19.313/1TT/H/2004 MILIK PERPUSTAKAAN INSTITUT TEKNOLOGI SEPULUH - NOPEMBER **TUGAS AKHIR** (KP 1701) ANALISIS PERILAKU GERAKAN KAPAL **DI PERAIRAN TERBATAS** RSPe 623.812 Ima 2-1 2003 PERPUSTAKAAN ITS 12-9-2003 Tgl. Terima Oleh : Terima Dari M No. Agenda Prp. 219166 Fajar Imanuddin 4195 100 034 JURUSAN TEKNIK PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN **INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA** 2003

LEMBAR PENGESAHAN

ANALISIS PERILAKU GERAKAN KAPAL DI PERAIRAN TERBATAS

Telah Direvisi Sesuai Dengan Hasil Sidang Tugas Akhir Pada

JURUSAN TEKNIK PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

> Mengetahui / Menyetujui, Surabaya, Agustus 2003

ABSTRAK

Sebuah kapal yang bergerak dekat dengan dermaga akan mengalami perubahan arah geraknya. Hal ini disebabkan oleh adanya pengaruh dari aliran fluida di daerah dekat dermaga.

Berkembangnya metode numerik dalam bidang mekanika fluida telah banyak membantu untuk menganalisa fenomena-fenomena yang terjadi di alam. Dengan analisa numerik menggunakan metode volume hingga, yang merupakan satu bagian dari *computational fluid dynamics*, dan dengan bantuan perangkat komputer yang telah banyak berkembang, dimungkinkan untuk menganalisis system fluida yang kompleks.

Dalam penelitian ini digunakan variable jarak kapal ke dermaga/bank dan kecepatan kapal. Jarak ke dermaga ditentukan sebagai fungsi dari panjang kapal, yaitu : L, L/2, L/3, L/4, L/5. Untuk kecepatan kapal digunakan angka Froude dan dibedakan menjadi tiga, yaitu 0,08, 0,10 dan 0,12. Dari percobaan dapat diketahui bahwa semakin dekat jarak kapal ke dermaga maka kapal mengalami gaya sway dan momen yaw yang semakin besar. Demikian pula dengan kecepatan kapal. Semakin tinggi kecepatan kapal, gaya sway dan momen yaw yang dialami semakin besar.

ABSTRACT

A ship which sails near the wall will undergoes in the direction on motion.

The development of numeric method in fluid mechanic flied has helped the analysis of phenomena that happened in nature. With numeric analysis using finite volume method, that is one part of computational fluid dynamic solution, and with the development of computer hardware, it is possible to analyze a complex fluid system.

In this study, the variable of the distance of the ship to the bank/wall and the ship's velocity are used. The distance to the wall is set as the function of the ship's length, i.e., L/2, L/3, L/4, L/5. For the ship's velocity, the Froude number is used and differentiated into three, i.e., 0,08, 0,10 and 0,12. From the experiment it was found out that the nearer the ship to the wall the greater the ship will undergoes sway force and yaw moment. The same is true for the ship's velocity. The greater the ship's velocity the greater the sway force and yaw moment the ship will undergo.

KATA PENGANTAR

Assalamu'alaikum Wr. Wb.

Puji syukur penulis panjatkan kepada Allah SWT yang telah melimpahkan rahmat-nya, sehingga laporan Tugas Akhir ini dapat penulis selesaikan pada waktunya.

Tugas Akhir (KP 1701) merupakan salah satu syarat untuk menyelesaikan gelar sarjana Teknik Perkapalan, dan merupakan bidang keahlian khusus yang diharapkan untuk dikuasai oleh penulis.

Laporan ini dibuat berdasarkan hasil percobaan numerik menggunakan software CFX-5, dan menggunakan fasilitas komputer di ruang komputer Program Paskasarjana Fakultas Teknologi Kelautan ITS.

Penulis menyadari bahwa laporan Tugas Akhir ini dapat terselesaikan karena adanya bantuan dari banyak pihak. Oleh karena itu pada kesempatan ini penulis ingin mengucapkan terima kasih yang sebesar-besarnya kepada :

- 1. Keluarga tercinta, untuk pengertiannya yang besar.
- Ir. IKAP Utama, MSc., PhD. Dan Ir Murdijanto, MEng., selaku dosen pembimbing, dengan tingkat kesabaran yang tinggi telah memberi dukungan dan pengarahan untuk kelancaran pelaksanaan penelitian ini.
- 3. Ir. Djauhar Manfaat, MSC., PhD., selaku Ketua Jurusan Teknik Perkapalan FTK-ITS, yang telah memberikan izin penelitian.
- 4. Bapak Kepala Program Studi Paskasarjana, yang telah memberikan izin pemakaian fasilitas komputer.
- 5. Pak Hasan dan rekan, yang telah banyak membantu kelancaran percobaan.
- 6. Yayan Mahendra, selaku dosen pembimbing ketiga.
- 7. Eko Priyanto, untuk referensinya.
- 8. Hesti, Luzmah, Purnama, Prio, Sofia, untuk dukungan motivasinya.
- Teman-teman perkapalan 95; Agung, Alam, Andri F., Angga, Darsono, Dayat, Fendy, Hendra, Indra H., Ifan, Uju, Kandar, Kardjo, Machrus, Parcok, Ratna, Rery, Rizky, Sigit, Wahyu, Winarto, dan yang belum tersebut namanya.
- 10. Pak Arifin, dari Laboratorium Hidrodinamika Indonesia (BPPT HIDRODINAMIKA SURABAYA).

- 11. mbak Daning, mbak Dvi, mbak Upik, dari Danareksa Sekuritas.
- 12. mbak Femmy, mbak Zulfa, dari Danareksa Invesment Management.
- 13. mbak Happy, mbak Yanti, dari Bank Syariah Mandiri.
- 14. Wo de laoshi; Purnomo, wo de pengyoumen; Ardan, Citra, Levi, Premi, Putu, Putri, Ririn, Tita, duo xie nimen.
- 15. Pak Sholihin, Pak Zubairi, untuk dukungan moralnya.
- 16. Keluarga besar (alm) Adibroto.
- 17. Keluarga besar (alm) M. Soebroto.
- 18. Keluarga besar (alm) Soemarmo.
- 19. Dan semua pihak yang tidak bisa disebutkan satu per satu.

Demikian kata pengantar dari penulis. Semoga laporan Tugas Akhir ini akan bermanfaat bagi pembaca sekalian.

Wassalamu'alaikum Wr. Wb.

Surabaya, Agustus 2003

Fajar Imanuddin

DAFTAR ISI

HALAMAN JUDUL	4
LEMBAR PENGESAHAN	1
ABSTRAK	11
ABSTRACT	in
KATA PENGANTAR	iv
DAFTAR ISI	IV
DAFTAR GAMBAR	VI
	VII
BAB I PENDAHULUAN	
1.1. Latar Belakang	I-1
1.2. Tujuan	I-1
1.3. Manfaat	I-2
1.4. Batasan Masalah	I-2
1.5. Metodologi	I-2
1.6. Sistematika Laporan	I-7
BAB II GERAK KAPAL	
2.1. Umum	II.1
2.2. Macam dan Pengaruh Gerakan Kanal	II-1 II_1
2.3. Dinamika	II-1 II.4
2.4. Sistem Koordinat	II-4 II_6
	11-0
BAB III COMPUTATIONAL FLUID DYNAMIC	
3.1. Umum	III-1
3.2. Bagian-bagian CFD Code (CFX)	III-4
3.3. Proses Validasi	III-17
BAB IV ANALISA DAN PEMBAHASAN	
4.1. Grid Independence	IV 2
4.2 Analisa Hasil CFX	IV-2
4.3. Validasi Data	IV-5
	1V-1/
BAB V KESIMPULAN DAN SARAN	
Kesimpulan	V-1
Saran	V-2
DAFTAR PUSTAKA	iv
Same	IX
LAMPIRANA:	Milin
ILUSTRASI MODEL KAPAL	VST. PERD
LAMPIRAN B:	ULUT TUSTA
MESHING PADA MODEL KAPAL	UN CKNO, AAN
LAMPIRAN C :	NOPEROGI
KELUARAN HASIL RUNNING PROGRAM CFX	BER
LAMPIRAN D :	
TABEL DATA DISTRIBUSI TEKANAN DAN KECEPATA	N
LAMPIRAN E :	
VEKTOR DISTRIBUSI KECEPATAN	

DAFTAR GAMBAR

Gambar 1.1 : Geometri model kapal	I-5
Gambar 2.1 : Ilustrasi gerakan rolling	II-2
Gambar 2.2 : Ilustrasi gerakan pitching	II-2
Gambar 2.3 : Ilustrasi gerakan heaving	II-2
Gambar 2.4 : Ilustrasi gerakan yawing	II-3
Gambar 2.5 : Ilustrasi gerakan swaying	II-3
Gambar 2.6 : Ilustrasi gerakan surging	II-3
Gambar 2.7 : Sistem Koordinat	II-6
Gambar 3.1 : Desain kerja CFD	III-3
Gambar 3.2 : Bagian-bagian CFD Code	III-4
Gambar 3.3 : Aliran massa pada elemen fluida	III-8
Gambar 3.4 : Komponen tegangan arah sumbu x	III-10
Gambar 4.1 : Koordinat model kapal	IV-1
Gambar 4.2 : Grid Independence	IV-2
Gambar 4.3 : Sebuah kapal berlayar tepat pada tengah perairan	IV-5
Gambar 4.4 : Model kapal berada dekat salah satu dinding	IV-7
Gambar 4.5 : Grafik Distribusi Tekanan	
pada 1 Panjang Kapal dari Dermaga	IV-8
Gambar 4.6 : Grafik Distribusi Tekanan	
pada 1/2 Panjang Kapal dari Dermaga	IV-8
Gambar 4.7 : Grafik Distribusi Tekanan	
pada 1/3 Panjang Kapal dari Dermaga	IV-9
Gambar 4.8 : Grafik Distribusi Tekanan	
pada 1/4 Panjang Kapal dari Dermaga	IV-9
Gambar 4.9 : Grafik Distribusi Tekanan	
pada 1/5 Panjang Kapal dari Dermaga	IV-10
Gambar 4.10 : Grafik Distribusi Kecepatan	
pada 1 Panjang Kapal dari Dermaga	IV-11
Gambar 4.11 : Grafik Distribusi Kecepatan	
pada 1/2 Panjang Kapal dari Dermaga	IV-12
Gambar 4.12 : Grafik Distribusi Kecepatan	
pada 1/3 Panjang Kapal dari Dermaga	IV-12
Gambar 4.13 : Grafik Distribusi Kecepatan	
pada 1/4 Panjang Kapal dari Dermaga	IV-13
Gambar 4.14 : Grafik Distribusi Kecepatan	
pada 1/5 Panjang Kapal dari Dermaga	IV-13
Gambar 4.15 : Trayektori model pada $Fn = 0.08$	IV-15
Gambar 4.16 : Trayektori model pada $Fn = 0,10$	IV-15
Gambar 4.17 : Trayektori model pada $Fn = 0,12$	IV-16
Gambar 4.18 : Force yang terjadi karena bank suction	IV-18
Gambar 4.19 : Momen yang terjadi karena bank suction	IV-18

BAB I PENDAHULUAN

BAB I

PENDAHULUAN

1.1. Latar Belakang

Sebuah kapal pada saat bergerak mendekati dermaga mempunyain karakteristik yang berbeda dengan kapal yang berlayar di lautan lepas. Perbedaan ini karena adanya interaksi antara kapal, dermaga, serta kedalaman perairan di sekitar dermaga. Sehingga terjadi pengaruh dalam olah gerak kapal di dermaga. Pengetahuan tentang hal ini penting untuk diketahui demi kelancaran aktifitas bongkar muat kapal.

1.2. Tujuan

Tujuan yang akan diperoleh dalam penulisan tugas akhir ini adalah :

- Memperoleh grafik distribusi gaya sebagai hasil interaksi antara kapal dengan dermaga.
- Mendapatkan pola gerakan kapal ketika mendekati dermaga dengan berbagi variasi kecepatan dan jarak kapal terhadap dermaga.

1.3. Manfaat

Manfaat yang akan diperoleh dalam penulisan tugas akhir ini adalah :

- Dengan diketahuinya karakteristik kapal ketika mendekati dermaga maka diharapkan dapat dilakukan tindakan antisipasi untuk meningkatkan keselamatan awak kapal, mencegah kerusakan kapal dan dermaga serta memperlancar aktifitas bongkar muat.
- Pada tahap selanjutnya bisa digunakan sebagai dasar pembuatan simulasi untuk pelatihan awak kapal.

1.4. Batasan Masalah

Untuk mempermudah dalam pelaksanaan pengerjaan tugas akhir ini dan menghindari meluasnya pembahasan, maka analisa ini dibatasi pada beberapa hal :

- 1. Kapal dimodelkan seperti box-like ship
- 2. Angka Froude (Fn) yang divariasikan adalah : 0,08, 0,10, dan 0,12.
- Jarak antara kapal dengan tepi dermaga adalah fungsi dari panjang badan kapal, yaitu : L, L/2, L/3, L/4, L/5.

1.5. Metodologi

Pengerjaan Tugas Akhir ini, untuk mencapai tujuan mengetahui gerakan kapal akibat pengaruh tepi dermaga (bank), dilakukan dalam beberapa langkah pengerjaan. Metodologi penelitian meliputi tahap-tahap investigasi

I - 2

(pemahaman/intelligence), tahap desain (perancangan), dan tahap pemilihan yang kemudian diteruskan dengan penulisan laporan. Deskripsi untuk masing-masing tahap pengerjaan adalah sebagai berikut :

1. Fase Pemahaman (Intellegence)

Tahap intelligence disebut juga tahap investigasi, merupakan tahap untuk menentukan, mengidentifikasi dan merumuskan masalah serta pengumpulan informasi yang diperlukan.

Pada fase ini terdapat beberapa langkah yang dilakukan yaitu :

- a. Mengidentifikasikan dan mengklasifikasikan permasalahan yang ada, sehingga dapat dilakukan penelitian awal, untuk mengetahui fenomena bahwa kapal yang berlayar dengan jarak yang dekat dengan tepi dermaga akan mengalami pengaruh sehingga gerakan kapal akan berubah, factor-faktor yang mempengaruhinya dan halhal yang berkaitan dengan arus disekelilingnya. Dari sini dilakukan perumusan masalah dengan jelas apa yang akan diteliti dan tujuan dari diadakannya penelitian tersebut. Adapun permasalahan dalam Tugas Akhir ini dapat dirumuskan sebagai berikut : *bagaimana pengaruh tepi dermaga terhadap perilaku gerak kapal.*
- b. Studi Pustaka

Studi kepustakaan dilakukan dengan tujuan untuk mengetahui tool apa yang dapat digunakan untuk menyelesaikan permasalahan yang akan diteliti dan dilakukan eksplorasi terhadap penelitian-penelitian yang telah ada sebelumnya yang dapat dijadikan sebagai referensi bagi penelitian yang akan dilakukan ini. Tinjauan pustaka meliputi konsep dasar gerakan kapal, aliran fluida, cara kerja CFD dan cara penggunaan software CFD dimana dalam pengerjaan Tugas Akhir ini menggunakan CFX.

