

SKRIPSI

PENGARUH RASIO MOL Na₂O/SiO₂ PADA SINTESIS ZEOLIT DARI KAOLIN BANGKA BELITUNG SECARA LANGSUNG

PRIMA KIRANA DEWI NRP 012 1 12 4000 0106

Dosen Pembimbing Prof. Dr. Didik Prasetyoko, M.Sc Drs. Eko Santoso, M.Si

DEPARTEMEN KIMIA FAKULTAS SAINS INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2019

SCRIPT

INFLUENCE OF Na₂O/SiO₂ MOLE RATIO ON THE SYNTHESIS OF ZEOLITE FROM KAOLIN BANGKA BELITUNG DIRECTLY

PRIMA KIRANA DEWI NRP 012 1 12 4000 0106

Advisor Lecturer Prof. Dr. Didik Prasetyoko, M.Sc Drs. Eko Santoso, M.Si

DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2019

PENGARUH RASIO MOL Na₂O/SiO₂ PADA SINTESIS ZEOLIT DARI KAOLIN BANGKA BELITUNG SECARA LANSUNG

SKRIPSI

Disusun untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Program Studi S-1 Departemen Kimia Fakultas Sains Institut Teknologi Sepuluh Nopember Surabaya

Oleh:

PRIMA KIRANA DEWI NRP 012 1 12 4000 0106

DEPARTEMEN KIMIA FAKULTAS SAINS INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2019

LEMBAR PENGESAHAN

PENGARUH RASIO MOL Na2O/SiO2 PADA SINTESIS ZEOLIT DARI KAOLIN BANGKA BELITUNG SECARA LANGSUNG

SKRIPSI Oleh:

PRIMA KIRANA DEWI NRP 012 1 12 4000 0106

Surabaya, 02 Juli 2019 Dosen Pembimbing I

Dosen Pembimbing II

Drs. Eko Santoso, M.Si Prof. Dr. Didik Prasetyoko, M.Sc NIP. 19640115 198910 1 001 NIP. 19710616 199703 1 002

NIP. 19710616 199703 1 00

PENGARUH RASIO MOL Na₂O/SiO₂ PADA SINTESIS ZEOLIT DARI KAOLIN BANGKA BELITUNG SECARA LANGSUNG

Nama	:	Prima Kirana Dewi
NRP	:	01211240000106
Departemen	:	Kimia
Pembimbing	:	Prof. Dr. Didik Prasetyoko, M.Sc
0		Drs. Eko Santoso, M.Si

ABSTRAK

Penelitian ini bertujuan untuk mengetahui pengaruh variasi rasio mol Na2O/SiO2 terhadap pembentukan zeolit dari kaolin Bangka Belitung secara langsung. Variasi rasio mol Na₂O/SiO₂ yang digunakan sebesar 0,3; 0,4; 0,5; 0,7; 0,9; 1,1 dan 1.3. Sintesis zeolit dilakukan dengan kaolin sebagai prekursor melalui tahap pengadukan dan hidrotermal pada suhu 100°C 120 jam. Padatan hasil sintesis selama dikarakterisasi menggunakan difraksi sinar-X (XRD), spektroskopi inframerah (FTIR) dan Scanning Electron Microscopy Energy Dispersive X-Rav (SEM-EDX). Hasil karakterisasi dengan XRD dan spektroskopi inframerah menunjukkan fase zeolit Na-P terbentuk pada variasi rasio mol $Na_2O/SiO_2 = 0.5$; 0,7 dan 0,9. Pada variasi rasio mol Na₂O/SiO₂ = 0.3; 0.4; 0.7; 0.9; 1.1 dan 1.3 terbentuk fase sodalit, selain itu pada rasio mol $Na_2O/SiO_2 = 0.3$ juga terbentuk fase zeolit Na-A. Hasil SEM-EDX menunjukkan morfologi hasil sintesis pada variasi rasio mol $Na_2O/SiO_2 = 0.5$ dan 0.7 dengan bentuk beraneka ragam dan tidak beraturan dengan adanya agregat. Rasio mol SiO₂/Al₂O₃ sampel rasio mol Na₂O/SiO₂ = 0,5 dan 0,7 berturut-turut sebesar 0,77 dan 0,78.

Kata kunci: zeolit, kaolin, variasi rasio mol Na₂O/SiO₂, zeolit Na-P, sodalit

INFLUENCE OF Na₂O/SiO₂ MOLE RATIO ON THE SYNTHESIS OF ZEOLITE FROM KAOLIN BANGKA BELITUNG DIRECTLY

Name	: Prima Kirana Dewi
NRP	: 01211240000106
Department	: Chemistry
Advisor Lecture	: Prof. Dr. Didik Prasetyoko, M.Sc
	Drs. Eko Santoso, M.Si

ABSTRACT

The purpose of this research was studied the effect of variation Na₂O/SiO₂ mole ratio towards synthesis zeolite from kaolin Bangka Belitung through direct synthesis. Variation of Na₂O/SiO₂ mole ratio were used are 0,3; 0,4; 0,5; 0,7; 0,9; 1,1 and 1,3. Synthesis of zeolite was done with kaolin as precursor by stirring and hydrothermal process at 100°C for 120 hours. Solid products were characterized using infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX). The result of XRD diffractometer and infrared spectroscopy showed zeolite Na-P was formed at Na_2O/SiO_2 mole ratio = 0,5; 0,7 and 0,9. On Na_2O/SiO_2 mole ratio = 0.3; 0.4; 0.7; 0.9; 1.1 and 1.3 sodalite were formed, furthermore on Na_2O/SiO_2 mole ratio = 0.3 also formed zeolite Na-A. The result of SEM-EDX showed that the morphology of samples on Na_2O/SiO_2 mole ratio = 0.5 and 0.7 are various shape and irregular shape with agregate. SiO₂/Al₂O₃ mole ratio of sample on Na_2O/SiO_2 mole ratio = 0.5 and 0.7 are 0.77 and 0.78 respectively.

Keywords: zeolite, kaolin, variation of Na₂O/SiO₂ mole ratio, zeolite Na-P, sodalite

KATA PENGANTAR

Puji syukur kehadirat Allah SWT yang selalu melimpahkan rahmat dan karunia-Nya, sehingga penulis dapat menyelesaikan tugas akhir yang berjudul "PENGARUH RASIO MOL Na₂O/SiO₂ PADA SINTESIS ZEOLIT DARI KAOLIN BANGKA BELITUNG SECARA LANGSUNG". Tugas akhir ini dibuat sebagai syarat untuk mendapatkan gelar Sarjana di Departemen Kimia, Institut Teknologi Sepuluh Nopember. Dengan penuh kerendahan hati, penulis menyampaikan terima kasih sebesar- besarnya kepada:

- 1. Bapak Prof. Dr. Didik Prasetyoko, M.Sc. selaku dosen pembimbing sekaligus Kepala Departemen Kimia yang telah memberikan pengarahan dan bimbingan selama proses penyusunan naskah tugas akhir ini.
- 2. Bapak Drs. Eko Santoso, M.Si. selaku dosen pembimbing II yang telah memberikan dukungan dan bimbingan dalam penyusunan naskah tugas akhir ini.
- 3. Bapak Drs. Agus Wahyudi, M.S. selaku dosen wali yang telah membantu dan membimbing saya dalam hal akademik selama kuliah di Departemen Kimia ITS.
- 4. Bapak Dr. Djoko Hartanto, M.Si. selaku Kepala Laboratorium Kimia Material dan Energi yang telah memberikan fasilitas selama pengerjaan tugas akhir ini.
- 5. Kedua orang tua dan keluarga besar yang tiada henti memberikan doa dan dukungan.
- 6. Teman-teman Kimia angkatan 2012, 2013, 2014, anggota DPRG dan mahasiswa anggota Lab KME yang selalu memberikan saran dan dukungan.
- 7. Semua pihak yang membantu dalam penyelesaian tugas akhir ini.

Penulis menyadari bahwa penulisan naskah tugas akhir ini tidak lepas dari kekurangan karena keterbatasan kemampuan, pengetahuan, dan pengalaman yang penulis miliki. Oleh karena itu penulis mengharapkan kritik dan saran yang membangun untuk dapat meningkatkan kualitas naskah tugas akhir ini.

Akhir kata, penulis berharap agar tugas akhir ini dapat memberikan manfaat dan pengetahuan bagi para pembaca.

Surabaya, 02 Juli 2019

Prima Kirana Dewi

DAFTAR ISI

LEMBAR PENGESAHAN	iv
ABSTRAK	v
KATA PENGANTAR	vii
DAFTAR ISI	ix
DAFTAR GAMBAR	xi
DAFTAR TABEL	xii
DAFTAR LAMPIRAN	xiii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Batasan Penelitian	3
1.4 Tujuan Penelitian	3
1.5 Manfaat	3
BAB II TINJAUAN PUSTAKA	5
2.1 Kaolin	5
2.2 Zeolit	6
2.3 Sintesis Zeolit	11
2.4 Metode Hidrotermal	15
2.5 Tinjauan Karakterisasi Zeolit	16
2.5.1 Difraksi sinar-X (X-Ray Diffraction / XRD)	16
2.5.2 Fourier Transform Infrared (FTIR)	18
2.5.3 Scanning Electron Microscope - Energy Dispe	rsive X-
<i>Ray</i> (SEM-EDX)	20
BAB III METODOLOGI PENELITIAN	23

3.1 Alat	dan Bahan	2	3
3.1.1	Alat	2	23
3.1.2	Bahan	2	23
3.2 Pros	edur Penelitian	2	3
3.2.1	Sintesis Zeolit	2	23
3.3 Kara	kterisasi Hasil Sin	tesis2	4
3.3.1	Difraksi Sinar-X (XRD)2	24
3.3.2	Spektroskopi Fou	rier Transform Infrared (FTIR)2	25
3.3.3	Scanning Electron	n Microscopy-Enegy Dispersive X-	. –
BAR IV H	ray (SEM-EDA).	ZANASAN 2	:5 27
A 1 Sinta	esis Zaolit		
4.1 5110			. /
4.2 Tinj	auan Karakterisasi	Zeolit2	9
4.2.1	Difraksi Sinar-X (XRD)2	29
4.2.2	Spektroskopi Fou	rier Transform Infrared (FTIR)3	3
4.2.3	Karakterisasi SEM	1-EDX	8
BAB V K	ESIMPULAN	4	1
DAFTAR	PUSTAKA	4	3
LAMPIRA	AN	5	53
Lampira	n A. Diagram	Alir Penelitian5	53
Lampira	n B. Perhitung	gan Sintesis Zeolit5	64
Lampira	n C. Data Kar	akterisasi5	6
BIODATA	PENULIS		'5

DAFTAR GAMBAR

DAFTAR TABEL

DAFTAR LAMPIRAN

Lampiran A.	Diagram Alir Penelitian	53
Lampiran B.	Perhitungan Sintesis Zeolit	54
Lampiran C.	Data Karakterisasi	56

Karpa ini kupersembahkan untuk Apah dan Sbu tercinta Adekku tersapang serta teman-teman sekalian pang telah berkontribusi dalam penyelesaian tugas akhir ini.

BAB I PENDAHULUAN

1.1 Latar Belakang

Kaolin merupakan material bahan alam berupa butiran halus berwarna putih yang mengandung mineral kaolinit, halloysit, dickit dan nakrit. Pengotor yang ada pada kaolin antara lain kuarsa, mika, illit, montmorillonit, goethiet, hematit, pyrit, anatase, rutil, ilmenit, tourmalin, zirkon dan mineral-mineral lainnya. (Murray, 1999). Kandungan mineral utama kaolin berupa kaolinit yang aluminium silikat hidrat dengan merupakan komposisi 2H₂O.Al₂O₃.2SiO₂ (Prasad dkk... 1991). Kaolinit memiliki komposisi kimia, antara lain: SiO₂ 46,54%; Al₂O₃ 39,50%; H₂O 13,96% (Bhattacharyva dan Gupta, 2008). Kandungan SiO₂ dan Al₂O₃ yang cukup tinggi pada kaolin menjadikannya sebagai material untuk mensintesis zeolit arena kelimpahannya di alam yang cukup banyak serta lebih ekonomis (Iftitahiyah dkk., 2018).

Zeolit dapat diklasifikasikan berdasarkan asal usulnya, yakni zeolit alam dan zeolit sintetik. Zeolit alam pada umumnya berasal dari batuan yang berada di gunung berapi. Zeolit sintetik merupakan zeolit yang diproduksi di laboratorium guna menirukan zeolit alam (Montalvo dkk., 2012). Zeolit dapat juga diklasifikasikan berdasarkan kandungan silika dan alumina yang dimiliki. Zeolit dengan silika rendah (Si/Al= 1-1,5), zeolit dengan kandungan silika menengah (Si/Al= ~2-5) dan zeolit dengan kandungan silika tinggi (Si/Al= ~10-100) (Auberbach dkk., 2003).

Alkalinitas sangat berpengaruh terhadap pembentukan zeolit. Alkalinitas yang tinggi menyebabkan kelarutan silika dan alumina yang tinggi, mengurangi derajat polimerisasi anion silikat dan mempercepat polimerisasi polisilikat dan anion aluminat. Peningkatan alkalinitas juga dapat mempersingkat periode induksi dan nukleasi dan mempercepat proses kristalisasi zeolit. Selain itu peningkatan alkalinitas dapat memperkecil ukuran partikel dan mempersempit distribusi ukuran partikel (Johnson dan Arshad, 2014). Sintesis zeolit dengan variasi rasio Na₂O/SiO₂ dapat dilakukan dengan perlakuan hidrotermal melalui proses kalsinasi kaolin terlebih dahulu. Shalihah (2017) melaporkan bahwa sintesis zeolit dari kaolin Bangka Belitung melalui proses *leaching* asam sulfat dengan rasio mol Na₂O/SiO₂ = 0,5 diperoleh fase zeolit Na-P. Vučinić dkk. (2003) mensintesis zeolit dengan variasi rasio Na₂O/SiO₂ dari abu layang batu bara. Hasil yang diperoleh pada rasio mol Na₂O/SiO₂ = 0,7 berupa fase zeolit Na-P. Sedangkan pada rasio mol Na₂O/SiO₂ = 1,3 dihasilkan fase sodalit. Ali dkk. (2015) telah melakukan penelitian mengenai sintesis zeolit menggunakan prekursor silika fume, natrium aluminat dan natrium hidroksida dengan rasio mol Na₂O/SiO₂ = 1,1. Hasil yang diperoleh berupa zeolit Na-P yang memiliki intensitas tinggi.

