

TUGAS AKHIR - RC14 1501

STUDI PENGGUNAAN *LEAD RUBBER BEARING* SEBAGAI BASE ISOLATOR DENGAN MODEL JEMBATAN KUTAI KARTANEGARA PADA ZONA ZONA GEMPA DI INDONESIA

INDRAYON MANALU NRP. 3111 100 089

Dosen Pembimbing : Dr. Ir. Hidayat Soegihardjo, MS

Jurusan Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember Surabaya 2015

FINAL PROJECT - RC14 1501

STUDY OF THE USAGE LEAD RUBBER BEARING BEARING AS A BASE ISOLATOR ON KUTAI KARTANEGARA BRIDGE MODEL IN INDONESIA SEISMIC ZONES

INDRAYON MANALU NRP. 3111 100 089

Lecture : Dr. Ir. Hidayat Soegihardjo, MS

Civil Engineering Civil Engineering and Planning Deparment Institut Teknologi Sepuluh Nopember Surabaya 2015 STUDI PENGGUNAAN LEAD RUBBER BEARING SEBAGAI BASE ISOLATOR DENGAN MODEL JEMBATAN KUTAI KARTANEGARA PADA ZONA ZONA GEMPA DI INDONESIA

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik

pada Bidang Studi Struktur Program Studi S-1 Jurusan Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember

> Oleh: INDRAYON MANALU NRP. 3111 100 089

Disetujui oleh Pembimbing Tugas Akhir:

JURUSAN EKNIK SIPL

1. Dr. Ir. Hidayat Soegihardjo, MS

SURABAYA JUNI, 2015

STUDI PENGGUNAAN *LEAD RUBBER BEARING* SEBAGAI BASE ISOLATOR DENGAN MODEL JEMBATAN KUTAI KARTANEGARA PADA ZONA ZONA GEMPA DI INDONESIA

Indrayon Manalu 3111100089

Mahasiwa Sarjana Reguler Jurusan Teknik Sipil, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo Surabaya, Telp 0813 9674 0030, email: santymanalu81@gmail.com

ABSTRAK

Indonesia berada pada wilayah pertemuan tiga lempeng tektonik utama, yaitu lempeng Indo-Australia, lempeng Eurasia, dan lempeng Pasifik. Hal ini menjadikan Indonesia sebagai daerah rawan terjadinya gempa bumi, serta memiliki potensi aktifitas seismic cukup tinggi dan sangat rawan terhadap bahaya gempa

Dalam beberapa tahun terakhir base isolation (isolasi dasar) telah berkembang digunakan sebagai teknologi untuk mendesain gedung dan jembatan pada daerah dengan zona gempa tinggi. Pemakaian base isolator sangatlah penting dalam pembangunan sebuah jembatan. Namun desain base isolator pada jembatan lebih menitikberatkan kepada pengaruh beban lalu lintas dan temperatur, akan tetapi kemungkinan besar belum memperhitungkan akibat beban gempa.

Tugas akhir ini bertujuan untuk menganalisa penggunaan elastomeric bearing sebagai base isolator pada jembatan yang mencakup perencanaan struktur bangunan atas jembatan, perencanaan pemodelan elastomer bearing, dan control pemodelan terhadap percepatan dan perpindahan akibat gaya gempa

Kata kunci : base isolator, lead rubber bearing, periode, seismik

STUDY OF THE USAGE LEAD RUBBER BEARING AS A BASE ISOLATOR ON KUTAI KARTANEGARA BRIDGE MODEL IN INDONESIA SEISMIC ZONES

Indrayon Manalu 3111100089

Regular Graduate Students Department of Civil Engineering, Institut Teknologi Sepuluh Nopember, Campus Sukolilo ITS Surabaya, Telp 0813 9674 0030, email:santymanalu81@gmail.com

ABSTRACT

Indonesia is the junction of three major tectonic plates, the Indo-Australian plate, the Eurasian plate and the Pacific plate. This makes Indonesia as earthquake-prone areas, as well as having the potential for seismic activity is quite high and very vulnerable to earthquake hazard

In recent years the base isolation (basic insulation) has evolved as the technology used to design buildings and bridges in areas with high seismic zones. The use of base isolators is very important in the construction of the bridge. However, the design of base isolators on the bridge is more focused on the influence of traffic loads and temperatures, but most likely not take into account the result of earthquake loads.

Use of Elastomeric Bearing on the bridge can extend the time of the vibrating structure, thereby reducing the terjad earthquake acceleration. This thesis aims to analyze the use of elastomeric bearings as a base insulator on a bridge that includes the planning of the bridge structure, planning elastomeric bearing modeling, modeling and control of the acceleration and displacement due to earthquake forces

Keywords: base isolators, lead rubber bearings, period, seismic

KATA PENGANTAR

Dengan mengucap Puji Syukur kami panjatkan kepada Allah SWT atas segala rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan tugas akhir vang berjudul **"STUDI** PENGGUNAAN LEAD RUBBER BEARING SEBAGAI BASE ISOLATOR DENGAN MODEL **JEMBATAN KUTAI** KARTANEGARA PADA ZONA ZONA **GEMPA** DI INDONESIA".

Penyusunan tugas akhir ini merupakan syarat akademis yang harus dipenuhi oleh mahasiswa sebagai syarat untuk kelulusan mahasiswa menjadi seorang Sarjana Teknik pada Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanan, Institut Teknologi Sepuluh Nopember Surabaya.

Tidak lupa penulis mengucapkan terima kasih kepada semua pihak yang telah membantu selama pelaksanaan Tugas Akhir hingga terselesaikannya Tugas Akhir ini, antara lain kepada:

- 1. Tuhan Yang Maha Esa yang selalu memberikan rahmat dan hidayah.
- 2. Ibu dan bapak yang selalu memberikan doa, dukungan, dam fasilitas demi memperlancar kegiatan belajar hingga Tugas Akhir ini selesai, semoga penulis (saya) dapat berbakti dan membalas kebaikan kalian, serta dapat menjadi anak yang dibanggakan.
- 3. Bapak Dr. Ir. Hidayat Soegihardjo, MS. sebagai dosen pembimbing Tugas Akhir yang memberikan banyak ilmu demi kelancaran pengerjaan Tugas Akhir ini.
- 4. Bapak Dr. Ir.Edijatno sebagai dosen wali yang selalu membimbing dalam bidang akademis.
- 5. Dinas Bina Marga dan Sumber Daya Air Kabupaten Kutai Kartanegara yang telah banyak membantu memberikan data perencanaan jembatan Kutai Kartanegara demi kelancaran pengerjaan tugas akhir ini.

- 6. Sahabatku Abrima,Sauqi,Ahmet,Abrar,Jery, Bobby, Revi, Galih, Michael dan Rasti yang selalu memberi motivasi dan dukungan dalam pengerjaan tugas akhir ini. Teman sepermainan Provost. Ujang, Shugoid, Giggle,Kazushirinka dalam melepas penat saat mengerjakan Tugas Akhir.
- 7. Rekan-rekan angkatan 2011 Teknik Sipil, ITS lainnya yang tidak bisa disebutkan satu persatu yang selalu setia menemani dan memberikan keceriaan dalam canda dan tawa dari saat menjadi mahasiswa baru hingga sekarang (2015).
- 8. Program bantu MIDAS dan Autocad 2011 dan yang membantu kelancaran Tugas Akhir ini dalam menganalisa struktur.

Penulis berusaha untuk menyelesaikan tugas akhir ini dengan sebaik-baiknya dan menyadari bahwa tugas akhir ini masih jauh dari sempurna. Karena itu segala bentuk saran, koreksi maupun kritik dari pembaca sangat penulis harapkan. Harapan kami semoga seluruh isi tugas akhir ini bermanfaat bagi pembaca, khususnya rekan-rekan mahasiswa Teknik Sipil ITS.

Surabaya, Juli 2015

Penulis

DAFTAR ISI

LEM	BAR PENGESAHAN	•••••
ABST	'RAK	i
KATA	A PENGANTAR	iii
DAFT	AR ISI	v
DAFT	AR GAMBAR	xiii
DAFT	CAR TABEL	. xvii
Bab I	Pendahuluan	1
1.1	. Latar belakang	1
1.2	. Perumusan masalah	3
1.3	. Tujuan	4
1.4	. Batasan masalah	4
1.5	. Manfaat	5
Rah I	I Tiniauan Pustaka	7
21	Konsen Isolasi Seismik	7
2.1	Prosedur Desain Base Isolator	, 9
2.2	2.2.1 High Damping Rubber Bearing (HDRB)	9
	2.2.2 Lead Rubber Bearing (LRB)	10
	2 2 3 Friction Pendulum System (FPS)	12
2.3	Prinsip Dasar Isolasi Seismik dengan <i>Lead Rubber</i>	
	Bearing (LRB)	13
	2.3.1 Redaman Energi oleh LRB	14
	2.3.2 Karakteristik Hunbungan Gaya dan	
	Perpindahan	15
	2.3.3 Perbedaan Bearing Pad dengan LRB	16
	2.3.4 Base Isolation untuk Tanah Lunak (Soft Soil)	17
2.4	Pemodelan Lead Rubber Bearing (LRB)	18
	2.4.1 Area Overlap LRB Akibat Perpindahan	18
	2.4.2 Faktor Bentuk/ Shape Factor (S)	19
	2.4.3 Perhitungan Regangan Geser Akibat	
	Tekan (Yc)	20

2.4.4 Regangan Geser Akibat Perpindahan/	
Displacement (Ys MCE)	20
2.4.5 Regangan Geser Akibat Rotasi (Yrs)	21
2.4.6 Kontrol Buckling Load	21
2.4.7 Kontrol Ketebalan Layer (ts)	21
BAB III Metodologi	23
3.1.Diagram Alir	23
3.1.1 Pengumpulan Data Pendukung	24
3.1.2 Studi Literatur	24
3.1.3 Perhitungan Parameter Struktur	24
3.1.3.1 Beban Sendiri	25
3.1.3.2 Beban Lalu Lintas	25
3.1.3.3 Beban Lajur 'D'	26
3.1.3.4 Beban Truk 'T'	26
3.1.3.5 Faktor Beban Dinamis (FBD)	27
3.1.3.6 Gaya Rem	27
3.1.3.7 Beban Angin	28
3.1.3.8 Beban Gempa	29
3.1.4 Analisa Struktur	33
3.1.5 Analisa Dinamik Setiap Zona Gempa	33
3.1.6 Desain Model LRB	33
3.1.7 Kontrol Desain LRB	
3.1.7.1 Pemilihan LRB sebagai Model B	ase
Isolator	34
3.1.7.2 Kontrol pada Respon Spektrum	
yang Terjadi	
3.2.Kesimpulan dan Saran	35
BAB IV Preliminary Desain	37
4.1 Data Perencanaan	
4.2 Gelagar	

4.2.1 Sisi Side Span Arch Structure	39
4.2.1.1 Batang Atas dan Bawah	39
4.2.1.2 Batang Vertikal	40
4.2.1.3 Batang Diagonal	40
4.2.1.4 Batang Melintang dan Memanjang	41
4.2.2 Sisi Main Arch Structure	41
4.2.2.1 Batang Atas dan Bawah	42
4.2.2.2 Batang Melintang dan Memanjang	43
4.2.2.3 Batang Vertikal	43
4.2.2.4 Batang Diagonal	44
4.2.2.5 Batang Main Girder	44
4.3 Ikatan Angin	45
4.4 Kabel Hanger	46
BAB V Pemodelan Struktur	49
5.1 Umum	49
5.2 Pembebanan	49
5.2.1 Beban Mati	50
5.2.2 Beban Mati Tambahan (SDL)	50
5.2.3 Beban Hidup	55
5.2.3.1 Beban Hidup UDL	55
5.2.3.2 Beban UDL Simetris	56
5.2.3.3 Beban UDL Asimetris	57
5.2.3.4 Beban Hidup KEL	58
5.2.3.5 Beban Hidup KEL Simetris	58
5.2.3.6 Kombinasi Pemodelan UDL dan KEL	
pada Batang Akhir	59
pada Batang Akhir 5.2.3.7 Kombinasi Pembebanan UDL dan KEL	59
pada Batang Akhir 5.2.3.7 Kombinasi Pembebanan UDL dan KEL pada Batang Akhir	59 59
pada Batang Akhir 5.2.3.7 Kombinasi Pembebanan UDL dan KEL pada Batang Akhir 5.2.3.8 Kombinasi Pembebanan UDL dan KEL	59 59
pada Batang Akhir 5.2.3.7 Kombinasi Pembebanan UDL dan KEL pada Batang Akhir 5.2.3.8 Kombinasi Pembebanan UDL dan KEL pada Perletakan Struktur	59 59 61
pada Batang Akhir 5.2.3.7 Kombinasi Pembebanan UDL dan KEL pada Batang Akhir 5.2.3.8 Kombinasi Pembebanan UDL dan KEL pada Perletakan Struktur 5.2.4 Desain Perletakan Stuktur Jembatan	59 59 61 62

5.2.4.1 Pemodelan POT Bearing pada	
Perletakan Jembatan	63
5.2.4.2 Pemodelan POT Bearing pada MIDAS.	64
5.2.4.3 Pemodelan POT Bearing pada	
Perletakan Node 1 dan Node 676	64
5.2.4.4 Pemodelan POT Bearing pada	
Perletakan Node 14 dan Node 725	67
5.2.4.5 Pemodelan POT Bearing pada	
Perletakan Node 178 dan Node 740	70
5.2.4.6 Pemodelan POT Bearing pada	
Perletakan Node 162	73
5.2.4.7 Pemodelan POT Bearing pada	
Perletakan Node 661	76
5.2.4.8 Rekapitulasi Kekakuan Tiap	
Perletakan	79
5.2.4.9 Pemodelan POT Bearing pada	
Program MIDAS CIVIL	80
5.2.5 Beban Gempa	80
5.2.6 Kombinasi Pembebanan	104
5.2.6.1 Kombinasi Pembebanan DL+SDL	104
5.2.6.2 Kombinasi Pembebanan DL+SDL+LL.	104
5.2.6.3 Kombinasi Pembebanan	
DL+SDL+LL+ Gempa	104
5.3 Pemodelan Bangunan Bawah	105
5.3.1 Pemodelan Abutmen	105
5.3.2 Pemodelan Pilar Sisi Tenggarong	109
5.3.3 Pemodelan Pilar Sisi Samarinda	112
5.3.4 Pembebanan Akibat Tekanan Tanah	115
BAB VI Kontrol Permodelan Stuktur	119
6.1 Kontrol Berat Sendiri	119
6.2 Kontrol Profil	120
6.2.1 BA2 (B 650 x 750 x 10 x 12)	122

6.2.2 TI4 (WF 750 x 1100 x 25 x 40)	124
6.2.3 DG12 (WF 750 x 600 x 18 x 25)	125
6.2.4 TG11 (B 750 x 650 x 15 x 20)	126
6.2.5 BA16 (B 800 x 750 x 25 x 40)	128
6.2.6 BB26 (B 550 x 750 x 10 x 10)	129
6.2.7 DG26 (WF 750 x 450 x 12 x 20)	131
6.2.8 TG26 (WF 750 x 800 x 20 x 25)	133
BAB VII Pemodelan Lead Rubber Bearing	. 135
7.1 Pemodelan LRB pada Abutmen untuk Zona	
Gempa Padang	135
7.1.1 Pembebanan	135
7.1.2 Analisa Displacement dan Rotation	
saat Kondisi Non-Seismik	136
7.1.3 Pemodelan Lead Rubber Bearing	137
7.1.4 Faktor Beban Akibat Kondisi Gempa	
Maksimum	137
7.1.5 Non-Seismik Plus Seismik Displacement	138
7.1.6 Sudut Overlap pada Bearing	138
7.1.7 Luasan Karet LRB	140
7.1.8 Luasan Overlap LRB	140
7.1.9 Faktor Bentuk LRB	141
7.1.10 Regangan Geser Akibat Tekan ($\Upsilon^{u}C_{MCE}$)	141
7.1.11 Regangan Geser Akibat Lateral	
Displacement (Y ^u S _{MCE})	142
7.1.12 Regangan Geser Akibat Rotasi (Y ^u _{rs})	142
7.1.13 Kontrol Regangan Geser	143
7.1.14 Perhitungan Buckling Load	143
7.1.15 Perhitungan Buckling Load saat Kondisi MCE.	144
7.1.16 Kontrol Lateral Buckling	144
7.1.17 Perhitungan Kuat LRB (Fy)	145
7.1.18 Perhitungan Bearing Post Elastic Stiffness	145

	7.1.19 Perhitungan Perpindahan Kritis	145
	7.1.20 Kontrol Perpindahan Kritis	146
	7.1.21 Kontrol Ketebalan Shim Steel	146
7.2	Pemodelan LRB untuk Pilar untuk Zona	
	Gempa Padang	147
	7.2.1 Pembebanan	147
	7.2.2 Analisa Displacement dan Rotation saat	
	Kondisi Non-Seismik	148
	7.2.3 Pemodelan <i>Lead Rubber Bearing</i>	149
	7.2.4 Faktor Beban Akibat Kondisi Gempa	
	Maksimum	149
	7.2.5 Non-Seismik Plus Seismik Displacement	150
	7.2.6 Sudut Overlap pada Bearing	151
	7.2.7 Luasan Karet LRB	152
	7.2.8 Luasan Overlap LRB	152
	7.2.9 Faktor Bentuk LRB	153
	7.2.10 Regangan Geser Akibat Tekan ($\Upsilon^{u}C_{MCE}$)	153
	7.2.11 Regangan Geser Akibat Lateral	
	Displacement ($\Upsilon^{u} S_{MCE}$)	154
	7.2.12 Regangan Geser Akibat Rotasi (Y ^u _{rs})	154
	7.2.13 Kontrol Regangan Geser	155
	7.2.14 Perhitungan Buckling Load	155
	7.2.15 Perhitungan Buckling Load saat	
	Kondisi MCE	156
	7.2.16 Kontrol Lateral Buckling	156
	7.2.17 Perhitungan Kuat LRB (Fy)	157
	7.2.18 Perhitungan Bearing Post Elastic Stiffness	157
	7.2.19 Perhitungan Perpindahan Kritis	157
	7.2.20 Kontrol Perpindahan Kritis	158
	7.2.21 Kontrol Ketebalan Shim Steel	158
	7.3 Pemodelan LRB	159
	7.3.1 Pemodelan LRB pada MIDAS CIVIL	159

LAMPIRAN		
DAFTAR PUSTA	КА	201
9.2. Saran		198
9.1. Kesimpulan		197
BAB IX Penutup.	•••••••••••••••••••••••••••••••••••••••	197
8.5 Perbandingar	Gaya Dalam Rangka Batang	188
8.4 Perbandingar	Displacement Perletakan Stuktur	
8.3 Perbandingar	Gaya Akibat Beban Kombinasi	
8.2 Perbandingar	Gaya Gempa	179
8.1 Perbandingar	Periode Struktur	
BAB VIII Analisa	Pembahasan	177
MID	AS CIVIL	175
7.3.1.3 Pemo	delan LRB pada Program	
	MIDAS untuk Zona Gempa Padang	g 174
7.3.1.2.5	Rekapitulasi Parameter LRB pada	
7.3.1.2.4	Kekakuan Vertikal	171
	Elastis (r)	170
7.3.1.2.3	Ratio Kekakuan Elastis-Post	
7.3.1.2.2	Kekakuan Elastis (K)	167
7.3.1.2.1	Kuat LRB	167
Pa	idang	167
7.3.1.2 Pe	emodelan LRB untuk Zona Gempa	
	Samrinda, Palembang dan Medan	166
	pada MIDAS untuk Zona Gempa	
73115	Rekapitulasi Parameter LRB	
73114	Kekakuan Vertikal	16 <u>2</u> 163
7.5.1.1.5	Elastis (r)	162
73113	Ratio Kekakuan Flastis-Post	107
73112	Kekakuan Flastis (K)	159
73111	Kuat LRB	159
, is it it is	mrinda Palembang dan Medan	159
7 3 1 1 Pe	emodelan LRB untuk Zona Gempa	

(halaman ini sengaja dikosongkan)

DAFTAR TABEL

Tabel 2.1	Perbedaan antara Bearing Pad dengan LRB	16
Tabel 4.1	Batang Bawah dan Atas Side Span Structure	39
Tabel 4.2	Batang Vertikal Side Span Structure	40
Tabel 4.3	Batang Diagonal Side Span Structure	40
Tabel 4.4	Batang Melintang Side Span Structure	41
Tabel 4.5	Batang Memanjang Side Span Structure	41
Tabel 4.6	Batang Bawah dan Atas Main Arch Structure	42
Tabel 4.7	Batang Melintang Main Arch Structure	43
Tabel 4.8	Batang Memanjang Main Arch Structure	43
Tabel 4.9	Batang Vertikal Main Arch Structure	43
Tabel 4.10	Batang Diagonal Main Arch Structure	44
Tabel 4.11	Batang Main Girder Main Arch Structure	44
Tabel 4.12	Profil Ikatan Angin	45
Tabel 4.13	Profil Kabel Hanger	48
Tabel 5.1	Pemodelan Perletakan Pada Midas	63
Tabel 5.2	Section Propeties PG4000	65
Tabel 5.3	Section Propeties PG24000	68
Tabel 5.4	Section Propeties PG4000	71
Tabel 5.5	Section Propeties PG24000	74
Tabel 5.5	Section Propeties PG24000	77
Tabel 5.6	Rekapitulasi Kekakuan ditiap Node	79
Tabel 5.7	Faktor Amplifikasi Periode 0.2 detik (Fa)	82
Tabel 5.8	Faktor Amplifikasi Periode 1 detik (Fv)	82
Tabel 5.9	Besar Gaya Gempa pada MIDAS	85
Tabel 5.10	Besar Gaya Gempa pada MIDAS	85
Tabel 5.11	Periode Struktur tiap mode shape	86
Tabel 5.12	Modal Participation Masses (%)	87
Tabel 5.13	Besar Gaya Gempa pada MIDAS	91
Tabel 5.14	Besar Gaya Gempa pada MIDAS	91
Tabel 5.15	Periode Struktur tiap mode shape	92
Tabel 5.16	Modal Participation Masses (%)	93
Tabel 5.17	Besar Gaya Gempa pada MIDAS	96

Tabel 5.18	Besar Gaya Gempa pada MIDAS	96
Tabel 5.19	Periode Struktur tiap mode shape	97
Tabel 5.20	Modal Participation Masses (%)	98
Tabel 5.21	Besar Gaya Gempa pada MIDAS	101
Tabel 5.22	Besar Gaya Gempa pada MIDAS	101
Tabel 5.23	Periode Struktur tiap mode shape	102
Tabel 5.24	Modal Participation Masses (%)	103
Tabel 6.1	Perhitungan Berat Preliminary	119
Tabel 6.2	Rekapitulasi Gaya dari Kombinasi	
	Beban	122
Tabel. 6.3	Rekapitulasi Rasio Kuat Rencana	134
Tabel 7.1	Beban Mati Struktur Jembatan	135
Tabel 7.2	Beban Hidup Struktur Jembatan	136
Tabel 7.3	Non-seismik Displacement	136
Tabel 7.4	Non-seismik Rotation	136
Tabel 7.5	Section Properties LRB700	137
Tabel 7.6	Beban Mati Struktur Jembatan	147
Tabel 7.7	Beban Hidup Struktur Jembatan	147
Tabel 7.8	Non-seismik Displacement	148
Tabel 7.9	Non-seismik Rotation	148
Tabel 7.10	Section Properties LRB700	149
Tabel 7.11	Besar Fy dari LRB	159
Tabel 7.12	Besar kekakuan elastis (K) dari LRB	162
Tabel 7.13	Besar ratio kekakuan (r) dari LRB	163
Tabel 7.14	Tabel Persamaan Lindley	164
Tabel 7.15	Rekapitulasi Parameter LRB pada MIDAS	167
Tabel 7.16	Besar Fy dari LRB	159
Tabel 7.17	Besar kekakuan elastis (K) dari LRB	162
Tabel 7.18	Besar ratio kekakuan (r) dari LRB	163
Tabel 7.19	Tabel Persamaan Lindley	164
Tabel 7.20	Rekapitulasi Parameter LRB pada MIDAS	167
Tabel 7.21	Besar Fy dari LRB	167
Tabel 7.22	Besar kekakuan elastis (K) dari LRB	170
Tabel 7.23	Besar ratio kekakuan (r) dari LRB	171

Tabel 7.24	Tabel Persamaan Lindley	172
Tabel 7.25	Rekapitulasi Parameter LRB pada MIDAS	174
Tabel 8.1	Periode Struktur Jembatan	177
Tabel 8.2	Gaya Gempa disetiap Zona Gempa	179
Tabel 8.3	Displacement node 15688 ditiap zona	182
Tabel 8.4	Displacement node 15687 ditiap zona	182
Tabel 8.5	Displacement node 11568 ditiap zona	182
Tabel 8.6	Displacement node 11567 ditiap zona	183
Tabel 8.7	Displacement node 11570 ditiap zona	183
Tabel 8.8	Displacement node 11569 ditiap zona	183
Tabel 8.9	Displacement node 15690 ditiap zona	184
Tabel 8.10	Displacement node 15689 ditiap zona	184
Tabel 8.11	Perbandingan Gaya Aksial Batang BA16	186
Tabel 8.12	Perbandingan Gaya Aksial Batang TG26	187
Tabel 8.13	Perbandingan Gaya Aksial Batang BB26	188
Tabel 8.14	Perbandingan Gaya Aksial Batang TG11	189
Tabel 8.15	Perbandingan Gaya Aksial Batang BA2	190
Tabel 8.16	Perbandingan Gaya Aksial Batang TI4	190
Tabel 8.17	Perbandingan Gaya Aksial Batang DG26	191
Tabel 8.18	Perbandingan Gaya Aksial Batang DG12	191
Tabel 8.19	Gaya Lateral dan Vertikal ditiap Zona Gempa.	193

(halaman ini sengaja dikosongkan)

DAFTAR GAMBAR

Gambar 2.1	Hubungan Percepatan dengan Waktu Getar	8
Gambar 2.2	Hubungan Perpindahan dengan Waktu Getar.	9
Gambar 2.3	High Damping Rubber Bearing	10
Gambar 2.4	Lead Rubber Bearing	11
Gambar 2.5	Friction Pendulum System Posisi Awal	12
Gambar 2.6	Friction Pendulum System Mengalami	
	Perpindahan	13
Gambar 2.7	Perilaku Hubungan Gaya Terhadap	
	Perpindahan	15
Gambar 2.8	Hubungan Jenis Tanah dan Koefisien	
	Seismik	17
Gambar 2.9	Overlap Area	18
Gambar 2.10	Notasi Perhitungan Shape Factor	19
Gambar 3.1	Diagram Alir Pemodelan	23
Gambar 3.2	Pembebanan Truk 'T'	27
Gambar 3.3	Gaya Rem per jalur 2.75 m	28
Gambar 3.4	Faktor Beban Dinamis untuk Pembebanan	
	Lajur 'D'	30
Gambar 3.5	Gaya Rem per Jalur 2.75 m	31
Gambar 3.6	Pemilihan LRB sebagai Desain Base	
	Isolator	34
Gambar 3.7	Model Respon Spektrum pada MIDAS	
	CIVIL	35
Gambar 4.1	Layout Jembatan Kutai Kartanegara	38
Gambar 4.2	Layout Side Span Arch Stucture	39
Gambar 4.3	Tampak Atas Side Span Arch Structure	38
Gambar 4.4	Layout Main Arch Structure	41
Gambar 4.5	Tampak Atas Main Arch Structure	41
Gambar 4.6	Ikatan Angin Gelagar	45
Gambar 4.7	Ikatan Angin Busur Atas	46
Gambar 4.8	Ikatan Angin Busur Bawah	46
Gambar 4.9	Angkur Tipe PPSW	47
Gambar 4.10	Potongan A-A	47

Gambar 4.11	Potongan B-B	47
Gambar 5.1	Pemodelan 3D MIDAS 2006	49
Gambar 5.2	Potongan Memanjang Lantai Kendaraan	50
Gambar 5.3	Potongan melintang lantai kendaraan	51
Gambar 5.4	Lebar distribusi pada gelagar memanjang	
	akibat plat beton kendaraan	51
Gambar 5.5	Lebar distribusi pada gelagar memanjang	
	akibat aspal	53
Gambar 5.6	Lebar distribusi pada gelagar memanjang	
	akibat kerb	54
Gambar 5.7	Distribusi beban UDL simetris pada	
	gelagar melintang	56
Gambar 5.8	Distribusi beban UDL asimetris pada	
	gelagar melintang	57
Gambar 5.9	Distribusi beban KEL simetris pada	
	gelagar melintang	58
Gambar 5.10	Pemodelan 2D MIDAS CIVIL 2006	59
Gambar 5.11	Garis Pengaruh TG26 (S _{TG26})	60
Gambar 5.12	Garis Pengaruh DG26 (S _{DG26})	60
Gambar 5.13	Garis Pengaruh BA16 (S _{BA16})	60
Gambar 5.14	Garis Pengaruh BB26 (S _{BB26})	60
Gambar 5.15	Garis Pengaruh TG11 (S _{TG11})	61
Gambar 5.16	Garis Pengaruh DG12 (S _{DG12})	61
Gambar 5.18	Garis Pengaruh TI4 (S _{TI14})	61
Gambar 5.19	Pembebanan pada S _{DG26} Positif	62
Gambar 5.20	Pembebanan pada S _{DG26} Negatif	62
Gambar 5.21	Perletakan Struktur	63
Gambar 5.22	Penampang POT bearing	64
Gambar 5.23	Penampang POT bearing arah memanjang	
	atau melintang	65
Gambar 5.24	Penampang POT bearing arah memanjang	
	atau melintang	68
Gambar 5.25	Penampang POT bearing arah memanjang	
	dan melintang	71

Gambar 5.26	Penampang POT bearing arah memanjang	
	dan melintang	74
Gambar 5.27	Penampang POT bearing fixed	77
Gambar 5.28	Respon Spektrum Kota Samarinda	84
Gambar 5.29	Respon Spekta Gempa kota Palembang	90
Gambar 5.30	Respon Spekta Gempa kota Medan	95
Gambar 5.31	Respon Spekta Gempa kota Padang	100
Gambar 5.32	Pemodelan 3D Bangunan Atas dan Bawah	105
Gambar 5.33	Pemodelan Abutmen Pada MIDAS 2006	106
Gambar 5.34	Pemancangan Abutmen Jembatan Kutai	
	Kartanegara	107
Gambar 5.35	Pemodelan Pilar Sisi Tenggarong	110
Gambar 5.36	Pemancangan Pilar sisi Tenggarong	111
Gambar 5.37	Pemodelan Pilar Sisi Samarinda	113
Gambar 5.38	Pemancangan Pilar sisi Samarinda	114
Gambar 5.39	Pemodelan Beban Akibat Tekanan Tanah	117
Gambar 6.1	Gaya Batang yang Ditinjau	121
Gambar 6.2	Kontur Gaya Batang pada Struktur	
	Jembatan	121
Gambar 6.3.	Batang BA2	122
Gambar 6.4.	Batang TI4	124
Gambar 6.5	Batang DG12	125
Gambar 6.6	Batang TG11	126
Gambar 6.7	Batang BA16	128
Gambar 6.8	Batang BB26	129
Gambar 6.9	Batang DG26	131
Gambar 6.10	Batang TG26	133
Gambar 7.1	Luasan Overlap Circular Bearing	139
Gambar 7.2	Luasan Overlap Circular Bearing	151
Gambar 7.3	Pemodelan LRB pada MIDAS CIVIL	175
Gambar 7.4	Potongan Melintang Lead Rubber Bearing	176
Gambar 7.5	Tampak Atas Lead Rubber Bearing	176
Gambar 8.1	Perbandingan Periode Struktur tiap Zona	
	Gempa	178

Gambar 8.2	Grafik Perbandingan Gaya Gempa arah	100
	Melintang (RS-X)	180
Gambar 8.3	Grafik Perbandingan Gaya Gempa Arah	
	Memanjang (RS-Y)	181
Gambar 8.5	Displacement Gempa arah X Node Perletaka	n
	pada tiap Zona Gempa	185
Gambar 8.6	Displacement Gempa arah Y Node Perletaka	n
	pada tiap Zona Gempa	185
Gambar 8.7	Penampang Mageba Modular Expansion	
	Joint	186
Gambar 8.8	Batang BA16	186
Gambar 8.9	Gaya Aksial Akibat Beban Kombinasi BA16	.188
Gambar 8.10	Batang TG26	188
Gambar 8.11	Gaya Aksial Akibat Beban Kombinasi TG26	189
Gambar 8.12	Batang BB26	189
Gambar 8.13	Gaya Aksial Akibat Beban Kombinasi BB26	190
Gambar 8.14	Batang TG11	190
Gambar 8.15	Gaya Aksial Akibat Beban Kombiansi TG11	191
Gambar 8.16	Batang BA2	191
Gambar 8.17	Gaya Aksial Akibat Beban Kombinasi BA2	192
Gambar 8.18	Batang TI4	192
Gambar 8.19	Gaya Aksial Akibat Beban Kombinasi TI4	192
Gambar 8.20	Batang DG26	193
Gambar 8.21	Gaya Aksial Akibat Beban Kombinasi DG26	193
Gambar 8.22	Batang DG12	193
Gambar 8.23	Gaya Aksial Akibat Beban Kombinasi DG12	194

BAB I PENDAHULUAN

1.1. Latar Belakang

Indonesia berada pada wilayah pertemuan tiga lempeng tektonik utama, yaitu lempeng Indo-Australia, lempeng Eurasia, dan lempeng Pasifik. Hal ini menjadikan Indonesia sebagai daerah rawan terjadinya gempa bumi, serta memiliki potensi aktifitas seismic cukup tinggi dan sangat rawan terhadap bahaya gempa.