2. Fase Perancangan (Desain)

Pada fase ini langkah-langkah yang dilakukan adalah :

a. Memformulasikan model.

Memformulasikan model akan mempermudah untuk mencari alternative pemecahan masalah sesuai dengan informasi yang dikumpulkan tahap sebelumnya. Dalam hal ini ada beberapa model kapal berdasarkan jaraknya terhadap tepi dermaga yang akan dianalisa. Kapal dianggap sebagai sebuah kotak (box-like ship) dan variasi jarak antara kapal dengan tepi dermaga merupakan fungsi dari panjang kapal (L), yaitu : L, L/2, L/3, L/4, L/5. Untuk arah datangnya gelombang serta geometrinya adalah sebagai berikut :

• Bentuk geometri kapal

Penetuan jarak model terhadap domain berpengaruh pada aliran yang akan terjadi pada saat proses komputasi. Apabila jarak model terhadap domain terlalu dekat, maka arah aliran akan sesuai dengan keadaan yang sebenarnya. Jika jarak model dengan bagian belakang domain terlalu dekat, maka aliran yang seharusnya keluar berbalik lagi. Agar hasil perhitungan menghasilkan harga yang optimal maka jarak untuk suatu model terhadap domain adalah sebagai berikut (Priyanto, 2001, Mahendra, 2001):

- Jarak sisi depan domain terhadap model sejauh 2L ~ 3L
- Jarak sisi samping domain terhadap model sejauh $\geq 2L$
- Jarak sisi belakang domain terhadap model sejauh 3L ~ 5L

Dimana L adalah panjang model. Dengan memperhatikan harga tersebut maka dalam proses komputasi ditentukan jarak model terhadap domain adalah sebagai berikut :

Gambar 1.1 : Geometri model kapal

 b. Merealisasikan formulasi model tersebut dalam suatu perangkat lunak (software) yang digunakan untuk menangani permasalahan. Dalam merealisasikan model tersebut ke software CFX dilakukan dalam beberapa tahap, yaitu :

- 1. Mendeskripsikan model ke dalam CFX.
- Menentukan tipe aliran dan sifat-sifat fluida dengan spesifikasi sebagai berikut:

Tipe simulasi	: Steady state
Jenis turbulen	: K-epsilon
Jenis Buoyancy	: non Buoyancy

3. Menentukan jarak dan kecepatan model.

Tiap model mempunyai variasi jarak terhadap tepi dermaga dan juga variasi angka Froude yaitu : 0,08, 0,10, dan 0,12.

- 4. Menetukan boundary condition dari fluid domain yang berguna untuk mengeset persamaan metode volume hingga sehingga dapat diselesaikan secara numeric dengan perincian sebagai berikut :
 - 1. Inlet merupakan daerah masuknya fluida.
 - 2. Outlet merupakan daerah masuknya fluida.
 - 3. Geometri model.
 - 4. Permukaan dan dasar yang memiliki sifat slip.
 - 4. Penetuan variable penyelesaian.
 - 5. Membuat mesh pada permukaan dan mesh fluida dengan dibuatnya garis control pada geometri.
 - 6. Menentukan pengendali dari penyelesaian yang dihasilakn dari CFX solver.
 - 7. Menyelesaikan program dengan melakukan running pada CFX solver.

USIARAAN

RER

- 8. Memvisualisasikan hasil running CFX.
- 9. Mendapatkan data output dari running CFX.

3. Fase Pemilihan (Choice)

Pada fase ini langkah-langkah yang dilakukan adalah :

a. Mencari penyelesaian dari model yang dibuat.

- b. Melakukan pemilihan alternative-alternatif perancangan yang terbaik dari penyelesaian masalah yang dihasilakn pada tahap sebelumnya dengan mempertimbangkan kriteria-kriteria tertentu berdasarkan pada tujuan yang ingin dicapai.
- c. Melakukan validasi terdahap model rancangan yang telah dibuat. Hal ini untuk mengetahui apakah model tersebut valid dan dapat diterapkan pada system nyata.
- Setelah melalui berbagai fase perancangan diatas maka kemudian akan dapat dilakukan penarikan kesimpulan dari penelitian yang dilakukan dan proses penyusunan laporan penelitian.

1.6. Sistematika Laporan

Dalam penyusunan laporan tugas akhir ini, sistematika penulisan laporan yang digunakan adalah sebagai berikut :

BAB 1 PENDAHULUAN

Bab ini meliputi latar belakang masalah, permasalahan, batasan masalah, metodologi penelitian, tujuan, manfaat, dan sistematika laporan.

BAB 2 GERAKAN KAPAL

Berisikan penjelasan mengenai berbagai komponen gerakan kapal.

BAB 3 COMPUTATIONAL FLUID DYNAMICS

Merupakan bagian yang menjelaskan cara kerja CFD, bagian-bagian CFX, dan penggunaan software CFX.

BAB 4 ANALISA DAN PEMBAHASAN

Merupakan bagian yang menjelaskan hasil dari program CFX dan analisa hasil program serta validasi dengan teori dan data lainnya.

BAB 5 PENUTUP

Dalam bab ini akan diberikan rangkuman pembahasan yang telah dilakukan dan pemilihan factor-faktor yang berpengaruh tepi dermaga terhadap perilaku gerak kapal.

BAB II GERAK KAPAL

BAB II

GERAKAN KAPAL

2.1. Umum

Ketika kapal berlayar dilaut, gerakan-gerakan kapal (rolling, pitching, heaving dan lain-lainnya) akan timbul karena adanya gelombang serta gelombang itu sendiri akan menimbulkan tahanan maupun gaya-gaya yang bekerja pada kapal. Khususnya pada kondisi cuaca yang buruk ataupun gelombang dilaut yang besar antara lain akan mengakibatkan rusaknya muatan atau bagian-bagian konstruksi badan kapal. Melalui fenomena tersebut, ketidakenakan (comfortability) para penumpang dan awak kapalnya yang ada di atas kapal menjadi berkurang, juga berkurangnya stabilitas kapal sehingga hal ini kemungkinan dapat mengakibatkan kapal tenggelam. Sebagai acuan dari bab ini adalah Bhattacharyya (1978) dan Lewis (1989).

2.2. Macam dan Pengaruh Gerakan Kapal

Gerakan kapal adalah gerakan osilasi dari sebuah kapal dimana kapal tersebut dianggap sebagai berikut :

- Kapal dianggap sebagai benda yang benar-benar padat (*perfectly* rigid body).
- Terapung dipermukaan air baik dalam keadaan tenang (*still water*) maupun dalam keadaan bergoyang (*disturbed water*).

II -1

Ada tiga macam gerakan kapal yang merupakan gerakan kapal pokok, yaitu :

 Rolling, yaitu gerakan osilasi rotasional terhadap sumbu longitudinal (sumbu x).

Gambar 2.1 : Ilustrasi gerakan rolling

2. *Pitching*, yaitu gerakan osilasi rotasional terhadap sumbu transversal

(sumbu y).

Gambar 2.2: Ilustrasi gerakan pitching

3. Heaving, yaitu gerakan osilasi translasi pada sumbu vertical (sumbu

z).

Gambar 2.3 : Ilustrasi gerakan heaving

Disamping gerakan ketiga macam gerakan pokok diatas, masih ada tiga macam gerakan kapal lainnya yang terjadi kadang kala bersama-sama dengan gerakan kapal pokok tadi. Ketiga gerakan kapal yang bukan gerakan pokok tersebut adalah :

4. Yawing, yaitu gerakan osilasi rotasional terhadap sumbu vertical (sumbu z).

Gambar 2.4 : Ilustrasi gerakan yawing

5. Swaying, yaitu gerakan osilasi translasi pada arah sumbu y (melintang kapal).

Gambar 2.5 : Ilustrasi gerakan swaying

6. Surging, yaitu gerakan osilasi translasi pada arah sumbu x (majumundur).

Gambar 2.6 : Ilustrasi gerakan surging

TUGAS AKHIR (KP 1701)

Dalam kenyataan, kapal yang berlayar akan mengalami kombinasi dari gerakan-gerakan tersebut diatas.

2.3. Dinamika

Dimana : F = total external force

М	= total external moment
a	= percepatan
ω	= percepatan sudut (angular acc)
m	= mass

2.3.1. Hukum Gerakan Newton

$F = m \cdot a$

Pada sumbu-sumbu x, y, dan z komponen-komponennya adalah :

$$P_{x} = m a_{x}$$

$$P_{y} = m a_{y}$$

$$F_{y} = m a_{z}$$
(2.1)

II - 4

Sistem sumbu yang akan dipakai sebagai patokan adalah yang tidak ada percepatannya (*non-acceleration*), oleh karena itu nantinya akan dipakai system sumbu :

([, 1, 3)

yang tidak bergerak dari space (fixed).

2.3.2. Hukum Euler (untuk gerakan rotasi)

Persamaan gerak dari benda padat (rigid body)

 $M_{x} = I_{xx} \dot{\omega}_{x} + \omega_{y} \omega_{n} (I_{xx} - I_{yy})$ $M_{y} = I_{yy} \dot{\omega}_{y} + \omega_{n} \omega_{x} (I_{xx} - I_{nn})$ $M_{n} = I_{nn} \dot{\omega}_{n} + \omega_{x} \omega_{y} (I_{yy} - I_{xx})$ (2.2)

Dimana : Mx = momen terhadap sumbu x

Ixx = momen kelembaman/momen inersia terhadap sumbu x

 $\omega x =$ kecepatan sudut terhadap sumbu x

 $\dot{\omega}x = \text{percepatan sudut terhadap sumbu } x$

demikian juga untuk sumbu-sumbu yang lain (sumbu y dan sumbu z), berlaku pula hal yang sama.

Pembatasan pada persamaan gerak Euler :

- 1. Titik origin berimpit pada center of gravity dari bendanya.
- 2. Sumbu-sumbunya adalah "principal axis" dari bendanya.
- Sistem koordinat (x, y, z) adalah tetap tidak berubah pada bendanya (tetapi tidak pada space).

II - 5

2.4. Sistem Koordinat

Gambar 2.7 : Sistem Koordinat

Asumsi-asumsi dasar :

- 1. Bidang tengah adalah bidang simetri dari kapal.
- Sumbu x sejajar dengan permukaan bebas dari permukaan lautan (*free surface*) dan merupakan salah satu dari "*principal axis*".

Tempatkan titik origin 'O' di 'C' of gravity kapal sehingga :

- (x, y, z) adalah tetap tidak berubah di kapal dan dimisalkan merupakan sumbu-sumbu "principal axis" daripada kapal.
- (ξ, η, ζ) adalah sumbu tetap di space.

BAB III

COMPUTATIONAL FLUID DYNAMIC

BAB III. COMPUTATIONAL FLUID DYNAMIC

BAB III

COMPUTATIONAL FLUID DYNAMICS

3.1. Umum

Computational Fluid Dynamics (CFD) didefinisikan sebagai teknik perhitungan untuk memprediksi fenomena dasar masalah aliran dengan menggunakan computer berkemampuan tinggi. Selain itu CFD juga didefinisikan sebagai suatu analisa terhadap system seperti masalah aliran fluida, perpindahan panas dan fenomena lainnya yang sejenis melalui simulasi computer. Teknik CFD dianggap cukup ampuh dan telah digunakan secara luas di dunia industri maupun non-industri sejak awal 1990-an.

Beberapa keuntungan yang diperoleh dengan menggunakan CFD antara lain:

- Meminimumkam waktu dan biaya dalam mendesain suatu produk, bila proses desain tersebut dilakukan dengan uji eksperimen dengan akurasi tinggi.
- Memiliki kemampuan system studi yang dapat mengendalikan percobaan yang sulit atau tidak mungkin dilakukan melalui eksperimen.
- Memiliki kemampuan untuk studi dibawah kondisi berbahaya pada saat atau sesudah melewati titik kritis (termasuk studi keselamatan

dan skenario kecelakaan)

Keakuratannya akan selalu dikontrol dalam proses desain.

Namun demikian investasi yang dikeluarkan cukup besar, tetapi tidak sebesar bila dibandingkan dengan harga dari sejumlah fasilitas yang digunakan untul uji eksperimen seperti towing tank atau wind tunnel.

Aplikasi dari CFD untuk menyelesaikan masalah aliran pada kapal telah mengalami kemajuan cukup pesat pada akhir-akhir ini. Bahkan saat ini teknik CFD merupakan bagian dari proses desain dalam diagram spiral perencanaan. Dengan CFD dimungkinkan untuk memprediksi fenomena aliran yang jauh lebih kompleks dengan berbagai tingkat akurasi.

Berbagai program CFD ynag bersifat komersial telah cukup banyak di pasaran seperti FLUENT, PHONICS, CFX, STAR-CD, ANSYS dan lain-lain. Pada umumnya program-program komputer tersebut dapat diklasifikasikan menjadi dua kelompok berdasarkan jenis penyelesaiannya, yaitu :

- 1. Metode Panel
- 2. Metode Stokes

Pada mulanya perkembangan CFD dengan metode panel banyak mengalami hambatan terutama pada masalah komputasinya. Beberapa program yang menggunakan metode panel diantaranya adalah VSAERO/WHIP dari USA, DAWSON dan MARIN dari Belanda, PALISUPAN dari Universitas Southampton Unggris. Akan tetapi seiring dengan perkembangan teknik komputer maka metode penyelesaian yang digunakna cenderung mengarah pada Navier Stokes (RANS). NSS mempunyai peran penting dalam pengembangan ,odel III - 2 turbulensi RANS Code. RANS Code paling banyak digunakan oleh programprogram CFD untuk menyelesaikan masalah aliran dengan memanfaatkan persamaan Navier Stokes kemudian merata-ratakan terhadap waktu.

