

**TUGAS AKHIR - DK 184802** 

# STRATEGI PENGEMBANGAN KEBIJAKAN PENURUNAN EMISI KENDARAAN DI KAWASAN SENAYAN, JAKARTA

SEBASTIANA GANTHYA AGAPE JAHJA 08211540000107

Dosen Pembimbing Dr. Ing. Ir. Haryo Sulistyarso

Departemen Perencanaan Wilayah dan Kota Fakultas Arsitektur, Desain dan Perencanaan Institut Teknologi Sepuluh Nopember 2019



#### **TUGAS AKHIR - DK184802**

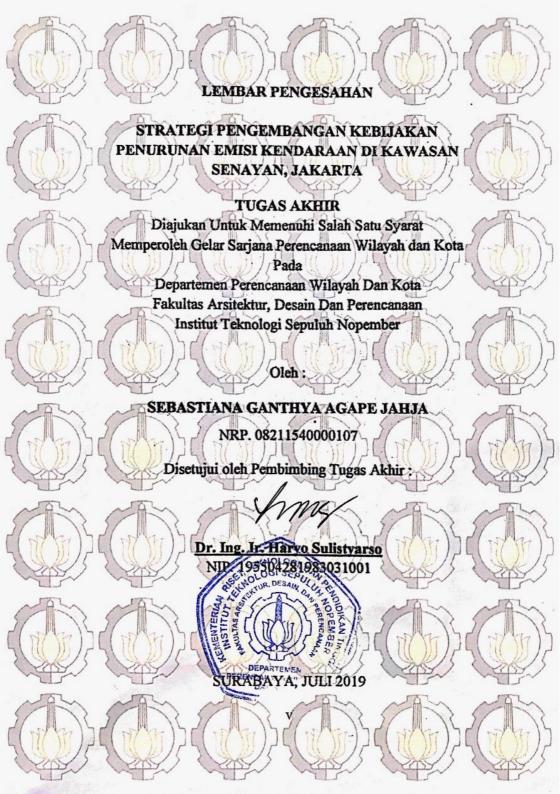
# STRATEGI PENGEMBANGAN KEBIJAKAN PENURUNAN EMISI KENDARAAN DI KAWASAN SENAYAN, JAKARTA

SEBASTIANA GANTHYA AGAPE JAHJA 08211540000107

Dosen Pembimbing
Dr. Ing. Ir. Haryo Sulistyarso

Departemen Perencanaan Wilayah dan Kota Fakultas Arsitektur, Desain dan Perencanaan Institut Teknologi Sepuluh Nopember 2019




# FINAL PROJECT - DK184802

# POLICY DEVELOPMENT STRATEGY IN DECREASING VEHICLE EMISSION IN SENAYAN AREA, JAKARTA

SEBASTIANA GANTHYA AGAPE JAHJA 08211540000107

Advisor Dr. Ing. Ir. Haryo Sulistyarso

Department of Urban and Regional Planning Faculty of Architecture, Design and Planning Sepuluh Nopember Institute of Technology 2019



# STRATEGI PENGEMBANGAN KEBIJAKAN PENURUNAN EMISI KENDARAAN DI KAWASAN SENAYAN, JAKARTA

Nama Mahasiswa : Sebastiana Ganthya Agape Jahja

NRP : 08211540000107

Departemen : Perencanaan Wilayah dan Kota

**FADP-ITS** 

Dosen Pembimbing : Dr. Ing. Ir. Haryo Sulistyarso

#### **ABSTRAK**

Berdasarkan data historis konsumsi energy final yang diambil dari Data Inventory Emisi GRK (Gas Rumah Kaca) Sektor Energi oleh Kementrian Energi dan Sumber Daya Mineral, pangsa emisi GRK di Indonesia didominasi oleh sektor transportasi sebesar 53%. Pertumbuhan kendaraan tergolong paling tinggi di beberapa kota salah satunya adalah Jakarta Selatan. Konsep Low Emission Zone (LEZ) adalah penerapan regulasi kendaraan bermotor untuk meningkatkan kualitas udara di wilayah perkotaan dalam bentuk zona. Akan tetapi konsep LEZ yang diterapkan merupakan adaptasi berdasarkan karakterisitik yang mempengaruhi tingginya emisi kendaraan di Jakarta Selatan. Berdasarkan Rencana Detail Tata Ruang Kota Administrasi Jakarta Selatan, Senayan merupakan Kawasan Central Business District (CBD) yang menyebabkan banyak aktivitas yang timbul di kawasan tersebut. Selain itu masih ada beberapa kendaraan yang masih belum lulus standar emisi. Tujuan penelitian ini adalah untuk merumuskan strategi pengembangan kebijakan penurunan emisi kendaraan di Kawasan Senayan, Jakarta Selatan.

Penelitian ini merupakan penelitian kuantitatif yang dijelaskan secara kualitatif. Metode kuantitatif yang digunakan adalah

analisis regresi linier berganda, sementara metode kualitatif yang digunakan adalah analisis SWOT. Sumber-sumber data didapatkan berdasarkan hasil obervasi (*traffic counting*), studi literatur dan hasil kuisioner. Landasan dari penelitian ini adalah pencemaran udara, faktor-faktor yang mempengaruhi emisi kendaraan dan regulasi-regulasi penurunan emisi kendaraan di dalam dan luar negeri.

Berdasarkan analisa data yang dilakukan, diperoleh kesimpulan bahwa faktor-faktor yang memberikan pengaruh paling besar terhadap emisi kendaraan adalah kapasitas ruas jalan, ruang terbuka hijau dan jarak antar persimpangan. Oleh sebab itu ketiga variabel ini dijelaskan secara kuantitatif dalam strategi. Selain itu tambahan-tambahan regulasi penurunan emisi kendaraan juga dijelaskan secara kualitatif. Sehingga pada penyusunan strategi didapatkan empat perumusan strategi, yaitu penambahan ruang terbuka hijau pubik, melakukan penelitian mengenai rekayasa lalu lintas sebagai bentuk pengurangan kapasitas ruas jalan dan penambahan jarak antar persimpangan, menyusun program berdasarkan skenario penurunan emisi kendaraan di Kawasan Senayan dan melakukan penelitian lanjutan pada setiap kurun waktu tertentu karena sifat emisi kendaraan yang dinamis. Strategistrategi tersebut diharapkan dapat mewujudkan RAN-GRK bidang transportasi, yaitu untuk mengurangi emisi kendaraan dengan mendorong masyarakat untuk melakukan perjalanan dengan Non-Motorized Transport (NMT) atau menggunakan kendaraan yang lebih ramah lingkungan.

