

# TUGAS AKHIR - TM 090340 ANALISA REAKSI GAYA SCREW CONVEYOR PADA RANCANG BANGUN MESIN PENGGILING BERAS SKALA RUMAH TANGGA

FARID AHMAD ZAKARIYA 2110030016

Dosen Pembimbing Ir.Budi Luwar S,.MT

JURUSAN D3 TEKNIK MESIN Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2014



FINAL PROJECT - TM 090340 CALCULATION REACTION OF FORCE BY CONVEYOR SCREW TO DESIGN AND BUILT OF RICE MILLING MACHINE BY HOUSEHOLD SCALE

FARID AHMAD ZAKARIYA 2110030016

ADVISOR Ir.Budi Luwar S,.MT

DIPLOMA III STUDY PROGRAM
MECHANICAL ENGINEERING
Industrial Technology Faculty
Institute of Technology Sepuluh Nopember
Surabaya
2014

# ANALISA REAKSI GAYA SCREW CONVEYOR PADA RANCANG BANGUN MESIN PENGGILING BERAS SKALA RUMAH TANGGA

#### **TUGAS AKHIR**

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Ahli Madya Teknik Mesin pada

Bidang Studi Teknik Produksi Program Studi Diploma III Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember SURABAYA

Oleh:

# FARID AHMAD ZAKARIYA

Nrp. 2110 030 016

Mengetahui / Menyetujui:

<u>Ir. Budi Luwar S., MT</u> NIP. 196211141990031002

> SURABAYA 2014

# ANALISA REAKSI GAYA SCREW CONVEYOR PADA RANCANG BANGUN MESIN PENGGILING BERAS SKALA RUMAH TANGGA

Nama Mahasiswa : Farid Ahmad Zakariya

NRP : 2110 030 016

Jurusan : D3 Teknik Mesin FTI - ITS Dosen Pembimbing : Ir. Budi Luwar S., MT

#### Abstrak

Beras merupakan makanan pokok yang mengandung karbohidrat dan nutrisi yang baik. Penggilingan beras yang baik akan membuat kandungan nutrisi yang ada di dalam beras tidak hilang. Apabila beras digiling lebih dari satu kali akan membuat beras menjadi putih, maka kandungan nutrisi yang ada di dalam beras akan hilang. Oleh karena itu direncanakan dan diwujudkan mesin pengupas kulit ari beras yang dapat diatur hambatan derajat pengelupasan kulit ari beras.

Mesin pengupas kulit ari beras yang direncanakan adalah untuk penggunaan di dalam rumah tangga, jadi mesin ini termasuk skala kecil. Rancangan dimulai dari konsep awal dilanjutkan ke desain screw conveyor dan desain mesin pengupas kulit ari beras. Kemudian menganalisa gaya yang terjadi di dalam screw conveyor dari mesin pengupas kulit ari beras yang telah di buat

Reaksi gaya yang terjadi pada screw conveyor gaya tangensial sebesar 1,256 N, gaya normal sebesar 146,731 N, gaya dorong sebesar 81,926 N, dan gaya aksial pada poros sebesar 96,131 N.

Kata kunci : Beras, Mesin pengupas kulit ari beras, Gaya screw conveyor

# CALCULATION REACTION OF FORCE BY CONVEYOR SCREW TO DESIGN AND BUILT OF RICE MILLING MACHINE BY HOUSEHOLD SCALE

Student Name : Farid Ahmad zakariya

NRP : 2110 030 016

Department : D3 Mechanical Engineering FTI-ITS

Counselor Lecturer: Ir. Budi luwar S,. MT

#### Abstract

Rice is the staple food containing carbohydrates and good nutrition. Good rice mill will make nutrient content in the rice is not lost. When the rice is milled more than once will make white rice, the nutrient content in the rice will be lost. Therefore, it was planned and realized Parer rice husk can be set barriers degrees exfoliating rice husk.

Parer rice husk is planned for use in the household, so these machines including small scale. The draft starts from initial concept design continues to screw conveyor and machine design paring rice husk. Then analyzes the force that occurs in the screw conveyor of rice husk pulping machines that have been made

Reaction force that occurs in screw conveyor tangential force of 1,256 N, the normal force of 146.731 N, the thrust of 81.926 N, and the axial force on the shaft of 96.131 N.

**Keyword : Rice milling machine, Effective, conveyor screw** force

#### KATA PENGANTAR

Puji Syukur saya panjatkan kepada Allah SWT, yang telah member kita kesehatan. Shalawat sertas alam saya haturkan kepada junjungan kita nabi Muhammad SAW. Syukur sebagai bukti atas nikmat yang diberikan — Nya sehingga dalam penyusunan buku ini diberi, kemudahan, serta kelancaran dalam menyelesaikan Tugas Akhir yang berjudul:

# "ANALISA REAKSI GAYA SCREW CONVEYOR PADA RANCANG BANGUN MESIN PENGGILING BERAS"

Pembuatan Tugas akhir ini bukan semata mata karena kemampuan sipenulis tetapi karena adanya campur tangan dari semua pihak yang bersedia meluangkan waktunnya untuk sekedar membantu penyusunan tugas akhir ini ,Oleh karena itu dalam kesempatan kali ini saya mengucapkan banyak- banyak terimakasih kepada :

- 1. Bapak Ir.Budi Luwar S.,MT selaku dosen pembimbing yang telah membantu memberikan bimbingan serta berbagi ilmu pengetahuan dalam proses penyelesaian laporan tugas akhir ini.
- 2. Bapak Ir.Nur Husodo,MT selaku dosen yang memberikan dukungan penuh dan waktunnya dalam proses penyelesaian laporan tugas akhir ini.
- Orang tua saya yang selalu memberikan dukungan sepenuhnya baik berupa material maupun doa yang tulus kepada saya selama ini
- 4. Seluruh bapak ibu dosen yang telah memberikan ilmu pengetahuannya kepada seluruh mahasiswa di jurusan D3 Teknik Mesin FTI ITS.
- 5. Keluarga besarsaya "Manukan Sari"

- 6. Lenny ayu yang telah menemani dan memberikan motivasi dan semangat dalam penyelesaian Tugas Akhir.
- 7. Teman teman MN dan KE yang juga telah mensuport dalam pengerjaan laporan ini.
- 8. Rekan rekan seperjuangan HMDM angkatan 2010.
- 9. Semua pihak yang tak bias saya sebut namanya yang telah membantu saya selama proses dalam menjalani perkuliahan di D3 Teknik Mesin FTI ITS

LaporanTugasAkhir yang telah tersus un ini tentunya masih memiliki banyak kekurangan baik menyangkut isi maupun tata bahasa yang terdapat di dalamnya. Diharapkan kritik dan saran yang membangun dapat menyempurnakan hasil dari penyusunan Laporan Tugas Akhir yang telah dibuat ini.

Akhir kata, semoga penyusunan Laporan Tugas akhir ini dapat memberikan manfaat bagi pembaca sertam emberikan kontribusi yang bermanfaat bagi kita semua.

Surabaya, 2014

Penulis

# **DAFTAR ISI**

| COVER                               |     |
|-------------------------------------|-----|
| LEMBAR PENGESAHAN                   | ii  |
| ABSTRAK                             | iii |
| ABSTRACT                            | iv  |
| KATA PENGANTAR                      | v   |
| DAFTAR ISI                          | vii |
| DAFTAR GAMBAR                       | xi  |
| DAFTAR TABEL                        | xii |
|                                     |     |
| BAB I PENDAHULUAN                   | 1   |
| 1.1 LatarBelakang                   | 1   |
| 1.2 RumusanMasalah                  | 3   |
| 1.3 TujuanPenelitian                | 3   |
| 1.4 BatasanMasalah                  | 3   |
| 1.5 SistematikaPenulisan            | 4   |
| BAB II DASAR TEORI                  | 7   |
| 2.1 Beras                           | 7   |
| 2.1.1 Definisiberas                 | 7   |
| 2.1.2 Anatomiberas                  | 8   |
| 2.1.3 Kandungandalamberas           |     |
| 2.1.4 Aspekpangan                   | 9   |
| 2.1.5 Proses padimenjadiberas       | 10  |
| 2.1.6 Pengolahanpascapanen          | 13  |
| 2.1.7 Perubahansifatberaspascapanen | 15  |
| 2.1.8 Seigrahheras                  | 17  |

| 2.1.9 Nutrisiberas                                     | 17 |
|--------------------------------------------------------|----|
| 2.2 Mekanismealat                                      | 19 |
| 2.2.1 Mekanismealat zaman dulu                         | 19 |
| 2.2.2 Mekanismealatsaatini                             | 20 |
| 2.3 Perhitunganreaksigaya screw conveyor               |    |
| danumurbearing                                         | 20 |
| 2.3.1 Screw conveyor                                   | 21 |
| 2.3.2 Jenisdanbagian-bagian screw conveyor             | 21 |
| 2.3.3 Perbedaan vertical dan horizontal screw conveyor | 23 |
| 2.3.4 Perhitungankapasitas screw conveyor              | 24 |
| 2.3.5 Perhitungandaya screw conveyor                   | 25 |
| 2.3.6 Perhitungan torsi screw conveyor                 | 26 |
| 2.3.7 Perhitungankecepatanlaju material                | 26 |
| 2.3.8 Perhitungangayaaksial screw conveyor             | 27 |
| 2.4 PerncanaanPoros                                    | 27 |
| 2.4.1 Poros di anggapmenerimateganganpuntir            | 28 |
| 2.4.2 Poros di anggapmenerimategangan punter dan       |    |
| bending                                                | 30 |
| 2.5 Perencanaan bearing                                | 32 |
| 2.5.1 Perencanaanbantalan                              | 33 |
| 2.5.2 Klasifikasi bearing                              | 34 |
| 2.5.3Macam-macam rolling bearing                       | 35 |
| 2.5.4 Menghitunggesekandanumur bearing                 | 36 |
| 2.6 Motorlistrik                                       | 38 |
| 2.6.1 Jenis-jenis motor listrik                        | 39 |
| 2.7 Motormesincuci                                     | 39 |
| BAB III METODOLOGI                                     | 41 |
| 3.1 Diagramalirpengujianalat                           | 41 |

| 3.2 | Data-data hasil survey                      | 42 |
|-----|---------------------------------------------|----|
| 3.3 | Carakerjamesin yang direncanakan            | 46 |
| 3.4 | Peralatan yang digunakan                    | 46 |
| 3.5 | Carapengujianmesinpenggilingberas           | 47 |
| BA  | B IV PERHITUNGAN DAN PEMBAHASAN             | 49 |
| 4.1 | Analisa Data screw conveyor                 | 49 |
| 4.2 | Mencarikapasitasdanlaju material            | 50 |
|     | Mencari torsi dangayatangensial screw       |    |
| 4.4 | Gaya yang bekerjapada screw conveyor        | 55 |
| 4.5 | Analisaporos                                | 59 |
|     | 4.5.1Penentuan diameter minimal poros       | 60 |
| 4.5 | .2Perhitungantegangangesermaksimumpadaporos | 61 |
|     | 4.5.3Analisa free boy diagram padaporos     | 63 |
| 4.6 | Bearing                                     | 72 |
|     | 4.6.1 Menentukanumur bearing                | 72 |
|     | 4.6.2 Menghitungbebanekivalen               | 73 |
| 4.7 | Dinamomesincuci                             | 78 |
| BA  | B V MANUFAKTUR                              | 83 |
| 5.1 | Manufaktur screw conveyor                   | 83 |
|     | 5.1.1 Pembuatanporos screw coveyor          | 83 |
| 5.2 | Bushing                                     | 85 |
| 5.3 | Saringan screw conveyor                     | 86 |
| 5.4 | Hopper dalam                                | 88 |
| 5.5 | Frame                                       | 89 |
| 5.6 | Body depan                                  | 92 |
| 5.7 | Kontrolkatub                                | 94 |
| 5.8 | Dudukan setting katub                       | 95 |
| 5.9 | Outlet                                      | 96 |

| LAMPIRAN                   |    |
|----------------------------|----|
| DAFTAR PUSTAKA             |    |
| BAB V SARAN DAN KESIMPULAN |    |
| 5.11 Wadahbekatul          | 99 |
| 5.10 Body                  | 97 |

# **DAFTAR TABEL**

| Tabel  | 2.1Kandungannutrisiberas                      | 18 |
|--------|-----------------------------------------------|----|
| Tabel  | 2.2 Sudut (β)                                 | 25 |
| Tabel  | 2.3 Faktor koreksiuntukmomen punter dan beban |    |
| lentur |                                               | 32 |
| Tabel  | 2.4 Ball bearing service factor               | 38 |
| Tabel  | 4.1 Data percobaan                            | 54 |
| Tabel  | 4.2 Syp stainless stell                       | 61 |
| Tabel  | 4.3 Nilai e pada bearing A                    | 75 |
| Tabel  | 4.4 Nilai e pada bearing B                    | 77 |
| Tabel  | 5.1 Tingkat putaran spindle (rpm)             | 84 |

# **DAFTAR GAMBAR**

| Gambar | 2.1 Anatomiberas                                 | 8  |  |
|--------|--------------------------------------------------|----|--|
| Gambar | 2.2 Proses padimenjadiberas                      |    |  |
| Gambar | 2.3 Alatperontokgabah manual                     |    |  |
| Gambar | r 2.4 Mesinpenggilinggabah                       |    |  |
| Gambar | r 2.5 Pengeringgabahsecara manual                |    |  |
| Gambar | r 2.6 Mesinpengeringgabah                        |    |  |
|        | r 2.7 Beraspecahkulit                            |    |  |
| Gambar | 2.8 Berasputih                                   |    |  |
| Gambar | 2.9 Proses penumbukanberas                       | 19 |  |
| Gambar | 2.10 Mesinpenggilinganberas                      | 20 |  |
| Gambar | 2.11 Screw                                       | 21 |  |
| Gambar | 2.12 Continous screw                             | 22 |  |
| Gambar | 2.13 Ribbon screw                                | 22 |  |
| Gambar | mbar 2.14 Paddle flight                          |    |  |
| Gambar | 2.15 Bagian-bagian screw conveyor                | 23 |  |
| Gambar | 2.16 Poros                                       | 27 |  |
| Gambar | 2.17 Komponen bearing                            | 28 |  |
|        | 2.18 Kontruksiporosdengan bearing                | 29 |  |
| Gambar | 2.19 Journal bearing                             | 30 |  |
| Gambar | 2.20 Rolling bearing                             | 30 |  |
| Gambar | 2.21 Dinamomesincuci                             | 36 |  |
| Gambar | 3.1 Proses penggilinganberas                     | 43 |  |
| Gambar | 3.2 Desainalat                                   | 44 |  |
| Gambar | 3.3 Desaindalamalatpenggilingberas               | 45 |  |
|        | 4.1 Screw conveyor                               | 49 |  |
| Gambar | r 4.2 Ilustrasi proses mesin 5                   |    |  |
| Gambar | · 4.3 Skemagayatangensial screw 5                |    |  |
| Gambar | r 4.4 Skemagaya yangterjadipada screw conveyor 5 |    |  |
| Gambar | r 4.5 Dimensiporos yang digunakan 5              |    |  |
| Gambar | 4.6 Lustrasi free body diagram padaporos         | 64 |  |

| Gambar | 4.7 Penempatan bearing padamesin     | 73  |
|--------|--------------------------------------|-----|
| Gambar | 4.8 Hasilpercobaanalat               | 79  |
| Gambar | 4.9 Tampakdepanmesinpenggilingberas  | 80  |
| Gambar | 4.10 Tampakdalammesinpenggilingberas | 81  |
| Gambar | 5.1 Pembuatanporos yang di inginkan  | 84  |
| Gambar | 5.2 Bushing                          | 88  |
| Gambar | 5.3 Dimensi bushing                  | 89  |
| Gambar | 5.4 Dimensisaringan                  | 90  |
| Gambar | 5.5 Saringan screw conveyor          | 91  |
| Gambar | 5.6 Hopper dalam                     | 92  |
| Gambar | 5.7 Frame                            | 93  |
| Gambar | 5.8 Dimensi frame motor              | 94  |
| Gambar | 5.9 Dimensi frame tengah bushing     | 94  |
| Gambar | 5.10 Frame bawah                     | 95  |
| Gambar | 5.11 Body depan                      | 96  |
| Gambar | 5.12 Set katub                       | 97  |
| Gambar | 5.13 Kontrolkatub                    | 98  |
| Gambar | 5.14 Dudukan setting katub           | 99  |
| Gambar | 5.15 Outlet                          | 99  |
| Gambar | 5.16 Body atasdepan hopper           | 100 |
| Gambar | 5.17 Body samping                    | 101 |
| Gambar | 5.18 Dimensi body samping            | 101 |
| Gambar | 5 19 Wadahhekatul                    | 102 |

#### BAB I

#### **PENDAHULUAN**

#### 1.1 Latar Belakang

Beras adalah makanan pokok bangsa Asia bagian Tenggara salah satu yang terbesar adalah Indonesia. Konsumsi beras di setiap tahunya selalu mengalami peningkatan seiring dengan pertumbuhan penduduk di Indonesia. Berbagai upaya telah dilakukan pemerintah untuk menekan konsumsi beras, baik dengan cara memperluas lahan pertanian maupun dengan mengimpor beras dari luar. Namun saat ini sangat banyak jenis-jenis beras yang mengandung klorin atau zat kimia pemutih. Banyak sekali penelitian – penelitian yang dilakukan untuk membuktikan hal adanya beras yang tersebut. Dengan mengandung dipasaran,pemerintah berupaya untuk mengantisipasi dengan adanya sosialisasi pentingnya mengetahui kandungan – kandungan dari beras itu sendiri. Saat ini beras yang memiliki mutu yang paling baik adalah beras organik, namun selain harganya yang cukup mahal beras organik ini membutuhkan waktu yang cukup lama untuk sekali panen. Sekarang di pasaran sudah ada beras pecah kulit, beras pecah kulit ini adalah beras yang belum dikupas atau dipisahkan kulit arinya. Mungkin ini adalah salah satu alternatif untuk memilih beras yang baik selain beras organik.

