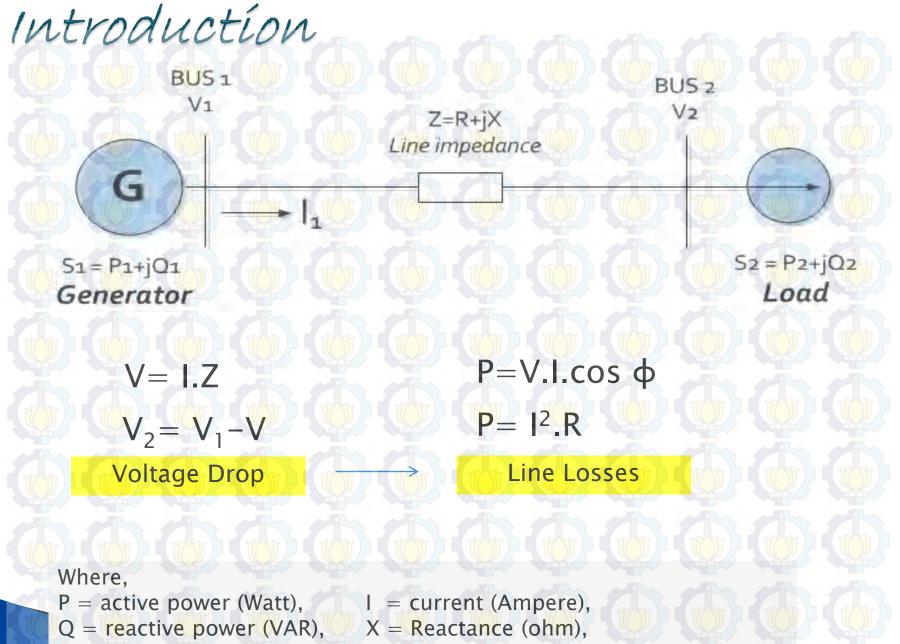
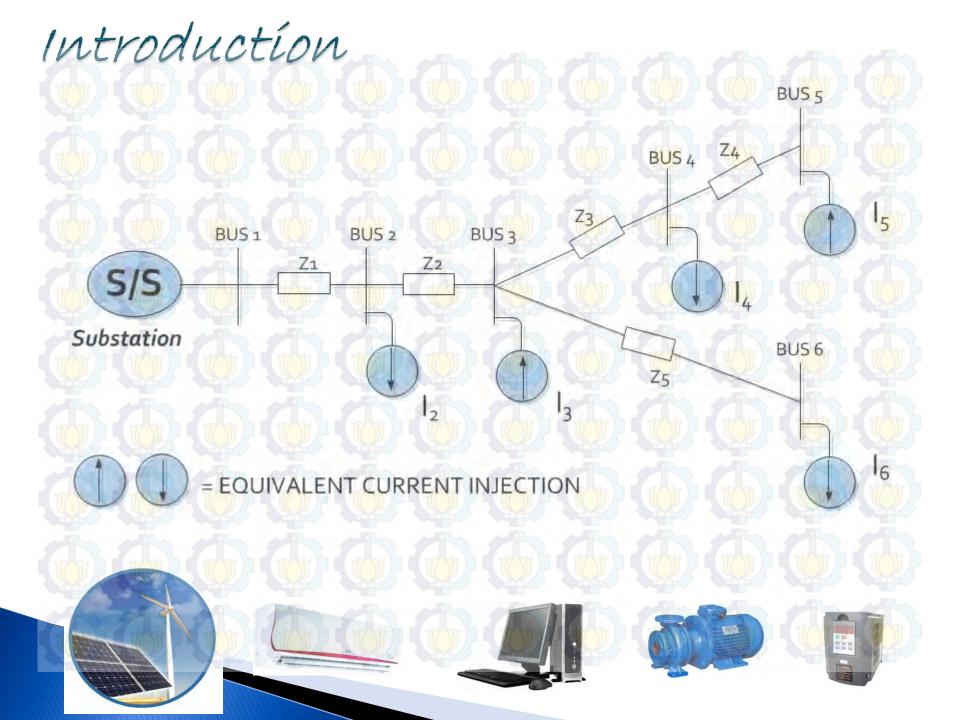
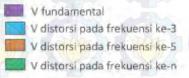

PERFORMANCE ENHANCEMENT OF AN UNBALANCED AND HARMONICALLY DISTORTED THREE PHASE RADIAL DISTRIBUTION NETWORK BY OPTIMAL PLACEMENT OF CAPACITOR USING DSA

> Committee Member: Dr. Jai Govind Singh (chairperson) Dr. Weerakorn Ongsakul Dr. Shobhakar Dhakal


Presented By: Happy Aprillia st115877 / 2212201012

Master Program Energy FoS - Power System Engineering School of Environment, Reseource and Development - Faculty of Industrial Technology Asian Institute of Technoogy – Sepuluh Nopember Institute of Technology Joint Degree Scholarship DIKTI – AIT Fellowship




V = voltage (Volt),

R = resistance (ohm).

Introduction

519–1992 IEEE Standard of Harmonics Distortion

 $\rightarrow \omega t$

2π

Due Veltage et DCC	Individual Voltage	THD
Bus Voltage at PCC	Distortion (%)	(%)
69 kV and below	3,0	5,0
69,001 kV through 161 kV	1,5	2,5
161,001 kV and above	1,0	1,5

π

wt

2π

Statement of Problem

Distribution System

Three Phase Unbalanced Condition

Harmonic Distortion

Voltage Improvement

Capacitor Placement

Power Flow [Analysis, Method]

Optimization (Direct Search Algorithm) [performance, best location and size]

Objective of Study

Obtain appropriate harmonics distortion effects and voltage profile in distribution power system

Robust and fast three-phase power flow analysis application for unbalanced radial system.

Presents the analysis of the combination of three-phase power flow and power flow for investigate unbalanced radial system with harmonics distorted condition.

Knowing the optimal location and capacity of reactive power compensator with Direct Search Algorithm (DSA) in unbalanced radial harmonics distorted three phase system.

Scope and Limitation

3

• Harmonic source has been obtained from preliminary data (not through a reduction of the initial models)

• The harmonic power flow will only work as a passive power flow that can't handle an active operation like Distributed Generation effects in power system.

 Verification of the proposed method through the comparison of results between DSA and PSO

• (*Elamin, I.M., 1990)*:

 The harmonic power by using Fast Decoupled method that applied to the loop scheme system (transmission system), not the radial system.

(J. H. Teng, 2000; Ulinuha, et al, 2007).

- Method of Forward Backward (FB) can accommodate the high R/X ratio.
- Has considered the placement of the reactive power compensator and effects of harmonics occurence
- Requires a long time to calculate this replacement of forward/backward process.

• (Eajal, A.A., El-Hawary, M.E., 2010):

- application of Particle Swarm Optimization (PSO) to determine the location and capacity of reactive power
- Consider harmonic distortion in the calculation algorithm
- Succeeded in reducing the levels of harmonic distortion through placing capacitor in system.
- (Syai `in, M., Lian K. L., Yang, N., Chen T., 2012):
 - Network topology radial distribution approach
 - Requires only Bus-Injection Branch Current (BIBC) matrix and Branch Current to Bus Voltage (BCBV) matrix.

Does not consider the harmonic distortion effect.

(Singh and Rao, 2012):

- Allocating shunt capacitor based on the dynamic sensitivity factor and PSO to give the random initial size for the following location.
- Having significant performance because it can determine both fixed capacitor or switch capacitor.

• (El-Fergany, et al, 2014):

- Using load sensitivity factor and combination with system stability enhancement.
- new approach for optimal capacitor placement and sizing using artificial bee colony
- But, load sensitivity analysis does not give best result to identify prospective bus.

(Raju, M. Ramalinga, Murthy, K.V.S. Ramachandra, Ravindra, K., 2012):

- Optimization technique to determine capacitor installation using Direct Search Algorithm (DSA)
- DSA is proven to minimize line losses better than PSO. This research proved that DSA algorithm has faster performance and high robustness on large scale systems than PSO
- This research is not taking consideration of harmonic distortion in that research.

(Aman, M.M et al, 2014):

- Direct Search Algorithm is a heuristic method which is done according to the basic technical guideline which are developed based on experience in practical guidelines
- Work fast and effective with the reduced searching space based on practical strategy.
- Can be conducted by using sensitivity node, cost consideration, or voltage sensitivity index to obtain the objective.
- Common approach to this algorithm is by using loss sensitivity analysis to identify the inital placement of the capacitor.