Kata kunci: emisi kendaraan, transportasi, regresi linier berganda, SWOT

# POLICY DEVELOPMENT STRATEGY IN DECREASING VEHICLE EMISSION IN SENAYAN AREA, JAKARTA

Student Name : Sebastiana Ganthya Agape Jahja

NRP : 08211540000107

Department : Urban and Regional Planning

**FADP-ITS** 

Mentor Lecturer : Dr. Ing. Ir. Haryo Sulistyarso

#### ABSTRACT

Based on historical data of final energy consumption from Energy Sector of Greenhouse Gas Emission Inventory made by Ministry of Energy and Mineral Resources, emission sharing of greenhouse gas in Indonesia is dominated by transportation sector in the amount of 53%. Accretion of private vehicles classified as the highest in several part of the cities, including South of Jakarta. Low Emission Zone (LEZ) Concept is one of the implementation of vehicles regulation to increase air quality in inner cities in a form of zone. However LEZ concept which is going to be discussed is just an adaptation based on the characterisitic which affect the elevation of vehicle emission in South of Jakarta. Based on Spatial Detail Plan or also known as Rencana Detail Tata Ruang Kota Administrasi Jakarta Selatan, Senayan is directed to be a *Central* Business District (CBD) which caused the generation of activities there. Moreover there are still a lof of vehicle which haven't pass the vehicle emission standard. The purpose of this research is to compose policy development strategy to decrease vehicle emission in Senayan, South of Jakarta.

This research is a quantitative research that explained by qualitative research. Quantitative method which is used is multiple linear regression and qualitative method which is used is SWOT analysis. Sources of data is based on observation (traffic counting), literature and questionnaire results. The cornerstone of this research is air pollution, factors which affect vehicle emission and regulation about decreasing vehicle emission domestic or abroad.

Based on analysis, obtained conclusion that factors which giving big impact to vehicle emission are road capacity, distance between intersections and green open space. Therefore these three factors will be explained quantitatively in strategy. While the others will be explained qualitatively. In addition, several regulations about decreasing vehicle emission will also be explained qualitatively. So that in organizing the policy development strategy obtained increasing green open space, researching about traffic engineering as a form of decreasing road capacity and increasing distance between intersections, organizing programs based on scenario of decreasing vehicle emissions and researching for further research because dynamic emission properties. These strategies are expected to manifest RAN-GRK in transportation sector, which is to encourage citizens to generate Non-Motorized Transport (NMT) or using vehicles that are more environmentally friendly.

Keyword: vehicle emissions, transportation, multiple linear regression SWOT

#### KATA PENGANTAR

Puji syukur kehadirat Tuhan yang Maha Esa karena berkat limpahan dan karunia-Nya penulis dapat menyelesaikan tugas akhir yang berjudul "Strategi Pengembangan Kebijakan Penurunan Emisi Kendaraan di Kawasan Senayan, Jakarta" dengan tepat waktu. Oleh sebab itu penulis berterima kasih kepada seluruh pihak yang telah membantu selama penyusunan Tugas Akhir ini, antara lain:

- 1. Bapak Ir. Jahja Fitriono Sudarmanto, MM. dan Ibu Stefanini Sumardiman, selaku orang tua penulis serta Patricia Btari Filia Jahja dan Ezekiela Parisya Storge Jahja, selaku adik kandung penulis dan Ibu Marsinah, selaku asisten rumah tangga yang telah memberikan dukungan berupa doa dan semangat selama proses perkuliahan dan penyusunan Tugas Akhir.
- 2. Bapak Dr. Ing. Ir. Haryo Sulistyarso, selaku dosen pembimbing yang telah membantu dan memberikan masukan, serta nasehat dengan sabar selama proses penyusunan Tugas Akhir.
- 3. Ibu Hertiari Idajati, ST., M.Sc., Ibu Karina Pardinie Tucunan, ST., M.Eng dan Ibu Ummi Fadilah K, ST., MT., selaku dosen yang telah memberikan masukan dan pandangan lain terkait penelitian Tugas Akhir.
- 4. Ibu Ketut Dewi Martha Erli Handayeni, ST., MT. dan Bapak Mochamad Yusuf, ST., M.Sc, selaku dosen koordinator mata kuliah Tugas Akhir yang sudah memberikan banyak kemudahan dalam proses penyusunan Tugas Akhir.
- 5. Ibu Ema Umilia, ST., MT., selaku dosen wali yang sudah membimbing dan membantu selama proses perkuliahan dan penyusunan Tugas Akhir.
- 6. Bapak Paulus Abuntalip, Ibu Deanne Undap, Bapak Boiman, Ibu Retno, Ibu Fabiana Awuy, Ibu Noviany Sumardiman,

Bapak Manu, Ibu Kristina Rinobaningsih, Ibu Eti dan anggota keluarga lainnya yang telah memberikan dukungan berupa doa dan semangat selama proses perkuliahan dan penyusunan Tugas Akhir.

- 7. Alfan Najikh, Al Fikram Reza M., Ayu Annisa A. A., Titisari Haruming Tyas, dan selaku teman-teman sepembimbingan yang telah membantu selama proses asistensi, kelengkapan dokumen dan penyusunan Tugas Akhir.
- 8. Ajeng Tias Indira, Atika Mitzalina, Bayu Samudra D., Danuta Aldina, Evalina Vialita, Nadhila Ismiralda, Naufal Abdi, Putra Galuh Firmansyah, Tanesha Aden, dan Alektrona PWK ITS 2015 lainnya selaku teman-teman dari awal perkuliahan yang telah menemani dan membantu penulis selama proses perkuliahan dan penyusunan Tugas Akhir.
- 9. Dowglas Malau, Laras Herwitayu Putri, dan Queen Natama Tambunan dan teman-teman di luar jurusan PWK ITS lainnya yang telah menemani dan memberikan semangat selama proses perkuliahan dan penyusunan Tugas Akhir.
- 10. Krismansyah Ragil Ardiyanto Putra selaku penyemangat dan pendukung penulis selama perkuliahan yang telah membantu selama proses perkuliahan dan penyusunan Tugas Akhir.

Demikian Tugas Akhir Strategi Pengembangan Kebijakan Penurunan Emisi Kendaraan di Kawasan Senayan, Jakarta ini yang kiranya masih jauh dari kesempurnaan. Oleh sebab itu kritik dan saran yang bersifat membangun dari semua pihak sangat penulis harapkan. Semoga tugas akhir ini dapat bermanfaat bagi pembaca dan dapat memberikan masukan informasi serta wacana yang bermanfaat bagi masyarakat pada umumnya.

