

TESIS SF 092006

KESTABILAN KOMPOSIT KERAMIK SILIKA-MAGNESIA-BORIA TERHADAP SIKLUS TERMAL SEBAGAI FUEL CELL SEALING MATERIAL

Musyarofah NRP 1113201006

Dosen Pembimbing Prof. Suminar Pratapa, Ph.D.

PROGRAM MAGISTER BIDANG KEAHLIAN MATERIAL JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2015

TESIS SF 092006

THERMAL CYCLE STABILITY OF SILICA-MAGNESIA-BORIA CERAMIC COMPOSITE FOR FUEL CELL SEALING MATERIAL

Musyarofah NRP 1113201006

Supervisor Prof. Suminar Pratapa, Ph.D.

MAGISTER PROGRAM MATERIAL PHYSICS DEPARTMENT OF PHYSICS FACULTY OF MATHEMATICS AND NATURAL SCIENCES INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2015 Tesis ini disusun untuk memenuhi salah satu syarat memperoleh gelar Magister Sains (M.Si) di

Institut Teknologi Sepuluh Nopember

oleh: Musyarofah NRP. 1113201006

Tanggal Ujian Periode Wisuda : 29 Mei 2015 : September 2015

Disetujui Oleh :

1. Prof. Suminar Pratapa, Ph.D. NIP. 19660224 199002 1 001

2. Prof. Dr. Suasmoro, DEA. NIP. 19550210 198010 1 001

3. Dr.rer.nat. Triwikantoro NIP. 19660114 199002 1 001 (Pembimbing)

(Penguji)

(Penguji)

(..

KESTABILAN KOMPOSIT KERAMIK SILIKA-MAGNESIA-BORIA TERHADAP SIKLUS TERMAL SEBAGAI FUEL CELL SEALING MATERIAL

Nama : Musyarofah NRP : 1113201006 Pembimbing : Prof. Suminar Pratapa, Ph.D.

ABSTRAK

Persyaratan dasar sebuah sealing material adalah dapat menutup rapat (menyegel) komponen cell dan stabil selama operasi cell. Dalam penelitian ini disintesis sealing material, yaitu komposit keramik silika-magnesia-boria dengan bahan dasar pasir silika dari Tanah Laut, Kalimantan Selatan, yang telah diekstraksi dengan separasi magnetik dan perendaman HCl sehingga memiliki kemurnian tinggi. Komposit dengan komposisi SiO₂, MgO, dan B₂O₃ 70:10:20 dalam persen berat disintesis dengan metode solid state reaction. Campuran serbuk dikompaksi dan disinter pada temperatur 1150°C dengan waktu penahanan 4 jam. Hasil pengujian menunjukkan komposit ini memiliki karakteristik sesuai dengan persyaratan sealing material, yaitu porositas 0,62 %, kekerasan 2,8 GPa, KET 10,3×10⁻⁶ °C⁻¹, dan resistivitas listrik 2,5×10⁵ Ω cm. Perlakuan siklus termal pada temperatur 800 °C selama 1 jam per siklus diberikan pada komposit untuk mengetahui kestabilannya. Hingga siklus kelima belas, komposit menunjukkan kestabilannya pada karakteristik komposisi fasa, porositas, kekerasan, koefisien ekspansi termal, resistivitas listrik, dan struktur mikrografi.

Kata kunci: komposit sistem SiO₂-MgO-B₂O₃, material penyegel *fuel cell*, kestabilan sifat fisis, siklus termal.

THERMAL CYCLE STABILITY OF SILICA-MAGNESIA-BORIA CERAMIC COMPOSITE FOR FUEL CELL SEALING MATERIAL

Name Student Identity Advisor : Musyarofah : 1113201006 : Prof. Suminar Pratapa, Ph.D.

ABSTRACT

There are two basic needs for a sealing material, it needs to seal the adjacent cell components and be stable over long-term operation. This work aimed to study stability of sealing material based on silica-magnesia-boria when applied with thermal cycle. Silica used, is based on purified natural silica sand from Tanah Laut by magnetic separation and immersion with HCl methods. The sealing material was prepared by mixing the natural-sand-based silica (SiO₂) powder with magnesia (MgO) and Boria (B₂O₃) with composition of 70:10:20 by weight followed by uniaxial pressing and finally sintering at 1150 °C with 4 hours to produce a ceramic composite. The results show that the ceramic exhibited 0.62 % apparent porosity, $2.5 \times 10^5 \Omega$ cm electrical resistivity, 2.8 GPa Vickers microhardness, and 10.3×10^{-6} °C⁻¹ thermal expansion coefficient of which are relatively appropriate for sealing function in fuel cell. Thermal cycle tests were performed on the composite to examine the stability. Till fifteen cycles, the composite show the stability on its phase composition, apparent porosity, hardness, thermal expansion coefficient, electrical resistivity, and microstructure.

Keywords: sealing material, SiO₂-MgO-B₂O₃, stability, thermal cycle.

KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Allah SWT, karena atas rahmat dan hidayah-Nya tesis yang berjudul "*Kestabilan Komposit Keramik Silika-Magnesia-Boria terhadap Siklus Termal sebagai Fuel Cell Sealing Material*" ini dapat diselesaikan dengan baik.

Penyelesaian tesis ini tidak terlepas dari peran berbagai pihak, yang dengan caranya masing-masing. Untuk itu, melalui kesempatan ini secara tulus penulis menyampaikan ucapan terima kasih kepada: *Pertama*, Bapak Prof. Suminar Pratapa, Ph.D. selaku dosen pembimbing yang senantiasa memberikan bimbingan, arahan dan semangat kepada penulis, serta Bapak Prof. Suasmoro dan Bapak Dr. rer. nat. Triwikantoro selaku penguji yang telah banyak memberikan koreksi. *Kedua*, Ibu dan Bapak tercinta, Adek Ayub dan Ali tersayang, Lek Mus, serta keluarga besar di Rembang yang telah memotivasi dan mendoakan penulis dalam usaha penyelesaian studi serta selalu menantikan keberhasilan penulis dengan sabar. *Ketiga*, Seluruh Staf Pengajar serta Karyawan Laboratorium Fisika Material Jurusan Fisika ITS. *Keempat*, Tim penelitian, Ibu Upik Nurbaiti, Egidius Dewa, Nur Aini Fauziyah, Indra Wulan Sari R., Fikriyatul M., dll yang turut membantu dalam penelitian dan diskusi di laboratorium. *Kelima*, sahabatsahabatku tercinta Rizqa, Meta, Aini, Umi, dan Zuffa serta rekan kuliah yang terus memberikan semangat dan dukungan.

Akhirnya dengan penuh kesadaran atas keterbatasan ilmu pengetahuan dan kemampuan yang dimiliki, maka penulis berharap semoga tesis ini, dapat bermanfaat bagi perkembangan ilmu pengetahuan serta memberikan masukkan bagi pembaca untuk perkembangan ilmu lebih lanjut.

Surabaya, April 2015

Musyarofah

DAFTAR ISI

		<mark>Halam</mark> an
	HALAMAN JUDUL	i
	LEMBAR PENGESAHAN	iii
	ABSTRAK	iv
	KATA PENGANTAR	vi
	DAFTAR ISI	vii
	DAFTAR GAMBAR	X
	DAFTAR TABEL	xi
	DAFTAR LAMPIRAN	xii
	BAB 1 PENDAHULUAN	
	1.1 Latar Belakang	1
	1.2 Perumusan Masalah	2 5
	1.3 Tujuan Penelitian	3
	1.4. Batasan Masalah	3
	1.5 Manfaat Penelitian	3
A	BAB 2 KAJIAN PUSTAKA	
	2.1 Pasir Silika, SiO ₂	5
	2.2 Diagram Fasa SiO ₂ -MgO	5
	2.3 Diagram Fasa MgO-B ₂ O ₃	6
	2.4 Bahan Aditif B ₂ O ₃	7
	2.5 Seal Fuel Cell	8
	BAB 3 METODE PENELITIAN	
	3.1 Alat dan Bahan	-11
	3.1.1 Alat	11
	3.1.2 Bahan	11
	3.2 Prosedur Kerja	-11
	3.2.1 Ekstraksi SiO ₂	111
	3.2.2 Sintesis Komposit Keramik Berbasis Pasir Silika-Magnesia-	
	Boria	12

and a		
3.2.3 P	erlakuan Siklus Termal	12
3.3 Karakte	risasi Bahan Uji	13
3.3.1 U	Jji XRF	13
3.3.2 U	Jji XRD	13
3.3.3 U	Jji Densitas dan Porositas	14
3.3.4 U	Jji Kekerasan	14
3.3.5 U	Jji Resistivitas Listrik	15
3.3.6 U	Jji TMA	15
3.3.7 U	Jji Mikrografi	15
3.4 Diagran	n Alir Penelitian	16
3.4.1 E	Ekstraksi SiO ₂	16
3.4.2 S	Sintesis Komposit Keramik Silika-Magnesia-Boria	18
3.4.3 P	Perlakuan Siklus Termal Pada Komposit Silika-Magnesia-Boria	19
BAB 4 HASIL I	DAN PEMBAHASAN	
4.1 Ekstraks	si Silika	21
4.2 Karakte	ristik Komposit SMB	23
4.2.1 K	Composisi Fasa Komposit SMB	23
4.2.2 D	Densitas dan Porositas Komposit SMB	26
4.2.3 K	Sekerasan Komposit SMB	26
4.2.4 K	Koefisien Ekspansi Termal Komposit SMB	27
4.2.5 R	Resistivitas Listrik Komposit SMB	28
4.2.6 N	Aikrografi Komposit SMB	28
4.3 Karakte	eristik Komposit SMB4j Akibat Perlakuan Siklus Termal	30
4.3.1. K	Komposisi Fasa Komposit SMB4j Akibat Perlakuan Siklus 👘 📄	
T	ermal	30
4.3.2. E	Densitas dan Porositas Komposit SMB4j Akibat Perlakuan Sik	lus
	ermal	32
4.3.3. K	Kekerasan Komposit SMB4j Akibat Perlakuan Siklus Termal	33
4.3.4. K	Koefisien Ekspansi Termal Komposit SMB4j Akibat Perlaku	ian
S	iklus Termal	33
4.3.5. R	Resistivitas Listrik Komposit SMB4j Akibat Perlakuan Sik	lus
Tribler		34

AAAAAA	
4.3.6. Mikrografi Komposit SMB4j Akibat Perlakuan Siklus Termal	35
4.4 Diskusi	37
4.4.1. Ekstraksi Silika	37
4.4.2. Seleksi Komposit SMB sebagai Sealing Material	37
4.4.3. Kestabilan Komposit SMB4j terhadap Siklus Termal	41
BAB 5 PENUTUP	
5.1 Kesimpulan	45
5.2 Saran	46
LAMDIDAN	4/
	51
LAMPIRAN B	55
LAMPIRAN C	59
LAMPIRAN D	65
LAMPIRAN E	66
LAMPIRAN F	69
LAMPIRAN G	76
LAMPIRAN H	77
	78
BIOGRAFI PENULIS	79
	AT)
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	
AAAAAAA	

DAFTAR GAMBAR

Gambar Halaman 2.1 Diagram fasa SiO₂-MgO Diagram fasa MgO-B₂O₃ 2.2 7 2.3 Penambahan bahan aditif pada suatu material akan mereduksi porositas a source before befo 8 Skema posisi seal pada SOFC planar. 9 2.4 3.1 Perlakuan siklus termal 13 Diagram alir proses pemurnian silika 3.2 17 3.3 18 Diagram alir pembuatan komposit silika-magnesia-boria 3.4 Diagram alir siklus termal pada komposit silika-magnesia-boria 19 4.1 Pola Difraksi Sinar-X (radiasi Cu-Kα) pasir Tanah Laut (TL), pasir Tambang Ulang (TU), pasir Sungai Riam (SR), dan pasir Sungai Asemasem (SA) 21 Pola Difraksi Sinar-X (radiasi Cu-Kα) pasir Tanah Laut sebelum pemurnian 4.2 dan setelah separasi magnetik dan perendaman HCl..... 23 4.3 Pola Difraksi Sinar-X (radiasi Cu-Kα) komposit SMB1j, SMB4j, dan SMB6j 24 Mikrografi komposit (a) SMB1j, (b) SMB4j, dan (c) SMB6j dengan 4.4 perbesaran 2000 kali 29 Pola Difraksi Sinar-X (radiasi Cu-Kα) komposit SMB4j pada beberapa 4.5 siklus termal 31 4.6 Mikrografi komposit SMB4j pada siklus (a) ke-0 (a) ke-3 (c) ke-6 (d) ke-9 (e) ke-12 (f) ke-15 dengan perbesaran 20.000 kali..... 36

DAFTAR TABEL

Tabel

Halaman

2.1	Persyaratan Fuel Cell Sealing Material	
	(Mahapatra dan Lu, 2010)	9
4.1	Komposisi Unsur dalam Sampel Sebelum dan Setelah Ekstraksi	22
4.2	Komposisi Fasa Komposit SMB	25
4.3	Densitas Bulk dan Porositas Komposit SMB	26
4.4	Kekerasan Komposit SMB	27
4.5	Koefisien Ekspansi Termal Komposit SMB	27
4.6	Resistivitas Listrik Komposit SMB pada Temperatur 800 °C	28
4.7	Komposisi Fasa Komposit SMB4j pada Beberapa Siklus Termal	32
4.8	Densitas dan Porositas Komposit SMB4j pada Beberapa Siklus Termal	32
4.9	Kekerasan Komposit SMB4j pada Beberapa Siklus Termal	33
4.10	Koefisien Ekspansi Termal Komposit SMB4j pada Beberapa Siklus	34
4.11	Resistivitas Listrik Komposit SMB4j pada Temperatur 800°C	34
4.13	Rekap Karakteristik Komposit SMB	40

DAFTAR LAMPIRAN

Lampiran

Halaman

Α	Data ICSD dan COD	53					
В	Plot Hasil Penghalusan (Rietveld Refinement) dengan						
	Perangkat Lunak Rietica	57					
C	Keluaran Penghalusan Rietveld dengan menggunakan Rietica	61					
D	Penghitungan Nilai KET dengan Pendekatan Rule of Mixture						
Е	Analisis Penghitungan Nilai Resistivitas Listrik dari Grafik Semicircle 🥂 66						
F	Analisis Penghitungan Nilai T_g dari Data DTA	69					
G	Rekap Karakteristik Komposit SMB terhadap Waktu Penahanan Sinter	75					
H	Rekap Karakteristik Komposit SMB4j terhadap Perlakuan Siklus Termal	76					
Ι	Deviasi Kestabilan Karakteristik Komposit SMB4j Terhadap Perlak	uan					
	Siklus Termal						

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Teknologi energi yang banyak dikembangkan saat ini adalah yang sumber energi yang memiliki efisiensi tinggi, murah dan ramah lingkungan. *Fuel cell* merupakan sistem yang mengubah energi kimia dari gas bahan bakar (*fuel gas*) menjadi listrik dengan efisiensi yang tinggi. Namun yang menjadi tantangan dalam perkembangan teknologi *fuel cell* adalah pada biaya dan pengembangan material komponen *cell* yang memiliki *life time* panjang (Choudhury dkk, 2013).

Salah satu komponen penting dalam sistem *fuel cell* adalah *seal*, karena berfungsi untuk mencegah kebocoran gas pada sistem. Kualitas *seal* harus baik karena kebocoran sedikit saja akan mempengaruhi potensial pada *cell* sehingga mengurahi performa kerja (Fergus, 2005). Dua syarat utama *seal* adalah dapat menyegel (*sealing*) komponen-komponen *cell* yang lain dan stabil terhadap siklus termal dalam jangka waktu yang panjang selama *cell* beroperasi (Mahapatra dan Lu, 2010a). Kestabilan berkaitan dengan tidak adanya perubahan sifat-sifat fisik maupun kimia pada *seal* akibat siklus termal yang berulang (Mahapatra dan Lu, 2010b).

