

TUGAS AKHIR - TM 91486

PENGARUH PERUBAHAN CENTER OF DISTANCE DAN MISALIGNMENTS TERHADAP KEKUATAN SYMETRIC INVOLUTE SPUR GEAR

MUHAMMAD MOUSAVIE NRP. 2112 06 017

Dosen Pembimbing: Dr. Ir. Agus Sigit Pramono, DEA

JURUSAN TEKNIK MESIN Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2015

FINAL PROJECT - TM 91486

EFFECT OF CHANGES IN CENTER OF DISTANCE AND MISALIGNMENTS TO STRENGTH OF SYMETRIC INVOLUTE SPUR GEAR

MUHAMMAD MOUSAVIE NRP. 2112 106 017

Academic Supervisor: Dr. Ir. Agus Sigit Pramono, DEA

DEPARTEMEN OF MECHANICAL ENGINEERING Faculty of Industrial Technology Institut Teknologi Sepuluh Nopember Surabaya 2015

LEMBAR PENGESAHAN

PENGARUH PERUBAHAN CENTER OF DISTANCE DAN MISALIGNMENTS TERHADAP KEKUATAN SYMETRIC INVOLUTE SPUR GEAR

Tugas Akhir

Diajukan Guna Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik, Pada Bidang Studi Desain, Program Studi Teknik Mesin S1 Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

> Oleh : M. MOUSAVIE NRP. 2112106017

Disetujui Oleh Tim Penguji Seminar Tugas Akhir : 1. Dr. Ir. Agus Sigit J a. DEA 2. Dr.Eng. Unggud Wasi ono. SF., M.Eng.Sc pen'gi 3. Dr. Wiwiek Hendrowath, ST., MI URUSAN (penguj 4. Alief Wikarta, ST., M.Sc., Ph guji 3)

Surabaya, Januari 2015

PENGARUH PERUBAHAN CENTER OF DISTANCE DAN MISALIGNMENTS TERHADAP KEKUATAN SYMETRIC INVOLUTE SPUR GEAR

Nama Mahasiswa	: M. MOUSAVIE
NRP	: 2112106017
Jurusan	: Teknik Mesin FTI – ITS
Dosen Pembimbing	: Dr. Ir. Agus Sigit Pramono, DEA.

ABSTRAK

Gear adalah salah satu komponen transmisi daya yang utama dalam sebuah sistem transmisi daya. Gear memiki kegunaan yang sangat luas, misalnya transmisi pada kendaraan, bangunan mekanis, mesin mekanis, sistem pembangkit, dan lain sebagainya. Saat ini, sistem transmisi pada umumnya banyak menggunakan spur gear dengan profil gigi symmetric involute (symmetric gear). Pada sistem transmisi daya terdapat banyak factor yang menyebabkan losess. Salah satu diantaranya adalah misalignment, sehingga rawan terjadi failure. Untuk itu dilakukan analisa yang bertujuan mencari tegangan pada gear.

Pada intinya penelitian ini dilakukan dengan cara memodelkannya pada software CAD dengan variable bebas berupa misalignments yang terbagi menjadi tiga bagian. Yaitu angular (α) misalignment (dengan nilai $\alpha = 0$; 0,5; 1; 1,5; dan 2 (°)), lateral (L) misalignment (dengan nilai L = -0.9; -0.7; -0.5; -0.3; -0.1; 0; 1; 3; dan 5 (mm)), gabungan misalignments (lateral dan angular misalignments), n = 1750, 2029, 2250 (rpm)), T4 = 488.9; 543.3; 597.6(N.m)), dan gabungan torque dan angular velocity (T and n). Kemudian disimulasikan pada software FEA secara dinamis,

kemudian didapatkan tegangan yang terjadi pada roda gigi. Setelah itu dilakukan pembuktian terbalik yang bertujuan untuk mencari nilai km atau ko untuk masing-masing variable tertentu.

Setelah dilakukan simulasi, pengolahan data, dan analisa, didapat hasil bahwa pada model -.7 0 sampai 1 0 bekerja dalam kondisi aman karena tegangan von mises yang terjadi lebih kecil dari pada tegangan ijin material. Sedangkan untuk model-model lainnya bekerja dalam kondisi tidak aman. Untuk nilai km yang digunakan system berkisar dari 0.445 sampai 14.896. Pada tegangan normal, model yang bekerja pada kondisi tidak aman adalah model 1 2 sampai 5 2, 3 1.5 sampai 5 1.5, 1 1 sampai 5 1, 3 .5 sampai 5 .5. Sedangkan lainnya dalam kondisi aman. Nilai km dengan tegangan normal memiliki kisaran antara 0.455 sampai 5.174. Untuk nilai ko pada variable bebas T pada tegangan normal memiliki nilai berkisar antara 0,9323 sampai 1,056. Sedangkan dengan tegangan normal nilai ko berkisar antara 0.9321 sampai 1.185. Namun pada variable bebas n tidak mengalami perubahan tegangan atau n tidak mempengaruhi tegangan dan ko. Pada variable bebas T dan n dengan tegangan von mises dan normal semuanya bekerja dalam kondisi aman.

Kata kunci: gear, spur, misalignments, angular velocity, torque, stress

EFFECT OF CHANGES IN CENTER OF DISTANCE AND MISALIGNMENTS TO STRENGTH OF SYMETRIC INVOLUTE SPUR GEAR

Nama Mahasiswa	: M. MOUSAVIE
NRP	: 2112106017
Jurusan	: Teknik Mesin FTI – ITS
Dosen Pembimbing	: Dr. Ir. Agus Sigit Pramono, DEA

ABSTRACT

Gear is one of the main power transmission components in a power transmission system. Gear has a very broad uses, such transmission in a vehicle, building mechanical, mechanical machinery, power systems, and so forth. Currently, the transmission system in general are using spur gear with involute tooth profile symmetric (symmetric gear). In the power transmission system there are many factors that cause losess. One of them is misalignment, so prone to failure. For the analysis that aims to find stress on the gear.

At the core of this research is done by the CAD software to model the independent variables such as misalignments are divided into three sections. Ie angular (α) misalignment (the value $\alpha = 0$; 0.5; 1; 1.5; and 2 (o)), lateral (L) Misalignment (with a value of L = -0.9; -0.7; -0.5; - 0.3; -0.1; 0; 1; 3; and 5 (mm)), combined misalignments (lateral and angular misalignments), n = 1750, 2029, 2250 (rpm)), T4 = 488.9; 543.3; 597.6 (Nm)), and the combined torque and angular velocity (T and n). Then simulated the dynamic FEA software, then obtained stress that occurs in the

gears. After that is done reversed evidence that aims to find the value of km or ko for each specific variable.

After the simulation, data processing, and analysis, the result is that the models -.7 0 to 1 0 to work in a safe condition for von mises which occurred less than the allowable stress of the material. As for the other models to work in unsafe conditions. To use the system value km range from 0.445 to 14.896. In normal stress, the model works in unsafe conditions is a model 1 2 to 5 2, 3 1.5 to 5 1.5, 1 1 to 5 1, 3 0.5 to 5 .5 . While others in a safe condition. Value km with normal stress has a range of between 0.455 to 5.174. To the value of the independent variable T, ko at normal stress has a value ranging from 0.9323 to 1.056. While the normal stress values ranging from 0.9321 to ko 1,185. However, the independent variable n does not change stress or n does not affect stress and ko. In the independent variables T and n the normal von mises and everything works in a safe condition.

Key words: gear, spur, misalignments, angular velocity, torque, stress

DAFTAR ISI

KOVER		
COVER		
LEMBAR PENGESAHAN		
ABSTRAK	ii	
ABSTRACT		
KATA PENGANTAR	vi	
DAFTAR ISI	viii	
DAFTAR GAMBAR	ix	
DAFTAR TABEL	xi	
BAB I PENDAHULUAN	1	
1.1 Latar Belakang	1	
1.2 Rumusan Masalah	2	
1.3 Batasan Masalah	2	
1.4 Tujuan	3	
1.5 Manfaat Penelitian	4	
BAB II DASAR TEOR	5	
2.1 Profil gigi involute	6	
2.2 Roda gigi symmetric involute	10	
2.3 Daya, kecepatan, gaya, dan torsi	12	
2.4 Tegangan	14	

2.1.5 Alignments	19	
BAB III METODOLOGI PENELITIAN		
3.1 Diagram Alir Penelitian		
3.2 Studi Literatur		
3.3 Pengumpulan Data		
3.4 Penentuan Ukuran dan Sifat	30	
3.5 Pemodelan	31	
3.6 Simulasi	33	
3.6.1 Input Enginering Data	34	
3.6.2 Import Geometry	34	
3.6.3 Definisikan Boundary Condition	34	
3.6.4 Definisikan Meshing	37	
3.6.5 Definisikan Time Setting	39	
3.6.6 Definisikan Loads	39	
3.6.7 Definisikan Solution dan Results	41	
BAB IV ANALISA DATA DAN PEMBAHASAN		
4.1 Hasil Simulasi	42	
4.1.1 Distribusi tegangan	42	
4.1.2 Data Tegangan	43	
4.2 Data Tegangan Maksimum	45	
4.2.1 Tegangan maksimum von mises pada masing misalignmentsnya	masing- 46	

	4.2.2 Tegangan maksimum von mises pada i 0 dan masin-masing pembebanannya	nodel 0 46
	4.2.3 Tegangan Normal maks dengan masing misalignmentnya	g-masing 47
	4.2.4 Tegangan Normal maksimum pada mo dengan masing-masing pembebanannya	del 0 0 49
4.3 Pe	mbahasan Grafik	49
	4.3.1 Grafik tegangan maks von mises fungs dan angular misalignment	i lateral 50
	4.3.2 Grafik tegangan maks von mises fungs rotational velocity dan torsi	i 54
	4.3.3 Grafik tegangan maks nnormal fungsi dan angular	lateral 55
	4.3.4 Grafik tegangan maks normal fungsi rovelocity dan torsi	otational 57
4.4 Pe Variat	nerapan Nilai Faktor k Pada Rumus AGMA ble Bebasnya masing-masing	Pada 57
	4.4.1 Nilai factor km pada rumus AGMA de tegangan Von mises	ngan 58
	4.4.2 Nilai factor ko pada rumus AGMA der tegangan Von mises	ngan 60
	4.4.3 Nilai factor km pada rumus AGMA de tegangan normal	ngan 62
	4.4.4 Nilai factor ko pada rumus AGMA der tegangan normal	ngan 64
4.5 Pe (0 0)	rhitungan tegangan secara manual pada mod	el ideal 66

4.5.1 AGMA (bending)	67
4.5.1 AGMA (wear)	68
BAB V PENUTUP	70
5.1 Kesimpulan	70
5.2 Saran	71
DAFTAR PUSTAKA	72
BIOGRAFI	73

KATA PENGANTAR

Puji syukur penulis panjatkan atas kehadirat Allah SWT, Pemelihara seluruh alam raya, yang atas limpahan rahmat, taufik dan hidayah-Nya serta shalawat dan salam bagi junjungan kita Rasulullah Muhammad Shallallahu'alaihi Wasallam, sehingga penulis mampu menyelesaikan laporan tugas akhir dengan judul "EFFECT OF CHANGES IN CENTER OF DISTANCE AND MISALIGNMENTS TO STRENGTH OF SYMETRIC INVOLUTE SPUR GEAR" ini.

Laporan tugas akhir ini disusun untuk memenuhi salah satu matakuliah dan juga syarat kelulusan sarjana di Jurusan Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember. Penulis menyadari bahwa tugas akhir ini bukanlah tujuan akhir dari belajar karena belajar tidak ada batasnya. Terselesaikannya laporan ini tentunya tak lepas dari dorongan dan uluran tangan berbagai pihak. Oleh karena itu, tak salah kiranya penulis mengungkapkan terima kasih dan penghargaan kepada :

- 1. Bapak Dr. Ir. Agus Sigit Pramono, DEA, selaku dosen pembimbing yang dengan sabar meluangkan waktu membina dan mengarahkan penulis.
- 2. Bapak Muhammad Yusuf, Ibu Enny dan kakakku Zara Zaqina, Amalia Amanda, Nabila yang tercinta serta keluarga besar yang tak ada hentinya memberi dorongan serta do'anya.
- Bapak Alief Wikarta, ST., MSc.Eng., PhD, Dr. Eng. Unggul Wasiwitono, ST., M. Eng. Sc. dan Ibu Wiwik Hendrowati, ST., MSc. selaku dosen penguji yang telah menyediakan waktu luang dan memberikan masukan untuk kesempurnaan penelitian ini.
- 4. Muhammad Z Rizal, Anwar, dan Ahmad Fachruddin selaku teman-teman yang mambantu saya dan memberikan saran serta tambahan pengetahuan untuk masukan tugas akhir ini.