Hansen dkk. (1993) melakukan penelitian mengenai sintesis zeolit Na-P dengan prekursor sintetis. Rasio mol Na₂O/SiO₂ yang digunakan sebesar 0,3; 0,4 dan 0,9. Hasil yang diperoleh berupa zeolit Na-P sebagai fase utama untuk konsentrasi NaOH 2 M untuk rasio mol Na₂O/SiO₂ 0,4 dan 0,9. Sedangkan rasio mol Na₂O/SiO₂ 0,3 menggunakan NaOH dengan konsentrasi 0,25 M. Namun, prekursor sintetis membutuhkan biaya yang cukup besar.

Berdasarkan hal di atas, perlu adanya penelitian lebih lanjut mengenai sintesis zeolit dari kaolin Bangka Belitung dengan perlakuan hidrotermal secara langsung untuk menghasilkan zeolit dengan intensitas tinggi dan meminimalisir terbentuknya fase pengotor. Maka, pada penelitian ini akan mengkaji pengaruh rasio mol Na₂O/SiO₂ terhadap produk sintesis yang dihasilkan.

1.2 Rumusan Masalah

Beberapa peneliti telah mempelajari pengaruh rasio mol $Na_2O/SiO_2 = 0,3$; 0,4; 0,5; 0,7; 0,9; 1,1 dan 1,3 terhadap sintesis zeolit. Rasio mol Na_2O/SiO_2 0,3 diperoleh fase zeolit $Na-P_2$, sedangkan pada rasio mol $Na_2O/SiO_2 = 0,4$; 0,5; 0,7; 0,9 dan 1,1 diperoleh fase zeolit Na-P. Sodalit terbentuk pada rasio mol Na_2O/SiO_2 1,3. Oleh karena itu, dilakukan penelitian mengenai

pengaruh rasio mol Na₂O/SiO₂ dalam sintesis zeolit dari kaolin Bangka Belitung secara langsung.

1.3 Batasan Penelitian

Batasan penelitian ini adalah sintesis zeolit secara langsung dengan variasi rasio mol $Na_2O/SiO_2 = 0,3$; 0,4; 0,5; 0,7; 0,9; 1,1 dan 1,3.

1.4 Tujuan Penelitian

Penelitian ini bertujuan untuk mengetahui pengaruh variasi rasio mol Na_2O/SiO_2 terhadap pembentukan zeolit dari kaolin Bangka Belitung secara langsung (tanpa kalsinasi).

1.5 Manfaat

Manfaat penelitian ini yaitu memberikan rujukan mengenai pengaruh variasi rasio mol Na₂O/SiO₂ pada sintesis zeolit dari kaolin Bangka Belitung dengan perlakuan hidrotermal secara langsung.

"Halaman ini sengaja dikosongkan"

BAB II TINJAUAN PUSTAKA

2.1 Kaolin

Kaolin merupakan mineral lempung dengan komposisi kimia $Al_2Si_2O_5(OH)_4$ dengan kandungan silika dan alumina yang tinggi (Qoniah dkk., 2015). Kaolin umumnya mengandung kuarsa, mika, illit, montmorillonit, goethit, hematit, pyrit, anatase, rutil, ilmenit, tourmalin, zirkon dan mineral-mineral lainnya. Sifat-sifat yang dimiliki oleh kaolin antara lain: luas permukaan rendah, kapasitas absorpsi sangat rendah, viskositas rendah, kapasitas pertukaran basa rendah, memiliki jumlah lapisan muatan yang cukup rendah dengan perbandingan 1 : 1 (Murray, 1999). Kaolin merupakan hasil tambang dan biasanya bercampur dengan kalsium oksida, magnesium oksida, kalium oksida, natrium oksida, besi oksida, dan lain-lain (Othmer, 1993).

Kaolin diklasifikasikan menjadi dua tipe, yaitu primer dan sekunder. Kaolin primer terbentuk melalui perubahan batuanbatuan kristalin, seperti granit. Kaolin sekunder berbentuk endapan di alam dan terbentuk akibat erosi dari kaolin primer. Kaolin primer mengandung granit, kuarsa, muskovit dan feldspar dengan kandungan kaolinit sebesar 15-30%. Sedangkan kaolin primer memiliki kandungan kaolinit yang lebih tinggi (85-95%) dengan kontaminan berupa kuarsa, muskovit, smektit, anatase, pyrit dan grafit (Prasad dkk., 1991). Sifat fisik dan kimia kaolin dapat diubah secara kimiawi dan termal. Proses kalsinasi kaolin dapat mengubah sehingga lebih struktur kaolin menjadi amorf reaktif (Chandrasekhar, 1999).

Kaolin dapat dimanfaatkan dalam industri material. Pada industri kertas, kaolin digunakan sebagai pengisi dan pelapis material pada permukaan kertas untuk meningkatkan kualitas hasil cetakan pada kertas (Prasad dkk., 1991).dipakai dalam industri keramik, karet, cat, tinta, katalis, *fiberglass*, semen Portland dan lain sebagainya (Murray, 2006).

Gambar 2.1 Struktur (a) kaolinit, (b) lapisan tetrahedral dan (c) lapisan oktahedral (Cheng dkk., 2012).

Kandungan mineral utama kaolin berupa kaolinit dengan komposisi $2H_2O.Al_2O_3.2SiO_2$ (Prasad dkk., 1991). Kaolinit memiliki lapisan siloksan dan gibbsit. Kaolinit terbentuk dari lembaran silika tetrahedral dan lapisan aluminum oktahedral. Tiap lembarannya dihubungkan oleh gaya van der Waals dan ikatan hidrogen (Hartanto dkk., 2016). Pada Gambar 2.1, kaolinit memiliki struktur lapisan 1 : 1 yang tersusun atas lembaran SiO₄ tetrahedral dan lembaran oktahedral dengan Al³⁺ sebagai kation oktahedral (Cheng dkk., 2012).

2.2 Zeolit

Zeolit pertama kali dideskripsikan sebagai kelompok mineral oleh *Swedish Mineralogist* Baron Axel Crondest pada tahun 1756 (Smart dan Moore, 1992). Zeolit merupakan kristalin aluminosilikat dengan struktur kerangka tiga dimensi yang terdiri atas SiO₄ dan AlO₄ dihubungkan dengan atom O. Kation yang terdapat dalam zeolit merupakan logam golongan IA dan IIA, seperti natrium, kalium, magnesium dan kalsium. Zeolit umumnya disintesis menggunakan metode hidrotermal dengan kandungan silika, alumina, kation, *template* dan air (Kulprathipanja, 2010; Prasetyoko dkk., 2006).

Berdasarkan ukuran pori-pori intra kristalin, zeolit dibagi menjadi tiga macam. Zeolit dengan ukuran pori besar (FAU, MOR dengan ukuran pori 0,7-0,8 nm), zeolit dengan ukuran pori sedang (MFI, ZSM dengan ukuran pori 0,5-0,6 nm) dan zeolit dengan ukuran pori kecil (LTA, DDR, SAPO-34 dengan ukuran pori 0,3-0,4 nm) (Pal dkk., 2013), contoh zeolit dengan ukuran porinya ditunjukkan pada Tabel 2.2. Zeolit juga dapat dikategorikan berdasarkan rasio mol Si/Al. Zeolit dengan rasio mol Si/Al rendah (<2), zeolit dengan rasio mol Si/Al sedang (2-5) dan zeolit dengan rasio mol Si/Al tinggi (10-100) (Kulprathipanja, 2010).

Selain itu zeolit dapat diklasifikasikan berdasarkan asal usulnya, yakni zeolit alam dan zeolit sintetik. Zeolit alam pada umumnya berasal dari batuan yang berada di gunung berapi dan memiliki rasio Si/Al yang rendah. Sifat fisik dari zeolit alam, antara lain: memiliki saluran dan ruang kosong, memiliki diameter poripori (3-10 Å), luas permukaan berkisar 24,9 m²/g, memiliki kapasitas pertukaran kation (CEC) yang tinggi dan memiliki kapasitas adsorpsi (Montalvo dkk., 2012; Auberbach dkk., 2003). Jenis-jenis zeolit alam dapat dilihat pada Tabel 2.1. Zeolit alam dapat digunakan untuk material bangunan, produk pertanian, suplemen binatang dan pengolahan air limbah (Colella dkk., 1999). Selain itu zeolit alam dapat digunakan sebagai *filler* kertas, semen pozzolanik dan beton (Kulprathipanja, 2010).

I eng., 2010)			
Zeolit alam	Rumus kimia		
Klinoptilolit	$(K_2, Na_2, Ca)_3Al_6Si_{30}O_{72}.21H_2O$		
Mordenit	$(Na_{2},Ca)_{4}Al_{8}Si_{40}O_{96}.28H_{2}O$		
Kabazit	$(Ca, Na_2, K_2)_2 Al_4 Si_8 O_{24}.12 H_2 O_{24}$		
Phillipsit	K ₂ (Ca,Na ₂) ₂ Al ₈ Si ₁₀ O ₃₂ .12H ₂ O		
Analsim	Na ₁₆ Al ₁₆ Si ₂₆ O ₇₂ .30H ₂ O		
Erionit	(NaK2MgCa1,5)4A18Si28O72.28H2O		
Ferrierit	(Na ₂ ,K ₂ ,Ca,Mg) ₃ Al ₆ Si ₃₀ O ₇₂ .20H ₂ O		

Tabel 2.1 Rumus kimia beberapa jenis zeolit alam (Wang dan Peng 2010)

ukk., 1994)				
Zeolit	Rasio SiO ₂ /Al ₂ O ₃	Ukuran pori (Å)		
Zeolit X	2-3	7,4		
Zeolit Y	3-6	7,4		
Zeolit A	2	3-4,5		
Zeolit beta	20	6,8		
ZSM-5	>20	5,5		
Zeolit LTL	6-7	6		

Tabel 2.2 Jenis-jenis zeolit komersil dan karakteristiknya (Chen dkk., 1994)

Zeolit sintetik merupakan zeolit yang diproduksi di laboratorium guna menirukan zeolit alam. Zeolit sintetik terbentuk oleh kristalisasi gel alumino silikat yang dipreparasi dari natrium aluminat, natrium silikat dan larutan natrium hidroksida. Zeolit sintetik dapat diaplikasikan salah satunya sebagai material penyimpan hidrogen, contohnya zeolit Na-A, zeolit Na-X dan sodalit (Musyoka, 2009; Widiastuti dkk., 2014).

2.2.1 Struktur Zeolit

Zeolit memiliki struktur berupa unit bangun primer (*primary building unit*), unit bangun sekunder (*secondary building unit*) dan unit bangun tersier (*tertiary unit building*). Unit bangun primer berbentuk tetrahedra TO₄ tiga dimensi seperti yang terlihat pada Gambar 2.3. Atom T merupakan atom Si atau Al. Setiap atom T terkoordinasi dengan 4 atom oksigen, dengan setiap atom oksigen menghubungkan dua atom T yang membentuk sudut antara 125° -180°. (Xu dkk., 2007; Kaučič, 1994).

Gambar 2. 2 Gabungan unit bangun primer (SiO₄)⁴⁺ membentuk unit bangun sekunder (Moshoeshoe dkk., 2017)

Unit bangun sekunder merupakan susunan geometrik dari beberapa unit bangun primer zeolit. Pada mineral silikat, tetrahedra dapat membentuk cincin, rantai, lembaran atau kerangka. Bentuk unit bangun sekunder yang paling sederhana adalah cincin. Pada umumnya, cincin memiliki n tetrahedra yang disebut n cincin.

Zeolit umumnya memiliki 4, 5, 6, 8, 10 atau 12 cincin tetrahedra seperti yang tercantum pada Tabel 2.4 dan Gambar 2.4. Zeolit dengan cincin 6 misalnya mengandung 6 atom T dan 6 atom O, meskipun zeolit tersebut biasanya diartikan memiliki 6 atom T. Contohnya zeolit CaA, ZSM-5 dan Na-X berturut-turut memiliki cincin dengan 4, 5 dan 6 atom T (Auberbach dkk., 2003; Armbruster dan Gunter, 2001; Kaučič, 1994).

Tabel 2. 3 Klasifikasi zeolit berdasarkan unit bangun sekundernya (SBU) (Armbruster dan Gunter, 2001)

(SDO) (Annoruster dan Gunter, 2001)			
Grup SBU	Zeolit		
Grup 1 (S4R-cincin 4 tunggal)	Analsim, harmotom, phillipsit, gismondin, paulingit, laumontit, yugawaralit		
Grup 2 (S6R-cincin 6	Erionit, offretit, levynit, sodalit		
tunggal	hidrat, (T, omega, losod)		
Grup 3 (D4R-cincin 4 ganda)	Zeolit A, N-A, ZK-4		
Grup 4 (D6R-cincin 6	Faujasit, khabazit, gmelinit,		
ganda)	zeolit ZK-5, L		
Grup 5 (T ₅ O ₁₀)	Natrolit, skolesit, mesolit, thomsonit, gonnardit, edingtonit		
Grup 6 (T ₈ O ₁₆)	Mordenit, dakhiardit, ferrierit, epistilbit, bikitait		
Grup 7 (T ₁₀ O ₂₀)	Heulandit, klinoptilolit, stilbit, brewsterit		

Unit bangun tersier merupakan gabungan dari unit bangun sekunder yang saling berikatan membentuk struktur tetrahedra tiga dimensi atau polihedral. Polihedral tersebut membentuk kerangka kristal zeolit dengan ukuran yang spesifik. Gambar 2.4 menggambarkan unit bangun tersier zeolit A.

