{i=1}^{n} [2i - 1] [\ln(F(Z_i)) + \ln(1 - F(Z_{n+1-i}))]$$
 (2.7)

$$Z_i = \frac{x_i - \bar{x}}{s} \tag{2.8}$$

Akibatnya persamaan (2.6) menjadi :

$$A = -n - \frac{1}{n} \sum_{i=1}^{n} [2i - 1] [\ln(F(Z_i)) + \ln(1 - F(Z_{(n+1-i)}))] (2.9)$$

dengan

A = statistik uji untuk metode Anderson Darling

n = ukuran sampel

 x_i = data ke-i yang telah diurutkan

 $Z_i = \text{data } x_i \text{ yang distandarisasi}$

 \bar{x} = rata-rata data

s = standar deviasi data

 $F(Z_i)$ = nilai fungsi distribusi kumulatif normal baku di z_i

Modifikasi dari metode Anderson Darling menggunakan rumus di bawah ini :

$$A^* = A\left(1 + \frac{0.75}{n} + \frac{2.25}{n^2}\right) \tag{2.10}$$

Nilai kritis yang diperoleh adalah dengan menghitung :

$$c_{\alpha} = a_{\alpha} \left(1 + \frac{b_0}{n} + \frac{b_1}{n^2} \right)$$
 (2.11)

dengan nilai a_{α} , b_0 ,dan b_1 dilihat berdasarkan Tabel A.6 [19] Selain dengan cara menghitung sendiri nilai kritisnya dapat juga

dengan melihat tabel nilai kritis untuk Uji Anderson-Darling pada Tabel 4.1-Tabel 4.5 [20].

Pengujian menggunakan Metode Anderson-Darling dilakukan sebagai berikut :

 H_0 : Data pada sampel berasal dari populasi yang berdistribusi normal

 H_{α} : Data pada sampel berasal dari populasi yang tidak berdistribusi normal.

Jika $A^* > c_{\alpha}$ maka H_0 ditolak yang berarti data tidak berdistribusi normal dan jika sebaliknya maka H_0 diterima yang berarti data berdistribusi normal.

2.7 Konsep Dasar Copula

Copula merupakan suatu fungsi yang dapat menggabungkan struktur dependensi tertentu. Copula memberikan cara yang tepat untuk membentuk distribusi gabungan dari dua atau lebih variabel acak. Jika terdapat peubah acak $(X_1, X_2, ..., X_m)$ memiliki fungsi distribusi kumulatif marginal $F_{x_1}, F_{x_2}, ..., F_{x_n}$ dengan domain R yang tidak turun, yaitu dan , maka $F_x(-\infty) = 0$ dan $F_x(+\infty) = 1$ distribusi bersamanya yaitu :

$$F_{(X_1,X_2,...,X_m)}(X_1,X_2,...,X_m)$$

$$= C_{X_1,X_2,...,X_m} F_{X_1}(x_1), F_{X_2}(x_2),...,F_{X_m}(x_m)$$
(2.12)

dengan $C_{X_1,X_2,...,X_m}$ adalah Copula dengan $C_x[0,1]^m \to [0,1]$

2.7.1 Copula Gaussian

Copula Gaussian atau Copula Normal merupakan salah satu keluarga Copula Elips yang diperoleh dari transformasi variabel random ke distribusi normal standar. Vektor random $(X_1, X_2, ..., X_m)$ memiliki fungsi distribusi kumulatif marginal, yaitu $F_{X1}, F_{X2}, ..., F_{Xm}$, dengan $U_i = F_{Xi}(X_i) \sim U(0,1)$, maka setiap variabel komponen dapat ditransformasi ke variabel random yang berdistribusi normal standar multivariat sebagai berikut.

$$Z_i = F_{N(0,1)}^{-1} (F_X(x_i)) \sim N(0,1)$$
 (2.13)

Di mana i=1,2,...,m. Mengasumsikan bahwa $Z=(Z_1,Z_2...,Z_m)^T$ mengikuti distribusi multivariat normal standar $N(0,\Sigma)$ dengan PDF $f_{N(0,\Sigma)}$ dan matriks kovarian Σ .

Fungsi Copula Gaussian adalah sebagai berikut.

$$\begin{split} &C_{(X_1,X_2,\dots,X_m)}(u_1,u_2,\dots,u_m)\\ &=F_{N(0,\Sigma)}(F_{N(0,1)}^{-1}(u_1),F_{N(0,1)}^{-1}(u_2),\dots,F_{N(0,1)}^{-1}(u_m))\\ &\text{Dengan} \end{split} \tag{2.14}$$

$$\Sigma = \begin{bmatrix} \sigma_{11} & \dots & \sigma_{1,m+1} \\ \vdots & \ddots & \vdots \\ \sigma_{m+1,1} & \dots & \sigma_{m+1,m+1} \end{bmatrix} = \begin{bmatrix} 1 & \dots & \sigma_{1,m+1} \\ \vdots & \ddots & \vdots \\ \sigma_{m+1,1} & \dots & 1 \end{bmatrix}$$

Sehingga densitas Copula normal adalah sebagai berikut.

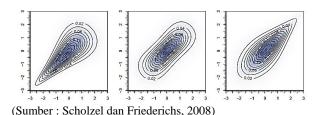
$$c_{(X_{1},X_{2},...,X_{m})}(u_{1},u_{2},...,u_{m})$$

$$= \frac{\partial}{\partial u_{1}} \cdot \frac{\partial}{\partial u_{2}} ... \frac{\partial}{\partial u_{m}} \cdot C_{X}(u_{1},u_{2},...u_{m})$$

$$= \frac{f_{N(0,\Sigma)}((F_{N(0,1)}^{-1}(u_{1}),F_{N(0,1)}^{-1}(u_{2}),...,F_{N(0,1)}^{-1}(u_{m}))}{f_{N(0,1)}(F_{N(0,1)}^{-1}(w)\prod_{j=1}^{m}(f_{N(0,1)}(u_{j})))}$$
(2.15)

Jika *Copula* Normal digunakan pada distribusi normal multivariat, maka diasumsikan memiliki hubungan yang linier [6].

2.7.2 Copula Archimedean


Selain Copula Gaussian, pada penelitian ini juga digunakan keluarga Copula Archimedean karena memiliki informasi dependensi yang lengkap, yang terdiri atas Copula Clayton, Gumbel, dan Frank.

Berbagai macam keluarga dan generatornya dari Copula Archimedean, yaitu Copula Clayton, Gumbel, dan Frank dapat dilihat pada Tabel 2.1

Tabel 2.1. Rei	uarga Copula Archin	icacan
Keluarga	Generator $\phi(u)$	Copula Bivariat $C(u_1, u_2)$
Clayton (1978)	$\frac{u^{-\theta}-1}{\theta}, \theta \in (0, \infty)$	$(u_1^{-\theta} + u_2^{-\theta} - 1)^{-\frac{1}{\theta}}$
Gumbel (1960)	$(-\log(u))^{\theta}, \theta \in [1, \infty)$	$\exp\left\{-\left[\left(-\log(u_1)\right)^{\theta} + \left(-\log(u_2)\right)^{\theta}\right]^{\frac{1}{\theta}}\right\}$
Frank (1979)	$\log\left(\frac{e^{\theta u}-1}{e^{\theta}-1}\right), \theta \in R\{0\}$	$\frac{1}{\theta} \log \left(1 + \frac{(e^{\theta u_1} - 1)(e^{\theta u_2} - 1)}{e^{\theta} - 1} \right)$

(Sumber: Kanzou, 2007)

Keluarga Copula Archimedean memiliki tail dependensi yang berbeda satu sama lain, Copula Clayton mempunyai tail dependensi di bagian bawah, Copula Frank tidak mempunyai tail dependensi, dan Copula Gumbel mempunyai tail dependensi di bagian atas. Pola dari masing-masing Copula ditunjukkan pada Gambar 2.3.

Gambar 2.3. Plot Copula Archimedean untuk Clayton, Frank, dan Gumbel (kiri ke kanan)

2.8 Estimasi Parameter Copula

Estimasi parameter Copula didapatkan dengan Maximum Like-lihood Estimation (MLE) [17]. Fungsi loglikelihood pada estimasi parameter Copula Archimedean dengan MLE tidak dapat menghasilkan bentuk yang closed form, sehingga sebagai alternatif prosedur estimasi parameter untuk Copula Archimedean dapat dilakukan menggunakan pendekatan Tau Kendall. Menurut Ganest dan Rivest (1993), estimasi parameter untuk Copula Archimedean dengan pendekatan Tau Kendall dapat ditulis sebagai berikut [18]

$$\hat{\tau}_C = 1 + 4 \int_0^1 \frac{\phi(u)}{\phi'(u)} du \tag{2.16}$$

Pendekatan Tau Kendall untuk masing-masing Copula Clayton, Frank, dan Gumbel ditunjukkan pada Tabel 2.2

Tabel 2.2. Estimasi Parameter Copula Archimedean

No.	Keluarga	Estimasi $\hat{ heta}$
1.	Clayton	$\hat{\tau} = \frac{\theta_C}{\theta_C + 2} \text{ maka } \hat{\theta}_C = \frac{2\tau}{1 - \tau}$
2.	Gumbel	$\hat{\tau} = 1 - \frac{1}{\theta_G} \max \hat{\theta}_G = \frac{1}{1 - \tau}$
3.	Frank	$\hat{\tau} = 1 - 4(1 - D_1(\theta_F))/\theta_F$ di mana $D_k(x) =$ fungsi Debye
		di mana $D_k(x)$ = fungsi Debye
		$D_k(x) = \frac{k}{x^k} \int_0^x \frac{u^k}{e^u - 1} du$

2.9 Gaussian Copula Marginal Regression (GCMR)

Bentuk umum dari model *Gaussian Copula Marginal Regression* adalah sebagai berikut :

$$Y_i = g(x_i, e_i; \lambda), \quad i = 1, ..., n$$
 (2.17)

Di mana g(.) adalah fungsi regresi yang sesuai, e_i adalah error dari model, dan λ adalah parameter. Di antara banyak kemungkinan g(.), pemilihan model adalah sebagai berikut.

$$Y_i = F_i^{-1} \{ \phi(e_i); \lambda \}, \quad i = 1, ..., n$$
 (2.18)

Di mana $\phi(.)$ adalah fungsi distribusi kumulatif dari Y, yang diberikan x_i , berdasarkan teorema transformasi integral,

model regresi pada persamaan (2.16) memastikan distribusi marginal dari Y_i . Sebagai contoh untuk *Gaussian Linear Model* $Y_i = x_i^T \beta + \sigma e_i$ sesuai dengan $Y_i = (Y_i; \lambda) = \phi\{\left(Y_i - \frac{x_i^T \beta}{\sigma}\right)\}$ dengan $\lambda = (\beta^T \sigma)^T$. Ketika model menggunakan distribusi *Weibull*, maka $\mu_i = \exp(x_i^T \beta)$, dengan $\lambda = \beta$ [16]

Pada penelitian yang ditulis oleh Masarotto dan Varin (2012), telah didiskusikan mengenai penggunaan model Copula Gaussian untuk analisis regresi marginal pada data yang Spesifikasi model berkorelasi tidak normal. vang tepat menghasilkan interpretasi sederhana dari parameter-parameter marginal dan fleksibilitas yang baik dalam struktur dependen, dan telah dibuktikan penerapannya dalam data time-series, studi longitudinal, data spasial, dan analisis survival [16]. Selain itu, dalam penelitian yang telah dilakukan oleh Dewi Ratih dkk (2013) tentang hubungan antara luas panen dan curah hujan serta permodelan luas panen padi dengan menggunakan metode GCMR yang juga dibandingkan dengan metode OLS dan GLM. Hasil menunjukkan bahwa metode GCMR paling baik digunakan variabel-variabel respon memodelkan vang untuk tidak terdistribusi normal dengan skew yang besar. GCMR juga lebih baik ketika dibandingkan dengan metode GLM dalam menangani variabel respons yang tidak normal [8].

BAB III METODE PENELITIAN

Pada bab ini dibahas objek penelitian yang diamati serta metode yang digunakan dalam Tugas Akhir ini agar proses pengerjaan dapat terstruktur dengan baik dan dapat mencapai tujuan yang telah ditetapkan sebelumnya. Langkah-langkah sistematis yang dilakukan dalam proses pengerjaan Tugas Akhir ini, yaitu sebagai berikut:

3.1 Objek Penelitian

Data yang digunakan dalam penelitian ini adalah data sekunder terbaru dari periode 1990-2011 yang diperoleh dari Badan Pusat Statistik (BPS) dan Badan Meteorologi, Klimatologi, dan Geofisika (BMKG). Data BPS berupa data luas panen padi per *subround* dan data produktivitas padi dari setiap kabupaten pada setiap tahunnya. Sedangkan data BMKG berupa data curah hujan per bulan. Lokasi penelitian yang dipilih adalah lima kabupaten merupakan sentra produksi padi di Jawa Timur yaitu Kabupaten Lamongan, Ngawi, Bojonegoro, Banyuwangi, dan Jember.

3.2 Peralatan

Peralatan penelitian yang digunakan untuk menyelesaikan Tugas Akhir ini adalah :

- 1. Perangkat lunak yang digunakan untuk merancang program adalah Adobe Dreamweaver CS6. DBMS yang digunakan untuk media penyimpanan data adalah MySQL phpMyAdmin. Untuk keperluan desain model, digunakan perangkat lunak Power Designer 15.2
- 2. Perangkat keras yang digunakan berupa laptop dengan spesifikasi Intel®Core B950 processor, RAM 2 GB DDR3. Sistem operasi yang digunakan adalah Windows 10 Enterprise 32 bit

3.3 Tahap Penelitian

Tahapan yang dilakukan dalam penelitian ini meliputi empat tahap sebagai berikut :

- 1. Tahap awal, merupakan tahap studi literatur, yakni mencari referensi yang relevan dengan penelitian ini. Referensi dapat berupa buku, Tugas Akhir, Tesis, artikel jurnal yang berkaitan dengan penelitian ini (Sistem pendukung keputusan, iklim, curah hujan, Copula, metode *Gaussian Copula Marginal Regression*).
- 2. Tahap pengembangan perangkat lunak, yang terdiri dari 4 fase, vaitu:
 - a. Fase Perencanaan dan Analisis, pada fase ini dilakukan analisis kebutuhan pengguna dan perancangan arsitektur perangkat lunak.
 - c. Fase Desain, merupakan fase untuk mendesain basis data, proses, dan antarmuka pengguna. Desain basis data dilakukan dengan membuat rancangan model data (CDM dan PDM) serta mengimplementasikannya ke dalam sistem manajemen basis data (DBMS). Desain proses diawali dengan identifikasi hubungan antar variabel hingga penentuan tingkat risiko produksi padi. Desain proses secara rinci diuraikan sebagai berikut:
 - X = variabel prediktor, dalam hal ini adalah curah hujan
 - Y = variabel respon, dalam hal ini adalah luas panen padi
 - d. Fase Implementasi, merupakan penerapan hasil perencanaan dan analisis pada fase sebelumnya. Penyimpanan dan pengolahan data menggunakan server basis data MySQL dan bahasa pemrograman yang digunakan untuk mengembangkan perangkat lunak ini adalah PHP.
 - e. Uji Coba dan Analisis Hasil, pada fase ini dilakukan pengujian dari hasil implementasi, kemudian dilakukan analisis hasill dari pengujian tersebut
- 3. Tahap akhir, merupakan tahap yang menyimpulkan hasil analisis data, merumuskan saran untuk penelitian selanjutnya,

dan menyusun laporan Tugas Akhir dari seluruh rangkaian tahapan yang dilakukan dalam penelitian ini. Secara umum, tahapan penelitian di atas dapat disajikan dalam diagram alir yang tertera pada Gambar 3.1

3.4 Alur Penelitian

Alur penelitian yang dilakukan dalam pengerjaan Tugas Akhir ini disajikan dalam diagram alir yang tertera pada Gambar 3.1

Gambar 3.1. Diagram Alir Tahap Analisis Data dan Pengembangan Perangkat Lunak

BAB IV ANALISIS DAN PEMBAHASAN

Bab ini dibahas mengenai masing-masing fase pada perangkat lunak untuk analisis tingkat produksi padi yang digunakan sebagai acuan untuk implementasi.

4.1 Fase Perencanaan

Penelitian ini membahas tentang pengembangan perangkat lunak pendukung keputusan untuk memprediksi tingkat produksi padi di Jawa Timur. Hasil analisis tingkat produksi tersebut akan didapat untuk setiap *subround* pada masing-masing kabupaten. Berdasarkan metodologi penelitian, kebutuhan pengguna pada sistem yang dibuat antara lain:

- 1. Menampilkan dan mengubah data yang menjadi variabel prediktor dan variabel respon.
- 2. Menampilkan grafik transformasi variabel ke domain uniform, hasil perhitungan korelasi Pearson & Tau-Kendall, uji normalitas data luas panen dan curah hujan tiap kabupaten, dan hasil perhitungan korelasi Copula dengan bantuan *software* R yang telah tersimpan dalam basis data
- 3. Melakukan perhitungan produksi padi (gabah kering giling) dan konversinya menjadi beras dari model yang diperoleh
- 4. Melakukan perhitungan dan menampilkan data hasil estimasi jumlah persediaan beras dan kebutuhan konsumsi beras tiap kabupaten

4.2 Fase Analisis

Sistem Pendukung Keputusan terdiri dari empat subsistem [10], yaitu:

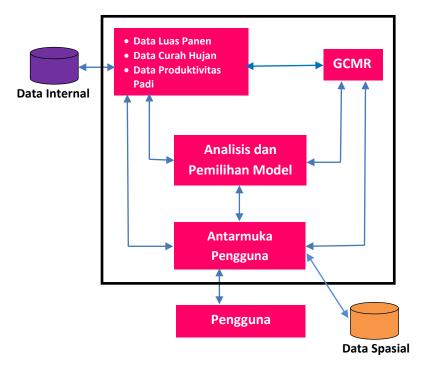
Subsistem Manajemen Data
 Subsistem manajemen data terdiri dari data internal dan data eksternal. Data internal merupakan data awal yang akan diolah, antara lain data curah hujan dan data luas panen.

 Sedangkan data eksternal merupakan data yang berada di

luar basis data. Data yang digunakan yaitu data spasial berupa peta Jawa Timur berdasarkan sumber dari *google map* dengan *polygon* yang dibentuk untuk lima kabupaten sesuai wilayah studi kasus.

2. Subsistem Manajemen Model

Terdapat enam model dalam sistem ini, yaitu model Copula, OLS, Regresi Robust estimasi-M, Regresi Robust estimasi-MM, Regresi Robust estimasi-S, dan GCMR. Model Copula, OLS, Regresi Robust estimasi-M, Regresi Robust estimasi-MM, Regresi Robust estimasi-S telah diperoleh dari penelitian sebelumnya. Sehingga pada penelitian ini akan membahas tentang GCMR. Keenam model tersebut adalah model statistik, sehingga tergolong ke dalam model kuantitatif.


3. Subsistem Manajemen Pengetahuan

Merupakan subsistem yang berperan menghubungkan antara data dalam basis data dengan model-model statistik. Selanjutnya memilih model terbaik yang tepat untuk diimplementasikan pada masing-masing kabupaten.

4. Subsistem Antarmuka Pengguna

Berupa tampilan antarmuka yang disediakan untuk mempermudah pengguna dalam menggunakan sistem sehingga dapat memperoleh informasi yang diinginkan.

Keempat komponen subsistem di atas diilustrasikan pada Gambar 4.1

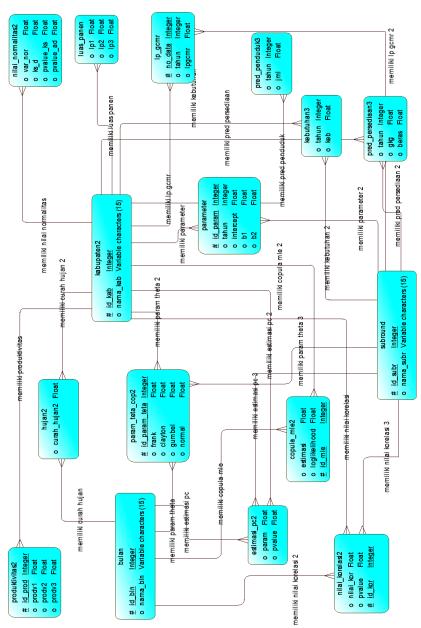
Gambar 4.1. Skema Komponen SPK

4.3 Fase Desain

Pada fase ini akan dibahas mengenai desain basis data, desain proses dan desain antar muka sistem

4.3.1 Desain Basis Data

Basis data perlu didesain untuk mempermudah proses pengolahan data pada sistem. Perancangan basis data ini menggunakan perangkat lunak *PowerDesigner*, menghasilkan dua desain basis data, yaitu model data konseptual (*Conseptual Data Model "CDM"*) dan model data fisik (*Physical Data Model "PDM"*).


1. Model Data Konseptual (CDM)

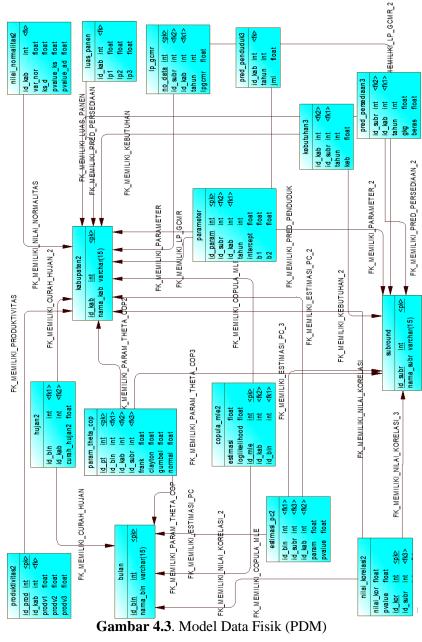
Merupakan model yang menyajikan konsep tentang bagaimana *user* memandang atau memperlakukan data yang terdiri dari entitas, atribut, serta relasi antar-entitas. Hal ini adalah langkah awal untuk desain basis data dengan pendekatan secara konsep sebelum dikonversi menjadi model data fisik yang telah berkaitan dengan tujuan basis data tertentu.