Di sisi lain, Indonesia memiliki kekayaan sumber daya alam yang melimpah, salah satunya adalah bahan baku pasir silika. Endapan pasir silika banyak tersebar di beberapa tempat di Indonesia dengan kadar silikon oksida antara 55,30-99,87 % (Suhala dkk, 1997). Proses pemurnian akan memberi nilai tambah pada pasir ini, selain itu dapat mengurangi biaya material (Zuhailawati dkk, 2007). Seperti yang telah dilakukan Aristia (2013), yang berhasil mengekstraksi silika (SiO₂) dengan kemurnian tinggi dari pasir alam.

Sementara itu, magnesia (MgO) dilaporkan memiliki karakteristik nilai koefisiensi termal sekitar $13,5 \times 10^{-6}$ °C⁻¹ dengan densitasnya sebesar 3,78 g/cm³ (Mahapatra dan Lu, 2010a; Heimann, 2010). MgO juga sesuai digunakan sebagai *reinforcement* dalam komposit keramik berbasis silika. Komposit silika-magnesia diketahui memiliki koefisien ekspansi termal yang relatif rendah sehingga baik untuk aplikasi pada suhu tinggi serta mempunyai stabilitas kimia yang baik (Kazanovic dkk, 2005).

Merujuk penelitian Dewa (2014) diketahui bahwa komposit keramik berbasis SiO₂-MgO dan B₂O₃ sebagai *sintering agent* memiliki karakteristik porositas rendah dan nilai koefisien ekspansi termal (KET) dalam kisaran 9,5- $12,0\times10^{-6}$ °C⁻¹. Material ini memenuhi sebagian persyaratan sebagai *sealing material* pada sistem *fuel cell*. Komponen SiO₂ diperoleh dari hasil pengolahan pasir silika dari daerah Bancar, Tuban, Jawa Timur.

Uji perlakuan siklus termal pada material *fuel cell seal* sangat penting dilakukan untuk mengetahui performa (kestabilan) *seal*, mengingat sistem *fuel cell* bekerja pada operasi siklik. Oleh sebab itu, perlu dilakukan kajian kestabilan sifat-sifat fisik yang menonjol dari sistem komposit SiO₂-MgO-B₂O₃ terhadap pengulangan pemberian pemanasan (siklus termal) pada temperatur operasi *fuel cell* dalam kaitannya dengan aplikasi sebagai *seal*. Kembali pada tantangan perkembangan teknologi *fuel cell* saat ini, yaitu terkait biaya dan kebutuhan akan material komponen yang stabil, maka penelitian ini fokus pada pembuatan *sealing material* berbasis pasir silika dari Tanah Laut, Kalimantan Selatan yang dikompositkan dengan magnesia serta boria sebagai *sintering agent*. Penggunaan bahan dasar *seal* yang berbasis pasir alam diharapkan dapat mengurangi biaya dalam pembuatan *seal*. Komposit yang dihasilkan diuji kestabilan sifat fisik, mekanik, termal, dan listik selama perlakuan siklus termal.

1.2 Perumusan Masalah

- Perumusan masalah dalam penelitian ini adalah:
- 1. Bagaimana mengoptimalkan hasil ekstraksi silika dengan bahan dasar pasir alam.
- Bagaimana karakteristik awal sifat fisik, mekanik, listrik, dan termal komposit silika-magnesia-boria.
- 3. Bagaimana stabilitas sifat fisik, mekanik, listrik, dan termal komposit silikamagnesia-boria terhadap perlakuan siklus termal.

1.3 Tujuan Penelitian

Berdasarkan pada perumusan masalah di atas, maka tujuan dari penelitian ini adalah mengetahui kestabilan sifat fisik, mekanik, listrik, dan termal komposit keramik silika-magnesia-boria terhadap perlakuan siklus termal.

1.4 Batasan Masalah

- Batasan masalah dalam penelitian ini adalah:
- 1. Bahan dasar yang digunakan berbasis pasir silika alam dari Kalimantan Selatan.
- 2. Sifat-sifat yang dikaji adalah densitas, porositas, komposisi fasa, kekerasan, resistivitas listrik, *transition glass temperature*, dan koefisien ekspansi termal dari komposit keramik berbasis silika-magnesia-boria
- 3. Perlakuan siklus termal diberikan hingga 15 siklus pada temperatur operasi *fuel cell* yaitu 800°C

1.5 Manfaat Penelitian

- Hasil dari penelitian ini diharapkan dapat:
- 1. Memberikan pemanfaatan dan peningkatan nilai tambah bahan alam berupa pasir silika yang diekstraksi menjadi silika dengan kemurnian tinggi dan menjadi bahan dasar *sealing material*.
- 2. Memberikan informasi apakah sifat fisik, mekanik, listrik, dan termal komposit keramik silika-magnesia-boria stabil terhadap perlakuan siklus termal sehingga dapat diaplikasikan sebagai *sealing material*.

KAJIAN PUSTAKA

BAB 2

1.1 Pasir Silika, SiO₂

Pasir silika merupakan hasil pelapukan batuan yang mengandung mineral utama, seperti silikon oksida. Pasir silika pada umumnya mengandung senyawa pengotor (*impurities*) seperti oksida besi, oksida kalsium, oksida alkali, oksida magnesium, lempung dan zat organik hasil pelapukan sisa-sisa hewan dan tumbuhan (Chakraborty dan Maiti, 2000).

Szostak (1998) menjelaskan bahwa silika memiliki beberapa bentuk kristal yang berbeda selain bentuk amorf. Tiga bentuk fasa kristal polimorfi silika yang paling dominan yaitu kuarsa, tridimit, dan kristobalit. Kuarsa adalah mineral utama dari silika yang mempunyai struktur atom tetrahedral, dimana satu atom silikon dikelilingi oleh empat atom oksigen.

Pada suhu kamar struktur atom tetrahedral pada silika tersusun dalam suatu susunan heksagonal, namun pada suhu 875 °C kestabilan struktur atom tetrahedral berubah. Fasa pada suhu rendah dari silika adalah kuarsa, fasa pada suhu menengah adalah tridimit dan fasa pada suhu tinggi adalah kristobalit. Kristobalit dan tridimit merupakan fasa metastabil pada suhu ruang sedangkan kuarsa pada suhu tinggi sebagai fasa metastabil.

1.2 Diagram Fasa SiO₂-MgO

Pengaruh sinter dan komposisi pada suatu gabungan dua material atau lebih seperti komposit keramik SiO₂-MgO dapat dianalisis menggunakan diagram fasa. Gambar 2.3 menunjukan diagram fasa silika dan komposit keramik SiO₂-MgO. Diagram fasa pada Gambar 2.3 menjelaskan diagram fasa komposit keramik SiO₂-MgO dapat menjelaskan bahwa pada rentang suhu 1000 °C sampai 1500 °C selain kuarsa dan periklas dapat terbentuk fasa baru yaitu forsterit (Mg₂SiO₄) dan enstatit (MgSiO₃).

Gambar 2.1 Diagram fasa SiO₂-MgO (Rietmeijer, 2002)

Enstatit (MgSiO₃) merupakan fasa kristalin polimorfi. Ada tiga jenis polimorfinya, yaitu enstatit (orthoenstatit) dengan struktur orthorombik a = 18,2 Å; protoenstatit dengan struktur orthorombik a = 9,1 Å; dan klinoenstatit dengan struktur monoklinik primitif pada temperatur rendah dan *C-centered* pada temperatur tinggi (Smyth, 1974).

Material keramik yang berbasis *magnesium metasilicate* (MgSiO₃) ideal untuk aplikasi *high frequency low loss high voltage insulator* dan resistor karena memiliki sifat mekanik yang bagus dan rendah *loss electrical* (Beall, 1993).

1.3 Diagram Fasa MgO-B₂O₃

Ada banyak jenis *metal borate*, baik yang terdapat di alam maupun yang harus disintesis di laboratorium. Salah satu diantaranya yaitu

magnesium borat. Davis dan Knight (1945) telah mempelajari sistem biner MgO-B₂O₃ dan menemukan tiga *binary compound* dari magnesia dan boria, yaitu 3MgO.B₂O₃ (Mg₃B₂O₆), 2MgO.B₂O₃ (Mg₂B₂O₅), dan MgO.B₂O₃ (MgB₂O₄). Diagramnya ditunjukkan pada Gambar 2.2. *Magnesium borate* ini memiliki potensi aplikasi yang luas. Salah satu sifat unggulnya adalah karakteristiknya yang *high degree of thermal shock resistance* (Qasrawi dkk, 2005).

Gambar 2.2 Diagram fasa MgO-B₂O₃ (FACT oxide database, 2010)

1.4 Bahan Aditif B₂O₃

Boria (B₂O₃) merupakan *a lower-temperature glass former* (Hao dkk, 2012) dikarenakan titik lelehnya yang rendah dibandingkan SiO₂ dan MgO, yaitu sekitar 480°C (Wang dkk, 2009). Sehingga hal ini menyebabkan B₂O₃ banyak digunakan sebagai *sintering agent* untuk tujuan eliminasi pori-pori sehingga meningkatkan densitas suatu bahan (Yang dan Cheng, 1999). Gambar 2.4 menunjukan bahwa penambahan bahan aditif pada suatu material akan mereduksi porositas.

Gambar 2.3. Penambahan bahan aditif pada suatu material akan mereduksi porositas (German dkk, 2009)

1.5 Fuel cell seal

Fuel cell adalah peralatan *electrochemical* yang mengkonversi bahan bakar gas menjadi energi listrik. Beberapa jenis *fuel cell* antara lain *phosphoric acid fuel cell, proton exchange membrane fuel cell, molten carbonate fuel cell, solid oxide fuel cell,* dan *alkaline fuel cell* (Mahapatra dan Lu, 2010b). Diantara jenis-jenis *fuel cell* tersebut, *solid oxide fuel cell* (SOFC) lebih banyak diminati karena efisiensinya yang tinggi, bahan bakarnya fleksibel, dan biayanya relatif lebih rendah. Terdapat dua jenis desain yang dikembangkan pada jenis *fuel cell* ini, yaitu tubular dan planar. Desain planar banyak digunakan karena memiliki *specific power output* tinggi, resistivitas listrik rendah, *volumetric power density* tinggi, dan biaya fabrikasi rendah (Mahapatra dan Lu, 2010a). Pada SOFC planar, diperlukan *seal* diantara komponen-komponen (*electrode, electrolyte,* dsan *interconnect*) seperti ditunjukkan pada Gambar 2.4. Hal ini bertujuan untuk mengikat komponen-komponen *cell,* mencegah tercampurnya gas di anoda dan katoda, serta sebgai isolator listrik untuk mencegah *shunting* (Mahapatra dan Lu, 2010a).

Gambar 2.4. Skema posisi seal pada SOFC planar (Mahapatra dan Lu, 2010a).

Secara umum, material *seal* pada sistem *fuel cell* harus memenuhi dua persyaratan, yaitu dapat menyegel *(sealing)* dan stabil terhadap siklus termal. Tabel 2.1 menunjukkan beberapa persyaratan *fuel cell sealing material* secara lebih rinci terkait sifat termal, kimia, mekanik, listrik kemampuan menyegel dan fleksibilitas pembuatan.

Sifat	Persyaratan
Termal	Memiliki koefisien ekspansi termal antara 9,5-12 ppm/°C.
	Secara termal stabil selama 5000 jam untuk aplikasi mobile dan 50.000 jam untuk aplikasi stasioner pada temperatur operasi antara 650-900°C.
Kimia	Tahan terhadap penguapan dan perubahan komposisi pada oksidasi dan pengurangan atmosfer pada 650-900°C.
	Tidak bereaksi dengan komponen fuel cell yang lain.
Mekanik	Dapat menahan beban statis dan dinamis eksternal selama beroperasi.

Tabel 2.1 Persyaratan Fuel Cell Sealing Material (Mahapatra dan Lu, 2010a).

	Tahan terhadap kegagalan siklus termal selama fuel cell mulai beroperasi (dinyalakan) dan dimatikan.
	Resistivitas listrik ≥ $10^4 \Omega$ pada temperatur operasi fuel cell
Listrik	Resistivitas listrik lebih besar daripada 500 Ω cm di antara cell dan stack pada kondisi operasi
2A.C	Sealing load < 35 kPa
Sealing	Tahan pada tekanan 14-35 kPa
ability	Total kebocoran fuel < 1%
Eleksibilitas fabrikasi	Desain yang fleksibel, biaya proses yang rendah dan ketahanan yang tinggi.

Jenis-jenis *seal* digunakan pada SOFC antara lain *compresive seal*, *compliant seal*, dan *rigid bonded seal*. Dibandingkan yang lain, jenis *seal* yang ketiga memiliki lebih banyak kelebihan, yaitu membentuk lapisan kedap udara pada *interface* dengan komponen *cell*, mudah dalam pembuatan, biaya lebih efisien, penggunaan fleksibel, sifat-sifatnya dapat didesain dengan memodifikasi komposisi material *seal* (Mahapatra dan Lu, 2010a). *Rigid bonded seal* merupakan *seal* yang berbasis *glass* atau *glass-ceramic*. *Glass seal* terdiri dari tiga komponen utama, yaitu *network former*, *network modifier*, dan *intermediate oxide*, serta komponen minor: *additive*. Kesulitan utama dalam pengembangan *glass seal* adalah pemilihan jenis dan komposisi *glass* (Raschadel dkk, 2012) sehingga diperoleh karakteristik yang diinginkan (seperti pada Tabel 2.1). Penelitian ini digunakan *seal* berbasis sistem SiO₂-MgO-B₂O₃ dengan proses sintesis dan karakterisasi dijelaskan pada bab selanjutnya.

METODE PENELITIAN

BAB 3

3.1. Alat dan Bahan

3.1.1. Alat

Alat-alat yang digunakan dalam pembuatan sampel antara lain beker glass, spatula kaca, timbangan digital (digital balance), magnet permanen, ball mill, bola zirconia, ayakan 100 mesh, pengaduk magnet (stirring magnetic), kertas pH (universal indicator), mortar, alat pressing, krusibel, dan furnace tipe RHF 1400. Sedangkan peralatan yang digunakan untuk karakterisasi antara lain X-Ray Fluorence (XRF) spectrometer untuk mengetahui komposisi unsur-unsur dalam pasir alam, X-Ray Diffractometer (XRD) untuk mengidentifikasi fasa-fasa dalam sampel, Digital Microhardness Tester untuk uji kekerasan sampel, Solartron Analytical SI 1260 digunakan untuk menganalisis sifat listrik sampel, Thermomechanical Analyzer (TMA) untuk mengukur nilai KET sampel, dan Scanning Electron Microscopy (SEM) untuk mengetahui mikrostruktur sampel.

3.1.2. Bahan

Bahan yang digunakan dalam penelitian ini antara lain: pasir alam dari beberapa lokasi di Kalimantan Selatan (Tanah Laut, Tambang Ulang, Sungai Riam, dan Sungai Asem-asem), serbuk magnesium oksida (MgO), serbuk boron oksida (B₂O₃), *polivynil alcohol* (PVA), asam klorida (HCl) 2 M, *aquadest* dan alkohol.

3.2. Prosedur Kerja

3.2.1 Ekstraksi SiO₂

Pemurnian silika diawali dengan pemilihan bahan dasar dari keempat pasir yang diambil dari beberapa lokasi di Kalimantan Selatan. Identifikasi kandungan fasa pasir-pasir alam ini menggunakan uji XRD. Pada bab selanjutkan (subbab 4.1) dijelaskan bahwa pasir Tanah Laut memiliki pola difraksi fasa tunggal kuarsa. Oleh karena itu ekstraksi SiO₂ selanjutnya menggunakan pasir tersebut. Pasir dicuci dengan aquades dan dikeringkan pada suhu ±80 °C selama 12 jam. Kemudian dilakukan ekstraksi menggunakan magnet permanen untuk mengurangi kadar unsur-unsur magnetik dalam pasir.

Pasir dihaluskan dengan metode *wet milling* yang menggunakan medium alkohol selama 1 jam. Setelah itu, pasir dikeringkan dan diayak (100 mesh) untuk memperoleh serbuk dengan ukuran yang seragam.