Gambar 2.4 Struktur kristal zeolit A (Jha dan Singh, 2016)

2.2.2 Zeolit dari Kaolin

Penggunaan kaolin sebagai prekursor untuk mensintesis zeolit telah dilakukan oleh beberapa peneliti sebagai prekursor alternatif seperti yang tercantum pada Tabel 2.5. Kaolin dapat digunakan sebagai prekursor dalam mensintesis zeolit karena memiliki kandungan silika dan alumina. Zeolit dengan rasio Si/Al rendah dapat disintesis dari kaolin menjadi zeolit A dan zeolit X

(Belviso dkk., 2013). Ma dkk. (2014) berhasil mensintesis zeolit X dari kaolin dengan metode alkali fusi diikuti oleh metode hidrotermal. Penelitian ini dilakukan dengan variasi waktu suhu hidrotermal. Pada variasi waktu hidrotermal, kristalinitas maksimum zeolit X terjadi pada waktu hidrotermal 6 jam. Sedangkan pada variasi suhu hidrotermal, kristalinitas zeolit X meningkat dari suhu 70-90°C.

Kaolin juga dapat digunakan untuk mensintesis zeolit yang memiliki rasio Si/Al yang tinggi, seperti zeolit beta dan ZSM-5. Holmes dkk. (2011) telah mensintesis zeolit ZSM-5 menggunakan prekursor kaolin dan template organik TPAOH. Sedangkan dengan metode transport fase cairan didapatkan ZSM-5 murni.

Zeolit	Metode	Referensi	
ZSM-5	Hidrotermal	Feng dkk., 2009	
Zeolit beta	Hidrotermal	Duan dkk., 2011	
	Hidrotormal	Alkan dkk., 2005	
Zaalit A	Hidrotermai	Gougazeh dkk., 2014	
Zeont A	Konvensional dan	Avala dirte 2016	
	alkali fusi	Ayele akk., 2016	
Zaolit V	Hidrotermal	Caballero dkk., 2007	
Zeont X	Alkali fusi	Ríos dkk., 2012	
Zeolit Y	Alkali fusi, <i>seed gel</i>	Towardi dkk 2014	
	dan hidrotermal	1 avasoli ukk., 2014	
	Alkali fusi dan	Doyle dkk., 2016	
	hidrotermal		
Zeolit Na-P	Hidrotermal	Bessa dkk., 2017	
Sodalit	Hidrotermal	Maia dkk., 2015	

Tabel 2.4 Zeolit dari kaolin dan metode sintesis

2.3 Sintesis Zeolit

Sintesis zeolit menggunakan reagen-reagen yang mengandung komponen-komponen oksida. Sumber silika diperlukan dalam sintesis zeolit, seperti NaOH, LUDOX, *fumed silica*, atau tetraalkaliortosilikat. Sumber alumina diperoleh dari

natrium aluminat, larutan aluminum sulfat, aluminum oksida hidrat. Selain itu, zeolit juga dapat disintesis dari beberapa bahan alam, seperti abu layang batu bara (CFA), sekam padi dan kaolin (Petrov dan Michalev, 2012). Pada prinsipnya sintesis zeolit dipengaruhi oleh tiga faktor, yaitu komposisi material, suhu dan waktu (Szostak, 1989). Pada proses sintesis zeolit berbahan dasar kaolin, terdapat beberapa faktor yang mempengaruhi keberhasilan sintesis zeolit tersebut, diantaranya yaitu:

- 1. Metakaolinisasi dan suhu Metakaolinisasi atau kalsinasi merupakan proses pengubahan kaolinit menjadi fase amorf dengan menghilangkan gugus hidroksil pada kaolinit. Proses aktivasi ini dapat meningkatkan reaktivitas pada fase metastabil, sehingga dengan mudah membentuk zeolit.
- 2. Rasio mol SiO₂/Al₂O₃

Rasio Si/Al rendah (Si/Al \leq 5) dan alkalinitas yang tinggi dapat menghasilkan zeolit, seperti zeolit A dan X. Sedangkan zeolit dengan rasio Si/Al > 10 dan alkalinitas yang rendah atau adanya media F⁻ menghasilkan zeolit, seperti zeolit beta dan ZSM-5.

3. Pemeraman

Pemeraman dapat mempengaruhi nukleasi dan kristalisasi zeolit, dimana seed nuklei akan terbentuk berlangsung. selama pemeraman Pemeraman juga dapat meningkatkan derajat kristalinitas serta waktu kristalisasi. Waktu pemeraman yang berlangsung lebih dari 12 jam dapat meningkatkan intensitas zeolit. Suhu pemeraman juga mempengaruhi intensitas zeolit yang terbentuk. Peningkatan suhu pemeraman iuga berdampak pada ukuran partikel zeolit yang semakin besar.

4. Waktu kristalisasi dan suhu

Suhu kristalisasi sangat berpengaruh terhadap nukleasi dan pertumbuhan kristal. Jika suhu kristalisasi meningkat, maka laju pertumbuhan kristal dan nukleasi juga akan meningkat. Pada umumnya kristalinitas zeolit akan meningkat dengan bertambah lamanya waktu kristalinisasi.

5. Rasio mol Na₂O/SiO₂

yang tinggi menyebabkan Rasio mol Na₂O/SiO₂ kelarutan Si dan Al meningkat, derajat polimerisasi anion silikat berkurang dan mempercepat polimerisasi polisilikat dan aluminat. Selain itu dengan meningkatnya rasio mol Na2O/SiO2 dapat memperkecil ukuran partikel. mempercepat kristalinitas dan mempersingkat periode induksi (Johnson dan Arshad, 2014).

Pada Gambar 2.6 terlihat bahwa terjadi peningkatan intensitas zeolit beta hingga rasio 0,05. Pada rasio Na_2O/SiO_2 0,05 kristalinitas mencapai titik maksimum. Pada rasio Na_2O/SiO_2 0,06 dan 0,08 terjadi penurunan kristalinitas zeolit beta (Duan dkk., 2011).

Gambar 2.5 Grafik kristalinitas zeolit beta dengan rasio mol Na₂O/SiO₂ yang berbeda (Duan dkk., 2011).

Jenis zeolit	Prekursor	Metode	Rasio mol Na ₂ O/SiO ₂	Referensi
Na-P dan sodalit	Abu layang batu bara (CFA)	Hidrotermal	0,7 dan 1,3	Vučinić dkk., 2003
Na-P	Natrium aluminat dan <i>silica fume</i>	Hidrotermal	1,04; 1,07; 1,10 dan 1,13	Ali dkk., 2015
Mordenit	H ₄ O ₄ Si, Al ₂ (SO ₄) ₃ , <i>o</i> - phenylenediamin	Hidrotermal	0,450; 0,475 dan 0,50	Mohamed dkk., 2005
Hierarchical zeolit beta	Natrium aluminat, <i>colloidal silica</i> dan PDADMA	Hidrotermal	0,25; 0,28; 0,32 dan 0,40	Yuan dkk., 2015
Zeolit Na-X	Water glass, Al(OH) ₃	Hidrotermal	1,25 dan 1,50	Masoudian dkk., 2013
Zeolit Na-Y	Kaolin, natrium silikat dan natrium aluminat	Hidrotermal	0,37; 0,40; 0,43 dan 0,45	Qiang dkk., 2010
Zeolit Na-A	Natrium Aluminat, natrium silikat	Hidrotermal	1,6 dan 2,4	Kostinko, 1983
Zeolit Na-A	Kaolin dan bauksit	Hidrotermal (dua tahap)	1,5; 1,7; 2,3 dan 2,8	Zhu dkk., 2011

Tabel 2.5 Pembentukan zeolit dengan variasi rasio mol Na₂O/SiO₂

Beberapa peneliti telah melakukan penelitian mengenai sintesis zeolit yang dipengaruhi oleh rasio mol Na₂O/SiO₂. Qiang dkk. (2010) telah mensintesis zeolit Na-Y dengan variasi rasio mol Na₂O/SiO₂ = 0,37; 0,40; 0,43 dan 0,45. Seiring dengan peningkatan rasio mol Na₂O/SiO₂, kristalinitas relatif meningkat kemudian menurun pada rasio mol Na₂O/SiO₂ 0,43 dan 0,45. Rasio mol SiO₂/Al₂O₃ berkurang seiring dengan meningkatnya rasio mol Na₂O/SiO₂. Secara umum, dengan berkurangnya rasio mol Na₂O/SiO₂ dapat menurunkan kelarutan silika dan alumina serta mengurangi reaktifitas.

2.4 Metode Hidrotermal

Metode hidrotermal merupakan perlakuan sintesis zeolit yang diperkenalkan oleh Barrer pada tahun 1948 dan Milton pada tahun 1949 dimana reaksi berlangsung pada suhu kamar dengan tekanan 1 bar (sistem tertutup) dalam larutan (Johnson dan Arshad, 2014). Berdasarkan rentang suhu reaksi, sintesis hidrotermal digolongkan menjadi reaksi sintesis subkritikal dan superkritikal. Sintesis subkritikal melibatkan suhu pada rentang 100–240 °C, sedangkan sintesis superkritikal mencapai lebih dari 1000 °C dan tekanan yang digunakan lebih dari 3000 bar (Xu dkk., 2007).

Zeolit aluminasilikat pada umumnya disintesis melalui metode hidrotermal. Silika dan alumina akan membentuk kerangka mikropori yang diubah ke dalam bentuk oksida. Bentuk oksida tersebut pada umumnya mengandung ikatan Si-O dan Al-O. Prekursor yang memiliki ikatan Si-O dan Al-O akan berubah menjadi zeolit kristalin dengan ikatan Si-O-Al akibat adanya larutan *mineralising* (M⁺OH⁻ atau M⁺F⁻) (Cundy dan Cox, 2005).

Kelebihan dari perlakuan hidrotermal antara lain : reaktan memiliki reaktivitas yang tinggi, energi yang dibutuhkan relatif rendah, polusi udara yang dihasilkan sedikit, mudah dalam mengontrol larutan dan memiliki fase metastabil (Abdullahi dkk., 2017). Metode hidrotermal banyak diaplikasikan dalam proses sintesis karena memiliki beberapa keunggulan pada pertumbuhan kristal yang penting untuk efisiensi pembentukan kristal tunggal yang lebih besar dan lebih murni (Byrappa, 2001).

Secara umum, waktu hidrotermal berpengaruh terhadap pembentukan zeolit dan kristalisasinya. Melalui peningkatan waktu hidrotermal, dapat diketahui pula perubahan ukuran partikel (Kartimi dkk., 2012), pertumbuhan kristal (Wang dkk., 2007), serta perubahan fase yang terbentuk (Rustam., 2013). Suhu hidrotermal juga dapat mempengaruhi pembentukan kristal zeolit. Menurut Caballero dkk. (2007), sintesis zeolit pada suhu 80°C menghasilkan zeolit X kristalin, namun pada suhu 70°C hanya terbentuk aluminum silikat amorf.

2.5 Tinjauan Karakterisasi Zeolit

2.5.1 Difraksi sinar-X (X-Ray Diffraction / XRD)

XRD adalah suatu instrumen yang menggunakan sinar-X sebagai sumber sinar. Sinar-X adalah bagian dari radiasi gelombang elektromagnetik dengan panjang gelombang berkisar antara 10^{-10} m sampai dengan 10^{-8} m (1-100 Å). Namun hanya 0,3 – 0,25 Å yang digunakan sebagai sumber sinar untuk XRD. Sinar-X dihasilkan akibat adanya perbedaan potensial antara filamen yang bertindak sebagai katoda dengan anoda berupa logam pada suatu ruang vakum, sehingga terjadi pergerakan elektron dengan energi besar diantara kedua elektroda tersebut (West, 1984).

XRD digunakan untuk mengidentifikasi material kristalin dan karakterisasi fase-fase polikristalin. XRD menghasilkan pola difraksi dengan cara menembak kristal tunggal dengan sinar X-ray untuk menentukan struktur kristal. Ketika sinar X-ray berinteraksi dengan fase kristalin, pola difraksi terekam kemudian dianalisis untuk menunjukkan sifat kristal. Sinar X-ray didifraksi oleh tiap mineral dengan cara yang berbeda, tergantung pada atom-atom mana yang menyusun kisi-kisi kristal (Maingaye, 2012).

Dasar dari penggunaan difraksi sinar-X untuk mempelajari kisi kristal berdasarkan persamaan Bragg. Menurut pendekatan hukum Bragg, kristal dalam suatu material terdiri atas bidangbidang datar berupa kisi kristal, yang setiap kisi kristalnya masingmasing berfungsi sebagai cermin. Jika suatu material ditumbuk oleh berkas sinar-X maka sebagian sinar-X dihamburkan oleh bidang yang merupakan atom-atom penyusun material dengan sudut pantul sama dengan sudut datangnya. Bagian yang tidak dihamburkan akan menembus menuju lapisan kedua atom-atom dan dihamburkan sebagian sehingga yang tidak terhambur selanjutnya akan lewat menuju lapisan ketiga dan seterusnya. seperti yang diilustrasikan pada Gambar 2.6. Hubungan antara jarak antar bidang pada kristal dengan sudut difraksi di dalam kristal adalah:

$$n\lambda = 2 d \sin \theta$$

dengan n = bilangan bulat, λ = panjang gelombang sinar-X, θ = sudut dan d = jarak antar bidang. Persamaan ini dikenal dengan Hukum Bragg (Ismunandar, 2004).

Gambar 2.6 Difraksi sinar-X (Sibilia, 1996).

Pola difraktogram XRD sampel yang disintesis dari limbah alumunium pada suhu 120°C selama 6 jam dengan variasi konsentrasi NaOH digambarkan pada Gambar 2.8. Ketika konsentrasi NaOH meningkat, maka intensitas puncak dan ukuran kristal zeolit NaP1 semakin menurun. Hal ini akibat pembentukan fase sodalit pada konsentrasi NaOH yang lebih besar dari 1 M (Sánchez-Hernández dkk., 2016).

Gambar 2. 7 Difraktogram XRD sampel yang disintesis dengan konsentrasi NaOH (S3) 1 M, (S5) 3 M, (S6) 4M dan (S7) 5 M (P1: NaP1 dan S: hidroksi sodalit) (Sánchez-Hernández dkk., 2016).