5. Teman-teman lj dan reguler, karyawan, cak Suprapto mas Dani CAE, mas Yuli dan semuanya yang tidak dapat saya sebutkan satu persatu, terima kasih atas pertolongan dan dorongan.

Semoga Allah SWT mambalas kebaikan dan ketulusan semua pihak yang telah membantu menyelesaikan tugas akhir ini dengan melimpahkan rahmat dan karunia-Nya. Semoga laporan tugas akhir ini dapat memberikan manfaat dan kabaikan bagi banyak pihak demi kemaslahatan bersama serta bernilai ibadah di hadapan Allah SWT Amin.

> Surabaya, Januari 2015 Penyusun

Muhammad Mousavie 2112106017

DAFTAR GAMBAR

Gambar 2.1 Toothgear profil, involute dan cycloid	5
Gambar 2.2 Kurva <i>involute</i> dengan sudut parametrik positif koordinat kartesian	pada 6
Gambar 2.3 Roda gigi dengan profil involute	7
Gambar 2.4 Ilustrasi menggambar profil involute secara man	ual 8
Gambar 2.5 Cara membuat profil <i>involute</i> manual pada <i>CAD</i> software) 9
Gambar 2.6 Pasangan roda gigi beserta bagian-bagiannya	10
Gambar 2.7 Gaya-gaya pada roda gigi lurus	13
Gambar 2.8 Grafik tegangan sumbu X fungsi torsi	17
Gambar 2.9 Grafik tegangan Von Mises fungsi torsi	17
Gambar 2.10 Grafik tegangan sumbu X fungsi putaran	18
Gambar 2.11 Grafik tegangan Von Mises fungsi putaran	18
Gambar 2.12 Alignment pada gear (Normal / Ideal)	20
Gambar 2.13 Angular misalignment pada gear (radial dan tangensial)	21
Gambar 2.14 Lateral misalignment pada gear (seri dan paral	llel) 21
Gambar 2.15 Model variasi α	22
Gambar 2.16 Distribusi tegangan pada profile roda gigi de α tertentu	engan 23

Gambar 2.17 Grafik hasil perbandingan antara variable beba	sα 24
Gambar 3.1: Diagram alir penelitian	25
Gambar 3.2 Diagram alir pengerjaan simulasi tugas akhir	33
Gambar 3.3 Daerah kontak	35
Gambar 3.4 Dudukan	37
Gambar 3.5 Meshing	38
Gambar 3.6 Loads	40
Gambar 4.1 Contoh distribusi tegangan pada Model 0 0	42
Gambar 4.2 Contoh distribusi tegangan pada Model 5 2	43
Gambar 4.3 Tegangan maksimum Von Mises fungsi angular lateral	dan 50
Gambar 4.4 Distribusi tegangan pada9 0 dan 5 0	51
Gambar 4.5 Contoh contact ratio maksimum antarroda gigi	52
Gambar 4.6 Tegangan maksimum Von Mises fungsi T dan n	54
Gambar 4.7 Tegangan normal maksimum fungsi lateral dan angular	55
Gambar 4.8. Distribusi tegangan pada model 5 2, 5 0, 0 0,9	9 0 56
Gambar 4.9 Tegangan normal maksimum fungsi T dan n	

57

DAFTAR TABEL

Tabel 2.1 Tooth system	12
Tabel 3.1 Data mekanikal roda gigi 4 dan 5	28
Tabel 3.2 Data geometri roda gigi 4 dan 5	28
Tabel 3.3 Data material roda gigi 4 dan 5	29
Tabel 3.4 Perhitungan geometri roda gigi 4 dan 5 (kondis standar)	si 30
Tabel 3.5 Perhitungan mekanika roda gigi 4 dan 5	31
Tabel 3.6 Geometri Pemodelan	32
Table 3.7 Daerah kontak	34
Table.3.8 Dudukan	36
Table 3.9 Meshing	38
Table 3.10 Time setting	39
Tabel 3.11 Loads	40
Tabel 3.12 Loads	41
Table 3.13 Results	41
Table 4.1 Sebagaian contoh data hasil simulasi	44
Tabel 4.2 Data tegangan von mises maksimum dengan m masing misalignment	asing- 45
Tabel 4.3 Data tegangan von mises maksimum pada pembebanannya masing-masing dengan model 0 0	47

Table 4.4 Data tegangan von mises maksimum dengan masingmasing misalignment 48 Table 4.5. Data tegangan Normal maksimum dengan masingmasing pembebananya 49 Table 4.6 Maksimum contact surface ratio (cs) 53 Table 4.7 nilai factor koreksi akibat alignments km' dengan tegangan von mises 58 Table 4.8 Nilai factor koreksi akibat misalignments km dengan tegangan von mises 40 Table 4.9 Kondisi kerja roda gigi dengan tegangan von mises 60 Table 4.10 Nilai factor koreksi akibat load (torsi rg4) ko' dengan tegangan Von mises maksimum 60 Table 4.8 Nilai factor koreksi akibat alignments ko dengan tegangan von mises 61 Table 4.12 Nilai factor koreksi akibat alignments km' dengan tegangan nomal maksimal 62 Table 4.13 Nilai factor koreksi akibat alignments km dengan 63 tegangan normal Table 4.14 Kondisi kerja roda gigi dengan tegangan normal 64 Table 4.15 Nilai factor koreksi akibat load (torsi rg4) ko' dengan tegangan normal maksimum 65 Table 4.16 Nilai factor koreksi akibat alignments (misalignments) ko dengan tegangan normal maksimum 66 Tabel 4. 17 Properties perhitungan AGMA (bending) 67

Tabel 4.18 Hasil perhitungan tegangan pada beberapa kondisi 67

Tabel 4. 19 Properties perhitungan AGMA (wear)68

Tabel 4.20 Hasil perhitungan tegangan pada beberapa kondisi 69

BAB I

PENDAHULUAN

1.1 Latar Belakang

Gear adalah salah satu komponen transmisi daya yang utama dalam sebuah sistem transmisi daya. Gear memiki kegunaan yang sangat luas, misalnya transmisi pada kendaraan, bangunan mekanis, mesin mekanis, sistem pembangkit, dan lain sebagainya. Saat ini, sistem transmisi pada umumnya banyak menggunakan spur gear dengan profil gigi symmetric involute (symmetric gear). Pada sistem transmisi daya terdapat banyak factor yang menyebabkan losess. Salah satu diantaranya adalah misalignment, sehingga rawan terjadi failure.

Kekuatan dan umur gear sangat dipengaruhi oleh dimensi geometri dan jenis material yang digunakan. Oleh karena itu, kedua hal tersebut biasanya menjadi fokus utama dalam mendesain gear. Ditinjau dari fungsinya, *gear* memiliki peranan yang sangat penting karena menyangkut beberapa aspek yang vital dalam sistem transmisi itu sendiri. Misalnya roda gigi berkaitan dengan assembly *gear* yang kurang sesuai akan mengakibatkan transmisi yang kurang baik. Sehingga mengakibatkan *engine* cepat panas dan menurunnya kekuatan material menerima beban; berkaitan dengan getaran transmisi yang bermasalah bisa menyebabkan getaran yang hebat pada sistem transmisi. Hal ini pada umumnya terjadi akibat terjadinya *misalignments* pada system tersebut.

Dari uraian diatas, maka penulis melakukan penelitian tentang roda gigi lurus dengan profil *symmetric involute* yang akan difokuskan pada kekuatannya. Maka dari itu, penulis meneliti hal ini dengan topik seputar misalignment pada sepasang roda gigi lurus dan pengaruhnya pada tegangan von mises.

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah diuraikan diatas, maka dirumuskan beberapa poin penting yang menjadi pokok pembahasan dalam penelitian ini antara lain:

- 1. Bagaimana kekuatan roda gigi lurus berprofil *symmetric involute* terhadap tegangan von mises dan normal dengan variasi *lateral misalignment*?
- 2. Bagaimana kekuatan roda gigi lurus berprofil *symmetric involute* terhadap tegangan von mises dan normal dengan variasi *angular misalignment*?
- 3. Bagaimana kekuatan roda gigi lurus berprofil *symmetric involute* terhadap tegangan von mises dan normal dengan variasi *lateral* dan *angular misalignment*?
- 4. Bagaimana kekuatan roda gigi lurus berprofil *symmetric involute* terhadap tegangan von mises dan normal pada pembebanan *rotational velocity*?
- 5. Bagaimana kekuatan roda gigi lurus berprofil *symmetric involute* terhadap tegangan von mises dan normal pada pembebanan torsi?
- 6. Bagaimana kekuatan roda gigi lurus berprofil *symmetric involute* terhadap tegangan von mises dan normal pada pembebanan percepatan grafitasi bumi, torsi dan *rotational velocity*?
- 7. Bagaimana perubahan nilai factor koreksi km dan ko pada rumus AGMA dengan tegangan von mises dan normal pada beberapa variable bebasnya masing-masing?

1.3 Batasan Masalah

Agar penelitian yang dilakukan bisa lebih terarah, maka diambil batasan-batasan sebagai berikut :

- 1. Getaran tidak dianalisa
- 2. Thermal stress tidak diamati
- 3. Efek panas yang ditimbulkan dari gesekan diabaikan

- 4. Material bersifat elastik dan isotropik
- 5. Pada simulasi dinamis hanya digunakan beban berupa percepatan grafitasi bumi, torsi, dan / atau *rotational velocity*
- 6. Tegangan yang diamati hanya pada sisi profil gigi yang kontak saja
- 7. Pengambilan data hanya pada bagian *fillet* profil roda gigi
- 8. Poros dianggap rigid

1.4 Tujuan

Adapun tujuan yang ingin dicapai berdasarkan rumusan masalah diatas adalah sebagai barikut:

- 1. Untuk mengetahui kekuatan roda gigi lurus berprofil symmetric involute terhadap tegangan von mises dan normal dengan variasi *lateral misalignment*
- 2. Untuk mengetahui kekuatan roda gigi lurus berprofil *symmetric involute* terhadap tegangan von mises dan normal dengan variasi *angular misalignment*
- 3. Untuk mengetahui kekuatan roda gigi lurus berprofil *symmetric involute* terhadap tegangan von mises dan normal dengan variasi *lateral* dan *angular misalignment*
- 4. Untuk mengetahui kekuatan roda gigi lurus berprofil *symmetric involute* terhadap tegangan von mises dan normal pada pembebanan *rotational velocity*
- 5. Untuk mengetahui kekuatan roda gigi lurus berprofil *symmetric involute* terhadap tegangan von mises dan normal pada pembebanan torsi
- 6. Untuk mengetahui kekuatan roda gigi lurus berprofil *symmetric involute* terhadap tegangan von mises dan normal pada pembebanan percepatan grafitasi bumi, torsi dan *rotational velocity*
- 7. Untuk mengetahui perubahan nilai km pada rumus AGMA dengan tegangan von mises dan normal pada beberapa variable bebasnya masing-masing

1.5 Manfaat Penelitian

Adapun manfaat yang dapat diperoleh dari penelitian ini adalah sebagai berikut:

- 1. Memperkaya khasanah keilmuan teknik mesin terutama dibidang desain dan khususnya dibidang mekanika benda padat
- 2. Kontribusi tidak langsung terhadap pengembangan pengetahuan teknologi mekanika
- 3. Sebagai batu loncatan pemecahan masalah roda gigi dilapangan
- 4. Sebagai referensi untuk penelitian berikutnya maupun yang ingin membuat rancang bangun tentang roda gigi atau *misalignments*
- 5. Mengetahui seberapa besar pengaruh *misalignments* terhadap tegangan yang terjadi pada roda gigi

BAB II

DASAR TEORI

Roda gigi merupakan salah satu elemen mesin yang berfungsi untuk mentransmisikan putaran dan torsi (daya) melalui kontak kedua permukaan yang saling bertautan tanpa terjadinya slip diantara dua profil gigi. Roda gigi dapat digunakan pada transmisi yang memerlukan maupun tidak memerlukan *ratio*. Selain itu *gear* dapat diaplikasikan ketika jarak antar*shaft* terlalu dekat, sehingga tidak dapat menggunakan sistem trasmisi lain misalnya *chain, belt*. Pada dasarnya daya yang ditransmisikan oleh roda gigi secara kinematik ekuivalen dengan *friction wheel* atau *disk*.