Tingginya aktifitas seismik yang terjadi, maka dalam suatu perencanaan bangunan di Indonesia haruslah mempertimbangkan aspek-aspek kegempaan, selain aspek beban lain yang bekerja pada bangunan yang direncanakan. Azas utama penyediaan bangunan sipil adalah untuk tujuan kemanusiaan. Oleh karena itu unsur hakekat manusia harus ditempatkan pada posisi tertinggi untuk dilindungi dari segala pembebanan bangunan (Widodo,2003).

Dalam beberapa tahun terakhir *base isolation* (isolasi dasar) telah berkembang digunakan sebagai teknologi untuk mendesain gedung dan jembatan pada daerah dengan zona gempa tinggi. *Base Isolation* dikembangkan dengan dasar bahwa bahaya kehancuran dan kerusakan gedung atau jembatan akan tereliminasi selama gempa terjadi (Widodo, 2003).

Sistem ini memisahkan struktur dari komponen horizontal pergerakan tanah dengan menyisipkan bahan isolator antara struktur dan pondasi yang mempunyai kekakuan horizontal yang lebih kecil (Teruna, 2007) Pemakaian base isolator sangatlah penting dalam pembangunan sebuuah jembatan. Namun desain base isolator pada jembatan lebih menitikberatkan kepada pengaruh beban lalu lintas dan temperatur, akan tetapi kemungkinan besar belum memperhitungkan akibat beban gempa. Penggunaan *Lead Rubber Bearing* pada jembatan dapat memperpanjang waktu getar struktur, sehingga dapat mereduksi percepatan gempa yang terjadi (Oktavia, 2012).

Ada beberapa keuntungan yang didapat apabila menggunakan *Lead Rubber Bearing* pada struktur jembatan diantaranya :

- Perlindungan terhadap maksimum seismik dengan margin keamanan yang besar.
- Lebih ekonomis apabila dibandingkan dengan metode lain seperti perkuatan pada struktur
- Kerusakan struktur akibat gempa kuat dapat diminimalisir
- Tidak ada perubahan desain struktur yang diperlukan apabila menggunakan sistem LRB
- Komponen komponen dapat dengan mudah dipasang dibagian bawah struktur utama

Dalam Tugas Akhir ini akan dianalisa penggunaan base isolator khususnya *Lead Rubber Bearing* pada jembatan Kutai Kartanegara yang kaitannya terhadap beban gempa. Total panjang efektif pembangunan jembatan adalah 470 meter yang terdiri dari :

- Jembatan Side Span Arch Sructure sisi Tenggarong 100 m
- Jembatan Utama Arch Structure 270 m
- Jembatan Side Span Arch Structure sisi Samarinda 100 m

Dalam perencanaannya, untuk pembebanan pada jembatan mengacu pada Peraturan Teknik Perencanaan Jembatan RSNI T-02-2005, Perencanaan pembebenan gempa mengacu pada Standar Perencanaan Ketahanan Gempa Untuk Jembatan, dan untuk perencanaan *Lead Rubber Bearing* memakai *Guide Specification for Seismic Isolation Design* AASHTO-2010.

1.2. Perumusan Masalah

Dari latar belakang di atas maka dalam penulisan tugas akhir ini akan dibahas beberapa permasalahan yaitu :

- 1. Bagaimanakah pemodelan *Lead Rubber Bearing* pada jembatan dengan memperhitungkan beban gempa
- Bagaimana analisa dan evaluasi kinerja struktur jembatan dengan base isolator menggunakan MIDAS CIVIL 2006
- 3. Bagaimanakah respon spectrum yang terjadi akibat beban gempa pada jembatan yang menggunakan *Lead Rubber Bearing*
- 4. Bagaimanakah *lateral displacement* yang timbul pada jembatan yang menggunakan *Lead Rubber Bearing*

1.3. Tujuan

Adapun tujuan dari penulisan tugas akhir ini adalah :

- 1. Mendapatkan pemodelan *Lead Rubber Bearing* pada jembatan dengan memperhitungkan beban gempa
- 2. Mendapatkan gaya gaya yang bekerja pada tiap elemen struktur dan kinerja struktur pada jembatan
- 3. Memperoleh respon spectrum yang terjadi akibat beban gempa pada jembatan yang menggunakan *Lead Rubber Bearing*
- 4. Memperoleh *lateral displacement* yang timbul pada jembatan yang menggunakan *Lead Rubber Bearing*

1.4. Batasan Masalah

Batasan masalah yang perlu dilakukan dalam penulisan tugas akhir ini adalah :

- 1. Tidak meninjau analisa biaya
- 2. Analisa perhitungan menggunakan pembebanan pada pada jembatan mengacu Peraturan Teknik Perencanaan Jembatan RSNI T-02-2005. Perencanaan pembebenan gempa mengacu pada Standar Perencanaan Ketahanan Gempa Untuk Jembatan SNI 2833-2013, dan untuk perencanaan Elastomeric Bearing memakai Guide Specification for Seismic Isolation Design AASHTO-2010.
- 3. Perhitungan pemodelan analisa struktur menggunakan MIDAS CIVIL 2006
- 4. Pemodelan base isolator tidak digunakan untuk kondisi tanah lunak (*soft soil*)

1.5. Manfaat

Dalam tugas akhir ini diharapkan dapat menjadi referensi untuk perencanaan jembatan dengan menggunakan *Lead Rubber Bearing* sebagai base isolator dan dapat diterapkan di Indonesia. Serta, bermanfaat bagi penulis untuk menambah wawasan tentang bagaimana perilaku *Lead Rubber Bearing* sebagai base isolator terhadap beban gempa. (Halaman ini sengaja dikosongkan)

BAB II

TINJAUAN PUSTAKA

2.1. Konsep Isolasi Seismik

Sistem ini memisahkan bangunan atau struktur dari horizontal pergerakan tanah komponen dengan menyisipkan base isolator yang mempunyai kekakuan yang relatif lebih kecil antar bangunan atas dengan pondasinya. Bangunan dengan sistem seperti ini akan mempunyai frekuensi yang relatif lebih kecil dibandingkan dengan bangunan (gedung atau jembatan) konvensional dan frekuensi dominan pergerakan tanah. Akibat percepatan gempa yang bekerja pada bangunan menjadi lebih kecil.

Ragam getar yang pertama hanya menyebabkan deformasi lateral pada sistem isolator, sedangkan struktur atas akan berperilaku sebagai *rigid body motion*.Ragam getar yang lebih tinggi dapat menimbulkan deformasi pada struktur tidak ikut berpartisipasi dalam respon struktur karena ragam getar tersebut akan orthogonal terhadap ragam getar yang pertama dan gerakan tanah, sehingga energi gempa tidak akan disalurkan ke struktur bangunan (Kelly, 1999).

Pada saat terjadi gempa khususnya gempa kuat, base isolator dengan kekakuan horizontal yang relative lebih kecil akan meningkatkan waktu getar alamiah bangunan (umumnya 2 s/d 3.5 detik). Dengan meningkatnya waktu getar alamiah bangunan maka percepatan gempa yang terjadi akan relative lebih kecil sehingga gaya gempa yang bekerja pada bangunan akan tereduksi. Namun akibat meningkatnya waktu getar alamiah, perpindahan yang terjadi akan semakin besar Untuk itu, sistem ini harus dilengkapi dengan elemenelemen yang dapat mendisipasi energi agar perpindahan yang terjadi masih dalam batas yang dapat diterima. Selain itu sistem base isolator harus mempunyai kemampuan kembali kepada ke posisi semula setelah terjadinya getaran seismik.

Untuk membatasi perpindahan sampai batas yang diiterima, sistem base isolator juga dilengkapi dengan elemen yang mampu mendisipasi energi gempa. Pada gambar 2.1 dapat dilihat hubungan antar percepatan dengan waktu getar sebagai fungsi dari isolator. Sedangkan pada gambar 2.2 dapat dilihat hubungan antara perpindahan (*displacement*) dengan waktu getar sebagai fungsi damping.

Gambar 2.1 Hubungan percepatan dengan Waktu Getar

(sumber : Teruna, 2010)

Gambar 2.2 Hubungan Perpindahan dengan Waktu Getar Alamiah (T) (*sumber : Teruna, 2010*)

2.2. Prosedur Desain Base Isolator

Secara umum Base isolator terbagi atas dua kategori yaitu *Elastomeric Rubber Bearing* dan *Sliding Bearing*. *Elastomeric Rubber Bearing* terdiri dari beberapa tipe yaitu

2.2.1. High Damping Rubber Bearing (HDRB)

High Damping Rubber Bearing merupakan bahan anti seismic yang dikembangkan dari karet alam yang mempunyai kekakuan horizontal yang relatif kecil dan dicampur dengan extra fine carbon block, oil atau resin, serta bahan isian lainnya sehingga meningkatkan damping antara 10% - 20% pada shear strain 100 % dengan modulus geser soft (G = 0,4MPa) dan hard (G = 1,4 MPa). Untuk bentuk penampang *High Damping Rubber Bearing* dapat dilihat pada gambar 2.3.

Untuk dapat menahan beban vertical yang cukup besar, maka karet diberi lempengan baja yang dilekatkan dengan sistem vulkanisir. Bantalan pada sistem isolasi seismic harus didesain dengan cermat untuk meamastikan agar bangunan yang ditopangnya tetap berdiri ketika gempa terjadi.

Gambar 2.3 High Damping Rubber Bearing (sumber : Naeim and Kelly, 1993)

2.2.2. Lead Rubber Bearing (LRB)

Lead Rubber Bearing merupakan bahan anti seismik yang terbuat dari lapisan karet dan dipadu dengan lapisan baja, tetapi pada bagian tengahnya diberi rongga yang diisi dengan *lead* (perunggu). Lapisan karet yang divulkanisir bisa bergerak ke semua arah hoeizontal dilaminasi diantara lapisan baja yang mampu menahan beban aksial. *Lead* (perunggu) yang terletak pada bagian tengah berfungsi sebagai tempat penyerapan energi sehingga mampu mengurangi gaya gempa akibat perpindahan.

Lapisan karet pada bantalan memberikan fleksibilitas lateral sedangkan lapisan baja memberikan kemampuan untuk menahan beban aksial. Lapisan penutup karet pada bantalan berfungsi untuk menghubungkan isolator dengan struktur diatas dan dibawahnya. *Lead Rubber Bearing* seperti pada gambar 2.4 didesain sangat kaku dan kuat diarah vertical dan lentur diarah horizontal sehingga beban vertical dan latera yang kecil bisa didukung tanpa menimbulkan perpindahan yang berarti.

Gambar 2.4 Lead Rubber Bearing

(sumber : Naeim and Kelly, 1993)

Lead mengalami kelelehan pada tegangan yang rendah dan berperilaku sebagai solid elastis-plastis. Kekakuan pasca kelelehan dapat direpresentasikan oleh kekakuan geser lapisan karet. Selain itu, *Lead* memiliki propertis kelelahan yang baik terhadap *cyclic loading* karena dapat memulihkan hampir seluruh propertis mekaniknya tepat setelah terjadinya kelelahan.

2.2.3. Friction Pendulum System (FPS)

Friction Pendulum System (Gambar 2.5) menggunanakan karakteristik dari pendulum untuk memperpanjang periode terlindung sehingga alami struktur dapat dari gava gempa.Periode dari Friction Pendulum Svstem dipilih berdasarkan radius / jari-jari kurvatur pada permukaan cekung. Nilai jari –jari kurvatur ini tergantung dari massa struktur yang didukung oleh bantalan. Torsi pada struktur berkurang karena pusat kekakuan pada bantalan secara otomatis sama dengan pusat kekakuan dari struktur.

Gamar 2.5 Friction Pendulum System posisi awal (sumber : Naeim and Kelly, 1993)

Friction Pendulum System (FPS) saat mengalami perpindahan (Gambar 2.6) menggunakan geometri dan gravitasi untuk menghasilkan peredam gempa yang diinginkan. Peredam gempa tercapai dengan bergesernya periode alami. Periode alami akan dikendalikan dengan cara memilih radius/jari – jari lengkungan permukaan cekung.

Gambar 2.6 Friction Pendulum System mengalami perpindahan (sumber : Naeim and Kelly (1993)

2.3. Prinsip Dasar Isolasi Seismik dengan *Lead Rubber* Bearing (LRB)

Lead Rubber Bearing (LRB) terdiri dari beberapa lapisan karet alam atau sintetik yang mempunyai nisbah redaman kritikal antar 2-5%. Untuk meningkatkan nisbah damping bahan karet ini dicampur dengan axtrafine carbon block, oil atau resin, serta bahan lainnya sehingga dapat meningkatkan damping sekitar 10 % sampai 20 % pada saat shear strain 100 %. Untuk dapat menahan beban vertikalnya, maka karet diberi lempengan baja yang dilekatkan ke lapisan karet dengan sistem vulkanisir.
Untuk meningkatkan nisbah redaman sistem ini, maka pada bagian tengahnya diberikan batangan bulat dari timah, sehingga nisbah redaman sistem ini dapat mencapai hingga 30 % (Teruna, 2007). Beberapa hal yang harus diketahui dalam penggunaan LRB agar secara simultan dapat diterapkan yakni:

2.3.1. Redaman Energi oleh LRB

Dengan adanya *Lead* (perunggu) pada bagian tengah LRB, terjadi penyerapan energi sehingga mampu mengurangi gaya gempa akibat perpindahan. Secara umum konsep pendekatan energi dengan menggunakan LRB dapat digambarkan dengan perumusan berikut ini :

(2)

Dimana :

- Ei = Energi dari tanah yang disalurkan melalui pondasi
- Es = Energi yang diterima oleh struktur
- Ed = Energi yang terdisipasi ke dalam struktur

Pada perumusan diatas dapat diartikan bahwa konsep pendekatan energi dengan menggunakan LRB adalah dengan cara mereduksi secara efektif energi yang berasal dari tanah yang disalurkan melalui pondasi (Ei). Energi yang diterima oleh struktur harus serendah mungkin untuk mengurangi kerusakan akibat gempa. Oleh karena itu energi yang terdisipasi akibat adanya LRB harus diusahakan sebesar mungkin.

2.3.2. Karakteristik Hubungan Gaya dan Perpindahan

Perilaku hubungan gaya dan perpindahan pada LRB dapat ditunjukkan seperti gambar 2.7. Dalam analisa struktur, LRB dapat dimodelkan sebagai model linier atau bi-linier. Untuk analisis linier digunakan kekakuan efektif K_{eff} , sedangkan untuk analisa non-linier ada tiga parameter yang menentukan karakteristik dari LRB, yaitu kekakuan awal K₁, kekakuan pasca leleh K₂, dan kekuatan leleh inti timah Q. Kekakuan awal K₁ didesain cukup besar untuk menahan beban angin dan gempa kecil. Pada umumnya nilai kekakuan pasca leleh K₂. Untuk analisa linier biasanya digunakan kekakuan effektif K_{eff}. Kekakuan K₁ dan K₂ dilakukan dengan percobaan hysteriris Loop.

Gambar 2.7 Perilaku Hubungan Gaya terhadap Perpindahan

(sumber : Specification for Seismic Isolation Design AASHTO-2010)

2.3.3. Perbedaan Bearing Pad dengan LRB

Perbedaan mendasar Bearing Pad yang digunakan pada struktur jembatan dengan LRB dapat dilihat pada tabel berikut ini :

Param eter	Bearing Pad	Lead Rubber Bearing (LRB)
Materi al	Terbuat dari lapisan karet dan dipadu dengan lapisan baja	Terbuat dari lapisan karet dan dipadu dengan lapisan baja tetapi pada bagian tengahnya diberikan rongga yang diisi dengan <i>lead</i> (perunggu)
Perpin dahan/ <i>Displa</i> cement	Deformasi terbatas pada suatu nilai tertentu dan sangat fleksibel pada arah horizontal sehingga menimbulkan perpindahan yang sangat besar	Perpindahan terjadi lebih kecil karena <i>lead plug</i> pada bagian LRB dapat menyerap energi untuk pengurangan gaya gempa.

Tabel 2.1 Perbedaan antara Bearing Pad dengan LRB

(sumber : Oktavia, 2008)

2.3.4. Base Isolation untuk Tanah Lunak (Soft Soil)

Konsep Base isolation tidak cocok digunakan untuk semua jenis tanah lunak. Tanah lunak (*Soft Soil)* memberikan gaya gempa yang lebih besar ke struktur pada periode yang panjang. Grafik hubungan antara jenis tanah dan koefisien seismic dapat dilihat pada gambar 2.8

Gambar 2.8 Hubungan antara Jenis Tanah dan Koefisen Seismik (*sumber: Kelly, 1999*)

Dari Grafik hubungan diatas dapat dilihat bahwa semakin lunak jenis tanah, maka koefisien seismic akan semakin besar. Ini menimbulkan besarnya gaya gempa yang dihantarkan oleh tanah ke struktur untuk periode yang panjang.(Kelly, 1999). Namun dalam pemakaiannya pada kondisi tanah lunak dapat efektif apabila dilakukan penambahan dimensi base isolator.

2.4. Pemodelan Lead Rubber Bearing (LRB)

Pada bagian ini akan dijelaskan pemodelan yang sesuai untuk mendesain LRB sesuai dengan ketentuan AASHTO-2010. Desain yang ditinjau adalah LRB jenis bundar (*circular*). Beberapa hal yang dapat dijadikan kriteria dalam mendesain LRB yakni :

2.4.1 Area Overlap LRB akibat perpindahan

Penggambaran dan perumusan overlap area pada LRB ketika mengalami perpindahan/ displacement dapat dilihat pada gambar 2.8

Gambar 2.9 Overlap Area Dari gambar diatas dapat dirumuskan :

$$Ar = -$$
 (2.2)

Dimana nilai α dapat dicari dengan persamaan :

 $=2cos^{-1}(-)$ (2.3)

Keterangan :

Ar = Overlap area akibat displacement

B = Diameter LRB

dt = Total desain displacement

2.4.2 Faktor Bentuk / Shape Factor (S)

Shape Factor digunakan untuk perhitungan regangan pada LRB. Notasi yang digunakan dapat dilihat pada gambar 2.9.

Gambar 2.10 Notasi Perhitungan Shape Factor

Dari gambar diatas dapat dirumuskan untuk perhitungan *Shape factor* sebagai berikut :

= ____ (2.4)

Dimana	.:
S	= Shape Factor
Do	= Diameter Luar LRB
Di	= Diameter dalam LRB
Т	= thickness (ketebalan) layer LRB

2.4.3 Perhitungan Regangan Geser Akibat Tekan (Yc) Perhitungan Regangan Geser (Yc) dapat dirumuskan sebagai berikut :

$$c = --- \qquad (2.5)$$

Dimana :

Υc	= Regangan Geser Akibat Tekan

- P = Faktor Beban dari Jembatan
- G = Modulus Geser

 f_1 = koefisien dari model LRB

2.4.4 Regangan Geser Akibat Perpindahan / Diplacement (Ys_{MCE})

Perhitungan Regangan Geser (Yc) dapat dirumuskan sebagai berikut :

 $\Upsilon s_{MCE} = \frac{\Delta}{(2.6)}$ Dimana :

= Non-seismik lateral displacement
= Seismic lateral displacement
= Tebal total laver LRB

Dimana .

Tr

2.4.5 Regangan Geser Akibat Rotasi (Yrs)

Perhitungan Regangan Geser akibat (Yc) dapat dirumuskan sebagai berikut :

$$\gamma_{r_s}^u = \frac{L^2(\theta_{sst} + 1.75\theta_{scy})}{tT_r} \cdot f_2 \tag{2.7}$$

Dimana :

Osst = Rotasi non-seismik dalam keadaan statis.

Oscy = Rotasi non-seismik dalam keadaan cyclic

 f_2 = Koefisien dari desain LRB

2.4.6 Kontrol Buckling Load

Kontrol Buckling Load (Pcr) dapat dirumuskan sebagai berikut :

Pcr = --- (2.8)

2.4.7 Kontrol Ketebalan Layer (t_s)

Kontrol Ketebalan Layer (t_{s}) dapat dirumuskan sebagai berikut :

ts -	(2.9)
Dima	na :	
Fy	= Mimimum yield stress pada baja	
А	= Luasan LRB	
Pu	= Faktor beban dari jembatan	

(Halaman ini sengaja dikosongkan)

BAB III

METODOLOGI

Bab ini membahas tentang metodologi yang digunakan dalam perencanaan jalan rel.

3.1. Diagram Alir

Diagram alir ini merupakan tata urutan perencanaan dari awal proses sampai akhir. Diagram alir yang digunakan pada proposal tugas akhir ini dapat dilihat di **Gambar 3. 1**.

Gambar 3.1 Diagaram Alir Pemodelan

3.1.1. Pengumpulan Data Pendukung

Pengumpulan data-data pendukung seperti :

- a. Layout Struktur Jembatan Kutai Kartanegara
- b. Data profil jembatan struktur bangunan atas jembatan kutai kartanegara
- c. Data dimensi desain Lead Rubber Bearing (LRB)
- d. Peraturan yang berkaitan
- e. Buku –buku yang berkaitan.

Dari studi pustaka ini didapatkan kriteria desain yang nantinya akan digunakan dalam pengolahan data.

3.1.2. Studi Literatur

Melakukan studi literatur yang diperlukan untuk penyusunan Tugas Akhir. Adapun peraturan yang terkait dengan Tugas Akhir ini meliputi:

- a. Peraturan Teknik Perencanaan Jembatan RSNI T 02-2005
- b. Perencanaan Pembebanan Gempa mengacu pada Standar Perencanaan Ketahanan Gempa untuk Jembatan SNI 2833-2013
- c. Pemodelan LRB menggunakan Specification for Seismic Isolation Design AASHTO-2010

3.1.3. Perhitungan Parameter Struktur

Perhitungan parameter struktur meliputi Perhitungan pembebanan yang terjadi pada struktur bangunan atas jembatan. Pembebanan yang digunakan dalam jembatan ini mengacu kepada Peraturan Teknik Perencanaan jembatan SNI T-02 2005. Beban Ini meliputi :

3.1.3.1 Beban Sendiri

Berat sendiri dari bagian bangunan adalah berat dari bagian tersebut dan elemen-elemen struktural lain yang dipikulnya.Termasuk dalam hal ini adalah berat bahan dan bagian jembatan yang merupakan elemen struktural, ditambah dengan elemen non struktural yang dianggap tetap

3.1.3.2 Beban Lalu Lintas

Beban lalu lintas untuk perencanaan jembatan terdiri atas beban lajur "D" dan beban truk "T". Beban lajur "D" bekerja pada seluruh lebar jalur kendaraan dan menimbulkan pengaruh pada jembatan yang ekuivalen dengan suatu iring-iringan kendaraan yang sebenarnya. Jumlah total beban lajur "D" yang bekerja tergantung pada lebar jalur kendaraan itu sendiri. Beban truk "T" adalah satu kendaraan berat dengan 3 as yang ditempatkan pada beberapa posisi dalam lajur lalu lintas rencana.

Tiap as terdiri dari dua bidang kontak pembebanan yang dimaksud sebagai simulasi pengaruh roda kendaraan berat. Hanya satu truk "T" diterapkan per lajur lalu lintas rencana. Secara umum, beban "D" akan menjadi beban penentu dalam perhitungan jembatan yang mempunyai bentang sedang sampai panjang, sedangkan beban "T" digunakan untuk bentang pendek dan lantai kendaraan.

3.1.3.3 Beban Lajur 'D'

a. **Beban terbagi rata (BTR)** mempunyai intensitas q kPa, dimana besarnya q tergantung pada panjang total yang dibebani L seperti berikut:

$$L = 30 \text{ m} : q = 9,0 \text{ kPa}$$
 (3.1)

$$L > 30 \text{ m} : q = 9,0. (0.5 + -) \text{ kPa}$$
 (3.2)

Dengan pengertian q adalah intensitas beban terbagi rata (BTR) dalam arah memanjang jembatan L adalah panjang total jembatan yang dibebani (meter).

b. **Beban garis (BGT)** dengan intensitas p kN/m harus ditempatkan tegak lurus terhadap arah lalu lintas pada jembatan. Besarnya intensitas p adalah 49,0 kN/m. Untuk mendapatkan momen lentur negatif maksimum pada jembatan menerus, BGT kedua yang identik harus ditempatkan pada posisi dalam arah melintang jembatan pada bentang lainnya.

3.1.3.4 Beban Truk 'T'

Pembebanan truk "T" terdiri dari kendaraan truk semitrailer yang mempunyai susunan dan berat as seperti terlihat dalam Gambar 2.1. Berat dari masing-masing as disebarkan menjadi 2 beban merata sama besar yang merupakan bidang kontak antara roda dengan permukaan lantai. Jarak antara 2 as tersebut bisa diubah-ubah antara 4,0 m sampai 9,0 m untuk mendapatkan pengaruh terbesar pada arah memanjang jembatan.

Gambar 3.2 Pembebanan Truk 'T'

3.1.3.5 Faktor Beban Dinamis (FBD)

Faktor Beban Dinamis (FBD) merupakan hasil interaksi antara kendaraan yang bergerak dengan jembatan. Besarnya FBD tergantung kepada frekuensi dasar dari suspensi kendaraan, biasanya antara 2 sampai 5 Hz untuk kendaraan berat, dan frekuensi dari getaran lentur jembatan. Untuk perencanaan, DLA dinyatakan sebagai beban statis ekuivalen.

3.1.3.6 Gaya Rem

Bekerjanya gaya-gaya di arah memanjang jembatan, akibat gaya rem dan traksi, harus ditinjau untuk kedua jurusan lalu lintas. Pengaruh ini diperhitungkan senilai dengan gaya rem sebesar 5% dari beban lajur D yang dianggap ada pada semua jalur lalu lintas, tanpa dikalikan dengan faktor beban dinamis dan dalam satu jurusan. Gaya rem tersebut dianggap bekerja horisontal dalam arah sumbu jembatan dengan titik tangkap setinggi 1,8 m di atas permukaan lantai kendaraan. Beban lajur D disini jangan direduksi bila panjang bentang melebihi 30 m, digunakan rumus 1: q = 9 kPa.

Gambar 3.3 Gaya Rem per jalur 2,75 m

3.1.3.7 Beban Angin

Gaya nominal ultimate dan daya layan jembatan akibat angin tergantung kecepatan angin rencana seperti berikut:

Tew = 0.0006 Cw (Vw)² Ab (
$$kN$$
) (3.3)

Dimana:

Vw = kecepatan angin rencana untuk keadaan batas yang ditinjau (m/det).

Cw = koefisien seret

Ab = luas koefisien bagian samping jembatan (m^2)

Dan apabila suatu kendaraan sedang berada diatas jembatan, beban garis merata tambahan arah horizontal harus diterapkan pada permukaan lantai seperti rumus berikut ini

$$Tew = 0.0012 Cw (Vw)^2 (kN/m)$$
(3.4)

Dimana : Cw =1.2

3.1.3.8 Beban Gempa

Perhitungan beban gempa menggunakan Peraturan Perancangan Jembatan Terhadap Beban Gempa SNI 2833-2013. Beban gempa diambil sebagai gaya horizontal yang ditentukan berdasarkan perkalian antara respons elastic (C_{sm}) dengan berat struktur ekuivalen yang kemudian dimodifikasi dengan faktor modifikasi respons (R) dengan formulasi sebagai berikut :

Keterangan :

 E_Q = Gaya gempa horizontal statis (kN)

Csm = Koefisien respons gempa pad moda getar ke – m

- R = Faktor modifikasi respons
- Wt = Berat total struktur yang terdiri dari beban mati dan hidup (kN)

Koefisien respon elastic Csm, diperoleh dari peta percepatan batuan dasar dan spectra percepatan sesuai dengan daerah gempa dan periode ulang gempa rencana. Koefisien percepapatan yang diperoleh berdasarkan peta gempa dikalikan dengan suatu faktor amplikasi sesuai dengan kondisi tanah sampai kedalaman 30 m dibawah struktur jembatan. **Untuk pembebanan "D"**: FBD merupakan fungsi dari panjang bentang ekuivalen seperti tercantum dalam Gambar 3.3.Untuk bentang tunggal panjang bentang ekuivalen diambil sama dengan panjang bentang sebenarnya

Gambar 3.4 Faktor Beban Dinamis untuk pembebanan lajur 'D'

3.1.3.9 Gaya Rem

Bekerjanya gaya-gaya di arah memanjang jembatan, akibat gaya rem dan traksi, harus ditinjau untuk kedua jurusan lalu lintas. Pengaruh ini diperhitungkan senilai dengan gaya rem sebesar 5% dari beban lajur D yang dianggap ada pada semua jalur lalu lintas, tanpa dikalikan dengan faktor beban dinamis dan dalam satu jurusan. Gaya rem tersebut dianggap bekerja horisontal dalam arah sumbu jembatan dengan titik tangkap setinggi 1,8 m di atas permukaan lantai kendaraan. Beban lajur D disini jangan direduksi bila panjang bentang melebihi 30 m, digunakan rumus 1: q = 9 kPa.