Surabaya, Juli 2019

Sebastiana Ganthya Agape Jahja NRP. 08211540000107

# **DAFTAR ISI**

| HALAMAN JUDUL                     | i    |
|-----------------------------------|------|
| LEMBAR PENGESAHAN                 | v    |
| ABSTRAK                           | vii  |
| ABSTRACT                          | ix   |
| KATA PENGANTAR                    | xi   |
| DAFTAR ISI                        | xiii |
| DAFTAR TABEL                      | xvii |
| DAFTAR GAMBAR                     | xix  |
| DAFTAR PETA                       | XX   |
| BAB I PENDAHULUAN                 | 1    |
| 1.1 Latar Belakang                | 1    |
| 1.2 Rumusan Masalah               | 3    |
| 1.3 Tujuan dan Sasaran Penelitian | 3    |
| 1.4 Ruang Lingkup Penelitian      | 4    |
| 1.4.1 Lingkup Wilayah Studi       | 4    |
| 1.4.2 Lingkup Substansi           | 7    |
| 1.4.3 Lingkup Pembahasan          | 7    |
| 1.5 Manfaat Penelitian            | 7    |
| 1.5.1 Manfaat Teoritis            | 7    |
| 1.5.2 Manfaat Praktis             | 7    |
| 1.6 Sistematika Penulisan         | 8    |
| 1.7 Kerangka Berpikir             | 9    |

| B | SAB II TINJAUAN PUSTAKA                                                   | 11 |
|---|---------------------------------------------------------------------------|----|
|   | 2.1 Pencemaran Udara                                                      | 11 |
|   | 2.1.1 Jenis-Jenis dan Klasifikasi Pencemaran Udara                        | 11 |
|   | 2.1.2 Beban Emisi                                                         | 15 |
|   | 2.2 Faktor-Faktor yang Mempengaruhi Emisi Gas Buang                       | 18 |
|   | 2.2.1 Karakteristik kendaraan bermotor                                    | 21 |
|   | 2.2.2 Pertumbuhan jumlah kendaraan                                        | 23 |
|   | 2.2.3 Prasarana Transportasi                                              | 24 |
|   | 2.2.4 Jenis Penggunaan Lahan                                              | 25 |
|   | 2.2.5 Manajemen lalu lintas                                               | 26 |
|   | 2.3 Kebijakan Penurunan Emisi pada Bidang Transportasi                    | 27 |
|   | 2.3.1 Low Emission Zone (LEZ)                                             | 27 |
|   | 2.3.2 Rencana Aksi Nasional Gas Rumah Kaca (RAN-Gl<br>Bidang Transportasi |    |
|   | 2.4 Sintesa Tinjauan Pustaka                                              | 39 |
| В | AB III METODOLOGI                                                         | 45 |
|   | 3.1 Pendekatan Penelitian                                                 | 45 |
|   | 3.2 Jenis Penelitian                                                      | 45 |
|   | 3.3 Variabel dan Definisi Operasional                                     | 46 |
|   | 3.4 Populasi dan Sampel                                                   | 48 |
|   | 3.5 Metode Pengumpulan Data                                               | 55 |
|   | 3.5.1 Metode Pengumpulan Data Primer                                      | 55 |
|   | 3.5.2 Metode Pengumpulan Data Sekunder                                    | 56 |
|   | 3.6 Metode Analisis                                                       | 58 |
|   | 3.6.1 Identifikasi Volume Lalu Lintas                                     | 66 |
|   | 3.6.2 Perhitungan Jumlah Emisi Gas Buang Kendaraan                        | 70 |

| 3.6.3 Fakor-faktor yang Mempengaruhi Emisi Ga<br>Kendaraan           |     |
|----------------------------------------------------------------------|-----|
| 3.6.4 Perumusan Strategi Pengembangan F<br>Penurunan Emisi Kendaraan |     |
| 3.7 Tahapan Penelitian                                               | 85  |
| BAB IV HASIL DAN PEMBAHASAN                                          | 87  |
| 4.1 Gambaran Umum                                                    | 87  |
| 4.1.1 Wilayah Administrasi                                           | 87  |
| 4.1.2 Penggunaan Lahan                                               | 91  |
| 4.2 Identifikasi Volume Kendaraan                                    | 97  |
| 4.3 Perhitungan Emisi Gas Buang Kendaraan                            | 115 |
| 4.4 Faktor-Faktor yang Mempengaruhi Emisi Ga<br>Kendaraan            |     |
| 4.4.1 Kapasitas Ruas Jalan                                           | 121 |
| 4.4.2 Pergerakan Kendaraan                                           | 126 |
| 4.4.3 Ruang Terbuka Hijau                                            | 127 |
| 4.4.4 Jarak antar Persimpangan                                       | 129 |
| 4.4.5 Umur Kendaraan                                                 | 132 |
| 4.4.6 Perawatan Kendaraan                                            | 133 |
| 4.4.7 Skenario Pengurangan Emisi Kendaraan                           | 144 |
| 4.5 Perumusan Strategi Pengembangan Kebijakan P<br>Emisi Kendaraan   |     |
| BAB V PENUTUP                                                        | 163 |
| 5.1 Kesimpulan                                                       | 163 |
| 5.2 Saran                                                            | 165 |
| DAFTAR PUSTAKA                                                       | 167 |
| I.AMPIRAN                                                            | 171 |

| В | SIODATA PENULIS                          | 207   |
|---|------------------------------------------|-------|
|   | Lampiran 5. Hasil Analisis               | 203   |
|   | Lampiran 4. Hasil Survey                 | 184   |
|   | Lampiran 3. Form <i>Traffic Counting</i> | 183   |
|   | Lampiran 2. Form Kuisoner                | 177   |
|   | Lampiran 1. Desain Survey                | 1 / 1 |

# DAFTAR TABEL

| Tabel 2. 1 Zat-zat Pencemar Udara Utama                         |
|-----------------------------------------------------------------|
| Tabel 2. 2 Standar Emisi Nasional Sejak Tahun 2007 14           |
| Tabel 2. 3 Faktor Emisi Kendaraan Bermotor Lama di Indonesia    |
| (Kategori Umum)                                                 |
| Tabel 2. 4 Faktor Emisi Kendaraan Bermotor Lama di Indonesia    |
| (Kategori Tambahan)                                             |
| Tabel 2. 5 Klasifikasi Kendaraan Bermotor                       |
| Tabel 2. 6 Arahan Teknis The London LEZ                         |
| Tabel 2. 7 Arahan Teknis Umweltzone Berlin                      |
| Tabel 2. 8 Prinsip dan Tahapan Implementasi Strategi RAN-GRK    |
| Bidang Transportasi                                             |
| Tabel 2. 9 Sintesa Tinjauan Pustaka                             |
| Tabel 3. 1 Variabel dan Definisi Operasional                    |
| Tabel 3. 2 Koridor Traffic Counting                             |
| Tabel 3. 3 Kebutuhan Data Primer dan Sekunder 57                |
| Tabel 3. 4 Metode Analisis                                      |
| Tabel 3. 5 Klasifikasi Kendaraan Penelitian                     |
| Tabel 3. 6 Penyetaraan Klasifikasi Kendaraan 68                 |
| Tabel 3. 7 EMP Menurut Klasifikasi Kendaraan Penelitian 69      |
| Tabel 3. 8 Faktor Emisi Lokal                                   |
| Tabel 3. 9 Konsumsi Energi Spesifik Bahan Bakar Kendaraan . 71  |
| Tabel 3. 10 Kapasitas Dasar Ruas Jalan                          |
| Tabel 3. 11 Faktor Penyesuaian Kapasitas untuk Lebar Jalur Lalu |
| Lintas (FCw)                                                    |
| Tabel 3. 12 Faktor Penyesuaian Pemisah Arah                     |
| Tabel 3. 13 Faktor Penyesuaian Akibat Hambatan Samping untuk    |
| Jalan Perkotaan (Jalan dengan Kereb)                            |
| Tabel 3. 14 Faktor Penyesuaian Ukuran Kota                      |
| Tabel 3. 15 Contoh Tabel Analisis SWOT                          |
| Tabel 4. 1 Jumlah Kendaraan Masing-Masing Titik Pengamatar      |
| Weekday dan Weekend (Kendaraan/Jam)                             |