Gambar 2.1 Toothgear profil, involute dan cycloid (Zainulloh, 2014)

Profil roda gigi yang sering digunakan adalah *symmetric involute*. Sedangkan profil *involute* juga bisa dimodifikasi menjadi profil *asymmetric involute*. Selain itu terdapat juga profile gigi jenis cycloid. Perbedaan antarkedua profile dapat dilihat pada gambar 2.1.

2.1 Profil gigi involute

Pada koordinat kartesian, kurva / persamaan *involute* memiliki persamaan seperti berikut yang tertulis pada persamaan 2.1 dan 2.2.

$$x = r(\cos t + t \sin t)$$
(2.1)
$$y = r(\sin t - t \cos t)$$
(2.2)

dimana *r* : radius dari lingkaran / base circle

t : parameter sudut (radian)

Apabila nilai sudutnya positif maka akan terbentuk kurva berputar sesuai kaidah tangan kanan (CCW). Apabila nilai sudutnya negatif maka akan terjadi sebaliknya yaitu akan berputar berdasarkan kaidah tangan kiri (CW). Pada gambar 2.2 menunjukkan kurva *involute* menggunakan sudut parametrik positif dengan nilai t = 0 sampai $t \ge 0$. Kemudian nilai t dimasukkan pada masing-masing pesamaan 2.1 dan 2.2.

Gambar 2.2 Kurva *involute* dengan sudut parametrik positif pada koordinat kartesian (carter, 2007)

Roda gigi dengan profil gigi *involute* pertama kali didesain oleh Leonhard Euler, jenis roda gigi yang sering digunakan hingga saat ini disamping profil *cycloid*. Terlepas dari jenis roda gigi lurus (*spur gear*) atau *helical gear*, roda gigi dengan profil *involute* memiliki hanya satu kontak yang terjadi. Rotasi roda gigi menyebabkan titik kontak dari masing-masing permukaan gigi yang berpasangan berpindah. Garis singgung pada setiap titik kontak antar permukaan gigi selalu tegak lurus (*normal*) dengan kurva *involute* profil gigi. Sehingga garis gaya mengikuti garis kontak. Oleh karena itu, garis kontak juga disebut *pressure line* (garis tekanan). Sedangkan perpotongan antara garis kontak satu dengan garis kontak yang lain akan menghasilkan sebuah titik yang disebut *pitch point*. Gambaran tentang profil roda gigi *involute*, permukaan kontak, garis kotak dan titik kontak bisa dilihat pada gambar 2.3 berikut:

Gambar 2.3 Roda gigi dengan profil involute (Alipiev, 2010)

Cara menggambar atau memodelkan kurva *involute* secara sederhana bisa dibayangkan dengan gulungan senar atau benang

yang ujungnya diikat pada sebuah pensil. Menggambar dimulai dengan menarik pensil dengan arah melingkar melawan gulungan benang, dan benang harus tetap tegang. Garis yang terbentuk inilah yang disebut kurva *involute*. Berikut gambar 2.4 sebagai ilustrasi pembuatan kurva *involute* :

Gambar 2.4 Ilustrasi menggambar profil *involute* secara manual (Carter, 2007)

Pemodelan roda gigi *involute* dapat dilakukan dengan menggunakan *CAD software*. Cara menggambarnya bisa secara manual atau otomatis tergantung *software* yang digunakan. Penggambaran secara otomatis biasanya langsung memasukkan persamaan kurva *involute* kemudian kurva *involute* langsung terbentuk. Sedangkan penggambaran secara manual bisa menggunakan metode garis bantu. Seperti yang ditunjukkan pada gambar 2.5. Adapun cara menggambar profil roda gigi *involute* secara manual pada *CAD software* sebagai berikut:

- 1. Buat lingkaran-lingkaran konsentris yang terdiri dari base diameter (db), root diameter (df), pitch diameter circle (d) dan outside diameter (do).
- Gambar garis dari pusat lingkaran sampai kurva base diameter dengan sudut 0°, 90°, 180° atau 270°. Kemudian membuat 13 garis dari pusat ke base diameter dengan jarak antar garis sebesar {360/[(1/20 base circle radius)/(Pi*db)]} dan buat nomor urut garis dari 0 sampai 14.
- 3. Buat garis singgung pada masing-masing ujung garis di base circle dengan panjang garis (1/20 base circle radius x nomor garis)
- 4. Hubungkan ujung-ujung garis hingga membentuk kurva
- 5. Kurva yang terbentuk adalah kurva involute

Gambar 2.5 Cara membuat profil *involute* manual pada *CAD software* (Carter, 2007)

2.2 Roda gigi symmetric involute

Roda gigi *symmetric involute* adalah roda gigi yang menggunakan kurva *involute* untuk membuat profil giginya. Roda gigi ini termasuk salah satu roda gigi yang sudah distandarkan. Pada gambar 2.6 menunjukkan beberapa terminology dasar dari roda gigi.

Gambar 2.6 Pasangan roda gigi beserta bagian-bagiannya (omentp.com/gear.php)

Diametral pitch didefinisikan sebagai sejumlah gigi pada roda gigi dibagi dengan diameter *pitch circlenya*, sehingga didapatkan persamaan sebagai berikut :

$$p = \frac{\pi d}{N} \operatorname{atau} P = \frac{Nt}{D}$$
(2.3)

dimana

p : jarak gigi (in)

- *d* : diameter *pitch circle* (in)
- *Nt* : jumlah gigi pada roda gigi
- *P* : *diametral pitch* (/in)

Dari kedua rumus diatas diperoleh persamaan :

$$P \ge p = \pi \tag{2.4}$$

Semakin besar *diametral pitch*, maka ukuran gigi akan semakin kecil atau halus. Untuk ukuran gigi sering digunakan pula istilah *module* dimana nilainya kebalikan dari *diametral pitch* dimana semakin besar nilai *module*, maka ukuran gigi akan semakin besar. Pada table 2.1 menunjukkan sistematika suatu roda gigi dengan parameter modul. *Module*(m) dinyatakan sebagai berikut :

$$m = \frac{d}{Nt} \tag{2.5}$$

Jarak antara kedua sumbu poros atau roda gigi juga disebut *center* of distence yang dinyatakan dengan persamaan :

$$c = \frac{dp + dg}{2} \tag{2.6}$$

dimana

c : center of distance dp : diameter pitch circle pinion (in) dg : diameter pitch circle gear (in)

Diamater *base*, adendum, dedendum, *outside diameter* roda gigi dapat dinyatakan dengan persamaan berikut :

$$d_b = d\cos\left(\emptyset\right) \tag{2.7}$$

dimana db : diameter base

- *d* : pitch circle diameter
- Ø : sudut kontak

Untuk diameter luar roda gigi dirumuskan :

$$d_o = d + 2a \tag{2.8}$$

dimana :

a : adendum

do : outside diameter

d : pitch circle diameter

Tabel 2.1 Tooth system (Deutschman dkk, 1975 dan Kohara, 2006)

20 ° full depth involute	20 ° stub involute	20 ° coars pitch	20 ° fine pitch	← (mm)
m	.8m	m	m	addendum
1.25m	1m	1.25m	.0508 mm + 1.2m	dedendum
.25m	.2m	.25m	.0508 mm + .2m	clearence
2m	1.6m	2m	2m	work depth
2.25m	1.8m	2.25m	.0508 mm + 2.2m	whole depth

2.3 Daya, kecepatan, gaya, dan torsi

Hubungan antara daya input, kecepatan dan torsi yang bekerja pada roda gigi dapat dinyatakan dengan persamaan 2.9 berikut :

$$hp = \frac{T x n}{63000} = \frac{F_t x V_p}{33000}$$
(2.9)

dimana

hp : daya input (*horse power*) *T* : torsi (lb.in)

- *n* : putaran roda gigi (rpm)
- *Ft* : gaya tangensial (lb)
- *Vp* : kecepatan tangensial pada *pitch line* (ft/menit)

Gambar 2.7 Gaya-gaya pada roda gigi lurus (qtcgears.com/q410/QTC/Q410P382.htm)

Daya yang diterima oleh sepasang roda gigi yang bersentuhan, akan mengarah normal terhadap permukaan gigi dan searah dengan garis tekan/kontak. Pada gambar 2.7 ditunjukkan sepasang roda gigi yang bersentuhan pada *pitch poin*-nya, gaya normal Fn adalah gaya yang ditimbulkan oleh roda gigi yang digerakkan terhadap roda gigi penggerak. Dengan demikian, gigi roda gigi penggerak akan menerima juga gaya normal Fn yang sama besarnya tapi berlawanan arah.

Gaya normal Fn dapat diuraikan menjadi dua konponen yaitu Ft (gaya tangensial) dan Fr (gaya radial) yang besarnya ditunjukkan oleh persamaan berikut :

$$F_t = F_n \cos\theta \tag{2.10}$$

$$F_r = F_n \sin\theta = F_t \tan\theta \tag{2.11}$$

dimana θ : sudut tekan

Ft : gaya tangensial

Fn : gaya normal

Fr : gaya radial

Gaya radial disebut juga gaya pemindah, sebab gaya ini cenderung memisahkan antara dua roda gigi yang sedang mengalami kontak. Dalam perencanaan, gaya tangensial dianggap konstan selama kontak antara dua roda gigi, mulai dari bagian puncak gigi sampai dasar gigi, torsi yang timbul akibat gaya normal yang dihitung dari pusat roda gigi adalah :

$$T = F_n \frac{d_1}{2} \cos \theta = F_t \frac{d_1}{2}$$
(2.12)

2.4 Tegangan

Ada beberapa metode yang digunakan untuk menganalisa kekuatan roda gigi. Metode yang sering digunakan untuk menganalisa kekuatan roda gigi yaitu metode *Lewis Equation* dan *AGMA Bending Equation* untuk meninjau kekuatan roda gigi berdasarkan beban bending yang diterima. Persamaan-persamaan dalam metode tersebut yaitu :

Metode Lewis

$$F_b = S_o b p y = S_o b \frac{Y}{K_t P}$$
(2.13)

dimana *Fb* : gaya bending yang diijinkan

So : tegangan statis yang aman dari material

- *b* : lebar roda gigi
- Y, y : Lewis Factor

- *Kt* : faktor konsentrasi tegangan yang diakibatkan kelelahan (*fatigue*)
- *p* : *circular pitch*
- *P* : diametral pitch

Metode AGMA Bending Equation

$$\sigma_t = \frac{F_t \, \mathsf{x} K_o \mathsf{x} K_s \mathsf{x} K_m \mathsf{x} \, P}{K_v \mathsf{x} \, b \, \mathsf{x} \, j} \tag{2.14}$$

- dimana σ_t : tegangan bending yang dialami roda gigi
 - K_o : faktor kelebihan beban (*overload correction factor*)
 - K_s : faktor koreksi ukuran (*size correction factor*)
 - K_m : factor distribusi beban (*load distribution* factor)
 - K_v : faktor dinamis (*dynamic factor*)
 - *j* : factor geometri (*geometry factor*)

Metode Surface Durability

$$F_{W} = \frac{S_{e}^{2} b \sin \theta}{0.35 x 2} \frac{\left(\frac{1}{E_{p}} + \frac{1}{E_{g}}\right)}{\left(\frac{dp + d_{g}}{dp \cdot d_{g}}\right)}$$
(2.15)

dimana	F_w	: gaya maksimum yang diijikan
	S_e^2	: batas ketahanan permukaan material bahan <i>gear</i> dan <i>pinion</i>
	b	: lebar daerah kontak antara dua silinder
	E_p	: modulus elastisitas material bahan pinion
	E_g	: modulus elastisitas material bahan gear
	d_p	: diameter pitch pinion
	d_g	: diameter pitch gear
	θ	: sudut tekan

Berikut terdapat beberapa contoh hasil simulasi dari penelitian terdahulu yang membahas mengenai tegangan yang terjadi pada profil roda gigi.