Gambar 3.5 Gaya Rem per jalur 2,75 m

3.1.3.10 Beban Angin

Gaya nominal ultimate dan daya layan jembatan akibat angin tergantung kecepatan angin rencana seperti berikut:

Tew = 0.0006 Cw (Vw)² Ab (
$$kN$$
) (3.3)

Dimana:

Vw	= kecepatan angin rencana untuk keadaan batas
	yang ditinjau (m/det).
Cw	= koefisien seret
Ab	= luas koefisien bagian samping jembatan (m^2)

Dan apabila suatu kendaraan sedang berada diatas jembatan, beban garis merata tambahan arah horizontal harus diterapkan pada permukaan lantai seperti rumus berikut ini

Tew = 0.0012 Cw
$$(Vw)^2 (kN/m)$$
 (3.4)

Dimana : Cw =1.2

3.1.3.11 Beban Gempa

Perhitungan beban gempa menggunakan Peraturan Perancangan Jembatan Terhadap Beban Gempa SNI 2833-2013. Beban gempa diambil sebagai gaya horizontal yang ditentukan berdasarkan perkalian antara respons elastic (C_{sm}) dengan berat struktur ekuivalen yang kemudian dimodifikasi dengan faktor modifikasi respons (R) dengan formulasi sebagai berikut :

```
(3.5)
```

Keterangan :

- E_Q = Gaya gempa horizontal statis (kN)
- Csm = Koefisien respons gempa pad moda getar ke m
- R = Faktor modifikasi respons
- Wt = Berat total struktur yang terdiri dari beban mati dan hidup (kN)

Koefisien respon elastic Csm, diperoleh dari peta percepatan batuan dasar dan spectra percepatan sesuai dengan daerah gempa dan periode ulang gempa rencana. Koefisien percepapatan yang diperoleh berdasarkan peta gempa dikalikan dengan suatu faktor amplikasi sesuai dengan kondisi tanah sampai kedalaman 30 m dibawah struktur jembatan.

3.1.4 Analisa Struktur

Analisa Struktur pada Jembatan dengan menggunakan program bantu MIDAS CIVIL 2006.

3.1.5 Analisa Dinamik Pada Setiap Zona Gempa

Analisa Dinamik meliputi Perhitungan Gaya Gempa yang terjadi pada setiap zona gempa yang ada di Indonesia. Sehingga pada Analisa ini didapatkan Gaya gempa dari tiap-tiap zona yang selanjutnya akan dipakai dalam pemodelan LRB

3.1.6 Desain Model LRB

Desain pemodelan LRB menggunakan Specification for Seismic Design AASHTO-2010.

3.1.7 Kontrol Desain LRB

Kontrol Desain LRB dapat dilakukan dengan cara :

- a. Kontrol dengan cara perhitungan manual menggunakan Specification for Seismic Design AASHTO – 2010
- b. Kontrol desain LRB dengan menggunakan Program Bantu MIDAS CIVIL. Adapun beberapa langkah yang dilakukan dalam mengontrol pemodelan ini adalah sebagai berikut :

3.1.7.1 Pemilihan LRB sebagai Model Base Isolator

Pemilihan LRB pada MIDAS CIVIL dapat dilakukan seperti gambar berikut ini :

NUMB	ŧ	PPS1				
pplication	Type :	C Element		(* Force		
roperty	Type :	Hysteretic Syst	iem		Instastic Hit	ge Propenties
Self Wei	n : ght	Gap Hook Hectoretic Such Lead Rubber Be	saring Isola	bor	. 16	Late
10000	Aliment de la	Friction Penduk	un System	Isolator	· F	inditied
Linear P	roperties		_		Nonlinear	Properties
DOF	Elfective	e Stiffness	Effectiv	ve Damping	DOF	
□ Dx	0	kat/m	0	kaf-sec/m	F Dr.	Properties
I Dy	()	kaf/m	0	kaf-sec/m	I pr	Properties
T Dz	ja l	kaf/m	p	kafrsecim	I De	Properties
F Rx	0	kol-m/[rad]	0	kaf-m-seci[rad]	T Rt	Properties
I Ry	0	kal-mu[rad]	9	kaf m sec/[rad]	E RY	Properties
I Rz	p	kal-m/[rad]	0	kaf-m-sec/[rad]	F R2 .	Properties
	-				11	
-F sh Dist	ance Ratio	From End I	Dy	: 0.5	Dz: 0.5	-

Gambar 3.6 Pemilihan LRB sebagai desain Base Isolator

3.1.7.2 Melakukan kontrol pada Respon Spektrum yang terjadi

Kontrol pada respon spectrum pada MIDAS CIVIL dapat dilakukan seperti gambar berikut ini :

Gambar 3.7 Model Respon Spektrum pada MIDAS CIVIL

3.2. Kesimpulan dan Saran

Kesimpulan merupakan hasil dari analisa data yang menjawab rumusan masalah yang dibahas.

(Halaman ini sengaja dikosongkan)

BAB IV PRELIMINARY DESAIN

Preliminary desain adalah sebuah rancangan awal dari suatu perencanaan yang dilakukan dengan menentukan parameter yang diperlukan sesuai dengan batasan yang ada. Parameter seperti dimensi awal struktur dan jenis material akan digunakan sebagai rancangan awal untuk menganalisa struktur.

4.1 Data Perencanaan

- Nama Jembatan : Jembatan Kutai Kartanegara
- Lokasi Jembatan : Jalan Tenggarong Tenggarong Seberang, Kabupaten Kutai Kartanegara, Propinsi Kalimantan Timur.
- Panjang Bentang : 470 m terdiri dari :
 - Side Span Arch Structure Sisi Tenggarong sepanjang 99.831 m
 - Jembatan Utama Arch Structure sepanjang 269.61 m
 - Side Span Arch Structure Sisi Samarinda sepanjang 99.985 m
- Lebar Jembatan : ± 10.75 m
 - Lantai kendaraan
 - Lebar lajur lalu lintas (7 meter)
 - Lantai pejalan kaki pada kedua sisi jembatan (1.3 m)
- Tinggi Jembatan
 - Rangka Utama :
 - 57.84 m, dari bawah tie beam keatas rangka batang atas
 - 25.219 m, dari ketinggian rangka vertikal di pier
 - 7 m, ketinggian batang/ truss di tengah jembatan.

- Tinggi Bebas :
 - 8.7 m minimum (diukur dari permukaan aspal ke permukan bawah ikatan angin.
- Material utama :
 - Gelagar rangka baja.
 - Kabel strand baja.

Gambar 4.1 Layout Jembatan Kutai Kartanegara

4.2 Gelagar

- Rangka Utama
 - Material
- : Baja
- Bentuk Gelagar
- Mutu Baja MPa)
- . Daja . Donako I
- : Rangka Batang
- :JIS SM490Y (Fymin =360

Gambar 4.2 Layout Side Span Arch Structure

Gambar 4.3 Tampak Atas Side Span Arch Structure

4.2.1.1 Batang Bawah dan Batang Atas

Tabel 4.1 Batang Bawah dan Ata	s Side S	Span Structi	ure
--------------------------------	----------	--------------	-----

	U	1	
Gelagar	Simbol	Dimensi	L (m)
	BB1	WF 750 x 450 x 10 x 14	8.939
	BB2	WF 750 x 500 x 10 x 14	9
	BB3	WF750 x 550 x 10 x 16	9
	BB4	WF 750 x 550 x 10 x 16	8.999
	BB5	WF 750 x 600 x 10 x 16	8.999
Batang	BB6	WF 750 x 650 x 10 x 16	8.999
Bawah	BB7	WF 750 x 750 x 10 x 16	8.999
(BB)	BB8	WF 750 x 800 x 12 x 20	8.999
	BB9	WF 750 x 800 x 14 x 26	8.999
	BB10	B 750 x 750 x 22 x 28	9.92
	BB11	B 750 x 750 x 25 x 30	10.039
Batang	BA1	WF 650 x 750 x 12 x 16	ALL
Atas (BA)			

4.2.1.2 Batang Vertikal

Tabel 4.2 Batang Vertikal Side Span Structure

Gelagar	Simbol	Dimensi	L (m)
	TG1	WF 750x400x10x16	8
	TG2	WF 750x400x10x16	8
	TG3	WF 750x400x10x16	8
	TG4	WF 750x400x10x16	8.026
Vertikal	TG5	WF 750x400x10x16	8.25
(TG)	TG6	WF 750x450x10x20	9
	TG7	WF 750x450x10x20	10.382
	TG8	WF 750x450x10x20	11.721
	TG9	WF 750x400x12x18	13.649
	TG10	WF 750x550x16x22	15.847

4.2.1.3 Batang Diagonal

Tabel 4.3 Batang Diagonal Side Span Structure

Gelagar	Simbol	Dimensi	L (m)
	DG1	B 750 x 500 x 12 x 6	12.34
	DG2	WF 750 x 400 x 10 x 16	11.764
	DG3	WF 750 x 400 x 10 x 16	11.781
	DG4	WF 750 x 400 x 10 x 16	11.787
	DG5	WF 750 x 550 x 16 x 22	11.798
	DG6	WF 750 x 500 x 14 x 22	11.972
Diagonal	DG7	WF 750 x 550 x 16 x 22	12.492
(DG)	DG8	WF 750 x 550 x 16 x 25	13.454
	DG9	WF 750 x 600 x 18 x 25	14.539
	DG10	WF 750 x 450 x 12 x 18	15.997
	DG11	WF 750 x 600 x 10 x 18	18.365

4.2.1.4 Batang Melintang dan Memanjang

Tabel 4.4 Batang Melintang Side Span Structure					
Gelagar	Simbol	Dimensi	L (m)		
Melintang CG		WF 1000x350x14x25	10.75		
	CG-B	B 1000x500x20x25	10.75		

Tabel 4.5 Batang Memanjang Side Span Structure

Gelagar	Simbol	Dimensi
	ST1	WF 500x250x8x10
Memanjang	ST2	WF 600x300x8x10
	ST3	WF 580x280x8x12
	ST4	WF 600x300x8x12

4.2.2 Sisi Main Arch Structure

Gambar 4.4 Layout Main Arch Structure

Gambar 4.5 Tampak Atas Main Arch Structure

Gelagar Simbol Dimensi L(m)B 750 x 750 x 25 x 38 BB12 11.431 B 1000 x 750 x 40 x 40 **BB13** 11.004 B 1000 x 750 x 35 x 40 BB14 10.644 B 1000 x 750 x 25 x 38 **BB15** 10.342 Batang B 1000 x 750 x 25 x 30 **BB16** 10.088 Bawah **BB17** B 1000 x 750 x 22 x 28 9.869 (BB) **BB18** B 950 x 750 x 20 x 30 9.692 BB19 B 900 x 750 x 20 x 25 9.532 B 850 x 750 x 20 x 20 **BB20** 9.394 **BB21** B 800 x 750 x 16 x 20 9.283 B 750 x 750 x 14 x 20 **BB22** 9.192 **BB23** B 700 x 750 x 10 x 16 9.123 B 650 x 750 x 12 x 12 **BB24** 9.066 B 600 x 750 x 10 x 10 **BB25** 9.027 B 550 x 750 x 10 x 10 **BB26** 8.814 WF 650 x 750 x 10 x 12 9.7596 BA2 WF 700 x 750 x 10 x 12 9.753 BA3 WF 750 x 750 x 10 x 12 9.798 BA4 BA5 WF 700 x 750 x 10 x 12 9.658 WF 700 x 750 x 10 x 12 BA6 9.537 WF 700 x 750 x 10 x 16 9.428 BA7 Batang WF 700 x 750 x 12 x 18 9.342 BA8 Atas BA9 WF 700 x 750 x 16 x 18 9.251 (BA) WF 700 x 750 x 16 x 25 **BA10** 9.187 WF 700 x 750 x 20 x 25 **BA11** 9.13 WF 700 x 750 x 20 x 30 **BA12** 9.084 WF 750 x 750 x 20 x 35 BA13 9.049 WF 750 x 750 x 20 x 35 9.046 **BA14** WF 800 x 750 x 25 x 40 9 BA15 **BA16** WF 800 x 750 x 25 x 40 8.807

Tabel 4.6 Batang Bawah dan Atas Main Arch Structure

Batang Bawah dan Batang Atas

4.2.2.1

4.2.2.2 Batang Melintang dan Memanjang

Tabel 4.7 Batang Melintang Main Arch Structure

	<u> </u>	0	
Gelagar	Simbol	Dimensi	L (m)
Melintang	CG	WF 1000x350x14x25	10.75
	CG-B	B 1000x500x20x25	10.75

Tabel 4.8 Batang Memanjang Main Arch Structure

Gelagar	Simbol	Dimensi
	ST1	WF 500x250x8x10
Memanjang	ST2	WF 600x300x8x10
	ST3	WF 580x280x8x12
	ST4	WF 600x300x8x12

4.2.2.3 Batang Vertikal

Tabel 4.9 Batang Vertikal Main Arch Structure

Gelagar	Simbol	Dimensi	L (m)
	TG11	WF 750x450x10x20	25.417
	TG12	WF 750x450x10x16	21.696
	TG13	WF 750x430x14x18	19.123
	TG14	WF 750x430x14x18	17.307
	TG15	WF 750x550x14x25	15.71
	TG16	WF 750x550x14x25	14.3
Melintang	TG17	WF 750x500x12x22	13.054
Arch	TG18	WF 750x500x12x18	11.953
Structure	TG19	WF 750x500x12x22	10.981
	TG20	WF 750x450x12x18	10.125
	TG21	WF 750x400x10x16	9.376
	TG22	WF 750x400x10x16	8.726
	TG23	WF 750x400x10x16	8.176
	TG24	WF 750x300x10x14	7.969
	TG25	WF 750x300x10x14	7.308
	TG26	B 750x800x20x25	7

4.2.2.4 Batang Diagonal

Tabel 4.10 Batang Diagonal Main Arch Structure

0.1	C^{*} 1 1		T ()
Gelagar	Simbol	Dimensi	L (m)
	DG13	WF 750 x 600 x 14 x 25	17.984
	DG14	WF 750 x 400 x 10 x 18	16.17
	DG15	WF 750 x 400 x 10 x 18	15.165
	DG16	WF 750 x 400 x 10 x 18	14.331
	DG17	WF 750 x 450 x 10 x 16	13.637
Diagonal	DG18	WF 750 x 350 x 10 x 16	13.055
Arch	DG19	WF 750 x 350 x 10 x 16	12.615
Structure	DG20	WF 750 x 350 x 10 x 16	12.23
	DG21	WF 750 x 350 x 10 x 16	11.936
	DG22	WF 750 x 450 x 10 x 16	11.71
	DG23	WF 750 x 350 x 10 x 16	11.545
	DG24	WF 750 x 350 x 10 x 16	11.436
	DG25	WF 750 x 400 x 10 x 18	11.546
	DG26	WF 750 x 450 x 12 x 20	11.216

4.2.2.5 Batang Main Girder

Tabel 4.11 Batang Main Girder Main Arch Structure

Gelagar	Simbol	Dimensi	L (m)
Main	TI-1	WF 750 x 1100 x 25	9.003
Girder		x40	
	TI-2	WF 1100 x 750 x 25	9.000
		x40	

4.3 Ikatan Angin

Data perencanaan Ikatan Angin/ bracing terdiri atas:

- Material : Baja
- Bentuk Gelagar : Rangka Batang
- Mutu Baja :JIS SS400 (Fymin =245 MPa)

Data profil *bracing* dapat dilihat pada tabel 4.12 berikut ini:

Tabler 4.12 Tronn Ratan / Highi			
Gelagar	Simbol	Dimensi	
	BP-V	P 190.7 x 6	
	BP-H	P 267.4 x 6	
Ikatan Angin	BP-X	P 190.7 x 6	
	BP-L	P 190.7 x6	
	BPH-C	WF 1000 x 250 x18 x20	
	BPH-B	WF 1000 x 400 x 20 x25	
	BP-V2	P 190.7 x 6	

|--|

Ikatan angin pada struktur jembatan dibagi atas tiga bagian yakni ikatan angin gelagar jembatan (Gambar 4.6), ikatan angina busur atas (Gambar 4.7),dan ikatan angina busut bawah (gambar 4.8)

Gambar 4.6 Ikatan Angin Gelagar

Gambar 4.7 Ikatan Angin Busur Atas

Gambar 4.8 Ikatan Angin Busur Bawah

4.4 Kabel Hanger

Hanger dalam perencanaan ini menggunakan type *PPWS (Prefabricated Parallel Wire Strand)* dengan spesifikasi sebagai berikut :

•	Material	: Kabel Strand Baja
•	Diameter Nominal	: 85 x 0 5 mm
•	Modulus Elastisitas	: 195000 MPa

Hanger terbuat dari bahan *galvanized high tensile* dengan *wire* kabel parallel dengan 85 buah strand 0.5 mm. Dimana tiap strand digalvanisasi. Bentuk penampang hanger ditunjukkan pada gambar 4.6 berikut ini.

Gambar 4.10 Potongan A-A

Gambar 4.11 Potongan B-B

47

Gelagar	Simbol	L (m)
	HG1	3.768
	HG2	9.297
	HG3	14.517
	HG4	18.957
	HG5	22.893
	HG6	26.893
Hanger	HG7	29.421
Kabel	HG8	32.049
	HG9	34.396
	HG10	36.232
	HG11	37.688
	HG12	38.773
	HG13	39.498
	HG14	39.856

Tabel 4.13 Profil Kabel Hanger

BAB V PEMODELAN STRUKTUR

5.1 Umum

Di dalam bab ini akan dijelaskan mengenai pemodelan Tugas Akhir "Studi Penggunaan *Lead Rubber* Bearing Sebagai Base Isolator dengan Model Jembatan Kutai Kartanegara pada Zona Gempa di Indonesia' Di dalam Tugas Akhir ini, model jembatan dimodelkan secara 3 dimensi dengan bantuan program bantu MIDAS 2006.

Gambar 5.1 Permodelan 3D MIDAS 2006

5.2 Pembebanan

Beban-beban yang digunakan dalam permodelan menggunakan MIDAS 2006 terdiri dari beban mati, beban mati tambahan (SDL), beban hidup kendaraan, beban angin dan beban gempa.

Jembatan ini direncanakan dengan lantai kendaraan yang akan dipikul gelagar memanjang yang nantinya dilanjutkan ke gelagar melintang setelah itu ke rangka utama jembatan. Pada perencanaan, pembebanannya direncanakan memikul beban mati
(DL) berupa plat beton, aspal, dan kerb. Untuk beban hidup UDL dan KEL juga direncanakan di gelagar memanjang.

Gambar 5.2 Potongan Memanjang Lantai Kendaraan

5.2.1 Beban Mati

Beban mati dalam hal ini adalah beban sendiri struktur, meliputi beban gelagar memanjang, gelagar melintang, rangka, dan struktur rangka busur. Di dalam MIDAS 2006 bisa dapat kita definisikan "Self Weight z (-1)" yang menandakan bahwa berat sendiri struktur mengarah ke sumbu z negatif atau ke bawah. Untuk selanjutnya beban sendiri struktur tidak perlu dihitung dan dimasukkan sebagai beban karena telah dihitung secara otomatis oleh MIDAS sebagai beban sendiri.

5.2.2 Beban Mati Tambahan (SDL)

Beban mati tambahan meliputi : pelat beton, kerb, aspal. Untuk pembebanan 3 dimensi dalam MIDAS dipakai beban yang telah dihitung dan didistribusikan ke gelagar memanjang. Data lantai kendaraan :

- $\gamma_{\text{beton}} = 24 \text{ kN/m}^3$
- f'c = 30 MPa
- Tebal plat = 0,275 m
- Tinggi Kerb = 0,2 m
- Lebar Kerb = 1,3 m
- $\gamma_{aspal} = 22 \text{ kN/m}^3$
- Tebal Aspal = 10 cm (termasuk *Overlay*)

Gambar 5.3 Potongan melintang lantai kendaraan

Jembatan direncanakan untuk bisa memikul beban tambahan yang berupa aspal dan beton serta untuk pelapisan kembali dikemudian hari (*overlay* = 50 mm).

• Pelat beton ($t_{beton} = 27,5 \text{ cm}$) :

beton kendaraan

Jangkauan Distribusi Beban Gelagar Memanjang untuk Plat Beton:

 $\begin{array}{l} Qn_{beton} = K^U{}_{MS} \ x \ \gamma_{beton} \ x \ t_{beton} \ x \ ln \\ Q1_{beton} = 1,3 \ x \ 24 \ x \ 0,275 \ x \ 0,031 = 0,268 \ kN/m \\ Q2_{beton} = 1,3 \ x \ 24 \ x \ 0,275 \ x \ 1,325 = 11,369 \ kN/m \\ Q3_{beton} = 1,3 \ x \ 24 \ x \ 0,275 \ x \ 1,400 = 12,012 \ kN/m \\ Q4_{beton} = 1,3 \ x \ 24 \ x \ 0,275 \ x \ 1,400 = 12,012 \ kN/m \\ Q5_{beton} = Q6_{beton} = Q4_{beton} = 12,012 \ kN/m \\ Q7_{beton} = Q2_{beton} = 11,369 \ kN/m \\ Q8_{beton} = Q1_{beton} = 0,268 \ kN/m \end{array}$

• Aspal $(t_{aspal} = 5 \text{ cm})$:

Kecuali ditentukan lain oleh Instansi yang berwenang, semua jembatan harus direncanakan untuk bisa memikul beban tambahan yang berupa aspal beton setebal 50 mm untuk pelapisan kembali dikemudian hari. Pelapisan kembali yang diizinkan adalah merupakan beban nominal yang dikaitkan dengan faktor beban untuk mendapatkan beban rencana. (RSNI T-02-2005 pasal 5.3.2).

Gambar 5.5 Lebar distribusi pada gelagar memanjang akibat aspal

Jangkauan Distribusi Beban Gelagar Memanjang untuk beban aspal :

 $\begin{array}{l} Aspal + Overlay \; (t_{aspal + overlay} = 10 \; cm): \\ Qn_{aspal} = K^U{}_{MS} \; x \; \gamma_{aspal} \; x \; t_{aspal} \; x \; ln \\ Q1_{aspal} = 1,3 \; x \; 22 \; x \; 0,1 \; x \; 0 = 0 \; kN/m \\ Q2_{aspal} = 1,3 \; x \; 22 \; x \; 0,1 \; x \; 0,7 = 2.002 \; kN/m \\ Q3_{aspal} = 1,3 \; x \; 22 \; x \; 0,1 \; x \; 1,400 = 4,004 \; kN/m \\ Q4_{aspal} = 1,3 \; x \; 22 \; x \; 0,1 \; x \; 1,400 = 4,004 \; kN/m \\ Q5_{aspal} = Q6_{aspal} = Q4_{aspal} = 4,004 \; kN/m \\ Q7_{aspal} = Q2_{aspal} = 2,002 \; kN/m \\ Q8_{aspal} = Q1_{aspal} = 0 \; kN/m \end{array}$

• Kerb ($t_{kerb} = 20$ cm) :

Gambar 5.6 Lebar distribusi pada gelagar memanjang akibat kerb

Jangkauan Distribusi Beban Gelagar Memanjang untuk beban kerb:

 $\begin{array}{l} \mbox{Kerb} \ (t_{kerb} = 20 \ cm): \\ \ Qn_{kerb} = K^{U}{}_{MS} \ x \ \gamma_{kerb} \ x \ t_{kerb} \ x \ ln \\ \ Q1_{kerb} = 1,3 \ x \ 24 \ x \ 0,20 \ x \ 0,675 = 4,212 \ kN/m \\ \ Q2_{kerb} = 1,3 \ x \ 24 \ x \ 0,20 \ x \ 0,625 = 3,900 \ kN/m \\ \ Q3_{kerb} = 0 \ kN/m \\ \ Q4_{kerb} = Q5_{kerb} = Q6_{kerb} = Q3_{kerb} = 0 \ kN/m \\ \ Q7_{kerb} = Q2_{kerb} = 3,900 \ kN/m \\ \ Q8_{kerb} = Q1_{kerb} = 4,212 \ kN/m \end{array}$

• Beban SDL total tiap gelagar : $Qn_{total} = Qn_{beton} + Qn_{aspal} + Qn_{kerb}$ $Q1_{total} = 4,480 \text{ kN/m}$ $Q2_{total} = 17,271 \text{ kN/m}$ $Q3_{total} = 16,016 \text{ kN/m}$ $Q4_{total} = 16,016 \text{ kN/m}$ $Q5_{total} = 16,016 \text{ kN/m}$ $Q6_{total} = 16,016 \text{ kN/m}$ $Q7_{total} = 17,271 \text{ kN/m}$ $Q8_{total} = 4,480 \text{ kN/m}$

5.2.3 Beban Hidup

Pembebanan beban hidup terbagi menjadi 2, yaitu beban hidup lalu lintas berupa : UDL dan KEL serta beban hidup Truk.

5.2.3.1 Beban Hidup UDL

Menurut RSNI T 02-2005, besarnya beban UDL ditentukan dengan persamaan berikut :

$$q = 9,0 \cdot \left(0,5 + \frac{15}{L}\right)$$

Dimana

q : Besar beban merata UDL (kPa)

L : Panjang bentang jembatan (m)

Karena,

Dengan panjang Lside = 100 m > 30 mLarch = 270 m > 30 m

Faktor : $K^{U}_{TD} = 1,8 \text{ dan } K^{u} = 1,1.$

maka,
$$qside = 9,0 \cdot \left(0,5 + \frac{15}{100}\right) = 5,85 \ kPa$$

 $qarch = 9,0 \cdot \left(0,5 + \frac{15}{270}\right) = 5,00 \ kPa$

5.2.3.2 Beban UDL Simetris

Gambar 5.7 Distribusi beban UDL simetris pada gelagar melintang

Sisi Side Span

 $\begin{array}{l} q_{UDL} = K^{U}_{TD} \ x \ q \ x \ k^{u} \ x \ ln \\ q_{UDL1side} = 0 \ kN/m \\ q_{UDL2side} = 1,8 \ x \ (5,85:2) \ x \ 1,1 \ x \ 0,7 = 4,054 \ kN/m \\ q_{UDL3side} = 1,8 \ x \ 5,85 \ x \ 1,1 \ x \ 1,4 = 16,216 \ kN/m \\ q_{UDL4side} = 1,8 \ x \ 5,85 \ x \ 1,1 \ x \ 1,4 = 16,216 \ kN/m \\ q_{UDL5side} = q_{UDL6side} = q_{UDL4side} = 16,216 \ kN/m \\ q_{UDL7side} = q_{UDL2side} = 4,054 \ kN/m \\ q_{UDL8side} = q_{UDL1side} = 0 \ kN/m \end{array}$

Sisi Mid Span

 $\begin{array}{l} q_{UDL1arch} = 0 \ kN/m \\ q_{UDL2arch} = 1,8 \ x \ (5,0:2) \ x \ 1,1 \ x \ 0,7 = 3,465 \ kN/m \\ q_{UDL3arch} = 1,8 \ x \ 5,00 \ x \ 1,1 \ x \ 1,4 = 13,860 \ kN/m \\ q_{UDL4arch} = 1,8 \ x \ 5,00 \ x \ 1,1 \ x \ 1,4 = 13,860 \ kN/m \\ q_{UDL5arch} = q_{UDL6arch} = q_{UDL4arch} = 13,860 \ kN/m \\ q_{UDL7arch} = q_{UDL2arch} = 3,465 \ kN/m \\ q_{UDL8arch} = q_{UDL1arch} = 0 \ kN/m \end{array}$

5.2.3.3 Beban UDL Asimetris

Gambar 5.8 Distribusi beban UDL asimetris pada gelagar melintang

Sisi Side Span

 $\begin{array}{l} q_{UDL1side} = 0 \ kN/m \\ q_{UDL2side} = 1,8 \ x \ (5,85:2) \ x \ 1,1 \ x \ 0,7 = 4,054 \ kN/m \\ q_{UDL3side} = 1,8 \ x \ (5,85:2) \ x \ 1,1 \ x \ 0,7 + 1,8 \ x \ 5,85 \ x \ 0,7 \ x \ 1,1 \\ = 12,162 \ kN/m \\ q_{UDL4side} = 1,8 \ x \ 5,85 \ x \ 1,1 \ x \ 1,4 = 16,216 \ kN/m \\ q_{UDL5side} = q_{UDL6side} = q_{UDL4side} = 16,216 \ kN/m \\ q_{UDL7side} = 1,8 \ x \ 5,85 \ x \ 1,1 \ x \ 0,7 = 8,108 \ kN/m \\ q_{UDL8side} = q_{UDL1side} = 0 \ kN/m \end{array}$

Sisi Mid Span

 $\begin{array}{l} q_{\text{UDL1arch}} = 0 \ \text{kN/m} \\ q_{\text{UDL2arch}} = 1,8 \ \text{x} \ (5,0:2) \ \text{x} \ 1,1 \ \text{x} \ 0,7 = 3,465 \ \text{kN/m} \\ q_{\text{UDL3arch}} = 1,8 \ \text{x} \ (5,0:2) \ \text{x} \ 1,1 \ \text{x} \ 0,7 + 1,8 \ \text{x} \ 5,0 \ \text{x} \ 1,1 \ \text{x} \ 0,7 \\ = 10,396 \ \text{kN/m} \\ q_{\text{UDL4arch}} = 1,8 \ \text{x} \ 5,00 \ \text{x} \ 1,1 \ \text{x} \ 1,4 = 13,860 \ \text{kN/m} \\ q_{\text{UDL5arch}} = q_{\text{UDL6arch}} = q_{\text{UDL4arch}} = 13,860 \ \text{kN/m} \\ q_{\text{UDL7arch}} = 1,8 \ \text{x} \ 5,0 \ \text{x} \ 1,1 \ \text{x} \ 0,7 = 6,93 \ \text{kN/m} \\ q_{\text{UDL8arch}} = q_{\text{UDL1arch}} = 0 \ \text{kN/m} \end{array}$

5.2.3.4 Beban Hidup KEL

Menurut RSNI T 02-2005, beban KEL harus ditempatkan tegak lurus terhadap arah lalu lintas pada jembatan. Besarnya beban KEL adalah 49,0 kN/m. Untuk pembebanan KEL harus ditambah dengan beban kejut (DLA) sebesar 30%.

Faktor : $K_{TD}^{U} = 1,8$ P' = $K_{TD}^{U} x \text{ KEL } x (1 + \text{DLA})$ P' = 1,8 x 49 x (1 + 0,3) = 114,660 kN 0,5P' = 57,330 kN

5.2.3.5 Beban Hidup KEL Simetris

Gambar 5.9 Distribusi beban KEL simetris pada gelagar melintang

 $\begin{array}{l} Pn_{KEL} = P' \; x \; \textit{In} \\ P1_{KEL} = \; 0 \; kN \\ P2_{KEL} = 57,330 \; x \; 0,7 = 40,131 \; kN \\ P3_{KEL} = 114,660 \; x \; 1,4 = 160,524 \; kN \\ P4_{KEL} = 114,660 \; x \; 1,4 = 160,524 \; kN \\ P5_{KEL} = P6_{KEL} = P4_{KEL} = 160,524 \; kN \\ P7_{KEL} = P2_{KEL} = 40,131 \; kN \\ P8_{KEL} = P1_{KEL} = 0 \; kN \end{array}$

5.2.3.6 Kombinasi Pembebanan UDL dan KEL pada Batang Akhir

Untuk mendapatkan besarnya gaya maksimum yang terjadi pada tiap-tiap rangka dilakukan dengan menggunakan garis pengaruh saat beban berjalan disepanjang jembatan. Didalam perhitungannya, model jembatan dimodelkan secara dua dimensi dengan bantuan *influence line* pada program bantu MIDAS CIVIL 2006.

Gambar 5.10 Pemodelan 2D MIDAS CIVIL 2006

Setelah pemodelan penampang jembatan, maka dibebankan 1 kN disepanjang *main girder* jembatan untuk mengetahui gaya batang maksimum yang terjadi pada gaya batang.

5.2.3.7 Kombinasi Pembebanan UDL dan KEL pada Batang Akhir

Batang akhir yang ditinjau untuk kombinasi pembebanan UDL dan KEL meliputi batang vertikal akhir (TG 26) pada gambar 5.12, batang diagonal (DG26) pada gambar 5.13, batang atas (BA16) pada gambar 5.14, dan batang bawah (BB26) pada gambar 5.15.