Methodology

System Modelling

• Overhead Lines and Under Ground Cables

- Shunt Capacitors
- Three-Phase Transformer

• Loads

Power Flow

- Radial Distribution System
- Harmonic

Optimization

Direct Search Algorithm

Methodology - System modelling

Overhead Lines and Under Ground Cables

a

b

 $Y_{cc}^{(h)}$

 $Y_{bc}^{(h)}$

 $Z_{aa}^{(h)}$

 $Z_{bb}^{(h)}$

 $Z_{cc}^{(h)}$

 $Y_{aa}^{(h)}$

 $Y_{bb}^{(h)}$

 $Y_{ab}^{(h)}$

 $Z_{ab}^{(h)}$

 $Z_{bc}^{(h)}$

 $Y_{aa}^{(h)}$

 $Y_{bb}^{(h)}$

 $Y_{ab}^{(h)}$

 $Y_{cc}^{(h)}$

 $Y_{bc}^{(h)}$

Methodology - System Modelling Shunt Capacitors

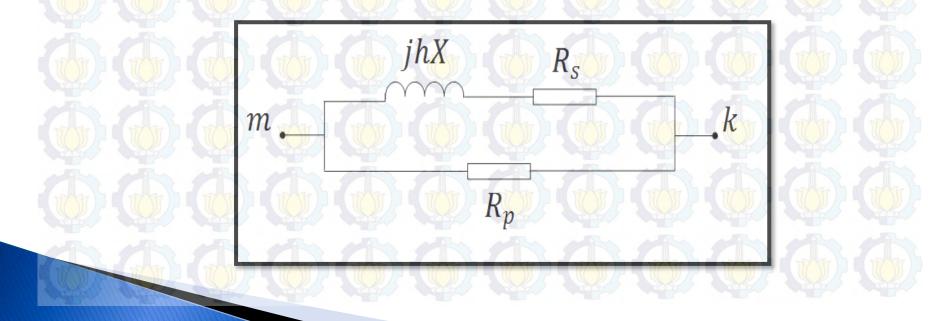
 $X_{Cap}^{(h)}$

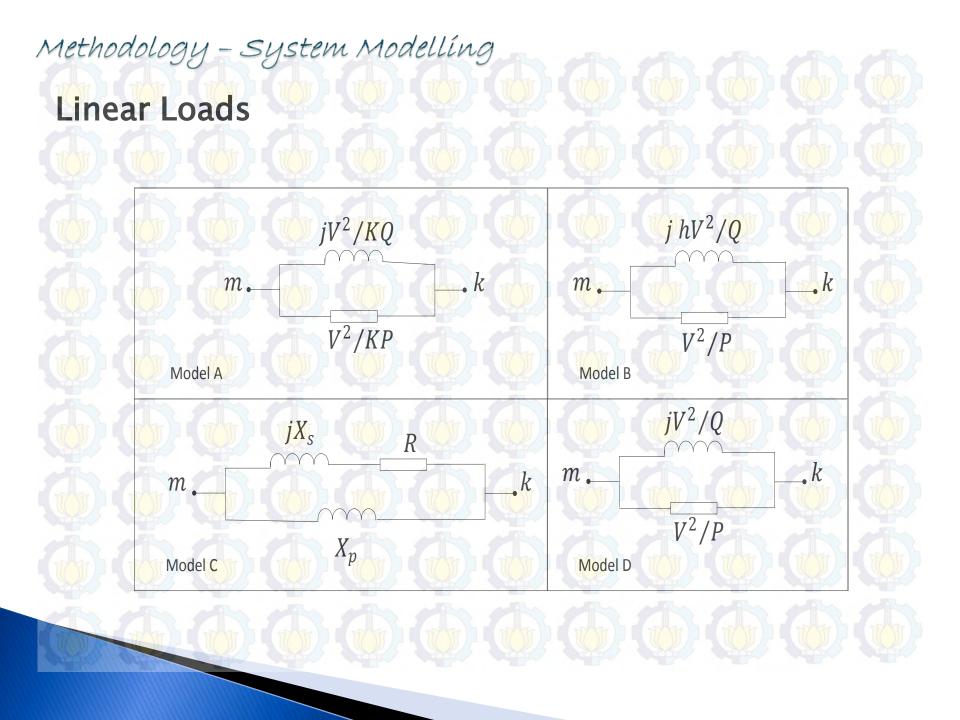
 $=\frac{{V_k}^2}{Q_{Cap}^{(h)}}$ V_k = the nominal voltage Q^b_{Cap} **Q**^a_{Cap} h = the harmonic order Q_{Cap} = the capacitor reactive power injection

 I_k^a

 I_k^b

 I_k^c


 Q_{Cap}^{c}


Methodology - System Modelling

Three-Phase Transformer

Power transformer impedances consist of:

- leakage impedance : can be omitted from the transformer model when operating in normal conditions
- magnetizing impedance : can always be included in the transformer model by a harmonic current source when operating in saturation conditions

Methodology - System Modelling

Nonlinear Loads

The harmonic current magnitude:

 $I^{(h)} = I_{rated} \frac{I_{h-spectrum}}{I_{1-spectrum}}$

Where,

h-spectrum:the typical harmonic-producing load spectrum of the harmonicproducing loads. Utility Transformer

 $X_m^{(h)}$

MIT

Motor

Load

 $R^{(h)}$

MIT

Passive

Load

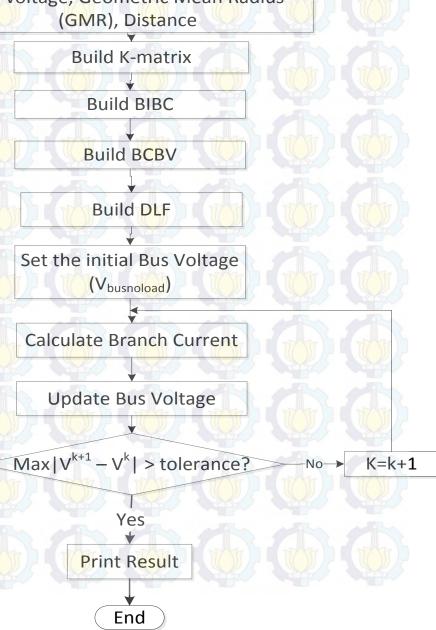
 $X^{(h)}$

 $I_h^{(h)}$

1111

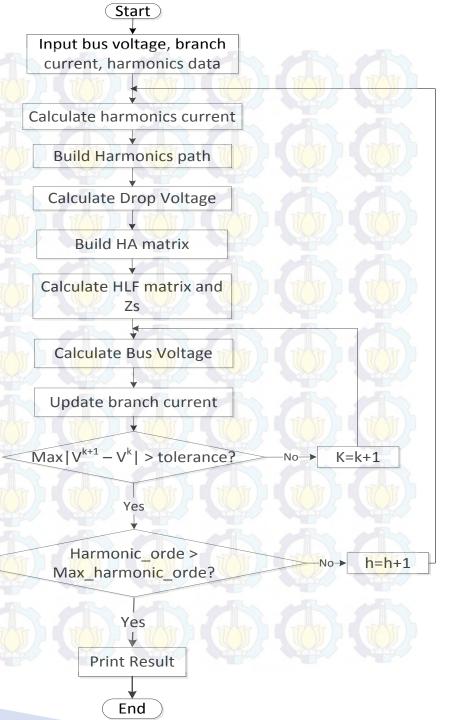
Harmonic

Source


Shunt Capacitor

 $X_{c}^{(h)}$

Methodology Harmonic Power Flow Start Input: line impedance, Load Power, initial bus voltage, Geometric Mean Radius (GMR), Distance


First part of harmonic power flow yields :

- magnitude and degree
 of bus voltage
- power loss in system

Methodology Harmonic Power Flow

- Data requirement for harmonic power flow:
 - the harmonics current percentage at every orde of harmonic
 - transformer
 - bus voltage
- It will yield:
 - bus voltage in fundamental and harmonic frequencies at each bus.
 - THD
 - Harmonics current

Methodology –Constraints Bus Voltage Limit

 $|V_{min} < |V_i| < V_{max}$ $|V_i| = \left| |V_i^{(1)}|^2 + \sum_{h=h_0}^{h_{max}} |V_i^{(h)}|^2 \right|$

 $V_{min}, V_{max} =$ lower, upper bound of bus voltage limit

 $|V_i|$ = rms value of i-th bus voltage i = 1,2,..., number of buses

2. Total Harmonic Distortion $THD_{(i)}(\%) \leq THD_{max}$ THI

THD_{max} =maximum allowable harmonic distortion level at each bus

3. Number and Size of Shunt Capacitor

 $Q_{ci} \le LQ_0, \ L = 1, 2, ..., n_c$

nc

 $\sum_{i=1} Q_{ci} \le Q_T$

 Q_0 = smallest capacitor size available

 Q_T = total reactive power demand

Methodology – Integration (DSA objective) $F = K_p P_{loss} + \sum_{i=1}^{n_{Cap}} K_{ci} Q_{ci} \quad (US\$)$ Where,:

 K_p =Active power loss annual cost per unit (US\$/kW/year)
 K_{ci} =Reactive power loss annual cost per unit at i-bus (US\$/kVAR/year);
 Q_{ci} =Injected reactive power at i-bus (kVAR); ⁿ_{Cap} =total unit of reactive power installment;
 P_{loss} =total power loss (kW).

