

PENGEMBANGAN PETA INTERAKTIF TIGA MEDICAL CENTER INSTITUT TEKNOLOGI SEPULUH NOPEMBER MENGGUNAKAN UNREAL ENGINE

TUGAS AKHIR

Disusun Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer

Pada Jurusan Sistem Informasi Fakultas Teknologi Informasi Institut Teknologi Sepuluh Nopember Surabaya

Oleh : WIDYA PUTRI KANDORA NRP 5209 100 090

Disetujui Tim Penguji: Tanggal Ujian

Periode Wisuda

: 16 Januari 2015

: Maret 2015

Dr. Eng. Febriliyan Samopa, S.Kom, M.Kom (Perphimbing 1)

(Penguji 2)

Faizal Johan Atletiko, S.Kom, M.T

Radityo Prasetianto W., S.Kom, M.Kom

PENGEMBANGAN PETA INTERAKTIF TIGA DIMENSI MEDICAL CENTER INSTITUT TEKNOLOGI SEPULUH NOPEMBER MENGGUNAKAN UNREAL ENGINE

:

•

:

•

Nama Mahasiswa NRP Jurusan Dosen Pembimbing Widya Putri Kandora 5209 100 090 Sistem Informasi FTIf-ITS Dr. Eng. Febriliyan Samopa, S.Kom, M.Kom

Abstrak

Perkembangan teknologi sangat dibutuhkan oleh suatu organisasi, salah satunya dibidang pendidikan. Kegiatan dalam bidang pendidikan ini tidak hanya dalam hal kegiatan belajar mengajar, melainkan kegiatan promosi. Kegiatan promosi ini dilakukan untuk mengenalkan kepada khalayak umum mengenai informasi apa saja yang dapat diketahui oleh masyarakat luar. Dengan adanya perkembangan teknologi dalam bidang grafis dan pengolahan gambar ini semua hal dapat disajikan dalam bentuk tiga dimensi, termasuk kegiatan promosi.Dengan adanya teknologi ini, kegiatan promosi dapat disajikan dalam bentuk yang jauh lebih menarik, lengkap dan interaktif. Visualisasi tiga dimensi pada kegiatan promosi, biasanya digunakan untuk membuat peta yang bertujuan untuk mengenalkan sebuah bangunan dalam organisasi tersebut.

Peta tiga dimensi ini akan memudahkan pengguna untuk mengetahui secara detail dan nyata, tanpa harus mengunjungi tempat tersebut. Pengguna akan merasa seperti mengunjungi suatu tempat secara virtual sesua dengan keadaan sebenarnya. Selain menarik, peta tiga dimensi ini dibuat lebih interaktif. Yang dimana pengguna dapat berinteraksi dengan objek yang tersedia dalam peta. Peta tiga dimensi tersebut akan dikembangkan dengan menggunakan Unreal Engine, yang merupakan game engine yang memilikikemampuan untuk membuat lingkungan virtual yang sesuai dengan dunia nyata. Dalam tugas akhir ini peta tiga dimensi dibuat selain dengan menggunakan Unreal Engine, ada beberapa aplikasi pendukung lainnya yang sebelumnya harus diintegrasikan terlebih dahulu. Contohnya, Microsoft Visio 2010 untuk membuat peta dua dimensi, Autodesk 3D Studio Mac untuk membuat objek tiga dimensi, Audacity untuk merekam dan melakukan editing suara, Adobe Photoshop dan x Normal untuk membuat tekstur maupun material, dan Flash untuk membuat tampilan animasi. Peta tiga dimensi ini diharapkan dapat menyajikan visualisasi gedung Medical Center ITS dan sekitarnya, yang lengkap dengan menu informasi ruang dan informasi interaksi yang sama dengan keadaan sebenarnya.

Kata kunci: Peta Tiga Dimensi, Unreal Engine, Medical Center ITS.

DEVELOPMENT OF THREE DIMENSIONAL INTERACTIVE MAP OF MEDICAL CENTER OF SEPULUH NOPEMBER INSTITUTE OF TECHNOLOGY USING THE UNREAL ENGINE

Name	:	Widya Putri Kandora
NRP	:	5209 100 090
Departement	:	Sistem Informasi FTIf-ITS
Supervisor	:	Dr. Eng. Febriliyan Samopa,
•		S.Kom, M.Kom

Abstract

Technological development is needed by an organization, one of them in the field of education. Activities in the field of education is not only in terms of teaching and learning activities, but promotional activities. The promotional activities undertaken to introduce to the public about what information can be known by the public outside. With the development of technology in the field of graphics and image processing is all it can be presented in three dimensions, including promotional activities. With this technology, promotional activities can be presented in a form that is much more and interactive. Three-dimensional interesting. complete visualization in promotional activities, usually used to create a map that aims to introduce a building within the organization.

This three-dimensional map will allow users to know in detail and real, without having to visit the place. Users will feel like visiting a place virtually in accordance with the actual situation. Besides being attractive, three-dimensional map is made more interactive. That where the user can interact with the objects available in the map. The three-dimensional map will be developed using the Unreal Engine, which is a game engine that has the ability to create a virtual environment that corresponds to the real world.

In this thesis, three-dimensional map created other than by using the Unreal Engine, there are several other supporting applications that previously had to be integrated first. For example, Microsoft Visio 2010 to create two-dimensional maps, Autodesk 3D Studio Max to create three-dimensional objects, Audacity for recording and editing sounds, Adobe Photoshop and x Normal to create textures and materials, and Flash to create an animated display. This three-dimensional map is expected to present a visualization of the building and surrounding ITS Medical Center, complete with a menu of information and information space the same interaction with the real situation.

Keywords: three-dimensional map, Unreal Engine, Medical Center of ITS.

PENGEMBANGAN PETA INTERAKTIF TIGA DIMENSI MEDICAL CENTER INSTITUT TEKNOLOGI SEPULUH NOPEMBER MENGGUNAKAN UNREAL ENGINE

:

•

:

•

Nama Mahasiswa NRP Jurusan Dosen Pembimbing Widya Putri Kandora 5209 100 090 Sistem Informasi FTIf-ITS Dr. Eng. Febriliyan Samopa, S.Kom, M.Kom

Abstrak

Perkembangan teknologi sangat dibutuhkan oleh suatu organisasi, salah satunya dibidang pendidikan. Kegiatan dalam bidang pendidikan ini tidak hanya dalam hal kegiatan belajar mengajar, melainkan kegiatan promosi. Kegiatan promosi ini dilakukan untuk mengenalkan kepada khalayak umum mengenai informasi apa saja yang dapat diketahui oleh masyarakat luar. Dengan adanya perkembangan teknologi dalam bidang grafis dan pengolahan gambar ini semua hal dapat disajikan dalam bentuk tiga dimensi, termasuk kegiatan promosi.Dengan adanya teknologi ini, kegiatan promosi dapat disajikan dalam bentuk yang jauh lebih menarik, lengkap dan interaktif. Visualisasi tiga dimensi pada kegiatan promosi, biasanya digunakan untuk membuat peta yang bertujuan untuk mengenalkan sebuah bangunan dalam organisasi tersebut.

Peta tiga dimensi ini akan memudahkan pengguna untuk mengetahui secara detail dan nyata, tanpa harus mengunjungi tempat tersebut. Pengguna akan merasa seperti mengunjungi suatu tempat secara virtual sesua dengan keadaan sebenarnya. Selain menarik, peta tiga dimensi ini dibuat lebih interaktif. Yang dimana pengguna dapat berinteraksi dengan objek yang tersedia dalam peta. Peta tiga dimensi tersebut akan dikembangkan dengan menggunakan Unreal Engine, yang merupakan game engine yang memilikikemampuan untuk membuat lingkungan virtual yang sesuai dengan dunia nyata. Dalam tugas akhir ini peta tiga dimensi dibuat selain dengan menggunakan Unreal Engine, ada beberapa aplikasi pendukung lainnya yang sebelumnya harus diintegrasikan terlebih dahulu. Contohnya, Microsoft Visio 2010 untuk membuat peta dua dimensi, Autodesk 3D Studio Mac untuk membuat objek tiga dimensi, Audacity untuk merekam dan melakukan editing suara, Adobe Photoshop dan x Normal untuk membuat tekstur maupun material, dan Flash untuk membuat tampilan animasi. Peta tiga dimensi ini diharapkan dapat menyajikan visualisasi gedung Medical Center ITS dan sekitarnya, yang lengkap dengan menu informasi ruang dan informasi interaksi yang sama dengan keadaan sebenarnya.

Kata kunci: Peta Tiga Dimensi, Unreal Engine, Medical Center ITS.

DEVELOPMENT OF THREE DIMENSIONAL INTERACTIVE MAP OF MEDICAL CENTER OF SEPULUH NOPEMBER INSTITUTE OF TECHNOLOGY USING THE UNREAL ENGINE

Name	:	Widya Putri Kandora
NRP	:	5209 100 090
Departement	:	Sistem Informasi FTIf-ITS
Supervisor	:	Dr. Eng. Febriliyan Samopa,
•		S.Kom, M.Kom

Abstract

Technological development is needed by an organization, one of them in the field of education. Activities in the field of education is not only in terms of teaching and learning activities, but promotional activities. The promotional activities undertaken to introduce to the public about what information can be known by the public outside. With the development of technology in the field of graphics and image processing is all it can be presented in three dimensions, including promotional activities. With this technology, promotional activities can be presented in a form that is much more and interactive. Three-dimensional interesting. complete visualization in promotional activities, usually used to create a map that aims to introduce a building within the organization.

This three-dimensional map will allow users to know in detail and real, without having to visit the place. Users will feel like visiting a place virtually in accordance with the actual situation. Besides being attractive, three-dimensional map is made more interactive. That where the user can interact with the objects available in the map. The three-dimensional map will be developed using the Unreal Engine, which is a game engine that has the ability to create a virtual environment that corresponds to the real world.

In this thesis, three-dimensional map created other than by using the Unreal Engine, there are several other supporting applications that previously had to be integrated first. For example, Microsoft Visio 2010 to create two-dimensional maps, Autodesk 3D Studio Max to create three-dimensional objects, Audacity for recording and editing sounds, Adobe Photoshop and x Normal to create textures and materials, and Flash to create an animated display. This three-dimensional map is expected to present a visualization of the building and surrounding ITS Medical Center, complete with a menu of information and information space the same interaction with the real situation.

Keywords: three-dimensional map, Unreal Engine, Medical Center of ITS.

KATA PENGANTAR

Puji syukur sebesar-besarnya penulis panjatkan kehadirat Allah SWT yang telah memberikan rahmat dan hidayah-Nya kepada penulis sehingga dapat menyelesaikan Laporan Tugas Akhir ini yang bejudul:

PENGEMBANGAN PETA INTERAKTIF TIGA DIMENSI MEDICAL CENTER INSTITUT TEKNOLOGI SEPULUH NOPEMBER MENGGUNAKAN UNREAL ENGINE

Dalam proses penyusunan dan penyelesaian Tugas Akhir ini, penulis ingin menyampaikan rasa hormat, terimakasih, dan penghargaan setinggi-tingginya kepada:

- Mama dan Papa tercinta, serta kakakku Prisayani Kandora dan Bobby Meidrie Levianto, adikku Fauzan Nabala Kandora, dan sepupuku Ditariani Ananthi juga keponakan kecilku Andrea Kenzie Meidrie Kirana yang selalu memberikan semangat, doa, kasih sayang, dan dukungan yang peuh selama penulis menyelesaikan tugas akhir.
- Bapak Dr.Eng. Febriliyan Samopa, S.Kom, M.Kom selaku pembimbing dan dosen wali yang telah memberikan pengarahan dan meluangkan waktu untuk membimbing penulis dalam menyelesaikan Tugas Akhir penulis.
- Semua Bapak dan Ibu Dosen Pengajar beserta staf dan karyawan di Jurusan Sistem Infromasi, FTIF ITS Surabaya yang telah memberikan bantuan kepada penulis selama ini.

- Kepada mbak Silvie dari pihak Medical Center ITS, yang telah memberikan waktu dan izin untuk membantu proses pengambilan data.
- Sahabat tersayang dan tercintaku DyaRiHezeL (Riza, Hesti, Adel). Terimakasih untuk selalu ada disaat suka maupun duka. Entah itu kesedihan ataupun kebahagiaan, semua kita jalani bersama.
- Teman-teman tersayangku, Ridha, Chui, Lilis, Nike, Endones, Ilmi dan mbak Tiwi. Terimakasih atas segala semangat dan motivasi, serta doanya selama ini.
- Teman-teman AE9IS yang telah memberikan pertemanan yang begitu erat. Terima kasih atas segala dukungan dan doa yang telah diberikan.
- Semua pihak yang tidak dapat disebutkan satu persatu yang telah ikut membantu baik secara langsung maupun tidak langsung selama penulisan Tugas Akhir ini.

Penulis menyadari bahwa penelitian Tugas Akhir ini masih belum sempurna. Oleh karena itu penulis berharap agar penelitian Tugas Akhir ini dapat dikembangkan lebih baik lagi di kemudian hari. Kritik dan saran yang membangun dapat disampaikan melalui email <u>kandorawidya@gmail.com</u>. Harapan penulis, semoga tugas akhir ini dapat bermanfaat bagi pembaca.

Surabaya, 16 Januari 2015

Penulis

DAFTAR ISI

Abstrak.		v
Abstract		. vi
DAFTA	R ISI	.xi
DAFTA	R GAMBAR xv	vii
DAFTA	R TABEL x	xi
BAB I P	ENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	4
1.3	Batasan Masalah	5
1.4	Tujuan Tugas Akhir	5
1.5	Manfaat Tugas Akhir	5
1.6	Sistematika Penulisan	6
BAB II 7	ΓΙΝJAUAN PUSTAKA	9
2.1 Ga	ame Engine	9
2.2 Ur	nreal Engine	.10
2.3 U	nreal Editor	.11
2.3.1	Unreal Kismet	.12
2.3.2	Unreal Matinee	.12
2.3.	3 Unreal Material Editor1	13
2.3.	4 Unreal Static Mesh Editor	14
2.3.	5 Unreal AnimeSet Editor	15

2.3.6 Unreal SoundCue Editor	16
2.3.7 Unreal Anim Tree Editor	16
2.3.8 SpeedTree Modeler dan SpeedTree Compiler	16
2.3.9 Unreal Fronted	16
2.4 Perangkat Lunak Pembuat Peta Dua Dimensi	17
2.5 Perangkat Lunak Modelling Tiga Dimensi	17
2.6 Perangkat Lunak Pengolah Gambar	18
2.7 Perangkat Lunak Pengolah Suara	19
2.8 Perangkat Lunak Pendukung	19
2.9 Interaksi Manusia Komputer	21
2.10 Pengembangan Tugas Akhir Serupa Sebelumnya	22
BAB III METODE PENELITIAN	23
3.1 Studi Literatur	26
3.2 Survey Lokasi dan Pengambilan Data	
3.3 Desain Aplikasi	27
3.4 Pembuatan Aplikasi	
3.5 Testing Aplikasi	31
3.6 Integrasi Aplikasi	31
3.7 Pembuatan Buku Tugas Akhir	33
BAB IV RANCANGAN APLIKASI	35
4.1 Interaksi	35
4.2 Domain Model	
4.3 Use Case Diagram	40
4.3.1 Deskripsi Use Case Memilih Menu	41

4.3.2 Deskripsi Use Case Memilih Peta	42
4.3.3 Deskripsi Use Case Mengubah Resolusi	.43
4.3.4 Deskripsi Use Case Melihat Bantuan	.44
4.3.5 Deskripsi Use Case Menjelajahi Peta	45
4.3.6 Deskripsi Use Case Navigasi	.46
4.3.7 Deskripsi USe Case Kembali Ke Menu Utama	.47
4.3.8 Deskripsi Use Case Melihat Peta Dua Dimensi	.48
4.3.9 Deskripsi Use Case Teleportasi	.49
4.3.10 Deskripsi Use Case Melihat Petunjuk Arah	.50
4.3.11 Deskripsi Use Case Mengaktifkan Layar Informasi	.52
4.3.12 Deskripsi Use Case Interaksi Dengan Objek	.52
4.3.13 Deskripsi Melihat Simulasi Pendaftaran Poli Umum	54
4.3.14 Deskripsi Melihat Simulasi Pendaftaran Poli Gigi	55
4.3.15 Deskripsi Melihat Simulasi Pendaftaran Poli BKIA.	56
4.3.16 Deskripsi Use Case Pasien Unit Gawat Darurat	57
4.3.17 Deskripsi Use Case Pembelian Obat di Apotek	58
4.3.18 Deskripsi Use Case melihat Video Dental Chair	.59
4.4 Sequence Diagram	60
4.5 Test Case	60
4.5.1 Test Case Memilih Menu	60
4.5.2 Test Case Memlih Peta	61
4.5.3 Test Case Mengubah Resolusi	63
4.5.4 Test Case Melihat Bantuan	68
4.5.5 Test Case Menjelajahi Peta	.72

4.5.6 Test Case Navigasi	73
4.5.7 Test Case Kembali Ke Menu Utama	78
4.5.8 Test Case Melihat Peta Dua Dimensi	80
4.5.9 Test Case Teleportasi	82
4.5.10 Test Case Melihat Penunjuk Arah	86
4.5.11 Test Case Mengaktifkan Layar Informasi	89
4.5.12 Test Case Interaksi Dengan Objek	90
4.5.13 Test Case Simulasi Pendaftaran Poli Umum	92
4.5.14 Test Case Simulasi Pendaftaran Poli Gigi	93
4.5.15 Test Case Simulasi Pendaftaran Poli BKIA	93
4.5.16 Test Case Pasien Unit Gawat Darurat	94
4.5.17 Test Case Pembelian Obat di Apotek	95
4.5.18 Test Case Video Peragaan Dental Chair	95
4.6 Pemilihan Tombol Navigasi dan Kontrol	96
4.7 GUI Story Board Menu Awal	100
4.8 Desain Interaksi	104
4.8.1 Tour Seluruh Peta	104
4.8.1.1 Tour Dalam Gedung	105
4.8.1.2 Tour Luar Gedung	106
4.8.2 Simulasi Pendaftaran Poli Umum	107
4.8.3 Simulasi Pendaftaran Poli Gigi	108
4.8.4 Simulasi Pendaftaran Poli BKIA	109
4.8.5 Simulasi Pasien Unit Gawat Darurat	110
4.8.6 Simulasi Pembeliat Obat di Apotek	111

4.8.7 Video Peragaan Dental Chair	112
BAB V IMPLEMENTASI DAN UJI COBA	113
5.1 Lingkungan Implementasi	113
5.2 Pembuatan Peta Dua Dimensi	114
5.3 Pembuatan Aplikasi	115
5.3.1 Pembuatan Level Map	115
5.3.2 Pembuatan dan Peletakan Objek	127
5.3.3 Pengaturan Pencahayaan	128
5.3.4 Penambahan Suara	129
5.3.5 Pembuatan Interaksi	129
5.5 Uji Coba dan Evalasu	132
5.5.1 Uji Coba Fungsional	133
5.5.2 Uji Coba Non-Fungsional	133
5.5.4 Evaluasi Implementasi	136
BAB VI KESIMPULAN DAN SARAN	141
6.1 Kesimpulan	141
6.2 Saran	142
DAFTAR PUSTAKA	145
BIODATA PENULIS	151
LAMPIRAN	153

Halaman ini sengaja dikosongkan.

DAFTAR TABEL

Tabel 4.1 Interaksi	36
Tabel 4.2 Deskripsi Use Case Memilih menu	41
Tabel 4.3. Deskripsi Use Case Memilih Peta	42
Tabel 4.4 Deskripsi Use Case Mengubah Resolusi	43
Tabel 4.5 Deskripsi Use Case Melihat Bantuan	44
Tabel 4.6 Deskripsi Use Case Menjelajahi Peta	45
Tabel 4.7 Deskripsi Use Case Navigasi	46
Tabel 4.8 Deskripsi Use Case Kembali Ke Menu Utama	47
Tabel 4.9 Deskripsi Use Case Melihat Peta Dua Dimensi	48
Tabel 4.10 Deskripsi Use Case Teleportasi	49
Tabel 4.11 Deskripsi Use Case Melihat Penunjuk Arah	50
Tabel 4.12 Deskripsi Use Case Aktif Layar Informasi	52
Tabel 4.13 Deskripsi Use Case Interaksi DenganObjek	52
Tabel 4.14 Deskripsi Use Case Simulasi Poli Umum	54
Tabel 4.15 Deskripsi Use Case Simulasi Poli Gigi	55
Tabel 4.16 Deskripsi Use Case Simulasi Poli BKIA	56
Tabel 4.17 Deskripsi Use Case Pasien Unit Gawat Darurat	57
Tabel 4.18 Deskripsi Use Case Pembelian Obat di Apotek	58
Tabel 4.19 Deskripsi Use Case Video Dental Chair	59
Tabel 4.20 Test Case Memilih Menu	60
Tabel 4.21 Test Case Memilih Peta	61
Tabel 4.22 Test Case Memgubah Resolusi	63

Tabel 4.23 Test Case Melihat Bantuan	68
Tabel 4.24 Test Case Menjelajahi Peta	72
Tabel 4.25 Test Case Navigasi	73
Tabel 4.26 Test Case Kembali Ke Manu Utama	78
Tabel 4.27 Test Case Melihat Peta Dua Dimensi	80
Tabel 4.28 Test Case Teleportasi	82
Tabel 4.29 Test Case Melihat Penunjuk Arah	86
Tabel 4.30 Test Case Aktif Layar Informasi	
Tabel 4.31 Test Case Interaksi Dengan Objek	90
Tabel 4.32 Test Case Simulasi Poli Umum	92
Tabel 4.33 Test Case Simulasi Poli Gigi	93
Tabel 4.34 Test Case Simulasi Poli BKIA	
Tabel 4.35 Test Case Pasein Unit Gawat Darurat	94
Tabel 4.36 Test Case Pembelian Obat di Apotek	95
Tabel 4.37 Test Case Video Dental Chair	95
Tabel 4.38 Tombol Navigasi	96
Tabel 5.1 Spesifikasi Hardware dan OS	113
Tabel 5.2 Software yang digunakan	113
Tabel 5.3 Unit Test dari rancangan test case	133
Tabel 5.4 Spesifikasi PC 1	134
Tabel 5.5 Spesifikasi PC 2	134
Tabel 5.6 Spesifikasi PC 3	135
Tabel 5.7 Hasil Ujo Coba	135
Tabel 5.8 Evaluasi Implementasi model peta 3D	
· ·	

BAB I PENDAHULUAN

Pada bab ini akan dibahas mengenai pendahuluan tugas akhir yang berisi latar belakang, perumusan permasalahan, batasan masalah, tujuan tujuan, dan manfaat tugas akhir.

