Penempatan dan penentuan kapasitas Distributed Generation menggunakan Novel Sensitivity Factor - Algoritma Symbiotic Organism Search

Setyawan, Gema (2019) Penempatan dan penentuan kapasitas Distributed Generation menggunakan Novel Sensitivity Factor - Algoritma Symbiotic Organism Search. Masters thesis, Institut Teknologi Sepuluh November.

[img]
Preview
Text
071117510010004-Master_Thesis.pdf - Accepted Version

Download (1MB) | Preview

Abstract

Sistem tenaga listrik terdiri dari banyak bus yang saling terhubung. Topologi jaringan yang paling banyak digunakan adalah Radial Distribution Network (RDN), bus yang terletak paling jauh dari pembangkitan memiliki penurnan tegangan yang signifikan serta jumlah bus tanpa dukungan dari Distributed Generation (DG) akan mengakibatkan kenaikan rugi daya dan penurunan tegangan. DG bermanfaat untuk mengurangi kerugian daya dan meningkatkan tegangan, tetapi lokasi dan ukuran DG dalam jaringan distribusi membutuhkan pertimbangan besar ditinjau dari penempatan dan kapasitas. Dalam penelitian ini metode yang digunakan untuk menentukan lokasi DG adalah Novel Senstivity Factor yang terdiri dari Loss Reduction Senstivity Factor (LRSF) dikombinasikan dengan Voltage Improvement Performance Index (VIPI) , dan untuk kapasitas DG menggunakan metaheuristik Symbiotic Organism Search (SOS) dan Firefly (FA). Masalah penentuan lokasi dan ukuran DG ini terkait dengan minimisasi kerugian daya nyata dan deviasi tegangan. Berdasarkan permasalahan, solusi dan penelitian yang telah dilakukan, untuk mendapatkan hasil yang maksimal maka Novel Senstivity Factor harus di kombinasikan dengan metaheuristik, serta hasil yang didapat Novel Senstivity Factor efektif untuk penempatan DG untuk mengurangi Power Losses dan meningkatkan Voltage Profile. Dilihat berdasarkan perbedaan metaheuristik, metaheuristik Symbiotic Organism Search (SOS) memiliki nilai fitness yang lebih baik dari pada Firefly (FA). ============================================================================= Electric power systems consist of many interconnected buses. The most widely used network topology is Radial Distribusi Network (RDN), the bus located furthest from generation has a significant voltage drop and the number of buses without any support from Distributed Generatio (DG) inflicting in increased power losses. Dg is advantageous to reduce power losses and increasing voltage in the power system, but the location and sizing of DG in the distribution network requires great consideration. In this research the method used to determine the location is Novel Sensitivity Factor to be censored using the Loss Reduction Sensitivity Factor (LRSF) and combined with Voltage Improvement Performance Index (VIPI), and DG capacity will be optimized using metaheuristic Symbiotic Organism Search (SOS) and Firefly (FA). This DG locating and sizing problem is associated with real power loss minimization and voltage deviation. Based on the problems, solutions and research that has been done, the result are obtained, to get maximal result, Novel Sensitivity Factor must be combined with metaheuristic, and the results obtained by Novel Sensitivity Factor are effective for DG placement to reduce power losses and improve voltage profile. Based on different metaheuristic, metaheuristic Symbiotic Organism Search (SOS) has a better fitness value than Firefly (FA).

Item Type: Thesis (Masters)
Additional Information: RTE 621.319 Set p
Uncontrolled Keywords: ovel Sensitivity Factor, Symbiotic Organism Search, Firefly
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1001 Production of electric energy or power
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1322.6 Electric power-plants
Divisions: Faculty of Electrical Technology > Electrical Engineering > 20101-(S2) Master Thesis
Depositing User: GEMA SETYAWAN GEMA SETYAWAN
Date Deposited: 11 May 2021 05:56
Last Modified: 20 May 2021 05:59
URI: https://repository.its.ac.id/id/eprint/60148

Actions (login required)

View Item View Item