Methodology - Integration (DSA objective)

n_{branch} hmax

 $P_{loss} = \sum_{i=1}^{N} P_{loss}^{(1)} + \sum_{i=1}^{N} \sum_{h=h_0}^{N} P_{loss}^{(h)} (kW)$

Where,:

 P_{loss} = total power loss (kW) = number of branch

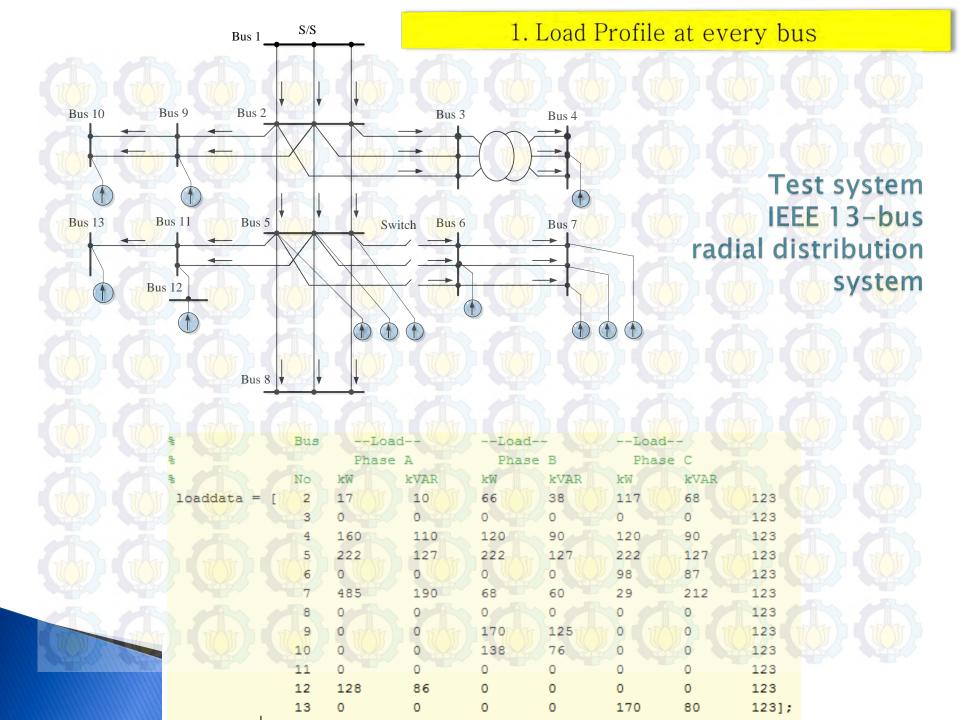
nbranch

- h_0 = minimum orde of harmonic
- $h_{max} = maximum orde of harmonic$

Methodology Integration (DSA objective)

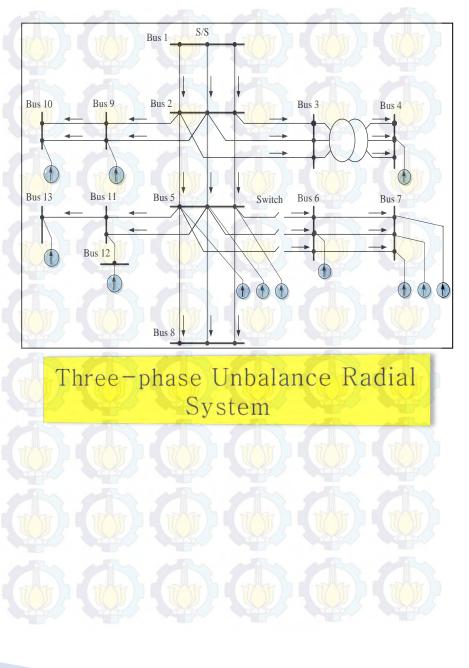
- Total losses
- THD level system, update for total loss system
- Enter data into the objective function is optimized and limitation are allowed.

Start Input generator, line, load, and harmonic source data Set the objective function and constraint **RDPF** subroutine Harmonics ? HPF subroutine YES Calculate objective function Harmonic Order > total harmonic order NO Save the best location and capacity of compensator Convergent? YES Print Result NO

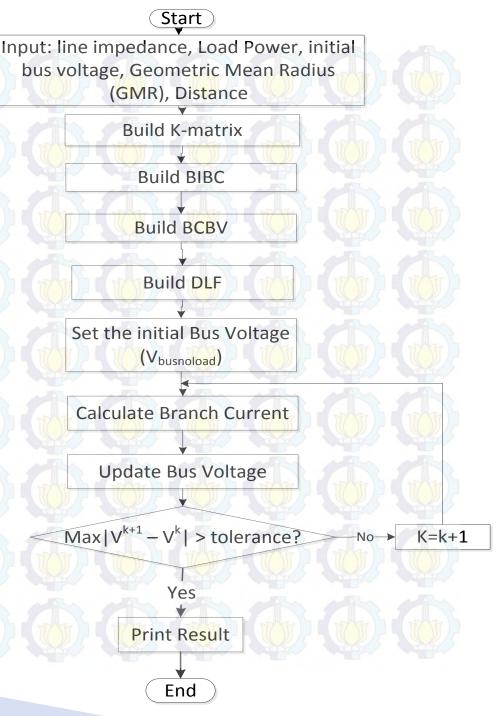

Iter = iter+1

Update the best location and capacity of compensator

End



Harmonic Source Data


$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Node	Phase-A		Phase-B		Phase-C	
Motor Passive 60% 40% 140.95 383.7 140.95 383.7 140.95 383.7 140.95 60% 60% 60% 60% 60% 60% 70%				kW	kVAR	kW	kVAR
Passive 40% 140.95 383.7 140.95 383.7 140.95 60% 60% 60% 60% 60% 30% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90% 170.53 51.33 Motors 15% 170.53 51.33 Motors 15% 15% 15% 15% 15% 90%	4	42.63	15		N CA	ASS I	CARD.
5 383.7 140.95 383.7 140.95 383.7 140.95 Motors 60% 30% 30% 30% 30% 30% Passive 10% 10% 10% 10% 10% 10% 6 10% 10% 10% 10% 10% 10% 6 10% 10% 10% 10% 10% 10% 6 10% 10% 10% 10% 15% 15% 7 468.02 189.07 468.02 189.07 468.02 189.07 468.02 189.07 7 468.02 15% 15% 15% 15% 15% Passive 50% 20%		Motor	60%				-
Motors 60% 60% 60% 60% 30%<		Passive	40%				
Flou. 30% 30% 30% 30% 30% 15% 15% </td <td>5</td> <td>383.7</td> <td>140.95</td> <td>383.7</td> <td>140.95</td> <td>383.7</td> <td>140.95</td>	5	383.7	140.95	383.7	140.95	383.7	140.95
Passive 10% 10% 10% 10% 6 170.53 51.33 Motors 15% Flou. 15% Flou. 15% 7 468.02 189.07 468.02 189.07 468.02 189.07 7 468.02 189.07 468.02 189.07 468.02 189.07 7 468.02 189.07 468.02 189.07 468.02 189.07 7 468.02 189.07 468.02 189.07 468.02 189.07 9 15% 15% 15% 15% 15% 9 170.53 54 15% 20% 20% 9 170.53 54 15% 20%		Motors	60%	25 29	60%	SR15	60%
Passive 10% 10% 10% 10% 6 170.53 51.33 Motors 15% Flou. 15% Flou. 15% 7 468.02 189.07 468.02 189.07 468.02 189.07 7 468.02 189.07 468.02 189.07 468.02 189.07 7 468.02 189.07 468.02 189.07 468.02 189.07 7 468.02 189.07 468.02 189.07 468.02 189.07 9 15% 15% 15% 15% 15% 9 170.53 54 15% 20% 20% 9 170.53 54 15% 20%		Flou.	30%		30%		30%
Motors 15% 7 468.02 189.07 468.02 189.07 468.02 189.07 468.02 189.07 468.02 189.07 468.02 189.07 468.02 189.07 468.02 189.07 468.02 189.07 15% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16%		Passive	10%		10%		10%
Motors 15% 7 468.02 189.07 468.02 189.07 468.02 189.07 468.02 189.07 468.02 189.07 468.02 189.07 468.02 189.07 468.02 189.07 468.02 189.07 15% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16%	6	1 1000			The second	170.53	51.38
7 468.02 189.07 468.02 189.07 468.02 189.07 468.02 189.07 7 468.02 189.07 468.02 189.07 468.02 189.07 9 15% 15% 15% 15% 15% 9 20% 20% 20% 20% 9 170.53 54 50% 20% 9 170.53 54 0 20% 9 170.53 54 0 0 9 170.53 54 0 0 9 170.53 54 0 0 9 170.53 54 0 0 9 170.53 54 0 0 0 10 20% 20% 0 0 0 0 10 20% 20% 20% 0 0 0 0 10 20% 20% 0 0 0 0 0 0 12 127.8 55.79 0 0 0 0						Motors	15%
7 468,02 189,07 468,02 189,07 468,02 189,07 468,02 189,07 468,02 189,07 468,02 189,07 15% 160							L IS 177 /
7 468.02 Motors 189.07 15% 468.02 189.07 15% 468.02 189.07 15% Flou. 15% 15% 15% 15% Passive 50% 20% 20% 20% 9 170.53 54 20% 20% 9 170.53 54 20% 20% 9 170.53 54 20% 20% 9 20% 20% 20% 20% 9 20% 20% 20% 20% 9 20% 20% 20% 20% 9 20% 20% 20% 20% 10 20% 20% 20% 20% 10 20% 20% 20% 20% 12 127.8 55.79 20% 20% 20% 12 127.8 55.79 10% 170 45 13 20% 20% 20% 20% 15% 13 13<		-			an 1	and the second sec	100 C
7 468.02 189.07 468.02 189.07 15% 15% 15% 15% Flou. 15% 15% 15% 15% 15% 15% Passive 50% 50% 50% 50% 20% 20% 9 170.53 54 Motors 20% 20% 20% 9 170.53 54 Motors 20% 20% 20% 10 20% 20% 20% 20% 20% 20% 10 230 73 Motors 20% 20% 20% 10 2127.8 55.79 20% 20% 20% 20% 12 127.8 55.79 20% 20% 20% 20% 13 10% 10% 10% 170 45 13 13 13 170 45 15% 13 13 13 16% 15% 15%							
Motors Flou. 15% 15% 15% 15% 15% 15% 15% 15% Passive 50% 20% 20% 20% 9 170.53 54 20% 20% 9 170.53 54 20% 20% 9 170.53 54 20% 20% 9 170.53 54 20% 20% 10 20% 20% 20% 20% 10 20% 20% 20% 20% 10 20% 20% 20% 20% 10 20% 20% 20% 20% 10 20% 20% 20% 20% 110 20% 20% 20% 20% 12 127.8 55.79 20% 20% 20% Passive 60% 10% 170 45 13 10% 10% 15% 15% 13 13 16% 16% 15%	7	468.02	189.07	468.02	189.07		189.07
Flou. 15% 50% 50% 50% 50% Others 20% 20% 20% 20% 20% 9 170.53 54 54 20% 20% 9 170.53 54 54 50% 20% 9 170.53 54 54 56 50% 10 20% 20% 20% 56 50% 50% 10 20% 20% 20% 20% 50% 50% 50% 10 20% 20% 20% 20% 20% 20% 20% 10 212 127.8 55.79 20% 20% 20% 20% Passive 60% 20% 20% 20% 20% 20% 20% 12 127.8 55.79 20% 170 45 13 10% 10% 170 45 13 13 16% 15% 15% 13 16% 15% 50% 50% <td></td> <td></td> <td></td> <td>100.02</td> <td></td> <td>100.02</td> <td></td>				100.02		100.02	
Passive Others 50% 20% 50% 20% 50% 20% 50% 20% 9 170.53 54 20% 9 170.53 54 20% 9 Passive Passive 20% 20% 10 Passive Passive 40% 0 10 Passive Passive 230 73 10 Passive Passive 20% Passive Passive 20% 12 127.8 55.79 Motors 20% Passive Passive 60% Flou. 10% 10% 10% 170 45 13 Image: Passive 50% Image: Passive 50%							
Others 20% 20% 20% 20% 20% 20% 9 170.53 54 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
9 170.53 54 Motors 20% Flou. 20% Passive 40% Other 20% 10 230 10 230 10 230 10 230 10 230 10 230 10 10 10 10 10 10 11 12 12 127.8 12 127.8 12 127.8 13 10% 13 10% 13 10% 13 10% 13 10% 13 10% 13 10%				7		77 (17)	STATE TO
Motors 20% Flou. 20% Passive 40% Other 20% Motors 20% Passive 40% Other 20% Passive 40% Others 20% Passive 60% 10% ASD 10% 10% Motors 10% 15% Flou. 15% Flou. 15% Passive 50% 50% 15%	9	Oulers	2070	170 53		ARD 1	2070
Flou. 20% Passive 40% Other 20% 10 230 73 Motors 20% Flour. 20% Passive 40% Other 230 73 Motors 20% Passive 40% Other 20% Passive 60% Flou. 10% ASD 10% 13 170 45 Motors 15% Flou. 15% Passive 50%							
Other Passive Other 40% 20% Other 230 73 10 230 73 Motors 20% Flour. 20% 10 10 10 10 10 10 230 73 10 10 10 10 10 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 15%<							1
Other 20% Other 20% 10 230 73 10 10 230 73 10 10 10 20% 10 10 10 20% 10 10 10 20% 12 127.8 55.79 20% 12 127.8 55.79 20% Passive 60% 10% 10% 13 10% 10% 170 45 13 10% 15% 15% 15% Flou. 10% 15% 50% 15%		- And				The	DATE
10 -230 73 10 -230 73 Motors 20% Flour. -230 12 127.8 55.79 Motors 20% Passive 60% Flou. 10% ASD 10% 13 170 45 Flou. 15% Flou. 15% Flou. 15% Flou. 15% Flou. 50%							
12 127.8 55.79 Motors 20% Motors 20% 0 0 0 0 12 127.8 55.79 0 0 0 0 12 127.8 55.79 0 0 0 0 0 13 0 10% 10% 10% 170 45 Motors 10% 10% 15% 15% Flou. 10% 15% 50% 50%	10			Other	2070	230	73
Image: Constraint of the constraint	10	100			The second		
Image: Constraint of the second se							
12 127.8 55.79 Others 20% Motors 20% 60% 10% 10% 10% 10% 10% 10% 10% 1170 45 13 13 10% 10% 15% 15% 15% 15% 15% 15% 50% 15%<				17) N(
12 127.8 55.79 Motors 20% Passive 60% Flou. 10% 13 10% 13 10% 13 10% 13 10% 13 10% 13 10% 13 10% 13 10% 13 10% 13 10% 13 10% 13 10% 13 10% 13 10% 14 10% 15% 15% 15% 15% 15% 50%							
Motors Passive Flou. ASD 20% 60% 10% 10 10 10 13 10% 10% 170 45 Motors 15% Flou. 15% Passive 10% 15% 50%	12	127.8	55 70			Others	2070
Passive 60% 0	12						
Flou. ASD 10% 10% 10% 10% 13 13 170 45 Motors 15% Flou. 15% Passive 50% 50%				7)) (77			
ASD 10% 13 13 10 10% 10% 10% 10% 10% 10% 10%				15 29	K/S N	All I	Sel 1
13 13 10 10 10 10 10 10 10 10 15% Flou. Passive 50%							
Motors Flou. Passive 50%	13	ASD	10%			170	15
Flou. 15% Passive 50%	15	- ma					
Passive 50%							
						and the second se	
						Others	30% 20%
	Total	1 040 25	400.8	622 44	255.5		522.98