Pada penelitian awal oleh Maulidiyah dan Mukhlash [3], ada 6 tabel yang dibuat dalam basis data. Tabel kabupaten sebagai pusat yang mempunyai relasi memiliki dengan tabel regresiPCA, dataperperiode, dataperbulan, dan datapertahun. penelitian selanjutnya yang dilakukan oleh Miftachurrohmah dan Mukhlash [4], ada 19 entitas yang saling memiliki relasi, di antaranya : entitas kabupaten yang memiliki relasi dengan luas panen, produktivitas, entitas normalitas. parameter tetha cop, copula mle, nilai korelasi, pred persediaan, pred pend, kebutuhan, estimasi pc, model ols, hasil ols, dan model robust, hasil robust. Entitas memiliki relasi dengan normalitas, subround entitas model_robust, model_ols, hasil_robust, pred_persediaan, dan kebutuhan. Entitas bulan memiliki relasi dengan entitas enso, copula mle, estimasi pc. parameter tetha cop, nilai korelasi. Selanjutnya pada penelitian yang dilakukan oleh Maziyah dan Mukhlash [5] terdapat 12 entitas yang memiliki relasi memiliki dengan entitas-entitas lain. Entitas memiliki relasi dengan entitas curah_hujan. Entitas kabupaten memiliki relasi dengan entitas parameter, level, produktivitas, hasil robusts, hasil robustmm, curah hujan, luas panen, pred_produksi, model_robusts, dan model_robustmm. Entitas subround memiliki relasi dengan entitas level, hasil_robusts, hasil_robustmm, luas_panen, pred_produksi, model_robusts, dan model robustmm.

Pada Tugas Akhir ini terdapat 16 entitas dengan atributnya masing-masing yang mempunyai relasi memiliki dengan entitas lain. Entitas **bulan** memiliki relasi dengan entitas **hujan2**,

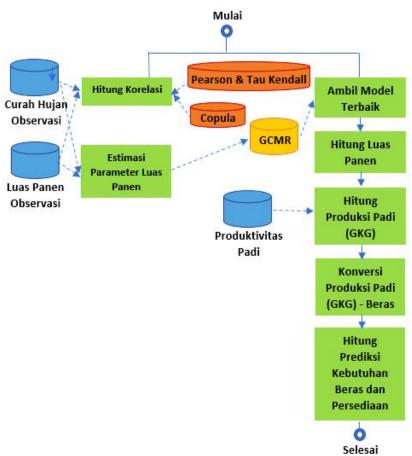
param_teta_cop, nilai korelasi2, copula mle2, estimasi_pc2. Entitas kabupaten memiliki relasi dengan entitas produktivitas2, hujan2, param teta cop2, estimasi pc2, nilai korelasi2, kebutuhan3, nilai normalitas2, luas panen, pred persediaan3, pred_penduduk3, lp gcmr, dan copula mle2. Entitas subround memiliki relasi dengan entitas parameter, pred_persediaan3, lp gcmr, kebutuhan3, param_teta_cop2, estimasi_pc2, dan nilai_korelasi2. Gambar 4.2 menunjukkan model data konseptual untuk sistem prediksi tingkat produksi padi.

Gambar 4.2. Model Data Konseptual


2. Model Data Fisik (PDM)

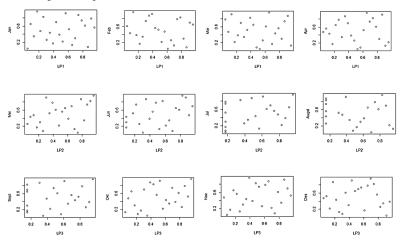
Merupakan konsep yang menjelaskan bagaimana deskripsi detail data disimpan ke dalam komputer dengan menyajikan informasi tentang format rekaman, urutan rekaman, dan jalur pengaksesan data yang dapat membuat pencarian rekaman data lebih efisien. PDM merupakan representasi basis data secara spesifik dari CDM.

Pada penelitian awal oleh Maulidiyah dan Mukhlash [3], masing-masing tabel memiliki foreign key NoKabupaten yang juga merupakan primary key dari tabel kabupaten. Kemudian pada penelitian yang dilakukan oleh Miftachurrohmah dan Mukhlas [4], tabel luas panen, produktivitas, nilai korelasi, estimasi pc, normalitas, parameter tetha cop, copula mle, model ols, hasil ols, model robust, hasil robust, kebutuhan, pred_pend, dan pred_persediaan memiliki foreign key pada tabel kabupaten vaitu id kab. Selain itu, tabel normalitas, model ols. hasil ols. model robust. hasil robust. pred persediaan, dan kebutuhan memiliki foreign key yang juga menjadi primary key pada tabel subround, yaitu id subr. Tabel enso, nilai korelasi, parameter tetha cop, estimasi pc, dan **copula mle** memiliki *foreign key* yang juga menjadi *primary* key pada tabel bulan, yaitu id_bln. Selanjutnya pada penelitian yang dilakukan oleh Maziyah dan Mukhlash [5] terdapat 12 tabel. Tabel level, produktivitas, hasil robusts, hasil robustmm, curah_hujan, luas_panen, pred_produksi, model_robusts, dan model robustmm memiliki foreign key yang juga menjadi primary key pada tabel kabupaten yaitu id kab. Tabel level, hasil_robusts, hasil_robustmm, luas_panen, pred_produksi, model robusts, dan model robustmm memiliki foreign key yang juga menjadi *primary key* pada **subround** yaitu **id sub**. Sedangkan tabel **curah_hujan** memiliki *foreign key* yang menjadi *primary key* pada tabel **bulan** yaitu **id bln**.


Pada Tugas Akhir ini terdapat 16 tabel. Tabel **copula_mle2**, **estimasi_pc2**, **hujan2**, **lp_gcmr**, **luas_panen**, **nilai_korelasi2**, **nilai normalitas2**, **param teta cop2**, **pred persediaan3**,

produktivitas2, parameter, kebutuhan3, pred persediaan3, dan pred_penduduk memiliki foreign key yang juga menjadi primary key pada tabel kabupaten2 yaitu id_kab. Tabel estimasi pc2, nilai korelasi2. parameter, lp gcmr, param teta cop2, pred_persediaan3, dan kebutuhan3 memiliki foreign key yang juga menjadi primary key pada subround yaitu id_sub. Tabel copula_mle2, estimasi_pc2, nilai_korelasi2, param_teta_cop2, dan hujan2 memiliki foreign key yang menjadi primary key pada tabel bulan yaitu id bln. Gambar 4.3 menunjukkan model data fisik untuk sistem prediksi tingkat produksi padi yang digunakan pada Tugas Akhir ini.

4.3.2 Desain Proses


Pada subbab ini akan dibahas tentang bagaimana algoritma program dari data awal yang siap diproses hingga didapatkan hasil prediksi tingkat produksi padi di Jawa Timur yang diilustrasikan pada Gambar 4.4.

Gambar 4.4. Diagram Model Proses

1. Transformasi Variabel ke Domain Uniform [0,1]

Langkah awal melakukan analisis dengan Copula adalah transformasi data ke domain uniform [0,1], dinyatakan dengan contoh *scatterplot* yang diperoleh dari bantuan *software* R yang ditunjukkan pada Gambar 4.5.

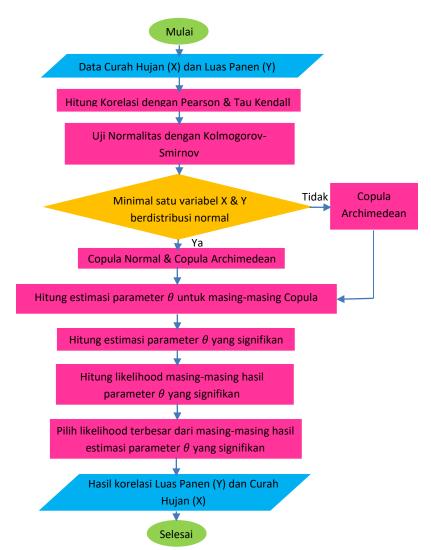
Gambar 4.5. Scatter Plot Transformasi Antara Luas Panen dan Curah Hujan di Lamongan ke Domain [0,1]

Gambar 4.5 menunjukkan bahwa terdapat beberapa titik amatan yang saling berdekatan yang mengindikasikan adanya hubungan antara kedua variabel tersebut. Hasil transformasi ini selanjutnya akan digunakan dalam analisis dependensi Copula.

2. Identifikasi Pola Hubungan Antar Variabel

Beberapa langkah untuk mengidentifikasi korelasi antara luas panen padi tiap subround dan curah hujan antara lain :

1. Hitung korelasi menggunakan metode Pearson dan Tau Kendall untuk memperoleh nilai estimasi parameter beserta *p-value* dari masing-masing metode menggunakan *software* R.


$$korelasi = \begin{cases} r_{xy} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}}, & Pearson \\ r = \frac{2S}{n(n-1)}, & Tau - Kendall \end{cases}$$
(4.1)

- 2. Pengujian normalitas menggunakan Kolmogorov-Smirnov dan Anderson Darling menggunakan software R. Jika hasil uji normalitas dari salah satu atau kedua metode adalah berdistribusi normal, maka keputusan metode Copula yang digunakan adalah Copula Normal dan Copula Archimedean. Jika hasil uji normalitas dari kedua metode adalah tidak berdistribusi normal, maka keputusan metode Copula yang digunakan adalah Copula Archimedean (Copula Frank, Gumbel, dan Clayton)
- 3. Hitung parameter θ untuk Copula,

Hitung parameter
$$\theta$$
 untuk Copula,
$$parameter_{\theta} = \begin{cases} \frac{2\tau}{1-2\tau}, & Clayton \\ \frac{1}{1-\tau}, & Gumbel \\ Pendekatan Tau - Kendall(\tau), & Frank \\ Pendekatan Pearson(r), & Normal \end{cases}$$
Hitung estimasi parameter θ dari perhitungan paramete

- Hitung estimasi parameter θ dari perhitungan parameter θ 4. sebelumnya.
- Fitting Copula dari hasil estimasi parameter θ yang 5. signifikan terhadap $\alpha = 0.05$ menggunakan *Maximum* Likelihood Estimation (MLE).
- Pilih hasil Copula terbaik dengan hasil likelihood yang 6. terbesar.

Secara umum algoritma identifikasi pola hubungan luas panen dan curah hujan disajikan pada Gambar 4.6.

Gambar 4.6. *Flowchart* Identifikasi Hubungan Antara Luas Panen dan Curah Hujan

3. Pemodelan Luas Panen Padi dengan Gaussian Copula Marginal Regression

Luas panen merupakan fungsi dari curah hujan (f(CH)), dinyatakan dalam persamaan (4.3) sampai persamaan (4.5)

$$\widehat{LP}_{1} = (CH_{Jan}, CH_{Feb}, CH_{Mar}, CH_{Apr})$$

$$= b_{0} + b_{1}CH_{Jan} + b_{2}CH_{Feb} + b_{3}CH_{Mar} + b_{4}CH_{Apr}$$

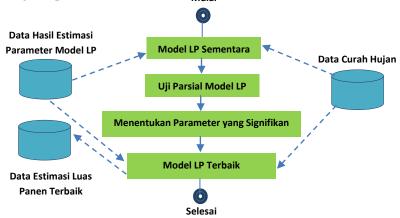
$$\widehat{LP}_{2} = (CH_{Mei}, CH_{Jun}, CH_{Jul}, CH_{Agst})$$

$$= b_{0} + b_{1}CH_{Mei} + b_{2}CH_{Jun} + b_{3}CH_{Jul} + b_{4}CH_{Agst}$$

$$\widehat{LP}_{3} = (CH_{Sept}, CH_{Okt}, CH_{Nov}, CH_{Des})$$

$$= b_{0} + b_{1}CH_{Sept} + b_{2}CH_{Okt} + b_{3}CH_{Nov} + b_{4}CH_{Des}$$

$$(4.5)$$


 \widehat{LP}_t adalah prediksi luas panen ke-i, dimana i adalah subround 1, 2, dan 3. CH_i adalah curah hujan ke-i, dimana i adalah bulan 1 hingga 12. Data curah hujan merupakan data masukan yang telah disimpan dalam basis data. b_i adalah estimasi parameter luas panen yang telah didapat dari tahap model terbaik.

Setelah menentukan estimasi parameter θ yang signifikan, kemudian langkah selanjutnya yang dilakukan pengestimasian parameter model luas panen. Pada penelitian sebelumnya yang dilakukan oleh Maulidiyah dan Mukhlash [3], menggunakan model regresi OLS untuk memprediksi curah hujan, dan model copula yang digunakan untuk memprediksi luas panen berdasarkan fungsi curah hujan. Sedangkan pada penelitian yang dilakukan oleh Miftachurrohmah dan Mukhlash [4], model yang digunakan adalah regresi robust dengan estimasi MM untuk menghitung prediksi luas panen berdasarkan fungsi Anomali SST. Selanjutnya pada penelitian Maziyah dan Mukhlash [5], terdapat dua metode yang digunakan untuk mengestimasi parameter model luas panen berdasarkan curah hujan, yaitu regresi Robust dengan estimasi-S dan regresi Robust dengan estimasi-MM.

Metode yang akan digunakan untuk mengestimasi parameter model luas panen berdasarkan curah hujan pada Tugas Akhir ini adalah *Gaussian Copula Marginal Regression* (GCMR). Perhitungan estimasi parameter model luas panen dilakukan dengan menggunakan *software R* dan kemudian hasilnya disimpan dalam basis data. Langkah-langkah untuk memperoleh model luas panen adalah sebagai berikut:

- a. Ambil data hasil estimasi parameter model luas panen yang ada pada basis data dan susun model luas panen sementara berdasarkan persamaan yang tertera pada (4.3) sampai (4.5)
- b. Lakukan uji parsial model luas panen dengan mendapatkan nilai *standard error* dan nilai uji t
- c. Pilih nilai-nilai estimasi parameter yang signifikan dengan ketentuan $t_{hitung} > t_{tabel}$
- d. Susun kembali model luas panen padi dengan menggunakan nilai-nilai parameter yang signifikan untuk mendapatkan model terbaik

Langkah-langkah perhitungan tersebut disajikan dengan diagram pada Gambar 4.7.

Gambar 4.7. Diagram Proses Penentuan Model Luas Panen Terbaik

4. Prediksi Tingkat Produksi Padi

Setelah memperoleh estimasi luas panen berdasarkan model terbaik, dilanjutkan dengan menghitung prediksi tingkat produksi padi yang dijelaskan sebagai berikut :

1. Prediksi luas panen yang telah diperoleh pada tahap sebelumnya digunakan untuk menghitung prediksi produksi padi tiap periode dengan persamaan:

$$Produksi_i = LP_i. Produktivitas_1$$
 (4.6)

Dengan i = I, II dan III merupakan subround dari produksi padi. Produktivitas merupakan data masukan yang telah disimpan dalam basis data, sedangkan luas panen merupakan perhitungan luas panen yang dihitung dari tahap sebelumnya.

- 2. Penentuan tingkat produksi padi ditentukan berdasarkan kebutuhan atau konsumsi beras yang berasal dari padi oleh penduduk di masing-masing kabupaten. Hasil produksi padi setara dengan produksi gabah kering giling (GKG). Oleh karena itu, perlu adanya konversi terlebih dahulu dari padi ke beras. Berikut langkah-langkah untuk memperoleh tingkat produksi padi.
 - a. Konversi dari GKG menjadi beras, rata-rata hasil penyusutan dari padi menjadi beras sebesar 37,26% (BPS, 2015), sehingga beras sebagai persediaan diperoleh dari persamaan berikut :

 $Persediaan_i = Produksi_i \times 62,74\% \quad (4.7)$ Dengan $i=I,\ II$ dan III merupakan subround dari produksi padi

b. Hitung kebutuhan atau konsumsi beras penduduk masing-masing kabupaten. Berdasarkan data BPS (2015), konsumsi beras per kapita sebulan adalah 6,8 kg. Maka diperoleh persamaan kebutuhan beras untuk masing-masing kabupaten tiap periode:

Kebutuhan = $\frac{6.8}{1000}$ × Jumlah penduduk × 4 bulan (4.8)

5. Interpretasi Hasil Tingkat Produksi Padi

Setelah melalui semua tahap sampai menghasilkan tingkat produksi padi untuk masing-masing kabupaten, maka hasil tersebut direpresentasikan dalam bentuk tabel yang memuat informasi jumlah produksi padi (GKG), beras, persediaan beras dan kebutuhan konsumsi beras setiap periode dalam setiap tahunnya.

4.3.3 Desain Antarmuka Pengguna

Pada subbab ini dibahas mengenai rancangan antarmuka pengguna pada perangkat lunak yang dibuat sesuai dengan kebutuhan pengguna dengan tampilan yang menarik dan mudah digunakan.

1. Desain tampilan halaman utama program Pada halaman utama program, fitur utama yang ditampilkan adalah peta tematik yang menunjukkan prediksi tingkat produksi padi.

HEADER							
Home	Forecasting Type		ata put	Analisis	Risk Level		
Peta Tematik							
Tahun							
FOOTER							

2. Menu Data Forecasting Type

Untuk memudahkan pengguna dalam mengakses program, penulis membedakan dua tipe peramalan, yaitu peramalan jangka panjang yang merupakan penelitian yang telah dilakukan oleh Maulidiyah dan Mukhlash [3], dan peramalan jangka pendek. Pada peramalan jangka pendek terdapat tiga sub menu, yaitu peramalan jangka pendek menggunakan ENSO yang merupakan penelitian oleh Miftachurrrohmah dan Mukhlash [4], peramalan jangka pendek menggunakan curah hujan dengan Robust estimasi-S dan estimasi-MM yang merupakan penelitian oleh Maziyah dan Mukhlash [5] dan peramalan jangka pendek menggunakan curah hujan dengan GCMR yang merupakan penelitian yang dilakukan pada Tugas Akhir ini. Pengguna harus memilih tipe ramalan pada program terlebih dahulu untuk melakukan proses prediksi tingkat produksi padi.

Forecasting Type yang dapat dipilih:

- Jangka Panjang
- Jangka Pendek Menggunakan ENSO
- Jangka Pendek Menggunakan Curah Hujan –
 Robust
- Jangka Pendek Menggunakan Curah Hujan GCMR

3. Menu Data Masukan

Pengguna dapat mengakses data masukan yang akan diproses pada program ini, yaitu data luas panen padi observasi dan data curah hujan observasi. Pada masingmasing submenu, pengguna juga dapat memperbarui data masukan dengan mengunggah data terbarunya.

Data masukan yang dapat diakses:

- Luas Panen Padi Observasi
- Curah Hujan Observasi
- Data Produktivitas Padi

Sub Menu Luas Panen Padi Observasi Pada submenu ini berisi tampilan data luas panen padi observasi yang telah tersimpan pada basis data. Data

observasi yang telah tersimpan pada basis data. Data luas panen padi observasi merupakan data luas panen masing-masing kabupaten setiap *subround* pada masing-masing tahun. Pengguna juga bisa memperbarui data luas panen padi pada menu Update Data.

DATA LUAS PANEN PADI OBSERVASI

		Subround					
Kabupaten	Tahun	Luas Panen 1 (Ha)	Luas Panen 2 (Ha)	Luas Panen 3 (Ha)			

b) Sub Menu Curah Hujan Observasi

Pada submenu ini, pengguna dapat mengakses data curah hujan observasi pada masing-masing kabupaten setiap bulan pada setiap tahunnya yang telah tersimpan pada basis data. Pengguna juga bisa memperbarui data luas panen dengan mengunggah data terbaru.

DATA CURAH HUJAN OBSERVASI

Kabupaten	Tahun	Bulan	Curah Hujan (mm)

4. Menu Analisis

Pengguna dapat mengakses beberapa submenu analisis, yaitu tahapan analisis, penghitungan korelasi, uji normalitas, Copula, prediksi luas panen berdasarkan model terbaik, serta produksi dan kebutuhan beras.

Analisis yang dapat dipilih:

- Tahapan Analisis
- Perhitungan Korelasi Pearson dan Tau-Kendall
- Uji Normalitas dengan Kolmogorov-Smirnov dan Anderson Darling
- Hasil Transformasi Variabel ke Domain Uniform [0,1]
- Estimasi Parameter Theta
- Estimasi Parameter Copula
- Fitting Copula dengan MLE
- Prediksi Luas Panen Padi Berdasarkan Model Terbaik
- Konversi Produksi Padi (GKG) Beras
- Persediaan dan Kebutuhan Beras

a) Pada submenu ini, pengguna dapat mengakses tahapan analisis yang menjelaskan bagaimana algoritma program dari data awal yang siap diproses hingga didapatkan tingkat produksi padi secara runtut.

Tahapan Analisis Prediksi Tingkat Produksi Padi
Diagram Proses Program

b) Submenu Perhitungan Korelasi Pearson dan Tau-Kendall

Pada submenu ini, pengguna dapat mengakses hasil perhitungan korelasi dengan metode Pearson dan Tau-Kendall yang telah tersimpan dalam basis data. Pengguna juga dapat memperbarui data hasil perhitungan dengan mengunggah data yang terbaru.

KORELASI LUAS PANEN PADI DAN CURAH HUJAN

Kabupaten	Bulan	Subround	Metode	Nilai Korelasi	p-value

c) Submenu Uji Normalitas dengan Kolmogorov-Smirnov dan Anderson Darling Pada submenu ini, pengguna dapat mengakses hasil perhitungan uji normalitas dengan Kolmogorov-Smirnov dan Anderson Darling yang telah tersimpan dalam basis data. Pengguna juga dapat memperbarui data hasil perhitungan dengan mengunggah data yang terbaru.

