

FINAL PROJECT - TM 141486

## NUMERICAL STUDY OF NATURAL AND FORCED CONVECTION HEAT TRANSFER INTERNAL FLOW ON HEATED PIPE WITH VARIATION REYNOLDS NUMBER AND GRASHOF NUMBER ON CONSTANT HEAT FLUX

Farani Andaz NRP 2112 105 032

Counsellor Lecture Vivien Suphandani Djanali, ST.,ME.,Ph.D NIP. 198105292003122001

DEPARTMENT OF MECHANICAL ENGINEERING Faculty of Industrial Technology Sepuluh Nopember Institute of Technology Surabaya 2015



#### TUGAS AKHIR - TM 141486

## STUDI NUMERIK PERPINDAHAN PANAS KONVEKSI CAMPURAN DALAM *HEATED PIPE* DENGAN VARIASI *REYNOLDS NUMBER* DAN *GRASHOF NUMBER* PADA *HEAT FLUX* KONSTAN

Farani Andaz NRP 2112 105 032

Dosen Pembimbing Vivien Suphandani Djanali, ST.,ME.,Ph.D NIP. 198105292003122001

JURUSAN TEKNIK MESIN Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2015 STUDI NUMERIK PERPINDAHAN PANAS KONVEKSI CAMPURAN DALAM HEATED PIPE DENGAN VARIASI REYNOLDS NUMBER DAN GRASHOF NUMBER PADA HEAT FLUX KONSTAN

**TUGAS AKHIR** 

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik

pada

Bidang Studi Konversi Energi Program Studi S-1 Jurusan Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

> Oleh : FARANI ANDAZ NRP. 2112 105 032

Disetujui oleh Tim Penguji Tugas Akhir :

- 1. Vivien Suphandani Dj. ST., MEPh D (NIP.198105292003122001) Schollburg (NIP.198105292003122001)
- 2. <u>Prof. Ir. Sutardi, M.Eng., Ph.D</u> (NIP.196412281990031002)
- 3. <u>Nur Ikhwan, ST, M.Eng. Scourse</u> (Perguji II) (NIP.196709151995121001)
- 4. <u>Dr. Bambang Arip D. ST., M.Eng</u> (Penguji III) (NIP.197804012002121001)

SURABAYA Januari, 2015

## STUDI NUMERIK PERPINDAHAN PANAS KONVEKSI ALAMI DAN PAKSA ALIRAN INTERNAL PADA *HEATED PIPE* DENGAN VARIASI *REYNOLDS NUMBER* DAN *GRASHOF NUMBER* PADA *HEAT FLUX* KONSTAN

| Nama Mahasiswa   | : Farani andaz                     |
|------------------|------------------------------------|
| NRP              | : 2112105032                       |
| Jurusan          | : Teknik Mesin FTI-ITS             |
| Dosen Pembimbing | : Vivien Suphandani Dj,ST,ME.,Ph.D |

#### ABSTRAK

Dalam dunia teknik khususnya bidang mekanika fluida dan perpindahan panas, pengkajian mengenai suatu aliran yang mengalir di dalam sebuah pipa vertikal yang dipanaskan. Aliran yang mengalir di dalam sebuah pipa yang dipanaskan sering ditemui dalam berbagai aplikasi teknik misalnya pada *solar water heater, gas reactor.* 

Penelitian tugas akhir ini melakukan simulasi numerik vang difokuskan pada pengamatan karakteristik aliran fluida, distribusi temperatur, koefisien konveksi, Nusselt number dan distribusi tekanan aliran dalam heated pipe dengan memvariasikan nilai Reynolds number 3000 dan 5000 serta Grashof number 10<sup>4</sup> sampai 10<sup>6</sup> pada *heat flux* konstan. Selain itu penelitian ini dilakukan untuk mengetahui keakuratan dari pemodelan numerik untuk kasus konveksi campuran pada aliran dalam pipa yang dipanaskan. Model uji memiliki dimensi panjang 2530 mm dan diameter 23 mm dengan heat flux yang konstan, model uji ini dirujuk pada eksperimen yang telah dilakukan oleh Hiroaki Tanaka et al (1986).

Hasil yang didapatkan menunjukkan bahwa semakin besar *Grashof number*, semakin besar  $\Delta T$ , namun tidak terjadi perubahan kecepatan (v), penurunan *pressure drop* ( $\Delta P$ ), peningkatan koefisien konveksi (h) dan peningkatan *Nusselt number* (Nu), sedangkan pada Re=5000 untuk *Grashof number* yang sama menghasilkan penurunan ( $\Delta T$ ), peningkatan kecepatan

(v), peningkatan *pressure drop* ( $\Delta P$ ), peningkatan *Nusselt number* (Nu) dan peningkatan koefisien konveksi (h). Simulasi menunjukkan hasil yang akurat dengan *error* dibawah 5% terhadap eksperimen, tetapi simulasi numerik tidak dapat mengikuti secara baik perubahan pola nilai Nu dari *turbulent* menjadi *laminar* pada Re=3000, ditunjukkan pada perbandingan temperatur dinding data simulasi dengan eksperimen memiliki *error* sebesar 8.06%.

Kata kunci : *Grashof number*, *Reynolds number*, konveksi campuran, studi numerik.

## NUMERICAL STUDY OF MIXED CONVECTION HEAT TRANSFER INTERNAL FLOW ON HEATED PIPE WITH VARIATION REYNOLDS NUMBER AND GRASHOF NUMBER ON CONSTANT HEAT FLUX

| Student Name       | : Farani andaz                     |
|--------------------|------------------------------------|
| NRP                | : 2112105032                       |
| Department         | : Mechanical Engineering FTI-ITS   |
| Counsellor Lecture | : Vivien Suphandani Dj,ST,ME.,Ph.D |

#### ABSTRACT

In the world of engineering, particularly the field of fluid mechanics and heat transfer, assessment of a stream that flows in a vertical pipe that is heated. Stream flowing in a pipe that is heated frequently encountered in various engineering applications for example in solar water heater, gas reactors.

This final project perform numerical simulation that is focused on the observation of fluid flow characteristics, temperature distribution, heat transfer coefficient and pressure distribution in the heated pipe flow by varying the value of Reynolds number of 3000 and 5000 and the Grashof number  $10^4$  to  $10^6$  at a constant heat flux. In addition, this study was conducted to determine the accuracy of numerical modeling for the case of a mixed convection on the flow in the heated pipe. The test model has dimensions of length 2530 mm and a diameter of 23 mm with constant heat flux, the test model is referred to the experiments that have been performed by Hiroaki Tanaka et al (1986).

The results obtained indicate that the magnitude of Grashof number resulted in an increase ( $\Delta T$ ), but no change of velocity (v), a decrease in pressure drop ( $\Delta P$ ), increased convection coefficient (h) and an increase in Nusselt number (Nu), whereas at Re=5000 for the same Grashof number result in a decrease ( $\Delta T$ ), the increase in speed (v), the increase in pressure drop ( $\Delta P$ ), the increase in Nusselt number (Nu) and an increase in

convection coefficient (h). Simulations show accurate results with an error of less than 5 % of the experiments, but numerical simulations can not properly follow the pattern of changes in the value of Nu from laminar to turbulent be Re = 3000, shown in comparison with the temperature of the walls of the experimental simulation data has error at 8.06 %.

Keywords : Grashof number, Reynolds number, mixed convection, numerical studies.

# DAFTAR ISI

| HALAMAN JUDUL i |        |
|-----------------|--------|
| ABSTRAK         | iv     |
| KATA PENGANTAR  | viii   |
| DAFTAR ISI      | X      |
| DAFTAR GAMBAR   | . xiii |
| DAFTAR TABEL    | . xvi  |
| DAFTAR SIMBOL   | . xvii |

# BAB I PENDAHULUAN

| 1.1 Latar Belakang        | 1 |
|---------------------------|---|
| 1.2 Peumusan Masalah      | 2 |
| 1.3 Batasan Masalah       | 3 |
| 1.4 Tujuan Penelitian     | 3 |
| 1.5 Manfaat Penelitian    | 4 |
| 1.6 Sistematika Penulisan | 4 |

## **BAB II TINJAUAN PUSTAKA**

| 2.1 | Perpind | lahan Panas Konveksi                 | 7    |
|-----|---------|--------------------------------------|------|
|     | 2.1.1   | Konveksi Alami                       | 10   |
|     | 2.1.2   | Gabungan Konveksi Bebas dan Konveksi |      |
|     |         | Paksa                                | 13   |
| 2.2 | Konvek  | si Aliran Internal                   | . 14 |
|     | 2.2.1   | Kondisi Aliran                       | . 14 |
|     | 2.2.2   | Aliran Nonviscous dan Viscous        | 16   |
| 2.3 |         | Aliran Laminer dan Turbulen          | 17   |
| 2.4 |         | Rapat Massa dan Volume Spesifik      | 20   |
| 2.5 |         | Persamaan energi                     | 20   |
| 2.6 |         | Boussinesq Equation                  | . 20 |
| 2.7 |         | Penelitian Terdahulu                 | 21   |
|     | 2.7.1   | Hiroaki Tanaka et al, 1986           | 21   |
|     | 2.7.2   | Mehdi dan Mehrdad, 2008              | 23   |
|     |         | 2.6.3 Cotton dan Jackson, 1989       | 25   |
|     |         | 2.6.4 Forooghi dan Hooman, 2013      | 26   |
|     |         |                                      |      |

| BAB III MI | ETODOLOGI PENELITIAN                        |
|------------|---------------------------------------------|
| 3.1 Me     | tode Numerik                                |
| 3.1        | .1 Tahap pre-processing                     |
| 3.1        | .2 Tahap post-processing                    |
| 3.2 Diag   | gram Alir Penelitian                        |
| 3.3 Vali   | idasi dan Pembahasan Hasil Penelitian       |
| 3.4 Alo    | kasi Waktu Penelitian                       |
|            |                                             |
| BAB IV     | ANALISA DAN PEMBAHASAN                      |
| 4.1 Gri    | d Independency                              |
| 4.2 Pen    | gelompokan Data Untuk Daerah Konveksi       |
| Ala        | mi, Paksa dan Campuran 41                   |
| 4.3 Pen    | gelompokan Data Untuk Daerah Konveksi       |
| Ala        | mi, Paksa dan Campuran Menurut Incropera    |
| dan        | Dewitt (2006)                               |
| 4.4 Vali   | idasi Data Simulasi Numerik 43              |
| 4.5 Ana    | lisa Data Kuantitatif 45                    |
| 4.5.       | 1 Distribusi Temperatur Fluida Dalam Heated |
|            | Pipe Pada Re=300045                         |
| 4.5.       | 2 Distribusi Temperatur Fluida Dalam Heated |
|            | Pipe Pada Re=5000                           |
| 4.5.       | 3 Distribusi Kecepatan Dalam Heated         |
|            | Pipe Pada Re=3000 dan Re 5000 48            |
| 4.5.4      | 4 Pressure Drop Sepanjang Pipa Pada Re=3000 |
|            | dan Re=5000 49                              |
| 4.5.       | 5 Distribusi Koefisien Konveksi Sepanjang   |
|            | Heated Wall Pada Re=3000 dan                |
|            | Re=5000                                     |
| 4.5.       | 6 Average Koefisien Konveksi Terhadap       |
|            | Grashof Number 52                           |
| 4.5.       | 7 Distribusi Nusselt Number Sepanjang       |
|            | Heated Wall Pada Re=3000                    |
|            | dan Re=500054                               |
| 4.5.       | 8 Average Nusselt Number Terhadap           |
|            | Grashof Number 55                           |

| 4.5.9       | Average Nusselt Number Terhadap   |     |
|-------------|-----------------------------------|-----|
|             | Reynolds Number                   | 57  |
| 4.5.10      | Perbandingan Nusselt Number Hasil |     |
|             | Simulasi Dengan Eksperimen        | 58  |
| 4.6 Analis  | a Data Kualitatif                 |     |
| 4.6.1       | Kontur Temperatur Fluida Dalam    |     |
|             | Heated Pipe Re=3000               | .60 |
| 4.6.2       | Kontur Temperatur Fluida Dalam    |     |
|             | Heated Pipe Re=5000               | 61  |
| DAD VIZECIN |                                   |     |
| BAB V KESIN | IPULAN DAN SAKAN                  |     |
| 5.1 Kesimp  | oulan                             |     |
| 5.2 Saran   |                                   |     |

| DAFTAR PUSTAKA         | <br>67 |
|------------------------|--------|
| <b>BIODATA PENULIS</b> | <br>68 |
| LAMPIRAN               |        |

# DAFTAR TABEL

| Tabel 3.2Velocity inlet yang dimasukkan dalam |    |
|-----------------------------------------------|----|
| perhitungan                                   | 35 |
| Tabel 3.3Alokasi waktu penelitian             | 38 |
| Tabel 4.1Grid Independency                    | 39 |

# DAFTAR GAMBAR

| Gambar 2.1  | Gradien densitas yang menghasilkan aliran        |  |
|-------------|--------------------------------------------------|--|
|             | konveksi bebas11                                 |  |
| Gambar 2.2  | Aliran konveksi alami di sekitar plat            |  |
|             | vertikal 12                                      |  |
| Gambar 2.3  | Daerah-daerah konveksi alami,paksa dan           |  |
|             | gabungan untuk aliran dalam pipa                 |  |
|             | (Hiroaki Tanaka et al, 1986)                     |  |
| Gambar 2.4  | Profil kecepatan pada aliran internal (Incropera |  |
|             | dan Dewitt, 2006) 14                             |  |
| Gambar 2.5  | Profil temperatur pada aliran internal           |  |
|             | Tr,o < Ts                                        |  |
| Gambar 2.6  | Perbedaan antara fluida non viscous dan          |  |
|             | viscous16                                        |  |
| Gambar 2.7  | Pengembangan lapisan batas kecepatan pada        |  |
|             | pelat datar (Incropera dan Dewitt)               |  |
| Gambar 2.8  | Distribusi Temperatur Dinding Pada Tiga Nilai    |  |
|             | Grashof Number dengan Reynold Number             |  |
|             | Konstan 3000 (Hiroaki Tanaka et al. 1986)        |  |
|             |                                                  |  |
| Gambar 2.9  | Plot Data Eksperimen pada Rezim Combined         |  |
|             | Forced and Natural Convection                    |  |
|             | (Hiroaki Tanaka et al. 1986) 23                  |  |
| Gambar 2.10 | Perbandingan prediksi <i>Nusselt number</i> dari |  |
|             | hasil simulasi dengan data eksperimen untuk      |  |
|             | upward flow (Mehdi Mehrdad, 2008                 |  |
| Gambar 2.11 | Perbandingan prediksi <i>Nusselt number</i> dari |  |
|             | hasil simulasi dengan data eksperimen untuk      |  |
|             | downward flow (Mehdi dan Mehrdad, 2008)          |  |
|             | 25                                               |  |
| Gambar 2 12 | Profil kecepatan <i>ascending flow</i>           |  |
| Cumou 2.12  | perhandingan data Carr et al (Cotton dan         |  |
|             | Jackson 26                                       |  |
|             |                                                  |  |

| Gambar 2.13 | Variasi nilai Nu/Nu <sub>FC</sub> dengan parameter |    |
|-------------|----------------------------------------------------|----|
|             | bouyancy untuk aliran vertikal dengan              |    |
|             | perbedaan Reynolds number (Forooghi dan            |    |
|             | Hooman)                                            | .7 |
| Gambar 3.1  | Model benda uji 3                                  | 0  |
| Gambar 3.2  | Domain fisis benda uji 3                           | 51 |
| Gambar 3.3  | Meshing pada Model Uji dengan Quad-map             |    |
|             | pada GAMBIT 3                                      | 32 |
| Gambar 3.4  | Boundary condition Model Uji pada                  |    |
|             | GAMBIT                                             | 4  |
| Gambar 3.5  | Diagram alir penelitian 3                          | 7  |
| Gambar 4.1  | Analisa grid indepenency                           | 40 |
| Gambar 4.2  | Data Untuk Daerah Konveksi Alami, Paksa            |    |
|             | dan Campuran 4                                     | 1  |
| Gambar 4.3  | Reaksi signal dari hot-wire 4                      | -2 |
| Gambar 4.4  | Data untuk daerah konveksi <sup>2</sup>            | 43 |
| Gambar 4.5  | Perbandingan Distribusi temperatur wall data       |    |
|             | simulasi dengan eksperimen pada Re=3000            |    |
|             | 4                                                  | 4  |
| Gambar 4.6  | Distribusi Temperatur Heated Wall Pada             |    |
|             | Re=3000 4                                          | 5  |
| Gambar 4.7  | Distribusi Temperatur Fluida Dalam Heated          |    |
|             | <i>Pipe</i> Pada Re=5000 4                         | 7  |
| Gambar 4.8  | Distribusi Kecepatan Heated Wall Pada              |    |
|             | Re=3000                                            | 8  |
| Gambar 4.9  | Pressure drop sepanjang pipa 4                     | 9  |
| Gambar 4.10 | Distribusi Koefisien Konveksi Sepanjang            |    |
|             | Heated Wall                                        | 1  |
| Gambar 4.11 | Average koefisien konveksi fungsi Grashof          |    |
|             | <i>number</i>                                      | 3  |
| Gambar 4.12 | Distribusi Nusselt number Sepanjang Heated         |    |
|             | Wall                                               | ł  |
| Gambar 4.13 | Average Nusselt number terhadap Grashof            |    |
|             | number 56                                          | )  |

| Gambar 4.14 | Average Nusselt number terhadap Reynolds                   |      |
|-------------|------------------------------------------------------------|------|
|             | number                                                     | 57   |
| Gambar 4.15 | Perbandingan Nusselt number hasil simulasi                 |      |
|             | dengan eksperimen                                          | . 59 |
| Gambar 4.16 | Kontur temperatur fluida (T-T <sub>inlet</sub> ) dalam hea | ited |
|             | pipe                                                       | 60   |
| Gambar 4.15 | Kontur temperatur fluida (T-Tinlet) dalam                  |      |
|             | heated pipe                                                | 61   |