Methodology Distribution Power Flow

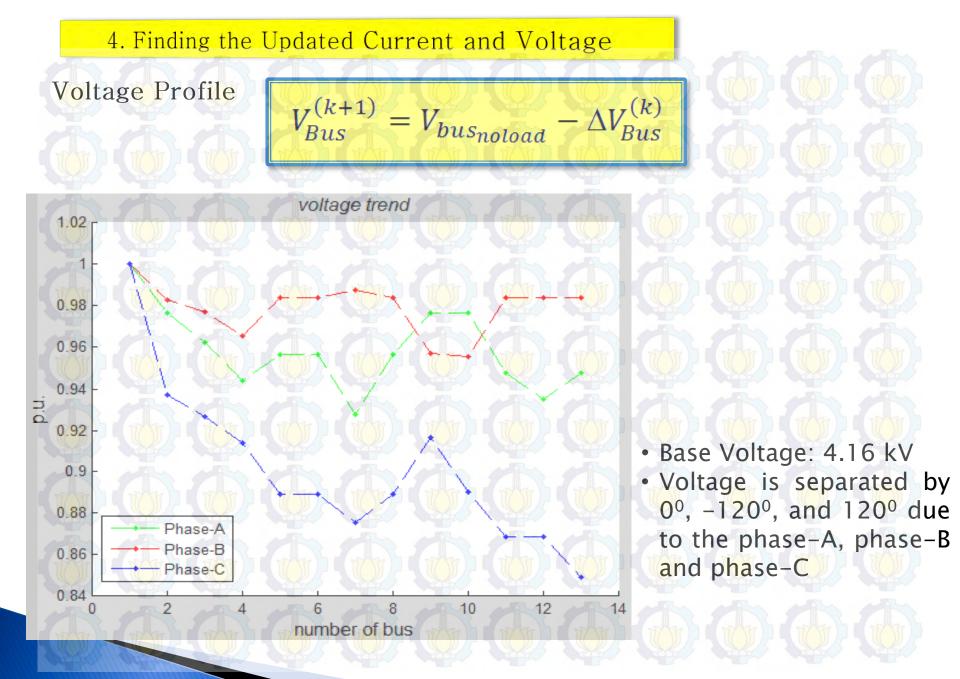
Distribution Power Flow yields :

- magnitude and degree
 of bus voltage
- power loss in system

4. Finding the Updated Current and Voltage

Current Profile

$I^{(k)}$	
$I_{bus(n_{bus})}^{(k)}$	1

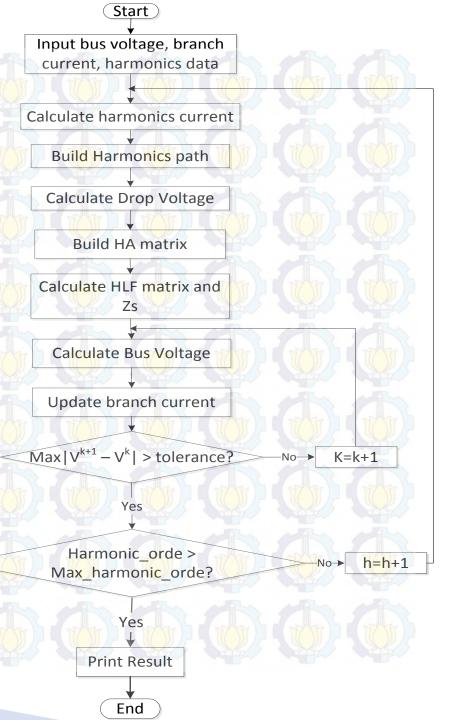

Branch	Iterati	ion = 1	Iteration = 19		
	Mag. (A)	Degree (°)	Mag. (A)	Degree (•)	
1A	4.7411	-30.4655	5.1118	-33.7412	
1B	18.3071	-149.9315	18.8664	-151.7691	
1C	32.5302	89.8350	33.4336	88.1047	
2A	0	0	0	0	
2B	0	0	0	0	
2C	0	0	0	0	
3A	46.6742	-34.5085	5.1231	-38.2144	
3B	36.0577	-156.8699	37.2992	-158.8616	
3C	36.0577	83.1301	37.2105	81.1925	
4A	61.4807	-29.7727	66.5131	-33.0009	
4B	61.4807	-149.7727	6.5011	-152.3117	
4C	61.4807	90.2273	64.5171	87.8118	
5A	0	0	0	0	
5B	0	0	0	0	
5C	31.5014	78.4028	33.3862	75.9341	
6A	125.2136	-21.3929	139.4609	-26.1601	
6B	21.7996	-161.4237	23.9006	-164.3622	
6C	51.4361	37.7893	54.5837	34.9364	