2.5.2 Fourier Transform Infrared (FTIR)

Fourier Transform Infrared (FTIR) digunakan untuk mengidentifikasi material, menentukan komposisi senyawa dan memperkirakan gugus fungsi yang ada pada suatu senyawa. Karakterisasi menggunakan FTIR didasarkan pada fakta bahwa molekul memiliki frekuensi spesifik yang berhubungan dengan vibrasi internal dari atom gugus fungsi. Identifikasi senyawa dapat dilakukan akibat perbedaan struktur kimia material yang akan memberikan vibrasi karakteristik, yang kemudian menghasilkan spektra IR pada daerah *fingerprint*. Pengukuran FTIR standar berada pada daerah 7000-400 cm⁻¹ (Sibilia, 1996).

Kelebihan dari penggunaan instrumen FTIR yaitu, mudah dioperasikan, cepat dan sangat sensitif. FTIR memberikan

spektrum yang jelas dengan akurasi panjang gelombang yang lebih baik dari instrumen IR sebelumnya. Instrumen FTIR juga memiliki beberapa kelemahan. Pertama tidak dapat mendeteksi atom, ionion monoatomik, elemen dan gas inert Kedua tidak dapat mendeteksi molekul-molekul diatomik, seperti N₂ dan O₂. Ketiga karena pada umumnya FTIR adalah instrumen *single beam*, adamya pengaruh uap air dan CO₂ dapat mempengaruhi spektra (Sibilia, 1996).

Mode vibrasi	Frekuensi (cm ⁻¹)
Internal tetrahedra	
Ulur asimetri	1250-950
Ulur simetri	720-650
T-O tekuk	500-420
Hubungan eksternal	
Cincin ganda	650-500
Pori terbuka	420-300
Ulur simetri	820-750
Ulur asimetri	1150-1050

Tabel 2. 6 Pita vibrasi zeolit (Kulprathipanja, 2010)

Zeolit memiliki bilangan gelombang antara 1400-400 cm⁻¹ dimana pita vibrasinya memiliki karakteristik gugus fungsi yang berbeda seperti yang tercantum pada Tabel 2.7. Substitusi atom Al dari atom Si pada kerangka zeolit dapat mengubah sudut ikatan T-O-T, dimana T merupakan atom tetrahedral berupa Si atau Al. Hal tersebut akibat dari perbedaan densitas atom Al jika dibandingkan dengan atom Si. Selain itu, pengurangan jumlah kerangka aluminum dapat dideteksi melalui karakterisasi dengan sinar infra merah. Hal tersebut ditandai dengan pita vibrasi bergeser ke frekuensi yang lebih tinggi (Kulprathipanja, 2010).

Gambar 2.9 didapatkan puncak serapan karakteristik zeolit Na-P yang disintesis dari perlit Iran pada bilangan gelombang 439, 589, 741, 1019, 1637 dan 3448 cm⁻¹. Pada bilangan gelombang 439 cm⁻¹ menunjukkan vibrasi tekuk T-O. Kemudian pada bilangan gelombang 589 cm⁻¹ menunjukkan vibrasi cincin ganda. Lalu pada bilangan gelombang 749 cm⁻¹ menunjukkan adanya vibrasi ulur simetri TO₄, sedangkan pada bilangan gelombang 1019 cm⁻¹ menunjukkan adanya vibrasi ulur asimetri TO₄. Pada pita serapan 1637 cm⁻¹ merupakan pita deformasi molekul air dan pada pita serapan 3448 cm⁻¹ merupakan vibrasi ulur OH (Azizi dan Asemi, 2014).

2.5.3 Scanning Electron Microscope - Energy Dispersive X-Ray (SEM-EDX)

Scanning electron microscope (SEM) merupakan instrumen yang dapat memberikan informasi tentang topografi permukaan, struktur kristalin, komposisi kimia dan electrical behaviour pada spesi berukuran 1 μ m. Resolusi SEM mencapai beberapa nm dan dapat dioperasikan pada magnifikasi 10× sampai 300.000×. Mikroskop elektron dioperasikan melalui transmisi atau refleksi. Transmisi sampel sebaiknya lebih kecil dari ~2000 Å karena elektron berinteraksi kuat dengan material padatan dan terabsorb ke partikel (Brundle dkk., 1992; West, 2014).

Terdapat beberapa keuntungan penggunaan instrumen SEM. Pertama instrumen SEM memberikan kedalaman dasar yang begitu besar pada sebagian besar spesimen bersamaan dengan fokus pada permukaan yang kasar. Kedua, magnifikasi yang dimiliki mencapai lebih dari 1.000.000 kali dengan resolusi yang paling baik yaitu 1 nm (Vernon-Parry, 2000).

preparasi sampel instrumen SEM. Tahap vaitu pembersihan permukaan sampel, pengeringan, perekatan sample menggunakan tape agar sample tidak berpindah dari sample holder dan pelapisan sampel dengan material yang bersifat konduktor terhadap listrik (Stadtländer, 2007). Prinsip kerja SEM adalah elektron ditembakkan dari katoda filamen ke arah sampel. Saat terjadi interaksi antara elektron dengan sampel, elektron kehilangan sejumlah energi sehingga terjadi pemantulan dan emisi elektron. Hasil pemantulan dan emisi elektron akan terdeteksi oleh detektor yang dapat divisualisasikan menjadi gambar morfologi kristal (Smith dan Oatley, 1955).

SEM dilengkapi dengan instrumen *energy dispersive X-Ray* (EDX) untuk emisi spektra X-ray. EDX digunakan untuk mengetahui komposisi unsur yang terdapat pada sampel padatan. Instrumen SEM yang dilengkapi dengan detektor EDX yang digunakan untuk mengidentifikasi unsur dan memetakan distribusi unsur pada sampel (West, 2014). Adapun analisis morfologi zeolit Na-P yang disintesis menggunakan metakaolin diperlihatkan pada Gambar 2.10, dimana partikelnya berbentuk mirip bola. Polikristal yang terbentuk memiliki ukuran berkisar 7-9 µm (Hildebrando dkk., 2014).

Gambar 2.9 Morfologi SEM zeolit NaP1 dari metakaolin yang disintesis 100°C selama 20 jam (Hildebrando dkk., 2014).

"Halaman ini sengaja dikosongkan"
BAB III METODOLOGI PENELITIAN

3.1 Alat dan Bahan

3.1.1 Alat

Peralatan yang digunakan dalam penelitian ini antara lain gelas beaker, botol Polypropylene (PP), erlenmeyer, indikator universal, kertas saring Whatman No 42, spatula, botol semprot, magnetic stirrer, timbangan analitik, corong, botol Falcon, hotplate, sentrifuge dan oven. Instrumen yang digunakan untuk sampel dan hasil sintesis adalah Philips Xpert MPD untuk X-ray Diffraction (XRD), Shimadzu Instrument Spectrum One 8400S untuk spektroskopi Fourier Transform Infrared (FTIR), Zeiss EVO MA 10 dan BRUKER 129 untuk Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX).

3.1.2 Bahan

Bahan-bahan yang digunakan pada penelitian ini adalah kaolin Bangka Belitung, aqua demineralisasi (aqua DM) dan natrium hidroksida (NaOH 98%, SAP Chemical).

3.2 **Prosedur Penelitian**

3.2.1 Sintesis Zeolit

Metode sintesis zeolit mengacu pada penelitian yang dilakukan oleh Shalihah (2017). Komposisi rasio molar zeolit yang dibuat yaitu 1,14Na₂O : Al₂O₃ : 3,8SiO₂ : 50H₂O dengan rasio Na₂O/SiO₂ sebesar 0,3. Natrium hidroksida sebanyak 0,912 gram dilarutkan dengan aqua demineralisasi sebanyak 9 gram dalam botol PP, ditambahkan kaolin sebanyak 2,864 gram, kemudian diaduk menggunakan *magnetic stirrer* selama 15 jam. Selanjutnya, dilakukan kristalisasi melalui proses hidrotermal pada suhu 100°C selama 120 jam. Setelah proses hidrotermal selesai, botol PP didinginkan dalam *water bath* dan hasil sintesis dicuci dengan aqua demineralisasi menggunakan *sentrifuge* hingga pH 7. Kemudian padatan disaring menggunakan kertas saring Whatman no 42 dan

corong pisah. Filtrat yang diperoleh ditampung dalam erlenmeyer. Padatan yang diperoleh kemudian dikeringkan pada suhu 80°C selama 4 jam. Selanjutnya, padatan yang telah kering dikarakterisasi menggunakan instrumen XRD, FTIR dan SEM-EDX.

Sintesis selanjutnya dilakukan dengan prosedur yang sama dengan variasi rasio konsentrasi Na₂O/SiO₂. Variasi rasio konsentrasi untuk mengetahui pengaruh dalam pembentukan zeolit Na-P. Variasi rasio Na₂O/SiO₂ dalam penelitian ini adalah (x) ~ 0,4; 0,5; 0,7; 0,9; 1,1 dan 1,3. Variasi massa natrium hidroksida secara berurutan sebanyak 1,216; 1,520; 2,218; 2,736; 3,344 dan 3,952 gram.

Gambar 3.1 Pengadukan sampel pada reaktor botol PP

3.3 Karakterisasi Hasil Sintesis

3.3.1 Difraksi Sinar-X (XRD)

Karakterisasi padatan dilakukan untuk menentukan fasefase yang terdapat pada padatan serta intensitas kristal. Sebanyak \pm 1 gram sampel padatan ditumbuk sampai halus kemudian diletakkan pada *sample holder* dan diratakan. Selanjutnya padatan hasil sintesis dikarakterisasi menggunakan difraksi sinar-X dengan CuK α pada panjang gelombang 1,5406 Å, tegangan 40 kV, kuat arus 30 mA dan rentang sudut 2 θ = 5-50°.

3.3.2 Spektroskopi Fourier Transform Infrared (FTIR)

Hasil sintesis dikarakterisasi dengan instrumen FTIR untuk mengidentifikasi gugus fungsi yang terdapat pada material. Karakterisasi padatan dilakukan dengan teknik pelet KBr sebagai pendispersi. Padatan dan KBr dihaluskan lalu dibentuk *pellet* kemudian diletakkan pada *sample holder* dan dianalisa dengan spektrofotometer inframerah. Pelet tersebut selanjutnya diukur dengan pada bilangan gelombang 4000-400 cm⁻¹. Karakterisasi menggunakan instrumen FTIR Shimadzu Spectrum One 8400S.

3.3.3 Scanning Electron Microscopy-Enegy Dispersive Xray (SEM-EDX)

Karakterisasi SEM digunakan untuk mengetahui morfologi material, sedangkan karakterisasi EDX digunakan untuk mengetahui komposisi yang terkandung pada material. Sebelum dilakukan analisis, padatan hasil sintesis terlebih dahulu diletakkan pada alas *carbon tape* dan dilakukan proses *coating* dengan Pd/Au selama 15 menit pada tekanan 6 x 10⁻² mBar. Instrumen yang digunakan adalah SEM ZEISS EVO MA 10 dan EDX BRUKER 129 EV.

"Halaman ini sengaja dikosongkan"

BAB IV HASIL DAN PEMBAHASAN

Penelitian ini telah dilakukan sintesis zeolit dari prekursor kaolin Bangka Belitung dengan metode hidrotermal secara langsung. Komposisi rasio molar diadaptasi dari penelitian yang telah dilakukan Shalihah (2017). Proses sintesis dilakukan pada suhu 100° C selama 120 jam. Sintesis dilakukan dengan variasi rasio mol Na₂O/SiO₂ (x) ~ 0,3; 0,4; 0,5; 0,7; 0,9; 1,1 dan 1,3 untuk mempelajari pengaruh rasio mol Na₂O/SiO₂ terhadap pembentukan zeolit. Hasil sintesis dikarakterisasi dengan instrumen XRD (*X*-*Ray Diffraction*) untuk mengetahui fasa dan kristalinitas kristal yang terbentuk. Gugus fungsi yang terdapat pada hasil sintesis dianalisis dengan instrumen FTIR (*Fourier Transform Infrared*). Morfologi, kandungan dan distribusi unsur sampel hasil sintesis dikarakterisasi menggunakan instrumen SEM-EDX (*Scanning Electron Microscopy-Energy Dispersive X-Ray*).

4.1 Sintesis Zeolit

Kaolin Bangka Belitung yang digunakan pada penelitian ini telah dilakukan karakterisasi menggunakan instrumen XRF (*X-Ray Fluorosence*) untuk mengetahui persentase kandungan Si dan Al. Hasil analisis kaolin Bangka Belitung menggunakan XRF tercantum pada Tabel 4.1. Pada Tabel 4.1 persentase SiO₂ sebesar 59,3% dan Al₂O₃ sebesar 35,6%. Unsur lain yang terdapat di dalam kaolin seperti K₂O, CaO, TiO₂, V₂O₅, Cr₂O₃, MnO, Fe₂O₃ dan BaO tidak mempengaruhi kondisi sintesis karena kandungannya yang sangat sedikit. Hasil XRF berupa persentase kandungan Si dan Al digunakan untuk menghitung massa kaolin yang dibutuhkan untuk mensintesis zeolit.

Sintesis zeolit dari kaolin Bangka Belitung menggunakan komposisi molar bahan yang mengacu pada penelitian yang telah dilakukan oleh Shalihah (2017) dengan komposisi molar 2,1 Na₂O : Al_2O_3 : 3,8 SiO₂ : 50 H₂O. Sumber alkali Na⁺ berasal darinatrium hidroksida dan aqua demineralisasi sebagai sumber H₂O.