# DAFTAR SIMBOL

- $T_w$ : Temperatur dinding (K) Ti : Temperatur lingkungan (K) : Difusivitas termal  $(m^2/s)$ α q" : Fluks perpindahan panas konveksi (W/m<sup>2</sup>) Koefisien konveksi (W/mK) h Ts Temperatur permukaan (K)  $T\infty$  : Temperatur fluida (K) Pr **Bilangan Prandtl** : Percepatan gravitasi  $(m/s^2)$ g Panjang karakteristik (m) L Viskositas kinematik (m<sup>2</sup>/s) ν : Koefisien ekspansi volume (K<sup>-1</sup>) β : Bilangan Grashof Gr : Bilangan Rayleigh Ra  $C_P$  : Kapasitas panas (J/kgK) : Densitas fluida  $(kg/m^3)$ ρ : Viskositas dinamik (kg/s.m) μ : Temperatur ke arah aksial Tx : Konduktivitas fluida (W/mK)  $K_{t}$ Kecepatan aliran bebas (m/s)  $u_{\infty}$ : Re **Bilangan Reynolds** : Bilangan Nusselt Nu  $V_m$  : kecepatan rata-rata
- $\varepsilon_i$ : Error data perbandingan hasil simulasi numerik terhadap eksperimen

# BAB I PENDAHULUAN

## 1.1 Latar Belakang

Seiring dengan perkembangan teknologi dan ilmu pengetahuan, manusia selalu menciptakan suatu penelitian baru yang akan berguna bagi kesejahteraan manusia. Dalam dunia industri saat ini, telah banyak ditemui berbagai aplikasi dari ilmu mekanika fluida dan perpindahan panas seperti pada *heat exchanger, electronics cooling, gas coolant* dll.

Saat ini telah banyak dilakukan pengkajian mengenai penerapan ilmu mekanika fluida dan perpindahan panas dalam suatu industri, misalnya mengenai suatu aliran yang mengalir di dalam sebuah pipa, khususnya mengenai konveksi alami dan konveksi paksa akibat adanya panas yang diberikan terhadap bagian dinding pipa tersebut.

Perpindahan panas konveksi terjadi pada suatu permukaan dengan fluida yang mengalir. Gerakan olakan dari aliran fluida tersebut sangat berpengaruh terhadap perpindahan panas yang terjadi. Aliran yang berolak dapat meningkatkan perpindahan panas konveksi. Selain itu, perpindahan panas konveksi juga dipengaruhi oleh sifat dari aliran fluida. Apabila fluida mengalir dengan bantuan gaya luar, misalnya hisapan blower, dorongan pompa dapat dikategorikan sebagai konveksi paksa (force convection), sedangkan konveksi dengan aliran fluida vang disebabkan oleh perbedaan massa jenis fluida itu sendiri, maka dikategorikan sebagai konveksi alami (free convection).

Eksperimen yang telah dilakukan sebelumnya yaitu oleh Hiroaki Tanaka et al, 1986 tentang perpindahan panas konveksi campuran melalui aliran di dalam sebuah *heated pipe* dengan memvariasikan *Reynolds number* dan *Grashof number* pada *heat flux* konstan sehingga menghasilkan data berupa temperatur wall setelah diberikan *heat flux* pada *wall* tersebut dan menghasilkan perbandingan data eksperimen dan data simulasi diantara variasi *Nusselt number* dan *Grashof number*. Pada plot temperatur daerah *heated wall* menunjukkan meningkatnya temperatur seiring dengan pertambahan panjang *heated wall*.

Pada Tugas Akhir ini, akan memodelkan eksperimen yang telah dilakukan oleh Hiroaki Tanaka et al (1986) dengan harapan dapat menunjukkan karakteristik aliran fluida, distribusi temperatur dan distribusi tekanan dalam *heated pipe*. Dengan menggunakan simulasi numerik, dapat mengetahui karakteristik aliran dan perpindahan panas dari berbagai macam fluida, selain itu dapat menampilkan distribusi tekanan, kecepatan aliran, distribusi temperatur dan pola aliran fluida, sehingga simulasi ini sangat cocok digunakan untuk Tugas Akhir ini.

## 1.2 Perumusan Masalah

Aliran yang mengalir di dalam sebuah pipa yang dipanaskan akan mengalami proses perpindahan panas secara maupun konveksi paksa. konveksi alami Dalam proses tersebut beberapa perpindahan panas ada faktor vang berpengaruh, diantaranya adalah kecepatan dan tekanan fluida. Dimana keduanya memiliki peranan yang sangat penting terhadap kualitas perpindahan panas. Sehingga pada Tugas akhir ini dilakukan simulasi numerik dengan memvariasikan nilai Reynolds Number dan Grashof number pada heat flux konstan untuk mengetahui pengaruhnya pada distribusi temperatur wall dan distribusi tekanan.

Telah banyak dilakukan simulasi numerik tehadap berbagai macam kasus konveksi, diantaranya dilakukan pada kasus konveksi alami, konveksi paksa maupun konveksi campuran. Namun seringkali yang terjadi adalah hasil simulasi pada konveksi alami menunjukkan adanya penyimpangan jika dibandingkan dengan data hasil eksperimen. Pada simulasi konveksi paksa menghasilkan data yang lebih akurat, hal ini menunjukkan bahwa kelemahan simulasi numerik terletak pada penyelesaian kasus konveksi alami maupun konveksi campuran.

## 1.3 Batasan Masalah

Agar ruang lingkup penelitian ini tidak melebar dari tujuan penelitian, maka dibutuhkan beberapa batasan masalah, yaitu:

- 1. Pergerakan fluida di dalam pipa diakibatkan oleh kecepatan tertentu dan efek gaya *bouyancy*.
- 2. Aliran fluida searah dengan gaya *bouyancy* (*assisting flow*).
- 3. Fluida yang mengalir adalah dengan kondisi *steady flow, incompressible flow.*
- 4. Benda uji yang disimulasikan adalah *vertical heated pipe* yang ditinjau secara dua dimensi *axisymmetric*.
- 5. *Energy equation* (perpindahan panas) dan *bousinessq equation* diikutsertakan dalam perhitungan numerik.
- 6. Model turbulensi yang digunakan adalah *standard k-ε enhanced wall treatment*.
- 7. *Boundary condition* untuk *inlet* adalah *velocity inlet* sedangkan pada sisi *outlet* adalah *outflow*.
- 8. *Reynold number* yang digunakan adalah Re=3000 dan Re=5000
- 9. Grashof number yang digunakan adalah Gr=  $10^4$  sampai Gr=  $10^6$ .

# 1.4 Tujuan Penelitian

Tujuan penulisan tugas akhir ini adalah

1. Untuk mengetahui pengaruh *Reynolds number* dan Grashof number pada *heat flux* konstan terhadap karakteristik aliran fluida, distribusi temperatur, koefisien konveksi, *Nusselt number* dan distribusi tekanan dalam *heated pipe*.

2. Untuk mengetahui keakuratan dari pemodelan numerik untuk simulasi *mixed convection* pada aliran dalam *heated pipe*.

## **1.5** Manfaat penelitian

Manfaaat yang dapat diambil dari penulisan tugas akhir ini adalah sebagai berikut :

- 1. Mampu mengetahui karakteristik distribusi temperatur dan kecepatan aliran fluida dalam *heated pipe* dengan variasi *Reynolds number* dan *Grashof number* pada *heat flux* konstan.
- 2. Diharapkan mampu menghasilkan data distribusi temperatur yang lebih akurat dibandikan data hasil eksperimen.
- 3. Mampu melakukan penelitian terhadap pengembangan ilmu mekanika fluida dan perpindahan panas.

# 1.6 Sistematika Penulisan

Sistematika penulisan dalam Tugas Akhir ini terbagi dalam beberapa bab yang dapat ditunjukkan sebagai berikut:

1. Bab I Pendahuluan

Bab ini berisi tentang latar belakang dari penelitian ini, perumusan masalah, tujuan penelitian dan batasan masalah dari penelitian, serta manfaat dari penelitian yang dilakukan.

2. Bab II Tinjauan Pustaka

Bab ini dibagi menjadi 2 bagian, yaitu dasar teori dan penelitian terkait yang sudah ada. Dasar teori berisi semua hal yang menunjang dalam penganalisaan hasil penelitian. Sedangkan penelitian terkait yang sudah ada berisi tentang penelitian-penelitian sebelumnya yang ada korelasinya dengan penelitian kali ini, yang juga menjadi penunjang dalam analisa data.

3. Bab III Metode Penelitian

Bab ini menerangkan tentang langkah-langkah pemodelan.

4. Bab IV Analisa dan Pembahasan

Bab ini berisi tentang hasil-hasil numerik dan pengolahan dari data-data yang didapat, kemudian dianalisa dan didiskusikan lebih lanjut.

5. Kesimpulan dan Saran Bab ini memuat kesimpulan dari hasil numerik yang dilakukan serta saran-saran yang di perlukan. Halaman ini sengaja dikosongkan

## BAB II TINJAUAN PUSTAKA

#### 2.1 Perpindahan Panas Konveksi

Secara umum perpindahan panas didukung oleh dua mekanisme perpindahan energi, selain dengan pergerakan acak dari molekul, energi juga dipindahkan oleh pergerakan makroskopik (olakan / *bulk motion*) dari fluida yang mengalir. Gerakan makroskopik dapat diamati pada saat fluida bergerak secara bersamaan.

Perpindahan panas konveksi terjadi pada suatu permukaan dengan fluida yang mengalir. Gerakan olakan dari aliran fluida tersebut sangat berpengaruh terhadap perpindahan panas yang terjadi. Aliran yang berolak dapat meningkatkan perpindahan panas konveksi. Selain itu, perpindahan panas konveksi juga dipengaruhi oleh sifat dari aliran fluida. Apabila fluida mengalir dengan bantuan gaya luar, misalnya hisapan blower, dorongan pompa, dapat dikategorikan sebagai konveksi paksa (*force convection*), sedangkan konveksi dengan aliran fluida yang disebabkan oleh perbedaan massa jenis fluida itu sendiri, dikategorikan sebagai konveksi dapat dirumuskan persamaan sebagai berikut :

 $q^{"}_{konveksi} = h(T_s - T_{\infty})$  .....(2.1) dimana:  $q^{"}_{conv}$  = fluks perpindahan panas konveksi (W/m<sup>2</sup>) h = koefisien konveksi (W/m<sup>2</sup>.K) Ts = temperatur permukaan (K) T $\infty$  = temperatur fluida (K)

Koefisien perpindahan panas konveksi (h) yang terjadi adalah hasil perhitungan dan merupakan fungsi dari kecepatan. Beberapa parameter tidak berdimensi digunakan untuk menghitung nilai dari koefisien perpindahan panas konveksi apabila kecepatan fluida diketahui. Parameter-parameter tersebut antara lain :

Reynolds number (Re), parameter non-dimensi yang • menunjukkan perbandingan antara gaya inersia dengan gava gesek vang terjadi. Bilangan Revnolds ini dapat digunakan untuk menentukan aliran yang terjadi termasuk kedalam aliran laminar atau turbulent. Secara umum, bilangan *Reynolds* dirumuskan dalam persamaan berikut :

 $\operatorname{Re} = \frac{V.L}{L} \tag{2.2}$ 

dimana: V = kecepatan fluida (m/s)

L = panjang lintasan (m)

v = koefisien gesek kinematis (m<sup>2</sup>/s)

dan persamaan untuk aliran di dalam pipa, dengan persamaan sebagai berikut :

 $\operatorname{Re} = \frac{V.D}{V} \qquad (2.3)$ 

dimana: D = diameter pipa (m)

• Prandtl number (Pr), parameter non-dimensi yang menunjukkan perbandingan antara viskositas kinematis dengan diffusivitas panas. Bilangan Prandtl dirumuskan persamaan sebagai berikut :

 $\Pr = \frac{v}{\alpha} \qquad (2.4)$ 

dimana:  $\upsilon$  = koefisien gesek kinematis (m<sup>2</sup>/s)  $\alpha$  = diffusivitas panas (m<sup>2</sup>/s)

Umumnya Prandtl number adalah propertis dari fluida, sehingga perhitungan Prandtl number tersebut jarang dilakukan.

Nusselt number (Nu), parameter non-dimensi yang • menunjukkan perbandingan antara koefisien perpindahan panas konveksi (h) dengan koefisien perpindahan panas konduksi (k). Nusselt number dirumuskan persamaan sebagai berikut :

 $Nu = \frac{h.L}{k} \quad \dots \tag{2.5}$ 

dimana: L = panjang(m)

h = koefisien konveksi  $(W/m^2.K)$ 

k = koefisien konduksi (W/m.K)

Apabila aliran berada di dalam pipa, maka bilangan *Nusselt* identik dengan bilangan *Reynolds* dimana persamaan (2.3) menjadi fungsi dari diameter (D). Selain perumusan di atas, bilangan *Nusselt* juga merupakan fungsi dari bilangan *Reynolds* dan bilangan *Prandtl*, seperti dijabarkan dalam persamaan di bawah :

 $Nu = f(\operatorname{Re}, \operatorname{Pr}) \tag{2.6}$ 

Perumusan Nusselt sebagai fungsi dari kedua parameter tersebut, tergantung pada kondisi aliran. Aliran tergolong aliran eksternal (di luar/tanpa dibatasi pembatas), atau internal (di dalam pembatas). Tipe aliran tergolong aliran laminar atau turbulent. Adapun persamaan empiris Nusselt number untuk forced convection menurut Dittus Boelter dan Gnielinski seperti dalam persamaan di bawah ini:

- Nusselt number (Nu<sub>f</sub>) Dittus Boelter Nu<sub>f</sub> =  $0.023 \cdot \text{Re}^{4/5} \cdot \text{Pr}^{0.4}$  ..... (2.7)
- *Nusselt number* (Nu<sub>f</sub>) Gnielinski

dimana:

 $f = (0.79 \ln(Re) - 1.64)^{-2}$ 

Pada sistem konveksi bebas dapat dijumpai bilangan tak berdimensi yang disebut bilangan *Grashof* (Gr) dan *Rayleigh Number* (Ra) yang didefinisikan sebagai:

• *Grashof Number*, parameter non-dimensi dalam dinamika fluida dan perpindahan panas yang mendekati rasio daya apung untuk gaya viskos yang bekerja pada fluida. Hal

ini sering muncul dalam studi yang melibatkan konveksi alami.