| Tabel 4. 2 Keterangan Tambahan Masing-Masing Titik              |
|-----------------------------------------------------------------|
| Pengamatan99                                                    |
| Tabel 4. 3 Panjang Jalan Masing-Masing Titik Pengamatan116      |
| Tabel 4. 4 Emisi Gas Buang Kendaraan pada Koridor Penelitian    |
| 117                                                             |
| Tabel 4. 5 Keterangan yang Dibutuhkan untuk Kapasitas Ruas      |
| Jalan122                                                        |
| Tabel 4. 6 Perhitungan Kapasitas Ruas Jalan124                  |
| Tabel 4. 7 Luas Ruang Terbuka Hijau pada Kawasan Pengamatan     |
| 128                                                             |
| Tabel 4. 8 Jarak antar Persimpangan dalam kilometer130          |
| Tabel 4. 9 Interpretasi Anova Table137                          |
| Tabel 4. 10 Beban Emisi di Kawasan Senayan144                   |
| Tabel 4. 11 Standar Emisi Nasional Sejak Tahun 2007145          |
| Tabel 4. 12 Standar Emisi Kendaraan Zat CO pada Koridor Traffic |
| Counting145                                                     |
| Tabel 4. 13 Kapasitas Ruas Jalan Kawasan Senayan147             |
| Tabel 4. 14 Pengurangan Kapasitas Ruas Jalan pada Masing-       |
| Masing Koridor Pengamatan148                                    |
| Tabel 4. 15 Luas Ruang Terbuka Hijau pada Masing-Masing         |
| Kawasan Pengamatan                                              |
| Tabel 4. 16 Jarak Antar Persimpangan pada Masing-Masing         |
| Kawasan Pengamatan                                              |
| Tabel 4. 17 Faktor Internal dan Faktor Eksternal SWOT153        |
| Tabel 4. 18 Penjabaran Kekuatan, Kelamahan, Peluang dan         |
| Ancaman                                                         |
| Tabel 4. 19 Strategi SWOT (Strength, Weakness, Opportunities    |
| dan Threat)                                                     |

# **DAFTAR GAMBAR**

| Gambar 2. 1 Peta The London LEZ                                    |
|--------------------------------------------------------------------|
| Gambar 2. 2 Peta Umweltzone Berlin                                 |
| Gambar 4. 1 Volume Lalu Lintas Pacific Place (Weekday)103          |
| Gambar 4. 2 Volume Lalu Lintas Grand Lucky (Weekday)104            |
| Gambar 4. 3 Volume Lalu Lintas Jend. Sudirman (Weekday)105         |
| Gambar 4. 4 Volume Lalu Lintas Polda Metro Jaya (Weekday)          |
| 106                                                                |
| Gambar 4. 5 Volume Lalu Lintas Senopati (Weekday)107               |
| Gambar 4. 6 Volume Lalu Lintas Widya Chandra (Weekday) .108        |
| Gambar 4. 7 Volume Lalu Lintas Pacific Place (Weekend)109          |
| $Gambar\ 4.\ 8\ Volume\ Lalu\ Lintas\ Grand\ Lucky\ (Weekend)\110$ |
| Gambar 4. 9 Volume Lalu Lintas Jend. Sudirman (Weekend)111         |
| Gambar 4. 10 Volume Lalu Lintas Polda Metro Jaya (Weekend)         |
| 112                                                                |
| Gambar 4. 11 Volume Lalu Lintas Senopati (Weekend)113              |
| Gambar 4. 12 Volume Lalu Lintas Widya Chandra (Weekend)114         |
| Gambar 4. 13 Beban Emisi Kawasan Senayan119                        |
| Gambar 4. 14 Kapasitas Ruas Jalan Masing-Masing Koridor            |
| Pengamatan                                                         |
| Gambar 4. 15 Jarak Tempuh dari Asal ke Kawasan Senayan (Km)        |
| 126                                                                |
| Gambar 4. 16 Waktu Tempuh dari Asal ke Kawasan Senayan             |
| (menit)                                                            |
| Gambar 4. 17 Luas Ruang Terbuka Hijau di Kawasan Senayan           |
| 128                                                                |
| Gambar 4. 18 Peta Lokasi Jarak antar Persimpangan129               |
| Gambar 4. 19 Jarak Antar Persimpangan di Kawasan Senayan 131       |
| Gambar 4. 20 Umur Kendaraan dalam Kilometer                        |
| Gambar 4. 21 Perawatan Kendaraan                                   |

# **DAFTAR PETA**

| Peta 1 Batas Wilayah Perencanaan                    | 5    |
|-----------------------------------------------------|------|
| Peta 2 Titik Traffic Counting di Wilayah Penelitian | 53   |
| Peta 3 Batas Administrasi Wilayah Penelitian        | 89   |
| Peta 4 Pola Ruang Kelurahan Senayan berdasarkan     | RDTR |
| Kebayoran Baru 2010-2030                            | 93   |
| Peta 5 Penggunaan Lahan Eksisting Kelurahan Senayan | 95   |

#### **BABI**

#### PENDAHULUAN

#### 1.1 Latar Belakang

Emisi merupakan sebuah zat, energy ataupun komponen lain yang didapat dari sebuah kegiatan yang masuk ke dalam udara yang memiliki ataupun tidak memiliki potensi sebagai unsur pemancar. Gas-gas yang dibuang emisi adalah CO, CO2, NOx dan lain-lain. Gas buang dapat disebabkan oleh berbagai macam sektor, seperti sektor permukiman (rumah tangga), sektor industri, sektor transportasi dan lain-lain. Kadar emisi yang tinggi dapat menimbulkan dampak negatif yaitu pencemaran udara. Salah satu penyebab terjadinya pencemaran udara adalah kadar emisi yang berlebih pada sektor transportasi.

Berdasarkan data historis konsumsi energi final yang diambil dari Data Inventory Emisi GRK (Gas Rumah Kaca) Sektor Energi oleh Kementerian Energi dan Sumber Daya Mineral, emisi GRK sektor energi di Indonesia mengalami peningkatan sebesar 2,43% per tahun (2000-2015). Pangsa emisi ini didominasi oleh sektor transportasi sebesar 53%, kemudian diikuti oleh sektor industri sebesar 35%, rumah tangga 8%, lainnya 3% dan komersial 1%. Pada tahun 2016, emisi yang dikeluarkan oleh sektor transportasi di Indonesia menghasilkan emisi GRK sebesar 127.881 Gg CO2e dengan peningkatan rata-rata sebesar 6,69% per tahun. Sektor transportasi secara keseluruhan memberikan kontribusi terbesar terhadap total emisi. Berdasarkan Inventarisasi Emisi Pencemaran Udara dan Gas Rumah Kaca di Jabodetabek oleh Institut Teknologi Bandung, tingkat pertumbuhan kendaraan di Kabupaten Tangerang, Jakarta Selatan dan Kota Tangerang

tergolong tinggi dibandingkan kota-kota lainnya di Jabodetabek. Polutan CO, CO2, NOx, dan PM 10 memberikan kontribusi emisi masing-masing sebanyak 94,68%, 79,09%, 92,06% dan 83,11%. Polutan paling banyak dikeluarkan oleh sektor transportasi di Jakarta Selatan adalah CO dan NOx.