Senyawa	Persentase (%)
Al ₂ O ₃	35,6
SiO ₂	59,3
K ₂ O	1,99
CaO	0,31
TiO ₂	0,35
V ₂ O ₅	0,02
Cr ₂ O ₃	0,0655
MnO	0,039
Fe ₂ O ₃	2,065
BaO	0,26

Tabel 4.1 Komposisi kaolin Bangka Belitung

Sintesis diawali dengan melarutkan padatan NaOH ke dalam aqua demineralisasi pada botol PP (*polypropilen*) pada suhu ruang. NaOH berfungsi sebagai pembentuk garam silikat dan aluminat serta sebagai *mineralizer*. *Mineralizer* adalah suatu senyawa yang ditambahkan pada larutan yang encer untuk mempercepat proses kristalisasi dengan cara meningkatkan kemampuan larut. Reaksi yang terjadi saat SiO₂ larut :

$$SiO_{2(s)} + 2 OH^{-} ----> SiO_{3}^{2-} + H_{2}O$$
 (4.1)
(Jumaeri dkk., 2007)

Proses selanjutnya dilakukan sintesis zeolit dengan memvariasi rasio mol Na₂O/SiO₂ sebesar 0,3; 0,4; 0,5; 0,7; 0,9; 1,1 dan 1,3. Tahap selanjutnya dilakukan proses pengadukan menggunakan *magnetic stirrer* hingga homogen selama 15 jam. Pada saat proses pengadukan terjadi proses nukleasi dan polimerisasi spesi silikat dan aluminat menjadi gel aluminosilikat.

Proses selanjutnya dengan melakukan kristalisasi melalui metode hidrotermal pada suhu 100°C selama 120 jam. Proses hidrotermal terjadi reaksi antara material dengan pelarut air pada tekanan tinggi dan wadah tertutup. Pada proses hidrotermal terjadi kristal zeolit dengan ikatan Si-O-Al terbentuk. Setelah proses

hidrotermal, hasil sintesis dinetralkan dengan cara dicuci dengan aqua demineralisasi dengan alat *sentrifuge* hingga pH 7 kemudian padatan disaring dengan kertas Whatman no 42. Proses penetralan hasil sintesis dilakukan untuk menghilangkan basa. Selanjutnya, padatan dikeringkan pada suhu 80°C selama 4 jam untuk menghilangkan kadar air. Padatan yang kering dikarakterisasi menggunakan instrumen difraksi sinar-X (XRD), spektroskopi inframerah (FTIR), *scanning electron microscopy-energy dispersive X-ray* (SEM-EDX).

4.2 Tinjauan Karakterisasi Zeolit

4.2.1 Difraksi Sinar-X (XRD)

Karakterisasi difraksi sinar-X dilakukan untuk mengetahui fase kristal dan intensitas yang terbentuk pada hasil sintesis. Pola difraktogram diamati pada sudut $2\theta = 5-50^{\circ}$ dengan panjang gelombang radiasi Cu K α (1,5406 Å). Difraktogram hasil sintesis disesuaikan dengan puncak yang muncul di setiap sudut referensi zeolit standar dan prekursornya berupa kaolin.

Menurut Treacy dkk. (2007), puncak zeolit Na-P muncul pada 20 sekitar 12,46; 17,66; 21,67; 28,10; 33,38; 38,01; 46,08° dengan puncak utama pada 20 = 28,10° kemudian puncak sodalit muncul pada 20 sekitar 14,16; 20,07; 24,65; 28,53; 31,99; 35,13; 38,05; 43,39° dengan puncak utama pada 20 = 24,65° serta puncak zeolit Na-A muncul pada 20 = 7,18; 10,17; 12,46; 16,11; 21,67; 23,99; 27,11; 29,94; 34,18°. Perbandingan difraktogram sampel zeolit per rasio mol Na₂O/SiO₂ digambarkan pada Gambar 4.1.

Difraktogram hasil sintesis menunjukkan bahwa sampel memiliki fase zeolit Na-P (ditandai dengan P) seperti yang tercantum pada Tabel 4.2. Hasil tersebut sesuai dengan penelitian yang dilakukan oleh Faghihian dan Kamali (2003) dimana puncak karakteristik zeolit Na-P terletak pada sudut $2\theta = 12,2$; 17,9; 21,5; 28,2; 33,1°. Puncak spesifik zeolit Na-P muncul pada variasi rasio mol Na₂O/SiO₂ 0,5; 0,7 dan 0,9 dimana rasio Na₂O/SiO₂ yang cukup tinggi mengakibatkan kelarutan silika dan alumina yang tinggi. Kelarutan silika dan alumina yang tinggi mengakibatkan peningkatan polimerisasi polisilikat dan aluminat sehingga pembentukan kristal zeolit Na-P semakin meningkat. Selain itu rasio Na₂O/SiO₂ yang tinggi juga dapat mempercepat periode nukleasi dan kristalisasi zeolit (Johnson dan Arshad, 2014). Intensitas zeolit Na-P paling tinggi terdapat pada rasio mol Na₂O/SiO₂ 0,5. Namun pada rasio mol Na₂O/SiO₂ 0,9 terjadi peningkatan intensitas zeolit Na-P dibandingkan rasio mol Na₂O/SiO₂ 0,7 dan intensitas kembali menurun pada rasio mol Na₂O/SiO₂ 1,1.

Pola difraktogram XRD sampel pada Gambar 4.1 juga menunjukkan fase sodalit (ditandai dengan S) seperti yang tertulis pada Tabel 4.2. Puncak karakteristik tersebut sesuai dengan yang dilaporkan oleh Li dkk. (2015). Pembentukan sodalit pada penelitian tersebut yang disintesis dari kaolin terobservasi pada sudut refleksi 14,16; 24,65; 28,53; 31,99 dan 35,13°. Pada penelitian ini fase sodalit terbentuk pada variasi rasio mol Na₂O/SiO₂ = 0,3; 0,4; 0,7; 0,9; 1,1 dan 1,3 dengan intensitas tertinggi dimiliki oleh rasio mol Na₂O/SiO₂ 0,9. Menurut Inada dkk. (2005) semakin tinggi alkalinitas maka semakin besar pula intensitas sodalit yang terbentuk.

Zeolit Na-A (ditandai dengan A) terbentuk pada sampel dengan rasio mol Na₂O/SiO₂ 0,3 pada sudut $2\theta = 7,13$; 10,10; 21,49; 36,50°. Pada sampel dengan rasio mol Na₂O/SiO₂ 0,3; 0,7 dan 0,9 terbentuk beberapa fase zeolit akibat tingkat alkalinitas yang terlalu rendah dan tinggi. Alkalinitas yang terlalu rendah dan tingi mengakibatkan silika dan alumina yang bersumber dari kaolin kurang larut atau terlalu banyak ion OH⁻, sehingga proses kristalisasi untuk membentuk zeolit Na-P terhambat. Rasio Na₂O/SiO₂ yang terlalu tinggi mengakibatkan pembentukan fase sodalit yang merupakan kerangka awal zeolit (Johnson dan Arshad, 2014). Zeolit Na-P dan sodalit memiliki intensitas puncak tertinggi seperti yang tercantum pada Tabel 4.3. Sedangkan grafik rasio mol Na₂O/SiO₂ terhadap intensitas fase yang terbentuk dapat dilihat pada Gambar 4.2.

Gambar 4.1 Difraktogram XRD sampel a) kaolin; b) rasio 0,3; c) rasio 0,4; d) rasio 0,5; e) rasio 0,7; f) rasio 0,9; g) rasio 1,1; h) rasio 1,3

Sampel		2θ (°)	
Rasio Na ₂ O/SiO ₂	Zeolit Na-P	Sodalit	Zeolit Na-A
0,3	-	24,28; 28,45; 31,89; 43,30; 48,03	7,13; 10,10; 21,49; 36,50
0,4	-	24,32; 28,42; 31,88; 35,00; 43,25; 48,01	-
0,5	12,59; 17,89; 21,92; 28,25; 33,63; 46,05	-	-
0,7	12,54; 17,74; 21,75; 28,33	14,07; 24,36; 31,54; 35,07; 37,93; 48,20	-
0,9	17,66; 21,70; 28,10; 33,39	13,98; 19,90; 24,29; 31,91; 35,05; 38,10; 42,69; 43,31; 48,16	-
1,1	-	14,00; 19,85; 24,47; 28,38; 31,85; 34,90; 43,24; 48,12	-
1,3	-	14,05; 19,92; 24,29; 28,48; 31,90; 43,31	-

Tabel 4.2 Sudut refleksi hasil sintesis

Sampel	Intensitas puncak (cps)				
(rasio mol	Zeolit Na-P	Sodalit			
Na ₂ O/SiO ₂)	$(2\theta = ~28, 10^{\circ})$	$(2\theta = ~24,65^{\circ})$			
0,3	-	535			
0,4	-	653			
0,5	1405	-			
0,7	175	693			
0,9	242	769			
1,1	-	434			
1,3	-	653			

Tabel 4.3 Intensitas puncak tertinggi fase zeolit Na-P dan sodalit.

Gambar 4.2 Grafik rasio mol Na2O/SiO2 terhadap intensitas fase

4.2.2 Spektroskopi Fourier Transform Infrared (FTIR)

Karakterisasi instrumen spektroskopi inframerah digunakan untuk mengetahui gugus fungsi pada sampel hasil sintesis. Karakterisasi dengan FTIR didasarkan pada penyerapan radiasi inframerah oleh suatu molekul pada energi (frekuensi) tertentu. Gugus fungsi yang terdeteksi pada hasil sintesis dibandingkan dengan spektrum standar. Karakterisasi dilakukan pada serapan bilangan gelombang 400 – 4000 cm-1.

Spektra inframerah kaolin dan ketujuh sampel zeolit ditunjukkan oleh Gambar 4.3. Pada spektrum kaolin teridentifikasi

puncak karakteristik pada bilangan gelombang 428, 467, 538, 664, 700, 793, 912, 1007, 1030 dan 1115 cm⁻¹. Menurut Vaculíková dkk (2011) puncak khas kaolin muncul pada bilangan gelombang 433, 468, 540, 645, 694, 752, 791, 913, 937, 1009, 1033, 1098 dan 1113 cm⁻¹. Pada bilangan gelombang 433, 468, 645, 694, 752 dan 791 cm⁻¹ merupakan vibrasi Si-O, sedangkan pada bilangan gelombang 913 dan 937 cm⁻¹ merupakan deformasi OH gugus hidroksil. Vibrasi ulur Si-O ditandai pada bilangan gelombang 1009, 1003, 1098 dan 1113 cm⁻¹.

Spektra inframerah hasil sintesis yang ditunjukkan oleh Gambar 4.3 dan Tabel 4.3 mengindikasikan adanya puncak spesifik dari zeolit Na-P. Spektrum inframerah pada zeolit Na-P pembanding (Shalihah, 2017) memiliki puncak serapan yang muncul pada daerah bilangan gelombang 419, 606, 684, 744 dan 1001 cm⁻¹. Pada spektra sampel zeolit variasi rasio mol Na₂O/SiO₂ = 0,5; 0,7 dan 0,9 memiliki puncak yang sejajar dengan zeolit Na-P pembanding. Hasil tersebut sesuai dengan data XRD yang menunjukkan adanya puncak karakteristik zeolit Na-P. Pergeseran puncak serapan yang terbentuk pada variasi rasio mol Na₂O/SiO₂ = 0,7 dan 0,9 mengindikasikan bahwa terjadi penurunan fase zeolit Na-P dan terbentuk fase lain.

Gambar 4.3 menggambarkan spektra sampel variasi rasio mol Na₂O/SiO₂ = 0,3; 0,4; 0,7; 0,9; 1,1 dan 1,3 dengan adanya puncak yang sejajar dengan puncak sodalit referens (Sari, 2016) pada bilangan gelombang sekitar 430, 463, 664, 741 dan 990 cm⁻¹. Seiring dengan peningkatan rasio mol Na₂O/SiO₂ semakin tajam pula puncak yang sejajar dengan puncak khas sodalit. Hal ini mengindikasikan pada sampel variasi rasio mol Na₂O/SiO₂ = 0,3; 0,4; 0,7; 0,9; 1,1 dan 1,3 berhasil dalam pembentukan sodalit. Hasil tersebut sesuai dengan data XRD yang menunjukkan bahwa intensitas sodalit semakin besar seiring dengan bertambahnya rasio mol Na₂O/SiO₂ = 0,3 terdapat puncak yang sejajar dengan zeolit Na-A referens (Setyaningsih, 2015). Puncak sampel yang sejajar terletak pada bilangan gelombang sekitar 465 cm⁻¹.

Gambar 4.3 Spektra inframerah sampel a) kaolin; b) rasio 0,3; c) rasio 0,4; d) rasio 0,5; e) rasio 0,7; f) rasio 0,9; g) rasio 1,1 dan h) rasio 1,3

T's				Bila	ingan gel	ombang	(cm ⁻¹)			
vibrasi	Na-P	Sodalit	Zeolit Na-A	0,3	0,4	0,5	0,7	0,9	1,1	1,3
Vibrasi tekuk T- O_4 (T = Si, Al) (420-500 cm ⁻¹)	419	432 463	465	426 465	430 463	420 444	422 461	422 459	428 463	428 461
Vibrasi eksternal cincin ganda D4R dan D6R (500-650 cm ⁻¹)	606	-	552	538	540	581 610	529	-	557	559

Tabel 4.4 Data FTIR hasil sintesis sampel zeolit referensi dan zeolit variasi rasio mol Na₂O/SiO₂

Vibrasi simetris dan asimetris O-T-O (650-820 cm ⁻¹)	684 744	662 729	654 860	664 700	664 700	652 741	661 700	660 714	662 702	662 700
Vibrasi asimetris T-O-T (950- 1250 cm ⁻ ¹)	1001	981	1011	999	993	988	990	988	988	986

4.2.3 Karakterisasi SEM-EDX

Karakterisasi menggunakan SEM (*Scanning Electron Microscopy*) dilakukan untuk mengetahui bentuk morfologi struktur dan ukuran partikel sedangkan EDX (*Energy Dispersive X-Ray*) digunakan untuk mengetahui distribusi unsur yang terkandung di dalam sampel. Pada penelitian ini sampel yang dikarakterisasi adalah variasi rasio mol Na₂O/SiO₂ 0,5 dan 0,7. Morfologi sampel zeolit rasio mol Na₂O/SiO₂ 0,5 ditunjukkan pada Gambar 4.4 mengindikasikan adanya zeolit Na-P dengan bentuk yang beraneka ragam. Gambar 4.4 menunjukkan distribusi partikel yang seragam. Hal ini menunjukkan bahwa rasio Na₂O/SiO₂ berpengaruh terhadap kristalinitas hasil sintesis. Penelitian yang telah dilakukan Zubowa dkk. (2008) menyatakan bahwa morfologi zeolit Na-P menyerupai bola. Morfologi pada Gambar 4.4 memperkuat hasil karakterisasi XRD dimana terdapat puncak khas zeolit Na-P pada $2\theta = \sim 12,59; 17,89; 21,92; 28,25; 33,63; 46,05.$

Morfologi sampel zeolit rasio mol Na₂O/SiO₂ 0,7 ditunjukkan pada Gambar 4.5. Terlihat bahwa sampel terdapat sodalit dengan bentuk yang tidak beraturan dengan adanya agregat. Bentuk tersebut sesuai dengan penelitian yang dilaporkan oleh Li dkk. (2015) bahwa sodalit memiliki bentuk yang tidak beraturan dengan adanya agregat dalam jumlah yang besar. Hal tersebut memperkuat informasi yang ditunjukkan oleh data XRD dimana terdapat puncak khas sodalit pada $2\theta = ~14,07$; 24,36; 31,54; 35,07; 37,93; 48,20.