1.1 Latar Belakang

Saat ini perkembangan teknologi sangat dibutuhkan oleh suatu organisasi di bidang apapun. Salah satunya organisasi pendidikan, vang dimana organisasi ini memiliki berbagai fasilitas yang dapat digunakan oleh pihak internal maupun eksternal. Berbagai macam cara dapat dilakukan untuk mendapatkan informasi mengenai fasilitas yang terdapat pada suatu organisasi. Salah satunya dengan sebuah aplikasi yang dapat mendukung proses pemberian informasi. Aplikasi yang disajikan sebaiknya didesign semenarik mungkin, agar pengguna mendapatkan informasi yang lebih lengkap. Dengan berkembangnya teknologi grafis dan pengolahan gambar, visualisasi dalam bentuk tiga dimensi sudah banyak digunakan sebagai salah satu media penyajian informasi dan kegiatan promosi.Oleh karena para pengembang teknologi informasi berusaha itu. untuk menggunakan teknik visualisasi tiga dimensi untuk menggambarkan produk yang dapat terlihat sesuai dengan keadaan yang sebenarnya.

Teknologi tiga dimensi sangat berperan dalam promosi untuk produk berupa rumah, bahkan gedung dengan tingkat kedetilan yang cukup tinggi. Teknologi visual tiga dimensi ini juga dapat digunakan sebagai sarana promosi bisnis untuk menarik pasar dengan tampilan yang lebih atraktif dan menarik. Akan tetapi dengan teknologi virtual ini, pengguna seolah-olah dapat mengunjungi tempat itu sesuai dengan keadaan sebenarnya tanpa harus pergi ke tempat tersebut. Dengan begitu ini juga memudahkan pemilik bisnis dan juga masyarakat.

Pada tugas akhir ini, penulis mengembangkan peta tiga dimensi dari gedung *Medical Center* ITS dengan menggunakan salah satu *game engine* yaitu *Unreal Engine*. *Unreal Engine* adalah sebuah perangkat lunak *open source* yang memiliki kemampuan untuk membuat lingkungan virtual yang sesuai dengan dunia nyata. Karena tugas akhir ini lebih menekankan pada kemudahannya dalam membuat interaksi antara aktor dengan objek yang ada pada peta, maka aplikasi yang digunakan adalah *Unreal Development Kit* (UDK).

Visualisasi tiga dimensi seluruh ITS ini merupakan pengembangan dari tugas akhir Bagit Airlangga yang membentuk gedung Jurusan Informasi visualisasi Sistem ITS dengan menggunakan teknologi game engine yang sama yaitu UDK. Dengan pengembangan peta tiga dimensi ini diharapkan dapat menyajikan tampilan gedung Medical Center ITS yang interaktif dan akurat sehingga memudahkan pengguna untuk mengetahui lebih detail bentuk fisik dan dapat berinteraksi secara virtual dengan objek yang ada dalam peta. Selain gedung Sistem Informasi, ada beberapa gedung lain yang telah dibuat peta tiga dimensinya, diantaranya :

- 1) Jurusan di FTI
 - Teknik Mesin
 - Teknik Elektro
 - Teknik Fisika
 - Teknik Kimia
 - Teknik Industri
 - Teknik Material dan Metalurgi
 - Prodi D3 FTI
- 2) Jurusan di FTSP
 - Teknik Sipil
 - Teknik Lingkungan
 - Arsitektur
 - Teknik Geomatika
 - Desain Produk Industri
 - Perencanaan Wilayah dan Kota
- 3) Jurusan di FMIPA
 - Matematika

- Biologi
- Fisika
- Statistika
- Kimia
- 4) Jurusan di FTK
 - Teknik Kelautan
 - Teknik Perkapalan
 - Sistem Perkapalan
- 5) Jurusan di FTIf
 - Teknik Informatika
 - Sistem Informasi
- 6) Fasilitas lain
 - Rektorat
 - PUSKOM
 - BAAK
 - BAUK
 - UPT Bahasa
 - Grha
 - Pascasarjana

Sedangkan peta tiga dimensi yang belum dibuat, diantaranya :

- 1) Jurusan D3 Teknik Sipil
- 2) Fasilitas OlahRaga
- 3) Fasilitas Lain
 - NASDEC
 - UPMB
 - MKU
 - BAPSI
 - Gedung Robotika
 - Medical Center
 - SAC

- SCC
- Masjid Manarul Ilmi
- Kantin Pusat
- Theater (A,B dan C)
- Perpusatakaan Pusat
- Asrama Mahasiswa ITS

Dengan menggunakan *unreal engine* diharapkan aplikasi ini berguna bagi pengguna untuk mengetahui *Medical Center* dengan jelas tanpa harus mengunjungi dan berkeliling ke tempat tersebut. Selain itu, pengguna juga akan mendapatkan pengalaman berbeda karena pengguna juga dapat melakukan kunjungan dan interaksi secara virtual dengan objek yang ada dalam peta serta mendapatkan informasi interaksi seperti simulasi pendaftaran mengenai fasilitas yang berada di lokasi tersebut.

1.2 Rumusan Masalah

Permasalahan yang diselesaikan dalam tugas akhir ini adalah :

- 1) Bagaimana membangun peta tiga dimensi yang informatif *Medical Center* Institut Teknologi Sepuluh Nopember yang informatif dengan menggunakan Unreal Engine?
- 2) Bagaimana mengembangkan peta tiga dimensi *Medical Center* Institut Teknologi Sepuluh Nopember sehingga pengguna dapat berinteraksi dengan objek serta mendapatkan informasi dalam peta tiga dimensi?
- 3) Bagaimana membuat peta tiga dimensi *Medical Center* Institut Teknologi Sepuluh Nopember yang terstandardisasi sehingga dapat diintegrasikan dengan peta tiga dimensi dari beberapa lokasi yang lain di ITS?
- 4) Bagaimana mengembangkan peta tiga dimensi *Medical Center* Institut Teknologi Sepuluh Nopember sehingga pengguna dapat melihat simulasi pendaftaran serta mendapatkan informasi dari simulasi tersebut?

1.3 Batasan Masalah

Dari perumusan masalah di atas, tugas akhir ini memiliki batasan sebagai berikut :

- 1) Aplikasi dikembangkan menggunakan perangkat lunak *Unreal Development Kit*,
- 2) Aplikasi yang dikembangkan tidak mencakup interaksi antar pengguna,
- Aplilkasi yang dikembangkan hanya mencakup peta gedung *Medical Center* Institut Teknologi Sepuluh Nopember di mana objek akan dijelaskan lebih detail di bagian metodologi penelitian,
- 4) Aplikasi yang dikembangkan tidak dapat dirubah oleh pengguna atau user,
- 5) Aplikasi yang dikembangkan tidak menerapkan Artificial Intelligent,dan
- 6) Aplikasi yang dikembangkan tidak akan menggambarkan daerah yang dilarang oleh pihak yang berkaitan yaitu *Medical Center* Institut Teknologi Sepuluh Nopember.

1.4Tujuan Tugas Akhir

Tujuan dari tugas akhir ini adalah membuat aplikasi peta tiga dimensi gedung Medical Center Institut Teknologi Sepuluh Nopember yang interaktif dan informatif, yang nantinya aplikasi ini diharapkan dapat memungkinkan user mengunjungi *Medical Center* Institut Teknologi Sepuluh Nopember secara virtual serta dapat melakukan interaksi dengan objek gedung dalam peta.

1.5Manfaat Tugas Akhir

Manfaat tugas akhir ini adalah sebagai berikut :

1. Pihak institusi, sebagai fasilitas bagi pengunjung untuk melihat daerah-daerah di Institut Teknologi Sepuluh Nopember tanpa harus berjalan jauh dan mengunjungi langsung ke lokasi tersebut.

- 2. Pihak pengguna, sebagai alat untuk mengenal wilayah-wilayah di Institut Teknologi Sepuluh Nopember yang sesuai dengan bentuk aslinya berupa peta tigadimensi yang informatif dan interaktif.
- 3. Pihak pengembang, dapat digunakan sebagai sarana promosi Institut Teknologi Sepuluh Nopember kepada masyarakat luar yang tidak dapat melakukan kunjungan langusng ke Institut Teknologi Sepuluh Nopember. Sehingga mereka mendapatkan gambaran secara detail dan mendekati nyata mengenai lingkungan Institut Teknologi Sepuluh Nopember.

1.6Sistematika Penulisan

Secara garis besar Penulisan dalam Tugas Akhir ini terbagi dalam enam Bab, dimana materi dari setiap bab dapat dituliskan sebagai berikut:

BAB I PENDAHULUAN

Bab ini memuat serangkaian uraian mengenai latar belakang, perumusan masalah, batasan masalah, tujuan tugas akhir dan manfaat tugas akhir.

BAB II TINJAUAN PUSTAKA

Bab ini menjelaskan istilah-istilah yang digunnakan pada penulisan buku tugas akhir ini serta dasar teori yang digunakan pada tugas akhir ini.

BAB III METODOLOGI

Bab ini membahas alur dan tata pengerjaan tugas akhir dari awal sampai selesainya tugas akhir.

BAB IV PERANCANGAN APLIKASI

Bab ini menjelaskan rancangan aplikasi yang dibuat berdasarkan kebutuhan aplikasi. Desain tersebut digunakan untuk pembangunan aplikasi pada tugas akhir ini.

BAB V IMPLEMENTASI DAN UJI COBA SISTEM

Bab ini menjelaskan pembangunan aplikasi yang sesuai dengan desain. Selain itu, dijelaskan pula uji coba sistem dalam menjaga performa aplikasi.

BAB VI KESIMPULAN DAN SARAN

Bab ini berisi kesimpulan yang dapat diambil dari tugas akhir ini dan saran untuk kelanjutan sistem.

Halaman ini sengaja dikosongkan.

BAB II TINJAUAN PUSTAKA

Berikut ini akan dijelaskan beberapa konsep dan informasi mengenai teknologi apa saja yang digunakan dalam tugas akhir ini untuk memudahkan dalam memahami mengenai apa yang dikerjakan pada tugas akhir ini.

2.1 Game Engine

Game engine merupakan sebuah sistem perangkat lunak yang dirancang untuk pembuatan dan pengembangan permainan digital dalam dua dimensi (2D) atau tiga dimensi (3D). Fungsional dasar yang biasanya disediakan oleh game engine mencakup rendering engine ("renderer") yang berhubungan dengan grafik dua dimensi atau tiga dimensi, physics engine atau collision detection (dan collision response), suara, scripting, animasi, kecerdasan buatan, jaringan, streaming, manajemen memori, threading, pendukung lokalisasi, dan grafik suasana (David H. Eberly). Game engine menyediakan deretan alat pengembangan visual untuk menggunakan ulang komponen – komponen perangkat lunak (Shiratuddin, & Flecther.2007).

Game Engine 3D tidak hanya digunakan untuk membuat game tetapi juga memiliki kemampuan untuk menggambarkan sebuah lingkungan virtual dalam keadaan realtime dan realistis (Shiratuddin, 2002). Ide untuk menggunakan game engine pada pengembangan aplikasi non-game bukan merupakan suatu ide baru.

Salah satu pemanfaatan lain dari *game engine* adalah pengembangan museum *virtual* (Lepouras, 2004). Beberapa museum sudah mulai sadar akan pemanfaatan teknologi *edutainment*. Dengan *edutainment*, pengunjung mendapatkan pengalaman yang menyenangkan dengan usaha dan sumber daya yang kecil dari pihak museum. Hal tersebut bisa didapatkan dengan menggunakan *game*

engine. Tetapi beberapa ahli menyatakan bahwa teknologi akan dapat mengurangi beberapa detail.

2.2 Unreal Engine

Trend di dunia tentang teknologi grafis yang meningkat pesat membuat banyak *software house* mengembangkan *game engine*. terdapat dua jenis *game engine* yaitu *freeware* dan berbayar. *Unreal Engine* termasuk yang berbayar namun tidak untuk *Unreal Engine 3* untuk keperluan pendidikan. *Unreal Engine* merupakan game engine dengan popularitas nomor kedua setelah *Source Engine*.

Unreal Engine merupakan *game engine* dengan popularitas kedua setelah *game engine* tiga dimensi serupa yaitu *Source Engine*. Terdapat beberapa hal yang dipertimbangkan ketika seseorang, instansi atau perusahaan memilih *game engine* yang digunakan untuk mengembangkan suatu permainan atau visualisasi. Beberapa diantaranya dipilih berdasarkan lisensinya, apakah berbayar atau tidak. Namun untuk Unreal Development Kit lisensinya adalah tidak berbayar.

Unreal Engine memiliki beberapa komponen yang dapat berdiri sendiri - sendiri, namun tetap berada dalam kesatuan yang terpusat pada "*core engine*" (Busby, 2004). Berikut adalah komponen – komponen *Unreal Engine* :

a. Graphics Engine.

Modul ini mengatur apa yang akan ditampilkan ke layar pengguna, seperti benda apa yang harus didepan, menampilkan material sesuai yang diatur sebelumnya dan mengatur pencahayaan dari lingkungan *virtual* yang dibuat.

b. Sound Engine.

Modul ini mengatur efek suara dari lingkungan virtual.

c. Physics Engine.

Modul ini digunakan untuk mengatur benturan antar dua objek yang terjadi.

d. Input Manager.

Modul ini digunakan untuk mengatur *input*, seperti tombol ditekan atau tombol dilepas.

e. Network infrastructure.

Epic Games dengan *gamenya Unreal Tournament* telah berhasil mengembangkan *network gaming* yang efisien. Fitur *network gaming* yang efisien tersebut juga tersedia di *Unreal Engine*.

f. Unreal Script Interpreter.

Salah satu bahasa *scripting* yang dapat digunakan oleh programmer untuk mengatur apa yang dilakukan oleh *engine*, tanpa menyentuh *source code* asli. *Script* ini mirip dengan bahasa pemrograman terkenal lain seperti Java dan C++. Bahkan bahasa ini lebih mudah dari dua bahasa pemrograman yang telah disebutkan sebelumnya.

2.3 Unreal Editor

Unreal Development Kit menyediakan alat untuk membuat dunia *virtual* yaitu *Unreal Editor*. Editor ini juga bisa melakukan *import* dari perangkat lunak pembuat objek tiga dimensi yang sudah banyak digunakan seperti 3D Studio Max dan Maya^[12]. Antar muka pengguna menyerupai perangkat lunak pembuat objek tiga dimensi seperti 3D Studio Max yang dapat dilihat pada Gambar 2.1.

Gambar 2.1 Unreal Editor

2.3.1 Unreal Kismet

Dalam Unreal Editor terdapat banyak fungsi editor lainnya seperti Unreal Kismet yang digunakan untuk mengolah logika. Unreal Kismet atau lebig sering disebut Kismet bentuk visual dari script yang sebenarnya kompleks, hingga Kismet menjadi tulang punggung interaksi didalam game. Dengan menggunakan objek yang tersedia didalamnya dan saling dihubungkan menjadi suatu modul di dalam maka suatu interaksi atau semua yang akan dilakukan di dalam game menjadi lebih mudah dan cepat dibuat serta dipahami. Contoh modul di dalam Kismet dapat dilihat pada Gambar 2.2.

Gambar 2.2 Contoh Sequnce dalam Kismet

2.3.2 Unreal Matinee

Unreal Matinee merupakan suatu editor bagian dari Unreal Editor yang digunakan untuk merubah properties Actor seperti lokasi, rotasi, ukuran, dan lainnya (termasuk dalam satu objek yang bernama Matinee). Unreal Matinee juga dapat digunakan untuk mengaktifkan suatu event didalam kismet, seperti memainkan suara, membuat animasi objek, dan lainnya. Bagaimana sebuah Matinee dijalankan ketika

sebuah objek trigger tersentuh oleh pengguna akan digambarkan pada Gambar 2.3.

Gambar 2.3 Unreal Matinee

UnrealMatinee ini memang terintegrasi dengan *Kismet*.Oleh karena itu, untuk menjalankan *Matinee* perlu membuat *sequence* objek di dalam *Kismet*.

2.3.3 Unreal Material Editor

Saat kita membuat map di dalam *Unreal Engine* pasti akan memberikan warna agar *map* yang kita buat terlihat seperti bentuk nyatanya. Dengan menggunakan *Unreal Material Editor*, kita bisa membuat *map* kita terlihat menarik dan bahkan seperti bentuk nyatanya. Kita dapat menempelkan material pada *map* kita, seperti pada tembok, lantai, objek, dan lainnya agar terlihat lebih hidup atau nyata.

Material yang dibuat melalui Unreal Material Editor bisa hanya sekedar warna saja, namun dapat ditambahkan efekefek semisal pantulan cahaya seperti pada logam, efek memancarkan cahaya atau bahkan material yang bisa bergerak seperti arus air kolam. Material yang bisa bergerak dapat dibuat dengan menggunakan Material Expression yang tersedia kemudian membuat suatu sequence dari kumpulan expression yang diatur sedemikian rupa dan digerakkan dengan kecepatan tertentu.

Gambar 2.4 Unreal Material Editor

2.3.4 Unreal Static Mesh Editor

Ada juga Unreal StaticMesh Editor yang digunakan untuk mengolah objek tiga dimensi. Dengan Unreal Static Mesh Editor ini, objek yang telah dibuat atau di-import ke dalam ContentBrowser, dapat diatur. Saat melakukan import ke dalam Content Browser, harus dipastikan bertipe static mesh, sehingga nantinya bisa melakukan pengaturan properties pada objek seperti mengubah materialnya dan mengaturcollision-nya.

Khusus untuk aplikasi pengolah objek tiga dimensi Autodesk 3Ds Max, terdapat beberapa tipe file hasil pemodelan objek tiga dimensi yang dapat diterima oleh Unreal Editor. Tipe file tersebut adalah sebagai berikut:

• .ASE

Karakter objek tiga dimensi yang dihasilkan dengan tipe file ini hanya dapat menerima satu jenis tekstur yang bisa ditempelkan pada objek hasil impor dari tipe file ini. • .FBX

Karakter objek tiga dimensi yang dihasilkan dengan tipe file ini dapat mengatur beberapa jenis tekstur yang bisa ditempelkan pada objek hasil impor dari tipe file ini.

• .DAE

Karakter objek tiga dimensi yang dihasilkan dengan tipe file ini dapat mengatur beberapa jenis tekstur yang bisa ditempelkan pada objek hasil import dari tipe file ini.

Gambar 2.4 Contoh Penggunaan Unreal Static Mesh Editor

2.3.5 Unreal AnimSet Editor

Unreal AnimSet merupakan bagian dari Unreal Engine yang digunakan untuk mengatur aktor yang akan digunakan didalam peta 3D. Beberapa pengaturan yang umum dilakukan, meliputi material aktor, AnimSet aktor serta lokasi dan rotasi aktor. Dengan memanfaatkan fungsi pengaturan material, kita bisa mempercantik tampilan aktor, seperti memberikan warna baju, kulit, dan lainnya. Sedangkan melalui pengaturan AnimaSet aktor, dapat
diberikan animasi untuknya, seperti bergerak maju, mundur, loncat dan lainnya.

2.3.6 Unreal SoundCue Editor

Unreal SoundCue Editor digunakan untuk memainkan suara didalam peta 3D. Suara yang dibuat di dalam editor ini berasal suara dengan tipe .WAV yang diimport ke dalam Content Browser menjadi SoundWave. SoundCue ini dapat berasal dari lebih dari satu SoundWave dan memberikan efek-efek yang tersedia di dalam editor ini, seperti efek attenuation, random, looping dan efek lainnya sehingga terbentuk bunyi baru yang siap digunakan di dalam peta3D.

2.3.7 Unreal AnimTree Editor

Di dalam *AnimTree Editor* ini, dapat dilakukan pengaturan kapan suatu AnimSet aktor akan dijalankan saat peta 3D dimainkan, misalnya AnimSet gerakan ke depan akan terjadi ketika ditekan tombol panah ke atas. Dalam pembuatannya, digunakan *sequence object* yang sudah disediakan didalam editor ini.

2.3.8 SpeedTree Modeler dan SpeedTree Compiler

Ketika mengunduh Unreal Development Kit dari situs web resmi Unreal Engine (www.udk.com), disediakan pula perangkat lunak tambahan yaitu SpeedTreeModeler yang berfungsi untuk membuat objek tiga dimensi tumbuh-tumbuhan. Sedangkan SpeedTreeCompiler digunakan untuk melakukan compile objek tiga dimensi tumbuh-tumbuhan hasil dari pemodelan yang dilakukan di SpeedTree Modeler.

2.3.9 Unreal Frontend

Unreal Development Kitjuga menyediakan Unreal Frontend (UFE). UFE adalah sebuah alat yang menyediakan cara seragam

untuk melakukan banyak tugas-tugas umum dalam ekosistem Unreal. Ini biasanya mencakup:

- Meluncurkan permainan
- Memulai server
- Menambahkan klien ke *server* untuk *server* lokal
- Menjalankan *editor*
- Kompilasi kode script
- Cooking data

2.4 Perangkat Lunak Pembuat Peta Dua Dimensi

Peta 2D dibuat sebelum membuat peta 3D. Berikut adalah sedikit ulasan mengenai perangkat lunak yang digunakan untuk membuat peta 2D dalam pengerjaan tugas akhir ini.

• Microsoft Visio 2010

Sebuah perangkat lunak yang digunakan untuk membangun desain *map* 2D bangunan pada salah satu menunya, selain dikenal sebagai aplikasi untuk membuat *flowchart*. Contoh dari pembuatan peta dua dimensi dapat dilihat pada Gambar 2.6

Gambar 2.6 Pembuatan Peta 2D Dengan Menggunakan Visio

2.5 Perangkat Lunak Modelling Tiga Dimensi

Perangkat lunak *modelling* 3D yang dimaksud disini adalah perangkat lunak untuk membuat objek tiga dimensi untuk nantinya dimasukkan dalam peta tiga dimensi yang telah dibuat.

Perangkat lunak *modelling* 3D telah banyak tersedia dalam bentuk berbayar ataupun gratis. Berikut adalah sedikit ulasan mengenai perangkat lunak *modelling* tiga dimensi yang digunakan dalam pengerjaan tugas akhir ini.

• Autodesk 3Ds Max

Sebuah perangkat lunak keluaran *autodesk* yang digunakan untuk melakukan *modelling* tiga dimensi, animasi, hingga *rendering.* 3D Studio Max dapat melakukan *export* hasil *modelling* yang dapat diterima oleh *Unreal Development Kit* seperti .ASE, .FBX dan .DAE. Contoh penggunakan 3Ds Max dapat dilihat pada Gambar 2.7.

Gambar 2.7 Pembuatan Objek Dengan Menggunakan 3Ds Max

2.6 Perangkat Lunak Pengolah gambar

Pada pembuatan tugas akhir ini, dibutuhkan perangkat lunak pengolah gambar untuk membuat material dan tekstur 2D dari benda yang ada dalam peta. Untuk itu penulis menggunakan perangkat lunak *digital imaging* yang banyak tersedia mulai dari yang berbayar hingga yang tidak berbayar. Berikut adalah sedikit ulasan mengenai program pengolah gambar yang digunakan dalam pengerjaan tugas akhir ini.

• Ms. Paint

Sebuah perangkat lunak keluaran dari *Microsoft* yang sering digunakan untuk melakukan *editing* gambar yang sederhana. Perangkat lunak yang berguna untuk membuat hingga memanipulasi gambar ini memang hanya untuk kelas ringan seperti menggambar sketsa dan berbagai jenis animasi. Contoh penggunaan paint dapat dilihat pada Gambar 2.8.