UJI NORMALITAS DATA LUAS PANEN PADI DAN CURAH HUJAN

Kabupaten	Variabel	KS (D)	p-value	p-value AD

d) Hasil Transformasi Variabel ke Domain Uniform [0,1] Pada submenu ini, pengguna dapat mengakses hasil scatterplot transformasi variabel ke domain uniform [0,1] yang telah tersimpan dalam basis data sebagai langkah awal analisis dengan metode Copula

Scatterplot Hasil Transformasi Variabel ke Domain Uniform [0,1]
Scatterplot

e) Estimasi Parameter θ

Pada submenu ini, pengguna dapat mengakses hasil perhitungan estimasi parameter θ untuk Copula Frank, Clayton, Gumbel, dan Normal yang telah tersimpan dalam basis data. Pengguna juga dapat memperbarui data hasil perhitungan dengan mengunggah data yang terbaru.

PARAMETER THETA COPULA

Kabupaten	Bulan	Subr	Frank	Clayton	Gumbel	Normal

f) Estimasi Parameter Copula

Pada submenu ini, pengguna dapat mengakses hasil perhitungan estimasi parameter Copula dengan pendekatan Tau-Kendall yang telah tersimpan dalam basis data. Pengguna juga dapat memperbarui data hasil perhitungan dengan mengunggah data yang terbaru.

ESTIMASI PARAMETER COPULA

Kabupaten	Bulan	Subr	Jenis Copula	Parameter	p-value

g) Fitting Copula dengan MLE

Pada submenu ini, pengguna dapat mengakses hasil perhitungan fitting Copula dengan menggunakan Maximum Likelihood Estimation (MLE) untuk masing-masing Copula yang signifikan dan menentukan parameter Copula yang terpilih pada tiap kabupaten, yang telah tersimpan dalam basis data. Pengguna juga dapat memperbarui data hasil perhitungan dengan mengunggah data yang terbaru.

FITTING COPULA DENGAN MAXIMUM LIKELIHOOD

Kabupaten	Bulan	Copula	Estimasi Parameter	Likelihood

h) Submenu Prediksi Luas Panen Berdasarkan Model Terbaik

Pada submenu ini, pengguna dapat mengakses data hasil perhitungan prediksi luas panen berdasarkan model terbaik untuk masing-masing kabupaten pada setiap *subround*.

ANALISIS TINGKAT PRODUKSI PADI
KABUPATEN :
PERIODE :
Periode 1 :
Periode 2 :
Periode 3 :

LUAS PANEN PADI BERDASARKAN MODEL TERBAIK

No	Kabupaten	Tahun	Periode	Luas Panen (ha)

i) Submenu Konversi Produksi Padi (Gabah Kering Giling) - Beras

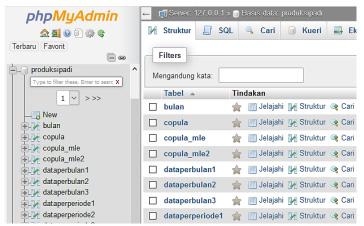
Pada submenu ini, pengguna dapat mengakses data hasil perhitungan konversi produksi padi (gabah kering giling) - beras untuk masing-masing kabupaten pada setiap *subround*.

KONVERSI PRODUKSI PADI (GABAH KERING GILING) - BERAS

Kahunatan	Tahun	Doriodo	Prediksi Prediksi		
Kabupaten	Tahun	Periode	Padi (GKG)	Beras	

j) Submenu Prediksi Kebutuhan dan Persediaan Beras Kabupaten Sentra Produksi Padi di Jawa Timur Pada submenu ini, pengguna dapat mengakses data hasil perhitungan prediksi persedian dan kebutuhan beras untuk masing-masing kabupaten pada setiap subround.

PREDIKSI PERSEDIAAN DAN KEBUTUHAN BERAS (TON) KABUPATEN SENTRA PENGHASIL PADI DI JAWA TIMUR


			Pred	diksi
Kabupaten	Tahun	Periode	Persediaan	Kebutuhan
			(ton)	(ton)

4.4 Fase Implementasi

Subbab ini menjelaskan implementasi dari fase perancangan, fase analisis, dan fase desain. Implementasi pada Tugas Akhir ini menggunakan basis data MySQL untuk mengolah datanya, dan menggunakan bahasa pemrograman PHP untuk proses penentuan prediksi tingkat produksi padi di Jawa Timur, serta menggunakan *Software* R untuk menghitung korelasi, uji normalitas, dan estimasi parameter Copula

4.4.1 Basis Data

Basis Data yang digunakan untuk menyimpan dan mengolah data adalah MySQL. Tampilan basis data pada MySQL untuk tingkat produksi padi disajikan pada Gambar 4.8.

Gambar 4.8. Tampilan Basis Data pada MySQL

Pembuatan perangkat lunak pada Tugas Akhir ini menggunakan bahasa pemrograman PHP, sehingga dibutuhkan koneksi yang menghubungkan antara MySQL dengan PHP. Data telah tersimpan dalam basis data dengan nama "produksipadi". Berikut adalah *source code* untuk koneksinya

```
$koneksi =
mysql_connect("localhost","root","");
mysql_select_db("produksipadi",$koneksi);
...
```

4.4.2 Estimasi Parameter θ

Berikut ini adalah *source code* untuk perhitungan estimasi parameter θ untuk Copula Archimedean (Frank, Clayton, Gumbel) dan Copula Normal :

```
. . .
si=0:
while($kolom=mysql fetch array($hasil)){
      $normal[$i]=$kolom["nilai kor"];
      if($kolom["id kab"]=$kab &&
$kolom["id bln"]=$i+1) {
            $in query="UPDATE
`param teta cop2` SET `normal`=$normal[$i]
WHERE id kab=$kab AND id bln=$i+1";
      }else{$in query="INSERT INTO
`param teta cop2`(`id kab`, `id bln`,
`normal`) VALUES ($kab,$i+1,$normal[$i])";}
      mysql query($in query);
      $i++;}
echo "Normal:<br/>";
for($i=0; $i<12; $i++){
      echo $normal[$i]."<br/>";
//Frank
$frank[$i]=$kolom2["nilai kor"];
capton[$i] = (2*$kolom2["nilai kor"])/(1-
$kolom2["nilai kor"]);
```

4.4.3 Estimasi Parameter Copula

Perhitungan estimasi parameter Copula Frank, Clayton, Gumbel, dan Normal dilakukan menggunakan *software* R berdasarkan perhitungan dengan rumus pada Tabel 2.1 Pada BAB II

4.4.4 Fitting Copula dengan Menggunakan Maximum Likelihood Estimation (MLE)

Hasil perhitungan estimasi dari masing-masing Copula yang telah didapat disimpan dalam basis data. Selanjutnya dilakukan *fitting* Copula dengan MLE (*Maximum Likelihood Estimation*) untuk masing-masing Copula yang signifikan. Model terbaik untuk masing-masing pasangan variabel dipilih berdasarkan hasil *fitting* dengan nilai *likelihood* terbesar dan *p-value* signifikan.

4.4.5 Pemodelan Luas Panen Padi di Jawa Timur dengan Gaussian Copula Marginal Regression

Pemodelan luas panen padi di masing-masing kabupaten sentra produksi padi di Jawa Timur dilakukan dengan metode Gaussian Copula Marginal Regression. Setelah pemodelan luas panen padi pada tiap kabupaten telah diperoleh, dilanjutkan dengan uji parsial model luas panen padi untuk menentukan model luas panen terbaik. Berikut adalah *source code* untuk menyusun model luas panen padi berdasarkan model terbaik:

```
$hasil=mysql query("SELECT * FROM hujan2 h WHERE
1=h.id kab AND h.id bln=4 AND h.tahun='2007'") or
die(mysql error());
while($kolom=mysql fetch array($hasil)){
$ch41=$kolom['curah hujan2'];
$hasil=mysql query("SELECT
                               FROM
                                      parameter
         1=p.id kab
WHERE
                        AND
                               p.id subr=1
                                               AND
p.tahun='2008'") or die(mysgl error());
while($kolom=mysql fetch array($hasil)){
$intersep1=$kolom['intercept'];
$hasil=mysql query("SELECT
                            * FROM parameter
         1=p.id kab
                        AND
                               p.id subr=1
                                               AND
p.tahun='2008'") or die(mysgl error());
while($kolom=mysql fetch array($hasil)){
$b11=$kolom['b1'];
//for tahun
p = array();
$lp[$thn]=($intersep1 + ($ch41*$b11));
```

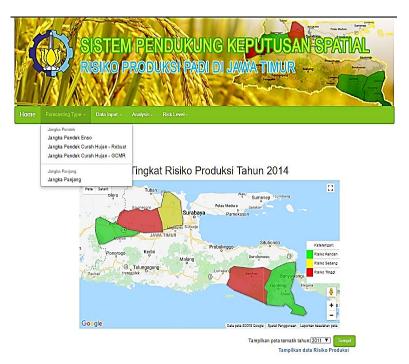
4.4.6 Perhitungan Prediksi Jumlah Produksi Padi (GKG) dan Beras Tiap Periode

Perhitungan prediksi produksi padi masing-masing periode merupakan hasil perkalian antara luas panen estimasi dengan produktivitas padi. Luas panen estimasi dihitung berdasarkan model terbaik yang telah ditentukan dalam tahap sebelumnya, sedangkan produktivitas padi menggunakan data produktivitas yang telah tersimpan dalam basis data. Seperti yang telah dijelaskan sebelumnya, hasil produksi padi setara dengan hasil gabah kering giling (GKG). Setelah didapat hasil GKG kemudian dilakukan konversi menggunakan persamaan (4.7) untuk

mendapatkan jumlah produksi beras. Berikut adalah *source code* untuk menentukan jumlah produksi padi (gabah kering giling) dan beras :

```
cho "Produktivitas="; echo " ".$prodv."
ton/hektar";
echo "<br/>br>Luas Panen="; echo "
".$luas_panen." hektar";
$produksi = $prodv * $luas_panen;
echo "<br/>br>GKG="; echo " ".$produksi." ton";
$beras = ($produksi * (62.74/100));
echo "<br/>br>Beras="; echo " ".$beras." ton";
$i++; }
...
```

Setelah dilakukan konversi GKG untuk mendapatkan jumlah produksi beras, kemudan dilakukan perhitungan untuk mendapatkan prediksi persediaan dan kebutuhan beras untuk masing-masing periode di tiap kabupaten berdasarkan persamaan (4.8) dengan *source code* sebagai berikut:


```
$\text{squery4="SELECT * FROM pred_penduduk3 where} id_kab=\$kab AND tahun=\$thn";
$\text{hasil4=mysql_query(\$query4);} $\text{kolom4=mysql_fetch_array(\$hasil4);} $\text{kebutuhan=((6.8/1000)*\$kolom4["jml"]*4);} $\text{query5="SELECT * FROM kebutuhan3 where} id_kab=\$kab AND id_subr=\$lps AND tahun=\$thn";
$\text{hasil5=mysql_query(\$query5);} ...
```

BAB V IMPLEMENTASI

Pada bab ini dijelaskan tentang implementasi dari tahapan proses yang telah didesain pada tahap sebelumnya serta uji coba dan pembahasan langkah-langkah dalam menentukan prediksi tingkat produksi padi di Jawa Timur.

5.1 Tampilan Halaman Utama Program

Berikut adalah tampilan utama program, di mana fitur utama dalam halaman ini adalah peta tematik yang menunjukkan prediksi tingkat produksi padi.

Gambar 5.1. Tampilan Halaman Utama Program

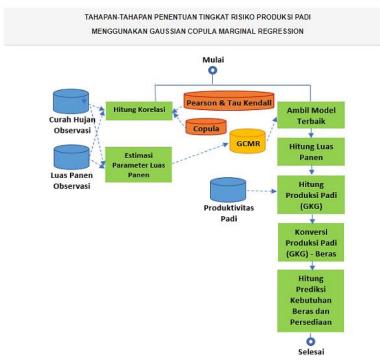
Untuk menggunakan program ini, terdapat dua pilihan tipe peramalan yaitu peramalan jangka panjang menggunakan model regresi Copula dan OLS, serta peramalan jangka pendek yang menggunakan ENSO, curah hujan - regresi *Robust*, dan curah hujan - GCMR. Pada penelitian Tugas Akhir ini pengguna harus memilih tipe ramalan jangka pendek curah hujan – GCMR.

5.2 Persiapan Data

Data yang digunakan dalam penelitian ini adalah data sekunder dari periode 1990-2011 yang diperoleh dari Badan Pusat Statistik (BPS) dan Badan Meteorologi, Klimatologi, dan Geofisika (BMKG). Data BPS berupa data luas panen padi dan produktivitas padi per *subround*. Sedangkan data BMKG berupa data curah hujan per bulan. Lokasi penelitian yang dipilih adalah kabupaten-kabupaten yang merupakan sentra produksi padi di Jawa Timur yaitu Kabupaten Lamongan, Ngawi, Bojonegoro, Banyuwangi, dan Jember. Data luas panen, curah hujan, dan data produktivitas ditampilkan pada menu data input seperti pada Gambar 5.2, Gambar 5.3, dan Gambar 5.4.

	DATA LUAS PANEN (Ha) PADI PER SUBROUND						
Kabupaten	Tahun	Luas Panen 1 (Ha)	Luas Panen 2 (Ha)	Luas Panen 3 (Ha			
Lamongan	1990	70408	28504	7328			
Lamongan	1991	64867	26687	13785			
Lamongan	1992	75317	31852	8620			
Lamongan	1993	72623	32774	6849			
Lamongan	1994	69698	31449	9924			
Lamongan	1995	71511	34386	9077			
Lamongan	1996	66300	33179	7664			
Lamongan	1997	70710	35871	6252			
Lamongan	1998	68101	32845	10604			
Lamongan	1999	70207	31869	13790			

Gambar 5.2. Data Luas Panen (Ha) Padi Per-Subround


Gambar 5.3. Data Curah Hujan Observasi

DATA PRODUKTIVITAS PADI KABUPATEN SENTRA PRODUKSI PADI JAWA TIMUR						
No	Kabupaten	Tahun	Periode I Januari-April (ton/ha)	Periode II Mei-Agustus (ton/ha)	Periode III September-Desember (ton/ha)	
1	Lamongan	1997	50.0315	55-4799	54-7297	
2	Lamongan	1998	56.3203	51.2468	54-7454	
3	Lamongan	1999	56.8	48.71	54.38	
4	Lamongan	2000	54.1448	52-2344	52.3173	
5	Lamongan	2001	46.3334	48.3872	42.3783	
6	Lamongan	2002	47-5637	49.1785	44.0344	
7	Lamongan	2003	53.6752	53-5574	53.7568	
8	Lamongan	2004	54.15	54.76	54.16	

Gambar 5.4. Data Produktivitas Padi

5.3 Tahapan Analisis

Pada submenu Tahapan Analisis, berisi diagram proses program yang menjelaskan tahapan-tahapan yang dilakukan untuk menentukan tingkat produksi padi secara runtut yang tertera pada Gambar 5.5 berikut ini.

Gambar 5.5. Tampilan Diagram Proses pada Submenu Tahapan Analisis

5.4 Korelasi Luas Panen dan Curah Hujan

Identifikasi pola hubungan antara luas panen dan curah hujan dilakukan dengan melalui beberapa tahap, antara lain identifikasi hubungan menggunakan Pearson dan Tau-Kendall; menguji normalitas data dan identifikasi hubungan menggunakan Copula. Berikut ini akan dijelaskan perhitungan dari masing-masing tahap dengan mengambil data *out sample* 2012 sebagai contoh. Hasil dari masing-masing tahap tersebut disajikan pada subbab-subbab berikut.

5.4.1 Hasil Korelasi Menggunakan Metode Pearson dan Tau Kendall

Hasil korelasi antara luas panen dan curah hujan menggunakan Pearson dan Tau-Kendall untuk masing-masing kabupaten dapat dilihat di Lampiran 6. Perhitungan koefisien dan p-value dilakukan dengan menggunakan software R dan hasilnya disimpan di dalam basis data. Selanjutnya, dicari p-value yang signifikan yaitu p-value $< \alpha$ dengan $\alpha = 0.05$. Tampilan korelasi antara luas panen dan curah hujan tertera pada Gambar 5.6

KORELASI LUAS PANEN PADI DAN CURAH HUJAN						
Kabupaten	Curah Hujan Bulan	Luas Panen Subround	Metode	Nilai Korelasi	p-value	
Lamongan	Januari	Subround 1	Pearson	0.313021	0.1561	
Lamongan	Januari	Subround 1	Tau Kendall	0.290043	0.06216	
Lamongan	Februari	Subround 1	Pearson	0.115217	0.6096	
Lamongan	Februari	Subround 1	Tau Kendall	0	1	
Lamongan	Maret	Subround 1	Pearson	-0.0730164	0.7468	
Lamongan	Maret	Subround 1	Tau Kendall	-0.0735931	0.6556	
Lamongan	April	Subround 1	Pearson	0.23671	0.2889	
Lamongan	April	Subround 1	Tau Kendall	0.194805	0.2175	
Lamongan	Mei	Subround 2	Pearson	0.104374	0.6439	
Lamongan	Mei	Subround 2	Tau Kendall	0.116883	0.468	

Gambar 5.6. Tampilan Korelasi Pearson dan Tau Kendall Antara Luas Panen dan Curah Hujan

Hasil *p-value* yang signifikan dengan $\alpha = 0.05$ di masing-masing kabupaten disajikan pada Tabel 5.1

|--|

Simiffles described Service

Kabupaten	Bulan	Sub- round	Korelasi	Koefisien	p-value
Lamongan	Juli	2	Tau	-	0.02493
			Kendall	0.349643	
	Agustus	2	Tau	-	0.03977
			Kendall	0.327872	
Ngawi	Mei	2	Pearson	0.51219	0.01481

Kabupaten	Bulan	Sub- round	Korelasi	Koefisien	p-value
Ngawi	Mei	2	Tau	0.451194	0.003349
			Kendall		
Banyuwangi	April	1	Pearson	0	-0.0435576
	Oktober	3	Pearson	0.47288	0.02624
		3	Tau	0.411605	0.008292
			Kendall		
	November	3	Pearson	0.587793	0.004017
Banyuwangi	November	3	Tau	0.38178	0.01305
			Kendall		
Bojonegoro	September	3	Pearson	0.426147	0.04797
Jember	April	1	Pearson	0.479861	0.02382
	Mei	2	Pearson	0.42542	0.0484
	September	3	Pearson	0.498863	0.01811
		3	Tau	0.526092	0.0006386
			Kendall		
	Oktober	3	Pearson	0.767622	0.00003046
		3	Tau	0.355749	0.02071
			Kendall		

Berdasarkan koefisien pada Tabel 5.1 menunjukkan bahwa pola hubungan antara luas panen dan curah hujan di Kabupaten Lamongan, Ngawi, Banyuwangi, Bojonegoro, dan Jember tidak dapat dijelaskan dengan baik menggunakan korelasi Pearson dan Tau Kendall, dikarenakan pada setiap pengujian memberikan hasil yang berbeda dan korelasi tersebut menyimpulkan bahwa sebagian besar luas panen padi tidak memiliki hubungan yang erat dengan curah hujan.

5.4.2 Hasil Uji Normalitas Data

Uji normalitas data dilakukan untuk pengambilan keputusan penggunaan metode Copula yang digunakan untuk identifikasi korelasi luas panen dan curah hujan. Metode yang digunakan untuk uji kenormalan data adalah Kolmogorov-Smirnov dan Anderson Darling. Pengujian dilakukan dengan

menggunakan *software* R. Tampilan hasil uji normalitas tertera pada Gambar 5.7. berikut.

UJI NORMALITAS DATA LUAS PANEN PADI DAN CURAH HUJAN					
Kabupaten	Variabel	Komolgorov-Smirnov (D)	p-value	p-value Anderson Darling	
Lamongan	LP Subround 1	0.099161	0.8298	0.8944	
Lamongan	LP Subround 2	0.12932	0.4407	0.2216	
Lamongan	LP Subround 3	0.15023	0.2202	0.1027	
Lamongan	CH Januari	0.22928	0.003873	0.0003743	
Lamongan	CH Februari	0.17426	0.08078	0.01118	
Lamongan	CH Maret	0.10012	0.8193	0.6404	
Lamongan	CH April	0.10462	0.7673	0.5744	
Lamongan	CH Mei	0.1599	0.1515	0.04398	
Lamongan	CH Juni	0.1698	0.09868	0.06824	
Lamongan	CH Juli	0.27143	0.0001854	0.0003072	
Lamongan	CH Agustus	0.31407	0.000004576	0.000002319	

Gambar 5.7. Tampilan Uji Normalitas Data

Hasil uji normalitas masing-masing disajikan pada Tabel 5.2.