Guna meningkatkan kemurnian serbuk silika, dilakukan proses *stirring* dengan HCl 2M selama 30 menit dan perendaman selama 12 jam. Perbandingan silika dan HCL adalah 1 g : 30 ml. Setelah proses perendaman, endapan serbuk dinetralkan (hingga pH \pm 7) dengan aquades kemudian dikeringkan. Maka, didapatkanlah serbuk silika yang selanjutnya diuji XRF dan XRD untuk mengetahui kandungan unsur dan fasanya.

3.2.2 Sintesis Komposit Keramik Silika-Magnesia-Boria

Bahan-bahan yang digunakan untuk membuat komposit antara lain serbuk silika (SiO₂), MgO, dan B_2O_3 dengan perbandingan 70:10:20 masing-masing dalam fraksi berat, serta ditambahkan PVA yang berperan sebagai pengikat (*binder*). Semua bahan dicampur dengan pengadukan menggunakan mortar selama 30 menit.

Campuran serbuk dimasukkan ke dalam cetakan silinder dengan diameter 1,3±0,05 cm dan ditekan dengan beban 4500 N untuk mendapatkan bentuk pelet. Kemudian dilakukan proses sinter dengan suhu 1150 °C dan waktu penahanan 1, 4 dan 6 jam. Selanjutnya sampel ini diberi kode SMB1j untuk sampel yang disinter dengan waktu penahanan 1 jam, SMB4j untuk waktu penahanan 4 jam, dan SMB6j untuk waktu penahanan 6 jam.

3.2.3 Perlakuan Siklus Termal

Setelah sintesis komposit SMB1j, SMB4j, dan SMB6j kemudian dilakukan analisis sifat fisik, mekanik, listrik, dan termal. Pada subbab 4.2 diperoleh bahwa komposit SMB4j merupakan kandidat *sealing material* yang kemudian diberi perlakuan siklus termal pada suhu 800 °C selama 1 jam. Perlakuan termal ini dilakukan sampai siklus kelima belas. Gambar 3.1 menunjukkan grafik perlakuan siklus termal yang diberikan pada komposit. Sampel yang telah diberi perlakuan hingga pada siklus ketiga (SMB4j-3s), keenam (SMB4j-6s), kesembilan (SMB4j-9s), kedua belas (SMB4j-12s), dan kelima belas (SMB4j-15s) diuji sifat fisik, mekanik, termal, dan listrik guna mengetahui stabilitasnya terhadap siklus termal.

Gambar 3.1 Perlakuan siklus termal (Chou dan Stevenson, 2002)

3.3 Karakterisasi Bahan Uji

3.3.1 Uji XRF (X-Ray Fluorence)

Pengujian menggunakan *X-Ray Fluorence* (XRF) *spectrometer* dilakukan untuk mengetahui komposisi elemen pasir-pasir alam dari Kalimantan Selatan. Perangkat XRF yang digunakan berada di Universitas Negeri Sebelas Maret (UNS), Surakarta.

3.3.2 Uji XRD (X-Ray Diffractometer)

Untuk mengidentifikasi fasa-fasa kristalin pada sampel dilakukan pengujian XRD Tipe *Philips X'Pert* PRO di LPPM ITS. Pengukuran ini akan dilakukan pada sudut 15-65^a dan *step size* 0,04° dengan tegangan 40 kV dan arus 30 mA menggunakan target Cu (λ =1,54056 Å).

Analisis kualitatif atau identifikasi fasa pada hasil uji XRD dilakukan dengan menggunakan program *Match!2* melalui pencocokan (*matching*) antara pola XRD terukur dengan model yang telah ada. Sekuensi 20-intensitas dan list hkl yang cocok antara pola XRD terukur dan model, mengindikasikan bahwa sampel yang didifraksi

tersebut mengkristal dengan struktur yang dimiliki model, demikian juga dengan fasanya. Sedangkan analisis kuantitatif untuk menginvestigasi struktur kristal dan kuantitas fasa (%berat ataupun %volume) dilakukan dengan menggunakan perangkat lunak *Rietica* yang berbasis pada penghalusan *Rietveld* (Pratapa, 2009).

3.3.3 Uji Densitas dan Porositas

Densitas adalah ukuran kepadatan dari suatu benda atau sering disebut kerapatan benda. Sedangkan porositas menyatakan persen fraksi volum dari rongga yang ada dalam sampel. Densitas dan porositas komposit diperoleh dengan metode Archimedes, mengikuti standard Australia AS1774.5 (Australian standard, 1989). Densitas yang dicari berupa *bulk density* dari sampel yang dapat dihitung dengan menggunakan persamaan berikut:

$$\rho = \frac{m_k}{m_s - m} \rho_{a \ i \ r} \tag{3.1}$$

dengan ρ menyatakan massa jenis sampel, m_k adalah massa sampel kering, m_i adalah massa sampel yang terendam di dalam air, m_s adalah massa sampel basah di udara, dan ρ_{air} adalah massa jenis air.

Porositas suatu sampel biasa disebut dengan *apparent porosity* dan dihitung melalui perumusan berikut ini:

(3.2)

$$P = \frac{m_s - m_k}{m_s - m_k} 100\%$$

3.3.4 Uji Kekerasan

Kekerasan merupakan ukuran ketahanan material terhadap deformasi. Nilai kekerasan berkaitan dengan kekuatan luluh material selama indentasi (penjejakan). Uji kekerasan yang dilakukan pada penelitian ini adalah uji kekerasan dengan metode *Vickers* menggunakan alat *Digital Microhardness Tester* Tipe fM-7 merk *Mituyo* di LPPM ITS Surabaya. Penjejak (*indentor*) yang digunakan berupa intan yang ujungnya berbentuk piramida. Nilai kekerasan hasil pengujian ini disebut HV atau VHN (*Vickers Hardness Number*), yang diartikan

sebagai besarnya beban yang diberikan dibagi luas penampang lekukan yang terjadi, dan dapat dinyatakan dalam persamaan 3.3 (Syarif dkk, 2011).

$HV = 1,854 \frac{P}{d^2}$

dengan HV adalah kekerasan *Vickers*, *P* menyatakan besarnya beban yang diberikan, *d* menyatakan rata-rata panjang diagonal jejak indentor. Besarnya beban yang diberikan dalam penelitian ini adalah 1 kgf.

(3.3)

(3.4)

3.3.5 Uji Resistivitas Listrik

Pengujian resistivitas listrik komposit dilakukan menggunakan alat Solartron Analytical SI 1260 dengan metode two point probes dan dianalisis dengan perangkat lunak SMaRT.

3.3.6 Uji TMA

Nilai koefisien ekspansi termal dapat dianalisis secara teoritik menggunakan persamaan *Rule of Mixture* (Guo dkk, 2012). Persamaan *Rule of Mixture* (RoM) ditunjukkan sebagai berikut

$\alpha_c = \alpha_r V_r + \alpha_m V_m$

Dengan, V adalah fraksi volume dan indeks c, r, dan m, berturut-turut menyatakan *composite*, *reinforcement*, dan *matrix*.

Selain itu, nilai KET dapat pula diperoleh dengan menggunakan data hasil uji TMA. Data yang diperoleh adalah grafik yang menyatakan hubungan antara suhu sampel (sumbu x) dan pertambahan panjang (sumbu y). Grafik tersebut dapat diambil tabulasi data dalam bentuk tabel dengan bantuan *software* yang relevan, dalam penelitian ini TMA dan *software* untuk analisis datanya adalah produk Mettler Toledo dan pengukurannya dengan seperangkat modul bertipe TMA/STDA840.

3.3.7 Uji Mikrografi

Untuk memperoleh informasi struktur permukaan sampel sebelum dan setelah siklus termal dilakukan pengujian mikrografi dengan menggunakan *Scanning Electron Microscopy* (SEM) merk FEI tipe *Insect-S50* di LPPM ITS Surabaya.

3.4 Diagram Alir Penelitian

(a)

3.4.1 Ekstraksi SiO₂

Uji XRD beberapa pasir alam : Tanah Laut, Tambang Ulang, Sungai Riam, dan Sungai Asem-asem

Analisis kualitatif pola difraksi

Pemilihan pasir alam yang memiliki kandungan silika tertinggi

Pasir Tanah Laut

Ekstraksi silika dari bahan dasar pasir Tanah Laut

Gambar 3.2 Diagram alir penelitian proses pemurnian silika (a) identifikasi kandungan beberapa pasir alam (b) pemurnian pasir Tanah Laut

3.4.2 Sintesis Komposit Keramik Silika-Magnesia-Boria

Gambar 3.3 Diagram alir penelitian untuk proses pembuatan komposit silikamagnesia-boria

3.4.3 Perlakuan Siklus Termal Pada Komposit Silika-Magnesia-Boria

BAB 4

HASIL DAN PEMBAHASAN

4.1 Ekstraksi Silika

Pemurnian silika sebagai bahan dasar komposit silika diawali dengan identifikasi kandungan pasir alam yang diambil dari beberapa daerah di Kalimantan Selatan, yaitu Tanah Laut, Tambang Ulang, Sungai Riam, dan Sungai Asem-asem. Gambar 4.1 menunjukkan pola difraksi keempat pasir tersebut.

Gambar 4.1 Pola Difraksi Sinar-X (radiasi Cu-Kα) pasir Tanah Laut (TL), pasir Tambang Ulang (TU), pasir Sungai Riam (SR), dan pasir Sungai Asem-asem (SA).

Berdasarkan analisis kualitatif dapat diketahui bahwa hanya pasir TL yang mengandung fasa tunggal kuarsa (16-2490). Oleh karena itu selanjutnya pasir TL digunakan sebagai bahan dasar ekstraksi silika.

Pasir yang diambil dari Tanah Laut ini sebelum diekstrasi telah memiliki kandungan Si cukup tinggi yaitu 89,44 at% seperti ditunjukkan pada Tabel 4.1. Proses ekstraksi silika dilakukan dengan cara separasi magnetik dan perendaman dalam HCl. Pada Tabel 4.1 ditunjukkan bahwa proses separasi dengan magnet permanen dapat mengurangi konsentrasi impuritas seperti unsur Fe, Cr, La, Ce, V, Mn, Zr dan Ti sehingga persentase Si meningkat hingga 95,69 at%. Proses selanjutnya adalah *milling* untuk mereduksi ukuran pasir hingga menjadi serbuk. Pada tahap ini juga bertujuan agar impuritas yang masih tersembunyi seperti Cr, Fe, Zr dan Ce dapat dikurangi. Perendaman serbuk dalam HCl 2M dilakukan untuk meningkatkan kemurnian serbuk silika. Metode ini efektif mengurangi kadar unsur Al, Ti, P, S, Zr, Ce dan Sn serta meningkatkan kadar Si hingga menjadi 95,87 at%.

		Konsei	ntrasi (at%)	
Formula	Pasir TL	Setelah separasi magnet	Setelah milling	Setelah perendaman HCl
Si	89,44	93,30	95,69	95,87
Cr	3,06		0,15	0,30
Al	2,54	3,19	1,44	1,21
Ti	1,27	0,49	0,49	0,42
Cl	1,17	1,46	0,91	0,95
Fe	1,15	0,15	0,19	0,25
Р	0,44	0,87		1.1
S	0,29	0,47	0,25	0,23
Zr	0,25	0,04	0,82	0,76
La	0,21	and the	and an	
Ce	0,06		0,04	
V	0,04			
Sn	0,04	0,04	0,02	
Mn	0.04	a the	and the	

Tabel 4	.1 K	omposisi	Unsur	dalam	Sampel	Sebelum	dan	Setelah	Ekstraksi

Gambar 4.2 menunjukkan pola difraksi pasir silika sebelum dan setelah diekstraksi. Analisis identifikasi fasa menunjukkan fasa tunggal SiO₂ kuarsa pada ketiga sampel dengan kode basis data 00-046-1045. Hasil ini memperkuat hasil uji XRF pada Tabel 4.1 bahwa telah diperoleh serbuk silika dengan kemurnian tinggi.

Gambar 4.2 Pola Difraksi Sinar-X (radiasi Cu-Kα) pasir Tanah Laut sebelum pemurnian dan setelah separasi magnetik dan perendaman HCl

4.2 Karakteristik Komposit SMB

Serbuk silika dengan kemurnian tinggi yang telah diekstraksi dari pasir Tanah Laut selanjutnya digunakan sebagai bahan pembuatan komposit SMB. Komposit dibuat dengan mencampurkan SiO₂, MgO, dan B₂O₃ dengan perbandingan 70:10:20 masing-masing dalam fraksi berat, serta ditambahkan PVA yang berperan sebagai pengikat (*binder*). Campuran serbuk dikompaksi untuk mendapatkan bentuk pelet dan dilakukan proses sinter dengan temperatur 1150°C dan waktu penahanan 1, 4 dan 6 jam. Selanjutnya, analisis fasa dan karakteristik fisis dilakukan untuk memilih komposit yang potensial digunakan untuk material *seal fuel cell* yang kemudian diberi perlakuan siklus termal.

4.2.1 Komposisi Fasa Komposit SMB

Pola difraksi sinar-x komposit SMB ditunjukkan pada Gambar 4.3. Berdasarkan analisis kualitatif, terdapat 4 fasa yang teridentifikasi pada komposit SMB1j, SMB4j dan SMB6j, yaitu kuarsa (SiO₂), protoenstatit (MgSiO₃),
klinoenstatit (MgSiO₃), dan suanit (Mg₂B₂O₅) dengan data kristalografi yang dapat dilihat pada Lampiran A.

Gambar 4.3 Pola Difraksi Sinar-X (radiasi Cu-Kα) komposit SMB1j, SMB4j, dan SMB6j

Pembentukan fasa ini dapat dipahami dari diagram fasa SiO₂-MgO (Gambar 2.1). Dengan komposisi 70 wt% SiO₂ dan temperatur 1150 °C, pada kesetimbangan akan terbentuk MgSiO₃ yang merupakan polimorf (enstatit, klinoenstatit, dan protoenstatit). Klinoenstatit bersifat metastabil dengan struktur *primitive monoclinic* pada temperatur rendah dan *C-centered* pada temperatur tinggi serta diperkirakan mulai terbentuk pada temperatur sekitar 995 °C (Smyth, 1974). Reaksi pembentukannya ditunjukkan pada Persamaan 4.1 (Tavangarian dan Emadi, 2010).

 $SiO_2(s) + MgO(s) \rightarrow MgSiO_3(s)$

(4.1)

Ketika temperatur mencapai 1000 °C, enstatit mulai terbentuk menurut Persamaan 4.2. Kemudian transformasi fasa terjadi dari enstatit menjadi protoenstatit menurut Persamaan 4.3 ketika temperatur mencapai 1200 °C. $Mg_2SiO_4(s) + SiO_2(s) \rightarrow Mg_2(Si_2O_6)(s)$

 $Mg_2(Si_2O_6)(s) \rightarrow 2MgSiO_3(s)$

Penambahan B_2O_3 dalam jumlah banyak menjadikannya lebih reaktif dengan MgO sehingga membentuk suanit (Qasrawi, 2005) menurut Persamaan 4.5.

 $2MgO(s) + B_2O_3(s) \rightarrow Mg_2B_2O_5(s)$

(4.5)

(4.2)

(4.3)

Selain membentuk suanit, berdasarkan diagram fasa MgO-B₂O₃ (Gambar 2.2), pada komposit SMB dengan fraksi mol relatif MgO (terhadap B₂O₃) sebesar 0,46 pada temperatur 1150 °C akan terbentuk pula fasa *liquid* (lelehan B₂O₃) yang kemudian berfungsi sebagai *sintering agent* untuk densifikasi komposit.

Pada komposit SMB, MgO telah habis karena bereaksi dengan SiO₂ untuk membentuk protoenstatit dan klinoenstatit, serta bereaksi dengan B₂O₃ membentuk suanit, dengan dibuktikan tidak teridentifikasikasinya fasa periklas.

Analisis lanjut terhadap data difraksi komposit SMB yaitu mengetahui komposisi masing-masing fasa dengan metode penghalusan *Rietveld* menggunakan perangkat lunak *Rietica*. Plot hasil penghalusan dapat dilihat pada Lampiran B.