Pada penelitian yang dilakukan oleh Zainulloh mengenai asymmetric gear digunakan nilai K lebih dari satu (gambar 2.1 kiri). Lanjutnya dicari tegangaan pada roda gigi. Kemudian dibuat grafik tegangan maksimum dengan masing-masing pembebanan torsi atau putaran pada masing-masing nilai K (asymmetry factor). Hasil dari penelitian tersaji pada gambar 2.8 – 2.11.

Gambar 2.8 Grafik tegangan sumbu X fungsi torsi

Gambar 2.9 Grafik tegangan Von Mises fungsi torsi

Gambar 2.10 Grafik tegangan sumbu X fungsi putaran

Gambar 2.11 Grafik tegangan Von Mises fungsi putaran
Sehingga dapat ditarik kesimpulan dari penelitian yang telah dilakukan oleh Muhammad Zainulloh R adalah sebagai berikut:

- 1. *Asymmetric factor* hanya berpengaruh pada satu sisi terhadap profil roda gigi. Semakin besar nilai *asymmetric factor*, maka ujung profil roda gigi semakin mengecil dan bagian akar profil roda gigi semakin membesar.
- Pada pembebanan torsi dengan menggunakan tegangan maksimum searah sumbu x terjadi penurunan tegangan sebesar 15.25% 88,86% dan pada tegangan maksimum von mises, Penurunan tegangan yang terjadi sebesar 0,89% 63,3%. Jadi roda gigi asymmetric involute pada pembebanan torsi (N.m) menghasilkan tegangan lebih rendah dari pada roda gigi symmetric involute.
- 3. Pada pembebanan kecepatan putar dengan menggunakan tegangan maksimum searah sumbu x terjadi penurunan tegangan yang terjadi adalah 19,53% 39,11% dan pada tegangan maksimum von mises penurunan tegangan yang terjadi adalah 1,64% 21,09%. Jadi roda gigi *asymmetric involute* pada pembebanan kecepatan putar (RPM) menghasilkan tegangan lebih rendah dari pada roda gigi *symmetric involute*

2.5 Alignments

Alignment adalah kesatusumbuan, kesejajaran, kesebarisan dan ketegaklurusan elemen mesin pemindah putaran atau daya. Atau alignment yaitu suatu pekerjaan yang bertujuan untuk meluruskan / mensejajarkan dua atau lebih sumbu poros (antara poros penggerak dengan sumbu poros yang digerakkan) pada suatu peralatan. Alignments di demonstrasikan pada gambar 2.12. Dalam kondisi ideal, beberapa komponen dapat diproduksi dalam satu bagian, atau ditambah dan dipasang dalam kondisi sempurna. Namun, kenyataannya, komponen yang terpisah harus disatukan bersama-sama dan terhubung satu sama lain. Misalignment dapat terjadi baik sebagai offset atau sebagai perpindahan sudut.

Tetapi dalam kenyataan, pengertian lurus tidak bisa didapatkan 100%. Untuk itu harus diberikan toleransi. Macam –macam ketidaklurusan kedua poros (misalignment) :

- 1. *Lateral Misalignment*, adalah posisi dari kedua poros dalam keadaan tidak sejajar dengan ketinggian yang berbeda, seperti pada gambar 2.14.
- 2. *Angular Misalignment*, adalah ketidaklurusan kedua poros yang posisinya saling menyudut, sedangkan kedua ujungnya mempunyai ketinggian yang sama, seperti tampak pada gambar 2.13.
- 3. *Combination Misalignment*, adalah ketidaklurusan kedua poros yang posisinya saling menyudut dan kedua ujungnya poros tidak sama. Atau gabungan dari paralel dan angular misalignments.

Gambar 2.12 Alignment pada gear (Normal / Ideal)

Gambar 2.13 Angular misalignment pada gear (radial dan tangensial).

Gambar 2.14 Lateral misalignment pada gear (seri dan parallel).

Tujuan alignment poros adalah untuk mengoptimalkan masa hidup operasional mesin, menhindari kebisingan, agar putaran dan daya yang ditransmisikan dapat maksimal, dan menjaga kondisi mesin tetap stabil. Untuk mencapai tujuan ini, komponen yang paling mungkin untuk gagal harus dibuat untuk beroperasi dalam batas desain yang dapat diterima. Sementara misalignment tidak memiliki efek yang dapat diukur pada efisiensi motor, alignments poros yang benar menjamin, transmisi daya yang efisien dan halus dari motor ke peralatan. Misalignments terjadi ketika centerlines motor dan poros peralatan tidak sejajar satu sama lain. Misalignment menghasilkan getaran yang berlebihan, kebisingan, kopling, dan bantalan suhu meningkat, dan kerusakkan bantalan, kopling, atau kegagalan poros.

Ada pula hasil penelitian yang telah terdahulu yang dilakukan H. Aziz Ameen yang berkaitan dengan misalignments. Dimana pada suatu pasangan roda gigi terjadi misalignment yang menyebabkan gigi tidak kontak secara penuh atau uniform. Sehingga gaya yang ditransmisikan menyerupai gaya terpusat, seperti pada gambar 2.15. Maka pada profil roda gigi mengalami tegangan yang lebih besar dari kondisi ideal. Berikut penelitian yang dilakukan oleh H. Aziz Ameen.

Gambar 2. 15. Model variasi a

Setelah proses runing, maka di dapat data hasl simulasi berupa distribusi tegangan pada roda gigi yang digambarkan pada gambar 2.16 dan grafik hasil analisa antar model seperti pada gambar di bawah ini:

Gambar 2.16 Distribusi tegangan pada profile roda gigi dengan α tertentu

Gambar 2.17 Grafik hasil perbandingan antara variable bebas α

Maka dari penelitiannya dan grafik 2.17 dapat di tarik kesimpulan sebagai berikut:

- 1. nilai equivalent stress dan distribusinya berubah seiring berubahnya angular misalignment
- 2. kemungkinan terjadinya kegagalan pada kaki gigi menjadi semakin tinggi seiring bertambahnya angular misaligmen

BAB III

METODOLOGI PENELITIAN

3.1 Diagram Alir Penelitian

Secara Garis besar, langkah-langkah pengerjaan tugas akhir ini terdiri dari beberapa tahapan yang dapat dilihat pada gambar 3.1:

Gambar 3.1: Diagram alir penelitian

Gambar 3.1: Diagram alir penelitian

Penjelasan diagram alir pada gambar diatas adalah sebagai berikut :

- 1. Melakukan studi literatur terhadap masalah dilapangan dan penelitian-penelitian bersangkutan mengenai alignments dan roda gigi lurus *symmetric involute*.
- 2. Menghimpun data-data (geometri, material, mekanika) bedasarkan kondisi yang ada dilapangan
- 3. Melakukan perhitungan geometri, assembly, material, dan mekanika yang akan diterapkan pada simulasi.
- 4. Membuat model-model komponen dari sistem menggunakan *CAD software*.
- Melakukan simulasi menggunakan FEA software. Dimana terdapat beberapa variable bebas yaitu L (lateral alingnment), A (angular alingnment), T (torsi), n (kecepatan sudut).
- 6. Simulasi akan menghasilkan data. Kemudian data tersebut kemudian dimasukkan ke dalam tabel dan diplot menjadi grafik.
- 7. Melakukan analisa dan pembahasan pada data dan grafik.
- 8. Mengambil kesimpulan dari hasil analisa.

3.2 Studi Literatur

Pada tahapan ini, peneliti mencari informasi tentang penelitian-penelitian yang pembahasannya terkait roda gigi lurus dengan profil gigi *symmetric involute*. Pada kajian pustaka yang telah dilakukan pada penelitian terdahulu, maka digunakan metode yang mirip untuk penelitian ini. Seperti halnya dengan penggunaan diagram alir yang benar maka akan digunakan diagram alir yang sama dengan sedikit modifikasi, yaitu perubahan variasi geometri. Peneliti juga mempelajari cara-cara menggunakan *CAD software* untuk membuat model dan *FEA software* untuk mensimulasikan model.

3.3 Pengumpulan Data

Pada tahap ini dilakukan pengumpulan data-data dilapangan mengenai material, mekanisme, dan geometri roda gigi lurus *symmetric involute* berdasarkan manual gear instruction dan jenis material roda gigi yang diaplikasikan dilapangan. Sehingga pada penelitian ini dapat lebih mendekati kondisi realitas. Data yang diperoleh tersaji di tabelkan pada table 3.1-3.4 dan gambar 3.2.

istilah	simbol	aatuan	besaran		
Istilali	SIIIDOI	satuan	rg 4	rg 5	
daya	W	kW	1()5	
rotational velocity	n	Rpm	2029.4	1186.4	

Tabel 3.1 Data mekanikal roda gigi 4 dan 5

Tabel 3.2 Data geometri roda gigi 4 dan 5

istilah	simbol	satuan	besaran		
Istilali	5111001	Satuali	rg 4	rg 5	
modul	m	mm	4.23333	4.23333	
pressure angle	θ	0	20	20	
no of teeth	Z	teeth	55	97	
face width	b	mm	55	50	
shaft diameter	ds	mm	95	65	

		besaran		
istilah	satuan	rg 4 (scm440)	rg 5 (s45c)	
mass density	kg/m ³	7800	7850	
coefficient of termal expansion	/K	1.10E-05	1.15E-05	
reference temperature	С	22	22	
young modulus	N/m ²	2.10E+11	2.05E+11	
poisson's ratio		0.28	0.29	
bulk modulus	N/m ²	1.59E+11	1.63E+11	
shear modulus	N/m ²	8.20E+10	7.95E+10	
interpolation		linear	linear	
scale		0	0	
offset		1	1	
strength coefficient	N/m ²	1.20E+08	9.20E+08	
strength exponent		-0.09	-0.106	
ductility coefficient		0.253	0.213	
ductility exponent		-0.4	-0.47	
cyclic strength coefficient	N/m ²	1.30E+08	1.00E+09	
cyclic strain hardening exponent		0.23	0.2	
tensile yield strength	N/m ²	7.5E+08	5.3E+08	
compressive yield strength	N/m ²	7.5E+08	5.3E+08	
tensile ultimate strength	N/m ²	1E+09	6.25E+08	
compressive ultimate strength	N/m ²	1E+09	6.25E+08	

Tabel 3.3 Data material roda gigi 4 dan 5

isotropic thermal conductivity	W/(m.K)	14	49.8
specific heat	J/(kg.K)	440	486
isotropic relative			
permeability		8900	10000
isotropic resistivity	ohm m	1.52E-07	1.70E-07

3.4 Penentuan Ukuran dan Sifat

Dari data yang telah diperoleh dapat dicari beberapa ukuran dan sifat dari system yang diamati. Berikut ukuran dan sifatnya ter saji pada table 3.5 dan 3.6.