Tabel 5.2. Hasil Uji Normalitas Data Out Sample 2012

		Kolm	ogorov-Sm	irnov	Anderso	n Darling
Kabupaten	Var	D	p-value	Keputusan Hasil Uji	p-value	Keputusan Hasil Uji
Lamongan	LP 1	0.09916	>0.150	Normal	0.8944	Normal
	LP 2	0.12932	>0.150	Normal	0.2216	Normal
	LP 3	0.15023	>0.150	Normal	0,1027	Normal
	CH	0.22928	<0,010	Tidak	<0,010	Tidak
	Jan	0.22928		normal	<0,010	normal
	CH	0.17426	0.087	Normal	0,0111	Tidak
	Feb	0.17420	0.067	Normai	0,0111	normal
	CH	0.10012	>0.150	Normal	0.6404	Normal
	Mar	0.10012	/0.130	Normai	0,0404	Normai
	CH	0.10462	>0.150	Normal	0,5744	Normal
	Apr	0.10402	/0.130	rvormai	0,5744	rvormai

		Kolm	ogorov-Sm		Anderso	n Darling
Kabupaten	Var	D	p-value	Keputusan Hasil Uji	p-value	Keputusan Hasil Uji
Lamongan	CH Mei	0.1599	>0.150	Normal	0,0439	Tidak normal
	CH Jun	0.1698	0.098	Normal	0,0682	Normal
	CH Jul	0.27143	<0,010	Tidak normal	<0,010	Tidak normal
	CH Ags	0.31407	<0,010	Tidak normal	<0,010	Tidak normal
	CH Sep	0.23244	<0,010	Tidak normal	<0,010	Tidak normal
	CH Okt	0.21919	<0,010	Tidak normal	<0,010	Tidak normal
	CH Nov	0.093179	>0.150	Normal	0,9072	Normal
	CH Des	0.14438	>0.150	Normal	0,4058	Normal
Ngawi	LP 1	0.14408	>0,150	Normal	0,1168	Normal
	LP 2	0.13193	>0.150	Normal	0,3162	Normal
	LP 3	0.11047	>0.150	Normal	0,3472	Normal
	CH Jan	0.1071	>0.150	Normal	0,4323	Normal
	CH Feb	0.071626	>0.150	Normal	0,9739	Normal
	CH Mar	0.12556	>0.150	Normal	0,9000	Normal
	CH Apr	0.082387	>0.150	Normal	0,9046	Normal
	CH Mei	0.13697	>0.150	Normal	0,0955	Normal
	CH Jun	0.18083	0,0594	Normal	<0,010	Tidak normal
	CH Jul	0.24589	<0,010	Tidak normal	<0,010	Tidak normal
	CH Ags	0.2482	<0,010	Tidak normal	<0,010	Tidak normal

		Kolm	ogorov-Sm	irnov	Anderso	n Darling
Kabupaten	Var	D	p-value	Keputusan Hasil Uji	p-value	Keputusan Hasil Uji
Ngawi	CH Sep	0.28856	<0,010	Tidak normal	<0,010	Tidak normal
	CH Okt	0.20871	0,014	Tidak normal	0,0137	Normal
	CH Nov	0.121	>0.150	Normal	0,3855	Normal
	CH Des	0.092199	>0.150	Normal	0,6032	Normal
Banyuwangi	LP 1	0.19351	0,032	Tidak normal	0,0373	Tidak normal
	LP 2	0.17173	0,091	Normal	0,1016	Normal
	LP 3	0.1893	0,039	Tidak normal	0,0434	Tidak normal
	CH Jan	0.13673	>0.150	Normal	0,4372	Normal
	CH Feb	0.11926	>0.150	Normal	0,6939	Normal
	CH Mar	0.094641	>0.150	Normal	0,7827	Normal
	CH Apr	0.1996	0,023	Tidak normal	<0,010	Tidak normal
	CH Mei	0.12495	>0.150	Normal	0,3292	Normal
	CH Jun	0.25179	<0,010	Tidak normal	<0,010	Tidak normal
	CH Jul	0.18311	0.053	Normal	<0,010	Tidak normal
	CH Ags	0.29989	<0,010	Tidak normal	<0,010	Tidak normal
	CH Sep	0.29602	<0,010	Tidak normal	<0,010	Tidak normal
	CH Okt	0.21875	<0,010	Tidak normal	<0,010	Tidak normal
	CH Nov	0.17808	0,067	Normal	<0,010	Tidak normal
	CH Des	0.1382	>0.150	Normal	0,2267	Normal

		Kolm	ogorov-Sm		Anderso	n Darling
Kabupaten	Var	D	p-value	Keputusan Hasil Uji	p-value	Keputusan Hasil Uji
Bojonegoro	LP 1	0.13221	>0.150	Normal	0,0720	Normal
	LP 2	0.21841	<0,010	Tidak	<0,010	Tidak
	LF Z	0.21041	<0,010	normal	<0,010	normal
	LP 3	0.16935	0,103	Normal	<0,010	Tidak normal
	CH Jan	0.10798	>0.150	Normal	0,7760	Normal
	CH Feb	0.1571	>0.150	Normal	0,1792	Normal
	CH Mar	0.1318	>0.150	Normal	0,1047	Normal
	CH Apr	0.10407	>0.150	Normal	0,8573	Normal
	CH Mei	0.16931	0,103	Normal	0,1403	Normal
	CH Jun	0.19292	0,032	Tidak normal	0,0105	Tidak normal
	CH Jul	0.21991	<0,010	Tidak normal	<0,010	Tidak normal
	CH Ags	0.25305	<0,010	Tidak normal	<0,010	Tidak normal
	CH Sep	0.25311	<0,010	Tidak normal	<0,010	Tidak normal
	CH Okt	0.18676	0,044	Tidak normal	0,0149	Tidak normal
	CH Nov	0.1431	>0.150	Normal	0,4184	Normal
	CH Des	0.086149	>0.150	Normal	0,9252	Normal
Jember	LP 1	0.11031	>0.150	Normal	0,4671	Normal
	LP 2	0.14219	>0.150	Normal	0,7402	Normal
	LP 3	0.22937	0,004	Tidak normal	<0,010	Tidak normal
	CH Jan	0.14138	>0.150	Normal	0,1099	Normal

		Kolm	ogorov-Sm	irnov	Anderso	n Darling
Kabupaten	Var	D	p-value	Keputusan Hasil Uji	p-value	Keputusan Hasil Uji
Jember	CH Feb	0.12612	>0.150	Normal	0,4358	Normal
	CH Mar	0.17074	0.095	Normal	0,3377	Normal
	CH Apr	0.12606	>0.150	Normal	0,4208	Normal
	CH Mei	0.11662	>0.150	Normal	0,8212	Normal
	CH Jun	0.17105	0,093	Normal	0,0479	Tidak normal
	CH Jul	0.2244	<0,010	Tidak normal	<0,010	Tidak normal
	CH Ags	0.21612	<0,010	Tidak normal	<0,010	Tidak normal
	CH Sep	0.29437	<0,010	Tidak normal	<0,010	Tidak normal
	CH Okt	0.17726	0,070	Normal	0,0182	Tidak normal
	CH Nov	0.099729	>0.150	Normal	0,5166	Normal
	CH Des	0.1006	>0.150	Normal	0,6051	Normal

Pada hasil uji Kolmogorov-Smirnov dikatakan tolak H_0 (tidak berdistribusi normal) jika $D_{hitung} > D_{\alpha}$ dan $p-value < \alpha$, dengan $\alpha = 0.05$. Menurut Tabel Kolmogorov-Smirnov $D_{\alpha} = D_{0.05} = 0.269$ Sedangkan pada hasil uji Anderson Darling dikatakan tolak H_0 jika $p-value < \alpha$, dengan $\alpha = 0.05$.

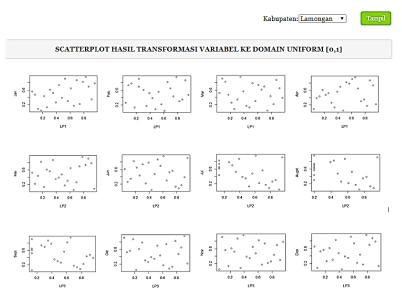
Keputusan akhir dari hasil uji normalitas ditentukan berdasarkan hasil uji Kolmogorov-Smirnov dan Anderson Darling. Jika minimal satu hasil uji normalitas data menunjukkan distribusi normal, maka data tersebut diputuskan berdistribusi normal. Keputusan akhir untuk hasil uji normalitas ditunjukkan pada Tabel 5.3

Tabel 5.3. Keputusan Akhir Uji Normalitas Data

145010.0.11	patasan mai	Has	sil Uji	Keputusan
Kabupaten	Variabel	Kolmogorov- Smirnov	Anderson Darling	Akhir Hasil Uji
Lamongan	LP 1	Normal	Normal	Normal
	LP 2	Normal	Normal	Normal
	LP 3	Normal	Normal	Normal
	CH Jan	Tidak	Tidak Normal	Tidak
	CH Jan	Normal	Huak Normai	Normal
	CH Feb	Normal	Tidak Normal	Normal
	CH Mar	Normal	Normal	Normal
	CH Apr	Normal	Normal	Normal
	CH Mei	Normal	Tidak Normal	Normal
	CH Jun	Normal	Normal	Normal
	CH Jul	Tidak	Tidak Normal	Tidak
	CH Jui	Normal	Huak Normai	Normal
	CH Ags	Tidak	Tidak Normal	Tidak
	CH Ags	Normal	Tidak Normai	Normal
	CH Sep	Tidak	Tidak Normal	Tidak
	Сп зер	Normal I dak No		Normal
	CH Okt	Tidak	Tidak Normal	Tidak
	CHOK	Normal	Tidak Normai	Normal
	CH Nov	Normal	Normal	Normal
	CH Des	Normal	Normal	Normal
Ngawi	LP 1	Normal	Normal	Normal
	LP 2	Normal	Normal	Normal
	LP 3	Normal	Normal	Normal
	CH Jan	Normal	Normal	Normal
	CH Feb	Normal	Normal	Normal
	CH Mar	Normal	Normal	Normal
	CH Apr	Normal	Normal	Normal
	CH Mei	Normal	Normal	Normal
	CH Jun	Normal	Tidak Normal	Normal
	CH Jul	Tidak	Tidak Normal	Tidak
		Normal		Normal
	CH Ags	Tidak	Tidak Normal	Tidak
		Normal		Normal

		Hasil	l Uji	Keputusan
Kabupaten	Variabel	Kolmogorov	Anderson	Akhir
		Smirnov	Darling	Hasil Uji
	CH Sep	Tidak	Tidak	Tidak
		Normal	Normal	Normal
	CH Okt	Tidak	Normal	Normal
		Normal		
	CH Nov	Normal	Normal	Normal
	CH Des	Normal	Normal	Normal
Banyuwangi	LP 1	Tidak	Tidak	Tidak
Danyuwangi		Normal	Normal	Normal
	LP 2	Normal	Normal	Normal
	LP 3	Tidak	Tidak	Tidak
		Normal	Normal	Normal
	CH Jan	Normal	Normal	Normal
	CH Feb	Normal	Normal	Normal
	CH Mar	Normal	Normal	Normal
	CH Apr	Tidak	Tidak	Tidak
		Normal	Normal	Normal
	CH Mei	Normal	Normal	Normal
	CH Jun	Tidak	Tidak	Tidak
		Normal	Normal	Normal
	CH Jul	Normal	Tidak	Normal
			Normal	
	CH Ags	Tidak	Tidak	Tidak
		Normal	Normal	Normal
	CH Sep	Tidak	Tidak	Tidak
		Normal	Normal	Normal
	CH Okt	Tidak	Tidak	Tidak
		Normal	Normal	Normal
	CH Nov	Normal	Tidak	Normal
			Normal	
	CH Des	Normal	Normal	Normal
Bojonegoro	LP 1	Normal	Normal	Normal
	LP 2	Tidak	Tidak	Tidak
		Normal	Normal	Normal
	LP 3	Normal	Tidak	Tidak
			Normal	Normal

		Hasi	l Uji	Keputusan
Kabupaten	Variabel	Kolmogorov	Anderson	Akhir
		Smirnov	Darling	Hasil Uji
	LP 3	Normal	Tidak	Tidak
			Normal	Normal
	CH Jan	Normal	Normal	Normal
	CH Feb	Normal	Normal	Normal
	CH Mar	Normal	Normal	Normal
	CH Apr	Normal	Normal	Normal
	CH Mei	Normal	Normal	Normal
	CH Jun	Tidak	Tidak	Tidak
		Normal	Normal	Normal
	CH Jul	Tidak	Tidak	Tidak
		Normal	Normal	Normal
	CH Ags	Tidak	Tidak	Tidak
		Normal	Normal	Normal
	CH Sep	Tidak	Tidak	Tidak
	_	Normal	Normal	Normal
	CH Okt	Tidak	Tidak	Tidak
		Normal	Normal	Normal
	CH Nov	Normal	Normal	Normal
	CH Des	Normal	Normal	Normal
Jember	LP 1	Normal	Normal	Normal
	LP 2	Normal	Normal	Normal
	LP 3	Tidak	Tidak	Tidak
		Normal	Normal	Normal
	CH Jan	Normal	Normal	Normal
	CH Feb	Normal	Normal	Normal
	CH Mar	Normal	Normal	Normal
	CH Apr	Normal	Normal	Normal
	CH Mei	Normal	Normal	Normal
	CH Jun	Normal	Tidak	Normal
			Normal	
	CH Jul	Tidak	Tidak	Tidak
		Normal	Normal	Normal
	CH Ags	Tidak	Tidak	Tidak
		Normal	Normal	Normal


		Hasi	l Uji	Keputusan
Kabupaten	Variabel	Kolmogorov	Anderson	Akhir
		Smirnov	Darling	Hasil Uji
Jember	CH Sep	Tidak	Tidak	Tidak
Jennoer		Normal	Normal	Normal
	CH Okt	Normal		Normal
	CH Nov	Normal	Normal	Normal
	CH Des	Normal	Normal	Normal

Berdasarkan Gambar 4.6 keputusan metode Copula ditentukan berdasarkan hasil uji normalitas masing-masing variabel. Jika minimal satu variabel memiliki hasil uji berdistribusi normal maka keputusan Copula yang akan digunakan adalah Copula Normal dan Copula Archimedean. Jika tidak ada variabel yang memiliki hasil uji berdistribusi normal maka keputusan Copula yang akan digunakan hanya Copula Archimedean. Berdasarkan Tabel 5.4, sebagian besar variabel luas panen dan curah hujan dinyatakan berdistribusi normal. Oleh karena itu, semua variabel luas panen yang diidentifikasi korelasinya dengan curah hujan diputuskan menggunakan Copula Normal dan Copula Archimedean.

5.4.3 Scatterplot Hasil Transformasi Variabel ke Domain Uniform [0,1]

Langkah awal dalam melakukan analisis dengan Copula adalah transformasi data ke domain uniform [0,1]. Tampilan transformasi data dinyatakan dengan scatterplot yang ditunjukkan pada Gambar 5.8

Gambar 5.8 menjelaskan bahwa terdapat beberapa tiitk amatan yang saling berdekatan yang mengindikasikan adanya hubungan antara kedua variabel tersebut. Hasil transformasi ini selanjutnya akan digunakan dalam analisis dependensi dengan Copula.

Gambar 5.8. Scatter Plot Transformasi Antara Luas Panen dan Curah Hujan Lamongan 2012 ke Domain [0,1]

5.4.4 Hasil Korelasi Menggunakan Copula

Hasil uji normalitas data menunjukkan bahwa terdapat salah satu variabel yang digunakan mengikuti distribusi normal, maka untuk identifikasi korelasi antara semua luas panen dan curah hujan menggunakan Copula Normal dan Copula Archimedean (Frank, Clayton, dan Gumbel)

Tampilan hasil parameter θ Copula dapat dilihat pada Gambar 5.9. Hasil parameter θ Copula Archimedean (Frank Clayton, dan Gumbel) diperoleh dari perhitungan persamaan Tabel 2.1, sedangkan parameter θ Copula Normal diperoleh dari pendekatan Pearson. Hasil parameter θ masing-masing secara lengkap dapat dilihat pada Lampiran 6.

Kabupaten: -

PARAMETER THETA COPULA								
Kabupaten	Curah Hujan Bulan	Luas Panen Subround	Frank	Clayton	Gumbel	Normal		
Lamongan	Januari	Subround 1	0.290043	0.817072	1.40854	0.313021		
Lamongan	Februari	Subround 1	0	0	1	0.115217		
Lamongan	Maret	Subround 1	-0.0735931	-0.137097	0.931452	-0.0730164		
Lamongan	April	Subround 1	0.194805	0.48387	1.24194	0.23671		
Lamongan	Mei	Subround 2	0.116883	0.264706	1.13235	0.104374		
Lamongan	Juni	Subround 2	-0.0562771	-0.106557	0.946721	-0.0939885		
Lamongan	Juli	Subround 2	-0.349643	-0.518127	0.740937	-0.296917		
Lamongan	Agustus	Subround 2	-0.327872	-0.493831	0.753085	-0.282966		
Lamongan	September	Subround 3	-0.225719	-0.368305	0.815848	-0.27659		
Lamongan	Oktober	Subround 3	-0.0735931	-0.137097	0.931452	0.122431		

Gambar 5.9. Tampilan Hasil Parameter θ Copula

Hasil parameter θ tersebut digunakan untuk perhitungan estimasi parameter Copula dengan pendekatan Tau Kendall. Tampilan estimasi parameter Copula dapat dilihat pada Gambar 5.10.

Signifikar	ı dengan Ztabel : Semua ı	·		Kabupaten: -	▼ <u>T</u>				
	ESTIMASI PARAMETER THETA COPULA								
Kabupaten	Curah Hujan Bulan	Luas Panen Subround	Jenis Copula	Parameter	Z hitung				
Lamongan	Januari	Subround 1	Frank	2.806	11.004				
Lamongan	Januari	Subround 1	Clayton	2.806	11.004				
Lamongan	Januari	Subround 1	Gumbel	2.806	11.004				
Lamongan	Januari	Subround 1	Normal	2.806	11.004				
Lamongan	Januari	Subround 1	Frank	0.8171	1.589				
Lamongan	Januari	Subround 1	Clayton	0.8171	1.589				
Lamongan	Januari	Subround 1	Gumbel	0.8171	1.589				
Lamongan	Januari	Subround 1	Normal	0.8171	1.589				
Lamongan	Januari	Subround 1	Frank	1.409	5.482				
·					0				

Gambar 5.10. Tampilan Hasil Estimasi Parameter Copula

Hasil perhitungan estimasi parameter Copula di masing-masing subround luas panen di lima kabupaten memiliki hasil yang signifikan atau dengan kata lain $\left|Z_{hitung}\right| > Z_{\frac{\alpha}{2}}$ dengan $Z_{\frac{\alpha}{2}} = Z_{tabel} = 1.96$ atau $p-value < \alpha$ dengan $\alpha = 0.05$. Namun, pola hubungan luas panen padi di lima kabupaten dan curah hujan memiliki hubungan yang mengikuti lebih dari satu jenis Copula. Oleh karena itu, dilakukkan fitting Copula atau pemilihan Copula terbaik menggunakan Maximum Likelihood Estimation (MLE) yang dihitung menggunakan software R. Keputusan untuk pola hubungan terbaik dari masing-masing pasangan variabel dipilih berdasarkan hasil fitting dengan p-value yang signifikan serta nilai log-likelihood terbesar. Hasil fitting Copula secara lengkap dapat dilihat pada Lampiran 8, dan untuk tampilannya dapat dilihat pada Gambar 5.11

	FITTING COPULA DENGAN MAXIMUM LIKELIHOOD						
Kabupaten	Bulan	Copula	Estimasi	Likelihood			
Lamongan	Januari	Frank	2.897	2.101			
Lamongan	Januari	Clayton	-	-			
Lamongan	Januari	Gumbel	1.422	1.908			
Lamongan	Januari	Normal	0.5164	2.345			
Lamongan	Februari	Frank	-	-			
Lamongan	Februari	Clayton	-	-			
Lamongan	Februari	Gumbel	-	-			
Lamongan	Februari	Normal	-	-			
Lamongan	Maret	Frank	-	-			
Lamongan	Maret	Clayton	-	-			
Lamongan	Maret	Gumbel	-	-			
Lamongan	Maret	Normal	_	-			

Kabupaten: - ▼ Tampil

Gambar 5.11. Tampilan Hasil Fitting Copula dengan MLE

Pada Tabel 5.4 menunjukkan bahwa sebagian besar hasil korelasi antara luas panen padi dan curah hujan mengikuti Copula

Gumbel. Hasil hubungan luas panen padi dan curah hujan teridentifikasi dengan baik pada *subround* 1, *subround* 2, dan *subround* 3 atau antara bulan Januari hingga Desember.

