

TUGAS AKHIR - EE 184801

ANALISIS QUALITY OF SERVICE (QoS) JARINGAN KOMUNIKASI PADA MINI SCADA

Anisa Mustika NRP 07111745000067

Dosen Pembimbing Dr. Ir. Achmad Affandi, DEA Rochmatika Astuti

DEPARTEMEN TEKNIK ELEKTRO Fakultas Teknologi Elektro Institut Teknologi Sepuluh Nopember Surabaya 2019

TUGAS AKHIR - EE 184801

ANALISIS QUALITY OF SERVICE (QoS) JARINGAN KOMUNIKASI PADA MINI SCADA

Anisa Mustika NRP 07111745000067

Dosen Pembimbing Dr. Ir. Achmad Affandi, DEA Rochmatika Astuti

DEPARTEMEN TEKNIK ELEKTRO Fakultas Teknologi Elektro Institut Teknologi Sepuluh Nopember Surabaya 2019

FINAL PROJECT - EE 184801

QUALITY OF SERVICE (QoS) ANALYSIS OF MINI SCADA COMMUNICATION NETWORK

Anisa Mustika NRP 07111745000067

Supervisors Dr. Ir. Achmad Affandi, DEA Rochmatika Astuti

DEPARTMENT OF ELECTRICAL ENGINEERING Faculty of Electrical Technology Institut Teknologi Sepuluh Nopember Surabaya 2019

ANALISIS QUALITY OF SERVICE (QoS) JARINGAN KOMUNIKASI PADA MINI SCADA

TUGAS AKHIR

Diajukan Guna Memenuhi Sebagian Persyaratan Untuk Memperoleh Gelar Sarjana Teknik Pada Bidang Studi Telekomunikasi Multimedia Departemen Teknik Elektro Institut Teknologi Sepuluh Nopember

Menyetujui

Dosen Pembimbing I

Dosen Pembimbing II

M. Jeanse.

Dr. Ir. Achmad Affandi, DEA NIP. 196510141990021001

Rochmatika Astuti NIP. 87111032Z

SURABAYA OF OGI SEPUL EXHOLOG DEPARTEMEN ELEV

PERNYATAAN KEASLIAN TUGAS AKHIR

Dengan ini saya menyatakan bahwa isi keseluruhan Tugas akhir saya dengan judul "ANALISIS QUALITY OF SERVICE (QoS) JARINGAN KOMUNIKASI PADA MINI SCADA" adalah benarbenar hasil karya intelektual mandiri, diselesaikan tanpa menggunakan bahan – bahan yang tidak diizinkan dan bukan merupakan karya pihak lain yang saya akui sebagai karya sendiri.

Semua referensi yang dikutip maupun dirujuk telah ditulis secara lengkap pada daftar pustaka.

Apabila ternyata pernyataan ini tidak benar, saya bersedia menerima sanksi sesuai peraturan yang berlaku.

Surabaya, Juli 2019

Anisa Mustika 07111745000067

- Halaman ini sengaja dikosongkan-

ANALISIS QUALITY OF SERVICE (QoS) JARINGAN KOMUNIKASI PADA MINI SCADA

Nama mahasiswa	: Anisa Mustika
Dosen Pembimbing I	: Dr. Ir. Achmad Affandi, DEA
Dosen Pembimbing II	: Rochmatika Astuti

Abstrak

Kualitas Layanan atau Quality of Service merupakan metode pengukuran tentang seberapa baik jaringan dan merupakan suatu usaha untuk mendefiniskan karakteristik dan sifat dari suatu servis. Mengacu pada dibuatnya Mini SCADA sebagai media pembelajaran di lingkungan Kampus/ Laboratorium, sistem dapat mengontrol jarak jauh, mendapatkan metering, dan juga mendapatkan status dari suatu sistem pada jarak jauh secara real time, maka diperlukan pengetahuan mengenai QoS.

Pengujian dilakukan dengan menggunakan dua media yaitu kabel Ethernet dan WiFi, dan pada saat kondisi tidak ada beban *traffic* dan diberikan beban *traffic*. Hal ini mengimplementasikan dari kondisi *traffic* di lapangan yang meningkat atau pada saat kondisi *traffic* padat. Namun adanya keterbatasan pada peralatan yang digunakan maka pengujian QoS dilakukan dengan melakukan penambahan beban *traffic* oleh *software* "tfgen". Kemudian hasil dari QoS berupa *throughput, delay, jitter,* dan *packet loss* di-*capture* menggunakan wireshark, dan kondisi diklasifikasikan dari jaringan Mini SCADA menurut standar ETSI TIPHON.

Melalui pengujian tersebut diketahui bahwa pada pengujian tanpa beban *traffic* didapatkan indeks QoS "Sangat Memuaskan" dimana nilai dari parameter QoS memenuhi standar dengan nilai persentase throughput 100%, *packet loss* 0%, delay <150 ms, dan jitter <75 ms. Pada uji menggunakan *beban traffic*, parameter Quality of Service yang terpengaruh adalah delay.

Kata Kunci: Traffic, QoS, SCADA, Throughput, Jitter, Delay

- Halaman ini sengaja dikosongkan-

QUALITY OF SERVICE (QoS) ANALYSIS OF MINI SCADA COMMUNICATION NETWORK

Student Name	: Anisa Mustika
Supervisor I	: Dr. Ir. Achmad Affandi, DEA
Supervisor II	: Rochmatika Astuti

Abstract

Quality of Service is a method of determining about good networks and is an attempt to define the characteristics and nature of a service. Referring to the making of Mini SCADA as a learning media in the Campus / Laboratory Environment, the system can control the distance, get measurements, and also get the status of the system remotely in real time, so knowledge about QoS is needed.

Tests are carried out using two media, Ethernet cable and WiFi, and during conditions there are no traffic disturbances and interference is provided. This is designed from increased traffic conditions or during heavy traffic conditions. However, the limitations that exist in the equipment used then QoS testing is done by increasing the traffic caused by software "tfgen". Then the results of QoS consist of throughput, delay, jitter, and packet loss captured using a wireshark, and using conditions from the Mini SCADA network according to the ETSI TIPHON standard.

Through testing published on testing without traffic load that the "Very Good" QoS index was obtained where the values of QoS parameters met the standard with 100% throughput, 0% packet loss, <150 ms delay, and <75 ms jitter. In testing using load traffic, the Quality of Service parameters that get a delay.

Keywords: Traffic, QoS, SCADA, Throughput, Jitter, Delay

- Halaman ini sengaja dikosongkan-

KATA PENGANTAR

Puji Syukur saya panjatkan kehadirat Allah SWT atas segala Rahmat, Karunia, dan Petunjuk yang telah dilimpahkan-Nya sehingga saya mampu menyelesaikan tugas akhir dengan judul "ANALISIS QUALITY OF SERVICE (QoS) JARINGAN KOMUNIKASI PADA MINI SCADA". Tugas Akhir ini disusun sebagai salah satu persyaratan untuk menyelesaikan jenjang pendidikan S1 pada Bidang Studi Telekomunikasi Multimedia, Departemen Teknik Elektro, Fakultas Teknologi Elektro, Institut Teknologi Sepuluh Nopember.

Pada kesempatan ini penulis ingin mengucapkan terima kasih yang sebesar-besarnya kepada pihak-pihak yang turut membantu penulis dalam menyelesaikan Tugas Akhir ini, yaitu kepada :

- 1. Ibu dan Papi atas doa dan cinta yang tak henti dalam keadaan apapun selalu mendukung dan memberi motivasi.
- 2. Bapak Dr. Ir. Achmad Affandi, DEA. dan Ibu Rochmatika Astuti, selaku Dosen Pembimbing Tugas Akhir yang telah membimbing dalam menyelesaikan Tugas Akhir.
- 3. Teman teman LJ dan PMMB yang telah menemani masa perkuliahan hingga semester 4 ini.
- Rekan rekan lab B301 yang sama sama berjuang menyelesaikan tugas akhir serta APD Jawa Timur PT PLN yang memberikan ilmu yang menunjang pada pembuatan Tugas Akhir sehingga saya bisa menyelesaikan Tugas Akhir ini.
- 5. Dosen dosen penguji yang memberikan saran dan kritik dalam membantu penyempurnaan isi dari Tugas Akhir.
- 6. Mas Dana, Wisnu, Risya, Dina selaku saudara kandung penulis yang selalu mendukung selama perkuliahan hingga selesainya Tugas Akhir.

Besar harapan penulis bahwa buku Tugas Akhir ini dapat memberikan informasi dan manfaat bagi pembaca pada umumnya dan mahasiswa Fakultas Teknologi Elektro pada khususnya.

Surabaya, Juli 2019

Penulis

-Halaman ini sengaja dikosongkan-

DAFTAR ISI

LEMBA	AR PENGESAHAN	iii
PERNY	ATAAN KEASLIAN TUGAS AKHIR	v
ABSTR	AK	vii
ABSTR	ACT	ix
KATA]	PENGANTAR	xi
DAFTA		xiii
DAFTA	AK GAMBAR D TADEI	XVII
DAFIA RAR 1	PENDAHIJI IJAN	XIX 1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	2
1.3	Tujuan	2
1.4	Batasan Masalah	2
1.5	Metodologi	2
1.6	Sistematika Penulisan	3
1.7	Relevansi	4
BAB 2	KAJIAN PUSTAKA	5
2.1	Sistem SCADA	5
2.2	SCADA Distribusi [5]	7
2.3	Fungsi Utama Sistem SCADA [3]	9
2.4	Bagian - Bagian SCADA [3]	9
2.4	4.1 Master Station	
2.4	4.2 Media Komunikasi [2]	
2.4	4.3 RTU (Remote Terminal Unit) [6]	
2.4	4.4 HMI (Human Machine Interface) [3]	
2.4	4.5 Peripheral [3]	
2.5	Protokol komunikasi	13

2.5.1	Protokol Modbus [10]	14
2.5.2	Protokol DNP-3 [7]	15
2.5.3	Protokol IEC 60870-5-101 [7]	16
2.5.4	Protokol IEC 60870-5-104 [7]	17
2.6	Peralatan Mini SCADA [3]	19
2.6.1	IED Power Meter	19
2.6.2	SIMOR (Simple Module RTU)	20
2.6.3	Aux Relay	21
2.6.4	Kabel NYAF/ Kabel Kontrol	22
2.6.5	Kabel Ethernet	22
2.6.6	Wireless Outdoor Bridge EnGenius ENH 202	23
2.6.7	Router Mikrotik	23
2.7	Jaringan Komunikasi Nirkabel/ Wireless	24
2.8	Quality of Service [9]	24
2.8.1	Throughput	24
2.8.2	Delay	25
2.8.3	Jitter	25
2.8.4	Packet Loss	26
2.9	Software Pengujian Kinerja dan Layanan Jaringan	27
2.9.1	TFGen	27
2.9.2	Wire Shark	27
2.10	Perangkat Software SCADA	29
2.10.	1 SCADA Explore [5]	29
2.10.	2 World View	30
2.11	Standar ETSI TIPHON (<i>Telecommunications and</i> <i>Protocol Harmonization Over Networks</i>) General as Quality of Service [11]	Internet pects of 31
2.12	Standar Pengujian Fungsional SCADA	33

2.1	2.1 Standar Pelaksanaan Commissioning	. 33
2.1	2.2 Standar Protokol Komunikasi	. 34
2.1	2.3 Standar Kecepatan Komunikasi Data	. 35
BAB 3	METODOLOGI PENELITIAN	37
3.1	Sistem Mini SCADA	38
3.2	Pengujian Fungsional Sistem Mini SCADA	41
3.3	Perancangan Jaringan Komunikasi	43
3.3	.1 Perancangan Jaringan Komuniksi Mini SCADA Tanpa Beban Traffic	. 43
3.3	.1.1 Rancangan Jaringan Komunikasi Tanpa <i>Beban Traffic</i> Menggunakan Kabel Ethernet	. 43
3.3	.1.2 Rancangan Jaringan Komunikasi Tanpa Beban traffic Menggunakan 2 Wireless Bridge	. 44
3.3	.1.3 Rancangan Jaringan Komunikasi Tanpa Beban traffic Menggunakan 3 Wireless Bridge	. 46
3.3	.2 Perancangan Jaringan Komuniksi Mini SCADA dengan Beban traffic	. 48
3.3	.2.1 Rancangan Jaringan Komunikasi dengan Beban traffic Menggunakan 2 Wireless Bridge	. 49
3.3	.2.2 Rancangan Jaringan Komunikasi dengan Beban traffic Menggunakan 3 Wireless Bridge	. 50
3.4	Langkah – Langkah Menjalankan Software Pengujian Kin Jaringan Komunikasi	erja 52
3.4	.1 Setting EnGenius	. 52
3.4	.2 Capture Jaringan Komunikasi dengan Wireshark	. 56
3.5	Pengukuran Kinerja Jaringan	56
3.5	.1 Pengukuran Throughput	. 57
3.5	.2 Pengukuran Delay	. 57
3.5	.3 Pengukuran Jitter	. 57
3.5	.4 Pengukuran Packet Loss	. 57

BAB 4 H	ASIL DAN PEMBAHASAN	59
4.1	Hasil Pengujian Fungsional Sistem Mini SCADA	59
4.2	Hasil Pengujian Kinerja Jaringan Mini SCADA	60
4.2.	1 Hasil Pengujian dan Analisis Jaringan Komunikasi Ta Beban traffic	unpa 60
4.2.2	2 Hasil Pengujian dan Analisis Jaringan Komunikasi de <i>Beban traffic</i>	ngan 65
BAB 5 K	ESIMPULAN	75
5.1	Kesimpulan	75
5.2	Saran	75
DAFTAR	R PUSTAKA	77
LAMPIR	AN A	79
LAMPIR	AN B	80
LAMPIR	AN C	81
LAMPIR	AN D	84
LAMPIR	AN E	85
LAMPIR	AN F	89
LAMPIR	AN G	95
LAMPIR	AN H	104
BIODAT	A PENULIS	113

DAFTAR GAMBAR

Gambar 2.1 Konfigurasi Sistem SCADA Distribusi Gardu Induk	5
Gambar 2.2 Konfigurasi Umum Remote Station	7
Gambar 2.3 Sistem Distribusi Tenaga Listrik	8
Gambar 2.4 Komponen SCADA	9
Gambar 2.5 APCI Frame Format	18
Gambar 2.6 IED Power Meter	20
Gambar 2.7 Simple Module RTU	21
Gambar 2.8 Relay LY4N 24VDC	21
Gambar 2.9 Kabel NYAF 0.75 mm ²	22
Gambar 2.10 Kabel Ethernet	22
Gambar 2.11 Wireless Outdoor Bridge EnGenius ENH202	23
Gambar 2.12 Mikrotik Routerboard	24
Gambar 2.13 Logo software traffic generator	27
Gambar 2.14 Struktur Packet Sniffer	28
Gambar 2.15 Struktur Graphical User Interface (GUI) software	
wireshark	29
Gambar 2.16 Logo SCADA Explore	30
Gambar 2.17 Tampilan awal worldview	30
Gambar 3.1 Diagram Alir Metodologi Penelitian	37
Gambar 3.2 Konfigurasi Sistem Mini SCADA Distribusi	39
Gambar 3.3 Konfigurasi Sistem SCADA Distribusi di Gardu Induk	40
Gambar 3.4 Tampak Belakang Mini SCADA	40
Gambar 3.5 Tampak Depan Mini SCADA	40
Gambar 3.6 Tampilan HMI "Tugas Akhir"	41
Gambar 3.7 Pelaksanaan Control Close Penyulang ITS-2	42
Gambar 3.8 Hasil Control Close Penyulang ITS-2	42
Gambar 3.9 Konfigurasi Jaringan Tanpa Beban traffic dengan Kabel	
Ethernet	44
Gambar 3.10 Konfigurasi Jaringan Tanpa Beban Traffic dengan 2	
Wireless Bridge	45
Gambar 3.11 Mapping Lokasi Lab AJ 404 dan Lab B 301	46
Gambar 3.12 Konfigurasi Jaringan Tanpa Beban traffic dengan 3	
Wireless Bridge	47

Gambar 3.13 Mapping Lokasi Lab AJ 404 dan Lab B 30148
Gambar 3.14 Konfigurasi Jaringan dengan Beban Traffic menggunakan
2 Wireless Bridge
Gambar 3.15 Konfigurasi Jaringan dengan Beban traffic menggunakan 2
Wireless Bridge
Gambar 3.16 Tampilan Log In
Gambar 3.17 Menu Operation Mode
Gambar 3.18 IP Setting
Gambar 3.19 Setting Mac Address
Gambar 3.20 Setting Wireless Network
Gambar 3.21 Save and Reload55
Gambar 3.22 Contoh File Hasil Capture Wireshark
Gambar 4.1 Hasil Pengukuran Jaringan Komunikasi Mini SCADA tanpa
Beban traffic menggunakan Kabel Ethernet
Gambar 4.2 Hasil Capture Jaringan Komunikasi Mini SCADA tanpa
Beban traffic menggunakan 2 Wireless Bridge
Gambar 4.3 Hasil Pengukuran Jaringan Komunikasi Mini SCADA tanpa
Beban traffic menggunakan 3 Wireless Bridge
Gambar 4.4 Grafik <i>Throughput</i> terhadap Besar <i>Traffic</i> Beban pada Dua
Wireless Bridge
Gambar 4.5 Grafik Nilai Delay terhadap Besar Traffic Beban pada 2
Wireless Bridge
Gambar 4.6 Grafik Nilai <i>Jitter</i> terhadap Besar Traffic Beban pada 2
Wireless Bridge
Gambar 4.7 Grafik Nilai Throughput terhadap Injek Beban pada Tiga
Wireless Bridge71
Gambar 4.8 Grafik Nilai Delay terhadap Injek Beban pada Tiga
Wireless Bridge
Gambar 4.9 Grafik Nilai Jitter terhadap Besar Injek Traffic Beban pada
Tiga Wireless Bridge73

DAFTAR TABEL

Tabel 2.1 Jenis Penyimpanan Data 15
Tabel 2.2 Protocol stack with IEC 104 18
Tabel 2.3 Fungsi Aplikasi IEC 60870-5-104 19
Tabel 2.4 Peringkat dan kriteria throughput (TIPHON, 1999) 31
Tabel 2.5 Peringkat dan kriteria packet loss (TIPHON, 1999) 31
Tabel 2.6 Peringkat dan kriteria delay (TIPHON, 1999) 32
Tabel 2.7 Peringkat dan kriteria jitter (TIPHON, 1999) 32
Tabel 2.8 Presentase dan Nilai QoS 33
Tabel 3.1 Perbandingan Perangkat SCADA Distribusi Gardu Induk
dengan Mini SCADA Distribusi
Tabel 3.2 IP Address Perangkat Uji tanpa Beban traffic kabel Ethernet44
Tabel 3.3 Address Perangkat pada Konfigurasi Tanpa Beban Traffic
dengan 2 Wireless Bridge 45
Tabel 3.4 Address Konfigurasi Perangkat dengan 3 Wireless Bridge 47
Tabel 3.5 Address Perangkat pada Konfigurasi dengan Gangguan Traffic
menggunakan 2 Wireless Bridge 50
Tabel 3.6 Address Perangkat pada Konfigurasi dengan Gangguan Traffic
menggunakan 2 Wireless Bridge 51
Tabel 4.1 Hasil Pengujian Fungsional Mini SCADA 59
Tabel 4.2 Hasil Pengukuran QoS Tanpa Beban traffic dengan Media
Kabel Ethernet
Tabel 4.3 Hasil Pengukuran QoS Tanpa Beban traffic dengan Media 2
Wireless Bridge
Tabel 4.4 Hasil Perhitungan QoS 3 Wireless Bridge (Lab AJ 404-B301-
Kantin)
Tabel 4.5 Hasil Klasifikasi QoS di masing – masing Pengujian Tanpa
Tambahan Traffic terhadap Standar ETSI TIPHON 64
Tabel 4.6 Hasil Pengujian QoS Jaringan Komunikasi dengan Input
Beban Tambahan pada Dua Wireless Bridge
Tabel 4.7 Hasil Pengujian QoS Jaringan Komunikasi dengan Input
Beban traffic pada Tiga Wireless Bridge

- Halaman ini sengaja dikosongkan-

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Adanya hubungan antara kebutuhan dunia industri dan penerapan dengan pembelajaran di Kampus, membuat Kampus perlu menyiapkan dan memberi pembelajaran mengenai kebutuhan yang ada di dunia industri saat ini, salah satunya adalah SCADA (*Supervisory Control and Data Acquisition*). Sistem SCADA Distribusi merupakan sistem yang dipakai di UP2D PLN (Unit Pengatur dan Pelaksana Perusahaan Listrik Negara).

UP2D PLN perlu melakukan *remote control*, akuisisi data, dan memonitor jarak jauh dalam sistem distribusi listrik. Oleh karena itu dengan adanya sistem SCADA dapat memenuhi kebutuhan perusahaan dalam sistem pendistribusian listrik tersebut.

Sistem SCADA wajib diketahui oleh para *engineer* maupun calon *engineer* SCADA mengenai *wiring*, relay, PMT maupun semua sistem yang ada di dalamnya. PMT merupakan pemutus tenaga / saklar yang dapat digunakan untuk menghubungkan atau memutuskan arus daya listrik. Oleh sebab itu untuk pembelajaran/ *study* oleh para aktivis akademi di kampus yaitu mahasiswa yang berminat atau belajar di dunia industri listrik distribusi dibutuhkan sebuah sistem Mini SCADA.

Mini SCADA merupakan miniatur / prototipe dari sistem SCADA Distribusi khususnya yang ada di Gardu Induk. Sistem Mini SCADA juga terdiri dari Remote Terminal Unit, Master Station dan Media Komunikasi. Maka Mini SCADA dibuat dari bagian – bagiannya mewakili SCADA Distribusi yang ada di Gardu Induk.

Setelah sistem rancang bangun mini SCADA dibuat maka wajib untuk mengetahui bagaimana kualitas dan layanan jaringan/ Quality of Services (QoS) dari sistem komunikasi Mini SCADA yang dipakai. Kualitas Layanan atau *Quality of Service* merupakan metode pengukuran tentang seberapa baik jaringan dan merupakan suatu usaha untuk mendefiniskan karakteristik dan sifat dari suatu servis. Mengacu pada dibuatnya Mini SCADA sebagai media pembelajaran di lingkungan Kampus/ Laboratorium, dimana sistem dapat mengontrol jarak jauh, mendapatkan metering, dan juga mendapatkan status dari suatu sistem pada jarak jauh secara *real time*, maka diperlukan pengetahuan mengenai QoS yang baik agar sistem dapat berjalan dengan lancar dan semua fungsi utama SCADA tidak terganggu. Parameter QoS yang digunakan yaitu *delay, jitter, throughput,* dan *packet loss.* Dalam penelitian kali ini media komunikasi yang digunakan adalah media komunikasi yang mudah dijumpai dalam dunia perkuliahan yaitu WiFi, dan kabel ethernet sebagai pembanding untuk pengukuran QoS yang ada pada rancang bangun mini SCADA.

1.2 Rumusan Masalah

Permalasahan utama yang dibahas dalam tugas akhir ini adalah:

- 1. Bagaimana kinerja dan layanan jaringan dari Mini SCADA pada media komunikasi kabel Ethernet maupun WiFi?
- 2. Bagaimana rancangan jaringan komunikasi yang baik untuk menjalankan sistem mini SCADA?