Menurut penelitian yang dilakukan oleh (Tjiptaningdyah, 2013) Dosen fakultas pertanian Universitas dr soetomo Surabaya, menyatakan bahwa masih banyak beras yang beredar di pasaran mengandung klorin atau zat pemutih. Ciri – ciri beras yang mengandung klorin adalah warna beras putih mengkilap dan beras jika di pegang akan terasa licin. Saat ini di Indonesia mutu beras yang beredar di masyarakat telah ditentukan dalam 5 golongan mutu

(Spesifikasi Mutu Beras, SNI 6128-2008). Namun, tidak semua komponen mutu yang ada di dalam SNI ini digunakan masyarakat dalam meng-kategorikan jenis beras di pasaran. Oleh karena itu mutu beras giling berdasarkan SNI kurang efektif. Menurut (S. Dewi Indrasari, 2009), standar mutu beras di Indonesia tidak berlaku spesifik karena di pasaran rawan terjadi pencampuran kwalitas beras. Dan juga SNI beras di Indonesia hanya dilihat dari fisik beras itu sendiri, tidak memuat sifat –sifat penentu mutu beras yang sebenarnya. Menurut (Darmadjati,1995) menjelaskan bahwa mutu beras dapat ditentukan dari warna beras sebelum dan setelah di masak, dari aroma beras itu sendiri, dan nilai – nilai gizi dari beras tersebut. Semakin tingginya permintaan akan beras di pasaran membuat pedagang dan pabrik beras susah dikontrol, baik dari segi kualitas mutu maupun kemurnian beras itu sendiri dari bahan – bahan kimia yang dapat membahayakan kesehatan.

Saat ini sudah banyak mesin – mesin pengupas kulit ari beras yang ada di pasaran, namun kebanyakan dengan kapasitas yang besar. Mesin – mesin tersebut masih kurang efektif untuk dapat digunakan oleh semua kalangan masyarakat, karena selain harganya yang mahal ukuran dan kapasitasnya terlalu besar.

Oleh karena itu, pada kesempatan kali ini penulis akan merancang dan menciptakan sebuah Teknologi Tepat Guna (TTG) mesin pengupas kulit terluar beras yang berkapasitas rumah tangga. Disini penulis akan merencanakan sebuah *screw conveyor* yang berfungsi untuk mendorong beras pecah kulit dan sebagai pengupas kulit ari pada beras, yang nantinya beras akan terdorong kedepan dan kulit ari dari beras akan terpisah dengan sendirinya, karena adanya sebuah saringan yang berfungsi untuk menyaring kulit ari beras. Tujuan penulis adalah mengginginkan masyarakat agar dapat mengetahui akan besarnya manfaat dari beras yang juga sebagai

makanan pokok dengan menciptakan alat penggilingan beras yang sederhana dan dapat digunakan oleh semua kalangan masyarakat. Hal ini diharapakan agar masyarakat dapat mendapatkan mutu dan kualitas beras yang benar – benar baik.

#### 1.2 Rumusan masalah

Perumusan masalah yang akan dibahas dalam tugas akhir ini meliputi :

- 1. Menganalisa reaksi gaya pada screw conveyor.
- 2. Menentukan umur bearing

# 1.3 Tujuan penulisan

Tujuan dari perancangan mesin penggiling beras ini adalah:

- Merevisi alat yang sudah ada.
- Mampu merencanakan dan menganalisa mesin penggiling beras skala rumah tangga tersebut.

# 1.4 Manfaat penulisan

Manfaat dari perancangan mesin penggiling beras ini adalah:

Mengetahui kandungan nutrisi yang ada di dalam beras.

#### 1.5 Batasan masalah

Digunakan batasan masalah agar penulisan dapat mencapai hasil yang diharapkan, sebagai berikut:

 Menggunakan beras organik yang masih berupa pecah kulit sebagai bahan baku utama pada mesin tersebut dikarenakan untuk membatasi kemampuan giling. Dan juga mencari cara terpendek yang bisa dilakukan dalam pengolahan padi menjadi beras.

- Dalam perencanaan alat, tidak menganalisa sambungan joint, baut dll.
- Dalam perencanaan alat, rangka diasumsikan kuat menahan beban.
- Dalam perencanaan alat, tidak menghitung daya dan sistem transmisi.
- Jenis beras yang digunakan yaitu jenis beras organik mentik susu.

#### 1.5 Sistematika penulisan

Pokok bahasan yang dibahas dalam tugas akhir ini, disusun secara sistematis sebagai berikut:

#### BAB I : PENDAHULUAN

Bab ini berisi latar belakang permasalahan, perumusan masalah, maksud dan tujuan, pembatasan masalah serta sistematika penulisan laporan.

#### BAB II : DASAR TEORI

Bab ini menjelaskan dasar teori yang menjadi pembahasan dalam tugas akhir ini.

#### BAB III :METODOLOGI

Bab ini menjelaskan diagram alir pengerjaan, detail eksperimen set up peralatan dan prosedur pengujian serta pengolahan data laju alir massa, detail komputasi serta parameter input yang lain.

# BAB IV :HASIL PENELITIAN DAN PEMBAHASAN

Bab ini berisi hasil diskusi atau pembahasan tentang hasil pengukuran

numerik dan eksperimen serta simulasi CFD FLUENT.

# BAB V : KESIMPULAN

Pada akhir pengerjaan tugas akhir ini akan didapatkan suatu kesimpulan yang menyatakan pernyataan akhir dari uraian dan penjelasan sebelumnya.

# BAB II DASAR TEORI

#### 2.1 Beras

#### 2.1.1 Definisi Beras

Beras adalah bagian bulir padi yang yang terpisah dari sekam. Sekam secra anatomi disebut juga *palea* (bagian yang ditutupi) dan *lemma* (bagian yang menutupi). Beras mempunyai kandungan karbohidrat yang sangat tinggi, maka dari itu beras merupakan sumber makanan pokok utama manusia. Indonesia sendiri merupakan salah satu yang mengkonsumsi beras sebagai makanan penduduknya. Di dunia terdapat 40 varietas beras yang berbeda dan tidak mudah untuk mendapatkan varietas yang terbaik. Berikut adalah salah satu jenis beras yang ada di dunia:

#### 1. Beras Liar

Salah satu jenis beras yang sering sekali di temukan di daerah dataran amerika utara,beras ini mempunyai protein dan serat yang cukup tinggi akan tetapi memiliki kadar lemak yang rendah.

#### 2.Beras Cokelat

Beras ini memiliki kandungan mineral dan vitamin yang sangat tinggi, beras ini terdapat di daerah asia timur seperti jepang dan korea.Beras jenis ini merupakan beras sehat yang banyak di gunakan untuk menjamu kunjungan – kunjungan internasional.

#### 3.Beras Merah

Beras ini merupakan beras aromatic yang memiliki warna cokelat kemerahan, biasanya beras ini memiliki rasa yang pedas dan bertekstur kenyal. Beras ini bisa di jumpai di mana saja.

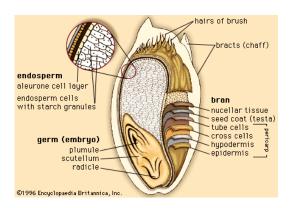
#### 4.Basmati

Beras jenis ini sering ditemukan di daerah dataran di india. Basmati memiliki rasa, aroma, serta bentuk yang ramping basmati bisa disebut juga beras pop corn. Beras ini tidak memiliki kelengkatan bila di masak bial di bandingkan dengan varietas beras lainya.

#### 2.1.2 Anatomi Pada Beras

Beras sendiri secara biologi adalah bagian biji padi yang terdiri dari:

#### 1.Aleuron


Lapisan terluar yang sering kali ikut terbuang dalam proses pemisahan kulit.

#### 2.Endosperma

Tempat sebagian besar pati dan protein berada

#### 3.Embrio

Merupakan calon tanaman baru ( dalam beras tidak dapat tumbuh lagi, kecuali dengan bantuan teknik kultur jaringan ). Dalam sehari – hari embrio beras bisa disebut juga mata beras.



Gambar 2.1 Anatomi beras (www.wikipedia.com, 2005)

# 2.1.3 Kandungan Dalam beras

Sebagaimana bulir serealia lainya, bagian terbesar beras didominasi oleh pati sekitar 80-85%. Beras juga mengandung protein, vitamin (terutama pada bagian aleuron), mineral dan air. Pati beras tersusun dari dua polimer karbohidrat yaitu:

- Amilosa, pati dengan struktur tidak bercabang
- Amilopektin, pati dengan struktur bercabang dan bersifat lengket.

Perbandingan komposisi kedua golongan pati ini sangat menentukan warna (transparan atau tidak) dan tekstur nasi (lengket, lunak, keras, atau pera). Pada ketan hampir sepenuhnya di dominasi oleh amilopektin sehingga sangat lekat, sementara pada beras yang memiliki sifat pera memiliki kandungan amilosa lebih dari 20% yang membuat butiran nasinya terpencar – pencar (tidak lengket atau berlengkatan) dank keras.

# 2.1.4 Aspek Pangan

Beras dimanfaatkan terutama untuk di olah menjadi nasi, makanan pokok penting warga dunia. Beras juga digunakan sebagai bahan olahan untuk membuat kue dan tape, terutama terbuat dari beras ketan. Selain itu, beras merupakan komponen penting dari jamu beras kencur dan param. Salah satu minuman yang popular dari bahan beras adalah arak dan air tajin.

Dalam bidang industri pangan, beras di olah menjadi tepung beras. Sosohan beras (lapis aleuron), yang memiliki kandungan gizi yang sangat tinggi untuk diolah menjadi tepung bekatul (rice bran). Bagian embrio pada beras juga diolah menjadi sumpleman makanan yang biasanya disebut juga tepung mata beras. Untuk kepentingan diet, beras dijadikan sebagai salah satu sumber pangan bebas gluten dalam bentuk berondong.

Diantara berbagai jenis beras yang ada di Indonesia beras yang berwarna merah atau beras merah dimiliki khasiat sebagai obat. Beras merah yang telah dikenal sejak tahun 2.800 SM ini, oleh para tabib saat itu dipercaya memiliki nilai medis yang dapat memulihkan kembali rasa tenang dan damai. Meski, jika dibandingkan dengan beras putih, kandungan karbohidrat pada beras merah lebih rendah (78.9 gr: 75.7 gr), tetapi hasil dari analisis (Nio,1992) menunjukkan nilai energy dari beras merah justru di atas beras putih (348 kal : 353 kal). Selain lebih kaya protein (6,8 gr : 8,2 gr), hal tersebut mungkin disebabkan kandungan tiaminnya yang lebih tinggi (0,12 mg: 0,31 mg). Kekuatan tiamin bisa menggangu system saraf dan jantung pada tubuh, dalam keadaan berat dinamakan beri – beri. Gejala awal yang ditimbulkan adalah berkurangnya nafsu makan, gangguan pencernaan, sembelit, kesemutan, jantung berdebar, dan refleks berkurang.

# 2.1.5 Proses Padi Menjadi Beras



Gambar 2.2 Proses padi menjadi beras (www.wikipedia.com,2010)

# Contoh proses merontokkan padi menjadi gabah:



Gambar 2.3 Alat perontok gabah manual (https://www.google.co.id, 2012)



Gambar 2.4 mesin penggiling gabah (3.bp.blogspot.com, 2013)

Pada gambar (2.3) diatas adalah cara merontokkan padi menjadi gabah secara manual dengan cara memukulkan ke alat yang sering disebut gebotan.

Sedangkan pada gambar (2.4) adalah cara merontokkan padi menjadi gabah dengan menggunakan mesin.

# Contoh proses penggeringan kulit gabah:



Gambar 2.5 pengeringan gabah secara manual (m.epetani.deptan.go.id, 2012)



Gambar 2.6 mesin pengering gabah (elsafta.wordpress.com, 2013)

Pada gambar (2.5) diatas adalah salah satu proses penggeringan kulit gabah secara alami yaitu dengan cara memanfaatkan sinar matahari untuk menjemur kulit – kulit gabah.

Pada dambar (2.6) diatas adalah proses penggeringan kulit gabah dengan mesin pengering, akan tetapi hal ini sangat jarang dilakukan itu disebabkan karena dengan menggunakan proses ini nanti beras yang akan di giling akan menjadi pecah.

# 2.1.6 Pengolahan Pasca panen

# a. Beras pecah kulit

Beras pecah kulit (brown Rice) adalah butir padi yang kulitnya atau sekamnya sudah dilepaskan tetapi berasnya belum disosoh. Beras pecah kulit ini kaya akan gizi karena kulit arinya masih menempel pada beras. Menurut (Dr.David Fadjar Putra, MS. SpGK, 2013) kliniknutrisi.com, pada proses penggilingan dan pemolesan padi sosoh berbagai varietas sampai menjadi beras berwarna putih telah membuang 80% vitamin B1, 70% vitamin B3, 90% vitamin B6, 50% mangan (Mn), 50% fosfor (P), 60% zat besi (Fe), 100% serat dan asam lemak essensial. Beras putih siap makan pun hanya akan menyisakan karbohidrat saja. Padahal kandungan nutrisi yang hilang sangat dibutuhkan oleh tubuh.

Mangan (Mn), misalnya, sangat berperan dalam proses metabolisme tubuh yang merupakan komponen enzim vang superoxide dismutase bersifat antioksidan. Kandungan selenium dalam padi juga bermanfaat besar dalam meningkatkan daya tahan tubuh. Selenium adalah komponen enzim glutathione peroxidase yang berperan penting pada proses detoksifikasi di hati. Kabar baiknya, anda masih bisa mendapatkan nutrisi – nutrisi yang hilang tersebut dengan mengkonsumsi beras pecah kulit. Di Indonesia sendiri beras pecah kulit memang masih terdengar asing, naming manfaatnya luar biasa. Dalam satu mangkuk beras pecah kulit mengandung 14% kebutuhan serat per hari. Artinya, anda bisa mencegah penyumbatan di pembuluh darah yang menyebabkan penyakit

kardiovaskular. Asam lemak pada beras pecah kulit, menurut David (2013),mampu menurunkan kadar kolesterol jahat di dalam tubuh hingga 7%. Menurut David (2013), beras pecah kulit sangat di anjurkan untuk dikonsumsi sehari - hari, terutama oleh pasien yang kelebihan berat badan, diabetes, batu empedu, hipertensi, dan penyakit jantung koroner. Yang penting untuk diperhatikan adalah, beras pecah kulit ini mudah sekali membusuk itu dikarenakan tidak adanya campuran bahan bahan kimiawi yang menyebabkan beras lebih tahan lama, oleh karena itu beras pecah kulit ini cuman bisa untuk sekali konsumsi dan tidak bisa disimpan.



Gambar 2.7 Beras pecah kulit. Beras pecah kulit adalah beras yang belum di kupas kulit ari berasnya (*kliniknutrisi.com*, 2014)

# b. Beras putih

Beras putih adalah kondisi beras yang sudah di sosoh atau digiling yang sebelumnya dari beras pecah kulit. Beras jenis ini sangat sering kita jumpai dan kita konsumsi sehari – hari. Pada beras giling ini akan memisahkan antara beras

dan bekatulnya padahal di dalam bekatulnya itu sangat banyak mengandung gizi yang tinggi. Apabila beras disosoh berulang kali hingga menjadi putih makan semua kandungan gizi di dalam beras tersebut akan hilang dan hanya akan menyisakan karbohidrat saja. Jika pada kandungan beras hanya menyisakan karbohidrat yang tinggi maka apabila dikonsumsi secara terus menurus akan mengakibatkan penyakit diabetes.



Gambar 2.8 *Beras* putih (*kliniknutrisi.com*, 2013)

#### 2.1.7 Perubahan Sifat Beras Setelah Panen

#### 1.Karbohidrat

Perubahan – perubahan berikut dapat terjadi pada komponen karbohidrat beras setelah di panen:

- Hidrolisa patikarena kegiatan enzim amylase
- Berkurangnya gula karena pernafasan
- Terbentuknya bau asam karena kegiatan mikro organisme
- Reaksi warna kecoklatan bukan karena enzim

#### 2.Protein

Setelah proses panen nitrogen secara total tidak mengalami banyak perubahan, tetapi nitrogen dari protein sedikit menurun. Jumlah total asam amino menunjukkan perubahan yang berarti bila terjadi kerusakan lebih lanjut akibat kegiatan enzim proteolitik.

#### 3.Lemak

Kerusakan lemak pada beras terjadi secara oksidasi. Hidrolisa pada lemak ini dipercepat oleh suhu tinggi, kadar air tinggi dan faktor – faktor lain seperti pertumbuhan kapang. Pada beras akibat aktifisi kapang, hidrolisa lemak lebih cepat debandingkan dengan hidrolisa protein atau karbohidrat.

#### 4.Mineral

Mineral jarang menghilang atau meningkat setelah di panen, kecuali fosfor. Setelah di panen kegiatan enzim fitrase melepas fosfat dari asam fitrat menjadi fosfat bebas dan menyebabkan peningkatan nilai gizi.

#### 5. Vitamin

Setelah di panen akan terjadi perubahan vitamin meliputi:

- Thiamin (B1) banyak yang rusak, kerusakan dipercepat dengan kadar air dan suhu tinggi.
- Riboflavin (B2) dan piridoksin (B6) sangat sensitive terhadap cahaya.
- Vitamin A menurun karena kehilangan karotin.
- Tokoferol (E) bisa hilang dengan adanya O2, karena O2 dapat mempercepat penurunan tokoferol.

# 2.1.8 Sejarah Beras

Sejarah beras menurut beberapa sumber sejak tahun 2500 sebelum Masehi, beras telah menjadi sumber makanan utama masyarakat di dunia. Asal mulanya beras pertama dari Negara Cina dan menyebar ke negara - negara lain seperti Srilanka dan India. Diyakini bahwa beras di bawa ke Asia Barat dan Yunani pada tahun 300 sebelum Masehi oleh Alexander Agung.Pada tahun 800 sebelum

Masehi, orang - orang Afrika Timur berdagang dengan orang-orang dari India,dari sinilah Indonesia mulai mengenal padi atau beras melalui perdagangan tersebut. Memang sulit untuk mengatakan dengan tepatnya beras di bawa sampai ke Amerika Utara, sedangkan salah satu sumber cerita mengatakan bahwa ada kapat rusak yang terdampar di wilayah Carolina. Sebagai imbalannya atas perbaikan kapal, kapten kapal memberikan sekantong beras kepada para penjajah. Selain itu diyakini bahwa budak dari Afrika membawa beras dari tanah mereka pada tahun 1700 sebanyak 300 ton beras dari amerika dikirim ke inggris. Setelah perang saudara berakhir, beras mulai diproduksi secara masal di seluruh dunia.