Salah satu upaya dalam mengatasi permasalahan emisi kendaraan adalah penerapan Konsep *Low Emission Zone* (LEZ). Konsep ini adalah penerapan regulasi kendaraan bermotor untuk meningkatkan kualitas udara di wilayah perkotaan dalam bentuk zona. Tujuan dari konsep ini yaitu untuk mengurangi polusi udara di wilayah perkotaan tersebut. Konsep LEZ sudah diterapkan di London dan Berlin dari tahun 2008. Akan tetapi tidak sepenuhnya konsep ini dapat diterapkan di Indonesia karena memiliki karakteristik yang berbeda. Penerapan konsep yang dilaksanakan di Indonesia merupakan adaptasi dari penerapan konsep di luar negeri. Sehingga tidak secara detail memiliki kesamaan dalam mengimplementasikannya. Oleh sebab itu perlu diketahui karakteristik yang mempengaruhi tingginya emisi kendaraan di Indonesia.

Pada tahun 2018, Dinas Lingkungan Hidup Jakarta mengadakan uji emisi kendaraan bermotor gratis di Jl. Asia Afrika Senayan. Dari total kendaraan sejumlah 1.229 kendaraan, hasilnya 1.093 kendaraan lulus uji emisi, selebihnya tidak lulus dan direkomendasikan untuk perbaikan ke bengkel. Selain itu berdasarkan Rencana Detail Tata Ruang Kota Administrasi Jakarta Selatan, Senayan diarahkan menjadi Kawasan *Central Business District* (CBD). Kawasan CBD menyebabkan banyak aktivitas yang timbul di kawasan tersebut. Pada kondisi eksisting penggunaan lahan di Senayan, terdapat banyak bangunan berupa

pusat perbelanjaan, apartemen, perkantoran, restoran dan lain-lain. Oleh sebab itu, konsep LEZ dapat diadaptasi sesuai karakteristik di Senayan, sebagai salah satu wilayah perkotaan di Jakarta Selatan. Berdasarkan hal tersebut maka perlu dikembangkan strategi kebijakan penurunan kadar emisi dengan mengadaptasi konsep zonasi dari *Low Emission Zone* pada kendaraan berbahan bakar bensin khususnya di Senayan, Kebayoran Baru sebagai Ibukota Administrasi Jakarta Selatan

#### 1.2 Rumusan Masalah

Sesuai dengan Data Inventory Emisi GRK Sektor Energi, telah dijelaskan bahwa sektor transportasi yang menjadi sektor yang memberikan kontribusi emisi tertinggi di Jakarta Selatan. Hal ini mengakibatkan terjadinya pencemaran udara di daerah tersebut. Maka perlu dilakukan upaya untuk mengatasi permasalahan mengenai pencemaran udara yang diakibatkan oleh emisi kendaraan. Berdasarkan permasalahan tersebut, didapatkan pertanyaan penelitian yaitu: "Bagaimana merumuskan strategi pengembangan kebijakan untuk mengurangi kadar emisi kendaraan di Kawasan Senayan, Jakarta Selatan?".

# 1.3 Tujuan dan Sasaran Penelitian

Tujuan dari penelitian ini adalah untuk merumuskan strategi pengembangan kebijakan penurunan emisi kendaraan di Kawasan Senayan, Jakarta Selatan. Adapun berdasarkan tujuan di atas, maka sasaran dari penelitian ini adalah:

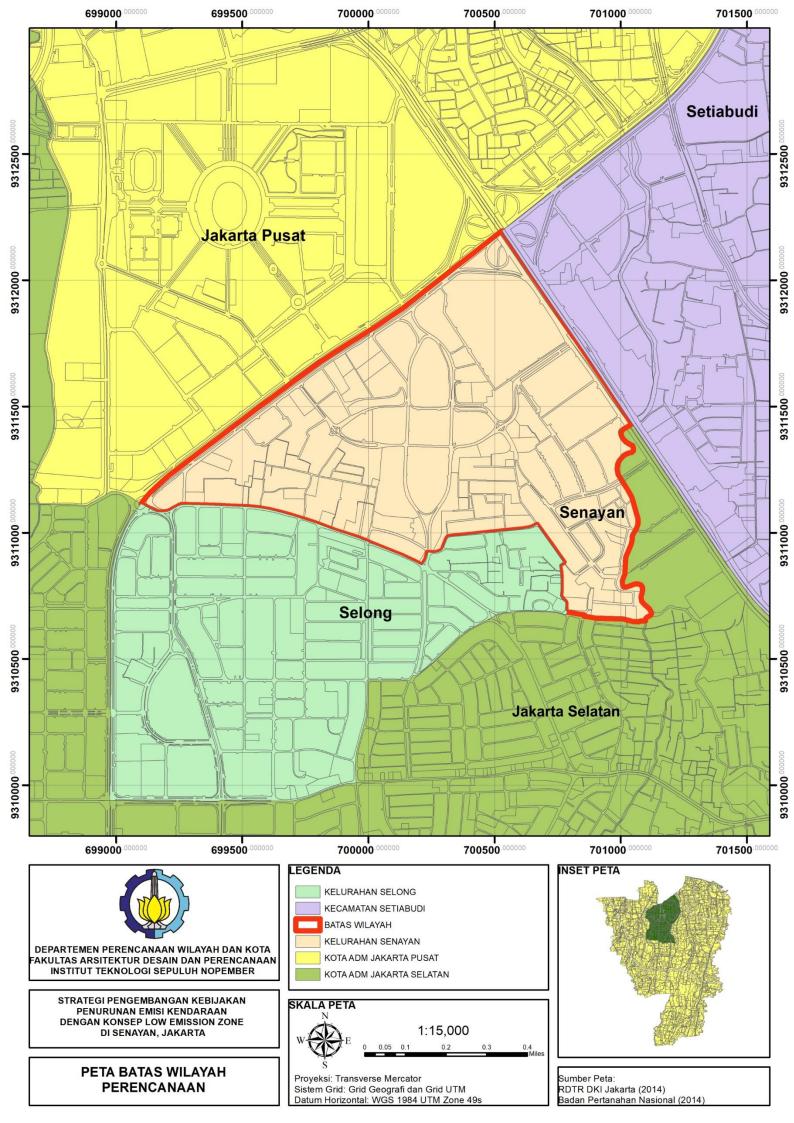
 Identifikasi volume kendaraan di Kawasan Senayan, Jakarta Selatan.

- 2. Menghitung jumlah emisi gas buang kendaraan di Kawasan Senayan, Jakarta Selatan.
- 3. Menganalisis faktor-faktor yang mempengaruhi emisi gas buang kendaraan di Kawasan Senayan, Jakarta Selatan
- 4. Merumuskan strategi pengembangan kebijakan penurunan emisi kendaraan di Kawasan Senayan, Jakarta Selatan berdasarkan hasil analisa faktor-faktor yang mempengaruhi emisi gas buang kendaraan.