Tabel 3.4 Perhitungan geometri roda gigi 4 dan 5 (kondisi standar)

intilah	ainah al	actuan	besa	aran	
Istnan	simbol	satuan	rg 4	rg 5	rumus
pitch	р	mm	13.2994	13.2994	m * π
fillet radius	$r_{\rm f}$	mm	1.587	1.587	.38 *m
addendum	а	mm	4.23333	4.23333	m
dedendum	d	mm	5.29167	5.29167	1.25m
whole depth	h	mm	9.525	9.525	a + d
Clearance	С	mm	1.05833	1.05833	d - a
pitch diameter	d_p	mm	232.833	410.633	Z * m
base diameter	db	mm	218.792	385.869	$d_p * \cos \theta$
major diameter	d_j	mm	241.3	419.1	$d_p + 2a$
minor diameter	d_i	mm	222.25	400.05	d _p - 2d
center distance	c	mm	321.73	33333	$(d_{p} + d_{p}) / 2$

intilah	ainah al	aatuan	besaran			
istilan	simbol	satuan	rg 4	rg 5	rumus	
	т	Nm			60W / 2 /	
torque	1	11111	493.876	844.802	π / n	
tangential	F.	N				
force	Ιį	1,	4242.	3168	2T / d _p	
normal	F	N			$E_{\rm L}/\cos\theta$	
force	I n	14	4514.5	79243	1 [/ 003 0	
radial	Б	N			E. * top A	
force	1'r	18	1544.07	704	I't tall 0	
linear	V	/a			$\pi * d_p * n /$	
velocity	V	m/s	24.750	62683	60 / 1000	

Tabel 3.5 Perhitungan mekanika roda gigi 4 dan 5

3.5 Pemodelan

Pada tahap ini dilakukan pembuatan model dengan menggunakan program *CAD 3D modeling*. Model terdiri dari dua roda gigi lurus dengan profil gigi *symmetric involute* yang kemudian dirangkai menjadi pasangan roda gigi *symmetric involute*. Ukuran geometri pada saat proses pembuatan model sesuai dengan yang ada pada kumpulan pengukuran geometri. Jumlah model yang dibuat adalah lima belas sesuai dengan jumlah variasi *assembly* yang digunakan pada penelitian ini. Untuk memperjelas ilustrasi diatas contoh pemodelan dapat dilihat pada tabel 3.7.

no	model	note	no	model	note
1	\sim	L9 A0	7	\leq	L1 A0
2	\sim	L7 A0	8	2	L3 A0
3	\sim	L5 A0	9	$\mathbf{\sim}$	L5 A0
4	\geq	L3 A0	10		L0 A0.5
5	\sim	L1 A0	11		L0 A1
6	\sim	L0 A0	12		L0 A1.5
			13		L0 A2

Tabel 3.6 Geometri Pemodelan

3.6 Simulasi

Berikut ini adalah gambar 3.3 yang menjelaskan diagram alir saat menggunakan *FEA software* untuk melakukan simulasi *transient* :

Gambar 3.2 Diagram alir pengerjaan simulasi tugas akhir

3.6.1 Input Engineering Data

Material yang digunakan untuk pasangan roda gigi lurus *symmetric involute* tidaklah sama, untuk roda gigi 4 adalah material scm440, sedangkan untuk roda gigi 5 digunakkan material s45c. Material yang digunakan adalah material yang sering digunakan untuk membuat roda gigi adalah s45c. Material properties disajikan pada table 3.3 dan 3.4.

3.6.2 Import Geometry

Kemudian mengimpor model dari *CAD software* ke *FEA software*. Import dilakukan agar model yang dibuat melalui *CAD software* dapat dibaca oleh *FEA software*. Pada tahap ini harus dipastikan model yang telah diimport ke *FEA software* sudah tidak ada *error*.

3.6.3 Definisikan Boundary Condition

Simulasi yang digunakan adalah simulasi dinamis sehingga semua *contact* (kontak) dan *joint* perlu didefinisikan.

Object Name	Frictional - Multiple To Multiple
State	Fully Defined
	Scope
Scoping Method	Geometry Selection
Contact	584 Faces
Target	332 Faces
Contact Bodies	Multiple
Target Bodies	Multiple
	Definition
Туре	Frictional
Friction Coefficient	0.
Scope Mode	Manual
Behavior	Program Controlled
Suppressed	No

Definisi kontak diberikan pada semua permukaan yang memungkinkan terjadinya kontak/benturan sesama permukaan. Pada model ini kontak didefinisikan pada seluruh permuakaan profil roda gigi. Pada penelitian kontak yang digunakan adalah *frictional*. Rincian definisi kontak dapat dilihat pada tabel dan visualisasi kontak dapat dilihat pada gambar 3.4 dan table 3.8:

Gambar 3.3 Daerah kontak

Setelah kontak didefinisikan, kemudian dilanjutkan dengan mendefinisikan *joint* (sambungan). Sambungan ini diletakkan pada bagian lubang poros masing-masing roda gigi. Pada simulasi ini sambungan yang digunakan adalah sambungan *body to ground* jenis *revolute*. Jadi dengan menggunakan sambungan ini, maka diasumsikan bahwa roda gigi berputar pada poros yang rigid. Rincian definisi *joint* dapat dilihat pada tabel 3.9 dan visualisasi kontak dapat dilihat pada gambar 3.5.

Table.3.8 Dudukan

Object Name	Revolute - Ground To Multiple	Revolute - Ground To Multiple	
State	Fully E	Defined	
	Definition		
Connection	Rody Ground		
Туре	Douy-C	Jiouna	
Туре	Revo	olute	
Torsional	0 N.	m/rad	
Stiffness	0. 10 1	11/1au	
Torsional	0 Nimis/rad		
Damping	0. IN III'S/Iau		
Suppressed	No		
Reference			
Coordinate	Reference Coordinate System		
System		iunaic System	
	Mobile		
Scoping Method	Geometry	Selection	
Scope	2 Fa	nces	
Body	Mul	tiple	
Initial Position	Uncha	anged	
Behavior	Rig	gid	
Pinball Region	All		

Gambar 3.4 Dudukan

3.6.4 Definisikan Meshing

Proses meshing merupakan diskritisasi pada model. Proses ini dilakukan setelah properti material didefinisikan pada model. Berikut ini adalah proses meshing yang dilakukan pada model yang telah didesain. Pada roda gigi menggunakan jenis dan proses meshing yang sama. Metode meshing bisa dilihat pada table 3.10 dan gambar 3.6.

Gambar 3.5 Meshing

Table 3.9 Meshing

Object Name	Mesh
State	Solved
Defaults	
Physics Preference	Mechanical
Solver Preference	Mechanical APDL
Relevance	0
Sizing	
Use Advanced Size Function	Off
Relevance Center	Coarse
Element Size	Default
Initial Size Seed	Active Assembly
Smoothing	Medium
Transition	Fast
Span Angle Center	Coarse
Minimum Edge Length	1.3426e-003 m

3.6.5 Definisikan Time Setting

Pendefinisian time setting dilakukan supaya simulasi berjalan pada waktu yang telah ditentukan oleh peneliti. Pendefinisian time setting mencakup waktu awal, jarak waktu minimum, jarak waktu maksimum, lama waktu simulasi. Untuk memperjelas definisi time setting yang dilakukan peneliti, diberikan table 3.11.

Object Name	Analysis Settings
State	Fully Defined
Step Con	trols
Number Of Steps	1.
Current Step Number	1.
Step End Time	5.e-003 s
Auto Time Stepping	On
Define By	Time
Initial Time Step	1.e-005 s
Minimum Time Step	1.e-005 s
Maximum Time Step	2.e-005 s
Time Integration	On

Table 3.10 Time setting

3.6.6 Definisikan Loads

Proses pebebanan adalah proses menginput beban pada model. Pembebanan yang digunakan adalah *joint rotational velocity, joint moment* dan *Standard Earth Gravity* (percepatan gravitasi). Berdasarkan pembebanan, penelitian ini terdiri dari tiga jenis simulasi yaitu simulasi dengan beban torsi dan yang kedua simulasi dengan beban putaran, sedangkan yang ke tiga gabungan torsi dan rpm. Deskripsi loads disampaikan melalui gambar 3.7 dan table 3.12. Pada simulasi dengan beban torsi digunakan dua jenis beban yaitu torsi dan percepatan gravitasi. Begitu juga dengan simulasi beban putaran yang juga menggunakan kombinasi beban putaran dan percepatan gravitasi.

Gambar 3.6 Loads

Tabel 3.11 Loads				
Object Name	Standard Earth Gravity			
State	Fully Defined			
	Scope			
Geometry	All Bodies			
Definition				
Coordinate System	Global Coordinate System			
X Component	0. m/s ² (step applied)			
Y Component	-9.8066 m/s ² (step applied)			
Z Component	0. m/s ² (step applied)			
Suppressed	No			
Direction	-Y Direction			

Tabel 3.12 Loads						
Object Name	Joint - Rotational Velocity	Joint - Moment	Joint - Moment			
State		Fully Defined				
	Sc	ope				
Joint	Revolute - Gro	Revolute - Ground To g5 k				
	Defi	nition				
DOF		Rotation Z				
Туре	Rotational Velocity	Мо	ment			
Magnitude	2029.4 RPM (step applied)	844.8 N·m (step applied)				
Lock at Load Step	Never					
Suppressed	No					

3.6.7 Definisikan Solutions dan Results

Setelah melakukan simulasi, maka didapatkan tabular data yang berisikan data tegangan pada setiap waktu tertentu. Nilai maksimum akan digunakan untuk proses selanjutnya. Untuk mempermudah pekerjaan, data akan dimasukkan ke dalam table 3.13. Tabel yang dimaksud sebagai berikut :

Table 3.13 Results

model	Time (s)	stress	
		min	max
L9 A0	0		
	n		
L8 A0			
L A0			
L5 A0			

BAB IV

ANALISA DATA DAN PEMBAHASAN

4.1 Hasil Simulasi

Setelah melakukan simulasi maka dapat diperoleh output berupa gambar dan data dari setiap step-stepnya dari input yang dimasukkan pada simulasi tersebut. Pada penelitian ini peneliti menginginkan output berupa tegangan.

4.1.1 Distribusi tegangan

Dari simulasi yang dilakukan dengan menggunakan metode numerik diperoleh distribusi tegangan yang dialami model roda gigi. Distribusi tegangan ditunjukkan dengan warna yang berbeda pada model roda gigi. Setiap warna mewakili range nilai tegangan tertentu dari tegangan maksimum sampai tegangan minimum yang terjadi. Karena pada penelitian kali ini simulasi yang digunakan adalah simulasi dinamis maka distribusi tegangan ini akan berubah seiring dengan berubahnya waktu.

Gambar 4.1 Contoh distribusi tegangan pada Model 0 0.

Gambar 4.2 Contoh distribusi tegangan pada Model 5 2.

Pada gambar 4.1 (lateral misalignments) dan 4.2 (angular misalignments) merupakan salah satu contoh yang dapat mewakili masing-masing model mengenai distribusi tegangan pada roda gigi dari hasil simulasi. Karena distribusi tegangan berubah seiring berjalannya waktu, maka diambillah tegangan maksimum pada waktu tertentu dan lokasi tertentu. Namun pada umumnya tegangan maksimum terjadi saat kedua goda gigi saling kontak (daerah kontak) atau kaki gigi atau ujung gigi. Dan gambar distribusi ini tidak bisa mewakili semua bentuk distribusi yang dialami selama profil gigi tersebut mengalami kontak. Karena posisi kontak roda gigi selalu berubah akibat putagan roda gigi itu sendiri.Setiap simulasi menghasilkan distribusi yang berbeda selama roda gigi mengalami kontak. Simulasi dengan model yang sama dan pembebanan yang berbeda menghasilkan distribusi tegangan yang berbeda. Begitu juga dengan simulasi yang

menggunakan model yang sama, bebannya sama tetapi diambil pada titik waktu yang berbeda, maka menghasilkan distribusi tegangan yang berbeda pula.

4.1.2 Data tegangan

Selain distribusi tegangan, hasil simulasi juga ditunjukkan dengan data hasil simulasi. Data hasil simulasi berupa daftar tegangan maksimum dan tegangan minimum setiap satuan waktu. Contoh data hasil simulasi dapat dilihat pada tabel 4.1.

Time [s]	Minimum [Pa]	Maximum [Pa]
1.7024e-004	4.2242e+005	1.5985e+008
1.7224e-004	4.9524e+005	1.5676e+008
1.7424e-004	5.8788e+005	1.5948e+008
1.7624e-004	8.7794e+005	1.7004e+008
1.7824e-004	6.5599e+005	1.8221e+008
1.8024e-004	9.5411e+005	1.8441e+008
1.8224e-004	6.7577e+005	1.786e+008
1.8424e-004	5.5081e+005	1.6939e+008
1.8624e-004	2.8125e+005	1.649e+008
1.8824e-004	4.0581e+005	1.6951e+008
1.9024e-004	1.6585e+005	1.7461e+008

Tabel 4.1 Sebagian contoh data hasil simulasi

Hasil simulasi dengan pembebanan torsi maupun pembebanan kecepatan putar akan menghasilkan output yang sama seperti pada tabel 4.1, hanya saja nilai dan jumlah datanya yang berbeda. Pada penelitian ini tidak semua data output digunakan hanya data tertentu yang diambil. Table diatas merupakan data dari sebagian data-data yang telah di peroleh. Karena jumlah data yang diperoleh selama simulasi sebanyak ±500 step.