1.3 Tujuan

Tujuan dari tugas akhir ini adalah:

- 1. Untuk mengetahui kinerja dan layanan dari masing masing media komunikasi yang dipakai pada sistem Mini SCADA.
- 2. Mengetahui rancangan jaringan komunikasi yang baik untuk menjalankan sistem mini SCADA?

1.4 Batasan Masalah

Batasan masalah dalam tugas akhir ini adalah:

- 1. Media komunikasi menggunakan WiFi, dan kabel ethernet
- 2. Analisis kinerja dan layanan/ *Quality of Service* (QoS) berdasarkan jaringan komunikasi mini SCADA yang telah dirancang
- 3. Parameter kinerja jaringan yang diukur adalah *throughput, jitter, delay*, dan *packet loss*

1.5 Metodologi

Metodologi yang digunakan dalam menyusun penelitian tugas akhir ini adalah sebagai berikut:

1. Pengujian Fungsional Sistem SCADA

Pengujian fungsional ini dilakukan untuk mengetahui bahwa sistem SCADA yang dirancang telah berjalan sesuai dengan spesifikasi yang diinginkan, mulai dari status l/r (*local/remote*), dan status *open* cb dan *close* CB/ *Circuit breaker*. Kegiatan ini dilakukan menggunakan software *World View*.

2. Pengukuran *Quality of Service* (QoS)

Melakukan pengukuran kinerja dan layanan jaringan komunikasi yang dipakai pada sistem mini SCADA menggunakan software pendukung yaitu *Wireshark*. Yang diberi beberapa skenario dalam pengukuran kinerja, yaitu dari sisi keadaan (diinput trafik beban dan tidak diinput trafik beban), dan dengan media komunikasi kabel ethernet dan WiFi (2 *wireless bridge* dan 3 *wireless bridge*) dalam hal ini trafik beban yang dimaksud adalah input trafik dari software *traffic generator / tfgen*.

3. Analisis dan Evaluasi

Setelah melakukan pengukuran dengan *wireshark* pada masing – masing skenario, dilakukan analisis setiap parameter QoS dari data yang telah didapat menggunakan standar ETSI TIPHON.

4. Penyusunan Laporan

Penyusunan laporan merupakan tahap akhir dari proses pengerjaan tugas akhir ini, laporan yang akan disusun berkaitan dengan pengerjaan tugas akhir yang telah dikerjakan yaitu meliputi pendahuluan, tinjauan pustaka, perancangan, pengujian dan analisa serta penutup.

1.6 Sistematika Penulisan

Sistematika penulisan dalam tugas akhir ini terdiri atas lima bab dengan uraian sebagai berikut :

Bab 1 Pendahuluan

Bab ini membahas tentang penjelasan mengenai latar belakang, permasalahan dan batasan masalah, tujuan, metode penelitian, sistematika penuliasan, pembahasan, dan relevansi.

Bab 2 Tinjauan Pustaka

Bab ini membahas mengenai dasar teori yang digunakan untuk menunjang penyusunan tugas akhir ini yang mencakup teori mengenai SCADA, *throughput*, *delay*, *jitter*, *packet loss atau Quality of Service* (QoS), dan protokol komunikasi pada SCADA.

Bab 3 Metodologi Penelitian

Bab ini membahas mengenai pengujian fungsional Mini SCADA, perancangan jaringan komunikasi mini SCADA, dan pengukuran QoS

Bab 4 Hasil dan Pembahasan

Pada bab ini berisi hasil dari rancangan yang sudah dibuat pada Bab 3. Dari pengujian ini kemudian dianalisis kinerja Mini SCADA dan ditarik kesimpulan sementara mengenai parameter-parameter yang telah diuji.

Bab 5 Kesimpulan

Bab ini berisi tentang kesimpulan dan saran dari hasil pengujian yang telah dilakukan.

1.7 Relevansi

Hasil penelitian dari tugas akhir ini yaitu diharapkan dapat mengetahui bagaimana kualitas dan layanan jaringan komunikasi yang baik, yang dipakai pada mini SCADA Dan membantu dalam pembelajaran terhadap relevansi dunia industri dan perkuliahan dengan adanya sistem mini SCADA.

BAB 2 KAJIAN PUSTAKA

2.1 Sistem SCADA (Supervisory Control and Data Acquisition)

Supervisory Control and Data Acquisition (SCADA) merupakan sistem yang dapat memonitor dan mengontrol suatu peralatan proses atau sistem dari jarak jauh secara *real time*[2]. Sistem ini memungkinkan sebuah *Control Center* untuk menilai keadaan sistem, dan dibangkitan oleh masing-masing unit, tegangan dan arus dari IED.

Untuk meningkatkan kehandalan dan efisiensi dalam pendistribusian tenaga listrik untuk sampai ke konsumen salah satunya dengan dibuatnya sistem SCADA. SCADA (Supervisory Control and Data Acquisition) juga merupakan suatu sistem yang berfungsi sebagai alat supervisi dan monitoring jarak jauh. Berikut Gambar 2.1 merupakan konfigurasi dari Sistem SCADA Distribusi pada Gardu Induk.

Gambar 2.1 Konfigurasi Sistem SCADA Distribusi Gardu Induk

Sistem SCADA tidak dapat berdiri sendiri, namun harus didukung oleh berbagai macam infrastruktur, yaitu:

- 1. Telekomunikasi
- 2. Master Station
- 3. Remote Terminal Unit
- 4. Protokol Komunikasi
- 5. Peripheral

Media telekomunikasi yang umum digunakan adalah WiFi, PLC (*Power Line Communication*), serat optik, dan radio link. Pada awalnya penggunaan radio link dan PLC banyak digunakan, terutama karena penggunaan PLC yang tidak memerlukan jaringan khusus dan cukup menggunakan saluran transmisi tenaga listrik yang ada. Namun pada perkembangannya penggunaan PLC mulai beralih ke serat optik dikarenakan kecepatan bit per detik yang jauh di atas PLC. Pada kenyataannya ketiga media tersebut di atas digunakan secara bersamasama, sebagai *main* dan *backup*. *Master station* merupakan kumpulan perangkat keras dan lunak yang ada di pusat kontrol (*control center*).

Agar dapat melakukan akuisisi data maupun pengontrolan sebuah gardu induk, maka dibutuhkan suatu terminal yang dapat memenuhi persyaratan tersebut, yaitu *Remote Terminal Unit* (RTU). Penggunaan protokol yang berbeda-beda ternyata menimbulkan masalah di kemudian hari ketika akan dilakukan penggantian. Hal ini dikarenakan produk lama sudah tidak diproduksi lagi, sedangkan produk baru sudah mengikuti standarisasi. Oleh karena itu dalam pembuatan maupun pengembangan sistem SCADA harus mengacu pada standar tersebut. Seperti pada Gambar 2.2 beberapa standar yang telah disepakati untuk protokol komunikasi antara lain sebagai berikut:

- 1. IEC 60870-5-101
- 2. IEC 60870-5-102
- 3. IEC 60870-5-103
- 4. IEC 60870-5-104
- 5. IEC 61850 (masih dalam pengembangan)
- 6. MODBUS
- 7. DNP3

Gambar 2.2 Konfigurasi Umum Remote Station

SCADA mempunyai beberapa keuntungan, keuntungan penggunaan sistem SCADA diantaranya adalah:

- a. Pemantauan waktu nyata,
- b. Modifikasi sistem,
- c. Pemecahan masalah,
- d. Peningkatan umur peralatan,
- e. Pembuatan laporan otomatis, dll.

Selain itu, sistem SCADA memberi industri banyak keuntungan sekunder tambahan. Sistem SCADA yang baik saat ini tidak hanya mengendalikan proses tetapi juga digunakan untuk mengukur, memperkirakan, membuat tagihan, menganalisis, dan merencanakan.

2.2 SCADA Distribusi [5]

Sistem kelistrikan PLN terbagi menjadi tiga sistem, yakni: sistem pembangkit, sistem transmisi, dan sistem distribusi. Seperti yang terlihat pada Gambar 2.3.

Gambar 2.3 Sistem Distribusi Tenaga Listrik

Sistem distribusi adalah bagian dari sistem tenaga listrik yang melayani secara langsung pelanggan PT. PLN (Persero). Kelistrikan distribusi secara umum terdiri atas Tegangan Menengah (20kV) dan Tegangan Rendah (380V, dan 220V). Jaringan distribusi diawali dari kubikel 20 kV yang terletak pada Gardu Induk dari hasil step-down 150 kV. Outgoing dari kubikel dikenal dengan istilah feeder atau penyulang. Penyulang mendistribusikan tegangan menengah melalui tiang listrik. Sebelum masuk ke dalam saluran rumah, tegangan menegah melewati trafo distribusi untuk mendapatkan tegangan 380 V atau 220 V.

Tugas pengatur distribusi adalah merencanakan jaringan distribusi yang andal. Salah satu caranya dengan menggunakan sistem SCADA pada sistem distribusi tenaga listrik. Dengan SCADA Distribusi dapat dilakukan *control* jarak jauh, memonitor, dan juga mengambil status dari sistem distribusi yang ada. SCADA Dsiribusi terpasang pada Gardu Induk dan juga Keypoint, Keypoint merupakan suatu titik yang mempunyai pemutus tegangan berupa LBS (*Load Break Switch*) dan *Recloser* yang ada pada tiang listrik 20 KV. Sedangkan pada Gardu Induk SCADA terpasang pada kubikel 20KV. Kubikel merupakan seperangkat peralatan listrik yang terpasang pada gardu distribsi yang terpasang

sebagai pembagi, pemutus, penghubung, pengontrol, dan proteksi pada sistem penyaluran tenaga listrik pada tegangan 20KV. Kedua metode ini dapat menormalkan pemadaman listrik pada pelanggan secara cepat dan mencegah pemadaman listrik khususnya pada pelanggan prioritas. Pada miniature SCADA yang dibuat adalah bentuk miniature dari sebuah SCADA Distribusi yang terpasang pada Gardu Induk.

2.3 Fungsi Utama Sistem SCADA [3]

Secara umum fungsi utama Sistem SCADA adalah:

- 1. Mengakuisisi data atau memproses penerimaan data dari peralatan di lapangan
- Mengonversi data- data dari lapangan ke dalam format standar selanjutnya diproses dan diaalisis untuk dilaporakan kepada operator
- 3. Sebagai Supervisory control yang memungkinkan operator untuk melakukan pengendalian pada perlatan peralatan di lapangan
- Sebagai alarm dan event untuk menginformasikan kepada operator bila ada perubahan di dalam sistem sebagai bentuk pengawasan
- 5. *Tagging* yaitu operator dapat meletakkan informasi tertentu pada peralatan

2.4 Bagian - Bagian SCADA [3]

Gambar 2.4 Komponen SCADA

Pada Gambar 2.4 terdapat tiga bagian atau komponen penting dari sistem SCADA yaitu:

- 1. Pusat Control / Master Station
- 2. Media Telekomunikasi
- 3. RTU (Remote Terminal Unit)

2.4.1 Master Station

Komponen utama SCADA yang terdapat di pusat kontrol adalah MTU (Master Terminal Unit) yang berupa komputer utama atau server. Pusat kontrol sebaiknya mempunyai dua main computer atau server. Hal ini dimaksudkan agar sistem tidak bergantung pada satu komputer sehingga ada komputer lain yang dapat menggantikan tugas komputer utama yang sedang rusak atau mengalami beban. Dua server tersebut yaitu satu komputer sebagai master atau komputer utama dan yang satu lagi sebagai *slave*, pengganti master bila terdapat beban.

Pada pusat kontrol terdapat operator yang disebut dispatcher yang bertugas mengawasi dan melakukan tindakan bila terjadi beban di pusat kontrol. Operator tersebut dapat melakukan beberapa hal pada pusat kontrol, yaitu:

a. Telemetering (TM)

Tele-*metering* merpakan suatu proses pengiriman besaran ukur jarak jauh melalui media komunikasi data. RTU berfungsi membaca data serta mengukur arus, tegangan, dan frekuensi, yang ada pada Gardu Induk. Hasil pemantauan ini selain digunakan sebagai pencatat data beroperasinya tegangan distribusi juga dapat digunakan dalam kaitannya untuk melakukan *remote control*. Pembacaan data dilakukan secara terus – menerus sehingga kondisi dari seluruh Gardu Induk dapat dipantau. Telemetering menjadi sangat penting karena seluruh data dapat diambil, bila pengukuran, bila pengukuran tidak data dipantau maka *Control Center/ Master Station* tidak dapat mengetahui besaran yang ada di lapangan dari jarak jauh.

b. Telesignal/ Telestatus (TS)

Telesignal atau disebut juga dengan Telestatus adalah suatu proses yang menyatakan status dari suatu peralatan melalui media komunikasi data. Telesignal berfungsi untuk pengiriman sinyal atas gejala atau perubahan keadaan pada jaringan distribusi (dari Gardu Induk) kepada Pusat Pengaturan Distribusi, serta pembacaan data status peralatan di Gardu, seperti status dari PMT (Pemutus Tenaga) status *open* atau *close*. Dengan ini diharapkan beban pada gardu bisa dideteksi lebih cepat karena pemantauan dari pusat control terhadap status *circuit breaker* utama bisa diketahui dalam waktu yang *real time*.

c. Telekontrol (TC)

Tele-*control* adalah suatu proses pengendalian jarak jauh melalui media komunikasi data. Telekontrol berfungsi mengeluarkan (*open*) dan memasukkan (*close*) PMT yang ada di Gardu Induk. Telekontrol dilaksanakan dari Pusat Pengaturan Distribusi. Sistem ini sebelumnya melakukan aktivitas "*polling*" yaitu aktivitas rutin selama waktu tertentu untuk menanyakan informasi dari setiap RTU ke Pusat Kontrol. Jika ada hubungan akan dijawab "*in scan*", sebaliknya jika tidak ada atau tidak terkoneksi maka akan dijawab "*out scan*". Kondisi *out of scan* atau tidak adanya koneksi dengan RTU dengan Pusat Kontrol bisa disebabkan oleh beberapa sebab, misalnya kerusakan pada sisi kabel atau media transmisi RTU-nya bermasalah. Jika terjadi kondisi *out of scan* tidak dapat dilakukan *remote control*.

2.4.2 Media Komunikasi [2]

Telekomunikasi data digunakan untuk mendukung kelancaran proses komunikasi pada sistem SCADA. Sarana untuk menyediakan jalur komunikasi antara Master station dan Remote Terminal Unit. Komunikasi data dapat digunakan untuk kelancaran sistem SCADA.

Dalam komunikasi antara Master station (MS) dengan setiap RTU dilakukan melalui radio, dimana dalam hal ini data dikirimkan dengan protocol tertentu, biasanya tergantung vendor SCADA yang dipakai, contohnya DNP-3, Modbus, IEC-60870, dan lainnya. Sarana telekomunikasi data yang dipergunakan pada SCADA Distribusi terdiri dari:

- i Radio data
- ii Pilot Cable
- iii Fiber Optic
- iv PLC (Power Line Carrier)
- v Microwave
- vi Wireless Fidelity

Untuk di UP2D Jawa Timur media telekomunikasi menggunakan fiber optic, dan radio data GSM (3G).

2.4.3 RTU (Remote Terminal Unit) [6]

RTU merupakan satu atau lebih unit pengumpulan dan kontrol data lapangan atau remote (juga disebut stasiun jarak jauh, unit terminal jarak jauh, atau RTU). RTU menyediakan pengumpulan dan pemrosesan I / O (input/ output) yang cerdas, seperti membaca input dari sakelar, sensor, dan pemancar, kemudian mengatur data yang representatif ke dalam format yang dapat dimengerti sistem SCADA. RTU juga mengubah nilainilai output yang disediakan oleh sistem SCADA dari bentuk digital mereka menjadi apa yang dapat dipahami oleh perangkat yang dapat dikendalikan lapangan seperti diskrit (relay) dan output analog (arus atau tegangan).

Berikut beberapa jenis RTU yang ada pada SCADA:

- i. RTU Simple : remote terminal unit berupa modul input dan modul output
- ii. RTU Concentrator : remote terminal unit yang menerima dan mengolah data
- iii. RTU Data Concentrator : Remote terminal yang merupakan gabungan dari RTU Simple dan juga RTU Concentrator, dimna terdapat modul I/O dan juga dapat menerima dan mengolah data
- iv. RTU Gateway/ RTU Otomatis : RTU diberikan algoritma untuk eksekusi lapangan secara otomatis

2.4.4 HMI (Human Machine Interface) [3]

HMI adalah perangkat lunak yang digunakan untuk memantau dan mengendalikan seluruh sistem. Sistem SCADA kontemporer sebagian besar memiliki karakteristik kontrol loop terbuka dan memanfaatkan komunikasi jarak jauh dengan kecepatan data yang relatif rendah. HMI adalah sarana di mana pengguna (operator) berinteraksi dengan sistem SCADA. Sederhananya, HMI menyediakan representasi komputer yang jelas dan mudah dipahami tentang apa yang sebenarnya dikendalikan atau dipantau oleh sistem SCADA. HMI memungkinkan operator untuk melihat hampir semua peringatan, peringatan, dan fungsi sistem serta
mengubah titik setel, menganalisis, mengarsipkan, atau menyajikan tren data. Desain pada SCADA yang baik dan efektif membuat interaksi dengan SCADA melalui HMI tampak alami bagi operator, atau dengan kata lain, jelas dan mudah dipahami, tanpa perlu penjelasan.

2.4.5 Peripheral [3]

Peripheral/ alat pendukung yaitu sistem power supply/catu daya AC dan DC yang merupakan bagian yang penting dari SCADA dan komunikasinya. Semua perlatan SCADA baik di *Control Center* maupun yang ada di Gardu induk serta peralatan komunikasinya harus beroperasi sesuai dengan fungsinya pada setiap saat tanpa pernah berhenti. Untuk keperluan tersebut di atas setiap GI dan Control Center harus mempunyai peralatan AC dan DC dengan keandalan tinggi.

Catu daya AC / DC di Control Center dibagi dalam 3 (tiga) kategori :

i. Kategori I

Peralatan dengan catu daya yang terus menerus (tidak boleh berhenti beroperasi). Kelompok ini meliputi : Computer utama, tempat pengolahan data dan Front End Computer, dan peralatan lain yang tergabung dalam Computer tersebut serta peralatan komunikasi.

ii. Kategori II

Peralatan yang membutuhkan catu daya cadangan Kelompok ini meliputi sistem penerangan ruangan, sistem supply untuk UPS dan pendingin ruang.

iii. Kategori III Peralatan dengan catu daya normal

2.5 Protokol komunikasi

Protokol adalah sebuah aturan atau standar yang mengatur atau mengijinkan terjadinya hubungan, komunikasi, dan perpindahan data antara dua atau lebih titik komputer [7]. Protokol dapat diterapkan pada perangkat keras, perangkat lunak atau kombinasi dari keduanya. Pada tingkatan yang terendah, protokol mendefinisikan koneksi perangkat keras. Dalam tugas akhir ini protocol yang digunakan adalah protokol Modbus. Berikut beberapa protocol komunikasi yang digunakan di SCADA.

2.5.1 Protokol Modbus [10]

Protokol Modbus adalah teknologi yang dikembangkan oleh Modicon pada 1979. Modbus merupakan salah satu protokol komunikasi serial yang memungkinkan beberapa sistem berbeda saling berkomunikasi satu sama lain. Modbus telah mengalami perkembangan mulai dari Modbus dimana ada satu yang bertindak sebagai Modbus Mater dan lainnya adalah Modbus Slave (Modbus RTU). Karena diperlukan komunikasi dalam bentuk teks, maka dibuat pula Modbus ASCII, yang kemudian karena tuntutan kecepatan dikembangkan pula Modbus Plus [8].

Dengan perkembangan teknologi jaringan yang menggunakan Ethernet dan TCP/IP, maka modbus dibungkus (encapsulated untuk bisa ditransmisikan melalui Ethernet dan muncul dengan nama Modbus TCP/IP. Berdasarkan media transfernya, Modbus dikategorikan ke dalam Modbus serial (RS232/485) dan Modbus Ethernet (TCP/IP). Berdasarkan bentuk datanya, Modbus dibagi menjadi Modbus RTU (serial) dan Modbus ASCII.

i. Modbus Serial

Protokol komunikasi Modbus Serial mengatur cara-cara dan format komunikasi serial antara Master dengan *Slave*. Jaringan Modbus terdiri dari Master dan beberapa *Slave*. Master akan memulai komunikasi antara lain menulis data, membaca data, dan mengetahui status Slave.

ii. Modbus RTU

Protokol Modbus RTU menggunakan sistem *Polling* yaitu sisi master memanggil (*request*) dan sisi *slave* menjawab (*response*). Slave hanya bersifat pasif/ menunggu atau dengan kata lain Slave hanya merespon jika ada permintaan dari Master. Dimana bentuk memanggil-menjawab pada protokol modbus RTU dapat digambarkan pada Error! Reference source not found.

Pada protokol Modbus terdapat 4 buah Jenis penyimpanan data dengan panjang masing - masing 16 bit.

Delevan tehlar	Objections	Turnet	2t-
Primary tables	Object type	Type of	Comments
Coils	Single bit	Read-Write	Master dan slave bisa merubah data coil
Discretes Input	Single bit	Read-Only	data hanya bisa di rubah oleh slave
Input Registers	16-bit word	Read-Only	data hanya bisa di rubah oleh slave
Unidian Desistant	40 bill word	Dand Weite	Master des slave bies menubeb dets register

Tabel 2.1 Jenis Penyimpanan Data

1) Coil

Pada mulanya jenis data ini digunakan untuk mengaktifkan coil relay . Nilai jenis data ini ON atau OFF. Coil mempunyai panjang 16 bit, sehingga untuk mengaktifkan/ ON dengan cara memberi nilai FF00H dan 0000H untuk OFF. Data FF00 dan 00 disimpan di register 00000 sampai 09999

2) Input Relay / input biner / input digital /input diskrit

Kebalikan dengan coil, input relay digunakan untuk mengetahui status relay apakah sedang ON atau OFF. Input relay bersifat read only bagi master dan hanya bisa dirubah oleh slave saja. Data tersebut disimpan di register 10001 sampai 19999.

3) Input Register

Input Regsiter digunakan untuk menyimpan data analog dengan range nilai $0 \sim 65535$. Input register bersifat read only bagi master. Data ini disimpan di register ber nomor 30001 sampai 39999

4) Holding Register

Holding register digunakan untuk menyimpan nilai dengan range 0~65535. Register ini mempunyai alamat register 40001 sampai 49999.

2.5.2 Protokol DNP-3 [7]

DNP3 atau Distributed Network Protocol Version 3.3 adalah standar telekomunikasi yang mendefinisikan komunikasi antara stasiun induk, Remote Terminal Unit (RTU) dan perangkat lainnya seperti *Intelegent Electronic Device* (IED). DNP3 dibuat sebagai protokol berpemilik oleh Divisi Harris Controls pada awalnya untuk digunakan dalam industri utilitas listrik. Pada bulan November 1993 protokol dibuat tersedia untuk digunakan oleh pihak ketiga dengan mengalihkan kepemilikannya ke Kelompok Pengguna DNP3.