### 1.4 Ruang Lingkup Penelitian

#### 1.4.1 Lingkup Wilayah Studi

Ruang lingkup wilayah yang dipilih dalam penelitian ini adalah Senayan, Kebayoran Baru sebagai Ibukota Administrasi Jakarta Selatan, Provinsi DKI Jakarta. Senayan memiliki batas wilayah sebagai berikut:


Batas utara : Kota Administrasi Jakarta Pusat

Batas timur : Kecamatan Setiabudi

Batas selatan : Kelurahan Selong

Batas barat : Kota Administrasi Jakarta Pusat

Berikut ini merupakan peta batas wilayah studi:



# 1.4.2 Lingkup Substansi

Substansi ilmu yang digunakan sebagai landasan teori dalam penelitian ini adalah strategi pengembangan kebijakan penurunan emisi kendaraan di Kawasan Senayan, Jakarta Selatan, dimana teori-teori yang digunakan dalam pendekatan ini adalah teori yang berhubungan dengan perhitungan emisi kendaraan dan regulasi rendah emisi.

## 1.4.3 Lingkup Pembahasan

Lingkup pembahasan yang dimaksud berkaitan dengan karakteristik kawasan di Kawasan Senayan yang mempengaruhi emisi kendaraan dan konsep *Low Emission Zone* yang diadaptasi dari penerapannya di luar negeri sehingga tidak sepenuhnya memiliki kesamaan saat pelaksanaan. Hal ini merupakan solusi penurunan kadar emisi kendaraan di Kawasan Senayan, Jakarta Selatan.

#### 1.5 Manfaat Penelitian

#### 1.5.1 Manfaat Teoritis

Manfaat teoritis penelitian ini yaitu dapat digunakan sebagai referensi studi terkait implementasi strategi pengembangan kebijakan penurunan kadar emisi kendaraan di Kawasan Senayan, Jakarta Selatan.

#### 1.5.2 Manfaat Praktis

Manfaat praktis yang diharapkan dari penelitian ini adalah memberikan rekomendasi arahan kebijakan penurunan kadar emisi kendaraan di Kawasan Senayan, Jakarta Selatan.

# 1.6 Sistematika Penulisan BAR I Pendahuluan

Berisi mengenai latar belakang, rumusan masalah, tujuan dan sasaran penelitian, ruang lingkup baik secara substansi maupun wilayah, sistematika penulisan dan kerangka pemikiran.

# **BAB II Tinjauan Pustaka**

Berisi hasil studi literature berupa dasar-dasar teori dan referensi. Kajian pustaka ini menjelaskan tentang sumber emisi kendaraan, perhitungan emisi kendaraan, konsep umum dari *low emission zone*, regulasi kendaraan beremisi serta sintesa pustaka.

#### **BAB III Metode Penelitian**

Berisi tentang metode pendekatan yang digunakan dalam melakukan penelitian mulai dari variabel, teknik pengumpulan data dan teknik analisis data yang digunakan. Metode ini yang menjadi acuan dalam melakukan analisis.

#### **BAB IV Pembahasan**

Berisi tentang penjelasan dan deskripsi mengenai kondisi eksisting wilayah studi dan pembahasan mengenai hasil analisis yang diperoleh berdasarkan metode yang telah digunakan.

# **BAB V Penutup**

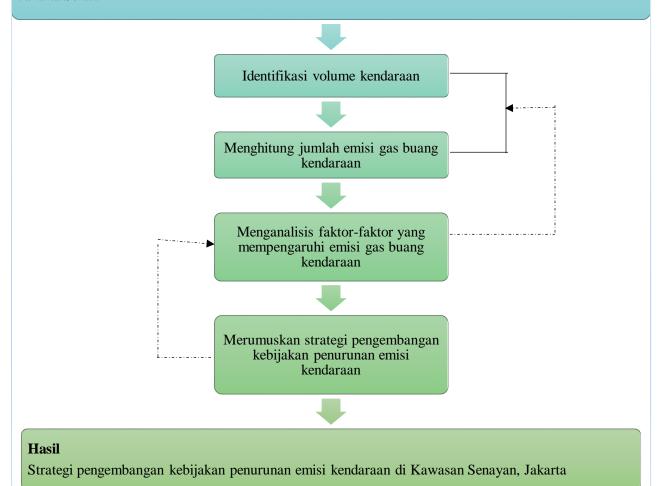
Berisi mengenai kesimpulan yang merupakan hasil dari analisis penelitian yang dilakukan untuk menjawab rumusan masalah agar tujuan dan sasaran penelitian ikut tercapai. Selain itu ada pula saran dan rekomendasi sebagai masukan untuk penelitian selanjutnya.

# 1.7 Kerangka Berpikir

# Latar Belakang

- •Berbagai jenis sumber emisi dapat menyebabkan pencemaran udara
- Sektor transportasi merupakan sektor yang memberikan kontribusi pencemaran udara tertinggi
- •Polutan paling banyak dari sektor transportasi ada di Jakarta Selatan
- •Pencemaran udara berdampak buruk bagi lingkungan dan masyarakat




# Rumusan Masalah

Bagaimana mengurangi kadar emisi kendaraan di Kawasan Senayan, Jakarta Selatan?



# **Tujuan Penelitian**

Merumuskan strategi pengembangan kebijakan penurunan kadar emisi kendaraan di Kawasan Senayan, Jakarta Selatan



#### **BAB II**

#### TINJAUAN PUSTAKA

#### 2.1 Pencemaran Udara

Berdasarkan US Public Health Service, polusi udara dapat didefinisikan sebagai kehadiran dari atmosfer luar yang lebih kontaminan dengan jumlah dan durasi tertentu. Contohya adalah debu, asap, uap atau kabut. Hal ini cenderung merugikan makhluk hidup seperti manusia, tumbuhan dan hewan. Selain itu hal ini juga dapat mengganggu kenyamanan hidup. Polutan bergerak melalui udara, menyebar dan dapat berinteraksi dengan zat lain sebelum mencapai reseptor (laut, manusia, tumbuhan dll.). Untuk menyebarkan polutan gas di atmosfer tergantung pada kondisi metrologi saat waktu tertentu.

### 2.1.1 Jenis-Jenis dan Klasifikasi Pencemaran Udara

Penyebab terciptanya zat pencemar udara ditimbulkan oleh kegiatan alami atau kegiatan manusia (antropogenic). Sumber-sumber pencemar secara alami antara lain pollen, spora, kabut, asap dan partikel debu dari kebakaran hutan dan letusan gunung berapi, CO dari penguraian gas metan dll. Sementara sumber pencemar udara akibat aktivitas manusia antara lain penggunaan bahan bakar fosil untuk pemanasan dan pendinginan, transportasi, industri, konversi energy dan buangan rumah tangga. Jenis-jenis pencemar udara sendiri terbagi menjadi dua, yaitu pencemar indikatif dan pencemar spesifik.