#### 2.1.9 Nutrisi Beras

Beras merupakan makanan pokok yang kaya nutrisi yang sangat dibutuhkan oleh tubuh manusia. Jika nutrisi di dalam beras ada yang hilang maka akan berkurangnya manfaat beras yang sangat diperlukan oleh tubuh manusia. Jika beras yang nutrisinya hilang dikonsumsi secara terus menerus, maka akan mengakibatkan akan menderita penyakit diabetes. Diabetes sendiri disebabkan oleh kandungan gula di dalam tubuh terlalu besar atau melebihi apa yang di butuhkan oleh tubuh. Beras sendiri jika nutrisinya hilang akan menyumbang kadar gula yang cukup besar dari pada gula pada umumnya. Di Indonesia sendiri penderita penyakit diabetes sangatlah besar dan angka kematian setiap tahunya selalu meningkat, hal ini disebabkan kurangnya pemahaman akan niali — nilai nutrisi yang terkandung di dalam beras. Nutrisi yang terkandung di dalam beras pada umumnya bisa di dapat dari pengujian di laboratorium kimia. Sebagai contoh seperti pada tabel di halaman 18.

| Jenis Analisis | Hasil          |
|----------------|----------------|
| Protein        | 7.66%          |
| Karbohidrat    | 84.61%         |
| Total Gula     | 0.34%          |
| Vitamin A      | 134.27 IU/100g |
| Vitamin B6     | 0.93mg/100g    |
| Vitamin B12    | 8.66mg/100g    |
| Vitamin E      | 0.625mg/100g   |
| Inositol       | 2.49mg/100g    |
| Omega 3        | 0.065%         |
| Omega 6        | 0.317%         |
| Omega 9        | 1.287%         |
| AA             | 0.065mg/100g   |
| Mn             | 0.02 ppm       |
| Mg             | 29.67mg/100g   |
| Fe             | 6.48mg/100g    |
| Na             | 127.18mg/100g  |
| К              | 52.12mg/100g   |
| Ca             | 48.33mg/100g   |
| Р              | 156.50mg/100g  |

Tabel 2.1 Kandungan nutrisi beras (vivaorganik.blogspot.com, 2012)

Saat ini masih belum banyak yang melakukan penelitian tentang kandungan yang ada di dalam beras pecah kulit ini namun,

Bisa di lihat dari segi fisiknya yang meliputi dari:

- 1. Besar serta ketebalan beras
- 2. Masih terlihat embrio beras
- 3. Warna alami dari beras tersebut
- 4. Bau khas dari beras tersebut

#### 2.2 Mekanisme Alat

Pada mekanisme alat yang dipakai ada dua macam yaitu mekanisme alat pada zaman dulu dan mekanisme alat dengan menggunakan mesin penggilingan beras yang sudah sangat banyak pada saat ini.

#### 2.2.1 Mekanisme Alat Zaman Dulu

Pada zaman dulu alat yang dipakai untuk menggiling beras dengan cara menumbuk.Beras hasil penumbukan warnanya kecoklatan berbeda dengan beras yang ada saat ini yaitu putih mengkilap.Padahal hasil dari penelitian beberapa sumber pertanian bahwa warna putih mengkilap bisa di sebabkan oleh zat pemutih atau zat kimia lainya. Disini penulis mencoba membuat mesin penggiling beras dengan mengambil metode beras jaman dulu tetapi dengan mekanisme mesin yang ada saat ini.



Gambar 2.9 Proses Penumbukan Beras (www.wikipedia.com, 2005)

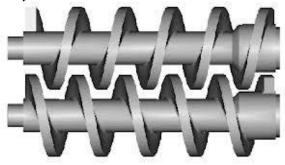
Pada proses penumbukan beras pada zaman dulu sangatlah kurang efisien meskipun dapat menghasilkan kualitas beras yang lebih baik. Saat ini banyak sekali mesin – mesin pengilingan beras baik untuk menggiling padi maupun untuk mengupas kulit ari pada beras. Akan tetapi saat ini mesin – mesin yang digunakan relative dengan kapasitas yang besar, di sini penulis mencoba membuat mesin dengan kapasitas rumah tangga agar semua keluarga dapat menggiling beras sendiri untuk dapat menjaga mutu dan kualitas beras yang akan di konsumsi.

#### 2.2.2 Mekanisme Alat Saat Ini

Saat ini memang sudah banyak sekali mesin – mesin penggilingan beras, akan tetapi masih belum ada mesin yang mempunyai kapasitas rumah tangga dengan daya yang rendah. Disini penulis ingin membandingkan mesin yang sudah ada dengan mesin yang akan di buat. Untuk prinsip kerjanya mungkin sama hanya dengan kapasitas yang berbeda. Kelebihan dari mesin yang akan di buat adalah dapat dibawa ke mana – mana dan dapat menggiling beras untuk sekali proses memasak.



Gambar 2.10 Mesin penggilingan beras (www.wikipedia.com, 2013)


# 2.3 Perhitungan reaksi gaya screw coveyor dan umur bearing

Untuk melakukan perhitungan gaya pada screw conveyor dan menghitung umur bearing diperlukan dasar – dasar perhitungan yang

sudah menjadi standar Internasional. Perhitungan ini akan memperkecil ketidaksesuaian (*eror factor*) dari material maupun komponen mesin. Hal – hal yang berkaitan dengan perancangan mesin ini meliputi:

# 2.3.1 Screw Conveyor

Screw conveyor merupakan suatu alat yang berupa pipa ulir yang di susun pada pipa atau poros yang berputar di dalam tabung tetap untuk memindahkan berbagai jenis material yang mempunyai daya alir. Tingkat kebebasan partikel suatu material yang secara individu bergerak saling mendahului satu partikel yang lainya. Karakteristik ini penting dalam operasi screw conveyor.



Gambar 2.11 Screw Conveyor

Screw conveyor terdiri dari poros yang digabung dengan ulir yang berputar sepanjang saluran pemasukan dan unit penggerak pemutar poros. Pada saat poros berputar, material dalam hal ini beras yang telah diisikan akan terdorong kedepan yang selanjutnya akan digerus antara screw dan tonjolan yang ada di saringan untuk memisahkan kulit ari dari berasnya.

# 2.3.2 Jenis dan Bagian - Bagian dari Srew Conveyor

Dalam mendesain *screw conveyor*, harus diperhatikan terhadap material apa yang dipindahkan. Jenis – jenis *screw conveyor* yang umum digunakan yaitu :

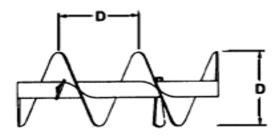
## a. Continous Screw

Digunakan untuk memindahkan material berupa butiran dan bubuk yang tidak padat, seperti terlihat pada gambar 2.12



Gambar 2.12 Continous screw

## Robbon Screw

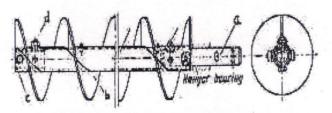

Digunakan untuk memindah material yang sifatnya lengket dan menggumpal, seperti terlihat pada gambar 2.13



Gambar 2.13 Ribbon screw

# b. Paddle Flight

Digunakan untuk material yang boleh dimampatkan atau digunakan untuk mencampur dua atau lebih jenis material yang dipindahkan, seperti terlihat pada gambar 2.14




Gambar 2.14 Paddle flight

Bagian – bagian screw conveyor terdiri dari :

- 1. Poros
- 2. Ulir dari pelat baja
- 3. Poros penggerak yang disatukan dengan bushing
- 4. Pin dengan sistem baut

Bagian-bagian Screw Conveyor dapat dilihat pada gambar 2.15



Gambar 2.15 bagian-bagian screw conveyor

# 2.3.3 Perbedaan Vertikal dan Horizontal Screw Conveyor

Perbedaan yang ada pada  $vertical\ screw$  dan  $horizontal\ screw$  conveyor adalah :

- a. Casingnya berbentuk silindris dengan alat pengumpat dibagian bawah dan tempat pengeluaran material dibagian atas.
- b. Tidak ada intermediate bearing

- c. Jarak pemindahannya lebih pendek.
- d. Gaya aksial lebih besar karena semua bagian vertical yang berputar merupakan gaya aksial yang harus diterima oleh bantalan aksial.

### 2.3.4 Perhitungan Kapasitas Screw Conveyor

Kapasitas dari screw conveyor tergantung dari diameter (D),  $crew\ pitch\ (S)$ , putaran poros (n) dan efisiensi beban berdasarkan luasan screw. Perhitungan kapasitas  $screw\ conveyor$  dapat dihitung dengan rumus :

$$Q = V \gamma$$
  
 $Q = 60 \frac{\pi D^2}{4} \text{ S. n. } \psi. \gamma. C \text{ (ton/jam) } ....(2.1)$ 

(A. spivakovsky ad V. Dyachkov, Conveyors and Relatetd Equipmen)

#### Dimana:

Q = Kapasitas screw conveyr (ton/jam)

V = Kapasitas material yang dipindahkan  $(m^3/jam)$ 

D = Diameter screw conveyor (m)

S = Pitch screw conveyor (m)

n = Putaran screw (rpm)

 $\gamma$  = Massa jenis material yang dipindahkan  $(ton/m^3)$ 

 $\psi$  = efisiensi daerah vertical screw conveyor

C = Faktor kemiringan

β = Sudut kemiringan screw conveyor  $(^0)$ 

Loading efficiency  $(\psi)$  mempunyai harga rendah dikarenakan adanya hambatan pada *intermediate bearing*,dan harga  $(\psi)$  seperti berikut :

 $\Psi = 0.125$  untuk aliran lambat dan material abrasive

 $\Psi = 0.25$  untuk aliran lambat dan material agak abrasive

 $\Psi = 0.32$  untuk aliran bebas dan material agak abrasive

 $\Psi = 0.4$  untuk aliran bebas dan material tidak abrasive

Faktor kemiringa (C) dipengaruhi sudut kemiringan dari screw conveyor, apalagi kalau pada *screw konveyor* terdapat *intermediate bearing*, pada rumus diatas harga (C) dipengaruhi sudut  $(\beta)$  sepperti pada tabel berikut ini :

| β | 0   | 5°  | 10° | 15° | 20°  |
|---|-----|-----|-----|-----|------|
| C | 1,0 | 0,9 | 0,8 | 0,7 | 0,65 |

Tabel 2.2 Sudut (β)

### 2.3.5 Perhitungan Daya Screw Conveyor

Tahanan total yang mempengaruhi gerakan screw conveyor adalah akibat gesekan – gesekan material dengan rumah, antara material dan permukaan screw, gesekan pada bearing (intermediate dan terminal), tambahan tekanan karena pemadatan material sekitar intermediate bearing, gesekan antara material yang terbawa screw dan material yang melekat pada dinding rumah. Bila screw conveyor menyudut keatas, masih ditambah daya untuk mengatasi gaya grafitasi

Barmacam – macam tahanan diatas dapat dihitung apabila faktor gesek masing – masing diketahui, tetapi hal ini sulit dilakukan. Biasanya dipakai factor tahanan ( $\omega_0$ ) yang besarnya didasarkan pada hasil percobaan pada screw conveyor.

Daya yang direncanakan untuk menggerakkan *screw* conveyor dapat dihitung dengan rumus :

$$N_0 = \frac{QL\omega^{\square}}{367} \dots (2.2)$$

(A.Spivakovsky and V.Dyachkov, Conveyors and Relatetd Equipment)

#### Dimana:

 $N_0$  = Daya yang direncanakan (kW)

 $\omega_0$  = Faktor keamanan L = Panjang screw (m) Harga rata – rata ( $\omega_0$ ) untuk material seperti *anthracite*, *air* – *dry- brown coal*, *nut coal*, *rock salt* dan sebagainya adalah 2,5 sedangkan untuk *gyps*, *dry-clay*, *foundary sand*, *cemen*, *pasir*, *moulding sand* adalah 4.

### 2.3.6 Perhitungan Torsi Screw Conveyor

Torsi yang dibutuhkan pada poros *screw* bila putarannya (n) rpm, dapat dihitung dengan rumus :

$$M_0 = 975 \frac{N_0}{n} \dots (2.3)$$

(A.Spivakovsky and V.Dyachkov, Conveyors and Relatetd Equipment)

#### Dimana:

 $M_0$  = Torsi screw conveyor (kgm)

 $N_0 = Daya yang direncanakan (kW)$ 

n = Putaran screw conveyor (rpm)

# 2.3.7 Perhitungan Kecepatan Laju Material

Untuk menentukan kecepatan laju material pasa *screw konveyor* (v) dapat diketahui dengan menggunakan rumus :

$$V = \frac{s_n}{60}$$
 (m/s) .....(2.4)

(A.Spivakovsky and V.Dyachkov, Conveyors and Relatetd Equipment)

#### Dimana:

v = Keceptan laju material(m/s)

S = Pitch srew conveyor (m)

n = Putaran screw conveyor (rpm)

### 2.3.8 Perhitungan Gaya Aksial Screw Conveyor

Gaya aksial sepanjang pesawat dihitung dengan mengambil faktor gesek material terhadap dinding konfeyor (f). Untuk menentukan gaya aksial *screw conveyor* (P) dapat diketahui dengan menggunakan rumus :

$$P = qLf ....(2.6)$$

(A.Spivakovsky and V.Dyachkov, Conveyors and Relatetd Equipment)

Dimana:

P = Gaya aksial screw conveyor (kg)

q = Beban permeter (ton/jam)

L = Panjang screw conveyor (m)

f = Faktor friksi / koefisien gesek material dengan dinding konveyor

### 2.4 Perencanan Poros (Shaft)

Poros (*Shaft*) merupakan salah satu elemen pada mesin yang berputar maupun tetap(stationary) yang biasanya mempunyai bentuk silinder dengan penampang melingkar (diameter) yang lebih kecil dari pada panjangnya dan merupakan tempat bagi elemen lain ditempatkan (mounted) disana, seperti elemen transmisi daya; roda gigi (gear), pulley, belt, rantai (chain), flywheels, sprocket dan juga bentalan bearing (laher).



Gambar 2.16 Poros

Beban yang terjadi pada poros dapat berupa *bending*, *tranverse*, torsi, dan juga beban axial (tarik-tekan). Dalam mendesain poros, beberapa faktor yang harus diperhatikan yaitu faktor kekuatan dengan menggunakan pandekatan yield atau fatigue sebagai kriterianya, defleksi, dan juga *critical speed* dari poros yang akan kita desain.

Pembebanan pada poros tergantung pada besarnya daya dan putaran mesin yang diteruskan serta pengaruh gaya yang ditimbulkan oleh bagian-bagian mesin yang didukung dan ikut berputar bersama poros. Beban puntir disebabkan oleh daya dan putaran mesin sedangkan beban lentur serta beban aksial disebabkan oleh gayagaya radial dan aksial yang timbul.

#### a. Daya rencana

$$P_d = fcP$$
 ....(2.26)

Dengan:

 $P_d =$  Daya rencana (HP)

fc = Faktor koreksi

P = Daya nominal output dari motor penggerak

(HP)

$$T = 9,74.10^5 \frac{Pd}{n_1} \dots (2.27)$$

Dengan:

T = Momen puntir (N.mm)

 $n_1$  = putaran motor penggerak (rpm)

### 2.4.1 Poros dianggap hanya menerima tegangan puntir

Berikut ini adalah rumus untuk mengetahui momen torsi pada poros yang hanya dianggap menerima tegangan puntir saja.

$$M_t = 9,74.10^5 \cdot \frac{p_d}{n}$$
 .....(2.28)

dimana : 
$$Mt$$
 = Momen torsi  $kg mm$   $P_d$  = Daya yang ditransmisikan  $kW$   $n$  = Putaran yang terjadi pada poros  $rpm$ 

Tegangan puntir akibat momen torsi:

$$\tau_t = \frac{Mt}{Wt} \qquad \dots (2.29)$$

$$\tau_{t} = \frac{Mt}{\frac{\pi D^{3}}{16}}$$

$$= \frac{16M_{t}}{\pi D^{3}} = \frac{5.1M_{t}}{D^{3}} \le \frac{ks \cdot \sigma_{yp}}{N} \dots (2.30)$$

$$D \ge \sqrt[3]{\frac{16 \cdot M_t \cdot N}{\pi \cdot ks \cdot \sigma_{yp}}} \quad \dots (2.31)$$

# 2.4.2 Poros dianggap hanya menerima tegangan puntir dan tegangan bending

Poros pada umumnya meneruskan daya melalui belt, roda gigi, rantai, dan sebagainya. Dengan demikian poros tersebut mendapat beban puntir dan bending sehingga pada poros akan terjadi maksimum yang dapat dirumuskan sebagai berikut:

$$\sigma_{\text{max}} = \frac{\sqrt{\sigma^2 + 4.r^2}}{2} \dots (2.32)$$

$$\sigma_{\text{max}} = \sqrt{\left(\frac{\sigma_x^2}{2}\right) + \tau^2}$$

dimana: 
$$\tau_t = \frac{16 \cdot M_t}{\pi \cdot D_s^3} \dots (2.33)$$

(Deutschman, Machine Design Theory and Practice, 1975: 540)

sehingga tegangan maksimum yang terjadi pada poros :

$$\sigma_{\max} = \sqrt{\left(\frac{16M_B}{\pi \cdot D^3}\right)^2 + \left(\frac{16 \cdot M_t}{\pi \cdot D^3}\right)^2} \le \frac{ks \cdot \sigma_{yp}}{N}$$

$$= \left(\frac{16M_B}{\pi \cdot D^3}\right)^2 + \left(\frac{16 \cdot M_t}{\pi \cdot D^3}\right)^2 \le \left(\frac{ks \cdot \sigma_{yp}}{N}\right)^2$$

$$= \frac{16^2 \cdot M_B^2 + 16^2 \cdot M_t^2}{\pi^2 \cdot D^3} \le \frac{ks^2 \cdot \sigma_{yp}^2}{N^2}$$

$$D \ge \sqrt{\frac{\{16^2 \cdot M_B^2 + 16^2 \cdot M_t^2\} \cdot N^2}{\pi^2 \cdot ks^2 \cdot \sigma_{yp}^2}}$$

dimana: 
$$\sigma_{max} = Tegangan maksimum$$
 $|\sigma_{max}| = Tegangan ijin maksimum$ 
 $M_B = Momen pada poros$ 
 $Mt = Torsi$ 
 $Syp = Strength yield point$ 
 $D = Diameter poros$ 
 $N = Angka keamanan$ 
 $= 2-3 \qquad (untuk beban statis)$ 
 $= 3,1-4 \qquad (untuk beban dinamis)$ 
 $= 4,1-5 \qquad (untuk beban kejut)$ 

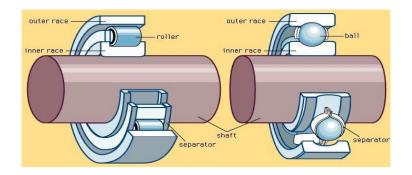
Tabel 2.1. Faktor keamanan

| Nilai koreksi   |                                         | Keterangan             |  |
|-----------------|-----------------------------------------|------------------------|--|
| Sfı             | 5,6                                     | Dipakai untuk bahan SF |  |
|                 | 6,0                                     | Dipakai untuk bahan SC |  |
| Sf <sub>2</sub> | 1,3 – 3,0 Mengantisipasi pengaruh pasak |                        |  |

Tabel 2.3 Faktor koreksi untuk momen puntir (Kt) dan pembebanan lentur (Km)

| Nilai koreksi |           | Keterangan                               |  |
|---------------|-----------|------------------------------------------|--|
|               | 0,1 - 1,0 | Jika bahan yang dikenakan lentur,        |  |
| Kt            | 1,0 – 1,5 | Jika terjadi kejutan dan tumbukan sedang |  |
|               | 1,5 – 3,0 | Jika terjadi kejutan dan tumbukan besar  |  |
| Km            | 1,0       | Tidak ada beban lentur                   |  |
|               | 1,2-2,3   | Ada beban lentur                         |  |

# 2.5 Perencanaan Bearing


Sebuah bearing adalah elemen mesin yang mendukung gerakan yang lain elemen mesin (berdasarkan jurnal). Ini merupakan izin gerakan relatife antara hubungan permukaan -permukaan bagian saat membawa beban. Sebuah pertimbangan kecil yang akan menunjukkan hak gerakan relatife antara hubungan permukaan – permukaanya.