Tabel 5.4. Parameter Copula Terpilih pada Tiap Kabupaten untuk Data Out Sample 2012

Kabupaten	Bulan	Copula
Lamongan	Januari	Normal
	April	Frank
	Mei	Gumbel
	November	Frank
	Desember	Gumbel
Ngawi	Januari	Gumbel
	April	Gumbel
	Mei	Normal
	Juli	Frank
	Agustus	Gumbel
	September	Gumbel
	Oktober	Gumbel
	November	Frank
Banyuwangi	Januari	Gumbel
	Mei	Frank
	September	Gumbel
	Oktober	Normal
	November	Normal
	Desember	Gumbel
Bojonegoro	Januari	Frank
	Mei	Gumbel
	Juni	Normal
	Juli	Gumbel
	September	Gumbel
	Oktober	Normal
	November	Frank
Jember	Januari	Frank
	Februari	Frank
	Maret	Gumbel

Kabupaten	Bulan	Copula
Jember	April	Gumbel
	Mei	Normal
	Juni	Frank
	Juli	Frank
	Agustus	Gumbel
	September	Frank
	Oktober	Gumbel
	November	Frank

5.5 Pemodelan Luas Panen Padi di Sentra Produksi Padi di Jawa Timur

Pemodelan luas panen padi di sentra produksi di Jawa Timur dilakukan dengan metode GCMR. Hasil estimasi parameter model luas panen menggunakan GCMR dapat dilihat pada Tabel 5.5

Tabel 5.5. Estimasi Koefisien Marginal Model

- 11.0 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						
IZ -1	Periode I					
Kabupaten	Intersep	CH.Jan	CH.Feb	CH.Mar	CH.Apr	
Lamongan	64019,094	5,680	-	-	6,909	
Ngawi	39313,023	2,200	-	-	6,780	
Banyuwangi	46014,43	23,60	-	-	-	
Bojonegoro	61873,06	12,88	-	-	-	
Jember	64792,805	4,781	3,594	1,069	19,237	

V - h	Periode II					
Kabupaten	Intersep	CH.Mei	CH.Juni	CH.Juli	CH.Agst	
Lamongan	67062,390	-3,952	-	-	-	
Ngawi	36140,729	17,844	-	11,93	-32,741	
Banyuwangi	27376,037	9,646	-	-	-	
Bojonegoro	15599,26	93,75	55,81	24,61	-	
Jember	45314,56	37,79	30,14	-30,07	45,67	

Vahumatan	Periode III					
Kabupaten	Intersep	CH.Sept	CH.Okt	CH.Nov	CH.Des	
Lamongan	12415,746	-	-	-10,032	4,576	
Ngawi	13649,490	25,153	14,837	-5,338	1	
Banyuwangi	27888,4794	20,9473	5,9668	24,9381	-0,3255	
Bojonegoro	6017,4012	39,7978	-0,5808	2,8783	1	
Jember	16038,576	9,266	24,831	-1,542	-	

Berdasarkan parameter Copula yang telah terpilih dari masing-masing Kabupaten, selanjutnya didapatkan model estimasi luas panen tiap subround di tiap kabupaten yang merupakan fungsi dari curah hujan (f(CH)) dan dapat dilihat pada Tabel 5.6

Tabel 5.6. Model Luas Panen Padi di Sentra Produksi Padi di Jawa Timur 2012

Jawa Hindi 2012
Lamongan
$\widehat{LP1} = 64019.094 + 5.680CH.$ Jan + 6.909CH. Apr
$\widehat{LP2} = 67062.390 - 3.952$ CH. Mei
$\widehat{LP3} = 12415.746 - 10.032CH.Nov + 4.576CH.Des$
Ngawi
$\widehat{LP1} = 39313,023 + 2.200CH.$ Jan + 6.780CH. Apr
$\widehat{LP2} = 36140.729 + 17.844CH$. Mei + 11.930CH. Jul - 32.741CH. Agst
$\widehat{LP3} = 13649.490 + 25.153CH.Sept + 14.837CH.Okt - 5.338CH.Nov$
Banyuwangi
$\widehat{LP1} = 46014.43 + 23.60CH.$ Jan
$\widehat{LP2} = 27376.037 + 9.646CH.Mei$
$\widehat{LP3} = 27888.4794 + 20.9473CH.Sept + 5.9668CH.Okt$
+ 24.9381 <i>CH</i> . <i>Nov</i> – 0.3255 <i>CH</i> . <i>Des</i>
Bojonegoro
$L\widehat{P}1 = 61873.06 + 12.88CH.Jan$
$\widehat{LP2} = 15599.26 + 93.75CH$. Mei + 55.81CH. Jun + 24.61CH. Jul
$\widehat{LP3} = 6017.4012 + 39.7978CH.Sept - 0,5808CH.Okt +$
2.8783 <i>CH</i> . <i>Nov</i>
Jember
$\widehat{LP1} = 64792,805 + 4,781CH.$ Jan + 3,594CH. Feb + 1,069CH. Mar
+ 19,237 <i>CH</i> . <i>Apr</i>
$\widehat{LP2} = 45314.56 + 37.79CH.Mei + 30.14CH.Jun - 30.07CH.Jul$
+ 45.67 <i>CH</i> . <i>Agst</i>
$\widehat{LP3} = 16038.576 + 9.266CH.Sept + 24.831CH.Okt - 1.542CH.Nov$

Setelah dilakukan pemodelan luas panen padi di tiap kabupaten, kemudian langsung dilanjutkan pengujian parsial model luas panen padi untuk menentukan variabel yang berpengaruh secara signifikan dengan menggunakan uji t, yang disajikan pada Tabel 5.7 berikut.

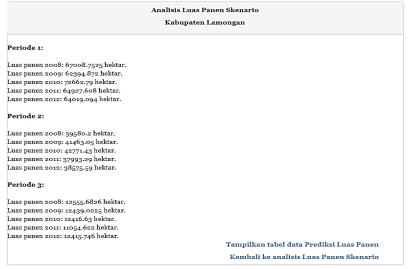
Tabel 5.7. Uji Parsial Model Luas Panen Padi di Lamongan untuk Data Out Sample 2012

LP1 **Parameter** Estimasi s.e t19;0,1/2 2621,628 Intersep 64019,094 24,420 1,729 Januari 6,567 5,680 0,865 April 6,909 14,933 0,463 LP2 Parameter Estimasi s.e t $T_{20;0,1/2}$ Intersep 67062,390 1701,373 39,541 1,725 Mei -3.952 13,839 -0,283 LP3 **Parameter** Estimasi s.e t19;0,1/2 3,547 Intersep 12415,746 3500.369 1.729 November 15,570 -0,644 -10,032 Desember 4,576 9.292 0,492

Ket : Tanda bold menunjukkan signifikan pada $\alpha = 10\%$

Tabel 5.7 menjelaskan bahwa curah hujan tidak terlalu berpengaruh secara signifikan terhadap luas panen padi. Hal ini ditunjukkan dengan tidak adanya variabel curah hujan yang signifikan pada beberapa subround di tiap kabupaten, karena t_{hitung} < t_{tabel}. Artinya, hanya intersep yang masuk ke dalam model. Pada Kabupaten Jember, curah hujan cukup berpengaruh secara signifikan terhadap luas panen padi di ketiga *subround*. Setelah menentukan variabel yang signifikan, dilakukan penyusunan model luas panen kembali. Model terbaik untuk LP1, LP2, dan LP3 di kelima kabupaten untuk tahun 2012 ditunjukkan pada Tabel 5.8. Untuk mengetahui variabel mana yang berpengaruh signifikan terhadap respon di empat kabupaten lainnya, disajikan pada Lampiran 9.

Tabel 5.8. Model Terbaik Luas Panen Padi di Sentra Produksi Padi di Jawa Timur 2012


Lamongan
$\widehat{LP1} = 64019,094$
$\widehat{LP2} = 67062.390$
$\widehat{LP3} = 12415.746$
Ngawi
$\widehat{LP1} = 39313,023$
$\widehat{LP2} = 35900.226 + 16.692CH.Mei$
$\widehat{LP3} = 13649.490$
Banyuwangi
$\widehat{LP1} = 46014.43 + 23.60CH.Jan$
$\widehat{LP2} = 27376.037$
$\widehat{LP3} = 27888.4794$
Bojonegoro
$\widehat{LP1} = 61873.06$
$\widehat{LP2} = 18561.32 + 99.71CH.Mei$
$\widehat{LP3} = 6017.4012$
Jember
$\widehat{LP1} = 67963.945 + 19.590CH.Apr$
$\widehat{LP2} = 46840.06 + 36.18CH.Mei$
$\widehat{LP3} = 15721.401 + 27.03CH.Okt$

Tabel 5.9. Error Pemodelan Pada Data Out Sample 2012 Luas Panen Padi Berdasarkan Model Terbaik

Kabupaten	e ₁	e ₂	e 3
Lamongan	5203.9	22653.4	281.3
Ngawi	6780	36317.81	11141.5
Banyuwangi	3087.1	10586	2900.5
Bojonegoro	13954.9	7392.5	3076.6
Jember	1628.5	8945.7	2347.1

Contoh hasil tampilan perhitungan prediksi luas panen padi pada tahun 2012 (data *out sample*) LP1, LP2, LP3 untuk Kabupaten Lamongan pada tahun 2012 dapat dilihat pada Gambar 5.12. Berdasarkan hasil prediksi, maka dapat dihitung

kesalahan hasil taksiran luas panen padi tiap kabupaten di tahun 2012 yang ditunjukkan pada Tabel 5.9. Kesalahan dari penaksiran masih sangat tinggi (ribuan bahkan puluhan ribu hektar). Hal ini disebabkan karena data pengamatan pada penelitian sedikit, oleh karena itu model yang didapatkan untuk data *out sample* memberikan kesalahan yang cukup besar.

Gambar 5.12. Analisis Luas Panen Skenario Kabupaten

Tampilan data berbentuk tabel hasil perhitungan luas panen padi berdasarkan model terbaik disajikan pada Gambar 5.13.

			Kabupaten:	*	Tahun: - ▼	Tampil
	D.	ATA PREDIKSI LU	JAS PANEN			
	KABUPATEN	SENTRA PRODUE	KSI PADI JAWA TIMU	JR.		
No	Kabupaten	Tahun	Periode		Luas Panen	
					(ha)	
1	Lamongan	2012	1		64019.1	
2	Lamongan	2012	2		38948.7	
3	Lamongan	2012	3		12353.8	
4	Ngawi	2012	1		39313	
5	Ngawi	2012	2		36148.1	
6	Ngawi	2012	3		13781.6	
7	Banyuwangi	2012	1		46630	
8	Banyuwangi	2012	2		32129.4	
9	Banyuwangi	2012	3		28001.1	

Gambar 5.13. Data Prediksi Luas Panen Padi Berdasarkan Model Terbaik

5.6 Perhitungan Prediksi Produksi Padi

Perhitungan produksi padi dilakukan berdasarkan hasil perhitungan prediksi luas panen sesuai dengan model luas panen terbaik yang telah disusun sebelumnya. Seperti yang telah dijelaskan, hasil produksi padi setara dengan hasil gabah kering giling (GKG).

Tampilan konversi GKG ke beras dapat dilihat pada Gambar 5.14. Pada Gambar 5.14 menunjukkan bahwa konversi GKG ke beras mengalami penyusutan sebesar 37.26%. Hasil prediksi jumlah produksi padi (GKG) dan beras secara lengkap dapat dilihat pada Lampiran 10.

Tahun: Semua	▼ Luas Panen: (▼ Kabupaten: [-	▼ Hitung
	KONVERSI PREDIM	(SI PRODUKSI PADI (GABAH KERING GILING) - BERA	\S
Kabupaten Tahun Periode Prediksi				
			Padi (GKG)	Beras
Lamongan	2008	Subround 1	434781	272781
Lamongan	2008	Subround 2	231539	145268
Lamongan	2008	Subround 3	71001.6	44546.4
Ngawi	2008	Subround 1	263111	165076
Ngawi	2008	Subround 2	194100	121778
Ngawi	2008	Subround 3	75680.8	47482.2
Banyuwangi	2008	Subround 1	315944	198223
Banyuwangi	2008	Subround 2	163699	102705
Banyuwangi	2008	Subround 3	147758	92703.2

Gambar 5.14. Tampilan Konversi Prediksi Produksi Padi (GKG) dan Beras

Prediksi kebutuhan atau konsumsi beras pada Kabupaten Lamongan, Ngawi, Banyuwangi, Bojonegoro, dan Jember sebagian besar mengalami peningkatan setiap tahunnya. Hal ini disebabkan laju pertumbuhan penduduk di kelima kabupaten tersebut bernilai positif, sehingga terjadi peningkatan jumlah penduduk di setiap tahunnya. Namun, prediksi konsumsi beras pada Kabupaten Lamongan tahun 2010 dan 2012, Kabupaten Ngawi tahun 2010, dan Kabupaten Bojonegoro tahun 2010 sempat mengalami penurunan dibandingkan tahun sebelumnya dikarenakan jumlah penduduk yang juga mengalami penurunan.

PREDIKSI JUMLAH PERSEDIAAN DAN KEBUTUHAN BERAS (TON)					
Kabupaten	Tahun	Periode	Pred	liksi	
			Persediaan (ton)	Kebutuhan (ton	
Lamongan	2008	Subround 1	272781	32343.2	
Lamongan	2008	Subround 2	145268	32343.2	
Lamongan	2008	Subround 3	44546.4	32343.2	
Ngawi	2008	Subround 1	165076	22707.8	
Ngawi	2008	Subround 2	121778	22707.8	
Ngawi	2008	Subround 3	47482.2	22707.8	
Banyuwangi	2008	Subround 1	198223	41663.7	
Banyuwangi	2008	Subround 2	102705	41663.7	
Banyuwangi	2008	Subround 3	92703.2	41663.7	
Bojonegoro	2008	Subround 1	215820	34368.6	
Bojonegoro	2008	Subround 2	97736.3	34368.6	

Gambar 5.15. Tampilan Prediksi Jumlah Persediaan dan Kebutuhan Beras Tiap Kabupaten

Jika jumlah prediksi produksi padi atau persediaan beras kurang dari kebutuhan maka terjadi defisit sehingga dapat dikatakan bahwa tingkat produksinya rendah. Jika jumlah persediaan beras lebih dari kebutuhan maka terjadi surplus sehingga tingkat produksinya tinggi. Hasil prediksi produksi padi di kelima kabupaten sebagian besar menghasilkan tingkat produksi yang tinggi, sehingga masih aman untuk memenuhi kebutuhan konsumsi beras masyarakat. Hal ini dikarenakan kelima kabupaten tersebut merupakan sentra produksi padi di Jawa Timur. Hasil prediksi jumlah persediaan beras dan kebutuhan beras (ton) secara lengkap dapat dilihat pada Lampiran 11.

5.7 Akurasi Pengukuran

Pada kenyataannya tidak ada prediksi yang memiliki tingkat akurasi 100%, karena setiap prediksi pasti mengandung kesalahan. Dalam Tugas Akhir ini digunakan metode MAPE (Mean Absolute Percentage Error) untuk mengukur tingkat

keakuratan dari hasil estimasi luas panen dengan menggunakan GCMR. MAPE dihitung dengan menggunakan kesalahan absolut pada tiap periode dibagi dengan nilai observasi yang nyata untuk periode itu, kemudian merata-rata kesalahan presentase absolut tersebut. MAPE mengindikasikan seberapa besar kesalahan dalam meramal yang dibandingkan dengan nilai nyata.

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{A_t - F_t}{A_t} \right| \times 100\%$$
 (5.1)

di mana:

 A_t = nilai aktual pada waktu ke t

 F_t = nilai prediksi pada waktu ke t

n =banyak data

Hasil Pengukuran Akurasi ditunjukkan pada tabel 5.10 berikut.

Tabel 5.10. Perhitungan Akurasi Metode GCMR dengan MAPE

		<i>6</i> ··	LP	LP	
17 - 1 4	T - 1	G-1			17 1 . 1
Kabupaten	Tahun	Subr	Aktual	Estimasi	Kesalahan
			(Ha)	(Ha)	
Lamongan	2008	1	68125	67008.8	0.016385
		2	51030	67062.390	0,224374
		3	10285	12555.7	0,22078
	2009	1	65613	62394.9	0,049047
		2	56687	41463.1	0,268562
		3	11843	12439	0,05033
	2010	1	63579	72662.8	0,14287
		2	52202	42771.4	0,180656
		3	25002	12439	0,50248
	2011	1	62453	64927.6	0,03962
		2	46315	37993.3	0,179676
		3	14303	11054.6	0,227113
	2012	1	69223	64019.1	0,075176
		2	61229	38575.6	0,369978
		3	12697	12415.7	0,022155
Ngawi	2008	1	41090	44023.1	0,07138

				1	
		2	40565	32481.7	0,199268
		3	19034	13774.1	0,276342
	2009	1	44982	44009.4	0,021622
		2	40989	37810	0,077557
		3	23439	15780.8	0,326729
	2010	1	42372	40429.3	0,045849
		2	41832	42589.7	0,01811
		3	28631	14106.4	0,507303
	2011	1	42301	39756	0,060164
		2	38157	42349.8	0,10988
		3	25416	18595.6	0,268351
	2012	1	46093	39313	0,147094
		2	45377	9059.19	0,800357
		3	24791	13649.5	0,449417
Banyuwangi	2008	1	50002	49481.5	0,01041
		2	31346	29720	0,051873
		3	28644	27683.2	0,033543
	2009	1	54412	49940.5	0,082179
		2	31603	29694.5	0,06039
		3	29505	30473.2	0,03281
	2010	1	53196	56543.1	0,066292
		2	31837	29969.3	0,058664
		3	37099	28795.4	0,223823
	2011	1	53459	55869.4	0,04509
		2	34135	29666.9	0,130895
		3	27859	31582.9	0,13367
	2012	1	49435	52522.1	0,06245
		2	37962	27376	0,278858
		3	30789	27888.5	0,094206
Bojonegoro	2008	1	60004	60783.6	0,01299
		2	47108	29003.4	0,384321
		3	10780	5540.27	0,48606
	2009	1	71707	62055.6	0,134595
		2	51050	24905.5	0,512135
		3	12001	18187.9	0,51553
	2010	1	63232	60440.9	0,044141
		2	61869	21602.8	0,65083
		3	22316	6040.95	0,7293
	2011	1	76670	64019.1	0,165005
		2	48536	43178.3	0,110386
		3	12720	7512.21	0,409417

	2012	1	75828	61873.1	0,184034
		2	48912	41519.5	0,151139
		3	9094	6017.4	0,338311
Jember	2008	1	66156	65251.2	0,013677
		2	56523	46510	0,177149
		3	15972	17908	0,12121
	2009	1	74937	70781.5	0,055453
		2	59565	46182.9	0,224664
		3	17868	19824.7	0,10951
	2010	1	76086	66005.7	0,132486
		2	55467	45079.2	0,187279
		3	21778	20695.4	0,049711
	2011	1	76496	74416	0,027191
		2	60215	45263.8	0,248297
		3	18396	23540.7	0,27966
	2012	1	76160	74531.5	0,021383
		2	61873	52927.3	0,144582
		3	20535	18187.9	0,114298
	Jum	lah Kesa	alahan		14.13496
MAP	E = [(Jum)	lah Kesa	lahan)/n] x 1	00%	18,8466%

Berdasarkan perhitungan di atas didapat bahwa *error* atau kesalahan penggunaan metode GCMR untuk pemodelan luas panen padi kelima kabupaten tiap periode pada tahun 2008-2012 sebesar 18,8466%.

BAB VI PENUTUP

Pada bab ini berisi tentang beberapa kesimpulan yang dihasilkan berdasarkan penelitian yang telah dilaksanakan dan saran yang dapat digunakan jika penelitian ini dikembangkan.

6.1 Kesimpulan

Berdasarkan rangkaian proses yang dilakukan seperti yang telah dijelaskan pada BAB IV dan BAB V, maka dapat diambil kesimpulan sebagai berikut:

- 1. Langkah-langkah dalam memodelkan luas panen padi menggunakan GCMR terdiri dari beberapa tahapan. Tahapan pertama adalah mengidentifikasi hubungan antara variabel prediktor (curah hujan) dan variabel respon (luas panen) dengan mengetahui nilai korelasi, uji normalitas, dan kemudian menghitung dan menentukan estimasi parameter Copula yang signifikan. Setelah didapat parameter Copula yang terpilih, dilanjutkan dengan tahapan kedua yaitu menyusun model luas estimasi luas panen tiap subround di masing-masing kabupaten yang merupakan fungsi dari curah hujan (f(CH)). Setelah dilakukan pemodelan luas panen padi, dilanjutkan dengan pengujian parsial model luas panen padi untuk menentukan variabel yang berpengaruh secara signifikan dengan menggunakan uji t. Setelah didapat variabel-variabel yang signifikan, dilakukan penyusunan kembali model estimasi luas panen agar didapat hasil yang terbaik. Produksi padi didapat dari hasil perkalian antara luas panen padi berdasarkan model terbaik dengan produktivitas padi.
- Pengembangan Sistem Pendukung Keputusan yang dibuat telah berhasil memprediksi tingkat produksi padi di 5 kabupaten sentra penghasil padi di Jawa Timur pada masingmasing subround. Hasil menunjukkan bahwa sebagian besar

- prediksi tingkat produksi padi di masing-masing kabupaten di tiap *subround* tergolong ke dalam tingkat tinggi. Hal ini dikarenakan kelima kabupaten tersebut merupakan sentra penghasil padi di Jawa Timur.
- 3. Pengembangan Sistem Pendukung Keputusan yang dibuat telah berhasil diintegrasikan ke dalam perangkat lunak sistem pendukung keputusan berbasis web yang telah ada dengan menambahkan beberapa tabel pada basis data dan menambahkan model baru yaitu *Gaussian Copula Marginal Regression* (GCMR) serta menggabungkan menu-menu pada perangkat lunak.

6.2 Saran

Berdasarkan hasil yang telah dicapai pada penelitian ini, penulis menyarankan beberapa hal :

- Model luas panen dapat dikembangkan dengan menambahkan variabel prediktor lain yang mempengaruhi variabel respon, seperti pola tanam, sistem irigasi, dan sebagainya agar didapat model luas panen yang lebih baik lagi.
- 2. Untuk penelitian selanjutnya disarankan agar jumlah sampel yang digunakan lebih besar lagi agar *pattern* yang dihasilkan lebih jelas dalam menggambarkan keadaan yang sebenarnya.
- 3. Dapat menentukan estimasi parameter luas panen secara otomatis sehingga ketika pengguna melakukan pembaruan pada data masukan, maka sistem langsung bisa menyesuaikan tanpa harus memperbaharui estimasi parameter luas panennya.