Gambar 5.14 Garis Pengaruh BB26 (SBB26)

5.2.3.8 Kombinasi Pembebanan UDL dan KEL pada Batang Perletakan Struktur

Batang yang ditinjau untuk kombinasi pembebanan UDL dan KEL meliputi batang vertikal (TG11) pada gambar 5.16, batang diagonal (DG12) pada gambar 5.17, batang atas (BA16) pada gambar 5.18, dan batang bawah (TI4) pada gambar 5.19.

Gambar 5.15 Garis Pengaruh TG11 (S_{TG11})

Gambar 5.18 Garis Pengaruh TI4 (S_{TI14})

Dengan memberikan beban merata UDL disepanjang garis pengaruh positif dan menempatkan beban titik KEL pada titik garis pengaruh positif maksimum akan mendapatkan gaya maksimum positif pada batang yang ditinjau. Sebagai contoh pada batang DG26 pada batang akhir pada gambar 5.15 beban merata UDL ditempatkan terlebih dahulu pada garis pengaruh positif dan beban titik KEL pada titik garis pengaruh positif maksimum.

Gambar 5.19 Pembebanan pada S_{DG26} Positif

Sebaliknya dengan memberikan beban merata UDL disepanjang garis pengaruh negatif dan menempatkan beban titik KEL pada titik garis pengaruh negatif maksimum akan mendapatkan gaya maksimum negatif pada batang yang ditinjau.

Gambar 5.20 Pembebanan pada S_{DG26} Negatif

5.2.4 Desain Perletakan pada Struktur Jembatan

Perletakan yang digunakan dibawah struktur jembatan terdiri atas tiga jenis yang disesuaikan dengan arah gerak terdiri atas :

- Perletakan bebas kedua arah yakni arah memanjang (x) dan melintang (y)
- Perletakan bebas satu arah yakni arah memanjang (x) atau melintang (y)
- Perletakan tetap (fix)

Perletakan pada Jembatan Kutai Kartanegara dapat dilihat seperti pada gambar 5.21 berikut ini :

Gambar 5.21 Perletakan Struktur

Pemodelan Perletakan pada Midas dapat dilihat pada tabel 5.1 berikut ini

Tabel 5.1 Pemodelan Perletakan Pada Midas

Node	Dx	Dy	Dz
1	0	1	1
14	0	1	1
162	0	0	1
178	0	0	1
661	1	1	1
676	0	1	1
725	1	0	1
740	0	0	1

5.2.4.1 Pemodelan POT Bearing pada Perletakan Jembatan

Desain perletakan aktual pada jembatan menggunakan POT bearing. POT bearing adalah struktur perletakan yang dapat memikul beban vertikal dan horizontal dengan batasan tertentu. POT bearing biasanya didesain untuk kondisi pada temperature antara -20°C dan 50°C. Bentuk POT bearing yang digunakan di jembatan dapat dilihat pada gambar 5.22 berikut ini.

Gambar 5.22 Penampang POT bearing

5.2.4.2 Pemodelan POT Bearing pada MIDAS

Pemodelan POT bearing pada program bantu MIDAS menggunakan *elastic link* pada bagian *boundary*. Pemodelan membutuhkan parameter kekakuan horizontal arah memanjang (SDx), melintang (SDy), dan kekakuan vertikal (SDz) dari POT bearing.

5.2.4.3 Pemodelan POT bearing pada Perletakan *Node 1* dan *Node 676*

a. Beban Mati

Beban Mati (berat sendiri dan beban mati tambahan) maksimum pada *node 1* dan *node 676* yang didapat dari MIDAS sebesar 2014.371 kN

b. Beban Hidup

Beban hidup maksimun pada *node 1* dan *node 676* yang didapat dari MIDAS sebesar 1419.038 kN

c. Total Beban Vertikal

Total beban vertical merupakan jumlah antara beban mati dan beban hidup maksimum. Beban vertikal didapat sebesar 3433.409 kN.

d. Dimensi POT bearing

Dimensi POT bearing menggunakan spesifikasi dari fabrikasi *Mekano4* sebagai berikut :

Gambar 5.23 Penampang POT bearing arah memanjang atau melintang

Tabel 5	.2	Section	Propeties	PC	i4000	0
---------	----	---------	-----------	----	-------	---

Keterangan	Ukuran	Satuan
Jenis	PG4000	
Diameter (D2)	456	mm
Panjang (L5)	561	mm
Lebar (B5)	456	mm
Tinggi (H)	110	mm
Total Tebal Rubber (t)	73	mm
Modulus Shear (G)	9 x 10 ⁵	N/m ²
Modulus Bulk (K)	2×10^9	N/m ²
Berat (W)	153	Kg

e. Kekakuan horizontal

Kekakuan horizontal dirumuskan sebagai berikut:

Ks = -

Keterangan:

- A = Luasan POT bearing
- t = Total tebal rubber
- G = Modulus shear

 $A = 163312.55 \text{ mm}^2$

 $A = 0.163 m^2$

 $Ks = ---x 9 \times 10^5$

Ks = 2004290.42 kN/m

f. Kekakuan Vertikal (Kv)

Kekakuan vertikal pada POT bearing dirumuskan sebagai berikut :

Kv=-----

Keterangan :

A = Luasan POT bearing

Ec = Compression modulus

Tr = Tinggi total tebal rubber

Compression modulus dapat dihitung dengan menggunakan perumusan :

Ec — $-)^{-1}$

Keterangan :

G = Modulus shear

S = Faktor Bentuk

K = Modulus Bulk rubber

Faktor bentuk dari suatu POT bearing dapat dicari dengan menggunakan perumusan:

S=----

S=_____= 14.25

Dari hasil perhitungan diatas didapat faktor bentuk (S) sebesar 14.25 sehingga nilai compression modulus dapat dihitung.

 $Ec = 0.63 \times 10^9 MPa$

Dari perhitungan diatas didapat compression modulus sebesar 0.63×10^9 sehingga nilai Kekakuan vertikal dapat dihitung.

Kv=-----

Kv = 1410711767 kN/m

5.2.4.4 Pemodelan POT bearing pada Perletakan *Node 14* dan *Node 725*

a. Beban Mati

Beban Mati (berat sendiri dan beban mati tambahan) maksimum pada *node 14* dan *node 725* yang didapat dari MIDAS sebesar 17312.54 kN

b. Beban Hidup

Beban hidup maksimun pada *node 14* dan *node 725* yang didapat dari MIDAS sebesar 5415.56 kN

c. Total Beban Vertikal

Total beban vertical merupakan jumlah antara beban mati dan beban hidup maksimum. Beban vertikal didapat sebesar 22728.978 kN.

d. Dimensi POT bearing

Dimensi POT bearing menggunakan spesifikasi dari fabrikasi *Mekano4* sebagai berikut :

Gambar 5.24 Penampang POT bearing arah memanjang atau melintang

Keterangan	Ukuran	Satuan	
Jenis	PG24000		
Diameter (D2)	1004	mm	
Panjang (L5)	1004	mm	
Lebar (B5)	1004	mm	
Tinggi (H)	188	mm	
Total Tebal Rubber (t)	125.33	mm	
Modulus Shear (G)	9 x 10 ⁵	N/m ²	
Modulus bulk (K)	2×10^9	N/m^2	
Berat (W)	1088	Kg	

Tabel 5.3	Section	Propeties	PG24000
		11000000	

e. Kekakuan Horizontal (Ks)

Kekakuan horizontal dirumuskan sebagai berikut:

Ks = -

Keterangan:

Ar = Luasan POT bearing

- t = Total tebal rubber
- G = Modulus shear

 $A = 791693.92 \text{ mm}^{2}$ $A = 0.792 \text{ m}^{2}$ $Ks = ---x 9 x 10^{5}$ Ks = 5685036 kN/m

f. Kekakuan Vertikal (Kv)

Kekakuan vertikal pada POT bearing dirumuskan sebagai berikut :

Kv=-----

Compression modulus dapat dihitung dengan menggunakan perumusan :

Ec — $(-)^{-1}$

Faktor bentuk dari suatu POT bearing dapat dicari dengan menggunakan perumusan:

S=----

S= _____ = 31.375

Dari hasil perhitungan diatas didapat faktor bentuk (S) sebesar 31.375 sehingga nilai compression modulus dapat dihitung.

Ec _____)⁻¹

 $Ec = 1.17 \times 10^9 MPa$

Dari perhitungan diatas didapat compression modulus sebesar $1,17 \times 10^9$ sehingga nilai Kekakuan vertikal dapat dihitung.

Kv= -----Kv= ------

Kv = 7389790749 kN/m

5.2.4.5 Pemodelan POT bearing pada Perletakan *Node 178* dan *Node 740*

a. Beban Mati

Beban Mati (berat sendiri dan beban mati tambahan) maksimum pada *node 178* dan *node 740* yang didapat dari MIDAS sebesar 2014.43 kN

b. Beban Hidup

Beban hidup maksimun pada *node 178* dan *node 740* yang didapat dari MIDAS sebesar 1419.037 kN

c. Total Beban Vertikal

Total beban vertical merupakan jumlah antara beban mati dan beban hidup maksimum. Beban vertikal didapat sebesar 3433.466 kN.

d. Dimensi POT bearing

Dimensi POT bearing menggunakan spesifikasi dari fabrikasi *Mekano4* sebagai berikut :

Gambar 5.25 Penampang POT bearing arah memanjang atau melintang

Veterrener	T11	Catalan
Keterangan	Ukuran	Satuan
Jenis	PG4000	
Diameter (D2)	441	mm
Panjang (L5)	531	mm
Lebar (B5)	441	mm
Tinggi (H)	95	mm
Total Tebal Rubber (t)	64	mm
Modulus Shear (G)	9 x 10 ⁵	N/m^2
Modulus Bulk (B)	2×10^9	N/m ²
Berat (W)	119	Kg

Tabel 5.4 Section Propeties PG4000

e. Kekakuan Horizontal (Ks)

Kekakuan horizontal dirumuskan sebagai berikut:

Ks = -

Keterangan:

Ar = Luasan POT bearing

- t = Total tebal rubber
- G = Modulus shear

 $A = 152745.02 \text{ mm}^{2}$ $A = 0.153 \text{ m}^{2}$ $Ks = ---x 9 \times 10^{5}$

Ks = 2170857.13 kN/m

f. Kekakuan Vertikal (Kv) Kekakuan vertikal pada POT bearing dirumuskan sebagai berikut :

Kv=-----

Compression modulus dapat dihitung dengan menggunakan perumusan :

Ec — $-)^{-1}$

Faktor bentuk dari suatu POT bearing dapat dicari dengan menggunakan perumusan:

S=----

S=_____=13.781

Dari hasil perhitungan diatas didapat faktor bentuk (S) sebesar 13.781 sehingga nilai compression modulus dapat dihitung.

Ec _____)⁻¹

 $Ec = 0.609 \times 10^9 MPa$

Dari perhitungan diatas didapat compression modulus sebesar 0.609×10^9 sehingga nilai Kekakuan vertikal dapat dihitung.

Kv=-----

Kv=_____

Kv = 1469045480 kN/m

5.2.4.6 Pemodelan POT bearing pada Perletakan Node 162

a. Beban Mati

Beban Mati (berat sendiri dan beban mati tambahan) maksimum pada *node 162* yang didapat dari MIDAS sebesar 17314.121 kN

b. Beban Hidup

Beban hidup maksimun pada *node 162* yang didapat dari MIDAS sebesar 5416.172 kN

c. Total Beban Vertikal

Total beban vertical merupakan jumlah antara beban mati dan beban hidup maksimum. Beban vertikal didapat sebesar 22730.29 kN.

d. Dimensi POT bearing

Dimensi POT bearing menggunakan spesifikasi dari fabrikasi *Mekano4* sebagai berikut :

Gambar 5.26 Penampang POT bearing arah memanjang atau melintang

1 aber 5.5 Sectio	in r topeties r c	J24000
Keterangan	Ukuran	Satuan
Jenis	PG24000	
Diameter (D2)	949	mm
Panjang (L5)	991	mm
Lebar (B5)	949	mm
Tinggi (H)	163	mm
Total Tebal Rubber (t)	108	mm
Modulus Shear (G)	9 x 10 ⁵	N/m ²
Modulus Bulk (K)	2×10^9	N/m ²
Berat (W)	824	Kg

Tabel 5.5 Section Propeties PG24000

e. Kekakuan horizontal (Ks)

Kekakuan horizontal dirumuskan sebagai berikut:

Ks = -

Keterangan:

- A = Luasan POT bearing
- t = Total tebal rubber
- G = Modulus shear

 $A = 707330.371 \text{ mm}^{2}$ $A = 0.7073 \text{ m}^{2}$ $Ks = ----- x 9 x 10^{5}$ Ks = 5858257.7 kN/m

f. Kekakuan Vertikal (Kv)

Kekakuan vertikal pada POT bearing dirumuskan sebagai berikut :

Kv=-----

Compression modulus dapat dihitung dengan menggunakan perumusan :

Ec — $(-)^{-1}$

Faktor bentuk dari suatu POT bearing dapat dicari dengan menggunakan perumusan:

S=----

S= ------= 29.656

Dari hasil perhitungan diatas didapat faktor bentuk (S) sebesar 29.656 sehingga nilai compression modulus dapat dihitung.

Ec _____)⁻¹

 $Ec = 1.14 \times 10^9 MPa$

Dari perhitungan diatas didapat compression modulus sebesar $1,14 \times 10^9$ sehingga nilai Kekakuan vertikal dapat dihitung.

Kv= —____

Kv = 7420183401 kN/m

5.2.4.7 Pemodelan POT bearing pada Perletakan Node 661

a. Beban Mati

Beban Mati (berat sendiri dan beban mati tambahan) maksimum pada *node 661* yang didapat dari MIDAS sebesar 17314.262 kN

b. Beban Hidup

Beban hidup maksimun pada *node 162* yang didapat dari MIDAS sebesar 5185.025 kN

c. Total Beban Vertikal

Total beban vertical merupakan jumlah antara beban mati dan beban hidup maksimum. Beban vertikal didapat sebesar 22499.286 kN.

d. Dimensi POT bearing

Dimensi POT bearing menggunakan spesifikasi dari fabrikasi *Mekano4* sebagai berikut :

Gambar 5.26 Penampang POT bearing arah memanjang atau melintang

Keterangan	Ukuran	Satuan
Jenis	PG24000	
Diameter (D2)	1002	mm
Panjang (L5)	1002	mm
Lebar (B5)	1002	mm
Tinggi (H)	167	mm
Total Tebal Rubber (t)	111.33	mm
Modulus Shear (G)	9 x 10 ⁵	N/m ²
Modulus Bulk (K)	2×10^9	N/m ²
Berat (W)	975	Kg

Tabel 5.5 Section Propeties PG24000

e. Kekakuan horizontal (Ks)

Kekakuan horizontal dirumuskan sebagai berikut:

Ks = -

Keterangan:

- A = Luasan POT bearing
- t = Total tebal rubber
- G = Modulus shear

 $A = 788542.898 \text{ mm}^2$ $A = 0.788 \text{ m}^2$ $Ks = ---- x 9 x 10^5$

Ks = 6374448.57 kN/m

g. Kekakuan Vertikal (Kv) Kekakuan vertikal pada POT bearing dirumuskan sebagai berikut :

Kv=-----

Compression modulus dapat dihitung dengan menggunakan perumusan :

Ec — $(-)^{-1}$

Faktor bentuk dari suatu POT bearing dapat dicari dengan menggunakan perumusan:

S=----

S=_____= 31.3125

Dari hasil perhitungan diatas didapat faktor bentuk (S) sebesar 31.3125 sehingga nilai compression modulus dapat dihitung.

Ec _____)⁻¹

 $Ec = 1.17 \times 10^9 MPa$

Dari perhitungan diatas didapat compression modulus sebesar $1,17 \ge 10^9$ sehingga nilai Kekakuan vertikal dapat dihitung.

Kv=----

Kv=_____

Kv = 8278654705 kN/m

5.2.4.8 Rekapitulasi Kekakuan Tiap Perletakan

Dari hasil perhitungan kekakuan disetiap perletakan, didapat kekakuan seperti pada tabel 5.6 berikut ini:

Node	Kek	Kekakuan (SD) (kN/m)			
	SDx	SDy	SDz		
1	2004290	2004290	1410711767		
14	5685036	5685036	7389790749		
162	5858257	5858257	7420183401		
178	2170587	2170587	3602774040		
661	6374448	6374448	8278654705		
676	2004290	2004290	1410711767		
725	5685036	5685036	7389790749		
740	2170587	2170587	3602774040		

Tabel 5.6 Rekapitulasi Kekakuan ditiap Node

5.2.4.9 Pemodelan POT Bearing pada Program MIDAS CIVIL Dalam pemodelan MIDAS CIVIL, POT Bearing dimodelkan dalam bentuk *elastic link* pada *boundaries* antara perletakan struktur bangunan atas dan bawahnya.

Gambar 5.27 Pemodelan POT bearing pada MIDAS CIVIL

Sebagai contoh, pada gambar 5.27 merupakan pemodelan POT bearing pada node 1 dengan memasukkan besar nilai kekakuan horizontal (SDx dan SDy) dan kekakuan vertical (SDz) yang sudah didapat pada perhitungan sebelumnya pada kolom *elastic link*.

5.2.5 Beban Gempa

Untuk pembebanan gempa digunakan RSNI 2833-2013 *Perancangan Jembatan terhadap Beban Gempa*. Pengaruh gempa rencana hanya ditinjau pada keadaan batas ultimate. Dan untuk beban rencana gempa minimum diperoleh dari rumus berikut:

 $E_Q = ---$

Keterangan:

- E_Q = Gaya horizontal statis (kN)
- Csm = Koefisien respon gempa elastic pada mode getar ke-m
- R = Faktor modifikasi Respon.
- W_T = Berat total nominal bangunan yang mempengaruhi percepatan gempa diambil sebagai beban mati ditambah beban mati tambahan (kN).

5.2.5.1 Data Perencanaan

Analisa beban gempa dalam pemodelan ditinjau dari beberapa zona gempa yang ada di Indonesia yang terdiri dari kota Samarinda (zona 1), kota Palembang (zona 2), kota Medan (Zona 3), dan kota Padang (zona 4).

: Jembatan Kutai Kartanegara
: Jauh dari Pantai
: Samarinda (zona 1)
Palembang (zona 2)
Medan (zona 3)
Padang (zona 4)
: SD
:1

5.2.5.2 Analisa Beban Gempa untuk Samarinda (Zona 1)

5.2.5.3 Percepatan Respon Spektrum

Penentuan wilayah gempa dapat dilihat pada gambar 5 dan gambar 6 RSNI 2833-2013

a. Penentuan Ss

Sesuai dengan gambar 5 RSNI 2833-2013 untuk daerah padang didapat Ss 0.084 g

b. Penentuan S₁

Sesuai dengan gambar 5 RSNI 2833-2013 untuk daerah padang didapat $S_1 0.06$ g

c. Penentuan nilai Fa

Nilai Fa didapat dari tabel 3 pada RSNI 2833-2013

Kalaa aitua	PGA ≤ 0,1	PGA = 0,2	PGA = 0,3	PGA = 0,4	PGA > 0,5
Relas situs	S _s ≤ 0.25	S _s = 0.5	S _s = 0.75	S _s = 1.0	S _s ≥ 1.25
Batuan Keras (SA)	0.8	0.8	0.8	0.8	0.8
Batuan (SB)	1.0	1.0	1.0	1.0	1.0
Tanah Keras (SC)	1.2	1.2	1.1	1.0	1.0
Tanah Sedang (SD)	1.6	1.4	1.2	1.1	1.0
Tanah Lunak (SE)	2.5	1.7	1.2	0.9	0.9
Tanah Khusus (SF)	SS	SS	SS	ss	SS

Tabel 5.7 Faktor Amplifikasi Periode 0.2 detik (Fa)

Dari tabel diatas didapat besar Fa sebesar 1.6

d. Penetuan nilai Fv

Penentuan nilai Fv didapat dari tabel 4 RSNI 2833-2013

Tabel 5.8 Faktor Amplifikasi Periode 1 detik (Fv)

Kelas situs	$S_1 \leq 0.1$	S1 = 0.2	$S_1 = 0.3$	S ₁ =0.4	S, ≥ 0.5
Batuan Keras (SA)	0.8	0.8	0.8	0.8	0.8
Batuan (SB)	1.0	1.0	1.0	1.0	1.0
Tanah Keras (SC)	1.7	1.6	1.5	1.4	1.3
Tanah Sedang (SD)	2.4	2.0	1.8	1.6	1.5
Tanah Lunak (SE)	3.5	3.2	2.8	2.4	2.4
Tanah Khusus (SF)	SS	SS	SS	SS	SS

Dari Tabel diatas ddidapat Fv sebesar 2.4

5.2.5.4 Penentuan Respon Spektra Gempa

Perumusan respon spektra gempa pasal 5.4.1 RSNI 2833-2013 adalah sebagai berikut :

\mathbf{S}_{DS}	= Fa x Ss
	$= 1.6 \times 0.084 = 0.1344$
S_{D1}	= Fv x S ₁
	$= 1.5 \ge 0.067 = 0.144$

5.2.5.5 Penentuan Respon Gempa Elastik

a. Perhitungan Ts

Sesuai dengan RSNI 2833-2013 perumusan Ts seusai dengan RSNI 2833-2013 sebagai berikut :

Ts = ---

Ts = ---- = 1.0714

b. Perhitungan To

Sesuai dengan RSNI 2833-2013 perumusan To seusai dengan RSNI 2833-2013 sebagai berikut :

To
$$= 0.2$$
 Ts
 $= 0.2 (1.071)$
 $= 0.2143$

c. Perhitungan Koefisien Respon Gempa Elastik (Csm)

Sesuai dengan RSNI 2833-2013 perumusan Csm saat periode 4 detik seusai dengan RSNI 2833-2013 sebagai berikut :

Csm = ---

Csm = ---= 0.036

d. Grafik Respon Spektra

Dari hasil perhitungan diatas dapat dihasilkan respon spectrum gempa di kota Samarinda. Seperti pada gambar 5.28 merupakan grafik respon spectrum di kota Samarinda.

Gambar 5.28 Respon Spektrum Kota Samarinda

5.2.2.6 Gaya Horizontal Akibat Gempa

Dari perhitungan MIDAS diperoleh :

W_{TP} (berat mati total struktur) sebesar 77310.784 kN

Besar Gaya Horizontal statis akibat gempa dirumuskan sebagai berikut :

 $E_Q = ---$

E_Q=----

 $E_Q = 2783.188 \text{ kN}$

Dari Hasil Pembebanan MIDAS didapat *base shear* pada gempa arah x dan *base shear* ke arah y karena gempa arah y dapat dilihat pada tabel 5.10 berikut ini.

)
Base Shear	F (kN)
RS-X	2538.355
RS-Y	1918.465

Tabel 5.9 Besar Gaya Gempa pada MIDAS

Besar *Base Shear* dari arah x sesuai dengan tabel 5.9 sebesar 2538.355 kN. Gaya gempa dimanis harus 80% dai gay gempa perhitungan statis. Persentasi gempa arah x dinamis dibanding dengan statis sebesar 2538.355/2783.188 = $0.912 \approx 91\%$. Jadi gaya gempa arah x perhitungan dinamis memenuhi. Dikarenakan *base shear* dari arah y dari perhitungan dinamis lebih kecil daripada perhitungan statis, maka gaya gempa yang ada harus dikalikan dengan faktor skala agar besarnya *base shear* gempa dinamis minimal sebesar 80% *base shear* perhitungan statik. Besarnya faktor skala untuk gempa arah y sebesar 0,8 x 2783.188 /1918.465=1.16 ≈ 1.2

Besar gaya gempa *base shear* arah x dan arah y setelah dikalikan faktor skala dapat dilihat pada tabel 5.11 berikut ini:

Tucer crite Besur Guju Gempu puuu mibris			
Base Shear	F _{akhir} (kN)	Persentasi (%)	
RS-X	2606.771	93.6	
RS-Y	2434.227	87.4	

Tabel 5.10 Besar Gaya Gempa pada MIDAS

Dari hasil analisa dinamis struktur didapatkan hasil periode struktur dari tiap mode yang ditabelkan dibawah ini.
Mode	Frequ	Jency	Period
No	(rad/sec)	(cycle/sec)	(sec)
1	1.632002	0.259741	3.849987
2	4.006097	0.637590	1.568406
3	4.289764	0.682737	1.464692
4	4.981336	0.792804	1.261345
5	5.698696	0.906976	1.102565
6	5.980781	0.951871	1.050563
7	6.625039	1.054408	0.948400
8	7.026754	1.118343	0.894180
9	8.544441	1.359890	0.735354
10	9.336666	1.485977	0.672958
11	9.706298	1.544805	0.647331
12	10.451288	1.663374	0.601188
13	11.920489	1.897205	0.527091
14	12.110923	1.927513	0.518803
15	12.375233	1.969580	0.507723
16	12.684230	2.018758	0.495354
17	13.770055	2.191572	0.456293
18	14.482114	2.304900	0.433858
19	14.575840	2.319817	0.431068
20	15.111584	2.405083	0.415786
21	16.106901	2.563493	0.390093
22	16.140042	2.568768	0.389292
23	16.987124	2.703585	0.369879
24	17.049815	2.713562	0.368519
25	17.562026	2.795083	0.357771
26	17.972074	2.860344	0.349608
27	18.382229	2.925623	0.341808
28	18.770329	2.987391	0.334740
29	19.009350	3.025432	0.330531
30	19.658661	3.128773	0.319614

Tabel 5.11 Periode Struktur tiap mode shape

Mode	TRAN-X		TRA	N-Y
No	MASS(%)	SUM(%)	MASS(%)	SUM(%)
1	0.00	0.00	40.93	40.93
2	0.00	0.00	0.13	41.06
3	33.79	33.79	0.00	41.06
4	5.77	39.56	0.00	41.06
5	0.00	39.56	17.45	58.51
6	0.00	39.56	16.32	74.83
7	0.00	39.56	9.98	84.81
8	9.12	48.67	0.00	84.81
9	8.31	56.99	0.00	84.81
10	0.00	56.99	0.00	84.82
11	21.63	78.62	0.00	84.82
12	10.30	88.91	0.00	84.82
13	0.00	88.91	2.77	87.58
14	0.78	89.69	0.00	87.58
15	0.00	89.69	0.21	87.80
16	0.00	89.69	0.12	87.92
17	0.01	89.69	0.00	87.92
18	2.48	92.17	0.00	87.92
19	0.00	92.17	0.00	87.92
20	1.08	93.26	0.00	87.92
21	0.00	93.26	0.00	87.92
22	0.46	93.72	0.00	87.92
23	0.33	94.04	0.00	87.92
24	0.00	94.04	2.11	90.03
25	0.16	94.21	0.00	90.03
26	1.78	95.99	0.00	90.03
27	0.09	96.08	0.00	90.03
28	0.00	96.08	1.17	91.20
29	0.00	96.08	2.76	93.96
30	0.00	96.08	0.27	94.22

Tabel 5.12 Modal Participation Masses (%)

Modal participation masses harus mencapai minimum 90% agar semua gaya gempa dapat disalurkan ke seluruh bagian struktur jembatan. Dari tabel 5.13 modal participation masses arah x dan y sudah lebih dari 90%, artinya gaya gempa sudah disalurkan ke keseluruhan stuktur jembatan.

5.2.5.7 Analisa Beban Gempa untuk Palembang (zona 2)

5.2.5.8 Percepatan Respon Spektrum

Penentuan wilayah gempa dapat dilihat pada gambar 5 dan gambar 6 RSNI 2833-2013

a. Penentuan Ss

Sesuai dengan gambar 5 RSNI 2833-2013 untuk daerah padang didapat Ss 0.18 g

b. Penentuan S₁

Sesuai dengan gambar 5 RSNI 2833-2013 untuk daerah padang didapat S_1 0.109 g

c. Penentuan nilai Fa

Nilai Fa didapat dari tabel 3 pada RSNI 2833-2013 Dari tabel 3 didapat besar Fa sebesar 1.6

d. Penetuan nilai Fv

Penentuan nilai Fv didapat dari tabel 4 RSNI 2833-2013.Dari Tabel diatas ddidapat Fv sebesar 2.2

5.2.5.9 Penentuan Respon Spektra Gempa

Perumusan respon spektra gempa pasal 5.4.1 RSNI 2833-2013 adalah sebagai berikut :

 $S_{DS} = Fa \times Ss$ $= 1.6 \times 0.18 = 0.288$ $S_{D1} = Fv \times S_1$ $= 2.2 \times 0.109 = 0.24$

5.2.5.10 Penentuan Respon Gempa Elastik

a. Perhitungan Ts

Sesuai dengan RSNI 2833-2013 perumusan Ts seusai dengan RSNI 2833-2013 sebagai berikut :

Ts = ---

 $T_s = ---- = 0.833$

b. Perhitungan To

Sesuai dengan RSNI 2833-2013 perumusan To seusai dengan RSNI 2833-2013 sebagai berikut :

To = 0.2 Ts= 0.2 (0.833)= 0.167

c. Perhitungan Koefisien Respon Gempa Elastik (Csm)

Sesuai dengan RSNI 2833-2013 perumusan Csm saat periode 4 detik seusai dengan RSNI 2833-2013 sebagai berikut :

Csm = ---

Csm = --- = 0.06

d. Grafik Respon Spektra

Dari hasil perhitungan diatas dapat dihasilkan respon spectrum gempa di kota Samarinda. Seperti pada gambar 5.29 merupakan grafik respon spectrum di kota Palembang.

Gambar 5.29 Respon Spekta Gempa kota Palembang

5.2.5.11 Gaya Horizontal Akibat Gempa

Dari perhitungan MIDAS diperoleh :

W_{TP} (berat mati total struktur) sebesar 77310.784 kN

Besar Gaya Horizontal statis akibat gempa dirumuskan sebagai berikut :

 $E_Q = ---$

 $E_Q = ---$

 $E_0 = 4634.786 \text{ kN}$

Dari Hasil Pembebanan MIDAS didapat *base shear* pada gempa arah x dan *base shear* ke arah y karena gempa arah y dapat dilihat pada tabel 5.13 berikut ini.

	iju Oempu pudu MID
Base Shear	F (kN)
RS-X	4455.864
RS-Y	3230.946

Tabel 5.13 Besar Gaya Gempa pada MIDAS

Besar *Base Shear* dari arah x sesuai dengan tabel 5.15 sebesar 4455.864 kN. Gaya gempa dimanis harus 80% dai gay gempa perhitungan statis. Persentasi gempa arah x dinamis dibanding dengan statis sebesar 4455.864/4634.786 = $0.96 \approx$ 96% . Jadi gaya gempa arah x perhitungan dinamis memenuhi. Dikarenakan *base shear* dari arah y dari perhitungan dinamis lebih kecil daripada perhitungan statis, maka gaya gempa yang ada harus dikalikan dengan faktor skala agar besarnya *base shear* gempa dinamis minimal sebesar 80% *base shear* perhitungan statik. Besarnya faktor skala untuk gempa arah y sebesar 0,8 x 4634.786 /3230.946 = $1.14 \approx 1.2$

Besar gaya gempa *base shear* arah x dan arah y setelah dikalikan faktor skala dapat dilihat pada tabel 5.14 berikut ini:

Base Shear	F _{akhir} (kN)	Persentasi (%)
RS-X	4455.864	96.6
RS-Y	3849.568	82.6

Tabel 5.14 Besar Gaya Gempa pada MIDAS

Dari hasil analisa dinamis struktur didapatkan hasil periode struktur dari tiap mode yang ditabelkan dibawah ini.