Gambar 2.16 komponen bearing

### 2.5.1 Perencanaan Bantalan (Bearing)

Bearing atau bantalan adalah elemen mesin yang berfungsi untuk menumpu poros, supaya putaran atau gerakan poros dapat berlangsung dengan baik dan aman, juga untuk memperkecil kerugian daya akibat gesekan. Bearing harus kuat dan kokoh untuk menahan gaya yang terjadi pada poros. Jika bearing tidak berfungsi dengan baik maka kerja seluruh sistem akan menurun atau mesin tidak dapat bekerja sebagaimana semestinya. Konstruksi antara poros dengan bearing dapat dilihat pada *Gambar 2.2* sedangkan kedudukan bearing dalam sebuah mesin dapat dilihat pada *Gambar 2.3*. Dalam perencanaan ini akan digunakan jenis bantalan gelinding (rolling bearing) karena bantalan ini mampu menerima beban aksial maupun radial relatif besar.



Gambar 2.17 Kontruksi poros dengan bearing (wikipedia.com,2014)

### 2.5.2 Klasifikasi Bearing

Bearing secara garis besarnya dapat dikelompokan menjadi dua,yaitu : Journal Bearing dan Rolling Bearing.

• Journal Bearing (Bantalan Luncur). Pada bearing ini terjadi gesekan luncur antara poros dan bearing, karena permukaan poros yang berputar bersentuhan langsung dengan bearing yang diam. Lapisan minyak pelumas sangat diperlukan untuk memperkecil gaya gesek dan temperatur yang timbul akibat gesekan tersebut.



Gambar 2.18 Journal Bearing dan ketebalan minyak pelumas

• Rolling Bearing (Bantalan Gelinding). Pada bearing ini terjadi gesekan gelinding antara bagian yang berputar dengan bagian yang diam pada bearing, bagian yang

berputar tersebut adalah : bola, silindris dan jarum, antara poros dan bearing tidak terjadi gesekan.



Gambar 2.19 Rolling bearing (ball bearing)

### 2.5.3 Macam-macam Rolling Bearing

#### **1. Radial Ball Bearing** (bantalan gelinding bola radial)

- Deep Groove Ball Bearing. Semula bearing ini dimaksudkan untuk menahan beban radial, tetapi dengan adanya alur yang dalam, sehingga penempatan bolanya dapat lebih dalam, maka ternyata sanggup juga menerima beban aksial (thrust). Kemampuan menerima beban aksial dapat mencapai 70 % dari beban radialnya.
- Self Aligning Internal dan Self Aligning External Ball Bearing. Bearing ini mempunyai kemampuan menyesuaikan diri bila terjadi ketidaksesuaian atau ketidaksenteran antara sumbu poros dengan sumbu bearing akibat adanya defleksi poros atau perubahan pondasi.
- **Double Raw Ball Bearing**. Bearing ini mempunyai bola dua deret, yang bertujuan menaikkan kemampuan untuk mendukung beban radial maupun aksial.

# 2. Angullar Contact Ball Bearing

(bantalan gelinding bola radial kontak menyudut). Bearing ini secara umum mempunyai dua kategori yaitu dengan kemampuan menerima beban aksial satu arah saja, dan kemampuan menerima beban aksial dua arah. (One directional and two directional angular contact ball bearing).

- **3.** Thrust Ball Bearing (bantalan gelinding bola aksial).
  - One directional flat race
  - One directional grooved race
- 4. Roller Bearing (bantalan gelinding dengan rol). Bearing dengan rol ini, mempunyai kegunaan yang sama seperti bearing dengan bola, tetapi bearing ini dapat menerima beban radial yang lebih besar (dalam ukuran yang sama). Hal ini dimungkinkan karena kontak antara rol dengan ring lebih besar yaitu berupa garis, tidak berupa titik seperti pada ball bearing. Sebagian besar dari jenis ini, tidak dapat menerima beban aksial, kecuali bearing dengan rol bola (spherical) dan rol turus (taper). Tipe bearing ini dibagi dalam 4 jenis, yaitu:
  - 1. Cylindrical Roller Bearing (bearing gelinding rol silinder)
  - 2. Needle Roller Bearing (bearing gelinding rol jarum)
  - 3. Tapered Roller Bearing (bearing gelinding rol tirus)
  - 4. Spherical Roller Bearing (bearing gelinding rol lengkung)

### 2.5.4 Menghitung Umur Bearing

1 Umur Bearing. Dengan asumsi putaran konstan, maka prediksi umur bearing (dinyatakan dalam jam) dapat ditulis dengan persamaan:

$$L_{10h} = \left(\frac{c}{p}\right)^b \times \frac{10^6}{60.n}$$
 (2-1)

Dimana:

 $L_{10h}$  = Umur bearing, jam-kerja

C = Beban dinamis (dapat dilihat dari table), lbf

n = putaran poros, rpm

P = Beban Ekivalen (eqivalent load)

b = konstanta yang tergantung tipe beban (b = 3 untuk ball bearing dan b = 3,3 untuk rolling bearing)

### 2 Menghitung Beban.

Sesuai dengan definisi dari AFBMA (Anti Friction Bearing Manufacturers Association) yang dimaksud dengan beban eqivalen adalah beban radial yang konstan yang bekerja pada bearing dengan ring dalam yang berputar, yang akan memberi umur yang sama, seperti bila bearing bekerja dengan kondisi nyata untuk beban dan putaran yang sama. Dalam kenyataannya bearing biasanya menerima beban kombinasi antara beban radial dan beban aksial, serta pada suatu kondisi ring dalam yang tetap sedangkan ring luarnya yang berputar. Sehimgga persamaan beban eqivalen (P) setelah adanya koreksi tersebut, menjadi:

$$P = V.X.F_r + Y.F_a$$
....(2-3)

Dimana:

P = beban ekivalen, lbf

Fr = beban radial, lbf

Fa = beban aksial, lbf

V = faktor putaran (konstan) bernilai :

= 1,0 untuk ring dalam berputar

= 1,2 untuk ring luar yang berputar

X = konstanta radial (dari tabel, dapat dilihat pada lampiran)

Y = konstanta aksial (dari tabel, dapat dilihat pada lampiran)

Cara memilih harga X dan Y dapat dilakukan dengan langkahlangkah berikut :

- 1. Cari terlebih dahulu harga : i.Fa/Co
  - i = jumlah deret bearing
- 2. Kemudian dari harga ini, ditarik garis ke kanan sampai pada kolom e , sehingga didapat harga e.
- 3. Cari harga: Fa/(V.Fr), dan bandingkan dengan harga e, akan diperoleh kemungkinan : Fa/(V.Fr) < e atau Fa/(V.Fr) = e atau Fa/(V.Fr) > e.
- 4. Dari perbandingan harga tersebut, maka akan

didapatkan harga X dan Y dari kolom : Fa/(V.Fr)  $\leq$  e atau Fa/(V.Fr) > e. Khusus untuk deret satu (single row bearing) , bila harga Fa/(V.Fr)  $\leq$  e , maka X=1 dan Y=0.

5. Dapat dibantu dengan Interpolasi atau Extrapolasi Bila faktor beban kejut dimasukan maka persamaan (2-5) akan menjadi:

$$P = F_{s(V.X.F_r + Y.F_a)}$$
....(2-4)

Dimana : Fs = konstanta kondisi beban,dapat dilihat pada *Tabel 2.2*.

Tabel 2.4 Ball bearing service factors, F<sub>s</sub>

| No  | Type of service                   | Multiply calculated load by following factors |                   |
|-----|-----------------------------------|-----------------------------------------------|-------------------|
| 110 | Type of service                   | Ball<br>Bearing                               | Roller<br>Bearing |
| 1   | Uniform and steady load           | 1,0                                           | 1,0               |
| 2   | Light shock load                  | 1,5                                           | 1,0               |
| 3   | Moderate shock load               | 2,0                                           | 1,3               |
| 4   | Heavy shock load                  | 2,5                                           | 1,7               |
| 5   | Extreme and indefinite shock load | 3,0                                           | 2,0               |

#### 2.6 Motor Listrik

Motor listrik adalah sebuah perangkat elektromagnetis yang mengubah energy listrik menjadi energy mekanik. Energi mekanik ini digunakan untuk, misalnya untuk memutar impeller pompa, fan atau blower, menggerakan kompresor, mengangkat bahan, dll. Prinsip kerja pada motor listrik, yaitu tenaga listrik di ubah menjadi tenaga mekanik. Perubahan ini dilakukan dengan

mengubah tenaga listrik menjadi magnet yang disebut sebagai elektro magnet. Sebagaimana kita ketahui bahwa: kutub – kutub dari magnet akan senama akan tolak – menolak dan kutub – kutub yang tidak senama akan saling tarik – menarik. Maka kita akan memperoleh gerakan jika kita menempatkan sebuah magnet pada sebuah poros yang dapat berputar, dan magnet yang lain pada suatu kedudukan yang tetap. Tri Sutrisno, Himawan., Borian, Pinto.: Kursi Roda Elektris.2012.

#### 2.6.1 Jenis – Jenis Motor Listrik

#### A. Motor AC

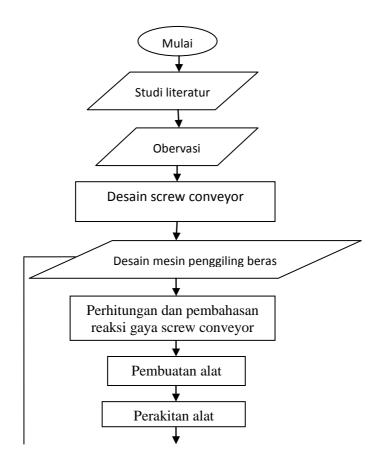
Motor arus bolak-balik menggunakan arus listrik yang membalikkan arahnya secara teratur pada rentang waktu tertentu. Motor listrik memiliki dua buah bagian dasar listrik: "stator" dan"rotor". Stator merupakan komponen listrik statis. Rotor merupakan komponen listrik yang berputar.

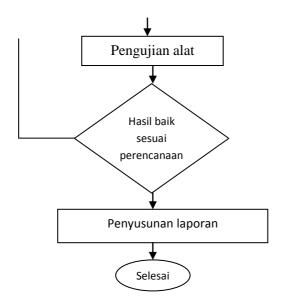
#### B. Motor DC

Motor arus searah (Direct Current), menggunakan arus langsung yang tidak langsung/direct - unidirectional. Motor DC digunakan pada penggunaan khusus dimana diperlukan penyalaan torque yang tinggi atau percepatan yang tetap untuk kisaran kecepatan yang luas.

#### 2.7 Motor Mesin Cuci

Motor pada mesin cuci berfungsi untuk menggerakan pulsator dan penggering pada mesin cuci. Motor mesin cuci ini berjalan menggunakan motor jenis AC induksi. Motor mesin cuci mempunyai kecepatan putaran yang tinggi dan daya yang rendah, selain itu mempunyai bobot yang ringan. Disini penulis memakai motor mesin cuci karena lebih efektif dari pada memakai motor listrik pada umumnya. Penulis mencoba membuat alat sesederhana dan seringan mungkin menggingat kapasitas alatnya adalah berskala rumah tangga.





Gambar 2.20 Dinamo mesin cuci

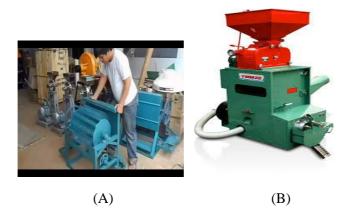
# **BAB III**

# **METODOLOGI**

# 3.1. Diagram Alir






Gambar 3.1 Diagram alir percobaan (Flow Chart)

# 3.2. Data – Data Hasil Survey

Dalam pembuatan tugas akhir ini kami menggunakan metode penelitian yang meliputi :

# 1. Study literatur

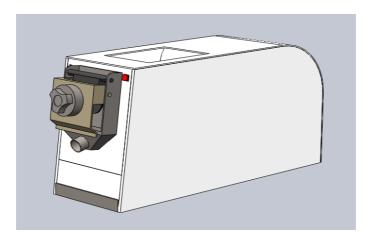
Melakukan pengamatan terhadap mesin-mesin penggiling beras yang sudah ada dipasaran, guna membantu perencanaan mesin yang akan dirancang dan pengamatan terhadap masyarakat yang mengharapkan mesin penggiling beras rumahan.



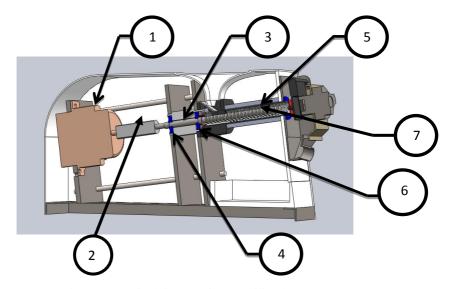
Gambar 3.1 A. Proses penggilingan beras dengan tenaga manusia B Mesin penggiling beras

#### 2. Observasi

Hal pertama yang dilakukan ada melakukan pengamatan dilapangan untuk melihat mesin-mesin penggilingan beras yang ada di pasaran.


# 3. Desain screw conveyor

Setelah melakukan pengamatan di lapangan metode yang akan digunakan adalah dengan menggunakan screw conveyor.




Gambar 3.2 Desain screw conveyor

# 4. Desain alat



Gambar 3.3 Desain alat penggiling beras



Gambar 3.4 Desain dalam mesin penggiling beras

# Keterangan:

- 1. Dinamo mesin cuci
- 2. Copel
- 3. Poros
- 4. Bearing A
- 5. Bearing B
- 6. Filter Screw
- 7. Screw conveyor

# 5. Analisa dan pembahasan reaksi gaya screw conveyor

Setelah melakukan pengujian alat maka bisa diketahui reaksi gaya apa saja yang terjadi pada screw conveyor di saat mesin penggilingan beras bekerja.

#### 6. Pembuatan alat

Desain alat yang sudah dibuat kemudian dilakukan pembuatan alat penggilingan beras yang disesuaikan dengan kebutuhan skala rumah tangga

#### 7. Perakitan alat

Setelah semua komponen dibuat langkah selanjutnya adalah merakitnya menjadi mesin penggilingan beras tersebut.

### 8. Pengujian alat

Setelah alat sudah dirakit maka, selanjutnya dilakukan pengujian mesin penggilingan beras apakah sesuai dengan kebutuhan yang telah dibuat.

### 3.3. Cara Kerja Mesin Yang Direncanakan

Cara kerja mesin penggiling beras yang direncanakan adalah sebagai berikut :

- 1. Sistem penggerak utama mesin ini adalah motor mesin cuci dengan daya 200 watt (1420 rpm)
- 2. Poros yang berputar menggerakkan screw conveyor dan mendorong beras pecah kulit kedepan untuk digiling memisahkan dedak dari beras pecah kulitnya..
- 3. Hasil dari penggilingan beras akan keluar melalui corong depan dan dedak dari beras pecah kulit akan jatuh di dalam wadah yang berada di bawah mesin.

### 3.4. Peralatan yang Digunakan

Peralatan pendukung yang digunakan dalam pembuatan alat penggiling daging ini adalah :

- 1. Meteran
- 2. Sketmacth
- 3. Mesin Las Listrik
- 4. Gerinda
- 5. Mesin bubut
- 6. Bor, dll

#### 3.5. Cara kerja mesin penggiling beras

Cara kerja mesin penggiling beras sebagai berikut :

- 1. Mesin penggiling daging digerakkan dengan motor mesin cuci untuk menggerakkan poros dan screw conveyor
- Beras pecah kulit dimasukkan dalam penggilingan dan mesin penggilingan di hidupkan. Screw conveyor berputar dan beras pecah kulit akan terdorong kedepan, karena adanya putaran yang tinggi dedak akan terpisah dengan sendirinya dari beras pecah kulit.
- 3. Proses penggilingan akan keluar melalui saringan lalu turun ke corong depan dan dedak akan jatuh di wadah di bagian bawah mesin.

Dalam penjelasan yang diberikan, metode cara pengujian dan pembuatan buku dapat diperjelas dengan penyusunan diagram alir dan flowchart seperti didepan.

#### **BAB IV**

#### ANALISA DAN PEMBAHASAN

Pada bab ini akan membahas tentang analisa data pengujian yang ada pada komponen – komponen screw conveyor yang nantinya akan digunakan untuk menghitung perhitungan reaksi gaya yang terjadi pada screw conveyor, poros, dan menentukan umur bearing.



Gambar 4.1 Screw conveyor

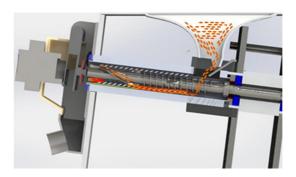
Dimensi screw conveyor yang digunakan:

Panjang (L) : 125 mm

Diameter screw (D) : 15 mm

Pitch (s) : 4 mm

Diameter poros (d) : 11 mm


# 4.1 Analisa data pada screw conveyor

- Massa poros total = 0.25 kg
- Massa screw = 0.15 kg

Massa screw di atas di dapat dari hasil perbandingan antara panjang screw dan massa poros total.