Gambar 2.8 Pembuatan Warna Pada Paint

2.7 Perangkat Lunak Pengolah Suara

Untuk mengisi suara peta dibutuhkan perangkat lunak untuk merekam dan melakukan *editing* suara. Berikut sedikit ulasan mengenai perangkat lunak pengolah suara yang digunakan dalam pengerjaan tugas akhir ini.

• Audacity

Perangkat lunak ini tidak berbayar dan dapat digunakan untuk merekam dan melakukan *editing* suara.

2.8 Perangkat Lunak Pendukung

Beberapa perangkat lunak juga digunakan untuk membuat tampilan animasi *flash* dan *video*. Berikut sedikit ulasan mengenai

perangkat lunak pendukung yang digunakan dalam pengerjaan tugas akhir ini.

• Adobe Flash

Unreal Engine mendukung penggunaan animasi flash di dalam membuat peta 3D. Dengan menggunakan Adobe Flash kita dapat membuat animasi flash dan memasang animasi flash tersebut ke dalam Unreal Engine. Penggunaan script di dalam animasi flash juga dapat menambah sebuah peta 3D Unreal Engine menjadi lebih interaktif, karena dapat menerima input dari Unreal Engine serta menampilkan output ke dalamnya. Contoh pembuatan flash dapat dilihat pada Gambar 2.9.

Gambar 2.9 Pembuatan Flash

• Bink

Merupakan video codec untuk game dan sudah mendapatkan lisensi lebihd ari 5800 game, termasuk *Unreal Engine*. Dengan membuat video bertipe .BINK, maka video dapat dijalankan dalam *Unreal Engine* sebagai video pembuka yang menarik. Contoh penggunaan bink dapat dilihat pada Gambar 2.10.

and the second second	Topla		_			10. X
Look a	video dokter	9igi		• • •	a 0.	
Computer						
Retwork	Rename	video dato	ter ora		-	Fay
Retwork	Rename Res of toxi	vities data	ter ggi Nes (*5k2*5k**s	tk" war" an "th	1	Pay
R4D Video To	Plemane Files of type Mu	video dala	ter gra Nes (*bk.2*bk.*s	nk" war" an "m	1	Pay Close
Network Network	Rename Read how NL	video dalo Ni meda f vancat pilgy in in count	ter gg Res (*5k2*5k;*s Analyze lie List Res.	nki" want" an "m Baton File nto	Holp FAQs	Page Close

Gambar 2.10 Penggunaan Bink

2.9 Interaksi Manusia Komputer

Interaksi manusia dan komputer (bahasa Inggris: *human–computer interaction*, HCI) adalah disiplin ilmu yang mempelajari hubungan antara manusia dan komputer yang meliputi perancangan, evaluasi, dan implementasi antarmuka pengguna komputer agar mudah digunakan oleh manusia^[14]. Sedangkan interaksi manusia dan komputer sendiri adalah serangkaian proses, dialog dan kegiatan yang dilakukan oleh manusia untuk berinteraksi dengan komputer yang keduanya saling memberi masukan dan umpan balik melalui sebuah antar muka untuk memperoleh hasil akhir yang diharapkan.

IMK mempermudah hubungan antarmuka yang tidak hanya meliputi perancangan layout layar monitor dengan penggunanya. Selain itu, IMK juga memerhatikan unsur *useful, usable, dan used. Useful* menunjukkan adanya fungsional di dalamnya serta dapat melakukan suatu pekerjaan. *Usable* menunjukkan kemudahan dan kebenaran dalam mengerjakan sesuatu. *Used* menunjukkan

ketersediaannya untuk digunakan. Terdapat beberapa elemen utama dalam IMK, yaitu manusia, komputer, interaksi, aktivitas, dan lingkungan kerja.

2.10 Pengembangan Tugas Akhir Serupa Sebelumnya

Pengembangan tugas akhir dengan menggunakan *unreal engine* yang pertama adalah Bagit Airlangga yang membentuk visualisasi gedung Jurusan Sistem Informasi. Dalam tugas akhir yang pertama ini lebih menekankan pada pembuatan peta tiga dimensi pada gedung Jurusan Sistem Informasi. Selanjutnya, pada pengembangan berikutnya pada tugas akhir yang sama dengan studi kasus berbeda yaitu Jurusan Arsitektur dengan pengembang Titus Irma Damaiyanti. Pada tugas akhir yang dikembangkan oleh Titus ini selain pada pembuatan peta tiga dimensinya, juga membuat standardisasi dalam perhitungan skala, bentuk dan desain peta, dan batas lokasi peta yang dibuat. Tujuan dari standardisasi ini adalah untuk membuat standar aplikasi yang sama dengan peta tiga dimensi wilayah ITS lainnya.

BAB III METODE PENELITIAN

Pada bagian ini dibahas mengenai objek penelitian serta metode penelitian bagaimana langkah-langkah penelitian dilakukan yang akan digunakan dalam penelitian tugas akhir secara rinci.

Objek yang digunakan sebagai penelitian tugas akhir ini adalah gedung *Medical Center* Institut Teknologi Sepuluh Nopember seperti yang terlihat pada gambar 3.1. Dimana terdapat batasan-batasan wilayah yang digunakan pada objek penelitian tersebut. Hal penting yang menjadi perhatian utama dalam pengerjaan tugas akhir ini adalah interaksi yang dapat terjadi di dalam wilayah tersebut oleh pengguna dengan benda-benda yang terdapat di dalamnya.

Gambar 3.1 Gedung Medical Center ITS (Google Map)

Ada beberapa aktivitas atau kegiatan yang akan diterapkan kedalam interaksi di dalam peta tigas dimensi ini. Interaksi ini terjadi antara pengguna peta dengan benda di dalam peta antara lain adalah sebagai berikut :

- 1. Membuka atau menutup pintu
- 2. Menyalakan atau mematikan lampu
- 3. Menaiki atau menuruni tangga
- 4. Menampilkan informasi setiap ruangan yang ada di gedung *Medical Center*
- 5. Melakukan simulasi :
 - a. Pendaftaran pasien poli umum
 - b. Pendaftaran pasien poli gigi
 - c. Pendaftaran pasien poli BKIA
 - d. Pembelian obat di apotek
 - e. Pasien unit gawat darurat
- 6. Mengetahui informasi jam pelayanan tiap-tiap pelayanan yang terdapat di *Medical Center*
- 7. Berinteraksi dengan objek-objek lainnya yang terdapat di lokasi *Medical Center*

Untuk pengembangan peta tiga dimensi yang merupakan tujuan dari penelitian ini, bagian metodologi secara umum menguraikan secara rinci langkah-langkah yang dilakukan .Langkah awal yang dilakukan adalah melakukan studi literatur, kemudian dilanjutkan dengan standardisasi, survei lokasi, dan pengambilan data. Setelah itu dilakukan dua perancangan, yaitu perancangan aplikasi menggunakan UML *(Unified Modified Language)* ICONIX *process* lalu kemudian dilakukan perancangan peta dua dimensi, dilanjutkan dengan pembuatan aplikasi seterusnya hingga tercapai simpulan dari penelitian berbentuk buku tugas akhir. Penjelasan masing-masing langkah penelitian sebagai berikut.

Gambar 3.2 Diagram Alur Metodologi

Berikut adalah detil tahapan-tahapan dalam tugas akhir

3.1 Studi Literatur

Pada tahap ini penulis melakukan studi berbagai macam literatur yang dapat mendukung pengerjaan tugas akhir serta meningkatkan pemahaman akan permasalahan yang diangkat dalam tugas akhir ini. Literatur didapatkan melalui buku, paper, e-book, maupun artikel dari internet dan sumber lainnya yang mendukung penulis dalam pengerjaan tugas akhir ini. Studi literatur yang yang berkaitan dengan permasalahan yang diangkat seperti visualisasi informasi, perbedaan mendasar dua dimensi dan tiga dimensi, definisi dan informasi mengenai Unreal Engine serta bagaimana mengoperasikan untuk membuat peta tiga dimensi. Selain itu juga dilakukan studi mengenai perangkat lunak lain yang dalam pembuatan aplikasi. Pembelajaran mendukung dilakukan dengan pencarian beberapa macam literatur yang terkait dengan pembuatan peta tiga dimensi. Literatur didapatkan dari banyak sumber seperti buku, internet, dan video tutorial. Hasil dari studi literatur ini berupa panduan untuk membangun aplikasi.

3.2 Survey Lokasi dan Pengambilan Data

Pada tahap ini dilakukan pengambilan data berupa foto-foto yang terkait yaitu gedung *Medical Center* dan sekitarnya. Data dan informasi lain yang dikumpulkan juga mencakup aktivitas - aktivitas yang terjadi di wilayah tersebut sebagai bagian dari interaksi. Pengambilan foto akan dilakukan pada setiap ruangan di dalam gedung, sehingga dapat membantu pengerjaan peta agar nantinya dapat dibuat sedetail mungkin sesuai dengan lingkungan nyata. Foto-foto maupun video hasil survei primer ini digunakan sebagai referensi utama dalam pembuatan aplikasi selain ukuran dan bentuk desain gedung yang sebelumnya didapatkan dari survei sekunder, yaitu master plan Medical Center Institut Teknologi Sepuluh Nopember.

3.3 Desain Aplikasi

Pada tahap ini dilakukan pembuatan desain aplikasi peta tiga dimensi dengan menggunakan standart yang telah ditetapkan oleh TIM INI3D. Tujuannya adalah untuk membuat rancangan dasar peta tiga dimensi yang dapat digunakan sebagai acuan dalam mengembangkan aplikasi. Desain aplikasi meliputi :

- 1. Penentuan perbandingan skala nyata dengan peta yaitu 1 meter pada ukuran sebenarnya sama dengan 64 pixel dalam *UDK*
- 2. Standarisasi ukuran dengan pembulatan ukuran ke bawah tanpa koma
- 3. Pembuatan Objek sesuai dengan bentuk aslinya
- 4. Menentukan aktor yang digunakan
- 5. Membuat interaksi-interaksi yang dapat dilakukan dalam aplikasi

Sebelum membuat peta tiga dimensi, desain peta dalam bentuk dua dimensi juga memegang peranan yang penting, hal ini dimaksudkan untuk memberikan informasi terkait dengan ukuran dan luas permukaan objek. Pembuatan peta dua dimensi dilakukan secara komputerisasi dengan aplikasi pengolah peta dua dimensi *Microsoft Visio*. Peta dua dimensi inilah yang akan digunakan sebagai bantuan ukuran untuk membangun peta tiga dimensi. Peta dua dimensi telah memuat ukuran-ukuran yang sesuai dengan kenyataan sehingga ukuran pada peta tiga dimensi juga sesuai dengan kenyataan objek didunia nyata.

3.4 Pembuatan Aplikasi

Tahapan ini merupakan tahapan inti dalam pengerjaan Tugas Akhir ini, yaitu pembuatan aplikasi. Pada tahap ini aplikasi mulai dibangun dengan menggunakan *Unreal Development Kit* sesuai dengan desain yang telah dibuat sebelumnya. Hampir semua pekerjaan dilakukan menggunakan perangkat lunak ini. Mulai dari merancang bentuk peta, bangunan, user interface, hingga membuat animasi. Untuk membuat suatu objek dilakukan dengan menggunakan perangkat lunak *Autodesk 3Ds Max.* Pembuatan aplikasi terdiri dari beberapa tahapan di dalamnya, yaitu:

1. Pembuatan Peta 3D

Tahapan ini terdiri dari proses pembuatan Level Map vang mencakup pembuatan geometri bangunan, dan pembuatan Texture 2DMaterial. serta penggunaan Material. Level Map merupakan peta tiga dimensi yang dibangun dengan UDK. Sebuah package juga dapat disiapkan untuk memuat gambar tekstur, normal image, dan objek tiga dimensi. Membangun geometri bangunan dilakukan dengan UDK dengan memanfaatkan tool CSG pada UDK. Konsep geometri mencakup menambah dan mengurangi bagian geometri. Tools CSG yang digunakan adalah CSG Add, CSG Subtract, CSG Intersect dan CSG Deintersect. Tekstur diberikan pada setiap permukaan geometri bangunan yang telah dibuat dan disesuaikan dengan kondisi nyata vang ada di Medical Center ITS. Dalam UDK, tekstur dapat diatur mulai dari skala, pola peletakan maupun posisi peletakannya. Tekstur pertama kali dibuat dari gambar foto yang sesuai dengan kenyataan, bisa dari hasil peninjauan lokasi atau mencari dari internet yang mirip dengan aslinya, kemudian dibuat normal image-nya. Kedua gambar tersebut kemudian dimasukkan (di-import) kedalam package yang tersedia. Kemudian kedua gambar tersebut dapat diedit dengan material editor supaya menjadi material yang siap ditempelkan pada permukaan geometri.

2. Pembuatan dan Peletakan Objek

Di tahapan kedua dari pembangunan aplikasi ini adalah melakukan pembuatan objek-objek yang ada di dalam atau luar gedung dari objek penelitian. Membuat objek tiga dimensi dilakukan dengan cara modelling menggunakan aplikasi Autodesk 3Ds Max dan disimpan kedalam format file yang dapat diterima oleh UDK seperti .FBX, .ASE atau .DAE yang diimpor ke dalam UDK. Objek tiga dimensi yang sudah siap, dapat di-import kedalam UDK dan dapat diatur material-nya, atau dalam istilah di kehidupan nyata lebih lazim disebut dengan tekstur. menggunakan Unreal Static Mesh Editor. Dalam UDK, objek-objek tiga dimensi seperti ini dikenal dengan sebutan Static Mesh. Khusus untuk membuat objek tumbuh-tumbuhan. aplikasi SpeedTree Modeler digunakan kemudian hasilnya dapat diimport kedalam UDK dan diolah menggunakan aktor dapat Unreal SpeedTree Editor. Objek dikembangkan dengan aplikasi modelling 3D untuk kemudian dibuat lengkap dengan animasi gerakangerakannya.

3. Penambahan Interaksi

Tahapan ketiga dari pembuatan aplikasi ini adalah menambahkan interaksi dan informasi terhadap objek-objek yang dapat diinteraksikan. Penambahan interaksi dapat dilakukan dengan langkah awal sebagai berikut:

- menentukan objek-objek yang dapat diinteraksikan,
- menambahkan informasi dari objek tersebut, dan
- menambahkan efek gerakan terhadap objek tersebut

Pengembangan interaksi aktor dengan objek yang dapat ada dalam dilakukan peta dengan menggunakan editor yaitu Unreal Kismet. Beberapa interaksi dimungkinkan dengan pemberian kontrol pada pengguna untuk berinteraksi. Untuk dapat melakukan hal tersebut. perlu dilakukan pengembangan kode program. Mengembangkan kode program dilakukan dengan bantuan aplikasi UnCodeX sehingga default aplikasi sesuai dengan gameplay yang direncanakan. Packaging aplikasi mencakup pembuatan video menu-menu. pembukaan.

4. Pengaturan Pencahayaan

Pengaturan pencahayaan dilakukan terhadap keseluruhan peta dan objek-objek peta tertentu. Pengaturan pencahayaan mencakup simulasi cahaya matahari dan cahaya lampu. Pemilihan pencahayaan yang tepat dapat menambah kesan nyata bagi peta tiga tersebut. 5. Penambahan Suara

Pengaturan lain yang perlu dilakukan adalah penambahan efek suara terhadap objek. Penambahan suara tidak jauh berbeda dengan penambahan objek, suara dalam bentuk .WAV dapat diimpor kedalam UDK dan kemudian dapat digunakan.

6. Output Aplikasi

Setelah melakukan beberapa tahapan diatas, maka selanjutya akan terbentuk sebuah aplikasi media informasi pelayanan interaktif, berupa aplikasi desktop tiga dimensi (3D) berformat .exe dengan Medical Center ITS sebagai objek utamanya. dapat menjelajah keseluruh Penguna bagian bangunan medical secara virtual untuk mendapatkan informasi yang dibutuhkan. Aplikasi ini menitik beratkan pada informasi pelayanan yang nantinya akan disajikan dalam aplikasi. Objek yang ada di aplikasi akan dibuat secara detail dan memberikan view yang lebih nyata kepada pengguna tanpa mengurangi informasi yang ada didalamnya. Kondisi lingkungan juga ditampilkan dengan jelas dan lengkap untuk mengetahui posisi dari medical itu sendiri. Informasi pelayanan dibuat secara detail sehingga pengguna dapat mengetahui bagaimana jika ingin menggunakan fasilitas dari medical center ITS.

Selain output view, aplikasi juga menyediakan interaksiinteraksi yang dapat dilakukan didalamnya. Interaksi tersebut secara garis besar adalah merupakan hal-hal yang dapat dilakukan pada kondisi nyata yang ada pada medical. Sebagai contoh adalah naik dan turun tangga, membuka dan menutup pintu, menyalakan dan mematikan lampu, cara menggunakan fasilitas yang ada dan interaksi-interaksi lain untuk mendapatkan informasi yang disediakan seperti langkah-langkah pendaftaran tiap poli. Dengan kompleksitas aplikasi yang ada, maka proses load untuk masing-masing level / tingkat akan disesuaikan dengan berbagai pertimbangan sehingga nantinya tidak mengganggu jalannya aplikasi.

3.5 Testing Aplikasi

Pada tahapan ini hasil dari aplikasi dianalisis lebih lanjut. dilakukan pengujian Tahap ini aplikasi pengujian berdasarkan test case yang dibuat dalam tahap desain sistem untuk mengetahui apakah aplikasi sudah memenuhi fungsionalitasnya. Sebagai pembeda dengan tugas akhir serupa yang lainnya, di sini penulis lebih mengutamakan pengujian pada interaksi antara aktor dengan objek yang ada di dalam peta, terutama pada aspek simulasi pendaftaran. Tahap ini juga digunakan untuk mengetahui apakah hasil penelitian sesuai dengan tujuan yang telah ditetapkan serta memberikan saran berupa pengembangan atau perbaikan untuk penelitian selanjutnya.

3.6 Integrasi Aplikasi

Pada tahap ini dilakukan integrasi terhadap satu atau lebih peta tiga dimensi dengan standar yang sama. Yang dimaksud adalah peta tiga dimensi yang sama-sama dibuat sebagai tugas akhir oleh tim dengan judul tugas akhir yang serupa namun berbeda studi kasus (tempat dan interaksi). Integrasi ini nantinya akan menggunakan metode *loading* untuk menghindari peta berjalan lambat.

3.7 Pembuatan Buku Tugas Akhir

Pembuatan laporan ini merupakan tahapan dokumentasi yang dimulai dari awal pengerjaan sampai semua tahapan terselesaikan. Dokumentasi ini akan ditulis dalam format laporan tugas akhir sehingga menghasilkan sebuah buku tugas akhir.

Halaman ini sengaja dikosongkan.

BAB IV

RANCANGAN APLIKASI

Pada bab ini akan dijelaskan mengenai rancangan sistem aplikasi yang dibangun pada tugas akhir ini.Rancangan tersebut menggunakan referensi *ICONIX process*dengan alur pembuatan *GUI (Graphical User Interface) story board, domain model, use case, robustness, dan class diagran, serta test case.*

Desain sistem dibuat dengan mengacu pada kebutuhan aplikasi yang dibagi menjadi 2, yaitu fungsionalitas dan non fungsionalitas. Kebutuhan fungsionalitas aplikasi didefinisikan sebagai berikut :

- Melihat Peta Dua Dimensi
- Melihat Peta Tiga Dimens
- Interaksi dengan Objek
- Informasi Khusus Mengenai Lokasi
- Mengubah Resolusi

Sedangkan untuk kebutuhan non fungsionalitas mencakup :

- Unreal Development Kit Ver. Februari 2012
- Hardware
- Aplikasi pendukung lain yang dibutuhkan

Berikut ini desain aplikasu yang akan dibangun pada tugas akhir ini :

4.1 Interaksi

Dalam pengembangan aplikasi ini, perlu direncanakan apa saja interaksi yang dapat dilakukan pengguna di dalam peta tiga dimensi. Tabel berikut adalag desain interaksi yang dirancang dalam peta tiga dimensi :

Tabel 4.1 Interaksi

No.	Interaksi	Deskripsi
1.	Membuka pintu	Pintu dapat terbuka
2.	Menutup pintu	Pintu dapat tertutup
3.	Menyalakan lampu	Lampu dapat menyala
4.	Mematikan lampu	Lampu dapat mati
5.	Tour seluruh peta	Interaksi ini merupakan video tour seluruh peta yang dijalankan dengan kamera. Video ini dimulai dari luar gedung tepatnya di parker mobil, serta menampilkan ruangan-ruangan penting dan beberapa bangunan pendukung seperti garasi <i>ambulance</i> , BANK, dan lain-lain.
6.	Informasi ruangan	Pada setiap ruang yang memiliki interaksi terdapat penjelasan singkat dari ruangan tersebut
7.	Simulasi melihat video peragaan <i>dental chair</i>	Simulasi dilakukan pada ruangan poli gigi

	Simulasi		Simulasi dilakukan pada front
	pendaftaran	poli	desk dengan langkah sebagai
	umum		berikut :
			1. Memberikan kartu tanda
			mahasiswa atau yang biasa
			disebut dengan KTM
8.			2. Akan diberikan kartu pasien
			Medical Center
			3.Tunggu di ruang tunggu hingga
			nama pasien dipanggil oleh
			perawat
			4. Setelah dipanggil oleh perawat,
			poli umum
			Simulasi dilakukan pada <i>front</i>
			<i>desk</i> dengan langkah sebagai
			berikut :
			1. Memberikan kartu tanda
			mahasiswa atau yang biasa
	Simulasi		disebut dengan KTM
9.	pendaftaran	poli	2. Akan diberikan kartu pasien
	gigi	•	Medical Center
			3.Tunggu di ruang tunggu hingga
			nama pasien dipanggil oleh
			perawat
			4. Setelan dipanggil olen perawat,
			pasien latu memasuki tuangan noli gigi
			pasien lalu memasuki ruangan poli gigi.

		Simulasi dilakukan pada front			
		desk dengan langkah sebagai			
		berikut :			
		1. Memberikan kartu tanda			
		mahasiswa atau yang biasa			
		disebut dengan KTM			
10.	Simulasi	2. Akan diberikan kartu pasien			
	pendattaran BKIA	Medical Center			
		3.Tunggu di ruang tunggu hingga			
		nama pasien dipanggil oleh			
		perawat 4. Satalah dinanggil alah parawat			
		asien lalu memasuki ruangan			
		BKIA.			
		Simulasi dilakukan dengan			
		langkah sebagai berikut :			
	Simulasi pasien unit gawat darurat (UGD)	1. Masuk ke dalam ruangan			
		UGD			
		2. Perawat meminta kartu pasien			
		jika sudah mendaftar atau			
		kartu tanda mahasiswa (KTM)			
11		jika belum mendaftar			
11.		3. Perawat memanggil dokter			
		yang umum untuk memeriksa			
		pasien yang berada di ruangan			
		UGD			
		4. Dokter memberi rujukan dan			
		obat kepada pasien			
		5. Jika mendapatkan resep dari			
		dokter, segera menuju apotek			
12.	Simulasi pembelian	Simulasi dilakukan diapotek			
12.	obat	dengan rujukan resep dari dokter			

4.2 Domain Model

Pendifinisian *domain model* sangat penting karena *domain model* menggambarkan objek-objek utama yang akan digunakan. *Domain model* dapat berubah seiring dengan pengembangan desain dan aplikasi, sehingga objek-objek yang digambarkan pada *domain model* akan semakin lengkap dan akurat sesuai dengan alur sistem.

