Kajian Teorema Titik Tetap pada Ruang Metrik Fuzzy

Lukman, zicky (2018) Kajian Teorema Titik Tetap pada Ruang Metrik Fuzzy. Undergraduate thesis, Institut Teknologi Sepuluh Nopember Surabaya.

[img]
Preview
Text
06111440000084-Undergraduate_thesis.pdf - Accepted Version

Download (2MB) | Preview

Abstract

Metrik mempunyai peranan penting dalam matematika analisis maupun terapan. Seiring perkembangan jaman, perluasan dari ruang metrik mulai terus dikaji dan diteliti lebih dalam. Salah satu perluasan dari ruang ini adalah ruang metrik fuzzy. Konsep dasar dari ruang metrik fuzzy berbeda dengan konsep ruang metrik, yaitu pada domain dan kodomain fungsi metrik fuzzy, nilai fungsi saat x=y dan pertidaksamaan segitiga fungsi metrik fuzzy yang melibatkan norm-t kontinu. Subjek yang dikaji pada tugas akhir ini adalah kekonvergenan barisan, barisan Cauchy, kelengkapan dan hubungan antara sifat-sifat tersebut serta teorema titik tetap pada ruang metrik fuzzy. == Metric has an important role in analytical and applied mathematics. As time passes, the expansion of the metric space continues to be studied and examined more deeply. One of the extensions of this space is the fuzzy metric space. The basic concept of fuzzy metric space differs from the concept of metric space, that is to the domain and codomain function of the fuzzy metric, the value of the current function of x = y and the inequalities of the triangular function of the fuzzy metrics involving continuous norms. Subjects studied in this final project are the convergence of sequences, Cauchy sequences, completeness and relationships between these properties and fixed point theorem in the fuzzy metric space.

Item Type: Thesis (Undergraduate)
Subjects: Q Science > QA Mathematics > QA611.28 Metric spaces
Q Science > QA Mathematics > QA248_Fuzzy Sets
Divisions: Faculty of Mathematics and Science > Mathematics > 44201-(S1) Undergraduate Thesis
Depositing User: Zicky Lukman
Date Deposited: 18 Jun 2021 12:44
Last Modified: 18 Jun 2021 12:44
URI: https://repository.its.ac.id/id/eprint/58754

Actions (login required)

View Item View Item