### 4.2 Mencari kapasitas dan laju material

Sebelum menganalisa tentang reaksi gaya pada screw conveyor dari mesin sosoh beras ini, sebaiknya memahami dahulu prinsip kerjanya. Oleh karena itu disini akan dilakukan analisa proses, yang akan di ilustrasikan dengan gambar berikut:



Gambar 4.2 ilustrasi proses mesin

Untuk mencari kapasitas dan laju material dari screw conveyor yang digunakan pada mesin penggiling beras dapat ditentukan dengan menggunakan rumus:

$$Q = V \gamma$$

$$Q = 60 \frac{\pi D^2}{4} \text{ S. n. } \psi. \gamma. \text{ C (ton/jam)}$$

(A. spivakovsky ad V. Dyachkov, Conveyors and Relatetd Equipmen)

#### Dimana:

= Kapasitas screw conveyr (ton/jam) Q

V = Kapasitas material yang dipindahkan  $(m^3/jam)$ 

= Diameter screw conveyor (m)= D  $_{mean}(\frac{Dscrew+Dporos}{2})$ D

S = Pitch screw conveyor / jarak perpindahan material dari satu (m)

= Putaran screw (rpm) n

= Massa jenis material yang dipindahkan  $(ton/m^3)$ γ

= efisiensi daerah vertical screw conveyor

= Faktor kemiringan

Untuk mencari kapasitas dan laju material pada crew conveyor setelan dari katub digunakan setelan katub terbesar. Sehingga untuk mencari kapasitas untuk screw conveyor dapat ditentukan dengan menggunakan rumus:

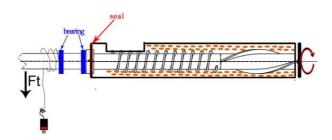
$$Q = 60 \frac{\pi D^2}{4} S. n. ψ. γ. C$$

Dimana.

Q = 0,0002 ton /0,0062 jam  
= 0,032 ton/jam  
D = 
$$\frac{11 \text{ mm} + 15 \text{ mm}}{2}$$
 = 13 mm

= 0,013 m 
$$Q = 60 \frac{\pi.0,013^{2}}{4} 0,004 . 1400. 0,2. 0,79. 0,8$$

= 0,00563 ton/jam


Sehingga kecepepatan laju material dari screw conveyor:

$$V = \frac{\pi . d.s}{1000.60 s}$$
$$= \frac{3.14.7,5 mm.14 s}{1000.60 s}$$
$$= 0.005495 m/s$$

# 4.3 Mencari torsi dan gaya tangensial screw

Sebelum menghitung torsi screw conveyor harus diketahui besar gaya tangensial pada screw. Oleh karena itu dibutuhkan sebuah metode pengujian dengan neraca pegas. Neraca pegas di lilitkan ke dalam screw onveyor dengan mengunakan tali. Kemudian beras dituang ke dalam screw conveyor sampai terisi

penuh, dan neraca pegas ditarik ke atas. Untuk lebih jelasnya ada pada gambar di bawah ini :



Gambar 4.3 Skema gaya tangensial screw

Dari hasil metode pengujian dengan menggunakan neraca pegas di atas maka, gaya tangensial pada screw dapt ditentukan dengan menggunakan persamaan :

$$F_t = 1257. \ 10^{-3} \text{ Kg} . 9,81 \text{ m/s}^2$$
  
= 12,331 N

Gaya tangensial di atas diperoleh dari data percobaan pada skala katup 6 (terjadi torsi terbesar). Untuk mengetahui gaya yang terjadi.

# Dengan data sebagai berikut:

 Skala katup
 Hasil (dalam g)

 3
 2520

 2
 1990

 1
 1380

 Tanpa Katup
 1240

Tabel 4.1 data percobaan

Untuk mencari torsi yang dihasilkan oleh screw conveyor yang digunakan pada mesin penggiling beras dapat ditentukan dengan rumus :

$$T = F_t . r_{mean}$$

Namun sebelum menghitung torsi screw harus menentukan  $r_{mean}$  dapat diperoleh dari persamaan :

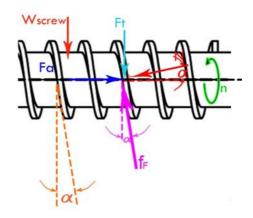
$$r_{mean} = \frac{r_{poros+}r_{screw}}{2}$$
 $r_{mean} = \frac{0.0011+0.0075}{2}$ 

$$r_{mean} = 0,0085 \text{ m}$$

Sehingga torsi yang dihasilkan screw conveyor:

$$T = 12,331 \text{ N} \cdot 0,0085 \text{ m}$$
  
= 0,104 Nm

Selanjutnya, diasumsikan poros beroperasi pada putaran 1400 rpm. Sehingga diperoleh  $\omega$  dengan persamaan berikut:


$$\omega = \frac{2\pi n}{60}$$

$$\omega = \frac{2\pi 1400}{60}$$

$$\omega = 146,6076 \ rad/\ sec$$

# 4.4 Gaya-gaya yang bekerja pada screw conveyor

Untuk mencari gaya-gaya yang bekerja pada screw conveyor maka dibutuhkan analisa gambar 2D untuk mengetahui arah gaya-gaya yang bekerja pada screw conveyor. Untuk lebih jelasnya lihat pada gambar di bawah ini :



Gambar 4.4 Skema gaya yang terjadi pada screw conveyor

Dari analisa data eksperimen yang dilakukan pada screw conveyor di atas dan melihat analisa gambar 2D diatas maka gaya-gaya yang bekerja pada screw conveyor dapat ditentukan. Untuk lebih jelasnya sebagai berikut:

# ➤ Mencari Fa pada screw conveyor

Untuk mencari Fa yang terjadi pada screw conveyor dapat ditentukan dengan menggunakan persamaan di bawah ini:

$$\rightarrow$$
 +  $\sum F_x = 0$ 

Fa – N cos 
$$\alpha$$
 -  $F_f \sin \alpha + W_{screw} \sin 10^0 = 0$ 

Fa - N cos 
$$\alpha$$
 - N .  $\mu_s$  sin  $\alpha + w_{screw}$  sin  $10^0 = 0$ 

Fa – N (cos 
$$\alpha + \mu_s \sin \alpha$$
) +  $w_{screw} \sin 10^0 = 0$ 

$$Fa=N(\cos\alpha+\mu_s\sin\alpha)+w_{screw}\sin 10^0...(4.1)$$

$$\uparrow + \sum F_y = 0$$

$$F_{\rm f}\cos\alpha - N\sin\alpha - F_{\rm t}\cos\alpha - W_{\rm screw}\cdot\cos10^0 = 0$$

$$N \mu_s \cos \alpha - N \sin \alpha - F_t \cos \alpha - W_{screw}$$
.  $\cos 10^0 = 0$ 

N (
$$\mu_s \cos \alpha - \sin \alpha$$
) =  $F_t \cos \alpha + w_{screw} \cdot \cos 10^0$ 

$$N = \frac{F_t \cos \alpha + w_{\text{screw}}}{w_s \cos \alpha - \sin \alpha} \cdot \cos 10^0$$

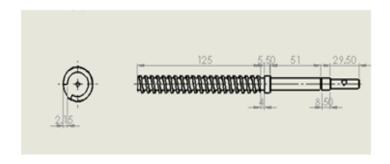
Dimana,

$$F_t = 12,143 \text{ N}$$
  
 $w_{\text{screw}} = 0,15 \text{ Kg} \cdot 9,81 \text{ m/s}^2 = 1,471 \text{ N}$   
 $\mu_s = 0,6$ 

$$\alpha = 10^{0}$$

$$N = \frac{12,143 \, \text{N} + 1,471 \, \text{N}}{0,6 \, \text{cos} \, 10^{0} - \text{sin} \, 10^{0}} \, . \, \, \text{cos} \, 10^{0}$$

= 14.386 N


Substitusi ke persamaan 4.1

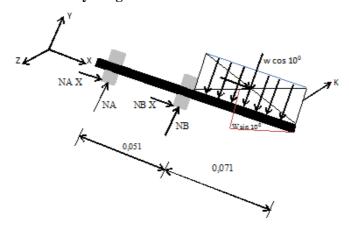
$$Fa = N (\cos \alpha + \mu_s \sin \alpha) + w_{screw}$$

$$= 14,386 (\cos 10^0 + 0.6 \sin 10^0) + 0.15$$

= 14,421 N

Nilai gaya aksial (Fa) tersebut merupakan nilai dalam satu poros screw, dikarenakan pendekatan analisa yang dilakukan adalah analisa dalam satu batang poros secara keseluruhan.




Gambar 4.5 Dimensi poros yang digunakan

# ➤ Mencari gaya dorong pada screw

Untuk mencari gaya dorong yang terjadi pada screw conveyor dapat dicari dengan menggunakan rumus sebagai berikut :

Nilai a adalah kecepatan benda, disini kecepatan benda yang di gunakan adalah dari hasil perhitungan mencari laju material beras.

# 4.5. Free Body Diagram



Gambar 4.6 Free Body Diagram

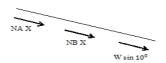
Dimana pembebanan yang terjadi diakibatkan oleh dua hal, yaitu: gaya dorong dan berat beras yang menumpu pada poros.

$$F_{sentrifugal} = m \cdot \omega^2 \cdot r_{mean}$$
  
= 0,25 Kg \cdot (146,6076 rpm)^2 \cdot 0,0085 m  
= 0,311 N  
 $W_{beras} = m_{beras} \cdot 9,81 \text{ m/s}^2$   
= 0,15 Kg \cdot 9,81 m/s^2

$$= 1,471 \text{ N}$$

Selanjutnya, gaya untuk pembebanan merata diperoleh dengan persamaan:

$$W = \frac{W_{total}}{panjang poros}$$


$$W = \frac{W_{beras} + W_{sentrifugal}}{panjang poros}$$

$$W = \frac{1,471 N + 0,311 N}{0,061 m}$$

$$= 6,569 \text{ N/m}$$

Setelah gaya diketahui selanjutnya perhitungan momen potongan yang di ilustrasikan sebagai berikut:

- Reaksi Tumpuan Arah Horizontal

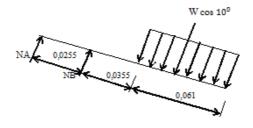


$$\pm$$
  $\sum Fx = 0$ 

NA X + NB X + w 
$$\sin 10^{0} = 0$$
  
NA X + NB X = - w  $\sin 10^{0}$ 

Asumsi gaya sama

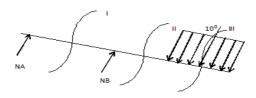
$$NA X = NB X$$


Jadi:

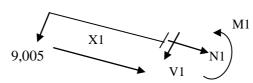
$$2 \text{ NA } X = -w \sin 10^{0}$$

$$NA X = \frac{-(6,659 \text{ N. sin } 10^{0})}{2}$$

= -0,578 N ( arah sebenarnya  $\longrightarrow$ )


- Reaksi Tumpuan Arah Vertikal



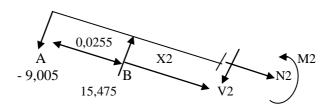

W = 6,659 N/m x 0,061  
= 0,4007 N  
+↑ ∑ Fy = 0  
NA + NB - w cos 10° = 0  
NA + NB = w cos 10°  
-NB . 0,025 + w cos 10° . 0,061 = 0  
W cos 10° . 0,061 = NB . 0.025  

$$\frac{6,569 \cos 10° (0,061)}{0,0255} = NB$$
NB = 15,475 N  
NA = w cos 10° - NB  
= 6,569 N cos 10° - 15,475 N  
= -9,005 N (↓)

# 4.6.3 Potongan Pada Poros



# - Potongan I



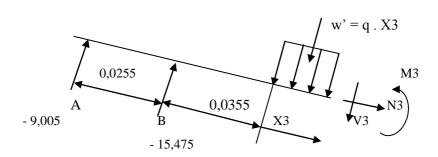

$$+\sum Mpot = 0$$

$$-9,005 \cdot X1 - M1 = 0$$
  
 $M1 = -9,005 \cdot X1$ 

$$X1 = 0 \rightarrow M1 = 0$$
  
 $X1 = 0,0255 \rightarrow M1 = -0,229 \text{ N (arah sebenarnya)}$ )

## Potongan II




$$\int_{-\infty}^{\infty} + \sum_{i} Mpot = 0$$

- NA . 
$$(0.0255 + X2) + NB(X2) - M2 = 0$$
  
-  $9.005 N(0.0255 + X2) + 15.475 N(X2) - M2 = 0$ 

## Maka:

$$M2 = -9,005 (0,0255 + X2) + 15,475 X2$$
  
 $X2 = 0 \rightarrow M2 = -0,229 N (arah sebenarnya)$ 

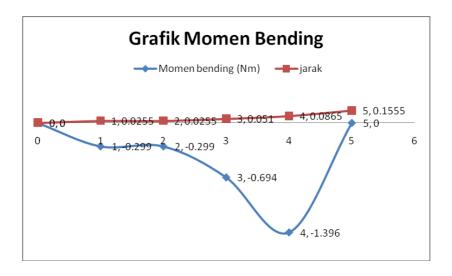
## - Potongan III



$$+ \sum Mpot = 0$$

$$w' = q \cdot X3$$

$$-9,005$$
 (  $0,0255 + 0,0355$  ) +  $15,475$  (  $0,0355 + X3$  )  $-6,569 X3 - M3$  =  $0$ 


$$-9,005 (0,0255 + 0,0355) + 15,475 (0,0355 + X3) - \frac{6,569 X^2}{2} - M3 = 0$$

M3 = -9,005 (0,0255 + 0,0355) + 15,475 (0,0355 + X3) - 
$$\frac{6,569}{0,061} \cdot \frac{X3^{2}}{2}$$

### Maka:

$$X3 = 0.0255 \rightarrow M3 = 0.395 \text{ N}$$
 ( arah sebenarnya ))  
 $X3 = 0.0355 \rightarrow M3 = -0.702 \text{ N}$  ( arah sebenarnya ))  
 $X3 = 0.069 \rightarrow M3 = 0 \text{ N}$  ( arah sebenarnya )

## 4.6.4 Gambar grafik momen bending



Gambar 4.7 Moment bending pada tiap potongan

#### 4.6 Analisa Pada Poros

Dalam menganalisa poros, terdapat dua variable yang ditentukan, antara lain: penentan diameter minimal poros dan penentuan tegangan geser maksimum yang terjadi pada poros. Selain terbebani oleh gaya yang dibutuhkan untuk berotasi, poros juga dapat mengalami bengkok dan geser. Oleh karena itu analisa selanjutnya adalah untuk mengetahui momen bending dan tegangan maksimal yang dapat diterima oleh poros.

### 4.6.1 Penentuan diameter minimal poros

Pada analisa poros direncanakan diameter minimal yang diizinkan untuk mengatasi pembebanan yang terjadi dengan menggunakan persamaan berikut:

$$d_{poros} = \sqrt[3]{\frac{16\sqrt{mb^2} + MT^2}{\pi \cdot \frac{Ssyp}{Ak}}}$$

(Diktat elemen mesin 1)

Dimana data ssyp didapat dari persamaan berikut:

$$Ssyp = 0.58 . syp,$$

dan syp diperoleh dari table berikut:

Tabel 4.2 Syp stainless stell sus 304

| Mechanical Propertis       |               |               |                                    |
|----------------------------|---------------|---------------|------------------------------------|
| Hardness, Brinell          | 123           | 123           | Converted from Rockwell B hardness |
| Hardness, Knoop            | 138           | 138           | Converted from Rockwell B hardness |
| Hardness, Rockwell         | 70            | 70            |                                    |
| Hardness, Vickers          | 129           | 129           | Converted from Rockwell B hardness |
| Tensile Strength, Ultimate | 505 Mpa       | 73200 psi     |                                    |
| Tensile Strength, Yield    | 215 Mpa       | 31200 psi     | at 0.2 % offset                    |
| Elongation at Break        | 70%           | 70%           | in 50 mm                           |
| Modulus of elasticity      | 193 - 200 Gpa | 28000 - 29000 |                                    |
| Poisson's Ratio            | 0.29          | 0.29          |                                    |
| Charpy Impact              | 325 J         | 240 ft-lb     |                                    |
| Shear Modulus              | 86 Gpa        | 12500 ksi     |                                    |

$$Ssyp = 0.58 \cdot 215 \text{ MPa} = 124.7 \cdot 10^6 \text{ Pa}$$

Selanjutnya angka keamanan (Ak) didasarkan pada table berikut:

$$3,1-4$$
 (untuk beban dinamis)

$$4,1-5$$
 (untuk beban kejut)

Sehingga diperoleh diameter minimal:

$$d_{poros} = \sqrt[8]{\frac{16 \cdot 0.104 \; \mathrm{Nm} \sqrt{0.702 \, Nm + 0.104^2}}{\pi \cdot 124.7 \cdot 10^6 \, \mathrm{Pa}/_2}}$$

$$d_{poros} = 0.012 \text{ m} = 12 \text{ mm}$$

## 4.6.2 Perhitungan Tegangan Geser Maksimum Pada Poros

Tegangan geser maksimum dapat diperoleh melalui persamaan berikut:

$$\tau_{max} = \sqrt{\left(\frac{\sigma}{2}\right)^2 + (\tau)^2}$$

Dimana,

$$\sigma = \frac{Mb.c}{I_p} \; dan \; \tau = \frac{T.c}{I_p}$$

$$I_{polar} = \frac{1}{32}\pi d_{mean}^4$$

$$I_p = \frac{1}{32} \cdot \pi (2.0,01325 \, m)^4$$

$$= 3.5 \times 10^{-9} \text{ m}^4$$

## 4.7 Bearing

Bearing yang digunakan pada mesin penggilingan ini ada jenis ball bearing. Jumlah bearing yang digunakan adalah 2 buah ball bearing.

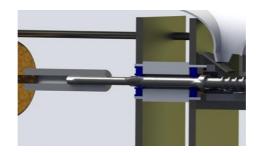
### 4.7.1 Merencanakan umur bearing

Untuk mengetahui keausan bearing yang dipakai pada mesin penggilingan beras, dapat dihitung dengan menggunakan rumus :

$$L_{10h} = \left(\frac{c}{p}\right)^b \times \frac{10^6}{60.n}$$

Dimana:

 $L_{10h}$  = Umur bearing, jam-kerja


C = Beban dinamis (dapat dilihat dari table), lbf

n = putaran poros, rpm

P = Beban Ekivalen (eqivalent load)

b = konstanta yang tergantung tipe beban (b = 3 untuk ball bearing dan b = 3,3 untuk rolling

bearing)



Gambar 4.7 Penempatan bearing pada mesin

Namun sebelum menghitung berapa lama keausan bearing yang digunakan, harga beban ekivalen bearing (P) harus dihitung terlebih dahulu.