• *Rayleigh Number*, parameter non-dimensi yang terkait dengan daya apung yang didorong aliran (dikenal juga sebagai konveksi bebas atau konveksi alami).

$$Gr_{\Delta T} = \frac{g\beta(Ts - T\infty)D^3}{v^2} \qquad (2.9)$$

$$Gr_q = Gr_{\Delta T} . Nu = \frac{g\beta q'' D^4}{kv^2} \qquad (2.10)$$

dimana:

Pr = bilangan Prandtl

g = percepatan gravitasi,  $(\frac{m}{s^2})$ L = panjang karakteristik, (m) v = viskositas kinematik,  $(\frac{m^2}{s})$   $\beta$  = koefisien ekspansi volume  $(\frac{1}{Tf})$ , (K<sup>-1</sup>) = 1/T (khusus gas ideal); T adalah suhu mutlak  $\alpha$  = difusivitas termal,  $(\frac{m^2}{s})$ q" = heat flux, (W/m<sup>2</sup>) k = konduktivitas termasl (W/m.K)

dimana semua properties dievaluasi pada temperatur film (Tf).

## 2.1.1 Konveksi Alami

Dalam konveksi bebas gerakan fluida disebabkan karena gaya apung (*buoyancy*) diantara fluida, sedangkan di konveksi paksa gerakan fluida disebabkan oleh gaya luar. Gaya apung dihasilkan oleh gabungan dari gradien densitas fluida dan gaya berat (*body force*) yang proporsional dengan densitas fluida. Gaya berat diakibatkan oleh gaya gravitasi bumi atau gaya centrifugal pada mesin-mesin fluida atau gaya coriolis pada kasus gerak rotasi angin dan arus air laut. Banyak hal yang dapat menyebabkan terjadinya gradient densitas tetapi yang paling sering dijumpai adalah diakibatkan oleh gradient temperatur. Densitas dari gas sangat dipengaruhi oleh temperatur (pers. Gas ideal). Secara matematis  $\partial \rho/\partial T < 0$ .

Dalam hal ini fokus masalah adalah terjadinya gradien densitas akibat adanya gradien temperatur dan gaya berat disebabkan oleh gravitasi.



Gambar 2.1 Gradien densitas yang menghasilkan aliran konveksi bebas (Incropera dan Dewitt, 2006)

Pada gambar 2.1 a) T1 pada bagian atas lebih rendah dari pada T2 dibagian bawah sehingga densitas fluida pada bagian atas lebih besar dari pada densitas fluida di bagian bawah. Ini menyebabkan terjadinya kondisi yang tidak stabil. Fluida di atas yang lebih berat akan mengalir kebawah dan fluifa dibawah yang lebih ringan akan terdesak keatas (fluida mengalir secara natural/arus konveksi bebas). Sedangkan pada gambar 2.1 b)  $T_1$  pada bagian atas lebih tinggi dari pada  $T_2$  dibagian bawah sehingga densitas fluida pada bagian atas lebih kecil dari pada densitas fluida di bagianbawah. Fluida yang ringan di atas dan yang berat dibawah sehingga menghasilkan kondisi yang stabil (fluida diam). Kesimpulannya pada kasus a) perpindahan panas terjadi secara konveksi bebas dan pada kasus b) perpindahan panas terjadi secara konduksi.

Pembahasan ini fokus pada aliran yang berdampingan dengan permukaan padat. Sebagai misal adalah aliran konveksi bebas yang terjadi disekitar permukaan vertikal (plat) yang lebih tinggi suhunya dari pada suhu fluida yang berdampingan dengannya.



Gambar 2.2 Aliran konveksi alami di sekitar plat vertikal(Incropera dan Dewitt, 2006)

Jika Ts > T $\infty$  maka fluida yang berdekatan dengan plat memiliki densitas yang lebih rendah dari pada fluida yang jauh dari plat. Gaya *buoyancy* kemudian mendorong fluida yang densitasnya lebih ringan tersebut mengalir keatas sehingga dapat menarik fluida diam yang berada di sebelah aliran tersebut. Maka terbentuklah distribusi kecepatan aliran seperti aliran paksa.

#### 2.1.2 Gabungan Konveksi Bebas dan Konveksi Paksa

Menurut Incropera dan Dewitt, (2006) konveksi alami dapat diabaikan jika  $(Gr_L/Re_L^2) \ll 1$  dan konveksi paksa dapat diabaikan jika  $(Gr_L/Re_L^2) \gg 1$ . Oleh sebab itu gabungan konveksi alami dan konveksi paksa teletak pada daerah  $(Gr_L/Re_L^2) \approx 1$ . Pengaruh *bouyancy force* pada perpindahan panas *forced flow* sangat dipengaruhi dengan arah gaya *bouyancy* relatif terhadap aliran. Ada tiga kasus khusus yang telah dipelajari secara ekstensif sesuai dengan *bouyancy-induced* dan *forced-motion* memiliki arah yang sama (*assisting flow*), arah yang berlawanan (*opposing flow*) dan arah tegak lurus (*transverse flow*). Gambar 2.3 menunjukkan berbagai daerah untuk konveksi gabungan di dalam pipa vertikal.



Gambar 2.3 Daerah-daerah konveksi alami, paksa dan gabungan untuk aliran dalam pipa (Tanaka et al, 1986)

#### 2.2 Konveksi Aliran Internal

Perpindahan panas konveksi pada aliran internal merupakan salah satu proses perpindahan panas yang cukup rumit karena dipengaruhi oleh banyak faktor. Koefisien perpindahan panas konveksi dipengaruhi oleh orientasi arah aliran terhadap obyek, ukuran (D: diameter dan A: luas permukaan) dan bentuk obyek (plat datar, silinder dll), konduktivitas panas lapisan fluida (k), massa jenis fluida ( $\rho$ ), kekentalan ( $\mu$ : viskositas absolut) fluida, dan juga kapasitas panas jenis fluida pada tekanan konstan (cp). Faktor-faktor tersebut dituangkan dalam bilangan Nusselt, bilangan Reynolds, dan bilangan Prandtl, yang merupakan bilangan tak berdimensi hasil riset para ahli khususnya dalam menemukan persamaan empiris untuk memprediksikan koefisien perpindahan panas konveksi.

#### 2.2.1 Kondisi Aliran

Profil kecepatan pada aliran internal dapat dilihat pada gambar 2.4 dan profil temperatur dapat dilihat pada gambar 2.5.



Gambar 2.4 Profil kecepatan pada aliran internal (Incropera dan Dewitt, 2006)



#### Gambar 2.5 Profil temperatur pada aliran internal Tr,o < Ts (Incropera dan Dewitt, 2006)

Fluida masuk dengan kondisi Tr,o < Ts, maka terjadi perpan konveksi dan mulai terjadi pertumbuhan *thermal bondary layer*.

• Daerah Entri ( Entrance Region)

Panjang yang dibutuhkan agar profil kecepatan menjadi invarian terhadap posisi aksial dikenal sebagai panjang entri (*entry length*). Dalam kebanyakan kasus panjang entri sebuah pipa dapat diabaikan jika dibandingkan dengan panjang totalnya. Kebanyakan perhitungan engineering dilakukan dengan mengasumsikan aliran yang terbentuk penuh di seluruh pipa.

Untuk aliran laminer dan turbulen thermal entry length :

 $\begin{pmatrix} \frac{x_{fd,t}}{D} \end{pmatrix}_{lam} \approx 0.05 \ Re_D Pr \quad \text{termal} \qquad (2.12)$   $\begin{pmatrix} \frac{x_{fd,h}}{D} \end{pmatrix}_{lam} \approx 0.05 \ Re_D \quad \text{hidrodinamik} \qquad (2.13)$   $10 \leq \begin{pmatrix} \frac{x_{fd,h}}{D} \end{pmatrix}_{\text{turb}} \leq 60 \quad \text{hidrodinamik} \qquad (2.14)$ 

Untuk harga Pr > 1 pertumbuhan *hydrodinamic bondary layer* lebih cepat dari pada pertumbuhan *thermal boundary layer*.

Untuk aliran turbulen pengaruh Pr tidak berarti sehingga pendekatannya adalah:

 $\left(X_{fd,t}/D\right) = 10.$ 

#### 2.2.2 Aliran Nonviscous dan Viscous

Dalam mekanika fluida, aliran fluida terbagi atas dua definisi utama yaitu aliran *viscous* dan aliran *non viscous*. Aliran *non viscous* adalah aliran fluida yang memiliki viskositas fluida atau  $\mu = 0$ , dalam kenyataanya aliran yang demikian tidak ada karena setiap fluida pasti akan mempunyai viskositas tertentu. Pengertian aliran *viscous* adalah aliran yang mempunyai kecepatan tepat diatas suatu permukaan padat yang tidak bergerak adalah nol atau tidak terjadi slip sepanjang bidang tempatnya mengalir. Pada batas ketebalan tertentu dari permukaan tempat mengalir terjadi gradasi kecepatan sampai pada suatu titik tertentu dimana kecepatan disitu akan sama dengan kecepatan aliran bebas.

Pada aliran fluida ideal (*non viscous*), semua partikel yang bergerak diatas suatu permukaan padat akan memiliki kecepatan yang seragam, tetapi pada aliran *viscous* akibat pengaruh dari tegangan geser sehingga profil kecepatan fluidanya menjadi tidak seragam seperti gambar 2.6 dibawah ini.



fluida non viscous

fluida viscous

# Gambar 2.6 Perbedaan antara fluida *non* viscous dan viscous

Pada gambar 2.6 terlihat bahwa fluida ideal tepat diatas permukaan pelat datas memiliki kecepatan yang seragam dengan kecepatan udara bebas. Untuk aliran *viscous*, kecepatan fluida tepat diatas permukaan padat sama dengan nol. Semakin jauh dari

permukaan padat, secara berangsur-angsur tegangan geser yang terjadi semakin berkurang, sehingga berangsur-angsur pula kecepatan aliran akan membesar sampai suatu titik tertentu pengaruh tegangan geser terhadap aliran akan hilang sehingga kecepatan aliran akan mencapai harga yang sama dengan aliran bebasnya.

## 2.3 Aliran Laminer dan Turbulen

Untuk *internal flow* diklasifikasikan menjadi aliran laminer dan aliran turbulen. Aliran laminer adalah suatu aliran fluida dimana struktur alirannya terdiri dari pada gerakan partikel–partikel fluida yang berlapis–lapis membentuk garisgaris alir yang tidak berpotongan satu sama lain. Pengertian aliran turbulen adalah aliran fluida yang partikel-partikelnya bergerak secara acak, tidak stabil dengan kecepatan berfluktuasi yang saling interaksi dan partikel yang bergerak tersebut saling mengisi pada badan aliran.

Pada aliran turbulen perkembangannya lebih cepat daripada aliran *laminar*. Dalam aliran fluida proses peralihan dari *laminar* menjadi *turbulent* disebut kondisi transisi. Faktor yang mempengaruhi lamanya proses transisi adalah gradien tekanan, kekasaran permukaan, gaya bodi, dan gangguan aliran beba. Seperti ditunjukkan pada Gambar 2.4, ada perbedaan tajam antara kondisi *laminar* dan *turbulent*. Pada batas *laminar*, pergerakan fluida sangat teratur dan memungkinkan untuk mengidentifikasi partikel–partikel memanjang pada garis *streamline*. Perkembangan lapisan batas laminer dan turbulen ditunjukkan pada Gambar 2.7



Gambar 2.7 Pengembangan lapisan batas kecepatan pada pelat datar (Incropera dan Dewitt, 2006)

layer merupakan lapisan tipis pada solid Boundary surface yang terbatas daerah sangat sempit dekat permukaan kontur dengan kecepatan fluida tidak *uniform s*ebagai pengaruh tegangan geser yang muncul akibat viskositas. Boundary laver akan mengalami perubahan sepanjang perjalanannya melewati permukaan benda padat. Pada pelat datar boundary laver terjadi mulai dari leading edge sebagai laminar boundary layer dimana ketebalannya masih tipis dan partikel fluida bergerak secara berlapis-lapis dan teratur, tetapi pada suatu jarak kritis karena sifat - sifat fluida, gangguan aliran bebas, perpindahan panas dan efek kekasaran permukaan maka mulai terjadi proses transisi hinggga akhirnya aliran menjadi tuirbulen. Perpindahan menjadi turbulen diikuti oleh kenaikan yang cukup berarti pada ketebalan lapisan batas, tahanan geser dinding, dan koefisien konveksi. Karakteristik aliran ini ditentukan oleh nilai suatu besaran yang disebut bilangan Reynolds. Untuk aliran melintasi pelat rata bilangan Reynolds didefinisikan sebagai:

| $u_{\infty} x$ |            |
|----------------|------------|
| Re =           | <br>(2.15) |
| υ              | ` ´        |

dimana

 $u_{\infty}$  = kecepatan aliran bebas (m/s)

x = panjang karakteristik pelat (m)

v = viskositas kinematik fluida (m<sup>2</sup>/s)

Pada lapisan batas turbulen, tiga daerah berbeda dapat dilukiskan. Pada laminar sublayer, transport didominasi oleh difusi dan profil kecepatan adalah mendekati linier. Dan pada lapisan daerah turbulen transport didominasi oleh campuran turbulen.

Pada perhitungan sifat lapisan batas, sering digunakan untuk mengasumsikan bahwa transisi terjadi pada local Xc. Bilangan *Reynolds* kritis adalah nilai dari (Re) dimana transisi terjadi dan untuk aliran luar bilangan tersebut diketahui bervariasi dari  $10^5$  sampai  $3x10^6$ , tergantung pada kekasaran permukaan. Asumsi umum untuk perhitungan lapisan batas untuk pelat horisontal diambil harga *Reynolds* sebesar: Re =  $5x10^5$ , bila bilangan *Reynolds*-nya< $5x10^5$  disebut aliran laminar,  $5x10^5$ <Re< $5x10^8$  disebut aliran transisi dan Re >  $5x10^8$  disebut aliran turbulen.

Pada daerah aliran turbulen, lapisan yang sangat tipis dekat pelat bersifat *laminar* (*laminer sublayer*). Lebih jauh dari permukaan pelat, terdapat aksi *turbulent* dimana masih dipengaruhi oleh viskositas molekul dan konduksi kalor. Daerah ini disebut lapisan buffer (*buffer layer*). Lebih jauh lagi aliran menjadi sepenuhnya turbulen, dan mekanisme utama penukaran kalor dan momentum melibatkan makroskopik fluida yang bergerak kemana- mana didalam aliran.

Aliran laminar tunak dan terbentuk di dalam pipa akan diturunkan dengan mengaplikasikan hukun kedua Newton atau dengan menggunakan persamaan Navier-stokes yang tepat. Pendekatan elemen fluida dapat dianggap sebagai massa fluida pada suatu momen tertentu. Bilangan *Reynolds* untuk kebanyakan aliran di dalam saluran melebihi batas aliran laminar. Jika aliran dimulai dari kondisi diam, aliran tersebut akan dengan cukup kuat mengalami transisi menjadi aliran turbulen.

## 2.4 Rapat Massa dan Volume Spesifik

Rapat massa ( $\rho$ ) dari suatu fluida adalah massa yang mengisi satu satuan volume, sebaliknya volume spesifik ( $\nu$ ) adalah volume yang diisi oleh satu satuan massa. Rapat massa dan volume spesifik saling berkaitan satu sama lain. Rapat massa nitrogen pada tekanan atmosfer standar dengan suhu 25°C mendekati 1,1233 kg/m<sup>3</sup>.

## 2.5 Persamaan Energi

Persamaan energi pada hukum pertama termodinamika memiliki kegunaan pada saat perpindahan kalor atau usaha yang ingin diketahui, seperti pada persamaan berikut:

Persamaan energi

 $Q - \dot{W}_{s} - \dot{W}_{shear} - \dot{W}_{other} = \frac{\partial}{\partial t} \int_{cv} e\rho \ dV + \int_{cs} (e+pv) \ \rho \overline{V} d\overline{A}$ (2.16)

dimana, 
$$e=u+\frac{\mathbf{v}^2}{2}+gz$$

dengan asumsi : 1. Ws=0, Wother=0, Wshear=0

2. *Steady flow* 

3. Incompressible flow

4. Energi dalam dan tekanan seragam

5.Perubahan energi dalam diabaikan

6. Perubahan energi kinetik diabaikan

7. Perubahan energi potensial diabaikan

sehingga persamaan menjadi:

 $Q = \rho.\dot{m}.(P_2-P_1)$  .....(2.17)

## 2.6. Boussinesq Equation

Pada banyak kasus konveksi alami, untuk mendapatkan proses konvergensi lebih cepat yaitu dengan menggunakan model *Boussinesq* melalui pengaturan densitas fluida sebagai fungsi dari temperatur. Model ini memperlakukan densitas sebagai nilai konstan dalam semua penyelesaian persamaan, kecuali untuk *bouyancy* dalam persamaan momentum :

$$(\rho - \rho_0)g \approx -\rho_0\beta(T - T_0)g_{(2.18)}$$

dimana,  $\rho_0$  merupakan densitas konstan sepanjang aliran,  $T_0$  merupakan temperatur operasi dan  $\beta$  merupakan termal koefisien ekspansi.