4.2 Data Tegangan Maksimum

4.2.1 Tegangan maksimum von mises dengan masingmasing misalignmentnya

Tabel 4.2 Data tegangan von mises maksimum dengan masingmasing misalignment

σ_{max}		Angular						
(N/m^2)		0	0.05	0.5	1	1.5	2	
	-	8.43E	1.25E					
	0.9	+08	+09					
	-	3.67E						
	0.7	+08						
	-	2.39E						
	0.5	+08						
	-	2.24E						
	0.3	+08						
	-	1.95E		8.00E	1.05E	1.47E		
ral	0.1	+08		+08	+09	+09		
ate	-						1 84E	
Γ	0.0						+09	
	5							
	0	4.37E		8.45E	1.03E	1.52E	2.17E	
		+08		+08	+09	+09	+09	
		5.64E		1.23E	1.29E	1.74E	2.20E	
	1	+08		+09	+09	+09	+09	
		7.68E		1.44E	1.48E	2.77E	5.59E	
	3	+08		+09	+09	+09	+09	
		9.72E		2.17E	2.49E	5.13E	6.51E	
	5	+08		+09	+09	+09	+09	

simulasi dengan masing-masing model Pada dan pembebanan torsi pada roda gigi 4 dan 5 sebesar 543,3 dan 844,8 (N.m), kecepatan sudut pada roda gigi 4 sebesar 2029,4 (Rpm), dan percepatan grafitasi bumi sebesar 9,8066 (m/s²) menghasilkan data awal seperti pada tabel 4.1. Apabila menggunakan data awal, maka akan sulit untuk dianalisa, sehingga perlu adanya data penyederhanaan. Penyederhanaan yang dilakukan adalah dengan cara mengambil nilai maksimum dari masing-masing simulasi dengan variabel bebasnya masing-masing. Sehingga didapatkan data seperti pada tabel 4.2. Pada angular misalignments variable bebas dibuat dari kondisi ideal sampai sudut terbesar yang mungkin terbentuk (sebelum interference). Begitu pula pada lateral misalignments, namun padanya model masih mungkin saling menjauh sehingga dibuat variable bebas lateral dari ideal sampai sebesar ukuran addendum.

4.2.2 Tegangan von mises maksimum pada model 0 0 dengan masing-masing pembebanannya

Pada simulasi dengan masing-masing pembebanan dan model 0 0 menghasilkan data awal seperti pada tabel 4.1. Apabila menggunakan data awal, maka data akan sulit untuk dianalisa, sehingga perlu adanya penyederhanaan pula. Penyederhanaan yang dilakukan adalah dengan cara yag sama, yaitu. Mengambil nilai maksimum dari masing-masing simulasi dengan variabel bebasnya masing-masing. Sehingga didapatkan data seperti pada tabel 4.3. T dan n dijadikan variable bebas bertujuan untuk mengetahui kondisi kerja system yang berubah-ubah dari spesifikasi mesin pada sistem. Sehingga dibuatlah variable bebas tersebut.

Tabel 4.3 Data tegangan von mises maksimum pada pembebanannya masing-masing dengan model 0 0.

σ_{max} (N/m ²)		rpm rg4 (rpm)					
		0	1750	2029	2250		
0.0		0	0	0	0		
m)	516.1	4.08E+08	4.08E+08	4.08E+08	4.08E+08		
orsi (N.	543.3	4.37E+08	4.37E+08	4.37E+08	4.37E+08		
t	570.4	5.18E+08	5.18E+08	5.18E+08	5.18E+08		

Tabel 4.3 merupakan daftar tegangan maksimum von mises pada simulasi dengan menggunakan model 0 0 dan pembebanannya masing-masing. Tegangan maksimum Von Mises diambil untuk mengetahui tegangan total yang berpengaruh pada roda gigi. Dari tabel 4.3 akan dibuat grafik tegangan fungsi pembebanannya masing-masing.

4.2.3 Tegangan Normal maks dengan masing-masing misalignmentnya

Diambilnya data tegangan normal maksimum bertujuan untuk pembuktian terbalik pada rumus AGMA (bending). Sehingga pada akhirnya didapat nilai km yang digunakan system agar aman pada masing-masing alignments. Data tegangan normal tersebut tersaji pada table 4.4.

σ_{max}				Ang	ular		
(N	$/m^2$)	0	0.05	0.5	1	1.5	2
	-	2.22E	2.55E				
	0.9	+08	+08				
	-	2.35E					
	0.7	+08					
	-	1.66E					
	0.5	+08					
	-	1.62E					
	0.3	+08					
	-	1.58E		5.27E	6.43E	6.83E	
ral	0.1	+08		+08	+08	+08	
atei	-						7 16F
Ĺ	0.0						+08
	5						.00
	0	3.47E		5.88E	6.53E	7.22E	7.25E
	0	+08		+08	+08	+08	+08
		4.30E		6.50E	7.91E	7.11E	8.64E
	1	+08		+08	+08	+08	+08
		5.22E		7.76E	9.06E	1.22E	1.54E
	3	+08		+08	+08	+09	+09
		6.44E		1.18E	1.34E	1.68E	1.80E
	5	+08		+09	+09	+09	+09

Table 4.4. Data tegangan normal maksimum dengan masingmasing misalignment

4.2.4 Tegangan Normal maksimum pada model 0 0 dengan masing-masing pembebanannya

Diambilnya data tegangan normal maksimum bertujuan untuk pembuktian terbalik pada rumus AGMA (bending). Sehingga pada akhirnya didapat nilai ko yang digunakan system agar aman pada masing-masing pembebanannya. Data tegangan normal tersebut tersaji pada table 4.5.

Table 4.5. Data tegangan Normal maksimum dengan masingmasing pembebananya

σ_{max}		rpm rg4 (rpm)					
(N	M/m^2)	0	1750	2029	2250		
	0.0	0	0	0	0		
m.		3.24E+0	3.24E+0	3.24E+0	3.24E+0		
S	516.1	8	8	8	8		
$^{\mathrm{g4}}$		3.47E+0	3.47E+0	3.47E+0	3.47E+0		
si r	543.3	8	8	8	8		
tor		3.70E+0	3.70E+0	3.70E+0	3.70E+0		
	570.4	8	8	8	8		

4.3 Pembahasan Grafik

Pembahasan grafik adalah analisa yang dilakukan untuk mendapatkan gambaran hasil dari penelitian yang telah dilakukan. Grafik dibuat dari data yang terdapat pada tabel 4.2, dan tabel. Tabel 4.2 diplot menjadi grafik tegangan maksimum Von Mises fungsi angular dan lateral. Tabel 4.3 diplot menjadi grafik tegangan maksimum von mises fungsi kecepatan sudut dan torsi. Perlu diketahui bahwa tegangan yang di ambil ialah tegangan maksimum yang terjadi pada roda gigi saat kondisi diam menuju ke kecepatan sudut yang diinputkan.

4.3.1 Grafik tegangan maks von mises fungsi lateral dan angular misalignment

Gambar 4.3 Tegangan maksimum Von Mises fungsi angular dan lateral

Gambar 4.3 adalah grafik plot tegangan maksimum Von Mises pada roda gigi fungsi angular dan lateral misalignments. Sumber data gambar 4.3 berasal dari table 4.2. Dimana pada grafik tersebut menggunakan pembebanan yang sama. Pembebanan tersebut berupa torsi pada roda gigi 4 dan 5 sebesar 543.264, dan 844.802 N.m dan kecepatan sudut sebesar 2029.4 rpm.

Hasil simulasi menunjukkan pada model angular 0 dan lateral dari 0 sampai 5 menunjukkan peningkatan tegangan yang terjadi pada roda gigi yang terus menerus seiring dengan menjauhnya jarak antarroda gigi. Tegangan maksimum terjadi pada daerah kaki gigi rg 4 dan hanya tejadi satu permukaan kontak saja. Begitu pula pada lateral 0 menuju -.09 dengan angular 0 juga mengalami peningkatan tegangan, namun tegangan yang terjadi disini terletak pada ujung gigi pertemuan bidang tajam dan sepertihalnya 5 0 kontak yang terjadi hanya pada satu permukaan.

Gambar 4.4 Distribusi tegangan pada -.9 0 dan 5 0

Sedangkan untuk model dengan lateral 0 dan angular dari 0 hingga 2 juga menunjukkan peningkatan tegangan pada roda gigi yang seiring dengan membesarnya sudut yang terbentuk antarsumbu lubang pada roda gigi. Dan pada model kombinasi antara lateral dan angular maksimum yaitu model 5 2 terjadi tegangan pada roda gigi yang terbesar dibandingkan dengan model-model yang lainnya. Hal ini disebabkan karena selain terkena beban terpusat akibat angular misalignment roda gigi juga mengalami perpanjangan lengan (jarak kontak gigi ke kaki gigi) atau jari-jari dengan gaya yang sama. Pada model 5 2 terjadi dua sisi roda gigi yang saling kontak dan tegangan maksimum terjadi pada ujung rg5 (gambar 4 2). Sedangkan pada model kombinasi antara lateral dan angular minimum (-0.9 2) tidak dapat dimodelkan dan disimulasi. Hal ini terjadi karena kedua roda gigi mengalami interference atau tabrakkan oleh karenannya pada table terdapat kolom yang berwarna merah. Maka hasil pemodelannya akan jelek dan tidak masuk akal dan pada simulasinya tidak akan bisa confergence atau terjadi error. Oleh karenanya pada grafik 4.2 terdapat model-model yang sengaja tidak diisi. Untuk mengganti kombinasi model minimum, dilakukan pemodelan dan simulasi pada model -0.9 0.05 dan -0.05 2. Maka pada model -0.05 0 sampai -0.05 1.5 dan -.7 0.05 5 0.05 yang lain sengaja tidak di modelkan sehingga pada table terdapat kolom berwarna kuning dan dikosongkan pada grafik.

Pada model yang lateral misalignmentsnya bernilai besar terjadi fenomena hentakkan/tumbukkan/impact antarroda gigi khususnya pada model 5 0 sampai 5 2. Semakin jauh jarak antar poros, maka backlash/gap yang terjadi antarroda gigi semakin besar. Sedangkan pada model yang angular misalignmentsnya bernilai besar terjadi fenomena nonuniform contact yang mengakibatkan pemusatan gaya. Sehingga pada bagian yang mengalami kontak (b') antargigi mengalami tegangan yang lebih besar dari kondisi normalnya. Dimana lebar kontak adalah b' dan lebar gigi adalah b. berdasarkan kedua properties ini maka didapat contact surface ratio. Contact surface ratio vang tertera pada table merupakan contact ratio yang maksimum. Dengan demikian roda gigi pernah mengalami kontak yang lebih kecil dari contact surface maksimumnya. cs tidak dipengaruhi oleh lateral misalignments. Untuk mempermudah penyampaian data dan informasi, disajikan data dan gambar mengenai contact surface ratio akibat angular misalignments pada gambar 4.5 dan table 4.6 berikut:

Gambar 4.5 Contoh contact surface ratio maksimum antarroda gigi

b'/b = (cs)			Angular					
		0	0.05	0.5	1	1.5	2	
	-0.9	1	0.99					
	-0.7	1						
	-0.5	1						
	-0.3	1						
eral	-0.1	1		0.85	0.6	0.375		
Lat	-0.05						0.25	
	0	1		0.85	0.6	0.375	0.25	
	1	1		0.85	0.6	0.375	0.25	
	3	1		0.85	0.6	0.375	0.25	
	5	1		0.85	0.6	0.375	0.25	

Table 4.6 Maksimum contact surface ratio (cs)

Gambar 4.6 Tegangan maksimum Von Mises fungsi T dan n

Gambar 4.6 adalah plot data hasil simulai tegangan maksimum Von Mises fungsi torsi dan kecepatan sudut. Dimana pada simulasi-simulasi tersebut menggunakan model yang sama sebagai variable tetap. Yaitu model 0 0 (normal atau alignment).

Hasil simulasi yang telah diplotkan berupa grafik menunjukkan bahwa semakin besar torsi yang diberikan pada pasangan roda gigi maka semakin besar pula tegangan yang terjadi pada roda gigi. Hal ini dapat diamati pada input torsi dari 0 hingga 570,4. Bahkan pada masing-masing kecepatan sudut yang lain tegangan maksimum Von Mises mengalami peningkatan seiring meningkatnya torsi yang diinputkan. Dari kondisi normal 543.3 N.m, tegangan yang terjadi pada roda gigi sebesar 4.37E+08 N/m². Ketika kondisi semula dirubah menjadi 570,4 (torsi 4 ditambah 5%) N.m, tegangan yang terjadi pada roda gigi menjadi 5.18E+08 N/m² atau tegangan bertambah sebesar 8.11E+07 N/m² dari tegangan kondisi normal. Disisi lain kondisi semula dirubah
menjadi 516.1 (torsi 4 dikurangi 5%) N.m atau 27.2 N.m lebih kecil dari torsi semula, tegangan yang terjadi pada roda gigi menjadi 4.08E+08 N/m² atau tegangan berkurang sebesar 2.97E+07 N/m² dari tegangan kondisi normal.