DAFTAR PUSTAKA

- [1] Suwandi dkk. (2015). **Outlook Komoditas Pertanian Subsektor Tanaman Pangan : Padi.** Jakarta : Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian
- [2] Sutikno, Setiawan, dan Mukhlash, I. (2013). Pengembangan Teknologi Adaptasi Produksi Pertanian terhadap Perubahan Iklim Melalui Pendekatan Extreme Value Theory. Laporan Akhir Penelitian Strategis Nasional Tahun Ke-2 dari Rencana 3 Tahun. Surabaya: Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) ITS.
- [3] Imam Mukhlash et al 2017 J. Phys.: Conf. Ser. 890 012143
- [4] Miftachurohmah, N, Mukhlash dan Sutikno. (2015). **Design** to Risk Analysis of Paddy Productrion With ENSO Indicator (Case-Study: East Java). Proceeding of International Conference On Research, Implementation and Education of Mathematics and Science 2015. Yogyakarta State University.
- [5] Maziyah, Ais M. (2017). Penggunaan Regresi Robust dengan Estimasi-S dan Estimasi-MM dalam Pengembangan Sistem Pendukung Keputusan Guna Memprediksi Tingkat Produksi Padi. Tugas Akhir : Institut Teknologi Sepuluh Nopember (ITS).
- [6] Scholzel, C dan Friederichs, P. (2008). Multivariate Non-Normally Distributed Random Variables in Climate Research Introduction to the Copula Approach. Nonlin. Processes Geophys., 15, 761-772
- [7] Oktaviana, PP. (2012). **Pendekatan Copula untuk Penyusunan Peta Kerawanan Puso Tanaman Padi di Jawa Timur dengan Indikator El-Nino Southern**

- **Oscillation (ENSO).** Tugas Akhir. Surabaya : Institut Teknologi Sepuluh Nopember (ITS)
- [8] Dewi Ratih, Iis. (2013). Pemodelan Luas Panen Padi di Jawa Timur Menggunakan Gaussian Copula Marginal Regression. Tugas Akhir. Surabaya: Institut Teknologi Sepuluh Nopember (ITS).
- [9] Barnes, R. M. (1980). Motion and Time Study Design and Measurement of Work. Seventh Edition. John Wiley & Sons Inc., New York.
- [10] Tjasyono, Bayong HK. (2006). **Klimatologi**. Penerbit ITB, Bandung
- [11] Aldrian, E, Budiman, dan Mimin Karmini. (2011). Adaptasi dan Mitigasi Perubahan Iklim di Indonesia. Pusat Perubahan Iklim dan Kualitas Udara Kedeputian Bidang Klimatologi, Badan Meteorologi, Klimatologi dan Geofisika. Jakarta
- [12] Turban , E.dan Aronson, J.E. (2001). **Decision Support Systems and Intelligent Systems. 6th Edition**. Prentice
 Hall: Upper Saddle River, NJ.
- [13] Sparague, R.H. dan Watson, H.J. (1993). Decision Support Systems: Putting Theory Into Practice. Englewood Clifts, N. J., Prentice Hall.
- [14] Turban, Efraim, et al. (2005). **Decision Support Systems** and Intelligent Systems 7th Ed. New Jersey: Pearson Education.
- [15] Draper, N.R. and Smith, H. (1998). Applied Regression Analysis, Three Edition. John Wiley and Sons, Inc. New York
- [16] Masarotto, G. dan Varin, C. (2012). Gaussian Copula Marginal Regression. Electronic Journal of Statistics, Vol. 6 (1517 – 1549)

- [17] Mikosch, T. (2008). **Copula: Tales & Facts**. Copenhagen Laboratory of Actuarial Mathematics, University of Copenhagen, Universitetsparhen S, DK 2100
- [18] Genest, C., & Rivest, L.-P. (1993). **Statistical Inference Procedures for Bivariate Archimedean Copulas**. Journal of the American Statistical Association, 1034-1043.
- [19] D'Agostino, R. B. and Stephens, M.A. (1986). **Goodness-of-fit Techniques**. New York: Marcel Dekker
- [20] Kahya, Goksel B. S. (1991). New Modified Anderson Darling and Cramer-von Mises Goodness-of-fit Tests for a Normal Distribution with Specified Parameters. Ohio

LAMPIRAN

Lampiran 1. Data Luas Panen Padi

Kabupaten	Tahun	Subround 1	Subround 2	Subround 3
Lamongan	1990	70408	28504	7328
	1991	64867	26687	13785
	1992	75317	31852	8620
	1993	72623	32774	6849
	1994	69698	31449	9924
	1995	71511	34386	9077
	1996	66300	33179	7664
	1997	70710	35871	6252
	1998	68101	32845	10604
	1999	70207	31869	13790
	2000	69506	37849	13697
	2001	60449	40184	9877
	2002	67810	40342	11217
	2003	58897	41746	8987
	2004	65173	43155	11850
	2005	63894	38332	16705
	2006	64055	44150	19553
	2007	57481	52002	16953
	2008	68125	51030	10285
	2009	65613	56687	11843
	2010	63579	52202	25002
	2011	62453	46315	14303
Ngawi	1990	38932	34115	10347
	1991	40610	34784	6647
	1992	42106	32388	10233
	1993	45213	32491	10245
	1994	40871	31686	7982
	1995	39037	36649	10904
	1996	40446	35469	10892
	1997	40701	35183	11867
	1998	39428	37633	18813
	1999	40913	40708	15166
	2000	41913	41240	18361
	2001	41466	40136	19312
	2002	40518	39402	15209
	2003	42603	38479	12484

	2004	41623	40206	15764
	2005	41940	38992	15877
	2006	44570	42551	15782
	2007	41784	43755	17629
	2008	41090	40565	19034
	2009	44982	40989	23439
	2010	42372	41832	28631
	2011	42301	38157	25416
Banyuwangi	1990	55532	25017	36235
	1991	49851	25461	30150
	1992	55343	21369	29094
	1993	60343	18916	30450
	1994	57139	20797	28889
	1995	41608	37368	38667
	1996	60545	19074	31628
	1997	59270	17198	25792
	1998	45331	30868	36045
	1999	62856	24237	35886
	2000	58083	31102	36017
	2001	55578	22809	35254
	2002	53581	30518	25103
	2003	52188	32176	25599
	2004	53656	31775	23549
	2005	50206	25321	25701
	2006	50518	32062	26799
	2007	31184	46836	35555
	2008	50002	31346	28644
	2009	54412	31603	29505
	2010	53196	31837	37099
	2011	53459	34135	27859
Bojonegoro	1990	64791	14271	3058
	1991	60935	18287	9256
Γ	1992	72249	16174	5442
Γ	1993	68102	15739	3718
Γ	1994	68252	16243	5082
	1995	59509	29479	5266
	1996	70096	16584	5825
	1997	70920	18269	5519
Γ	1998	58295	29458	10811
Γ	1999	70234	23343	8090
Γ	2000	68917	18961	6705
Γ	2001	65555	24805	6460
	2002		24770	

	2003	67098	26747	5873
	2004	71932	28061	6630
	2005	62672	28671	7238
	2006	70069	31192	8332
	2007	43869	52100	10895
	2008	60004	47108	10780
	2009	71707	51050	12001
	2010	63232	61869	22316
	2011	76670	48536	12720
Jember	1990	71135	45454	16699
	1991	69312	47680	17937
	1992	74519	50299	17668
	1993	77011	46404	19060
	1994	72095	44748	17342
	1995	63357	48209	17884
	1996	69683	41144	19240
	1997	69254	40842	17209
	1998	68676	51443	30647
	1999	75947	51486	23195
	2000	74933	50748	21763
	2001	73564	48651	20298
	2002	69471	52990	17644
	2003	73291	49656	15143
	2004	69181	50017	16175
	2005	71683	51492	16017
	2006	70467	51309	17677
	2007	67891	54566	16394
	2008	66156	56523	15972
	2009	74937	59565	17868
	2010	76086	55467	21778
	2011	76496	60215	18396

Lampiran 2. Data Curah Hujan

Kabupaten	Tahun	Jan	Feb	Mar	Apr	Mei	Jun
Lamongan	1990	773	120	218.5	166	268	111.5
	1991	589.5	365	171.5	207.5	131	39.5
	1992	346	296	177.5	182.5	99	124.5
	1993	268.5	147	142	178	133.5	9.5
	1994	489	147	252	122	31	101.5
	1995	297	438.5	276	216.5	66	129.5
	1996	151	480.5	145.5	74	53.5	13
	1997	337.3	232.8	143.75	153.5	24.75	23.3
	1998	118.25	197	187.25	113.5	124.8	84.5
	1999	0	119.5	235	233.3	11.75	29.5
	2000	28.5	244	283.5	183	95.75	53.25
	2001	201.75	138.8	207	108.5	34.25	101
	2002	225.5	168.5	115.5	101.3	33.75	0
	2003	171	182.8	156.5	50.75	129.5	20.25
	2004	250.75	180.5	341.5	54	137	62.75
	2005	227.75	102.5	151.25	106.8	10.75	96.75
	2006	275.5	300.5	222.75	195.5	158	23.75
	2007	196.75	225.5	254.75	142.8	37.75	59
	2008	209.5	149	240.75	71	30	17.5
	2009	198	254.3	256.25	67.25	139.3	63
	2010	325	198.8	273.75	290.3	212.8	130.5
	2011	325	198.8	273.75	290.3	212.8	130.5
Ngawi	1990	433	395	173	225	168.5	40.5
	1991	176.5	478	284	240	2	1
	1992	332.5	332	137.5	65.5	7	146
	1993	600	215	0	224	55	194.5
	1994	554.5	313.5	487.5	152.5	0	0
	1995	339	460.5	340	198.5	96	111.5
	1996	179	397.5	242	107	19.5	33
	1997	285.25	375.3	126	243.8	46	17.75
	1998	203	431.5	413.25	191.5	206.3	144
	1999	365.5	408.5	290.25	354.8	154.3	18
	2000	316.5	333.8	212.5	285.5	219.8	28.75
	2001	354.8	305.3	518	281.8	93	52.75
	2002	379.75	169.8	182	24.25	0	0
	2003	231	319.3	200.5	77.25	87	15
	2004	243	287.5	338.8	96.5	103.5	0
	2005	67.25	257	306.8	255	21.25	114.8
	2006	304.5	389.5	160.5	305.3	235.5	2.75

	2007	157	170.3	294	374.3	128.3	28
	2008	298.8	230	447.8	202.3	104.8	0
	2009	426	588	431.3	387.5	380.3	55
	2010	676.3	494.5	581.8	267	380.3	74.8
	2011	188.4	132.8	325.8	237	189.3	54.8
Banyuwangi	1990	322.5	161	198	25	191	46.5
	1991	323.5	290.5	58.5	94	92.5	3
	1992	171	233.5	115.5	89	4.5	22.5
	1993	222	190	80.5	53	12	91.5
	1994	264.5	180.5	219	294	138	32.5
	1995	240	332	287	170.5	66.5	90.5
	1996	460.5	226	49	43	88	35
	1997	278.3	294.5	103	81	95.8	34
	1998	407.3	389.5	317.5	337	162.3	203
	1999	522.8	470.3	415	331.8	97	122
	2000	477	289	239.8	215.8	246.3	122
	2001	119.3	81	341.3	76.3	15.8	78.5
	2002	325.3	362.5	180.8	52.8	14.5	3.75
	2003	210.8	405	148.8	37.3	158.8	27.8
	2004	269.3	243.8	247.3	44.75	42.75	0.75
	2005	110.5	213	254.8	107	2.25	36.25
	2006	246.5	281	255	78.75	110.3	41.25
	2007	153	206.5	323.3	124.3	26.25	40
	2008	170.3	373.3	322.5	148.5	42.25	2.5
	2009	434.25	334.5	124.75	28	86.5	2.5
	2010	419.25	224.8	177.8	263.5	188	47.75
	2011	275.8	201	285.5	283.5	146	34.25
Bojonegoro	1990	303	187.5	203	197	164	10.5
	1991	319	254.5	199.5	377	40.5	0
	1992	326	244.5	182.5	333	142.5	33
	1993	337.5	252.5	233	271.5	55.5	73
	1994	530	249	396	112.5	26.5	0
	1995	350.5	334.5	511	352	114	181
	1996	299.5	446	210.5	194	79	55.5
	1997	465.5	336	161	161	14	5.25
	1998	444.8	430.8	281.5	250.3	106	80.3
	1999	424.25	238.5	435.5	287.5	109	23.5
	2000	442.5	136	310.8	299.3	173.5	69.5
	2001	247.5	175.5	334.25	119	26	152.5
	2002	177.8	217.8	210.8	184.5	23.25	0
	2003	219	276	181.8	40.75	76.25	0.25
	2004	380.25	241	507	193.5	84	24.25
	2005	228	302	288.3	222.5	78.75	107.3

	2006	175	473.5	271	149.3	211	3.5
	2007	148	281.3	282.5	247.8	70.75	124
	2008	286.25	187.8	330	125.3	78.25	25
	2009	227.25	338.3	235	288.5	170.3	22
	2010	361.5	399	426.5	308.8	267.3	112.3
	2011	192.75	178	329.3	280	230.3	44.5
Jember	1990	227	247.5	191.5	168	157	14
	1991	521	317	115	134.5	32.5	63
	1992	463.5	107.5	304	199	60.5	7
	1993	180.5	272	200.5	247	52.5	60.5
	1994	313	458	420	43.5	4	7.5
	1995	294.5	140.5	365	99.5	25.5	63
	1996	434	473	204.5	84	104	39
	1997	503.8	275.3	55	174.5	65	29.5
	1998	267.3	404	213.3	242.5	94	179.3
	1999	508.3	425.3	311	287.3	115.3	17.5
	2000	337.5	295.8	425.5	303.3	146.5	67.25
	2001	291.5	373	214.3	155.8	105.8	109.8
	2002	478.5	584	305.8	181.3	50	0
	2003	369.8	421.5	370	131	99.25	4.25
	2004	287.25	292	305.75	79.5	115	1.75
	2005	191.25	305	305.5	128	17.5	114.5
	2006	500.8	367.3	381.3	239.3	181.5	10
	2007	100	260	205.3	279.3	108.3	89.5
	2008	311.3	276	425.3	122.3	73	19.25
	2009	519	343.5	154.3	92.5	151	105.5
	2010	520.25	365.8	184.5	353.5	241.5	146.8
	2011	417.3	284.3	506	335.3	168.3	20.5

Kabupaten	Tahun	Jul	Agst	Sept	Okt	Nov	Des
Lamongan	1990	81.5	77	33	109.5	92	550
	1991	112	40.5	4	75	245.5	340
	1992	55	38.5	72	354	229	272.5
	1993	88.5	6.5	61	102	124	92
	1994	23	76	117.5	55	147	257
	1995	21.5	70	5.5	52	283	212
	1996	22.5	41	29	94	192.5	323
	1997	0	0	0	15.5	44	254
	1998	91.25	0	89.25	174.5	176.25	227
	1999	26.75	11.75	2	98.5	196.5	268.75
	2000	23.25	5.25	0	176.25	161	52.25
	2001	36.8	0	5	66.75	151.25	260.25

	2002	0	0	0	1.5	107.5	103
	2003	0	0	12	53	229.75	156.75
	2004	9.75	0	0	18.25	98	182.75
	2005	11.25	12	23.75	111.25	182.25	225
	2006	0	0	0	0	61	262.5
	2007	18	10.25	4.25	8.5	108.25	388.25
	2008	0	5	73	82.25	239.5	280.25
	2009	26.5	0	23.5	6.25	63	124
	2010	126.8	93.25	27	266.75	133	327
	2011	126.8	93.25	27	266.75	133	327
Ngawi	1990	24	13.5	41	56	184.5	431.5
	1991	0	0	4	46	399	367
	1992	7	146	111	258	327	199
	1993	0	15	18.5	50.5	0	358
	1994	6	0	0	15	190.5	183.5
	1995	5.5	0	29	206	380	52.5
	1996	24	39.5	26.5	239.5	361.5	319.5
	1997	29.75	0	0	66	121.5	336.25
	1998	188.3	59.5	107.5	343.5	350.5	247.5
	1999	114	39.25	5.5	296.5	409	249.5
	2000	37.75	62.75	36.25	282.5	369.75	82.5
	2001	50.5	0	9.25	342.25	242.5	109.25
	2002	0	9.5	0	29	319.75	404.75
	2003	0	0	36	132.5	243.75	254
	2004	38.25	0	0	8	33.25	445.25
	2005	86.5	29.25	98.75	0	202.5	267.5
	2006	0	0	0	5	59.5	431.25
	2007	15	0	3.5	160.5	165	402.25
	2008	0	47.5	18.75	285.75	437.75	114.25
	2009	0.75	12.5	0	143.75	302.75	208
	2010	78.25	47.75	250.3	332.75	281.38	293.63
	2011	8.25	0	9.5	52.5	283	207.75
Banyuwangi	1990	44	23.5	89.5	3.5	16	353
	1991	53	5	2.5	0	81.5	84
	1992	72	170.5	93.5	167.5	94	3
	1993	25.5	66.5	15	99.5	9	158
	1994	79	2	1	0	8.5	124
	1995	118.5	16	14.5	78.5	246.5	360.5
	1996	192.5	138.5	23.5	85.5	198	248.5
	1997	37.25	3	0	0.5	4.25	204.5
	1998	197.8	72.25	87.25	211	315.5	320.25
	1999	170.3	49	5.25	34.75	274.5	482
	2000	0	19.5	0	86.25	187.5	148.75

	2001	87.5	7.5	2.25	51.5	103.25	245.75
	2002	10.5	9.75	0	0	12	97
	2003	16.25	7.5	22	17.5	116.25	204.5
	2004	35	5	19.25	0	53.75	265.25
	2005	17.5	18.75	14.75	36	0	404.5
	2006	17	4.5	0.75	0	0	157
	2007	6.5	22.5	0	9.25	18.25	120.25
	2008	6.75	6.75	0.75	22.25	84.75	352.25
	2009	0	4.25	10.5	22.5	23.75	167.5
	2010	67.5	46.25	71.75	138.75	112.5	209.75
	2011	26.5	0	4	4.75	95.25	263.25
Bojonegoro	1990	0	48	2	48	98	521
	1991	0	26	0	26	418.5	316
	1992	21	259.5	153	259.5	273	414
	1993	0	24	15.5	24	321	256
	1994	0	25.5	0	25.5	100.5	338.5
	1995	35.5	122	5	122	308.5	167.5
	1996	65.5	169.5	39.5	169.5	380	464.5
	1997	3.25	0	0	16.25	145.75	289
	1998	109.8	43.75	103	264.25	277.25	342.25
	1999	70	32.75	10.5	237.5	355.25	266
	2000	5	17.5	72.75	284.5	572.25	161
	2001	56	1.75	55.5	126.5	151.75	219.25
	2002	16.75	0	0	0	141.25	239.75
	2003	0	0	0	163.25	224.25	219.5
	2004	50	0	4.75	9.75	79	147.75
	2005	27.75	69	43	75	131	393.5
	2006	0	0	0	10	118	305.25
	2007	23.75	3.5	0	68.5	227.5	390.25
	2008	0	48.75	5.25	183.75	259	325.5
	2009	9.5	0	1.25	48.5	291	178.75
	2010	119	108	214.8	336.5	213.25	381.25
	2011	0.75	0	23.25	81.5	417.5	303.5
Jember	1990	24	19.5	17	46.5	144.5	221.5
	1991	5	7.5	56.5	86	254.5	232.5
	1992	14.5	28	14	62.5	161	373
	1993	21	1	18	32.5	225.5	127
	1994	1.5	3.5	97.5	17	205.5	239
	1995	24.5	31	17	33	453.5	324
	1996	24.5	16.5	10.5	126	176.5	178
	1997	4	2.25	0	35.75	162.25	270.25
	1998	159.5	24.25	89.5	346.5	193.75	506.25
	1999	17.5	46	17.25	34.75	214	597

2000	5	32	34	192.25	392.75	128.75
2001	54.25	2.75	35	228.25	263.75	358.75
2002	3.5	2.25	6.25	12.75	233.25	300.25
2003	3.75	0	7.5	29	345.5	334.75
2004	31.75	0	8	86	180	594.5
2005	36.25	24.25	5.75	130.5	125.75	488
2006	0	1	14.5	18.25	105.75	313.25
2007	14	1.25	1.25	72	250.5	410.5
2008	0	57.75	0.75	202.25	309.75	366
2009	42.25	2	6.75	95	140.5	240.75
2010	99.25	23.25	210.8	289.5	310	387.25
2011	9.25	0	14	91.25	287	540.5

Lampiran 3. Data Produktivitas Padi

Kabupaten	Tahun	Periode 1	Periode 2	Periode3
Lamongan	2008	6.48841	5.84987	5.65493
	2009	6.50202	6.03482	5.34003
	2010	6.7653	5.54914	4.75118
	2011	5.12907	4.24502	5.91282
	2012	6.31277	5.65269	5.81137
Ngawi	2008	5.97666	5.97567	5.49443
	2009	6.07292	5.68194	6.02393
	2010	5.80419	5.97077	6.01865
	2011	5.56703	4.10428	7.1658
	2012	6.1425	5.81488	6.52275
Banyuwangi	2008	6.3851	5.50804	5.33745
	2009	6.03496	6.39904	6.32401
	2010	6.76421	6.25761	6.19124
	2011	5.96949	5.68554	6.56029
	2012	6.18315	6.03854	6.41015
Bojonegoro	2008	5.65928	5.37109	5.343
	2009	6.341	5.68654	5.81502
	2010	6.49157	5.70495	6.13434
	2011	5.51872	3.416	6.82217
	2012	6.35381	5.33387	7.19395
Jember	2008	5.82336	5.4366	5.20098
	2009	5.80891	5.40559	5.03498
	2010	5.72963	5.33737	5.49201
	2011	5.26561	5.00452	5.94526
	2012	6.35946	5.94164	5.67524

Ket:

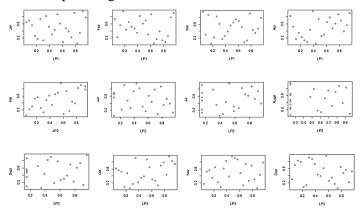
Periode 1 : Januari - April Periode 2 : Mei - Agustus

Periode 3 : September - Desember

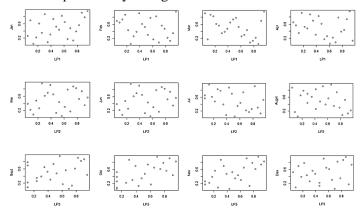
Lampiran 4. Korelasi Pearson dan Tau-Kendall (data *out sample* 2012)