Mode	Frequ	iency	Period
No	(rad/sec)	(cycle/sec)	(sec)
1	1.632002	0.259741	3.849987
2	4.006097	0.637590	1.568406
3	4.289764	0.682737	1.464692
4	4.981336	0.792804	1.261345
5	5.698696	0.906976	1.102565
6	5.980781	0.951871	1.050563
7	6.625039	1.054408	0.948400
8	7.026754	1.118343	0.894180
9	8.544441	1.359890	0.735354
10	9.336666	1.485977	0.672958
11	9.706298	1.544805	0.647331
12	10.451288	1.663374	0.601188
13	11.920489	1.897205	0.527091
14	12.110923	1.927513	0.518803
15	12.375233	1.969580	0.507723
16	12.684230	2.018758	0.495354
17	13.770055	2.191572	0.456293
18	14.482114	2.304900	0.433858
19	14.575840	2.319817	0.431068
20	15.111584	2.405083	0.415786
21	16.106901	2.563493	0.390093
22	16.140042	2.568768	0.389292
23	16.987124	2.703585	0.369879
24	17.049815	2.713562	0.368519
25	17.562026	2.795083	0.357771
26	17.972074	2.860344	0.349608
27	18.382229	2.925623	0.341808
28	18.770329	2.987391	0.334740
29	19.009350	3.025432	0.330531
30	19.658661	3.128773	0.319614

Tabel 5.15 Periode Struktur tiap mode shape

Mode	TRAN-X		TRAN-X TRAN-Y	
No	MASS(%)	SUM(%)	MASS(%)	SUM(%)
1	0.00	0.00	40.93	40.93
2	0.00	0.00	0.13	41.06
3	33.79	33.79	0.00	41.06
4	5.77	39.56	0.00	41.06
5	0.00	39.56	17.45	58.51
6	0.00	39.56	16.32	74.83
7	0.00	39.56	9.98	84.81
8	9.12	48.67	0.00	84.81
9	8.31	56.99	0.00	84.81
10	0.00	56.99	0.00	84.82
11	21.63	78.62	0.00	84.82
12	10.30	88.91	0.00	84.82
13	0.00	88.91	2.77	87.58
14	0.78	89.69	0.00	87.58
15	0.00	89.69	0.21	87.80
16	0.00	89.69	0.12	87.92
17	0.01	89.69	0.00	87.92
18	2.48	92.17	0.00	87.92
19	0.00	92.17	0.00	87.92
20	1.08	93.26	0.00	87.92
21	0.00	93.26	0.00	87.92
22	0.46	93.72	0.00	87.92
23	0.33	94.04	0.00	87.92
24	0.00	94.04	2.11	90.03
25	0.16	94.21	0.00	90.03
26	1.78	95.99	0.00	90.03
27	0.09	96.08	0.00	90.03
28	0.00	96.08	1.17	91.20
29	0.00	96.08	2.76	93.96
30	0.00	96.08	0.27	94.22

Tabel 5.16 Modal Participation Masses (%)

Modal participation masses harus mencapai minimum 90% agar semua gaya gempa dapat disalurkan ke seluruh bagian struktur jembatan. Dari tabel 5.16 modal participation masses arah x dan y sudah lebih dari 90%, artinya gaya gempa sudah disalurkan ke keseluruhan stuktur jembatan.

5.2.5.12 Analisa Beban Gempa untuk Medan (zona 3)

5.2.5.13 Percepatan Respon Spektrum

Penentuan wilayah gempa dapat dilihat pada gambar 5 dan gambar 6 RSNI 2833-2013

a. Penentuan Ss

Sesuai dengan gambar 5 RSNI 2833-2013 untuk daerah padang didapat Ss 0.32 g

b. Penentuan S₁

Sesuai dengan gambar 5 RSNI 2833-2013 untuk daerah padang didapat $S_1 0.267$ g

c. Penentuan nilai Fa

Nilai Fa didapat dari tabel 3 pada RSNI 2833-2013 Dari tabel 3 didapat besar Fa sebesar 1.5

d. Penetuan nilai Fv

Penentuan nilai Fv didapat dari tabel 4 RSNI 2833-2013.Dari Tabel 4 ddidapat Fv sebesar 1.8

5.2.5.14 Penentuan Respon Spektra Gempa

Perumusan respon spektra gempa pasal 5.4.1 RSNI 2833-2013 adalah sebagai berikut :

S_{DS}	= Fa x Ss
	$= 1.5 \times 0.32 = 0.48$
S_{D1}	= Fv x S ₁
	$= 1.8 \ge 0.21 = 0.378$

5.2.5.15 Penentuan Respon Gempa Elastik

a. Perhitungan Ts

Sesuai dengan RSNI 2833-2013 perumusan Ts seusai dengan RSNI 2833-2013 sebagai berikut :

Ts = ---

$$Ts = ---- = 0.7875$$

b. Perhitungan To

Sesuai dengan RSNI 2833-2013 perumusan To seusai dengan RSNI 2833-2013 sebagai berikut :

)

$$\begin{aligned} Fo &= 0.2 \text{ Ts} \\ &= 0.2 (0.7875) \\ &= 0.1575 \end{aligned}$$

c. Perhitungan Koefisien Respon Gempa Elastik (Csm)

Sesuai dengan RSNI 2833-2013 perumusan Csm saat periode 4 detik seusai dengan RSNI 2833-2013 sebagai berikut :

Csm = ---

Csm = ---- = 0.0945

d. Grafik Respon Spektra

Dari hasil perhitungan diatas dapat dihasilkan respon spectrum gempa di kota Samarinda. Seperti pada gambar 5.30 merupakan grafik respon spectrum di kota Medan.

Gambar 5.30 Respon Spekta Gempa kota Medan

5.2.5.16 Gaya Horizontal Akibat Gempa

Dari perhitungan MIDAS diperoleh :

W_{TP} (berat mati total struktur) sebesar 77310.784 kN

Besar Gaya Horizontal statis akibat gempa dirumuskan sebagai berikut :

 $E_0 = ---$

 $E_0 = ----$

 $E_Q = 7305.869 \text{ kN}$

Dari Hasil Pembebanan MIDAS didapat *base shear* pada gempa arah x dan *base shear* ke arah y karena gempa arah y dapat dilihat pada tabel 5.17 berikut ini.

Base Shear	F (kN)
RS-X	7813.103
RS-Y	4776.3

Base shear dari arah y dari perhitungan dinamis lebih kecil daripada perhitungan statis, maka gaya gempa yang ada harus dikalikan dengan faktor skala agar besarnya *base shear* gempa dinamis minimal sebesar 80% *base shear* perhitungan statik. Besarnya faktor skala untuk gempa arah y sebesar 0,8 x 7305.87 /4776.3 = $1.22 \approx 1.3$

Besar gaya gempa *base shear* arah x dan arah y setelah dikalikan faktor skala dapat dilihat pada tabel 5.18 berikut ini:

 Base Shear
 F_{akhir} (kN)
 Persentasi (%)

 RS-X
 7813.819
 100

 RS-Y
 6209.191
 85

Tabel 5.18 Besar Gaya Gempa pada MIDAS

Dari hasil analisa dinamis struktur didapatkan hasil periode struktur dari tiap mode yang ditabelkan dibawah ini.

Tabel 5.19 Periode	Struktur	tiap	mode s	hape
--------------------	----------	------	--------	------

Mode	Frequency		Period
No	(rad/sec)	(cycle/sec)	(sec)
1	1.632002	0.259741	3.849987
2	4.006097	0.637590	1.568406
3	4.289764	0.682737	1.464692
4	4.981336	0.792804	1.261345
5	5.698696	0.906976	1.102565
6	5.980781	0.951871	1.050563
7	6.625039	1.054408	0.948400
8	7.026754	1.118343	0.894180
9	8.544441	1.359890	0.735354
10	9.336666	1.485977	0.672958
11	9.706298	1.544805	0.647331
12	10.451288	1.663374	0.601188
13	11.920489	1.897205	0.527091
14	12.110923	1.927513	0.518803
15	12.375233	1.969580	0.507723
16	12.684230	2.018758	0.495354
17	13.770055	2.191572	0.456293
18	14.482114	2.304900	0.433858
19	14.575840	2.319817	0.431068
20	15.111584	2.405083	0.415786
21	16.106901	2.563493	0.390093
22	16.140042	2.568768	0.389292
23	16.987124	2.703585	0.369879
24	17.049815	2.713562	0.368519
25	17.562026	2.795083	0.357771
26	17.972074	2.860344	0.349608
27	18.382229	2.925623	0.341808
28	18.770329	2.987391	0.334740
29	19.009350	3.025432	0.330531
30	19.658661	3.128773	0.319614

Mode	TRAN-X		TRA	N-Y
No	MASS(%)	SUM(%)	MASS(%)	SUM(%)
1	0.00	0.00	40.93	40.93
2	0.00	0.00	0.13	41.06
3	33.79	33.79	0.00	41.06
4	5.77	39.56	0.00	41.06
5	0.00	39.56	17.45	58.51
6	0.00	39.56	16.32	74.83
7	0.00	39.56	9.98	84.81
8	9.12	48.67	0.00	84.81
9	8.31	56.99	0.00	84.81
10	0.00	56.99	0.00	84.82
11	21.63	78.62	0.00	84.82
12	10.30	88.91	0.00	84.82
13	0.00	88.91	2.77	87.58
14	0.78	89.69	0.00	87.58
15	0.00	89.69	0.21	87.80
16	0.00	89.69	0.12	87.92
17	0.01	89.69	0.00	87.92
18	2.48	92.17	0.00	87.92
19	0.00	92.17	0.00	87.92
20	1.08	93.26	0.00	87.92
21	0.00	93.26	0.00	87.92
22	0.46	93.72	0.00	87.92
23	0.33	94.04	0.00	87.92
24	0.00	94.04	2.11	90.03
25	0.16	94.21	0.00	90.03
26	1.78	95.99	0.00	90.03
27	0.09	96.08	0.00	90.03
28	0.00	96.08	1.17	91.20
29	0.00	96.08	2.76	93.96
30	0.00	96.08	0.27	94.22

Tabel 5.20 Modal Participation Masses (%)

Modal participation masses harus mencapai minimum 90% agar semua gaya gempa dapat disalurkan ke seluruh bagian struktur jembatan. Dari tabel 5.20 modal participation masses arah x dan y sudah lebih dari 90%,

artinya gaya gempa sudah disalurkan ke keseluruhan stuktur jembatan.

5.2.5.17 Analisa Beban Gempa untuk Padang (zona 4) 5.2.5.18 Percepatan Respon Spektrum

Penentuan wilayah gempa dapat dilihat pada gambar 5 dan gambar 6 RSNI 2833-2013

a. Penentuan Ss

Sesuai dengan gambar 5 RSNI 2833-2013 untuk daerah padang didapat Ss 1.35 g

b. Penentuan S₁

Sesuai dengan gambar 5 RSNI 2833-2013 untuk daerah padang didapat $S_1 0.6$ g

c. Penentuan nilai Fa

Nilai Fa didapat dari tabel 3 pada RSNI 2833-2013 Dari tabel 3 didapat besar Fa sebesar 1.0

d. Penetuan nilai Fv

Penentuan nilai Fv didapat dari tabel 4 RSNI 2833-2013.Dari Tabel 4 ddidapat Fv sebesar 1.5

5.2.5.19 Penentuan Respon Spektra Gempa

Perumusan respon spektra gempa pasal 5.4.1 RSNI 2833-2013 adalah sebagai berikut :

 $\begin{array}{ll} S_{DS} & = Fa \ x \ Ss \\ & = 1.5 \ x \ 0.32 \ = 1.35 \\ S_{D1} & = Fv \ x \ S_1 \\ & = 1.8 \ x \ 0.21 \ = 0.9 \end{array}$

5.2.5.20 Penentuan Respon Gempa Elastik

a. Perhitungan Ts

Sesuai dengan RSNI 2833-2013 perumusan Ts seusai dengan RSNI 2833-2013 sebagai berikut :

$$Ts = ---$$

Ts = ---= 0.667

b. Perhitungan To

Sesuai dengan RSNI 2833-2013 perumusan To seusai dengan RSNI 2833-2013 sebagai berikut :

$$\begin{array}{ll}
\text{Fo} &= 0.2 \text{ Ts} \\
&= 0.2 (0.667) \\
&= 0.133
\end{array}$$

c. Perhitungan Koefisien Respon Gempa Elastik (Csm)

Sesuai dengan RSNI 2833-2013 perumusan Csm saat periode 4 detik seusai dengan RSNI 2833-2013 sebagai berikut :

> Csm = ---Csm = --- = 0.225

d. Grafik Respon Spektra

Dari hasil perhitungan diatas dapat dihasilkan respon spectrum gempa di kota Samarinda. Seperti pada gambar 5.31 merupakan grafik respon spectrum di kota Medan.

Gambar 5.31 Respon Spekta Gempa kota Padang

5.2.5.21 Gaya Horizontal Akibat Gempa

Dari perhitungan MIDAS diperoleh :

W_{TP} (berat mati total struktur) sebesar 77310.784 kN

Besar Gaya Horizontal statis akibat gempa dirumuskan sebagai berikut :

 $E_Q = ---$

E_Q=-----

 $E_Q = 17394.926 \text{ kN}$

Dari Hasil Pembebanan MIDAS didapat *base shear* pada gempa arah x dan *base shear* ke arah y karena gempa arah y dapat dilihat pada tabel 5.21 berikut ini.

Tabel 5.21 Besar C	Gaya Gempa	pada MIDAS
--------------------	------------	------------

Base Shear	F (kN)
RS-X	14478.1802
RS-Y	8636.734

Base shear dari arah y dari perhitungan dinamis lebih kecil daripada perhitungan statis, maka gaya gempa yang ada harus dikalikan dengan faktor skala agar besarnya *base shear* gempa dinamis minimal sebesar 80% *base shear* perhitungan statik. Besarnya faktor skala untuk gempa arah y sebesar 0,8 x 17394.926 /8636.734 = $1.58 \approx 1.6$

Besar gaya gempa *base shear* arah x dan arah y setelah dikalikan faktor skala dapat dilihat pada tabel 5.22 berikut ini:

 Tabel 5.22 Besar Gaya Gempa pada MIDAS

 Base Shear
 Falkin (kN)
 Persentasi (%)

Base Shear	F _{akhir} (kN)	Persentasi (%)
RS-X	14478.18	83
RS-Y	13327.944	80

Dari hasil analisa dinamis struktur didapatkan hasil periode struktur dari tiap mode yang ditabelkan dibawah ini.

Mode	Frequency		Period	
No	(rad/sec)	(cycle/sec)	(sec)	
1	1.632002	0.259741	3.849987	
2	4.006097	0.637590	1.568406	
3	4.289764	0.682737	1.464692	
4	4.981336	0.792804	1.261345	
5	5.698696	0.906976	1.102565	
6	5.980781	0.951871	1.050563	
7	6.625039	1.054408	0.948400	
8	7.026754	1.118343	0.894180	
9	8.544441	1.359890	0.735354	
10	9.336666	1.485977	0.672958	
11	9.706298	1.544805	0.647331	
12	10.451288	1.663374	0.601188	
13	11.920489	1.897205	0.527091	
14	12.110923	1.927513	0.518803	
15	12.375233	1.969580	0.507723	
16	12.684230	2.018758	0.495354	
17	13.770055	2.191572	0.456293	
18	14.482114	2.304900	0.433858	
19	14.575840	2.319817	0.431068	
20	15.111584	2.405083	0.415786	
21	16.106901	2.563493	0.390093	
22	16.140042	2.568768	0.389292	
23	16.987124	2.703585	0.369879	
24	17.049815	2.713562	0.368519	
25	17.562026	2.795083	0.357771	
26	17.972074	2.860344	0.349608	
27	18.382229	2.925623	0.341808	
28	18.770329	2.987391	0.334740	
29	19.009350	3.025432	0.330531	
30	19.658661	3.128773	0.319614	

Tabel 5.23 Periode Struktur tiap mode shape

Mode	TRAN-X		TRAN-Y	
No	MASS(%)	SUM(%)	MASS(%)	SUM(%)
1	0.00	0.00	40.93	40.93
2	0.00	0.00	0.13	41.06
3	33.79	33.79	0.00	41.06
4	5.77	39.56	0.00	41.06
5	0.00	39.56	17.45	58.51
6	0.00	39.56	16.32	74.83
7	0.00	39.56	9.98	84.81
8	9.12	48.67	0.00	84.81
9	8.31	56.99	0.00	84.81
10	0.00	56.99	0.00	84.82
11	21.63	78.62	0.00	84.82
12	10.30	88.91	0.00	84.82
13	0.00	88.91	2.77	87.58
14	0.78	89.69	0.00	87.58
15	0.00	89.69	0.21	87.80
16	0.00	89.69	0.12	87.92
17	0.01	89.69	0.00	87.92
18	2.48	92.17	0.00	87.92
19	0.00	92.17	0.00	87.92
20	1.08	93.26	0.00	87.92
21	0.00	93.26	0.00	87.92
22	0.46	93.72	0.00	87.92
23	0.33	94.04	0.00	87.92
24	0.00	94.04	2.11	90.03
25	0.16	94.21	0.00	90.03
26	1.78	95.99	0.00	90.03
27	0.09	96.08	0.00	90.03
28	0.00	96.08	1.17	91.20
29	0.00	96.08	2.76	93.96
30	0.00	96.08	0.27	94.22

Tabel 5.24 Modal Participation Masses (%)

Modal participation masses harus mencapai minimum 90% agar semua gaya gempa dapat disalurkan ke seluruh bagian struktur jembatan. Dari tabel 5.24 modal participation masses arah x dan y sudah lebih dari 90%, artinya gaya gempa sudah disalurkan ke keseluruhan stuktur jembatan.

5.2.6 Kombinasi Pembebanan

Untuk kombinasi pembebanan statik, harus dikombinasikan antara berat sendiri struktur,beban mati tambahan, dan beban hidup lantai kendaraan.

5.2.6.1 Kombinasi Pembebanan DL + SDL

Kombinasi pembebanan DL+ SDL merupakan kombinasi pembebanan antara berat sendiri dan beban mati tambahan struktur.

5.2.6.2 Kombinasi Pembebanan DL + SDL + LL

Kombinasi pembebanan DL + SDL + LL terdiri dari kombinasi pembebanan antara berat sendiri struktur, beban mati tambahan dan beban hidup lantai kendaraan yang terdiri dari beban hidup UDL dan KEL. Untuk masing-masing kombinasi pembebanan harus diperhitungkan terhadap beban simetris dan asimetris. Tetapi dalam pemodelan akan digunakan beban asimetris karena lebih menentukan.

5.2.6.3 Kombinasi Pembebanan DL + SDL + LL + Gempa

Sesuai dengan peraturan *Perancangan Jembatan terhadap Beban Gempa* RSNI 2833-2013, gaya gempa elastis yang bekerja pada struktur jembatan harus dikombinasikan sehingga memiliki dua tinjauan pembebanan sebagai berikut :

- 100% gaya gempa arah x dikombinasikan dengan 30% gaya gempa arah y.
- 100% gaya gempa arah y dikombinasikan dengan 30% gaya gempa pada arah x.

Sehingga apabila diaplikasikan dengan memperhitungkan variasi arah maka kombinasi gaya gempa yang terjadi menjadi sebagai berikut :

1. $DL + SDL + 0.5 LL \pm EQx \pm 0.3 EQy$

2. $DL + SDL + 0.5 LL \pm EQy \pm 0.3 EQx$

5.3 Pemodelan Bangunan Bawah

Pemodelan struktur bangunan bawah jembatan disesuaikan dengan kondisi aktual lapangan jembatan Kutai Kartanegara. Didalam tugas akhir ini jembatan bangunan atas dan bawah dimodelkan secara 3 dimensi dengan menggunakan program bantu MIDAS CIVIL 2006 seperti yang ditunjukkan Gambar 5.32 berikut ini.

Gambar 5.32 Pemodelan 3D Bangunan Atas dan Bawah

5.3.1 Pemodelan Abutmen

Pemodelan Abutmen menggunakan pemodelan aktual lapangan pada jembatan Kutai Kartanegara dengan deskripsi sebagai berikut:

- Lebar Abutmen : 21 m
- Panjang Abutmen : 30 m
- Tinggi Abutmen : 12 m
- Properti : Beton K350 (290.5 MPa)

Pemodelan Abutmen pada MIDAS CIVIL 2006 ditunjukkan pada Gambar 5.33 berikut ini.

Gambar 5.33 Pemodelan Abutmen Pada MIDAS 2006

5.3.2.1 Pemodelan Tiang Pancang pada Abutmen

Pemodelan pemancangan pada abutmen menggunakan pemodelan aktual lapangan jembatan Kutai Kartanegara dengan deskripsi sebagai berikut:

- Jumlah Tiang Pancang : 80 buah
- Panjang Tiang Pancang : 30 m
- Diameter Luar Tiang : 1 m
- Diameter dalam Tiang : 0.968 m
- Properti : ASTM 252 Grade 2 Tengsile Strength 414 N/mm² Yield Strength 241 N/mm²

Pemancangan pada jembatan Kutai Kartanegara dapat dilihat pada gambar 5.34 berikut ini.

Gambar 5.34 Pemancangan Abutmen Jembatan Kutai Kartanegara

5.3.2.2 Perhitungan Panjang Jepitan Kritis Abutmen

Panjang jepitan kritis tanah atau panjnag kritis dari tiang pondasi yang harus terjepit didalam tanah dapat ditentukan dengan kondisi 1 dari metoda Philipponat, yaitu :

- Monolayer = 3 m atau 6 x diameter (dari muka tanah)
- Multilayer = 1,5 m atau 3 x diameter (dari muka tanah)

Dengan spesifikasi tiang pancang sebagai berikut :

Maka didapat kondisi jepitan kritis sebesar,

 $L_{kritis} = 3 \times 1,000 \text{ m} = 3,000 \text{ m}$

a. Letak Titik Jepit Tanah

Untuk mencari letak *point of fixity* atau titik jepit tanah terhadap sebuah tiang pondasi (Z_f) , digunakan persamaan :

Dimana :

E = Modulus Elastisitas tiang pancang

 $E = 2000000 \text{ kg/cm}^2 = 196132999.99 \text{ kN/m}^2$

I = Momen Inersia tiang

I = —)

 $K = k_l / 1,5$

 $k_1 = 27000 \text{ kN/m}^4$ untuk tanah dengan Consistensi jenis Stiff Sehingga factor kekakuan dalam satuan panjang (R) dihitung sebagai berikut :

$$\sqrt[4]{/}$$

5.3.2 Pemodelan Pilar Sisi Tenggarong

Deskripsi pemodelan pemancangan pada Pilar Sisi Tenggarong sebagai berikut:

- Jumlah Tiang Pancang : 64 buah
- Panjang Tiang Pancang : 73.4 m
- Diameter Luar Tiang : 1 m
- Diameter dalam Tiang : 0.968 m
- Properti : ASTM 252 Grade 2

Tengsile Strength 414 N/mm² Yield Strength 241 N/mm²

Pemodelan pemancangan pilar sisi Tenggarong pada program MIDAS CIVIL 2006 dapat dilihat pada gambar 5.35 berikut ini.

Gambar 5.35 Pemodelan Pilar Sisi Tenggarong

Detail pemancangan pilar sisi Tenggarongn pada jembatan Kutai Kartanegara dapat dilihat pada gambar 5.36 berikut ini.

Gambar 5.36 Pemancangan Pilar sisi Tenggarong

5.3.2.1 Perhitungan Panjang Titik Jepit Kritis Pilar

Untuk mencari letak *point of fixity* atau titik jepit tanah terhadap sebuah tiang pondasi (Z_f) , digunakan persamaan :

Dimana :

E = Modulus Elastisitas tiang pancang

 $E = 2000000 \text{ kg/cm}^2 = 196132999.99 \text{ kN/m}^2$

I = Momen Inersia tiang

 $K = k_1 / 1,5$

 $k_1 = 27000 \text{ kN/m}^4$ untuk tanah dengan Consistensi jenis *Stiff*

Sehingga factor kekakuan dalam satuan panjang (R) dihitung sebagai berikut :

$$\sqrt[4]{(27000/_{1,5})x}$$

Dari perhitungan titik jepit diatas maka total panjang tiang pancang dapat dihitung sebagai berikut:

Total Panjang = Panjang amblasan + Z_f Total Panjang = 38 + 4 Total Panjang = 42 m

5.3.3 Pemodelan Pilar Sisi Samarinda

Deskripsi pemodelan pemancangan pada Pilar Sisi Samarinda sebagai berikut:

- Jumlah Tiang Pancang : 66 buah
- Panjang Tiang Pancang : 73.4 m
- Diameter Luar Tiang : 1 m
- Diameter dalam Tiang : 0.968 m
- Properti : ASTM 252 Grade 2 Tengsile Strength 414 N/mm² Yield Strength 241 N/mm²

Pemodelan pemancangan pilar sisi Samarinda pada program MIDAS CIVIL 2006 dapat dilihat pada gambar 5.37 berikut ini.

Gambar 5.37 Pemodelan Pilar Sisi Samarinda

Detail pemancangan pilar sisi Tenggarongn pada jembatan Kutai Kartanegara dapat dilihat pada gambar 5.38 berikut ini.

Gambar 5.38 Pemancangan Pilar sisi Samarinda

5.3.3.1 Perhitungan Panjang Titik Jepit Kritis Pilar

Untuk mencari letak *point of fixity* atau titik jepit tanah terhadap sebuah tiang pondasi (Z_f) , digunakan persamaan :

Dimana :

E = Modulus Elastisitas tiang pancang

 $E = 2000000 \text{ kg/cm}^2 = 196132999.99 \text{ kN/m}^2$

I = Momen Inersia tiang

 $K = k_1 / 1,5$

 $k_1 = 27000 \text{ kN/m}^4$ untuk tanah dengan Consistensi jenis Stiff

Sehingga factor kekakuan dalam satuan panjang (R) dihitung sebagai berikut :

$$\sqrt[4]{(27000/_{1,5})x}$$

Dari perhitungan titik jepit diatas maka total panjang tiang pancang dapat dihitung sebagai berikut:

Total Panjang = Panjang amblasan + Z_f Total Panjang = 33 + 4 Total Panjang = 37 meter.

5.3.4 Pembebanan Akibat Tekanan Tanah

Perhitungan pembebanan akibat tekanan tanah dihitung melalui tanah yang ditimbun setinggi abutmen dengan data tanah sebagai berikut :

Υ tanah timbunan Ø	$= 18 \text{ kN/m}^3$ = 30°
С	= 0.10 kPa
Tinggi total abutment	= 12 m
Panjang total abutment	= 21 m

Beban kendaraan/lalu lintas diekuivalensikan dengan $0.6 \times \Upsilon$ tanah timbunan dan beban akibat kendaraan tersebut sama disepanjang kedalaman abutmen.

q kendaraan = $0.6 \times \Upsilon$ tanah timbunan

q kendaraan = $0.6 \times 18 = 10.8 \text{ kN/m}^2$

Mencari besar nilai Ka dapa dihitung dengan cara:

```
Ka = \tan^2(45 - \emptyset/2)
Ka = 0.33
```

Sehingga tekanan tanah aktif sama dengan luasan diagram tekanan tanah aktif dengan perhitungan sebagai berikut:

```
• E_{a1} = q_{kendaraan} x ka
= 10.8 t/m<sup>2</sup> x 0.333
= 3.6 t/m
```

• E_{a1} = ka x q_{kendaraan}x H_{tanah} = 0.333 x 10.8 t/m³ x 12 = 42.77 t/m

Pemodelan beban akibat tekanan tanah pada abutmen ditunjukkan pada gambar 5.39 berikut ini:

Gambar 5.39 Pemodelan Beban Akibat Tekanan Tanah

(halaman ini sengaja dikosongkan)

BAB VI KONTROL PEMODELAN STRUKTUR

Didalam mengolah data Jembatan Kukar II yang kemudian dimodelkan ke dalam program MIDAS CIVIL 2006 perlu adanya kontrol untuk mengetahui apakah pemodelan dengan program tersebut benar. Dalam tahap mengkontrol pemodelan tersebut, pada tugas akhir ini ditinjau melalui kontrol berat keseluruhan struktur jembatan serta kontrol profil jembatan. Dengan adanya kontrol tersebut, tingkat kesalahan dapat diminimalisir untuk mendapatkan analisa yang tepat.

6.1 Kontrol Berat Sendiri

Dalam kontrol berat sendiri ini, berat sendiri dari MIDAS CIVIL akan dibandingkan dengan berat sendiri dari *preliminary design*. Tujuan dari kontrol ini adalah memperoleh perbandingan berat total dengan perbedaan paling besar 5%. Berikut contoh perhitungan berat sendiri preliminary :

No Type	Туре	Section	Panjang	Unit Weight	Area	Weight
	21		m	kN/m ³	m ²	kN
1	Beam	BA1	9,1071	76,98	0,0388	27,22374
2	Truss	DG1	11,0197	76,98	0,0237	20,11481
3	Beam	BB16	10,0976	76,98	0,092	71,51282

Tabel 6.1 Perhitungan Berat Preliminary

Section BA1 :

Panjang Elemen (l) = 9,1071 m Berat Jenis (γ) = 76,98 kN/m³ Luas Penampang (A) = 0,0388 m²

Maka berat sendiri didapat dengan perhitungan sebagai berikut : Weight = $1 \times A \times \gamma$ Weight = $9,1071 \times 76,98 \times 0,0388 = 27,22374$ kN Perhitungan keseluruhan berat sendiri *preliminary design* ditampilkan dalam bentuk table pada bagian Lampiran X.

Dari perhitungan keseluruhan berat sendiri *preliminary design*, didapatkan berat total ($w_{totalprelim}$) sebesar **22274,83 kN** sedangkan berat total struktur yang dimodelkan di MIDAS ($w_{totalMIDAS}$) sebesar **23279,85 kN**. Maka didapatkan perbandingan sebesar :

 $\Delta_{\text{totalweight}} = \frac{\text{w}_{\text{totalMIDAS}} - \text{w}_{\text{totalprelim}}}{\text{w}_{\text{totalMIDAS}}} \\ \Delta_{\text{totalweight}} = \frac{\frac{23279,85 - 22274,83}{23279,85}}{23279,85} \\ \Delta_{\text{totalweight}} = 0,0431 = 4,31\%$

Sehingga pemodelan pada MIDAS dengan *preliminary design* masih sesuai, dengan perbedaan berat sendiri sebesar 4% < 5%.

6.2 Kontrol Profil

Dalam kontrol profil ini, data-data profil yang didapat dari buku data perencanaan Jembatan Kukar II akan dikontrol dengan gaya yang didapat dari pemodelan MIDAS CIVIL. Gaya yang dikontrol diambil dari pemodelan zona gempa terkuat yakni zona 4 (kota Padang).Dalam mengkontrol profil tersebut, diambil beberapa elemen yaitu 4 diperletakan dan 4 ditengah bentang seperti yang ditunjukkan pada gambar 6.1 berikut ini.