Modelawal pada pengerjaan tugas akhir ini dapat dilihat pada gambar 4.1. Terdapat beberapa objek hasil turunan domain model bawaan dari *Unreal Engine*.

Gambar 4.1 Domain model awal

Seiring dengan pengerjaan desain lainnya, didapati bahwa *domain model* berubah. Hal ini menghasilkan *domain model* baru yang dapat dilihat pada Gambar 4.2. Pada *domain model* baru, *domain model* bawaan dari unreal engine yang digunakan adalah UTGame, SequenceEvent, dan UTPlayerController.

Gambar 4.2 Domain model akhir

Unreal Engine memiliki beberapa permainan bawaan yang bisa digunakan. Berdasarkan pertimbangan kemiripan navigasi, dan tipe permainan, maka diputuskan untuk menggunakan UTGame sebagai tipe permainan dari *project* ini. Pengaturan utama navigasi berada di *class* ini. Karena terdapat perbedaan navigasi, maka dibuat *class* baru bernama Ini3DGame dengan *parent class* UTGame.

UTPlayerController adalah *class* bawaan unreal yang mengatur navigasi untuk tipe permainan UTGame. Karena terdapat beberapa navigasi tambahan, maka terdapat *class* baru dengan *parent class* UTPlayerController dengan nama Ini3DplayerController. Nantinya, *class* baru ini akan memanfaatkan class turuan dari sequence event di Kismet untuk menghubungkan unreal *script* dengan unreal Kismet.

4.3 Use Case Diagram

Use case yang dirancang seharusnya memenuhi kebutuhan fungsionalitas yang telah disebutkan sebelumnya. *Use case* menggambarkan fungsionalitas yang dibangun pada tugas

akhir ini sehingga berguna sebagai acuan dalam pemenuhan fungsionalitas pada pengembangan aplikasi.

Berikut ini gambaran dan deskripsi *use case* diagram dari pengerjaan tugas akhir ini :

Gambar 4.3 Use Case Diagram

4.3.1 Deskripsi *Use Case* Memilih Menu Tabel 4.2 Deskripsi Use Case Meilih Menu

<i>UC01</i> – Memilih Menu Jelajah				
Primary Actor:	Level:			
Pengguna	User Goal			
Pre-conditions:				
Pengguna berada di halaman Menu Awal.				
Triggers:				
Pengguna memilih menu Jelajahi Peta dan menekan				
tombol Enter pada keyboard atau klik kiri pada mouse.				

Basic course:

Pengguna memilih menu Jelajahi Peta dan menekan tombol Enter pada keyboard atau klik kiri pada mouse. Sistem menampilkan halaman Menu Utama.

Post-conditions:

Sistem menampilkan halaman Menu Utama

Alternate courses:

Jika pengguna memilih menu Keluar: sistem menampilkan halaman Menu Keluar.

4.3.2 Deskripsi Use Case Memilih Peta Tabel 4.3 Deskripsi Use Case Memilih Peta

UC02 – Memilih Peta				
Primary Actor:	Level:			
Pengguna	User Goal			
Pre-conditions:				
Pengguna berada di halaman Me	enu Utama.			
Triggers:				
Pengguna memilih menu Pi	lihan Peta dan menekan			
tombol Enter pada keyboard	l atau klik kiri pada mouse.			
Basic course:				
Sistem menampilkan halama	n Pilihan Peta. Pengguna			
memilih salah satu peta dan menekan tombol Enter pada				
keyboard atau klik kiri pada mouse. Sistem menyimpan				
pilihan peta yang dipilih oleh pengguna dan menampilkan				
halaman Menu Utama.				
Post-conditions:				
Sistem menyimpan pilihan peta yang dipilih oleh pengguna				
dan menampilkan halaman Men	u Utama.			

Jika pengguna memilih menu Kembali: sistem menampilkan halaman Menu Utama.

Jika pengguna menekan tombol Pilihan Resolusi : Sistem menjalankan UC03.

Jika pengguna menekan tombol Bantuan : Sistem menjalankan UC04.

Jika pengguna menekan tombol Mulai : Sistem menjalankan UC05.

Jika pengguna menekan tombol Ke Menu Awal : Sistem menjalankan UC01.

4.3.3 Deskripsi Use Case Mengubah Resolusi Tabel 4.4 Deskripsi Use Case Mengubah Resolusi

UC03 – Mengubah Resolusi					
Primary Actor:	Level:				
Pengguna	User Goal				
Pre-conditions:					
Pengguna berada di halaman Me	enu Utama.				
Triggers:					
• Pengguna memilih menu F	ilihan Resolusi dan menekan				
tombol Enter pada keyboard	l atau klik kiri pada mouse.				
Basic course:	Basic course:				
Pengguna memilih menu Pilihan Resolusi dan menekan					
tombol Enter pada keyboard atau klik kiri pada mouse. Sistem					
menampilkan halaman Menu Resolusi. Pengguna memilih					
salah satu resolusi dan menekan tombol Enter pada keyboard					
atau klik kiri pada mouse. Sistem menyimpan resolusi yang					
dipilih oleh pengguna dan mengubah resolusi tampilan sesuai					
dengan yang dipilih oleh pengguna.					
Post-conditions:					
Sistem menampilkan halaman	dengan resolusi yang telah				

Sistem menampilkan halaman dengan resolusi yang telah dipilih oleh pengguna.

Jika pengguna memilih menu Kembali: sistem menampilkan halaman Menu Utama.

4.3.4 Deskripsi Use Case Melihat Bantuan Tabel 4.5 Deskripsi Use Case Melihat Bantuan

<i>UC04</i> – Melihat Bantuan			
Primary Actor:	Level:		
Pengguna	User Goal		
Pre-conditions:			
Pengguna berada di halaman M	Menu Utama atau di halaman		
Peta 3D.			
Triggers:			
• Pengguna berada di halam	nan Menu Utama kemudian		
memilih menu Bantuan dar	n menekan tombol Enter pada		
keyboard atau klik kiri pada	mouse.		
• Pengguna berada di halar	man Peta 3D dan menekan		
tombol ESC pada keyboar	d kemudian memilih menu		
Bantuan dan menekan tom	bol Enter pada keyboard atau		
klik kiri pada mouse.			
Basic course:			
Sistem menampilkan halaman	Bantuan. Pengguna melihat		
halaman Bantuan.			
Post-conditions:			
-			
Alternate courses:	.		
Jika pengguna memilih	menu Kembali: sistem		
menampilkan halaman Menu Ut	ama.		
Jika aktor dalam jangkauan area interaksi suatu objek			
dan pengguna menekan tom	ibol kiri mouse atau enter		
pada keyboard : Sistem menjal	lankan UC12.		
Jika pengguna menekan tor	nbol M keyboard : Sistem		
menjalankan UC08.			
Jika nengguna menekan for	ihol Esc keyhoard • Sistem		

menjalankan UC07.

Jika pengguna menekan tombol W/A/S/D/panash atas/panah bawah/panah kiri/panah kanan keyboard : Sistem menjalankan UC06.

4.3.5 Deskripsi *Use Case* Menjelajahi Peta Tabel 4.6 Deskripsi Use Case Menjelajahi Peta

UC05 – Menjelajahi Peta				
Primary Actor:	Level:			
Pengguna User Goal				
Pre-conditions:				
Pengguna berada di halaman Me	enu Utama.			
Triggers:				
• Pengguna memilih menu	Mulai dan menekan tombol			
Enter pada keyboard atau kl	ik kiri pada mouse.			
Basic course:				
Sistem me-load pilihan peta ak	tif dan menampilkan halaman			
Peta 3D sesuai dengan pilihan p	eta aktif.			
Post-conditions:				
Sistem menampilkan halaman I	Peta 3D sesuai dengan pilihan			
peta aktif.				
Alternate courses:				
Jika pengguna memilih	menu Kembali: sistem			
menampilkan halaman Menu Ut	ama.			
Jika pengguna menekan tombol Pilihan Peta : Sistem				
menampilkan UC02.				
Jika pengguna menekan toml	bol Pilihan Resolusi : Sistem			
menampilkan UC03.				
Jika pengguna menekan t	tombol Bantuan : Sistem			
menampilkan UC04.				

4.3.6 Deskripsi Use Case Navigasi Tabel 4.7 Deskripsi Use Case Navigas

UC06 – Navigasi				
Primary Actor:	Level:			
Pengguna	User Goal			
Pre-conditions:				
Pengguna berada di halaman Per	ta 3D.			
Triggers:				
-				
Basic course:				
Jika pengguna menekan W ata	u panah atas pada keyboard,			
sistem menggerakkan aktor ke a	rah depan.			
Jika pengguna menekan A	A pada keyboard, sistem			
menggerakkan aktor ke arah kiri	i.			
Jika pengguna menekan I	D pada keyboard, sistem			
menggerakkan aktor ke arah kar	nan.			
Jika pengguna menekan S atau	panah bawah pada keyboard,			
sistem menggerakkan aktor ke a	rah belakang.			
Jika pengguna menekan panah kiri pada keyboard, sistem				
mengarahkan pandangan aktor k	ke kiri.			
Jika pengguna menekan panah	kanan pada keyboard, sistem			
mengarahkan pandangan aktor k	ke kanan.			
Jika pengguna menekan (2 pada keyboard, sistem			
menggerakkan aktor pada posisi	jongkok.			
Jika pengguna menekan I	F pada keyboard, sistem			
menggerakkan aktor pada posisi	tidur.			
Jika pengguna menekan Spa	si pada keyboard, sistem			
menggerakkan aktor untuk melo	ompat.			
Post-conditions:				
Sistem menggerakkan aktor ses	suai dengan arah navigasi dan			
menyesuaikan tampilan dengan	pandangan aktor pada posisi			
barunya				

Jika pengguna dalam jangkauan areainteraksi suatu obyek dan menekan klik kiri pada mouse: Sistem menjalankan UC012.

Jika pengguna menekan tombol M pada keyboard: Sistem menjalankan UC08.

Jika pengguna menekan tomnol Esc keyboard : Sistem menjalankan UC07.

Jika pengguna menekan tombol F1 Keyboard : Sistem menjalankan UC04.

4.3.7 Deskripsi *Use Case* Kembali Ke Menu Utama Tabel 4.8 Deskripsi Use Case Kembali ke Menu Utama

<i>UC07</i> – Kembali ke Menu Utama				
Primary Actor:	Level:			
Pengguna	User Goal			
Pre-conditions:				
Pengguna berada di halaman Pe	ta 3D.			
Triggers:				
Pengguna menekan tombol	Esc keyboard.			
Basic course:				
Pengguna menekan tombo	l Esc keyboad. Sistem			
menampilkan halaman Menu In-Game. Pengguna menekan				
tombol Keluar Peta. Sistem menampilkan Menu Utama.				
Post-conditions:				
-				

Jika pengguna menekan menu Kembali ke Peta : Sistem menampilkan kembali halaman Peta 3D.

Jika pengguna dalam jangkauan areainteraksi suatu obyek dan menekan klik kiri pada mouse: Sistem menjalankan UC012.

Jika pengguna menekan tombol M pada keyboard: Sistem menjalankan UC08.

Jika pengguna menekan tombol W/A/S/D/panash atas/panah bawah/panah kiri/panah kanan keyboard : Sistem menjalankan UC06.

Jika pengguna menekan tombol F1 Keyboard : Sistem menjalankan UC04.

4.3.8 Deskripsi *Use Case* Melihat Peta Dua Dimensi Tabel 4.9 Deskripsi Use Case Melihat Peta Dua Dimensi

<i>UC08</i> – Melihat Peta 2 Dimensi				
Primary Actor:	Le	evel:		
Pengguna User Goal		l		
Pre-conditions:				
Pengguna berada di halaman Pe	ta 3	D.		
Triggers:				
• Pengguna menekan tombol M pada keyboard.				
Basic course:				
Pengguna menekan tombol	М	pada	keyboard.	Sistem
menampilkan peta 2 Dimensi.				
Post-conditions:				
-				

Jika pengguna menekan tombol W/A/S/D/panash atas/panah bawah/panah kiri/panah kanan keyboard : Sistem menjalankan UC06.

Jika pengguna dalam jangkauan areainteraksi suatu obyek dan menekan klik kiri pada mouse: Sistem menjalankan UC012.

Jika pengguna menekan tomnol Esc keyboard : Sistem menjalankan UC07.

Jika pengguna menekan tombol F1 Keyboard : Sistem menjalankan UC04.

4.3.9	Deskripsi <i>Use Case</i> Teleportasi
	Tabel 4.10 Deskripsi Use Case Teleportasi

UC09 – Teleportasi				
Primary Actor:	Level:			
Pengguna	User Goal			
Pre-conditions:				
Pengguna berada di halaman Peta 2D.				
Triggers:				
Pengguna menekan salah satu menu penanda lokasi				
berbentuk bintang.				
Basic course:				
Pengguna menekan salah satu menu penanda lokasi berbantuk				
bintang. Sistem menampilkan dialog pilihan. Pengguna				
menekan menu 'Masuk ke dalam ruangan'. Sistem melakukan				
teleportasi aktor menju ruangan sesuai dengan pilihan tombol				
penanda lokasi.				
Post-conditions:				
Sistem menampilkan halaman Peta 3D dengan lokasi dan				
rotasi aktor berubah sesuai pilihan menu penanda lokasi				

Jika pengguna menekan tombol M pada keyboard: Sistem menampilkan kembali halaman Peta 3D.

Jika pengguna menekan menu 'Tunjukkan arah menuju ruangan' pada dialog pilihan :Sistem menjalankan UC10.

Jika pengguna menekan menu 'Tutup dialig Pilihan' pada dialog pilih : Sistem menampilkan halaman Menu Peta 2D tanpa dialog pilihan.

Jika pengguna menekan menu 'lantai 1' : Sistem menampilkan halaman Menu Peta 2D dengan denah gedung lantai 1 dan gambar aktor sesuai pada lokasi dan rotasi aktor pada peta 3D.

Jika pengguna menekan menu 'lantai 2' : Sistem menampilkan halaman Menu Peta 2D dengan denah gedung klantai 2 dan gambar aktor sesuai pada lokasi dan rotasi aktor pada peta 3D.

4.3.10 Deskripsi *Use Case* Melihat Penunjuk Arah Tabel 4.11 Deskripsi Use Case Melihat Penunjuk Arah

<i>UC10</i> – Melihat Penunjuk Arah			
Primary Actor:	Level:		
Pengguna	User Goal		
Pre-conditions:			
Pengguna berada di halaman Peta 2D.			
Triggers:			
Pengguna menekan salah satu menu penanda lokasi			
berbentuk bintang.			

Basic course:

Pengguna menekan salah satu menu penanda lokasi berbantuk bintang. Sistem menampilkan dialog pilihan. Pengguna menekan menu 'Masuk ke dalam ruangan'. Sistem mengambil lokasi aktor pada Peta 3D, rotasi aktor pada Peta 3D, dan lokasi seluruh aktor PlayerStrat tangga yang ada. Kemudian sistem menentukan lantai asal dan lantai tujuan.Setelah itu sistem menentukan tujuan penunjuk arah. Sistem akhirnya menampilkan halaman Peta 3D dan Menu Penunjuk Arah dengan gambar panah penunjuk arah sesuai menuju tujuan.

Post-conditions:

Sistem menampilkan halaman Peta 3D dan Menu Penunjuk Arah dengan gambar panah penunjuk arah sesuai menuju tujuan.

Alternate courses:

Jika pengguna menekan tombol M pada keyboard: Sistem menampilkan kembali halaman Peta 3D.

Jika pengguna menekan menu 'Masuk ke dalam ruangan' pada dialog pilihan :Sistem menjalankan UC09.

Jika pengguna menekan menu 'Tutup dialig Pilihan' pada dialog pilih : Sistem menampilkan halaman Menu Peta 2D tanpa dialog pilihan.

Jika pengguna menekan menu 'lantai 1' : Sistem menampilkan halaman Menu Peta 2D dengan denah gedung lantai 1 dan gambar aktor sesuai pada lokasi dan rotasi aktor pada peta 3D.

Jika pengguna menekan menu 'lantai 2' : Sistem menampilkan halaman Menu Peta 2D dengan denah gedung klantai 2 dan gambar aktor sesuai pada lokasi dan rotasi aktor pada peta 3D.
4.3.11 Deskripsi Use Case Mengaktifkan Layar Informasi Tabel 4.12 Deskripsi Use Case Mengaktifkan Layar Informasi

UC11 – Mengaktifkan Layar Inf	ormasi
Primary Actor:	Level:
Pengguna	User Goal
Pre-conditions:	
Pengguna berada di halaman per	ta 3D.
Triggers:	
Pengguna bergerak masuk d	lalam jangkauan area interaksi
suatu obyek	
Basic course:	
Pengguna bergerak masuk dal	am jangkauan area interaksi
suatu obyek. Pengguna meneka	n tombol mouse kiri. Sistem
menampilkan layar informas	si. Pengguna melakukan
informasi sesuai dengan alur int	eraksi.
Post-conditions:	
Sistem menampilkan layar infor	masi.
Alternate courses:	

4.3.12 Deskripsi *Use Case* Interkasi Dengan Objek Tabel 4.13 Deskripsi Use Case Interaksi Dengan Objek

UC12 – Interaksi dengan Obyek	2
Primary Actor:	Level:
Pengguna	User Goal
Pre-conditions:	
Pengguna berada di halaman Pe	ta 3D.
 Triggers: Pengguna bergerak masuk o suatu obyek. 	dalam jangkauan area interaksi

Basic course:

Sistem menampilkan pesan interaksi yang dapat terjadi dengan suatu obyek. Pengguna menekan tombol mouse kiri. Sistem akan menjalankan fungsi interaksi pada obyek tersebut.

Post-conditions:

Sistem telah menjalankan fungsi interaksi obyek tersebut dan obyek berubah kondisi sesuai dengan fungsi interaksi nya.

Alternate courses:

Jika pengguna tidak menekan tombol apapun: sistem menampilkan pesan interaksi yang dapat terjadi dengan suatu obyek.

Jika pengguna menekan tombol M pada keyboard: Sistem menjalankan UC08.

Jika pengguna menekan tomnol Esc keyboard : Sistem menjalankan UC07.

Jika pengguna menekan tombol W/A/S/D/panash atas/panah bawah/panah kiri/panah kanan keyboard : Sistem menjalankan UC06.

Jika pengguna menekan tombol F1 Keyboard : Sistem menjalankan UC04.

4.3.13 Deskripsi *Use Case* Melihat Simulasi Pendaftaran Poli Umum

Tabel 4.14 Deskripsi Use Case melihat Simulasi Pendaftaran Poli Umum

UC13 – Melihat Simulasi Penda	ftaran Poli Umum
Primary Actor:	Level:
Pengguna	User Goal
Pre-conditions:	
Pengguna berada di halaman Pe	eta 3D dan memasuki gedung
Medical Center	
Triggers:	
Pengguna mendekati ruanga	n poli umum
Basic course:	
Pengguna mendekati ruangan	poli umum. Sistem akan
mengaktifkan layar informasi t	ahapan pendaftaran pada poli
umum.	
Post-conditions:	
Sistem akan menampilkan h	alaman peta 3D mengenai
tahapan pendaftaran poli umum	. Mulai dari front desk, ruang
tunggu sampai masuk ke ruanga	n poli umum.
Alternate courses:	
Jika pengguna tidak menek	an tombol apapun: sistem
menampilkan pesan interaksi	yang dapat terjadi terhadap
objek tersebut	
Jika pengguna menekan to	mbol M keyboard: Sistem
menjalankan UC08 (Melihat Pet	(a 2D)
Jika pengguna menekan ton	nbol Esc keyboard: Sistem
menjalankan UC06 (Kembali ke	e Menu Utama)
Jika pengguna menekan	tombol W/A/S/D/panah
atas/panah bawah/panah ki	ri/panah kanan keyboard:
Sistem menjalankan UC11 (Nav	igasi)
Jika pengguna menekan to	mbol F1 keyboard: Sistem
menjalankan UC04 (Melihat Ba	ntuan)

4.3.14 Deskripsi Use Case Melihat Simulasi Pendaftaran Dokter Gigi Tabel 4.15 Deskripsi Use Case Melihat Simulasi Pendaftaran Dokter Gigi

UC14 – Melihat Simulasi Penda	ftaran Poli Gigi
Primary Actor:	Level:
Pengguna	User Goal
Pre-conditions:	
Pengguna berada di halaman Pe	eta 3D dan memasuki gedung
Medical Center	
Triggers:	
Pengguna mendekati ruanga	n poli gigi
Basic course:	
Pengguna mendekati ruangan	n poli gigi. Sistem akan
mengaktifkan layar informasi t	ahapan pendaftaran pada poli
gigi.	
Post-conditions:	
Sistem akan menampilkan h	alaman peta 3D mengenai
tahapan pendaftaran poli gigi.	Mulai dari front desk, ruang
tunggu sampai masuk ke ruanga	n poli gigi.
Alternate courses:	
Jika pengguna tidak menek	an tombol apapun: sistem
menampilkan pesan interaksi	yang dapat terjadi terhadap
objek tersebut	
Jika pengguna menekan to	mbol M keyboard: Sistem
menjalankan UC08 (Melihat Pet	(a 2D)
Jika pengguna menekan ton	nbol Esc keyboard: Sistem
menjalankan UC06 (Kembali ke	Menu Utama)
Jika pengguna menekan	tombol W/A/S/D/panah
atas/panah bawah/panah ki	ri/panah kanan keyboard:
Sistem menjalankan UC11 (Nav	igasi)
Jika pengguna menekan tol	mbol F1 keyboard: Sistem
menjalankan UC04 (Melihat Ba	ntuan)