# 4.7.2 Menghitung beban ekivalen

$$P = V.X.F_r + Y.F_a$$

Dimana:

P = beban ekivalen, lbf

Fr = beban radial, lbf

Fa = beban aksial, lbf

V = faktor putaran (konstan) bernilai :

= 1,0 untuk ring dalam berputar

= 1,2 untuk ring luar yang berputar

X = konstanta radial (dari tabel, dapat dilihat pada lampiran)

Y = konstanta aksial (dari tabel, dapat dilihat pada lampiran)

Untuk menentukan nilai x dan y dapat dihitung dengan menggunakan rumus sebagai berikut :

## Bearing A

$$\frac{iFa}{c_0} = \frac{1.14,421\,N}{685} = 0,0210$$

$$\frac{Fa}{V.F_T} = \frac{14,421 \, N}{1.57,798 \, N} = 0,249$$

Untuk mengetahui nilai e pada bearing A dibutuhkan tabel bearing sebagai berikut :

| (i.Fa/Co)                              | (Fa/V.Fr) <e< th=""><th colspan="2">(Fa/V.Fr) &gt;e</th><th colspan="2">(Fa/V.Fr) <e< th=""><th colspan="2">(Fa/V.Fr) &gt;e</th><th>е</th></e<></th></e<> |   | (Fa/V.Fr) >e |      | (Fa/V.Fr) <e< th=""><th colspan="2">(Fa/V.Fr) &gt;e</th><th>е</th></e<> |   | (Fa/V.Fr) >e |      | е    |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------|------|-------------------------------------------------------------------------|---|--------------|------|------|
|                                        | Х                                                                                                                                                         | Υ | Х            | Υ    | Х                                                                       | Υ | Х            | Υ    |      |
| Radial Contact Ball Bearing            |                                                                                                                                                           |   |              |      |                                                                         |   |              |      |      |
| 0,014                                  |                                                                                                                                                           |   |              | 2,30 |                                                                         |   |              | 2,30 | 0,19 |
| 0,028                                  |                                                                                                                                                           |   |              | 1,99 |                                                                         |   |              | 1,99 | 0,22 |
| 0,056                                  |                                                                                                                                                           |   |              | 1,71 |                                                                         |   |              | 1,71 | 0,26 |
| 0,084                                  |                                                                                                                                                           |   |              | 1,55 |                                                                         |   |              | 1,55 | 0,28 |
| 0,110                                  | 1                                                                                                                                                         | 0 | 0,56         | 1,45 | 1                                                                       | 0 | 0,56         | 1,45 | 0,30 |
| 0,170                                  |                                                                                                                                                           |   |              | 1,31 |                                                                         |   |              | 1,31 | 0,34 |
| 0,280                                  |                                                                                                                                                           |   |              | 1,15 |                                                                         |   |              | 1,15 | 0,38 |
| 0,420                                  |                                                                                                                                                           |   |              | 1,04 |                                                                         |   |              | 1,04 | 0,42 |
| 0,560                                  |                                                                                                                                                           |   |              | 1,00 |                                                                         |   |              | 1,00 | 0,44 |
| Catatan:                               | Catatan:                                                                                                                                                  |   |              |      |                                                                         |   |              |      |      |
| (Fa/V.Fr) = e , maka : X = 1 dan Y = 0 |                                                                                                                                                           |   |              |      |                                                                         |   |              |      |      |
| Sumber : Deutschman, 1975              |                                                                                                                                                           |   |              |      |                                                                         |   |              |      |      |
|                                        |                                                                                                                                                           |   |              |      |                                                                         |   |              |      |      |
|                                        |                                                                                                                                                           |   |              |      |                                                                         |   |              |      |      |
|                                        |                                                                                                                                                           |   |              |      |                                                                         |   |              |      |      |

Tabel 4.3 Nilai e pada bearing A

$$e = 0.29$$

Karena  $\frac{Fa}{VF_r}$  > dari e maka diperoleh nilai x dan y sebagai berikut :

$$x = 0,56$$

$$y = 1,5$$

Sehingga:

$$P = F_r \cdot V \cdot x + Fa \cdot y$$

Dimana Fa = 14,421 N

Maka umur bearing A:

$$L_{10} = \left(\frac{c}{p}\right)^b \cdot \frac{10^6}{60^n}$$

$$= \left(\frac{1180 N}{92,392 N}\right)^3 \cdot \frac{10^6}{60.1420 rpm}$$

$$= 3271525,913 \text{ jam}$$

5 Bearing B

$$\frac{iF\alpha}{c_0} = \frac{1.14,421 \, N}{685} = 0,0210$$

$$\frac{F\alpha}{V.F_T} = \frac{14,421 \, N}{1.99,316 \, N} = 0,145$$

Untuk mengetahui nilai e pada bearing B dibutuhkan tabel bearing sebagai berikut :

| (Fa/V.                                 | .Fr) <e< th=""><th colspan="2">(Fa/V.Fr) &gt;e</th><th colspan="2">(Fa/V.Fr) <e< th=""><th colspan="2">(Fa/V.Fr) &gt;e</th><th>е</th></e<></th></e<> | (Fa/V.Fr) >e |                 | (Fa/V.Fr) <e< th=""><th colspan="2">(Fa/V.Fr) &gt;e</th><th>е</th></e<>                           |                                                                                                       | (Fa/V.Fr) >e                                                                                                         |                                                                                                                                  | е                                                                                                                                        |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Χ                                      | Υ                                                                                                                                                    | Х            | Υ               | Χ                                                                                                 | Υ                                                                                                     | Х                                                                                                                    | Υ                                                                                                                                |                                                                                                                                          |  |  |
| Radial Contact Ball Bearing            |                                                                                                                                                      |              |                 |                                                                                                   |                                                                                                       |                                                                                                                      |                                                                                                                                  |                                                                                                                                          |  |  |
|                                        |                                                                                                                                                      | 0,56         | 2,30            | 1                                                                                                 | 0                                                                                                     | 0,56                                                                                                                 | 2,30                                                                                                                             | 0,19                                                                                                                                     |  |  |
|                                        |                                                                                                                                                      |              | 1,99            |                                                                                                   |                                                                                                       |                                                                                                                      | 1,99                                                                                                                             | 0,22                                                                                                                                     |  |  |
|                                        |                                                                                                                                                      |              | 1,71            |                                                                                                   |                                                                                                       |                                                                                                                      | 1,71                                                                                                                             | 0,26                                                                                                                                     |  |  |
|                                        | 0                                                                                                                                                    |              | 1,55            |                                                                                                   |                                                                                                       |                                                                                                                      | 1,55                                                                                                                             | 0,28                                                                                                                                     |  |  |
| 1                                      |                                                                                                                                                      |              | 1,45            |                                                                                                   |                                                                                                       |                                                                                                                      | 1,45                                                                                                                             | 0,30                                                                                                                                     |  |  |
|                                        |                                                                                                                                                      |              | 1,31            |                                                                                                   |                                                                                                       |                                                                                                                      | 1,31                                                                                                                             | 0,34                                                                                                                                     |  |  |
|                                        |                                                                                                                                                      |              | 1,15            |                                                                                                   |                                                                                                       |                                                                                                                      | 1,15                                                                                                                             | 0,38                                                                                                                                     |  |  |
|                                        |                                                                                                                                                      |              | 1,04            |                                                                                                   |                                                                                                       |                                                                                                                      | 1,04                                                                                                                             | 0,42                                                                                                                                     |  |  |
|                                        |                                                                                                                                                      |              | 1,00            |                                                                                                   |                                                                                                       |                                                                                                                      | 1,00                                                                                                                             | 0,44                                                                                                                                     |  |  |
| Catatan:                               |                                                                                                                                                      |              |                 |                                                                                                   |                                                                                                       |                                                                                                                      |                                                                                                                                  |                                                                                                                                          |  |  |
| (Fa/V.Fr) = e , maka : X = 1 dan Y = 0 |                                                                                                                                                      |              |                 |                                                                                                   |                                                                                                       |                                                                                                                      |                                                                                                                                  |                                                                                                                                          |  |  |
| Sumber: Deutschman, 1975               |                                                                                                                                                      |              |                 |                                                                                                   |                                                                                                       |                                                                                                                      |                                                                                                                                  |                                                                                                                                          |  |  |
|                                        |                                                                                                                                                      |              |                 |                                                                                                   |                                                                                                       |                                                                                                                      |                                                                                                                                  |                                                                                                                                          |  |  |
|                                        |                                                                                                                                                      |              |                 |                                                                                                   |                                                                                                       |                                                                                                                      |                                                                                                                                  |                                                                                                                                          |  |  |
|                                        |                                                                                                                                                      |              |                 |                                                                                                   |                                                                                                       |                                                                                                                      |                                                                                                                                  |                                                                                                                                          |  |  |
|                                        | X  1                                                                                                                                                 | 1 0          | X Y X  Radial ( | X Y X Y  Radial Contact E  2,30 1,99 1,71 1,55 1,45 1,31 1,15 1,04 1,00 e, maka : X = 1 dan Y = 0 | X Y X Y X  Radial Contact Ball Bea  2,30 1,99 1,71 1,55 1,04 1,15 1,04 1,00  e, maka: X = 1 dan Y = 0 | X Y X Y X Y X Y  Radial Contact Ball Bearing  2,30 1,99 1,71 1,55 1,45 1,31 1,15 1,04 1,00  e, maka: X = 1 dan Y = 0 | X Y X Y X Y X Y X  Radial Contact Ball Bearing  2,30 1,99 1,71 1,55 1 0 0,56 1,45 1,31 1,15 1,04 1,00  e, maka : X = 1 dan Y = 0 | X Y X Y X Y X Y X Y X Y Radial Contact Ball Bearing  2,30 1,99 1,71 1,55 1 0 0,56 1,45 1,31 1,15 1,04 1,00 1,00 1,00 1,00 1,00 1,00 1,00 |  |  |

Tabel 4.4 Nilai e pada bearing B

$$e = 0.027$$

Karena  $\frac{Fa}{VF_r}$  > dari e maka diperoleh nilai x dan y sebagai berikut :

$$x = 0.56$$

$$y = 1,5$$

Sehingga:

$$P = F_r \cdot V \cdot x + Fa \cdot y$$
  
= 96,131 \cdot 1 \cdot (0,56) + 14,421 \cdot (1,5)

$$= 75,464 \text{ N}$$

Maka umur bearing B:

$$L_{10} = \left(\frac{c}{p}\right)^b \cdot \frac{10^6}{60 n}$$

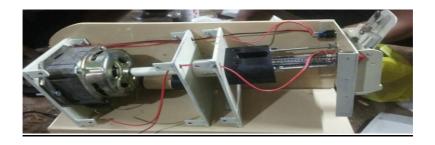
$$= \left(\frac{1180 N}{75,464 N}\right)^3 \cdot \frac{10^6}{60.1420 \ rpm}$$

$$= 4903875,756 \ jam$$

#### 4.8 Dinamo mesin cuci

Pada mesin penggilingan beras dengan skala rumah tangga dibutuhkan sebuah motor penggerak yang menggunakan aliran listrik. Disini penulis menggunakan dynamo mesin cuci sebagai penggerak screw conveyor. Pada dinamo mesin cuci menggunakan daya 0,2 HP dengan putaran 1420 data tersebut di dapat dari spesifikasi dari dinamo mesin cuci tersebut. Daya dan putaran yang dihasilkan sudah cukup memenuhi kebutuhan beras dengan skala rumah tangga.

Pada percobaan alat yang telah dilakukan di dapat hasil dari percobaan seperti pada gambar berikut :




Gambar 4.8 Hasil percobaan alat

Berikut adalah foto mesin penggiling beras dengan skala rumah tangga tampak dari luar dan tampak dari belakang :



Gambar 4.9 Tampak luar mesin penggiling beras



Gambar 4.10 Tampak dalam mesin penggiling beras

#### **BAB V**

#### MANUFAKTUR

Pada bab ini akan membahas proses pembuatan mesin penggiling beras skala rumah tangga, yaitu proses pembuatan screw conveyor dan komponen-komponen mesin penggilingan beras skala rumah tangga.

## 5.1 Manufaktur Screw Conveyor

Proses pembuatan screw conveyor yang harus dilakukan terlebih dahulu adalah cara pembuatan poros pada langkah awal, dimana poros berguna untuk pemutar dari screw conveyor dan juga tumpuan screw conveyor kemudian dari proses pembuatan poros screw conveyor dilanjutkan proses pembuatan screw conveyor.

### 5.1.1 Pembuatan poros screw conveyor

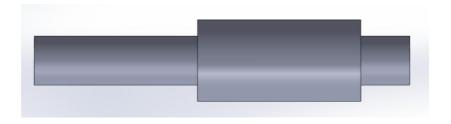
Pada pembuatan poros screw conveyor, bahan yang digunakan adalah *stainless stell* jenis *SUS 304* yang aman digunakan untuk pengolahan makanan atau dalam dunia industri disebut *food grade*, kemudian dilakukan proses turning dengan menggunakan mesin bubut dengan spesifikasi sebagai berikut:

Type : Moriseiki japan

Kapasitas : 300 x 850 mm

Akurasi : 0,05 mm

Tingkat putaran spindle dalam (rpm):


Tabel 5.1 Tingkat putaran spindle dalam (rpm)

| 30  | 37,5 | 47,5 | 60  | 75  | 95  | 118 | 150  | 190  |
|-----|------|------|-----|-----|-----|-----|------|------|
| 235 | 300  | 375  | 475 | 600 | 750 | 950 | 1180 | 1500 |

Dalam proses pembuatan poros screw conveyor ini, menggunakan bahan baja dengan jenis baja yaitu ST 42. Poros tersebut yang nantinya berfungsi untuk memutar screw conveyor dan menjadi tumpuan dari screw conveyor tersebut, berikut ini langkahlangkah pengerjaan dalam pembuatan poros screw conveyor.

## Langkah Pengerjaan:

 Menyiapkan bahan yang akan digunakan, misalnya adalah pada pembuatan poros dibutuhkan silinder stainless stell dengan jenis bahan SUS 304. Pada gambar dibawah ini poros yang akan dibuat



Gambar 5.1 Pembuatan poros yang diinginkan

- 2. Menyiapkan peralatan pendukung, seperti soft harmer, pahat dengan jenis pahat HSS, kunci chuck dll
- 3. Kemudian mengecek kondisi mesin bubut yang akan digunakan untuk proses permesinan (turning) pada poros tersebut.

- 4. Lalu pemasangan silinder stainless stell tersebut pada chuck (pencekam mesin bubut), dan dilakukan meluruskan titik pusat poros/silinder pejal dengan tailstock mesin bubut. Maka selanjutnya adalah setting pahat pada tool post.
- 5. Setelah itu, langkah berikutnya adalah membubut silinder stainless stell/poros screw conveyor, dengan kecepatan potong, kecepatan makan, waktu yang diperlukan pada peroses tersebut dan kecepatan penghasilan geram pada poros screw conveyor untuk menjadi dimensi poros screw conveyor yang di inginkan.

Perhitungan pada proses permesinan:

Untuk mencari kedalaman potong proses permesinan dari mesin bubut, didapatkan dengan menggunakan rumus sebagai berikut:

$$a = \frac{(d_m - d_0)}{2}$$

 $Dimana: \ d_m \ : Dimensi \ awal$ 

d<sub>o</sub> : Dimensi akhir

Maka,

$$a = \frac{(d_m - d_0)}{2}$$

$$=\frac{(16-15)}{2}$$

= 0.5 mm

Kemudian mencari kecepatan potong, dengan menggunakan rumus sebagai berikut :

$$V_{c} = \frac{\pi . d. n}{1000}$$

Dimana: d = Dameter benda kerja (mm)

 $n=Kecepatan\ putaran\ mesin\ yang\ digunakan\ (ada\ pada$ 

tabel 5.1) (rpm)

 $V_c = Cutting Speed$  (kecepatan potong), (m/menit)

Maka,

$$V = \frac{\pi \cdot d \cdot n}{1000} = \frac{3,14 \cdot 16 \cdot 400}{1000}$$
$$= 20,096 \, mm/menit \longrightarrow 0,020 m/menit$$

Setelah itu, menghitung kecepatan makan didapatkan dengan menggunakan rumus sebagai berikut :

$$V_f = f.n$$

$$V_f = 0.5.400$$

$$V_f = 200 \text{ mm/min}$$

Selanjutnya mencari jumlah pemotongan, didapatkan dengan menggunakan rumus sebagai berikut :

$$i=\frac{(D_1-D_2)}{2\cdot a}$$

Dimana: i = Jumlah pemotongan kali

 $D_1 = Diameter awal benda kerja$  mm

 $D_2$  = Diameter setelah dibubut mm

= Kedalaman potong mm

Maka,

$$i = \frac{(D_1 - D_2)}{2 \cdot a}$$

$$= \frac{(16 mm - 15 mm)}{2 \cdot 0.5 mm} = 1 kali$$

Jadi, lama waktu yang diperlukan untuk proses pemotongan dapat dicari dengan cara sebagai berikut:

$$T = \left(\frac{L}{n \cdot s}\right)i$$

Dimana: T = Waktu yang dibutuhkan untuk pembubutan menit

L = Panjang benda kerja yang dibubut mm

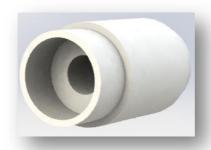
n = Putaran spindle rpm

s = Kecepatan sayat mm/put

i = Jumlah pemotongan

kali

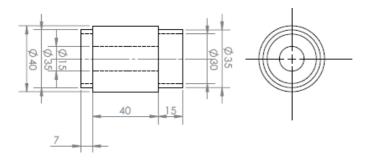
Maka,


$$T = \left(\frac{L}{n \cdot s}\right)i$$
$$= \left(\frac{225 \, mm}{400 \cdot 200}\right) \, 1$$

= 0.0028 menit

## 5.2 Bushing (house bearing)

Bushing digunakan sebagai tummpuan dan dudukan pada bearing yang menumpu poros. Agar poros tetap tegar dalam berotasi, dibutuhkan penumpu yang sesuai yaitu bearing. Dan bearing ini di tempatkan di *bushing*.


Berikut gambar bushing:



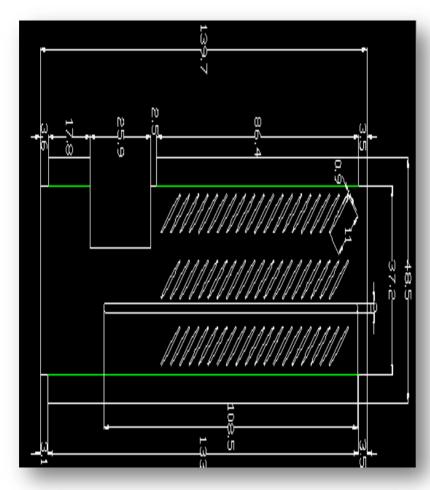
Gambar 5.2 bushing

Bahan yang digunakan adalah jenis Teflon.Pemilihan Teflon disini dikarenakan mampu mereduksi panas akibat gesekan bearing dengan poros, daripada menggunakan bahan besi.Bahan dibeli dengan ukuran diameter sebesar 50 mm dan panjang 20 mm.