Gambar 6.2 Kontur Gaya Batang pada Struktur Jembatan
Kontrol profil dilakukan seperti di bawah ini :

	FLEMENT	DL	DL +LL	DL + 0.5LL+ 100%RS-X+30%RS-Y
Node	Number	Force	Force	Force
	Number	(kN)	(kN)	(kN)
BA16	25	-12150.78	-17695.29	-11314.37
TG26	103	1387.1	2065.1	2137.96
BB26	42	-261.49	-2450.89	3573.76
TG11	1222	-6587.24	-10076.6	-5953.48
BA2	11	2948.59	6068.09	7098.18
TI4	748	775.92	1134.35	1350.86
DG26	77	-530.16	-2344.62	1399.15
DG12	63	6299.42	9595.84	10389.82

Tabel 6.2 Rekapitulasi Gaya dari Kombinasi Beban

	ELEMENT	DL + 0.5LL+ 30%RS-X+100%RS-Y	DL + 0.5LL- 100%RS-X-30%RS-Y	DL+0.5LL-30%RS-X-100%RS-Y
Node	Number	Force	Force	Force
	Number	(kN)	(kN)	(kN)
BA16	25	-13042.27	-18529.16	-16801.26
TG26	103	1918.41	1314.29	1533.84
BB26	42	2427.11	-3959.59	-2812.94
TG11	1222	-4649.81	-10756.28	-12113.02
BA2	11	7098.18	1924.44	2998.11
TI4	748	1460.13	566.08	456.82
DG26	77	-973.32	-2653.22	-1916.55
DG12	63	11979.24	5548.42	3959.01

6.2.1 BA2 (B 650 x 750 x 10 x 12)

Gambar 6.3. Batang BA2

Data Profil : B 650 x 750 x 10 x 12d = 650 mm $Ix = 224077,13 \text{ cm}^4$ B = 750 mm $Iy = 255784,23 \text{ cm}^4$ tw = 10 mmix = 27,1 cmtf = 12 mmiy = 28,9 cm $Ag = 305,2 \text{ cm}^2$

Gaya batang dalam hasil analisa dari program MIDAS CIVIL :

- Gaya aksial (P) = 7098,2 kN (tarik) Kontrol Kelangsingan Batang : $\frac{Lk}{i\min} = \frac{959,6}{27,1} = 35,41 < 200$ OK!

Kontrol Kekuatan Batang Tarik :

- Kuat Rencana Leleh

$$\varphi Pn = \varphi x fy xAg$$

 $= 0.85 x 3600 x 305.2$
 $= 9339.12 kN$ (menentukan)

- Kuat Rencana Putus

$$\varphi Pn = \varphi x fu xAe$$

 $= 0,75 x fu x An x U$
 $= 0,75 x 5100 x 0,85 x 305,2 x 0,9$
 $= 8930,53 \text{ kN}$

Kekuatan Tarik Rencana

9339,12 kN > 7098,2 *kN* OK!

Gambar 6.4. Batang TI4

Data Profil : WF 750 x 1100 x 25 x 40

d	= 750	mm	Ix	= 1172852,3	cm^4
В	= 1100	mm	Iy	= 887420,57	cm^4
tw	= 25	mm	ix	= 33,46	cm
tf	= 40	mm	iy	= 29,11	cm
Ag	= 1047,	5 cm^2			

Gaya batang dalam hasil analisa dari program MIDAS CIVIL :

- Gaya aksial (P) = 1460, 1 kN (tarik)

Kontrol Kelangsingan Batang :

 $\frac{Lk}{i\min} = \frac{900,3}{29,11} = 30,93 < 200$ OK! Kontrol Kekuatan Batang Tarik : - <u>Kuat Rencana Leleh</u> $\varphi Pn = \varphi x fy xAg$ = 0,85 x 3600 x 1047.5

= 32053,5 kN (menentukan)

- <u>Kuat Rencana Putus</u> $\varphi Pn = \varphi x fu xAe$ = 0,75 x fu x An x U = 0,75 x 5100 x 0,85 x 1047,5 x 0,9= 30651,16 kN

6.2.3 DG12 (WF 750 x 600 x 18 x 25)

Gambar 6.5 Batang DG12

Data Profil : B 750 x 600 x 18 x 25 = 750Ix = 445825 cm^4 d mm $I_V = 90034,02$ B = 600 mm cm^4 ix = 32,35tw = 18mm cm tf = 25iv = 14,54mm cm $Ag = 426 \text{ cm}^2$

Gaya batang dalam hasil analisa dari program MIDAS CIVIL : - Gaya aksial (P) = 11979,2 kN (tarik)

Kontrol Kelangsingan Batang :

 $\frac{Lk}{i\min} = \frac{2045,5}{14,54} = 140,70 < 200$ OK!

Kontrol Kekuatan Batang Tarik :

- <u>Kuat Rencana Leleh</u> $\varphi Pn = \varphi x fy xAg$ = 0.85 x 3600 x 426= 13035.6 kN

(menentukan)

- <u>Kuat Rencana Putus</u> $\varphi Pn = \varphi x fu xAe$ = 0,75 x fu x An x U = 0,75 x 5100 x 0,85 x 426 x 0,9= 12465,29 kN

Kekuatan Tarik Rencana

13035,6 kN > 11979,2 kN OK!

6.2.4 TG11 (B 750 x 650 x 15 x 20)

Gambar 6.6 Batang TG11

Data Profil : B 750 x 650 x 15 x 20

d	= 750	mm	Ix = 299516,8	cm^4
В	= 650	mm	Iy = 99114,8	cm^4
tw	= 15	mm	ix = 30,359	cm
tf	= 20	mm	iy = 25,447	cm
Ag	= 473,0	$) \mathrm{cm}^2$		

Gaya batang dalam hasil analisa dari program MIDAS CIVIL : - Gaya aksial (P) = -12113,0 kN (tekan)

Kontrol Kelangsingan Batang :

$$\frac{Lk}{i\min} = \frac{847,2}{25,45} = 33,29 < 200$$
 OK!

Kontrol Kelangsingan Penampang :

- Faktor panjang tekuk (Kcx) = 1
- Faktor panjang tekuk (Kcy) = 1
- Panjang batang (Lx) = 8,472 m Panjang batang (Ly) = 8,472 m

$$\lambda_x = \frac{Kcx \times Lx}{ix} = \frac{1 \times 847,2}{30,359} = 27,91 \text{ (menentukan)}$$
$$\lambda_y = \frac{Kcy \times Ly}{iy} = \frac{1 \times 847,2}{25,447} = 33,29$$

$$\lambda c = \frac{\lambda}{\pi} \sqrt{\frac{fy}{E}} = \frac{33,29}{\pi} \sqrt{\frac{360}{200000}} = 0,45$$

Karena $0.25 < \lambda c < 1.2$ maka $\omega = \frac{1,43}{1,6-0,67\lambda_c}$ 1 4 2

$$\omega = \frac{1,43}{1,6 - (0,67 \times 0,45)} = 1,10$$

Kekuatan Tekan Nominal

$$Pn = Ag \frac{fy}{\omega} = 15465, 3kN$$

Kekuatan Tekan Rencana

 $\varphi Pn = 0.85 x 15465, 3 = 13145, 5 \text{ kN} > 12113 \text{ kN OK!}$

6.2.5 BA16 (B 800 x 750 x 25 x 40)

Gambar 6.7 Batang BA16

Data Profil : B 800 x 750 x 25 x 40

d	= 800	mm	Ix = 1022720	cm^4
В	= 750	mm	Iy = 754500	cm^4
tw	= 25	mm	ix = 32,64	cm
tf	=40	mm	iy = 28,03	cm
Ag	= 960,0	$) \text{ cm}^2$		

Gaya batang dalam hasil analisa dari program MIDAS CIVIL : - Gaya aksial (P) = -18529,2 kN (tekan)

Kontrol Kelangsingan Batang :

 $\frac{Lk}{i\min} = \frac{880,7}{28,03} = 31,41 < 200$ OK!

Kontrol Kelangsingan Penampang :

- Faktor panjang tekuk (Kcx) = 1
- Faktor panjang tekuk (Kcy) = 1
- Panjang batang (Lx) = 8,807 m
- Panjang batang (Ly) = 8,807 m

$$\lambda_x = \frac{Kcx \times Lx}{ix} = \frac{1 \times 880,7}{32,64} = 26,98$$

$$\lambda_{y} = \frac{Kcy \times Ly}{iy} = \frac{1 \times 880,7}{28,03} = 31,41 \text{ (menentukan)}$$
$$\lambda_{c} = \frac{\lambda}{\pi} \sqrt{\frac{fy}{E}} = \frac{31,41}{\pi} \sqrt{\frac{360}{200000}} = 0,42$$
Karena $0.25 < \lambda_{c} < 1.2$ maka $\omega = \frac{1,43}{1,6 - 0,67\lambda_{c}}$
$$\omega = \frac{1,43}{1,6 - (0,67 \times 0,42)} = 1,09$$

Kekuatan Tekan Nominal

$$Pn = Ag \frac{fy}{\omega} = 31798,9kN$$

Kekuatan Tekan Rencana

 $\varphi Pn = 0.85 \text{ x} 31798,9 = 27029,1 \text{ kN} > 18529,2 \text{ kN OK!}$

6.2.6 BB26 (B 550 x 750 x 10 x 10)

Gambar 6.8 Batang BB26

Dat	a Profil :	B 550 x 750 x 10 x 10	
d	= 550	mm	$Ix = 134175,33 \text{ cm}^4$
В	= 750	mm	$Iy = 215435,33 \text{ cm}^4$
tw	= 10	mm	ix = 22,894 cm

$$tf = 10 \text{ mm}$$
 $iy = 29,01 \text{ cm}$
 $Ag = 256,0 \text{ cm}^2$

Gaya batang dalam hasil analisa dari program MIDAS CIVIL :

- Gaya aksial (P) = -3959,59 kN (tekan)

Kontrol Kelangsingan Batang :

 $\frac{Lk}{i\min} = \frac{881.4}{22,894} = 38,499 < 200$ OK!

Kontrol Kelangsingan Penampang:

- Faktor panjang tekuk (Kcx) = 1
- Faktor panjang tekuk (Kcy) = 1
- Panjang batang (Lx) = 8,814 m Panjang batang (Ly) = 8,814 m

$$\lambda_x = \frac{Kcx \times Lx}{ix} = \frac{1 \times 881,4}{22,89} = 38,50 \text{ (menentukan)}$$
$$\lambda_y = \frac{Kcy \times Ly}{iy} = \frac{1 \times 881,4}{29,01} = 30,38$$

$$\lambda c = \frac{\lambda}{\pi} \sqrt{\frac{fy}{E}} = \frac{38,50}{\pi} \sqrt{\frac{360}{200000}} = 0,52$$

Karena 0.25 < λc < 1.2 maka $\omega = \frac{1,43}{1,6-0,67\lambda_c}$ 1 4 2

$$\omega = \frac{1,43}{1,6 - (0,67 \times 0,52)} = 1,14$$

Kekuatan Tekan Nominal

$$Pn = Ag \frac{fy}{\omega} = 8066,6kN$$

Kekuatan Tekan Rencana $\varphi Pn = 0.85 \ x \ 8066,6 = 6856,6 \ kN > 3959,59 \ kN \ OK!$

6.2.7 DG26 (WF 750 x 450 x 12 x 20)

Gambar 6.9 Batang DG26

Data Profil : WF 750 x 450 x 12 x 20

d	= 750	mm	Ix = 275656,1	cm^4
В	= 450	mm	Iy = 30385,22	cm^4
tw	= 12	mm	ix = 32,24	cm
tf	= 20	mm	iy = 10,70	cm
Ag	= 265,2	2 cm^2		

Gaya batang dalam hasil analisa dari program MIDAS CIVIL : - Gaya aksial (P) = -2653,2 kN (tekan)

Kontrol Kelangsingan Batang :

 $\frac{Lk}{i\min} = \frac{1121,6}{10,70} = 104,783 < 200$ OK!

Kontrol Kelangsingan Penampang :

- Faktor panjang tekuk (*Kcx*) = 1
- Faktor panjang tekuk (Kcy) = 1
- Panjang batang (Lx) = 11,216 m Panjang batang (Ly) = 11,216 m

$$\lambda_x = \frac{Kcx \times Lx}{ix} = \frac{1 \times 1121,6}{32,24} = 34,79$$
$$\lambda_y = \frac{Kcy \times Ly}{iy} = \frac{1 \times 1121,6}{10,70} = 104,78 \qquad (\text{menentukan})$$

$$\lambda c = \frac{\lambda}{\pi} \sqrt{\frac{fy}{E}} = \frac{104,78}{\pi} \sqrt{\frac{360}{200000}} = 1,41$$

Karena $\lambda c > 1.2$ maka ω and $25 \lambda c$

 $\omega_{?}$

Kekuatan Tekan Nominal

$$Pn = Ag \frac{fy}{\omega} = 3814,3kN$$

Kekuatan Tekan Rencana

 $\varphi Pn = 0.85 \text{ x } 3814,3 = 3242,1 \text{ kN} > 2653,2 \text{ kN OK!}$

Gambar 6.10 Batang TG26

Dat	a Profil :	: WF 750 x 280 x 10 x 1	2	
d	= 750	mm	Ix = 123396	cm^4
В	= 280	mm	Iy = 4396,45	cm^4
tw	= 10	mm	ix = 29,71	cm
tf	= 12	mm	iy = 5,61	cm
Ag	= 139,8	3 cm^2		

Gaya batang dalam hasil analisa dari program MIDAS CIVIL : - Gaya aksial (P) = 2138,0 kN (tarik)

Kontrol Kelangsingan Batang :

 $\frac{Lk}{i\min} = \frac{730,8}{5,61} = 130,267 < 200$ OK!

Kontrol Kekuatan Batang Tarik :

- <u>Kuat Rencana Leleh</u> $\varphi Pn = \varphi x fy xAg$ = 0.9 x 3600 x 139.8= 4277.88 kN (menentukan) - <u>Kuat Rencana Putus</u> $\varphi Pn = \varphi x fu x Ae$ = 0,75 x fu x An x U = 0,75 x 5100 x 0,85 x 139,8 x 0,9= 4090,72 kN

Kekuatan Tarik Rencana

4277,88 kN > 2138,0 *kN*

OK!

Dari perhitungan kontrol profil maka didapat rasio perbandingan antara gaya aksial dan kekuatan rencana (φPn)yang ditunjukkan pada Tabel 6.3 dibawah ini.

ELEMEN	Pu	ØPn	Ratio Pu/ØPn
TG11	-12113.02	18536.57	65%
BA16	-18529.16	27029.10	69%
BB26	-3959.59	6856.60	58%
DG26	-2653.2	3242.10	82%
BA2	7098.18	9339.12	76%
DG12	11979.24	13035.6	92%
TG26	2138.00	4277.88	50%

Tabel. 6.3 Rekapitulasi Rasio Kuat Rencana

134

BAB VII PEMODELAN *LEAD RUBBER BEARING*

Pemodelan *Lead Rubber Bearing* menggunakan ketentuan *Specification for Seismic Isolation Design* AASHTO LRFD Brigde-2010. Desain yang digunakan dalam pemodelan adalah jenis bundar (*Circular Bearing*). Beberapa hal yang dijadikan kriteria dalam mendesain *LRB* dapat dilihat pada langkah-langkah berikut ini.

7.1 Pemodelan *LRB* pada Abutmen untuk zona gempa Padang

Dimensi *LRB* pada Abutmen dan pier memiliki perbedaan ukuran. Abutmen pada jembatan memiliki gaya aksial yang lebih kecil dibandingkan dengan pada pier, sehingga dimensi *LRB* yang digunakan lebih kecil.

7.1.1 Pembebanan

Dari hasil analisa Jembatan Kukar didapatkan hasil pembebanan sebagai berikut ini :

a. Beban Mati

raber /.1 Beban Watt Struktur Jenibatan				
Node	Load	FZ (kN)		
1	DL+ Hanger	2014.371		
178	DL+ Hanger	2014.368		
676	DL+ Hanger	2014.33		
740	DL+ Hanger	2014.429		

Tabel 7.1 Beban Mati Struktur Jembatan

Dari Tabel diatas Didapat Beban Mati maksimum $(P_D) = 2014.429 \text{ kN}$

b. Beban Hidup

1 augu 7.2 Deban muup Suuktui Jembata		Tabel	7.2	Beban	Hidup	Struktur	Jembata
---------------------------------------	--	-------	-----	-------	-------	----------	---------

Node	Load	FZ (kN)
1	(S) UDL+KEL DG26+	1419.038
178	(S) UDL+KEL DG26+	1419.037
676	(S) UDL+KEL TI4 +	1417.459
740	(S) UDL+KEL TI4+	1417.4811

Dari Tabel diatas Didapat Beban Hidup maksimum $(P_L) = 1419.038 \text{ kN}$

7.1.2 Analisa Displacement dan Rotation saat kondisi nonseismik

Analisa displacement dan rotasi yang ditinjau untuk pemodelan LRB adalah saat kondisi non-seismik, maksudnya menghitung besar displacement/rotasi yang terjadi pada jembatan pada saat tidak memberikan beban gempa terlebih dahulu ke jembatan. Hasil analisa dari program bantu MIDAS didapatkan hasil sebagai berikut :

Node	Load	DX (m)
1	LCB7	-0.05269
178	LCB7	-0.05269
676	LCB1	0.29567
740	LCB1	0.29572

Tabel 7.3 Non-seismik Displacement

Dari Tabel diatas Didapat Displacement maksimun $(\Delta_{Sst}) = 0.29572 \text{ m} = 295.72 \text{ mm}.$

Node	Load	ROT (rad)
1	LCB2	-0.003524
178	LCB2	-0.003524
676	LCB2	-0.003524
740	LCB2	-0.003524

Tabel 7.4 Non-seismik Rotation

Dari Tabel diatas Didapat Displacement maksimun $(\Theta_{Sst}) = 0.03524$ rad

7.1.3 Pemodelan Lead Rubber Bearing

Pemodelan Lead Rubber Bearing menggunakan LRB fabrikasi dari *mageba* LASTO LRB dengan ketentuan dimensi sebagai berikut

Keterangan	Ukuran	Satuan
Jenis	LRB700	-
Diameter (D)	700	mm
Lead Core Diameter (D _L)	70	mm
Rubber Layer Thickness (t)	8	mm
Total Rubber Thickness (Tr)	192	mm
Rubber Shear Modulus (G)	0.8	MPa
Lead Effective Yield Stress (O_L)	20	MPa
Bulk Modulus Rubber (K)	2000	MPa
Total LRB Height (H)	374	mm
DE seismic Displacement (Δ_{EDE})	162	mm
DE Bearing Axial Load (P _{EDE})	3450	kN
Steel Shim Material (Fyr)	248	MPa

Tabel 7.5 Section Properties LRB700

7.1.4 Faktor Beban Akibat Kondisi Gempa Maksimum

Faktor beban akibat kondisi gempa maksimum (MCE) dirumuskan sebagai berikut :

$$Pu = \gamma_D P_D + P_{LMCE} + P_{EMCE}$$
(7-1)

Keterangan :

 Υ_D = Faktor Beban Mati untuk kondisi gempa maksimum sesuai dengan AASHTO 2010 Tabel 3.4.1-1 sebesar 1.25.

- $\begin{array}{ll} P_{LMCE} &= \Upsilon_{EQ} \, . \, P_L \, , \, dimana \, besar \, \Upsilon_{EQ} \, saat \, desain \, kondisi \\ DE \, (Design \, Earthquake) \, Sesuai \, dengan \\ AASHTO \, 2010 \, pasal \, C3.4.1 \, sebesar \, 0.5 \end{array}$
- P_{EMCE} =Beban Aksial saat kondisi gempa maksimum memiliki faktor load 1.0-1.5 lebih besar dibandingkan besar beban aksial kondisi De (P_{EDE}). Diambil faktor load sebesar 1.5.

$$\begin{array}{ll} Pu & = \Upsilon_D P_D + P_{LMCE} + P_{EMCE} \\ Pu & = 1.25(2014.429) + 0.5(1419.038) + 1.5 \ (3450) \\ Pu & = 8402.555 \ kN \end{array}$$

7.1.5 Non-seismik Plus Seismik Displacement (Δ)

Besarnya Perpindahan saat kondisi Seismik dan nonseismik dapat dirumuskan sebagai berikut :

$$\Delta = 0.5\Upsilon\Delta_{\rm SST} + \Delta_{\rm EMCE} \tag{7-2}$$

Keterangan :

 Υ = faktor saat kondisi DE sebesar 0.5

 $\Delta_{\text{EMCE}} = 1.5 \ \Delta_{\text{EDE}}, dimana \ \Delta_{\text{EDE}} \ adalah \ besar \ perpindahan saat \ kondisi \ DE$

Δ	$= 0.5\Upsilon\Delta_{SST} + \Delta_{EMCE}$
Δ	= 0.5 0.5 (295.72) + 1.5 (162)
Δ	= 316.93 mm

7.1.6 Sudut Overlap pada Bearing

Sudut overlap pada bearing (δ) adalah sudut dimana bearing mengalami perpindahan maksimum saat kondisi MCE terjadi. Sudut Overlap pada Bearing dapat dilihat seperti gambar 6.1 berikut ini.

Dari gambar diatas dapat dirumuskan :

$$\delta = 2 \cos^{-1} \frac{dt}{D}$$
(7-3)
Keterangan :
dt = Besar total displacement non seismic plus
seismic (Δ)
D = Diameter LRB
 $\delta = 2 \cos^{-1} \frac{dt}{D}$
 $\delta = 2 \cos^{-1} \frac{316.93}{700}$
 $\delta = 126.158^{\circ}$
 $\delta = 2.2007$ rad

7.1.7 Luasan Karet LRB

Luasan karet LRB merupakan selisih antara luasan keseluruhan bearing dengan luasan *lead core* pada bearing.

$$A = \frac{D^2 - Dl^2}{4} x \pi$$
 (7-4)

Keterangan :

D = Diameter LRB $D_{L} = Diameter Lead Core LRB$

$$A = \frac{D^2 - Dl^2}{4} \ge \pi$$

$$A = \frac{700^2 - 70^2}{4} \ge \pi$$

A = 380996.649 mm^2

7.1.8 Luasan Overlap LRB

Luasan Overlap pada LRB dapat dilihat pada gambar 6.1 diatas.

$$Ar = \frac{D^2}{4} \pi (\delta - \sin \delta) \tag{7-5}$$

Keterangan:

 $\begin{array}{ll} D & = \text{Diameter LRB} \\ \delta & = \text{Sudut Overlap pada LRB} \end{array}$

$$Ar = \frac{700^2}{4} \pi (2.2007 - sin 126.158^{\circ})$$

 $Ar = 168902.327 \text{ mm}^2$

7.1.9 Faktor Bentuk LRB (S)

Faktor bentuk (S) pada LRB digunakan untuk mencari control regangan pada LRB. Perumusan Faktor bentuk pada LRB sebagai berikut.

$$S = \frac{A}{\pi D t} \tag{7-6}$$

Keterangan :

A = Luasan LRB

D = Diameter LRB

t = tebal layer karet

$$S = \frac{380996.649}{\pi \, 700 \, x \, 8}$$

S = 21.656

7.1.10 Regangan Geser Akibat Tekan (Y^u C_{MCE})

Regangan geser akibat gaya tekan dapat dirumuskan sebagai berikut :

$$\Upsilon^{u}C_{MCE} = \frac{Pu}{Ar G S} f_{l}$$
(7-7)

Keterangan :

- Pu = Faktor Beban akibat kondisi gempa maksimum (MCE)
- Ar = Luasan Overlap LRB
- G = Modulus geser karet
- S = faktor bentuk
- f_1 = koefisien f_1 didapat dari tabel 5-1 AASHTO 2010 yakni hubungan perbandingan antara faktor bentuk (S) dengan Modulus geser karet. koefisien f_1 setelah diiterasi sebesar 1.3575

$$\mathbf{\Upsilon^{u}}_{\text{MCE}} = \frac{8402.555}{168902.327 \, x \, 0.8 \, x \, 21.656} \, 1.3575$$

 $\Upsilon^{u}_{MCE} = 3.898$

7.1.11 Regangan Geser Akibat Lateral Displacement $(\Upsilon^{u}S_{MCE})$

Regangan geser akibat lateral displacement dapat dirumuskan sebagai berikut :

$$\Upsilon^{u}S_{MCE} = \frac{0.5 \quad \Delta SST + \Delta EMCE}{Tr}$$
(7-8)
Keterangan :

$$\Upsilon = \text{faktor saat kondisi DE sebesar 0.5}$$

$$\Delta_{EMCE} = 1.5 \quad \Delta_{EDE,} \text{ dimana } \Delta_{EDE} \text{ adalah besar perpindahan}$$
saat kondisi DE

$$Tr = \text{Total Ketebalan Karet LRB}$$

 $\mathbf{\Upsilon}^{\mathbf{u}}\mathbf{S}_{\mathbf{MCE}} = \frac{316.93 \text{ mm}}{192 \text{ mm}}$

 $\Upsilon^{u}S_{MCE} = 1.6507$

7.1.12 Regangan Geser Akibat Rotasi (Y^u_{rs})

$$\Upsilon^{u}_{rs} = \frac{D^{2}(\Theta Sst)}{t \, Tr} f_{2}$$
(7-9)

Keterangan :

 f_2 = koefisien f_1 didapat dari tabel 5-8 AASHTO 2010 yakni hubungan perbandingan antara faktor bentuk (S) dengan Modulus geser karet. koefisien f_2 setelah diiterasi sebesar 0.2775

$$\Upsilon^{u}_{rs} = \frac{700^{2}(0.003524)}{8 x \, 192} \ 0.2875$$
$$\Upsilon^{u}_{rs} = 0.312$$

7.1.13 Kontrol Regangan Geser

Kontrol regangan geser meliputi kontrol geser akibat tekan, lateral displacement dan rotasi. Kontrol regangan geser dirumuskan sebagai berikut.

$$\Upsilon^{u}C_{MCE} + \Upsilon^{u}S_{MCE} + 0.25 \Upsilon^{u}_{rs} \leq 9.0$$

$$3.898 + 1.6507 + 0.25 (0.312) \leq 9.0$$

$$5.6267 \leq 9.0 \dots OK!!!$$

7.1.14 Perhitungan Buckling Load

Perumusan buckling load sesuai dengan aturan AASHTO 2010 sebagai berikut

$$\mathbf{P}_{\rm cr} = 0.218 \, \frac{GD^4}{t \, Tr} \, f \tag{7-11}$$

Keterangan :

G = Modulus geser karet

f = faktor kuantitas *lead core* LRB. Perumusan f dapat dilihat sebagai beikut.

$$f = \frac{(1 - \frac{D}{Dl})(1 - \frac{D^2}{Dl^2})}{1 + \frac{D^2}{Dl^2}}$$
(7-12)

Keterangan :

D = Diameter LRB D_L = Diameter *Lead Core* LRB

Dari Rumusan diatas didapat f = 0.8921

$$\mathbf{P}_{cr} = 0.218 \ \frac{0.8 \ x \ 700^4}{8 \ x \ 192} \ x \ 0.8921$$
$$\mathbf{P}_{cr} = 24319.287 \ kN$$

7.1.15 Perhitungan Buckling Load saat kondisi MCE

 $\mathbf{P}_{crMCE} = Pcr \frac{Ar}{A}$ (7-13) Keterangan : Pcr = Buckling Load Ar = Luasan Overlap LRB A = Luasan LRB $\mathbf{P}_{crMCE} = 24319.287 \frac{168902.327}{380996.649}$

 $P_{crMCE} = 10781.16 \text{ kN}$

7.1.16 Kontrol Lateral Buckling

PcrMCE Pu	≥ 1.1		(7-14)
10781.16 8402.555	≥ 1.1		
1.283	≥1.1	OK!!!	

7.1.17 Perhitungan Kuat LRB (Fy)

 $Fy = A_L O_L$ (7-15) Keterangan: $A_L = Luasan Lead Core LRB$ $O_L = Lead yield Stress$ $Fy = 3848.451 \times 20$ Fy = 76.969 kN

7.1.18 Perhitungan Bearing Post Elastic Stiffness

$$Kd = \frac{GA}{Tr}$$
(7-16)
$$Kd = \frac{0.8 x \, 380996.649}{192}$$

 $Kd = K_r = 1.5875 \text{ kN/mm}$

7.1.19 Perhitungan Perpindahan Kritis

$$D^{u}_{cr} = \frac{P.D-Q.h}{K1.h+P}$$
(7-17)

Keterangan :

P = Beban mati saat terjadinya critical displacement sebesar 0.9 kali besar Beban Mati Pd.

$$Qd = Kuat LRB$$

h = Total tinggi LRB

$$D^{u}_{cr} = \frac{1812.986 \, x \, 700 - 76.969 \, x \, 374}{1.5875 \, x \, 374 + 1812.986}$$

$$D_{cr}^{u} = 515.3533 \text{ mm}$$

7.1.20 Kontrol Perpindahan Kritis

Ducr	ADMOD	≥ 1.1	(7-18)
0.5 4551 +	DEMCE		
515.3533 316.93	≥ 1.1		
1.6261	≥ 1.1	OK!!!	

7.1.21 Kontrol Ketebalan Shim Steel

$$\frac{1.65 t}{1.08 \, Fye \frac{Ar}{Pu} - 2} \ge 1.9 \, \text{mm} \tag{7-19}$$

Keterangan : Fye = Ry . Fyr ; dimana nilai Ry sebesar 1.3

$$\frac{1.65 \ x \ 8}{1.08 \ 322.4 \ \frac{168902.327}{8402.555} - 2} \ge 1.9 \ \text{mm}$$

$$2.6405 \text{ mm} \ge 1.9 \text{ mm} \dots \text{OK}!!!$$

7.2 Pemodelan LRB pada Pier untuk zona gempa Padang

Dimensi LRB pada Abutmen dan pier memiliki perbedaan ukuran. Pier pada jembatan memiliki gaya aksial yang lebih kecil dibandingkan dengan pada abutmen, sehingga dimensi LRB yang digunakan lebih besar.

7.2.1 Pembebanan

Dari hasil analisa Jembatan Kukar didapatkan hasil pembebanan sebagai berikut ini :

Tab	el 7.6 Beban Mati Struktur	Jembatan
Node	Load	FZ (kN)
14	DL+ Hanger	17312.54
162	DL+ Hanger	17314.12
661	DL+ Hanger	17314.26
725	DL+ Hanger	17312.36

c. Beban Mati

Dari Tabel diatas Didapat Beban Mati maksimum $(P_D) = 17314.262 \text{ kN}$

d. Beban Hidup

Tabel 7 7 Beban Hidup Struktur Jembatan

Node	Load	FZ (kN)
14	(S) UDL+KEL DG26+	5415.558
162	(S) UDL+KEL DG26+	5416.172
661	(S) UDL+KEL DG26+	5185.025
725	(S) UDL+KEL DG26+	5184.288

Dari Tabel diatas Didapat Beban Hidup maksimum $(P_{\rm L}) = 5416.172 \, \rm kN$

7.2.2 Analisa Displacement dan Rotation saat kondisi nonseismik

Analisa displacement dan rotasi yang ditinjau untuk pemodelan LRB adalah saat kondisi non-seismik, maksudnya menghitung besar displacement/rotasi yang terjadi pada jembatan pada saat tidak memberikan beban gempa terlebih dahulu ke jembatan. Hasil analisa dari program bantu MIDAS didapatkan hasil sebagai berikut :

Node	Load	DX (m)
14	LCB7	0
162	LCB7	0
661	LCB1	0.31893
725	LCB1	0.31894

Tabel 7.8 Non-seismik Displacement

Dari Tabel diatas Didapat Displacement maksimun $(\Delta_{Sst}) = 0.31894 \text{ m} = 318.94 \text{ mm}.$

Node	Load	ROT (rad)
14	LCB3	-0.000282
162	LCB3	0.000282
661	LCB3	-0.000324
725	LCB3	0.0003524

Tabel 7.9 Non-seismik Rotation

Dari Tabel diatas Didapat Displacement maksimun $(\Theta_{Sst}) = 0.0003524$ rad

7.2.3 Pemodelan Lead Rubber Bearing

Pemodelan Lead Rubber Bearing menggunakan LRB fabrikasi dari *mageba* LASTO LRB dengan ketentuan dimensi sebagai berikut

Keterangan	Ukuran	Satuan
Jenis	LRB1000	-
Diameter (D)	1000	mm
Lead Core Diameter (D _L)	100	mm
Rubber Layer Thickness (t)	8	mm
Total Rubber Thickness (Tr)	224	mm
Rubber Shear Modulus (G)	0.8	MPa
Lead Effective Yield Stress (O_L)	20	MPa
Bulk Modulus Rubber (K)	2000	MPa
Total LRB Height (H)	422	mm
DE seismic Displacement (Δ_{EDE})	189	mm
DE Bearing Axial Load (P _{EDE})	6750	kN
Steel Shim Material (Fyr)	248	MPa

Tabel 7.10 Section Properties LRB700

7.2.4 Faktor Beban Akibat Kondisi Gempa Maksimum

Faktor beban akibat kondisi gempa maksimum (MCE) dirumuskan sebagai berikut :

$$Pu = \Upsilon_D P_D + P_{LMCE} + P_{EMCE}$$
(7-1)

Keterangan :

$\Upsilon_{\rm D}$	= Faktor Beban Mati untuk kondisi gempa
	maksimum sesuai dengan AASHTO 2010
	Tabel 3.4.1-1 sebesar 1.25.