4.3.15 Deskripsi *Use Case* Melihat Simulasi Pendaftaran BKIA

Tabel 4.16 Deskripsi Use Case Melihat Simulasi Pendaftaran BKIA

UC15 – Melihat Simulasi Penda	ftaran BKIA
Primary Actor:	Level:
Pengguna	User Goal
Pre-conditions:	
Pengguna berada di halaman Pe	eta 3D dan memasuki gedung
Medical Center	
Triggers:	
Pengguna mendekati ruanga	IN BKIA
Basic course:	
Pengguna mendekati ruang	an BKIA. Sistem akan
mengaktifkan layar informasi	tahapan pendaftaran pada
BKIA.	
Post-conditions:	
Sistem akan menampilkan h	alaman peta 3D mengenai
tahapan pendaftaran BKIA. M	Iulai dari front desk, ruang
tunggu sampai masuk ke ruanga	n BKIA.
Alternate courses:	
Jika pengguna tidak menek	an tombol apapun: sistem
menampilkan pesan interaksi	yang dapat terjadi terhadap
objek tersebut	
Jika pengguna menekan to	mbol M keyboard: Sistem
menjalankan UC08 (Melihat Pet	ta 2D)
Jika pengguna menekan ton	nbol Esc keyboard: Sistem
menjalankan UC06 (Kembali ke	e Menu Utama)
Jika pengguna menekan	tombol W/A/S/D/panah
atas/panah bawah/panah ki	ri/panah kanan keyboard:
Sistem menjalankan UC11 (Nav	rigasi)
Jika pengguna menekan to	mbol F1 keyboard: Sistem
menjalankan UC04 (Melihat Ba	ntuan)

4.3.16 Deskripsi Use Case Pasien Unit Gawat Darurat Tabel 4.17 Deskripsi Use Case Pasien Unit Gawat Darurat

UC16 – Pasien Unit Gawat Daru	urat
Primary Actor:	Level:
Pengguna	User Goal
Pre-conditions:	
Pengguna berada di halaman P	eta 3D dan memasuki gedung
Medical Center	
Triggers:	
Pengguna mendekati ruanga	in UGD
Basic course:	
Pengguna mendekati ruang	gan UGD. Sistem akan
mengaktifkan layar informasi ta	hapan pada pasien UGD.
Post-conditions:	
Sistem akan menampilkan halan	man peta 3D mengenai pasien
pada UGD. Mulai dari ruan	g UGD, front dest sampai
pembelian obat di apotek.	
Alternate courses:	
Jika pengguna tidak menek	an tombol apapun: sistem
menampilkan pesan interaksi	yang dapat terjadi terhadap
objek tersebut	
Jika pengguna menekan to	mbol M keyboard: Sistem
menjalankan UC08 (Melihat Per	ta 2D)
Jika pengguna menekan tor	nbol Esc keyboard: Sistem
menjalankan UC06 (Kembali ke	e Menu Utama)
Jika pengguna menekan	tombol W/A/S/D/panah
atas/panah bawah/panah ki	ri/panah kanan keyboard:
Sistem menjalankan UC11 (Nav	vigasi)
Jika pengguna menekan to	mbol F1 keyboard: Sistem
menjalankan UC04 (Melihat Ba	ntuan)

4.3.17 Deskripsi *Use Case* Pembelian Obat di Apotek Tabel 4.18 Deskripsi Use Case Pembelian Obat di Apotek

UC17 – Pembelian Obat di Apo	tek
Primary Actor:	Level:
Pengguna	User Goal
Pre-conditions:	
Pengguna berada di halaman P	eta 3D dan memasuki gedung
Medical Center	
Triggers:	
Pengguna mendekati Apotel	ĸ
Basic course:	
Pengguna mendekati Apotek. Si	istem akan mengaktifkan layar
informasi tahapan pembelian ob	at.
Post-conditions:	
Sistem akan menampilkan h	alaman peta 3D mengenai
pembelian obat di Apotek. Mu	llai dari pemberian resep dari
pasien, penyerahan obat, lalu pe	embayaran (jika ada jenis obat
yang tidak ditanggung oleh ITS).
Alternate courses:	
Jika pengguna tidak menek	an tombol apapun: sistem
menampilkan pesan interaksi	yang dapat terjadi terhadap
objek tersebut	
Jika pengguna menekan to	mbol M keyboard: Sistem
menjalankan UC08 (Melihat Per	ta 2D)
Jika pengguna menekan tor	nbol Esc keyboard: Sistem
menjalankan UC06 (Kembali ke	e Menu Utama)
Jika pengguna menekan	tombol W/A/S/D/panah
atas/panah bawah/panah ki	ri/panah kanan keyboard:
Sistem menjalankan UC11 (Nav	rigasi)
Jika pengguna menekan to	mbol F1 keyboard: Sistem
menjalankan UC04 (Melihat Ba	ntuan)

4.3.18 Deskripsi *Use Case* Melihat Video Peragaan *Dental Chair*

Tabel 4.19 Deskripsi Use Case Melihat Video Peragaan Dental Chair

UC18 – Melihat Video Peragaan	Dental Chair						
Primary Actor:	Level:						
Pengguna	User Goal						
Pre-conditions:							
Pengguna berada di halaman I	Peta 3D dan memasuki salah						
satu ruangan yang terdapat pada	gedung Medical Center						
Triggers:							
• Pengguna mendekati dental	<i>chair</i> pada poli gigi						
Basic course:							
Pengguna mendekati objek	tersebut. Sistem akan						
mengaktifkan layar informasi p	enggunaan dari salah satu alat						
pada poli gigi.							
Post-conditions:							
Sistem akan menampilkan video) peragaan <i>dental chair</i>						
Alternate courses:							
Jika pengguna tidak menek	an tombol apapun: sistem						
menampilkan pesan interaksi	yang dapat terjadi terhadap						
objek tersebut							
Jika pengguna menekan to	mbol M keyboard: Sistem						
menjalankan UC08 (Melihat Pet	ta 2D)						
Jika pengguna menekan tor	nbol Esc keyboard: Sistem						
menjalankan UC06 (Kembali ke	e Menu Utama)						
Jika pengguna menekan	tombol W/A/S/D/panah						
atas/panah bawah/panah ki	ri/panah kanan keyboard:						
Sistem menjalankan UC11 (Nav	rigasi)						
Jika pengguna menekan to	mbol F1 keyboard: Sistem						
menjalankan UC04 (Melihat Ba	ntuan)						

4.4 Sequence Diagram

Sequence diagram memuat alur dalam use case dengan penjelasan yang mengarah pada pemrograman aplikasi, sehingga sebelum merancang sequence diagram diharuskan mengerti tentang teknologi yang akan diterapkan pada palikasi. Rancangan sequence diagram ini dapat dilihat pada lampiran D

4.5 Test Case

Test case dirancang untuk menjaga performa aplikasi agar sesuai dengan desain yang dibuat. Dalam hal ini, *test case* akan dijalankan dengan beberapa skenario yang sesuai dengan rancangan *use case diagram*. Berikut adalah *test case* yang dikerjakan oleh penulis pada tugas akhir ini.

4.5.1 Test Case Memilih Menu

ID	Skenario	K1	K2	K3	Hasil
TC 1-01	Pengguna berhasil memilih menu	\checkmark	\checkmark	N/A	Sistem menampilkan halaman Menu Jelajahi Peta
TC 1-02	Pengguna memilih keluar aplikasi	\checkmark	N/A	\checkmark	Sistem menampilkan halaman Menu Keluar

Tabel 4.20 Test Case Memilih Menu

Keterangan Tabel 4.20 :

- K1 Masuk halaman Menu Awal
- K2 Menu Jelajahi Peta ditekan
- K3 Menu Keluar ditekan

4.5.2 Test Case Memilih Peta

Tabel 4.21 Test Case Memilih Peta

ID	Skenario	K1	K2	K3	K4	K5	K6	K7	K8	Hasil
TC 2-01	Pengguna berhasil	\checkmark	\checkmark		N/A	N/A	N/A	N/A	N/A	Sistem menampilkan
	memilih									halaman
	salah satu									Menu Pilihan
	Peta 3D									Peta. Sistem
										menyimpan
										pilihan peta
										yang dipilih oleh
										pengguna dan
										menampilkan
										halaman
										Menu
										Jelajahi Peta

TC 2-02	Pengguna tidak memilih Peta 3D manapun		\checkmark	N/A	\checkmark	N/A	N/A	N/A	N/A	Sistem menampilkan halaman Menu Jelajahi Peta
TC 2-03	Pengguna melihat Menu Resolusi	\checkmark	N/A	N/A	N/A	\checkmark	N/A	N/A	N/A	Sistem menjalankan UC03
TC 2-04	Pengguna melihat Menu Bantuan	\checkmark	N/A	N/A	N/A	N/A	\checkmark	N/A	N/A	Sistem menjalankan UC04
TC 2-05	Pengguna masuk Peta 3D	V	N/A	N/A	N/A	N/A	N/A	V	N/A	Sistem menjalankan UC05
TC 2-06	Pengguna kembali ke Menu Awal	V	N/A	N/A	N/A	N/A	N/A	N/A	V	Sistem menjalankan UC01

Keterangan Tabel 4.21:

- K1 masuk halaman Menu Jelajahi Peta
- K2 menu Pilihan Peta ditekan
- K3 salah satu tombol Peta 3D ditekan
- K4 menu Kembali ditekan
- K5 menu Pilihan Resolusi ditekan
- K6 menu Bantuan ditekan
- K7 menu Mulai ditekan
- K8 menu Ke Menu Awal ditekan

4.5.3 Test Case Mengubah Resolusi

Tabel 4.22 Test Case Mengubah Resolusi

	ID	Skenario	K1	K2	K3	K4	K5	K6	K7	K8	K9	Hasil
--	----	----------	----	----	----	----	----	----	----	----	----	-------

TC 3-01	Pengguna	 	 	N/A	N/A	N/A	N/A	N/A	Sistem
	berhasil								menampilkan
	mengganti								halaman
	resolusi								Menu
									Resolusi.
									Sistem
									menyimpan
									resolusi yang
									dipilih oleh
									pengguna
									dan
									mengubah
									resolusi
									tampilan
									sesuai
									dengan yang
									telah dipilih
									oleh
									pengguna.

TC 3-02	Pengguna mengganti pilihan resolusi tetapi tidak menyimpan perubahan tersebut	\checkmark	\checkmark	~	N/A	N/A	N/A	N/A	N/A	N/A	Sistem menampilkan halaman Menu Resolusi. Sistem mengganti tombol resolusi dengan pilihan resolusi baru.
TC 3-03	Pengguna tidak mengganti pilihan resolusi tetapi mencoba menyimpan perubahan	V	V	N/A	V	N/A	N/A	N/A	N/A	N/A	Sistem menampilkan halaman Menu Resolusi.

TC 3-04	Pengguna tidak mengganti resolusi	V	V	N/A	N/A	\checkmark	N/A	N/A	N/A	N/A	Sistem menampilkan halaman Menu Resolusi. Sistem menampilkan halaman Menu Jelajahi Peta.
TC 3-05	Pengguna mengganti pilihan resolusi tetapi tidak menyimpan perubahan tersebut	~	~	~	N/A	~	N/A	N/A	N/A	N/A	Sistem mengganti tombol resolusi dengan pilihan resolusi baru. Sistem menampilkan halaman Menu Jelajahi.

TC 3-06	Pengguna melihat Menu Pilihan Peta	\checkmark	N/A	N/A	N/A	N/A	V	N/A	N/A	N/A	Sistem menjalankan UC02
TC 3-07	Pengguna melihat Menu Bantuan	V	N/A	N/A	N/A	N/A	N/A		N/A	N/A	Sistem menjalankan UC04
TC 3-08	Pengguna masuk Peta 3D		N/A	N/A	N/A	N/A	N/A	N/A	\checkmark	N/A	Sistem menjalankan UC05
TC 3-09	Pengguna kembali ke Menu Awal		N/A	\checkmark	Sistem menjalankan UC01						

- Keterangan Tabel 4.22 K1 masuk halaman Menu Jelajahi Peta
- menu Pilihan Resolusi ditekan K2

- K3 menu Resolution: [resolusi] ditekan
- K4 menu Simpan Perubahan ditekan
- K5 menu Kembali ditekan
- K6 menu Pilihan Peta ditekan
- K7 tombol Bantuan ditekan
- K8 tombol Mulai ditekan
- K9 tombol Ke Menu Awal ditekan

4.5.4 Test Case Melihat Bantuan

Tabel 4.23 test Case Melihat Bantuan

ID	Skenario	K1	K2	K3	K4	K5	K6	K7	K8	K9	K 10	K 11	K 12	K 13	Hasil
TC 4- 01	Pengguna berhasil melihat Menu Bantuan			V	N/A	N/A	N/A	N/A	Sistem menampilkan halaman Menu Bantuan bagian kontrol						

-69

TC 4- 02	Pengguna melihat Menu Pilihan Peta	\checkmark	N/A	N/A	\checkmark	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Sistem menjalankan UC02
TC 4- 03	Pengguna melihat Menu Resolusi	\checkmark	N/A	N/A	N/A	\checkmark	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Sistem menjalankan UC03
TC 4- 04	Pengguna masuk Peta 3D	\checkmark	N/A	N/A	N/A	N/A	\checkmark	N/A	Sistem menjalankan UC05						
TC 4- 05	Pengguna kembali ke Menu Awal		N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	Sistem menjalankan UC01

| TC
4-
06 | Pengguna
melihat
Menu
bantuan | N/A | V | V | N/A | N/A | N/A | N/A | Sistem
menampilkan
halaman
Menu
Bantuan
bagian
kontrol |
|----------------|---|-----|-----|-----|-----|-----|-----|-----|---|-----|-----|-----|-----|-----|--|
| TC
4-
07 | Pengguna
berinteraksi
dengan
objek | N/A | | N/A | | N/A | N/A | N/A | Sistem
menjalankan
UC12 |
| TC
4-
08 | Pengguna
melihat
Menu Peta
2D | N/A | V | N/A | N/A | | N/A | N/A | Sistem
menjalankan
UC08 |
| TC
4-
09 | Pengguna
melihat
Menu In-
Game | N/A | | N/A | N/A | N/A | | N/A | Sistem
menjalankan
UC07 |

TC	Pengguna	N/A	 N/A	N/A	N/A	N/A	 Sistem						
4-	melakukan												menjalankan
10	navigasi												UC06

Keterangan Tabel 4.23:

- K1 masuk halaman Menu Jelajahi Peta
- K2 menu Bantuan ditekan
- K3 menu close Menu Bantuan ditekan
- K4 menu Pilihan Peta ditekan
- K5 menu Pilihan Resolusi ditekan
- K6 menu Mulai ditekan
- K7 menu Ke Menu Awal ditekan
- K8 masuk halaman Peta 3D
- K9 tombol F1 keyboard ditekan
- K10 berada dalam area jangkauan interaksi objek dan tombol kiri mouse ditekan
- K11 tombol M keyboard ditekan
- K12 tombol Esc keyboard ditekan
- K13 tombol navigasi keyboard ditekan

4.5.5 Test Case Menjelahi Peta

Tabel 4.24 Test Case Mejelajahi Peta

ID	Skenario	K1	K2	K3	K4	K5	K6	Hasil
TC 5-01	Pengguna berhasil memasuki halaman peta 3D	\checkmark	V	N/A	N/A	N/A	N/A	Sistem mengambil pilihan peta kemudian menampilkan halaman proses loading menuju halaman Peta 3D dan menampilkan halaman Peta 3D sesuai dengan pilihan peta
TC 5-02	Pengguna melihat Menu Pilihan Peta	\checkmark	N/A	\checkmark	N/A	N/A	N/A	Sistem menjalankan UC02
TC 5-03	Pengguna melihat Menu Resolusi	V	N/A	N/A	\checkmark	N/A	N/A	Sistem menjalankan UC03
TC 5-04	Pengguna melihat Menu Bantuan	V	N/A	N/A	N/A	$\overline{\mathbf{v}}$	N/A	Sistem menjalankan UC04

TC 5-05	Pengguna kembali ke Menu Awal	V	N/A	N/A	N/A	N/A		Sistem menampilkan halaman Menu Awal
------------	-------------------------------------	---	-----	-----	-----	-----	--	---

Keterangan Tabel 4.24:

- K1 masuk halaman Menu Jelajahi Peta
- K2 menu Mulai ditekan
- K3 menu Pilihan Peta ditekan
- K4 menu Pilihan Resolusi ditekan
- K5 menu Bantuan ditekan
- K6 menu Ke Menu Awal ditekan
- 4.5.6 *Test Case* Navigasi

Tabel 4.25 Test Case Navigasi

ID	Skonaria	V1	K)	V 2	V/	V9	VO	K	K	K	K	K	K	Hagil
	Skenario	LU	R Z	КЭ	К4	ПŎ	КУ	10	11	12	13	14	15	riasii

TC 6- 01	Pengguna menggerakkan aktor maju (cara 1)	\checkmark	\checkmark	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Sistem menggerakkan aktor ke arah depan
TC 6- 02	Pengguna menggerakkan aktor mundur (cara 1)	\checkmark	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Sistem menggerakkan aktor ke arah belakang
TC 6- 03	Pengguna menggerakkan aktor ke samping kiri	\checkmark	N/A	N/A	\checkmark	N/A		Sistem menggerakkan aktor ke arah kiri						
TC 6- 04	Pengguna menggerakkan aktor ke samping kanan	\checkmark	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Sistem menggerakkan aktor ke arah kanan
TC 6- 05	Pengguna menggerakkan aktor maju (cara 2)	\checkmark	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Sistem menggerakkan aktor ke arah depan

TC 6- 06	Pengguna menggerakkan aktor mundur (cara 2)	\checkmark	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Sistem menggerakkan aktor ke arah belakang
TC 6- 07	Pengguna menggerakkan pandangan aktor memutar ke samping kiri	\checkmark	N/A	N/A	N/A	\checkmark	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Sistem mengarahkan pandangan aktor ke kiri
TC 6- 08	Pengguna menggerakkan pandangan aktor memutar ke samping kanan	\checkmark	N/A	N/A	N/A	N/A	\checkmark	N/A	N/A	N/A	N/A	N/A	N/A	Sistem mengarahkan pandangan aktor ke kanan
TC 6- 09	Pengguna menggerakkan aktor menunduk	\checkmark	N/A	N/A	N/A	N/A	N/A	\checkmark	N/A	N/A	N/A	N/A	N/A	Sistem menggerakkan aktor pada posisi menunduk

TC	Pengguna	 N/A	N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A	N/A	Sistem
6-	menggerakkan												menggerakkan
10	aktor												aktor untuk
	melompat												melompat
TC	Pengguna	 N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A	Sistem
6-	berinteraksi												menjalankan
11	dengan objek												UC12
TC	Pengguna	 N/A	N/A		N/A	N/A	Sistem						
6-	melihat Menu												menjalankan
12	Peta 2D												UC08
TC	Pengguna	 N/A	N/A		N/A	Sistem							
6-	melihat Menu												menjalankan
13	In-Game												UC07
TC	Pengguna	 N/A	N/A		Sistem								
6-	melihat Menu												menjalankan
14	Bantuan												UC04

Keterangan Tabel 4.25:

- K1 masuk halaman Peta 3D
- K2 tombol W keyboard ditekan
- K3 tombol S keyboard ditekan

- K4 tombol A keyboard ditekan
- K5 tombol D keyboard ditekan
- K6 tombol panah atas keyboard ditekan
- K7 tombol panah bawah keyboard ditekan
- K8 tombol panah kiri keyboard ditekan
- K9 tombol panah kanan keyboard ditekan
- K10 tombol C keyboard ditekan
- K11 tombol Space keyboard ditekan
- K12 berada dalam area jangkauan interaksi objek dan tombol kiri mouse ditekan
- K13 tombol M keyboard ditekan
- K14 tombol Esc keyboard ditekan
- K15 tombol F1 keyboard ditekan

4.5.7 Test Case Kembali Ke Menu Utama

ID	Skenario	K1	K2	K3	K4	K5	K6	K7	K8	Hasil
TC 7-01	Pengguna berhasil kembali ke Menu Utama	V	V	V						Sistem menampilkan halaman Menu <i>In-Game.</i> Pengguna menekan tombol Keluar Peta. Sistem menampilkan Menu Jelajahi Peta.
TC 7-02	Pengguna tidak jadi kembali ke Menu Utama				\checkmark					Sistem menampilkan kembali halaman Peta 3D

Tabel 4.26 Test Case Kembali Ke Menu Utama

TC 7-03	Pengguna berinteraksi dengan objek	\checkmark				Sistem menjalankan UC12
TC 7-04	Pengguna melihat Menu Peta 2D					Sistem menjalankan UC08
TC 7-05	Pengguna melakukan navigasi	V				Sistem menjalankan UC06
TC 7-06	Pengguna melihat Menu Bantuan					Sistem menjalankan UC04

Keterangan Tabel 4.26:

- K1 masuk halaman Peta 3D
- K2 tombol Esc keyboard ditekan
- K3 menu Keluar Peta ditekan
- K4 menu Kembali ke Peta ditekan
- K5 berada dalam area jangkauan interaksi objek dan tombol kiri mouse ditekan
- K6 tombol M keyboard ditekan
- K7 tombol navigasi keyboard keyboard ditekan
- K8 tombol F1 keyboard ditekan

4.5.8 *Test Case* Melihat Peta Dua Dimensi

ID	Skenario	K1	K2	K3	K4	K5	K6	Hasil
TC 8-01	Pengguna berhasil melihat Menu Peta 2D	\checkmark	N/A	V	N/A	N/A	N/A	Sistem mengambil lokasi dan rotasi aktor pada Peta 3D kemudian mengatur posisi gambar aktor pada halaman Menu Peta 2D sesuai pada lokasi dan rotasi aktor pada Peta 3D.
TC 8-02	Pengguna berinteraksi dengan objek	V	V	N/A	N/A	N/A	N/A	Sistem menjalankan UC12
TC 8-03	Pengguna melihat Menu In- Game		N/A	N/A	V	N/A	N/A	Sistem menjalankan UC07

Tabel 4.27 Test Case Melihat Peta Dua Dimensi

TC 8-04	Pengguna melakukan navigasi	\checkmark	N/A	N/A	N/A	\checkmark	N/A	Sistem menjalankan UC06
TC 8-05	Pengguna melihat Menu Bantuan	\checkmark	N/A	N/A	N/A	N/A		Sistem menjalankan UC04

Keterangan Tabel 4.27:

- K1 masuk halaman Peta 3D
- K2 berada dalam area jangkauan interaksi objek dan tombol kiri mouse ditekan
- K3 tombol M keyboard ditekan
- K4 tombol Esc keyboard ditekan
- K5 tombol navigasi keyboard ditekan
- K6 tombol F1 keyboard ditekan

4.5.9 *Test Case* Teleportasi

ID	Skenario	K1	K2	K3	K4	K5	K6	K7	K8	Hasil
TC 9-01	Pengguna				N/A	N/A	N/A	N/A	N/A	Sistem
	berhasil									menampilkan
	melakukan									dialog
	teleportasi									pilihan.
										Sistem
										melakukan
										teleportasi
										aktor menuju
										ruangan
										sesuai
										dengan
										pilihan
										tombol
										penanda
										lokasi.