## 2.7 Penelitian Terdahulu

Berikut ini adalah beberapa penelitian terdahulu yang terkait dengan gabungan konveksi paksa dan konveksi alami aliran dalam sebuah heated pipe :

# 2.7.1 Hiroaki Tanaka et al (1986)

Pada penelitian terdahulu yang dilakukan oleh hiroaki Tanaka et al pada kasus *Combined forced and natural convection heat transfer for upward flow in a uniformly heated, vertical pipe* dengan tujuan mempelajari karaktristik aliran turbulen konveksi gabungan pada aliran yang mengalir di dalam heated pipe, pipa tersebut memiliki dimensi panjang (L) = 2530 mm dan diameter (d) = 23 mm. Eksperimen dilakukan dengan cara memvariasikan *heat flux* dan *Grashof number* pada *Reynolds number* tertentu, sehingga nantinya akan menghasilkan plot data distribusi temperatur *heated wall*, selain itu juga terdapat *solid line* yang menunjukkan *bulk* temperatur seperti pada gambar 2.8.


Gambar 2.8 Distribusi Temperatur Dinding Pada Tiga Nilai Grashof Number dengan Reynold Number Konstan 3000 (Hiroaki Tanaka et al, 1986)

Pada eksperimen tersebut didapatkan distribusi temperatur dinding dengan variasi nilai *Grashof number* yaitu Gr =  $4.5 \times 10^3$ , Gr =  $9.7 \times 10^4$  dan Gr =  $7.4 \times 10^5$  dengan nilai *Reynolds number* konstan sebesar Re = 3000.

Selain itu terdapat pula Grafik perbandingan *Grashof number* dan *Reynolds number* untuk mengetahui letak aliran laminar, turbulent *forced convection*, *turbulent natural convection* dan *turbulent convection* seperti *mixed* gambar 2.9.



Gambar 2.9 Plot Data Eksperimen pada Rezim Combined Forced and Natural Convection (Hiroaki Tanaka et al, 1986)

Pada gambar 2.9 terlihat bahwa terbagi antara daerah *natural convection, forced convection* dan*mixed convection*, tergantung dari nilai  $Gr_L/Re_L^2$  nya. Semakin kecil nilai dari  $Gr_L/Re_L^2$  maka daerah tersebut akan mendekati daerah *natural convection*.

#### 2.7.2 Mehdi dan Mehrdad (2008)

Mehdi dan Mehrdad dalam *paper*nya yang berjudul *Investigation of turbulent mixed convection of air flow in vertical tubes using a zonal turbulence model*, melakukan simulasi numerik terhadap eksperimen yang telah dilakukan oleh Li dan Jackson (1999). Pada eksperimen tersebut digunakan Gr = 29.7x10<sup>8</sup> (*upward*), Re = 38075 dengan Bo=0.0064 dan Gr = 2.423x10<sup>8</sup>, Re = 24591 (*downwrd*) dengan Bo=0.0233 untuk pengaruh gaya *bouyancy* yang diabaikan, Gr = 1.145x10<sup>8</sup>, Re = 7220 dengan Bo=0.7317 untuk pengaruh gaya *bouyancy* yang kecil serta Gr = 8.247x10<sup>7</sup>, Re = 2133 dengan Bo=34.3111 untuk pengaruh gaya *bouyancy* yang besar. Dari simulasi numerik yang telah dilakukan, didapatkan hasil perbandingan *Nusselt number* dari hasil simulasi dengan data eksperimen li dan Jackson (1999), seperti yang ditunjukkan pada gambar 2.10 dan 2.11.



Gambar 2.10 Perbandingan prediksi Nusselt number dari hasil simulasi dengan data eksperimen untuk *upward flow* (Mehdi dan Mehrdad, 2008)

Gambar 2.10 menunjukkan bahwa data hasil simulasi yang telah dilakukan oleh Mehdi dan Mehrdad (2008) sudah mendekati data eksperimen vang telah dilakukan oleh Li dan Jackson (1999). Untuk aliran upward, sepanjang pertumbuhan thermal boundary laver, perpindahan panas antara dinding dengan perbatasan fluida lambat. Selanjutnya pada bagian downstream efek dari gaya bouyancy akan timbul, percepatan aliran pada area di dekat dinding menyebabkan gaya bouyancy semakin besar Penambahan profil kecepatan akan memperkuat mekanisme konveksi sehingga akan meningktkan perpindahan panas yang mana diamati pada distribusi *Nusselt number* saat  $z/D^{\otimes}15$ .



Gambar 2.11 Perbandingan prediksi Nusselt number dari hasil simulasi dengan data eksperimen untuk *downward flow* (Mehdi dan Mehrdad, 2008)

Gambar 2.11 menunjukkan distribusi *Nusselt nu*mber untuk aliran *downward*, dapat dilihat bahwa data hasil simulasi yang telah dilakukan oleh Mehdi dan Mehrdad (2008) sudah mendekati data eksperimen yang telah dilakukan oleh Li dan Jackson (1999), tetapi pada z/D $\approx$ 0 sampai z/D $\approx$ 20 menunjukkan hasil yang berbeda. Pada daerah awal terlihat bahwa pemanasan tidak seragam, perbedaan ini diakibatkan oleh efek kombinasi dari *thermal boundary layer* dan gaya *bouyancy* yang kuat. Pada awal daerah pemanasan, pergerakan fluida di dekat dinding diperlambat oleh gaya *bouyancy* yang berpengaruh signifikan. Hal ini dapat menurunkan konveksi yang tejadi, tetapi juga meningkatkan pergolakan aliran.

#### 2.7.3 Cotton dan Jackson (1989)

Cotton dan Jackson dalam paper nya yang berjudul Vertical tube air flows in the turbulent mixed convection regime calculated using a low Reynolds number  $k-\varepsilon$  model, melakukan

simulasi numerik menggunakan  $k-\varepsilon$  turbulence model terhadap data hasil eksperimen Carr et al (1973). Pada eksperimen tersebut digunakan 5000 $\leq$ Re $\leq$ 5400 dan 1.06x10<sup>7</sup> $\leq$ Gr $\leq$ 2.27x10<sup>7</sup>, dari simulasi numerik yang telah dilakukan didapatkan hasil perbandingan seperti pada gambar 2.12.



# Gambar 2.12 Profil kecepatan ascending flow, perbandingan data Carr et al.

#### (Cotton dan Jackson, 1989)

Pada gambar 2.12 terlihat bahwa data hasil simulasi sudah mendekati data hasil eksperimen pada daerah z/D=103.45, pada z/D=103.45 merupakan daerah *fully developed* sehingga efek gaya *bouyancy* nya cukup besar. Hal ini menunjukkan bahwa hasil simulasi yang telah dilakukan oleh Cotton dan Jackson (1989) berhasil. Pada daerah dekat dinding memiliki kecepatan tinggi karena pengaruh gaya *bouyancy* yang tinggi. Kemudian aliran akan mengalami penurunan kecepatan seiring dengan bertambahnya jarah terhadap *heated wall*. Hal tersebut dikearenakan pengaruh gaya *bouyancy* semakin berkurang.

#### 2.7.4 Forooghi dan Hooman (2013)

Forooghi dan Hooman dalam papernya yang berjudul Numerical study of turbulent convection in inclined pipe with *significant bouyance ifluence*, melakukan simulasi numerik terhadap sebuah pipa dengan menggunakan model turbulensi *V2F eddy visosity*. Forooghi dan Hooman (2013) membandingkan dengan *DNS* model yang telah dilakukan oleh You et al (2003) dan hasil eksperimen yang telah dilakukan oleh Jackson et al (1989). Berikut ini adalah hasil perbandingan *Nusselt number* dengan gaya *bouyancy* yang ditunjukkan pada gambar 2.13



Gambar 2.13 Variasi nilai Nu/Nu<sub>FC</sub> dengan parameter bouyancy untuk aliran vertikal dengan perbedaan Reynolds number (Forooghi dan Hooman, 2013)

Pada gambar 2.13 terlihat bahwa terjadi penurunan nilai Nusselt number pada nilai bouyancy dibawah 10<sup>-5</sup> kemudian terjadi peningkatan nilai *Nusselt number* pada nilai bouyancy di atas 10<sup>-5</sup>. Dari hasil simulasi yang telah dilakukan oleh Forooghi dan Hooman (2013) pada Re=40.000 untuk nilai *bouyancy* yang rendah data hasil simulasi mendekati data hasil eksperimen Jackson et al (1989). Untuk nilai Re=5300 dan Re=20.000 baik pada nilai *bouyancy* yang rendah ataupun tinggi, data hasil simulasi tidak mendekati data eksperimen. Sedangkan untuk simulasi menggunakan *DNS* data hasil simulasi mendekati data eksperimen pada nilai *bouyancy* yang tinngi.

#### BAB III

#### METODOLOGI PENELITIAN

Bab ini menjelaskan langkah-langkah yang digunakan dalam penyelesaian masalah pada Tugas Akhir ini. Di samping itu, dijelaskan pula geometri pada model yang akan digunakan, prosedur dan proses pelaksanaan tiap-tiap langkah yang dilakukan dalam menyelesaikan Tugas Akhir ini, metodologi penyelesaian yang digunakan adalah pemodelan numerik (CFD).

Tugas Akhir ini mensimulasikan aliran yang mengalir di dalam *heated pipe* dengan memvariasikan *Reynolds number* dan *Grashof number* dengan *heat flux* konstan. Berikut ini adalah nilai variasi dari *Reynolds number* dan *Grashof number* yang ditunjukkan pada tabel 3.1.

| No | Re   | Gr                  | q"(W/m²) |
|----|------|---------------------|----------|
| 1  | 3000 | 4.5x10 <sup>3</sup> | 57       |
| 2  | 3000 | 9.7x10 <sup>4</sup> | 102      |
| 3  | 3000 | 7.4x10 <sup>5</sup> | 111      |
| 4  | 5000 | 4.5x10 <sup>3</sup> | 57       |
| 5  | 5000 | 9.7x10 <sup>4</sup> | 102      |
| 6  | 5000 | 7.4x10 <sup>5</sup> | 111      |

**Tabel 3.1 Parameter Data Perencanaan** 

Dengan gambar model uji seperti yang ditunjukkan pada gambar 3.1.



Gambar 3.1 Model Benda Uji

## 3.1 Metode Numerik

Penelitian numerik dilakukan dengan menggunakan metode *Computational Fluid Dynamics* (*CFD*) dengan membuat model awal dan melakukan diskritisasi (*meshing*) pada model tersebut. Prosedur yang dilakukan pada penelitian numerik adalah tahap *pre-processing* dan dilanjutkan dengan tahap *post*-processing.

## 3.1.1 Tahap pre-processing

a) Membuat model dan geometri berupa sebuah pipa vertikal 2-dimensi dengan dimensi panjang (L)=2530

mm, diameter (D)=23 mm dan *entrance length* (L)=60xD=1380 mm, seperti yang terlihat pada gambar 3.2.



Gambar 3.2 Domain fisis benda uji

Pada gambar 3.2 terlihat bahwa terdapat penambahan *entrance lenght* pada bagian awal pipa dengan tujuan pada saat memasuki daerah heated wall aliran sudah *fully* 

*developed* agar profil kecepatan sudah tidak berubah, sehingga pengaruh *heat flux* terhadap aliran fluida sepanjang *heated wall* sama, sedangkan pada bagian akhir pipa ditambahkan *wall* dengan tujuan agar propertis fluida *uniform* setelah keluar dari daerah *heated wall*.

b) Membuat *meshing* dengan tipe *quad-map*. Mesh dilakukan agar kondisi batas dan parameter yang diperlukan dapat di aplikasikan dalam volume-volume kecil. Meshing dilakukan dengan cara membagi model solid menjadi volume-kecil. Bentuk meshing yang dipilih adalah *quad-map*, untuk daerah dekat dinding digunakan *mesh boundary layer*. *Meshing* pada penelitian ini dapat ditunjukkan pada gambar 3.3.



Gambar 3.3 *Meshing* pada *Model Uji* dengan Quad-map

c) Memeriksa Kualitas Mesh

Kualitas *mesh* sangat berpengaruh terhadap keakuratan dan konvergensi. Kualitas *mesh* yang rendah akan menghasilkan solusi yang kurang akurat dan waktu konvergensi yang lama, adapun kualitas *mesh* yang disarankan adalah dibawah 0.45.

d) Mendefinisikan kondisi batas yaitu penentuan parameterparameter dan batasan yang mungkin terjadi pada aliran. Kondisi batas *inlet* adalah *velocity inlet* dan *outlet* adalah *outflow*. Pada penelitian ini juga menggunakan kondisi batas *axisymmetri* 

## 3.1.2 Tahap post-processing

a) Grid

Langkah awal adalah melakukan *read* untuk hasil data, kemudian dilakukan pengecekan *grid*. Setelah itu ditentukan skala, pada penelitian ini menggunakan skala dalam meter.

b) Models

Pada langkah ini dilakukan pemodelan karakteristik aliran, meliputi pemilihan model *solver* yaitu *space axisymmetric* dengan time yang *steady* dan penentuan *turbulence model* yang digunakan. *Turbulence model* yang digunakan adalah *standard k-ɛ enhanced wall treatment*, pada langkah ini juga dilakukan pengaktifan *energy equation*.

c) Materials

Merupakan penetapan jenis material yang akan digunakaan yaitu gas nitrogen ( $N_2$ ) dengan *density Boussinesq* ( $\rho$ ) 1,1233 kg/m<sup>3</sup>.

d) Operating Conditions

Menentukan kondisi daerah operasi dan lingkungan di sekitar benda uji. Operating conditions menggunakan

*operating pressure* sebesar 123000 Pascal, pada tahap ini juga diaktifkan grafitasi sebesar -9.81 ke arah Y.

e) Boundary Conditions

Menentukan parameter-parameter dan batasan yang terjadi pada aliran yang melewati model uji pada *inlet* maupun *outlet*. Pada daerah *inlet* diasumsikan sebagai *velocity inlet* dan outlet diasumsikan sebagai *outflow* dengan nilai kecepatan masing-masing yang telah ditentukan dari hasil perhitungan. Sedangkan *wall* diasumsikan sebagai *heated wall* dengan *heat flux* konstan yang telah ditentukan dari data eksperimen, seperti yang terlihat pada gambar 3.4.



Gambar 3.4 Boundary condition Model Uji

f) Solution

Solution pada penelitian ini akan menggunakan discretization second order untuk pressure, second order upwind untuk momentum, turbulence kinetic energy dan turbulence dissipation rate, dan Quick untuk energy.

g) Initialize

Merupakan langkah perhitungan awal untuk memudahkan dalam mendapatkan hasil yang konvergen pada tahap iterasi. *Initialize* dihitung dari *inlet*, untuk *velocity inlet* yang dimasukkan dalam perhitungan, ditunjukkan pada tabel 3.2.

Tabel 3.2 Velocity inlet yang dimasukkan dalamperhitungan.

| No | Re   | Gr                  | q"(W/m²) | V(m/s) |
|----|------|---------------------|----------|--------|
| 1  | 3000 | 4.5x10 <sup>3</sup> | 57       | 2.106  |
| 2  | 3000 | 9.7x10 <sup>4</sup> | 102      | 2.02   |
| 3  | 3000 | 7.4x10⁵             | 111      | 1.95   |
| 4  | 5000 | 4.5x10 <sup>3</sup> | 57       | 3.51   |
| 5  | 5000 | 9.7x10 <sup>4</sup> | 102      | 3.36   |
| 6  | 5000 | 7.4x10⁵             | 111      | 3.256  |

h) Monitor Residual

Merupakan tahapan untuk penyelesaian masalah, berupa proses iterasi sampai mencapai harga kriteria konvergensi yang diinginkan. Untuk kriteria konvergensi ditetapkan sebesar 10<sup>-6</sup>, artinya proses iterasi dinyatakan telah konvergen setelah residualnya mencapai harga di bawah 10<sup>-6</sup>.

i) Iterate

Merupakan langkah kelanjutan dari *monitor residual* yang merupakan langkah perhitungan. Pada tahap ini dilakukan iterasi sampai *convergence criterion* sebesar 10<sup>-6</sup>.

j) Post Processing

Merupakan penampilan hasil yang telah diperoleh. Dapat divisualisasikan melalui tampilan *grid display*, plot kontur (tekanan, kecepatan), plot *vector* dll sesuai dengan yang ingin digunakan pada analisa.