	СН	LP		Nilai	
Kabupaten	Bulan	Subround	Metode	Korelasi	p-value
Lamongan	Januari	1	Pearson	0.313021	0.1561
			Tau-	0.290043	0.06216
			Kendall	0.127 0 0 10	
	Februari		Pearson	0.115217	0.6096
			Tau-	0	1
			Kendall		
	Maret		Pearson	-0.07301	0.7468
			Tau-	-0.07359	0.6556
			Kendall		
	April		Pearson	0.23671	0.2889
			Tau-	0.194805	0.2175
			Kendall		
	Mei	2	Pearson	0.104374	0.6439
			Tau-	0.116883	0.468
			Kendall		
	Juni		Pearson	-0.09399	0.6774
			Tau-	-0.05628	0.7381
			Kendall		
	Juli		Pearson	-0.29692	0.1796
			Tau-	-0.34964	0.02493
			Kendall		
	Agustus		Pearson	-0.28296	0.2019
			Tau-	-0.32787	0.03977
			Kendall		
	September	3	Pearson	-0.27659	0.2127
			Tau-	-0.22572	0.1477
	011		Kendall	0.122.121	0.5050
	Oktober		Pearson	0.122431	0.5873
			Tau-	-0.07359	0.6556
			Kendall	0.07402	0.7402
	November		Pearson	-0.07493	0.7403
			Tau-	0.030303	0.8673
	Danasah		Kendall	0.122600	0.55(2
	Desember		Pearson	0.132608	0.5563
			Tau-	0.108225	0.5031
Maayyi	Iomuoni	1	Kendall	0.200828	0.2496
Ngawi	Januari	I	Pearson	0.209828	0.3486

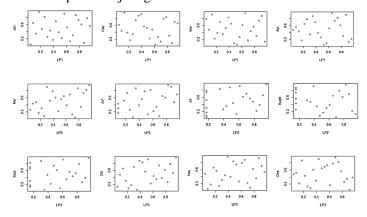
			T	0.004220	1
			Tau- Kendall	0.004329	1
	Februari			0.05021	0.7022
	rebluari		Pearson Tau-	-0.05931 -0.15151	0.7932 0.3418
			Kendall	-0.15151	0.3418
	Maret			0.16267	0.4605
	Maret		Pearson	-0.16267 0.004329	0.4695
			Tau-	0.004329	1
	April		Kendall	0.24460	0.1162
	Aprii		Pearson Tau-	0.34469 0.255411	0.1162 0.1024
			Kendall	0.255411	0.1024
	Mei	2	Pearson	0.51219	0.01491
	Mei	2	Tau-	0.31219	0.01481 0.003349
			Kendall	0.431194	0.003349
	Juni		Pearson	-0.25799	0.2464
	Juiii		Tau-	-0.25799	0.2464
			Kendall	-0.09211	0.5524
	Juli		Pearson	0.190512	0.3957
	Juli		Tau-	0.190312	0.3937
			Kendall	0.11218	0.4737
	Agustus			-0.1619	0.4716
	Agustus		Pearson Tau-	0.028946	0.4716
			Kendall	0.028946	0.8383
	September	3	Pearson	0.389582	0.0731
	September	3	Tau-	0.369382	0.6897
			Kendall	0.002073	0.0097
	Oktober		Pearson	0.373939	0.08646
	OKIODEI		Tau-	0.229437	0.1439
			Kendall	0.229437	0.1439
	November		Pearson	0.124018	0.5824
	rvovember		Tau-	0.047619	0.7805
			Kendall	0.047017	0.7603
	Desember		Pearson	-0.19779	0.3776
	Describer		Tau-	-0.17777	0.3770
			Kendall	0.01001	0.517
Banyuwangi	Januari	1	Pearson	0.405492	0.06117
Zanjanangi	2 4114411	•	Tau-	0.281385	0.07076
			Kendall	0.201303	3.07070
	Februari		Pearson	-0.03051	0.8928
			Tau-	-0.15151	0.3418
			Kendall	0.15151	0.5110
	Maret		Pearson	-0.32981	0.1339
			Tau-	-0.28139	0.07076
L	1		ı au-	0.20137	0.07070

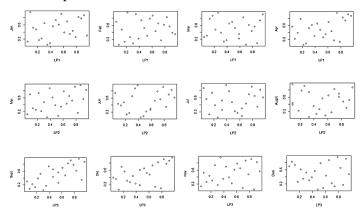

			Kendall		
	April		Pearson	0	-0.04355
	r		Tau-	-0.16883	0.2876
			Kendall		0.20,0
	Mei	2	Pearson	0.095813	0.6715
			Tau-	0.134199	0.402
			Kendall		
	Juni		Pearson	-0.00435	0.9847
			Tau-	-0.07391	0.6314
			Kendall		
	Juli		Pearson	-0.29093	0.189
			Tau-	-0.26898	0.0803
			Kendall		
	Agustus		Pearson	-0.36376	0.09607
			Tau-	-0.18695	0.2249
			Kendall		
	September	3	Pearson	0.31955	0.1472
			Tau-	0.184637	0.2345
			Kendall		
	Oktober		Pearson	0.47288	0.02624
			Tau-	0.411605	0.008292
			Kendall		
	November		Pearson	0.58779	0.004017
			Tau-	0.38178	0.01305
			Kendall	0.015011	
	Desember		Pearson	0.265311	0.2327
			Tau-	0.130152	0.3974
D .			Kendall	0.105004	0.0554
Bojonegoro	Januari	1	Pearson	0.197804	0.3776
			Tau-	0.047619	0.7805
	Februari		Kendall	0.00000	0.6975
	Februari		Pearson	-0.09088 -0.13419	0.6875
			Tau-	-0.13419	0.402
	Maret		Kendall	0.05525	0.0126
	Maret		Pearson	-0.05535 -0.07359	0.8136 0.6556
			Tau-	-0.07339	0.0550
	April		Kendall Pearson	-0.07727	0.7325
	Aprii		Tau-	-0.01299	0.7323
			Kendall	-0.01299	0.9550
	Mei	2	Pearson	0	0.50657
	IVICI		Tau-	0.272727	0.0809
			Kendall	0.212121	0.0009
			Kendan	l	l

	Juni		Pearson	0.283771	0.2006
	0 03111		Tau-	0.244014	0.1138
			Kendall	0.244014	0.1130
	Juli		Pearson	0.257224	0.2478
	5411		Tau-	0.217934	0.1682
			Kendall	0.217934	0.1002
	Agustus		Pearson	-0.15651	0.4867
	11gustus		Tau-	-0.14326	0.3614
			Kendall	0.1.020	0.001
	September	3	Pearson	0.426147	0.04797
			Tau-	0.107443	0.4937
			Kendall		
	Oktober		Pearson	0.416931	0.05356
			Tau-	0.246753	0.115
			Kendall		
	November		Pearson	0.158815	0.48
			Tau-	0.186147	0.2394
			Kendall		
	Desember		Pearson	0.06057	0.7942
			Tau-	0.047619	0.7884
			Kendall		
Jember	Januari	1	Pearson	0.234624	0.2933
			Tau-	0.177489	0.2628
			Kendall		
	Februari		Pearson	0.116383	0.606
			Tau-	0.073593	0.6556
			Kendall		
	Maret		Pearson	0.051599	0.8196
			Tau-	0.034707	0.8215
			Kendall		
	April		Pearson	0.479861	0.02382
			Tau-	0.290043	0.06216
			Kendall		
	Mei	2	Pearson	0.42542	0.0484
			Tau-	0.281385	0.07076
			Kendall		
	Juni		Pearson	0.244557	0.2727
			Tau-	0.208243	0.1757
			Kendall		
	Juli		Pearson	0.162977	0.4687
			Tau-	0.065218	0.6721
			Kendall		
	Agustus		Pearson	0.128367	0.5691


		Tau	0.017507	0.91
		Kendall		
September	3	Pearson	0.498863	0.01811
		Tau-	0.526092	0.000636
		Kendall		
Oktober		Pearson	0.767622	0.00003
		Tau-	0.355749	0.02071
		Kendall		
November		Pearson	0.096220	0.6701
		Tau-	0.194805	0.2175
		Kendall		
Desember		Pearson	0.190653	0.4078
		Tau-	-0.03810	0.8347
		Kendall		

Lampiran 5. Scatterplot Hasil Transformasi Variabel ke Domain Uniform [0,1] (data *out sample* 2012)


a. Kabupaten Ngawi


b. Kabupaten Banyuwangi

c. Kabupaten Bojonegoro

d. Kabupaten Jember

Lampiran 6. Estimasi Parameter $\boldsymbol{\theta}$ (data out sample 2012)

Kabupaten	Bulan	Subr	Frank	Clayton	Gumbel	Normal
Lamongan	Januari	1	0.2900	0.8170	1.40854	0.313021
	Februari		0	0	1	0.115217
	Maret		-0.074	-0.1370	0.93145	-0.07301
	April		0.1948	0.48387	1.24194	0.23671
	Mei	2	0.1168	0.26470	1.13235	0.104374
	Juni		-0.056	-0.10655	0.94672	-0.09398
	Juli		-0.349	-0.51812	0.74093	-0.29691
	Agustus		-0.327	-0.49383	0.75309	-0.28296
	September	3	-0.226	-0.36830	0.81584	-0.2765
	Oktober		-0.074	-0.13709	0.93145	0.122431
	November		0.0303	0.06249	1.03125	-0.07493
	Desember		0.1082	0.24271	1.12136	0.13260
Ngawi	Januari	1	0.0043	0.008695	1.00435	0.20982
	Februari		-0.151	-0.26315	0.86842	-0.05930
	Maret		0.0043	0.00869	1.00435	-0.16267
	April		0.2554	0.686046	1.34302	0.34469
	Mei	2	0.4511	1.64428	1.82214	0.51219
	Juni		-0.092	-0.1686	0.91565	-0.25799
	Juli		0.1121	0.25270	1.12635	0.19051
	Agustus		0.0289	0.05961	1.02981	-0.1619
	September	3	0.062	0.13373	1.06687	0.38958
	Oktober		0.229	0.5955	1.29775	0.37393
	November		0.0476	0.09999	1.05	0.12401
	Desember		-0.016	-0.0315	0.98423	-0.19779
Banyuwangi	Januari	1	0.2814	0.7831	1.39157	0.405492
	Februari		-0.151	-0.2632	0.86842	-0.03050
	Maret		-0.281	-0.4391	0.780406	-0.32981
	April		-0.168	-0.2888	0.85555	0
	Mei	2	0.1341	0.31	1.155	0.09581
	Juni		-0.073	-0.1376	0.93117	-0.00435
	Juli		-0.269	-0.4239	0.788034	-0.29093
	Agustus		-0.187	-0.3150	0.84249	-0.36376
	September	3	0.1846	0.45289	1.22645	0.319545
	Oktober		0.4116	1.39908	1.69954	0.47288
	November		0.3817	1.2350	1.61755	0.58779
	Desember		0.1301	0.29925	1.14963	0.2653
Bojonegoro	Januari	1	0.0476	0.0999	1.05	0.19780
	Februari	1	-0.134	-0.2366	0.88167	-0.0908
	Maret		-0.073	-0.1370	0.9314	-0.05535

	April		-0.012	-0.0256	0.98718	-0.07727
	Mei	2	0.2727	0.74999	1.375	0
	Juni		0.2440	0.64555	1.32278	0.283771
	Juli		0.2179	0.55732	1.27886	0.25722
	Agustus		-0.143	-0.2506	0.874694	-0.15651
	September	3	0.1074	0.24075	1.12038	0.426147
	Oktober		0.2467	0.65517	1.32759	0.416931
	November		0.1862	0.45744	1.22872	0.1588
	Desember		0.0476	0.0999	1.05	0.060574
Jember	Januari	1	0.1774	0.4315	1.21579	0.23462
	Februari		0.0735	0.1588	1.07944	0.11638
	Maret		0.0347	0.0719	1.03596	0.05159
	April		0.2900	0.8170	1.40854	0.47986
	Mei	2	0.2813	0.7831	1.39157	0.42542
	Juni		0.2802	0.5260	1.26301	0.244557
	Juli		0.0652	0.13953	1.06977	0.16297
	Agustus		0.0175	0.03563	1.01782	0.12836
	September	3	0.5261	2.22023	2.11011	0.49886
	Oktober		0.3447	1.10438	1.55219	0.767622
	November		0.1948	0.48387	1.24194	0.0962
	Desember		-0.038	-0.0733	0.96330	0.19065

Lampiran 7. Estimasi Parameter Copula (data out sample 2012)

Kabupaten	Bulan	Subr	Copula	Parameter	SE	$ \mathbf{Z}_{ ext{hitung}} $
Lamongan	Januari	1	Frank	2.806	0.255	11.004
			Clayton	0.8171	0.514	1.589
			Gumbel	1.409	0.257	5.482
			Normal	0.440	0.183	2.404
	Februari		Frank	-	-	-
			Clayton	-	-	-
			Gumbel	-	-	-
			Normal	0	0.239	0
	Maret		Frank	-0.6653	0.004	-166.3
			Clayton	-0.1371	0.242	-0.567
			Gumbel	-	-	-
			Normal	-0.1153	0.217	-0.531
	April		Frank	1.809	0.118	15.331
			Clayton	0.4839	0.445	1.087
			Gumbel	1.242	0.222	5.595
			Normal	0.3012	0.216	1.394
	Mei	2	Frank	1.064	0.060	17.733
			Clayton	0.2647	0.459	0.576
			Gumbel	1.132	0.230	4.922
			Normal	0.1826	0.276	0.662
	Juni		Frank	-0.5078	0.002	-253.9
			Clayton	-0.1066	0.267	-0.399
			Gumbel	-	-	-
			Normal	-0.08828	0.233	-0.378
	Juli		Frank	-3.504	0.094	-37.27
			Clayton	-0.5181	0.176	-2.944
			Gumbel	-	-	-
			Normal	-0.522	0.214	-2.439
	Agustus		Frank	-3.241	0.091	-35.62
			Clayton	-0.4938	0.198	-2.494
			Gumbel	-	-	-
			Normal	-0.4926	0.239	-2.061
	September	3	Frank	-2.12	0.033	-64.24
			Clayton	-0.3683	0.164	-2.246
			Gumbel	-	-	-
			Normal	-0.3472	0.182	-1.907
	Oktober		Frank	-0.6653	0.005	-133.1
			Clayton	-0.1371	0.311	-0.440
			Gumbel	-	_	

			Normal	-0.1153	0.280	-0.412
	November		Frank	0.2729	0.002	136.45
			Clayton	0.0625	0.340	0.183
			Gumbel	1.031	0.170	6.065
			Normal	0.04758	0.251	0.190
	Desember		Frank	0.9834	0.050	19.668
			Clayton	0.2427	0.410	0.592
			Gumbel	1.121	0.205	5.468
			Normal	0.1692	0.253	0.669
Ngawi	Januari	1	Frank	-	-	-
			Clayton	0.008696	0.34	0.026
			Gumbel	1.004	0.17	5.905
			Normal	0.0068	0.265	0.0256
	Februari		Frank	-1.39	0.023	-60.43
			Clayton	-0.2632	0.273	-0.964
			Gumbel	-	-	-
			Normal	-0.2358	0.277	-0.851
	Maret		Frank	-	-	-
			Clayton	0.008696	0.364	0.024
			Gumbel	1.004	0.182	5.516
			Normal	0.0068	0.283	0.024
	April		Frank	2.429	0.202	12.025
	_		Clayton	0.686	0.498	1.378
			Gumbel	1.343	0.249	5.393
			Normal	0.3905	0.2	1.9525
	Mei	2	Frank	4.913	0.805	6.103
			Clayton	1.644	0.859	1.914
			Gumbel	1.822	0.429	4.247
			Normal	0.6509	0.154	4.226
	Juni		Frank	-0.8348	0.006	-139.1
			Clayton	-0.1687	0.231	-0.730
			Gumbel	-	-	-
			Normal	-0.1442	0.1442	-1.0
	Juli]	Frank	1.02	0.029	35.172
			Clayton	0.2527	0.232	1.089
			Gumbel	1.126	0.116	9.707
			Normal	0.1753	0.141	1.243
	Agustus	1	Frank	0.2607	0.002	130.35
			Clayton	0.05962	0.329	0.181
			Gumbel	1.03	0.165	6.242
			Normal	0.04545	0.244	0.186
	September	3	Frank	0.5659	0.058	9.757
			Clayton	0.1337	0.345	0.388

			Gumbel	1.067	0.173	6.167
			Normal	0.09829	0.237	0.415
	Oktober		Frank	2.158	0.237	12.055
	OKIOOCI		Clayton	0.5955	0.524	1.137
			Gumbel	1.298	0.262	4.594
			Normal	0.3526	0.229	1.540
	November		Frank	0.4294	0.021	20.447
	November		Clayton	0.4254	0.292	0.342
			Gumbel	1.05	0.146	7.192
			Normal	0.07473	0.208	0.359
	Desember		Frank	-1.472	0.018	-81.77
	Desember		Clayton	-0.2761	0.195	-1.415
			Gumbel	- 0.2701	-	-
			Normal	-0.249	0.2	-1.245
Banyuwangi	Januari	1	Frank	2.71	0.293	9.249
Danyawangi	Junuan	1	Clayton	0.7831	0.621	1.261
			Gumbel	1.392	0.31	4.490
			Normal	0.4277	0.228	1.876
	Februari		Frank	-1.39	0.02	-69.5
	Teorum		Clayton	-0.2632	0.237	-1.111
			Gumbel	-	-	-
			Normal	-0.2358	0.24	-0.983
	Maret		Frank	-2.71	0.081	-33.46
			Clayton	-0.4392	0.248	-1.771
			Gumbel	-	-	-
			Normal	-0.4277	0.289	-1.480
	April		Frank	-1.556	0.025	-62.24
	1		Clayton	-0.2889	0.235	-1.230
			Gumbel	-	-	-
			Normal	-0.2621	0.243	-1.078
	Mei	2	Frank	1.226	0.048	25.541
			Clayton	0.31	0.312	0.994
			Gumbel	1.155	0.156	7.403
			Normal	0.2092	0.179	1.169
	Juni	1	Frank	-0.6682	0.003	-222.7
			Clayton	-0.1377	0.191	-0.721
			Gumbel	-	-	-
			Normal	-0.1158	0.172	-0.673
	Juli	1	Frank	-2.574	0.047	-54.77
			Clayton	-0.4239	0.158	-2.683
			Gumbel	-	-	-
			Normal	-0.4101	0.182	-2.253
	Agustus		Frank	-1.732	0.031	-55.87

			Clayton	-0.315	0.236	-1.335
			Gumbel	_	-	-
			Normal	-0.2895	0.25	-1.158
	September	3	Frank	1.709	0.114	14.991
			Clayton	0.4529	0.468	0.9677
			Gumbel	1.226	0.234	5.239
			Normal	0.286	0.234	1.222
	Oktober		Frank	4.323	0.534	8.096
			Clayton	1.399	0.643	2.176
			Gumbel	1.7	0.322	5.280
			Normal	0.6024	0.140	4.302
	November		Frank	3.915	0.504	7.768
			Clayton	1.235	0.674	1.832
			Gumbel	1.618	0.337	4.801
			Normal	0.5644	0.167	3.379
	Desember		Frank	1.188	0.063	18.857
			Clayton	0.2993	0.426	0.703
			Gumbel	1.15	0.213	5.399
			Normal	0.203	0.248	0.819
Bojonegoro	Januari	1	Frank	0.4294	0.025	17.176
			Clayton	0.1	0.343	0.292
			Gumbel	1.05	0.172	6.105
			Normal	0.07473	0.244	0.306
	Februari		Frank	-1.226	0.013	-94.31
			Clayton	-0.2366	0.213	-1.111
			Gumbel	-	-	-
			Normal	-0.2092	0.21	-0.996
	Maret		Frank	-0.6653	0.004	-166.3
			Clayton	-0.1371	0.271	-0.506
			Gumbel	-	-	-
			Normal	-0.1153	0.244	-0.473
	April		Frank	-	-	-
			Clayton	-0.02564	0.284	-0.090
			Gumbel	-	-	-
			Normal	-0.0204	0.229	-0.089
	Mei	2	Frank	2.615	0.284	9.208
			Clayton	0.75	0.632	1.187
			Gumbel	1.375	0.316	4.351
]	Normal	0.4154	0.239	1.738
	Juni		Frank	2.309	0.158	14.614
			Clayton	0.6456	0.42	1.537
			Gumbel	1.323	0.21	6.3
			Normal	0.374	0.175	2.137

	Juli		Frank	2.041	0.138	14.789
	Juli		Clayton	0.5573	0.439	1.269
			Gumbel	1.279	0.219	5.840
			Normal	0.3357	0.198	1.695
	Agustus		Frank	-1.311	0.016	-70.69
	1 igustus		Clayton	-0.2506	0.223	-1.124
			Gumbel	-	-	-
			Normal	-0.2231	0.223	-1.000
	September	3	Frank	0.9761	0.041	23.807
	September		Clayton	0.2408	0.34	0.708
			Gumbel	1.12	0.17	6.588
			Normal	0.168	0.21	0.8
	Oktober		Frank	2.338	0.17	13.753
			Clayton	0.6552	0.442	1.482
			Gumbel	1.328	0.221	6.009
			Normal	0.378	0.183	2.066
	November		Frank	1.724	0.098	17.591
			Clayton	0.4574	0.397	1.152
			Gumbel	1.229	0.199	6.176
			Normal	0.2883	0.198	1.456
	Desember		Frank	-	-	-
			Clayton	0.04425	0.295	0.15
			Gumbel	1.022	0.148	6.905
			Normal	0.03399	0.222	0.153
Jember	Januari	1	Frank	1.64	0.111	14.774
			Clayton	0.4316	0.484	0.892
			Gumbel	1.216	0.242	5.025
			Normal	0.2752	0.247	1.114
	Februari		Frank	0.6653	0.039	17.059
			Clayton	0.1589	0.351	0.453
			Gumbel	1.079	0.176	6.130
			Normal	0.1153	0.235	0.490
	Maret		Frank	0.3127	0.004	78.175
			Clayton	0.07191	0.359	0.2003
			Gumbel	1.036	0.179	5.788
			Normal	0.05449	0.262	0.208
	April		Frank	2.806	0.324	8.660
			Clayton	0.8171	0.654	1.249
			Gumbel	1.409	0.327	4.308
			Normal	0.44	0.232	1.897
	Mei	2	Frank	2.71	0.255	10.628
			Clayton	0.7831	0.54	1.450
			Gumbel	1.392	0.27	5.155