Analisis EDX digunakan untuk mengetahui distribusi dan komposisi unsur yang terdapat pada sampel zeolit variasi rasio mol. Na₂O/SiO₂ 0,5 dan 0,7. Hasil analisis EDX terlihat bahwa kedua sampel tersebut mengandung Si, O, Al, dan Na. Data persentase perhitungan atom Si dan Al tercantum pada Tabel 4.5 yang diperoleh rata-rata rasio mol SiO₂/Al₂O₃ dari kedua sampel sebesar 0,775. Distribusi unsur hasil sintesis kedua variasi tersebut dapat dilihat pada Gambar 4.6 menunjukkan bahwa unsur Si dan Al terdistribusi pada sampel hasil sintesis. Sampel zeolit dengan variasi rasio mol Na₂O/SiO₂ = 0,5 dan 0,7 memiliki distribusi Si

dan Al yang sama. Hasil tersebut tidak sesuai dengan rasio mol Si/Al saat sintesis yaitu sebesar 3,8. Hal ini diakibatkan rasio mol Si/Al yang terdeteksi oleh instrumen EDX hanya pada permukaan sampel saja.

Gambar 4.4 Morfologi SEM sampel zeolit Na₂O/SiO₂ 0,5

Gambar 4.5 Morfologi SEM sampel zeolit Na₂O/SiO₂ 0,7

Na ₂ O/SiO ₂ 0,5 dan 0,7.							
Sampal	Distr	Rasio mol					
Samper	Si	Al	Na	0	SiO_2/Al_2O_3		
$Na_{2}O/SiO_{2}=0,5$	2,21	2,87	4,21	53,99	0,77		
$Na_2O/SiO_2 = 0.7$	3,71	4,75	6,50	69,19	0,78		

Tabel 4.5 Hasil analisis EDX sampel zeolit variasi rasio mol

Gambar 4.6 Pemetaan unsur sampel zeolit a) rasio mol Na₂O/SiO₂ 0,5 dan b) rasio mol Na₂O/SiO₂ 0,7

BAB V KESIMPULAN

5.1 Kesimpulan

Variasi rasio Na₂O/SiO₂ berpengaruh terhadap kelarutan silika dan alumina yang terdapat pada kaolin. Berdasarkan hasil penelitian yang dilakukan pada variasi rasio mol $Na_2O/SiO_2 = 0.3$; 0.4; 0.5; 0.7; 0.9; 1.1 dan 1.3 dibandingkan dengan zeolit pembanding terbentuk fase sodalit, zeolit Na-P dan zeolit Na-A. Hasil karakterisasi difraksi sinar-X dan spektroskopi inframerah menunjukkan bahwa fase zeolit Na-P mulai tampak pada variasi rasio mol $Na_2O/SiO_2 = 0.5; 0.7; 0.9$ dengan intensitas paling tinggi terdapat pada sampel rasio mol Na₂O/SiO₂ 0.5. Fase sodalit muncul pada variasi rasio mol $Na_2O/SiO_2 = 0,3; 0,4; 0,7; 0,9; 1,1$ dan 1,3 dengan intensitas paling tinggi terdapat pada sampel rasio mol Na₂O/SiO₂ 0.9. Pada variasi rasio mol Na₂O/SiO₂ = 0.3terbentuk fase zeolit Na-A. Morfologi SEM sampel dengan rasio mol Na₂O/SiO₂ 0,5 beraneka ragam yang merupakan morfologi zeolit Na-P, sedangkan pada sampel dengan rasio mol Na₂O/SiO₂ 0,7 tidak beraturan dengan agregat yang mengindikasikan morfologi sodalit. Hasil analisis EDX menunjukkan sampel variasi rasio mol Na₂O/SiO₂ = 0.5 dan 0.7 memiliki rasio mol SiO₂/Al₂O₃ berturut-turut sebesar 0,77 dan 0,78.

5.2 Saran

Pada penelitian selanjutnya yang berkaitan tentang sintesis zeolit disarankan untuk dilakukan studi lebih lanjut tentang pengaruh penambahan mol Na₂O yang dapat menghasilkan zeolit tertentu. Adapun faktor-faktor lain antara lain adalah prekursor, rasio SiO_2/Al_2O_3 , waktu pemeraman, serta suhu hidrotermal untuk mengetahui kondisi optimal agar diperoleh zeolit tertentu dengan kemurnian yang tinggi.

"Halaman ini sengaja dikosongkan"

DAFTAR PUSTAKA

- Abdullahi, T., Harun, Z., Orthman, Mohd. H.D. (2017). "A review on sustainable synthesis of zeolite from kaolinite resources via hydrothermal process". *Advanced Powder Technology*, 28, 1827-1840.
- Ali, I.O., El-Sheikh, S.M., Salama, T.M., Bakr, M.F., Fodial, M.H. (2015). "Controllable synthesis of NaP zeolite and its application in calcium adsorpsition". *Science China Materials*, 58, 621-633.
- Alkan, M., Hopa, Ç., Yilmaz, Z., Güller, H. (2005). "The effect of alkali concentration and solid/liquid rasio on the hydrothermal synthesis of zeolite NaA from natual kaolinite". *Microporous and Mesoporous Materials*, 86, 176-184.
- Armbruster, T., Gunter, M.E. (2001). "Crystal Structures of Natural Zeolites". Reviews in Mineralogy and Geochemistry. Natural Zeolites: Occurrence, Properties, Aplications. 45, 1-67.
- Auberbach, S.M., Carrado, K.A., Dutta, P.K. (2003). "Handbook of Zeolite Science and Technology". USA: Marcel Dekker, Inc.
- Ayele, L., Pérez-Pariente, J., Chebude, Y., Díaz, I. (2016).
 "Conventional versus alkali fusion synthesis of zeolite A from low grade kaolin". *Applied Clay Science*, 132-133, 485-490.
- Azizi, S,N., Asemi, N. (2014). "The Effect of Ultrasonic and Microwave -Assisted Aging on the Synthesis of Zeolite P from Iranian Perlite Using Box-Behnken Experimental Design". Chemical Engineering Communications, 201, 909-925.
- Belviso, C., Cavalcante, F., Lettino, A., Fiore, S. (2013). "A and X-type zeolites synthesised from kaolinite at low temperature". *Applied Clay Science*, 80-81, 162-168.

- Bessa, R.de Andrea., Costa, L.de Sousa., Oliveira, C.P., Bohn, F., do Nascimento, R.F., Sasaki, J.M., Loiola, A.R. (2017). "Kaolin-based magnetic zeolites A and P as water softeners". *Microporous and Mesoporous Materials*, 245, 64-72.
- Bhattacharyya, K.G., dan Gupta, S.G. (2008). "Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review". *Advances in Colloid and Interface Science*, 140, 114-131.
- Brundle, C.R., Evans Jr, C.A., Wilson, S. (1992). "Encyclopedia of Materials Characterization". USA: Butterworth-Heinemann.
- Byrappa, K., Yoshimura, M. (2001). "HANDBOOK OF HYDROTHERMAL TECHNOLOGY. A Technology for Crystal Growth and Materials Processing". USA: Noyes Publicatons.
- Caballero, I., Colina, F.G., Costa, J. (2007). "Synthesis of Xtype Zeolite from Dealuminated Kaolin by Reaction with Sulfuric Aci dat High Temperature". *Industrial and Engineering Chemistry Research*, 46, 1029-1038.
- Chandrasekhar, S., Pramada, P.N. (1999). "Investigation on Synthesis of Zeolite NaX from Kerala Kaolin". *Journal of Porous Materials*, 6, 283–297.
- Chen, N.Y., Degnan, Jr, T.F., Smith, C.M. (1994). "Molecular Transport and Reaction in Zeolites". New York, USA: VCH Publishers.
- Colella, C., Kiricsi, G. Pa'l-Borbe'ly, J.B., Nagy, H.G., Karge (Eds). (1999). "Porous materials in environmental friendly processes". *Studies in Surface Science and Catalysis*, 125, 641.
- Cundy, C.S., Cox, P.A. (2005). "The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism". *Microporous and Mesoporous Materials*, 82, 1-78.

- Doyle, A.M., Albayat, T.M., Abbas, A.S., Alimaeel, Z.T. (2016). "Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin". *Renewable Energy*, 97, 19-23.
- Duan, A., Wan, G., Zhang, Y., Zhao, Z., Jiang, G., Liu. (2011). "Optimal synthesis of micro/mesoporous beta zeolite from kaolin clay and catalytic performance for hydrodesulfurization of diesel". *Catalysis Today*, 175, 485-493.
- Faghihian, H., Kamali, M. (2003). "Synthesis of Na-P_c zeolite from perlite and study of its ability to remove cyanide from liquid wastes". *International Journal of Environment and Pollution*, 19, 557-566.
- Feng, H., Li, C., Shan, H. (2009). "In-situ synthesis and catalytic activity of ZSM-5 zeolite". Applied Clay Science, 42, 439-445.
- Gougazeh, M., Buhl, J.-Ch. (2014). "Synthesis and characterization of zeolite A by hydrothermal transformation of natural Jordanian kaolin". Journal of the Association of Arab Universities for Basic and Applied Sciences, 15, 35-42.
- Hansen, S., Hakansson, U., Landa-Canovas, A.R., Fälth, L. (1993). "On the crystal chemistry of NaP zeolites". *Zeolites*, 13, 276-280.
- Hartanto, D., Yuan, L.S., Sari, S.M., Sugiarso, D., Murwani, I.K., Ersam, T., Prasetyoko, D., Nur, H. (2016). "Can kaolin function as source of alumina in the synthesis of ZSM-5 without an organic template using a seeding technique?". *Malaysian Journal of Fundamental and Applied Sciences*, 12, 85-90.
- Hildebrando, E.A., Andrade, C.G.B., Junior, C.A.F. da Rocha., Angélica, R.S., Valenzuela-Diaz, F.R., Neves, R. de Freitas. (2014). "Synthesis and Characterization of Zeolite NaP Using Kaolin Waste as a Source of Silicon and Aluminum". *Materials Research*. 17, 174-179.

- Holmes, S.M., Khoo, S.H., Kovo, A.S. (2011). "The direct conversion of impure natural kaolin into pure zeolite catalysts". *Green Chemistry*, 13, 1152-1154.
- Iftitahiyah, V.N., Prasetyoko, D., Nur, H., Bahruji, H., Hartati. (2018). "Synthesis and characterization of zeolite NaX from Bangka Belitung Kaolin as alternative precursor". *Malaysian Journal of Fundamental and Applied Sciences*, 14, 414-418
- Inada, M., Eguchi, Y., Enomoto, N., Hojo, J. (2005). "Synthesis of zeolite from coal fly ashes with different silica-alumina composition". *Fuel*, 84, 299-304.
- Ismunandar. (2004). "Padatan Oksida Logam : Struktur, Sintesis dan Sifat-Sifatnya". Bandung : Departemen Kimia FMIPA ITB.
- Jha, B., Singh, D.N. (2016). "Fly Ash Zeolites Innovations, Applications, and Direction, Singapore: Springer.
- Johnson, E.G.B., Arshad, S.E. (2014). "Hydrothermally synthesized zeolites based on kaolinite: A review". *Applied Clay Science*, 97-98, 215-221.
- Jumaeri, W., Astuti., Lestari, W.T.P. (2007). "Preparasi dan Karakterisasi Zeolit dari Abu Layang Batu Bara Secara Alkali Hidrotermal". *Reaktor*, 11, 38-44.
- Kahraman, Sibel, Önal, M., Sarıkaya, Y., Bozdoğan, I. (2005). "Characterization of Silica Polymorphs in Kaolins by X-ray Diffraction Before and After Phosphoric Acid Digestion and Thermal Treatment". *Analytica Chimica Acta*, 552, 201–206.
- Kartimi, R., Bayati, B., Aghdam, N.C., Ejtemaee, M., Babaluo, A.A. (2012). "Studies of the Effect of Synthesis Parameters on ZSM-5 Nanocrystalline Material During Template-hydrothermal Synthesis in the Presence of Chelating Agent". *Powder Technology*, 229, 229-236.
- Kaučič, Venčeslav. (1994). "The Structure of Zeolites and Aluminophosphate Moolecular Sieves". *Croatica Chemica Acta*, 67, 241-261.

Kostinko, John. A. (1983). "Factors Influencing the Synthesis of Zeolites A, X, and Y". ACS Symposium, 218, 3-19.