Sedangkan pada fungsi kecepatan sudut tidak menunjukkan hubungan dengan tegangan. Sehingga pada simulasi ini menunjukkan kolom chart yang linear atau lurus yang mendatar. Boleh jadi hal ini diakibatkan oleh tidak adanya peranan kecepatan sudut dalam perhitungan simulasi sehingga pada giafik 4.3 tidak menunjukkan hubungan antara tegangan dengan kecepatan sudut. Maka pada variable ini tidak perlu dilakukan pencarian atau penentuan nilai factor koreksi ko yang berguna untuk mengkoreksi tegangan akibat perubahan kecepatan. Pada variabel ini semua bentuk distribusi tegangan memiliki pola yang identic seperti pada gambar 4.1. perbedaannya hanya terletak pada besar kecilnya tegangan.

4.3.3 Grafik tegangan maks normal fungsi lateral dan angular misalignment

Gambar 4.7. Tegangan normal maks fungsi lateral dan angular

Gambar 4.7 adalah grafik plot tegangan maksimum Von Mises pada roda gigi fungsi angular dan lateral misalignments. Sumber data gambar 4.3 berasal dari table 4.4. Dimana pada grafik tersebut menggunakan pembebanan yang sama. Pembebanan tersebut berupa torsi pada roda gigi 4 dan 5 sebesar 543.264, dan 844.802 N.m dan kecepatan sudut sebesar 2029.4 rpm.

Tidak jauh berbeda dengan tegangan maximum pada Von mises, pada tegangan normal maksimum memiliki trend garfik yang identic. Kesamaan pada von mises terdapat pula pada fenomena-fenomena, seperti jumlah bidang yang kontak, hentakan antarroda gigi, pemusatan gaya akibat angular misalignments, dan lain-lain yang terjadi pada masing-masing model. Perbedaan terdapat pada besaran tegangan yang terjadi pada roda gigi. Ilusterasi pada tegangan normal ditunjukkan oleh gambar 4.8.

Gambar 4.8. Distribusi tegangan pada model 5 2, 5 0, 0 0, -.9 0

4.3.4 Grafik tegangan maks normal fungsi rotational velocity dan torsi

Gambar 4.9 Tegangan normal maksimum fungsi T dan n

Sama halnya dengan dengan tegangan maximum pada Von mises, pada tegangan normal maksimum memiliki trend gafik yang identic. Kesamaan pada von mises terdapat pula pada fenomenafenomena yang terjadi pada masing-masing model. Perbedaan terdapat pada besaran tegangan yang terjadi pada roda gigi.

4.4 Penerapan Nilai Faktor k Pada Rumus AGMA Pada Variable Bebasnya masing-masing

Setelah didapatkan tegangan pada roda gigi, langkah selanjutnya yaitu mencari nilai k atau factor koreksi dari masing-masing pemodelan. Dengan cara menggunakan rumus AGMA yang telah di tentukan nilai factor koreksi selain factor koreksi yang dicari berupa asumsi dan memasukkan propreties lainnya yang telah diketahui.

4.4.1 Nilai factor km pada rumus AGMA dengan tegangan Von mises

Table 4.7 Nilai factor koreksi akibat alignments km' dengan tegangan Von mises maksimum

km'		Angular							
		0	0.05	0.5	1	1.5	2		
	-0.9	0.527	0.783						
	-0.7	0.229							
	-0.5	0.149							
	-0.3	0.140							
eral	-0.1	0.122		0.500	0.658	0.919			
Lat	-0.05						1.148		
	0	0.273		0.528	0.644	0.950	1.355		
	1	0.353		0.770	0.806	1.086	1.372		
	3	0.480		0.900	0.924	1.732	3.494		
	5	0.608		1.358	1.557	3.203	4.071		

Pada pembuktian nilai factor koreksi akibat alignments (km) dapat dilakukan dengan rumus-rumus berikut:

$$\mathrm{km}' = \frac{\sigma * Kv * b * J * m}{25.4 * Ft * Ko * Ks}$$

dari rumus diatas, masing-masing kondisi dihitung nilai km'nya, kemudian disajikan dalam bentuk table 4.7 supaya lebih mudah dimengerti.

Setelah nilai km' didapat, nilai tersebut belum dapat digunakan secara umum. Karena masih bersifat abstrak. Oleh karenanya perlu dikalikan dengan faktor ideal.Factor ideal dicantumkan bertujuan sebagai tolok ukur dari kondisi ideal.

lrma			Angular							
	KIII	0	0.05	0.5	1	1.5	2			
	-0.9	1.927	2.866							
	-0.7	0.839								
	-0.5	0.547								
	-0.3	0.511								
eral	-0.1	0.445		1.830	2.408	3.364				
Lat	-0.05						4.199			
	0	1.000		1.931	2.357	3.478	4.956			
	1	1.290		2.817	2.949	3.975	5.022			
	3	1.757		3.293	3.380	6.336	12.783			
	5	2.224		4.967	5.697	11.720	14.896			

Table 4.8 Nilai factor koreksi akibat misalignments km dengan tegangan Von mises maksimum

Maka pada kondisi ideal (model 0 0) nilai kmnya harus samadengan satu. Maka digunakan rumus berikut:

$$faktor \, ideal = \frac{1}{km'(0\,0)}$$

Sehingga didapat factor ideal samadengan 3.658. kemudian factor ideal dikalikan dengan km', sehingga nilai km diperoleh dan digunakan sebagai factor yang bersifat umum. Berikut table km tersaji pada table 4.8:

Untuk nilai km akibat misalignment yang nilainya tidak tercantum dalam table dapat dicari atau diprediksi dengan cara menginterpolasikan data-data yang ada. Sehingga dapat disimpulkan bahwa aman tidaknya roda gigi dapat dilakukan perbandingan antara tegangan ijin material dengan tegangan yang terjadi. Untuk memper mudah penyampaiannya disajikan table 4.9.

σ_{max} (N/m ²)			Angular							
		0	0.05	0.5	1	1.5	2			
	-0.9	rusak	rusak							
	-0.7	aman								
	-0.5	aman								
	-0.3	aman								
eral	-0.1	aman		rusak	rusak	rusak				
Lat	-0.05						rusak			
	0	aman		rusak	rusak	rusak	rusak			
	1	aman		rusak	rusak	rusak	rusak			
	3	rusak		rusak	rusak	rusak	rusak			
	5	rusak		rusak	rusak	rusak	rusak			

Table 4.9 Kondisi kerja roda gigi dengan tegangan von mises

4.4.2 Nilai factor ko pada rumus agma dengan tegangan Von mises

Table 4.10 Nilai factor koreksi akibat load (torsi rg4) ko' dengan tegangan Von mises maksimum

ko'		rpm rg 4					
		0	1750	2029	2250		
4	0	0.000	0.000	0.000	0.000		
orsi rgʻ (N.m)	516.101	0.255	0.255	0.255	0.255		
	543.264	0.273	0.273	0.000	0.273		
t	570.427	0.324	0.324	0.324	0.324		

Pada pembuktian nilai factor koreksi akibat load (torsi) ko dapat dilakukan dengan rumus berikut:

$$\mathrm{ko}' = \frac{\sigma * Kv * b * J * m}{25.4 * Ft * Km * Ks}$$

Dari rumus diatas masing-masing kondisi dihitung nilai ko'nya, kemudian disajikan dalam bentuk table juga supaya lebih mudah dimengerti. Berikut table 4.10:

Setelah nilai ko' didapat, nilai tersebut belum dapat digunakan secara umum. Karena masih bersifat abstrak juga. Oleh karenanya perlu dikalikan dengan faktor ideal pula. Factor ideal dicantumkan bertujuan sebagai tolok ukur dari kondisi standar. Maka pada kondisi ideal (844.8 543.3 (N.m) dan 2029.4 (rpm)) nilai konya harus samadengan satu. Maka digunakan rumus berikut:

$$faktor \, ideal = \frac{1}{km'(543\,2029)}$$

Sehingga didapat factor ideal samadengan 3.658. kemudian factor ideal dikalikan dengan ko', sehingga nilai ko diperoleh dan digunakan sebagai factor yang bersifat umum. Berikut table km tersaji pada table 4.11:

Table 4.11 Nilai factor koreksi akibat alignments ko dengan tegangan Von mises

ko		rpm rg 4					
		0	1750	2029	2250		
	0	0.0000	0.0000	0.0000	0.0000		
rg4 m)	516.101	0.9321	0.9321	0.9321	0.9321		
ors (N.	543.264	1.0000	1.0000	0.0000	1.0000		
ţ	570.427	1.1854	1.1854	1.1854	1.1854		

Untuk nilai ko akibat load yang tidak tercantum dalam table dapat dicari atau diprediksi dengan cara menginterpolasikan data-data yang ada. Sehingga dapat disimpulkan bahwa aman tidaknya roda gigi dapat dilakukan perbandingan antara tegangan ijin material dengan tegangan yang terjadi. Maka semua kondisi dalam keadaan aman.

4.4.3 Nilai factor km pada rumus AGMA dengan tegangan Von mises

Pada pembuktian nilai factor koreksi akibat alignments (km) dapat dilakukan dengan rumus-rumus berikut:

$$\mathrm{km}' = \frac{\sigma * Kv * b * J * m}{25.4 * Ft * Ko * Ks}$$

Dari rumus diatas, masing-masing kondisi dihitung nilai km'nya, kemudian disajikan dalam bentuk table 4.12 supaya lebih mudah dimengerti.

Table 4.12 Nilai factor koreksi akibat alignments km' dengan tegangan nomal maksimal

km'				Ang	ular		
		0	0.05	0.5	1	1.5	2
	-0.9	0.139	0.160				
eral	-0.7	0.147					
	-0.5	0.103					
	-0.3	0.101					
	-0.1	0.099		0.329	0.402	0.427	
Lat	-0.05						0.447
	0	0.217		0.367	0.408	0.451	0.453
	1	0.269		0.406	0.494	0.444	0.540
	3	0.326		0.485	0.566	0.763	0.964
	5	0.403		0.735	0.840	1.051	1.123

Setelah nilai km' didapat, nilai tersebut belum dapat digunakan secara umum. Karena masih bersifat abstrak. Oleh karenanya perlu dikalikan dengan faktor ideal.Factor ideal dicantumkan bertujuan sebagai tolok ukur dari kondisi ideal.

Maka pada kondisi ideal (model 0 0) nilai kmnya harus samadengan satu. Maka digunakan rumus berikut:

$$faktor \, ideal = \frac{1}{km'(0\,0)}$$

Sehingga didapat factor ideal samadengan 4.606851. kemudian factor ideal dikalikan dengan km', sehingga nilai km diperoleh dan digunakan sebagai factor yang bersifat umum. Berikut table km tersaji pada table 4.13:

1		Angular							
l	<u>AIII</u>	0	0.05	0.5	1	1.5	2		
	-0.9	0.639	0.735						
	-0.7	0.678							
	-0.5	0.477							
	-0.3	0.467							
eral	-0.1	0.455		1.516	1.851	1.966			
Lat	-0.05						2.061		
, ,	0	1.000		1.692	1.880	2.078	2.087		
	1	1.239		1.872	2.278	2.047	2.488		
	3	1.502		2.235	2.609	3.517	4.441		
	5	1.855		3.384	3.868	4.842	5.174		

Table 4.13 Nilai factor koreksi akibat alignments km dengan tegangan normal

Untuk nilai km akibat misalignment yang nilainya tidak tercantum dalam table dapat dicari atau diprediksi dengan cara menginterpolasikan data-data yang ada. Sehingga dapat disimpulkan bahwa aman tidaknya roda gigi dapat dilakukan perbandingan antara tegangan ijin material dengan tegangan yang terjadi. Untuk memper mudah penyampaiannya disajikan table 4.14.