## 3.2 Diagram Alir Penelitian

Berikut adalah langkah-langkah proses pengerjaan yang dilakukan dalam penelitian Tugas Akhir ini seperti yang ditunjukkan pada gambar 3.5.



Gambar 3.5 diagram Alir Penelitian

## 3.3 Validasi dan Pembahasan Hasil Penelitian

Dalam penelitian ini dilakukan variasi beberapa *Reynolds* number dan *Grashof number* dan hasil masing-masing variasi akan dibandingkan. Untuk mengetahui akurasi simulasi, dilakukan validasi dengan data hasil eksperimen. Data distribusi temperatur yang telah didapat dari kalkulasi numerik dibandingkan dengan data eksperimen yang telah didapat oleh Hiroaki Tanaka et al (1986). Error didapatkan dari perhitungan |Teksperimen-Tsimulasi| x100%.

T eksperimen

## 3.4 Alokasi Waktu Penelitian

Penelitian yang dilakukan dijadwalkan dalam waktu 7 bulan dengan rincian kegiatan pada tabel 3.3 di bawah ini: **Tabel 3.3 Alokasi waktu penelitian** 



## **BAB IV** ANALISA DAN PEMBAHASAN

Bab ini menjelaskan analisa dan pembahasan berdasarkan pengolahan data yang telah dijabarkan pada bab sebelumnya. Data yang diperoleh dari penelitian berupa data kuantitatif dan data kualitatif. Data kuantitatif dipresentasikan dalam dalam bentuk grafik sedangkan data kualitatif merupakan visualisasi aliran. Data tersebut digunakan untuk menganalisa karakteristik aliran di dalam sebuah pipa yang dipanaskan. Data dari hasil eksperimen akan dibandingkan dengan data hasil numerik dalam bentuk grafik profil temperatur. Sebagai data pendukung, akan diambil grafik distribusi kecepatan dan grafik distribusi tekanan. Visualisasi aliran yang didapatkan berupa kontur kecepatan, kontur temperatur dan kontur tekanan.

#### 4.1 Grid Independency

Pada penelitian ini telah dilakukan simulasi numerik tentang konveksi campuran aliran dalam heated pipe. Untuk menunjukkan bahwa hasil komputasi tidak dipengaruhi oleh kerapatan grid, maka dilakukan grid independency dengan menggunakan empat *meshing* yang berbeda, dimana kerapatannya semakin bertambah dari mesh A hingga mesh D. Error dari setap meshing dihitung menggunakan data validasi dari eksperimen Hiroaki Tanaka et al (1986). Error didapatkan dari perhitungan  $\frac{|T \ eksperimen - T \ simulasi|}{x100\%} x100\%$  Hasi dari grid independency

vang telah dilakukan dengan empat meshing yang berbeda ditunjukkan pada tabel 4.1 dan gambar 4.1.

#### Tabel 4.1 Analisa grid independency

| Mesh | Cell   | Aspect<br>ratio | Error Wall<br>Temperature |
|------|--------|-----------------|---------------------------|
| 1    | 46000  | 1:5             | 4.734                     |
| 2    | 86917  | 1:2             | 1.549                     |
| 3    | 115874 | 1:1,5           | 1.543                     |
| 4    | 173788 | 1:1             | 1.519                     |



#### Gambar 4.1 Analisa grid indepenency

Pada gambar 4.1 ditunjukkan grafik distribusi temperatur pada *heated wall* dengan jumlah *meshing* yang berbeda. Dari hasil analisa yang dilakukan, *mesh* 2 hingga *mesh* 4 menunjukkan hasil yang sama, baik dari bentuk grafik maupun nilai kuantitatif yang ditunjukan. Hal tersebut juga terlihat pada tabel 4.1 dari perubahan *error* yang kecil dari setiap kenaikkan kerapatan *mesh* 2 hingga mesh 4. Berbeda hasil yang ditunjukkan mesh 1, dengan jumlah *cell* yang lebih sedikit dari pada ketiga *mesh* yang lain, hasil yang ditunjukkan memiliki error paling tinggi. Dari tabel 4.1 dan gambar 4.1 ditunjukkan perbedaan kerapatan mesh dan *error* dari masing-masing *meshing* maka dipilih *mesh* 2 untuk digunakan pada analisa selanjutnya dikarenakan *error mesh* 2 hinggga mesh 4 relatif konstan sehingga dipilih jumlah *mesh* yang paling sedikit untuk meringankan kinerja dari komputer dan mempercepat running.

#### 4.2 Pengelompokan Data Untuk Daerah Konveksi Alami, Paksa dan Campuran

Data eksperimen yang telah dilakukan oleh Hiroaki Tanaka et al (1986) dikelompokkan menjadi daerah *turbulent natural convection*, *turbulent mixed convection*, *turbulent forced convection* dan *laminar flow* seperti pada gambar 4.2.



Gambar 4.2 Data Untuk Daerah Konveksi Alami, Paksa dan Campuran

Gambar 4.2 menunjukkan daerah analisa untuk data eksperimen yang telah dilakukan oleh Hiroaki Tanaka et al (1986). Jika merujuk pada daerah analisa di atas, maka data simulasi yang telah dilakukan dapat dikelompokkan sebagai berikut : untuk Re=3000, Gr= $4.5 \times 10^3$  masuk dalam daerah *turbulent forced convection*, Gr= $9.7 \times 10^4$  masuk dalam daerah *laminar flow*, Gr= $7.4 \times 10^5$  masuk dalam daerah *turbulent mixed convection*, untuk Re=5000, Gr= $4.5 \times 10^3$  masuk dalam daerah

*turbulent forced convection*,  $Gr=9.7x10^4$  masuk dalam daerah *turbulent forced convection* dan  $Gr=7.4x10^5$  masuk dalam daerah *turbulent mixed convection*. Pada kasus ini, untuk Re=3000 aliran fluida tidak selalu turbulent, tetapi dapat berubah menjadi laminar dengan ditunjukkan pada gambar 4.3.



Gambar 4.3 Reaksi signal dari hot-wire yang ditempatkan pada y=1.65 mm, untuk variasi Grashof number dengan Reynolds number konstan pada 3000 : A, Gr=4.5x10<sup>3</sup>; B, Gr=2.7x10<sup>4</sup>; C, Gr=4.7x10<sup>4</sup>; D, Gr=9.7x10<sup>4</sup>; E, Gr=2.6x10<sup>5</sup>; F, 7.4x10<sup>5</sup>.

### 4.3 Pengelompokan Data Untuk Daerah Konveksi Alami, Paksa dan Campuran Menurut Incropera dan Dewitt (2006)

Berdasarkan Incropera dan Dewitt (2006), pengelompokan data untuk daerah konveksi alami, paksa dan campuran seperti gambar 4.4.



Gambar 4.4 Data Untuk Daerah Konveksi Alami, Paksa dan Campuran

Gambar 4.4 menunjukkan pengelompokan data konveksi alami, paksa dan campuran, menurut Incropera dan Dewitt, (2006) konveksi alami dapat diabaikan jika  $(Gr_L/Re_L^2) \ll 1$  dan konveksi paksa dapat diabaikan jika  $(Gr_L/Re_L^2) \gg 1$ . Oleh sebab itu gabungan konveksi alami dan konveksi paksa teletak pada daerah  $(Gr_L/Re_L^2) \approx 1$ . Jika merujuk pada Incropera dan Dewitt, (2006), data-data di atas dapat dikelompokka menjadi konveksi paksa terkecuali pada Gr=7.4x10<sup>5</sup> untuk Re=3000 memiliki nilai Gr/Re<sup>2</sup> mendekati 1 sehingga masuk dalam konveksi campuran.

#### 4.4 Validasi Data Simulasi Numerik

Untuk membuktikan keakuratan data hasil simulasi yang sudah dilakukan, maka perlu dilakukan validasi untuk membandingkan dengan data hasil eksperimen yang telah dilakukan oleh Hiroaki Tanaka et al (1986) seperti pada gambar 4.5.



Gambar 4.5 Perbandingan Distribusi temperatur wall data simulasi dengan eksperimen pada Re=3000

Gambar 4.5 menunjukkan trend line distribusi temperatur heated wall dengan nilai Grashof numer yang berbeda. Dari ketiga nilai Grashof number, trend line distribusi temperatur heated wall pada masing-masing Grashof number terus meningkat seiring dengan bertambahnya X/D. Pada Gr=9.7x10<sup>4</sup> dan Gr=7.4x10<sup>5</sup> mengalami peningkatan temperatur yang cukup tajam, sementara itu pada pada Gr=4.5x10<sup>3</sup> kenaikan temperatur vang terjadi tidak terlalu signifikan. Pada Gr=9.7x10<sup>4</sup> memiliki kenaikan temperatur sebesar  $\Delta T=25.67^{\circ}C$ , pada Gr=7.4x10<sup>5</sup> memiliki kenaikan temperatur sebesar  $\Delta T=25.77^{\circ}C$  sedangkan  $Gr=4.5x10^3$  memiliki kenaikan temperatur sebesar pada  $\Delta T=12.81$  °C. *Trendline* grafik tersebut sesuai dengan persamaan 2.9 dimana *Grashof number* yang tinggi memiliki  $\Delta T$  yang tinggi.

Hasil perbandingan distribusi temperatur *wall* data simulasi dengan eksperimen pada  $Gr=4.5x10^3$ ,  $Gr=7.4x10^5$ ,  $Gr=9.7x10^4$  menunjukkan perbedaan yang tidak signifikan, hal ini

ditunjukkan dengan *trendline* grafik numerik yang berhimpit dengan eksperimen dan ditunjukkan dengan nilai *error* rata-rata sepanjang pipa. Pada Gr= $4.5 \times 10^3$  memiliki *error* sebesar 1.54%, pada Gr= $7.4 \times 10^5$  memiliki *error* sebesar 2.32% dan pada Gr= $9.7 \times 10^4$  memiliki *error* sebesar 8.06%. Pada Gr= $9.7 \times 10^4$ memiliki *error* yang cukup besar, hal ini dikarenakan untuk Gr= $9.7 \times 10^4$  pada eksperimen yang telah dilakukan oleh Hiroaki Tanaka (1986) masih termasuk dalam aliran *laminar*, sedangkan simulasi dilakukan dengan pemodel turbulensi dimana aliran dianggap sebagai aliran *turbulent*, sehingga data hasil simulasi sudah dikategorikan baik (*error* < 5%). Dengan validasi data ini, maka pengambilan data selanjutnya sudah dapat dilakukan.

#### 4.5 Analisa Data Kuantitatif

## 4.5.1 Distribusi Temperatur Fluida Dalam *Heated Pipe* Pada Re=3000

Data distribusi temperatur fluida dalam *heated pipe* diambil pada tiga penampang, yaitu daerah awal (Y/L=0), daerah tengah (Y/L=0.5), dan daerah akhir (Y/L=1.0) dengan hasil seperti yang ditunjukkan pada gambar 4.6.



Gambar 4.6 Distribusi Temperatur *Heated Wall* Pada Re=3000

Gambar 4.6 menunjukkan distribusi temperatur fluida dalam heated pipe pada Reynolds number konstan 3000 dengan  $Gr=4.5x10^3$ ,  $Gr=9.7x10^4$ , dan  $Gr=7.4x10^5$ . Dari ketiga Grashof number yang berbeda, memiliki pola kenaikan temperatur yang Untuk  $Gr=4.5 \times 10^3$ , pada daerah awal pemanasan sama. menunjukkan trend line temperatur yang naik ketika semakin mendekati daerah heated wall, pada daerah tengah pemanasan menunjukkan trend line temperatur yang meningkat cukup tajam ketika mendekati daerah heated wall, begitu pula dengan daerah akhir pemanasan menunjukkan trend line temperatur yang meningkat cukup tajam ketika mendekati daerah heated wall. Hal ini menunjukkan bahwa temperatur heated wall semakin meningkat seiring dengan bertambahnya panjang heated wall tesebut, hal ini terjadi diakibatkan adanya kecepatan pada daerah inlet, sehingga temperatur heated wall akan semakin tinggi dengan bertambahnya jarak heated wall tersebut.

Untuk Gr= $9.7 \times 10^4$  dan Gr= $7.4 \times 10^5$  memiliki *trend line* grafik yang sama seperti pada Gr= $4.5 \times 10^3$ . Pada Gr= $4.5 \times 10^3$  memiliki kenaikan temperatur sebesar  $\Delta T$ = $13.20^{\circ}$ C, pada Gr= $9.7 \times 10^4$  memiliki kenaikan temperatur sebesar  $\Delta T$ = $23.92^{\circ}$ C dan pada Gr= $7.4 \times 10^5$  memiliki kenaikan temperatur sebesar  $\Delta T$ = $26.56^{\circ}$ C. Sehingga dapat disimpulkan bahwa semakin besar nilai dari *Grashof number* akan menghasilkan kenaikan temperatur yang semakin tinggi.

## 4.5.2 Distribusi Temperatur Fluida Dalam *Heated Pipe* Pada Re=5000

Data distribusi temperatur fluida dalam *heated pipe* diambil pada tiga penampang, yaitu pada daerah awal (Y/L=0), daerah tengah (Y/L=0.5), dan daerah akhir (Y/L=1.0) dengan hasil seperti yang ditunjukkan pada gambar 4.7.



Gambar 4.7 Distribusi Temperatur Fluida Dalam *Heated Pipe* Pada Re=5000

Gambar 4.7 menunjukkan distribusi temperatur fluida dalam heated pipe pada Reynolds number konstan 5000 dengan  $Gr=4.5x10^3$ ,  $Gr=9.7x10^4$ , dan  $Gr=7.4x10^5$ . Dari ketiga Grashof number yang berbeda, memiliki pola kenaikan temperatur yang Untuk  $Gr=4.5\times10^3$ , pada daerah awal pemanasan sama. menunjukkan trend line temperatur yang naik ketika semakin mendekati daerah heated wall, pada daerah tengah pemanasan menunjukkan trend line temperatur yang meningkat cukup tajam ketika mendekati daerah heated wall, begitu pula dengan daerah akhir pemanasan menunjukkan *trend line* temperatur yang meningkat cukup tajam ketika mendekati daerah heated wall. Hal ini menunjukkan bahwa temperatur heated wall semakin meningkat seiring dengan bertambahnya panjang heated wall tesebut, hal ini terjadi diakibatkan adanya kecepatan pada daerah inlet, sehingga temperatur heated wall akan semakin tinggi dengan bertambahnya jarak heated wall tersebut.

Untuk Gr= $9.7 \times 10^4$  dan Gr= $7.4 \times 10^5$  memiliki *trend line* grafik yang sama seperti pada Gr= $4.5 \times 10^3$ . Pada Gr= $4.5 \times 10^3$  memiliki kenaikan temperatur sebesar  $\Delta T$ = $8.19^{\circ}$ C, pada

Gr=9.7x10<sup>4</sup> memiliki kenaikan temperatur sebesar  $\Delta$ T=14.94°C dan pada Gr=7.4x10<sup>5</sup> memiliki kenaikan temperatur sebesar  $\Delta T=16.41$ °C. Sehingga dapat disimpulkan bahwa semakin besar dari Grashof number akan menghasilkan kenaikan nilai temperatur yang semakin tinggi. Jika dibandingkan dengan Re=3000. Re=5000 memiliki kenaikan temperatur vang cenderung lebih kecil, hal ini dikarenakan pada Re=5000 memiliki mass flow rate yang lebih besar dibandingkan pada Re=3000

## 4.5.3 Distribusi Profil Kecepatan Dalam *Heated Pipe* Pada Re=3000 dan Re=5000

Data distribusi kecepatan dalam *heated pipe* diambil pada tiga penampang, yaitu pada daerah awal (Y/L=0) dan daerah akhir (Y/L=1.0) dengan hasil seperti yang ditunjukkan pada gambar 4.8.