- Kulprathipanja, Santi. (2010). "Zeolites in Industrial Separation and Catalysis". Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.KGaA.
- Li, J., Zeng, X., Yang, X., Wang, C., Luo, X. (2015). "Synthesis of pure sodalite with wool ball morphology from alkali fusion kaolin". *Materials Letters*, 161, 157-159.
- Ma, Y., Yan, C., Alshameri, A., Qiu, X., Zhou, C., Li, D. (2014). "Synthesis and characterization of 13X zeolite from low-grade natural kaolin". Advanced Powder Technology, 25, 495-499.
- Maia, A.A.B., Neves, R.F., Angélica, R.S., Pöllmann, H. (2015). "Synthesis of sodalite from Brazilian kaolin wastes". *Clay Minerals*, 50, 663-675.
- Maingaye, Dakalo. (2012). "Synthesis of Zeolites from South African Coal Fly Ash: Investigation of Scale-Up Conditions". Cape Town : Chemical Engineering Cape Peninsula University of Technology.
- Masoudian, S.M., Sadighi, S., Abbasi, A. (2013). "Synthesis and Characterization of High Aluminum Zeolite X from Technical Grade Materials". *Bulletin of Chemical Reaction Engineering & Catalysis*, 8, 54-60.
- Mohamed, M.M., Salama, T.M., Othman, I., Ellah, I.A. (2005). "Synthesis of high silica mordenite nanocrystals using *o*phenylenediamine template". *Microporous and Mesoporous Materials*, 84, 84-96.
- Montalvo, S., Guerrero, L., Borja, R., Sánchez, E., Milán, Z., Cortés, I., Angeles de la la Rubia, M. (2012). "Application of natural zeolites in anaerobic digestion processes: A review". *Applied Clay Science*, 58, 125-133.
- Moshoeshoe, M., Nadiye-Tabbiruka, M.S., Obuseng, V. (2017). "A Review of the Chemistry, Structure, Properties" and

Applications of Zeolites". *American Journal of Materials Science*, 7, 196-221.

- Murray, H.H. (1999). "Applied clay mineralogy today and Tomorrow". *Clay Minerals*, 34, 39-49.
- Murray, H.H. (2006). "Applied Clay Mineralogy Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays". Oxford: Elsevier.
- Musyoka, N.M. (2009). "Hydrothermal synthesis and optimisation of zeolite Na-P1 from South African coal fly ash". Cape Town: University of Western Cape.
- Othmer, K., (1993). *Encyclopedia of Chemical Technology*. New York: Wiley Interscene.
- Pal, P., Das, J.K., Das, N., Bandyopadhyay, S. (2013). "Synthesis of NaP at room temperature and short crystallization time by sonochemical method". *Ultrasonics Sonochemistry*, 20, 314-321.
- Petrov, Ivan., Michalev, Todor. (2012). "Synthesis of Zeolite A: A Review". НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ. 51, 30-35.
- Prasad, M.S., Reid, .K.J., Murry, H.H. (1991). "Kaolin: processing, properties and applications". *Applied Clay Science*, 6, 87-119.
- Prasetyoko, D., Ramli, Z., Endud, S., Hamdan, H., Sulikowski, B. (2006). "Conversion of rice husk ash to zeolite beta". *Waste Management*, 26, 1173-1179.
- Qiang, L., Ying, Z., Zhijun, C., Wei, G., Lishan, C. (2010). "Influence of synthesis parameters on the and Si/Al rasio of NaY zeolite synthesized from kaolin". *Petroleum Science*, 403-409.
- Qoniah, I., Prasetyoko, D., Bahruji, H., Triwahyono, S., Jalil, A.A., Suprapto., Hartati., Purbaningtias, T.E. (2015). "Direct synthesis of mesoporous aluminosilicates from Indonesian

kaolin clay without calcination". *Applied Clay Science*, 118, 290-294.

- Rasouli, M., Yaghobi, N., Chitsazan, S., Sayyar, M.H. (2012). "Effect of nanocrystalline zeolite Na-Y on meta-xylene separation". *Microporous and Mesoporous Materials*, 152, 141-147.
- Ríos, C.A., Williams, C.D., Catellanos, O.M. (2012). "Crystallization of low silica Na-A and Na-X zeolites from transformation of kaolin and obsidian by alkaline fusion". *Ingeniería y Competitividad*. 14, 125-137.
- Rustam., Ediati, R., Septiyana, B., Zein, Y.M., Bahruji, A., Qoniah, I., dkk. (2013). "Direct Synthesis of ZSM-5 from kaolin the presence of TPABr and TPAOH as Organic Templates". Thesis Kimia ITS, Surabaya.
- San Cristóbal, A.G., Castello, R., Martín Luengo, M.A., Vizcayno, C. (2010). "Zeolites prepared from calcined and mechanically modified kaolins A comparative study". *Applied Clay Science*, 49, 239-246.
- Sánchez-Hernádez, R., López-Delgado, A., Padilla, I., Galindo, R., López-Andrés, S., (2016). "One-step synthesis of NaP1, SOD and ANA from a hazardous aluminum solid waste". *Microporous and Mesoporous Materials*, 226, 267-277.
- Sari, M.E.F. (2016). "Pengaruh Alkalinitas Pada Sintesis Sodalit Menggunakan Kaolin Secara Langsung dan Aplikasinya untuk Adsorpsi Pb²⁺". Thesis Kimia ITS, Surabaya.
- Setyaningsih, Sri. (2015). "Pengaruh Waktu Kristalisasi Terhadap Pembentukan Zeolit A dari Pasir Vulkanik Gunung Kelud". Skripsi Kimia ITS, Surabaya.
- Shalihah, Raudhatus. (2017). "Sintesis Zeolit Na-P dari Kaolin Bangka Belitung dengan Variasi Konsentrasi Leaching Asam Sulfat dan Waktu Kristalisasi". Skripsi Kimia ITS, Surabaya.

- Sibilia, P. (1996). "Guide To Material Characterization and Chemical Analysis 2nd edition". New York: John wiley-VCH.
- Smart, L., dan Moore, E. (1992). "Solid State Chemistry, First edition". London: Chapman and Hall University and Proffesional Division.
- Smith., K.C.A., Oatley, C.W. (1955). "The Scanning Electron Microscope and It's Fields of Application". British Journal of Applied Physics. 6, 391.
- Stadtländer, C.T.K-H. (2007). "Scanning Microscopy and Transmission Electron Microscopy of Mollicutes: Challenges and Oppurtunities". *Modern Research and Educational Topics in Microscopy*, 122-131.
- Szostak, R. (1989). "Molecular Sieves. Principles of Synthesis and Identification". Ed. Van Nonstrand Reinhold, Netherlands: Springer.
- Tavasoli, M., Kazemian, H., Sadjadi, S., Tamizifar, M. (2014). "Synthesis and Characterization of Zeolite NaY Using Kaolin With Different Synthesis Methods". *Clays and Clay Minerals*, 62, 508-518.
- Treacy, M.M.J., Higgins, J.B. (2007). "Collection of Simulated XRD Powder Patterns for Zeolites". Amsterdam: Elsevier.
- Vaculíkova, L., Plevová, E., Vallová, S., Koutník, I. (2011). "Characterization and Differentiation of Kaolinites from Selected Czech Deposits Using Infrared Spectroscopy and Differential Thermal Analysis". *Acta Geodynamica et Geomaterialia*, 8, 59-67.
- Vernon-Parry, K.D. (2000). "Scanning Electron Microscopy: an introduction". *III-Vs Review*, 13, 40-44.
- Vučinić, D., Miljanović, I., Rosić, A., Lazić P. (2003). "Effect of Na₂O/SiO₂ mole rasio on the crystal type of zeolite synthesized from coal fly ash". *Journal of Serbian Chemical Society*, 68, 471-478.

- Wang, P., Shen, B., Shen, D., Gao, J. (2007). "Synthesis of ZSM-5 Zeolit from Expanded Perlite and its Catalytic Performance in FCC Gasoline Aromatization". *Catalysis Today*, 125, 155-162.
- Wang, Shaobin., Peng, Yuelian. (2010). "Natural zeolites as effectife adsorbents in water and wastewater treatment". *Chemical Engineering Journal*, 156, 11-24.
- West, A.R. (1984). "Solid State Chemistry and Its Applications". New York: John Wiley & Sons.
- West, A.R. (2014). "Fundamental of Analytical Chemistry 9th Edition" USA : Brooks/Cole Thomson Learning.
- Widiastuti, N., Hidayah, M.Z.N., Prasetyoko, D., Fansuri, H. (2014). "Synthesis of zeolite X-carbon from coal bottom ash for hydrogen storage material". *Advanced Materials Letters*, 5, 453-458.
- Xu, R., Yu, J., Huo, Q., Chen, J.J., Pang, W. (2007). "Chemistry and Molecular Sieves : Zeolites and Related Porous Materials. New York : John & Wiley Sons Inc.
- Yuan, Y., Tian, P., Yang, M., Fan, D., Wang, L., Xu, S., Wang, C., Wang, D., Yang, Y., Liu, Z. (2015). "Synthesis of hierarchical beta zeolite by using bifunctional cationic polymer and the improved catalytic performance". *RSC Advances*, 5, 9852-9860.
- Zhu, Y., Chang, Z., Pang, J., Xiong, C. (2011). "Synthesis of Zeolite 4A from Kaolin and Bauxite by Alkaline Fusion at Low Temperature". *Materials Science Forum*, 685, 298-306.
- Zubowa, H.L., Kosslick, H., Muller, D., Richter, M., Wilde, L., Fricke, R.. (2008). "Crystallization of phase-pure zeolite NaP from MCM-22-type gel compositions under microwave radiation". *Microporous and Mesoporous Materials*, 109, 542-548.

"Halaman ini sengaja dikosongkan"

LAMPIRAN

Lampiran A. Diagram Alir Penelitian Prosedur Sintesis Zeolit

Lampiran B. Perhitungan Sintesis Zeolit B1. Persentase Komposisi Bahan

a) Kaolin

- $Al_2O_3 = 35,6 \%$ (Mr = 101,96 g/mol)

- SiO₂ = 59,3 % (Mr = 60,09 g/mol)

b) Aqua DM (Mr = 18 g/mol)

c) NaOH pellet = 98 % (Mr = 40 g/mol)

B2. Sintesis Zeolit

Komposisi molar bahan untuk sintesis zeolit Na₂O : Al₂O₃ : SiO₂ : H₂O = 1,14 : 1 : 3,8 : 50 Rasio Na₂O /SiO₂ = 0,3

a) 1 mol Al₂O₃ massa Al₂O₃ = n x Mr = 1 mol x 101,96 g/mol = 101,960 g

Persentase Al_2O_3 dalam kaolin adalah 35,6 %, maka massa kaolin yang harus diambil adalah:

massa kaolin = massa Al₂O₃ 35,6%= 101,96 g 35,6%= 286,404 gram

b) 3,8 mol SiO₂ Massa kaolin yang diperlukan: massa SiO₂ = n x Mr = 3,8 mol x 60,09 g/mol = 228,342 gram

Persentase SiO_2 dalam kaolin adalah 59,3 %, maka massa kaolin yang harus diambil adalah:

massa kaolin = massa SiO₂ 59,3 % = 228,342 g 59,3% = 385,062 gram

c) 1,14 mol Na₂O penambahan NaOH = $2 \times 1,14$ mol = 2,28 mol

Massa NaOH yang harus ditambahkan = 2,28 mol x 40 g/mol = 91,2 gramd) 50 mol H₂O Massa H₂O yang diperlukan: massa H₂O = n x Mr = 50 mol x 18 g/ mol = 900 gram

Perhitungan untuk variasi rasio Na/Si 0,4; 0,5; 0,7; 0,9; 1,1 dan 1,3 sama dengan perhitungan rasio Na/Si = 0,3. Semua massa bahan

dibagi dengan 100 dan untuk massa kaolin berdasarkan perhitungan dari mol Al₂O₃, sehingga massa yang dibutuhkan:

Komposisi molar	Rasio Na/Si	Massa kaolin	Massa NaOH	Massa H ₂ O
1,14 Na ₂ O : Al ₂ O ₃ : 3,8 SiO ₂ : 50 H ₂ O	0,3	2,864 g	0,912 g	9,00 g
1,52 Na ₂ O : Al ₂ O ₃ : 3,8 SiO ₂ : 50 H ₂ O	0,4	2,864 g	1,216 g	9,00 g
1,9 Na ₂ O : Al ₂ O ₃ : 3,8 SiO ₂ : 50 H ₂ O	0,5	2,864 g	1,520 g	9,00 g
2,66 Na ₂ O : Al ₂ O ₃ : 3,8 SiO ₂ : 50 H ₂ O	0,7	2,864 g	2,218 g	9,00 g
3,42 Na ₂ O : Al ₂ O ₃ : 3,8 SiO ₂ : 50 H ₂ O	0,9	2,864 g	2,736 g	9,00 g
4,18 Na ₂ O : Al ₂ O ₃ : 3,8 SiO ₂ : 50 H ₂ O	1,1	2,864 g	3,344 g	9,00 g
$4,94 \text{ Na}_2\text{O} : \text{Al}_2\text{O}_3$: 3,8 SiO ₂ : 50 H ₂ O	1,3	2,864 g	3,952 g	9,00 g
Total		20,048 g	15,898 g	63,00 g

Lampiran C. Data Karakterisasi

C1. Data XRF Kaolin Bangka Belitung

Unsur			Oksida		
Compound	Conc	Unit	Compound	Conc	Unit
Al	30,65	0%	Al ₂ O ₃	35,6	0%
Si	58,4	0%	SiO ₂	59,3	0%
K	4,495	0%	K ₂ O	1,99	0%
Ca	0,595	0%	CaO	0,31	0%
Ti	0,625	0%	TiO ₂	0,35	0%
V	0,03	0%	V_2O_5	0,02	0%
Cr	0,13	0%	Cr_2O_3	0,0655	0%
Mn	0,088	0%	MnO	0,039	0%
Fe	4,39	0%	Fe ₂ O ₃	2,065	0%
Ba	0,62	0%	BaO	0,26	0%

C2. Data Difraksi Sinar-X

C2.1 Data Difraksi Sinar-X Kaolin Bangka Belitung

Peak List: (Bookmark 3)