 $\begin{array}{ll} P_{LMCE} &= \Upsilon_{EQ} . \ P_L \ , \ dimana \ besar \ \Upsilon_{EQ} \ saat \ desain \ kondisi \\ DE \ (Design \ Earthquake) \ Sesuai \ dengan \\ AASHTO \ 2010 \ pasal \ C3.4.1 \ sebesar \ 0.5 \end{array}$

 P_{EMCE} =Beban Aksial saat kondisi gempa maksimum memiliki faktor load 1.0-1.5 lebih besar dibandingkan besar beban aksial kondisi De (P_{EDE}). Diambil faktor load sebesar 1.5.

$$Pu = \Upsilon_D P_D + P_{LMCE} + P_{EMCE}$$

$$Pu = 1.25(17314.262) + 0.5(5416.172) + 1.5 (6750)$$

$$Pu = 34475.91 \text{ kN}$$

7.2.5 Non-seismik Plus Seismik Displacement (Δ)

Besarnya Perpindahan saat kondisi Seismik dan nonseismik dapat dirumuskan sebagai berikut :

$$\Delta = 0.5\Upsilon\Delta_{\rm SST} + \Delta_{\rm EMCE} \tag{7-2}$$

Keterangan :

 Υ = faktor saat kondisi DE sebesar 0.5

 $\Delta_{\text{EMCE}} = 1.5 \ \Delta_{\text{EDE}}, dimana \ \Delta_{\text{EDE}} \ adalah \ besar \ perpindahan saat \ kondisi \ DE$

Δ	$= 0.5\Upsilon\Delta_{SST} + \Delta_{EMCE}$
Δ	= 0.5 0.5 (318.94) + 1.5 (189)

7.2.6 Sudut Overlap pada Bearing

Sudut overlap pada bearing (δ) adalah sudut dimana bearing mengalami perpindahan maksimum saat kondisi MCE terjadi. Sudut Overlap pada Bearing dapat dilihat seperti gambar 6.1 berikut ini.

Gambar 7.2 Luasan Overlap Circular Bearing

Dari gambar diatas dapat dirumuskan :

$$\delta = 2\cos^{-1}\frac{dt}{D} \tag{7-3}$$

Keterangan :

dt = Besar total displacement non seismic plus seismic (Δ)

D = Diameter LRB

$$\delta = 2\cos^{-1}\frac{dt}{D}$$
$$\delta = 2\cos^{-1}\frac{363.235}{1000}$$

 $\delta = 137.402^{\circ}$ $\delta = 2.397 \text{ rad}$

7.2.7 Luasan Karet LRB

Luasan karet LRB merupakan selisih antara luasan keseluruhan bearing dengan luasan *lead core* pada bearing.

$$A = \frac{D^2 - Dl^2}{4} \ge \pi$$
Keterangan :
D = Diameter LRB
D_L = Diameter *Lead Core* LRB

$$A = \frac{D^2 - Dl^2}{4} \ge \pi$$

$$A = \frac{1000^2 - 100^2}{4} \ge \pi$$
= 777544.182 mm²

7.2.8 Luasan Overlap LRB

А

Luasan Overlap pada LRB dapat dilihat pada gambar 6.1 diatas.

$$Ar = \frac{D^2}{4} \pi (\delta - \sin \delta) \tag{7-5}$$

Keterangan:

D = Diameter LRB $\delta = Sudut Overlap pada LRB$

$$Ar = \frac{1000^2}{4} \pi (2.397 - sin137.402^\circ)$$

 $Ar = 425491.32 \text{ mm}^2$

7.2.9 Faktor Bentuk LRB (S)

Faktor bentuk (S) pada LRB digunakan untuk mencari control regangan pada LRB. Perumusan Faktor bentuk pada LRB sebagai berikut.

$$S = \frac{A}{\pi D t} \tag{7-6}$$

Keterangan :

A = Luasan LRB

D = Diameter LRB

t = tebal layer karet

$$S = \frac{777544.182}{\pi \ 1000 \ x \ 8}$$

S = 30.9375

7.2.10 Regangan Geser Akibat Tekan (Y^u C_{MCE})

Regangan geser akibat gaya tekan dapat dirumuskan sebagai berikut :

$$\mathbf{\Upsilon}^{\mathbf{u}}\mathbf{C}_{\mathbf{MCE}} = \frac{Pu}{Ar\,G\,S}\,f_l \tag{7-7}$$

Keterangan :

- Pu = Faktor Beban akibat kondisi gempa maksimum (MCE)
- Ar = Luasan Overlap LRB
- G = Modulus geser karet
- S = faktor bentuk
- f_1 = koefisien f_1 didapat dari tabel 5-1 AASHTO 2010 yakni hubungan perbandingan antara faktor bentuk (S) dengan Modulus geser karet. koefisien f_1 setelah diiterasi sebesar 1.5875

$$\mathbf{\Upsilon^{u}}_{MCE} = \frac{34475.91}{425491.32 \, x \, 0.8 \, x \, 30.9375} \, 1.5875$$

 $\Upsilon^{u}_{MCE} = 5.197$

7.2.11 Regangan Geser Akibat Lateral Displacement $(\Upsilon^{u}S_{MCE})$

Regangan geser akibat lateral displacement dapat dirumuskan sebagai berikut :

$$\Upsilon^{u}S_{MCE} = \frac{0.5 \quad \Delta SST + \Delta EMCE}{Tr}$$
(7-8)
Keterangan :

$$\Upsilon = \text{faktor saat kondisi DE sebesar 0.5}$$

$$\Delta_{EMCE} = 1.5 \quad \Delta_{EDE,} \text{ dimana } \Delta_{EDE} \text{ adalah besar perpindahan}$$
saat kondisi DE

$$Tr = \text{Total Ketebalan Karet LRB}$$

$$\mathbf{\Upsilon}^{\mathbf{u}}\mathbf{S}_{\mathbf{MCE}} = \frac{363.235 \text{ mm}}{224 \text{ mm}}$$

 $\Upsilon^{u}S_{MCE} = 1.6216$

7.2.12 Regangan Geser Akibat Rotasi (Y^u_{rs})

$$\Upsilon^{u}_{rs} = \frac{D^2(\Theta Sst)}{t \, Tr} f_2 \tag{7-9}$$

Keterangan :

 f_2 = koefisien f_1 didapat dari tabel 5-8 AASHTO 2010 yakni hubungan perbandingan antara faktor bentuk (S) dengan Modulus geser karet. koefisien f_2 setelah diiterasi sebesar 0.24

$$\Upsilon^{u}_{rs} = \frac{1000^{2}(0.0003524)}{8 x 224} \ 0.24$$
$$\Upsilon^{u}_{rs} = 0.472$$

7.2.13 Kontrol Regangan Geser

Kontrol regangan geser meliputi kontrol geser akibat tekan, lateral displacement dan rotasi. Kontrol regangan geser dirumuskan sebagai berikut.

$$\Upsilon^{u}C_{MCE} + \Upsilon^{u}S_{MCE} + 0.25 \Upsilon^{u}_{rs} \leq 9.0$$
(7-10)

5.197 + 1.6216 + 0.25 (0.472) ≤ 9.0

6.937 $\leq 9.0 \dots OK!!!$

7.2.14 Perhitungan Buckling Load

Perumusan buckling load sesuai dengan aturan AASHTO 2010 sebagai berikut

$$\mathbf{P}_{\rm cr} = 0.218 \, \frac{GD^4}{t \, Tr} \, f \tag{7-11}$$

Keterangan :

G = Modulus geser karet

f = faktor kuantitas *lead core* LRB. Perumusan f dapat dilihat sebagai beikut.

$$f = \frac{(1 - \frac{D}{Dl})(1 - \frac{D^2}{Dl^2})}{1 + \frac{D^2}{Dl^2}}$$
(7-12)

Keterangan :

D = Diameter LRB D_L = Diameter *Lead Core* LRB

Dari Rumusan diatas didapat f = 0.8921

$$\mathbf{P}_{cr} = 0.218 \ \frac{0.8 \ x \ 1000^4}{8 \ x \ 224} \ x \ 0.8921$$
$$\mathbf{P}_{cr} = 86818.423 \ kN$$

7.2.15 Perhitungan Buckling Load saat kondisi MCE

 $\mathbf{P_{crMCE}} = Pcr \frac{Ar}{A}$ (7-13) Keterangan : Pcr = Buckling LoadAr = Luasan Overlap LRBA = Luasan LRB

 $\mathbf{P_{crMCE}} = 86818.423 \ \frac{425491.32}{777544.182}$

 $P_{crMCE} = 47509.18 \text{ kN}$

7.2.16 Kontrol Lateral Buckling

PcrMCE Pu	≥ 1.1		(7-14)
47509.18 34475.91	≥ 1.1		
1.378	≥ 1.1	OK!!!	

7.2.17 Perhitungan Kuat LRB (Fy)

 $Fy = A_L O_L$ (7-15) Keterangan: $A_L = Luasan Lead Core LRB$ $O_L = Lead yield Stress$ $Fy = 7853.982 \times 20$ Fy = 157.08 kN

7.2.18 Perhitungan Bearing Post Elastic Stiffness

$$Kd = \frac{GA}{Tr}$$
(7-16)
$$Kd = \frac{0.8 x 777544.182}{224}$$

 $Kd = K_r = 2.777 \text{ kN/mm}$

7.2.19 Perhitungan Perpindahan Kritis

$$D^{u}_{cr} = \frac{P.D-Q.h}{K1.h+P}$$
(7-17)

Keterangan :

P = Beban mati saat terjadinya critical displacement sebesar 0.9 kali besar Beban Mati Pd.

$$Qd = Kuat LRB$$

h = Total tinggi LRB
$$D^{u}_{cr} = \frac{15582.84 \times 1000 - 157.08 \times 422}{2.777 \times 422 + 15582.84}$$

$$D_{cr}^{u} = 926.1 \text{ mm}$$

7.2.20 Kontrol Perpindahan Kritis

Ducr		> 1.1	(7 18)
0.5 Δ SST + Δ EMCE		∠ 1.1	(7-10)
926.1 363.235	≥ 1.1		
2.549	≥ 1.1	OK!!!	

7.2.21 Kontrol Ketebalan Shim Steel

$$\frac{1.65 t}{1.08 \, Fye \frac{Ar}{Pu} - 2} \ge 1.9 \, \text{mm} \tag{7-19}$$

Keterangan : Fye = Ry . Fyr ; dimana nilai Ry sebesar 1.3

$$\frac{1.65 \ x \ 8}{1.08 \ 322.4 \ \frac{425491.32}{34475.91} - 2} \ge 1.9 \ \text{mm}$$

$$5.7459 \text{ mm} \ge 1.9 \text{ mm} \dots \text{OK}!!!$$

7.3.1 Pemodelan LRB pada MIDAS CIVIL

Pemodelan LRB pada program bantu MIDAS membutuhkan empat parameter dari desain LRB, yakni Kuat *Lead* dari LRB (Fy), kekakuan elastis dari LRB (K), ratio kekakuan elastis-post elastis (r), dan kekakuan vertika (K_v). Ketiga parameter diatas dapat dicari dengan perumusan berikut ini :

7.3.1.1 Pemodelan LRB zona gempa Samarinda, Palembang, dan Medan

7.3.1.1.1 Kuat LRB

Kuat LRB (Fy) sangat bergantung dari besarnya ukuran *lead core* pada LRB. Dari persamaan 7.15 sudah didapatkan besar Fy dari abutmen dan pier pada struktur atau ditunjukkan pada tabel 7.16 berikut ini.

Tabel 7.16 Besar Fy dari LRB

Lokasi	Fy (kN)	
Abutmen	56.549	
Pier	127.234	

7.3.1.1.2 Kekakuan Elastis (K)

Untuk mendapatkan besar kekakuan elastis diperlukan parameter karakteristik kekuatan (Qd) dan displacement akibat post elastic stiffness (Y).

a. Karakteristik Kekuatan (Qd)

Karakteristik kekuatan (Qd) dirumuskan sebagai berikut :

$$Qd = Fy \left(1 - \frac{k^2}{k_1}\right)$$
(7-20)

Keterangan : Fy = Kuat LRB $K_1 = Kekakuan elastis$ $K_2 = Post-elastis stiffnes$

Dimana, $K_2 = 1.1 \text{ Kd}$ (7-21)

• Kekakuan Elastis (K) untuk Abutmen

- K_2 = 1.1 Kd K_2 = 1.1 (1.272) K_2 = 1.4 kN/mm

-
$$Qd = Fy (1 - \frac{k^2}{k_1})$$

 $Qd = 56.549 (1 - \frac{1.4}{1.272})$
 $Qd = 55.149 \text{ kN/mm}$

• Kekakuan Elastis (K) untuk Pier

-
$$K_2$$
 = 1.1 Kd
 K_2 = 1.1 (2.333)
 K_2 = 2.566 kN/mm

-
$$Qd = Fy (1 - \frac{k2}{k1})$$

 $Qd = 127.234 (1 - \frac{2.566}{2.333})$
 $Qd = 124.669 \text{ kN/mm}$

b. Displacement Akibat Post Elastis Stiffness

Displacement Akibat Post Elastis Stiffness (Y) dirumuskan sebagai berikut :

$$Y = \frac{Fy - Kd}{Qd} \tag{7-22}$$

• Perhitungan Y diabutment

$$Y = \frac{56.549 - 1.272}{55.149}$$

Y = 1.002 mm

• Perhitungan Y di Pier

$$Y = \frac{127.234 - 2.333}{154.025}$$

Y = 1.00187 mm

c. Kekakuan Elastis (K)

$$K = \frac{Fy}{Y}$$
(7-23)
Keterangan :
Fy = Kuat LRB
Y = Displacement Akibat Post Elastis Stiffness

• Kekakuan Elastis di Abutmen

$$K = \frac{56.549}{1.002}$$

K = 56.418 kN/mm

• Kekakuan Elastis di Pier

$$K = \frac{127.234}{1.0018}$$

K = 126.997 kN/mm

Dari hasil perhitungan diatas didapat kekakuan elastis dari abutmen dan pier dapat dilihat pada tabel 7.17 berikut ini :

Tabel 7.17 Besar kekakuan elastis (K) dari LRB

Lokasi	K (kN/mm)	
Abutmen	56.418	
Pier	126.997	

7.3.1.1.3 Ratio Kekakuan Elastis-Post Elastis (r)

Ratio kekakuan elastis post elastis (s) merupakan perbandingan antara Kekakuan elastis dengan kekakuan post elastis suatu bearing. Perumusan ratio sebagai berikut.

$$K = \frac{Kd}{K}$$
 (7-24)
Keterangan :
Kd = Kekakuan Post elastis
K = Kekakuan Elastis

• Ratio kekakuan di Abutmen

$$r = \frac{1.272}{56.4185}$$
$$r = 0.02255$$

• Ratio kekakuan Elastis di Pier

$$K = \frac{2.333}{126.997}$$
$$K = 0.0184$$

Dari hasil perhitungan diatas didapat ratio kekakuan elastis-post elastis dari abutmen dan pier dapat dilihat pada tabel 7.18 berikut ini :

Tabel 7.18 Besar ratio kekakuan (r) dari LRB

Lokasi	r	
Abutmen	0.0225	
Pier	0.0184	

7.3.1.1.4 Kekakuan Vertikal (Kv)

Kekakuan vertical (Kv) merupakan kekakuan sumbu vertikal pada LRB. Kekakuan vertical pada LRB lebih besar dibandingkan elastomer bearing. Ini dikaerakan kontribusi dari *lead plug* pada LRB yang dapat mereduksi beban vertikal dari stuktur. Perumusan Kekakuan vertical dapat dirumuskan dengan perumusan sebagai berikut:

$$Kv = \frac{Ecb A}{Tr},$$
dimana :
$$E_{CB} = \frac{Ec \cdot Eb}{Ec + Eb}$$
(7-26)

Keterangan :

E_{CB} = Modulus Young koreksi antara rubber dan *lead plug*

Ec = Modulus Young dari rubber

 E_B = Modulus Bulk Rubber

Untuk mengetahui besaran modulus Young pada rubber digunakan tabel persamaan *Lindley*, yakni tabel hubungan antara Modulus geser (G) dan modulus Young. Tabel Persamaan *Lindley* dapat dilihat dari tabel berikut ini :

Shear	Young	Numerical	Bulk
Modulus	Modulus Eo	Factor k	Modulus E _B
(MPa)	(MPa)		(MPa)
0.54	1.80	0.80	1000
0.64	2.20	0.73	1030
0.81	3.25	0.64	1090
1.06	4.45	0.57	1150

Tabel 7.19 Tabel Persamaan Lindley

• Kekakuan Vertikal (Kv) pada Abutmen

Modulus geser (G) LRB yang didesain adalah 0.8MPa, dari tabel 6.14 diatas didapatkan besar Modulus Young (Eo)= 3.25 MPa, Numerical factor (k) 0.64, dan Bulk modulus (E_B) 1090 Mpa. Untuk mendapatkan Modulus Young dari rubber dapat digunakan persamaan berikut ini :

Ec = Eo ($1+2k S^2$) (7-27) Keterangan : Eo = Modulus Young k = Faktor numerik S = Faktor bentuk

Ec =
$$3.25 (1+20.64 (18.5625)^2)$$

Ec = 1436.646 MPa

Untuk mendapatkan nilai E_{CB} digunakan persamaan 7-26.

$$E_{CB} = \frac{Ec.Eb}{Ec+Eb}$$
$$E_{CB} = \frac{1436.646 \times 1090}{1436.434 + 1090}$$

E_{CB} = 619.772 MPa

Kekakuan vertical (Kv) didapat melalui persamaan 7-25

$$Kv = \frac{Ecb A}{Tr}$$

$$Kv = \frac{619.775 x 279915.905}{176} = 985704.658 \text{ kN/m}$$

• Kekakuan Vertikal (Kv) pada Pilar

Modulus geser (G) LRB yang didesain adalah 0.8MPa, dari tabel 6.14 diatas didapatkan besar Modulus Young (Eo)= 3.25 MPa, Numerical factor (k) 0.64, dan Bulk modulus (E_B) 1090 Mpa. Untuk mendapatkan Modulus Young dari rubber dapat digunakan persamaan berikut ini :

Ec = Eo ($1+2k S^2$) (7-27) Keterangan : Eo = Modulus Young k = Faktor numerik S = Faktor bentuk

Ec =
$$3.25 (1+20.64 (27.844)^2)$$

Ec = 3228.392 MPa

Untuk mendapatkan nilai E_{CB} digunakan persamaan 6-26.

$$E_{CB} = \frac{Ec.Eb}{Ec+Eb}$$
$$E_{CB} = \frac{3228.392x\ 1090}{3228.392+\ 1090}$$

$$E_{CB} = 814.874 \text{ MPa}$$

Kekakuan vertical (Kv) didapat melalui persamaan 7-25

$$Kv = \frac{Ecb A}{Tr}$$

$$Kv = \frac{814.874 \ x \ 629810.787}{216} = 2376003.23 \ \text{kN/m}$$

7.3.1.1.5 Rekapitulasi Parameter LRB pada MIDAS untuk Zona Gempa Samarinda, Palembang, dan Medan

Dalam memodelkan LRB didalam program MIDAS ada beberapa parameter – parameter yang digunakan. Parameter LRB didapat melalu perhitungan sebelumnya. Pada Tabel 7.20 merupakan parameter LRB pada bagian abutmen dan pilar jembatan.

Parameter	Abutment	Pilar	Satuan
Diameter (D)	600	900	mm
Tinggi (H)	350	410	mm
Effective stiffness (K _{eff})	1005	1729	kN/m
Kuat LRB (Fy)	56.549	127.23	kN
Kekakuan Elastis (K)	56418	126997	kN/m
Kekakuan Vertikal (Kv)	985704.658	2376003.229	kN/m
Ratio Kekakuan (r)	0.0225	0.0184	-

Tabel 7.20 Rekapitulasi Parameter LRB pada MIDAS

7.3.1.2 Pemodelan LRB untuk Zona Gempa Padang 7.3.1.2.1 Kuat LRB

Kuat LRB (Fy) sangat bergantung dari besarnya ukuran *lead core* pada LRB. Dari persamaan 6.15 sudah didapatkan besar Fy dari abutmen dan pier pada struktur atau ditunjukkan pada tabel 7.21 berikut ini.

Tabel 7.21 Besar Fy dari LRB

Lokasi	Fy (kN)
Abutmen	76.969
Pier	157.08

7.3.1.2.2 Kekakuan Elastis (K)

Untuk mendapatkan besar kekakuan elastis diperlukan parameter karakteristik kekuatan (Qd) dan displacement akibat post elastic stiffness (Y)

a. Karakteristik Kekuatan (Qd)

Karakteristik kekuatan (Qd) dirumuskan sebagai berikut :

$$Qd = Fy\left(1 - \frac{k^2}{k_1}\right)$$
 (6-20)

Keterangan :

Fy = Kuat LRB $K_1 = Kekakuan elastis$ $K_2 = Post-elastis stiffnes$

Dimana,
$$K_2 = 1.1 \text{ Kd}$$
 (6-21)

• Kekakuan Elastis (K) untuk Abutmen

-	K_2	= 1.1 Kd
	K_2	= 1.1 (1.5875)
	K_2	= 1.746 kN/mm

-
$$Qd = Fy (1 - \frac{k^2}{k_1})$$

 $Qd = 76.969 (1 - \frac{1.746}{76.9})$
 $Qd = 75.22 \text{ kN/mm}$

• Kekakuan Elastis (K) untuk Pier

-
$$K_2$$
 = 1.1 Kd
 K_2 = 1.1 (2.777)
 K_2 = 3.055 kN/mm

$$- Qd = Fy\left(1 - \frac{k^2}{k^1}\right)$$

$$Qd = 157.08 (1 - \frac{2.777}{157.08})$$

 $Qd = 154.025 \text{ kN/mm}$

b. Displacement Akibat Post Elastis Stiffness

Displacement Akibat Post Elastis Stiffness (Y) dirumuskan sebagai berikut :

$$Y = \frac{Fy - Kd}{Qd} \tag{6-22}$$

• Perhitungan Y diabutment

$$Y = \frac{76.969 - 1.5875}{75.22}$$

Y = 1.002 mm

• Perhitungan Y di Pier

$$Y = \frac{157.08 - 2.777}{154.025}$$

Y = 1.0018 mm

c.

- Kekakuan Elastis (K)
 - $K = \frac{Fy}{Y}$ (6-23) Keterangan : Fy = Kuat LRB Y = Displacement Akibat Post Elastis Stiffness
- Kekakuan Elastis di Abutmen

$$K = \frac{76.969}{1.002}$$

K = 76.807 kN/mm

• Kekakuan Elastis di Pier

$$K = \frac{157.08}{1.0018}$$

K = 156.797 kN/mm

Dari hasil perhitungan diatas didapat kekakuan elastis dari abutmen dan pier dapat dilihat pada tabel 7.22 berikut ini :

Tabel 7.22 Besar kekakuan elastis (K) dari LRB

Lokasi	K (kN/mm)	
Abutmen	76.807	
Pier	156.797	

7.3.1.2.3 Ratio Kekakuan Elastis-Post Elastis (r)

Ratio kekakuan elastis post elastis (s) merupakan perbandingan antara Kekakuan elastis dengan kekakuan post elastis suatu bearing. Perumusan ratio sebagai berikut.

$$K = \frac{Kd}{K}$$
 (6-24)
Keterangan :
Kd = Kekakuan Post elastis
K = Kekakuan Elastis

• Ratio kekakuan di Abutmen

$$r = \frac{1.5875}{76.807}$$
$$r = 0.0207$$

• Ratio kekakuan Elastis di Pier

$$K = \frac{2.777}{156.797}$$
$$K = 0.0177$$

Dari hasil perhitungan diatas didapat ratio kekakuan elastis-post elastis dari abutmen dan pier dapat dilihat pada tabel 7.23 berikut ini :

Tabel 7.23 Besar ratio kekakuan (r) dari LRB

Lokasi	r
Abutmen	0.0207
Pier	0.0177

7.3.1.2.4 Kekakuan Vertikal (Kv)

Kekakuan vertical (Kv) merupakan kekakuan sumbu vertikal pada LRB. Kekakuan vertical pada LRB lebih besar dibandingkan elastomer bearing. Ini dikaerakan kontribusi dari *lead plug* pada LRB yang dapat mereduksi beban vertikal dari stuktur. Perumusan Kekakuan vertical dapat dirumuskan dengan perumusan sebagai berikut:

$Kv = \frac{Ecb A}{Tr},$	(6-25)
dimana :	
Ec Eb	
$E_{CB} = \frac{Ec \cdot Eb}{Ec + Eb}$	(6-26)
Keterangan :	
E _{CB} = Modulus Young kor	eksi antara rubber dan lead plug
Ec = Modulus Young dar	i rubber
$E_{\rm B}$ = Modulus Bulk Rubb	ber

Untuk mengetahui besaran modulus Young pada rubber digunakan tabel persamaan *Lindley*, yakni tabel hubungan antara Modulus geser (G) dan modulus Young. Tabel Persamaan *Lindley* dapat dilihat dari tabel berikut ini :

Shear	Young	Numerical	Bulk
Modulus	Modulus Eo	Factor k	Modulus E _B
(MPa)	(MPa)		(MPa)
0.54	1.80	0.80	1000
0.64	2.20	0.73	1030
0.81	3.25	0.64	1090
1.06	4.45	0.57	1150

Tabel 7.24 Tabel Persamaan Lindley

• Kekakuan Vertikal (Kv) pada Abutmen

Modulus geser (G) LRB yang didesain adalah 0.8MPa, dari tabel 6.14 diatas didapatkan besar Modulus Young (Eo)= 3.25 MPa, Numerical factor (k) 0.64, dan Bulk modulus (E_B) 1090 Mpa. Untuk mendapatkan Modulus Young dari rubber dapat digunakan persamaan berikut ini :

Ec	= Eo (1+2k S ²)	(6-27)
Ketera	ngan :	
Ео	= Modulus Young	
k	= Faktor numerik	
S	= Faktor bentuk	
Ec	$= 3.25 (1+20.64 (21.656)^2)$	
-		

Ec = 1954.262 MPa

Untuk mendapatkan nilai E_{CB} digunakan persamaan 6-26. $E_{CB} = \frac{Ec.Eb}{Ec+Eb}$

$$E_{CB} = \frac{1954.262 \ x \ 1090}{1954.262 + 1090}$$

E_{CB} = 699.725 MPa

Kekakuan vertical (Kv) didapat melalui persamaan 6-25

$$Kv = \frac{Ecb A}{Tr}$$
$$Kv = \frac{699.725 \times 380996.65}{192} = 1388504.05 \text{ kN/m}$$

• Kekakuan Vertikal (Kv) pada Pilar

Modulus geser (G) LRB yang didesain adalah 0.8MPa, dari tabel 6.14 diatas didapatkan besar Modulus Young (Eo)= 3.25 MPa, Numerical factor (k) 0.64, dan Bulk modulus (E_B) 1090 Mpa. Untuk mendapatkan Modulus Young dari rubber dapat digunakan persamaan berikut ini :

Ec = Eo ($1+2k S^2$) (6-27) Keterangan : Eo = Modulus Young k = Faktor numerik S = Faktor bentuk Ec = $3.25 (1+2 0.64 (30.938)^2)$ Ec = 3894.906 MPa Untuk mendapatkan nilai E_{CB} digunakan persamaan 6-26.

$$E_{CB} = \frac{Ec.Eb}{Ec+Eb}$$
$$E_{CB} = \frac{3894.906x\ 1090}{3894.906+\ 1090}$$
$$E_{CB} = 855.887\ MPa$$

Kekakuan vertical (Kv) didapat melalui persamaan 6-25

$$Kv = \frac{Ecb A}{Tr}$$

$$Kv = \frac{855.887 \ x \ 380996.65}{192} = 2970938.4 \ \text{kN/m}$$

7.3.1.2.5 Rekapitulasi Parameter LRB pada MIDAS untuk zona Gempa Padang

Dalam memodelkan LRB didalam program MIDAS ada beberapa parameter – parameter yang digunakan. Parameter LRB didapat melalu perhitungan sebelumnya. Pada Tabel 7.25 merupakan parameter LRB pada bagian abutmen dan pilar jembatan.

Parameter	Abutment	Pilar	Satuan
Diameter (D)	700	1000	mm
Tinggi (H)	374	422	mm
Effective stiffness (K _{eff})	1185	3278	kN/m
Kuat LRB (Fy)	76.969	157.08	kN
Kekakuan Elastis (K)	76807	156797	kN/m
Kekakuan Vertikal (Kv)	1388504.05	2970938.4	kN/m
Ratio Kekakuan (r)	0.0207	0.0177	-

Tabel 7.25 Rekapitulasi Parameter LRB pada MIDAS

7.3.1.3 Pemodelan LRB pada program MIDAS CIVIL

Dalam pemodelan MIDAS CIVIL, LRB dimodelkan dalam bentuk *general link* pada *boundaries* antara perletakan struktur bangunan atas dan bawahnya. Pemodelan LRB ditunjukkan pada gambar 7.3 berikut ini.

Gambar 7.3 Pemodelan LRB pada MIDAS CIVIL

Gambar 7.4 Potongan Melintang Lead Rubber Bearing

Gambar 7.5 Tampak Atas Lead Rubber Bearing

BAB VIII ANALISA PEMBAHASAN

8.1. Perbandingan Periode Struktur

Perbandingan waktu getar/periode struktur jembatan tanpa menggunakan base isolator (POT bearing) dan dengan menggunakan base isolator (*Lead Rubber Bearing*) dapat dilihat pada Tabel 8.1

Zana Campa	Periode (s	ec)
Zona Gempa	POT Bearing	LRB
Zona 1 (Samarinda)	3.845	9.004
Zona 2 (Palembang)	3.845	9.004
Zona 3 (Medan)	3.845	9.004
Zona 4 (Padang)	3.845	7.421

Tabel 8.1 Periode Struktur Jembatan

Hasil analisa dengan menggunakan base isolator akan meningkatkn periode stuktur. Seperti yang terlihat pada Tabel 8.1 bahwa dengan menggunakan LRB maka akan meningkatkan periode dibanding dengan POT bearing. Dari hasil analisa diatas dapat diambil kesimpulan bahwa penggunaan base isolator dapat meningkatkan periode stuktur. Grafik perbandingan periode stuktur dengan menggunakan POT bearing dan LRB dapat dilihat pada Gambar 8.1 berikut ini.