DNP3 menawarkan fitur substansial serta fleksibilitas dan keamanan. Ini dirangkum dalam daftar berikut:

- Mendukung pesan yang dicap waktu untuk sequence of event (SOE)
- Memecah pesan menjadi beberapa frame untuk memberikan kontrol kesalahan dan optimal urutan komunikasi yang cepat
- Memungkinkan topologi peer-peer serta master-slave
- Memungkinkan beberapa topologi master
- Menyediakan objek yang dapat ditentukan pengguna
- Menyediakan untuk pelaporan dengan pengecualian / acara tanpa pemungutan suara oleh master
- Menyediakan hanya tanggapan 'data yang diubah '
- Pesan pesan siaran
- Konfigurasi aman / transfer file
- Mengatasi lebih dari 65.000 perangkat pada satu tautan
- Menyediakan sinkronisasi waktu dan peristiwa yang ditandai waktu
- Tautan data dan konfirmasi lapisan aplikasi

2.5.3 Protokol IEC 60870-5-101 [7]

IEC 60870-5 mengacu pada kumpulan standar yang diproduksi oleh International Electrotechnical Commission, atau IEC, untuk menyediakan standar terbuka untuk transmisi Kontrol dan informasi telemetri SCADA. Standar ini memberikan deskripsi fungsional terperinci untuk peralatan telecontrol dan sistem untuk mengendalikan proses yang tersebar secara geografis, dengan kata lain untuk SCADA sistem. Standar ini dimaksudkan untuk aplikasi dalam industri listrik, dan memiliki data objek yang secara khusus ditujukan untuk aplikasi seperti itu, namun tidak terbatas pada aplikasi seperti itu karena memiliki objek data yang berlaku untuk aplikasi SCADA umum dalam industri apa pun. Namun demikian, protokol IEC 60870-5 terutama digunakan dalam listrik industri dari negara-negara Eropa. Ketika IEC 60870-5 set standar awalnya diselesaikan pada tahun 1995 dengan publikasi dari profil IEC 60870-5-101, hanya mencakup transmisi melalui bandwidth yang relatif rendah sirkuit komunikasi bit-serial. Dengan semakin luasnya penggunaan jaringan teknologi komunikasi, IEC 60870-5 sekarang juga menyediakan untuk komunikasi berakhir jaringan menggunakan seperangkat protokol TCP / IP. Urutan perkembangan yang sama ini terjadi untuk DNP3.[6]

- IEC 60870-5-101, atau T101, mendukung tautan komunikasi point-to-point dan multidrop membawa komunikasi data bandwidth rendah bit-serial.
- Komunikasi seimbang tersedia, tetapi ini terbatas pada tautan *point-to-point* saja.

Oleh karena itu, sementara T101 dapat mendukung pesan yang tidak diminta dari sebuah slave, T101 tidak dapat melakukannya untuk amultidrop topologi dan harus

2.5.4 Protokol IEC 60870-5-104 [7]

IEC 60870-5-104 Protocol (alias IEC 104) adalah standar untuk peralatan dan sistem telekontrol transmisi data serial bit kode dalam jaringan berbasis TCP / IP untuk pemantauan dan pengendalian proses luas yang meluas. Standar protokol mendefinisikan entitas data yang ditransfer objek stasiun sama dengan yang digunakan dalam protokol IEC 60870-5-101. Pelaksanaan protokol IEC 104 menggunakan sama dengan objek stasiun (STA) sebagai implementasi IEC 101. IEC 104 ditetapkan sesuai dengan pemilihan fungsi transportasi yang diberikan dalam TCP / IP Protocol Suite (RFC 2000). Dalam TCP / IP berbagai jenis jaringan dapat dimasukkan termasuk X.25, Frame Relay, ATM, ISDN, Ethernet dan serial point-to-point (X.21), lihat Tabel 2.2.

Selected application functions	User process	
Selection of Application Service Data Units (ASDU) of IEC		
60870-5-101 and 104	Application Layer (L7)	
Application Protocol Control Information (APCI)		
	Transport Layer (L4)	
Selection of TCP/IP Protocol Suite (RFC 2200)	Network Layer (L3)	
	Link Layer (L2)	
	Physical Layer (L1)	

Tabel 2.2 Protocol stack with IEC 104

Setiap APCI (Application Protocol Control Information) dimulai dengan byte awal dengan nilai 0x68 diikuti oleh panjang 8-bit APDU (Aplikasi Data Protocol Unit) dan empat bidang kontrol 8-bit (CF). APDU berisi APCI atau APCI dengan ASDU, lihat Gambar 2.5. Secara umum, panjang APCI adalah 6 byte. Sedangkan fungsi dari Ap Aplikasi IEC 60870-5-104 yang dipakai pada SPLN adalah pada Tabel 2.3

Gambar 2.5 APCI Frame Format

No.	Fungsi Aplikasi	Spesifikasi SPLN
1	Inisialisasi Stasiun	Ya
2	Akuisisi data dengan polling	Tidak
3	Transmisi data periodik	Tidak
4	Akuisisi event	Ya
5	General Interrogation	Ya
6	Sinkronisasi Waktu	Tidak
7	Pengiriman Perintah	Ya
8	Pengiriman Total Terintegrasi	Ya
9	Loading Parameter	Tidak
10	Prosedur Test	Tidak
11	Transfer File	Tidak
12	Akuisisi <i>delay</i> transmisi	Tidak

Tabel 2.3 Fungsi Aplikasi IEC 60870-5-104

2.6 Peralatan Mini SCADA [3]

Peralatan pada sistem mini SCADA terdiri dari beberapa perangkat listrik, dan juga komunikasi. Berikut perangkat/ peralatan mini SCADA yang digunakan, beserta perangkat untuk jaringan komunikasi yang dipakai pada penelitian ini.

2.6.1 IED Power Meter

IED Power meter Gambar 2.6, yang digunakan yaitu Power Meter tipe AOB 192E-29Y. Power Meter in dapat digunakan untuk mengukur dari beban yang terpasang yaitu:

- Tegangan
- Arus
- Daya
- Faktor daya
- Frekuensi
- Harmonisa

Power Meter AOB 192E-9TY memiliki banyak fitur antara lain :

- Dapat mengukur tegangan line to line ataupun line to netral
- Dapat mengukur arus line to line ataupun line to netral

- Dapat dioperasikan dengan CT dan PT standart
- Dengan keakuratan yang tingi
- Memiliki pembacaan data maksimal dan minimal
- Komunikasi jaringan dengan RS-485
- Disediakan display atau layar guna melakukan monitoring secara Power Meter AOB 292E-29Y secara langsung.

Gambar 2.6 IED Power Meter

2.6.2 SIMOR (Simple Module RTU)

Simple Modul RTU (SIMOR) Gambar 2.7 adalah suatu alat yang digunakan untuk memonitoring status, signal/ alarm, maupun besaran – besaran pengukuran (arus, daya, tegangan, frekuensi, dll) dan control peralatan – peralatan di remote station. RTU SIMOR memiliki 16 Digital Input (DI) dan 10 *Digital Output* (DO). Sedangkan power supply dari RTU SIMOR adalah 18-36VDC. SIMOR terdiri dari microcontroller, shield Ethernet, shield serial RS-485, Shield IO.

Protokol dari RTU SIMOR adalah Modbus TCP atau Modbus Serial. SIMOR mempunyai 3 port komunikasi yaitu :

- 1. Port USB digunakan untuk konfigurasi
- 2. Port Ethernet digunakan untuk komunikasi dengan HMI atau RTU master
- 3. Port RS-485 digunakan untuk komunikasi dengan RTU slave atau peraatan IED (Power Meter) jika SIMOR dijadikan RTU Master.

Gambar 2.7 Simple Module RTU

2.6.3 Aux Relay

Aux Relay Gambar 2.8 atau relay bantu yang digunakan adalah jenis LY4 ZN 24 VDC. Relay ini bekerja sebagai kontrol yang mengakibatkan CB (circuit breaker) *close* maupun *open*. Prinsip kerja dari relay bantu ini adalah *normally open* (NO) dimana saat keadaan tidak dikontrol relay bersifat NO dan saat dilakukan control, *local* maupun *remote* close maka kontak relay akan bekerja.

Gambar 2.8 Relay LY4N 24VDC

2.6.4 Kabel NYAF/ Kabel Kontrol

Kabel control yang digunakan dalam mini SCADA adalah mengacu pada SPLN S3.001.2008 yaitu menggunakan kabel NYAF 0.75 mm². Kabel NYAF (Gambar 2.9) bertekstur serabut dan mempunyai inti tembaga. Warna merah merupakan kabel dengan intput/ output tegangan positif dan warna hitam merupakan kabel dengan input/ output tegangan negatif.

Gambar 2.9 Kabel NYAF 0.75 mm²

2.6.5 Kabel Ethernet

Sistem telekomunikasi yang digunakan dalam mini SCADA ini adalah menggunakan kabel ethernet Seperti pada gambar 2.10 kabel Ethernet Gambar 2.10 digunakan untuk komunikasi RTU ke router dan juga untuk komunikasi server ke router.

Gambar 2.10 Kabel Ethernet

2.6.6 Wireless Outdoor Bridge EnGenius ENH 202

EnGenius ENH202 (Gambar 2.11) Ini adalah produk kelas bisnis dengan 4 multi-fungsi: Access Point, Client Bridge, WDS, and Client Router.EnGenius ENH202 memperluas jaringan. Ini beroperasi pada 2.4GHz dan juga kompatibel dengan 802.11a peralatan jaringan. EnGenius ENH202 juga sepenuhnya mendukung enkripsi nirkabel termasuk Wi-Fi Protected Access (WPA-PSK / WPA2-PSK).

Gambar 2.11 Wireless Outdoor Bridge EnGenius ENH202

2.6.7 Router Mikrotik

Router merupakan sebuah alat yang bertugas untuk mengirimkan paket data melalui jaringan-jaringan yang berbeda-beda ke jaringan yang lain atau yang bertugas mengirimkan paket data di internet. Router bertugas sebagai penghubung antara satu jaringan ke jaringan yang lain.

Router Mikrotik atau Mikrotik RouterOS, adalah sebuah sistem operasi yang berbasis linux. Sistem operasi ini berguna untuk merubah sebuah komputer menjadi router network. MikroTik RouterBoard (Gambar 2.12) yaitu BUILT-IN Hardware Mikrotik dalam bentuk perangkat keras yang khusus dikemas dalam *board router* yang didalamnya sudah terinstal MikroTik RouterOS. Router Mikrotik didesain untuk memberikan kemudahan bagi penggunanya. Administrasinya bisa dilakukan melalui Windows Application (WinBox). Selain itu instalasi dapat dilakukan pada Standard komputer PC (*Personal Computer*).

Gambar 2.12 Mikrotik Routerboard

2.7 Jaringan Komunikasi Nirkabel/ Wireless

Wireless LAN bekerja dengan menggunakan gelombang radio. Sinyal radio menjalar dari pengirim ke penerima melalui free space, pantulan, difraksi, Line of Sight dan Obstructed (LOS). Ini berarti sinyal radio tiba dipenerima melalui banyak jalur Multipath), dimana tiap sinyal (pada jalur yang berbeda-beda) memiliki level kekuatan,delay dan fase yang berbeda – beda. Konfigurasi wireless LAN pada umumnya, membutuhkan alat transmitter/receiver (transceiver) yang biasa disebut access point (AP), terhubung pada wired network dari lokasi yang tetap menggunakan pengkabelan yang standar. Acces point menerima, buffer, dan mentransmisikan data antara wireless LAN dan wired LAN. [14]

2.8 Quality of Service [9]

Quality of service adalah pengukuran kinerja dari satu jaringan untuk memberikan layanan yang baik dengan menyediakan bandwidth dan meminimalisir jitter dan delay. Pada tugas akhir ini parameter yang akan diukur adalah throughput, delay, jitter, dan packet loss.

2.8.1 Throughput

Throughput adalah kecepatan transfer data yang diukur dalam satuan bit per second (bps) atau biasa dipahami dengan sebutan

bandwidth yang sebenarnya. Bandwidth sifatnya tetap sedangkan throughput bisa berubah bergantung dengan trafik.

$$Throughput = \frac{ukuran \ data \ yang \ diterima \ (bit)}{waktu \ pengiriman \ (s)}$$
(2.1)

2.8.2 Delay

Delay adalah waktu tunda yang diakibatkan oleh proses transmisi data dari pengirim ke penerima. Oleh karena itu, semakin kecil *delay* maka proses transmisi data semakin baik. Satuan dari *delay* adalah *second* (s). Delay transmisi dapat dicari dengan menggunakan Persamaan berikut:

$$Delay (sec)Tx = Received Time (s) - Sent Time(s)$$
(2.2)

2.8.3 Jitter

Jitter adalah variasi delay antar paket yang diakibatkan oleh panjang antrian dalam suatu pengolahan data dan *reassemble* paket-paket data di akhir pengiriman akibat kegagalan sebelumnya. Delay antrian pada router dan switch dapat menyebabkan jitter [6]. Semakin besar beban trafik atau nilai variasi delay di dalam jaringan akan menyebabkan semakin besar pula peluang terjadinya tumbukan antar paket, sehingga nilai jitter akan semakin besar dan menyebabkan nilai QoS semakin turun. Perhitungan jitter dapat dilihat seperti persamaan di bawah ini .

$$Jitter = \frac{Totl \, Variasi \, Delay}{Total \, Paket \, Yang \, Diterima-1}$$
(2.3)

Total variasi delay merupakan perbandingan delay dengan delay rata – rata [13] atau secara statistik bisa disebut standar deviasi atau standar baku standar deviasi ini digunakan untuk memperlihatkan seberapa besar perbedaan data yang ada dibandingkan dari rata-rata data itu sendiri. Standar deviasi merupakan akar kuadrat dari varians dan

menunjukan standar penyimpangan data terhadap nilai rata-ratanya. Maka total variasi delay diperoleh dengan persamaan:

Total variasi delay =
$$\sqrt{s^2} = \left(\frac{n\sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}{n(n-1)}\right)$$
 (2.4)

Keterangan:

 s^2 = varians dari delay n = banyaknya data $\sum_{i=1}^n x_i$ = Jumlah total data $\sum_{i=1}^n x_i^2$ = Jumlah total dari data yang dikuadratkan $(\sum_{i=1}^n x_i)^2$ = Jumlah total data dikuadratkan *data yang dimaksud pada rumus merupakan nilai delay

2.8.4 Packet Loss

Packet loss didefinisikan sebagai kegagalan transmisi paket data mencapai tujuannya. Kegagalan paket tersebut mencapai tujuan, dapat disebabkan oleh beberapa kemungkinkan, di antaranya yaitu:

- a. Terjadinya overload trafik didalam jaringan,
- b. Tabrakan (congestion) dalam jaringan,
- c. Error yang terjadi pada media fisik,
- d. Kegagalan yang terjadi pada sisi penerima antara lain bisa disebabkan karena overflow yang terjadi pada buffer.

Di dalam implementasi jaringan IP, nilai packet loss ini diharapkan mempunyai nilai yang minimum. Secara umum biasanya terdapat pengkategorian performansi jaringan berdasarkan nilai packet loss yaitu sangat bagus, bagus, jelek, dan sedang. Paket loss dapat dihitung dengan rumus:

$$Packet \ Loss = \frac{Packet \ transmitted - Packet \ received}{Packet \ transmitted} x \ 100\%$$
(2.5)

2.9 Software Pengujian Kinerja dan Layanan Jaringan Komunikasi

Pada penelitian yang saya lakukan yaitu mengetaui kinerja dan layanan jaringan komunikasi dilakukan menggunakan dua software *open source* yaitu tfgen/ traffic generator sebagai input beban/ beban trafik berupa bitrate yang diberikan saat pengujian, dan wireshark sebagai *packet analyzer* dan capture dari hasil pengujian kinerja jaringan yang didapat, dalam hal ini beberapa parameter yang diambil yaitu *delay, jitter, throughput,* dan *packet loss.*

2.9.1 TFGen

TFGen (Gambar 2.13) adalah salah satu aplikasi yang dapat digunakan untuk mengecek kapasitas jaringan point to point menggunakan wireless maupun kabel. Dengan mengggukan aplikasi ini kita dapat melakukan pengetesan untuk maksimal dan kestabilan bandwidth yang dapat berjalan pada jaringan tersebut.[9]

Gambar 2.13 Logo software traffic generator

2.9.2 Wire Shark

Wireshark merupakan *packet analyzer* yang bersifat *free* dan *open source*. Aplikasi ini digunakan untuk *troubleshooting* jaringan, analisa paket data dan pengembangan protokol komunikasi. Wireshark merupakan aplikasi *cross-platform*, menggunakan GTK+ *widget toolkit* pada *user interface*-nya dan menggunakan npcap untuk menangkap paket data.

Gambar 2.14 Struktur Packet Sniffer

Wireshark juga dikenal sebagai *packet sniffer*, yaitu sebagai sebuah program atau tool yang memiliki kemampuan untuk mencegah dan melakukan pencatatan terhadap *traffic* data dalam jaringan. Selama terjadi aliran data dalam, *packet sniffer* dapat menangkap *protocol data unit* (PDU), melakukan dekoding serta melakukan analisis terhadap isi paket berdasarkan spesifikasi RFC atau spesifikasi-spesifikasi yang lain dengan struktur dapat dilihat pada Gambar 2.14 Wireshark diprogram sedemikian rupa untuk mengenali berbagai macam protokol jaringan. Wireshark mampu menampilkan hasil enkapsulasi dan *field* yang ada dalam PDU [9].

Ketika Wireshark melakukan *capture* data yang masuk dan keluar dari *client*, data yang didapat sangatlah banyak. Maka pengguna dapat menggunakan filter data dengan mengetikkan *syntax expression* agar data yang ditampilkan hanya data yang diinginkan saja. Contoh *syntax expression* yang sering digunakan diantaranya adalah ' ip.src == alamatip' untuk menampilkan data dengan alamat IP asal sesuai dengan alamat IP yang dimaksudkan. Pada Gambar 2.15 dapat dilihat struktur aplikasi.

Command _ Menus	▲ aj404 b301.pcapng File Edit View Go Capture Analyze Statistics Tele ▲ ■ C O	rphony <u>Wireless</u> <u>I</u> ools <u>H</u> elp
Display Feature Specification	Apply a display filter <	tion Protocol Le 68.1.10 Nodbus/TCP 68.5.99 Nodbus/TCP 68.1.10 TCP 68.5.99 TCP 68.5.95 TCP
Listing	6 0.896869 192.166.5.99 192. 7 0.899038 192.166.5.95 192. 8 0.899058 192.166.5.95 192. 9 0.809151 192.166.5.95 192. 10 0.899206 192.166.5.95 192. 11 1.228966 192.166.5.99 192.1	58.5.95 TCP 68.5.99 TCP 68.5.95 TCP 68.5.99 TCP 68.5.95 TCP 68.5.95 TCP 68.5.95 TCP 68.5.95 TCP 68.5.95 TCP 68.5.95 TCP
of captured packets	12 1.423658 192.168.1.10 192.1 13 1.44592 192.168.1.10 192.1 14 1.465492 192.168.1.9 192.1 15 1.465243 192.168.5.99 192.1 15 1.46574 192.168.5.99 192.1 17 2.645213 192.168.5.99 192.1	68.5.99 TCP 68.5.99 Modbus/TCP 68.5.99 TCP 68.1.10 TCP 68.5.95 TCP 68.1.10 TCP
	18 2.112213 192.166.5.95 192.1 19 2.112304 192.166.5.99 192.1 28 2.112802 192.168.5.99 192.1 21 2.112802 192.168.5.99 192.1 21 2.112802 192.168.5.99 192.1 > Frame 1: 66 bytes on wire (528 bits), 66 bytes 192.1	biss.s.99 ICP 68.5.95 TCP 68.5.95 TCP 68.5.95 TCP captured (528 bits) on interfa
Detail of selected – packet header	 Ethernet II, Src: Cybertan_9e:86:15 (c8:3did4: Internet Protocol Version 4, Src: 192.168.5.99 Transmission Control Protocol, Src Port: 61613 Modbus/TCP Modbus 	9e:86:15), Dst: Routerbo_67:43: , Dst: 192.168.1.10 , Dst Port: 502, Seq: 1, Ack: 1
Packet content in hexadecimal and ASCII	0010 44.5 te 56.6 te 57.4 te 58.5 te 58.6 te 0010 09.3 tf 71.6 te 59.0 te 59.0 te 50.0 te 55.0 te <th>45 00 L^,gCE- -47.gE- 50 18</th>	45 00 L^,gCE- -47.gE- 50 18
	U Type here to search	ө на 🦓 🗖

Gambar 2.15 Struktur Graphical User Interface (GUI) software wireshark

2.10 Perangkat Software SCADA

Perangkat lunak/ software SCADA dibagi dalam dua kelompok yaitu, database, dan GUI (Graphic User Interface) atau biasa disebut HMI (Human Machine Interface) dalam sistem SCADA. Software dari database sistem SCADA yaitu SCADA Explore, sedangkan untuk HMI pada sistem SCADA yang dipakai adalah World view. Keduanya merupakan produk dari Survalent provider dari ADMS (Advanced Distribution Management System). Berikut mengenai penjelasan masing – masing software yang dipakai pada sistem SCADA:

2.10.1 SCADA Explore [5]

Scada explorer Gambar 2.16 merupakan suatu aplikasi yang digunakan untuk memperoleh, mengolah dan menghasilkan suatu data yang didapat dari peralatan yang sudah dihubungkan dengan master. SCADA Explore juga merupakan aplikasi yang harus terinstal untuk dapat melakukan fungsi SCADA pada alat Mini SCADA.

Gambar 2.16 Logo SCADA Explore

2.10.2 World View

World View Gambar 2.17 merupakan aplikasi yang terdapat pada software survalent, yang berfungsi sebagai media interaksi antara user dengan interface HMI viewer dalam melakukan operasi. Pada aplikasi ini terdapat bagan dan keadaan beserta data gardu induk. Pada worldview ini *alarm event* (kejadian) pada peralatan listrik dalam sistem jaringan distribusi bisa di-*control*, dimonitoring, atau dipantau.

Gambar 2.17 Tampilan awal worldview

2.11 Standar ETSI TIPHON (Telecommunications and Internet

Protocol Harmonization Over Networks) General aspects of

Quality of Service [11]

Standar ETSI TIPHON (*Telecommunication and Internet Protocol Harmonization over Network*) merupakan standar yang dipakai untuk mengukur Quality of Service(QoS). Parameter-parameter QoS terdiri atas (TIPHON, 1999):

1. Throughput yaitu kecepatan (*rate*) transfer data efektif, yang diukur dalam bps (*bit per second*). Kategori throughput ditampilkan pada Tabel 2.4

Nilai	Presentase (%)	Indeks
4	100	Sangat Bagus
3	75	Bagus
2	50	Kurang Bagus
1	<25	Jelek

Tabel 2.4 Peringkat dan kriteria throughput (TIPHON, 1999)

 Packet loss merupakan suatu parameter yang menggambarkan suatu kondisi yang menunjukkan jumlah total paket yang hilang, dapat terjadi karena collision dan congestion pada jaringan. Tabel 2.5 menunjukkan peringkat dan kriteria packet loss.