- (N1/m ²)		Angular							
O _{max}	O_{max} (IN/III ⁻)		0.05	0.5	1	1.5	2		
	-0.9	aman	aman						
	-0.7	aman							
	-0.5	aman							
	-0.3	aman							
eral	-0.1	aman		aman	aman	aman			
Lat	-0.05						aman		
	0	aman		aman	aman	aman	aman		
	1	aman		aman	rusak	aman	rusak		
	3	aman		rusak	rusak	rusak	rusak		
	5	aman		rusak	rusak	rusak	rusak		

Table 4.14 Kondisi kerja roda gigi dengan tegangan normal

4.4.4 Nilai factor ko pada rumus AGMA dengan tegangan normal

Pada pembuktian nilai factor koreksi akibat load (torsi) ko dapat dilakukan dengan rumus berikut:

$$\mathrm{ko}' = \frac{\sigma * Kv * b * J * m}{25,4 * Ft * Km * Ks}$$

Dari rumus diatas masing-masing kondisi dihitung nilai ko'nya, kemudian disajikan dalam bentuk table juga supaya lebih mudah dimengerti. Berikut table 4.15:

1	ro!	rpm rg 4					
ко		0	1750	2029	2250		
+	0	0.000	0.000	0.000	0.000		
m)	516.101	0.202	0.202	0.202	0.202		
orsi (N	543.264	0.217	0.217	0.000	0.217		
t	570.427	0.231	0.231	0.231	0.231		

Table 4.15 Nilai factor koreksi akibat load (torsi rg4) ko' dengan tegangan normal maksimum

Setelah nilai ko' didapat, nilai tersebut belum dapat digunakan secara umum. Karena masih bersifat abstrak juga. Oleh karenanya perlu dikalikan dengan faktor ideal pula. Factor ideal dicantumkan bertujuan sebagai tolok ukur dari kondisi standar. Maka pada kondisi ideal (844.8 543.3 (N.m) dan 2029.4 (rpm)) nilai konya harus samadengan satu. Maka digunakan rumus berikut:

$$faktor \, ideal = \frac{1}{km'(543\,2029)}$$

Sehingga didapat factor ideal samadengan 4.60685. kemudian factor ideal dikalikan dengan ko', sehingga nilai ko diperoleh dan digunakan sebagai factor yang bersifat umum. Berikut table km tersaji pada table 4.16:

	lro	rpm rg 4					
	KO	0	1750	2029	2250		
	0	0.0000	0.0000	0.0000	0.0000		
rg4 m)	516.101	0.9323	0.9323	0.9323	0.9323		
ors (N.	543.264	1.0000	1.0000	0.0000	1.0000		
t	570.427	1.0650	1.0650	1.0650	1.0650		

Table 4.16 Nilai factor koreksi akibat alignments (misalignments) ko dengan tegangan normal maksimum

Untuk nilai ko akibat load yang tidak tercantum dalam table dapat dicari atau diprediksi dengan cara menginterpolasikan data-data yang ada. Sehingga dapat disimpulkan bahwa aman tidaknya roda gigi dapat dilakukan perbandingan antara tegangan ijin material dengan tegangan yang terjadi. Maka semua kondisi dalam keadaan aman.

4.5 Perhitungan tegangan secara manual pada model ideal (0 0)

Pada perhitungan secara manual, dipilih properties dan factor-faktor minimum, medium, dan maksimum. Guna mengetahui tegangan pada masing-masing kondisi tersebut. Properties-properties tersebut di sajikan dalam bentuk table. Berikut metode-metode perhitungan tegangan yang akan dilakukan:

4.5.1 AGMA (bending)

Tabel 4. 17 Properties perhitungan AGMA (bending)

istilah (satuan) {simbol}	tangential force (F _t) {N}	modul (m) {mm}	face width (b) {mm}	size correction factor (K _s) {}		ion {}	
				min	me	ed	max
besaran	4242.32	4.23333	50	1	1.1	25	1.25
overlo	oad factor (Ka	load distribution factor (K _m) {}					
min	med	max	min	mee	t	r	nax
1	1.5	2.25	1.3		1.6		2.1
dynar	nic factor (K	geometry factor (J) {}				{}	
max	med	min	max	med min		nin	
1	0.7	0.4	1	0.	.75		0.4

Dari properties ditabel 4.x, kemudian dilakukan perhitungan. Sehingga didapat tegangan pada kaki gigi. Kemudian tegangan tersebut di bandingkan dengan tegangan ijin material

Tabel 4.18 Hasil perhitungan tegangan pada beberapa kondisi

istilah (satuan) {simbol}	tegangan di kaki gigi (σ) {N/mm ² }				
rumus	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
	min	med	max		
besaran	661.801	2618.12	18792.1		
keterangan	Aman	Rusak	Rusak		

4.5.2 AGMA (wear)

1 ubbi 1. 17 1 loperties perintungun 7 lonin 1 (weur	Tabel 4.	19 Properties	perhitungan	AGMA	(wear)
---	----------	---------------	-------------	------	--------

istilah (satuan) {simbol}	tangential force (F _t) {N}	pitch diameter (d _p) {mm}		face width (b) {mm}	geometry factor (I) {}	
besaran	4242.32	4.23333		50	0.12	
size factor (C _s) {}			properties factor (C _p) { }			
min	med	max	min	med	max	
1	1.125	1.25	1800	2000	2300	
oveload factor (C _o) {}			dynamic factor (C_v) {}			
min	med	max	max	med	min	
1	1.5	2.25	1	0.75	0.4	
load factor (C _m) {}			surface factor (C _f) {}			
min	med	max	min	med	max	
1	1.15	1.3	1	1.25	1.5	

Dari properties ditabel 4.x, kemudian dilakukan perhitungan. Sehingga didapat tegangan pada kaki gigi. Kemudian tegangan tersebut di bandingkan dengan tegangan ijin material.

istilah (satuan) {simbol}	tegangan di kaki gigi (σ) {N/mm ² }				
rumus	$C_{p} * (F_{t} * C_{o} * C_{s} * C_{m} * C_{f} / C_{v} / d_{p} / b / I)^{0.5}$				
	min	med	max		
besaran	23262.5	46484.7	110064		
keterangan	Rusak	Rusak	Rusak		

Tabel 4.20 Hasil perhitungan tegangan pada beberapa kondisi

BAB V

PENUTUP

5.1. Kesimpulan

Setelah dilakukan simulasi dan analisa data, maka kesimpulan yang dapat ditarik adalah sebagai berikut :

- 1. Semakin jauh jarak antarroda gigi, maka akan semakin besar tegangan yang terjadi, sehingga nilai factor koreksinya km semakin besar juga. Nilai km terbeasar terjadi pada model 5 0 dengan tegangan von mises, yaitu sebesar 2.224. sedangkan pada tegangan normal sebesar 1.855
- 2. Semakin besar sudut penyebab angular misalignment yang terbentuk, maka semakin besar tegangan yang terjadi, sehingga nilai factor koreksinya km semakin besar juga. Nilai terbesar pada model 0 2, yaitu 2.087 dengan tegangan normal sedangkan pada tegangan von mises sebesar 4.956
- 3. Semakin jauh jarak antar gigi dan besar sudut yang terbentuk, maka semakin besar tegangan yang terjadi pada roda gigi. Sehingga factor koreksi kmnya semakin besar pula. Nilai terbesarnya terjadi pada model 5 2 sebesar 14.896 dengan tegangan von mises dan pada tegangan normal sebesar 5.174
- 4. Pada angular misalignment penambahan factor km akan berpengaruh jika variabel yang diingikan atau diubah, supaya system menjadi aman adalah tegangan ijin material. Karena tegangan yang terjadi pada angular misalignment roda gigi diakibatkan pemusatan gaya yang ditransmisikan antarroda gigi, sehingga jika permukaan yang kontak tidak memiliki tegangan ijin yang lebih besar dari pada tegangan yang terjadi maka roda gigi tidak aman.
- 5. Pada perbandingann tegangan ijin material dengan tegangan von mises yang terjadi diroda gigi dapat ditarik

kesimpulan bahwa pada model -.9 0 sampai -.9 0.05, 3 0 sampai 3 2, 5 0 sampai 5 2, 1 0.5 sampai 1 2, 0 0.5 sampai 0 2, -0.1 0.5 sampai -0.1 1.5, dan -.05 2 mengalami kerusakkan (Table 4.9). Sedangakan perbandingan antara tegangan ijin dengan tegangan normal dapat ditaraik kesimpulan bahwa 1 2 sampai 5 2, 3 1.5 sampai 5 1.5, 1 1 sampai 5 1, 3 0.5 sampai 5 0.5 mengalami kerusakan karena tegangan normal yang terjadi lebih besar dari pada tegangan ijin material. Sedangkan untuk model-model lainnya bekerja dalam kondisi aman.

- 6. Semakin besar torsi yang diinputkan, maka tegangan yang terjadi semakin besar, sehingga nilai factor koreksinya ko semakin besar juga. Nilai ko terbesar terjadi pada torsi terbesar yaitu 1.1854 pada tegangan von mises. Sedangkan pada tegnangan normal sebesar 1.0650
- 7. Pada variable bebas berupa kecepatan sudut tidak terjadi perubahan tegangan. Hal ini terjadi mungkin di karenakan tidak adanya peranan kecepatan sudut dalam perhitungan tegangan. Sehingga nilai ko tidak mengalami perubahan.
- 8. Pada model 0 0 dengan variable bebas berupa n dan T masih dalam keadaan aman. Dimana dikatakan aman karena tgangan ijin material masih lebih besar dari pada tegangan yang terjadi diroda gigi baik pada tegangan von mises maupun tegangan normal.

5.2. Saran

Dari penelitian ini, ada beberapa saran yang dapat disampaikan guna pengembangan pada penelitian selanjutnya, antara lain :

- 1. Ketebalan roda gigi harus diperhatikan dengan baik supaya kontak yang terjadi pada roda gigi bisa bagus.
- 2. Untuk simulasi dinamis sebaiknya menggunakan computer dengan spesifikasi yang mumpuni.

DAFTAR PUSTAKA

- [1] Deutschman, A. D., Michels, W. J., Wilson, c. E. 1975. Machine Design Theory and Practice. New York : Macmillan Publishing Co., Inc.
- [2] H. Aziz Ameen, Effect of Shaft Misalignment on The Stresses Distribution of Spur Gears. Eng.& Tech. Journal, Vol. 28, No. 7, 1321-1339, 2010.
- [3] Muhammad Zainulloh R, 2014, Studi Kekuatan Spur Gear Dengan Profil Gigi Asymetric Involute dan Symetric Involute, Institut Teknologi Sepuluh Nopember
- [4] Carter, N. 2007. The Involute Curve, Drafting a Gear in CAD and Aplication. <URL:http://www.cartertools.com/involute.html>.
- [5] Noname. 2013. Involute Gear. <URL:<u>https://en.wikipedia.org/wiki/Involute_gear>.</u>
- [6] Alipiev, O. 2010. Geometric design of involute spur gear drives with symmetric and asymmetric teeth using the Realized Potential method. Bulgaria
- [7] Kohara G.I, 2006, GearTechnical reference, Japan. KGI
- [8] Kohara G.I, 2006, Introduction to Gear, Japan. KGI

RIWAYAT PENULIS

Muhammad Mousavie atau akrab dengan sapaan Mousavie di kampus atau uca dalam lingkungan tinggal, dilahirkan pada 2 Mei 1991 di Surabaya. Merupakan Putra keempat dari empat bersaudara dari pasangan Bapak Muhammad Yusuf dan Ibu Enny.

Memulai pendidikan dasar di SDN Kutisari II/269 (1997-2001). akhirnya melanjutkan pendidikan di SMPN 1 Waru (2001-2005). Semasa SMP aktif

di kegiatan OSIS dan kegiatan olahraga. Kemudian melanjutkan pendidikan ke SMA Muhammadiyah 3 Surabaya (2005-2009). Selama mengenyam pendidikan di SMA penulis aktif dalam kegiatan OSIS, Remaja Mushola dan Jurnalistik. Diterima di Jurusan Teknik Mesin D3 FTI ITS (2009-2012) setelah mengikuti seleksi dengan NRP 2109039004. Setelah menempuh pendidikan D3 di perguruan tinggi, penulis diterima di jurusan Teknik Mesin S1 Lintas Jalur dengan Nrp2112106017.

Penulis dapat dihubingin melalui email di mousavie91@gmail.com