7A	0	0	0	0
7B	0	0	0	0
7C	0	0	0	0
8A	0	0	0	0
8B	50.7234	-156.3268	52.7617	-158.6027
8C	0	0	0	0
9A	0	0	0	0
9B	37.8711	-148.8427	39.5083	-151.0478
9C	0	0	0	0
10A	0		0	0
10B	0	0	0	0
10C	0	0	0	0
11A	37.0691	-33.8962	40.9362	-37.3629
11B	0	0	0	0
11C	0	0	0	0
12A	0	0	0	0
12B	0	0	0	0
12C	45.1642	94.7989	47.6046	92.1342

 $P^{sh}_{(n_{bus})} + jQ^{sh}_{(n_{bus})}$

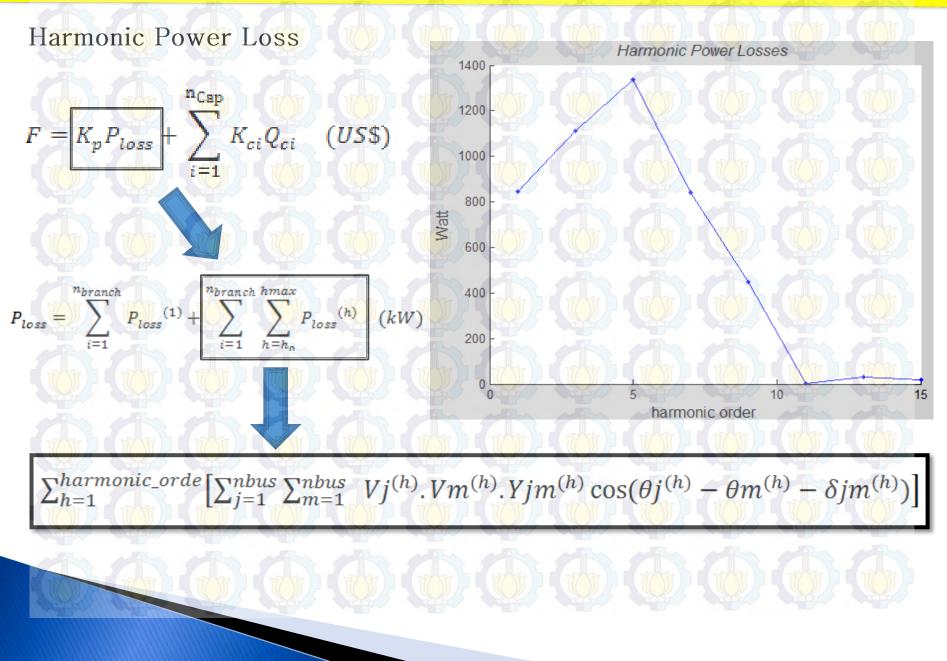
Bus(n_{bus})

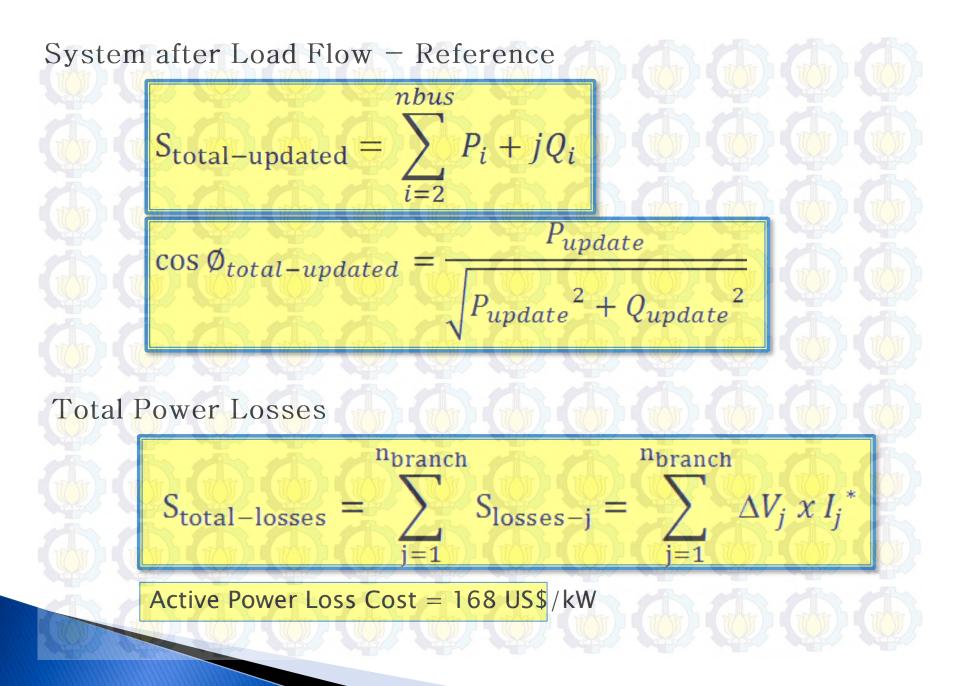
 $V^{(k)}$


Methodology Harmonic Power Flow

HPF requires specific data

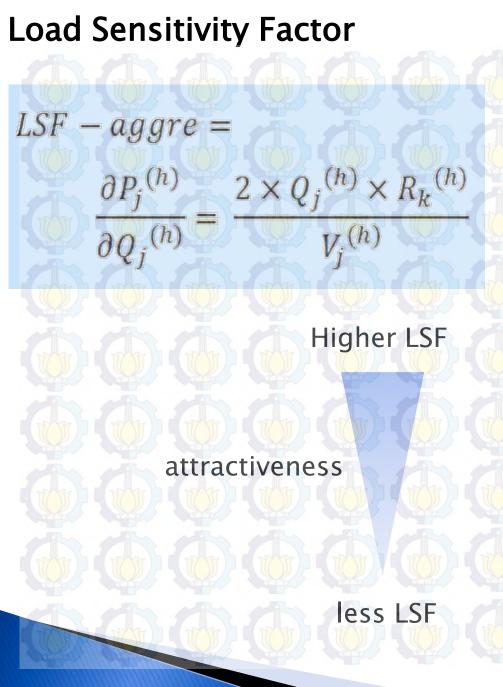
- the harmonics current percentage at every orde of harmonic
- transformer
- bus voltage


HPF yields:


- bus voltage in fundamental and harmonic frequencies at each bus.
- THD
- Harmonics current

5. Finding Total Harmonic Distortion Voltage Level	and Ha	armonic	Pow	er Loss
	Harmo	onic Inje	ected (Current
$V_{n_{bus}}^{(h)} = HA \ x \ I_{n_{bus}}^{(h)}$		Iteratio	n = 1	
$V_{n_{bus}}^{(h)} = HA \times I_{n_{bus}}^{(h)}$	Branch	Mag. (uA)	Branch	Mag. (uA)
	1A	0.0441	7A	0.0441
THD in Voltage	1B	0.0424	7B	0.0416
2.5 r	1C	0.0286	7C	0.0315
	2A	0.0441	8A	0.0441
	2B	0.0424	8 B	0.1022
2	2C	0.0286	8C	0.0196
	3A	0.0441	9A	0.0441
Total harmonic distortion	3B	0.0424	9B	0.1044
	3C	0.0286	9C	0.0249
	4A	0.0441	10A	0.0918
	4B	0.0416	10B	0.0416
	4C	0.0315	10C	0.0335
0.5 - Phase-A	5A	0.0441	11A	0.0918
Phase-B	5B	0.0416	11B	0.0416
	5C	0.0315	11C	0.0335
	6A	0.0441	12A	0.0918
number of bus	6B	0.0416	12B	0.0416
	6C	0.0315	12C	0.0335

5. Finding Total Harmonic Distortion Voltage Level and Harmonic Power Loss


111	AAA	AA		2021	
	GE	NERATION			
kW	1,238.429	762.277	1,116.986	3,117.692	AAA
kVAR	529.503	609.675	456.203	1,595.380	
kVA	1,346.878	976.099	1.206.557	3,529.533	AAA
PF	0.919	0.781	0.926		
		LOAD			
kW a	1,055.000	809.000	1,247.000	3,111.000	Capacity
kVAR	508.000	533.000	702.000	1,743.000	refference of
kVA	1,170.935	968.798	1,431.018	3,570.751	total capacitor
PF	0.901	0.835	0.871		
The la		LOSSES		THE TREE	
kW	91.715	23.361	65.007	180.083	power losses
kVAR	10.751	38.338	122.899	171.987	The star star
kVA	92.342	44.895	139.032	276.270	
	TOTAL LOSS	SES (US\$)	30,253.944		AAA
	*** with losses				

Total losses in US\$ which is calculated from : Power losses * 168 US\$/kW **Capacitor Installation Approach** with **Direct Search Algorithm**