Tabel 2.5 Peringkat dan kriteria *packet loss* (TIPHON, 1999)

Nilai	Presentase (%)	Indeks
4	0	Sangat Bagus
3	3	Bagus
2	15	Kurang Bagus
1	25	Jelek

3. Delay adalah waktu yang dibutuhkan paket untuk mencapai tujuan, karena adanya antrian, atau mengambil rute yang lain untuk menghindari kemacetan.Peringkat dan kriteria delay diperlihatkan pada Tabel 2.6

Nilai	Besar Delay (ms) Indeks	
4	<150 Sangat Bagu	
3	150 - 300	Bagus
2	300 – 450	Kurang Bagus
1	>450	Jelek

Tabel 2.6 Peringkat dan kriteria *delay* (TIPHON, 1999)

4. Jitter, diakibatkan oleh variasi-variasi dalam panjang antrian, dalam waktu pengolahan data, dan juga dalam waktu penghimpunan ulang paket-paket di akhir perjalanan jitter. Peringkat dan kriteria jitter diperlihatkan pada Tabel 2.7

 Tabel 2.7 Peringkat dan kriteria jitter (TIPHON, 1999)

Nilai	Besar Jitter (ms)	Indeks
4	0	Sangat Bagus
3	0 – 75	Bagus
2	75 – 125	Kurang Bagus
1	125 – 225	Jelek

5. Presentase dari Nilai QoS, QoS mengacu pada kemampuan jaringan untuk menyediakan layanan yang lebih baik pada trafik jaringan tertentu QoS menawarkan kemampuan untuk mendefinisikan atribut-atribut layanan jaringan yang disediakan, baik secara kualitatif maupun kuantitatif. Pada Tabel 2.8 merupakan nilai presentase dari QoS .[12]

Nilai	Presentase (%)	Indeks
3,8-4	95 – 100	Sangat Memuaskan
3 – 3,79	75 – 94,75	Memuaskan
2 – 2,99	50 - 74,75	Kurang Memuaskan
1-1,99	25 - 49, 75	Jelek

Tabel 2.8 Presentase dan Nilai QoS

2.12 Standar Pengujian Fungsional SCADA

Pada standar pengujian fungsional dari sistem SCADA di sisi komunikasi khususnya diatur oleh Standar PLN atau yang biasa disebut dengan SPLN. SPLN yang mengatur mengenai peralatan SCADA adalah SPLN S3.001 : 2008, dan terdapat beberapa point penting yang dapat diambil untuk uji fungsional dari sistem SCADA yaitu :

2.12.1 Standar Pelaksanaan Commissioning

Dalam melaksanakan pengujian fungsional dalam SCADA perlu dilakukan commissioning, commissioning yang dimaksud adalah pengujian setiap peralatan yang terpasang di lokasi [10] SPLN S3:001:2008, maka diperlukan standar yang menunjukan pengujian tersebut berhasil atau gagal, berikut SPLN yang mengatur mengenai standar pelaksanaan *commissioning*:

i. Respons Time SCADA

Response time paling lambat dari *telesignaling* 3 detik, *telemetering* 10 detik, *remote control* 6 detik mulai dari eksekusi remote sampai dengan perubahan status di master station, remote *tap changer* 20 detik, dan remote LFC 4 detik.

ii. Prioritas Informasi SCADA

Selain standar response time yang baik juga diatur mengenai prioritas dari fungsi SCADA, atau disebut juga dengan Prioritas informasi SCADA. Urutan prioritas informasi SCADA mulai dari tingkatan yang tertinggi sampai dengan tingkatan yang terendah yaitu sebagai berikut:

adalah:

- a. Telecontrolling;
- b. Telesignalling;
- c. Telemetering;
- d. Pulse akumulator.

2.12.2 Standar Protokol Komunikasi

PLN (Perusahaan Listrik Negara) juga memiliki standar yang mengatur mengenai protocol komunikasi yang dipakai pada lingkungan PLN, yaitu diatur di SPLN S3:001:2008. Protokol komunikasi di bedakan berdasarkan dua kondisi yaitu Uplink (komunikasi RTU ke Master Station) dan downlink (RTU ke IED), berikut standar PLN yang mengatur tentang protocol komunikasi:

2.12.2.1 Uplink (RTU ke Control Center)

Komunikasi Uplink pada SCADA diatur dalam SPLN S3.001 - 3 : 2012, berikut isi dari SPLN S3.001 - 3 : 2012 poin 6.2.1:

Urutan prioritas protokol yang digunakan antara gateway/RTU dengan Control Center mengacu pada SPLN S3.001: 2008 yaitu:

a. IEC 60870-5-101 (Redundant);

- b. IEC 60870-5-104 (opsional);
- c. DNP 3.0 serial dan/atau DNP 3.0 TCP/IP (opsional).

2.12.2.2 Downlink (RTU ke IED)

Urutan prioritas protokol yang digunakan antara *gateway* dengan IED adalah:

```
a. IEC 61850;
```

```
b. IEC 60870-5-104 (opsional);
```

- c. IEC 60870-5-103 (opsional);
- d. IEC 60870-5-101 (opsional);
- e. DNP3.0 (opsional);

f. *Modbus* (opsional untuk peralatan pendukung bukan untuk *remote control/telesignal*).

2.12.3 Standar Kecepatan Komunikasi Data

i. Komunikasi data

Persyaratan komunikasi data yaitu:

- Ketersediaan yang sangat tinggi;
- Integritas data yang sangat tinggi;
- Mendukung operasi real time;
- Efisiensi transfer informasi yang tinggi;
- Operasi yang bebas dari interferensi elektromagnetik yang tinggi dan perbedaan potensial bumi.
- ii. Kecepatan komunikasi data

Kecepatan komunikasi yang dipersyaratkan adalah minimal 1200 bps, sesuai dengan rekomendasi IEC 60870-5-101. Untuk protokol IEC 60870-5-104 direkomendasikan menggunakan kecepatan minimal 64 Kbps.

iii. Media komunikasi data

Media komunikasi untuk pertukaran data adalah sebagai berikut:

- a. Fiber optic;
- b. Kabel pilot;
- c. Radio data.

- Halaman ini sengaja dikosongkan-

BAB 3 PERANCANGAN JARINGAN KOMUNIKASI

Pada penelitian ini akan dilakukan beberapa langkah yang mulai dari proses perancangan jaringan komunikasi Mini SCADA, hingga hasil dan analisis yang dijelaskan oleh diagram alir. Berikut metodologi Gambar 3.1 yang digunakan dalam penelitian mengenai Analisis QoS Jaringan Komunikasi pada *Mini SCADA*.

Gambar 3.1 Diagram Alir Metodologi Penelitian

3.1 Sistem Mini SCADA

Mini SCADA adalah bentuk miniatur/ prototipe dari Sistem SCADA Distribusi yang ada di Gardu Induk. SCADA Distribusi yang ada di Gardu Induk terdiri dari Master Station atau *Control Center* yang dapat memonitor, mengakuisisi data, dan juga mengontrol Gardu Induk dari jarak jauh, juga ada RTU, dan juga media komunikasi data yang digunakan. Maka di Mini SCADA juga dibuat berdasarkan peralatan sesuai fungsi yang ada di Gardu Induk namun dalam bentuk prototipe. Tabel 3.1 berikut yang merupakan perbandingan perangkat SCADA Distribusi di lapangan dengan mini SCADA Distribusi.

 Tabel 3.1 Perbandingan Perangkat SCADA Distribusi Gardu Induk

 dengan Mini SCADA Distribusi

Parameter	SCADA Distribusi Gardu Induk	Prototipe/ Mini SCADA	
Power Supply	Rectifier 48 VDC	Converter 24 VDC	
RTU Gateway	Survalent	Simor (Simple Modul RTU)	
RTU I/O	Survalent	Simor (Simple Modul RTU)	
Auxillary Relay	Omron LY 4 Kaki 4 110 VDC	LY4 ZN Kaki 4 24 VDC	
Push Button	PB (Push Button) Open dan Close	PB (Push Buton) Open dan Close	
Switch Local Remote	Switch L/R	Switch L/R	
РМТ	<i>Outgoing</i> ke Jaringan Tegangan Menengah	Lampu 220 VAC (5Watt)	

Mini SCADA dibuat sesuai dengan SPLN dan perangkat yang ada pada kondisi *real* di lapangan. Perbandingan konfigurasi sistem mini SCADA Distribusi dan konfigurasi sistem SCADA Distribusi di Gardu Induk dapat dilihat pada Gambar 3.2 dan Gambar 3.3.

Secara sederhana konfigurasi sistem Mini SCADA perancangan telekontrol dilakukan dengan konfigurasi pada garis merah, garis tersebut menunjukkan dari RTU Simor terdapat modul DO (*Digital Output*) yang telah dikontrol melalui HMI, lalu masuk ke relay NO (*Normally Open*) dan mengirimkan tegangan 24 VDC, Relay mendapatkan tegangan dan mengakibatakan *coil* bergerak dan posisi menjadi *close*, Hal ini mengakibatkan *push button close* dan juga lampu 220 VAC menyala, gambar 3.4 dan 3.5 merupakan Mini SCADA/ prototipe dari SCADA Distribusi.

Gambar 3.2 Konfigurasi Sistem Mini SCADA Distribusi

Gambar 3.3 Konfigurasi Sistem SCADA Distribusi di Gardu Induk

Alat dari sistem Mini SCADA/ prototipe SCADA Distribusi terlihat pada Gambar 3.4 dan 3.5 di bawah ini

Gambar 3.5 Tampak Depan Mini SCADA

Gambar 3.4 Tampak Belakang Mini SCADA

3.2 Pengujian Fungsional Sistem Mini SCADA

Pada penelitian ini pengujian fungsional sistem SCADA dilakukan menggunakan HMI *World View*. Pengujian dengan menggunakan software *World View* adalah dalam bentuk HMI (*Human Machine Interface*) / GUI (*Graphical User Interface*) ini lebih mudah digunakan dibandingkan dengan software lainnya. berikut langkah – langkah pengujian menggunakan World View:

- 1. Langkah pertama yang dilakukan setelah software SCADA Explorer dijalankan adalah melakukan *log-in* pada aplikasi *worldview* dengan format *default* yaitu *username* "scada" dan *password* "scada"
- Setelah melakukan log in, open file yang telah dibuat pada penelitian ini nama file yang saya pakai adalah "Tugas akhir" Berikut tampilan dari file yang telah dibuka Gambar 3.6

Gambar 3.6 Tampilan HMI "Tugas Akhir"

- 3. Setelah dibuka pastikan masih dalam keadaan log-in karena Worldview auto log out jika tidak digunakan dalam waktu tertentu.
- 4. Lalu control penyulang yang diinginkan, dengan cara klik kanan pada "Kotak hijau" Gambar 3.7 dan klik kanan seperti pada Gambar 3.7.

Gambar 3.7 Pelaksanaan Control Close Penyulang ITS-2

5. Setelah berhasil, maka "kotak hijau" yang menyimbolkan sebagai CB akan berubah warna menjadi kotak merah, seperti pada Gambar 3.8.

Gambar 3.8 Hasil Control Close Penyulang ITS-2

- 6. Lalu samakan keadaan dengan Mini SCADA, pastikan lampu pada penyulang ITS-2 dan *push button* merah menyala.
- 7. Cek *switch l/r* dengan memutar switch pada Mini SCADA kemudian perhatikan pada status di HMI apakah Local saat menunjuk ke local, dan remote saat switch mengarah ke remote.
- 8. Begitu juga lakukan pada penyulang ITS-1

3.3 Perancangan Jaringan Komunikasi

Perancangan jaringan komunikasi merupakan metode yang dilakukan saat akan melakukan pengambilan data kinerja dan layanan/ QoS dari suatu jaringan komunikasi pada mini SCADA. Pada penelitian ini perancangan dilakukan dengan media komunikasi kabel Ethernet, dan WiFi yaitu menggunakan *wireless bridge* EnGenius ENH202, yang dikonfigurasikan seperti pada masing – masing gambar skenario konfigurasi perancangan jaringan komunikasi ini dibedakan menjadi dua, yaitu dalam kondisi tanpa *beban traffic*, dan dalam kondisi diberikan *beban traffic*. *Beban traffic* disini yang dimaksud adalah diberikan suatu input *traffic* tambahan dari software "tfgen" melebihi *bandwidth* kanal yang ditentukan. Berikut beberapa skenario dalam perancangan jaringan komunikasi pada Mini SCADA Distribusi:

3.3.1 Perancangan Jaringan Komuniksi Mini SCADA Tanpa Beban Traffic

Perancangan jaringan komunikasi dengan metode tanpa beban trafik dilakukan dengan dua media komunikasi dan tiga skenario rancangan jaringan komunikasi. Hasil dari pengujian jaringan kondisi tanpa *beban traffic* dimaksudkan untuk mengetahui media komunikasi yang cocok untuk sistem mini SCADA. Maka setelah dilakukan pengujian hasil dari pengukuran QoS dianalisis menggunakan standar ETSI TIPHON. Berikut skenario perancangan jaringan komunikasi dengan kondisi tanpa *beban traffic*.

3.3.1.1 Rancangan Jaringan Komunikasi Tanpa Beban Traffic

Menggunakan Kabel Ethernet

Rancangan konfigurasi dengan menggunakan kabel Ethernet adalah dengan cara menyambungan sebuah kabel Ethernet ke PC (*Personal Computer*), dan juga ke RTU. Setting IP menggunakan IP Address yang mempunyai *segment* yang sama. Kemudian lakukan PING ke IP RTU untuk membuktikan bahwa sudah tersambung dengan RTU. Setelah itu lakukan uji Tele – *Control*, dan Tele-*Status*. Berikut Gambar 3.9 yaitu konfigurasi mini SCADA menggunakan kabel Ethernet. Dan Tabel 3.2 alamat IP dari masing – masing perangkat.

Gambar 3.9 Konfigurasi Jaringan Tanpa *Beban traffic* dengan Kabel Ethernet

Tabel 3.2 IP	Address	Perangkat U	ji tanp	a Beban traf	fic kabel	Ethernet
		<u> </u>				

Perangkat Keras	IP Address	Interface
PC Server	192.168.1.8	Ethernet
RTU	192.168.1.10	Ethernet

3.3.1.2 Rancangan Jaringan Komunikasi Tanpa Beban traffic

Menggunakan 2 Wireless Bridge

Perancangan dengan menggunakan EnGenius/ wireless bridge dilakukan yaitu dengan men-setting dan menghubungkan sebuah wireless bridge "EnGenius" ke komputer server, dan wireless bridge "EnGenius" ke RTU. Sebelumnya dilakukan setting EnGenius dengan mengetikkan alamat "EnGenius" misal "192.168.5.5" pada web browser, dan pastikan tidak terkoneksi dengan WiFi, lalu setelah halaman utama muncul klik setting "operation mode" ke "WDS Access Point", dan setting Mac Address dari masing – masing EnGenius. Dalam hal ini semua IP baik RTU, PC server dan EnGenius dilakukan pemilihan IP Address dengan segment yang sama. Setting IP dan Mac Address seperti pada Tabel 3.3. Berikut gambar konfigurasi dari konfigurasi Gambar 3.10 dengan menggunakan 2 wireless bridge sebagai akses point. Untuk melihat konfigurasi jaringan secara jelas dapat dilihat di Lampiran E.

Gambar 3.10 Konfigurasi Jaringan Tanpa Beban Traffic dengan 2 Wireless Bridge

Setelah setting IP dan Mac Address dilakukan "PING" untuk mengecek apakah semua perangkat sudah saling terhubung. Setelah berhasil di PING lakukan fungsi SCADA yaitu Tele-*Status*, Tele-*Control*. Letak dari *wireless bridge* yaitu di Lab AJ404 dan Lab B301 sedangkan untuk RTU diletakan di depan Lab AJ404 seperti yang terlihat pada Gambar 3.10.

Tabel 3.3 Address Perangkat pada Konfigurasi Tanpa Beban	Traffic
dengan 2 Wireless Bridge	

Perangkat Keras	Address (IP atau Mac)	Interface
PC Server	192.168.5.3	Ethernet
PC Client	192.168.5.9	Wifi
Radiolink 1/ EnGenius 1	192.168.5.7 (88:DC:9:46:2C:54)	Wifi
Radiolink 2/ EnGenius 2	192.168.5.5 (88:DC:9:46:2C:5C)	Wifi
RTU	192.168.1.10	Ethernet

Lokasi penelitian yang dilakukan dapat dilihat pada Gambar 3.11, dan dilakukan dengan jarak 52.58 meter.

Gambar 3.11 Mapping Lokasi Lab AJ 404 dan Lab B 301

3.3.1.3 Rancangan Jaringan Komunikasi Tanpa *Beban traffic*

Menggunakan 3 Wireless Bridge

Pengujian dengan Tiga Wireless Bridge EnGenius seperti pada konfigurasi Gambar 3.12 sebagai Akses Point, dilakukan dengan dengan men-setting dan menghubungkan sebuah router mikrotik dengan beberapa perangkat vaitu port Ethernet satu disambungkan dengan RTU (melalui kabel Ethernet), dan port 4 ethernet disambungkan ke "EnGenius1", setting router menjadi sebuah DHCP Client, kemudian cek IP yang diperoleh server dari router, dan setting SCADA explorer dengan mengatur IP dari PC Server sebagai server. Kemudian setting "EnGenius 1" ke Server (melalui WiFi), "EnGenius 2" terhubung sebagai akses point maupun bridge yang bersifat multihop yaitu menyambungkan ke "EnGenius 1 " dan "EnGenius 3 " dan wireless bridge "EnGenius3" ke PC client. Sebelumnya dilakukan setting EnGenius dengan web "EnGenius" vaitu dengan megetik alamat dari "EnGenius" setting "operation mode" ke "WDS Accesss Point", dan setting Mac Address dari masing - masing EnGenius. Dalam hal ini semua IP baik PC Server, PC Client dan EnGenius dilakukan pemilihan IP Address dengan segment yang sama. Setting IP dan Mac Address seperti pada Tabel 3.4.

Gambar 3.12 Konfigurasi Jaringan Tanpa Beban traffic dengan 3 Wireless Bridge

Tabel 3.4 Address	Konfigurasi	Perangkat	dengan 3	Wireless	Bridge
	0	0	0		

Perangkat	Address (IP atau Mac)	Interface
Keras		
PC Server	192.168.5.3	Ethernet
PC Client	192.168.5.9	Wifi
Radiolink 1 /	192.168.5.7	Wifi
EnGenius 1	(88:DC:9:46:2C:54)	
Radiolink 2/	192.168.5.5	Wifi
EnGenius 2	(88:DC:9:46:2C:5C)	
Radiolink 3/	192.168.5.8	Wifi
EnGenius 3	(88:DC:9:46:2C:60)	
RTU	192.168.1.10	Ethernet

Lokasi penelitian Gambar 3.13 pada skenario menggunakan 3 *wireless bridge* tanpa *beban traffic* ini dilakukan di Lab AJ 404, Lab B301 dan Kantin Elektro, dengan letak RTU dan PC Client, dan "EnGenius 1" di Lab AJ 404, letak PC Server dan "*EnGenius* 3" di Kantin Elektro, sedangkan letak "*EnGenius* 2" di Lab B 301 dengan jarak *client* dan *server* adalah 113.5 meter

Gambar 3.13 Mapping Lokasi Lab AJ 404 dan Lab B 301

3.3.2 Perancangan Jaringan Komuniksi Mini SCADA dengan Beban traffic

Perancangan jaringan komunikasi dengan metode diberikan beban trafik dilakukan dengan media komunikasi WiFi yaitu dengan EnGenius ENH202. Hasil dari pengujian jaringan kondisi dengan beban traffic dimaksudkan untuk mengetahui pengaruh dari kondisi traffic kanal komunikasi yang padat/ melebihi bandwidh limiter yang diberikan. Maka setelah dilakukan pengujian, dianalisis dari hasil setiap skenario yang diberikan kemudian parameter dari QoS berupa throughput, jiter dan delay diplot ke dalam suatu grafik. Berikut skenario perancangan jaringan komunikasi dengan diberikan beban traffic.
3.3.2.1 Rancangan Jaringan Komunikasi dengan *Beban traffic*

Menggunakan 2 Wireless Bridge

Skenario pengujian jaringan yang selanjutnya adalah dengan menggunakan 2 *wireless bridge* dengan konfigurasi pada Gambar 3.15. Lokasi dilakukannya pengujian sama dengan pengujian dengan diinjek traffic yaitu di depan Lab AJ404, Lab B301. Tabel 3.5 merupakan keterangan dan juga alamat IP yang diberikan pada perangkat yang dipakai. *Bandwidth limiter* yang diberikan pada pengujian menggunakan wireless bridge adalah 1 Mbps (untuk masing – masing download maupun upload). Berikut konfigurasi dan IP Address pada perancangan pengujian komunikasi dengan input tambahan beban/ *traffic* padat menggunakan 2 wireless bridge kali ini terdapat pada Gambar 3. 14 dan Tabel 3.5:

Gambar 3.14 Konfigurasi Jaringan dengan *Beban Traffic* menggunakan 2 Wireless Bridge

 Tabel 3.5 Address Perangkat pada Konfigurasi dengan Gangguan

 Traffic menggunakan 2 Wireless Bridge

Perangkat Keras	Address (IP atau Mac)	Interface
PC Server	192.168.5.3	Ethernet
PC Client	192.168.5.9	Wifi
PC Injektor	192.168.5.95	WiFi
Radiolink 1/ EnGenius 1	192.168.5.7 (88:DC:9:46:2C:54)	Wifi
Radiolink 2/ EnGenius 2	192.168.5.5 (88:DC:9:46:2C:5C)	Wifi
RTU	192.168.1.10	Ethernet

3.3.2.2 Rancangan Jaringan Komunikasi dengan Beban traffic

Menggunakan 3 Wireless Bridge

Skenario pengujian jaringan yang terakhir adalah dengan menggunakan 3 *wireless bridge* dengan konfigurasi pada Gambar 3.16. Lokasi dilakukannya pengujian sama dengan pengujian dengan diinjek *beban traffic* yaitu di depan Lab AJ404, Lab B301, dan Kantin Elektro. Tabel 3.7 merupakan keterangan dan juga alamat IP yang diberikan pada perangkat yang dipakai. *Bandwidth limiter* yang diberikan pada pengujian menggunakan wireless bridge adalah 1 Mbps (untuk masing – masing download maupun *upload*). Berikut konfigurasi dan IP Address pada perancangan pengujian komunikasi dengan input tambahan beba menggunakan *3 wireless bridge* kali ini terdapat pada Gambar 3. 15 dan Tabel 3.6.

Perangkat Keras	Address (IP atau Mac)	Interface
PC Server	192.168.5.3	Ethernet
PC Client	192.168.5.9	Wifi
PC Injektor	192.168.5.95	WiFi
Radiolink 1/ EnGenius 1	192.168.5.7 (88:DC:9:46:2C:54)	Wifi
Radiolink 2/ EnGenius 2	192.168.5.5 (88:DC:9:46:2C:5C)	Wifi
Radiolink 3/ EnGenius 3	192.168.5.8 (88:DC:9:46:2C:60)	Wifi
RTU	192.168.1.10	Ethernet

 Tabel 3.6 Address Perangkat pada Konfigurasi dengan Gangguan

 Traffic menggunakan 2 Wireless Bridge

Gambar 3.15 Konfigurasi Jaringan dengan *Beban traffic* menggunakan 3 Wireless Bridge

3.4 Langkah – Langkah Menjalankan Software Pengujian Kinerja Jaringan Komunikasi

Pada penelitian tugas akhir ini saya menggunakan beberapa software untuk pengukuran jaringan yaitu *wireshark*, *tfgen* dan juga *software* yang berfungsi untuk *setting* peralatan (Router) yaitu WinBox, dan juga memakai *web* yaitu untuk setting wireless bridge EnGenius ENH 201. Berikut cara setting masing – masing perangkat dan software pengujian:

3.4.1 *Setting* EnGenius

Pengujian dilakukan dengan menggunakan wireless bridge EnGenius, Mode yang dipakai pada penelitian ini adalah mode "WDS Access Point" berikut beberapa langkah – langkah untuk men-setting EnGenius ENH201.