Tabel 4.28 Test Case Teleportasi

TC 9-02	Pengguna meminta penunjukan arah	\checkmark		N/A		N/A	N/A	N/A	N/A	Sistem menjalankan UC10
ТС 9-03	Pengguna menutup pilihan dialog	V	V	N/A	N/A	V	N/A	N/A	N/A	Sistem menampilkan halaman Menu Peta 2D tanpa dialog pilihan
TC 9-04	Pengguna tidak jadi melakukan teleportasi	\checkmark	N/A	N/A	N/A	N/A	V	N/A	N/A	Sistem menampilkan kembali halaman Peta 3D

TC 9-05	Pengguna melihat denah gedung Lantai 1	V	N/A	N/A	N/A	N/A	N/A	V	N/A	Sistem menampilkan halaman Menu Peta 2D dengan denah gedung lantai 1 dan gambar aktor sesuai pada lokasi dan rotasi
										dan rotasi aktor pada Peta 3D

							I	I		[
TC 9-06	Pengguna	\checkmark	N/A	N/A	N/A	N/A	N/A	N/A	\checkmark	Sistem
	melihat									menampilkan
	denah									halaman
	gedung									Menu Peta
	Lantai 2									2D dengan
										denah
										gedung lantai
										2 dan gambar
										aktor sesuai
										pada lokasi
										^

Keterangan Tabel 4.28:

- K1 masuk halaman Menu Peta 2D
- K2 salah satu tombol penanda ruangan berbentuk bintang ditekan
- K3 menu 'Masuk ke dalam ruangan' ditekan
- K4 menu 'Tunjukkan arah menuju ruangan' ditekan
- K5 menu 'Tutup dialog pilihan' ditekan
- K6 tombol M keyboard ditekan
- K7 menu 'Lantai 1' ditekan
- K8 menu 'Lantai 2' ditekan

ID	Skenario	K1	K2	K3	K4	K5	K6	K7	K8	Hasil
TC 10-01	Pengguna berhasil melakukan				N/A	N/A	N/A	N/A	N/A	Sistem menampilkan dialog pilihan. Sistem
	permintaan penunjukan									aktor pada Peta 3D, rotasi aktor pada Peta
	arah									3D, dan lokasi seluruh actor.
										Setelah itu sistem menentukan tujuan
										penunjuk arah. Sistem akhirnya
										halaman Peta 3D dan Menu Penunjuk Arab
										dengan gambar panah
										menuju tujuan.

4.5.10 *Test Case* Melihat Penunjuk Arah Tabel 4.29 Test Case Melihat Penunjuk Arah

TC 10-02	Pengguna melakukan teleportasi			N/A		N/A	N/A	N/A	N/A	Sistem menjalankan UC09
TC 10-03	Pengguna menutup pilihan dialog	\checkmark	\checkmark	N/A	N/A	\checkmark	N/A	N/A	N/A	Sistem menampilkan halaman Menu Peta 2D tanpa dialog pilihan
TC 10-04	Pengguna tidak jadi melakukan permintaan penunjukan arah		N/A	N/A	N/A	N/A	V	N/A	N/A	Sistem menampilkan kembali halaman Peta 3D
TC 10-05	Pengguna melihat denah gedung Lantai 1	V	N/A	N/A	N/A	N/A	N/A	V	N/A	Sistem menampilkan halaman Menu Peta 2D dengan denah gedung lantai 1 dan gambar aktor sesuai pada lokasi dan rotasi aktor pada Peta 3D
TC 10-06	Pengguna	 N/A	N/A	N/A	N/A	N/A	N/A	 Sistem menampilkan		
----------	----------	---------	-----	-----	-----	-----	-----	------------------------		
	melihat							halaman Menu Peta		
	denah							2D dengan denah		
	gedung							gedung lantai 2 dan		
	Lantai 2							gambar aktor sesuai		
								pada lokasi dan rotasi		
								aktor pada Peta 3D		

Keterangan Tabel 4.29:

- K1 masuk halaman Menu Peta 2D
- K2 salah satu tombol penanda ruangan berbentuk bintang ditekan
- K3 menu 'Tunjukkan arah menuju ruangan' ditekan
- K4 tmenu 'Masuk ke dalam ruangan' ditekan
- K5 menu 'Tutup dialog pilihan' ditekan
- K6 tombol M keyboard ditekan
- K7 menu 'Lantai 1' ditekan
- K8 menu 'Lantai 2' ditekan

4.5.11 Test Case Mengaktifkan Layar Informasi

ID	Skenario	K1	K2	K3	K4	K5	K6	Hasil
TC 11-01	Pengguna berhasil melihat informasi	\checkmark		N/A	N/A	N/A	N/A	Sistem menampilkan layar informasi
TC 11-02	Pengguna berinteraksi dengan objek		N/A	N/A	N/A	N/A	N/A	Sistem menjalankan UC12
TC 11-03	Pengguna melihat Menu Peta 2D		N/A		N/A	N/A	N/A	Sistem menjalankan UC08
TC 11-04	Pengguna melihat Menu In-Game		N/A	N/A		N/A	N/A	Sistem menjalankan UC07
TC 11-05	Pengguna melakukan navigasi		N/A	N/A	N/A		N/A	Sistem menjalankan UC06

Tabel 4.30 Test Case Mengaktifkan Layar Informasi

TC 11-06	Pengguna melihat Menu	V	N/A	N/A	N/A	N/A	 Sistem menjalankan UC04
	bantuan						

Keterangan Tabel 4.30:

- K1 masuk halaman Peta 3D dan berada dalam area jangkauan interaksi layar informasi
- K2 tombol kiri mouse ditekan dan berada dalam area jangkauan interaksi objek
- K3 tombol M keyboard ditekan
- K4 tombol Esc keyboard ditekan
- K5 tombol navigasi keyboard ditekan
- K6 tombol F1 keyboard ditekan

4.5.12 Test Case Interaksi Dengan Objek

ID	Skenario	K1	K2	K3	K4	K5	K6	Hasil
TC 12-01	Pengguna			N/A	N/A	N/A	N/A	Sistem menampilkan pesan
	berhasil							interaksi yang dapat terjadi
	berinteraksi							terhadap objek tersebut. Sistem
	dengan objek							menjalankan fungsi interaksi.

Tabel 4.31 Test Case Interaksi Dengan Objek

TC 12-02	Pengguna tidak menekan tombol apapun	V	N/A	N/A	N/A	N/A	N/A	Sistem menampilkan pesan interaksi yang dapat terjadi terhadap objek tersebut, tetapi pengguna tidak dapat berinteraksi dengan objek.		
TC 12-03	Pengguna melihat Menu Peta 2D	\checkmark	N/A	\checkmark	N/A	N/A	N/A	Sistem menjalankan UC08		
TC 12-04	Pengguna melihat Menu In- Game	\checkmark	N/A	N/A	\checkmark	N/A	N/A	Sistem menjalankan UC07		
TC 12-05	Pengguna melakukan navigasi		N/A	N/A	N/A	V	N/A	Sistem menjalankan UC06		
TC 12-06	Pengguna melihat Menu bantuan	V	N/A	N/A	N/A	N/A		Sistem menjalankan UC04		

Keterangan Tabel 4.31:

- K1 masuk halaman Peta 3D dan berada dalam area jangkauan interaksi objek
- K2 tombol kiri mouse ditekan
- K3 tombol M keyboard ditekan
- K4 tombol Esc keyboard ditekan
- K5 tombol navigasi keyboard ditekan
- K6 tombol F1 keyboard ditekan

4.5.13 Test Case Simulasi Pendaftaran Poli Umum

ID	Skenario	K1	K2	K3	K4	Hasil
TC13-01	Pengguna berhasil melakukan interaksi simulasi pendaftaran poli umum	\checkmark	\checkmark	N/ A	\checkmark	Sistem menampilkan proses simulasi pendaftaran poli umum
TC13-02	Pengguna keluar dari peta 3D	N/ A	N/ A	\checkmark	N/ A	Sistem menutup peta 3D

Tabel 4.32 Test Case Simulasi Pendaftaran Poli Umum

Keterangan tabel 4.32:

- K1 masuk halaman peta 3D
- K2 berada di depan ruang poli umum
- K3 tombol Esc keyboard ditekan
- K4 tombol navigasi keyboard di tekan

ID	Skenario	K1	K2	K3	K4	Hasil
TC14-01	Pengguna berhasil melakukan interaksi simulasi pendaftaran poli gigi	\checkmark	\checkmark	N/ A	\checkmark	Sistem menampilkan proses simulasi pendaftaran poli gigi
TC14-02	Pengguna keluar dari peta 3D	N/ A	N/ A	\checkmark	N/ A	Sistem menutup peta 3D

4.5.14 *Test Case* Interaksi Simulasi Pendaftaran Poli Gigi Tabel 4.33 Test Case Simulasi Pendaftaran Poli Gigi

Keterangan tabel 4.33:

- K1 masuk halaman peta 3D
- K2 berada di depan ruang poli gigi
- K3 tombol Esc keyboard ditekan
- K4 tombol navigasi keyboard di tekan

4.5.15 *Test Case* Interaksi Simulasi Pendaftaran BKIA Tabel 4.34 Test Case Simulasi Pendaftaran BKIA

ID	Skenario	K1	K2	K3	K4	Hasil
	Pengguna berhasil					Sistem
TC15	melakukan			NI/		menampilkan
01	interaksi simulasi	\checkmark	\checkmark	1 N/		proses simulasi
01	pendaftaran poli			A $\frac{N}{A}$ $\sqrt{100000000000000000000000000000000000$		pendaftaran poli
	BKIA				BKIA	
TC15-	Pengguna keluar	N/	N/	2	N/	Sistem menutup
02	dari peta 3D	Α	А	N	Α	peta 3D

- Keterangan tabel 4.34 :
- K1 masuk halaman peta 3D
- K2 berada di depan ruang poli BKIA
- K3 tombol Esc keyboard ditekan
- K4 tombol navigasi keyboard di tekan

4.5.16 Test Case Interaksi Pasien Unit Gawat Darurat

ID	Skenario	K1	K2	K3	K4	Hasil
TC16- 01	Pengguna berhasil melakukan interaksi simulasi pasien unit gawat darurat	\checkmark	\checkmark	N/ A	\checkmark	Sistem menampilkan proses simulasi pasien unit gawat darurat
TC16- 02	Pengguna keluar dari peta 3D	N/ A	N/ A	\checkmark	N/ A	Sistem menutup peta 3D

Tabel 4.35 Test Case Pasien Unit Gawat Darurat

Keterangan tabel 4.35 :

- K1 masuk halaman peta 3D
- K2 berada di depan ruang unit gawat darurat
- K3 tombol Esc keyboard ditekan
- K4 tombol navigasi keyboard di tekan

4.5.17 Test Case Interaksi Simulasi Pembelian Obat di Apotek

ID	Skenario	K1	K2	K3	K4	Hasil
TC17- 01	Pengguna berhasil melakukan interaksi simulasi pembelian obat	V	\checkmark	N/ A	V	Sistem menampilkan proses simulasi pembelian obat
TC17- 02	Pengguna keluar dari peta 3D	N/ A	N/ A	\checkmark	N/ A	Sistem menutup peta 3D

Keterangan tabel 4.36 :

- K1 masuk halaman peta 3D
- K2 berada di depan apotek
- K3 tombol Esc keyboard ditekan
- K4 tombol navigasi keyboard di tekan

4.5.18 Test Case Interakasi Video Peragaan Dental Chair

Tabel 4.37 Test Case Interkasi Video Peragaan Dental Chair

ID	Skenario	K1	K2	K3	K4	Hasil
TC 18- 01	Pengguna berhasil melihat video peragaan <i>dental</i> <i>chair</i>	V		N/A	\checkmark	Sistem menampi lkan informasi objek

|--|

Keterangan tabel 4.37 :

K1 – masuk halaman peta 3D

K2 – berada di dalam ruangan poli gigi

K3 – tombol Esc keyboard ditekan

K4 - tombol navigasi keyboard di tekan

4.6 Pemilihan Tombol Navigasi dan Kontrol

Sebagai bagian dari keseluruhan penelitian peta tiga dimensi interaktif ITS, maka aplikasi dari penelitian ini juga menggunakan standarisasi tombol navogasi dan kontrol. Peran tombol navigasi dan kontrol dalam sebuah aplikasi terutama dalam game itu sangat penting, dikarenakan peta tiga dimensi interaktif ini dikembangkan dengan game engine dan berbentuk aplikasi pembelajaran. Lebih lengkapnya pemilihan tombol navigasi dan kontrol dapat dilihat pada tabel 4.38.

Tabel 4.38 Tombol Navigasi

No	Perintah	Tombol	Hasil	Analisa
Α	Navigasi			
1	Bergerak ke kiri	А	Menggerakkan tampilan sesuai dengan arah kiri	Umum dipakai pada permainan tiga dimensi
2	Bergerak ke kanan	D	Menggerakkan tampilan sesuai dengan arah kanan	Umum dipakai pada permainan tiga dimensi
3	Bergerak maju	W	Menggerakkan tampilan sesuai dengan arah depan	Umum dipakai pada permainan tiga dimensi

4	Bergerak	S	Menggerakkan	Umum dipakai
	mundur		tampilan sesuai	pada
			dengan arah	permainan tiga
			belakang	dimensi
5	Memutar	← /	Memutar	Umum dipakai
	searah	panah	tampilan searah	pada
	jarum jam	kiri	jarum jam Peta	permainan tiga
			akan berputar	dimensi
			berlawanan	
			dengan arah	
			jarum jam	
6	Memutar	→ /	Memutar	Umum dipakai
	berlawanan	panah	tampilan	pada
	arah jarum	kanan	berlawanan arah	permainan tiga
	jam		jarum jam	dimensi
7	Bergerak	^ /	Menggerakkan	Umum dipakai
	maju	panah	tampilan sesuai	pada
		atas	dengan arah	permainan tiga
			tanda panah	dimensi
8	Bergerak	♥ /	Menggerakkan	Umum dipakai
	mundur	panah	tampılan sesuai	pada
		bawah	dengan arah	permainan tiga
	2.6.1	~	tanda panah	dimensi
9	Membung-	С	Menggerakkan	Pada
	kuk		tampilan seakan	permainan tiga
			aktor pengguna	dimensi
			sedang	terdapat 2
			membungkuk	pilihan umum,
				yaitu Ctrl atau
				Levil and
				keyboard.
				Inamun
				penulis
				memutuskan
				tombol C.

10	Melompat	Spasi	Menggerakkan	Umum dipakai
	*		tampilan seakan	pada
			aktor pengguna	permainan tiga
			sedang	dimensi
			melompat	
11	Berinteraksi	Enter /	Menggerakkan	Dalam
	dengan	klik kiri	tampilan sesuai	permainan tiga
	objek peta		dengan interaksi	dimensi
			objek peta	dengan genre
				First Person
				Shooter (FPS)
				biasanya
				dipakai untuk
				menembak
				karena hal
				yang paling
				sering
				dilakukan
				pengguna
				adalah
				menembak.
				Begitu pula
				dalam aplikasi
				peta tiga
				dimensi ini,
				berinteraksi
				dengan objek
				adalan hal
				yang panng
				dilalakan oleh
				unakukan oleh
р	Kontrol ting	vat nota		pengguna.
в	Kontrol ting	кат рега		

1	Menu Bantuan	F1	Membuka menu Bantuan. Tekan Tombol sekali lagi untuk keluar dari menu	Umum dipakai pada permainan
2	Menu In- Game	Esc	Membuka menu In-Game. Tekan Tombol sekali lagi untuk keluar dari menu	Umum dipakai pada permainan
3	Menu Peta 2D	М	Membuka menu Peta 2D. Tekan Tombol sekali lagi untuk keluar dari menu	Huruf M merepresentasi kan kata Map/Peta yang juga umum dipakai pada permainan tiga dimensi untuk merepresentasi kan masuk pada halaman peta dua dimensi

4.7 GUI Story oard Menu Awal

GUI Story Board memuat tampilan dan alur bagaimana aplikasi dijalankan. *GUI Story Board* dalam aplikasi ini memuat beberapa tampilan *static* dan tampilan peta tiga dimensi yang dinamis. Tampilan static berupa tampilan menumenu yang disediakan untuk aplikasi.

Pada awalaplikasi dibuka akan muncul menu awal yang berisi 2 pilihan yaitu jelajahi peta dan keluar dari aplikasi seperti pada gambar 4.4.

Gambar 4.4 Menu Awal

Bila pengguna menekan tombol jelajahi peta, maka akan keluar menu baru yang berisi pilihan yaitu pilihan peta yang berguna untuk memilih peta yang telah diintegrasikan. Tampilan menu tersebut seperti pada Gambar 4.5.

Gambar 4.5 Jelajahi Peta

Untuk memilih peta yang akan dijelajahi pengguna dapat menggunakan menu pilihan peta yang berisi kumpulan map yang telah diintegrasikan seperti pada Gambar 4.6.

Gambar 4.6 Pilihan Peta

Apabila pengguna menekan tombol pilihan resolusi maka akan keluar menu baru yang berisi pilihan resolusi yang akan digunakan pada peta seperti pada Gambar 4.7.

Gambar 4.7 Pilihan Resolusi

Apabila pengguna menekan tombol pilihan bantuan, maka akan keluar menu baru yang berisi pilihan menu bantuan pada aplikasi seperti pada Gambar 4.8.

Gambar 4.8 Menu Bantuan

Pop up menu Keluar akan muncul jika menu Keluar yang ada dalam menu Awal dipilih. Gambar 4.9 menunjukkan tampilan *pop up* menu Keluar.

Gambar 9 Tampilan Pop up Menu Keluar

Ketika dalam peta 3D, terdapat menu *In-Game* yang akan muncul jika pengguna menekan tombol Esc pada *keyboard*. menu *In-Game* berisi dua piilhan menu yaitu menu Kembali ke Peta dan Keluar. Tampilan menu *In-Game* dapat dilihat pada Gambar 4.10.

Gambar 4.10 Tampilan Menu In-Game

Dari tampilan-tampilan menu diatas kemudian ditambah dengan tampilan dinamis peta tiga dimensi, maka alur aplikasi dapat dibuat dengan menambahkan hubungan antar tampilan yang dapat diilustrasikan pada Gambar 4.11.

Gambar 4.11 GUI Story Board

4.8 Desain Interaksi

Pada subbab ini akan dijelaskan mengenai desain interaksi yang merupakan penjabaran dari tabel 4.1 yang terdapat padapenelitian tugas akhir ini.

4.8.1 Tour Seluruh Peta

Pada interaksi ini, dibagi menjadi dua bagian, yaitu tour dalam gedung dan tour luar gedung. Dimana tour yang dilakukan kedua sangat berbeda. Yang dilakukan pada tour dalam gedung adalah untuk memperkenalkan ruangan penting yang menjadi fasilitas dari Medical Center. Sedangkan untuk tour luar gedung lebih memperlihatkan keadaan sekitar gedung Medical Center.

4.8.1.1 Tour Dalam Gedung

Untuk membuat interaksi tour dalam gedung, yang pertama harus dilakukan adalah harus mengetahui alur darimana akan memulai dan ruangan apa yang akan dikenalkan pertama kali. Untuk alur tour dalam gedung dapat dilihat pada gambar 4.12.

Gambar 4.12 Alur Tour Dalam Gedung

4.8.1.2 Tour Luar Gedung

Sama halnya dengan tour dalam gedung, pertama yang harus dilakukan adalah membuatn alur pembuatan hingga perjalanan dari sebuah tour luar gedung. Untuk alur tour luar gedung dapat dilihat pada gambar 4.13.

Gambar 4.13 Alur Tour Luar Gedung

4.8.2 Simulasi Pendaftaran Poli Umum

Pada interaksi ini hampir sama dengan dua interaksi poli gigi dan BKIA. Yang membedakan hanya hasil akhir dari simulasi ini. Dalam pembuatan interaksi ini dibutuhkan informasi yang jelas.Tidak hanya datang lalu masuk ke ruangan poli umum.Tetapi ada langkah-langkah untuk mendaftarkan sebagai pasien poli umum. Untuk melihat alur pembuatan dan perjalanan dapat dilihat pada gambar 4.14.

Gambar 4.14 Alur Pembuatan Simulasi Poli Umum

4.8.3 Simulasi Pendaftaran Poli Gigi

Sama halnya dengan pendaftaran poli umum, untuk mendaftarkan pasien poli gigi ada langkahlangkahnya. Untuk melihat alur pembuatan dan perjalanan dapat dilihat pada gambar 4.15.

Gambar 4.15 Alur Simulasi Poli Gigi

108

4.8.4 Simulasi Pendaftaran Poli BKIA

Hampir sama dengan dua interaksi pendaftaran di atas. Hanya bagian akhir dari simulasi saja yang berbeda. Untuk dapat melihat alur pembuatan dan perjalanan dapat dilihat pada gambar 4.16.

Gambar 4.16 Alur Simulasi Poli BKIA

4.8.5 Simulasi Pasien Unit Gawat Darurat

Pada simulasi ini berbeda dengan tiga simulasi pendaftaran sebelumnya. Pada simulasi ini, pasien tidak harus menuju resepsionis untuk melakukan pendaftaran, tetapi langsung di ruangan UGD. Itu dikarenakan, pasien langsung masuk ke dalam ruangan UGD, agar segera mendapat pertolongan dengan cepat. Maka perawatlah yang datang menemui pasien di ruang UGD. Untuk alur pembuatan dan perjalanan dapat dilihat pada gambar 4.17.

Gambar 4.17 Alur Pasien Unit Gawat Darurat

4.8.6 Simulasi Pembelian Obat di Apotek

Simulasi ini menunjukan bagaimana cara menebus rese yang diberikan oleh dokter. Untuk melihat alur pembuatan dan perjalanan dapat dilihat pada gambar 4.18.

Gambar 4.18 Alur Pembelian Obat

4.8.7 Simulasi Melihat Video Peragaan Dental Chair

Simulasi melihat video ini merupakan simulasi dari objek yang berada di poli gigi. Pada video ini akan memperlihatkan bagaimana mengguankan salaht satu objek yang berada di poli gigi, yaitu *dental chair*. Untuk melihat alur pembuatan dan perjalanan dapat dilihat pada gambar 4.19.

Gambar 4.19 Alur Simulasi Melihat Video

BAB V IMPLEMPENTASI DAN UJI COBA

5.1.Lingkungan Implementasi

Peta tiga dimensi ini diimplementasikan pada komputer *client* yang dimana komputer tersebut juga sebagai pengembangnya. Spesifikasi lingkungan perangkat keras yang digunakan dalam pengembangan dan implementasi dapat di lihat pada Tabel 5.1.

Tabel 5. 1. Spesifikasi perangkat keras dan system operasi untuk implementasi sistem

Spesifikasi
Prosesor: Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz
2.50GHz
Memori: 4,00GB (2,74 GB usable)
VGA: NVIDIA GeForce GT 525M
Sistem Operasi: Windows 7 Home Premium, 32bit

Sedangkan untuk perangkat lunak, aplikasi utama yang digunakan adalah UDK versi Februari 2012. Pada Tabel 5.2 berikut ini merangkum perangkat lunak yang digunakan dalam implementasi ini.