Capacitor Installation Approach

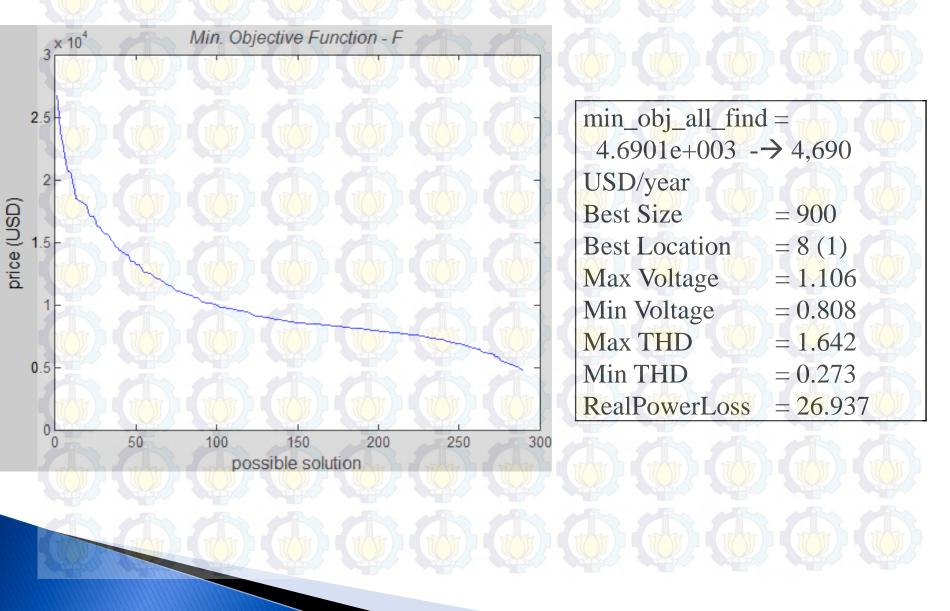
- Direct search algorithm with load sensitivity factor
- a. Single Size Capacitor Installation
- b. Maximum Size of Capacitor Installation
- Direct search algorithm with LSF-based Random
 prediction

For those strategy, the references will be as follows:
 •Total cost of active power losses = 30,253.944 USD/year
 •Active power losses = 180.083 kW
 •Maximum reactive power limit = 1,743 kVAR
 •Maximum THD level = 5 %

Bra	nch	phase	LSF - aggregated
11	12	1	4,32
9	10	2	4,13
6	7	1	3,69
6	7	2	3,55
1	2		2,53
2 (5		2,51
5	6		2,51
5	8		2,51
2	3	1	2,50
5	11		2,50
3	4	1	2,47
1	2	2 7	1,83
2	5	2	1,82
2	6	2	1,82
5	8	2	1,82
2	3	2	1,79
2	9	2	1,79
3	4	2	1,75
5	11	3	0,81
2	5	3	0,79

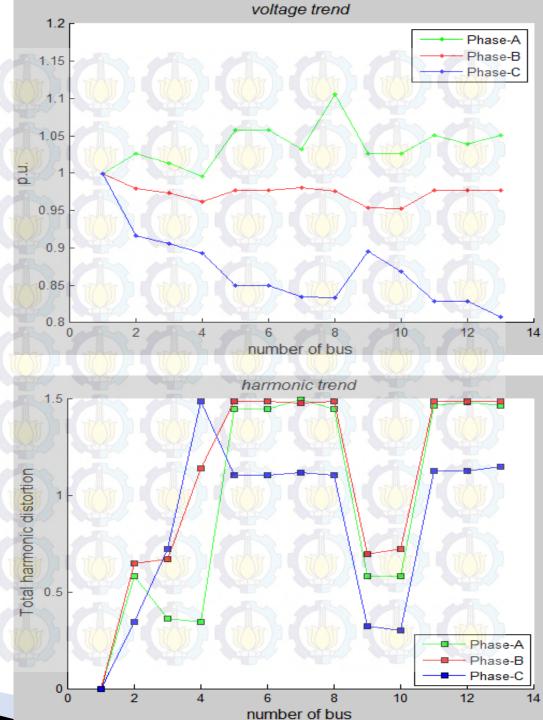
Ia. Single Size Capacitor Installation By the LSF got in previous

The total prospective buses are 29 locations
Total searching space will be 29x10=290 trial
From the LSF, the order of capacitor placement will be as the following picture

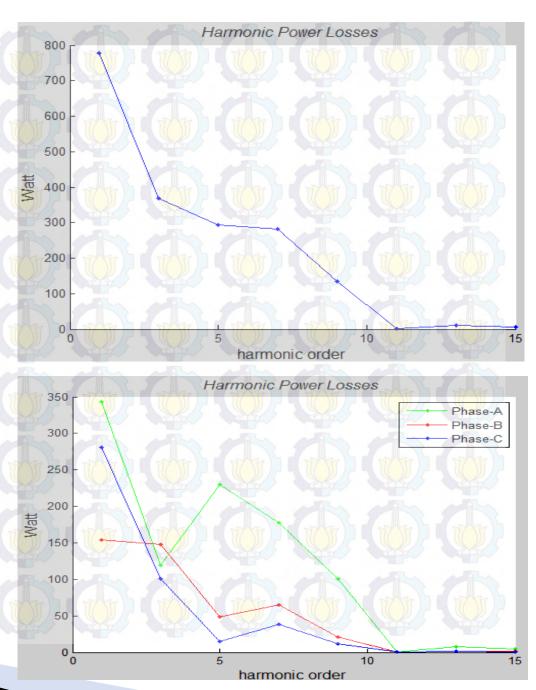

	% sen	ld_bu	s rec	ieve_bus pha	ase LSF b	y aggreg	ated
	11	12	1	4.3245			
	9	10	2	4.1257			
	6	7	1	3.6947			
	6	7	2	3.5505			
	1	2	1	2.5302			
	2	5	1	2.5141			
	5	6	1	2.5141			
	9	10	3	0.29			
1100							

Capacitor	_Size	Location
150	12 - 1	46.88
150	10 - 2	47.72
150	7 - 1	44.530
150	7 - 2	49.795
150	2 - 1	49.725
150	5 - 1	47.473
150	6 - 1	49.316
150	8 - 1	49.091
150	3 - 1	49.270
150	11 - 1	48.50
150	4 - 1	46.654
150	2 - 2	49.672
150	5 - 2	50.909
150	6 - 2	48.994
150	8 - 2	48.55
150	3 - 2	48.88
150	9 - 2	51.115
150	4 - 2	50.38
150	11 - 3	50.40
150	5 - 3	45.399
150	6-3	48.31
150	8-3	50.57
150	9-3	50.313
150	4 - 3	46.91
150	2 - 3	49.67
150	3 - 3	50.40
150	7 - 3	42.944
150	13 - 3	43.0
150	10 - 3	42.6
300	12 - 1	40.7
 1500	10 - 3	97.3

Result of Single Size Capacitor Installation


pacitor_	_Size	Location	Active_PLoss	s_kW Losses_Price_USD	Vmax - Vmin
50	12 - 1	4 <mark>6.8</mark> 81	7876.052	0.986 - 0.838	
50	10 - 2	47.721	8017.163	0.998 - 0.849	
50	7 - 1	44.530	7481.080	0.988 - 0.842	
50	7 - 2	49.795	8 <mark>365.</mark> 577	1.010 - 0.848	
50	2 - 1	49.725	8353.740	0.987 - 0.846	
50	5 - 1	47.473	7975.529	0.986 - 0.842	
50	6 - 1	49.316	8285.095	0.986 - 0.842	
50	8 - 1	4 <mark>9.091</mark>	8 <mark>247.</mark> 324	0.986 - 0.842	
50	3 - 1	49.270	8277.353	0.987 - 0.845	
50	11 - 1	48.567	8159.260	0.986 - 0.838	
50	4 - 1	46.654	7837.792	0.987 - 0.845	
50	2 - 2	49.672	8 <mark>344.</mark> 942	0.998 - 0.849	
50	5 - 2	50.909	8552.683	1.007 - 0.848	
50	6 - 2	48.994	8230.943	1.007 - 0.848	
50	8 - 2	4 <mark>8.55</mark> 0	8 <mark>156.</mark> 387	1.011 - 0.848	
50	3 - 2	48.888	8213.135	0.998 - 0.849	
50	9 - 2	51.115	8587.255	0.998 - 0.849	
50	4 - 2	50.381	8464.078	0.998 - 0.849	
50	11 - 3	50.407	8468.458	0.981 - 0.885	
50	5 - 3	45.399	7626.952	0.981 - 0.872	
50	6-3	48.317	8117.228	0.981 - 0.872	
50	8 - 3	50.571	8 <mark>495.</mark> 871	0.981 - 0.872	
50	9-3	50.313	8452.636	0.985 - 0.860	
50	4 - 3	46.915	7881.638	0.985 - 0.861	
50	2 - 3	49.679	8346.099	0.985 - 0.860	
50	3 - 3	50.405	8468.112	0.985 - 0.861	
50	7 - 3	42.944	7214.646	0.980 - 0.872	
50	13 - 3	43.098	7240.457	0.981 - 0.897	
50	10 - 3	42.677	7169.800	0.985 - 0.860	
00	12 - 1	40.736	6843.569	1.008 - 0.826	
 500	10 - 3	97.344	16353.713	1.155 - 0.858	

Result of Optimal Capacitor Placing and Location with LSF-Aggregated 1x900 kVAR at bus-8 phase-A


Result of Optimal Capacitor Placing and Location with LSF-Aggregated 900 kVAR at bus-8 phase-A

- Bus-13 phase-C has the lowest voltage
- Bus-8 phase-A has the highest voltage
- The voltage condition is not within the standard.
- Recent harmonic profile are significantly within the limit.
- THD level can comply with the constraint, which is not exceeding 5 %.

