Konstruksi Model Matematika Paralayang dengan Target Pendaratan

Pranata, Firdo Alhamda (2019) Konstruksi Model Matematika Paralayang dengan Target Pendaratan. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[img] Text
06111340000088-Undergraduate_Theses.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2021.

Download (1MB) | Request a copy
[img] Text
06111340000088-Undergraduate_Theses.pdf
Restricted to Repository staff only until 1 October 2021.

Download (1MB) | Request a copy

Abstract

Konstruksi model matematika dari pergerakan penerjun dibagi dalam dua pengamatan, yaitu ketika penerjun belum membuka parasut dan setelah penerjun membuka parasut. Pengontrolan dalam penelitian ini dikhususkan saat penerjun sudah membuka parasut hingga mendarat. Untuk mengendalikan parasut, dapat dilakukan dengan cara menggerakkan tali kemudi yang berpusat dibelakang parasut. Dengan menarik tali kemudi kanan ke bawah, maka parasut bergerak ke kanan. Dan jika menarik tali kemudi kiri ke bawah, maka parasut bergerak ke kiri. Untuk mendapatkan model dari paralayang, digunakan metode derivatif dari penurunan Hukum Newton. Dari model yang didapatkan kemudian dikontrol dengan menggunakan PID controller agar penerjun mampu mendarat pada target pendaratan yang diharapkan dengan mengikuti dari setpoint atau lintasan yang telah dibuat sebelumnya ================================================================================================ The construction of the mathematical model of the parachutist movement is divided into two observations, when the parachutist has not opened the parachute and after the parachutist opens the parachute. The controls in this study were devoted when the parachute had opened the parachute to land. To control the parachute, it can be done by moving the steering wheel centered behind the parachute. By pulling the rope right down, then the parachute moves to the right. And if you pull the rope left to the left, then the parachute moves to the left. To get the parachutist model, we can use derivatif method from Newton Law. The model obtained is then controlled by using the PID controller so that the parachute is able to land on the expected landing target by following the setpoint or path that has been made beforehand

Item Type: Thesis (Undergraduate)
Additional Information: RSMa 511.8 Pra k-1 2018
Uncontrolled Keywords: Parasut, PID, Pendaratan
Subjects: Q Science > QA Mathematics > QA278.3 Structural equation modeling.
Q Science > QA Mathematics > QA911 Fluid dynamics. Hydrodynamics
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis
Depositing User: Firdo Alhamda Pranata
Date Deposited: 09 Sep 2021 21:12
Last Modified: 09 Sep 2021 21:12
URI: https://repository.its.ac.id/id/eprint/59935

Actions (login required)

View Item View Item