Gambar 4.8 Distribusi Profil Kecepatan *Heated Wall* Pada Re=3000 dan Re=5000

Gambar 4.8 menunjukkan distribusi profil kecepatan dalam *heated pipe* pada *Reynolds number* konstan 3000 dengan

Gr=4.5x10<sup>3</sup>, Gr=9.7x10<sup>4</sup>, dan Gr=7.4x10<sup>5</sup>. Dari ketiga *Grashof* number yang berbeda, memiliki pola penurunan kecepatan yang sama. Pada daerah awal pemanasan menunjukkan *trend line* kecepatan yang menurun ketika semakin mendekati daerah *heated* wall. Hal tersebut sudah sesuai dengan teori profil kecepatan, bahwa kecepatan akan semakin menurun ketika mendekati daerah dinding. Pada daerah tengah pemanasan dan daerah akhir pemanasan memiliki *trend line* penurunan nilai kecepatan yang sama. Untuk *Grashof number* yang sama, tidak tampak perubahan profil kecepatan ketika fluida menerima pemanasan, dengan demikian perubahan *thermal boundary layer* tidak mempengaruhi profil kecepatan.

Dengan adanya peningkatan *Grashof number*, maka bouyancy force akan semakin besar, tetapi terlihat pada gambar 4.8 bahwa dengan semakin bertambahnya Grashof number tidak terjadi perubahan profil kecepatan sepanjang aliran, hal ini menunjukkan bahwa pada simulasi ini bouyancy force tidak banyak berpengaruh sehingga dengan bertambahnya *Grashof number* profil kecepatan sepanjang aliran sama. Dengan profil kecepatan yang sama maka tingkat turbulensi pada ketiga *Grashof number* tersebut sama sehingga mengakibatkan kecepatan di dekat dinding tidak berubah. Pada Re=5000 terlihat bahwa terjadi perubahan kecepatan, hal ini dikarenakan semakin besar *Reynolds number* menunjukkan profil kecepatan di dekat dinding lebih turbulen.

# 4.5.4 *Pressure Drop* Sepanjang Pipa Pada Re=3000 dan Re=5000

Pada penelitian ini terjadi *pressure drop* yang cukup besar dikarenakan oleh pipa pada penelitian ini sangat panjang. Untuk pengambilan data *pressure drop*, *pressure drop* berdasarkan selisih antara tekanan pada sisi *inlet* dan tekanan pada sisi *outlet*. Pada distribusi *pressure drop* ini, dibandingkan antara distribusi tekanan pada Re=3000 dan Re=5000 seperti yang ditunjukkan pada gambar 4.9.





Gambar 4.9 menunjukkan *pressure drop* yang terjadi sepanjang pipa. Pada Re=3000 terlihat bahwa *trend line* grafik menunjukkan penurunan *pressure drop* ketika *Grashof number* mengalami peningkatan. Untuk Gr=4.5x10<sup>3</sup> memiliki *pressure drop* tertinggi yaitu sebesar  $\Delta P=27.21$  Pa, Gr=9.7x10<sup>4</sup> memiliki pressure drop sebesar  $\Delta P=25.46$  Pa dan Gr=7.4x10<sup>5</sup> memiliki *pressure drop* terendah yaitu sebesar  $\Delta P=25.32$  Pa. Pada Re=5000 menunjukkan *trend line* grafik yang sama yaitu terjadi penurunan *pressure drop* ketika *Grashof number* mengalami peningkatan. Pada Gr=4.5x10<sup>3</sup> memiliki *pressure drop* tertinggi yaitu sebesar  $\Delta P=66.40$  Pa, Gr=9.7x10<sup>4</sup> memiliki *pressure drop* sebesar  $\Delta P=62.91$  Pa dan Gr=7.4x10<sup>5</sup> memiliki *pressure drop* terendah yaitu sebesar  $\Delta P=61.21$  Pa.

Dengan bertambahnya *Grashof number* mengakibatkan *pressure drop* ( $\Delta P$ ) menurun, hal tersebut dikarenakan semakin besar Grashof number dimana dalam kasus ini *bouyancy force* searah dengan arah aliran, mengakibatkan energi yang ditambahkan ke dalam aliran fluida semakin besar, sehingga kerugian yang diakibatkan *pressure drop* menjadi berkurang. Sesuai dengan persamaan energi (2.17), bahwa nilai Grashof number berbanding lurus dengan densitas fluida dan energi (Q). Dalam persamaan energi, *pressure drop* berbanding terbalik dengan densitas fluida, dari hubungan tersebut dapat disimpulkan bahwa peningkatan Grashof number akan menyebabkan penurunan dari pressure drop. Pada Re=5000 memiliki *pressure drop* yang lebih besar daripada Re=3000, dimana besarnya pressure drop dipengaruhi oleh kekasaran permukaan (f) dan kecepatan (v) .Untuk kekasaran permukaan (f) tidak memiliki pengaruh yang sangat besar ketika Re bertambah, tetapi kecepatan sangat berpengaruh. Sehingga dapat disimpulkan semakin besar *Reynolds number* maka akan menghasilkan *pressure drop* yang semakin besar.

### 4.5.5 Distribusi Koefisien Konveksi Sepanjang *Heated Wall* Pada Re=3000 dan Re=5000

Data distribusi koefisien konveksi diplot sepanjang daerah *heated wall* seperti yang ditunjukkan pada gambar 4.10.



Gambar 4.10 Distribusi Koefisien Konveksi Sepanjang *Heated Wall* 

Gambar 4.10 menunjukkan distribusi koefisien konveksi sepanjang *heated wall* dengan  $Gr=4.5x10^3$ ,  $Gr=9.7x10^4$  dan  $Gr=7.4x10^5$  pada Re=300 dan Re=5000, pada ketiga nilai *Grashof* tersebut memiliki *trend line* grafik yang sama yaitu terjadi penurunan nilai koefisien konveksi (h) seiring dengan bertambahnya jarak *heated wall*. Pada awal pemanasan, terlihat bahwa nilai h sangat tinggi, hal ini terjadi karena pada awal pemanasan temperatur dindingnya kecil, dimana h berbanding terbalik dengan temperatur, sehingga h pada daerah awal pemanasan sangat besar.

Penurunan nilai koefisien konveksi diakibatkan oleh semakin bertambahnya jarak *heated wall* menyebabkan kenaikan temperatur ( $\Delta T$ ) akan mengalami peningkatan sehingga nilai dari koefisien konveksi (h) akan mengalami penurunan. Hal tersebut sesuai dengan persamaan q"=h.\DT, sehingga dapat disimpulkan semakin bertambahnya jarak heated wall bahwa akan mengakibatkan penurunan nilai koefisien konveksi. Untuk nilai Grashof number yang semakin besar, akan mengakibatkan nilai koefisien konveksi semakin besar tetapi tidak terlalu signifikan, hal ini dikarenakan dengan bertambahnya nilai dari Grashof number, maka nilai dari (q") akan semakin besar. Perubahan nilai h yang signifikan terlihat ketika Re nya semakin besar, hal ini diakibatkan dengan semakin besarnya Re maka kecepatannya akan semakin besar sehingga mengakibatkan temperatur dinding menjadi lebih kecil dan menyebabkan h semakin tinggi.

## 4.5.6 Average Koefisien Konveksi Terhadap Grashof Number

Pada pengambilan data distribusi koefisien konveksi (h), koefisien konfeksi dihitung rata-rata sepanjang *heated wall* terhadap fungsi *Grashof number* dengan Re=3000 dan Re=5000 seperti yang ditunjukkan pada gambar 4.11.



Gambar 4.11 Average koefisien konveksi fungsi Grashof number

Gambar 4.11 menunjukkan *average* koefisien konveksi (h) fungsi *Grashof number*. Pada Re=3000 terlihat bahwa *trend line* grafik koefisien konveksi mengalami peningkatan seiring dengan semakin besarnya nilai *Grashof number*. Untuk Gr= $4.5 \times 10^3$  memiliki koefisen konveksi terkecil yaitu h=8.29W/m<sup>2</sup>.K, Gr= $9.7 \times 10^4$  memiliki koefisien konveksi h=8.63W/m<sup>2</sup>.K dan Gr= $7.4 \times 10^5$  memiliki nilai koefisien konveksi terbesar yaitu h=9.02 W/m<sup>2</sup>.K. Pada Re=5000 menunjukkan *trend line* grafik yang sama yaitu *trend line* grafik koefisien konveksi mengalami peningkatan seiring dengan semakin besarnya nilai *Grashof number*. Untuk Gr= $4.5 \times 10^3$  memiliki koefisen konveksi terkecil yaitu h=12.50 W/m<sup>2</sup>.K, Gr= $9.7 \times 10^4$  memiliki koefisien konveksi h=13.35 W/m<sup>2</sup>.K dan Gr= $7.4 \times 10^5$  memiliki nilai koefisien konveksi terbesar yaitu h=15.20 W/m<sup>2</sup>.K.

Sehingga dapat disimpulkan bahwa semakin besar Grashof number maka nilai koefisien konveksi (h) akan semakin besar, hal ini disebabkan oleh nilai dari *heat flux* (q") akan semakin besar ketika Grashof number mengalami peningkatan dan menyebabkan nilai koefisien konveksi (h) semakin tinggi.

Pada Re=5000 memiliki nilai koefisien konveksi yang semakin besar, hal ini karena dengan semakin besarnya *Reynolds number* maka mass flow rate akan semakin besar sehingga  $\Delta T$  akan menurun dan menyebabkan koefisien konveksi menjadi lebih besar.

### 4.5.7 Distribusi *Nusselt Number* Sepanjang *Heated Wall* Pada Re=3000 dan Re=5000

Data distribusi Nusselt number diplot sepanjang daerah heated wall seperti yang ditunjukkan pada gambar 4.12.



Gambar 4.12 Distribusi Nusselt number Sepanjang Heated Wall

Gambar 4.12 menunjukkan distribusi *Nusselt number* sepanjang heated wall dengan  $Gr=4.5 \times 10^3$ ,  $Gr=9.7 \times 10^4$  dan  $Gr=7.4 \times 10^5$  pada Re=3000 dan Re=5000, pada ketiga nilai *Grashof* tersebut memiliki *trend line* grafik yang sama yaitu terjadi penurunan nilai *Nusselt number* (Nu) seiring dengan bertambahnya jarak *heated wall*. Pada awal pemanasan, terlihat bahwa nilai Nu sangat tinggi, hal ini terjadi karena pada awal

pemanasan temperatur dindingnya kecil sehingga menyebabkan h semakin besar, Nu berbanding lurus dengan h sehingga Nu menjadi semakin besar.

Penurunan nilai Nusselt number diakibatkan oleh semakin bertambahnya jarak heated wall, kenaikan temperatur  $\Delta T$  akan mengalami peningkatan sehingga nilai dari koefisien konveksi (h) akan mengalami penurunan. Hal tersebut sesuai dengan persamaan q"= $h.\Delta T$ , sedangkan nilai dari *Nusselt number* berbanding lurus dengan koefisien konveksi (h), sehingga dapat disimpulkan bahwa semakin bertambahnya jarak heated wall akan mengakibatkan penurunan nilai Nusselt number. Untuk nilai Grashof number yang semakin besar, akan mengakibatkan nilai Nusselt number semakin besar tetapi tidak terlalu signifikan, hal ini dikarenakan dengan bertambahnya nilai dari Grashof number, maka nilai dari (q") akan semakin besar. Perubahan nilai Nu yang signifikan terlihat ketika Re nya semakin besar, hal ini diakibatkan dengan semakin besarnya Re maka kecepatannya akan semakin besar sehingga mengakibatkan temperatur dinding menjadi lebih kecil dan menyebabkan h semakin tinggi dan Nu semakin tinggi.

### 4.5.8 Average Nusselt Number Terhadap Grashof Number

Pada pengambilan data distribusi *Nusselt number* (Nu), *Nusselt number* dihitung rata-rata sepanjang *heated wall* terhadap fungsi *Grashof number* dengan Re=3000 dan Re=5000 seperti yang ditunjukkan pada gambar 4.13.



Gambar 4.13 Average Nusselt number terhadap Grashof number

Gambar 4.13 menunjukkan distribusi *Nusselt number* (Nu) terhadap *Grashof number*. Pada Re=3000 terlihat bahwa *trend line* grafik *Nusselt number* mengalami peningkatan seiring dengan semakin besarnya nilai *Grashof number*. Untuk Gr=4.5x10<sup>3</sup> memiliki *Nusselt number* terkecil yaitu Nu=7.30, Gr=9.7x10<sup>4</sup> memiliki *Nusselt number* Nu=7.75 dan Gr=7.4x10<sup>5</sup> memiliki nilai *Nusselt number* terbesar yaitu Nu=8.26. Pada Re=5000 menunjukkan *trend line* grafik yang sama yaitu *Nusselt number* mengalami peningkatan seiring dengan semakin besarnya nilai Grashof number. Untuk Gr=4.5x10<sup>3</sup> memiliki *Nusselt number* terkecil yaitu Nu=11.02, Gr=9.7x10<sup>4</sup> memiliki Nusselt number Nu=11.99 dan Gr=7.4x10<sup>5</sup> memiliki nilai *Nusselt number* terbesar yaitu Nu=13.93.

Sehingga dapat disimpulkan bahwa nilai Nusselt number akan meningkat seiring dengan semakin besarnya nilai Grashof number, hal ini disebabkan karena koefisien konveksi (h) akan meningkat seiring dengan semakin besarnya nilai Grashof number. Nusselt number memiliki perbandingan yang lurus

dengan koefisien konveksi, semakin besai koefisien konveksi maka nilai Nusselt number semakin besar. Pada Re=5000 memiliki nilai Nusselt number yang semakin besar, hal ini karena dengan semakin besarnya Reynolds number maka mass flow rate semakin besar sehingga  $\Delta T$ akan akan menurun dan menyebabkan koefisien konveksi menjadi lebih besar. Nusselt number berbanding lurus dengan koefisien konveksi, sehingga semakin besar Reynolds number akan menyebabkan Nusselt *number* semakin besar

### 4.5.9 Average Nusselt Number Terhadap Reynolds Number

Pada pengambilan data distribusi *Nusselt number* (Nu), *Nusselt number* dihitung rata-rata sepanjang *heated wall* terhadap fungsi *Re*=3000 dan Re=5000 pada tiap masing-masing Grashof number seperti yang ditunjukkan pada gambar 4.14.



Gambar 4.14 Average Nusselt number terhadap Reynolds number

Gambar 4.14 menunjukkan data *Nusselt number* untuk masing-masing *Grashof number* pada Re=3000 dan Re=5000. Pada Re=3000 terlihat bahwa terjadi peningkatan *Nusselt number* yang tidak terlalu signifikan dengan bertambahnya *Grashof number*, hal yang sama terjadi pada Re=5000. Untuk Re=5000
memiliki nilai *Nusselt number* yang lebih besar jika dibandingkan dengan Re=3000, hal ini karena dengan semakin besarnya *Reynolds number* maka *mass flow rate* akan semakin besar sehingga  $\Delta$ T akan menurun dan menyebabkan koefisien konveksi menjadi lebih besar. Nusselt number berbanding lurus dengan koefisien konveksi, sehingga semakin besar *Reynolds number* akan menyebabkan *Nusselt number* semakin besar.

Pada gambar 4.14 terdapat *Nusselt number* untuk *mixed* convection dan *Nusselt number* untuk forced convection dari persamaan Nu<sub>f</sub> (Gnielinski) serta Nu<sub>f</sub> (Dittus Boelter), pada Re=3000 dan Re=5000 terlihat bahwa nilai kedua *Nusselt number* untuk forced convection memiliki nilai yang lebih besar daripada *Nusselt number* pada ketiga Grashof di atas. Sehingga dapat disimpulkan bahwa untuk ketiga *Grashof* tersebut yakni Gr=4.5x10<sup>3</sup>, Gr=9.7x10<sup>4</sup> dan Gr=7.4x10<sup>5</sup> masih masuk dalam daerah *mixed convection* dan persamaan empiris dari Gnielinski serta Dittus Boelter untuk Nu forced convection tidak merepresentasikan Nu rata-rata pada kasus ini.

## 4.5.10 Perbandingan *Nusselt Number* Hasil Simulasi Dengan Eksperimen

Perbandingan data Nusselt number hasil simulasi dengan data eksperimen yang telah dilakukan oleh Hiroaki Tanaka et al (1986) dapat dilihat pada gambar 4.15.