Dalam desain kerjanya, problem yang ada perlu dideskripsikan ke dalam siftware CFD dengan menggambarkan model yang akan dianalisa, sifat-sifat fluida yang ada di sekitar model dan juga penentuan kondisi batasnya. Selanjutnya dalam solver problem yang ada akan dihitung dengan pendekatan persamaan Navier Stokes. Dari hasil perhitunga kemudian didapatkan hasil output dari running program CFD. Adapun desain kerja CFD adalah sebagai berikut (lihat Gambar 3.1) :

Gambar 3.1 : Desain kerja CFD

Dalam CFD dilakukan pembuatan persamaan yang menggambarkan proses momentum, perambatan panas dan massa yang dikenal dengan penyelesaian secara numeric dan diskrit. Metode penyelesaian yang digunakan dalam CFD dikenal sebagai metode volume hingga (Finite Volume Technique). Di dalam teknik tersebut daerah yang dianalisa dibagi menjadi sub daerah yang kecil yang dinamakan control volume (AEA Technology, 1996).

3.2. Bagian-bagian CFD Code (CFX)

Program CFD dibuat terstruktur dan dilengkapi dengan interface untuk memudahkan dalam pemasukan dat input dan pengamatan hasil running program. Program CFD terdiri dari tiga bagian dasar (lihat Gambar 3.2), yaitu :

1. Pre Processor

2. Flow Solver

3. Post Processor

Gambar 3.2 : Bagian-bagian CFD Code

3.2.1. Pre-Processor

Pada bagian ini terdiri dari input masalah aliran untuk program CFD melalui suatu interface kemudian mengubahnya menjadi bentuk yang sesuai dengan format yang dikehendaki oleh bagian Flow Solver. Di bagian preprocessor ini pengguna diminta untuk mendiskripsikan :

- Pendefinisian geometri benda dan daerah sekeliling benda sebagai domain komputasi.
- 2. Grid Generation

Membagi domain yang telah ditentukan menjadi bagian yang lebih kecil (sub-domain).

- Penentuan fenomena fisika dan kimia yang dimodelkan.
- Penentuan sifat-sifat fluida, seperti pendefinisian harga densitas, viskositas, temperature fluida dan lain-lain.
- 5. Penentuan kondisi batas

Pada pembuatan model geometri, lokasi pembuatan kondisi batas harus ditentukan baik pada daerah disekeliling benda maupun pada aliran yang diperhitungkan.

Penyelesaian masalah aliran yang berupa kecepatan, tekanan atau temperature didefinisikan pada simpul-simpu; setiap *cell*. Jumlah *cell* dalam *grid* (*mesh*) menentukan akurasi penyelesaian CFD. Pada umumnya semakin banyak *cell* semakin baik akurasi penyelesaiannya. Akan tetapi sebagai III - 5 konsekuensinya,biaya yang berkaitan dengan investasi hardware dan waktu perhitungan yang diperlukan menjadi lebih besar. Untuk mendapartkan hasilyang optimal, biasanya pembuatan mesh dilakukan tidak seragam/Uniform. Daerah yang memiliki perubahan bentuk sangat tajam, biasanya proses meshing dilakukan sangat halus, sedang pada daerah lainnya dibuat agak kasar.

3.2.2. Flow Solver (ref : Malalasekera and Veersteg (1995)

Metode numeric yang biasa digunakan dalam teknik CFD dapat dikelomppokan menjadi finite difference, finite element dan metode spectral. Langkah-langkah yang dikerjakan dalam metode numeric flow solver adalah sebagai berikut :

- Pendekatan variable dari aliran yang tidak diketahui dengan fungsi yang sederhana.
- Diskritisasi pergantian fungsi tersebut menjadi persamaan aliran dan dilanjutkan dengan manipulasi persamaan matematika.
- Penyelesaian persamaan aljabar.

Dalam tahap ini akan dilakukan perhitungan tentang model yang kita buat, secara iterasi. Semakin kecil tingkat kesalahan yang kita tentukan, maka semakin banyak iterasi yang akan dilakukan.

3.2.2.1. Metode Beda Hingga (Finite Difference Method)

Fungsi potensial aliran Φ yang tidak diketahui ditentukan pada titik-titik

simpul grid. Ekspansi deret Taylor sering digunakan untuk memperoleh pendekatan dalam bentuk *finite difference*, turunan-turunan dari potensial aliran Φ tersebut diatas. Dengan mensubstitusi setiap turunan yang ada pada persamaan aliran dengan pendekatan tersebut, maka akan diperoleh suatu persamaan aljabar untuk setiap titik grid.

Persamaan Dasar yang Digunakan

Beberapa hokum fisika yang biasanya digunakan pada analisa masalah aliran fluida terdiri dari hokum kekekalan massa dan hokum kekekalan momentum.

Hukum Kekekalan Massa

Berdasarkan keseimbangan massa elemen fluida yang masuk dan keluar elemen fluida adalah sama sebagaimana diperlihatkan pada Gambar 3.3, maka diperoleh persamaan berikut :

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0$$
(3.1)

atau dapat ditulis dalam bentuk vector sebagai berikut :

$$\frac{\partial \rho}{\partial t} + div(\rho u) = 0 \tag{3.2}$$

Gambar 3.3 : Aliran massa pada elemen fluida

Persamaan (3.2) merupakan persamaan kekekalan massa atau persamaan kontinuitas pada titik dalam fluida yang bersifat dapat dimampatkan (compressible). Suku pertama menunjukan perubahan rata-rata kerapatan fluida per satuan waktu (massa per satuan volume). Suku kedua menunjukan massa aliran yang meninggalkan elemen fluida, dan disebut dengan suku konveksi. Pada fluida yang bersifat incompressible (missal cairan), kerapatannya bersifat tetap sehingga persamaan diatas menjadi :

 $div \mathbf{U} = 0$

persamaan diatas dapat ditulis dalam bentuk panjang sebagai berikut :

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$$
(3.4)

Hukum Kekekalan Momentum

Hukum Newton II menyatakan bahwa perubahan momentum yang terjadi pada partikel fluida adalah sama dengan jumlah gaya-gaya pada partikel tersebut. Pertambahan momentum per satuan volume dari partikel fluida diberikan oleh persamaan berikut :

$$\rho \frac{Du}{Dt} \quad \rho \frac{Dv}{Dt} \quad \rho \frac{Dw}{Dt} \tag{3.5}$$

Gaya yang bekerja pada partikel fluida dapat dibedakan menjadi dua macam, yaitu :

Surface force : - gaya akibat tekanan

: - gaya akibat kekentalan

- Body force : gaya gravitasi
 - : gaya sentrifugal
 - : gaya elektromagnetik

Pada penurunan persamaan kekentalan momentum, peranan gaya tekanan (p) dan gaya kekentalan (τ) cukup penting. Dengan memperhatikan Gambar 3.4, yang menyatakan komponen gaya pada elemen fluida yang bekerja pada arah sumbu x, maka akan ditentukan selisih gaya sebesar :

TUGAS AKHIR (KP 1701)

BAB III. COMPUTATIONAL FLUID DYNAMIC

Gambar 3.4 : Komponen Tegangan arah sumbu x

Bila persamaan (3.6) dibagi dengan volume δxδyδz maka diperoleh

$$\frac{\partial(-p+\tau_{xx})}{\partial x} + \frac{\partial\tau_{yx}}{\partial y} + \frac{\partial\tau_{zx}}{\partial z}$$
(3.7)

Bila pengaruh body force dinyatakan sebagai besaran source, S_{MX} sedang persamaan momentum untuk arah sumbu x dapat diperoleh sebagai hubungan perubahan momentum pada partikel fluida sama dengan jumlah seluruh gaya-gaya akibat tegangan permukaan, persamaan (3.7) ditambah dengan perubahan momentum akibat adanya source, maka persamaan momentum arah sumbu x

TUGAS AKHIR (KP 1701)

BAB III. COMPUTATIONAL FLUID DYNAMIC

dapat dinyatakan sebagai berikut :

$$\rho \frac{Du}{Dt} = \frac{\partial (-p + \tau_{xx})}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + S_{ACX}$$
(3.8)

komponen persamaan momentum untuk arah sumbu y dinyatakan sebagai berikut :

$$\rho \frac{Dv}{Dt} = \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial (-p + \tau_{yy})}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + S_{kty}$$
(3.9)

komponen persamaan momentum untuk arah sumbu z dinyatakan sebagai berikut :

$$\rho \frac{Dw}{Dt} = \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial (-p + \tau_{zz})}{\partial z} + S_{Mz}$$
(3.10)

Persamaan Navier Stokes untuk Fluida Newtonian

Persamaan penetu dala aliran fluida mengandung besaran yang tidak diketahui yaitu komponen tegangan kekentalan τ_{ij} . Dalam aliran fluida, tegangan kekentalan tersebut dapat dinyatakan sebagai fungsi deformasi local. Pada analisa tiga dimensi, deformasi local tersebut terdiri dari deformasi linear dan deformasi volumetric.

Deformasi linear dibedakan menjadi :

1. Komponen deformasi elongasi, yang dinyatakan sebagai berikut :

$$e_{xx} = \frac{\partial u}{\partial x}$$
 $e_{yy} = \frac{\partial v}{\partial y}$ $e_{zz} = \frac{\partial w}{\partial z}$ (3.11)

2. Komponen deformasi elongasi, yang dinyatakan sebagai berikut :
$$e_{xy} = e_{yx} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$
$$e_{xz} = e_{zx} = \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)$$
$$e_{yz} = e_{zy} = \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)$$

(3.12)

Deformasi volumetric dinyatakan sebagai berikut :

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = div \mathbf{u}$$
(3.13)

Pada fluida yang bersifat Newtonian, tegangan kekentalan berbanding lurus terhadap deformasi. Dengan memasukan besaran-besaran viskositas μ untuk deformasi linear dan λ untuk deformasi volumetric maka diperoleh komponen tegangan kekentalan sebagai berikut :

$$\tau_{xx} = 2\mu \frac{\partial u}{\partial x} + \lambda div \mathbf{u}$$
$$\tau_{yy} = 2\mu \frac{\partial v}{\partial y} + \lambda div \mathbf{u}$$
$$\tau_{zz} = 2\mu \frac{\partial w}{\partial z} + \lambda div \mathbf{u}$$
$$\tau_{zz} = 2\mu \frac{\partial w}{\partial z} + \lambda div \mathbf{u}$$
$$\tau_{xy} = \tau_{yx} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)$$
$$\tau_{xz} = \tau_{zx} = \mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right)$$
$$\tau_{yz} = \tau_{zy} = \mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right)$$

(3.14)

dengan substitusi persamaan (3.14) ke dalam persamaan (3.8) sampai (3.10) maka

akan diperoleh persamaan Navier-Stokes, yang nantinya digunakan dalam metode finite volume.

$$\rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + div(\mu.grad.u) + S_{Mx}$$
$$\rho \frac{Dv}{Dt} = -\frac{\partial p}{\partial y} + div(\mu.grad.v) + S_{My}$$
$$\rho \frac{Dw}{Dt} = -\frac{\partial p}{\partial z} + div(\mu.grad.w) + S_{Mz}$$

3.2.2.2. Metode Elemen Hingga (Finite Elemen Method)

Metode ini menggunakan fungsi bentuk sederhana (linear atau kuadrat) pada elemen yang menggambarkan variasi aliran Φ. Persamaan pengendali dapat dipenuhi dengan penyelesaian Φ secara eksak. Jika perkiraan persamaan tersebut tidak terpenuhi sehingga terjadi sisa (residual) yang dapat diukur kesalahannya. Kemudian sisa tersebut diminimumkan dengan cara mengalikannya dengan fungsi berat dan pengintegralan. Hsilnya tersebut merupakan fungsi aljabar untuk koefisien yang tidak diketahui dari fungsi perkiraan.

3.2.2.3. Metode Spektral (Spectral Method)

Metode ini didekati dengan deret Fourier atau deret polynomial Chebyshev. Tidak seperti metode beda dan elemen hingga yang memiliki pendekatan tidak local tetapi valid memalui *computational domain*. Pada metode ini kita menurunkan persamaan yang tidak diketahui tersebut ke dalam persamaan pengendali dengan fuhnngsi deret.

3.2.2.4. Metode Volume Hingga (Finite Volumc Method)

Metode ini dikembangkan sebagai formulasi khusus metode beda hingga. Secara global metode beda hingga memiliki algoritma numeril sebagai berikut :

- Pengintegralan persamaan pengendali aliran fluida terhadap seluruh control volume dari domain penyelesaian.
- 2. Pendiskritan yang meliputi substitusi berbagai pendekatan beda hingga dari suku-suku persamaan yang diintegrasikan tersebut diatas yang menggambarkan proses aliran seperti konveksi, difusi dan sources. Pada tahap ini persamaan integral akan diubah menjadi persamaan aljabar.
- 3. Penyelesaian persamaan aljabar dengan metode iterasi.

Langkah pertama tersebut di atas, membedakan metode Finite Volume dari teknik-teknik CFD lainnya. CFD Code meliputi teknik-teknik pendiskritan yang cocok untuk menyelesaikan fenomena perpindahan (transport), konveksi (akibat aliran fluida) dan difusi (akibat adanya perbedaan Φ antara satu titik dengan titik lainnya serta source (berhubungan dengan muncul dan hilangnya Φ)). Kekentalan dari variable aliran dalam finite control volume dapat diekspresikan dalam persamaan keseimbangna antara proses kenaikan dan penurunan, yaitu :

+

Perubahan ϕ dalam control volume terhadap waktu =

Perubahan ϕ difusi kedalam control volume

Perubahan ϕ kedalam control volume

+

3.2.3. Post Processor

Di tahap ini akan ditampilkan hasil dari perhitungan yang telah dilakukan pada tahap sebelumnya. Kita dapat melihat visualisasi model yang kita buat. Halhal yang bias ditampilkan oleh post processor adalah sebagai berikut :

- Gambaran geometri model
- Tampialan vector kecepatan
- Gerakan rotasi, translasi dan penyekalaan
- Arah aliran fluida
- Hardcopy output

Dalam proses set-up dan running simulasi CFD ada tahapan identifikasi dan formulasi permasalahan aliran dengan pertimbangan fenomena fisika dan kimia. Pemahaman yang cukup baik diperlukan dalam menyelesaikan algoritma penyelesaian numeric. Ada 3 konsep matematika yang digunakan dalam menentukan berhasil atau tidaknya algoritma, yaitu (AEA Technology, 1996) :

- <u>Konvergensi</u>, yaitu property metode numeric untuk menghasilkan penyelesaian eksakta sebagai grid spacing, ukuran control volume atau ukuran elemen dikurangi mendekati nol. Konvergensi biasanya sulit untuk didapatkan secarateoritis. Untuk kondisi lapangan menggunakan kesamaan Lax yang menyatakan bahwa untuk permasalahan linear memerlukan konvergensi.
- <u>Konsistensi</u>, yaitu urutan numeric untuk menghasilkan system persamaan aljabar yang dapat diperlihatkan sama (equivalen) dengan III - 15

persamaan pengendali sebagai jarak grid mendekati nol.