Pencemar indikatif merupakan pencemar yang zatnya telah dijadikan indikator pencemaran udara secara umum, yang biasa tercantum di dalam peraturan kualitas udara. Kelompok zat pencemar indikatif untuk daerah dan permukiman secara perkotaan umum suspended particulate matter (debu), karbon monoksida, total hidrokarbon (THC), oksidaoksida nitrogen (NOx), sulfur dioksida (SO2) dan oksidan fotokimia (ozon). Sementara pencemar spesifik merupakan kelompok zat pencemar udara yang bersifat spesifik yang diemisikan sumbernya. Contoh zat pencemar spesifik adalah gas klor, ammonia, hidrogen sulfida, merkaptan, formaldehida dan lain-lain. Berikut ini adalah tabel zat-zat pencemar udara utama beserta standar kesehatannya.

Tabel 2. 1 Zat-zat Pencemar Udara Utama

| PENCEMARAN      | SUMBER          | STANDAR<br>KESEHATAN |
|-----------------|-----------------|----------------------|
| Karbon          | Buangan         | 10 mg/m3 (9          |
| monoksida (CO)  | kendaraan       | ppm) = 8 jam         |
|                 | bermotor,       | 40 mg/m3 (35         |
|                 | beberapa proses | ppm) = 1 jam         |
|                 | industri        |                      |
| Sulfur dioksida | Panas dan       | 80 μg/m3 (0,03       |
| (SO2)           | fasilitas       | ppm) = 1 tahun       |
|                 | pembangkit      | 365 μg/m3            |
|                 | listrik yang    | (0,14  ppm) =        |
|                 | menggunakan     | 24 jam               |
|                 | minyak dan      |                      |
|                 | batubara yang   |                      |

| PENCEMARAN        | SUMBER          | STANDAR<br>KESEHATAN       |
|-------------------|-----------------|----------------------------|
|                   |                 | KESEHATAN                  |
|                   | mengandung      |                            |
|                   | sulfur, pabrik  |                            |
| D . 11 1 .        | asam sulfat     | 50 / 2 1                   |
| Partikulat        | Buangan         | $50  \mu g/m3 = 1$         |
|                   | kendaraan       | tahun                      |
|                   | bermotor,       | $150 \mu \text{g/m}3 = 24$ |
|                   | beberapa proses | jam                        |
|                   | industri,       | Terdiri dari               |
|                   | buangan         | karbon, nitrat,            |
|                   | pengabuan,      | sulfat dan unsur           |
|                   | panas dan       | metal seperti              |
|                   | pembangkit      | timah hitam,               |
|                   | tenaga listrik, | tembaga, besi              |
|                   | reaksi-reaksi   | dan seng                   |
|                   | polusi gas di   |                            |
|                   | atmosfir        |                            |
| Timah hitam (Pb)  | Buangan         | $1,5  \mu g/m3 = 3$        |
|                   | kendaraan       | bulan                      |
|                   | bermotor,       |                            |
|                   | peleburan       |                            |
|                   | timbal, pabrik  |                            |
|                   | accu            |                            |
| Nitrogen dioksida | Buangan         | 100 μg/m3                  |
| (NO2)             | kendaraan       | (0,05  ppm) = 1            |
|                   | bermotor, panas | tahun. Bereaksi            |
|                   | dan fasilitas   | terhadap                   |
|                   | pembangkit      | hidrokarbon                |
|                   | listrik, asam   | dan sinar                  |

| PENCEMARAN | SUMBER          | STANDAR<br>KESEHATAN |
|------------|-----------------|----------------------|
|            | nitrit, bahan   | matahari             |
|            | peledak, pabrik | membentuk            |
|            | pupuk           | oksidan              |
|            |                 | fotokimia            |
| Ozon (O3)  | Terbentuk di    | 235 μg/m3            |
|            | atmosfir akibat | (0,12  ppm) = 1      |
|            | reaksi nitrogen | jam                  |
|            | oksida,         |                      |
|            | hidrokarbon dan |                      |
|            | sinar matahari  |                      |

Sumber: Pencemaran Udara: Jenis-Jenis, Klasifikasi dan Parameter Pencemar Udara (2018)

Berdasarkan Indonesian Multi-sectoral Action Plan Group on Vehicle Emissions Reduction (2002), didapatkan prediksi standar emisi pada tahun 2007 tergantung pada kategori kendaraan bermotor. Standar emisi tersebut adalah sebagai berikut.

Tabel 2. 2 Standar Emisi Nasional Sejak Tahun 2007

| Kategori                 | Standar Emisi (gram/km) |
|--------------------------|-------------------------|
| 2-wheeled motorcycles    | 5                       |
| Gas fueled vehicles      |                         |
| (passenger cars and mini | 2,2                     |
| buses)                   |                         |
| Trucks                   | 4                       |

Sumber: Indonesian Multi-sectoral Action Plan Group on Vehicle Emissions Reduction, 2002 Sumber-sumber pencemar sangat bervariasi sehingga dapat digolongkan menjadi 4 sumber utama sebagai berikut:

- a) *Mobile Transportation* (Sumber Bergerak), seperti kendaraan bermotor, pesawat udara, kereta api, kapal bermotor dan penenganan/evaporasi gasoline.
- b) Stationary Combustion (Sumber Tidak Bergerak), seperti perumahan, daerah perdagangan, tenaga dan pemanasan industri, termasuk tenaga uap yang digunakan sebagai energy oleh industri.
- c) *Industrial Processes* (Proses Industri), seperti proses kimiawi, metalurgi, kertas dan penambangan minyak.
- d) Solid Waste Disposal (Pembuangan Sampah), seperti buangan rumah tangga dan perdagangan, buangan hasil pertambangan dan pertanian serta rumah sakit.

## 2.1.2 Beban Emisi

Berdasarkan Kementrian Lingkungan Hidup (2012), tahapan awal dalam menghitung jumlah beban emisi adalah dengan menghitung volume lalu lintas. Volume lalu lintas pada suatu ruas jalan adalah jumlah kendaraan bermotor yang melintasi ruas jalan tersebut pada semua jalur per hari dan per tahun. Secara keseluruhan, kategori kendaraan bermotor yang terdapat di Indonesia adalah:

- Mobil sedan
- Minibus/van
- Jeep
- Bus kota
- Sepeda motor
- Kendaraan roda 3
- Pick-up
- Truk 2 engkel

Maka tingkat aktivitas dinyatakan sebagai panjang perjalanan seluruh kendaraan bermotor yang dhitung berdasarkan volume kendaraan. Metode perhitungan jumlah emisi gas buang kendaraan dalam penelitian ini menggunakan formula perhitungan beban emisi menurut Zhongan, *et al.* dalam Maarif (2016), yaitu:

$$Q = Ni \times Fei \times Ki \times L$$

Dimana:

Q : Jumlah emisi (gram/jam)
Ni : Volume kendaraan bermotor

tipe-i (smp/jam)

Fei : Faktor emisi lokal kendaraan

bermotor (gram/liter)

Ki : Konsumsi energi spesifik

kendaraan bermotor tipe-i

(liter/km)

L : Panjang jalan (km)

Peralatan pengendali emisi sumber bergerak adalah katalis yang dapat mengurangi emisi CO, HC, NOx hingga lebih dari 90%. Peralatan tersebut umumnya telah terpasang pada kendaraan-kendaraan baru yang memenuhi standar EURO II ke atas, sehingga faktor emisinya telah mempertimbangkan efisiensi peralatan pengendali. Artinya C=0.