1. Setting sebagai WDS Access Point

WDS (*Wireless Disribution System*) Access Point merupakan metode yang dilakukan agar komunikasi dilakukan untuk memperluas jaringan tanpa menggunakan kabel. Mode Access Point agar berfungsi sebagai access point dan dapat diakses oleh beberapa *client* dnegan media *wireless*. Berikut cara untuk men-*setting* mode *WDS Access Point* pada penelitian ini:

i. Hal pertama yang dilakukan adalah menyambungkan EnGenius dengan kabel ethernet, dan juga pc. Lalu log in ke IP yang sudah di-*setting* sebelumnya seperti pada Gambar 3.16 dan masukkan *username* dan *password* default yaitu username "admin" dan passwordnya "*admin*" :

EnGenius								
Username:	Username: admin							
Password:								
Login Reset								

Gambar 3.16 Tampilan Log In

ii. Setelah itu pilih menu "System" lalu klik "Operation Mode", seperti terlihat pada Gambar 3.17, pilih WDS Access Point

@ www.google.com x	192.168.55/cgi-bin/luci/stoke01 ×	+				. 0	×
EnGenius	Wireless Access F	oint/Client Bridg	e	¥ 🖬 4	9 25 1		
WDS Access Point	System Proper	ties		Home	Reset		
	System Properties						
	Device Name	ENH202	(1 to 32 characters.) 📃 Green 🗸				
- Save/Reload:0	Country/Region	Indenosia					
ServerMeload:0 Main Wineksis Citent List Worksis Citent List System Lig System Operation Mode P Settings	Operation Mode	Access Point Client Bridge WDS Access Point Bridge Station Client Roster					
Wineless • WOS Link Settings • Wreess Network • Wreess Nota-Cent • Wreess Advanced Settings • Management • Advantation • Stangement VLAN	Save & Appy Cancel						
Bolographics Bolographics Bolographics Bolographics Coll Settings Coll Settin	0 Et .	a 7 7 6	11 # 0 0 0 = a	• 🚯 ^ 🛙	2 100 100 400	304 PM 5/23/2019	R)

Gambar 3.17 Menu Operation Mode

iii. Lalu klik menu "System" dan klik "IP Setting" setting IP pada masing – masing EnGenius yaitu seperti pada Gambar 3.18s pada penelitian ini saya menggunakan IP 192.168.5.5, 192.168.5.7, dan 192.168.5.8, Setelah itu klik "Accept"

Www.google.com	× 🕑 192.168.5.5/cg-bin/uci/jstok=0: × +			e ×				
\leftrightarrow \rightarrow C (Not secure	192.168.5.5/cgi-bin/luci/stok=097dfdfs5aa0b4ff3/966/80907cd079		☆ 🙆 🗠 🔂 🗖	🔹 🚷 🗄				
EnGenius	Wireless Access Point/Client	Bridge						
WDS Access Point	IP Settings		Home Reset					
	System Information							
Status	# ¹ Network Setting	Obtain an IP address automatically (DIICP) Specify an IP address						
- SaverReioadcu	IP Address	192 , 168 , 5 , 5						
 Wreless Client List 	IP Subnet Mask	255 265 255 0						
 WDB Link List System Len 	Default Gateway	192 168 5 1						
	Primary DNS	0 0 0						
System	Secondary DNS	condery DNS C L0 L0 L0						
IP Settras	Use Link-Local Address	Use LinkLocal Address						
 Spanning Tree Settings 	IPv6 IP Address							
Windows	IPv6 Subnet Prefix Length							
 WDS Link Settings 	IPv6 Default Gateway							
Wreless Network Wreless Network	IDvi Drimary DNS							
Wireless Advanced Settings	IPv6 Secondary DNS							
Management - Administration - Messignment VLAN - Brakung Testings - Brakung Testings - Time Gestings - CU Settings - LO Settings - Dependent - Dependent	Accept Cancel			200 Ли				
E O Type here to search	4 🖬 🛹 🛅 🗗 🦊	🕐 💷 🖉 O 💿 🚺 📼 💷	👔 ^ 🗟 ଲ 🖼 ବା	\$/23/2010				

Gambar 3.18 IP Setting

iv. Karena menggunakan WDS maka perlu disetting Mac Address pada masig – masing EnGenius, disini saya menggunakan 2 metode penelitian pada WDS AP, yaitu yang pertama menggunakan 2 WDS Access Point dan yang kedua menggunakan 3 WDS Access Point atau dipasang sebagai multihop, EnGenius kedua di-setting 2 Mac Address karena harus terkoneksi dengan EnGenius 1 dan EnGenius 2. Konfigurasi dapat dilihat di Gambar 3.12 dan 3.16 di atas. Sedangkan untuk setting Mac Address adalah dengan pilh menu "Wireless" dan klik "WDS Link Setting" pada Gambar 3.19.

@ www.google.com X	 Ø 192.168.5.5/cgi-bin 	Auci/stok=01 X	+									-	٥	×
← → C (① Not secure 1	← → C (0) Not secure 192.168.55/cgi-bin/luci/.stok=097dtdts5as0b4ff31966f80907cd079 ☆							☆ 8	68	• 🛛		:		
EnGenius	Wireless	Access P	oint/Cli	ent Bri	idge									
WDS Access Point	WDS	Link Setti	ngs							Home	Reset			
<u> </u>	Security	y	None	•										
Status SaveReload:0	AES Pe	ssphrase	(8-63 ASC	Il characters	or 64 hexade	cimal digits)							
Main Wreless Clent List WDS Link List Surfee Los														
e oyana coy	ID	D		M	AC Address					Mode				
System		1	8 : DC	: 95	: 46	: 2C	: 54			Enable •				
Operation Mode	3	2	8 <u>:</u> DC	: 95	: 46	: 2C	: 5C			Enable •				
Spanning Tree Settings		3	1	1	1	:	:			Disable *				
		6	1	1	:	:	:			Disable *				
Wireless WDS Link Settings Wireless Network Wireless MAC Filter Wireless Advanced Settings	Accep	t Cancel										_		
Management Administration Amargenetit VLAN I NAMP Settings - Rescue Restaus - Remaine Upgrade - Time Settings - CLI Settings - Log - Dispretes														
O Type here to search	4	버 4	🖬 🗗	2	i a	A 4	¥ 📀	3		(%)	N 🖼 🖮 🖼	(4) 3/100 5/23/3	519	0

Gambar 3.19 Setting Mac Address

v. Lalu setting masing – masing nama dari Access Point pada EnGenius dengan pilih menu "*Wireless*" kemudian klik " Wireless Network" klik edit untuk mengubah nama Access Point tersebut, seperti pada Gambar 3.20.

🕲 www.google.com 🗙	③ 192.188.5.5/cgi-bin/luc/html × +					-		×	
← → O (@ Not secure 1921	← → C (0) Net secure 192.168.55/rgi-bin/luo/html ☆ 🕢 🖄 🔄 🗖								
EnGenius	Wireless Access Point/Clie	nt Bridge							
WDS Access Point	Wireless Network					Home Reset			
-	Wireless Mode	802 11 B/G/N Mixed *							
Status	Channel HT Mode	40MHz *							
 Save/Reload:4 	Extension Channel	Lower Channel *							
- Main Witniege Cheet Let	Channel / Frequency	Ch6-2.437GHz Auto							
WDS Link List	AP Detection	Scan							
 System Log 		Current Profit							
Sustem	580	Security	Inclution	MD	Enable	E.M.			
Operation Mode	EnGenius1IP5	None		1		Edit			
IP Settings	EnGenius2	None		2		Edt			
· opaining free acangs	EnGenius3	None		3		Edt			
Wireless	EnGeniusd	None		4		Edi			
 WDB Link Settings 									
Wireless MAC Filter Wireless Advanced Settings	Accept Cancel								
Management Johnstein Management VJNN KNNP VErbig Kaloupikastos Setteps Firmmae Egyptote Time Setteps LU Setteps LU Setteps LU Setteps									
I O Type here to search	a 🖽 i 🥥 🚍 🛃	📕 🏟 📾 🧔 🕴	P 💿 🕻	3 🔤	-	🚱 🗠 🖼 📾 😨 dil	3/28/2009	P 30	

Gambar 3.20 Setting Wireless Network

vi. Setelah perubahan dilakukan mka klik "Save/ Reload" seperti yag terlihat pada Gambar 3.21.

@ www.google.com X @	192.1463.5/op-bin/lice/html × +	- 0 x
← → C (@) Not secure 192.168	5.5/cgi-bir/luci/Vitni	* 🗟 & 🔂 单 🚷 🗄
EnGenius 🛛	Vireless Access Point/Client Bridge	
WDS Access Point	Save/Reload	Home Reset
Status	Desaved changes 1st	
SaveReload:4 Main Wreiten ChertUst WDS Link List System Log	al maines, ang	
System - Operation Mode - IP Sattings - Spanning Tree Settings	Save & Apply Revert	
Wireless - WDS Link Settings - Woeless Nathean - Woeless MAC Filter - Weeless Advanced Settings		
Management Admissization Management Vulve Malander Stehnge Elacaude Malanse Stehnge Finnsen Lögstete Three Balange Upgeninge Datametics		
O Type here to search	0 m i 🐖 📾 🖬 👭 🏟 🖬 👼 O	😰 💽 📼 💷 🕢 🖓 ^ 🔯 🖷 🕎

Gambar 3.21 Save and Reload

3.4.2 Capture Jaringan Komunikasi dengan Wireshark

Setelah Mini SCADA dikonfigurasi sesuai dengan masing – masing skenario penelitian yang dibuat, dilakukan pengukuran untuk mengetahui nilai parameter QOS seperti *jitter, delay, throughput* dan *packet loss.* terlebih dahulu menjalankan *wireshark*, setelah itu baru ketikan alamat IP dari RTU *Mini SCADA* untuk mem-*filter protocol* yang digunakan pada proses komunikasi data adalah dengen klik pada kolom filter dan ketikkan "*tcp*" lalu tekan "*Enter*" pada jaringan private Mini SCADA.

Setelah melakukan pengukuran dilakukan, pada Wireshark akan menghasilkan file dengan format ".pcapng", file tersebut berisi menengenai aktifitas paket yang tercapture pada jaringan wifi saat mengakses berupa telekontrol menggunakan HMI *World View*. Adapun salah satu contoh file hasil pengukuran digambarkan pada Gambar 3.22.

P2P LO	P2P LOS PLAZA 8301,pcspng								
A = 2	The took view oo Lapture Analyze Setence elementry wineless look neep								
Apply a	display filter <ctri< td=""><td></td><td></td><td></td><td></td></ctri<>								
No.	Time	Source	Destination	Protocol	Lengti Info				
L 1	0.000000	192.168.1.4	192.168.1.10	Modbus/TCP	66 Query: Trans: 9317; Unit: 1, Func: 3: Read Holding Registers				
2	0.145981	192.168.1.10	192.168.1.4	Modbus/TCP	65 Response: Trans: 9317; Unit: 1, Func: 3: Read Holding Registers				
3	0.185637	192.168.1.4	192.168.1.10	TCP	54 52058 + 502 [ACK] Seq=13 Ack=12 Win=64212 Len=0				
4	0.367469	192.168.1.4	192.168.1.10	Modbus/TCP	66 Query: Trans: 9318; Unit: 1, Func: 3: Read Holding Registers				
5	0.388471	192.168.1.10	192.168.1.4	Modbus/TCP	65 Response: Trans: 9318; Unit: 1, Func: 3: Read Holding Registers				
6	0.421227	192.168.1.4	192.168.1.10	TCP	54 52058 → 502 [ACK] Seq=25 Ack=23 Win=64201 Len=0				
7	1.582918	192.168.1.4	192.168.1.10	Modbus/TCP	66 Query: Trans: 9319; Unit: 1, Func: 3: Read Holding Registers				
8	1.781584	192.168.1.10	192.168.1.4	Modbus/TCP	71 Response: Trans: 9319; Unit: 1, Func: 3: Read Holding Registers				
9	1.792671	192.168.1.10	192.168.1.4	TCP	71 [TCP Retransmission] 502 → 52058 [PSH, ACK] Seq+23 Ack+37 Win+2048 Len+17				
10	1.792748	192.168.1.4	192.168.1.10	TCP	54 52058 → 502 [ACK] Seq=37 Ack=40 Win=64184 Len=0				
	3.003366	103 169 1 4	103 168 1 10	Madlaus /TCB	66 Dunnus Tanana 0230. Units 1 Euros 2. Davd Maldian Damintana				
> Frame	1: 66 bytes or	wire (528 bits), 66	bytes captured (528	bits) on inte	rface 0				
> Ether	net II, Src: Lo	:fcHefe_1c:50:af (54:	el:ad:1c:50:af), Dst:	GheoSa_00:51	:06 (90:a2:da:00:51:06)				
> Intern	net Protocol Ve	ersion 4, Src: 192.16	8.1.4, Dst: 192.168.1	.10					
> Transi	eission Control	Protocol, Src Port:	52058, Dst Port: 502	, Seq: 1, Ack	: 1, Len: 12				
✓ Modbur	s/TCP								
Tri	ensaction Ident	ifier: 9317							
Pro	otocol Identifi	er: 0							
Ler	ngth: 6								
Uni	it Identifier:	1							
✓ Modbu:	5								
.0	00 0011 = Funct	ion Code: Read Holdin	ng Registers (3)						
Ret	ference Number:	24							
0000 90) a2 da 00 51 0	6 54 e1 ad 1c 50 af	88 88 45 88 ····Q·T	· · · P · · · E ·					
0010 00	0 34 6c cd 40 0	0 80 06 0a 98 c0 a8	01 04 c0 a8 ·41·@··						
0020 02	0a cb 5a 01 f	6 9a dd 74 5e 7c 7d	98 2e 50 18 ··· Z···	- t^ }P-					
0030 14	a dr 1a c2 00 0	0 24 55 00 00 00 06	01 03 00 18	ie					
0010 00	101								

Gambar 3.22 Contoh File Hasil *Capture* Wireshark

3.5 Pengukuran Kinerja Jaringan

Perhitungan *quality of service* dibutuhkan untuk mengetahui seberapa baik *Quality of Service* (QoS)/ kemampuan suatu jaringan untuk menyediakan layanan yang baik dengan menyediakan *bandwidth*, mengatasi *jitter* dan *delay* pada suatu sistem. Dalam hal ini beberapa QoS yang diukur adalah sebagai berikut:

3.5.1 Pengukuran Throughput

Pengukuran throughput dimulai dengan mengetikkan alamat IP RTU di Simple Modul RTU, lalu jalankan aplikasi wireshark, lalu pilih *interface* yang akan digunakan, kemudian klik "*start*". Setelah meng*capture* lalu lintas data, perlu memfilter protokol yang akan dianalisis dengan mengisi kolom filter isi dengan *command* "*ip.dst* ==192.168.5.3 || *ip.src* == 192.168.5.3". Dalam hal ini IP 192.168.5.3 adalah IP server.

Setelah itu mengklik tombol "*enter*". Untuk mendapatkan nilai variabel yang dibutuhkan, buka "*toolbar*" wireshark klik menu "*statistics*" lalu "*Capture File Properties*", dan melihat "*average bits/s*". Dan analisa dengan klasifikasi standar *throughput* dari TIPHON.

3.5.2 Pengukuran Delay

Delay diperoleh dari hasil "capture properties", untuk mengetahui berapa waktu pengiriman tiap paket yang dilakukan adalah dengan mengisi kolom filter isi dengan command "ip.dst ==192.168.5.3 && ip.src == 192.168.5.9". Karena delay merupakan waktu yang dibutuhakan untuk pengiriman data dari source ke destination maka ip destination adalah server dan ip source adalah client. Kemudian tampilkan "Time delta from previous displayed frame" setelah di filter klik "export packet dissections" lalu klik "As CSV".

3.5.3 Pengukuran Jitter

Mendapatkan nilai jitter juga dilakukan dengan menggunakan *software wireshark*, caranya adalah dengan mengihitung melalui rumus standar deviasi dari data delay yang ada pada *Microsoft excel*, seperti pada sub bab 2.8.2.

3.5.4 Pengukuran Packet Loss

Packet yang gagal terkirim akan terlihat di capture file properties. Paket yang gagal terkirim tersebut biasa disebut dengan *packet loss*, biasanya menggunakan satuan persen dan dapat dilihat juga di *"Capture File Properties"* atau dengan ketik pada kolom filter *"tcp.analysis.ack_lost_segment"*. - Halaman ini sengaja dikosongkan-

BAB 4 HASIL DAN PEMBAHASAN

Pada bagian ini membahas hasil uji kinerja sistem Mini SCADA, data hasil pengukuran QoS (*Quality of Service*) rancangan jaringan komunikasi, dan analisis pada setiap skenario pengujian.

4.1 Hasil Pengujian Fungsional Sistem Mini SCADA

Langkah awal untuk mengetahui kinerja jaringan komunikasi Mini SCADA adalah menguji fungsional sistem pada Mini SCADA. Pengujian fungsional Mini SCADA seperti yang telah di jelaskan di sub bab 3.2, dilakukan kontrol oleh *master station* pada mode *remote* (*switch* diputar ke arah *remote*). Status yang akan diuji diantaranya adalah: *status local, status remote, status open, status close, control close,* dan *control open.* Berikut Tabel 4.1 hasil uji fungsional pada *software World View.*

No	Nama Penyulang	Fungsi	Keterangan	HMI World	Mini SCADA
				View	
1	Penyulang	Status	Local/	OK	Sesuai
	ITS-1		Remote		
			Open CB	OK	Push Button
			-		Hijau ON
			Close CB	OK	Push Button
					Merah ON
		Control	Open CB	OK	Lampu
					Penyulang
					ITS-1 ON
			Close CB	OK	Lampu
					Penyulang
					ITS-2 ON

Tabel 4.1 Hasil Pengujian Fungsional Mini SCADA

No	Nama Penyulang	Fungsi	Keterangan	HMI World	Mini SCADA
2	Penyulang ITS-2	Status	Local/ Remote	View OK	Sesuai
			Open CB	ОК	Push Button Hijau ON
			Close CB	ОК	Push Button Merah ON
		Control	Open CB	OK	Push Button Hijau ON
			Close CB	OK	Push Button Merah ON

4.2 Hasil Pengujian Kinerja Jaringan Mini SCADA

Pengujian kinerja Mini SCADA dilakukan dengan meng-*capture* jaringan pada *wireshark* yang ada pada setiap skenario. Seperti yang dijelaskan pada Sub Bab 3.3 berikut hasil dari pengukuran dan analisis jaringan Komunikasi Mini SCADA.

4.2.1 Hasil Pengujian dan Analisis Jaringan Komunikasi Tanpa Beban traffic

Pengujian dengan kondisi tanpa *beban traffic* ini dilakukan dengan beberapa skenario yaitu dengan menggunakan media komunikasi kabel ethernet secara point to point langsung ke RTU, menggunakan 2 EnGenius ENH202 sebagai *Wireless Bridge dan 3* EnGenius sebagai *Wireless Bridge*.

4.2.1.1 Hasil Pengujian dan Analisis Jaringan Komunikasi Tanpa Beban traffic menggunakan Kabel Ethernet

Pengukuran menggunakan kabel ethernet dilakukan di Lab AJ404 dengan menghubungkan sebuah kabel ethernet langsung ke sebuah RTU dan juga PC. Gambar 4.1 hasil *capture* dari kinerja dan layanan jaringan komunikasi jika menggunakan kabel ethernet melalui *Wireshark*. Hasil perhitungan didapatkan hasil yang terihat pada Tabel 4.2.

Interfaces			
<u>Interface</u>	Dropped packets	Capture filter	Link type
Ethernet	0 (0 %)	none	Ethernet
Statistics			
Measurement	Captured	Display	ed
Packets	372	354 (9	5.2%)
Time span, s	61.785	61.785	
Average pps	6.0	5.7	
Average packet size, B	62	63	
Bytes	23036	22244	(96.6%)
Average bytes/s	372	360	
Average bits/s	2982	2880	

Gambar 4.1 Hasil Pengukuran Jaringan Komunikasi Mini SCADA tanpa *Beban traffic* menggunakan Kabel Ethernet

 Tabel 4.2 Hasil Pengukuran QoS Tanpa Beban traffic dengan Media

 Kabel Ethernet

No	Jarak Perangkat (m)	Throughput (bits/s dan %)	Packet Loss (%)	Latency/ Delay (ms)	Jitter (ms)
1	1	2880,100%	0	175	6

Menggunakan media komunikasi berupa kabel Ethernet dengan konfigurasi seperti pada Gambar 4.1 mempunyai rata – rata kualitas jaringan yang Memuaskan menurut Standar TIPHON, namun mempunyai keterbatasan terhadap pengguna/ *client* yang akan mengakses sistem tersebut. Maka pengujian ini tidak cocok untuk dijadikan bahan praktikum, karena tanpa adanya akses point hanya bisa di-*control* oleh komputer *server* sendiri, dan *client* tidak bisa mengaksesnya.

4.2.1.2 Hasil Pengujian dan Analisis Jaringan Komunikasi Tanpa

Beban traffic menggunakan 2 Wireless Bridge

Pada penelitian ini digunakan dua buah *wireless bridge* dilakukan dengan lokasi penelitian di Laboratorium AJ 404 dan Laboratorium B 301. RTU, PC *Client* dan "*EnGenius 1*" diletakkan di depan Laboratorium AJ404 dan PC *Server* beserta "*EnGenius 2*" diletakkan di depan Laboratorium B301 seperti gambar konfigurasi Sub Bab 3.3. Didapatkan hasil *capture* seperti pada Gambar 4.2 dan didapatkan hasil perhitungan seperti pada Tabel 4.3 di bawah ini.

Tabel 4.3 Hasil Pengukuran	QoS	Tanpa	Beban	traffic	dengan	Media 2
	V	Vireless	s Bridg	е		

No	Jarak antar Lokasi Pengukuran (m)	Throughput (kbps)	Packet Loss (%)	Latency/ Delay (ms)	Jitter (ms)
1	53.58	20,100%	0	149	7

<u>Interface</u> Wi-Fi	<u>Dropped packets</u> 0 (0 %)	<u>Capture filter</u> none	<u>Link type</u> Ethernet
Statistics			
Measurement	Captured		Displayed
Packets	1075		1006 (93.6%)
Time span, s	66.094		66.094
Average pps	16.3		15.2
Average packet size, B	160		165
Bytes	171714		165904 (96.6%)
Average bytes/s	2598		2510
Average bits/s	20 k		20 k

Gambar 4.2 Hasil Capture Jaringan Komunikasi Mini SCADA tanpa Beban traffic menggunakan 2 Wireless Bridge

4.2.1.3 Hasil Pengujian dan Analisis Jaringan Komunikasi Tanpa Beban traffic menggunakan 3 Wireless Bridge

Pada penelitian ini digunakan tiga buah *wireless bridge* dilakukan dengan lokasi penelitian di Laboratorium AJ 404, Laboratorium B 301 dan Kantin Elektro. Peralatan RTU, PC *Client* dan *"EnGenius 1"* diletakkan di depan Laboratorium AJ404, "EnGenius 2 diletakkan di depan Laboratorium B 301, sedangkan PC *Server* beserta *"EnGenius 3"* diletakkan di depan Kantin Elektro, seperti gambar konfigurasi Sub Bab 3.3. Kemudian didapatkan hasil *capture* seperti pada Gambar 4.3 dan didapatkan hasil perhitungan pada Tabel 4.4 di bawah ini.