 Stabilitas, yaitu penggunaan factor kesalahan sebagai indikasi metode numerik. Jika sebuah teknik tidak stabil dalam setiap kesalahan pembulatan pada data awal maka dapat menyebabkan terjadinya osilasi atau devergensi.

CFD memberikan hasil fisik yang realistic dengan akurasi yang baik pada simulasi dengan grid yang berhingga. Ada tiga sifat perhitungan finite volume, yaitu : *Conservativeness, Boundedness* dan *Transportiiveness*. Ketiganya didesain menjadi bagian berhingga yang dapat menunjukan keberhasilan simulasi CFD. Disamping itu ketiganya umumnya digunakan sebagai alternative untuk konsep matematika yang akurat. Skema numeric memiliki sifat *conservativeness* yang dapat mempertahankan kekekalan sifat-sifat fluiJa secara global untuk seluruh domain penyelesaiannya. Pendekatan volume hingga dapat menjarain tetap berlangsungnya kekentalan property fluida Φ untuk tiap control volume. Proses aliran terdiri dari dua, yaitu konveksi dan difusi. Keduanya dapat dihitung pengaruh arahnya dengan bagian finite volume, yaitu *transportiiveness*. Sedangkan *boundedness* dapat mempertahankan kestabilan suatu metode numeric yang mensyaratkan adanya batasan harga minimum dan maksimum dari variabelvariabel aliran.

3.3. Proses Validasi (AEA Technology, 1996)

Proses perhitungan dengan pendekatan CFD dilakukan dengan beberapa tahap validasi, yaitu :

1. Convergence

Pada tahap ini proses iterasi perhitungan akan selalu dikontrol dengan persamaan pengendali. Jika hasil perhitungan belum sesuai dengan tingkat kesalahan yang ditentukan, maka komputasi akan terus berjalan.

2. Grid Independence

Besarnya jumlah cell yang kita gunakan dalam perhitungan akan menentukan keakuratan hasil yang didapat. Tetapi tidak selamanya dengan jumlah cell yang banyak akam menambah keakuratan hasil perhitungan. Dengan demikian pengguna dituntut untuk dapat menentukan jumlah cell yang optimum, agar waktu dan memori komputer yang terpakai tidak terlalu besar.

 Verifikasi hasil dengan teori atau data lain Keakuratan hasil perhitungan dengan pendekatan CFD perlu dibandingkan dengan teori atau data lain yang sudah ada. Sehingga kevalidan hasil perhitungan tidak disangsikan lagi.

BAB IV

ANALISA DAN PEMBAHASAN

BAB IV

ANALISIS DAN PEMBAHASAN

Dalam tugas akhir ini, setelah proses komputasi dilakukan kemudian dilakukan analisis model kapal dengan berbagai variasi parameter, yaitu :

- Model kapal dengan Fn 0,08, perbandingan jarak antara kapal dengan bank adalah = L, L/2, L/3, L/4, L/5.
- Model kapal dengan Fn 0,10, perbandingan jarak antara kapal dengan bank adalah = L, L/2, L/3, L/4, L/5.
- Model kapal dengan Fn 0,12, perbandingan jarak antara kapal dengan bank adalah = L, L/2, L/3, L/4, L/5.

Model kapal diasumsikan bergerak searah sumbu x positif, lebar model searah sumbu y positif, kedalaman air searah sumbu z negatif. Dinding dermaga berada pada sisi dekat dermaga model, tegak lurus dengan sumbu y negatif.

4.1 Grid Independence

Tujuan dari proses grid independence adalah untuk mendapatkan jurnlah elemen model yang efektif, yaitu data yang dihasilkan mempunyai keakurasian yang baik, serta jumlah elemen yang efisien, artinya tidak memakan waktu yang lama dalam proses iterasi dan tidak membutuhkan space hard disk yang besar. Bagaimanapun, derajat dari grid independence ini tergantung pada sejauh mana kita membutuhkan keakuratan data hasil komputasi. Bila kebutuhan kita terhadap hasil yang akurat sangat besar, maka kita harus menganalisa grid independence ini dengan lebih seksama (Anderson, 1995).

Proses komputasi dimulai dengan menggunakan jumlah elemen sebanyak 76.674. Kemudian meningkat dengan jumlah elemen sebanyak 131.752, 185690, 217.833, 232554, 254.858, dan 336.626. Ternyata dengan menggunakan jumlah elemen sebanyak 254.397 harga pressure dari model tidak jauh berbeda jika dibandingkan dengan menggunakan jumlah elemen sebanyak 366.626, seperti pada Gambar 4.2. Maka perhitungan dapat dipakai jumlah elemen sebanyak 254.397.

Gambar 4.2 : Grid Independence

No	Elemen	Tekanan (kg m^-1 s^-2)	Persentase perubahan nilai tekanan (%)
1	76674	487.2998	
2	131752	484.5906	-0.559
3	185690	484.2492	-0.070
4	217833	482.7974	-0.301
5	232554	474.1645	-1.821
6	254397	471.9959	-0.459
7	366626	472.3018	0.065

Tabel 4 1	· Ana	licie	arid	inde	mendence*	
140014.1	. Alla	11515	2110	Inde	Dendence	

* Persentase perbedaan nilai tekanan ini dihitung antara nilai tekanan pada satu elemen dengan nilai pada elemen sebelumnya, mis. : perbedaan nilai tekanan pada elemen no. 2 dengan elemen no. 1 adalah -0,559.

Penyelesaian meshing pada model kapal dilakukan dengan membuat elemen yang rapat pada daerah yang menjadi perhatian yaitu pada bentuk model kapal. Perapatan elemen ini menggunakan teknik mesh control dengan pilihan surface. Dengan teknik ini bagian permukaan dari model mempunyai ukuran meshing yang lebih kecil daripada meshing bagian lain. Hal ini dilakukan untuk menghemat memori tetapi tidak mengurangi keakuratan CFD (gambar meshing dapat dilihat pada Lampiran B). Meshing dilakukan dengan metode Advancing Front and Inflation karena bisa memberikan hasil yang lebih akurat dibandingkan dengan metode Delaunay (Using CFX build bab 5).

4.2 Analisis Hasil CFX

Dalam menganalisis tekanan dan kecepatan yang terjadi pada model, kita melihat sebuah model kapal yang penampang horisontalnya berbentuk persegi panjang. Model kapal tersebut ditempatkan dibawah permukaan air dengan arah memanjang. Air dimisalkan bergerak sedangkan model kapalnya dalam keadaan diam. Air diasumsikan mengalir melewati model kapal dengan kecepatan yang sama dengan kecepatan model kapal. Partikel air bergerak melalui model kapal

IV - 3

tersebut dengan jalan tertentu yang disebut garis-garis aliran. Garis-garis aliran tersebut jalannya lurus dan sejajar sebelum bertemu dengan bagian muka dari model kapal. Tetapi setelah menemui rintangan dengan bertemunya bagian ujung muka dari model kapal, partikel-partikel air akan dibelokan setempat dan kemudian mengikuti bentuk luar dari model kapal tersebut. Setelah itu pada ahirnya akan menjadi lurus lagi pada suatu jarak tertentu di belakang model kapal tersebut.

Dimisalkan garis-garis aliran diatas sebagai suatu kumpulan atau suatu seri pipa-pipa arus. Pipa-pipa tersebut masing-masing dialiri oleh partikel-partikel air dengan jumlah yang sama selama proses berjalan. Pada waktu arus tersebut mendekati model kapal, mereka akan menyebar yang mengakibatkan partikelpartikel air diperlambat jalannya. Makin sampai dibagian tengah model kapal, arus akan dipersempit luas penampangnya yang berarti partikel-partikel air diperbesar kecepatannya. Di bagian belakang arus akan mendapat keluasan kembali sehingga kecepatannya menjadi lambat.

Air yang mengalir melewati penampang luar model kapal akan mengalami perubahan-perubahan kecepatan dan tekanan. Di dekat kedua ujung model kapal, terjadi peristiwa melebarnya arus dengan akibat penurunan kecepatan dan naiknya tekanan. Pada bagian sepanjang tengah model kapal, terjadi peristiwa menyempitnya arus dengan akibat adanya penambahan kecepatan dan berkurangnya tekanan.

Bila suatu model kapal bergerak sejajar dan tepat ditengah-tengah suatu kanal yang mempunyai penampang melintang dan kedalaman yang konstan, maka

partikel-partikel air yang mengalir akan sama atau simetris, antara sisi satu dengan sisi yang lainnya seperti ditunjukan pada Gambar 4.3. Dengan demikian model kapal tersebut tidak akan mengalami gaya sway atau momen yaw (PNA vol III sec. 13).

Gambar 4.3 : Sebuah kapal berlayar tepat pada tengah perairan

Bila pada model kapal yang sama bergerak sejajar pada kanal yang sama, tetapi lebih dekat pada salah satu dinding kanal, maka partikel-partikel air yang mengalir pada model tersebut tidak sama antara sisi yang dekat dinding dengan sisi yang jauh dari dinding.

Efek yang sama akan terjadi pada model kapal yang bergerak sejajar dan dekat dengan dermaga. Partikel-partikel air yang mengalir pada sisi dekat dermaga akan mengalami peningkatan kecepatan dan penurunan tekanan. Sedangkan pada sisi yang jauh dari dermaga, partikel-partikel air akan mengalami penurunan kecepatan dan peningkatan tekanan. Akibat dari adanya perbedaan tekanan ini, model kapal akan mengalami gaya *sway* dengan arah mendekati dermaga. Besarnya gaya *sway* yang dialami model kapal akan meningkat seiring

dengan semakin dekatnya model tersebut dengan dermaga dan semakin meningkatnya kecepatan model (Renilson dan Ch'ng, 1990).

Terjadinya fenomena tersebut bisa dijelaskan dengan menggunakan pendekatan hukum Bernoulli. Karena posisi model kapal tidak berada tepat ditengah-tengah perairan (dalam hal ini domain), tetapi lebih dekat pada salah satu sisi domain (dermaga). Maka akan ada perbedaan luasan antara daerah yang jauh dari dermaga dengan luasan daerah dekat dermaga. Semakin dekat posisi model kapal terhadap dermaga, perbedaan luasan tersebut semakin besar. Dengan demikian maka kecepatan air yang mengalir melalui daerah dekat dermaga semakin cepat. Jauh lebih cepat daripada yang mengalir melalui daerah yang jauh dari dermaga. Karena kecepatan air yang mengalir di daerah dekat dermaga lebih cepat, maka tekanan yang terjadi lebih rendah dibandaingkan dengan daerah yang jauh dari dermaga.

Dengan pendekatan hukum Kontinuitas, maka didapat rumusan sebagai berikut:

$$A_d \cdot V_d = A_j \cdot V_j \tag{4.1}$$

dimana : A_d = luasan di daerah dekat dermaga

V_d = kecepatan di dekat dermaga

 $A_j = luasan di daerah jauh dari dermaga$

V_j = kecepatan di jauh dari dermaga

Karena luasan di daerah dekat dermaga (A_d) < luasan di daerah jauh dari dermaga (A_j) maka kecepatan di dekat dermaga (V_d) > kecepatan di jauh dari dermaga (V_j). Dengan mengacu pada hukum Bernoulli, yaitu :

$$p_{d} + \rho g h_{d} + \frac{1}{2} m V_{d}^{2} = p_{j} + \rho g h_{j} + \frac{1}{2} m V_{j}^{2}$$
(4.2)

karena energi potensial sama ($h_d = h_j$) maka bisa diabaikan dalam perhitungan diatas. Sehingga yang berpengaruh adalah energi kinetik dan tekanan yang terdapat pada dekat dermaga dan jauh dari dermaga. Karena kecepatan di dekat dermaga (V_d) > kecepatan di jauh dari dermaga (V_j) maka energi kinetik di dekat dermaga lebih besar daripada di jauh dari dermaga, sehingga tekanan pada sisi dekat dermaga (p_d) akan lebih rendah daripada tekanan pada sisi jauh dari dermaga (p_j).

Gambar 4.4 : Model kapal berada dekat salah satu dinding

Dengan demikian model kapal akan tertarik mendekati dermaga. Pada kecepatan yang sama, semakin dekat posisi model kapal terhadap dermaga, semakin besar gaya tarik yang dialami oleh model kapal. Demikian juga semakin tinggi kecepatan model kapal, semakin besar gaya tarik yang dialami.

Selain hal tersebut di atas, dari garfik distribusi tekanan pada Gambar 4.5 sampai dengan Gambar 4.9 diperoleh kecenderungan bahwa besarnya tekanan yang terjadi di daerah haluan lebih besar daripada yang terjadi di daerah buritan.

Gambar 4.5 : Grafik Distribusi Tekanan pada 1 Panjang Kapal dari Dermaga

Dermaga

Gambar 4.7 : Grafik Distribusi Tekanan pada 1/3 Panjang Kapal dari

Dermaga

Dermaga

Dermaga

Adanya hasil seperti tersebut disebabkan karena adanya pengaruh dari bentuk model kapal, yang akan menimbulkan gangguan pada aliran air yang menghantam haluan. Gangguan akan mengakibatkan terjadinya ulekan di daerah tersebut. Adanya ulekan ini mengakibatkan turunnya kecepatan aliran air tetapi ada peningkatan besarnya tekanan di daerah tersebut. Setelah melewati daerah ulekan, aliran air berangsur-angsur berubah menjadi bentuk yang lebih streamline sehingga kecepatan alirannya meningkat sampai di bagian belakang model kapal. Ketika sampai di bagian belakang model kapal terjadi ulekan lagi karena bentuk badan model seakan-akan meninggalkan ruang yang kosong sehingga mengubah lagi bentuk aliran air (Saunders, 1957). Tetapi besar tekanan yang terjadi di bagian belakang model kapal ini lebih kecil daripada tekanan yang terjadi dibagian depan model kapal. Sebagai hasilnya haluan akan terdorong menjauhi

dermaga (MacElrevey, 1995). Besar momen *yaw* yang dialami model kapal juga di pengaruhi oleh kecepatan dan posisi model terhadap dermaga. Kecepatan yang semakin tinggi dan semakin dekat posisi model terhadap dermaga, perbedaan tekanannya semakin besar. Oleh karena itu momen yang dialami semakin besar (Renilson dan Ch'ng, 1990).

Pada grafik kecepatan, kecenderungan yang terjadi adalah adanya olakan yang semakin nyata terlihat dengan mendekatnya posisi model kapal terhadap dermaga seperti terlihat pada gambar 4.10 sampai dengan Gambar 4.14.