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
12.6059	450.71	0.1171	7.02220	37.00
17.8252	25.49	0.4015	4.97612	2.09
19.9731	370.14	0.2007	4.44556	30.39
20.4320	415.69	0.1004	4.34675	34.13
21.3978	330.60	0.4015	4.15269	27.14
23.1696	163.14	0.3346	3.83898	13.39
24.9431	1218.13	0.0836	3.56990	100.00
26.7550	375.98	0.1673	3.33212	30.87
29.9316	22.32	0.2007	2.98532	1.83
31.3052	23.99	0.2676	2.85740	1.97
32.1053	21.83	0.2007	2.78799	1.79
35.0538	288.49	0.2342	2.55995	23.68
36.0483	272.74	0.1338	2.49157	22.39
37.7837	172.10	0.2342	2.38103	14.13
38.4629	393.62	0.3011	2.34054	32.31
39.3087	228.31	0.2007	2.29210	18.74
41.1827	41.48	0.5353	2.19203	3.41
42.4983	23.92	0.4015	2.12717	1.96
45.5385	132.46	0.2676	1.99198	10.87
46.8020	46.21	0.2007	1.94110	3.79

C2.2 Data Difraksi Sinar-X Sampel Rasio Mol Na₂SiO₂/SiO₂ 0,3

Peak List: (Bookmark 3)

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
7.1342	56.09	0.2676	12.39100	10.22
8.7749	53.90	0.2007	10.07754	9.82
10.0993	52.59	0.1338	8.75879	9.58
12.2805	174.05	0.2342	7.20752	31.71
14.0006	548.92	0.1338	6.32565	100.00
16.0576	24.55	0.4015	5.51968	4.47
17.6933	24.98	0.4015	5.01291	4.55
19.9442	133.53	0.3346	4.45194	24.33
21.4901	65.26	0.3346	4.13505	11.89
22.8361	50.16	0.2007	3.89429	9.14
24.2825	534.81	0.2676	3.66550	97.43
26.6334	152.95	0.2342	3.34705	27.86
28.4516	86.48	0.4015	3.13716	15.75
29.9503	68.23	0.2342	2.98350	12.43
31.8885	370.16	0.3011	2.80645	67.43
34.8909	383.62	0.3011	2.57152	69.89
35.7829	32.59	0.2007	2.50944	5.94
36.5043	9.34	0.3346	2.46149	1.70
37.7724	52.67	0.3346	2.38172	9.60
38.6177	25.92	0.2007	2.33151	4.72
42.7630	123.01	0.2676	2.11461	22.41
43.2999	125.62	0.2007	2.08963	22.88
45.2493	22.66	0.4015	2.00403	4.13
45.9192	17.61	0.3346	1.97635	3.21
48.0275	24.72	0.3346	1.89440	4.50
C2.3 Data Difraksi Sinar-X Sampel Rasio Mol Na₂SiO₂/SiO₂ 0,4

Peak List: (Bookmark 3)

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
8.8501	36.63	0.2007	9.99211	5.61
12.3906	26.08	0.4015	7.14372	3.99
13.9181	581.27	0.0502	6.36297	88.95
16.0901	16.15	0.4015	5.50861	2.47
19.8411	104.37	0.4015	4.47484	15.97
21.6652	44.07	0.2007	4.10204	6.74
24.3242	653.49	0.3346	3.65931	100.00
24.6283	513.92	0.1004	3.61481	78.64
26.6851	134.47	0.1338	3.34068	20.58
28.4178	94.65	0.2007	3.14081	14.48
29.9268	52.32	0.2007	2.98579	8.01
31.8767	374.72	0.2676	2.80746	57.34
34.9998	403.77	0.1338	2.56377	61.79
37.9220	54.35	0.4015	2.37267	8.32
42.6907	141.42	0.2676	2.11802	21.64
43.2540	110.07	0.3346	2.09174	16.84
45.1663	15.20	0.5353	2.00752	2.33
48.0109	29.59	0.2007	1.89502	4.53

C2.4 Data Difraksi Sinar-X Sampel Rasio Mol Na₂SiO₂/SiO₂ 0,5

rear List. (DOURINAIK 5)	Peak	k List: (Bookmark 3)
--------------------------	------	-----------	-------------

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
5.1332	39.72	0.2007	17.21597	2.83
8.8971	29.02	0.4015	9.93944	2.06
12.5905	516.78	0.0836	7.03076	36.76
14.0961	27.53	0.2676	6.28303	1.96
17.4304	327.21	0.1004	5.08791	23.27
17.8937	308.52	0.0836	4.95721	21.95
20.1005	22.42	0.2342	4.41768	1.59
21.9230	907.40	0.1673	4.05439	64.54
25.4686	35.39	0.2676	3.49742	2.52
26.9373	111.42	0.2007	3.30998	7.93
27.6552	753.32	0.1020	3.22299	53.58
27.7523	853.51	0.1004	3.21460	60.71
28.3551	1405.85	0.1171	3.14761	100.00
30.0120	50.83	0.1673	2.97751	3.62
30.9430	269.03	0.1338	2.89001	19.14
33.0986	796.52	0.2007	2.70656	56.66
33.6264	652.72	0.2342	2.66528	46.43
35.1072	118.92	0.2342	2.55617	8.46
36.2830	100.42	0.1673	2.47599	7.14
37.3506	113.88	0.2342	2.40764	8.10
38.2895	163.99	0.2342	2.35074	11.67
39.6311	22.25	0.2007	2.27420	1.58
40.4272	21.89	0.4684	2.23123	1.56
42.0699	45.97	0.3346	2.14783	3.27
43.6649	43.31	0.2007	2.07300	3.08
44.3188	61.33	0.3346	2.04393	4.36
45.6257	80.17	0.2007	1.98837	5.70

C2.5 Data Difraksi Sinar-X Sampel Rasio Mol Na₂SiO₂/SiO₂ 0,7

Peak List: (Bookmark 3)

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
8.8856	26.65	0.4015	9.95228	3.85
12.5426	25.43	0.2676	7.05752	3.67
14.0692	468.46	0.2342	6.29499	67.63
17.7378	26.08	0.4015	5.00042	3.77
19.9693	103.39	0.2007	4.44641	14.93
21.7475	69.02	0.1338	4.08670	9.96
24.3599	692.66	0.3011	3.65403	100.00
26.7899	99.37	0.2342	3.32785	14.35
27.6385	85.96	0.2007	3.22757	12.41
28.3293	175.21	0.3011	3.15042	25.29
29.9653	62.85	0.2007	2.98204	9.07
31.5365	268.44	0.2676	2.83696	38.75
32.0246	360.31	0.1673	2.79483	52.02
33.0382	79.76	0.4015	2.71137	11.51
34.6557	350.14	0.1338	2.58844	50.55
35.0676	392.67	0.2342	2.55897	56.69
37.9274	69.62	0.3346	2.37234	10.05
42.8444	232.03	0.2007	2.11078	33.50
45.4045	26.07	0.3346	1.99755	3.76
48.2027	18.65	0.3346	1.88792	2.69

C2.6 Data Difraksi Sinar-X Sampel Rasio Mol Na₂SiO₂/SiO₂ 0,9

Peak List: (Bookmark 3)

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
5.2147	37.40	0.8029	16.94683	4.86
8.7851	42.94	0.2007	10.06582	5.58
12.3203	97.54	0.2342	7.18434	12.68
13.8785	556.80	0.0669	6.38103	72.38
13.9828	578.64	0.1004	6.33366	75.22
17.2589	43.29	0.1673	5.13810	5.63
17.6654	70.08	0.1338	5.02075	9.11
19.9033	108.41	0.3346	4.46100	14.09
21.6981	134.76	0.2007	4.09590	17.52
24.2901	769.24	0.1004	3.66436	100.00
24.5680	562.41	0.1673	3.62355	73.11
26.5939	112.43	0.1338	3.35194	14.62
27.4538	149.15	0.1673	3.24887	19.39
28.1011	241.62	0.2676	3.17549	31.41
29.7948	46.87	0.2676	2.99872	6.09
30.6895	62.82	0.2676	2.91330	8.17
31.5160	301.34	0.2342	2.83877	39.17
31.9091	478.38	0.1506	2.80469	62.19
32.9860	168.19	0.2342	2.71554	21.86
33.3921	129.49	0.2342	2.68344	16.83
34.5543	409.70	0.1673	2.59580	53.26
35.0528	374.16	0.2676	2.56002	48.64
37.4538	76.93	0.2007	2.40124	10.00
38.1014	77.66	0.1004	2.36190	10.10
42.6861	259.47	0.2007	2.11824	33.73
43.3095	153.15	0.1004	2.08919	19.91
48.1616	26.84	0.2676	1.88944	3.49

C2.7 Data Difraksi Sinar-X Sampel Rasio Mol Na₂SiO₂/SiO₂ 1,1

Peak List: (Bookmark 3)

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
8.7152	48.17	0.2007	10.14645	11.09
13.9007	427.86	0.1171	6.37091	98.50
13.9999	407.15	0.0502	6.32597	93.73
19.8488	66.36	0.2676	4.47314	15.28
24.4709	434.37	0.0836	3.63770	100.00
26.6537	52.11	0.2007	3.34455	12.00
28.3828	68.67	0.3346	3.14461	15.81
31.8502	334.72	0.1004	2.80974	77.06
34.4956	131.88	0.2007	2.60009	30.36
34.9002	293.90	0.0836	2.57086	67.66
37.9434	35.95	0.3346	2.37138	8.28
42.6361	80.71	0.1673	2.12061	18.58
43.2364	82.35	0.2676	2.09255	18.96
45.5269	10.73	0.8029	1.99246	2.47
48.1171	18.64	0.3346	1.89108	4.29

C2.8 Data Difraksi Sinar-X Sampel Rasio Mol Na₂SiO₂/SiO₂ 1,3 Counts Sampel Zeolit 1,3 Shari

Peak List: (Bookmark 3)

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
8.8446	33.02	0.3346	9.99826	4.33
14.0479	763.35	0.0836	6.30446	100.00
17.7643	23.49	0.3346	4.99302	3.08
19.9219	120.01	0.4015	4.45689	15.72
24.2891	652.89	0.2342	3.66451	85.53
24.6224	693.71	0.2342	3.61566	90.88
26.7598	58.47	0.3346	3.33153	7.66
28.4797	117.54	0.2342	3.13412	15.40
29.8549	21.53	0.4015	2.99281	2.82
31.8987	556.73	0.0836	2.80558	72.93
34.5400	281.05	0.1673	2.59684	36.82
34.9834	469.28	0.3011	2.56494	61.48
37.4508	59.46	0.2007	2.40143	7.79
37.9927	62.83	0.3346	2.36841	8.23
40.8346	19.69	0.4015	2.20991	2.58
42.8200	226.75	0.2676	2.11193	29.70
43.3084	176.35	0.1673	2.08924	23.10
45.2796	24.78	0.6691	2.00276	3.25
48.1832	25.36	0.3346	1.88864	3.32

C3.2 FTIR Sampel Rasio Mol Na₂SiO₂/SiO₂ 0,3

3448.84

27.648

0.286

3454.62

3444.98

5.358

C3.3 FTIR Sampel Rasio Mol Na₂SiO₂/SiO₂ 0,4

C3.4 FTIR Sampel Rasio Mol Na₂SiO₂/SiO₂ 0,5

C3.5 FTIR Sampel Rasio Mol Na₂SiO₂/SiO₂ 0,7

Corr. 4 0.192 0.126 2.174 0.036 0.054 0.352 0.054 56.342 0.278 0.033 1.602 999.28 422.42 461 528.51 551.66 661.61 700.18 29 205 24.908 22 569 31.327 31.657 29.688 30.324 11.935 34.675 34.945 33.327 29.469 403.14 424.35 511.15 545.87 391.56 405.06 5.986 10.907 1.773 0.713 4.886 0.201 0.156 1.173 0.244 23.086 0.476 0.224 405.06 439.78 522.73 545.87 594.1 684.75 817.85 1357.93 1475.59 10.907 41.058 11.619 18.176 41.052 13.951 261.503 39.679 9.652 54.922 545.87 582.52 675.11 711.76 1267.2 1444.7 989.52 1398.44 1483.31 1496.81 1707.06 10 1649.19 2.242 0.21 1595.18 51.823 1.602 3450.77 3456 55 3443.05 7.146

C3.6 FTIR Sampel Rasio Mol Na₂SiO₂/SiO₂ 0,9

C4. Mikrograf SEM

C4.2 Mikrograf SEM Sampel Rasio Mol Na₂SiO₂/SiO₂ 0,7

C5. Data EDX

C5.1 Data EDX Sampel Rasio Mol Na₂SiO₂/SiO₂ 0,5

Zeolit 0,5

calibration image 5030Date:1/8/2018 12:05:07 PMImage size:512 x 384Mag:10000xHV:20.0kV

1/8/2018

Zeolit 0,5

Date:1/8/2018 12:06:29 PM Puls th.:5.63kcps HV:20.0kV

calibration image 21 3979Date:1/8/2018 12:06:30 PMImage size:497 x 339Mag:10000xHV:20.0kV

1/8/2018

C5.2 Data EDX Sampel Rasio Mol Na₂SiO₂/SiO₂ 0,7

1/8/2018

1/8/2018

BIODATA PENULIS

Penulis bernama lengkap Prima Kirana Dewi dan biasa dipanggil Prima. Penulis dilahirkan di Blitar, 12 Mei 1994, merupakan anak pertama dari dua bersaudara. Pendidikan formal yang telah ditempuh oleh penulis, yaitu di TK Bina Cendika (1998-2000), SDN Percobaan I Malang (2000-2006), SMPN I Malang (2006-2009) dan SMAN 2 Malang (2009-2012). Pada tahun 2012 penulis diterima di Departemen Kimia FIA ITS Surabaya melalui jalur mandiri (PKM) serta

terdaftar dengan NRP 01211240000106. Selama perkuliahan penulis aktif di berbagai kegiatan mahasiswaan diantaranya staf UKM IFLS, panitia acara GEMPA FIA ITS. Selain itu, penulis juga pernah melakukan Kerja Praktek di laboratorium air PT. SIER selama kurang lebih 1 bulan. Pada akhir masa studi perkuliahan penulis melakukan penelitian tentang "Pengaruh rasio mol Na₂O/SiO₂ pada pembentukan zeolit dari kaolin bangka belitung" dibawah bimbingan Prof. Dr. Didik Prasetyoko, M.Sc. Penulis menyadari bahwa penulisan tugas akhir ini masih jauh dari sempurna, oleh karena itu penulis mengharapkan kritik dan saran yang membangun. Penulis dapat dihubungi melalui *email* primakirana@gmail.com