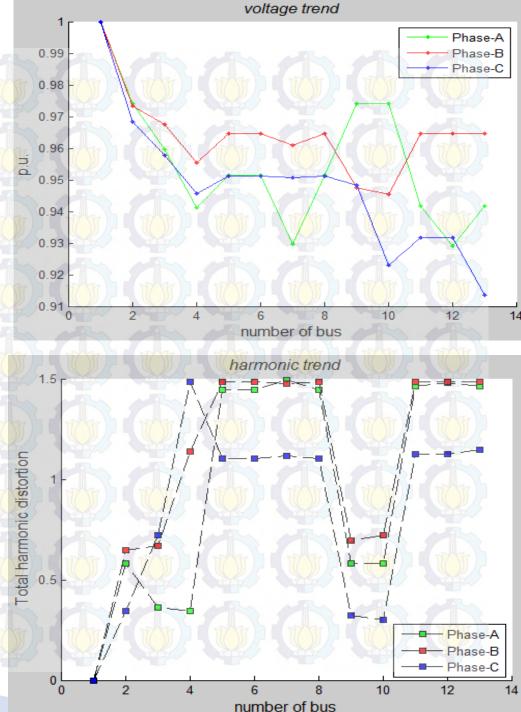
Result of Optimal Capacitor Placing and Location with LSF-Aggregated 900 kVAR at bus-8 phase-A

- power losses are significantly decreasing in comparison with the base case system.
- power losses in second last order of harmonic are very small
- By placing 900 kVAR at bus-8 phase-A, the harmonic penetration is reduced by half
- The harmonic penetration in phase-A are still high because it is loaded by more harmonic loads.

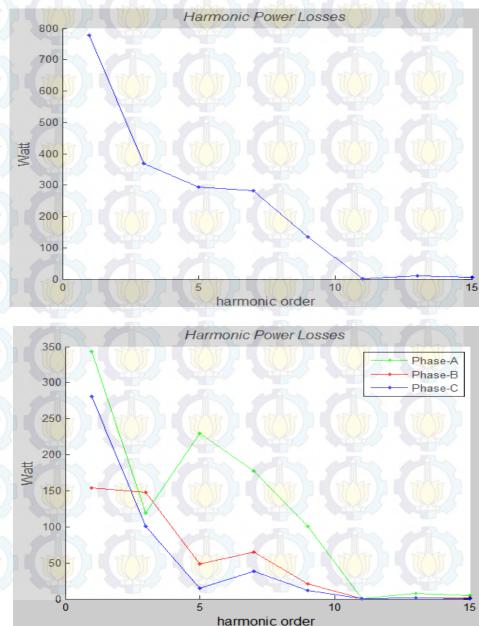
1b. Maximum Size Capacitor Installation with voltage constraint

- By the LSF got in previous, the focus will be on poor voltage profile, then
- The total prospective buses are 7 locations
- Total searching space will be 7x10=70 trial
- The order of capacitor placement will be as the following picture

send	bi	is recieve	bus phase LSF by aggregated
			8.0860
5	3	0.8894	7.9351
6	3	0.8894	7.9351
8	3	0.8894	7.9351
7	3	0.8754	4.5126
13	3	0.8492	4.0141
10	3	0.8900	2.9284
	11 5 6 8 7 13	11353638373133	1130.8688530.8894630.8894830.8894730.87541330.8492


Result	of Single	Size Capac	itor Installati	on	6 10 1	6
Capaci	tor_Size	Location	Active_PLos	s_kW	Losses_Price_USD	Vmax - Vmin
150	11 - 3	50.407	8468.458	0.98	1 - 0.885	A 10
150	5 - 3	45.399	7626.952	0.98	1 - 0.872	
150	6-3	48.317	8117.228	0.98	1 - 0.872	
150	8 - 3	50.571	8495.871	0.98	1 - 0.872	A A
150	7 - 3	42.944	7214.646	0.98	0 - 0.872	
150	13 - 3	43.098	7240.457	0.98	1 - 0.897	
150	10 - 3	42.677	7169.800	0.98	5 - 0.860	A M
300	11 - 3	51.654	8677.881	0.07	7 - 0.912	
300	5 - 3	42.256	7098.942		7 - 0.912	
300	6 - 3	47.846	8038.141		7 - 0.894	The state
300	8 - 3	52.592	8835.437		7 - 0.893	es ses
300	0 3 7 - 3	37.539	6306.538		5 - 0.894	
300	13 - 3	37.833	6355.950		7 - 0.912	THE THE
300	10 - 3	36.663	6159.398		2 - 0.871	
				G		
1500	11 - 3	56.199	9441.436	1.13	2 - 0.925	
1500	5 - 3	51.192			0 - 0.916	The strength
1500	6 - 3	72.636			0 - 0.916	25 July
1500	8 - 3	95.062			6 - 0.903	
1500	7 - 3	48.361	8124.676		5 - 0.907	a sta
1500	13 - 3				0 - 0.927	
1500	10 - 3				5 - 0.858	

Result of Optimal Capacitor Placing and Location with LSF-Aggregated 3x150 kVAR at bus-7 phase-C


Result of Optimal Capacitor Placing and Location with LSF-Aggregated 3x150 kVAR at bus-7 phase-C

- Voltage at bus-13 phase-C is the lowest
- Bus-9 phase-A and bus-10 phase-A has the highest voltage.
- The voltage condition is within the standard.
- Recent harmonic profile are significantly within the limit.
- THD level can comply with the constraint, which is not exceeding 5 %.

Result of Optimal Capacitor Placing and Location with LSF-Aggregated 3x150 kVAR at bus-7 phase-C

- power losses are significantly decreasing in comparison with the base case system.
- power losses in second last order of harmonic are very small
- By placing 900 kVAR at bus-8 phase-A, the harmonic penetration is reduced by half
- The harmonic penetration in phase-A are still high because it is loaded by more harmonic loads.

2. Capacitor Installation with Random Initialization

- Each bus will be identified by placing a set of capacitor to obtain the first initial condition of prospective bus.
- The total prospective buses are 10 locations
- Total searching space: 10x10x100 iteration=100 trial set
- The order of capacitor placement will be as the following picture

```
data_capacitor = [-150*1e3 150*1e3];
data_location = [1 36];
num_particle = 10; % number of random search particle
iteration_max = 100; % Maximum Iteration
num_variable = 10; % total candidate location
```

 Capacitor Installation with Random Initialization
 Put the initial range of searching candidate. Each candidate will be varied among data_capacitor range.

position_particle(yy,xx)= abs((data_position(1,1)+(data_position(1,2)- data_position(1,1))*rand));

The initial place of the capacitor will be the determined from the random value between data_location which is the total number of bus without slack bus.

position_location(yy,xx)= round(data_location(1,1)+(data_location(1,2)-data_location(1,1))*rand);

>> position_p	article ***	in kVAR bas	ed			THE T		S (The S	(TATA)
55.2879	68.5001	136.1521	159.3203	35.3642	21.0342	138.6925	65.9077	77.0508	23.8421
70.5285	341.3245	69.0446	51.8890	236.4919	214.5820	69.5334	287.4869	99.9997	120.0453
25.5656	66.2997	22.8659	72.8153	13.6158	177.3984	137.3499	275.5850	69.5320	114.5795
27.4455	33.0975	43.3062	44.8373	18.3528	53.4137	110.7163	116.7248	68.2843	69.5763
50.9827	17.9850	5.8714	39.2933	74.9974	174.8063	24.7548	19.2897	250.7143	57.2615
12.8672	18.3486	6.8317	44.9025	5.3814	0.3290	36.2878	85.5971	118.1532	161.0354
210.6770	88.5317	178.6875	71.3577	164.7110	195.6544	112.2998	125.1934	41.3906	131.2099
25.5257	66.4483	52.9715	192.3479	168.6973	55.2270	36.2775	186.6170	195.9172	70.2132
66.3839	113.2313	241.6151	33.4768	160.6571	52.7339	126.6370	177.5725	109.6706	125.4770
34.4848	87.3644	144.9357	24.4538	88.7845	37.1283	109.8410	104.3029	32.4009	106.3166
	2	3	4 4	5	6	17 m	8777	97	10
			can	ndida <mark>te set</mark> o	f 10 particle	es			

	111	12								
	A	1	A	11	h1	ħ.	The second	A.	A	A A A
position_loc	ation =									
13	33	12	14	21	4	27	27	17	30	m m
26	11	19	30	30	8	5	17	30	15	
6	16	11	9	19	15	26	18	10	26	
7	6	16	11	2	6	10	24	12	26	A A A
9	6	27	28	30	30	10	17	36	16	TRACT TRACT
26	16	10	34	5	36	14	28	8	30	
19	15	26	2	20	8	9	-11	24	4	and and and
2	6	16	23	21	3	8	18	5	5	STATI STATI STAT
16	31	5	2	21	27	14	8	17	11	
18	28	28	21	23	6	8	17	13	22	
1	2	3	4	5	6	7	8	9	10	candidate place

The result of DSA on placing 1 set of 10 capacitors

3.7 × 10 ⁴ 3.6			min_obj_fin 6.0087e+	
3.5 3.4 3.3 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1			Min Voltage Max THD Min THD	pn = 7 (3) e = 0.974
WIWI	Best Capacitor	Location Index	Bus location	
	Best Capacitor 150	STAL STAL	Bus location 9-A	
		Location Index		
	150	Location Index 28	9-A	
	150 70	Location Index 28 10 28 10 28 17	9-A 3-A 9-A 5-B	
	150 70 3 65 6	Location Index 28 10 28 10 28 17 8	9-A 3-A 9-A 5-B 2-B	
	150 70 3 65 6 150	Location Index 28 10 28 17 8 24	9-A 3-A 9-A 5-B 2-B 7-C	
	150 70 3 65 6 150 150	Location Index 28 10 28 17 8 24 5	9-A 3-A 9-A 5-B 2-B 7-C 1-B	
	150 70 3 65 6 150	Location Index 28 10 28 17 8 24	9-A 3-A 9-A 5-B 2-B 7-C	
	150 70 3 65 6 150 150	Location Index 28 10 28 17 8 24 5	9-A 3-A 9-A 5-B 2-B 7-C 1-B	