Gambar 4.10 : Grafik Distribusi Kecepatan pada 1 Panjang Kapal dari

Dermaga

HTUT TERNOLUL NOPEMBER SEPULUH

IV -11

Dermaga

Dermaga

Dermaga

Dermaga

Karena model kapal bergerak di perairan yang dangkal, aliran dari partikel-partikel air yang berada di bagian bawah model menjadi terbatas. Akibatnya terjadi aliran yang lebih besar di sepanjang sisi model (PNA vol III). Dilain pihak, aliran air yang terjadi pada daerah dekat dermaga mengalami pengaruh dari pergerakan model kapal disatu sisi dan disisi yang lain ada pengaruh dari dermaga sehingga aliran tersebut tidak bisa stream line. Tetapi mengalami semacam benturan yang diakibatkan adanya pantulan dari dermaga dan dari model kapal. Semakin dekat posisi model ke dermaga, benturan tersebut semakin keras dan tidak beraturan karena aliran air semakin cepat.

Adanya kontur puncak dan lembah pada grafik kecepatan diatas menunjukan kecepatan disuatu titik bernilai positif atau negatif. Diartikan bernilai positif bila arah vektor kecepatan menuju ke buritan dan negatif bila arahnya menuju ke haluan. Distribusi kecepatan yang berupa grafik vector bisa dilihat pada lampiran E.

Trayektori dari perilaku gerakan model kapal ketika berlayar sejajar dengan dermaga bisa diketahui pada Gambar 4.15 sampai 4.17.

Gambar 4.15 : Trayektori model pada Fn = 0,08

Gambar 4.17 : Trayektori model pada Fn = 0,12

Dari gambar diatas diketahui bahwa model mengalami tarikan ke arah dinding dermaga. Dengan mengacu kepada hukum Bernoulli dapat diketahui adanya fenomena tersebut. Daerah disisi model kapal yang dekat dermaga mempunyai kecepatan (Vd) yang besar bila dibandingkan dengan kecepatan aliran fluida di daerah yang jauh dari dermaga (Vj). Sesuai dengan persamaan 4.2, maka diperoleh hubungan antara kecepatan dan tekanan yang terjadi. Bila Vd lebih besar daripada Vj maka tekanan di daerah dekat dermaga (pd) akan lebih besar daripada tekanan di daerah yang jauh dari dermaga (pj). Oleh karenanya model kapal mengalami gaya *sway* yang membuat model bergerak mendekati dermaga.

Besarnya kecepatan model kapal juga berpengaruh pada besarnya gaya sway yang dialami model kapal. Dari gambar diatas bisa diketahui adanya perbedaan gradiaen antara ketiga grafik pada gambar diatas. Ketika model bergerak dengan kecepatan Fn = 0,08 (Gambar 4.15) terlihat grafik posisi model terhadap dermaga mempunyai gradien yang landai. Seiring dengan semakin

besarnya kecepatan model yaitu; Fn = 0,10 (Gambar 4.16) dan Fn = 0,12 (Gambar 4.17), grafik tersebut mempunyai gradien yang semakin curam. Hal ini memberi kesimpulan bahwa pada kecepatan yang semakin besar, gaya *sway* yang dialami oleh model kapal semakin besar juga sehingga model kapal semakin tertarik ke dinding dermaga.

4.3 Validasi Data

Penelitian tentang pengaruh dari adanya fenomena *bank suction* juga telah dilakukan oleh Paul Kaplan dan K. Sankaranarayanan. Mereka melakukan percobaan untuk mengetahui dampak dari adanya *bank suction* pada sebuah kanal. Pada penelitiannya mereka menggunakan model kapal bulk carrier tipe Panama (Panamax type). Model kemudian diuji pada kedalaman perairan yang konstan. Perbandingan antara model percobaan Kaplan dan Sankaranarayanan dengan model CFX bisa diketahui pada table 4.2.

Faktor Pembanding	Model K & S	Model CFX		
L/B	8.0850	5.44		
B/T	2.6439	2.4		
Kedalaman	1.25 T	1.33 T		
Kecepatan (Fn)	0.347 dan 0.487	0.08, 0.10, dan 0.12		

Tabel 4.2 : Perbandingan model K & S dengan model CFX

Dari percobaan Kaplan dan Sankaranarayanan (1991) diperoleh grafik gaya lateral dan momen yaw yang terjadi pada model.

Gambar 4.19 : Momen yang terjadi karena bank suction

Dari grafik Gambar 4.18 dan Gambar 4.19 diperoleh pengetahuan bahwa semakin tinggi kecepatan model, gaya lateral serta momen *yaw* yang dialami model semakin besar.

Kecenderungan yang sama juga diperoleh dari hasil percobaan CFX. Seperti terlihat pada Gambar 4.5 sampai dengan 4.9, pada posisi terhadap dermaga yang sama, percobaan CFX menunjukan bahwa penambahan kecepatan akan mengakibatkan terjadinya penurunan tekanan pada daerah di sisis model dekat dengan dermaga. Dengan demikian gaya *sway* yang terjadi juga semakin besar. Hal yang sama juga terjadi pada momen *yaw* yang dialami model CFX. Ketika kecepatan dinaikan maka perbedaan tekanan yang terjadi pada daerah haluan dengan buritan semakin besar. Oleh karena itu berakibat semakin besarnya momen *yaw* yang dialami model CFX.

BAB V

KESIMPULAN DAN SARAN

BAB V

KESIMPULAN DAN SARAN

Kesimpulan

- 1. Dari perhitungan hasil percobaan menggunakan program CFX dapat diambil kesimpulan bahwa model kapal mengalami gaya *sway* yang menarik badan kapal ke dermaga. Hal ini karena adanya perbedaan tekanan yang terjadi pada sisi dekat dermaga dengan sisi jauh dari dermaga, dimana tekanan pada sisi dekat dermaga lebih kecil daripada sisi jauh dari dermaga. Momen *yaw* yang terjadi pada model kapal dikarenakan adanya perbedaan tekanan di bagian haluan dengan tekanan di bagian buritan kapal. Dimana tekanan di bagian haluan model lebih besar daripada yang terjadi di bagian buritan.
- 2. Besar gaya sway dipengaruhi oleh kecepatan dan jarak kapal ke dermaga. Kecepatan yang semakin tinggi menghasilkan gaya sway yang semakin besar. Pada jarak yang mendekati dermaga gaya sway yang dialami model kapal lebih besar daripada jarak yang lebih jauh. Hal tersebut diatas sesuai dengan hukum Bernoulli, yaitu tekanan yang terjadi di daerah sisi dekat dermaga lebih rendah dibandingkan dengan tekanan pada daerah sisi jauh dari dermaga dikarenakan adanya perbedaan kecepatan aliran air didaerah tersebut. Kecepatan aliran air pada daerah sisi dekat dermaga lebih rendah dari dermaga, sehingga tekanan pada daerah sisi dekat dermaga lebih rendah daripada jarah sisi jauh dari dermaga. Daerah di sisi dekat dermaga lebih sempit bila dibandingkan dengan daerah sisi jauh dari dermaga.

Akibatnya kecepatan aliran air pada daerah sisi dekat dermaga lebih tinggi daripada sisi jauh dari dermaga sehingga tekanan pada sisi dekat dermaga lebih rendah daripada sisi jauh dari dermaga.

3. Momen yaw yang terjadi mengakibatkan bagian haluan kapal akan terdorong menjauhi dermaga. Hal ini dikarenakan adanya perbedaan tekanan di bagian haluan kapal dengan tekanan di bagian buritan model kapal. Karena adanya pengaruh dari bentuk model, akan menimbulkan gangguan pada aliran fluida yang menghantam bagian depan model kapal. Sehingga terjadi ulekan. Adanya ulekan ini mengakibatkan turunnya kecepatan aliran fluida di daerah tersebut. Setelah melewati daerah ulekan, aliran berangsur-angsur berubah menjadi bentuk yang lebih streamline sehingga kecepatan alirannya meningkat sampai di bagian belakang model. Ketika sampai di bagian belakang, terjadi ulekan ruang yang kosong sehingga mengubah lagi bentuk aliran fluida. Tetapi besar tekanan yang terjadi di bagian belakang kapal ini lebih kecil daripada tekanan yang terjadi dibagian depan kapal.

Saran

 Dalam percobaan ini tidak menempatkan kedalaman perairan sebagai variabel. Untuk percobaan lanjut, variable kedalaman perairan perlu diperhatikan sehingga pengaruhnya terhadap gerak kapal lebih jelas. Angka Froude yang dipakai dalam percobaan ini mempunyai nilai dan range yang kecil. Disarankan untuk memperbesar range angka Froude sehingga pengaruh dari kecepatan kapal bisa diketahui lebih akurat.

DAFTAR PUSTAKA

DAFTAR PUSTAKA

AEA Technology, Using CFX-5 for Unix and Windows NT, 1996.

Anderson JD, Computational Fluid Dynamics The Basics With Applications, McGraw-Hill, Inc., Singapore, 1995.

Bhattacharyya, R, **Dynamics of Marine Vehicles**, Jhon Wiley & Sons, New York, 1978

Hess F, Lateral Forces on a Ship Approaching a Vertical Wall : A Theoretical Model, Journal of Ship Research , vol. 23, no. 4, pp 284-296, Dec 1979.

Kaplan P, Theoretical Analysis of Generalized Hydrodynamic Interaction Forces on Ship in Shallow Channels, SNAME Transactions, vol. 99, pp 177 - 203, 1991.

Lewis EV (editor), **Principles of Naval Architecture Second Revision vol. III**, The Society of Naval Architecture and Marine Engineers, 601 Pavonia Avenue, Jersey City, NJ, November 1989.

MacElrevey DH, Shiphandling For The Mariner, Cornell Maritime Press, Inc., Centreville, Maryland 21617, 1995

Malalasekera W, Versteeg HK, Introduction to Computational Fluids Dynamics, The Finite Volume Method, Longman Scientific & Technical, Harlow, 1995.

Millward A, Bevani MG, Effect of Shallow Water on a Mathematical Hull at High Subcritical and Supercritical Speeds, Journal of Ship Research, vol. 30, no. 2, pp 85 - 93, June 1986.

Newman JN, Marine Hydrodynamics, The MIT Press, Cambridge, Massachusetts, 1986.

Renilson MR, Ch'ng RW, **The Effect of Bank Slope and Water Depth on The Forces on a Ship in Restricted Water**, Marsim & ICSM 90, Tokyo, Japan, 1990

Saunders H, Hydrodynamics In Ship Design, The Society of Naval Architecture and Marine Engineers, 74 Trinity Place, New York 6, NY, 1957.

Shaw CT, Using Computational Fluid Dynamics, Prentice Hall, UK, 1992.

LAMPIRAN

LAMPIRAN A : ILUSTRASI MODEL KAPAL

LAMPIRAN B : MESHING PADA MODEL KAPAL

Gambar meshing pada daerah disekitar model

Gambar meshing pada daerah didekat model

LAMPIRAN C : KELUARAN HASIL RUNNING PROGRAM CFX

Keluaran hasil running program CFX

This run of the C user fajar on WORK1 (i	FX-5.4.1 Solver star	ted at 1:47:26	on 24 Dec 2001 by
C:/CFX/CFX-5.4.1 C:/CFX/CFX-5.4 C:/WINNT/Profi pelayaran1_01_	/bin/5.4.1/cfx5solve .1/bin/5.4.1/winnt/solles/fajar/TA/Pool1/po 4_001 -NoConsole	.exe -solver olver.exe -def elayaran1_01_4	.def -fullname
Using the CFX-5 So 5.4.1\bin\5.4.1\w	olver from C:\CFX\CFX	x-	
Setting up CFX-5 s	Solver run		
+			+
	Solve	er	
+			+
+			
	CFX-5 Solver	5.4.1	1
Version 2000.12	.13-23.00	Wed Dec	13 23:00:02 2000
 Copvright 1996- +	2000 AEA Technology	plc. All righ	ts reserved. +
+	Job Informa	ation	+
Run mode: se	erial run		
Host computer: W0 Job started: M0	DRK1 on Dec 24 01:48:02 20	001	-10- AAN
			MILIK PERPUS