Tabel 4.4 Hasil Perhitungan QoS 3 Wireless Bridge (Lab AJ 404-B301-
Kantin)

No	Jarak total Lokasi Pengukuran(m)	Throughput (bits/s)	Packet Loss (%)	Latency/ Delay (ms)	Jitter (ms)
1	113.5	18k, 100%	0	170	4

Interfaces			
<u>Interface</u>	Dropped packets	Capture filter	Link type
Wi-Fi	0 (0 %)	none	Ethernet
Statistics			
Measurement	Captured		Displayed
Packets	1133		1064 (93.9%)
Time span, s	76.449		76.418
Average pps	14.8		13.9
Average packet size, B	165		170
Bytes	187054		180564 (96.5%)
Average bytes/s	2446		2362
Average bits/s	19 k		18 k

Gambar 4.3 Hasil Pengukuran Jaringan Komunikasi Mini SCADA tanpa *Beban traffic* menggunakan 3 *Wireless Bridge*

4.2.1.4 Analisis dan Perbandingan Hasil Pengukuran kondisi Tanpa Beban traffic

Setelah dilakukan semua pengukuran dengan beberapa media dan skenario didapatkan perbandingan pada masing – masing skenario yaitu pada Tabel 4.5. Terlihat bahwa pada skenario pertama yaitu pengukuran kinerja jaringan dengan kabel Ethernet tanpa beban trafik mendapatkan hasil indeks QoS Sangat Memuaskan, dengan Throughput 100%, packet loss 0%, jitter 6 ms, dan delay 140 ms. Sedangkan pada skenario ke-2 yaitu dengan menggunakan WiFi, yaitu 2 Wireless Bridge didapatkan indeks QoS yang Sangat Memuaskan juga, namun terjadi kenaikan pada delay dan juga nilai jitter. Pada skenario ke-3 dengan menggunakan media WiFi juga yaitu 3 Wireless Bridge yang dipasang secara multihop/ lebih dari satu titik mendapatkan hasil indeks QoS Memuaskan, hal ini dikarenakan spesifikasi dari wireless bridge yang bersifat directional dan konfigurasi/ peletakkan jaringan yang tidak LOS, sehingga tidak didapatkan hasil yang sangat memuaskan. Berikut tabel hasil indeks Oos dari masing – masing skenario dengan konfigurasi tanpa beban trafik pada Mini SCADA.

	Media Komu-	Ja-	Nilai dan Kategori Parameter Kinerja Jaringan				Indeks
No	nikasi	aikasi rak (m) Throug put		Packet Loss (%)	Delay (ms)	Jitter (ms)	QoS
1	Kabel Ethernet	1	2880, 100% Sangat Bagus (4)	0 Sangat Bagus (4)	140 Bagus (3)	6 Sangat Bagus (4)	Sangat Memuas -kan (4)
2	2 Wireless Bridge	53.58	20k 100% Sangat Bagus (4)	0 Sangat Bagus (4)	149 Sangat Bagus (4)	7 Sangat Bagus (4)	Sangat Memuas -kan (4)
3	3 Wireless Bridge	113.5	18k,100% Sangat Bagus	0 Sangat Bagus	170 Bagus (3)	4 Sangat Bagus (4)	Memuas -kan (3.75)

 Tabel 4.5 Hasil Klasifikasi QoS di masing – masing Pengujian Tanpa Tambahan

 Traffic terhadap Standar ETSI TIPHON

4.2.2 Hasil Pengujian dan Analisis Jaringan Komunikasi dengan Beban traffic

Pengujian dilakukan dengan meng-input/ memberi *traffic* ke sebuah *bandwidth channel* yang dibatasi oleh *bandwidth limiter*, seperti yang sudah dijelaskan di sub bab 3.3. Berikut beberapa skenario dari pengujian pada analisis QoS dengan diinput *beban traffic*/ pada keadaan *traffic* padat.

4.2.2.1 Hasil Pengujian dan Analisis Jaringan Komunikasi dengan

Beban traffic menggunakan 2 Wireless Bridge

Pengujian dilakukan dengan konfigurasi seperti pada Sub Bab 3.3, metode yang dilakukan sama dengan skenario tanpa *beban traffic* yaitu menggunakan 2 *wireless bridge* dan memberikan input beban tambahan/ *beban traffic* sampai dengan melebihi *bandwidth limiter* yang telah ditentukan, dalam skenario ini *bandwidth limiter* yang diberikan adalah 1024 kbps atau 1 Mbps. Pada Tabel 4.6 yang merupakan hasil dari pengujian QoS menggunakan dua *wireless bridge*, terlihat bahwa nilai dari *throughput* semakin tinggi, nilai delay dan jitter juga semakin tinggi. Pada grafik Gambar 4.4, 4.5 dan 4.6 di bawah dapat dilihat bahwa *trendline* dari masing – masing parameter QoS adalah naik.

No	Input <i>Beban</i> traffic (kbps)	Through- put (kbps)	Delay (ms)	Jitter (ms)
1	100	209	118	9
2	200	340	115	8
3	300	222	114	8
4	400	400	110	8
5	500	622	162	10
6	600	727	127	9
7	700	691	126	9
8	800	769	166	10

Tabel 4.6 Hasil Pengujian QoS Jaringan Komunikasi dengan InputBeban Tambahan pada Dua Wireless Bridge

No	Input <i>Beban</i> traffic (kbps)	Through- put (kbps)	Delay (ms)	Jitter (ms)
9	900	966	154	10
10	1000	893	282	14
11	1100	1053	260	12
12	1200	1130	167	10
13	1300	974	990	24
14	1400	1204	228	12
15	1500	1198	480	17
16	1600	1028	1147	25
17	1700	1069	1142	25

Dari data di atas Tabel 4.6 kemudian diplot ke dalam beberapa grafik. Berikut grafik pada masing – masing parameter yang dirangkum pada Tabel 4.6 di atas.

i. Throughput

Pada Gambar 4.4 merupakan grafik yang dihasilkan dari nilai *throughput* pada skenario pengujian kinerja jaringan komunikasi dengan *beban traffic* menggunakan 2 *wireless bridge*. Terlihat pada gambar grafik tersebut bahwa *trendline* yang dihasilkan adalah naik sebanding dengan penambahan input *traffic* beban. *Traffic* dalam kondisi padat adalah ketika melebihi *bandwidth limiter* yaitu 1024 kbps. Terlihat bahwa pemberian *traffic* saat melebihi *bandwidth limiter/ traffic* dalam kondisi padat nilai *throughput* akan konstan di sekitar 1024 kbps. Artinya bandwidth yang bisa lewat adalah sebesar *bandwidth limiter* diberikan saat traffic dalam kondisi padat tidak bisa dikirimkan semua.

Gambar 4.4 Grafik *Throughput* terhadap Besar *Traffic* Beban pada Dua Wireless Bridge

ii. Delay

Pada Gambar 4.5 merupakan grafik perbandingan besar nilai delay terhadap input *beban traffic* hingga melebihi batas kapasitas *bandwidth* kanal yang diberikan, terlihat bahwa nilai delay adalah linear positif. Pada Tabel 4.6 nilai delay pada kondisi traffic padat adalah 228 ms hingga 1142 ms, dalam standar TIPHON masuk dalam kategori Bagus, Kurang Bagus dan Jelek. Pada pengujian secara visual komunikasi saat diiberikan input beban tambahan jauh melebihi *bandwidth* limiter yaitu 1300 hingga 1700 kbps adalah sangat lambat, dan mengakibatkan terputusnya koneksi antara server dan RTU, sehingga sulit untuk melakukan *control/* pengiriman data. Pada besar *traffic* beban 1300 kbps, 1600 kbps, dan 1700 kbps nilai delay besar sekali, dan mengakibatkan PC *Client* bisa mengakses PC Server namun sangat lambat.

Gambar 4.5 Grafik Nilai *Delay* terhadap Besar *Traffic* Beban pada 2 *Wireless Bridge*

iii. Jitter

Pada Gambar 4.6 merupakan grafik nilai *Jitter* terhadap besar *beban traffic* pada 2 *Wireless Bridge* memiliki *trendline* yang naik, yaitu nilai jitter berkisar 9 ms sampai dengan 24 ms. Nilai jitter di bawah *bandwidth limiter* masuk dalam kategori sangat bagus, namun di atas *bandwidth limiter* nilai *jitter* masih bernilai Bagus menurut Standar TIPHON. Berikut grafik dari nilai jitter terhadap *traffic* beban yang diberikan.

Gambar 4.6 Grafik Nilai *Jitter* terhadap Besar Traffic Beban pada 2 *Wireless Bridge*

4.2.2.2 Hasil Pengujian dan Analisis Jaringan Komunikasi dengan Beban traffic menggunakan 3 Wireless Bridge

Pengujian dilakukan dengan konfigurasi seperti pada sub Bab 3.3, metode yang dilakukan sama dengan skenario sebelumnya yaitu dengan memberikan input *traffic* beban sampai dengan melebihi *bandwidth limiter* yang telah ditentukan, dalam skenario ini bandwidth limiter yang diberikan adalah 1024 kbps. Tabel 4.7 merupakan hasil dari pengujian QoS menggunakan tiga buah *wireless bridge*. Kemudian dari tabel tersebut diplot ke dalam beberapa grafik parameter – parameter QoS.

No	Input Beban traffic (kbps)	Through- put (kbps)	Delay (ms)	Jitter (ms)
1	100	23	162	10
2	200	19	116	8
3	300	327	471	17
4	400	296	619	19
5	500	319	474	18
6	600	334	130	9
7	700	721	147	9
8	800	775	116	8
9	900	864	132	9
10	1000	980	127	9
11	1100	794	337	15
12	1200	1127	180	10
13	1300	895	147	10
14	1400	951	310	14
15	1500	66	2353	30
16	1600	77	3666	24
17	1700	161	2555	24

 Tabel 4.7 Hasil Pengujian QoS Jaringan Komunikasi dengan Input Beban traffic pada Tiga Wireless Bridge

i. Throughput

Pada Gambar 4.7 merupakan grafik *throughput* atau *bandwidth* aktual yang melewati kanal, dan menunjukkan *trendline* naik, pada saat diinput *traffic* beban 100 kbps hinggan 1700 kbps, dan nilai yang ter*capture* yaitu 23 kbps hingga 1174 kbps, dari grafik di bawah terdapat nilai *throughput* yang sangat kecil ketika diberikan traffic beban sebesar 1500 kbps, 1600 kbps, dan 1700 kbps. Secara visual pengujian injek *traffic* beban ini adalah terjadi gagal *control* oleh SCADA sehingga *client* tidak bisa mengakses server, begitu juga server tidak bisa mengakses RTU. Maka *throughput* dari bandwidth SCADA adalah sangat kecil yaitu bernilai 66 kbps, 77 kbps dan 161 kbps, hal ini diakibatkan oleh penuhnya *traffic* beban yang ada di kanal *bandwidth* komunikasi SCADA dan terjadi gagal *control*.

Gambar 4.7 Grafik Nilai *Throughput* terhadap Injek Beban pada Tiga *Wireless Bridge*

ii. Delay

Pada Gambar 4.8 merupakan perbandingan besar nilai delay terhadap input *traffic* beban hingga melebihi batas kapasitas bandwidth kanal yang diberikan yaitu 1024 kbps, dari grafik terlihat bahwa nilai delay pada input traffic beban pada 1500 kbps hingga 1700 kbps adalah bernilai 2353 ms, 3666 ms, 2555 ms atau nilai dari delay adalah sebesar 2 detik hingga 3 detik. Menurut standar TIPHON nilai delay tersebut masuk dalam kategori Jelek yaitu jauh melebihi 450 ms. Sedangkan pada pengujian secara visual terlihat bahwa terjadi gagal *control* SCADA sehingga *delay* yang didapat sangat besar.

iii. Jitter

Pada Gambar 4.9 nilai jitter juga menunjukan *trendline* naik terhadap input traffic beban yang diberikan. Nilai dari jitter yang didapat pada skenario ini adalah bernilai 8 ms hingga 30 ms, dan nilai ini termasuk dalam kategori sangat bagus menurut Standar TIPHON.

Gambar 4.9 Grafik Nilai *Jitter* terhadap Besar Injek *Traffic* Beban pada Tiga *Wireless Bridge*

- Halaman ini sengaja dikosongkan-

BAB 5 PENUTUP

5.1 Kesimpulan

Setelah dilakukan perancangan dan pengujian jaringan komunikasi pada Mini SCADA, maka secara keseluruhan dapat diambil kesimpulan sebagai berikut:

- 1. Untuk mengukur *Quality of Service* Jaringan Komunikasi pada Mini SCADA dilakukan dengan pemberian beban *traffic*.
- 2. Parameter *Quality of Service* yang terpengaruh dari adanya beban *traffic* adalah delay, masuk dalam indeks "Jelek" pada standar TIPHON yaitu >450 ms.
- 3. *Beban Traffic* yang jauh melebihi bandwidth kanal transmisi mengakibatkan adanya kegagalan fungsi pada sistem Mini SCADA
- 4. Hasil pengukuran *throughput* saat diberi input beban *traffic* yang besar adalah sebesar nilai dari *bandwidth* limiter yaitu sekitar 1024 kbps.
- 5. Hasil pengukuran jitter pada saat diberi *beban traffic* adalah dalam kategori "Bagus" pada standar TIPHON dengan nilai 0-75 ms yaitu 8 ms 30 ms.
- Media komunikasi kabel Ethernet mempunyai indeks QoS yang "Sangat Memuaskan" dengan nilai persentase *throughput* 100%, packet loss 0%, delay <150 ms, dan jitter <75 ms

5.2 Saran

Dari hasil penelitian tugas akhir yang telah dilakukan, berikut merupakan saran yang dapat dilakukan untuk penelitian selanjutnya:

- 1. Perlu diiperhatikan dalam meletakkan dan mengarahkan wireless bridge EnGenius pada saat pengujian
- 2. Solusi untuk komunikasi agar berjalan lancar dan tidak terjadi kegagalan fungsi SCADA adalah menyediakan *bandwidth* kanal komunikasi jauh lebih besar dibanding *traffic* yang dikirim oleh Mini SCADA.

- Halaman ini sengaja dikosongkan-

DAFTAR PUSTAKA

- [1] Modul Praktikum NGN, "Modul 1 Wireshark", Politeknik Elektronika Negeri Surabaya, 2013.
- [2] B. S. Winarno. 2010. "Perancangan Sistem SCADA (Supervisory Control and Data Acquisition) Pada Miniatur Warehouse Berbasis PLC (Programmable Logic Controller),"
- [3] PT PLN (Persero), 2008 ,"Peralatan SCADA Sistem Tenaga Listrik,"Jakarta: PLN.
- [4] U. of Kentucky, pp. 1–6, 2015 "Communication Network -General Overview of SCADA Communications,".
- [5] PT PLN(Persero). 2010. "Buku Petunjuk SCADA Master Station".
- [6] PT PLN(Persero). 2010."Buku Petunjuk SCADA Remote Station".
- [7] Clark, Gordon. Reyndes, Deon. 2004. "Practical Modern SCADA Protocols". Australia, Perth: Esevier.
- [8] Prosoft Technology. 2015. "Understanding Modbus Serial and TCP/IP" .https://www.prosoft-technology.com (diakses April 2019)
- [9] Prasetyo, Eri,dkk. 2012. "Analisa Quality of Service (QoS) Kinerja Point to Point Protocol over Internet (PPoE) dan Point to Point Tunelling Protocol (PPTP)", FTI, IST AKPRIND Yogyakarta.
- [10] Survalent. 2010. "Modbus Scan Task User's Guide". Ontario: Survalent Technology Corporation.
- [11] Sophia Antipolis, Cedex. 1999. "Telecommunications and Internet Protocol Harmonization Over Networks (TIPHON); General aspects of Quality of Service (QoS)". Perancis: ETSI Technology.
- [12] T. Pratama, 2015. "Perbandingan Metode PCQ, SFQ, Red dan FIFO pada Mikrotik sebagai Upaya Optimalisasi Layanan Jaringan pada Fakultas Teknik Universitas Tanjungpura," Jurnal Sistem dan Teknologi Informasi (JustIN), Vol. %1 dari %2Vol 3, No. 1 (2015), no. Universitas Tanjungpura,

- [13] Ferdy Reinnagel Denny, 2016. "Analisis Perbandingan Delay, Jitter, dan Throughut akibat Routing Information Protocol Version 2 dan Routing Information Protocol Next Generation", FTI, Universitas Kristen Satya Wacana.
- [14] Rasudin,2014. "*Quality of Service* pada Jaringan Internet dengan Metode Hierarchy Token Bucket" Jurnal Penelitian Teknik Informatika.

LAMPIRAN A

Departemen Teknik Elektro – FTE Fakultas Teknologi Elektro –ITS

EE 184801 TUGAS AKHIR - 6 SKS

Nama Mahasiswa	: Anisa Mustika	2019	
Nomor Pokok	: 07111745000067	2 FEB	
Bidang Studi	: Telekomunikasi Multimedia	16	
Tugas Diberikan	: Semester Genap 2018/2019		
Dosen Pembimbing	: 1. Dr. Ir. Achmad Affandi, DEA.		
	2. Rochmatika Astuti		
Judul Tugas Akhir	: Analisis Kinerja Mini SCADA Berbasis IED MICOM P127		
	(Performance Analysis of Mini SCAL	A Based IED MICOM P127)	

Uraian Tugas Akhir :

Supervisory Control and Data Acquisition (SCADA) merupakan sistem yang dapat memonitor dan mengontrol suatu peralatan proses atau sistem dari jarak jauh secara *real time*. Sistem ini memungkinkan sebuah Control Center untuk menilai keadaan sistem, dan dibangkitan oleh masing-masing unit, tegangan dan arus dari IED.

Rancangan Mini SCADA digunakan sebagai media pembelajaran praktis dan juga sebagai analisis troubleshooting dalam penanganan gangguan. Mini SCADA juga perlu dilakukan analisis dari sisi metering, status dan control maupun sisi komunikasi, sesuai dari fungsi sistem SCADA. Pada tugas akhir ini merupakan analisis kinerja Mini SCADA berupa perbandingan konfigurasi Remote Station yaitu secara serial dengan multidrop dan tanpa multidrop menggunakan protokol komunikasi yang berbeda. Setelah dilakukan analisis kinerja tersebut diharapkan bisa menjadi referensi dalam upaya peningkatan performa / keandalan sistem SCADA.

Kata Kunci: Mini SCADA, media komunikasi, tele-status, tele-control, tele-metering, IED

Dosen Pembimbing 1,

Dr. Ir. Achmad Affandi, DEA NIP. 196510141990021001 lengetahui Cetua Program Studi S1, awan, S.T., M.Eng., Ph.D. NIP. 197311192000031001

Dosen Pembimbing 2,

11 Actua:

Rochmatika Astuti NIP. 87111032z

Menyetujui, Kepala Laboratorium Jaringan,

NIP. 196510141990021001

LAMPIRAN B DATASHEET POWER METER

AOB292E-2/9 Y+ LCD Multifunctional Network Analyser

		Data of electrical quantity		
Parameter address	Object	Description of communication parameters	Data type	Attribute
1CH	UAB		int	R
1DH	UBC		int	R
1EH	UCA	Voltage value = communication data / 10 x Voltage Rate	int	R
1FH	UA	Unit:V	int	R
20H	UB		int	R
21H	UC	1FH~21H is fixed as 0 when 3-phase 3-wire	int	R
22H	IA		int	R
23H	IB	Current value = communication data / 1000 x Current Rate	int	R
24H	IC	Unit:A	int	R
25H	Freq	Frequency = communication data / 100 Unit: Hz	int	R
26H	PT		int	R
27H	QT	Power = communication data x Voltage Rate x Current Rate	int	R
28H	ST	Unit:W, var or VA	int	R
29H	PFT	Power factor value = communication data / 1000	int	R
2AH	PA		int	R
2BH	PB		int	R
2CH	PC		int	R
2DH	QA		int	R
2EH	QB	Power = communication data x Voltage Rate x Current Rate	int	R
2FH	QC	Unit:W, var or VA	int	R
30H	SA		int	R
31H	SB	2AH ~ 32H is fixed as 0 when 3 - phase 3 - wire	int	R
32H	SC		int	R
33H	PFA		int	R
34H	PFB	Power factor value = communication data / 1000	int	R
35H	PFC	33H ~ 35H is fixed as 0 when 3 -phase 3 - wire	int	R
36H	CurDmdPt+	Current positive active demand value, the translating formula of communication parameter is the same as PT	int	R
37H	CurDmdPt-	current negative active demand value, the translating formula of communication parameter is the same as PT	int	R
38H	CurDmdQt+	Current positive reactive demand value, the translating formula of communication parameter	int	R

AOB292E-2/9 Y+ LCD Multifunctional Network Analyser

Note: Data of electric energy = (High bit x 65536 + Iow bit) x Voltage Rate x Current Rate / 10 Unit: kWh, kvarh

It will clear the data to zero automatically when each energy data > 99999999.9kWh or kvarh

Data of harmonic							
Parameter address	Object	Description of communication parameters	Data type	Attribute			
56H	THD_UA	Total harmonic distortion of A-phase voltage	int	R			
57H	THD_UA_ODD	Odd harmonic distortion of A-phase voltage	int	R			
58H	THD_UA_EVEN	Even harmonic distortion of A-phase voltage	int	R			
59H~76H	HRUA = 2 ~ 31	The 2nd ~ 31th harmonic ratio of A-phase voltage	int	R			
77H	THD_UB	Total harmonic distortion of B-phase voltage	int	R			
78H	THD_UB_ODD	Odd harmonic distortion of B-phase voltage	int	R			
79H	THD_UB_EVEN	Even harmonic distortion of B-phase voltage	int	R			
7AH~97H	HRUB = 2 ~ 31	The 2nd ~ 31th harmonic ratio of B-phase voltage	int	R			
98H	THD_UC	Total harmonic distortion of C-phase voltage	int	R			
99H	THD_UC_ODD	Odd harmonic distortion of C-phase voltage	int	R			
9AH	THD_UC_EVEN	Even harmonic distortion of C-phase voltage	int	R			
9BH ~ B8H	HRUC = 2 ~ 31	The 2nd ~ 31th harmonic ratio of C-phase voltage	int	R			
B9H	THD_IA	Total harmonic distortion of A-phase current	int	R			
BAH	THD_IA_ODD	Odd harmonic distortion of A-phase current	int	R			
BBH	THD_IA_EVEN	Even harmonic distortion of A-phase current	int	R			
BCH~D9H	HRIA-2 ~ 31	The 2nd ~ 31th harmonic ratio of A - phase current	int	R			
DAH	THD_IB	Total harmonic distortion of B-phase current	int	R			
DBH	THD_IB_ODD	Odd harmonic distortion of B-phase current	int	R			
DCH	THD_IB_EVEN	Even harmonic distortion of B-phase current	int	R			
DDH ~ FAH	HRIB-2 ~ 31	The 2nd ~ 31th harmonic ratio of B-phase current	int	R			
FBH	THD_IC	Total harmonic distortion of C-phase current	int	R			
FCH	THD_IC_ODD	Odd harmonic distortion of C-phase current	int	R			
FDH	THD_IC_EVEN	Even harmonic distortion of C-phase current	int	R			
FEH~11BH	HRIC-2~31	The 2nd ~ 31th harmonic ratio of C-phase current	int	R			

Note: Data of harmonic = Data of communication / 10, Unit: %

Description of data format:

word: 16-digit unsigned integer, the range of data is 0 ~ 65535;

LAMPIRAN C

PROTOKOL MODBUS

1. PENGANTAR MODBUS

Protokol Modbus adalah teknologi yang dikembangkan oleh Modicon pada 1979. Modbus merupakan salah satu protokol komunikasi serial yang memungkinkan beberapa sistem berbeda saling berkomunikasi satu sama lain. Modbus telah mengalami perkembangan mulai dari Modbus dimana ada satu yang bertindak sebagai Modbus Mater dan lainnya adalah Modbus Slave (Modbus RTU). Karena diperlukan komunikasi dalam bentuk teks, maka dibuat pula Modbus ASCII, yang kemudian karena tuntutan kecepatan dikembangkan pula Modbus Plus.