Luaran *Rietica* berupa komposisi fasa komposit SMB ditunjukkan pada Tabel 4.2. Sedangkan informasi beberapa parameter kecocokan berupa *GoF*, R_p , R_{wp} , R_{exp} dan R_B dapat dilihat pada Lampiran C.

Tabel 4.2 Komposisi Fasa Komposit SMB

Compol	Komposisi Fasa (wt%)			
Samper	Kuarsa	Protoenstatit	Klinoenstatit	Suanit
SMB1j	61,6(12)	16,7(8)	3,4(9)	18,4(11)
SMB4j	17,7(7)	10,6(3)	51,0(4)	20,7(17)
SMB6j	19,5(9)	31,4(15)	26,3(17)	22,8(17)

Penelitian tentang polimorfi enstatit (MgSiO₃) telah banyak dilakukan. Namun pemahaman tentang stabilitas polimorfi ini belum dapat dijelaskan dengan baik. Hal ini dikarenakan proto- dan klinoenstatit bersifat ambigu, tidak dapat di*quench* (didinginkan secara cepat), dan memberikan hasil yang tidak konsisten (Smyth, 1974). Pada temperatur ruang protoenstatit merupakan fasa metastabil (Goel, 2007). Akibatnya, fraksi berat fasa-fasa enstatit dalam komposit berubah saling berkompensasi.

4.2.2 Densitas dan Porositas Komposit SMB

Uji Archimedes dilakukan guna mengetahui densitas *bulk* dan porositas komposit SMB. Hasilnya ditunjukkan pada Tabel 4.3.

Sampel	Densitas Bulk (g/cm ³)	Porositas (%)
SMB1j	1,55(1)	1,89(1)
SMB4j	1,62(1)	0,62(1)
SMB6j	1,64(1)	0,53(1)

Tabel 4.3 Densitas Bulk dan Porositas Komposit SMB

Dapat dilihat bahwa porositas komposit SMB semakin kecil terhadap pertambahan waktu penahanan sinter. Turunnya porositas ini dikarenakan waktu penahanan sinter yang lebih lama memberikan proses densifikasi pada komposit yang lebih lama sehingga lebih *dense*. Proses densifikasi ini tidak lepas dari peranan B₂O₃ pada saat proses sinter meleleh pada temperatur 480 °C (Wang dkk, 2009) dan menutupi pori-pori (Yang dan Cheng, 2009). Hasil ini sesuai dengan beberapa penelitian terdahulu yang telah dilakukan oleh Yang dan Cheng (1999), Pascual (2007), Zhou dkk (2009), dan Dewa (2014) bahwa penambahan B₂O₃ dapat membantu proses densifikasi sistem keramik.

4.2.3 Kekerasan Komposit SMB

Melalui pengujian kekerasan dengan metode *Vickers* diperoleh data diameter penjejakan pada komposit SMB oleh indentor. Selanjutnya nilai

kekerasan komposit SMB dihitung menggunakan Persamaan 3.3 dan ditunjukkan pada Tabel 4.4.

Correct al	Kekerasan (kg/mm ²)	asan
Samper	(kg/mm^2)	(GPa)
SMB1j	232,9	2,3
SMB4j	283,9	2,8
SMB6j	535,4	5,3

Tabel 4.4 Kekerasan Komposit SMB

Nilai kekerasan yang semakin meningkat berkaitan dengan penurunan porositas pada sampel seiring bertambahnya waktu penahanan sinter. Partikelpartikel pada komposit yang rapat memberikan nilai kekerasan yang besar.

4.2.4 Koefisien Ekspansi Termal Komposit SMB

Nilai koefisien ekspansi termal (KET) secara teoretik dapat diperoleh dengan pendekatan *Rule of Mixture* (Persamaan 3.4). Data luaran fraksi berat dan densitas fasa (Lampiran C) dari analisis kuantitatif fasa komposit dengan perangkat lunak *Rietica* digunakan untuk menentukan *%vol* sesuai Persamaan 3.5 (dapat dilihat pada Lampiran D). Nilai KET terhitung pada komposit juga bergantung pada nilai KET fasa penyusun masing-masing. Diketahui nilai KET keempat fasa adalah $11,2 \times 10^{-6} \circ C^{-1}$; $9,8 \times 10^{-6} \circ C^{-1}$; $12,0 \times 10^{-6} \circ C^{-1}$; dan $5,0 \times 10^{-6} \circ C^{-1}$ berturut-turut untuk fasa kuarsa, protoenstatit, klinoenstatit, dan suanit (Mahapatra dan Lu, 2010). Kemudian dari perhitungan KET menggunakan Persamaan 3.4 diperoleh seperti pada Tabel 4.5.

Tabel 4.5 Koefisien Ekspansi Termal Komposit SMB

Sampel	KET Terhitung (×10 ⁻⁶ °C ⁻¹)
SMB1j	9,87
SMB4j	10,03
SMB6j	9,45

4.2.5 Resistivitas Listrik Komposit SMB

Tabel 4.6 menunjukkan nilai resistivitas komposit SMB dengan waktu penahan sinter yang berbeda.

Resistivitas Listrik

Tabel 4.6 Resistivitas Listrik Komposit SMB pada Temperatur 800 °C

1	Sampel	Resistivitas Listrik ($\times 10^5 \Omega$ cm)
2	SMB1j	2,2
	SMB4j	2,5
	SMB6j	2,6

Pengukuran sifat listrik ini dilakukan pada temperatur operasi *fuel cell*, yaitu 800 °C. Nilai resistivitas untuk ketiga sampel berkisar antara $(2,2-2,6)\times10^5$ Ω cm yang masih dalam rentang persyaratan *seal fuel cell* (Mahapatra dan Lu, 2010a).

4.2.6 Mikrografi Komposit SMB

Gambar SEM ini mengkonfirmasi nilai porositas (Tabel 4.3) bahwa komposit SMB1j terlihat porus sedangkan SMB4j dan SMB6j terlihat lebih padat. Pada komposit SMB1j tampak topografi permukaan yang masih terdapat banyak butiran-butiran kasar yang diduga SiO₂ yang berdasarkan analisis fasa sebanyak 61,6 wt%, sedangkan hanya sedikit B₂O₃ yang mengisi celah-celahnya sehingga fasa suanit yang memiliki densitas tinggi (2,9 g/cm³) hanya sedikit terbentuk, yaitu 18,5 wt%.

Dibandingkan pada komposit SMB1j, pori-pori tampak berkurang pada permukaan komposit SMB4j dan SMB6j karena penambahan waktu penahanan sinter yang diberikan. Permukaan komposit SMB4j dan SMB6j tampak rapat. Waktu penahanan sinter yang semakin meningkat telah, secara visual, mengurangi porositas, berkaitan dengan proses densifikasi yang semakin baik karena peranan B₂O₃ yang semakin menyebar menutupi pori-pori, baik sebagai fasa "cair" maupun dalam bentuk suanit.

Gambar 4.4 Citra SEM mode SE komposit (a) SMB1j, (b) SMB4j, dan (c) SMB6j.

Berdasarkan karakteristik komposit yang telah disampaikan, yaitu komposisi fasa, porositas, kekerasan, koefisien ekspansi termal, resistivitas listrik, dan mikrografi, dapat diketahui bahwa komposit SMB4j lebih berpotensi menjadi material *seal fuel cell* dengan sifat-sifatnya yang sesuai dengan persyaratan, serta proses sintesis yang tidak terlalu lama (4 jam). Sehingga langkah selanjutnya adalah pengujian stabilitas sifat-sifat komposit SMB4j terhadap siklus termal dengan perlakuan seperti Gambar 3.1.

4.3 Karakteristik Komposit SMB4j Akibat Perlakuan Siklus Termal

Sistem kerja *fuel cell* adalah bersiklus, maka semua bagian dalam sisem *fuel cell* harus tahan terhadap kondisi tersebut, termasuk *seal*. Sehingga penelitian selanjutnya adalah uji kestabilan komposit SMB4j sebagai material *seal* yang dikondisikan sesuai dengan lingkungan kerja *fuel cell*, yaitu dalam proses siklus termal yang berulang. Sifat-sifat *seal* harus tidak berubah terhadap perlakuan siklus termal. Berikut merupakan karakteristik komposit SMB4j sebagai material *seal* ketika diberi perlakuan siklus termal.

4.3.1. Komposisi Fasa Komposit SMB4j Akibat Perlakuan Siklus Termal

Pola difaksi komposit SMB4j setelah diberi beberapa siklus termal ditunjukkan oleh Gambar 4.5. Dapat dilihat pada bahwa bentuk dan ketingggian puncak-puncak pada pola difraksi komposit siklus ke-0 hingga ke-15 hampir sama. Hal ini mengindikasikan fasa-fasa yang terkandung adalah sama.

Gambar 4.5 Pola Difraksi Sinar-X (radiasi Cu-Kα) komposit SMB4j pada beberapa siklus termal

Analisis kualitatif mengkonfirmasi bahwa komposit SMB4j setelah perlakuan siklus termal hingga siklus ke-15 mengandung fasa yang sama seperti sebelum diberi perlakuan (siklus ke-0). Tidak ada perubahan fasa yang terjadi. Fasa-fasa tersebut adalah kuarsa, protoenstatit, klinoenstatit, dan suanit.

Selanjutnya analisis kuantitatif pola difaksi komposit SMB4j pada beberapa siklus ditunjukkan pada Tabel 4.7. Plot hasil penghalusan dapat dilihat pada Lampiran B. Sedangkan informasi beberapa parameter kecocokan berupa GoF, R_p , R_{wp} , R_{exp} dan R_B dapat dilihat pada Lampiran C.

Company and	No Day	Komposisi	Fasa (wt%)	H NOT
Samper	Kuarsa	Protoenstatit	Klinoenstatit	Suanit
SMB4j-0s	17,7 (7)	10,6 (3)	51,0 (4)	20,7 (17)
SMB4j-3s	17,9 (7)	6,2 (1)	54,5 (14)	21,4 (13)
SMB4j-6s	18,2 (7)	8,7 (14)	53,1 (10)	20,0 (14)
SMB4j-9s	15,9 (7)	6,0 (12)	56,1 (16)	22,0 (14)
SMB4j-12s	17,2 (7)	6,0 (15)	55,4 (20)	21,4 (4)
SMB4j-15s	18,0 (7)	9,3 (20)	51,5 (17)	21,1 (13)

Tabel 4.7 Komposisi Fasa Komposit SMB4j pada Beberapa Siklus Termal

Keterangan: Kode sampel "s" menyatakan jumlah siklus.

Komposisi fasa komposit SMB4j relatif tidak berubah. Hal ini dikarenakan temperatur siklus berada di bawah temperatur sinter saat sintesis komposit. Dan berdasarkan diagram fasa SiO₂-MgO (Gambar 2.1), pada temperatur 800 °C tidak terdapat fasa baru yang terbentuk. Sehingga fasa yang terbentuk di awal tidak mengalami perubahan. Setelah melewati perlakuan siklus termal hingga siklus ke-15, tidak ada perubahan fasa dan komposisi fasa-fasanya memiliki fluktuasi yang relatif rendah, sehingga komposit SMB4j dapat dikatakan memiliki kestabilan fasa yang baik. Kestabilan fasa yang dimiliki oleh komposit ini akan mempengaruhi sifat-sifat yang lain.

4.3.2. Densitas dan Porositas Komposit SMB4j Akibat Perlakuan Siklus Termal

Analisis densitas dan porositas dilakukan pada komposit setelah diberi perlakuan siklus termal. Hasilnya ditunjukkan pada Tabel 4.8.

Tabel	4.8	Densitas	dan	Porositas	Komposit	SMB4j	pada	Beberapa	Siklus
]	Fermal							

Sampel	Densitas (g/cm ³)	Porositas (%)
SMB4j-0s	1,62 (1)	0,62 (1)
SMB4j-3s	1,63 (1)	0,61 (1)
SMB4j-6s	1,63 (1)	0,60 (1)
SMB4j-9s	1,62 (1)	0,61 (1)
SMB4j-12s	1,62 (1)	0,63 (1)
SMB4j-15s	1,63 (1)	0,61 (1)

Densitas dan porositas SMB4j setelah perlakuan siklus termal dapat dikatakan stabil hingga siklus ke-15. Tidak adanya perubahan komposisi fasa yang signifikan pada komposit turut berperan pada relatif stabilnya porositas dan densitas.

4.3.3. Kekerasan Komposit SMB4j Akibat Perlakuan Siklus Termal

Nilai kekerasan komposit SMB4j setelah perlakuan siklus termal ditunjukkan pada Tabel 4.9. Komposisi fasa yang terkandung dalam komposit SMB4j turut mempengaruhi karakteristik mekaniknya. Pada Tabel 4.10 dapat dilihat bahwa kekerasan komposit SMB4j relatif stabil di antara kisaran 2,7-2,8 GPa. Tidak adanya perubahan fasa dan rendahnya fluktuasi komposisi fasa seperti yang telah dijelaskan sebelumnya memberikan nilai kekerasan yang relatif tidak berubah pula.

Tabel 4.9 Kekerasan Komposit SMB4j pada Beberapa Siklus Termal

Contral	Keker	asan
Samper	(kg/mm ²)	(GPa)
SMB4j-0s	283,9	2,8
SMB4j-3s	279,4	2,7
SMB4j-6s	284,9	2,8
SMB4j-9s	275,6	2,7
SMB4j-12s	278,9	2,7
SMB4j-15s	277,5	2,7

4.3.4. Koefisien Ekspansi Termal Komposit SMB4j Akibat Perlakuan Siklus

Tabel 4.10 menunjukkan nilai koefisien ekspasi termal (KET) komposit SMB4j setelah melewati perlakuan siklus termal. Nilai KET teoretik diperoleh menggunakan pendekatan *Rule of Mixture* (Persamaan 3.4), sedangkan nilai terukurnya didapatkan dengan pengujian menggunakan *Thermomechanical Analysis* (TMA).

Sampal	KET (×1	$0^{-6} \circ C^{-1}$
Samper	Terhitung	Terukur
SMB4j-0s	10,03	10,24
SMB4j-3s	10,08	10,23
SMB4j-6s	10,12	10,25
SMB4j-9s	10,05	10,26
SMB4j-12s	10,08	10,20
SMB4j-15s	10,03	10,21

 Tabel 4.10 Koefisien Ekspansi Termal Komposit SMB4j pada Beberapa Siklus

 Termal

Koefisien ekspansi termal (KET) merupakan perbandingan panjang relatif terhadap panjang awal material yang berhubungan dengan temperatur. Nilai KET komposit SMB4j pada tiap siklus dapat dikatakan tidak terjadi perubahan yang signifikan. Hal ini berkaitan fasa-fasa penyusun komposit yang komposisi dan parameter kisinya relatif tidak berubah (dapat dilihat pada Lampiran 7).

4.3.5. Resistivitas Listrik Komposit SMB4j Akibat Perlakuan Siklus Termal

Uji sifat listrik pada komposit SMB4j setelah diberi perlakuan siklus termal dilakukan untuk mengetahui kestabilan resistivitas listrik pada komposit. Tabel 4.11 menunjukkan nilai resistivitas listrik komposit yang berkisar antara $(2,5-2,8) \times 10^5 \Omega$ cm.

Tabel 4.11 Resistivitas Listrik Komposit SMB4j pada Temperatur 800°C.

4.3.6. Mikrografi Komposit SMB4j Akibat Perlakuan Siklus Termal

Analisis mikrografi menggunakan SEM (mode SE) dilakukan pada komposit setelah melewati beberapa proses siklus termal hingga siklus ke-15. Topografi permukaan komposit dapat dilihat pada Gambar 4.6.

Permukaan komposit dari awal sebelum dikenai perlakuan siklus termal hingga siklus ke-15 relatif sama. Permukaan masih tertutup rapat oleh fasa "cair" B₂O₃ yang telah meleleh pada temperatur sinter 1150°C selama 4 jam.