	tal Number of Node	es, Elements,	and Faces	() () () () () () () () () ()
omain Name : por	011			
and the second second				
Total Number	of Nodes		-	10597
Total Number	of Elements			25485
Total Nur	mber of Tetrahedro	ons	=	9973:
Total Nur	mber of Prisms		=	15474:
Total Nur	mber of Pyramids		0.5	38
Total Number	of Faces			40440
		< 8 1		
	Memory Usage	e Information	1	
Data Type	Kwords Kw	vords/Node	Kbytes	Kbytes/Node
Real	38657.3	0.365	151005.2	1.425
Integer	8157.2	0.077	31864.1	0.30
Character	143.0	0.001	558.7	0.005
Logical	10.0	0.000	39.1	0.000
Double	16.0	0.000	52.5	0.001
Fotal	46983.6	0.443	183529.5	1.732
	storage generally	avgoods the	required a	torage
Note: Allocated	Scorage generally	1000 words	1 Kbyte =	1024 bytes
Note: Allocated 1 word = 4	bytes, 1 Kword =	- IUUU WOLUS,	2	-
Note: Allocated 1 word = 4	1 bytes, 1 Kword =	- 1000 words,		
Note: Allocated 1 word = 4	1 bytes, 1 Kword =	- 1000 Wolds,		
Note: Allocated 1 word = 4	1 bytes, 1 Kword =	and File		
Note: Allocated 1 word = 4	1 bytes, 1 Kword = Comm	and File		
Note: Allocated 1 word = 4	1 bytes, 1 Kword = Comm	and File		
Note: Allocated 1 word = 4 TIBRARY: MATERIAL: Note	A bytes, 1 Kword = Comm	and File		
Note: Allocated 1 word = 4 	A bytes, 1 Kword = Comm	and File		
Note: Allocated 1 word = 4 	A bytes, 1 Kword = Comm r at RTP e Substance	and File		
Note: Allocated 1 word = 4 TIBRARY: MATERIAL: Wate Option = Pur PROPERTIES: Option = 6	A bytes, 1 Kword = Comm Pr at RTP Substance	and File		
Note: Allocated 1 word = 4 TIBRARY: MATERIAL: Wate Option = Pur PROPERTIES: Option = G Density =	A bytes, 1 Kword = Comm er at RTP e Substance General Fluid	and File		
Note: Allocated 1 word = 4 	A bytes, 1 Kword = Comm er at RTP ce Substance General Fluid 9.98E2 [kg m^-3] scosity = 1 F-3 [and File	1	
Note: Allocated 1 word = 4 I word = 1 I	A bytes, 1 Kword = Comm er at RTP ce Substance General Fluid 9.98E2 [kg m^-3] scosity = 1.E-3 [leat Capacity = 4	kg m^-1 s^-1	j 1 K^-1)	
Note: Allocated 1 word = 4 1 word = 4 I.TBRARY: MATERIAL: Wate Option = Pur PROPERTIES: Option = G Density = Dynamic Vi Specific H Thermal Co	A bytes, 1 Kword = Comm er at RTP e Substance Seneral Fluid 9.98E2 [kg m^-3] scosity = 1.E-3 [leat Capacity = 4. enductivity = 5.91	kg m^-1 s^-1 19E3 [J kg^- E-1 [W m^-1	j 1 K^-1j K^-11	
Note: Allocated 1 word = 4 1 word = 4 TIBRARY: MATERIAL: Wate Option = Pur PROPERTIES: Option = G Density = Dynamic Vi Specific H Thermal Co Thermal Ex	A bytes, 1 Kword = Comm er at RTP e Substance General Fluid 9.98E2 [kg m^-3] scosity = 1.E-3 [leat Capacity = 4. onductivity = 5.91 pansivity = 2 1E-	kg m^-1 s^-1 19E3 [J kg^- E-1 [W m^-1 4 [K^-1]) 1 K^-1) K^-1]	
Note: Allocated 1 word = 4 1 word = 4 MATERIAL: Wate Option = Pur PROPERTIES: Option = G Density = Dynamic Vi Specific H Thermal Co Thermal Ex END # PROPER	A bytes, 1 Kword = Comm er at RTP e Substance General Fluid 9.98E2 [kg m^-3] scosity = 1.E-3 [leat Capacity = 4. inductivity = 5.91 pansivity = 2.1E- TIES	kg m^-1 s^-1 19E3 [J kg^- E-1 [W m^-1 4 [K^-1]] 1 K^-1] K^-1]	

```
END # LIBRARY
```

```
FLOW:
SOLUTION UNITS:
Mass Units = [kg]
Length Units = [m]
Time Units = [s]
Temperature Units = [K]
END # SOLUTION UNITS
```

```
SIMULATION TYPE:
Option = Steady State
END # SIMULATION TYPE
```

```
DOMAIN: pool1

Coord Frame = Coord 0

Fluids List = Water at RTP

DOMAIN MODELS:

DOMAIN MOTION:

Option = Stationary

END # DOMAIN MOTION

BUOYANCY MODEL:

Option = Non Buoyant

END # BUOYANCY MODEL

REFERENCE PRESSURE:

Reference Pressure = 1.013E5 [Pa]

END # REFERENCE PRESSURE

END, # DOMAIN MODELS
```

```
FLUID MODELS:

TURBULENCE MODEL:

Option = k epsilon

END # TURBULENCE MODEL

HEAT TRANSFER MODEL:

Option = None

END # HEAT TRANSFER MODEL

END # FLUID MODELS
```

```
BOUNDARY: inlet
Boundary Type = INLET
Coord Frame = Coord 0
BOUNDARY CONDITIONS:
FLOW REGIME:
Option = Subsonic
END # FLOW REGIME
MASS AND MOMENTUM:
Option = Normal Speed
Normal Speed = 1.E-1 [knot]
END # MASS AND MOMENTUM
TURBULENCE:
Option = Default Intensity and Autocompute Length Scale
END # TURBULENCE
```

END # BOUNDARY CONDITIONS END # BOUNDARY inlet BOUNDARY: outlet Boundary Type = OUTLET Coord Frame = Coord 0 BOUNDARY CONDITIONS: FLOW REGIME: Option = Subsonic END # FLOW REGIME MASS AND MOMENTUM: Option = Static Pressure Relative Pressure = 0.00 [Pa] END # MASS AND MOMENTUM END # BOUNDARY CONDITIONS END # BOUNDARY outlet BOUNDARY: dinding

Boundary Type = WALL Coord Frame = Coord 0 BOUNDARY CONDITIONS: WALL INFLUENCE ON FLOW: Option = Free Slip END # WALL INFLUENCE ON FLOW END # BOUNDARY CONDITIONS END # BOUNDARY dinding

BOUNDARY: dasar Boundary Type = WALL Coord Frame = Coord 0 BOUNDARY CONDITIONS: WALL INFLUENCE ON FLOW: Option = Free Slip END # WALL INFLUENCE ON FLOW END # BOUNDARY CONDITIONS END # BOUNDARY dasar

BOUNDARY: body Boundary Type = WALL Coord Frame = Coord 0 BOUNDARY CONDITIONS: WALL INFLUENCE ON FLOW: Option = No Slip END # WALL INFLUENCE ON FLOW WALL ROUGHNESS: Option = Smooth Wall END # WALL ROUGHNESS END # BOUNDARY CONDITIONS END # BOUNDARY body

,

BOUNDARY: Default Boundary Type = WALL Coord Frame = Coord 0 BOUNDARY CONDITIONS:

```
WALL INFLUENCE ON FLOW:
        Option = No Slip
       END # WALL INFLUENCE ON FLOW
       WALL ROUGHNESS:
         Option = Smooth Wall
       END # WALL ROUGHNESS
      END # BOUNDARY CONDITIONS
    END # BOUNDARY Default
    INITIALISATION:
     Option = Automatic
    END # INITIALISATION
  END # DOMAIN pool1
  SOLVER CONTROL:
    CONVERGENCE CONTROL:
     Maximum Number of Iterations = 250
     Timescale Control = Auto Timescale
    END # CONVERGENCE CONTROL
    CONVERGENCE CRITERIA:
     Residual Type = RMS
     Residual Target = 1.E-5
    END # CCIVERGENCE CRITERIA
    ADVECTION SCHEME:
     Option = High Resolution
    END # ADVECTION SCHEME
  END # SOLVER CONTROL
END #FLOW
COMMAND FILE:
  Version = 5.4
END # COMMAND FILE
                 Average Scale Information
                                                        1
  -----+
+.
Domain Name : pool1
                                             = 1.3998E+00
   Global Length
                                             = 9.9800E+02
  Density
   Dynamic Viscosity
                                             = 1.0000E-03
                                             = 0.0000E+00
  Velocity
1
           The Equations Solved in This Calculation
 Subsystem Name : Momentum - Mass
```

U - Mom

V - Mom W - Mom P - Mass Subsystem Name : TurbKE - Diss.K K-TurbKE E-Diss.K CFD Solver started: Mon Dec 24 01:48:21 2001 Convergence History Auto Timescale in pool1 = 8.16318E+00 1 OUTER LOOP ITERATION = 1 CPU SECONDS = 1.72E+01Equation | Rate | RMS Res | Max Res | Linear Solution | | 0.00 | 6.0E-03 | 3.5E-01 | U - Mom 8.5E-02 OK

 0.00 | 8.1E-11 | 7.1E-09 |
 7.3E+06 ok

 0.00 | 1.3E-08 | 6.5E-07 |
 3.2E+04 ok

 V - Mom W - Mom | P - Mass | 0.00 | 1.2E-04 | 4.6E-03 | 22.6 9.9E-02 OK OUTER LOOP ITERATION = 2 CPU SECONDS = 1.85E+02| Rate | RMS Res | Max Res | Linear Solution | 1 Equation +-----U - Mom | 2.36 | 1.4E-02 | 3.7E-01 | 3.9E-02 OKI
 |99.99 | 1.7E-03 | 3.2E-02 |
 3.8E-02 OK|

 |99.99 | 4.4E-03 | 7.6E-02 |
 2.2E-02 OK|
 V - Mom i W - Mom | P - Mass | 7.58 | 8.9E-04 | 5.1E-02 | 9.6 4.7E-02 OK| OUTER LOOP ITERATION = 3 CPU SECONDS = 3.14E+02| Equation | Rate | RMS Res | Max Res | Linear Solution | | 0.87 | 1.2E-02 | 2.0E-01 | 1.6E-02 OK| | 0.34 | 5.9E-04 | 1.3E-02 | 3.8E-02 OK| | U - Mom V - Mom | 0.34 | 5.9E-04 | 1.3E-02 | 3.SE-02 OK

,

W - Mom P - Mass	0.25	1.1E-03 4.3E-04	4.2E-02 1.3F-02	6 9.6 1	.4E-02 .8E-02	OK OK
+		++			•	
OUTER LOOP ITERATION =	4		CPU	SECONDS	= 4.41	E+02
Equation	Rate	RMS Res	Max Res	Linear	Soluti	.on
U - Mom V - Mom W - Mom P - Mass	0.70 0.85 0.61 1.19	8.7E-03 5.0E-04 6.8E-04 5.1E-04	1.1E-01 1.0E-02 2.3E-02 3.5E-02	1 8 1 9.6 7	.1E-02 .3E-02 .1E-01 .2E-02	OK OK OK
OUTER LOOP ITERATION =	5		CPU	SECONDS	=======================================	====)E+02
Equation	Rate	RMS Res	Max Res	Linear	Soluti	on
U - Mom V - Mom W - Mom P - Mass	0.42 0.78 0.70 2.27	++ 3.7E-03 3.9E-04 4.7E-04 1.2E-03 ++	5.9E-02 1.1E-02 1.3E-02 5.4E-02	3 6 9 9.6 3	.7E-02 .2E-02 .3E-02 .8E-02	OK OK OK OK
OUTER LOOP ITERATION =	6		CPU	SECONDS	= 7.01	.E+02
Equation	Rate	RMS Res	Max Res	Linear	Soluti	on
U - Mom V - Mom W - Mom P - Mass	0.63 0.73 0.68 0.83	2.3E-03 2.9E-04 3.2E-04 9.6E-04	3.4E-02 1.0E-02 1.0E-02 4.0E-02	4 2 7 9.6 9	.1E-02 .6E-02 .5E-02 .7E-03	OK OK CK OK
K-TurbKE	0.00	1.0E-02	1.9E-01	16.0 3	.1E-03	OKI
E-Diss.K	0.00	1.3E-02	1.0E+00	6.8 4	.6E-03	OK1
OUTER LOOP ITERATION =	7		CPU	SECONDS	= 8.77	==== E+02
Equation	Rate	RMS Res	Max Res	Linear	Soluti	on
U Mom ! V - Mom W - Mom P - Mass	4.88 8.38 8.17 1.20	1.1E-02 2.4E-03 2.6E-03 1.2E-03	2.6E-01 1.8E-01 2.3E-01 8.3E-02	1. 1. 9. 9.6 9.	.7E-02 .5E-02 .4E-03 .5E-03	OKI OKI OKI
K-TurbKE	9.73	9.9E-02	1.4E+00	5.6 5.	2E-05	OK!
E-Diss.K	3.46	4.6E-02	1.9E+00	6.6 6.	3E-08	OK

OUTER LOOP ITERATION =	44	CPU SECONDS = 7.09E+03
Equation	Rate RMS Res	Max Res Linear Solution
U - Mom V - Mom W - Mom P - Mass	0.84 1.5E-05 0.86 2.7E-06 0.90 2.4E-06 0.88 1.4E-06	2.6E-04 2.8E-02 OK 2.6E-04 1.1E-02 OK 3.3E-04 4.1E-02 OK 1.1E-04 9.6 9.0E-03 OK
K-TurbKE	0.78 2.1E-05	6.0E-04 10.0 7.1E-04 OK
E-Diss.K	0.82 2.9E-06	3.7E-04 6.6 2.3E-04 OK

OUTER LOOP ITERATION =	45	CPU SECONDS = 7.26E+03
Equation	Rate RMS Res	Max Res Linear Solution ++
U - Mom V - Mom W - Mom P - Mass	0.87 1.3E-05 0.84 2.2E-06 0.91 2.1E-06 0.88 1.2E-06	2.1E-04 2.4E-02 OK 2.5E-04 1.2E-02 OK 3.1E-04 3.4E-02 OK 9.3E-05 9.6 7.4E-03 OK
K-TurbKE	0.74 1.5E-05	5.6E-04 10.0 7.8E-04 OK
E-Diss.K	0.84 2.4E-06	2.9E-04 6.6 2.2E-04 OK
OUTER LOCP ITERATION =	4 <mark>6</mark>	CPU SECONDS = 7.43E+03
Equation	Rate RMS Res	Max Res Linear Solution
U - Mom V - Mom W - Mom P - Mass	0.86 1.1E-05 0.83 1.9E-06 0.91 1.9E-06 0.88 1.1E-06	1.9E-04 1.9E-02 OK 1.8E-04 1.2E-02 OK 3.0E-04 2.8E-02 OK 8.2E-05 9.6 6.1E-03 OK
K-TurbKE	0.75 1.1E-05	5.3E-04 10.0 8.9E-04 OK
E-Diss.K	0.85 2.1E-06	2.4E-04 6.6 2.0E-04 OK
OUTER LOOP ITERATION =	47	CPU SECONDS = 7.60E+03
Equation	Rate RMS Res	Max Res Linear Solution
U - Mom V - Mom W - Mom P - Mass	0.83 9.3E-06 0.84 1.6E-06 0.91 1.8E-06 0.88 9.3E-07	1.6E-04 1.5E-02 OK 9.3E-05 1.3E-02 OK 2.8E-04 2.3E-02 OK 7.1E-05 9.6 5.1E-03 OK

,

| K-TurbKE | 0.82 | 9.4E-06 | 4.9E-04 | 10.0 1.1E-03 DK| | E-Diss.K | 0.87 | 1.8E-06 | 2.0E-04 | 6.6 2.0E-04 OKI --+ +-----CFD Solver finished: Mon Dec 24 03:57:57 2001 Execution terminating: all RMS residual AND global imbalance are below their target criteria. Boundary Flow and Total Source Term Summary ______ 1 U - Mom Boundary : body _____ Boundary : dasar 1.5201E-02 Boundary : dinding 0.0000E+00 Boundary : inlet Boundary : outlet Boundary : Default 0.0000E+00 -1.2828E+00 8.6181E-01 Domain : pool1 4.0571E-01 0.0000E+00 Global U - Mom Balance: -6.4760E-05 Global Imbalance, in %: -0.0004 % _____ 1 V - Mom +------Boundary : body -----Boundary : dasar 2.3024E-05 Boundary : dinding 0.0000E+00 Boundary : inlet 5.6864E-01 Boundary : outlet 6.5113E-06 Boundary : Default 1.3953E-03 Domain -5.7009E-01 : pool1 0.0000E+00 Global V - Mcm Balance: -2.5094E-05 Global Imbalance, in %: -0.0001 % ----------W Mom