Dengan perkembangan teknologi jaringan yang menggunakan Ethernet dan TCP/IP, maka modbus dibungkus (encapsulated untuk bisa ditransmisikan melalui Ethernet dan muncul dengan nama Modbus TCP/IP.

Berdasarkan media transfernya, Modbus dikategorikan ke dalam Modbus serial (RS232/485) dan Modbus Ethernet (TCP/IP). Berdasarkan bentuk datanya, Modbus dibagi menjadi Modbus RTU (serial) dan Modbus ASCII.

Protokol komunikasi Modbus Serial mengatur cara-cara dan format komunikasi serial antara Master dengan Slave. Jaringan Modbus terdiri dari Master dan beberapa Slave. Master akan memulai komunikasi antara lain menulis data, membaca data, dan mengetahui status Slave.

Protokol Modbus RTU menggunakan sistem Polling yaitu sisi master memanggil (request) dan sisi slave menjawab (response). Slave hanya bersifat pasif/menunggu atau dengan kata lain Slave hanya merespon jika ada permintaan dari Master. Dimana bentuk memanggil-menjawab pada protokol modbus RTU dapat digambarkan pada Errori Reference source not found.

Gambar 1.Komunikasi Modbus

Tabel 1. Jenis Penyimpanan Data

Primary tables	Object type	Type of	Comments
Coils	Single bit	Read-Write	Master dan slave bisa merubah data coil
Discretes Input	Single bit	Read-Only	data hanya bisa di rubah oleh slave
Input Registers	16-bit word	Read-Only	data hanya bisa di rubah oleh slave
Holding Registers	16-bit word	Read-Write	Master dan slave bisa merubah data register

1) Coil

Pada mulanya jenis data ini digunakan untuk mengaktifkan coil relay. Nilai jenis data ini ON atau OFF. Coil mempunyai panjang 16 bit, sehingga untuk mengaktifkan/ ON dengan cara memberi nilai FF00H dan 0000H untuk OFF. Data FF00 dan 00 disimpan di register 00000 sampai 09999

2) Input Relay / input biner / input digital/input diskrit

Kebalikan dengan coil, input relay digunakan untuk mengetahui status relay apakah sedang ON atau OFF. Input relay bersifat read only bagi master dan hanya bisa dirubah oleh slave saja. Data tersebut disimpan di register 10001 sampai 19999

3) Input Register

Input Regsiter digunakan untuk menyimpan data analog dgn range nilai 0 ~ 65535 . Input register bersifat read only bagi master. Data ini disimpan di register ber nomor 30001 sampai 39999

4) Holding Register

Holding register digunakan untuk menyimpan nilai dgn range 0~65535 .register ini mempunyai alamat register 40001 sampai 49999.

2. FRAME DATA MODBUS

Master atau slave berkomunikasi dengan cara mengirim frame permintaan dan frame respon. Secara umum format frame modbus sebagai berikut:

Gambar 2.Frame Modbus

Frame modbus terdiri dari

1) Alamat slave

Byte pertama sebagai Alamat slave terdiri dari 1 byte . alamat slave ditentukan hanya 1 \sim 247. alamat 0 digunakan master untuk ditujukan kepada semua slave.

2) Function Code

Byte kedua berupa Function Code , perintah dari master yang harus dilakukan oleh slave. Berikut ini daftar kode perintah perintah tersebut (function code).

Tabel 2. Function Code

Data	membaca	menulis 1 data	menulis banyak data	no awal reg
Coil	FC01	FC05	FC15	00001
input diskrit/digital	FC02			10001
Input register	FC04			30001
Holding Register	FC03	FC06	FC16	40001

*keterangan: FC15 maksudnya adalah function code 15 desimal atau 0F dlm hexa.

Gambar 3. Register Map & Function Code yang Digunakan

LAMPIRAN D FOTO KEGIATAN PENGUKURAN

LAMPIRAN E KONFIGURASI SKENARIO PENGUJIAN

KONFIGURASI KOMUNIKASI MINI SCADA 2 WIRELESS OUTDOOR BRIDGE TANPA TRAFFIC GANGGUAN

LAMPIRAN F LANGKAH – LANGKAH INSTALASI DAN KONFIGURASI DENGAN KABEL ETHERNET

A. Tujuan

Mengetahui QoS (*Quality of Service*) jaringan komunikasi Client ke Server Mini SCADA dengan media kabel ethernet

- B. Alat
 - 1. Mini SCADA (RTU)
 - 2. Kabel Ethernet/ RJ-45
 - 3. 1 buah PC (Personal Computer)
 - 4. Aplikasi Winbox
 - 5. Aplikasi SCADA Manager
 - 6. Aplikasi SCADA Explorer
 - 7. Aplikasi HMI World View
- C. Gambar Konfigurasi Jaringan

Gambar 0.1 Konfigurasi Jaringan Mini SCADA dengan Kabel Ethernet

- D. Langkah Langkah
 - 1. Setting IP address PC Server dengan segment yang sama dengan IP pada RTU (IP RTU 192.168.1.10) yaitu 192.168.1.8
 - Mengganti IP dengan klik "Open Network & Internet Setting" Klik "Change Adapter Options" >> "Ethernet" >> klik kanan "Properties" >> double klik "Internet Protocol Version 4 (TCP/ IP)" seperti pada gambar di bawah

Internet Protocol Version 4 (TCP/IPv4	I) Properties X
General	
You can get IP settings assigned auto this capability. Otherwise, you need to for the appropriate IP settings.	matically if your network supports to ask your network administrator
Obtain an IP address automatica	ey
Use the following IP address:	
IP address:	192.168.1.5
Subnet mask:	255 . 255 . 255 . 0
Default gateway:	192.168.1.1
Obtain DNS server address auto	natically
Use the following DNS server add	dresses:
Preferred DNS server:	
Alternate DNS server:	
Valdate settings upon exit	Advanced
	OK Cancel

3. Sambungkan kabel ethernet dengan RTU yang ada pada Mini SCADA.

Menjalankan software – software SCADA sebagai Master Station/ Server

- Buka software SCADA Manager, double klik Shortcut "SCADA Manager" di PC Server >> "Run"
- 5. Buka Software SCADA Explorer, double klik *shortcut* SCADA Explorer
- Ganti IP address Server di SCADA Explorer Buka SCADA Explorer klik "Preference" dan ketik IP dari PC Server yang dituju yaitu 192.168.1.8
- Ganti IP address Server pada World view Buka "Program Files X86" >> pilih folder "Quindar" >> "wvsetup" >> ketik IP address dari PC Server.

Setelah melakukan instalasi jalankan *software SCADA* seperti langkah di atas, dilakukan uji tele-*control* dari Mini SCADA.

8. Buka software HMI World View, dan melakukan *log* – in pada aplikasi *worldview* dengan format default yaitu username "scada" dan password "scada"

9. Setelah melakukan log-in, *open* file yang telah dibuat pada penelitian ini nama file yang saya pakai adalah "Tugas akhir"

PENYULANG ITS 1	PENYULANG ITS 2
REMOTE 0.0F Amp	LOCAL 0.0 Amp
0 Volt	0FVolt

- 10. Setelah dibuka pastikan masih dalam keadaan *log-in* karena *Worldview* auto *log-out* jika tidak digunakan dalam waktu tertentu.
- 11. Lalu control penyulang yang diinginkan, dengan cara klik kanan pada "Kotak hijau" dan klik kanan.

12. Setelah berhasil, maka "kotak hijau" yang menyimbolkan sebagai CB akan berubah warna menjadi kotak merah

- 13. Lalu bandingkan keadaan dengan Mini SCADA, pastikan lampu pada penyulang ITS-2 dan push button merah juga menyala.
- 14. Cek switch l/r dengan memutar switch pada Mini SCADA kemudian perhatikan pada status di HMI apakah Local saat menunjuk ke local, dan remote saat switch mengarah ke remote.
- 15. Begitu juga lakukan pada penyulang ITS-1

Untuk mengetahui QoS dari jaringan komunikasi Mini SCADA pada skenario ini dilakukan capture dengan aplikasi "Wireshark", capture Wireshark dilakukan bersamaan dengan uji control dari HMI Worldview

- 16. Buka software wireshark dengan *double* klik pada shortcut "wireshark"
- 17. Kemudian pilih interface yang akan digunakan untuk capture jaringan.
- 18. Setelah itu klik tombol "Start capturing packet"
- 19. Setelah dilakukan capture pada jaringan, klik tombol pada gambar kotak merah di bawah yaitu "*Stop capturing Packet*"
- 20. Tampilkan "*Time delta from previous displayed frame*" dengan klik kanan pada frame description box, seperti pada gambar di bawah

4 0	0.pcapng					- 0	\times
File	Edit View Go	Capture Analyze Statistics	Telephony Wireless Tools Help				
4 1	1 I O	🗙 🖸 🤇 👄 🗢 🕾 🐺	4 🚍 🔳 @ @ @ #				
Acc	sly a display filter <	Ctrl-/>				- Expressi	on 4
No.	Time	Enuroe	r	ut Time dalta from or	view designed frame	Infe	
w.	1.0.000000	103 168 5 3	Expand Subtrees	in the detail of pr	0 05000000	Ouenus 1	
	2 0.136379	192.168.1.10	Collapse Subtrees	h	0.136379000	Response: 1	6 E
	3 0.139018	192,168,5,9	1 Expand All	18	0.082639080	50762 + 236	60
	4 0.139851	192.168.5.3	1	18	0,000833000	23600 → 507	76-
	5 0.177265	192.168.5.3	Collapse All	4	0.037414000	50326 → 500	2
	6 0.202034	192.168.5.9	1 Apply at Column	50	0.024769000	50762 + 236	50
	7 0.202072	192.168.5.3	1	16	0.000038000	23600 → 503	76
	8 0.257686	192.168.5.9	1 Apply as Filter	 ie 	0.055614000	50762 + 238	58
÷	9 0.373252	192.168.5.3	1 Despare a Eilter	. 16	0.115566000	Query: 1	te
	10 0.457996	192.168.1.10	1	5	0.054744000	Response: 1	të 👘
	11 0.469342	192.168.5.9	1 Conversation Filter	12	0.011346000	50762 - 236	50
	12 0.469598	192.168.5.3	2 Colorize with Filter	• • • 6	0.000256000	23600 → 500	76
	13 0.505447	192.168.5.3	1 Follow	, 14	0.035849000	50326 - 502	2
	14 0.518166	192.168.5.9	1	10	0.012719000	50762 → 230	50
	15 0.688713	192.168.5.3	1 Copy	16	0.170547000	Query: 1	fr
	16 0.723954	Routerbo_67:43:c1	Show Dacket Puter	0	0.035241000	RST. Root	
	17 0.752814	192.168.1.10	1	5	0.028860000	Response: 1	fr
	18 0.802694	192.168.5.3	1 Export Packet Bytes	54	0.049880000	50326 → 500	2
	19 0.813690	192.168.5.9	1 Milli Destaval Daga	12	0.010996000	50762 - 236	50
	20 0.813959	192.168.5.3	1 Wiki Protocol Page	32	0.000269000	23600 → 507	76 1
<			Filter Field Reference			3	>
>	Interface id:	0 (\Device\NPF {309A7949	Protocol Preferences	•			1
	Encapsulation	type: Ethernet (1)					
	Arrival Time:	Jul 3, 2019 01:10:07.55	0 Decode As				
	[Time shift fo	r this packet: 0.0000000	 Go to Linked Packet 				
	Epoch Time: 15	62091007.550539000 secon	d Show Linked Packet in New Wind	low			
	[Time delta fr	om previous captured fram	ne: 0.004/44000 secondsj				
	llime delta fr	on newious displayed fro	ame: 0 084744000 seconds]				
0000	54 e1 ad 1c 5	0 af 4c 5e 0c 67 43 cl 0	88 00 45 00 TP.L^ .gCE.				
0010	00 33 06 5d 4	0 00 7f 06 6e 0a c0 a8 0	81 0a c0 a8 ·3·]@··· n·····				
0020	05 03 01 T6 C	4 96 38 4C 3D 3C 56 20 3	37 dc 50 18 ·····8L (V-7-P-				
0040	68						
0 7	Time delta from r	nevious canh red frame (frame time	e delta)	Padiets: 96	Displayed: 967 (100.0%)	Profile: [Default
here	to search	U 🖂		💴 🛋 🔛			

- 21. Kemudian klik "File" dan "Save As"
- 22. Ketik nama file dari hasil capture Wireshark
- 23. Pengambilan data *throughput* isi filter box dengan *ip.dst* ==192.168.1.8 || ip.src == 192.168.1.8.
- 24. Klik "Statistics" >> "*Capture File Properties*" lalu lihat kolom Display pada baris "*Average bits/s*"

etais					
Length: 36 k	8				-
Hash 417 (94A256);	1350 10b 12d0 7e9ae6 117	ulicleebadd9ea98224	98d8af23ceb 14d36e	eb7bcd	
Hesh c29 (8,39(940,167);	405c7242f2a8a87c47463	1268-5318754957			
Hash (SHA1): 645	674@1cb15dc2dcef3d93	r93ed30182ra220c			
Format: Wire	eshark/pcapng				
Encapsulation: Ethe	ernet				
Time					
First packet:	2019-06-19 20:55:-	1			
Last packet:	2019-06-19 20:56:-	-			
Elepsed:	00:01:01				
Capture					
Hardware:	Intel®) Core(TM) (H006U CPU @ 2.000	tr (with \$5\$2.4.2)		
OS:	64-bit Windows 10	(1803), build 17134			
Application:	Dumpcap (Wreshar	k) 3.0.1 (+3.0.1-0-ges	95 (cd#)		
Interfaces					
Interface	Dropped packets	Cepture Riter	Link type	Packet size knit	
Ethernet	0 (0 %)	none	Ethernet	262144 bytes	
Statistics					
Measurement	Castured	Cepte	end been	Narbed	
Padiets	372	354 (5	5,2%)	-	
Time span, s	61.785	61.78	5	-	
Average pps	6.0	5.7		-	
Average padiet siz	te, 8 62	63		-	
Bytes	23036	22244	(96.6%)	0	
Average bytes/s	372	360		-	
Average hits/s	2982	2880			

25. Pengukuran Packet Loss dilakukan dengan filter pada tcp.analysis.ack_lost_segment

- 26. Pengukuran delay dilakukan dengan ketik *ip.dst* ==192.168.1.10 && *ip.src* == 192.168.1.8 pada filter box.
- 27. Export pada hasil filter delay dengan klik "File" >> "export packet dissections" lalu klik "As CSV" >> Save >> beri nama file.
- 28. Buka file "CSV" menggunakan Microsoft Excel, hitung rata rata nilai delay dari kolom "*Time delta from previous displayed frame*" menggunakan rumus:

=AVERAGE(baris pertama : baris terakhir)

- 29. Untuk mengukur jitter dilakukan dengan rumus pada excel:
 - n (I91) = banyaknya data =Count(baris pertama : baris terakhir)

 - $\sum_{i=1}^{n} x_i(I89)$ = Jumlah total data $\sum_{i=1}^{n} x_i^2(I90)$ = Jumlah total dari data yang dikuadratkan
 - $(\sum_{i=1}^{n} x_i)^2$ (J88)= Jumlah total data dikuadratkan

=Sum(baris pertama : baris terakhir)

- s^2 (I94) = varians dari delay =I94/I92
- Total variasi delay = $\sqrt{s^2} = \left(\frac{n\sum_{i=1}^n x_i^2 (\sum_{i=1}^n x_i)^2}{n(n-1)}\right)$ =SQRT(I94)
- 30. Setelah didapat masing masing nilai dari parameter QoS dianalisis dengan standar ETSI TIPHON.
- Hasil Uji E.

Hasil Capture Wireshark:

Interface	Dropped packets	Capture filter	Link type
Wi-Fi	0 (0 %)	none	Ethernet
Statistics			
Measurement	Captured		Displayed
Packets	1133		1064 (93.9%)
Time span, s	76.449		76.418
Average pps	14.8		13.9
Average packet size, B	165		170
Bytes	187054		180564 (96.5%)
Average bytes/s	2446		2362
Average bits/s	19 k		18 k

No	Jarak total Lokasi Pengukura n (m)	Throughput (bits/s)	Packet Loss (%)	Latency/ Delay (ms)	Jitter (ms)	Indeks QoS

LAMPIRAN G LANGKAH – LANGKAH INSTALASI DAN KONFIGURASI DENGAN 2 WIRELESS BRIDGE

- A. Tujuan
 - Mengetahui nilai QoS (*Quality of Service*) jaringan komunikasi *Client* ke *Server* Mini SCADA dengan media 2 Wireless Bridge
 - Mengetahui pengaruh beban Trafik terhadap parameter QoS pada 2 Wireless Bridge
- B. Alat
 - Mini SCADA (RTU)
 - Kabel Ethernet/ RJ-45
 - 3 buah PC (Personal Computer)
 - 2 buah Wireless Bridge EnGenius ENH202
 - Aplikasi Winbox
 - Aplikasi Tfgen
 - Aplikasi SCADA Manager
 - Aplikasi SCADA Explorer
 - Aplikasi HMI World View
- C. Gambar Konfigurasi Jaringan

Gambar 2 Konfigurasi Jaringan Mini SCADA dengan 2 Wireless Bridge

D. Langkah – Langkah

Setting IP *address* perangkat yang digunakan seperti pada tabel di bawah melalui langkah = langkah berikut

Perangkat Keras	Address (IP atau Mac)	Interface
PC Server	192.168.5.3	Ethernet
PC Injektor Beban	192.168.5.96	Wifi
PC Client	192.168.5.9	Wifi
Radiolink 1/ EnGenius 1	192.168.5.7 (88:DC:9:46:2C:54)	Wifi
Radiolink 2/ EnGenius 2	192.168.5.5 (88:DC:9:46:2C:5C)	Wifi
RTU	192.168.1.10	Ethernet

1. Setelah semua perangkat dikonfigurasi seperti pada perancangan jaringan di atas. setting router Mikrotik,di aplikasi Winbox pada suatu PC dengan double klik *shortcut Winbox*

2. Klik "*Neighbors*", kemudian klik "*Refresh*", setelah Mac Address tertampil klik "*Connect*"

File Tools Connect To: 192.160.51 Lotin: admin Open In N	word w Window
Connect To: 192.160.51	word w Window
Login: admin	w Window
Login. domin	
Password:	
Add/Set Connect To RoMON Connect	
Managed Neighbors	
	•

3. Klik menu "*IP*", kemudian pilih "*DHCP Server*", kemudian klik "*DHCP Setup*"

4. Lalu tekan menu "add", dan tambahkan IP server, RTU dan juga EnGenius satu yang akan tersambung dengan port Mikrotik, pada penelitian ini port 3 mikrotik tersambung dengan RTU, dan port 4 Mikrotik tersambung dengan EnGenius 1. Masukkan IP *Address* gateway Mikrotik, gateway EnGenius, dan juga IP RTU seperti pada gambar

DHCP Sanar	Address list		
DHCP Networks Leases Options Option Set	+	Fed	
Advess / MAC Advess / Even Ta 0 192 Vita 5 / C 202 Oct 4 / E M / C 202 / C	Addews / Petition, Φ 192,163 / 192,164 / 192,164 / 192 Φ 192,163 / 124 / 192,164 / 192 Φ 192,163 / 104 / 192,163 / 100 Φ 192,163 / 104 / 192,163 / 100	Prefetor V effect A Rev effect A Adh vien1 Adh sc1	Ho. Spree Rep. Status V 101 2015/23 bood 101 2015/23 bood 006 1/2215/234 boord
3 terrs (1 selected)	3 torio		

5. Kemudian cek IP dari PC *client* yang terkoneksi dekat dengan router Mikrotik, dengan melakukan "Ip config" pada *command promt*

Menjalankan software – software SCADA sebagai Master Station/ Server

- 1. Pastikan mini SCADA dalam keadaan Remote agar dapat dieksekusi melalui software SCADA
- Buka software SCADA Manager, double klik Shortcut "SCADA Manager" di PC Server >> "Run"
- 3. Buka Software SCADA Explorer, double klik *shortcut* SCADA Explorer
- Ganti IP address Server di SCADA Explorer Buka SCADA Explorer klik "Preference" dan ketik IP dari PC Server yang dituju yaitu 192.168.1.8
- Ganti IP address Server pada World view Buka "Program Files X86" >> pilih folder "Quindar" >> "wvsetup" >> ketik IP address dari PC Server.

Setelah melakukan instalasi jalankan *software SCADA* seperti langkah di atas, dilakukan uji tele-*control* dari Mini SCADA.

6. Buka software HMI World View, dan melakukan *log* – in pada aplikasi *worldview* dengan format default yaitu username "scada" dan password "scada"

7. Setelah melakukan log-in, *open* file yang telah dibuat pada penelitian ini nama file yang saya pakai adalah "Tugas akhir"

- 8. Setelah dibuka pastikan masih dalam keadaan *log-in* karena *Worldview* auto *log-out* jika tidak digunakan dalam waktu tertentu.
- 9. Lalu control penyulang yang diinginkan, dengan cara klik kanan pada "Kotak hijau" dan klik kanan.

10. Setelah berhasil, maka "kotak hijau" yang menyimbolkan sebagai CB akan berubah warna menjadi kotak merah

11. Lalu bandingkan keadaan dengan Mini SCADA, pastikan lampu pada penyulang ITS-2 dan push button merah juga menyala.

- 12. Cek switch l/r dengan memutar switch pada Mini SCADA kemudian perhatikan pada status di HMI apakah Local saat menunjuk ke local, dan remote saat switch mengarah ke remote.
- 13. Begitu juga lakukan pada penyulang ITS-1

Sebagai parameter analisis, digunakan aplikasi tfgen untuk memberikan beban jaringan komunikasi menuju sistem SCADA sesuai dengan Gambar 3.