Gambar 4.15 Perbandingan *Nusselt number* hasil simulasi dengan eksperimen

Gambar 4.15 menunjukkan perbandingan nilai *Nusselt number* hasil simulasi dengan hasil eksperimen. Pada Re=3000 untuk Gr=4.5x10<sup>3</sup> memiliki nilai Nu=7.30 sedangkan pada eksperimen memiliki nilai Nu=11.4, untuk Gr=9.7x10<sup>4</sup> memiliki nilai Nu=7.75 sedangkan pada eksperimen memiliki nilai Nu=6.1, untuk Gr=7.4x10<sup>5</sup> memiliki nilai Nu=8.26 sedangkan pada eksperimen memiliki nilai Nu=11.8. Secara keseluruhan nilai Nu yang didapatkan pada hasil simulasi sudah mendekati data hasil eksperimen. Untuk hasil simulasi pada Re=5000 memiliki nilai Nu yang cenderung lebih tinggi pada setiap nilai *Grashof number* nya. Pada Re=3000 hasil Nu yang didapatkan berada di antara Nu laminar dan Nu turbulent hasil eksperimen Hiroaki, sedangkan pada Re=5000 hasil Nu yang didapatkan mendekati hasil Nu eksperimen Hiroaki.

Jika dibandingkan dengan Nu *forced convection* dari persamaan Gnielinski dan Dittus Boelter yaitu pada Re=3000, Nu<sub>f</sub> (Gnielinski)=9.99 dan Nu<sub>f</sub> (Dittus Boelter)=12.06 sedangkan pada Re=5000, Nu<sub>f</sub> (Gnielinski)=16.62 dan Nu<sub>f</sub> (Dittus Boelter)=18.15, *Nusselt number* yang dihasilkan dari simulasi memiliki nilai yang lebih rendah, sehingga untuk Nusselt number yang dihasilkan dari simulasi dikelompokkan dalam mixed convection.

### 4.6 Analisa Data Kualitatif

# 4.6.1 Kontur Temperatur Fluida Dalam *Heated Pipe* Re=3000

Pada pengambilan kontur temperatur, kontur temperatur ditunjukkan pada daerah awal pemanasan,tengah pemanasan dan akhir pemanasan yang ditunjukkan pada gambar 4.16.



dalam *heated pipe* 

Gambar 4.16 menunjukkan kontur temperatur fluida dalam *heated pipe* pada daerah awal (Y/L=0), tengah (Y/L=0.5) dan akhir pemanasan (Y/L=1.0) untuk Gr= $4.5 \times 10^3$ , Gr= $9.7 \times 10^4$ , dan Gr= $7.4 \times 10^5$ . Pada daerah awal pemanasan menunjukkan temperatur yang naik ketika semakin mendekati daerah *heated* 

wall, pada daerah tengah pemanasan menunjukkan temperatur yang meningkat cukup tajam ketika mendekati daerah heated wall, begitu pula dengan daerah akhir pemanasan menunjukkan temperatur yang meningkat cukup tajam ketika trend line mendekati daerah heated wall. Hal ini menunjukkan bahwa temperatur heated wall semakin meningkat seiring dengan bertambahnya panjang heated wall tesebut, hal ini terjadi diakibatkan adanya kecepatan pada daerah inlet, sehingga temperatur heated wall akan semakin tinggi dengan bertambahnya jarak heated wall tersebut.

Dari ketiga *Grashof number* tersebut memiliki kontur temperatur yang sama. Pada Gr= $4.5 \times 10^3$  memiliki kenaikan temperatur sebesar  $\Delta T=13.20^{\circ}$ C, pada Gr= $9.7 \times 10^4$  memiliki kenaikan temperatur sebesar  $\Delta T=23.92^{\circ}$ C dan pada Gr= $7.4 \times 10^5$  memiliki kenaikan temperatur sebesar  $\Delta T=26.56^{\circ}$ C.

## 4.6.2 Kontur Temperatur Fluida Dalam *Heated Pipe* Re=5000

Pada pengambilan kontur temperatur, kontur temperatur ditunjukkan pada daerah awal pemanasan, tengah pemanasan dan akhir pemanasan yang ditunjukkan pada gambar 4.17.



 $\begin{array}{l} Gambar \ 4.17 \ Kontur \ temperatur \ fluida \ (T_f \text{-} T_{f\text{-inlet}}) \\ dalam \ heated \ pipe \end{array}$ 

Gambar 4.17 menunjukkan kontur temperatur fluida dalam *heated pipe* pada daerah awal (Y/L=0), tengah (Y/L=0.5)dan akhir pemanasan (Y/L=1.0) untuk Gr=4.5x10<sup>3</sup>, Gr=9.7x10<sup>4</sup>, dan Gr=7.4x10<sup>5</sup>. Pada daerah awal pemanasan menunjukkan temperatur yang naik ketika semakin mendekati daerah heated wall, pada daerah tengah pemanasan menunjukkan temperatur yang meningkat cukup tajam ketika mendekati daerah heated wall, begitu pula dengan daerah akhir pemanasan menunjukkan temperatur yang meningkat cukup tajam ketika trend line mendekati daerah heated wall. Hal ini menunjukkan bahwa temperatur heated wall semakin meningkat seiring dengan bertambahnya panjang heated wall tesebut, hal ini terjadi diakibatkan adanya kecepatan pada daerah inlet, sehingga tinggi temperatur heated wall akan semakin dengan bertambahnya jarak heated wall tersebut.

Dari ketiga *Grashof number* tersebut memiliki kontur temperatur yang sama. Pada Gr=4.5x10<sup>3</sup> memiliki kenaikan

Х

temperatur sebesar  $\Delta T=8.19^{\circ}$ C, pada Gr=9.7x10<sup>4</sup> memiliki kenaikan temperatur sebesar  $\Delta T=14.94^{\circ}$ C dan pada Gr=7.4x10<sup>5</sup> memiliki kenaikan temperatur sebesar  $\Delta T=16.41^{\circ}$ C.

Halaman ini sengaja dikosongkan

## LAMPIRAN

#### Gr=4.5X103

| Y/L=0    |          | Y/L=0.5  |          | Y/L=1    |          |
|----------|----------|----------|----------|----------|----------|
| r/R      | V/Vmax   | r/R      | V/Vmax   | r/R      | V/Vmax   |
| 1        | 0        | 1        | 0        | 1        | 0        |
| 0.991304 | 0.067678 | 0.991304 | 0.067755 | 0.991304 | 0.067753 |
| 0.98087  | 0.147743 | 0.98087  | 0.147886 | 0.98087  | 0.147884 |
| 0.968348 | 0.241086 | 0.968348 | 0.241276 | 0.968348 | 0.241273 |
| 0.953322 | 0.344987 | 0.953322 | 0.345197 | 0.953322 | 0.345194 |
| 0.935287 | 0.451251 | 0.935287 | 0.451458 | 0.935287 | 0.451454 |
| 0.913652 | 0.54973  | 0.913652 | 0.549922 | 0.913652 | 0.549919 |
| 0.887687 | 0.634803 | 0.887687 | 0.634969 | 0.887687 | 0.634969 |
| 0.85653  | 0.706448 | 0.85653  | 0.706584 | 0.85653  | 0.706581 |
| 0.81914  | 0.766845 | 0.81914  | 0.766941 | 0.81914  | 0.766941 |
| 0.774272 | 0.818153 | 0.774272 | 0.818208 | 0.774272 | 0.818208 |
| 0.714713 | 0.86621  | 0.714713 | 0.866213 | 0.714713 | 0.866213 |
| 0.655154 | 0.900403 | 0.655154 | 0.900366 | 0.655154 | 0.900366 |

| 0.595594 | 0.925728 | 0.595594 | 0.925651 | 0.595594 | 0.925654 |
|----------|----------|----------|----------|----------|----------|
| 0.536035 | 0.945035 | 0.536035 | 0.944928 | 0.536035 | 0.944928 |
| 0.476476 | 0.959969 | 0.476476 | 0.959833 | 0.476476 | 0.959836 |
| 0.416916 | 0.971571 | 0.416916 | 0.971416 | 0.416916 | 0.971416 |
| 0.357357 | 0.980545 | 0.357357 | 0.980372 | 0.357357 | 0.980372 |
| 0.297797 | 0.987394 | 0.297797 | 0.987203 | 0.297797 | 0.987203 |
| 0.238237 | 0.992479 | 0.238237 | 0.992276 | 0.238237 | 0.99228  |
| 0.178678 | 0.9961   | 0.178678 | 0.995885 | 0.178678 | 0.995889 |
| 0.119119 | 0.998472 | 0.119119 | 0.998255 | 0.119119 | 0.998258 |
| 0.059559 | 0.99979  | 0.059559 | 0.999568 | 0.059559 | 0.999568 |
| 0        | 1        | 0        | 0.999775 | 0        | 0.999779 |

| Y/L=0    |          | Y/L=0.5  |          | Y/L=1    |          |
|----------|----------|----------|----------|----------|----------|
|          |          |          |          |          |          |
| r/R      | V/Vmax   | r/R      | V/Vmax   | r/R      | V/Vmax   |
| 1        | 0        | 1        | 0        | 1        | 0        |
| 0.991304 | 0.067716 | 0.991304 | 0.067886 | 0.991304 | 0.067881 |
| 0.98087  | 0.147823 | 0.98087  | 0.148141 | 0.98087  | 0.148133 |
| 0.968348 | 0.24121  | 0.968348 | 0.24163  | 0.968348 | 0.241623 |
| 0.953322 | 0.345144 | 0.953322 | 0.34561  | 0.953322 | 0.345603 |
| 0.935287 | 0.451414 | 0.935287 | 0.451876 | 0.935287 | 0.451872 |
| 0.913652 | 0.549878 | 0.913652 | 0.550302 | 0.913652 | 0.550298 |
| 0.887687 | 0.634919 | 0.887687 | 0.635288 | 0.887687 | 0.635284 |
| 0.85653  | 0.706531 | 0.85653  | 0.706828 | 0.85653  | 0.706828 |
| 0.81914  | 0.766898 | 0.81914  | 0.767113 | 0.81914  | 0.767113 |
| 0.774272 | 0.818185 | 0.774272 | 0.818308 | 0.774272 | 0.818308 |
| 0.714713 | 0.86622  | 0.714713 | 0.866232 | 0.714713 | 0.866232 |
| 0.655154 | 0.900405 | 0.655154 | 0.90032  | 0.655154 | 0.90032  |
| 0.595594 | 0.925721 | 0.595594 | 0.925556 | 0.595594 | 0.925556 |
| 0.536035 | 0.945024 | 0.536035 | 0.944785 | 0.536035 | 0.944789 |
| 0.476476 | 0.95996  | 0.476476 | 0.959659 | 0.476476 | 0.959663 |
| 0.416916 | 0.971563 | 0.416916 | 0.971213 | 0.416916 | 0.971217 |
| 0.357357 | 0.98054  | 0.357357 | 0.980147 | 0.357357 | 0.980151 |
| 0.297797 | 0.987388 | 0.297797 | 0.986961 | 0.297797 | 0.986965 |
| 0.238237 | 0.992478 | 0.238237 | 0.992028 | 0.238237 | 0.992032 |
| 0.178678 | 0.996099 | 0.178678 | 0.995625 | 0.178678 | 0.995629 |
| 0.119119 | 0.998476 | 0.119119 | 0.997992 | 0.119119 | 0.997995 |
| 0.059559 | 0.999792 | 0.059559 | 0.9993   | 0.059559 | 0.999304 |
| 0        | 1        | 0        | 0.999508 | 0        | 0.999511 |

 $Gr = 7.4 \times 10^5$ 

| Y/L=0    |          | Y/L=0.5  |          | Y/L=1    |          |
|----------|----------|----------|----------|----------|----------|
| r/R      | V/Vmax   | r/R      | V/Vmax   | r/R      | V/Vmax   |
| 1        | 0        | 1        | 0        | 1        | 0        |
| 0.991304 | 0.06646  | 0.991304 | 0.066644 | 0.991304 | 0.06664  |
| 0.98087  | 0.145102 | 0.98087  | 0.145446 | 0.98087  | 0.145439 |
| 0.968348 | 0.236916 | 0.968348 | 0.237374 | 0.968348 | 0.237367 |
| 0.953322 | 0.339556 | 0.953322 | 0.340064 | 0.953322 | 0.340057 |
| 0.935287 | 0.445332 | 0.935287 | 0.445833 | 0.935287 | 0.445829 |
| 0.913652 | 0.544194 | 0.913652 | 0.544659 | 0.913652 | 0.544651 |
| 0.887687 | 0.63011  | 0.887687 | 0.630512 | 0.887687 | 0.630508 |
| 0.85653  | 0.702663 | 0.85653  | 0.702989 | 0.85653  | 0.702985 |
| 0.81914  | 0.763875 | 0.81914  | 0.764106 | 0.81914  | 0.764106 |
| 0.774272 | 0.815882 | 0.774272 | 0.816013 | 0.774272 | 0.816013 |
| 0.714713 | 0.864581 | 0.714713 | 0.864593 | 0.714713 | 0.864593 |
| 0.655154 | 0.899222 | 0.655154 | 0.899131 | 0.655154 | 0.899135 |
| 0.595594 | 0.924868 | 0.595594 | 0.924685 | 0.595594 | 0.924689 |
| 0.536035 | 0.944416 | 0.536035 | 0.944154 | 0.536035 | 0.944158 |
| 0.476476 | 0.959528 | 0.476476 | 0.959202 | 0.476476 | 0.959206 |
| 0.416916 | 0.971266 | 0.416916 | 0.970884 | 0.416916 | 0.970888 |
| 0.357357 | 0.980344 | 0.357357 | 0.979915 | 0.357357 | 0.979919 |
| 0.297797 | 0.987265 | 0.297797 | 0.9868   | 0.297797 | 0.986804 |
| 0.238237 | 0.992408 | 0.238237 | 0.991915 | 0.238237 | 0.991919 |
| 0.178678 | 0.996061 | 0.178678 | 0.995548 | 0.178678 | 0.995552 |
| 0.119119 | 0.998458 | 0.119119 | 0.997933 | 0.119119 | 0.997937 |
| 0.059559 | 0.999785 | 0.059559 | 0.999249 | 0.059559 | 0.999253 |
| 0        | 1        | 0        | 0.999459 | 0        | 0.999467 |

## Temperatur

| 1        | 0        | 1        | 0        | 1        | 0        |
|----------|----------|----------|----------|----------|----------|
| 0.991304 | 0.095286 | 0.991304 | 0.095311 | 0.991304 | 0.09531  |
| 0.98087  | 0.206638 | 0.98087  | 0.206682 | 0.98087  | 0.206681 |
| 0.968348 | 0.329397 | 0.968348 | 0.329451 | 0.968348 | 0.329451 |
| 0.953322 | 0.449965 | 0.953322 | 0.45002  | 0.953322 | 0.45002  |
| 0.935287 | 0.554505 | 0.935287 | 0.554558 | 0.935287 | 0.554558 |
| 0.913652 | 0.639204 | 0.913652 | 0.639252 | 0.913652 | 0.639252 |
| 0.887687 | 0.707621 | 0.887687 | 0.707663 | 0.887687 | 0.707663 |
| 0.85653  | 0.763986 | 0.85653  | 0.764019 | 0.85653  | 0.764019 |
| 0.81914  | 0.811369 | 0.81914  | 0.811389 | 0.81914  | 0.811389 |
| 0.774272 | 0.851822 | 0.774272 | 0.851836 | 0.774272 | 0.851836 |
| 0.714713 | 0.890025 | 0.714713 | 0.890025 | 0.714713 | 0.890025 |
| 0.655154 | 0.917484 | 0.655154 | 0.917475 | 0.655154 | 0.917475 |
| 0.595594 | 0.938027 | 0.595594 | 0.938008 | 0.595594 | 0.938008 |
| 0.536035 | 0.953839 | 0.536035 | 0.953812 | 0.536035 | 0.953812 |
| 0.476476 | 0.966183 | 0.476476 | 0.966148 | 0.476476 | 0.966148 |
| 0.416916 | 0.975856 | 0.416916 | 0.975817 | 0.416916 | 0.975817 |
| 0.357357 | 0.983397 | 0.357357 | 0.983351 | 0.357357 | 0.983354 |
| 0.297797 | 0.989181 | 0.297797 | 0.989133 | 0.297797 | 0.989135 |
| 0.238237 | 0.993486 | 0.238237 | 0.993436 | 0.238237 | 0.993436 |
| 0.178678 | 0.996554 | 0.178678 | 0.996501 | 0.178678 | 0.996501 |
| 0.119119 | 0.998607 | 0.119119 | 0.998552 | 0.119119 | 0.998552 |
| 0.059559 | 0.999801 | 0.059559 | 0.999746 | 0.059559 | 0.999746 |
| 0        | 1        | 0        | 0.999942 | 0        | 0.999942 |

#### BAB V KESIMPULAN DAN SARAN

#### 5.1 Kesimpulan

Pada penelitian ini telah dilakukan simulasi numerik terhadap perpindahan panas konveksi campuran dalam *heated pipe* dengan variasi *Reynolds number* dan *Grashof number* pada *heat flux* konstan, sehingga dapat diambil kesimpulan:

- 1. Semakin besarnya nilai *Grashof number* yaitu Gr=4.5x10<sup>3</sup>,Gr=9.7x10<sup>4</sup> dan Gr=7.4x10<sup>5</sup> menghasilkan kenaikan temperatur ( $\Delta$ T), namun tidak terjadi perubahan kecepatan (v), penurunan *pressure drop* ( $\Delta$ P), peningkatan koefisien konveksi (h) dan peningkatan *Nusselt number* (Nu).
- Pada Grashof number yang sama dengan nilai Reynolds number yang berbeda yaitu Re=3000 dan Re=5000. Jika dibandingkan dengan Re=3000, Re=5000 menghasilkan penurunan (ΔT), peningkatan kecepatan (v), peningkatan pressure drop (ΔP), peningkatan Nusselt number (Nu) dan peningkatan koefisien konveksi (h).
- 3. Perbandingan hasil silumasi dengan hasil eksperimen pada temperatur dinding menunjukkan *error* dibawah 5%, sehingga dapat dikatakan bahwa simulasi dengan menggunakan *software Fluent* untuk kasus konveksi campuran pada *vertical pipe* dikategorikan cukup akurat.
- 4. Untuk kasus perpindahan panas terdapat perbedaan dengan kasus pada mekanika fluida, dimana pada Re > 2300 untuk kasus konveksi campuran pola aliran yang terjadi tidak selalu *turbulent*, tetapi dapat berubah menjadi aliran *laminar* menurut hasil eksperimen. Hasil simulasi menunjukkan bahwa nilai Nu yang diperoleh berada di antara nilai Nu *laminar* dan Nu *turbulent*.
- Terdapat kelemahan pada simulasi numerik ini yaitu pada Gr=9.7x10<sup>4</sup> dimana merupakan aliran *laminar*, tidak dapat mengikuti secara baik perubahan pola nilai Nu dari

*turbulent* menjadi *laminar* pada Re=3000, ditunjukkan pada perbandingan temperatur dinding data simulasi dengan eksperimen memiliki *error* sebesar 8.06%.