1

Boundary : body -8.6341E-02 Boundary : dasar Boundary : dinding Boundary : inlet Boundary : outlet 1.7750E+01 0.0000E+00 7.6790E-05 -2.1901E-03 Boundary : Default -1.7662E+01 Domain : pool1 0.0000E+00 ----------Global W - Mom Balance: 0.0000E+00 Global Imbalance, in %: 0.0000 8 +-----P - Mass Boundary : body 0.0000E+00 Boundary : dasar 0.0000E+00 Boundary : dinding 0.0000E+00 Boundary : inlet 1.6019E+01 Boundary : outlet -1.6019E+01 Boundary : Default 0.0000E+00 Domain : pool1 0.0000E+00 ----------Global P - Mass Balance: -1.9073E-05 Global Imbalance, in %: -0.0001 % -------1 Normal Force On Walls +------Y-Comp. Z-Comp. X-Comp. body -1.0864E-02 -3.1738E-03 1.7869E+04 0.0000E+00 0.0000E+00 -2.7876E+06 dasar dinding 0.0000E÷00 -8.9347E+04 0.0000E+00 0.0000E÷C0 8.9347E+04 2.7698E+06 Default ------Tangential Force On Walls +-----X-Comp. Y-Comp. Z-Comp. -4.3127E-03 2.4409E-05 -2.7665E-04 body dasar 0.0000E+00 0.0000E+00 0.0000E+00 dinding 0.0000E+00 0.0000E+00 0.0000E+00 Default -4.0571E-01 -6.8674E-04 -4.1374E-06 Normal Moment On Walls X-Comp. Y-Comp. Z-Comp. body 1.6082E+03 -9.6316E+04 2.9373E-03

asar			-1	.6168E+	06	1.	229	3E+	07	0	.0	000	E+(
nding			-4	.4674E+	03	0.	000	0E+	00	-3	.9	402	E+0
fault			1	.6197E+	06	-1.	219	7E+	07	3	.9	402	E+(
	Tang	ential	Mo	oment O	n W	alls							
				X-Comp			Y-C	omp			Z	-Co	mp.
bdy			-2	.2881E-	05	1.	760	4E-	03	5	.2	888	E-(
asar			0	.0000E+	00	0.	000	OE+	00	0	.0	000	E+(
nding			-8	.0000E+	00	0.	000	0E+ 3E-	00	2	.0	000 980	E+(
. Luur v					00	0.		01					
	Locati	ons of	Ma	aximum	nes:	idua	ls						
Equation		Node #	1	 X		1		 Y				Z	
U - Mom	1	1086		5.880E	+00	1 1	.33	4E-	10	1-2	. 8	38E	-02
v - Mom		39597		4.896E	+00	1 1	. 68	DE-	10	1-3	. 0	TDE	-03
w - Mom		259		5.880E	+00	1 6	. 60	46-	02	1 0	. 0	OUE	+00
P = Mage	-	40350		J.869E	+00	1 1	. 65	ZE-	UI	1-3	. /	AQE	-02
r nass	1			F 000-		1 -	100	A	00				
K-TurbKE	i	259	1	5.880E	+00	16	.60	4E-	02	1 0	. 0	OUE	+00
K-TurbKE E-Diss.K		259 245	1	5.880E 4.900E	+00 +00	6 1	.60	4E- 3E-	02	0 -3	. 0	96E	-02
K-TurbKE E-Diss.K	l l Pea	259 245 k Valu	es	5.880E 4.900E of Res	+00 +00 	6 1 	. 60 . 69 	4E- 3E-	02	0 -3 	. 0	96E	-02
K-TurbKE E-Diss.K Equation	 Pea 	259 245 k Valu	es #	5.880E 4.900E of Res Pea	+00 +00 idua k Re	6 1 als	.60 .69 	4E- 3E-	02 01 Fin.	0 -3 al	. 0	96E	-02
K-TurbKE E-Diss.K Equation	 Pea 	259 245 	es #	5.880E 4.900E of Res Pea 1.	+00 +00 idua k Re 423	6 1 als esid 	.60 .69 ual	4E- 3E- 	02 01 Fin. 9	0 -3 al .27	.0	96E sid 9E-	-02 ual
K-TurbKE E-Diss.K Equation U - Mom V - Mom	 Pea 	259 245 k Valu Loop	es # 7	5.880E 4.900E of Res Pea 1. 2.	+00 +00 idua k Re 423 397	6 1 als 78E 72E-	.60 .69 ual 02 03	4E- 3E-]	02 01 Fin 9 1	1 0 1-3 al .27 .56	.0	96E sid 9E	-02 ual 06
K-TurbKE E-Diss.K Equation U - Mom V - Mom W - Mom	 Pea 	259 245 k Valu Loop	# 7 2	5.880E 4.900E of Res Pea 1. 2. 4.	+00 +00 idua k Re 423 397 4059	6 1 als 78E 78E- 72E- 98E-	.60 .69 ual 02 03 03	4E- 3E- 	02 01 Fin 9 1	1 0 1-3 al .27 .56	.0. .0. Re: 84! 03: 79	96E sid 9E 1E 7E-	-02 ual 06 06
K-TurbKE E-Diss.K Equation U - Mom V - Mom W - Mom P - Mass	 Pea 	259 245 k Valu Loop	# 2 7 2 5	5.880E 4.900E of Res Pea 1. 2. 4. 1.	+00 +00 idua k Re 423 397 4059	6 1 als 78E 78E 78E 98E 41E-	.60 .69 ual 02 03 03 03 03	4E- 3E- 1 	02 01 Fin 9 1 9	1 0 1-3 al .27 .56 .76 .32	.0. .0. 	96E sid 9E 1E 7E 6E	+00 -02 ual 06 06 06 07
K-TurbKE E-Diss.K Equation U - Mom V - Mom W - Mom P - Mass K-TurbKE	Pea	259 245 k Valu Loop	es # 2 7 2 5 7	5.880E 4.900E of Res Pea 1. 2. 4. 1. 9.	+00 +00 idua k Re 423 397 4059 1524 8529	6 1 als 78E- 72E- 72E- 98E- 41E- 93E-	.60 .69 ual 02 03 03 03 02	4E- 3E- 	02 01 Fin 9 1 9 9 9 9 9	0 -3 al .27 .56 .76 .32 .39	.0. .0. .0. .0. .0. .0. .0. .0. .0. .0.	00E 96E sid 9E 1E 7E 6E 4E-	-02 ual 06 06 06 07 06
K-TurbKE E-Diss.K Equation U - Mom V - Mom W - Mom P - Mass K-TurbKE E-Diss.K	 	259 245 	 	5.880E 4.900E of Res Pea 1. 2. 4. 9. 4.	+00 +00 idua k Re 423 397 4059 1524 8529 5806	6 1 	.60 .69 ual 02 03 03 03 02 02	4E	02 01 Fin. 9 1 9 1	0 -3 al .27 .56 .32 .32 .32 .32	.0. .0. .0. .0. .0. .0. .0. .0. .0. .0.	96E sid 9E 7E 7E 7E 7E 7E	 ual 06 06 06 07 06 06 06
Equation Equation U - Mom V - Mom W - Mom P - Mass K-TurbKE E-Diss.K	 	259 245 k Valu	# 7 2 7 7 7 7	5.880E 4.900E of Res Pea 1. 2. 4. 1. 9. 4.	+00 +00 idua 423 397 4059 1524 8529 5800	6 1 	. 60 . 69 ual 02 03 03 03 02 02 	4E	02 01 Fin. 9 1 9 9 1	0 -3 al .27 .56 .32 .39 .32 	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	96E sid 9E 1E 7E 6E 4E	+00 -02 ual 06 06 06 07 06 06 06
Equation U - Mom V - Mom W - Mom P - Mass K-TurbKE E-Diss.K	Pea I I I I I I I False	259 245 k Valu Loop	# 7 2 5 7 7 7 	5.880E 4.900E of Res Pea 1. 2. 4. 1. 9. 4. 1.	+00 +00 idua 423 397 405 5806 mati	6 1 1 1 1 1 1 1 1 1 1	. 60 . 69 ual 02 03 03 02 02 	4E	02 01 9 1 1 9 9 1	0 -3 al .27 .56 .32 .39 .32 .39	.00 .02 .02 .02 .03 .79 .82 .03 .79 .82 .03 .79 .82 .03 .79 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25	00E 96E 9E 9E 1E 7E 7E	+00 -02 ual 06 06 06 07 06 06 07 06 06
Equation Equation U - Mom V - Mom W - Mom P - Mass K-TurbKE E-Diss.K Equation	Pea I I False	259 245 k Valu Loop	# 2 7 2 5 7 7 7 ent	5.880E 4.900E of Res Pea 1. 2. 4. 1. 9. 4.	+00 +00 idua 423 397 4059 1524 8529 5800 	6 1 1 1 1 1 1 1 1 1 1	.60 .69 ual 02 03 03 02 02 lap	4E	02 01 Fin. 9 1 1 9 9 1 1 9 9	0 -3 al .27 .56 .32 .39 .32 .39 .32 	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	96E sid 9E- 1E 7E 7E 7E 7E 7E	+00 -02 ual 06 06 06 07 06 06 07 06 06 07 06
Equation U - Mom V - Mom V - Mom W - Mom P - Mass K-TurbKE E-Diss.K Equation U - Mom	Pea 	259 245 k Valu Loop Transi	# 2 7 7 7 7 ent 	5.880E 4.900E of Res Pea 1. 2. 4. 1. 9. 4. 1.	+00 +00 idua k Re 423 397 405 5806 1524 8529 5806 1	6 1 1 1 1 1 1 1 1 1 1	.60 .69 02 03 03 02 02 02 1ap 3	4E	02 01 Find 9 1 1 9 9 1 1 9 9 1	0 -3 al .27 .56 .32 .32 .32 .32 .32 .32 .32 .27 .56 .27 .27 .27 .27 .27 .27 .27 .27 .27 .27	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	96E 9E- 1E- 7E- 7E- 7E- 7E- 7E- 7E- 7E- 7E- 7E- 7	+00 -02 ual 06 06 06 07 06 06 07 06 06 07 06 07 06
Equation U - Mom V - Mom V - Mom W - Mom P - Mass K-TurbKE E-Diss.K Equation U - Mom V - Mom	Pea 	259 245 Loop Transi	# 2 7 7 7 ent ype	5.880E 4.900E of Res Pea 1. 2. 4. 1. 9. 4.	+00 +00 idua 423 397 4059 1524 8529 5806 1 1 1	6 1 1 1 1 1 1 1 1 1 1	. 60 . 69 ual 02 03 03 02 02 02 lap 3 3	4E- 3E- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	02 01 Find 9 1 1 9 1 1 9 1 1 9 9 1 1 5691	0 -3 al .27 .56 .32 .32 .32 .32 .32 .32 .32 .32 .27 .56 .276 .276 .276 .276 .276 .276 .276 .27	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	00E 96E 9E	+00 -02 ual 06 06 06 06 07 06 06 07 06 06 07 06
Equation U - Mom V - Mom V - Mom W - Mom P - Mass K-TurbKE E-Diss.K Equation U - Mom V - Mom W - Mom	Pea 	259 245 Loop Transi	# 2 7 7 7 ent ype	5.880E 4.900E of Res Pea 1. 2. 4. 1. 9. 4.	+00 +00 idua 423 397 4059 1524 8529 5800 1 1 1	6 1 1 1 1 1 1 1 1 1 1	60 69 ual 02 03 03 02 02 02 lap 3 3 3 3	4E- 3E- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	02 01 Find 9 1 1 9 1 1 9 1 1 9 1 1 5691 5691 5691	0 -3 al .27 .56 .32 .32 .32 .32 .32 .32 .32 .32 .32 .27 .56 .276 .32 .276 .276 .276 .276 .276 .276 .276 .27	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	00E 96E 9E 9E 6E 7E 7E 7E 7E 7E	+00 -02 ual 06 06 06 07 06 06 07 06 06 07 06
Equation U - Mom V - Mom V - Mom W - Mom P - Mass K-TurbKE E-Diss.K Equation U - Mom V - Mom P - Mom P - Mom V - Mom P - Mass	Pea 	259 245 k Valu Loop Transi	# 2 7 2 5 7 7 7 	5.880E 4.900E of Res Pea 1. 2. 4. 1. 9. 4.	+00 +00 idua 423 397 4059 1524 8529 5800 1 1 1 1	6 1 1 1 1 1 1 1 1 1 1	60 69 ual 02 03 03 02 02 02 lap 3 3 3 3 3	4E- 3E- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	02 01 Find 9 1 1 9 1 1 9 1 1 9 9 1 1 5691 5691 569	0 -3 al .27 .56 .32 .32 .32 .32 .32 .32 .32 .32 .32 .32	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	00E 96E 99E 1E 7E 6E 7E 7E 7E	+00 -02 ual 06 06 06 06 06 06 06 06 06 06 06 06
Equation U - Mom V - Mom V - Mom W - Mom P - Mass K-TurbKE E-Diss.K Equation U - Mom V - Mom V - Mom P - Mass K-TurbKE	Pea	259 245 k Valu Loop Transi	# 2 7 2 5 7 7 7 	5.880E 4.900E of Res Pea 1. 2. 4. 1. 9. 4.	+00 +00 idua 423 397 4059 1524 8529 5806 I 1 1 1 1 1 1	6 1 1 	60 69 ual 02 03 03 02 02 02 1ap 3 3 3 3 3 3 3 3	4E- 3E- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	02 01 Find 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 5 6 9 1 1 9 9 1 1 1 9 9 1 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 1 9 9 1 1 9 9 1 1 9 9 1 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 9 1 1 9 1 5 5 9 1 5 5 9 1 5 5 5 9 1 5 5 5 9 1 5 5 5 9 1 5 5 9 1 5 5 5 9 1 5 5 5 9 1 5 5 5 9 1 5 5 5 9 1 5 5 5 9 1 5 5 5 9 1 5 5 5 9 1 5 5 5 9 1 5 5 5 1 5 5 9 1 5 5 5 9 1 5 5 5 1 5 5 9 1 5 5 5 9 1 5 5 5 1 9 1 5 5 5 9 1 5 5 5 9 1 5 5 5 9 1 5 5 5 9 1 5 5 5 9 1 5 5 5 9 1 5 5 9 1 5 5 9 1 5 5 5 9 1 5 5 9 1 5 5 9 1 5 5 5 9 1 5 5 9 1 5 5 9 1 5 5 9 1 5 5 9 1 5 5 9 1 5 5 5 9 1 5 5 5 9 1 5 5 5 9 1 5 5 5 1 1 5 1 9 1 5 5 9 1 5 5 5 1 5 9 1 5 5 5 9 1 5 5 9 1 5 5 5 9 1 5 5 5 1 5 1	0 -3 al .56 .76 .32 .39 .32 .39 .32 .39 .32 .32 .32 	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	00E 96E 99E 99E 7E 7E 7E 7E 7E	+00 -02 ual 06 06 06 06 07 06 06 06 07 06 06

MILIK PERPUSTAKAAN INSTITUT TEKNOLOGI SEPULUH - NOPEMBER

Averag						
erag	A Scale To	formert				
+			on 			
Domain Name : pool1						
Global Length				=	1.3998E+0	0
Density Dupamia Mi				=	9.9800E+0	2
Velocity				=	1.0000E-0	3
Advection Time				=	5.1008E-0	12
Reynolds Number				-	2.7444E+C	11
				2	7.1259E+C	4
+						
Variak!	e Range In	iformati	on			
Domain Name : pooll						
+						
variable Name	and a start of the	1	min	ł	max	
Velocity u			-7 105 00		1 000 00	
Velocity v			-3.75E-02	1	1.09E-02	
Velocity w			-2.50E-02	1	1.49E-02	ľ
Pressure		i	-1.02E+00		2.35E+00	K
Density		1	9.98E+02		9.98E+02	i
Dynamic Viscosity		1	1.00E-03	1	1.00E-03	1
Turbulence Eddy Discourse		1	4.90E-07	i.	3.40E-04	i
Eddy Viscosity		1	5.30E-08		9.31E-03	!
+			3.02E-05		3.70E-02	1
						ľ
C DIL Dogui						+
t	ius of Nume	erical S	olution			+
Subsystem Name	Discreti	zation	Time		Colution	
	(secs.	total)	(secs		total)	
Aomentum - Mass	4.49E+03	63.1	7.955	-02	11.2	t
TUIDKE - DISS.K	1.27E+03	17.9	5.615	-02	7.9	
Summary	5.76E+03	80.9	1.302	- 03	19.1	

Host computer: WORK1 Job finished: Mon Dec 24 03:58:17 2001 Total CPU time: 7.786E+03 seconds or: (0: 2: 9: 46.156) (Days: Hours: Minutes: Seconds)

.