	N	ormal	0.4277	0.198	2.160
Juni		ank	1.943	0.198	17.195
Juiii					
		ayton	0.526	0.385	1.366
		ımbel	1.263	0.192	6.578
		ormal	0.3213	0.179	1.795
Juli		ank	0.589	0.048	12.270
	Cl	ayton	0.1395	0.341	0.409
	Gı	ımbel	1.07	0.17	6.294
	No	ormal	0.1023	0.233	0.439
Agustus	Fr	ank	-	1	1
	Cl	ayton	0.03564	0.298	0.120
	Gı	ımbel	1.018	0.149	6.832
	No	ormal	0.0275	0.226	0.121
September 3	Fr	ank	6.232	0.978	6.372
	Cl	ayton	2.22	0.871	2.549
	Gı	ımbel	2.11	0.435	4.850
	No	ormal	0.7355	0.104	7.072
Oktober	Fr	ank	3.58	0.61	5.868
	Cl	ayton	1.104	0.904	1.221
	Gı	ımbel	1.552	0.452	3.433
	No	ormal	0.5302	0.25	2.1208
November	Fr	ank	1.809	0.129	14.023
	Cl	ayton	0.4839	0.487	0.993
		ımbel	1.242	0.244	5.090
	No	ormal	0.3012	0.237	1.270
Desember	Fr	ank	-0.3511	0.001	-351.1
	Cl	ayton	-0.075	0.308	-0.244
	Gı	ımbel	-	-	-
	No	ormal	-0.06116	0.26	0.235

Lampiran 8. Fitting Copula dengan Maximum Likelihood Estimation (data out sample 2012)

Kabupaten	Bulan	Copula	Estimasi	Log-likelihood
Lamongan	Januari	Frank	2.897	2.101
		Gumbel	1.422	1.908
		Normal	0.5164	2.345
	April	Frank	1.495	0.5941
		Gumbel	1.196	0.4591
	Mei	Frank	1.185	0.3233
		Gumbel	1.225	0.6247
	November	Frank	-1.479	0.5083
		Gumbel	1.021	0.005719
	Desember	Frank	-0.5345	0.06528
		Gumbel	1.224	0.6185
Ngawi	Januari	Gumbel	1.156	0.4633
	April	Frank	2.747	1.761
		Gumbel	1.417	1.778
	Mei	Frank	4.382	4.237
		Gumbel	1.792	4.788
		Normal	0.6741	5.059
	Juli	Frank	1.036	0.2921
		Gumbel	1.111	0.1406
	Agustus	Frank	0.2482	0.01265
		Gumbel	1.05	0.02678
	September	Frank	0.5966	0.08551
		Gumbel	1.201	0.7461
	Oktober	Frank	2.398	1.476
		Gumbel	1.392	1.779
	November	Frank	0.3792	0.03981
		Gumbel	1.006	0.0004954
Banyuwangi	Januari	Frank	2.879	1.92
		Gumbel	1.577	3.43
	Mei	Frank	1.274	0.4531
		Gumbel	1.121	0.1626
	September	Frank	1.832	0.777
		Gumbel	1.302	1.008
	Oktober	Frank	4.44	4.246
		Clayton	1.348	4.573
		Gumbel	1.683	3.695
		Normal	0.6619	4.613
	November	Frank	4.061	3.705

		Gumbel	1.64	3.692
		Normal	0.6194	3.889
	Desember	Frank	1.387	0.4694
	2 cscinicer	Gumbel	1.249	0.8268
Bojonegoro	Januari	Frank	0.7436	0.1313
,,,,		Gumbel	1.091	0.09465
	Mei	Frank	2.719	1.699
		Gumbel	1.546	3.038
	Juni	Frank	2.187	1.29
		Gumbel	1.331	1.34
		Normal	0.4506	1.599
	Juli	Frank	2.033	0.984
		Gumbel	1.353	1.609
	September	Frank	1.05	0.2709
	1	Gumbel	1.237	0.9373
	Oktober	Frank	2.35	1.442
		Gumbel	1.415	2.135
		Normal	0.505	2.209
	November	Frank	1.856	0.9016
		Gumbel	1.24	0.6654
Jember	Januari	Frank	1.836	0.7773
		Gumbel	1.271	0.7556
	Februari	Frank	0.9045	0.2086
		Gumbel	1.034	0.01171
	Maret	Frank	0.2002	0.00946
		Gumbel	1.113	0.2352
	April	Frank	3.216	2.361
		Gumbel	1.595	3.392
	Mei	Frank	2.782	1.844
		Gumbel	1.187	0.4351
	Juni	Frank	0.7488	0.1458
		Gumbel	1.099	0.1292
	Agustus	Frank	1.058	0.05437
	September	Frank	6.125	7.088
		Clayton	1.466	5.352
		Gumbel	1.991	6.455
		Normal	0.743	7.028
	Oktober	Frank	4.364	3.788
		Gumbel	1.977	6.347
		Normal	0.6239	4.003
	November	Frank	1.944	0.8757
		Gumbel	1.27	0.7689

Lampiran 9. Uji Parsial Model Luas Panen Padi (data *out sample* 2012)

a. Kabupaten Ngawi

LP1						
Parameter	Estimasi	s.e	t	t _{19;0,1/2}		
Intersep	39313,023	1256,915	31,277	1,729		
Januari	2,200	2,262	0,972			
April	6,780	4,174	1,624			
		LP2				
Parameter	Estimasi	s.e	t	t _{18;0,1/2}		
Intersep	36140,729	1083,531	33,355	1,734		
Mei	17,844	6,371	2,801			
Juli	11,930	14,758	0,808			
Agustus	-32,741	19,948	-1,641			
		LP3				
Parameter	Estimasi	s.e	t	t _{18;0,1/2}		
Intersep	13649,490	2710,034	5,037	1,734		
September	25,153	22,382	1,124			
Oktober	14,837	13,098	1,133			
November	-5,338	11,946	-0,447			

b. Kabupaten Banyuwangi

LP1							
Parameter	Estimasi	s.e	t	T _{20;0,1/2}			
Intersep	46014,43	3738,59	12,308	1,725			
Januari	23,60	11,89	1,984				
		LP2					
Parameter	Estimasi	s.e	t	T _{20;0,1/2}			
Intersep	27376,037	2564,766	10,67	1,725			
Mei	9,646	22,408	0,43				
	LP3						
Parameter	Estimasi	s.e	t	t _{17;0,1/2}			
Intersep	27888,4794	2240,7130	12,446	1,740			
September	20,9473	41,1496	0,509				

Oktober	5,9668	26,5596	0,225	
November	24,9381	14,3993	1,732	
Desember	-0,3255	10,2066	-0,032	

c. Kabupaten Bojonegoro

LP1						
Parameter	Estimasi	s.e	t	T _{20;0,1/2}		
Intersep	61873,06	4701,27	13,161	1,725		
Januari	12,88	14,27	0,902			
		LP2				
Parameter	Estimasi	s.e	t	t _{18;0,1/2}		
Intersep	15599,26	5388,38	2,895	1,734		
Mei	93,75	39,07	2,400			
Juni	55,81	56,90	0,981			
Juli	24,61	86,26	0,285			
		LP3				
Parameter	Estimasi	s.e	t	t _{18;0,1/2}		
Intersep	6017,4012	1832,6327	3,283	1,734		
September	39,7978	24,5300	1,622			
Oktober	-0,5808	14,7629	-0,039			
November	2,8783	7,8084	0,369			

d. Kabupaten Jember

LP1						
Parameter	Estimasi	s.e	t	t _{17;0,1/2}		
Intersep	64792,805	3770,687	17,183	1,740		
Januari	4,781	6,132	0,780			
Februari	3,594	7,299	0,492			
Maret	1,069	6,545	0,163			
April	19,237	8,514	2,259			
		LP2				
Parameter	Estimasi	s.e	t	t _{17;0,1/2}		
Intersep	45314,56	2473,56	18,320	1,740		
Mei	37,79	18,90	2,000			
Juni	30,14	33,57	0,898			

Juli	-30,07	47,42	-0,634				
Agustus	45,67	71,96	0,635				
	LP3						
Parameter	Estimasi	s.e	t	t _{18;0,1/2}			
Intersep	16038,576	1450,606	11,056	1,734			
September	9,266	12,451	0,744				
Oktober	24,831	6,342	3,915				
November	-1,542	5,699	-0,271				

Lampiran 10. Prediksi Jumlah Produksi GKG – Beras (Ton)

			Pred	liksi
Kabupaten	Tahun	Periode	Padi (GKG)	Beras
Lamongan	2008	1	434781	272781
		2	231539	145268
		3	71001.6	44546.4
Ngawi		1	263111	165076
		2	194100	121778
		3	75680.8	47482.2
Banyuwangi		1	315944	198223
		2	163699	102705
		3	147758	92703.2
Bojonegoro		1	343991	215820
		2	155780	97736.3
		3	29601.7	18572.1
Jember		1	379981	238400
		2	252856	158642
		3	93139.1	58435.5
Lamongan	2009	1	405693	254532
		2	66424.6	156990
		3	250222	41674.8
Ngawi		1	267266	167682
Č		2	214836	134788
		3	95062.4	59642.2
Banyuwangi		1	301389	189091
		2	190016	119216
		3	192713	120908
Bojonegoro		1	393495	246878
		2	141626	88856.2
		3	105763	66355.7
Jember		1	411163	257964
		2	249646	156628
		3	99817	62625.2
Lamongan	2010	1	436429	273815
		2	237344	148910
		3	58993.5	37012.5
Ngawi		1	234659	147225
		2	254293	159544
		3	84901.5	53267.2
Banyuwangi		1	382469	239961

		2	107526	11776
		2	187536	117660
		3	178279	111852
Bojonegoro		1	392356	246164
		2	123243	77322.6
		3	37057.2	23249.7
Jember		1	378188	237275
		2	240604	150955
		3	113659	71309.9
Lamongan	2011	1	333018	208936
		2	161282	101189
		3	65363.9	41009.3
Ngawi		1	221323	138858
		2	173815	109052
		3	133252	83602.5
Banyuwangi		1	333512	209245
		2	168672	105825
		3	207193	129993
Bojonegoro		1	353304	221663
		2	147497	92539.7
		3	51249.6	32154
Jember		1	473980	245844
		2	314475	142121
		3	103221	87808.1
Lamongan	2012	1	391846	253556
		2	226524	136808
		3	139956	45268.3
Ngawi		1	404138	151505
_		2	218056	142498
		3	72152.2	55858.9
Banyuwangi		1	241480	203749
		2	227125	103716
		3	89032.2	112160
Bojonegoro		1	324752	246650
		2	165311	138944
		3	178769	27159.4
Jember		1	393130	297375
		2	221460	197302
		3	43288.9	64760.7

Lampiran 11. Prediksi Jumlah Persediaan dan Kebutuhan Beras (Ton)

Kabupaten	Tahun	Periode	Prediksi	
			Persediaan	Kebutuhan
Lamongan	2008	1	272781	32343.2
		2	145268	32343.2
		3	44546.4	32343.2
Ngawi		1	165076	22707.8
		2	121778	22707.8
		3	47482.2	22707.8
Banyuwangi		1	198223	41663.7
		2	102705	41663.7
		3	92703.2	41663.7
Bojonegoro		1	215820	34368.6
		2	97736.3	34368.6
		3	18572.1	34368.6
Jember		1	238400	63127
		2	158642	63127
		3	58435.5	63127
Lamongan	2009	1	254532	32357.7
		2	156990	32357.7
		3	41674.8	32357.7
Ngawi		1	167682	22760.1
		2	134788	22760.1
		3	59642.2	22760.1
Banyuwangi		1	189091	41771
		2	119216	41771
		3	120908	41771
Bojonegoro		1	246878	34567.9
		2	88856.2	34567.9
		3	66355.7	34567.9
Jember		1	257964	63320.5
		2	156628	63320.5
		3	62625.2	63320.5
Lamongan	2010	1	273815	32070.4
		2	148910	32070.4
		3	37012.5	32070.4
Ngawi		1	147225	22243.2
		2	159544	22243.2
		3	53267.2	22243.2
Banyuwangi		1	239961	42325.4

Bojonegoro 2					
Bojonegoro		2010	2	117660	42325.4
Sember Color			3	111852	42325.4
Jember	Bojonegoro		1	246164	32911.2
Sember			2	77322.6	32911.2
Lamongan 2011 1 208936 32250.8 2 101189 32250.8 3 41009.3 32250.8 3 41009.3 32250.8 3 83602.5 22368.4 2 109052 22368.4 3 83602.5 22368.4 3 83602.5 22368.4 3 129993 42563.4 3 129993 42563.4 3 32154 33096.4 3 32154 33096.4 3 32154 33096.4 3 32154 33096.4 3 32154 33096.4 3 32154 33096.4 3 32154 33096.4 3 32154 33096.4 3 32154 33096.4 3 32154 33096.4 3 32154 33096.4 3 32154 33096.4 3 32154 33096.4 3 32154 33096.4 3 32154 33096.4 3 32154 33096.4 3 321556 32220.6 3 45268.3 32220.6 3 45268.			3	23249.7	32911.2
Lamongan 2011 1 208936 32250.8 2 101189 32250.8 3 41009.3 32250.8 3 41009.3 32250.8 3 41009.3 32250.8 3 41009.5 22368.4 2 109052 22368.4 3 83602.5 22368.4 2 10952 22368.4 3 83602.5 22368.4 2 105825 42563.4 2 105825 42563.4 3 129993 42563.4 3 129993 42563.4 3 32154 33096.4 2 92539.7 33096.4 3 32154 33096.4 3 32154 33096.4 3 32154 63807.1 2 142121 63807.1 2 142121 63807.1 3 87808.1 63807.1 3 87808.1 63807.1 3 87808.1 63807.1 3 45268.3 32220.6 3 45268.3 32220.6 3 45268.3 32220.6 3 45268.3 32220.6 3 55858.9 22374.9 2 142498 22374.9 2 142498 22374.9 3 55858.9 22374.9 3 55858.9 22374.9 3 55858.9 22374.9 3 57858.9 22374.9 3 57858.9 22374.9 3 57858.9 22374.9 3 57858.9 22374.9 3 57858.9 22374.9 3 57858.9 22374.9 3 57858.9 22374.9 3 57858.9 22374.9 3 57858.9 22374.9 3 57858.9 22374.9 3 57858.9 22374.9 3 57858.9 22374.9 3 57858.9 22374.9 3 57858.9 22374.9 3 57858.9 22374.9 3 57858.9 3 57858.9 3 57858.9 3 57858.9 3 57858.9 3 57858.9 3 57858.9 3 57859.9 3 57859.9 3 57859.9 3 57859.9 3 57859.9 3 57859.9 3 57859.9 3 57859.9 3 57859.9 3 57859.9 3 57859.9 3 57859.9 3 57859.9 3 3 57859.9 3 3 57859.9 3 3 57859.9 3 3 3 3 3 3 3 3 3	Jember		1	237275	63450.3
Lamongan 2011 1 208936 32250.8 2 101189 32250.8 3 41009.3 32250.8 1 138858 22368.4 2 109052 22368.4 3 83602.5 22368.4 2 105825 42563.4 2 105825 42563.4 3 129993 42563.4 3 129993 42563.4 3 32154 33096.4 2 92539.7 33096.4 3 32154 33096.4 3 32154 33096.4 4 33096.4 33096.4 3 32154 33096.4 43807.1 63807.1 2 142121 63807.1 3 87808.1 63807.1 4 2253556 32220.6 3 45268.3 32220.6 3 45268.3 32220.6 3 45268.3 32220.6			2	150955	63450.3
Ngawi			3	71309.9	63450.3
Ngawi	Lamongan	2011	1	208936	32250.8
Ngawi			2	101189	32250.8
Banyuwangi			3	41009.3	32250.8
Banyuwangi 3	Ngawi		1	138858	22368.4
Banyuwangi			2	109052	22368.4
Bojonegoro			3	83602.5	22368.4
Section Sect	Banyuwangi		1	209245	42563.4
Bojonegoro			2	105825	42563.4
2 92539.7 33096.4 3 32154 33096.4 3 32154 33096.4			3	129993	42563.4
3 32154 33096.4	Bojonegoro		1	221663	33096.4
Jember 1 245844 63807.1 2 142121 63807.1 3 87808.1 63807.1 1 253556 32220.6 2 136808 32220.6 3 45268.3 32220.6 3 45268.3 32220.6 1 151505 22374.9 2 142498 22374.9 3 55858.9 22374.9 2 103716 42827.2 2 103716 42827.2 3 112160 42827.2 3 112160 42827.2 2 138944 33267.8 3 27159.4 33267.8 3 27159.4 33267.8 3 27159.4 33267.8 4 197302 64395.5			2	92539.7	33096.4
2			3	32154	33096.4
Second	Jember		1	245844	63807.1
Lamongan 2012 1 253556 32220.6 2 136808 32220.6 3 45268.3 32220.6 1 151505 22374.9 2 142498 22374.9 3 55858.9 22374.9 2 103716 42827.2 2 103716 42827.2 3 112160 42827.2 3 112160 42827.2 2 138944 33267.8 3 27159.4 33267.8 Jember 1 297375 64395.5 2 197302 64395.5				142121	63807.1
2 136808 32220.6 3 45268.3 32220.6			3	87808.1	63807.1
Ngawi 3 45268.3 32220.6 1 151505 22374.9 2 142498 22374.9 3 55858.9 22374.9 Banyuwangi 1 203749 42827.2 2 103716 42827.2 3 112160 42827.2 Bojonegoro 1 246650 33267.8 2 138944 33267.8 3 27159.4 33267.8 Jember 1 297375 64395.5 2 197302 64395.5	Lamongan	2012	1	253556	32220.6
Ngawi 1 151505 22374.9 2 142498 22374.9 3 55858.9 22374.9 Banyuwangi 1 203749 42827.2 2 103716 42827.2 3 112160 42827.2 Bojonegoro 1 246650 33267.8 2 138944 33267.8 3 27159.4 33267.8 Jember 1 297375 64395.5 2 197302 64395.5			2	136808	32220.6
Banyuwangi Banyuwangi 1 203749 42827.2 2 103716 42827.2 3 112160 42827.2 Bojonegoro 1 246650 33267.8 2 138944 33267.8 3 27159.4 33267.8 Jember 1 297375 64395.5 2 197302 64395.5			3	45268.3	32220.6
Banyuwangi 1 203749 42827.2 2 103716 42827.2 3 112160 42827.2 Bojonegoro 1 246650 33267.8 2 138944 33267.8 3 27159.4 33267.8 Jember 1 297375 64395.5 2 197302 64395.5	Ngawi		1	151505	22374.9
Banyuwangi 1 203749 42827.2 2 103716 42827.2 3 112160 42827.2 Bojonegoro 1 246650 33267.8 2 138944 33267.8 3 27159.4 33267.8 Jember 1 297375 64395.5 2 197302 64395.5			2	142498	22374.9
2 103716 42827.2 3 112160 42827.2			3	55858.9	22374.9
Bojonegoro 3 112160 42827.2 1 246650 33267.8 2 138944 33267.8 3 27159.4 33267.8 Jember 1 297375 64395.5 2 197302 64395.5	Banyuwangi		1	203749	42827.2
Bojonegoro 1 246650 33267.8 2 138944 33267.8 3 27159.4 33267.8 Jember 1 297375 64395.5 2 197302 64395.5				103716	42827.2
2 138944 33267.8 3 27159.4 33267.8 1 297375 64395.5 2 197302 64395.5			3	112160	42827.2
Jember 3 27159.4 33267.8 1 297375 64395.5 2 197302 64395.5	Bojonegoro			246650	
Jember 1 297375 64395.5 2 197302 64395.5			2	138944	33267.8
2 197302 64395.5			3	27159.4	33267.8
	Jember		1	297375	64395.5
3 64760.7 64395.5				197302	
			3	64760.7	64395.5

BIODATA PENULIS

Penulis bernama Gandes Goldestan. biasa dipanggil Gandes. Penulis dilahirkan di Blitar. 12 Januari 1996. Penulis menempuh pendidikan formal dimulai dari TK Tunas Harapan Pertamina Kabupaten Tabalong Kalimantan Selatan (2000 - 2002), SD Plus Murung Pudak (2002 - 2008), SMP Plus Murung Pudak (2008 - 2011), dan SMA Negeri 1 Kota Blitar (2011 – 2014). Kemudian penulis melanjutkan studi

ke jenjang S1 di Departemen Matematika ITS Fakultas Matematika, Komputasi, dan Sains Data pada tahun 2014 dengan NRP 06111440000100. Di Departemen Matematika, penulis mengambil Bidang Minat Ilmu Komputer. Selama kuliah, penulis aktif dalam kegiatan seminar, training pemrograman, dan pernah mengikuti PKM dan pelatihan kemahasiswaan yaitu LKMM Pra-TD

Informasi lebih lanjut mengenai laporan Kerja Praktek ini dapat ditujukan ke penulis melalui e-mail : gandes.golden@yahoo.com