### 5.2 Saran

Pada simulasi yang telah dilakukan terdapat kelemahan yaitu simulasi numerik tidak dapat mengikuti secara baik perubahan pola Nu dari turbulent menjadi laminar, sehingga perlu di uji coba menggunakan model laminar atau model turbulensi yang lain untuk mendapatkan hasil simulasi yang lebih akurat.

## LAMPIRAN

#### Gr=4.5X103

| Y/L=0    |          | Y/L=0.5  |          | Y/L=1    |          |
|----------|----------|----------|----------|----------|----------|
| r/R      | V/Vmax   | r/R      | V/Vmax   | r/R      | V/Vmax   |
| 1        | 0        | 1        | 0        | 1        | 0        |
| 0.991304 | 0.067678 | 0.991304 | 0.067755 | 0.991304 | 0.067753 |
| 0.98087  | 0.147743 | 0.98087  | 0.147886 | 0.98087  | 0.147884 |
| 0.968348 | 0.241086 | 0.968348 | 0.241276 | 0.968348 | 0.241273 |
| 0.953322 | 0.344987 | 0.953322 | 0.345197 | 0.953322 | 0.345194 |
| 0.935287 | 0.451251 | 0.935287 | 0.451458 | 0.935287 | 0.451454 |
| 0.913652 | 0.54973  | 0.913652 | 0.549922 | 0.913652 | 0.549919 |
| 0.887687 | 0.634803 | 0.887687 | 0.634969 | 0.887687 | 0.634969 |
| 0.85653  | 0.706448 | 0.85653  | 0.706584 | 0.85653  | 0.706581 |
| 0.81914  | 0.766845 | 0.81914  | 0.766941 | 0.81914  | 0.766941 |
| 0.774272 | 0.818153 | 0.774272 | 0.818208 | 0.774272 | 0.818208 |
| 0.714713 | 0.86621  | 0.714713 | 0.866213 | 0.714713 | 0.866213 |
| 0.655154 | 0.900403 | 0.655154 | 0.900366 | 0.655154 | 0.900366 |

| 0.595594 | 0.925728 | 0.595594 | 0.925651 | 0.595594 | 0.925654 |
|----------|----------|----------|----------|----------|----------|
| 0.536035 | 0.945035 | 0.536035 | 0.944928 | 0.536035 | 0.944928 |
| 0.476476 | 0.959969 | 0.476476 | 0.959833 | 0.476476 | 0.959836 |
| 0.416916 | 0.971571 | 0.416916 | 0.971416 | 0.416916 | 0.971416 |
| 0.357357 | 0.980545 | 0.357357 | 0.980372 | 0.357357 | 0.980372 |
| 0.297797 | 0.987394 | 0.297797 | 0.987203 | 0.297797 | 0.987203 |
| 0.238237 | 0.992479 | 0.238237 | 0.992276 | 0.238237 | 0.99228  |
| 0.178678 | 0.9961   | 0.178678 | 0.995885 | 0.178678 | 0.995889 |
| 0.119119 | 0.998472 | 0.119119 | 0.998255 | 0.119119 | 0.998258 |
| 0.059559 | 0.99979  | 0.059559 | 0.999568 | 0.059559 | 0.999568 |
| 0        | 1        | 0        | 0.999775 | 0        | 0.999779 |

| Y/L=0    |          | Y/L=0.5  |          | Y/L=1    |          |
|----------|----------|----------|----------|----------|----------|
|          |          |          |          |          |          |
| r/R      | V/Vmax   | r/R      | V/Vmax   | r/R      | V/Vmax   |
| 1        | 0        | 1        | 0        | 1        | 0        |
| 0.991304 | 0.067716 | 0.991304 | 0.067886 | 0.991304 | 0.067881 |
| 0.98087  | 0.147823 | 0.98087  | 0.148141 | 0.98087  | 0.148133 |
| 0.968348 | 0.24121  | 0.968348 | 0.24163  | 0.968348 | 0.241623 |
| 0.953322 | 0.345144 | 0.953322 | 0.34561  | 0.953322 | 0.345603 |
| 0.935287 | 0.451414 | 0.935287 | 0.451876 | 0.935287 | 0.451872 |
| 0.913652 | 0.549878 | 0.913652 | 0.550302 | 0.913652 | 0.550298 |
| 0.887687 | 0.634919 | 0.887687 | 0.635288 | 0.887687 | 0.635284 |
| 0.85653  | 0.706531 | 0.85653  | 0.706828 | 0.85653  | 0.706828 |
| 0.81914  | 0.766898 | 0.81914  | 0.767113 | 0.81914  | 0.767113 |
| 0.774272 | 0.818185 | 0.774272 | 0.818308 | 0.774272 | 0.818308 |
| 0.714713 | 0.86622  | 0.714713 | 0.866232 | 0.714713 | 0.866232 |
| 0.655154 | 0.900405 | 0.655154 | 0.90032  | 0.655154 | 0.90032  |
| 0.595594 | 0.925721 | 0.595594 | 0.925556 | 0.595594 | 0.925556 |
| 0.536035 | 0.945024 | 0.536035 | 0.944785 | 0.536035 | 0.944789 |
| 0.476476 | 0.95996  | 0.476476 | 0.959659 | 0.476476 | 0.959663 |
| 0.416916 | 0.971563 | 0.416916 | 0.971213 | 0.416916 | 0.971217 |
| 0.357357 | 0.98054  | 0.357357 | 0.980147 | 0.357357 | 0.980151 |
| 0.297797 | 0.987388 | 0.297797 | 0.986961 | 0.297797 | 0.986965 |
| 0.238237 | 0.992478 | 0.238237 | 0.992028 | 0.238237 | 0.992032 |
| 0.178678 | 0.996099 | 0.178678 | 0.995625 | 0.178678 | 0.995629 |
| 0.119119 | 0.998476 | 0.119119 | 0.997992 | 0.119119 | 0.997995 |
| 0.059559 | 0.999792 | 0.059559 | 0.9993   | 0.059559 | 0.999304 |
| 0        | 1        | 0        | 0.999508 | 0        | 0.999511 |

 $Gr = 7.4 \times 10^5$ 

| Y/L=0    |          | Y/L=0.5  |          | Y/L=1    |          |
|----------|----------|----------|----------|----------|----------|
| r/R      | V/Vmax   | r/R      | V/Vmax   | r/R      | V/Vmax   |
| 1        | 0        | 1        | 0        | 1        | 0        |
| 0.991304 | 0.06646  | 0.991304 | 0.066644 | 0.991304 | 0.06664  |
| 0.98087  | 0.145102 | 0.98087  | 0.145446 | 0.98087  | 0.145439 |
| 0.968348 | 0.236916 | 0.968348 | 0.237374 | 0.968348 | 0.237367 |
| 0.953322 | 0.339556 | 0.953322 | 0.340064 | 0.953322 | 0.340057 |
| 0.935287 | 0.445332 | 0.935287 | 0.445833 | 0.935287 | 0.445829 |
| 0.913652 | 0.544194 | 0.913652 | 0.544659 | 0.913652 | 0.544651 |
| 0.887687 | 0.63011  | 0.887687 | 0.630512 | 0.887687 | 0.630508 |
| 0.85653  | 0.702663 | 0.85653  | 0.702989 | 0.85653  | 0.702985 |
| 0.81914  | 0.763875 | 0.81914  | 0.764106 | 0.81914  | 0.764106 |
| 0.774272 | 0.815882 | 0.774272 | 0.816013 | 0.774272 | 0.816013 |
| 0.714713 | 0.864581 | 0.714713 | 0.864593 | 0.714713 | 0.864593 |
| 0.655154 | 0.899222 | 0.655154 | 0.899131 | 0.655154 | 0.899135 |
| 0.595594 | 0.924868 | 0.595594 | 0.924685 | 0.595594 | 0.924689 |
| 0.536035 | 0.944416 | 0.536035 | 0.944154 | 0.536035 | 0.944158 |
| 0.476476 | 0.959528 | 0.476476 | 0.959202 | 0.476476 | 0.959206 |
| 0.416916 | 0.971266 | 0.416916 | 0.970884 | 0.416916 | 0.970888 |
| 0.357357 | 0.980344 | 0.357357 | 0.979915 | 0.357357 | 0.979919 |
| 0.297797 | 0.987265 | 0.297797 | 0.9868   | 0.297797 | 0.986804 |
| 0.238237 | 0.992408 | 0.238237 | 0.991915 | 0.238237 | 0.991919 |
| 0.178678 | 0.996061 | 0.178678 | 0.995548 | 0.178678 | 0.995552 |
| 0.119119 | 0.998458 | 0.119119 | 0.997933 | 0.119119 | 0.997937 |
| 0.059559 | 0.999785 | 0.059559 | 0.999249 | 0.059559 | 0.999253 |
| 0        | 1        | 0        | 0.999459 | 0        | 0.999467 |

## Temperatur

| 1        | 0        | 1        | 0        | 1        | 0        |
|----------|----------|----------|----------|----------|----------|
| 0.991304 | 0.095286 | 0.991304 | 0.095311 | 0.991304 | 0.09531  |
| 0.98087  | 0.206638 | 0.98087  | 0.206682 | 0.98087  | 0.206681 |
| 0.968348 | 0.329397 | 0.968348 | 0.329451 | 0.968348 | 0.329451 |
| 0.953322 | 0.449965 | 0.953322 | 0.45002  | 0.953322 | 0.45002  |
| 0.935287 | 0.554505 | 0.935287 | 0.554558 | 0.935287 | 0.554558 |
| 0.913652 | 0.639204 | 0.913652 | 0.639252 | 0.913652 | 0.639252 |
| 0.887687 | 0.707621 | 0.887687 | 0.707663 | 0.887687 | 0.707663 |
| 0.85653  | 0.763986 | 0.85653  | 0.764019 | 0.85653  | 0.764019 |
| 0.81914  | 0.811369 | 0.81914  | 0.811389 | 0.81914  | 0.811389 |
| 0.774272 | 0.851822 | 0.774272 | 0.851836 | 0.774272 | 0.851836 |
| 0.714713 | 0.890025 | 0.714713 | 0.890025 | 0.714713 | 0.890025 |
| 0.655154 | 0.917484 | 0.655154 | 0.917475 | 0.655154 | 0.917475 |
| 0.595594 | 0.938027 | 0.595594 | 0.938008 | 0.595594 | 0.938008 |
| 0.536035 | 0.953839 | 0.536035 | 0.953812 | 0.536035 | 0.953812 |
| 0.476476 | 0.966183 | 0.476476 | 0.966148 | 0.476476 | 0.966148 |
| 0.416916 | 0.975856 | 0.416916 | 0.975817 | 0.416916 | 0.975817 |
| 0.357357 | 0.983397 | 0.357357 | 0.983351 | 0.357357 | 0.983354 |
| 0.297797 | 0.989181 | 0.297797 | 0.989133 | 0.297797 | 0.989135 |
| 0.238237 | 0.993486 | 0.238237 | 0.993436 | 0.238237 | 0.993436 |
| 0.178678 | 0.996554 | 0.178678 | 0.996501 | 0.178678 | 0.996501 |
| 0.119119 | 0.998607 | 0.119119 | 0.998552 | 0.119119 | 0.998552 |
| 0.059559 | 0.999801 | 0.059559 | 0.999746 | 0.059559 | 0.999746 |
| 0        | 1        | 0        | 0.999942 | 0        | 0.999942 |

#### DAFTAR PUSTAKA

- Cotton, M.K and Jackson, J.D. 1989. "Vertical tube air flows in the turbulent mixed convection regime calculated using a low-Reynolds number k- ε model".Int. J. Heat Mass Transfer. Vol.33, No.2,pp.275-286.
- Forooghi, P., and Hooman, K.2013. "Numerical study of turbulent convection in inclined pipes with significant bouyancy influence". International Journal of Heat and Mass Transfer.61.2013.310-322.
- Fox, Robert W dan Alan T. Mc Donald. 1994. "Introduction to Fluid Mechanics, Fourth Edition". SI Version, John Wiley & Sons, Inc, Canada.
- Holman, J.P. 1994. Perpindahan Kalor. Diterjemahkan oleh Jasjfi,E. Jakarta: Erlannga.
- Hiroaki, T.,Maruyama, S., and Hatano, S. 1986. "Combined Forced and Natural Convection Heat Transfer for Upward Flow in a Uniformly Heated, Vertical Pipe". Int.J. Heat Mass Transfer.Vol. 30, No. 1, pp. 165-174, 1987.
- Incropera, P.F, David P.D. 2006. "Fundamentals of Heat and Mass Transfer and Introduction to Heat Transfer".United States: John wiley& sons.
- Koestoer, R.A.2002. "Perpindahan Kalor Untuk Mahasiswa Teknik". Jakarta: Salemba Teknika.
- Kreith, F. 1986. "Principles Heat Transfer". Thrid Edition.University of Colorado: Harper & Row.
- Mehdi, S.,and Mehrdad, R. 2009. "Investigation of turbulent mixed convection of air flow in vertical tubes using a zonal turbulence model". International Journal of Heat and Fluid Flow, 31.2010.179-190.

#### **BIODATA PENULIS**



Penulis dilahirkan di Sampang 01 Desember 1991, dari Ayahanda Muhammad A.R dan Ibunda Jumwah Yudiyah, anak kedua dari dua bersaudara. Sepanjang 23 tahun ini, penulis telah menempuh pendidikan formal dimulai dari SDN 01 Camplong, SMPN 01 Camplong, dan SMAN 01 Sampang.

Pada tahun 2009 Penulis diterima di Jurusan D3 Teknik Mesin FTI – ITS kemudian melanjutkan kuliah tahap sarjana di jurusan Teknik Mesin ITS Surabaya melalui Lintas Jalur dan terdaftar sebagai mahasiswa dengan NRP 2112 105 032. Penulis mengambil bidang keahlian Konversi Energi.

Selama duduk di bangku kuliah penulis aktif mengikuti kegiatan perkuliahan. Penulis juga pernah mengikuti berbagai kegiatan dan bergabung dalam organisasi. Penulis pernah melaksanakan Kerja Praktek di PT. PERTAMINA-Pelumas Gresik pada unit maintenance. Penulis dapat dihubungi di alamat email *faraniandaz@yahoo.com*