Akan tetapi pada kebutuhan bushing ini hanya diperlukan ukuran seperti ini:

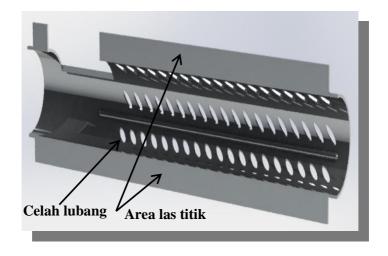


Gambar 5.3 dimensi bushing


Langkah pertama yang dilakukan adalah memotong bahan dengan ukuran 52 mm. Kemudian di bor dengan mata bor 15 dari titik pusat hingga dalam dan tembus.Karena sudah di drilling, selanjutnya pada bagian a dilakukan booring atau perluasan lubang menggunakan bubut hingga diameter 35 mm dan setinggi 7 mm sebagai tempat bearing.Karena nantinya bearing memiliki ukuran lebar 7mm

Kemudian pada bagian b langkahnya juga sama di luaskan lubangnya menggunakan booring, namun beda kedalamannya. Karena pada bagian b ini sebagai tempat untuk bearing dan juga seal maka di beri kedalaman 15 mm.

Kemudian dihaluskan dengan menggunakan teknik *facing* pada mesin bubut hingga diameter 40 mm secara keseluruhan.


## 5.3 Saringan screw conveyor

Pada proses pembuatan saringan screw conveyor penulis memesan dari PT.Dempo Laserindo yang berada di daerah rungkut industry 1 agar dapat menghasilkan sebuah saringan untuk screw conveyor yang di inginkan. Untuk dimensi pemesanannya sebagai berikut:



Gambar 5.4 Dimensi saringan

### Berikut merupakan gambar jadinya:



Gambar 5.5 Saringan screw conveyor


### 5.4 Hopper dalam

Ada dua hopper pada mesin ini, pada pembahasan ini akan dibahas tentang hopper bagian dalam. Hopper bagian dalam ini berfungsi untuk menerima beras dari hopper luar yang menyatu dengan *body*. Sekaligu menjadi pemandu arah dari laju beras dan untuk mempersempit celah masukan beras sehingga mengurangi debit beras yang masuk. Hal ini perlu diperhatikan karena untuk menanggulangi volume beras yang berlebih sehingga mengakibatkan penumpukan di dalam *screw conveyor* hingga ahirnya poros tidak mampu diputar oleh motor karena beban berlebih dan menggumpal.

Fungsi lain dari *part* ini adalah sebagai dudukan untuk casing dari *screw conveyor* diatas dan juga untuk penahan pada body bagian depan yang disambungkan dengan *baut nut stainless stell*. Yang nantinya juga sebagai setting untuk mencari titik tengah dari

kedudukan casing tersebut sehingga hasilnya akan simetris dengan poros yang ada didalamnya.

Berikut merupakan gambar dari hopper dalam:



Gambar 5.6 Hopper dalam

Bahan yang digunakan adalah jenis plastic PL silinder. Kemudian dilakukan drilling dengan diameter 23,6 mm (sesuai dengan  $\varnothing$  casing) selanjutnya dilakukan pemotongan menjadi dua yaitu atas dan bawah. Pada bagian atas dilakukan proses frais tegak ( $face\ milling$ ). Hingga mendapat bentukseperti diatas. Kemudian dilanjutkan dengan menge-frais turun hingga mendapatkan lubang bentuk persegi sebagai hopper dalam. Kemudian dilakukan proses drilling menggunakan bor tangan hingga tembus  $\varnothing$  10 untuk tempat nut penyangga body depan.

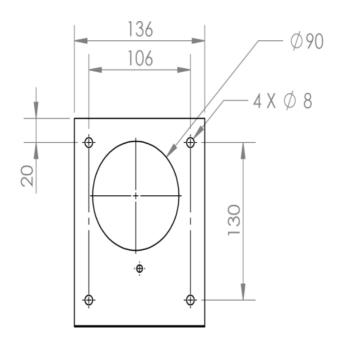
#### 5.5 Frame

Terdapat dua jenis frame pada mesin ini. Yaitu frame atas sebagai penumpu untuk elemen-elemen mesin dan juga frame bawah yang berfungsi menumpu frame atas. Berikut penjelasannya:

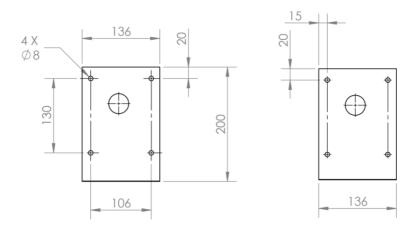
### a) Kerangka atas

Kerangka pada mesin ini terbuat dari plat besi dengan tebal 6 mm untuk kerangka motor (a). Dan 4 mm untuk kerangka tengah(b). perbedaan ukuran ini dilakukan karena melihat dari perkiraan beban yang ditumpu. Pada rangka untuk motor memang dibutuhkan yang lebih tebal karena beban tumpuan yang juga berat. Sekaligus untuk mengunci motor dengan rangka.

Berikut gambar dari frame (kerangka) pada mesin sosoh beras:







Gambar 5.7 Frame

Kerangka tengah berfungsi untuk menumpu *bushing* atau *house bearing*.Karena hanya bagian tersebutlah yang di desain mampu ditumpui oleh kerangka. Poros, casing dan part lainnya tidak menumpu pada kerangka.

Proses pembuatan rangka sendiri adalah dengan memotong lembaran plat menjadi bentuk yang diinginkan. Dalam hal ini dimensinya adalah sebagai berikut:



Gambar 5.8 Dimensi frame motor



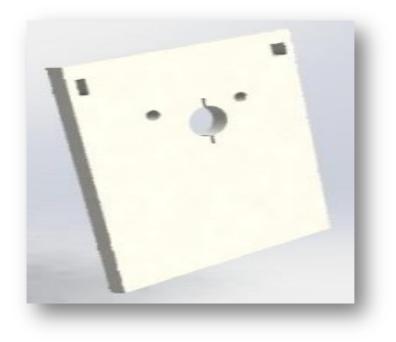
Gambar 5.9 Dimensi frame tengah bushing

Proses selanjutnya adalah melubangi rangka motor sengan  $\varnothing$  90 mm menggunakan mesin bubut. Dengan cara: benda kerja dicekam dengan *chuck*. Kemudian mencari titik tengah yang akan dilubangi. Lalu menandai diameter yang diinginkan, baru mesin dinyalakan dan di potong hingga tembus. Begitu pula cara yang sama dilakukan untuk dua plat tengah, namun diameter nya yang berbeda.

## b) Kerangka bawah

Kerangka atas tersebut ditempatkan pada kerangka bawah dengan menggunakan pengunci mur dan baut.

Kerangka bawah terbuat dari plat 2 mm yang dibentuk dengan cara tekuk dan potong. Berikut gambarnya:



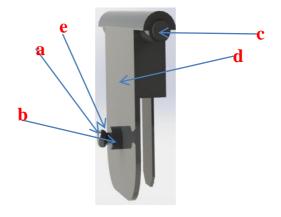

Gambar 5.10 Frame bawah

## 5.6 Body depan

Pada body bagian depan memiliki banyak fungsi. Yang pertama adalah sebagai penumpu dari casing screw conveyor bagian ujung satunya. Juga sebagai dudukan tombol on/off dan juga tombol lampu ultraviolet. Juga sebagai dudukan katub dan outlet. Oleh karena itu

tumpuan pada body depan ini disangga menggunakan baut nut dari hopper dalam. Berikut gambar dari body bagian depan:




Gambar 5.11 Body depan

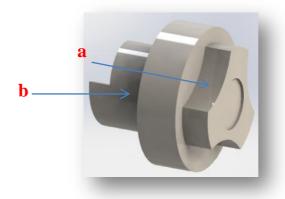
bahan dari part ini adalah plat pvc setebal 2 mm. cara pembuatannya adalah dengan memotong menjadi dimensi yang diinginkan. Kemudian melubangi dengan bubut (drilling).

#### Set katub

Katup berfungsi mengatur tekanan pada aliran beras di dalam screw conveyor. Semakin katup terbuka, semakin cepat pula aliran beras yang keluar.

Pada gambar dibawah ditampilkan set katup tanpa plat yang digunakan sebagai katupnya.




Gambar 5.12 Set katub

Bahan dari satu set part ini adalah pvc, teflon, mur dan baut dan plat stainless sebagai katub. langkah pertama adalah memotong plat pvc membentuk dimensi (d). Kemudian membentuk bagian radius atas tersebut menggunakan *heater pvc*.

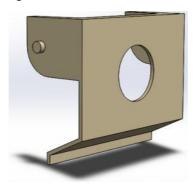
Lalu membubut bahan teflon sebagai engsel (c) sesuai ukuran. Setelah itu juga membuat dudukan mur (b) dari teflon juga. Lalu membuat katup dari bahan *stainless steel* dengan cara memotong bentuk lingkaran  $\varnothing$  22 mm dan memasangkannya pada bagian area (c).

#### 5.7 Kontrol katub

Kontrol dari katub diatas adalah part seperti ini:



Gambar 5.13 Kontrol katub


Terbuat dari bahan plastic PE yang dibentuk menggunakan proses pemesinan: bubut dan freis. Dengan cara memotong benda kerja sesuai ukuran yang diinginkan. Kemudian membentuk bagian (a) dahulu dengan cara mem *facing* bagian luar hingga mendapat dimensi tersebut. Lalu men-*drilling* dengan menyisahkan 3 mm bagian luarnya. Kemudian membentuk alur seperti ulir menggunakan pisau *cutter* secara manual. Kontur ulir tersebut berfungsi mengatur tingkatan tertutupnya katup ketika control (b) diputar ke kanan dank e kiri.

Kemudian pada bagian (b) cara pembuatannya adalah dengan membubut hingga mendapatkan diameter terluar. Dari lingkaran tersebut dibagi menjadi tiga bagian sama besar sehingga mendapat sudut 120°. Dan kemudian garis-garis dari sudut tersebut dijadikan acuan untuk mengefreis dengan menggunakan pahat bermata potong tunggal.Hingga mendapat bentuk cekungan seperti gambar diatas. Begitupun dilakukan pada kedua sisi yang lain.

## 5.8 Dudukan setting katub

Control katup tersebut di tumpu oleh sebuah part yang dinamakan dudukan setting katup. Yang terbuat dari bahan pvc 2 mm yang dibentuk menggunakan *heater pvc* dan juga pengeleman.

## Gambarnya sebagai berikut:



Gambar 5.14 Dudukan setting katub

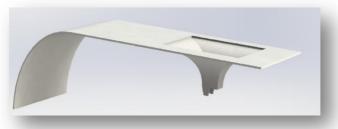
Langkah pertama adalah dengan memotong benda kerja per potongan sisi-sisi. Kemudian melubangi dengan cara*drilling*. Kemudian bagian-bagian yang sudah terpotong tersebut dikaitkan dengan menggunakan lem perekat.

#### 5.9 Outlet

Part ini berfungsi sebagai keluaran beras.dan juga berfungsi untuk menopang part-part seperti set katup dan dudukan katup. Yang dijadikan tumpuan pada part ini adalah casing dari screw conveyor dan juga nut dari hopper dalam tadi. Karena memang letaknya berhimpitan dengan body depan. Berikut merupakan gambar dari outlet:



Gambar 5.15 Outlet


Bahan dari part ini adalah plat pvc dan juga pipa pvc ukuran ¾ inchi. Cara pembuatannya adalah dengan memotong dan membetuk menggunakan *heater pvc*. Kemudian direkatkan menggunakan lem perekat. Lalu melubangi sebagai engsel bagi set katup dan dudukan katup.

## **5.10 Body**

Pada bagian body pembuatannya meliputi dua bahan yang berbeda. Yang akan dijelaskan dibawah ini:

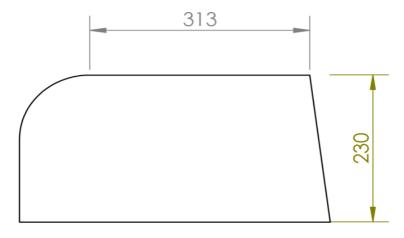
# a) Atas dengan hopper

Menggunakan bahan *pvc*2 mm yang dibentuk menggunakan *heater pvc*. Hopper dibuat seperti prisma segi empat yang ber radius dalam 15 mm.



Gambar 5.16 Body atas dengan hopper

## b) Samping kiri kanan


Pada bagian part ini, digunakan bahan plat plastic jenis PL dengan tebal plat 8 mm.

Berikut merupakan gambar dari body samping.



Gambar 5.17 Body samping

Cara pembuatannya adalah hanya dengan memotong menggunakan gergaji mesin kemudian membentuk radius pada bagian belakang menggunakan gerinda potong. Dengan acuan dimensi sebagai berikut:



Gambar 5.18 Dimensi body samping

## 5.11 Wadah bekatul

Terbuat dari bahan jenis *pvc*dengan cara pengerjaan adalah dengan memotong sesuai sisi-sisinya kemudian mengelem setiap pertemuan sudutnya, sehingga membentuk seperti dibawah ini:



Gambar 5.19 Wadah bekatul

# BAB VI KESIMPULAN

## 6.1 Kesimpulan

Dari hasil perhitungan dan analisa yang telah dilakukan dapat disimpulkan bahwa :

- Gaya dorong pada screw conveyor sebesar 81.926 N
- 2. Gaya tangensial pada screw conveyor sebesar 12,331 N
- 3. Umur bantalan bearing A adalah 3271525,913 jam
- 4. Umur bantalan bearing B adalah 4903875,756 jam
- 5. Daya pada dinamo sebesar 0,2 HP dan putaran yang dihasilkan sebesar 1420 rpm.

#### 6.2 SARAN

Dari hasil perencanaan dan analisa, penulis telah melakukan sesuai dengan hasil perhitungan.

Apabila ingin perencanaan ini nantinya akan dijadikan berbentuk alat untuk diproduksi secara massal, diperlukan perubahan pada porosnya.

### DAFTAR PUSTAKA

- 1. Aaron Deutschment. 1990. *Machine Desain Theory*, Collier Macmillan International Edition, London.
- 2. Sularso. Kyokatsusuga. 1978. Dasar Perencanaan dan Pemilihan Elemen Mesin. Praditya Paramita : Jakarta.
- 3. Khurmi, R S. Gupta, J K. 1982. Machine Design. Eurasia Publishing House (Pvt) ltd: Ram Nagar. New Delhi. India.
- 4. G. Nieman. 1986. Machine Design. Erlangga: Jakarta.
- 5. Tjipthaningdyah. 2013. Fakultas pertanian. Universitas airlangga: Surabaya.
- 6. R.C Hibeller. Engineering Mechanics Statics Volume 13. Published by Pearson Drantice Hall: New Jersey 07458, 2013.
- 7. R.C Hibeller. Engineering Mechanics Dynamics Volume 13. Published by Pearson Drantice Hall: New Jersey 07458, 2013.

#### Tabel A1. Konversi Satuan

```
TABLE A.1 Conversion Factors
Area
       1 \text{ mm}^2 = 1.0 \times 10^{-6} \text{ m}^2
                                                       1 \text{ ft}^2 = 144 \text{ in.}^2
      \begin{array}{lll} 1 \text{ mm}^2 &= 1.0 \times 10^{-4} \text{ m}^2 = 0.1550 \text{ in.}^2 & 1 \text{ in.}^2 = 6.4516 \text{ cm}^2 = 6.4516 \times 10^{-4} \text{ m}^2 \\ 1 \text{ m}^2 &= 10.7639 \text{ ft}^2 & 1 \text{ ft}^2 = 0.092 903 \text{ m}^2 \end{array}
Conductivity
       1 \text{ W/m-K} = 1 \text{ J/s-m-K}
            = 0.577 789 Btu/h-ft-R 1 Btu/h-ft-R = 1.730 735 W/m-K
Density
       1 \text{ kg/m}^3 = 0.06242797 \text{ lbm/ft}^3 1 \text{ lbm/ft}^3 = 16.018 46 \text{ kg/m}^3
       1 \text{ g/cm}^3 = 1000 \text{ kg/m}^3
       1 \text{ g/cm}^3 = 1 \text{ kg/L}
Energy
      1 J = 1 N-m = 1 kg-m<sup>2</sup>/s<sup>2</sup>
1 J = 0.737 562 lbf-ft
                                                       1 lbf-ft = 1.355 818 J
    1 \text{ cal (Int.)} = 4.1868 \text{ J}
                                                         = 1.28507 \times 10^{-3} Btu
                                                          1 Btu (Int.) = 1.055 056 kJ
       1 erg = 1.0 \times 10^{-7} \text{ J}
1 eV = 1.602 177 33 \times 10^{-19} \text{ J}
                                                           = 778.1693 lbf-ft
Force
       1 N = 0.224809 lbf
                                                        1 lbf = 4.448 222 N
                                                      1914 101 - 11 101 x 9,1 at 1 and 1
       1 \text{ kp} = 9.80665 \text{ N} (1 \text{ kgf})
Gravitation
 g = 9.80665 \text{ m/s}^2
                                                     g = 32.17405 \text{ ft/s}^2
Heat capacity, specific entropy
   1 kJ/kg-K = 0.238 846 Btu/lbm-R 1 Btu/lbm-R = 4.1868 kJ/kg-K
Heat flux (per unit area)
       1 \text{ W/m}^2 = 0.316 998 \text{ Btu/h-ft}^2 1 \text{ Btu/h-ft}^2 = 3.15459 \text{ W/m}^2
Heat transfer coefficient
      1 \text{ W/m}^2\text{-K} = 0.176 11 \text{ Btu/h-ft}^2\text{-R} 1 \text{ Btu/h-ft}^2\text{-R} = 5.67826 \text{ W/m}^2\text{-K}
Length
                                                       1 ft = 12 in.
       1 \text{ mm} = 0.001 \text{ m} = 0.1 \text{ cm}
       1 \text{ cm} = 0.01 \text{ m} = 10 \text{ mm} = 0.3970 \text{ in.} 1 \text{ in.} = 2.54 \text{ cm} = 0.0254 \text{ m}
       1 m = 3.28084 ft = 39.370 in.
                                                         1 \text{ ft} = 0.3048 \text{ m}
       1 km = 0.621 371 mi
                                                          1 \text{ mi} = 1.609344 \text{ km}
       1 mi = 1609.3 m (US statute) 1 yd = 0.9144 m
```