Gambar 4.6 Citra SEM mode SE komposit SMB4j pada siklus (a) ke-0 (a) ke-3 (c) ke-6 (d) ke-9 (e) ke-12 (f) ke-15.

4.4 Diskusi

4.4.1. Ekstraksi Silika

Sintesis *seal fuel cell* pada penelitian ini menggunakan silika yang berasal dari pasir alam yang diekstraksi. Diawali dengan pemilihan pasir dari empat tempat di Propinsi Kalimantan Selatan yang berbeda, yaitu Tanah Laut, Tambang Ulang, Sungai Riam, dan Sungai Asem-asem, kemudian pasir Tanah Laut terpilih karena memiliki pola difraksi *single phase* kuarsa yang mengindikasikan kemurnian SiO₂ yang lebih tinggi dibandingkan dengan ketiga pasir yang lain. Hasil uji XRF pada Tabel 4.1 mengkonfirmasi bahwa kandungan Si pada pasir Tanah Laut sukup tinggi yaitu 89,44 at%. Selanjutnya pasir Tanah Laut ini menjalani pemurnian silika.

Proses ekstraksi pada pasir Tanah Laut dilakukan dengan dua metode, yaitu separasi magnetik menggunakan magnet permanen dan perendaman HCI. Separasi magnetik pada pasir terbukti cukup efektif mengurangi impuritas sehingga persentase Si meningkat hingga 95,69 at%. Proses selanjutnya adalah *milling* untuk mereduksi ukuran pasir hingga menjadi serbuk. Pada tahap ini juga bertujuan agar impuritas yang masih tersembunyi dapat dikurangi. Proses separasi magnetik kembali dilakukan pada serbuk untuk mengoptimalkan reduksi unsurunsur magnetik. Selanjutnya perendaman serbuk dalam HCl 2M dilakukan untuk meningkatkan kemurnian serbuk silika. Metode ini hanya efektif meningkatkan kadar Si hingga menjadi 95,87 at%. Kemurnian yang cukup tinggi ini dikonfirmasi dengan pola difraksi serbuk yang menunjukkan fasa tunggal kuarsa. Selanjutnya serbuk silika ini digunakan sebagai bahan dasar sintesis komposit *sealing material* pada *fuel cell.*

4.4.2. Seleksi Komposit SMB sebagai Sealing material

Fuel cell adalah *electrochemical devices* yang mengkonversi hidrogen atau hidrokarbon menjadi listrik tanpa ada bagian yang terbuang selama operasi. Di antara beberapa jenis sistem *fuel cell*, SOFCs *(solid oxide fuel cell)* merupakan yang paling diminati karena keunggulannya dalam hal efiesiensinya yang tinggi (Mahapatra dan Lu, 2010b). Ada dua jenis SOFC, yaitu tubular dan planar. SOFC planar lebih dipilih karena (1) memiliki *power density* yang tinggi, (2) bekerja pada rentang temperatur yang luas, (3) berpotensi pada aplikasi stasioner dan *mobile*, (4) desain fleksibel dan mudah difabrikasi, (5)harga yang murah (US *Department of Energy*, 2004). Untuk desain planar, *sealing* dibutuhkan di sepanjang ujung komponen *cell*. *Seal* merupakan bagian yang sangat penting dalam sistem, karena berkaitan langsung dengan efisiensi kerja *fuel cell*. Beberapa persyaratan untuk material *seal fuel cell* ini telah dibahas pada Tabel 2.1.

Glass seal adalah sistem oksida multikomponen yang terdiri atas *glass network former, glass network modifier, intermediate,* dan *additive* (Mahapatra, 2010b). *Glass network former* yang biasa digunakan adalah SiO₂ atau B₂O₃, glass *network modifier* berupa oksida alkali atau alkali tanah, sedangkan *intermediate* dapat menjadi glass network former atau glass network modifier, bergantung komposisinya, dan beberapa additive berupa oksida logam transisi atau oksida logam tanah jarang. Pada penelitian ini digunakan bahan SiO₂ sebagai glass *network former*. Untuk aplikasi SOFC, keramik berbasis alkali tanah lebih sering digunakan (Fergus, 2005), sedangkan alkali biasanya dicegah karena mudah bereaksi dengan komponen *fuel cell* yang lain (Nielsen dkk, 2004), sehingga dalam penelitian ini digunakan magnesium oksida. Dan sebagai *intermediate* digunakan B₂O₃. Selain itu, manfaat digunakannya B₂O₃ yaitu dapat mengurangi meningkatkan wetting ability (Mahapatra dan Lu, 2010a) dan sebagai *sintering agent* dalam proses sinter (Yang dan Cheng, 1999).

Keramik padat sebagai *sealing material* dengan bahan-bahan SiO₂-MgO-B₂O₃ ini disintesis dengan metode *solid state reaction*. Dengan temperatur sinter dan waktu penahanan tertentu akan terjadi perubahan dimensi, pengurangan jumlah dan ukuran pori-pori serta densifikasi yang bergantung pada bentuk dan distribusi serbuk, komposisi serbuk, dan prosedur sinter (German, 1994). Karena titik lelehnya yang rendah (480 °C) (Wang dkk, 2009), dalam proses sinter B₂O₃ berperan sebagai *liquid phase* yang membantu proses densifikasi dalam sampel. B₂O₃ mencair dan mengalir menuju daerah-daerah kosong (pori-pori).

Tabel 4.3 menunjukkan bahwa ketiga sampel dengan komposisi sama yang disinter pada temperatur 1150 °C dan waktu penahanan yang berbeda. Waktu penahanan sinter yang semakin meningkat menghasilkan densitas *bulk* yang

semakin meningkat pula, seperti yang dilaporkan peneliti lain (Lan dkk, 2011). Hal ini berkaitan dengan proses densifikasi yang semakin baik, karena peranan B₂O₃ yang semakin menyebar menutupi pori-pori (Yang dan Cheng, 1999).

Selain itu, porositas ketiga sampel juga dapat dipahami dari komposisi fasa masing-masing. Fasa yang terbentuk pada komposit dari bahan SiO₂, MgO, dan B₂O₃ dengan perbandingan 70:10:20 dalam persen berat pada berbagai waktu penahanan sinter menghasilkan jenis fasa-fasa yang sama namun berbeda kuantitas. Proses pembentukan fasa-fasa tersebut telah dijelaskan pada subbab 4.2.1. Setiap fasa memiliki struktur kristal masing-masing. Porositas muncul pada ikatan kristal antar butir (*grain*). Diketahui bahwa densitas kuarsa, protoenstatit, klinoenstatit, dan suanit berturut-turut adalah 2,6 g/cm³, 2,5 g/cm³, 2,5 g/cm³, dan 2,9 g/cm³. Seiring bertambahnya waktu penahanan sinter, densitas sampel semakin tinggi. Hal ini diduga karena komposisi fasa suanit yang memiliki densitas relatif lebih tinggi semakin banyak.

Penahanan waktu sinter yang semakin lama menyebabkan fasa *liquid* B_2O_3 semakin banyak mengisi pori-pori sehingga membentuk ikatan yang semakin kuat antar partikel dalam sampel. Hasil uji SEM yang memberikan pengamatan mikrografi mendukung peranan B_2O_3 yang semakin rapat mengisi ruang antar partikel-partikel kasar yang, menurut data XRD, adalah kuarsa, proto- dan klinoenstatit, dan suanit. Hal ini mendorong sampel memiliki kekerasan yang meningkat seiring bertambahnya waktu penahanan sinter.

Salah satu parameter yang sangat penting bagi *sealing material* adalah koefisien ekspansi termal. KET *seal* tidak boleh berbeda lebih dari 1×10^{-6} K⁻¹ dengan komponen lain yang berdampingan untuk mencegah adanya *pore* dan *crack* (Mahapatra dan Lu, 2010b) akibat ketidakcocokan (*mismatch*) KET selama operasi. Analisis KET pada komposit secara teoretik (terhitung) beradasarkan *Rule of Mixture* erat kaitannya dengan fasa-fasa yang terbentuk pada sampel. Komposit SMB1j, 4j, dan 6j memiliki nilai KET yang berbeda dikarenakan komposisi fasa masing-masing komposit berbeda satu dengan yang lain, namun ketiganya masih dalam rentang persyaratan material *seal*, yaitu 9,5-12,0×10⁻⁶ °C⁻¹ menurut Mahapatra dan Lu (2010a).

Karakteristik lain yang dibutuhkan *seal fuel cell* adalah resistivitas listrik (ρ). Resistivitas listrik harus >10⁴ Ω cm untuk mencegah *shunting* (Lara dkk, 2006). *Glass* yang mengandung oksida alkali tanah umumnya mempunyai nilai resistivitas listrik > 10⁴ Ω cm yang cenderung meningkat dengan radius ionik dan valensi ion *modifier* (Shelby dkk, 2005), contoh: BaO-ZnO-*silicate glass* (~1,3×10⁹ Ω cm) adalah 10 kali lebih besar dibandingkan BaO-MgO-*silicate glass* (~5,8×10⁸ Ω cm), berkaitan dengan radius ionik Zn²⁺ yang lebih besar (Lara dkk, 2006). Pengukuran sifat listrik pada komposit SMB dilakukan pada temperatur operasi *fuel cell*, yaitu 800 °C. Nilai resistivitas untuk ketiga sampel berkisar antara (2,5-2,8) ×10⁵ Ω cm dan secara umum masih dalam rentang persyaratan *seal fuel cell*. Perubahan waktu penahanan sinter secara praktis tidak memberikan efek terhadap resistivitas listrik pada sampel sebab komposisi awal komposit hampir sama sedangkan resistivitas listrik bergantung pada komposisi fasa (Lara dkk, 2006).

Berdasarkan analisis karakteristik komposit SMB yang disinter pada temperatur 1150 °C dengan waktu penahanan 1, 4, dan 6 jam, komposit yang memenuhi persyaratan *seal fuel cell* ditampilkan pada Tabel 4.13.

Sampel	Porositas	Kekerasan	KET	Resistivitas Listrik
Persyaratan seal	< 1%	Tahan pada 14-35 kPa	9,5-12 ppm/°C	$\geq 10^4 \Omega cm$
SMB1j	X	V V	V	V
SMB4j	V	V V	$\sqrt{1}$	
SMB6j	V		×	

Tabel 4.13 Rekap Karakteristik Komposit SMB

Keterangan : x tidak memenuhi persyaratan $\sqrt{1000}$ memenuhi persyaratan

Porositas komposit SMB1j sebesar 1,89 %, sehingga tidak memenuhi persyaratan *seal*. Sedangkan komposit SMB6j tidak memenuhi persyaratan KET. Oleh karena itu peneliti memilih komposit SMB4j sebagai kandidat *seal* yang selanjutnya akan diuji kestabilannya terhadap perlakuan siklus termal.

4.4.3. Kestabilan Komposit SMB4j terhadap Siklus Termal

Sealing material memiliki dua persyaratan dasar. Pertama adalah mampu menyegel komponen-komponen lain (Mahapatra dan Lu, 2010a). Pada Tabel 2.1 telah disampaikan beberapa karakteristik yang dibutuhkan agar material dapat melakukan fungsi *sealing* dan pada Sub-Bab 4.4.2 telah dibahas bahwa komposit SMB4j telah memenuhi persayaratan tersebut dan dipilih sebagai material *seal*. Kedua, *seal* harus stabil saat *cell* beroperasi (siklus termal) dalam jangka waktu yang lama (Mahapatra dan Lu, 2010a). Hal ini merupakan bagian yang paling menantang dalam perkembangan pembuatan *sealing material* (Chou dan Stevenson, 2003). Oleh karena itu, komposit SMB4j yang telah dipilih sebagai material *seal* perlu untuk diketahui kemampuan stabilitasnya terhadap perlakuan siklus termal.

Perlakuan siklus termal yang diberikan pada sampel adalah sesuai dengan temperatur operasi SOFC, yaitu 800 °C (Mahapatra dan Lu, 2010b). Empat karakteristik yang sangat fundamental pada *glass seal* yang digunakan dalam operasi termal jangka panjang antara lain koefisien ekspansi termal (KET), *glass temperature* (T_g), *gas-leakage*, dan kekuatan atau performa mekanik (Wei, 2008). Pada penelitian ini, dikaji pengaruh perlakuan termal hingga siklus kelima belas terhadap KET, T_g , performa mekanik berupa kekerasan komposit SMB4j. Selain itu, juga dikaji kestabilan komposisi fasa, porositas, resistivitas listrik, dan mikrografi komposit.

Fasa yang ada pada komposit SMB4j sebelum dikenai perlakuan siklus termal adalah kuarsa, protoenstatit, klinoenstatit, dan suanit. Analisis kualitatif terhadap puncak-puncak pola difraksi komposit setelah mengalami 3, 6, 9, 12, dan 15 siklus termal menunjukkan bahwa tidak terjadi perubahan jenis maupun kuantitas fasa kemudian dibuktikan dengan analisis menggunakan perangkat lunak *Match*!. Berdasarkan analisis lebih lanjut, komposisi fasa-fasa tersebut relatif tetap hingga siklus kelima belas. Fasa-fasa ini terbentuk pada temperatur sinter 1150 °C sehingga pada temperatur 800 °C relatif stabil, tidak terjadi pembentukan fasa baru, transformasi, maupun deformasi sehingga komposisinya pun tetap.

Kestabilan komposisi fasa akan mendukung kestabilan sifat-sifat yang lain. Salah satunya adalah KET. Dengan pendekatan *Rule of Mixture*, pada beberapa sampel dengan komposisi fasa yang relatif tetap akan diperoleh KET terhitung yang relatif tetap pula. Hal ini dikonfirmasi dengan hasil uji TMA yang memberikan nilai KET terukur menggunakan instrumen TMA relatif tetap dengan rentang (10,21-10,26) ppm/°C.

Porositas komposit SMB4j akibat perlakuan siklus termal hingga siklus kelima belas berada pada rentang (0,60-0,63) %. Hal ini dipengaruhi karena tidak adanya perubahan jenis dan kuantitas fasa-fasa kristalin sehingga tidak adanya perubahan struktur-struktur kristal dan celah antar *grain* dalam komposit. Porositas komposit SMB4j yang senilai 0,62 % merupakan hasil densifikasi pada proses sinter 1150 °C dan waktu tahan 4 jam, jadi pemanasan sebesar 800 °C tidak memberikan proses densifikasi lanjut pada komposit. Kestabilan porositas komposit SMB4j juga dapat dikonfirmasi dengan topografi permukaannya menggunakan instrumen SEM yang relatif tetap ditunjukkan pada Gambar 4.6. Nilai porositas dan topografi permukaan komposit SMB yang relatif tidak berubah mengakibatkan kekerasannya juga relatif stabil.

Resistivitas listrik yang harus dimiliki oleh material *seal* adalah $>10^4 \Omega$ cm untuk mencegah *electrical shunting*. Muatan ionik berkontribusi terhadap konduktivitas ionik, sedangkan elektron dan *hole* berkontribusi terhadap konduktivitas elektronik. Pada *glass* yang mengandung oksida alkali dan alkali tanah, konduktivitas dikontrol oleh muatan ionik, sedangkan yang mengandung logam transisi dikontrol oleh elektron dan *hole* (Kingery, 1976). Mahapatra dan Lu (2010a) menjelaskan strategi yang dapat dipertimbangkan untuk mencegah penurunan resistivitas listrik akibat temperatur, yaitu mendesain *glass* yang stabil secara termal dan kimia sehingga komposisi dan struktur tidak berubah terhadap temperatur. Pada penelitian ini telah diperoleh hasil bahwa komposit SMB stabil secara komposisi fasa hingga siklus termal kelima belas. Hal ini mendukung perolehan nilai resistivitas listrik yang stabil pula.