Gambar 8.1 Perbandingan Periode Struktur tiap Zona Gempa

Dari Gambar 8.1 dilihat bahwa periode ditiap zona pada POT bearing sama yakni 3.845 detik. Ini dikarenakan bahwa POT bearing menggunakan dimensi yang sama disetiap zona gempa sehngga kekakuan pada tiap zona gempa sama. Oleh karena kekakuan pada setiap zona gempa sama maka periode yang terjadi juga akan menghasilkan periode yang sama. Untuk LRB digunakan dimensi yang sama pada zona 1 (Samarinda), zona 2 (Palembang), dan zona 3 (Medan) sehingga kekakuannya sama. Kekakuan yang sama pada zona 1, 2, dan 3 akan memberikan periode yang sama.

Untuk zona gempa 4 (Padang) memiliki dimensi yang lebih besar dibandingkan dengan zona 1,2 dan 3 sehingga kekakuan LRB lebih besar. Kekakuan LRB pada zona 4 (Padang) memberikan periode yang lebih kecil dibandingkan dengan penggunaan LRB ditiap zona lainnya.

8.2. Perbandingan Gaya Gempa

Perbandingan gaya gempa yang terjadi pada struktur jembatan tanpa menggunakan base isolator (POT bearing) dan dengan menggunakan base isolator (*Lead Rubber Bearing*) dapat dilihat pada Tabel 8.2 berikut ini.

Zona Compa	Arab	Gaya Ger	Persentasi	
Zona Gempa	Aran	POT Bearing	LRB	reduksi (%)
Zona 1 (Samarinda)	RS-X	2538.355	1952.079	23.10
zona i (Samannua)	RS-Y	2302.158	1909.910	17.04
Zona 2 (Palembang)	RS-X	4616.403	3199.240	30.70
	RS-Y	3811.379	3149.967	17.35
Zona 2 (Medan)	RS-X	7806.819	5205.544	33.32
zona 5 (wedan)	RS-Y	5767.857	4710.621	18.33
Zona 4 (Padang)	RS-X	14478.180	8010.807	44.67
	RS-Y	13327.944	9119.902	31.57

Tabel 8.2 Gaya Gempa disetiap Zona Gempa

Prinsip dasar penggunaan LRB adalah mereduksi gaya gempa pada struktur dengan cara meningkatkan periode gempanya. Grafik perbandingan gaya gempa antara POT bearing dibanding dengan LRB dapat dilihat pada gambar 8.2 berikut ini.

Gambar 8.2 Grafik Perbandingan Gaya Gempa arah Melintang (RS-X)

Dari gambar 8.2 terjadi reduksi gempa arah melintang (RS-X) untuk setiap zona gempa. Semakin tingii zona gempa maka reduksi gempa akan semakin besar. Untuk Zona 1 (Samarinda) gaya gempa yang direduksi sebesar 23,10 %, zona 2 (Palembang) direduksi sebesar 30,70 %, zona 3 (Medan) direduksi sebesar 33,32%, dan zona 4 (Padang) direduksi sebesar 44,67 %. Dari persentasi diatas dapat diambil kesimpulan bahwa semakin tinggi zona gempa maka persentasi reduksi gempa yang terjadi akan semakin besar.

Gambar 8.3 Grafik Perbandingan Gaya Gempa Arah Memanjang (RS-Y)

Dari gambar 8.2 terjadi reduksi gempa arah memanjang (RS-Y) untuk setiap zona gempa. Semakin tingii zona gempa maka reduksi gempa akan semakin besar. Untuk Zona 1 (Samarinda) gaya gempa yang direduksi sebesar 17,04 %, zona 2 (Palembang) direduksi sebesar 17,35 %, zona 3 (Medan) direduksi sebesar 18,33%, dan zona 4 (Padang) direduksi sebesar 31.57 %. Dari persentasi diatas dapat diambil kesimpulan bahwa semakin tinggi zona gempa maka persentasi reduksi gempa yang terjadi akan semakin besar.

8.3. Perbandingan Gaya Akibat Beban Kombinasi

Perbandingan gaya akibat beban kombinasi terdiri dari kombinasi DL + 0.5 LL \pm RS-X \pm 0.3 RS-Y atau DL + 0.5LL \pm 0.3 RS-X \pm RS-Y. Hasil perbandingan gaya akibat beban kombinasi pada struktur jembatan tanpa menggunakan base isolator (POT bearing) dan dengan menggunakan base isolator (LRB) dapat dilihat pada tabel 8.3 berikut ini:

Zona Compa	Gava	Gaya Gempa (RS) (kN)		Persentasi
zona Gempa	Gaya	POT Bearing	LRB	reduksi (%)
Zona 1 (Samarinda)	FX	-4578.107	2029.226	55.68
zona i (Samannua)	FY	-3444.152	3270.288	5.05
Zona 2 (Palembang)	FX	-5706.284	3276.389	42.58
	FY	-4859.866	4519.602	7.00
Zona 2 (Modan)	FX	-9535.140	5282.694	44.60
zona s (medan)	FY	-7219.989	6066.216	15.98
Zona 4 (Padang)	FX	-21667.492	-10696.990	50.63
	FY	-14339.835	-11384.870	20.61

Tabel 8.3 Gaya Akibat Beban Kombinasi

Dari tabel 8.3 diatas terjadi reduksi gaya akibat beban kombinasi arah melintang (FX) untuk setiap zona gempa. Untuk Zona 1 (Samarinda) gaya gempa yang direduksi sebesar 55,68%, zona 2 (Palembang) direduksi sebesar 42,58%, zona 3 (Medan) direduksi sebesar 44,60%, dan zona 4 (Padang) direduksi sebesar 50,63%. Sementara untuk arah memanjang (FY) didapat untuk Zona 1 (Samarinda) gaya gempa yang direduksi sebesar 5,05%, zona 2 (Palembang) direduksi sebesar 7%, zona 3 (Medan) direduksi sebesar 15,98%, dan zona 4 (Padang) direduksi sebesar 20,61%.

8.4. Perbandingan Displacement Mutlak Perletakan Struktur

Perbandingan displacement yang terjadi pada struktur jembatan tanpa menggunakan base isolator (POT bearing) dan dengan menggunakan base isolator (*Lead Rubber Bearing*) yang ditinjau adalah pada bagian struktur bagian atas tepat diatas bearing. Displacement yang terjadi relatif antara struktur bangunan bawah (pier dan abutmen) dengan bearing (POT bearing dan LRB). Displacement yang ditinjau dapat dilihat pada gambar dibawah ini.

Gambar 8.4 Displacement Mutlak pada Lead Rubber Bearing

a. Node 15688

Zona Compa	Arab	Displacement (RS) (m)		∆mutlak (RS) (m)	Kenaikan
zona Gempa	Aran	POT Bearing	LRB	LRB	
Zona 1 (Samarinda)	DX	0.0232	0.2903	0.035004	11.54
zona i (Samarinua)	DY	0.000028	0.000064	0.00006	1.29
Zona 2 (Palembang)	DX	0.038543	0.47584	0.045281	11.35
	DY	0.000063	0.000104	0.000044	0.65
Zona 2 (Modan)	DX	0.057545	0.774248	0.054864	12.45
Zulia 5 (Meuali)	DY	0.000079	0.00017	0.00007	1.15
Zona 4 (Padang)	DX	0.099945	0.644408	0.047738	5.45
	DY	0.000148	0.000313	0.000305	1.11

Tabel 8.4 Displacement node 15688 ditiap zona

b. Node 15687

Tabel 8.5 Displacement node 15687 ditiap zona

Zona Compa	Arab	Displacement (RS) (m)		∆mutlak (RS) (m)	Kenaikan
20na Gempa	Aran	POT Bearing	LRB	LRB	
Zono 1 / Samarinda)	DX	0.0234	0.2903	0.034009	11.42
Zona I (Samarinda)	DY	0.0000	0.0001	0.000031	1.16
Zona 2 (Palembang)	DX	0.0380	0.4758	0.042015	11.51
	DY	0.0001	0.0001	0.000044	0.90
Zona 2 (Modan)	DX	0.0627	0.7742	0.054025	11.34
Zona s (Wedan)	DY	0.0001	0.0002	0.000004	0.82
Zono 4 (Dodong)	DX	0.0999	0.6444	0.042047	5.45
Zona 4 (Padang)	DY	0.0002	0.0003	0.000006	0.91

c. Node 11568

Tabel 8.6 Displacement node 11568 ditiap zona

Zona Compa	Arab	Displacement (RS) (m)		∆mutlak (RS) (m)	Kenaikan
2011a Gempa	Aran	POT Bearing	LRB	LRB	
Zona 1 (Samarinda)	DX	0.0203	0.2870	0.029009	13.14
zona i (samarinda)	DY	0.00003	0.00004	0.000021	0.17
Zona 2 (Palembang)	DX	0.0329	0.4704	0.040015	13.28
	DY	0.0001	0.0001	0.000034	0.09
Zona 2 (Modan)	DX	0.0543	0.7654	0.052025	13.11
Zona 5 (Wedan)	DY	0.0001	0.0002	0.000007	0.74
Zona 4 (Padang)	DX	0.0858	0.6305	0.038047	6.34
	DY	0.0002	0.0002	0.000005	0.04

d. Node 11567

		Displacement (DC) (m)		1 11 (DO) ()	12 11
Zona Gempa	Arab	Displacement (RS) (m)		Amutiak (RS) (m)	кепаткап
		POT Bearing	LRB	LRB	
Zona 1 (Samarinda)	DX	0.0203	0.2870	0.029009	13.14
Zona I (Samarinda)	DY	0.000037	0.000043	0.000021	0.16
Zona 2 (Palembang)	DX	0.0329	0.4704	0.040015	13.28
	DY	0.0001	0.0001	0.000034	0.23
Zona 2 (Modan)	DX	0.0543	0.7654	0.052025	13.10
Zona s (Medan)	DY	0.0001	0.0002	0.000007	0.59
Zona 4 (Padang)	DX	0.0859	0.6305	0.038047	6.34
	DY	0.0002	0.0003	0.000005	0.30

Tabel 8.7 Displacement node 11567 ditiap zona

e. Node 11570

Tabel 8.8 Displacement node 11570 ditiap zona

Zona Compa	Arab	Displacement (RS) (m)		∆mutlak (RS) (m)	Kenaikan
zona Gempa	Alali	POT Bearing	LRB	LRB	
Zona 1 (Samarinda)	DX	0.00022	0.28682	0.028709	99.92
Zona I (Samannua)	DY	0.000040	0.000044	0.000020	9.09
Zona 2 (Palembang)	DX	0.00041	0.47007	0.039015	99.91
	DY	0.00007	0.00009	0.000032	22.34
Zona 2 (Modan)	DX	0.00069	0.76486	0.051425	99.91
Zulia 5 (Weuali)	DY	0.00012	0.00017	0.00006	24.85
Zana (/ Dadana)	DX	0.00127	0.62910	0.035047	99.80
zona 4 (Padang)	DY	0.00023	0.00025	0.000004	7.72

f. Node 11569

Tabel 8.9 Displacement node 11569 ditiap zona

		-			
Zona Compa	Arab	Displacement (RS) (m)		Δmutlak (RS) (m)	Kenaikan
Zona Gempa	Aran	POT Bearing	LRB	LRB	
Zona 1 (Samarinda)	DX	0.00020	0.28682	0.028609	99.93
zona i (samarinda)	DY	0.000040	0.000041	0.000020	2.44
Zona 2 (Palembang)	DX	0.00036	0.47007	0.038015	99.92
	DY	0.00007	0.0008	0.000032	9.76
Zona 2 (Modan)	DX	0.00061	0.76486	0.053425	99.92
Zona s (Wedan)	DY	0.00013	0.00019	0.000006	31.89
Zona 4 (Padang)	DX	0.00114	0.62910	0.035147	99.82
	DY	0.00023	0.00028	0.000004	17.79

1 aber 6.10 Displacement noue 13090 uniap zona	Tabel 8.10 I	Displacement	node 15690	ditiap zona
--	--------------	--------------	------------	-------------

Zona Compa	Arab	Displaceme	nt (RS) (m)	Δmutlak (RS) (m)	Kenaikan
2011a Gempa	Aldii	POT Bearing	LRB	LRB	
Zona 1 (Samarinda)	DX	0.01463	0.29025	0.029609	94.96
zona I (Samarinda)	DY	0.00004	0.00007	0.000030	38.81
Zona 2 (Palembang)	DX	0.02399	0.47569	0.037715	94.96
	DY	0.0008	0.00011	0.000022	29.36
Zona 2 (Modan)	DX	0.03956	0.77400	0.058332	94.89
zona s (medan)	DY	0.00013	0.00018	0.000005	26.40
Zona 4 (Padang)	DX	0.06297	0.64370	0.036234	90.22
	DY	0.00025	0.00034	0.00003	24.78

h. Node 15689

	Tabel 8.10	Displacement node	15689	ditiap	zona
--	------------	-------------------	-------	--------	------

Zona Compa	Arab	Displaceme	nt (RS) (m)	∆mutlak (RS) (m)	Kenaikan
2011a Gempa	Aran	POT Bearing	LRB	LRB	
Zona 1 / Samarinda)	DX	0.01464	0.29025	0.029609	94.96
Zona I (Samarinda)	DY	0.00005	0.00007	0.000032	30.99
Zona 2 (Palembang)	DX	0.02400	0.47569	0.037814	94.96
	DY	0.00009	0.00012	0.000021	21.55
Zona 2 (Modan)	DX	0.03957	0.77400	0.058346	94.89
Zona s (Wedan)	DY	0.00015	0.00019	0.000004	18.52
Zona 4 (Padang)	DX	0.06299	0.64370	0.036356	90.22
	DY	0.00030	0.00036	0.00003	17.09

Prinsip dasar penggunaan LRB adalah mereduksi gaya gempa pada struktur dengan cara meningkatkan periode gempanya. Peningkatan periode pada struktur memberikan dampak peningkatan displacement pada struktur. Grafik perbandingan gaya gempa antara POT bearing dibanding dengan LRB dapat dilihat pada Gambar 8.5 berikut ini.

Gambar 8.6 Displacement Gempa arah X Node Perletakan pada tiap Zona Gempa

Gambar 8.7 Displacement Gempa arah Y Node Perletakan pada tiap Zona Gempa

Dari Gambar 8.5 dan Gambar 8.6 terjadi peningkatan displacement arah memanjang (RS-X) dan arah melintang (RS-Y) untuk setiap zona gempa. Peningkatan displacement seiring dengan peningkatan periode pada tiap zona gempa.

Peningkatan displacement pada struktur jembatan tentunya akan mempengaruhi deformasi pada stuktur jembatan. Untuk itu diperlukan expantion joint untuk mengurangi dampak dari deformasi tersebut.

Untuk deformasi yang sangat besar dapat digunakan '*Mageba Modular Expansion Joint for Large Movements*' penampanga expansion joint dapar dilihat pada Gambar 8.7 berikut ini:

Gambar 8.8 Penampang Mageba Modular Expansion Joint

Mageba Expansion Joint for Large Movement' dapat mengalami deformasi dari 160 sampai 1200 mm tergantung dari ukuran dan tipe yang digunakan sesuai dengan kebutuhan. Pada Tabel 8.5 terjadi kenaikan deformasi sebesar 760 mm. Expansion joint dapat digunakan dengan menggunakan tipe **LR10** dengan jumlah gaps sebanyak 10 dan dapat berdeformasi sampai 800 mm.

8.5. Perbandingan Gaya Dalam Rangka Batang

Perbandingan gaya dalam yang terjadi pada rangka batang struktur jembatan tanpa menggunakan base isolator (POT bearing) dan dengan menggunakan base isolator (*Lead Rubber Bearing*) dapat dilihat pada tabel dibawah ini.

a. Batang BA16 (B 800 x 750 x 25 x 40)

Gambar 8.9 Batang BA16

Tabel 8.11	Perbandingan	Gaya Aksial	Batang BA16
	U	2	U

	Gaya Aksial (kN)						
Zona Gempa	Akibat Beban Gempa			Akiba	Akibat Beban Kombinasi		
	POT Bearing	LRB	% Reduksi	POT Bearing	LRB	% Reduksi	
Zona 1 (Samarinda)	846.31	480.55	43.22	-16450.5	-16304.1	0.89	
Zona 2 (Palembang)	1475.72	790.06	46.46	-17010.2	-16613.14	2.33	
Zona 3 (Medan)	2415.95	1180.24	51.15	-17859.26	-17002.55	4.80	
Zona 4 (Padang)	4310.04	1797.73	58.29	-19405.25	-17608.43	9.26	

Gambar 8.10 Gaya Aksial Akibat Beban Kombinasi BA16

b. Batang TG26 (WF 750 x 800 x 20 x 25)

Gambar 8.11 Batang TG26

	Gaya Aksial (kN)						
Zona Gempa	Akibat Beban Gempa			Akiba	at Beban Kombinasi		
	POT Bearing	LRB	% Reduksi	POT Bearing	LRB	% Reduksi	
Zona 1 (Samarinda)	87.96	43.44	50.61	1741.26	1732.49	0.50	
Zona 2 (Palembang)	153.49	71.81	53.22	1801.05	1760.79	2.24	
Zona 3 (Medan)	252.33	107.51	57.39	1892.48	1796.38	5.08	
Zona 4 (Padang)	446.2	167.9	62.37	2057.44	1853.49	9.91	

Gambar 8.12 Gaya Aksial Akibat Beban Kombinasi TG26

c. Batang BB26 (B 550 x 750 x 10 x 10)

Gambar 8.13 Batang BB26

Tabel 8.13	Perbandingan	Gaya Aksial	Batang BB26
------------	--------------	-------------	-------------

	Gaya Aksial (kN)						
Zona Gempa	Akibat Beban Gempa			Akibat	Akibat Beban Kombinasi		
	POT Bearing	LRB	% Reduksi	POT Bearing	LRB	% Reduksi	
Zona 1 (Samarinda)	7949.65	6366.97	19.91	3377.4	2771.25	17.95	
Zona 2 (Palembang)	943.6	675.94	28.37	4418.35	3557.59	19.48	
Zona 3 (Medan)	1550.87	1015.11	34.55	4945.45	3875.29	21.64	
Zona 4 (Padang)	2936.56	1558.26	46.94	6027.8	4493.12	25.46	

Gambar 8.14 Gaya Aksial Akibat Beban Kombinasi BB26

d. Batang TG11 (B 750 x 650 x 15 x 20)

Tabel 8.14 Perbandingan Gaya Aksial Batang TG11

			Gaya Aks	ial (kN)			
Zona Gempa	Akibat Beban Gempa			Akibat	at Beban Kombinasi		
	POT Bearing	LRB	% Reduksi	POT Bearing	LRB	% Reduksi	
Zona 1 (Samarinda)	886.92	512.73	42.19	-12875.41	-12549.01	2.54	
Zona 2 (Palembang)	1464.84	851.05	41.90	-13285.94	-12774.78	3.85	
Zona 3 (Medan)	2287.88	1320.82	42.27	-13846.25	-13077.43	5.55	
Zona 4 (Padang)	4736.6	3270.63	30.95	-15764.96	-14754.03	6.41	

Gambar 8.16 Gaya Aksial Akibat Beban Kombinasi TG11

	Gaya Aksial (kN)									
Zona Gempa	Akib	at Beban Gemp	9	Akibat Beban Kombinasi						
	POT Bearing	LRB	% Reduksi	POT Bearing	LRB	% Reduksi				
Zona 1 (Samarinda)	460.59	241.8	47.50	9040.32	8122.24	10.16				
Zona 2 (Palembang)	874.08	839.03	4.01	9470.39	8448	10.80				
Zona 3 (Medan)	1472.04	1279.17	13.10	10019.93	8801.15	12.16				
Zona 4 (Padang)	2752.3	1498.49	45.55	11110.34	8811.53	20.69				

Gambar 8.18 Gaya Aksial Akibat Beban Kombinasi BA2

f. Batang TI4

Gambar 8.19 Batang TI4 Tabel 8.16 Perbandingan Gaya Aksial Batang TI4

	Gaya Aksial (kN)									
Zona Gempa	Akib	at Beban Gempa	э	Akibat Beban Kombinasi						
	POT Bearing	LRB	% Reduksi	POT Bearing	LRB	% Reduksi				
Zona 1 (Samarinda)	139.99	80.71	42.35	1870.05	1852.93	0.92				
Zona 2 (Palembang)	228.92	132.61	42.07	1942.55	1919	1.21				
Zona 3 (Medan)	360.79	199.29	44.76	2026.76	1982.12	2.20				
Zona 4 (Padang)	710.23	220.48	68.96	2302.52	1977.05	14.14				

Tabel 8.17 Perbandingan Gaya Aksial Batang DG26

	Gaya Aksial (kN)									
Zona Gempa	Akib	at Beban Gempa	э	Akibat Beban Kombinasi						
	POT Bearing	LRB	% Reduksi	POT Bearing	LRB	% Reduksi				
Zona 1 (Samarinda)	-2941.14	-2738.98	6.87	-1237.41	-1129.33	8.73				
Zona 2 (Palembang)	468.29	153.09	67.31	-1610.68	-1494.19	7.23				
Zona 3 (Medan)	773.84	236.66	69.42	-1898.20	-1551.15	18.28				
Zona 4 (Padang)	1291.11	382.34	70.39	-2370.09	-1700.30	28.26				

Batang DG12 h.

Gambar 8.23 Batang DG12

	Gaya Aksial (kN)										
Zona Gempa	Akib	at Beban Gempa	э	Akibat Beban Kombinasi							
	POT Bearing	LRB	% Reduksi	POT Bearing	LRB	% Reduksi					
Zona 1 (Samarinda)	2462.95	488.66	80.16	12345.72	12202.66	1.16					
Zona 2 (Palembang)	1475.34	813.12	44.89	12933.20	12424.36	3.93					
Zona 3 (Medan)	2298.59	1274.96	44.53	13547.34	12663.55	6.52					
Zona 4 (Padang)	4793.62	3205.42	33.13	15682.07	14460.80	7.79					

Gambar 8.24 Gaya Aksial Akibat Beban Kombinasi DG12

Dari beberapa batang yang ditinjau yakni 4 elemen dibagian perletakan dan 4 elemen dibagian busur tengah bentang dapat disimpulkan bahwa terjadi reduksi gaya dalam pada rangka batang apabila menggunakan LRB dibandingkan dengan menggunakan POT bearing.

BAB IX PENUTUP

9.1. Kesimpulan

Dari berbagai macam analisa dan kontrol yang telah dilakukan, kesimpulan yang dapat diambil dari studi penggunaan *Lead Rubber Bearing* ini adalah:

- Preliminary desain struktur jembatan menggunakan desain aktual jembatan kutai kartanegara. Jembatan Kutai Kartanegara merupakan jembatan busur rangka batang dengan menggunakan profil WF dan Box pada stuktur utama jembatannya.
- Didalam perencanaan ini menggunakan 14 kombinasi beban hidup UDL dan KEL dan 2 kombinasi beban gempa. Dengan total kombinasi sebanyak 70 kombinasi.
- 3) Permodelan struktur dalam MIDAS CIVIL dimodelkan secara 3 dimensi meliputi gelagar memanjang, gelagar melintang, gelagar utama (rangka), ikatan angin,kabel pylon,Abutmen sisi Tenggarong dan sisi Samarinda, Pilar sisi Tenggarong dan sisi Samarinda beserta tiang pancangnya. Pemodelan disertai pembebanan yang telah disebutkan pada butir sebelumnya.
- 4) Pemodelan perletakan aktual pada jembatan Kutai Kartanegara menggunakan perletakan POT bearing. Pemodelan POT bearing disesuaikan dengan gaya aksial yang dapat diterima oleh bearing yang kemudian dicari kekakuan horizontal dan verticalnya untuk dimodelkan pada program bantu MIDAS CIVIL
- 5) Pemodelan *Lead Rubber Bearing* tergantung pada gaya aksial dari beban mati, beban mati tambahan, dan beban hidup, serta beban gempa yang terjadi.LRB memperhitungkan besar kekakuan horizontal, kekakuan vertikal, dan yield strength pada LRB untuk dimodelkan pada program bantu MIDAS CIVIL.

- 6) Periode Stuktur dengan menggunakan LRB lebih besar dibandingkan dengan menggunakan POT bearing.
- 7) Prinsip dasar penggunaan LRB adalah mereduksi gaya gempa pada struktur dengan cara meningkatkan periode gempanya. Dari hasil analisa didapatkan bahwa semakin tinggi zona gempa yang terjadi makan semakin tinggi pula persentasi reduksi gaya gempanya.
- Peningkatan Displacement yang terjadi dengan menggunakan LRB terjadi seiring dengan peningkatan periode pada tiap zona gempa.

9.2. Saran

Di dalam laporan Tugas Akhir ini masih tentunya masih terdapat kesalahan-kesalahan. Di bawah ini adalah beberapa saran untuk memperbaiki perencanaan cable stayed double deck sehingga dapat didapatkan hasil yang lebih baik.

- Dalam laporan Tugas Akhir ini dipergunakan beban UDL dan KEL dengan menggunakan *influence line* pada MIDAS untuk mengetahui garis pengaruh maksimun pada tiap elemen batang. Namun perhitungan *influence line* pada perhitungan hanya meninjau pada batang yang terletak disekitar perletakan dan tengah busur. Oleh karena itu perlu ditinjau disemua aspek batang untuk mengetahui besar gaya maksimum pada rangka batang jembatan.
- Profil rangka batang jembatan yang dikontrol pada analisa ini pada tengah bentang dan rangka batang disekitar perletakan jembatan.Untuk itu perlu dikontrol disemua profil jembatan agar profil yang digunakan sesuai.
- Reduksi gaya gempa yang terjadi pada stuktur jembatan mengakibatkan terjadinya reduksi gaya dalam pada jembatan. Oleh karena itu perlu dikontrol kembali profil

struktur jembatan setelah menggukan desain LRB untuk mendapatkan profil yang yang sesuai.

4) Terjadinya periode yang besar dengan menggunakan LRB mengakibatkan displacement yang besar pada struktur atas jembatan. Oleh karena itu diperlukan expantion joint pada lantai kendaraan jembatan untuk mengurangi dampak deformasi yang besar pada struktur jembatan. (halaman ini sengaja dikosongkan)

LAMPIRAN 2 (Daftar Dimensi LRB dan POT Bearing)

Gambar 1. Potongan Melintang Lead Rubber Bearing

LRB	Max vert. load (kN)	Max slow displacem, (mm)	Max EQ displacem. (mm)	Total displacem. (mm)	Core lead diam . D! (mm)	Rubber diam . Dr (mm)	Horizontal stiffness K2 (kN/mm)	Horizontal stiffness Keff (kN/mm)	Area of hysteresis loop EDC (kNm)	Side of external plates B (mm)	Overall height of bearing H (mm)
LRB 300	700	40	72	112	30	300	0,490	0,774	6,1	350	197
LR8 400	1700	52	94	148	40	400	0,670	1,059	14,1	450	230
LRB 500	2900	64	115	179	50	500	0,850	1,230	27.1	550	283
LRB 600	4000	78	140	218	60	600	1,005	1,589	47,6	650	294
LRB 700	5700	90	162	252	70	700	1.185	1.710	74.8	760	348
LRB 800	7500	102	184	286	80	800	1.366	2,160	110,7	850	394
LRB 900	9500	102	184	286	90	900	1,729	2,733	140,1	960	394
LRB 1000	11000	105	189	294	100	1000	2,073	3,278	178,1	1050	428
LRB 1100	14000	105	189	294	110	1100	2,509	3,966	215.5	1150	428
LRB 1200	16000	105	189	294	120	1200	2,986	4,720	256,4	1250	428

Tabel 1. Dimensi Lead Rubber Bearing

LAMPIRAN 3 (Daftar Dimensi Expansion Joint)

Gambar 2. Penampang Mageba Modular Expansion Joint

Tabel 2. Dimens	i Mageba Modular	Expansion Joint
-----------------	------------------	-----------------

Туре		Type LR (without sinusoidal plates)				Type LR-LS (with sinusoidal plates)				
	Number of gaps	Max. longitudinal movement		Max. transverse movement		Max. longitudinal movement		Max. transverse movement*		
		[in]	[mm]	[in]	[mm]	[in]	[mm]	{in}	[mm]	
LR 2	2	6.3	160	±3.1	± 80	7.9	200	+0	±0	
LR 3	3	9.4	240	±4.7	± 120	11.8	300	±0	±0	
LR 4	4	12.6	320	±6,3	±160	15.7	400	±0	±0	
LR 5	5	15.7	400	±7.9	±200	19.7	500	± 0.2	±4	
LR 6	6	18.9	480	±9.4	±240	23.6	600	± 0.4	±9	
LR7	7	22.0	560	± 11.0	±280	27.6	700	±0.5	±13	
LR 8	8	25.2	640	£ 12.6	± 320	31.5	800	1.0.7	±17	
LR 9	9	28.3	720	± 14.2	± 360	35.4	900	±0.9	± 22	
LR 10	10	31.5	800	\$ 15.7	±.400	39.4	1,000	± 1.0	1 26	
LR 11	11	34.6	880	±17.3	± 440	43.3	1,100	± 1.2	± 30	
LR 12	12	37.8	960	± 18.9	± 480	47,2	1,200	(13	1.34	
LR 13	13	40,9	1,040	1 20.5	± 520	51.2	1,300	±1.5	± 39	
LR 14	14	44.1	1,120	± 22.0	± 560	\$5,1	1,400	11.7	143	
LR 15	15	47.2	1,200	+23.6	+ 600	59.1	1,500	+1.9	+ 47	

DAFTAR PUSTAKA

- Hepola, Iada dan Ronja Marwedel .2012. Arch Bridges Handbook, Espoo : Aalto University
- Hidayat, Irpan, 2011. Analisa Konstruksi Jembatan Cable Stayed Menguunakan Metode Kantilever (Studi Kasus Jembatan Suramadu), Depok : Tesis UI.
- Tristanto, Lanneke dan Redrik Irawan, 2010. **Kajian Dasar Perecanaan dan Pelaksanaan Jembatan Pelengkung Beton,** Bandung : Pusat Litbang Jalan dan Jembatan.
- Yarnold, Matthew T., E.L. Moon, n.c. Dubbs dan A.E Aktan, 2012. Evaluation of a Long-span Steel Arch Bridge Using Temperature-based Structural Indentification, London : Bridge Maintenance, Safety Management, Resilience and Sustainability, 481.
- Yarnold, Matthew T., 2014. Identicitaion of Bridge Movement Mechanisms, Engineering, 6, 584-591. http://dx.doi.org/10.4236/eng.2014.69059

(halaman ini sengaja dikosongkan)

BIODATA PENULIS

Penulis dilahirkan di Medan pada tanggal 24 Desember 1993. merupakan anak ketujuh dari tujuh bersaudara dengan nama lengkap Indrayon Manalu. Penulis telah menempuh pendidikan formal pada SD Bonapasogit Sejahtera (2001-2007),SMP Bonapasogit Sejahtera (2007-2009),SMA Negeri 8 Medan (2009-2011) dan terdaftar sebagai mahasiswa Teknik Sipil pada tahun

2011 dengan NRP 3111100089 melalui jalur SMPTN Tulis.

Selama kuliah, penulis aktif di ormawa MBP ITS dan juga HMS ITS. Di jurusan teknik sipil, penulis mendalami bidang studi struktur. Pada semester 8, penulis memutuskan untuk mengambil tugas akhir mengenai jembatan bentang panjang karena dirasa menarik untuk di pelajari.

email: santymanalu81@gmail.com

no Telp : 081396740030