End of solution stage.

This run of the CFX-5 Solver has finished.

LAMPIRAN D : TABEL DATA DISTRIBUSI TEKANAN DAN KECEPATAN

		Pressure	
Station	Fn 0.08	Fn 0.10	Fn 0.12
0	289.6992	429.23	591.7739
1	283.2849	418.8584	576.4785
2	277.89	410.0962	563.5463
3	273.7058	403.2586	553.4193
4	271.1778	399.0489	547.062
5	270.3919	397.5442	544.5663
6	271.4371	398.865	546.1014
7	273.7182	402.118	550.4283
8	277.1282	407.1443	557.3278
9	281.8481	414.2159	567.176
10	288.2127	423.8368	580.6766
11	296.0733	435.8136	597.5923
12	305.9583	450.9676	619.0947
13	317.5821	468.8646	644.5696
14	331.5544	490.4131	675.2763
15	348.3206	516.316	712.2408
16	367.9159	546.6556	755.6177
17	389.9545	580.8329	804.5533
18	414.9861	619.6803	860.2331
19	442.7342	662.7125	921.8403
20	472.1365	708.3224	987.1216

Tabel 1 : Data Distribusi Tekanan pada Posisi 1 Panjang Kapal (L)

Tabel 2 : Data Distribusi Tekanan pada Posisi 1/2 Panjang Kapal (L)

		Pressure	
Station	0.08	0.1	0.12
0	174.461	249.7531	334.0626
1	149.6112	210.6295	277.3953
2	131.576	182.0991	235.9393
3	120.6342	164.5979	210.2901
4	114.0375	153.9383	194.5367
5	111.2184	149.2014	187.3211
6	111.0229	148.4609	185.7541
7	112.1204	149.6867	187.0114
8	113.8129	151.8893	189.7699
9	115.6312	154.3748	192.978
10	118.3497	158.302	198.253
11	122.5838	164.5587	206.8461
12	126.8888	170.9588	215.6955
13	133.8091	181.4547	230.456
14	144.2512	197.545	253.3729
15	158.4272	219.5477	284.8997
16	180.6871	254.1251	334.4825
17	217.0029	310.6211	415.5471
18	267.3989	389.0229	528.0232
19	331.8612	489.3431	672.046
20	411.9187	614.0535	851.2692

		Pressure	
Station	0.08	0.1	0.12
0	97.13837	129.138	160.549
1	59.71855	70.26145	75.33112
2	36.47937	33.49063	21.87247
3	23.63941	12.98773	-8.13383
4	18.5833	4.658865	-20.5856
5	16.63753	1.185115	-26.0511
6	17.08347	1.454209	-26.147
7	18.63386	3.485032	-23.6847
8	20.87172	6.557498	-19.7216
9	22.52571	8.690744	-17.1097
10	23.75579	10.24633	-15.2356
11	24.07855	10.3996	-15.4432
12	23.38246	8.841422	-18.2785
13	24.8454	10.64914	-16.242
14	27.45541	14.30404	-11.4472
15	32.21069	21.52788	-1.22588
16	44.75677	41.20069	27.25324
17	70.8807	81.95354	85.86832
18	118.1964	155.4994	191.3851
19	218.923	312.5208	417.1006
20	371.5273	550.6808	759.627

Tabel 3 : Data Distribusi Tekanan pada Posisi 1/3 Panjang Kapal (L)

Tabel 4 : Data Distribusi Tekanan pada Posisi 1/4 Panjang Kapal (L)

MILIN BERFUSTANA AN

SEPULUM - NUPERER

	Pressure		
Station	0.08	0.1	0.12
0	44.77613	47.6789	43.65559
1	-12.7655	-42.7849	-87.2177
2	-37.1457	-81.3851	-143.346
3	-45.3436	-94.6844	-163.032
4	-49.9988	-102.343	-174.478
5	-49.9623	-102.683	-175.415
6	-47.1618	-98.7567	-170.291
7	-43.9368	-94.169	-164.158
8	-43.4722	-93.7926	-163.867
9	-42.2404	-92.18	-161.871
10	-43.4595	-94.4702	-165.663
11	-43.7084	-95.4506	-167.776
12	-48.1932	-102.908	-179.048
13	-50.293	-106.446	-184.439
14	-53.9395	-112.595	-193.76
15	-59.1188	-121.141	-206.548
16	-64.76	-130.191	-219.853
17	-49.5236	-106.3	-185.356
18	-7.09192	-40.0898	-90.195
19	87.28262	107.0212	121.1739
20	366.054	541.9326	746.6397

		Pressure	
Station	0.08	0.1	0.12
0	-7.53542	-34.4286	-75.0043
1	-71.4122	-134.797	-220.152
2	-91.3596	-166.468	-266.3
3	-94.4098	-171.644	-274.198
4	-92.9026	-169.711	-271.869
5	-87.953	-162.448	-261.889
6	-86.1191	-159.988	-258.813
7	-84.6501	-158.075	-256.55
8	-84.9939	-158.949	-258.124
9	-83.5294	-157.091	-255.949
10	-85.0541	-159.897	-260.421
11	-91.1584	-169.782	-274.99
12	-99.2297	-182.732	-294.047
13	-107.469	-196.021	-313.691
14	-119.34	-215.03	-341.586
15	-134.877	-239.872	-377.945
16	-133.023	-237.697	-375.613
17	-141.526	-251.103	-395.013
18	-164.443	-286.761	-446.14
19	-51.8034	-110.885	-193.078
20	319.0509	468.0934	639.9841

Tabel 5 : Data Distribusi Tekanan pada Posisi 1/5 Panjang Kapal (L)

Tabel 6 : Data Distribusi Kecepatan pada Posisi 1 Panjang Kapal (L)

		Kecepatan	
Station	Fn 0.08	Fn 0.10	Fn 0.12
0	0.000123	0.000155	0.000186
1	0.000073	0.000092	0.000110
2	-0.000465	-0.000585	-0.000705
3	-0.001304	-0.001639	-0.001975
4	-0.001666	-0.002094	-0.002523
5	0.000719	0.000904	0.001089
6	0.000365	0.000459	0.000553
7	-0.000057	-0.000071	-0.000086
8	-0.000183	-0.000230	-0.000277
9	-0.000105	-0.000132	-0.000159
10	0.000013	0.000017	0.000020
11	0.000002	0.000003	0.000003
12	0.000002	0.000002	0.000003
13	0.000001	0.000001	0.000001
14	0.000001	0.000001	0.000001
15	0.000001	0.000001	0.000001
16	0.000000	0.000000	0.000001
17	0.000001	0.000001	0.000001
18	0.000001	0.000001	0.000001
19	0.000000	0.000000	0.000000
20	0.000000	0.000000	0.000000

Station	Kecepatan		
	Fn 0.08	Fn 0.10	Fn 0.12
0	0.013757	0.017305	0.020872
1	0.021505	0.027051	0.032626
2	0.011429	0.014375	0.017337
3	0.007654	0.009628	0.011611
4	0.005374	0.006759	0.008150
5	0.004877	0.006133	0.007396
6	0.003917	0.004926	0.005940
7	0.003755	0.004722	0.005694
8	0.003883	0.004883	0.005887
9	0.003056	0.003843	0.004634
10	0.002063	0.002594	0.003128
11	0.010672	0.013417	0.016174
12	0.009067	0.011397	0.013737
13	0.002000	0.002514	0.003029
14	0.001607	0.002019	0.002433
15	0.001920	0.002412	0.002906
16	0.001245	0.001564	0.001884
17	0.002399	0.003013	0.003630
18	0.003529	0.004433	0.005340
19	0.005097	0.006402	0.007713
20	0.005202	0.006535	0.007873

Tabel 7 : Data Distribusi Kecepatan pada Posisi 1/2 Panjang Kapal (L)

Tabel 8 : Data Distribusi Kecepatan pada Posisi 1/3 Panjang Kapal (L)

Station		Kecepatan	
	Fn 0.08	Fn 0.10	Fn 0.12
0	-0.014032	-0.017648	-0.021281
1	0.010330	0.012991	0.015665
2	0.010266	0.012910	0.015567
3	0.005467	0.006876	0.008291
4	-0.013798	-0.017352	-0.020923
5	0.005948	0.007480	0.009019
6	0.008286	0.010421	0.012566
7	-0.016113	-0.020265	-0.024436
8	-0.016691	-0.020993	-0.025315
9	-0.015981	-0.020101	-0.024240
10	0.007096	0.008925	0.010763
11	0.006514	0.008193	0.009879
12	0.001102	0.001385	0.001670
13	0.007169	0.009014	0.010868
14	0.006310	0.007933	0.009563
15	0.007711	0.009692	0.011682
16	0.012129	0.015242	0.018368
17	-0.013908	-0.017474	-0.021054
18	0.015769	0.019808	0.023862
19	-0.016789	-0.021089	-0.025405
20	-0.015238	-0.019141	-0.023058

Station			
	Fn 0.08	Fn 0.10	Fn 0.12
0	0.000045	0.000056	0.000068
1	-0.011063	-0.013910	-0.016770
2	-0.030448	-0.038281	-0.046148
3	-0.030212	-0.037981	-0.045784
4	-0.016016	-0.020134	-0.024270
5	-0.011752	-0.014774	-0.017810
6	-0.012084	-0.015193	-0.018317
7	0.024959	0.031382	0.037834
8	-0.032515	-0.040883	-0.049287
9	-0.020776	-0.026123	-0.031493
10	0.022496	0.028287	0.034103
11	0.031426	0.039514	0.047639
12	0.038137	0.047948	0.057803
13	0.024826	0.031212	0.037626
14	-0.019084	-0.023991	-0.028920
15	-0.010634	-0.013367	-0.016111
16	0.022993	0.028897	0.034825
17	0.000257	0.000323	0.000389
18	0.012408	0.015593	0.018790
19	-0.001788	-0.002247	-0.002708
20	0.000053	0.000066	0.000080

Tabel 9 : Data Distribusi Kecepatan pada Posisi 1/4 Panjang Kapal (L)

Tabel 10 : Data Distribusi Kecepatan pada Posisi 1/5 Panjang Kapal (L)

Station		Kecepatan	_
	Fn 0.08	Fn 0.10	Fn 0.12
0	0.016038	0.020157	0.024292
1	-0.045733	-0.057478	-0.069269
2	0.000079	0.000099	0.000119
3	-0.035770	-0.044956	-0.054178
4	-0.037318	-0.046904	-0.056529
5	-0.042923	-0.053952	-0.065028
6	0.000048	0.000060	0.000073
7	0.036247	0.045570	0.054936
8	0.000265	0.000333	0.000401
9	0.000048	0.000061	0.000073
10	0.000108	0.000136	0.000163
11	0.000119	0.000150	0.000181
12	-0.030918	-0.038858	-0.046829
13	-0.030842	-0.038760	-0.046710
14	0.000149	0.000188	0.000226
15	-0.045947	-0.057748	-0.069598
16	0.035955	0.045190	0.054463
17	0.000132	0.000166	0.000200
18	0.023224	0.029191	0.035184
19	0.000079	0.000099	0.000120
20	0.006164	0.007747	0.009337

LAMPIRAN E : VEKTOR DISTRIBUSI KECEPATAN

Gambar E.1 : Vektor cistribusi kecepatan pada posisi 1 panjang kapal, Fn 0,08

Gambar E.2 : Vektor distribusi kecepatan pada posisi 1 panjang kapal, Fn 0,10

Gambar E.3 : Vektor distribusi kecepatan pada posisi 1 panjang kapal, Fn 0,12

Gambar E.4 : Vektor distribusi kecepatan pada posisi 1/2 panjang kapal, Fn 0,08

Gambar E.5 : Vektor di stribusi kecepatan pada posisi 1/2 panjang kapal, Fn 0,10

Gambar E.6 : Vektor di stribusi kecepatan pada posisi 1/2 panjang kapal, Fn 0,12

Gambar E.7 : Vektor distribusi kecepatan pada posisi 1/3 panjang kapal, Fn 0,08

Gambar E.8 : Vektor di stribusi kecepatan pada posisi 1/3 panjang kapal, Fn 0,10

Gambar E.10 : Vektor distribusi kecepatan pada posisi 1/4 panjang kapal, Fn 0,08

Gambar E.11 : Vektor distribusi kecepatan pada posisi 1/4 panjang kapal, Fn 0,10

Gambar E.12 : Vektor d stribusi kecepatan pada posisi 1/4 panjang kapal, Fn 0,12

Gambar E.13 : Vektor distribusi kecepatan pada posisi 1/5 panjang kapal, Fn 0,08

Gambar E.14 : Vektor d stribusi kecepatan pada posisi 1/5 panjang kapal, Fn 0,10

Gambar E.15 : Vektor d stribusi kecepatan pada posisi 1/5 panjang kapal, Fn 0,12