Karakteristik penting lainnya listrik yang harus dimiliki oleh material *seal* adalah temperatur transisi glas (T_g) . T_g merupakan hal yang penting untuk

menentukan ketangguhan mekanik *seal* (Fergus, 2005). Pada Lampiran F diperoleh nilai Tg komposit SMB4j dari keluaran *Thermomechanical Analyzer* (TMA). Ditunjukkan bahwa nilai T_g komposit SMB4j relatif stabil, yaitu pada rentang temperatur antara 559-577 °C. Hrma dkk (1988) dan Singh (2007) menyampaikan bahwa nilai T_g dari *seal glass* harus sedikit lebih rendah dibandingkan temperatur operasi *cell* untuk mencegah terjadinya *termal stress* dan *self-heal cracks*. Sedangkan Mahapatra dan Lu (2010b) menambahkan bahwa untuk *low temperature* SOFC, *T_g* harus berada pada rentang 450-650 °C. Nilai T_g komposit SMB berada pada rentang tersebut. Beberapa hasil penelitian telah melaporkan bahwa untuk *silicate glass* nilai T_g berada pada rentang 675-775 °C (Lara dkk, 2004; Pascual dkk, 2006 dan 2007; dan Mahapatra dkk, 2009). Nilai T_g komposit SMB berada di bawah rentang tersebut. Hal ini disebabkan karena rendahnya nilai *T_g* B₂O₃ murni (~275 °C) memicu nilai T_g yang rendah pada B₂O₃-*containing glass* (Scholze, 1991).

Reaksi terhadap komponen *cell* lain merupakan aspek penting pada *sealing material*. Namun, pada penelitian ini karakteristik tersebut tidak dikaji. Hasil penelitian lain melaporkan bahwa pada oksida alkali tanah, *silicate* yang mengandung barium adalah yang paling reaktif, sedangkan yang mengandung magnesium yang paling *adherent*. Interaksinya komponen lain berupa *yttria-stabilized zirconia*, *silicate* yang mengandung magnesium akan membentuk interface yang *adherent* dan stabil (Schwickert dkk, 2003).

Berdasarkan uraian di atas, komposisi fasa, porositas, kekerasan, KET, T_g , resistivitas listrik, dan mikrostruktur komposit SMB4j menunjukkan stabilitas yang relatif baik terhadap perlakuan siklus termal hingga siklus kelima belas. Rentang perubahan karakteristik dan deviasinya dapat dilihat pada Lampiran I. Proses siklus termal dengan temperatur yang lebih rendah dibandingkan temperatur pembentukan awal material (*sintering*) mengakibatkan material cenderung mempertahankan sifat-sifatnya.

Untuk aplikasi stasioner *seal* harus tahan lebih dari 100 siklus termal dan 1000 siklus termal untuk aplikasi *mobile* (Solten dkk, 2003). Sehingga masih perlu dilakukan riset lebih lanjut terkait perlakuan termal dengan siklus yang lebih banyak sehingga dapat diketahui performa komposit SMB4j dalam jangka panjang. Selain itu, karakteristik *sealing* yang penting lainnya yang perlu dikaji pada komposit ini adalah *gas-leakage* dan reaksinya terhadap komponen *cell* lain.

BAB 5

5.1. Kesimpulan

Berdasarkan hasil penelitian yang telah dilakukan, dapat disimpulkan sebagai berikut:

- Proses identifikasi terhadap empat pasir alam menunjukkan bahwa pasir Tanah Laut memiliki kandungan fasa tunggal kuarsa (SiO₂) dan komposisi unsur Si yang tinggi, yaitu 89,44 at%. Ekstraksi silika dari pasir ini telah berhasil dilakukan dan diperoleh serbuk silika kuarsa dengan kemurnian mencapai 95,87 at% dan dengannya telah berhasil disintesis komposit keramik silika-magnesia-boria.
- 2. Proses sinter 1, 4, dan 6 jam menghasilkan terbentuknya fasa kuarsa (SiO₂), protoenstatit (MgSiO₃), klinoenstatit (MgSiO₃), dan suanit (Mg₂B₂O₅) dengan komposisi yang berbeda-beda pada ketiga sampel. Analisis kekerasan dan resistivitas listrik menunjukkan bahwa komposit SMB yang disinter dengan waktu penahanan 1, 4, maupun 6 jam memenuhi persyaratan sebagai material *seal fuel cell*. Namun nilai porositas < 1% hanya dipenuhi oleh komposit yang disinter 4 dan 6 jam didukung oleh data mikrografinya yang tampak padat (tidak porus). Sementara itu, komposit SMB6j memiliki nilai koefisien ekspansi termal di luar rentang yang disyaratkan. Oleh karena itu, SMB4j dipilih sebagai kandidat *sealing material* dengan karakteristik porositas 0,62%, kekerasan 2,8 GPa, KET 10,3×10⁻⁶ °C⁻¹, dan resistivitas listrik 2,5×10⁵ Ω cm.
- 3. Perlakuan siklus termal pada temperatur 800 °C selama 1 jam per siklus diberikan pada komposit SMB4j untuk mengetahui kestabilannya. Hingga siklus kelima belas, komposit SMB4j menunjukkan kestabilannya pada karakteristik komposisi fasa, porositas, kekerasan, koefisien ekspansi termal, resistivitas listrik, dan struktur mikrografi.

5.2. Saran

- Beberapa saran untuk penelitian selanjutnya:
- 1. Perlu dilanjutkan perlakuan siklus termal pada komposit SMB4j, mengingat
 - fuel cell beroperasi pada siklus yang sangat panjang.
- 2. Perlu dilakukan uji kebocoran gas (*gas-leakage*) dan uji kestabilan kimia kaitannya dengan reaksi material *seal* terhadap komponen *cell* lain.

DAFTAR PUSTAKA

Aristia, G. (2013), Analisis Komposisi Fasa Komposit Pasir Silika dan MgO, Tugas Akhir, Institut Teknologi Sepuluh Nopember, Surabaya.

Australian Standard 1774. 1989, Australian Standard 1774: Refractories and Refractory Materials-Physical Test Methods: As 1774. 13-1989: Permanent Dimensional Change (Book).

Beall, G.H. (1993), Glass-ceramics: Recent Developments and Applications. *Ceram. Trans. 30.*

Chakraborty, A.K., dan Maiti, K.N. (2000), "Effects of Subtitution of Quartz by Rajpardi Silica Sand on The Thermomechanical Properties of Ceramics",. *Interceram*, Vol 49, hal. 241-266.

Chou, Y. dan Stevenson, J.W. (2002), "Thermal Cycling and Degradation Mechanism of Compressive Mica-based Seals for Solid Oxide Fuel Cells", *Journal of Power Sources*, Vol. 112, hal. 376-383.

Chou, Yeong-Shyung, dan Jeffry W. Stevenson. (2003), "Mid-Term Stability of Novel Mica-Based Compressive Seals for Solid Oxide Fuel Cells", *Journal of Power Sources*, Vol. 115, hal. 274-278.

Choudhury, A., Chandra, H., dan Arora, A. (2013), "Application of Solid Oxide Fuel Cell Technology for Power", *Renewable and Sustainable Energy Reviews*, Vol. 20, hal. 430-442.

Dewa, E. (2014), Sintesis dan Karakterisasi Densitas, Porositas, Fasa, dan Ekspansi Termal Komposit Keramik Berbasis Pasir Silika-Magnesia-Boria, Tesis Magister, Institut Teknologi Sepuluh Nopember, Surabaya.

Fergus, J.W. (2005), "Sealant for Solid Oxide Fuel Cells", *Journal of Power Sources*, Vol. 147, hal. 46–57.

German, R.M., Pavan, S., dan Seong, J.P. (2009), *Liquid Phase Sintering*, Vol. 44, hal. 1-39. DOI 10.1007/s10853-008-3008-0.

Goel, A., Tulyaganov, D.U., Agathopoulos, S., Ribeiro, M.J., dan Ferreira, J.M.F. (2007), "Synthesis and Characterization of MgSiO₃-containing Glassceramics", *Ceramics International*, Vol. 33, hal 1481-1487.

- Guo, X., Song, K., Liang, S., dan Zheng, C. (2012), "Thermal Expansion Behavior of MgO/Cu Composite with Lower MgO Volume Fraction", *Materials Research Bulletin*, Vol. 47, hal. 3211–3215.
- Hao, J., Zan, Q., Ai, D., Ma, J., Deng, C., dan Xu, J. (2012), "Structure and High Temperature Physical Properties of Glass Seal materials in Solid Oxide Electrolysis Cell", *Journal of Power Sources*, Vol. 214, hal. 75–83.
- Heimann, R.B. (2010), "Super Conducting Ceramics. Classics and Advanced Ceramics", *Wiley-VCH Verlag Gmbh & Co. KgaA*, hal. 319-346.
- Hrma, P., Han, W.T., dan Cooper A.R. (1988), *J. Non-Cryst. Solids*, Vol. 102, hal. 88-94.
- Kazanovic, C., Stubicar, M., Stubicar, N., Tomasic, M., Ivankovic, H., dan Vladmir, B. (2005), "Synthesis of Forsterite Powder from Zeolit Precursor", hal. 203–208.
- Kingery, W.D., Bowen, H.K., dan Uhlmann, D.R., (1976), Introduction to Ceramics, Wiley & Son, New York.
- Lara, C., Pascual, M.J., Keding, R., dan Duran, A. (2004), *J. Non-Cryst. Solids*, Vol. 348, hal. 149.
- Lara, C., Pascual, M.J., Keding, R., dan Duran, A. (2006), *J. Power Sources*, Vol. 157, hal. 377-384.
- Lan, J., Xiao-Yan, C., Guo-Ming, H., dan Yu, M. (2011), "Effect of Additives on Properties of Aluminium Titanate Ceramics." *Transactions of Nonferrous Metals Society of China*, Vol. 21, hal. 1574–1579.
- Mahapatra, M.K., dan Lu, K. (2010a), "Seal Glass for Solid Oxide Fuel Cells", Journal of Power Sources, Vol. 195, hal. 7129–7139.
- Mahapatra, M.K., dan Lu, K. (2010b), "Glass-Based Seals for Solid Oxide Fuel and Electrolyzer Cells- A Review", *Materials Science and Engineering R*, Vol. 67, hal. 65–85.
- Mahapatra, M.K., Lu, K., dan Bodnar, R.J. (2009), *Appl. Phys. A.*, Vol. 95. Hal. 493.
- Nielson, K.A., Solvang, M., Poulsen, F.W., dan Larsen, P.H. (2004), Ceram. Eng. Sci. Proc. Vol. 25, No. 3, hal. 309-314.
- Pascual, M.J., Guillet, A., dan Duran, A. (2007), "Optimization of Glass-Ceramic

Sealant Compositions in The System MgO-BaO-SiO₂ for Solid Oxide Fuel Cells (SOFC)." *Journal of Power Sources*, Vol. 169, hal. 40–46. Pascual, M.J., Lara, C., dan Duran, A. (2007), *Eur. J. Glass. Sci. Technol. B.*, Vol.

47, hal. 572.

Pratapa, S. (2009), Analisis Data Difraksi Menggunakan Metode Rietveld, Surabaya.

Qasrawi, A.F., Kayed, T.S., Mergen, A., dan Guru, M. (2005), "Synthesis and Characterization of Mg₂B₂O₅", *Materials Research Bulletin*, Vol. 40, hal. 583-589.

Rachadel, P.L., Birol, H., Oliveira, A.P.N., dan Hotza, D. (2012), "Development of Alternative Glass Ceramic Seal for a Planar Solid Oxide Fuel Cell", Advances in Materials Science and Engineering, Vol. 2012, hal 1-6.

Scholze, H., (1991), *Glass Nature, Structure, and Properties,* Sringer Verlag, New York.

Schwickert, T., Reisgen, U., Geasee, P., dan Conradt, R. (2003), J. Adv. Mater. Vol. 35, No. 4, hal. 44-47.

Shelby, J.E., (2005), *Introduction to Glass Science and Technology*, The Royal Society of Chemistry, Cambridge.

Singh, R.N. (2007), Int. J. Appl Ceram. Tech., Vol. 4, hal. 134-144.

Smyth, J.R. (1974), "Experimental Study on The Polymorphism of Enstatite", *American Mineralogist*, Vol. 59, hal. 345–352.

Solten, D., Haart, L.G.J.B.d., dan Blumm, L. (2003), *Ceram. Eng. Sci. Proc.*, Vol. 24, hal. 263-272.

Suhala, Supriatna, dan Arifin, M. (1997), Bahan Galian Industri, Pusat Penelitian dan Pengembangan Teknologi Material, Bandung.

Syarif, D.G., Hildayanti, S., Mulyani, R.H., dan Soepriyanto, S. (2011), "Characteristics of ZrO2 Added-MgAl2o4 Ceramics for Matrix of Inert Matrix Nuclear Fuel (IMF)", *Indonesian Journal of Nuclear Science and Technology*, Vol. 12.

Szostak, R. (1998), "Molecular Sieves: Priciples of Synthesis and Identification", *Springer*.

Tavangarian, F., Emadi, R. (2010), "Synthesis of Nanocrystalline Forsterite

(Mg₂SiO₄) Powder by Combined Mechanical Activation and Thermal Treatment", *Materials Research Bulletin*, Vol. 45, hal. 388-391.

 Wang, S.F., Wang, Y., Hsu, Y., dan Chuang, C.C. (2009), "Effect of Additives on The Thermal Properties and Sealing Characteristic of BaO-Al₂O₃-B₂O₃-SiO₂ Glass-Ceramic for Solid Oxide Fuel Cell Application", *International Journal of Hydrogen Energy*, Vol. 34, hal. 8235–8244.

Wei, W.C.J. (2008), "Sealing Glass-Ceramics for Solid Oxide Fuel Cell." *Recent Patents Materials Science*, Vol. 1, hal. 217–222.

Yang, C.F. dan Cheng, C.M. (1999), "The Influence of B₂O₃ on The Sintering of MgO-CaO-Al₂O₃-SiO₂ Composite Glass Powder", *Ceramics International*, Vol. 25, hal. 383–387,

Zhou, H., Wang, H., Li, K., Zhang, M., dan Yao, X. (2009), "Effect of B₂O₃
Additions on the Sintering Temperature and Microwave Dielectric Properties of 5.5Li₂O-Nb₂O₅-7TiO₂ Ceramics", *Taylor & Francis*, Vol. 381, hal. 17-23.

Zuhailawati, H., Samayamutthirian, P., dan Haizu, C.H.M. (2007), "Fabrication of Cost of Aluminium Matrix Composite Reinforced with Silica Sand", *Journal of Physics Science*, Vol. 18, hal. 47–55.