Teknologi	Versi
Editor	Unreal Development Kit 32bit
	(Februari '12)
3D Editor	Autodesk 3ds Max 2012
Animation Editor	Adobe Flash CS6
Texture Editor	Adobe Photoshop CS5, Paint
Video Editor	Bink

Tabel 5. 2 Perangkat lunak yang digunakan

5.2. Pembuatan Peta Dua Dimensi

Pembuatan peta dua dimensi disini bertujuan untuk mempermudah user ketika menjalankan aplikasi sehingga nantinya user dapat mengetahui informasi mengenai gedung *Medical Center* ITS. Peta dua dimensi ini meliputi lingkungan sekitar dari gedung *Medical Center* ITS, yaitu pos satpam, garasi untuk *ambulance*, serta BANK BTN. Selain itu gedung ini mempunyai 2 lantai, dimana lantai 1 digunakan untuk aktifitas sebagaimana mestinya, seperti berobat, membeli obat, dan lain-lain. Sedangkan di lantai 2 digunakan untuk aktifitas para pengelola gedung *Medical Center* ITS tersebut seperti, kepala UPT, manager keuangan, ruang server, dan lain-lain. Untuk lebih jelasnya denah gedung dapat dilihat pada gambar 5.1, dan gambar 5.2..

Gambar 5. 1. Denah Lantai 1

Gambar 5. 2. Denah Lantai 2

5.3. Pembuatan Aplikasi

Dalam sub bab ini berisi penjelasan, metodologi, serta standarisasi mengenai pembuatan aplikasi mulai dari pembuatan Level Map, pembuatan dan peletakan objek, penambahan interaksi, pengaturan pencahayaan, sampai dengan penambahan suara.

5.3.1.Pembuatan Level Map

Hal pertama yang harus dilakukan dalam proses pembuatan aplikasi ini dimulai dengan pembuatan Level Map. Level Map ini dibangun dari data hasil survey baik berupa foto ataupun video, serta Level Map 2D yang telah dibuat sebelumnya pada tahap desain. Pembuatan Level Map ini mencakup pembuatan geometri dan pemberian material.

5.3.1.1. Pembuatan Geometri Gedung Medical Center ITS

Pembuatan Level Map dimulai dengan membuat geometri. Geometri pada UDK berfungsi untuk membentuk model tiga dimensi dari peta, yang mencakup bangunan dan semua permukaan bangunan peta, seperti tangga, tembok dan permukaan tanah/dasar gedung.

Dalam UDK terdapat 2 mode utama yang dapat digunakan dalam membuat sebuah Level Map baru. Mode tersebut adalah mode substract, dan mode additive. Dalam membangun geometri level, dalam UDK dikenal dengan istilah brushes. Brushes ini memiliki banyak bentuk seperti cube, cone, curved staircase, cylinder, linear starcase, sheet, spiral staircase, tetrahedron dan cards.

CSG dalam UDK juga memiliki satuan, yaitu dalam bentuk satu satuan unreal. Dalam standardisasi, satu satuan meter dalam kondisi nyata disetarakan dalam 64 satuan unit unreal. Untuk membuat suatu gedung dalam CSG mode ini, proses yang dilakukan antara lain:

1. Memilih brush

Dalam memilih *brush*, terlebih dahulu dipertimbangkan bentuk permukaan *Level Map* yang akan dibuat. *Brush* untuk membangun geometri dalam *Unreal Editor* desebut dengan *Red Builder Brush*karena warna merahnya yang khas, seperti yang ditunjukkan pada gambar 5.3.

Gambar 5.3. Builder Brush Cube

2. Menentukan ukuran brush

Untuk menentukan ukuran *brush* agar sesuai dengan ukuran kondisi fisik yang sebenarnya, dapat dilakukan dengan cara menghitung berdasarkan skala yang sudah distandarisasi sebelumnya. Menentukan

ukuran *brush* dilakukan dengan cara mengganti properti *red builder brushes*, seperti pada gambar 5.4.

Properties		_
X T Z Wall Thickness Group Name Holos Tessellated	256.000000 256.000000 256.000000 16.000000 Cube	
	9.61	Cencel

Gambar 5.4. Properti Red Builder Brushes

3. Menentukan jenis brushes

Dalam membangun obyek dengan menggunakan *brushes*, berdasarkan fungsinya, ada 2 jenis *brushes* yang sering digunakan. Penggunaan masing-masing jenis *brushes* disesuaikan dengan kebutuhan. Berikut ini adalah 2 jenis *brushes* yang ada dalam CSG :

- CSG add

CSG add adalah *brushes* dengan permukaan yang padat. CSG *add* ini dipakai dalam membentuk permukaan padat pada *Level Map*.

Gambar 5.5 CSG_add untuk menambah brush

- CSG substract

CSG *substract* adalah brush yang digunakan untuk memotong *brush add*. Contoh penggunaan dari CSG *substract* ini adalah untuk memberi lubang pada dinding untuk membuat jendela atau pintu.

Gambar 5.6 CSG_substract untuk memotong brush

- Special brush

Untuk menambahkan geometri selain CSG_add dan CSG_substract maka digunakan special brush. Special brush yang paling sering dipakai antara lain adalah Lightmass Volume dan trigger volume. Lightmass Volume akan dijelaskan lebih lanjut dalam sub bab *lighting* dan trigger volume akan dijelaskan lebih lanjut dalam sub bab interaksi.

Gambar 5.7 Pilihan Voluem yang ada pada Unreal Editor

4. Geometry Build

Untuk melihat hasil *brush* yang di-*add* dalam geometri *Level Map*, harus dilakukan *build geometry*, sehingga akan terlihat geometry *Level Map* yang telah dibuat. *Mode view* dalam UDK dapat diatur ke dalam mode perspektif dan *wireframe*, seperti yang terlihat pada gambar 5.8 dan gambar 5.9.

Gambar 5.8. Mode Wireframe Viewport Perspective Unreal Editor

Gambar 5.9. Mode Unlit Viewport Top Unreal Editor

Gambar 5.10 merupakan tampilan dari Unreal Engine Editor dilihat dengan menggunakan Mode Wireframe Viewport Top. Untuk tampilan ini, digunakan untuk mempermudah dalam melihat objek secara keseluruhan karena objek yang dibuat dilihat dari sudut pandang atas.

Gambar 5.10 Mode Wireframe Viewport Top Unreal Engine

Dalam *geometry mode*, juga terdapat beberapa *modifier* yang dapat digunakan untuk merubah bentuk dari *brush* yang telah digunakan. *Modifier* yang sering dipakai dalam pembangunan geometri Level ini adalah *modifier*split dan extrude. Penggunaan geometry tools dapat dilihat pada gambar 5.11.

and the second s	
Hodrigens	
10 258	2.010
Brush Citz	a rer
ante	
An	6.D
Properties	
Auto Estruale Greate Convex Pol Dreate Druate Shap Extrude Depth	2
The rest of the local division in the local	the second se
Plutiers	ente.
Hothers	
Rodifiers Plot	and Str.

Gambar 5.11 Geometry Tools

Untuk melakukan split sebuah brush, baik *red builder* brush maupun brushCSG_add atau CSG_substract dapat dilakukan dengan masuk ke Geometry Mode, memilih sisi tegak lurus yang akan di-*split* dan memilih split. Split ini digunakan untuk memberikan material berbeda pada satu permukaan brush. Gambar 5.12 merupakan pengaplikasian split pada red builder brush sebelum brush diatur sebagai CSG *add* atau CSG *substract*.

Gambar 5.12 Pengggunaan split geometry tools

5.3.1.2. Pemberian Material

Pemberian material dilakukan setelah proses pembuatan gedung atau obyek fisik selesai dilakukan. Hasil *brush* yang telah dibuat tersebut selanjutnya diberi material untuk mendapatkan hasil obyek yang sesuai dengan kondisi riilnya. Dalam membuat

material diperlukan pembuatan tekstur terlebih dahulu.

Setelah material selesai dibuat, maka selanjutnya akan ditempelkan pada *brush*. Hasil jadi tekstur dan material akan disimpan ke dalam *package* UDK. File *package* akan disimpan dalam format *.upk dan direktori *package* sendiri yaitu pada UDK\UDKGame\Content. Setelah package dibuat, package tersebut dapat diisi dengan tekstur dan material

Tekstur berasal dari file image yang berformat *.png, kemudian di-*import* ke dalam *package* UDK. Agar hasil *import* berhasil dengan sempurna, maka sebelumnya tekstur
harus berukuran kelipatan persegi samasisi yaitu seperti 64x64 pixel, 512x512 pixel, dan seterusnya.

Tekstur yang dapat dipakai dalam material, dalam Unreal Material Editor terdapat di dalam channel texture sample. Tekstur ini digabungkan dalam channel *diffuse* dan normal untuk *texture* sampe normal yang di-*generate* dari gambar normal. Gambar 5.13 merupakan contoh tekstur yang telah di-*import* ke dalam *package*.

Material yang telah jadi akan diaplikasikan ke permukaan brush dan objek. Untuk menambahkan material pada permukaan brush, dilakukan dengan apply material yang terpilih pada permukaan brush. Contoh material yang telah ditempelkan pada *brushes* ditunjukkan pada gambar 5.7.

Gambar 5.13. Contoh Material pada Content browser

Gambar 5.14. Hasil Pemasangan Material

5.3.1.3. Pemberian Tanda Interaksi

Pemberian tanda sebuah interaksi dapat dilakukan dengan memberikan sebuah particle system di dekat objek atau benda yang dapat berinteraksi. Particle system dibuat dengan menggunakan Unreal Cascade. Pembuatan particle system ini tidak lepas dari pemanfaatan actor, Emitter material, dan juga StaticMesh. Particle system yang dibuat ada dua buah yaitu untuk penanda interaksi informasi ruangan dan penanda interaksi objek. Gambar 5.15 menunjukkan penanda interaksi informasi ruangan.

Gambar 5.15. Particle System untuk interaksi ruangan

Sedangkan gambar 5.16 menunjukkan penanda interaksi objek.

Gambar 5.16. Particle System untuk interaksi objek

5.3.1.4. Pemberian Tanaman dan Pepohonan

Supaya peta 3D terlihat lebih hidup, maka perlu diberikan tanaman dan pepohonan sebagai makhluk hidup yang terdapat pada kondisi nyata. Hal tersebut dapat dilakukan melalui pemberian *StaticMesh* atau dapat menggunakan objek tanaman yang dibuat melalui *SpeedTree Modeler* dan *SpeedTree Compiler*. Gambar 5.17 menunjukkan tanaman dan pepohonan hasil *SpeedTree* dan *StaticMesh*.

Gambar 5. 17. Tanaman hasil SpeedTree dan StaticMesh

5.3.2.Pembuatan dan Peletakan Objek

Pembuatan dan peletakan objek dilakukan dalam beberapa langkah yang berurutan, yaitu dimulai dari pembuatan objek 3D, pemberian material, eksport objek 3D ke dalam format tertentu, dan meng*import* objek tersebut ke dalam *package* di dalam UDK.

5.3.2.1. Pembuatan Objek 3D

Dalam membuat suatu objek 3D, aplikasi Autodesk 3ds Max digunakan. Proses pembuatan objek tersebut meliputi:

- a) Standard Primitives Tools. Dengan tools tersebut penulis dapat membuat *object* dengan bentuk dasar balok, bulat, tabung, kerucut, dan lainnya.
- b) Modifier. Dengan *tools* ini, kita bisa mengubah ukuran *object*, bentuk *object*, material *object*, serta hal-hal lain hingga membentuk objek tersebut sesuai dengan yang diinginkan
- c) Connect. Sering terjadi, ketika membuat suatu *object*, diperlukan banyak *object* terlebih dahulu dengan bentuk yang bermacam - macam.Untuk menggabungkannya menjadi satu-kesatuan *object*, kita menggunakan fungsi Connect yang berada di dalam Compound *Objecttools* atau attach yang berada di dalam beberapa *Modifier* List, seperti Edit Poly dan Edit Mesh.
- d) Compound Object. Selain memiliki fungsi Connect, juga memiliki fungsi Boolean yang sering digunakan untuk proses Union, *substract*ion, *substract*ion, atau Cut antara suatu *object* dengan *object* lainnya menjadi *object* baru. *Object* lama yang digunakan untuk membuat baru tersebut, terdaftar didalam Modifier>Boolean.

5.3.2.2.Peletakan Objek 3D

Setelah melakukan *export* objek 3D menjadi format .FBX, maka proses *import* objek kedalam *package* UDK bisa dilakukan. Hal yang harus dipastikan saat meng*import* objek ke dalam *package* adalah memilih tipe *StaticMesh*.

Di dalam content browser, kita dapat merubah properties dari objek tersebut, seperti memeberikan material yang sudah sesuai dengan kebutuhan. Banyak material yang bisa dimasukkan, sesuai dengan id material yang sudah dibuat di sebelumnya.

5.3.3.Pengaturan Pencahayaan

Sama dengan pemberian material pada geometri, pengaturan pencahayaan dalam aplikasi ini dimaksudkan untuk membuat keadaan peta mirip dengan keadaan nyata. Pengaturan cahaya di UDK dapat dilakukan dengan menggunakan beberapa kelas *actor light* (cahaya). Seperti pada gambar 5.18 terdapat beberapa jenis kelas aktor light yang ada, yaitu *DirectionalLight, PointLight, SkyLight, dan SpotLight.*

5.3.4. Penambahan Suara

Suara merupakan sebuah poin penting dalam dunia game, oleh sebab itu, UDK mempunyai fitur untuk menambahkan file suara tersebut. File suara yang disupport oleh UDK adalah file yang mempunyai format .WAV. File tersebut kemudian di*import* ke dalam *content browser*. File hasil *import* tersebut berubah menjadi *SoundNodeWave*.

Agar dapat digunakan didalam Unreal Kismet dan Unreal Matinee, maka dibutuhkan SoundCue. SoundCue merupakan gabungan dari SoundNodeWave. Contoh file SoundCue dan SoundNodeWave dapat dilihat pada gambar 5.19.

Gambar 5.19. Penggunaan *SoundCue* untuk suara interaksi

5.3.5.Pembuatan Interaksi

Interaksi yang dibuat pada aplikasi ini merupakan interaksi yang menggunakan animasi flash dan *UnrealMatinee*, lalu keduanya diatur didalam *UnrealKismet*. Interaksi dengan tampilan animasi flash perlu terlebih dahulu membuat file

dengan tipe SWF, tipe file yang dapat digunakan oleh Unreal Editor. File SWF dibuat dengan aplikasi pengolah animasi dan dalam tugas akhir ini digunakan aplikasi pengolah animasi Adobe Flash CS6. Aplikasi tersebut dapat membuat file .FLA yang merupakan file proyek animasi flash dan file .SWF yang merupakan file animasi flash.

5.3.5.1. Layar Informasi

Layar informasi adalah sebuah interaksi menggunakan animasi *flash*, dimana yang memuat informasi suatu tempat dalam map. Layar informasi muncul setiap aktor melewati area-area yang perlu diberikan informasi. Layar informasi akan muncul dan menghilang dengan sendirinya setiap aktor memasuki atau keluar dari area tersebut. Contoh tampilan gambar layar informasi pada aplikasi dapat dilihat pada gambar 5.20.

80 potel Apoteir Medical Center ITS, merupakan perkembangan darī dega tarmasī. Balai engobaton ITS, Dimana dahulunya hanya melayani abat-obatan umuk pasien mahasiswa ITS saja Berdasarkan turat izin dari Dince Kesebatan Surabaya, Make apotek Medical Center ITS sudah dapat melayani abat-abatan bebas dan resep umum

Gambar 5. 20 Animasi *flash* Layar Informasi

5.3.5.2 Infomasi Objek

Informasi objek digunakan untuk memberikan informasi kepada pengguna terkait dengan interkasi yang dapat dilakukan. Informasi objek biasanya menggunakan animasi *flash* pada *unreal matinee*. Contohnya informasi membuka dan menutup pintu, serta menyalakan dan memadakan lampu.

Sebagai contoh penggunaan animasi *flash* adalah pada interaksi pintu. Dalam interaksi ini animasi *flash* akan tampil ketika aktor mendekati objek pintu yang sebelumnya sudah dipasang sebuah *trigger*. *Trigger* ini berfungsi sebagai pemicu untuk menampilkan animasi dan untuk menjalankan interaksi. Gambar 5.21 adalah contoh animasi *flash* yang akan muncul ketika pengguna atau aktor akan menggunakan interkasi pada pintu.

Gambar 5.21 Tampilan informasi objek interaksi pada pintu

5.3.5.3.Peta Dua Dimensi

Menu Peta Dua Dimensi yang ada pada aplikasi tugas akhir ini merupakan presentasi dari interaksi peta dua dimensi (2D). Interaksi peta 2D merupakan tampilan menu animasi *flash* untuk tiga fungsi yang dapat digunakan oleh aktor. Tiga fungsi tersebut yaitu mengetahui posisi aktor, teleportasi ke suatu tempat dan menunjukkan arah menuju suatu tempat.

Gambar 5. 22 Animasi flash Menu Peta Dua Dimensi

5.5.Uji Coba dan Evaluasi

Subbab ini berisi bagian uji coba dan evaluasi implementasi aplikasi. Didalam subbab ini akan dibahas mengenai uji coba yang dilakukan pada aplikasi ini, yaitu uji coba fungsional dan uji coba non-fungsional, serta dilakukan juga uji coba pada praktikum sebagai bahan validasi aplikasi.

5.5.1.Uji Coba Fungsional

Uji coba fungsional dilakukan melalui unit test dari rancangan *test case* yang telah dirancang pada lampiran D. Setiap skenario pada *test case* dijalankan dan hasil yang ada pada *test case* dibandingkan dengan hasil aplikasi. *Unit test* tersebut dapat dilihat pada tabel 5.1.

No.	Test Case ID	Hasil
1.	TC13-01	Berhasil
2.	TC13-02	Berhasil
3.	TC12-01	Berhasil
4.	TC12-02	Berhasil
5.	TC14-01	Berhasil
6.	TC14-02	Berhasil
7.	TC15-01	Berhasil
8.	TC15-02	Berhasil
9.	TC16-01	Berhasil
10.	TC16-02	Berhasil
11.	TC17-01	Berhasil
12.	TC17-02	Berhasil
13.	TC18-01	Berhasil
14.	TC18-02	Berhasil

Tabel 5. 1. Unit Test dari rancangan test case

5.5.2. Uji Coba Non-Fungsional

Uji coba non-fungsional dilakukan dengan mengukur performa yang dihasilkan oleh sistem hardware untuk menjalankan aplikasi. Uji coba pengukuran performa ini dilakukan dengan beberapa ketentuan sebagai berikut : • Stat FPS

Merupakan tools untuk memperlihatkan FPS counter dan lama petadijalankan. Perintah yang digunakan adalah "stat fps"

• Stat memory Merupakan tools untuk memperlihatkan penggunaan memoru. Perintah yang digunkan adlaah "stat memory"

Aplikasi dijalankan melalui Unreal Editor atau Unreal FrontEnd kemudian menekan tombol *tab* pada *keyboard* dan mengetikkan perintah sebuah *tools*, maka akan muncul laporannya. Uji coba performa dilakukan pada tiga buah PC yang masing-masing dilakukan tiga kali. Spesifikasi tiga buah PC yang digunakan untuk uji coba dapat dilihat pada Tabel 5.2, Tabel 5.3, dan Tabel 5.4.

Processor	Intel [®] Core [™] 2 Duo CPU E7500 @2.93
	Ghz
Memori	4 GB RAM
VGA	ATI Radeon HD 5700 2805 MB
Sistem	Windows 7 Professional 64-bit (6.1, Build
Operasi	7601)

Tabel 5.2 Spesifikasi PC 1

Tabel 5.3 Spesifikasi PC 2

Processor	Intel® Core TM 2 Duo CPU E7500 @2.93
	Ghz
Memori	8 GB RAM
VGA	ATI Radeon HD 5700 2805 MB
Sistem	Windows 7 Professional 64-bit (6.1, Build
Operasi	7601)

Tabel 5.4 Spesifikasi PC 3

Processor	Intel [®] Core [™] 2 Duo CPU E7500 @2.93
	Ghz
Memori	2 GB RAM
VGA	NVIDIA GeForce GTX 550 Ti 1744 MB
Sistem	Windows 7 Professional 64-bit (6.1, Build
Operasi	7601

Perbandingan hasil uji coba performa dapat dilihat pada tabel 5.5

Tabel 5.539 Hasil Uji Coba

Spesifikasi	FPS Indoor	FPS	Keterangan
		Outdoor	
Spesifikasi 1	53	60	
Spesifikasi 2	92	75	
Spesifikasi 3	47	42	

Keterangan FPS:

- FPS> 50, maka spesifikasi tersebut sangat dianjurkan untuk menjalankan aplikasi
- FPS< 50 namun FPS> 40, maka spesfikasi tersebut cukup untuk menjalankan aplikasi
- FPS< 40, maka spesifikasi tersebut tidak dianjurkan untuk menjalankan aplikasi

Hasil analisa :

 Dari hasil pada tabel di atas menunjukan bahwa pada spesifiikasi 1 dan 2 mempunyai nilai yang lumayan jauh berbeda, padahal processor dan VGA sama akan tetapi jumlah memori yang membedakan. Pada spec 1

- 2. memori yang digunakan 4GB sedangkan spec 2 memori yang digunakan 8GB. Hal ini yang dapat membedakan performa, jika VGA dan processor sama akan tetapi memori berbeda, maka yang memiliki memori yang besarlah yang akan memiliki peforma yang bagus.
- 3. Pada spesifikasi 3 sebenarnya tidak terlalu jauh nilainya dengan spesifikasi 1. Yang membedakan spec 1 dan spec 3 adalah memori dan VGA. Pada spec 1 memori yang digunakan adalah 4GB sedangkan spec 2 hanya 2GB. Perbedaan memori bisa dibilang spec 2 memiliki setengah memori dari spec 1. Akan tetapi nilai perbedaan keduanya tidak lebih dari 20. Hal ini dikarenakan dari VGA. VGA yang digunakan spec 3 lebih bagus dari yang digunakan spec 1.
- 4. Nilai dari spec 2 dan spec 3 sangat jauh. Dikarenakan ada perbedaan jumlah memori yang sangat signifikan. Walaupun spec 3 sudah menggunakan VGA yang baik, akan tetapi tidak didukung dengan memori yang baik pula, maka performa yang dihasilkan juga kurang maksimal.

5.5.4. Evaluasi Implementasi

Evaluasi dilakukan dengan cara validasi peta 3D Unreal Engine dengan memperlihatkan perbandingan gambar pada peta 3D dengan foto pada kondisi nyata. Pada evaluasi ini akan digambarkan secara jelas tentang hasil implementasi ruangan yang telah dimodelkan pada peta 3D beserta gambar asli ruangan tersebut. Evaluasi tersebut dapat dilihat pada tabel 5.6.

Bangunan	Kondisi Nyata	Peta 3D
GEDUNG	Dapat dilihat perbed	aan dari dua gambar di
MEDICAL	atas, gambar sebelah	kiri adalah gambar nyata
CENTER	yang diambil dari kamera digital, sedangkan yang sebelah kanan adalah bangunan yang dibuat oleh penulis. Tampak depan dari gedung, ada perbedaan dari cahaya. Ini dapat dinyatakan bahwa UDK mampu membuat bangunan sama persis dengan keadaan yang sebenarnya.	
	Ini adalah ruang U	GD (unit gawat darurat)
Ruangan	dimana gambar sebe	elah kiri adalah gambar
UGD	yang diambil oleh kamera digital, sedangkan	
	Sebelah kanan adalah ruangan yang dibuat oleh	
	hampir menyerupai aslinya. Akan tetapi tetap	
	ada perbedaan, yaitu dari segi pencahayaan.	
	Karena ruangan ini ada di dalam gedung, maka	
	perlu cahaya tambah	an seperti lampu untuk
	menerangi ruangan.	