The result of DSA on placing 1 set of 3 capacitors

Best Capacitor	Location Index	Bus location
240	15	5C
160	16	6A
113	21	7C

Result of Optimal Capacitor Placing and Location with PSO algorithm (source: Eajal and El-Hawary, 2010)

	Case-1	Case-2	Case-3
Minimum Bus Voltage in p.u	0.8954	0.9555	0.9556
Maximum Bus Voltage in p.u	0.9863	0.9945	0.9947
Maximum THD in %	4.459	19.0335	1.723
	TT TT	(5b) 300	(5c) 600
Reactive Power Injection in kVAR		(6a) 450	(6a) 450
and and and and and	TTY T	(6c) 600	(6b) 300
Active Power Losses in kW	192.75	164.99	165.22
Cost Function in USD/year	32,326.69	28,069	28,107
Net Savings in USD/year		4,257.69	4,219.69
Net Savings in %		13.17	13.05

Result of Optimal Capacitor Placing and Location with LSF-Aggregated

AAAAAA	Case-1	Case-2	Case-3
Minimum Bus Voltage in p.u	0.849	0.808	0.914
Maximum Bus Voltage in p.u	0.988	1.106	0.974
Maximum THD in %	2.4	16	1.78
Depative Derver Injection in		(8A) 900	(7C) 150
Reactive Power Injection in		AA	(7C) 150
kVAR			(7C) 150
Active Power Losses in kW	180.083	153.146	144.995
Cost Function in USD/year	30,253.94	2 <mark>5,</mark> 728. <mark>5</mark> 3	24,359.16
Net Savings in USD/year		4,690	6,009
Net Savings in %		15.5	19.86

Result of Optimal Capacitor Placing and Location with DSA

	Case-1	Case-2	Case-3
Minimum Bus Voltage in p.u	0.849	0.900	0.914
Maximum Bus Voltage in p.u	0.988	0.9954	0.974
Maximum THD in %	2.4	3.32	1.78
Reactive Power Injection in kVAR		(5C) 240	(9A) 150
		(6A) 160	(3A) 70
	A PROVIDE	(7C) 113	(9A) 3
		The state	(5B) 65
			(2B) 6
			(7C) 150
			(1B) 150
			(2A) 77
			(3B) 15
	1 AM		(5C) 80
Active Power Losses in kW	180.083	150.103	150.244
Cost Function in USD/year	30,253.94	24,166.80	25,240.99
N <mark>et</mark> Savings in USD/year		5,036.64	5.013
Net Savings in %		16.65	16.57

Conclusions

- Application of direct search algorithm in capacitor placement and sizing prediction could achieve significant result on finding the maximum net savings while maintaining the system voltage within the standard and THD limit.
- Direct search performance finds more significant net savings when it is combined with load sensitivity factor.
- Three strategies has been done to see the performance of direct search algorithm which are applying single and mutiple fixed shunt capacitor with and without load sensitivity factor.
- The result provide some understanding when the harmonics is taken into account, the system will be secure from the damage caused by hitting the thermal limit due to the less power system losses so that current that flows in the system.
- It is necessary to concern about harmonic on the system because harmonics can increase the current and when it flowing through branch impedance, the power losses of the system will be higher than normal condition.

Recommendations

- Allocation can be upgraded by using maintenance cost, installation cost, and penalty cost instead of only using aggregated installation cost of capacitor.
- DSA can be managed to work in active power flow so that the capacitor allocation strategy can solve both passive and active power system that is very suitable for the real condition.
- This capacitor allocation strategy can be implemented into the real time system which the load composition of the distribution network will be clearly available, especially in harmonic source load. The load composition is very important which can determine the performance of the algorithm.
- Load modelling can be done in more detail such as exponential load and composite load for further understanding of the shunt capacitor application effect on distribution network.

- Aman, M.M., Jasmon, G.B., Bakar, A.H.A., Mokhlis, H., Karimi, M., (2014). Optimum Shunt Capacitor Placement In Distribution System-A Review And Comparative Study. Renewable and Sustainable Energy Reviews 30 page 429-439.
- Arrillaga, J., Watson, Neville R., (2003). Power System Harmonics. ISBN-10: 0470851295, ISBN-13: 978-0470851296, Second Edition. England: Wiley
- Blooming, T.M., Carnovale, D.J, (2008). Capacitor Application Issues. IEEE Transaction on Industry Applications. Vol.44, Issue:4, pp. 1013-1026.
- Distribution System Analysis Subcommittee, (2004). IEEE 13 Node Test Feeder. IEEE Power Engineering Society. Power System Analysis, Computing and Economics Committee. The Institute of Electrical and Electronics Engineers. Inc.
- Eajal, A.A., El-Hawary, M.E., (2010). Optimal Capacitor Placement and Sizing in Distorted Radial Distribution Systems Part I: System Modeling and Harmonic Power Flow Studies. IEEE conference: 14th International Conference on Harmonics and Quality of Power. E-ISBN: 978-1-4244-7245-1. Pp. 1-9
- Eajal, A.A., El-Hawary, M.E., (2010). Optimal Capacitor Placement and Sizing in Distorted Radial Distribution Systems Part II: Problem formulation and solution method. IEEE conference: 14th International Conference on Harmonics and Quality of Power. E-ISBN: 978-1-4244-7245-1. Pp. 1-6.
- Eajal, A.A., El-Hawary, M.E., (2010). Optimal Capacitor Placement and Sizing in Distorted Radial Distribution Systems Part III: Numerical Results. IEEE conference: 14th International Conference on Harmonics and Quality of Power. E-ISBN: 978-1-4244-7245-1. Pp. 1-8.

- Eajal, A.A., El-Hawary, M.E., (2010). Optimal Capacitor Placement and Sizing in Unbalanced Distribution Systems with Harmonics Consideration Using Particle Swarm Optimization. IEEE Transactions On Power Delivery, Vol. 25, No. 3. Pp. 1734–1741.
- Elamin, I.M., (1990). Fast decoupled harmonic loadflow method. Industry applications society annual meeting. Conference Record of 1990 IEEE. ISSBN:0-87942-553-9. Vol.2 Pp. 1749-1756.
- El-Fergany, Attia A., Abdelaziz, A.Y., (2014). Capacitor placement for net saving maximization and system stability enhancement in distribution networks using artificial bee colony-base approach. Electrical Power and Energy Systems vol. 54 page 235-243. ELSEVIER
- IEEE standard 519–1992. IEEE recommended practices and requirement for harmonic control in electrical power system. American National Standard (ANSI). Industry Applications Society/Power Engineering Society.
- Kersting, W.H., (2002). Distribution System Modelling and Analysis. USA: CRC Press.
- Murthy, K.V.S Ramachandra, Karayat, Mamta, Das, P. K., Shankar, A., Ravi, Rao, G. V.Srihara, (2013). Loss Less Distribution using Optimal Capacitor and Type-3 DG Placement. International Journal of Engineering Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569).

- Pesonen, M. A., (1981). Harmonics, characteristic parameters, methods of study, estimates of existing values in the network. Electra, vol.77, pp.35–36.
 - Raju, M. Ramalinga, Murthy, K.V.S. Ramachandra, Ravindra, K., (2012). Direct search algorithm for capacitive compensation in radial distribution systems. Electrical Power and Energy Systems vol.42 pp. 24–30, ELSEVIER.
 - Singh, S.P., Rao, A.R., (2012). Optimal allocation of capacitors in distribution systems using particle swarm optimization. Electrical Power and Energy Systems. Vol. 43. Issue 1, pg.1267–1275. ELSEVIER.
 - Syai`in, M., Lian K. L., Yang, N., Chen T., (2012). A distribution power flow using particle swarm optimization. Power and Energy Society General Meeting 2012 IEEE. ISSN:1944-9925. Pp. 1-7.
 - Task Force in Harmonics Modelling and Simulation, (1996). Modelling and simulation of the propagation of harmonics in electric power networks part II: Sample Systems and examples".

- Task Force in Harmonics Modelling and Simulation, (1996). Modelling and simulation of the propagation of harmonics in electric power networks part I: Concepts, Models and Simulation Techniques". IEEE Transaction. Power Delivery, vol. 11, no.1, Jan. pp. 452–465.
- Teng, J. H., (2000). A network-topology based three phase load flow for distribution systems. Proceedings of National Science Council ROC (A), vol. 24, no:4. pp. 259–264.
- Teng, J.H., (2003). A Direct Approach for Distribution System Load Flow Solution. IEEE Transactions On Power Delivery, Vol. 18 No.3, ISSN:0885-8977,pp. 882-887.
 - Teng, J. H., Yang, Chuo-Yean, (2007). Backward/forward sweep-based harmonic analysis method for distribution system. IEEE Transaction on Power Delivery, vol. 22, no.3, pp. 1665–1672.
 - Ulinuha, A., Masoum, M.A.S., Islam, S.M., (2007). Unbalance power flow calculation for a radial distribution system using forward-backward propagation algorithm. Power Engineering Conference, AUPEC. ISBN: 978-0-646-49499-1. Page 1-6