LAMPIRAN A Data ICSD dan COD

A. Data ICSD untuk SiO₂ (kuarsa)

COL ICSD Collection Code 63532 DATE Recorded Dec 19, 1988; updated Dec 19, 1999 NAME Silicon oxide **MINR** Ouartz FORM Si O₂ $= O_2 Si$ TITL Crystal structures of quartz and magnesium germanate by profile analysis of synchrotron-radiation high-resolution powder data. **REF** Journal of Applied Crystallography JACGA 21 (1988) 182-191 Issue 2 AUT Will G, Bellotto M, Parrish W, Hart M CELL a=4.912(0) b=4.912 c=5.404(0) à=90.0 á=90.0 c=120.0 V=112.9 Z=3 (154) - trigonal SGR P 32 2 1 CLAS 32 (Hermann-Mauguin) - D3 (Schoenflies) PRS hP9 ANX AX2 1 4.000 3a 0.4704(4) 0. 2/3 Si 1-2.000 6c 0.4136(6) 0.2676(6) 0.7857(5) 0 WYCK c a TF Atom $\dot{a}(1,1) \dot{a}(2,2) \dot{a}(3,3) \dot{a}(1,2) \dot{a}(1,3) \dot{a}(2,3)$ Si 1 0.0059 0.0034 0.0043 0.0017 -0.0010 -0.0020 (7) (10) (8) (5) O 1 0.0080 0.0090 0.0090 0.0120 -0.0020 0.0000 (20) (30) (20) (30) (30) (20) REM SNP (synchroton radiation, powder diffraction) REM M PDF 46-1045 **RVAL 0.016**

B. Protoenstatit (MgSiO₃)

Data 9003432

Loop publ author name 'Thompson, R. M.', 'Downs, R. T.', Publ section title; Model pyroxenes II: Structural variation as a function of tetrahedral rotation model protoenstatite at 1360 K after Yang and Ghose (1995) with O_3 - O_3 - O_3 angle = 168.4 and model oxygen radius = 1.321 Note: Atoms Mg, Si, and O are assigned to atomic positions for convenience; 'American Mineralogist' Journal name full Journal page first 614 Journal page last 628 Journal volume 89 Journal year 2004 Chemical formula sum 'Mg O3 Si' Chemical name mineral Pyroxene-ideal Space group IT number 60 Symmetry space group name Hall '-P 2n 2ab' Symmetry space group name H-M 'P b c n' Cell angle alpha 90 90 Cell angle beta Cell angle gamma 90 Cell length a 9.268 Cell length b 9.102 Cell length c 5.255 Cell volume 443.298 Exptl crystal density diffrn 3.008 Local cod chemical formula sum orig 'Mg Si O3' Cod database code 9003432 Mg 0.00000 0.08333 0.75000 Mg 0.00000 0.25000 0.25000 Si 0.30820 0.08333 0.08333 O1 0.13370 0.08333 0.08333 O2 0.36630 0.25000 0.11260 O3 0.36630 -0.01460 0.31870

C. Suanit $(Mg_2B_2O_5)$

Data 2004240 Publ section title; Monoclinic Mg₂B₂O₅; 'Acta Crystallographica C' Journal name full Journal page first 2469 Journal page last 2471 Journal volume 51 1995 Journal year Chemical formula moiety 'Mg2 B2 O5' Chemical formula sum 'B2 Mg2 O5' Chemical formula weight 150.24 Space group IT number 14 Symmetry cell setting monoclinic Symmetry space group name Hall '-P 2ybc' Symmetry space group name H-M 'P 1 21/c 1' Cell angle alpha 90 Cell angle beta 104.26(3)Cell angle gamma 90 Cell formula units Z 4 Cell length a 9.197(4) Cell length b 3.1228(9) Cell length c 12.303(4)Cell measurement temperature 293 Cell volume 342.5(4)Exptl crystal density diffrn 2.91 Local cod cif authors sg H-M 'P 21/c' Local cod chemical formula sum orig 'Mg2 B2 O5' Mg1 1 .1023(2) .2133(8) .18580(10) .0056(4) Mg2 1 .6440(2) .2961(8) .89470(10) .0065(5) O1 1 .4957(4) -0.8020(10) .1370(3) .0071(8) O2 1 .2582(4) -0.2780(10) .2381(3) .0058(8) O3 1 .1804(4) .2200(10) .0463(3) .0071(8) O4 1 -.0535(4) -0.2910(10) .1522(3) .0065(8) O5 1 .3005(4) -0.4260(10) -.0693(3) .0069(8) B1 1 .3573(5) -0.228(2) .3411(4) .0050(10) B2 1 .1683(6) -0.654(2) -.0606(4) .0050(10)

D. Klinoenstatit (MgSiO₃)

Data 9007016

Loop publ author name: 'Shimobayashi, N.', 'Miyake, A.', 'Kitamura, M.', 'Miura, E.' Publ section title; Molecular dynamics simulations of the phase transition between low temperature and high temperature clinoenstatites Sample: from Smyth and Burnham, 1972; 'Physics and Chemistry of Minerals' Journal name full Journal page first 591 Journal page last 599 Journal volume 28 Journal year 2001 Chemical formula sum 'Mg O3 Si' Chemical name mineral Clinohypersthene Space group IT number 15 Symmetry space group name Hall '-C 2yc' Symmetry space group name H-M 'C 1 2/c 1' Cell angle alpha 90 Cell angle beta 109.91 Cell angle gamma 90 Cell length a 9.869 Cell length b 9.059 Cell length c 5.334 Cell volume 448.373 Exptl crystal density diffrn 2.974 Local cod chemical formula sum orig 'Mg Si O3' Cod original cell volume 448.374 Cod database code 9007016 MgM1 0.00000 0.90400 0.25000 MgM2 0.00000 0.26800 0.25000 SiT 0.29500 0.08400 0.26700 O1 0.12900 0.09800 0.15100 O2 0.37700 0.24000 0.35200 O3 0.34500 0.00600 0.04600

LAMPIRAN B Plot Hasil Penghalusan (*Rietveld Refinement*) dengan Perangkat Lunak *Rietica*

A. Komposit Keramik SMB1j

B. Komposit Keramik SMB6j

C. Komposit Keramik SMB4j-0s

D. Komposit Keramik SMB4j-3s

E. Komposit Keramik SMB4j-6s

F. Komposit Keramik SMB4j-9s

G. Komposit Keramik SMB4j-12s

H. Komposit Keramik SMB4j-15s

LAMPIRAN C

Keluaran Penghalusan Rietveld dengan Menggunakan Rietica

A. Serbuk Silika Silika (SiO₂) Hasil Ekstraksi

Para	Value				
	Rp (%)	9.77			
FoM	Rwp (%)	14.39			
	Rexp (%)	8.28			
	GoF (%)	3.015			
Parameter	а	4.9226 (3)			
kisi	b	4.9226 (3)			
	С	5.4164 (4)			
Density	2.632				
Derive	2.70				
R-f					
B.	Kom	posit	Kera	mik	SMB
----	-----	-------	------	-----	-----
----	-----	-------	------	-----	-----

						FA	ASA					
Sampal		Qua	rtz	P	Protoens	tatite		Clinoe	nstatite		Sua	nite
Samper	Prose	ntase	Parameter Kisi	Prose	ntase	Parameter Kisi	Prose	ntase	Parameter Kisi	Prose	ntase	Parameter Kisi
	77.4	61.6	a=4.922(1)	12.5	16.7	a=9.242(3)	0.2(1)	3.4	a=9.612(9)	9.8	18.4	a=6.158(3)
	(12)	(12)	b=4.922(1)	(6)	(8)	b=8.738(3)	0.5(1)	(9)	b=8.777(11)	(6)	(11)	b=9.201(8)
SMB1i	mol%	wt%	c=5.408(1)	mol%	wt%	c=5.320(1)	1110170	wt%	c=5.173(7)	mol%	wt%	c=3.141(3)
SMDT	Densita	ıs : 2.63	7 g/cm^3	Densitas	3:3.103	g/cm ³	Densita	s : 3.21	9 g/cm^3	Densita	s : 2.73	54 g/cm^3
	R-Brag	g:4.07		R-Bragg	g : 7.69		R-Brag	g : 8.66		R-Brag	g:7.40	
			Pa	rameter Global : Rp=13.12; Rwp=16.88; Rexp=9.9			=9.91; GOF=2.	094				
	48.4	17.7	a=4.927(1)	17.3	10.6	a=9.255(4)	10.4	51.0	a=9.606(2)	23.9	20.7	a=6.175(4)
	(20)	(21)	b=4.927(1)	(12)	(3)	b=8.754(4)	(3)	(4)	b=8.811(1)	(16)	(17)	b=9.205(8)
SMP/i	mol%	wt%	c=5.412(2)	mol%	wt%	c=5.318(3)	mol%	wt%	c=5.174(1)	mol%	wt%	c=3.146(2)
SIVID4J	Densita	us : 2.63	30 g/cm^3	Densitas	s : 3.094	g/cm ³	Densita	s: 3.20	8 g/cm^3	Densita	s: 2.72	2 g/cm^3
	R-Brag	g:3.01		R-Bragg	g : 4.49		R-Brag	g:5.41		R-Brag	g : 4.66)
			Par	ameter G	lobal : R	p=13.74; Rw	p=17.71;	Rexp=	=13.92; GOF=1	.619		
	39.1	19.5	a=4.927(2)	37.7	31.4	a=9.242(3)	3.9	26.3	a=9.609(4)	19.3	22.8	a=6.178(5)
	(17)	(9)	b=4.927(2)	(18)	(15)	b=8.749(3)	(3)	(17)	b=8.804(4)	(14)	(17)	b=9.208(13)
SMB6i	mol%	wt%	c=5.407(3)	mol%	wt%	c=5.313(2)	mol%	wt%	c=5.175(2)	mol%	wt%	c=3.145(3)
SMD0J	Densita	Densitas : 2.632 g/cm ³			3:3.103	g/cm ³	Densita	s: 3.20	9 g/cm^3	Densitas : 2.721 g/cm ³		
	R-Brag	g : 9.76		R-Bragg	g : 10.29		R-Brag	g:12.44	4	R-Brag	g:12.8	88
			Par	ameter G	lobal : R	p=24.42; Rw	p=31.81;	Rexp=	=25.23; GOF=1	.589		

						FA	ASA					
Siklus		Qua	rtz	I	Protoens	statite	(Clinoen	statite		Sua	nite
ke-	Prose	ntase	Parameter Kisi	Prose	ntase	Parameter Kisi	Prose	ntase	Parameter Kisi	Prosei	ntase	Parameter Kisi
	48.4	17.7	a=4.927(1)	17.3	10.6	a=9.255(4)	10.4	51.0	a=9.606(2)	23.9	20.7	a=6.175(4)
	(20)	(21)	b=4.927(1)	(12)	(3)	b=8.754(4)	(3)	(4)	b=8.811(1)	(16)	(17)	b=9.205(8)
0	mol%	wt%	c=5.412(2)	mol%	wt%	c=5.318(3)	mol%	wt%	c=5.174(1)	mol%	wt%	c=3.146(2)
0	Densita	s: 2.63	30 g/cm^3	Densita	s : 3.094	g/cm ³	Densita	s : 3.208	8 g/cm^3	Densita	s : 2.72	2 g/cm^3
	R-Brag	g: 3.01		R-Brag	g : 4.49		R-Brag	g : 5.41		R-Brag	g : 4.66)
		Pa		meter Global : Rp=13.74; Rwp=17.71; Rexp=		13.92; GOF=	1.619					
	51.5	17.9	a=4.924(1)	10.7	6.2	a=9.252(5)	11.7	54.5	a=9.598(2)	26.1	21.4	a=6.176(5)
	(21)	(7)	b=4.932(1)	(7)	(1)	b=8.734(5)	(4)	(14)	b=8.807(1)	(17)	(13)	b=9.089(8)
3	mol%	wt%	c=5.411(2)	mol%	wt%	c=5.315(3)	mol%	wt%	c=5.172(1)	mol%	wt%	c=3.161(2)
5	Densita	s : 2.63	4 g/cm^3	Densita	s:3.104	g/cm ³	Densita	s : 3.213	3 g/cm^3	Densita	s : 2.74	1 g/cm^3
	R-Brag	g:1.97		R-Brag	g:5.06		R-Brag	g:4.77		R-Brag	g : 4.97	1
			Para	meter Gl	obal : R	p=13.53; Rw	p=17.53;	Rexp=	13.92; GOF=	1.585		
	50.7	18.2	a=4.925(1)	11.5	8.7	a=9.235(7)	11.1	53.1	a=9.599(4)	23.7	20.0	a=6.167(5)
	(24)	(7)	b=4.925(1)	(24)	(14)	b=8.747(6)	(4)	(16)	b=8.810(1)	(18)	(14)	b=9.216(10)
6	mol%	wt%	c=5.412(2)	mol%	wt%	c=5.318(4)	mol%	wt%	c=5.172(1)	mol%	wt%	c=3.138(2)
0	Densita	s: 2.63	2 g/cm^3	Densita	s : 3.103	g/cm ³	Densita	s:3.21	l g/cm ³	Densita	s : 2.72	19 g/cm^3
	R-Brag	g:2.53		R-Brag	g : 4.33		R-Brag	g:5.59		R-Brag	g:4.11	
			Para	meter Gl	obal : R	p=13.91; Rw	p=18.06;	Rexp=	13.94; GOF=	1.677		

C. Komposit Keramik SMB4j terhadap Perlakuan Siklus Termal

9	48.1 (23) mol%	15.9 (7) wt%	a= 4.926(1) b=4.926(1) c=5.413(2)	10.8 (22) mol%	6.0 (12) wt%	a=9.239(7) b=8.755(6) c=5.304(5)	12.7 (5) mol%	56.1(16) wt%	a=9.598(1) b=8.811(1) c=5.173(1)	28.3 (19) mol%	22.0 (14) wt%	a=6.169(5) b=9.203(9) c=3.139(2)
	Densita	s : 2.63	0 g/cm^3	Densita	s : 3.107	' g/cm ³	Densita	s : 3.210	0 g/cm^3	Densita	s : 2.73	1 g/cm^3
	R-Brag	g : 2.65		R-Bragg	g:4.91		R-Bragg	g: 5.36		R-Brag	g : 4.05	
			Para	meter Gl	obal : R	p=13.94; Rwj	p=17.87;	Rexp=	13.83; GOF=	1.671		1
	50.6	17.2	a=4.926(1)	10.6	6.0	a=9.247(8)	12.2	55.4	a=9.598(1)	26.6	21.4	a=6.176(5)
	(24)	(7)	b=4.926(1)	(27)	(15)	b=8.748(8)	(5)	(20)	b=8.809(1)	(18)	(14)	b=9.200(9)
12	mol%	wt%	c=5.411(2)	mol%	wt%	c=5.321(4)	mol%	wt%	c=5.172(1)	mol%	wt%	c=3.145(2)
12	Densita	s: 2.63	1 g/cm^3	Densita	s : 3.097	$^{\prime}$ g/cm ³	Densita	s : 3.212	2 g/cm^3	Densita	s: 2.72	4 g/cm^3
	R-Brag	g:3.13		R-Bragg	g : 4.91		R-Bragg	g:4.21		R-Brag	g : 3.38	
			Para	meter Gl	obal : R	p=13.23; Rw	p=17.63;	Rexp=	13.63; GOF=1	1.674		
	49.5	18.0	a=4.924(1)	15.3	9.3	a=9.191(9)	10.6	51.5	a=9.597(2)	24.6	21.1	a=6.171(4)
	(25)	(7)	b=4.924(1)	(33)	(20)	b=8.768(6)	(5)	(17)	b=8.809(1)	(16)	(13)	b=9.194(8)
15	mol%	wt%	c=5.413(2)	mol%	wt%	c=5.330(5)	mol%	wt%	c=5.171(1)	mol%	wt%	c=3.140(2)
15	Densita	s: 2.63	2 g/cm^3	Densita	s:3.104	g/cm ³	Densita	s : 3.213	3 g/cm ³	Densita	s: 2.73	2 g/cm^3
	R-Brag	g :		R-Bragg	3:		R-Bragg	g :		R-Brag	g :	
			Para	meter Gl	obal : R	p=13.95; Rw	p=17.95;	Rexp=	14.05; GOF=1	1.634		

LAMPIRAN D

Analisis Penghitungan KET dengan Pendekatan Rule of Mixture

1. Komposit SMB

	De	ensitas fasa	(luaran <i>Riet</i> i	ica)		Prosentas	e berat fasa		%vol				KET
Sampel	Quarte	Proto-	Klino-	Sugnita	Overta	Proto-	Klino-	Sugnita	Quarte	Proto-	Klino-	Sugnita	komposit
	Quartz	enstatite	enstatite	Suanne	Quartz	enstatite	enstatite	Suame	Quartz	enstatite	enstatite	Suame	(terhitung)
SMB1j	2.637	3.104	3.219	2.734	61.6	16.7	3.4	18.4	63.96	14.73	2.88	18.43	9.87
SMB4j	2.630	3.094	3.208	2.722	17.7	10.6	51.0	20.7	20.00	10.18	47.23	22.59	10.03
SMB6j	2.632	3.103	3.209	2.721	19.5	31.4	26.3	22.8	27.91	38.13	30.81	3.15	9.45