Tabel A2. Konversi Satuan

| Mass            |                                                |                                                     | american La Sinar                                                                  |  |  |  |
|-----------------|------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| 1 kg = 2        | 2.204 623 lbm                                  | 1 lbm = 0.453 592 kg                                |                                                                                    |  |  |  |
| l tonne=        | 1000 kg                                        | 1 slug = 14.5939 kg                                 |                                                                                    |  |  |  |
| 1 grain = 6     | $6.47989 \times 10^{-5} \text{ kg}$            | 1 ton = 2000 lbm                                    |                                                                                    |  |  |  |
| Moment (torqu   |                                                |                                                     |                                                                                    |  |  |  |
| 1  N-m = 0      | .737 562 lbf-ft                                | 1 lbf-ft = 1.355 818 N-m                            |                                                                                    |  |  |  |
| Momentum (m     |                                                |                                                     |                                                                                    |  |  |  |
|                 | 7.232 94 lbm-ft/s                              | 1 lbm-ft/s                                          | = 0.138 256 kg-m/s                                                                 |  |  |  |
|                 | = 0.224809 lbf-s                               |                                                     |                                                                                    |  |  |  |
| Power           |                                                |                                                     |                                                                                    |  |  |  |
| 1 W             | = 1  J/s = 1  N-m/s                            | 1 lbf-ft/s                                          | = 1.355 818 W                                                                      |  |  |  |
|                 | = 0.737 562 lbf-ft/s                           |                                                     | = 4.626 24 Btu/h                                                                   |  |  |  |
| 1 kW            | - 3412.14 Btu/h                                | 1 Btu/s                                             | = 1.055 056 kW                                                                     |  |  |  |
| 1 hp (met       | ric) = 0.735499  kW                            | 1 hp (UK)                                           | = 0.7457  kW                                                                       |  |  |  |
| • •             | Late delict mit-blue                           | H-RU SIN                                            | = 550  lbf-ft/s                                                                    |  |  |  |
|                 |                                                |                                                     | = 2544.43 Btu/h                                                                    |  |  |  |
| 1 ton of        |                                                | I ton of                                            |                                                                                    |  |  |  |
| refrigerati     | on = 3.516 85 kW                               | refrigeratio                                        | on = 12 000 Btu/h                                                                  |  |  |  |
| Pressure        |                                                |                                                     |                                                                                    |  |  |  |
| 1 Pa =          | $1 \text{ N/m}^2 = 1 \text{ kg/m-s}^2$         | 1 lbf/in.2                                          | = 6.894 757 kPa                                                                    |  |  |  |
|                 | $1.0 \times 10^5 \text{ Pa} = 100 \text{ kPa}$ | 31-4                                                | Markint and                                                                        |  |  |  |
|                 | 101.325 kPa                                    | 1 atm                                               | $= 14.695 94 lbf/in.^2$                                                            |  |  |  |
| -               | 1.01325 bar                                    |                                                     | = 29.921 in. Hg [32 F]                                                             |  |  |  |
| -               | 760 mm Hg [0°C]                                |                                                     | = 33.899 5 ft H <sub>2</sub> O [4°C]                                               |  |  |  |
|                 | 10.332 56 m H <sub>2</sub> O [4°C]             |                                                     |                                                                                    |  |  |  |
|                 | 1 mm Hg [0°C]                                  |                                                     | commendation of the specific of                                                    |  |  |  |
|                 | $[0^{\circ}C] = 0.133322 \text{ kPa}$          | 1 in. Hg $[0^{\circ}C] = 0.49115 \text{ lbf/in.}^2$ |                                                                                    |  |  |  |
|                 | $4^{\circ}$ C] = 9.806 38 kPa                  | 1 in. $H_2O$ [4°C] = 0.036126 lbf/in. <sup>2</sup>  |                                                                                    |  |  |  |
| Specific energy |                                                |                                                     |                                                                                    |  |  |  |
| 1 kJ/kg =       | 0.42992 Btu/lbm                                | 1  Btu/lbm = 2.326  kJ/kg                           |                                                                                    |  |  |  |
|                 | 334.55 lbf-ft/lbm                              |                                                     | $h = 2.98907 \times 10^{-3} \text{ kJ/kg}$<br>= 1.28507 × 10 <sup>-3</sup> Btu/lbr |  |  |  |
|                 | 4575-87                                        |                                                     |                                                                                    |  |  |  |
|                 | And the second second second                   |                                                     |                                                                                    |  |  |  |
| 1               |                                                |                                                     |                                                                                    |  |  |  |
|                 |                                                |                                                     |                                                                                    |  |  |  |

Tabel A3. Konversi Satuan

```
TABLE
             (Continued) Conversion Factors
Specific kinetic energy (V2)
      1 \text{ m}^2/\text{s}^2 = 0.001 \text{ kJ/kg}
                                               1 ft2/s2 = 3.9941 × 10-5 Btu/lbm
      1 kJ/kg = 1000 m<sup>2</sup>/s<sup>2</sup>
                                               1 Btu/lbm = 25037 ft2/s2
Specific potential energy (Zg)
      1 \text{ m-g}_{red} = 9.80665 \times 10^{-3} \text{ kJ kg}
                                             1 ft-g<sub>sed</sub> = 1.0 lbf-ft/lbm
               = 4.21607 × 10<sup>-3</sup> Bru lbm
                                                         = 0.001285 Btu/lbm
                                                         = 0.002989 kJ/kg
Specific volume
      1 \text{ cm}^3/\text{g} = 0.001 \text{ m}^3/\text{kg}
      1 cm3/g = 1 L/kg
      1 m3/kg = 16.018 46 ft3/lbm
                                               1 ft3/lbm = 0.062 428 m3/kg
Temperature
      1 K = 1 °C = 1.8 R = 1.8 F
                                              1 R = (5/9) K
                                              TF = TR - 459.67
      TC = TK - 273.15
          - (TF - 32)/1.8
                                                   = 1.8 TC + 32
      TK = TR/1.8
                                                TR = 1.8 TK
Universal Gas Constant
      R = No k = 8.31451 kJ/kmol-K
                                               R = 1.98589 Btu/lbmol-R
           = 1.98589 kcal/kmol-K
                                                  = 1545.36 lbf-ft/lbmol-R
             = 82.0578 atm-L/kmol-K
                                                   = 0.73024 atm-ft3/lbmol-R
                                                 = 10.7317 (lbf/in.2)-ft3/lbmol-R
Velocity
                = 3.6 km/h
      1 m/s
                                                1 ft/s = 0.681818 mi/h
                = 3.28084 ft/s
                                                     = 0.3048 m/s
                = 2.23694 mi/h
                                                       = 1.09728 km/h
      1 km/h = 0.27778 m/s
                                                1 mi/h = 1.46667 ft/s
                = 0.91134 ft/s
                                                      = 0.44704 m/s
                = 0.62137 mi/h
                                                       = 1.609344 km/h
Volume
      me
1 m<sup>3</sup> = 35.3147 ft<sup>3</sup>
1 L = 1 dm<sup>3</sup> = 0.001 m<sup>3</sup>
                                                1 ft³
                                                             = 2.831 685 × 10-2 m3
                                                1 in.3 = 1.6387 × 10<sup>-3</sup> m<sup>3</sup>
      1 Gal (US) = 3.785 412 L
                                                1 Gal (UK) = 4.546 090 L
                  = 3.785 412 × 10<sup>-3</sup> m<sup>3</sup>
                                                 1 Gal (US) = 231.00 in.3
```

Tabel B. Nilai e Bearing B

| (i.Fa/Co)                                                                | (Fa/V.Fr) <e< th=""><th colspan="2">(Fa/V.Fr) &gt;e</th><th colspan="2">(Fa/V.Fr) <e< th=""><th colspan="2">(Fa/V.Fr) &gt;e</th><th>е</th></e<></th></e<> |   | (Fa/V.Fr) >e |      | (Fa/V.Fr) <e< th=""><th colspan="2">(Fa/V.Fr) &gt;e</th><th>е</th></e<> |   | (Fa/V.Fr) >e |      | е    |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------|------|-------------------------------------------------------------------------|---|--------------|------|------|
|                                                                          | Χ                                                                                                                                                         | Υ | Χ            | Υ    | Χ                                                                       | Υ | Χ            | Υ    |      |
| Radial Contact Ball Bearing                                              |                                                                                                                                                           |   |              |      |                                                                         |   |              |      |      |
| 0,014                                                                    |                                                                                                                                                           |   |              | 2,30 | 1                                                                       | 0 | 0,56         | 2,30 | 0,19 |
| 0,028                                                                    |                                                                                                                                                           |   |              | 1,99 |                                                                         |   |              | 1,99 | 0,22 |
| 0,056                                                                    |                                                                                                                                                           |   |              | 1,71 |                                                                         |   |              | 1,71 | 0,26 |
| 0,084                                                                    | 1                                                                                                                                                         | 0 | 0,56         | 1,55 |                                                                         |   |              | 1,55 | 0,28 |
| 0,110                                                                    |                                                                                                                                                           |   |              | 1,45 |                                                                         |   |              | 1,45 | 0,30 |
| 0,170                                                                    |                                                                                                                                                           |   |              | 1,31 |                                                                         |   |              | 1,31 | 0,34 |
| 0,280                                                                    |                                                                                                                                                           |   |              | 1,15 |                                                                         |   |              | 1,15 | 0,38 |
| 0,420                                                                    |                                                                                                                                                           |   |              | 1,04 |                                                                         |   |              | 1,04 | 0,42 |
| 0,560                                                                    |                                                                                                                                                           |   |              | 1,00 |                                                                         |   |              | 1,00 | 0,44 |
| Catatan: (Fa/V.Fr) = e , maka : X = 1 dan Y = 0 Sumber: Deutschman, 1975 |                                                                                                                                                           |   |              |      |                                                                         |   |              |      |      |

Tabel C. Nilai e Bearing A

| (i.Fa/Co)                                | (Fa/V.                      | .Fr) <e< th=""><th>(Fa/V</th><th>.Fr) &gt;e</th><th colspan="2">Fr) &gt;e (Fa/V.Fr) &lt;</th><th colspan="2">(Fa/V.Fr) &gt;e</th><th>е</th></e<> | (Fa/V | .Fr) >e | Fr) >e (Fa/V.Fr) < |   | (Fa/V.Fr) >e |      | е    |
|------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|--------------------|---|--------------|------|------|
|                                          | Χ                           | Υ                                                                                                                                                | Χ     | Υ       | Χ                  | Υ | Χ            | Υ    |      |
|                                          | Radial Contact Ball Bearing |                                                                                                                                                  |       |         |                    |   |              |      |      |
| 0,014                                    |                             | 0                                                                                                                                                | 0,56  | 2,30    | 1                  | 0 | 0,56         | 2,30 | 0,19 |
| 0,028                                    |                             |                                                                                                                                                  |       | 1,99    |                    |   |              | 1,99 | 0,22 |
| 0,056                                    |                             |                                                                                                                                                  |       | 1,71    |                    |   |              | 1,71 | 0,26 |
| 0,084                                    |                             |                                                                                                                                                  |       | 1,55    |                    |   |              | 1,55 | 0,28 |
| 0,110                                    | 1                           |                                                                                                                                                  |       | 1,45    |                    |   |              | 1,45 | 0,30 |
| 0,170                                    |                             |                                                                                                                                                  |       | 1,31    |                    |   |              | 1,31 | 0,34 |
| 0,280                                    |                             |                                                                                                                                                  |       | 1,15    |                    |   |              | 1,15 | 0,38 |
| 0,420                                    |                             |                                                                                                                                                  |       | 1,04    |                    |   |              | 1,04 | 0,42 |
| 0,560                                    |                             |                                                                                                                                                  |       | 1,00    |                    |   |              | 1,00 | 0,44 |
| Catatan:                                 | Catatan:                    |                                                                                                                                                  |       |         |                    |   |              |      |      |
| (Fa/V.Fr) = e, maka: $X = 1$ dan $Y = 0$ |                             |                                                                                                                                                  |       |         |                    |   |              |      |      |
| Sumber: Deutschman, 1975                 |                             |                                                                                                                                                  |       |         |                    |   |              |      |      |
|                                          |                             |                                                                                                                                                  |       |         |                    |   |              |      |      |
|                                          |                             |                                                                                                                                                  |       |         |                    |   |              |      |      |
|                                          |                             |                                                                                                                                                  |       |         |                    |   |              |      |      |

Tabel D. Pemilihan Bearing

| Principal dimensions |    | Basic load ratings<br>dynamic static |      | Speed ratings<br>Reference speed | Limiting speed | Designation |                        |
|----------------------|----|--------------------------------------|------|----------------------------------|----------------|-------------|------------------------|
| d                    | D  | В                                    | C    | C <sub>0</sub>                   |                |             | * SKF Explorer bearing |
| mm                   |    |                                      | kN   |                                  | r/min          |             |                        |
| 12                   | 21 | 5                                    | 1,43 | 0,67                             | -              | 20000       | 61801-2RS1             |
| 12                   | 21 | 5                                    | 1,43 | 0,67                             | 70000          | 43000       | 61801                  |
| 12                   | 21 | 5                                    | 1,43 | 0,67                             | 70000          | 36000       | 61801-2Z               |
| 12                   | 24 | 6                                    | 2,25 | 0,98                             | 67000          | 32000       | 61901-2Z               |
| 12                   | 24 | 6                                    | 2,25 | 0,98                             | 67000          | 40000       | 61901                  |
| 12                   | 24 | 6                                    | 2,25 | 0,98                             |                | 19000       | 61901-2RS1             |
| 12                   | 28 | 8                                    | 5,4  | 2,36                             | 60000          | 38000       | 6001 *                 |
| 12                   | 28 | 8                                    | 5,4  | 2,36                             | 60000          | 38000       | 6001-Z *               |
| 12                   | 28 | 8                                    | 5,4  | 2,36                             | -              | 17000       | 6001-2RSH *            |
| 12                   | 28 | 8                                    | 5,4  | 2,36                             | 60000          | 30000       | 6001-2RSL *            |
| 12                   | 28 | 8                                    | 5,4  | 2,36                             | -              | 17000       | 6001-RSH *             |
| 12                   | 28 | 8                                    | 5,4  | 2,36                             | 60000          | 30000       | 6001-2Z *              |
| 12                   | 28 | 8                                    | 5,4  | 2,36                             | 60000          | 38000       | 6001-RSL *             |
| 12                   | 28 | 12                                   | 5,07 | 2,36                             |                | 17000       | 63001-2RS1             |
| 12                   | 30 | 8                                    | 5,07 | 2,36                             | -              | 16000       | 16101-2RS1             |
| 12                   | 30 | 8                                    | 5,07 | 2,36                             | 56000          | 34000       | 16101                  |
| 12                   | 30 | 8                                    | 5,07 | 2,36                             | 56000          | 28000       | 16101-2Z               |
| 12                   | 32 | 10                                   | 7,28 | 3,1                              | 50000          | 32000       | 6201 *                 |
| 12                   | 32 | 10                                   | 7,28 | 3,1                              | 50000          | 32000       | 6201-Z *               |
| 12                   | 32 | 10                                   | 7,28 | 3,1                              | 50000          | 32000       | 6201-RSL *             |
| 12                   | 32 | 10                                   | 7,28 | 3,1                              | 50000          | 26000       | 6201-2Z *              |
| 12                   | 32 | 10                                   | 7,28 | 3,1                              |                | 15000       | 6201-RSH *             |
| 12                   | 32 | 10                                   | 7,28 | 3,1                              | 50000          | 26000       | 6201-2RSL *            |
| 12                   | 32 | 10                                   | 7,28 | 3,1                              | -              | 15000       | 6201-2RSH *            |
| 12                   | 32 | 14                                   | 6,89 | 3,1                              | -              | 15000       | 62201-2RS1             |
| 12                   | 37 | 12                                   | 10,1 | 4,15                             | 45000          | 28000       | 6301 *                 |
| 12                   | 37 | 12                                   | 10,1 | 4,15                             | 45000          | 22000       | 6301-2Z                |
| 12                   | 37 | 12                                   | 10,1 | 4,15                             | 45000          | 28000       | 6301-Z                 |
| 12                   | 37 | 12                                   | 10,1 | 4,15                             | 45000          | 22000       | 6301-2RSL *            |

Tabel E. Angka Keamanan

|    | N = 1,25 - 1,5 for exceptionally reliable materials used      |
|----|---------------------------------------------------------------|
|    | under controllable conditions and subjected to loads and      |
| 1  | stresses that can be determined with certainty. Used almost   |
|    | invariably where low weight is a particularly important       |
|    | consideration.                                                |
|    | N = 1.5 - 2 for well-known materials, under reasonably        |
| 2  | constant enviromental conditions, subjected to loads and      |
|    | stresses that can be determined readily.                      |
|    | N = 2 - 2.5 for average materials operated in ordinary        |
| 3  | environments and subjected to loads and streese that can be   |
|    | determined.                                                   |
| 4  | N = 2.5 - 3 for less tried or for brittle materials under     |
| 4  | average conditions of environment, load, stress.              |
| 5  | N = 3 - 4 for untried materials used under average            |
| 5  | conditions of environment, load, and stress.                  |
|    | N = 3 - 4 should also be used with better known materials     |
| 6  | thats are to be used in uncertain environments or subjected   |
|    | to uncertain stresses.                                        |
|    | Repeated loads: the factors established in items 1 to 6 are   |
| 7  | acceptable but must be applied to the endurance limit         |
|    | rather than the yield strength of the materials.              |
| 8  | Impact forces: the factors given in items 3 to 6 are          |
| 0  | acceptable, but an impact factor should be included.          |
|    | Brittle materials: where the ultimate strength is used as the |
| 9  | theoretical maximum. The factors presented in items 1 t0 6    |
|    | should be approximately doubled.                              |
|    | Where higher factors might appear desirable, a more           |
| 10 | through analysis of the problem should be undertaken          |
|    | before deciding upon their use.                               |

### **BIODATA PENULIS**



Penulisdilahirkan, 9 Mei 1990 dari pasangan Bapak Jayadi dan Ibu Mulyawati yang merupakan putra kedua dari tiga bersaudara. Sepanjang 24 tahun ini penulis telah menempuh pendidikan formal yang dimulai dari SDN Manukan Kulon 5 Surabaya, SMPN 26 Surabaya, dan SMKN 7 Surabaya. Pada tahun 2010, Penulis mengikuti ujian masuk Diploma III di

Institus Teknologi Sepuluh November Surabaya dan diterima sebagai mahasiswa di jurusan D3 Teknik Mesin ITS Surabaya. Dalam mengikutu proses pembelajaran akademik, penulis mengambil bidang Manufaktur dan mengambil tugas akhir pada bidang yang sama. Penulis juga terlibat aktif keorganisasian yang ada di dalam jurusan D3 Teknik Mesin ITS yaitu HMDM pada bidang LMB (Lembaga Minat Bakat). Penulis juga sering mengikuti kegiatan non akademik baik yang ada di dalam kampus maupun di luar kampus, seperti LKMM, PRA-TD, pelatihan leadership, seminar-seminar, pelatihan-pelatihan, dan lain-lain. Untuk lebih jelas lagi bisa menghubungi penulis baik pada akun facebook atau email.

<u>madridxxx@yahoo.com</u> (nama facebook farid bwin) <u>farid.fhalen@gmail.com</u> (email gmail)