14. Buka aplikasi Tfgen, maka akan tertampil seperti gambar berikut:

- klik Option >> Destination , masukkan ip address dari alamat tujuan, yakni server (192.168.5.3)
- Untuk input besar beban yang akan diinputkan, klik Option >> Utilization, lalu masukkan beban sesuai dengan Tabel 1 , Klik Start

Untuk mengetahui QoS dari jaringan komunikasi Mini SCADA pada skenario ini dilakukan capture dengan aplikasi "Wireshark", capture Wireshark dilakukan bersamaan dengan uji control dari HMI Worldview

- 17. Buka software wireshark dengan *double* klik pada shortcut "wireshark"
- 18. Kemudian pilih interface yang akan digunakan untuk capture jaringan.
- 19. Setelah itu klik tombol "Start capturing packet"
- 20. Setelah dilakukan capture pada jaringan, klik tombol pada gambar kotak merah di bawah yaitu "*Stop capturing Packet*"
- 21. Tampilkan "*Time delta from previous displayed frame*" dengan klik kanan pada frame description box, seperti pada gambar di bawah

()	Edit View Go	Capture Analyze Statistics	lelephony Wireless Tools Help				
Αp	ply a display filter ·	cCtrl-/>				 Expres 	sion
2.	Tane 1 0.00000 2 0.136379 3 0.139618 4 0.139818 5 0.177265 0 0.202014 7 0.202072 8 0.257686 9 0.372252 10 0.469342 12 0.469588 13 0.505447 14 0.518166 15 0.689713 16 0.7258814 18 0.802694 19 0.813699 20 0.813959	Source Control 102.106.3.5 1	Expand Subtrees College Subtrees Expand All College All Asply as Filter Prepare a Filter Colory and Filter Colory and Filter Follow Copy Sow Packet Bytes Expert Packet Bytes Waik Prescol Page Filter Field Heterone	2 16 13 18 18 10 16 16 15 15 16 16 16 16 16 16 16 16 16 16	Tere della fina previoa disgluer finare 0. esetto 0.	Info Query: Response: 50762 + 2: 23600 + 5i 50762 + 2: 23600 + 5i 50762 + 2: Query: Response: 50762 + 2: 23600 + 5i 50762 + 2: 23600 + 5i 50762 + 2: 23600 + 5i 50762 + 2: 23600 + 5i	Tr Tr 360 976 32 960 76 976 976 976 976 976 976 976 976 976
> 000 010 030 040	Interface id: Encapsulation Arrival Time: [Time shift fc Epoch Time: 11 [Time delta fr Gas delta fc 00 33 06 5d 4 05 03 01 fc c 00 00 27 c9 0	0 (\Device\APF(300A7949- type: Ethernet (1) Jul 3, 2019 01:10:07:55 wr this packet: 0.0000000 Goognervious captured fram com_nervious captured fram com_nervious captured fram com_nervious captured fram 00 of 74 of 6 0 00 0 01 0 40 00 71 06 6 0 00 0 01 0 45 95 38 4c 3b 3c 56 2d 3 20 00 2d 74 00 00 00 0 0	Protocol Preferences Decode As Gin to Linked Packet Show Linked Packet Show Linked Packet in New Wind C UNARY Version Deconded 0 00 45 00 TrPL1 05 CC-167 0 00 45 00 TrPL1 05 CC-167 0 00 45 00 TrPL1 05 CC-167 1 03 02 00 TrPL1 05 CC-167 7 dc 59 18 TrPL1 15 CC-167 1 03 02 00 TrPL1 15 CC-167 1 04 05 05 TC-167 1 05 05 T	w			

- 22. Kemudian klik "File" dan "Save As"
- 23. Ketik nama file dari hasil capture Wireshark
- 24. Pengambilan data *throughput* isi filter box dengan *ip.dst* ==192.168.1.xx // *ip.src* == 192.168.1.xx. (IP dst dan src adalah IP Server)
- 25. Klik "Statistics" >> "*Capture File Properties*" lalu lihat kolom Display pada baris "*Average bits/s*"

etais					
Length: 36 Hash 41 (948/256):	kā 7d350 s0b 12d07 e 5ae6117	udicteebadd?ea96224	18d8af23ceb 14d36e	b7bcd	
High c2 (R3PEMD160):	0405c7242f2a6a87c47463	5266c53c87F4957			
Hash (SHA1): 64	56744b1cb15dc2dcef3d93	r93cd30182ra220c			- 1
Format: W9	reshark/pcapng				
Encapsulation: Eth	semet				
Time					
First packet:	2019-06-19 20:55:-	1			
Last pecket:	2019-06-19 20:56:-	0			
Elepsed:	00:01:01				
Capture					
Hardware:	Intel®) Care(TM) (H006U CPU @ 2.000H	r (with \$52.4.2)		
OS:	64-bit Windows 10	(1803), build 17134			
Application:	Dumpcap (Wreshar	k) 3.0.1 (r3.0.1-0-gen)	(51cdH)		
Interfaces					
Interface Ethernet	Crocoed seckets 0 (0 %)	Capture Rher none	UR type Ethernet	Packet size knit 262144 bytes	
Statistics					
Heastement Packets	Captured 372	Display 354 (9	md 5.2%2	Marked	
Time span, s	61,785	61.78		-	
Average pps	6.0	5.7		-	
Average packet s	ae, 8 62	63		-	
Dytes	23036	22244	(96.6%)		
Average bytes/s	372	360		-	
Average bits/s	2982	2880		-	

26. Pengukuran Packet Loss dilakukan dengan filter pada *tcp.analysis.ack_lost_segment*

e <u>E</u> dit ⊻iew	Go Capture Analyze	Statistics Telephony We	reless <u>T</u> ools <u>H</u> elp			
I & O		* 2 * ± 🖬 🗏 🍳	્યુલ્યુ			
tip.anayss.ack_to Time	Source	Destination	Protocol	Length Time delta from previous displayed frame	216	presson

- 27. Pengukuran delay dilakukan dengan ketik *ip.dst* ==192.168.5.xx
 && *ip.src* == 192.168.5.xx pada filter box. (IP Server dan IP Client)
- Export pada hasil filter delay dengan klik "File" >> "export packet dissections" lalu klik "As CSV" >> Save >> beri nama file.
- 29. Buka file "CSV" menggunakan Microsoft Excel, hitung rata rata nilai delay dari kolom "*Time delta from previous displayed frame*" menggunakan rumus:

=AVERAGE(baris pertama : baris terakhir)

- 30. Untuk mengukur jitter dilakukan dengan rumus pada excel:
 - n (I91) = banyaknya data =Count(*baris pertama* : *baris terakhir*)
 - $\sum_{i=1}^{n} x_i$ (I89) = Jumlah total data
 - $\sum_{i=1}^{n} x_i^2$ (I90) = Jumlah total dari data yang dikuadratkan
 - $(\sum_{i=1}^{n} x_i)^2 (J88) =$ Jumlah total data dikuadratkan =Sum(*baris pertama : baris terakhir*)
 - s^2 (I94) = varians dari delay =I94/I92
 - Total variasi delay = $\sqrt{s^2} = \left(\frac{n\sum_{i=1}^n x_i^2 (\sum_{i=1}^n x_i)^2}{n(n-1)}\right)$ =SQRT(I94)
- 31. Setelah didapat masing masing nilai dari parameter QoS dianalisis dengan standar ETSI TIPHON.

E. Hasil Uji

Setelah didapat nilai parameter QoS, isi sesuai tabel 2. Kemudian plot masing – masing hasil dari pengukuran parameter QoS (Throughput, Jitter, Latency, dan Packet Loss) ke dalam grafik. Lihat dan amati pengaruh dari beban trafik yang diberikan.

Tabel 2 Hasil Pengujian QoS Jaringan Komunikasi dengan Input Beban Tambahan pada Dua Wireless Bridge

No	Tfgen	Throughput (bits/s)	Packet Loss (%)	Latency/ Delay (ms)	Jitter (ms)
	100				
	200				
	300				
	400				
	500				
	700				
	800				
	900				
	1000				
	1100				
	1200				
	1300				
	1400				
	1500				
	1600				
	1700				

LAMPIRAN H LANGKAH – LANGKAH INSTALASI DAN KONFIGURASI DENGAN 3 WIRELESS BRIDGE

- A. Tujuan
 - Mengetahui nilai QoS (*Quality of Service*) jaringan komunikasi *Client* ke *Server* Mini SCADA dengan media 3 Wireless Bridge
 - Mengetahui pengaruh beban Trafik terhadap parameter QoS pada 3 Wireless Bridge
- B. Alat
 - Mini SCADA (RTU)
 - Kabel Ethernet/ RJ-45
 - 3 buah PC (Personal Computer)
 - 3 buah Wireless Bridge EnGenius ENH202
 - Aplikasi Winbox
 - Aplikasi Tfgen
 - Aplikasi SCADA Manager
 - Aplikasi SCADA Explorer
 - Aplikasi HMI World View

C. Gambar Konfigurasi Jaringan

Gambar 4 Konfigurasi Jaringan Tanpa *Beban traffic* dengan 3 *Wireless Bridge*

Gambar 5 Konfigurasi Jaringan dengan Beban traffic dengan 3 Wireless Bridge

D. Langkah – Langkah

Setting IP *address* perangkat yang digunakan seperti pada tabel di bawah melalui langkah = langkah berikut Tabel 3

- 1. Setelah semua perangkat dikonfigurasi seperti pada perancangan jaringan di atas. setting router Mikrotik, di aplikasi Winbox pada suatu PC dengan double klik *shortcut Winbox*
- 2. Klik "*Neighbors*", kemudian klik "*Refresh*", setelah Mac Address tertampil klik "*Connect*"

Perangkat Keras	Address (IP atau Mac)	Interface
PC Server	192.168.5.3	Ethernet
PC Injektor Beban	192.168.5.96	Wifi
PC Client	192.168.5.9	Wifi
Radiolink 1/ EnGenius 1	192.168.5.7 (88:DC:9:46:2C:54)	Wifi
Radiolink 2/ EnGenius 2	192.168.5.5 (88:DC:9:46:2C:5C)	Wifi
Radiolink 3 /EnGenius 3	192.168.5.8 (88:DC:9:46:2C:60)	WiFi
RTU	192.168.1.10	Ethernet

Tabel 3 Address Perangkat pada Konfigurasi dengan Beban traffic menggunakan 3 Wireless Bridge

3. Klik menu "*IP*", kemudian pilih "*DHCP Server*", kemudian klik "*DHCP Setup*"

4. Lalu tekan menu "add", dan tambahkan IP server, RTU dan juga EnGenius satu yang akan tersambung dengan port Mikrotik, pada penelitian ini port 3 mikrotik tersambung dengan RTU, dan port 4 Mikrotik tersambung dengan EnGenius 1. Masukkan IP Address gateway Mikrotik, gateway EnGenius, dan juga IP RTU seperti pada gambar

-	P Networks	Leases	Options	Option 3	+	[32] [21 T	i.	End	1			
	- 2 2		Y	Owck Sta	Address		Maturiak	Interdance					
	Address /	MAC A	ddess	Client	4 4 192 168	11/24	152 168 1.0	etter3		give Hos.	Expires Alter	Status	
	192 168 5 97	C8 3D	D4 5E 0	6.15 Luß:	P 192 168	5.1/24	192 168 5.0	ether4		SKTOP	20 00 01 2	4 bound	
	192.168.5.90	00.22.9	FA 1F.DD	LA6 1.9.2	1 192.168	10.1/	192.168.10.0	wian 1		ADIU.	1/ 23 55 2	5 bound	
	192.168.5.99	34.69	11.07.50	FB						1606	1d 23 52 2	4 bound	

5. Kemudian cek IP dari PC *client* yang terkoneksi dekat dengan router Mikrotik, dengan melakukan "Ip config" pada *command* promt

- 0

Menjalankan software – software SCADA sebagai Master Station/ Server

- 1. Pastikan mini SCADA dalam keadaan Remote agar dapat dieksekusi melalui software SCADA
- Buka software SCADA Manager, double klik Shortcut "SCADA Manager" di PC Server >> "Run"
- 3. Buka Software SCADA Explorer, double klik *shortcut* SCADA Explorer
- Ganti IP address Server di SCADA Explorer Buka SCADA Explorer klik "Preference" dan ketik IP dari PC Server yang dituju yaitu 192.168.1.8
- Ganti IP address Server pada World view Buka "Program Files X86" >> pilih folder "Quindar" >> "wvsetup" >> ketik IP address dari PC Server.

Setelah melakukan instalasi jalankan *software SCADA* seperti langkah di atas, dilakukan uji tele-*control* dari Mini SCADA.

- 6. Buka software HMI World View, dan melakukan *log* in pada aplikasi *worldview* dengan format default yaitu username "scada" dan password "scada"
- 7. Setelah melakukan log-in, *open* file yang telah dibuat pada penelitian ini nama file yang saya pakai adalah "Tugas akhir"

- 8. Setelah dibuka pastikan masih dalam keadaan *log-in* karena *Worldview* auto *log-out* jika tidak digunakan dalam waktu tertentu.
- 9. Lalu control penyulang yang diinginkan, dengan cara klik kanan pada "Kotak hijau" dan klik kanan.

	PENYULANG ITS 2			PENYULANG ITS 1	
	0 Am	0		0.0F Amp	
×	BTR_2	CONTROL : ITS,	REMOT	0 Volt	LOCAL
ы 🖉	CB Penyulang ITS 2 Currently Open. 5/24/2019 16:22:11:209				
lose Alem Ackn	Open	Set Manual			
Alarm Block		Activate			
Tag/Unitag	Exec	Deactivate			
Cancel		Properties			

10. Setelah berhasil, maka "kotak hijau" yang menyimbolkan sebagai CB akan berubah warna menjadi kotak merah

- 11. Lalu bandingkan keadaan dengan Mini SCADA, pastikan lampu pada penyulang ITS-2 dan push button merah juga menyala.
- 12. Cek switch l/r dengan memutar switch pada Mini SCADA kemudian perhatikan pada status di HMI apakah Local saat menunjuk ke local, dan remote saat switch mengarah ke remote.
- 13. Begitu juga lakukan pada penyulang ITS-1

Sebagai parameter analisis, digunakan aplikasi tfgen untuk memberikan beban jaringan komunikasi menuju sistem SCADA sesuai dengan Gambar 3.

14. Buka aplikasi Tfgen, maka akan tertampil seperti gambar berikut:

- 15. klik Option >> Destination , masukkan ip address dari alamat tujuan, yakni server (192.168.5.3)
- Untuk input besar beban yang akan diinputkan, klik Option >> Utilization, lalu masukkan beban sesuai dengan Tabel 1 , Klik Start

Untuk mengetahui QoS dari jaringan komunikasi Mini SCADA pada skenario ini dilakukan capture dengan aplikasi "Wireshark", capture Wireshark dilakukan bersamaan dengan uji control dari HMI Worldview

17. Buka software wireshark dengan *double* klik pada shortcut "wireshark"

- 18. Kemudian pilih interface yang akan digunakan untuk capture jaringan.
- 19. Setelah itu klik tombol "Start capturing packet"
- 20. Setelah dilakukan capture pada jaringan, klik tombol pada gambar kotak merah di bawah yaitu "*Stop capturing Packet*"
- 21. Tampilkan "*Time delta from previous displayed frame*" dengan klik kanan pada frame description box, seperti pada gambar di bawah

1	i 🧟 🕒 📑	🗙 🖸 ९ 🗢 🕾 🗑 :	l 🗐 🗐 Q Q Q 👳		
II A	oply a display filter <0	:trl-/>		 Expression 	14
NO.	1 0.000000 2 0.136379 3 0.139918	192.168.5.3 1 192.168.1.10 1 192.168.5.9 1	Expand Subtrees Collapse Subtrees	pr Time deta mon previous displayed frame Info 6 0.000000000 Query: Tr 13 0.136379000 Response: Tr 8 0.002530000 5072 - 2350	
	4 0.139851 5 0.177265 6 0.202034	192.168.5.3 1 192.168.5.3 1 192.168.5.9 1	Collapse All Apply as Column	78 0.000833000 23600 → 5676 74 0.037414000 50326 → 502 80 0.024769000 50762 → 2360	
	7 0.202072 8 0.257686 9 0.373252 10 0.457996 11 0.469342 12 0.469598 13 0.505447	192.168.5.3 1 192.168.5.9 1 192.168.5.3 1 192.168.1.10 1 192.168.5.3 1 192.168.5.3 1 192.168.5.3 1	Apply as Filter Prepare a Filter Conversation Filter Colorize with Filter Follow	6 0.0000310000231000 31000 10 0.0555140000 020072 2360 6 0.1155640000 020072 2360 7 5 0.082744000 Response: T 2 0.011346000 07072 2360 6 0.000215000 3150400 0.00252500 32502 5022 6 0.000525000 32502 5022 502	
	14 0.518166 15 0.688713 16 0.723954 17 0.752814 18 0.802694 19 0.813690 20 0.813959	192.168.5.9 1 192.168.5.3 1 Routerbo_67:43:c1 1 192.168.1.10 1 192.168.5.3 1 192.168.5.9 1 192.168.5.3 1	Copy Show Packet Bytes Export Packet Bytes Wiki Protocol Page Filter Filde Reference	0 0.012719800 5072 + 2360 6 0.129547800 5072 + 2360 7 0 0.03541000 557. Not - 5 0.02860400 5525 - 5502 2 0.01995600 5572 - 2360 2 0.089269000 2560 + 5976	
)	Interface id: 0 Encapsulation t Arrival Time: 3 [Time shift for Epoch Time: 156 [Time delta fro	(\Device\NPF_(309A7949- ype: Ethernet (1) ul 3, 2019 01:18:07.550 this packet: 0.00000000 2091007.550539000 second m previous captured from	Protocol Preferences Decode As Go to Linked Packet Show Linked Packet in New Winde	• Iow	
0000 0010 0020 0030 0040	54 e1 ad 1c 50 0 03 06 5d 40 0 05 03 01 f6 c4 0 08 00 27 c9 00 00	af 4c 5e 0c 67 43 c1 0 00 7f 06 6e 0a c0 a8 0 96 38 4c 3b 3c 56 2d 3 00 2d 74 00 00 00 05 0	5 00 45 00 TP.L^ .gCE. 1 00 45 00 SB. ; cV-7.P. 7 dc 50 18BL ; cV-7.P. 1 03 02 00t		
0	7 Time delta from or	evious canhured frame (frame, time	delta)	Packets: 967 : Displayed: 967 (100.0%) Profile: Defi	ult

- 22. Kemudian klik "File" dan "Save As"
- 23. Ketik nama file dari hasil capture Wireshark
- 24. Pengambilan data *throughput* isi filter box dengan *ip.dst* ==192.168.1.xx // *ip.src* == 192.168.1.xx. (IP dst dan src adalah IP Server)
- 25. Klik "Statistics" >> "*Capture File Properties*" lalu lihat kolom Display pada baris "*Average bits/s*"

letaks				
Length: 36 kB				
Hash 417d35 (9HA756):	0 50b 12d0 7e9ae6 1171	alicleebadd9ea96224	98d8af23ceb14d16	eb7bcd
Heah c20405 (RJPEHD160):	c7242f2a8a87c47463t	12665318794957		
Hash (SHA1): 645674	@ 1cb 15dc2dce/3d93c	93cd30182ra220c		
Format: Wiresha	ark/pcapng			
Encapsulation: Etherne	s:			
Time				
First packet:	2019-06-19 20:55:4	1		
Last packet:	2019-06-19 20:56:4	0		
Elepsed:	00:01:01			
Capture				
Hardware:	Intel(R) Care(TM) (3	H006U CPU @ 2.00GH	iz (with 5564.2)	
05:	64-bit Windows 10	(1803), build 17134		
Application:	Durgcap (Wreshari	() 3.0.1 (v3.0.1-0-gea.	35 Lod#)	
Interfaces				
				Brock of the Arrive
Interface	Dropped packets	Capture filter	Unk type	PACKET SIZE \$701
Interface Ethernet	Dropped packets 0 (0 %)	Capiture filter none	Ethernet	262144 bytes
Interface Ethernet Statistics	Dropped packets 0 (0 %)	Capture Riter none	Unk type Ethernet	262144 bytes
Interface Ethernet Statistics Measurement	Dropped packets 0 (0 %) Captured	<u>Capture filter</u> none Disole	Ethernet	262144 Sytes
Interface Ethernet Statistics Heasucement Packets	Crocced seckets 0 (0 %) Geotaend 372	Capture filter none Displat 354 (9	Unk type Ethernet 6.2%)	262244 Syles
Interface Ethernet Statistics Measurement Packets Time span, s	Cropped seckets 0 (0 %) Gastered 372 61.785	Capture filter none Distili 354 (D 61.78	Unk type Ethernet 5.2%) 5	262344 bytes 262344 bytes
Interface Efformet Statistics Measurement Packets Time span, s Average ops	Captured seckets 0 (0 %) Gaptured 372 61.785 6.0	Capture filter none Distili 354 (0 61.78: 5.7	Unk type Ethernet ml 5.2%) 5	S2244 bytes
Interface Ethernet Statistics Massurement Padats Time span, s Average positer size, 8	Centured anciety 0 (0 %) Gentured 372 61.785 6.0 1 62	Capture filter none 354 (0 61.78 5.7 63	Unk type Ethernet 65.2%) 5	Sc2144 bytes
Interface Efferent Statistics Hanavement Padata Time span, s Average padiet size, I Bytes Average padiet size, I	Cropped secters 0 (0 %) Gestered 372 61.785 62 1 62 2005	Capture Rise none 354 () 61.78 5.7 63 22244	Unk type Ethernet 5.2%) 5 (96.6%)	Sizzi46 bytes

26. Pengukuran Packet Loss dilakukan dengan filter pada tcp.analysis.ack_lost_segment

- 27. Pengukuran delay dilakukan dengan ketik *ip.dst* ==192.168.5.xx
 && *ip.src* == 192.168.5.xx pada filter box. (IP Server dan IP Client)
- 28. Export pada hasil filter delay dengan klik "File" >> "*export packet dissections*" lalu klik "As CSV" >> Save >> beri nama file.
- 29. Buka file "CSV" menggunakan Microsoft Excel, hitung rata rata nilai delay dari kolom "*Time delta from previous displayed frame*" menggunakan rumus:

=AVERAGE(baris pertama : baris terakhir)

- 30. Untuk mengukur jitter dilakukan dengan rumus pada excel:
 - n (I91) = banyaknya data =Count(*baris pertama* : *baris terakhir*)
 - $\sum_{i=1}^{n} x_i$ (I89) = Jumlah total data
 - $\sum_{i=1}^{n} x_i^2$ (I90) = Jumlah total dari data yang dikuadratkan

- $(\sum_{i=1}^{n} x_i)^2 (J88) =$ Jumlah total data dikuadratkan =Sum(*baris pertama : baris terakhir*)
- s^2 (I94) = varians dari delay =I94/I92
- Total variasi delay = $\sqrt{s^2} = \left(\frac{n\sum_{i=1}^n x_i^2 (\sum_{i=1}^n x_i)^2}{n(n-1)}\right)$ =SQRT(I94)
- 31. Setelah didapat masing masing nilai dari parameter QoS dianalisis dengan standar ETSI TIPHON.

E. Hasil Uji

Setelah didapat nilai parameter QoS, isi sesuai tabel 4. Kemudian plot masing – masing hasil dari pengukuran parameter QoS (Throughput, Jitter, Latency, dan Packet Loss) ke dalam grafik. Lihat dan amati pengaruh dari beban trafik yang diberikan.

Tabel4 Hasil Pengujian QoS Jaringan Komunikasi dengan Input Beban Tambahan pada Dua Wireless Bridge

No	Tfgen	Throughput (bits/s)	Packet Loss (%)	Latency/ Delay (ms)	Jitter (ms)
1	100				
2	200				
3	300				
4	400				
5	500				
6	700				
7	800				
8	900				
9	1000				
10	1100				
17	1700				

BIODATA PENULIS

Penulis bernama Anisa Mustika lahir di Metro, Lampung pada, 12 Oktober 1995 adalah salah satu mahasiswi Institut Teknologi Sepuluh Nopember (ITS) Jurusan Teknik Elektro Bidang Studi Telekomunikasi Multimedia. Anak kedua dari lima bersaudara ini memiliki beberapa hobi diantaranya menari, travelling, berenang, *jogging*, dan membaca. Lulusan dari SD Xaverius Metro Lampung, SMP N 1 Metro, SMA N 1 Metro dan Diploma Teknik Elektro Universitas Gadjah

Mada ini memiliki cita-cita untuk menjadi seorang *network maupun telecommunication engineer* yang mampu merantau ke luar negeri. Penulis dapat dihubungi pada <u>Nissamustika@gmail.com</u>.