2. Komposit SMB4j terhadap Perlakuan Siklus Termal

Sikhua	Den	sitas fasa (luaran <i>Rie</i>	tica)		Prosentase	e berat fasa			%	vol		KET
	Quartz	Proto-	Klino-	Sugnita	Quartz	Proto-	Klino-	Sugnita	Quartz	Proto-	Klino-	Suomito	komposit
KC-	Quartz	enstatite	enstatite	Suame	Quartz	enstatite	enstatite	Suame	Quartz	enstatite	enstatite	Suame	(terhitung)
0	2.630	3.094	3.208	2.722	17.7	10.6	51.0	20.7	20.00	10.18	47.23	22.59	10.03
3	2.634	3.104	3.213	2.741	17.9	6.2	54.5	21.4	20.25	5.95	50.54	23.26	10.08
6	2.632	3.103	3.211	2.729	18.2	8.7	53.1	20.0	20.59	8.35	49.24	21.82	10.12
9	2.630	3.107	3.210	2.731	15.9	6.0	56.1	22.0	18.04	5.76	52.15	24.04	10.05
12	2.631	3.097	3.212	2.724	17.2	6.0	55.4	21.4	19.47	5.77	51.37	23.40	10.08
15	2.632	3.104	3.213	2.732	18.0	9.3	51.5	21.1	20.36	8.92	47.72	22.99	10.03

LAMPIRAN E

Analisis Penghitungan Resistivitas Listrik

1. Komposit SMB

Ν

1.2e5

1.5e5

Impedance Real (Ohms)

2. Komposit SMB4j terhadap Perlakuan Siklus Termal

Impedance Real (Ohms)

LAMPIRAN F

Analisis Transition Glass Temperature (Tg)

SMB4j-0s

Temperatur transisi glas (T_g) komposit ditentukan dari data pengujian TMA dengan cara menentukan titik bengkok pada perubahan kemiringan garis dasar grafik. Berdasarkan gambar di atas dapat diperoleh nilai T_g komposit SMB4j sebagai berikut

Sampel	T_g
SMB4j-0s	565 °C
SMB4j-3s	559 °C
SMB4j-6s	566 °C
SMB4j-9s	566 °C
SMB4j-12s	570 °C
SMB4j-15s	577 °C

 Tabel 4.11
 Temperatur Transisi Glas Komposit SMB4j pada Beberapa Siklus

 Termal
 Termal

LAMPIRAN G

Rekap Karakteristik Komposit SMB

		Komposisi	Fasa (wt%)		Resistivitas	Kabarasan	Dorositas	KET
Sampel	Kuarsa	Proto- enstatit	Klino- enstatit	Suanit	Listrik $(\times 10^5 \ \Omega \ cm)$	(GPa)	(%)	Terhitung $(\times 10^{-6} \circ C^{-1})$
SMB1j	61,6(12)	16,7(8)	3,4(9)	18,4(11)	2,2	2,3	1,89(1)	9,87
SMB4j	17,7(7)	10,6(3)	51,0(4)	20,7(17)	2,5	2,8	0,62(1)	10,03
SMB6j	19,5(9)	31,4(15)	26,3(17)	22,8(17)	2,6	5,3	0,53(1)	9,45

LAMPIRAN H

Rekap Karakteristik Komposit SMB4j terhadap Perlakuan Siklus Termal

Sildua		Komposisi	Fasa (wt%)			KET (×1	$0^{-6} \circ C^{-1}$	Resistivitas	Valvaragan	Dorositos
ke-	Kuarsa	Proto- enstatite	Klino- enstatite	Suanit	T_g (°C)	Terhitung	Terukur	Listrik (×10 ⁵ Ω cm)	(GPa)	(%)
0	17,7 (7)	10,6 (3)	51,0 (4)	20,7 (17)	565	10,03	10,24	2,5	2,8	0,62 (1)
3	17,9 (7)	6,2 (1)	54,5 (14)	21,4 (13)	559	10,08	10,23	2,6	2,7	0,61 (1)
6	18,2 (7)	8,7 (14)	53,1 (10)	20,0 (14)	566	10,12	10,25	2,7	2,8	0,60 (1)
9	15,9 (7)	6,0 (12)	56,1 (16)	22,0 (14)	566	10,05	10,26	2,8	2,7	0,61 (1)
12	17,2 (7)	6,0 (15)	55,4 (20)	21,4 (4)	570	10,08	10,20	2,5	2,7	0,63 (1)
15	18,0 (7)	9,3 (20)	51,5 (17)	21,1 (13)	577	10,03	10,21	2,6	2,7	0,61 (1)

LAMPIRAN I Deviasi Kestabilan Karakteristik Komposit SMB4j Terhadap Perlakuan Siklus Termal

Sifat	Rentang	Deviasi
Komposisi fasa		
Kuarsa	(15,9-18,2) wt%	1,98 %
Protoenstatit	(6,0-10,6) wt%	10,45 %
Klinoenstatit	(51,0-56,1) wt%	1,59 %
• Suanit	(20,0-22,0) wt%	1,33 %
Porositas	(0,60-0,63) %	0,69 %
Kekerasan	(2,7-2,8) Gpa	0,77 %
KET (terukur)	(10,20-10,26) ×10 ⁻⁶ °C ⁻¹	0,09 %
Resistivitas listrik	$(2,5-2,8) \times 10^5 \Omega$ cm	1,86 %
Tg	(559-577) °C	0,43 %

Advanced Materials Research Vol. 1123 (2015) pp 383-386 © (2015) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/AMR.1123.383 Submitted: 2014-08-31 Revised: 2015-03-30 Accepted: 2015-04-05

Use of Natural Silica Sand as A Component for Prospective Fuel Cell Sealing Materials

Musyarofah¹, Upik Nurbaiti¹, Egidius Dewa¹, Triwikantoro¹, Mashuri¹, Sukma Firdaus², and Suminar Pratapa^{1*}

> ¹Department of Physics, Faculty of Mathematics and Natural Sciences Institut Teknologi Sepuluh Nopember Jalan Arief Rahman Hakim, Surabaya 60111 Indonesia *Email: suminar_pratapa@physics.its.ac.id

²Department of Mechanical Engineering, Polytechnic Tanah Laut Pelaihari, South Kalimantan, Indonesia

Keywords: Natural Silica Sand, SiO₂+MgO+B₂O₃ system, Fuel Cell Seal.

Abstract. A study to enhance the value of natural silica sand from Tanah Laut, South Kalimantan, Indonesia has been initiated. A number of local sands were selected as the candidates for the study. The selected sand contained more than 90% quartz was further processed to obtain a high purity initial powder using magnetic separation and immersion with HCl. The sealing materials were prepared by mixing the natural-sand-based silica (SiO₂) powder with magnesia (MgO) and boria (B₂O₃) with composition of 70:10:20 by weight followed by uniaxial pressing and finally sintering at 1150°C for 1h and 4 h to produce ceramic composites. XRD measurement revealed that the ceramic contained quartz, protoenstatite, and clinoenstatite. The 1h and 4h ceramics exhibited 1.89% and 0.43% apparent porosity, 7.00 ×10⁶ and 6.63×10^6 Ωcm electrical resistivity, 3.60 and 2.29 GPa Vickers microhardness, and 11.20×10^{-6} and 11.55×10^{-6} ppm/°C thermal expansion coefficient respectively. The 4h sample is more appropriate for sealing function in fuel cell than the 1h sample.

Introduction

Development of sealing materials for fuel cell is acquiring more attention recently, particularly based on oxide systems. A seal material plays important role in fuel cell systems because it seals the cells and prevent gas leakage [1]. A good sealing material for such systems has to meet several requirements, e.g. value of thermal expansion coefficient (TEC) is $9.5-12.0 \times 10^{-6}$ ppm/°C, electrical resistivity $\geq 10^{4} \Omega$ cm, withstand pressure up to 14-35 kPa, and leakage < 1% [2].

A glass-ceramic seal is the most preferred material today because it has superior sealing performances compared to other types [1-3]. Hidayat [4] has developed one of seal materials based on SiO₂-MgO system with predicted TEC values range of 9.5-12 ppm/°C, but relatively high porosity, i.e. 30-40 %, very much larger than that of the required criteria. Meanwhile, addition of B_2O_3 in some oxide ceramic systems can promote pore elimination due to its viscosity when liquid phase sintering process occurred [5].

This work is focused on the synthesis and characterization of sealing SiO_2 -MgO system based on silica natural sand with B_2O_3 as the additive as well as sintering agent. The use of the natural sand aims to enhance the value of such sand from Tanah Laut as a material to achieve the required properties for sealing.

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans Tech Publications, www.ttp.net. (ID: 202.46.129.19-12/06/15,07:06:41)

Experimental

The raw materials were natural sands taken from several locations in Tanah Laut District, i.e. Sungai Asem-asem (SA), Sungai Riam (SR), Tambang Ulang (TU), and Tanah Laut (TL). Distribution of elemental concentration for the samples were analyzed using energy dispersive x-ray (EDX) spectrometer. XRD was applied to observe phase compositions, using a Philips X'Pert Powder diffractometer with CuK α radiation.

The sand with highest Si or SiO_2 content according to EDS and XRD was further processed to obtain silica with highest purity. Magnetic compounds in the sand were removed by a magnetic separation procedure using a permanent magnet. After that, the sand was immersed using HCl 2M for 12 hours to increase its purity and then washed using aquadest until its pH was netral. Again, EDX and XRD were applied for its elemental content and phase compositions after purification.

The sealing material was prepared by mixing the 'purified' natural-sand-based silica (SiO₂) powder with magnesia (MgO) and boria (B₂O₃) with composition of 70:10:20 by weight followed by uniaxial pressing in a stainless steel die and finally sintering at 1150°C with 1 hour and 4 hours to produce ceramic composites. XRD data for the surface of the samples were collected, followed by phase analyses. The apparent porosity and bulk density of sintered composites were measured using the Archimedes method. Their electrical resistivity was tested by four point probe method. Vickers microhardness tests were performed on the composites to examine the mechanical strength, while the associated CTE were calculated based on Rule of Mixture (*RoM*) [4].

Results and Discussion

Table 1 and Figure 1(a) show that natural sands in several locations in Tanah Laut contain various elements and phase compositions. As can be seen, TL sand has the highest content of Si and dominant phase of SiO_2 quartz – both indicates it contains higher SiO_2 content than the other sands. Subsequently TL sand was chosen for extraction to obtain silica with higher purity. The elemental content and phase of sample TL sand which been washed, magnetically separated, and submerged with HCl, was tested by EDX and the result shows that sample having 100% of Si element. Figure 1 shows the XRD patterns of the purified, TL sand sample. Further qualitive analysis indicates the existence of single phase of quartz.

Figure 2 shows the XRD patterns for the surface of the composites sintered for 1 hour and 4 hours. Qualitative analysis reveals that the ceramics contain quartz (00-046-1045), protoenstatite (00-011-0273), and clinoenstatite (00-035-0610). Furthermore, quantitative phase analyses based on the Rietveld method using *Rietica* [6] results in the relative weight fraction of these phases in SMB1h, which are 63.5%, 24.3%, and 12.2%, respectively, while in SMB4h are 34.0%, 34.2%, and 31.8%, respectively. Quartz quantity decreases with increasing holding time because it immediately react with MgO become protoenstatite and clinoenstatite.

Table 1 shows data of physical, electrical and mechanical properties of the composites. The apparent porosity decreases slightly with increasing holding time. Decreasing in porosity which occurred is caused by the role of the sintering agent B_2O_3 on the sintering process [5]. Increasing the holding time allows 20wt% of B_2O_3 to melt and cover almost all of the pores in the silica-magnesia composites. By the Archimedes method, it can be shown that the composites exhibit very low porosity, i.e. 1.89% and 0.43% for the composites sintered for 1 hour and 4 hours respectively.

CTE of the composites is closely associated with the formation of the phases. Calculation based on *RoM* [4] shows that the CTE values of the composites are 11.20 ppm/°C for the composite sintered for 1 hour and 11.55 ppm/°C for 4 hours one.

Advanced Materials Research Vol. 1123

Figure 2. XRD patterns (CuKα) for the surface of the SiO₂-MgO-B₂O₃ ceramic composites with addition of 20 wt% B₂O₃.

Commla	Density	Porosity	Hardness	CTE	Resistivity
Sample	(g/cm^3)	(%)	(GPa)	(ppm/°C)	$(\Omega \text{ cm})$
1h	1.545(10)	1.891(9)	3.60	11.20	7.00×10 ⁶
4h	1.627(10)	0.429(4)	2.29	11.55	6.63×10^{6}

Table 2. Characteristics of SiO₂-MgO composites with addition of 20% B₂O₃

Electrical resistivity of a seal glass depends on the composition of network formers, modifiers, and additive [1]. In our SiO₂-MgO ceramic composite system, this is due to the ionic radius of Mg^{2+} alkaline earth modifier ions. Decreasing electrical resistivity in composites is caused by increasing intermediate phases (protoenstatite and clinoenstatite) which contain higher alkaline earth ion [3].

German [7] explained that sintering at a certain temperature and holding time will decrease the porosity and increase the hardness and electrical resistivity values as it will form a strong bond between the particles in the sample. The silica content in the composite affects the microstructure, so that the composite ceramics become very hard. The ceramic sintered for 4 hours exhibit apparent porosity, electrical resistivity, hardness, and thermal expansion coefficient of which meet properties for seal in fuel cell as required [2]. The excellent properties reveal that the ceramic can be a good material for sealing in a fuel cell system.

Summary

The density, porosity, thermal expansion, hardness and electrical resistivity of silica-magnesia-boria composites sintered at temperatures of 1150 °C for the 4h composite adequately qualifies the criteria as a fuel cell seal material with porosity values was < 1 %, CTE values range 9.5-12.0 ppm/°C, hardness value above the range 14-35 kPa and electrical resistivity $\ge 10^4 \Omega$ cm as compared to the 1h one.

Acknowledgements

The authors would like to thank Ministry of Education and Culture Republic of Indonesia and LPPM ITS to support finance through Program EPI-Unet no. 016445.2/IT2.7/PN.01.00/2014 given for SP.

References

[1] M. K. Mahapatra and K. Lu, "Seal Glass for Solid Oxide Fuel Cells," *Journal of Power Sources*, vol. 195, pp. 7129-7139, 2010.

[2] M. K. Mahapatra and K. Lu, "Glass-based Seals for Solid Oxide Fuel and Electrolyzer Cells – A Review," *Materials Science and Engineering B*, vol 67, pp 65-85, 2010.

[3] S. Ghosh, A. D. Sharma, A. K. Mukhopadhyay, P. Kundu, and R. N. Basu, "Effect of BaO Addition on Magnesium Lanthanum Alumino Borosilicate-Based Glass-Ceramic Sealant for Anode-Supported Solid Oxide Fuel Cell," *International Journal of Hydrogen Energy*, vol. 35, pp. 272-283, 2010.

[4] N. Hidayat, Triwikantoro, M. A. Baqiya, and S. Pratapa, "Thermal Expanssion Coefficient Prediction of Fuel Cell Seal Materials from Silica Sand," *AIP Conference Proceedings*, vol. 1555, pp. 99-101, 2012.

[5] C. F. Yang and C. M. Cheng, "The Influence of B₂O₃ on The Sintering of MgO-CaO-Al₂O₃-SiO₂ Composite Glass Powder," *Ceramics International*, vol. 25, pp. 383-387, 1999.

[6] Hunter, B. A, 1998. Newsletter of International Union of Crystallography, Sydney, p. 21.
[7] German, R.M. 1994. Powder Metallurgy Science, 2nd ed. Metal Powder Industries Federation. p. 273.

BIOGRAFI PENULIS

Musyarofah, lahir di Pemalang pada tanggal 29 Januari 1991, merupakan anak pertama dari tiga bersaudara pasangan Mahmud dan Darsini. Penulis telah menempuh pendidikan formal di TK Al-Ikhlas, SDN 1 Plawangan, SMPN 2 Kragan, SMAN 1 Kragan, S1 Pendidikan Fisika Unnes angkatan 2009 dan S2 Fisika ITS angkatan 2013 dengan NRP 1113201006. Di jurusan Fisika ini, penulis mengambil bidang minat material. Selama menjadi mahasiswa S2 Fisika ITS,

penulis mengikuti publikasi artikel ilmiah dalam seminar 7th International Conference on Physics and Its Applications (ICOPIA) & International Conference on Advance Materials Science and Technology (ICAMST) yang diselenggarakan di Solo. Akhir kata apabila ada kritik dan saran, dapat dikirimkan ke musyarofah.wongfisika@gmail.com.