Tabel 5. 6 Evaluasi implementasi model peta 3D

Poli Umum	Terdapat dua ruangan poli umum yang mempunya spesifikasi dan tatanan ruangan yang sama. Penulis membuat ruangan sedetail mungkin dan semirip mungkin dengan aslinya. Dikarenakan ada beberapa alat dari kedokteran yang rumit membuatnya maka penulis
	meminimalkan objek tersebut.
Poli Gigi	Dental chair, yang berada di poli gigi tempatnya. Objek ini mempunyai kedetailan yang sangat rumit, sehingga agak kesulitan bagi penulis untuk membuatnya. UDK memang susah untuk membuat sesuatu yang agak detail tingkat kerumitannya seperti objek di atas, maka diperlukan aplikasi lain yang dapat menunjuang atau membantu dan dapat di import ke dalam UDK. 3Ds max adalah aplikasi yang dapat membuat objek serumit apapun dengan tingkat kerumitan yang sangat tinggi.

	Pali DKIA dari sambar dista sabalah liiri
Poli BKIA	adalah gambar asli, dan sebelah kiri adalah bangunan padaUDK. Semua tatanan ruangan poli pada medical center ini hampir sama, hanya posisi dari objek saja yang berbeda. Dengan UDK, dapat dilihat dari gambar, bahwa dapat mengikuti tatanan dari posisi objek yang berbeda-beda tiap ruangan. Karena perbedaan pencahayaan, dibutuhkan sebuah lampu untuk menerangi bangunan UDK.
Apotek	
	Apotek adalah fasilitas penunjang di gedung ini, dapat dilihat dari gambar di atas sebelah kiri adalah keadaan yang sebenarnya, sedangkan yang sebelah kanan adalah bangunan dari UDK. Ada perbedaan, yaitu pada gambar yang asli didapatkan etalase yang berisi macam-macam obat. Pada gambar UDK, obat yang berada di etalase adalah hasil dari material. Dikarenakan, jika menggunakan <i>statichmesh</i> terlalu banyak, maka akan memperlambat proses build. Dengan menggunakan material saja apotek seakan sudah sama dengan aslinya.

Dari perbandingan beberapa sample gambar diatas, dapat kita perhatikan bahwa UDK mampu untuk membuat sebuah lingkungan yang hampir menyerupai keadaan nyata dari lingkungan tersebut. Dengan menggunakan tools dan fiturfitur yang dibawa UDK, seperti penggunaan material serta *static mesh* untuk penggunaan objek seperti mesin dan juga *furniture* dan barang lainnya juga dapat membantu memaksimalkan keadaanya didalam peta tiga dimensi sesuai dengan kenyataannya. Namun UDK bukanlah tanpa cela, masih banyak terdapat kekurangan yang mengurangi hasil dari peta tiga dimensi, seperti penggunaan cahaya yang menurut penulis masih tidak sesuai dengan keadaan asli, serta pembuatan geometri yang sangat rumit.

BAB VI KESIMPULAN DAN SARAN

6.1 Kesimpulan

Dari hasil pengerjaan aplikasi peta 3 dimensi interaktif pada Tugas Akhir yang telah dilakukan ini, selanjutnya dapat ditarik beberapa kesimpulan sebagai berikut:

- 1. Pada gedung Medical Center ini ada beberapa ruangan yang tidak boleh dibuka atau diketahui oleh masyarakat, terutama di lantai 2. Ini dikarenakan pada lantai 2 adalah ruangan untuk pengelola Medical Center.
- 2. Pembangun peta 3D Medical Center ITS ini memerlukan ketelitian koordinat pembangunan geometri bangunan dengan keistimewaan kemiringan geudng 45 derajat. Pembangunan geometrigedung tersebut dilakukan pada koordinat secara normal, namun ketika pembangunan geometri selesai, geometri dapat diputar sesuai kemiringan gedung tersebut.
- 3. Pada etalase apotek menggunakan material, awalnya etalase ini menggunakan staticmesh, akan tetapi staticmesh ini mengakibatkan kapasitas map menjadi besar, sehingga staticmesh diganti dengan material yang berguna untuk meminimalis kapasitas map.
- 4. Pembuatan interaksi dibutuhkan kreativitas tersendiri dan disesuaikan dengan karakteristik dan kebutuhan dari gedung yang dibangun.
- 5. Pembuatan alat yang ada di poli gigi merupakan sebuah proses yang dirasa cukup sulit, dikarenakan bentuk detail dari alat tersebut sangatlah tinggi.
- 6. Dari hasil uji coba fungsional, aplikasi dapat berjalan dengan baik sesuai dengan kebutuhan fungsional aplikasi. Sedangkan hasil uji coba performa menunjukan performa yang baik

- 7. Adanya keterbatasan pada UDK untuk membuat objek yang lebih detail dan rumit. Sehingga dibutuhkan aplikasi modelling 3D seperti 3Ds Max.
- 8. Tidak semua hardware dapat mendukung aplikasi peta tiga dimensi. Hal ini dapat dilihat dari uji coba FPS. Ada beberapa spesifikasi yang harus dipenuhi dalam hardware jika ingin menjalankan aplikasi peta tiga dimensi tersebut. Terlebih diperhatikan VGA dan memori yang digunakan. Karena kedua hal tersebut yang mempengaruhi performa dari aplikasi ini.

6.2 Saran

Berikut adalah beberapa saran yang dapat dipertimbangkan untukpengembangan aplikasi INI3D kedepannya, yaitu :

- 1. Pengembangan aplikasi 3D sebaiknya dilakukan pada komputer yang memiliki spesifikasi yang tinggi atau yang dapat mendukung pembuatan game.
- 2. Harus teliti dalam penggunaan trigger saat akan membuat interaksi, karena trigger yang sama akan menyebabkan UDK not responding dan mati secara tiba-tiba..
- 3. Sebaiknya melalukan back up secara rutin atau mengaktifkan auto save untuk mengantisipasi terjadinya not responding.
- 4. Lebih mengutamakan penggunaan brush daripada staticmesh, dikarenakan statichmesh lebih berat daripada brush, apalagi jika staticmesh tumbuhan bergerak.
- 5. Melakukan kompresi pada file tekstur, sound dan video yang akan dimasukkan. Agar saat FPS dalam aplikasi tidak turun drastis.

6. Untuk mengimport tekstur, lebih baik ukuran di perbesar sekitar 256x256 pixel, untuk menghindari terjadinya error saat mengimport yang sering menyebabkan aplikasi not responding

Halaman ini sengaja dikosongkan.

Lampiran A SEQUENCE DIAGRAM

A.1 Sequence Diagram Memilih Menu

Gambar A.120 Diagram Sequence Memilih Peta

A.2 Sequence Diagram Memilih Peta

Gambar A.2 Sequence Diagram Memilih Peta

A.3 Sequence Diagram Mengubah Resolusi

Gambar A.3 Diagram Sequence Mengubah Resolusi

A.4 Sequence Diagram Melihat Bantuan

Gambar A.4 Diagram Sequence Melihat Bantuan

A.5 Sequence Diagram Menjelajahi Peta

Gambar A.521 Diagram Sequence Menjelajahi Peta

A.6 Sequence Diagram Navigasi

Gambar A.6 Diagram Sequence Navigasi

A.7 Sequence Diagram Kembali Ke Menu Utama

Gambar A.7 Sequence Diagram Kembali Ke Menu Utama

A.8 Sequence Diagram Melihat Peta Dua Dimensi

Gambar A.822 Diagram Sequence Melihat Peta Dua Dimensi

A.9 Sequence Diagram Teleportasi

Gambar A.923 Diagram Sequence Teleportasi

A.10 Sequence Diagram Melihat Penunjuk Arah

Gambar A.10 Diagram Sequence Melihat Penunjuk Arah

A.11 Sequence Diagram Mengaktifkan Layar Informasi

Gambar A.11 Diagram Sequence Mengaktifkan Layar Informasi

A.12 Sequence Diagram Interaksi Dengan Objek

Gambar A.12 Diagram Sequence Interaksi Dengan Objek

A.13 Sequence Diagram Simulasi Pendaftaran Poli Umum

Gambar A.13 Diagram Sequence Simulasi Pendaftaran Poli Umum

A.14 Sequence Diagram Simulasi Pendaftaran Poli Gigi

Gambar A.1424 Diagram Sequence Simulasi Pendaftaran Poli Gigi

A.15 Sequence Diagram Simulasi Pendaftaran Poli BKIA

Gambar A.15 Diagram Sequence Simulasi Pendaftaran Poli BKIA

A.16 Sequence Diagram Pasien Unit Gawat Darurat

0

A.17 Sequence Diagram Pembelian Obat di Apotek

Gambar A.17 Diagram Sequence Pembelian Obat di Apotek

A.18 Sequence Diagram Interaksi Video Peragaan Dental Chair

Gambar A.18 Diagram Sequence Interaksi Video Peragaan Dental Chair

DAFTAR GAMBAR

Gambar 2.1 Unreal Editor
Gambar 2.2 Contoh Sequence dalam Kismet12
Gambar 2.3 Unreal Matinee
Gambar 2.4 Unreal Material Editor14
Gambar 2.5 Contoh Unreal Static Mesh Editor15
Gambar 2.6 Pembuatan Peta 2D dengan Visio17
Gambar 2.7 Pembuatan Objek Dengan 3Ds Max18
Gambar 2.8 Pembuatan Warna Pada Paint19
Gambar 2.9 Pembuatan Flash20
Gambar 2.10 Penggunaan Bink21
Gambar 3.1 Gedung Medical Cnter ITS (Google Map)23
Gambar 3.2 Diagram Alur Metodologi25
Gambar 4.1 Domain Model Awal
Gambar 4.2 Domain Model Akhir40
Gambar 4.3 Use Case Diagram41
Gambar 4.4 Menu Awal100
Gambar 4.5 Jelajahi Peta101
Gambar 4.6 Pilihan Peta101
Gambar 4.7 Pilihan Resolusi102
Gambar 4.8 Menu Bantuan102
Gambar 4.9 Tampilan Pop Up Menu keluar103
Gambar 4.10 Tampilan Menu In-Game103
Gambar 4.11 GUI Story Board104

Gambar 4.12 Tour Dalam Gedung	105
Gambar 4.13 Tour Luar Gedung	106
Gambar 4.14 Simulasi Pendaftaran Poli Umum	107
Gambar 4.15 Simulasi Pendaftaran Poli Gigi	108
Gambar 4.16 Simulasi Pendaftaran Poli BKIA	109
Gambar 4.17 Simulasi Pasien Unit Gawat Darurat	110
Gambar 4.18 Pembelian Obat di Apotek	111
Gambar 4.19 Melihat Video Peragaan Dental Chair	112
Gambar 5.1 Denah Lantai 1	114
Gambar 5.2 Denah Lantai 2	114
Gambar 5.3 Builder Crush Cube	116
Gambar 5.4 Properti Red Builder Brushes	117
Gambar 5.5 CSG_add untuk menambah brush	118
Gambar 5.6 CSG_subtract untuk memotong brush	118
Gambar 5.7 Pilihan volum pada Unreal Editor	119
Gambar 5.8 Mode wirefram viewport perspective	
Gambar 5.9 Mode Unlit Viewport Top	120
Gambar 5.10 Mode wireframe viewport Top	121
Gambar 5.11 Geometry Tools	122
Gambar 5.12 Penggunaan split geometry tools	123
Gambar 5.13 Contoh material pada content browser	124
Gambar 5.14 Hasil pemasangan material	125
Gambar 5.15 Particle system untuk interaksi ruangan	125
Gambar 5.16 Particle system untuk interaksi objek	126

Gambar 5.17 Tanaman hasil SpeedTree dan StaticMesh	126
Gambar 5.18 Macam-macam ActorLight	128
Gambar 5.19 Penggunaan SoundCue	129
Gambar 5.20 Animasi flash layar informasi	130
Gambar 5.21 Tampilan informasi objek interaksi pintu	131
Gambar 5.22 Animasi flash menu peta dua dimensi	132
Gambar A.1 Diagram Sequence Memilih Menu	A-1
Gambar A.2 Diagram Sequence Memilih Peta	A-2
Gambar A.3 Diagram Sequence Mengubah Resolusi	A-3
Gambar A.4 Diagram Sequence Melihat Bantuan	A-4
Gambar A.5 Diagram Sequence Menjelajahi Peta	A-5
Gambar A.6 Diagram Sequence Navigasi	A-5
Gambar A.7 Diagram Sequence Kembali Ke Menu Utama	А-б
Gambar A.8 Diagram Sequence Melihat Peta Dua Dimensi	iA-7
Gambar A.9 Diagram Sequence Teleportasi	A-8
Gambar A.10 Diagram Sequence Melihat penunjuk Arah	A-9
Gambar A.11 Diagram Mengaktifkan Layar Informasi	A-10
Gambar A.12 Diagram Interaksi dengan Objek	A-11
Gambar A.13 Diagram Simulasi Pemdaftaran Poli Umum.	A-12
Gambar A.14 Diagram Simulasi Pendaftaran Poli Gigi	A-13
Gambar A.15 Diagram Simulasi Pendaftaran Poli BKIA	A-13
Gambar A.16 Diagram Pasien Unit Gawat Darurat	A-14
Gambar A.17 Diagram Pembelian Obat di Apotek	A-14
Gambar A.18 Diagram Video Peragaan Dental Chair	A-15

Halaman ini sengaja dikosongkan.

DAFTAR PUSTAKA

Airlangga, B. (2011). Pembangunan Peta Tiga Dimensi Informatif Pada Jurusan Sistem Informasi Institut Teknologi Sepuluh Nopember Dengan Menggunakan Unreal Engine. Institut Teknologi Sepuluh Nopember. Surabaya: ITS.

Aryana, D. (2012). Pembangunan Peta Tiga Dimensi Informatif Pada Jurusan Statistika Institut Teknologi Sepuluh Nopember Dengan Menggunakan Unreal Engine. Surabaya: ITS.

Assyifa, S. N. (2011). Pengembangan Peta Interaktif Tiga Dimens Jurusan Arsitektur Institut Teknologi Sepuluh Nopember Surabaya Menggunakan Unreal Engine. Institut Teknologi Sepuluh Nopember. Surabaya: ITS.

Bubsy, J., Parrish, Z., dan Wilson, J.2010. *Mastering Unreal Technology, Volume I Introduction to Level Design with Unreal Engine 3*.

Damaiyanti, T. I. (2011). Pengembangan Peta Interaktif Tiga Dimensi Jurusan Arsitektur Institut Teknologi Sepuluh Nopember Menggunakan Unreal Engine. Institut Teknologi Sepuluh Nopember. Surabaya: ITS.

Epic Games, Inc. (2012, December). Diambil kembali dari Unreal Technology Product: www.unreal.com

Fitri, A. (2011). Pengembangan Peta Interaktif Tiga Dimensi Gedung Teknik Informatika Institut Teknologi Sepuluh Nopember Surabaya Menggunakan Unreal Engine. Institut Teknologi Sepuluh Nopember. Surabaya: ITS.

Fritsch D, K. M. (2004). "Visualisation using Game Engines" ISPRS Commission, Vol 5.

Haryananda, Z. S. (2011). Pengembangan Peta Interaktif Tiga Dimensi Gedung BAAK Institut Teknologi Sepuluh Nopember Surabaya menggunakan Unreal Engine. Institut Teknologi Sepuluh Nopember. Surabaya: ITS.

Jatmiko, S. S. (2011). Pengembangan Peta Tiga Dimensi Interaktif Gedung Teknik Elektro Institut Teknologi Sepuluh Nopember Surabaya Menggunakan Unreal Engine. Undergraduate Thesis, Institut Teknologi Sepuluh Nopember, Surabaya.

Lepouras, G., & Vassilakis, C. (2004). Virtual Museums for all: Employing Game Technology for Edutainment., Virtual reality.

Lesmana, L. E. (2012). Pengembangan Peta Tiga Dimensi Interaktif Jurusan Fisika Instritut Teknologi Sepuluh Nopember Surabaya Menggunakan Unreal Engine. Undergraduate Thesis, Institut Teknologi Sepuluh Nopember, Surabaya.

Listyadana, Y. (2012). Pengembangan Peta Tiga Dimensi Gedung Jurusan Kimia Institut Teknologi Sepuluh Nopember Interaktif Menggunakan Unreal Engine. Undergraduate Thesis, Institut Teknologi Sepuluh Nopember, Surabaya.

146

Mufti, A. (2011). Pengembangan Peta Interaktif Tiga Dimensi Jurusan Teknik Lingkungan Institut Teknologi Sepuluh Nopember Surabaya Menggunakan Unreal Engine. Undergraduate Thesis, Institut Teknologi Sepuluh Nopember, Surabaya.

Pahlevi, A. B. (2011). Pengembangan Peta Tiga Dimensi Interaktif Jurusan Teknik Fisika Institut Teknologi Sepuluh Nopember Surabaya. Undergraduate Thesis, Institut Teknologi Sepuluh Nopember, Surabaya.

Prasetia, N. B. (2011). Pemetaan Digital Secara Tiga Dimensi pada Gedung Teknik Kelautan Institut Teknologi Sepuluh Nopember Surabaya Menggunakan Unreal Engine. Undergraduate Thesis, Institut Teknologi Sepuluh Nopember, Surabaya.

Purnama, F. M. (2011). Pengembangan Peta Interaktif Tiga Dimensi Jurusan Teknik Sipil Institut Teknologi Sepuluh Nopember Menggunakan Unreal Engine. Institut Teknologi Sepuluh Nopember. Surabaya: ITS.

Putra, D. A. (2011). Pembuatan Peta Tiga Dimensi Wilayah Puskom dan Gedung BAUK Institut Teknologi Sepuluh Nopember Surabaya Dengan Menggunakan Unreal Engine. Institut Teknologi Sepuluh Nopember. Surabaya: ITS.

Putra, R. A. (2011). Pengembangan Peta Tiga Dimensi Gedung Jurusan Teknik Kimia Institut Teknologi Sepuluh Nopember Interaktif Menggunakan Unreal Engine. Institut Teknologi Sepuluh Nopember. Surabaya: Undergraduate thesis. *Program Pascasarjana ITS* (2013). [Online]. http://www.pasca.its.ac.id/

Rachmansyah, E. (2012). Pengembangan Peta Tiga Dimensi Interaktif Jurusan Grha Sepuluh Nopember ITS dan UPT Bahasa Instritut Teknologi Sepuluh Nopember Surabaya Menggunakan Unreal Engine. Undergraduate Thesis, Institut Teknologi Sepuluh Nopember, Surabaya.

Rudyanti, K. (2012). Pengembangan Peta Tiga Dimensi Interaktif Jurusan Matematika Instritut Teknologi Sepuluh Nopember Surabaya Menggunakan Unreal Engine. Undergraduate Thesis, Institut Teknologi Sepuluh Nopember, Surabaya.

Ruth, M. & Dana, B. (2001). Functional Requirements and Use Cases

Safitri, A. (2011). Penerapan Unreal Engine Pada Pemetaan Digital Tiga Dimensi Gedung Jurusan Desain Produk Industri Institut Teknologi Sepuluh Nopember Surabaya. Institut Teknologi Sepuluh Nopember. Surabaya: ITS.

Saputra, C. S. (2012). Pengembangan Peta Tiga Dimensi Gedung Jurusan Biologi Institut Teknologi Sepuluh Nopember Interaktif Menggunakan Unreal Engine. Undergraduate Thesis, Institut Teknologi Sepuluh Nopember, Surabaya.

Shiratuddin, M. F. & Thabet, W. (2002). Virtual Office Walkthrough Using a 3D Game Engine.

Shiratuddin, M. F. & Fletcher, D. (2007). Utilizing 3D Games Development Tool For Architectural Design in a Virtual Environment.

Subakti, A. R. (2012). Penggunaan Unreal Engine Untuk Aplikasi Peta 3D Interaktif pada Jurusan Teknik Perkapalan Institut Teknologi Sepuluh Nopember. undergraduate Thesis, Institut Teknologi Sepuluh Nopember, Surabaya.

Tim INI3D. (2012). Pengembangan Peta Interaktif Tiga Dimensi Institut Teknologi Sepuluh Nopember Menggunakan Unreal Engine. Surabaya.

Umami, F. (2011). Pengembangan Peta Interaktif Tiga Dimensi Program Studi D3 Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Menggunakan Unreal Engine. Undergraduate Thesis, Institut Teknologi Sepuluh Nopember, Surabaya.

Unreal Development Kit. (2010, May). Dipetik January 30, 2011, dari www.udk.com

Unit Pengelola Mata Kuliah Bersama - UPMB ITS (2013). [Online] <u>http://upmb.its.ac.id/</u>

Winata, Y. A. (2011). Pengembangan Peta Interaktif Tiga Dimensi Rektorat dan Pascasarjana Institut Teknologi Sepuluh Nopember Surabaya Menggunakan Unreal Engine. Undergraduate Thesis, Institut Teknologi Sepuluh Nopember, Surabaya.

Wirangga, P. (2011). Pengembangan Peta Tiga Dimensi Interaktif Jurusan Sistem Perkapalan Instritut Teknologi Sepuluh Nopember Surabaya Menggunakan Unreal Engine. Institut Teknologi Sepuluh Nopember. Surabaya: ITS.

Yasin, M. N. (2012). Pembangunan Peta Tiga Dimensi Informatif Pada Jurusan Sistem Informasi Institut Teknologi Sepuluh Nopember Dengan Menggunakan Unreal Engine. Surabaya: ITS.

BIODATA PENULIS

Penulis yang lahir di Bandung, 25 Juni 1991 ini merupakan anak kedua dari tiga bersaudara. Penulis telah menempuh pendidikan formal di SDN Percobaan Surabaya, lalu dilanjutkan di SMPN 32 Surabaya, dan di SMAN 22 Surabaya. Pada tahun 2009, penulis mengikuti SNMPTN dan diterima di Jurusan Sistem Informasi – FTIf ITS dengan NRP 5209100090.

Selama menjadi mahasiswa, selain kesibukan di akademik, penulis juga aktif dalam kegiatan non akademis dengan mengikuti beberarapa organisasi kemahasiswaan, diantaranya BEM (Badan Eksekutif Mahasiswa) FTIf. Pada periode yang sama , penulis juga aktif menjadi anggota HMSI (Himpunan Mahasiswa Sistem Informasi).

Tugas akhir yang dipilih penulis di Jurusan Sistem Informasi ini masuk ke dalam bidang minat E-Business dengan topik UDK (Unreal Development Kit). Jika ada pertanyaan mengenai tugas akhir ini, penulis dapat dihubungi melalu E-mail kandorawidya@gmail.com.