Pemilihan faktor emisi tergantung pada kategori tier kendaraan bermotor. Pada tier 2, faktor emisi mengacu pada faktor emisi nasional (Peraturan Menteri Lingkungan Hidup No. 12/2010 tentang Pengendalian Pencemaran Udara di Daerah). Berikut ini adalah faktor emisi kendaraan bermotor di Indonesia.

Tabel 2. 3 Faktor Emisi Kendaraan Bermotor Lama di Indonesia (Kategori Umum)

| Kategori        | CO (g/km) |
|-----------------|-----------|
| Sepeda motor    | 14        |
| Mobil penumpang | 32,4      |
| Bis             | 11        |
| Truk            | 8,4       |

Sumber: Peraturan Menteri Lingkungan Hidup No. 12 (2010)

Tabel 2. 4 Faktor Emisi Kendaraan Bermotor Lama di Indonesia (Kategori Tambahan)

| Kategori                | CO (g/km) |
|-------------------------|-----------|
| Angkutan kota (minibus) | 43,1      |
| Taksi                   | 55,3      |
| Roda 3 (bajaj)          | 70,7      |
| Pick-up                 | 31,8      |
| Jeep                    | 36,7      |
| Van/minibus             | 24        |
| sedan                   | 33,8      |

Sumber: Peraturan Menteri Lingkungan Hidup No. 12 (2010)

# 2.2 Faktor-Faktor yang Mempengaruhi Emisi Gas Buang

Emisi gas buang kendaraan bermotor diukur dalam gram per kendaraan per km dari suatu perjalanan dan terkait dengan beberapa faktor seperti tipe kendaraan, umur kendaraan, ambang temperature dan ketinggian. Kendaraan dengan usia dan jenis bahan bakar yang berbeda akan menghasilkan kadar emisi yang berbeda juga (Yuliastuti, 2008). Komposisi emisi gas buang kendaraan antara lain adalah karbon monoksida (CO), nitrogen oksida (NO), hidrokarbon (HC), karbon dioksida (CO2), oksida belerang (SO2), particulate matter (PM10). Terdapat lima faktor penting mengenai hal-hal yang mempengaruhi dikeluarkannya zatzat polutan tersebut pada suatu kendaraan, antara lain:

## 1. Jumlah Kendaraan

Meningkatnya jumlah kendaraan bermotor yang signifikan mengakibatkan kebutuhan akan pemakaian bahan bakar minyak (BBM) juga semakin meningkat khususnya bahan bakar solar dan bensin. Penggunaan bahan bakar yang banyak tentunya akan menyebabkan emisi gas buang yang banyak pula. Menurut Morlok (1995),pertambahan volume lalu lintas akan mengakibatkan bertambahnya emisi polusi udara sehingga dapat dianggap menurunkan kualitas udara. Meskipun perkembangan teknologi terbaru secara signifikan dapat mengurangi jumlah emisi, namun tingkat kenaikan dari jumlah kendaraan bermotor yang cukup tinggi dan jauhnya jarak perjalanan membuat hal tersebut tidak berguna lagi. Peningkatkan jumlah kendaraan sebanding dengan peningkatan jumlah emisi yang dihasilkan.

## 2. Umur Kendaraan

Pembatasan usia kendaraan akan menekan tingkat kemacetan lalu lintas dan akan mengurangi emisi gas Terjadinya lalu lintas akan buang. kemacetan memperbesar emisi gas CO karena terjadi pembakaran yang tidak sempurna, hingga hampir 6 kali bila lalu lintas tidak mengalami kemacetan. Umur mesin berpengaruh terhadap konsentrasi emisi CO yang dihasilkan sepeda motor. Semakin tua umur mesin sepeda motor maka konsentrasi emisi CO yang dihasilkan semakin besar. Hal ini disebabkan oleh komponen-komponen mesin (yang berperan penting dalam proses pembakaran) telah banyak mengalami proses kausan, selain itu banyak kotoran yang menempel di saringan udara.

# 3. Kecepatan Kendaraan

Emisi gas buang kendaraan berkaitan erat dengan arus lalu lintas dan kecepatan. Pada arus lalu lintas yang konstan emisi ini berkurang dengan pengurangan kecepatan selama jalan tidak mengalami kemacetan. Jika arus lalu lintas mendekati kapasitas (derajat kejenuhan > 0,8), kondisi turbulen "berhenti dan berjalan" yang disebabkan kemacetan terjadi dan menyebabkan kenaikan emisi gas buang dan kebisingan jika dibandingkan dengan konisi lalu lintas yang stabil. Alinyemen jalan yang tidak diinginkan seperti tikungan tajam dan kelandaian curam menaikkan kebisingan dan emisi gas buang.

## 4. Perawatan Kendaraan

Kadar gas berbahaya CO dan NOx pada gas buang kendaraan bermotor bisa ditekan sekecil mungkin dengan perawatan yang baik terhadap mesin kendaraan tersebut. Namun demikian tidak semua pemilik kendaraan bermotor memiliki kesadaran yang tinggi, disamping enggan untuk mengeluarkan biaya perawatan yang mahal. Karburator yang tidak terawatt, tidak dapat mencampur bahan bakar dan udara dengan baik, sehingga pembakaran yang terjadi tidak sempurna. Perawatan yang dilakukan terhadap mesin kendaraan berpengaruh terhadap emisi yang dihasilkan. Semakin rutin sepeda motor melakukan servis maka emisi CO, HC dan NOx yang dihasilkan semakin kecil.

## 5. Jumlah Bahan Bakar

Sektor transportasi memiliki ketergantungan yang tinggi terhadap sumber energy. Hampir sebagian besar produk kendaraan bermotor yang digunakan dalam sektor transportasi menggunakan bahan bakar minyak (BBM) sebagai sumber energy. Pola berkendara dengan besarnya frekuensi jalan-berhenti yang umumnya terjadi di persimpangan, membutuhkan bahan bakar semakin besar bila dibandingkan dengan pola berkendara yang berjalan dengan kecepatan konstan untuk semua jenis motor, baik berbahan bakar bensin maupun diesel.

Berdasarkan penelitian yang berjudul "Pencemaran Udara Akibat Emisi gas Buang Kendaraan Bermotor" oleh Ismiyati (2014), faktor penting yang menyebabkan dominannya pengaruh sektor transportasi terhadap pencemaran udara perkotaan di Indonesia antara lain karakteristik kendaraan bermotor; pertumbuhan jumlah kendaraan; prasarana transportasi; kawasan perekonomian terpusat; ketersediaan ruang terbuka hijau; kawasan permukiman; serta manajemen lalu lintas.

## 2.2.1 Karakteristik kendaraan bermotor

Kendaraan bermotor pasti mengeluarkan gas buang berupa emisi. Akan tetapi kadar emisi yang dikeluarkan akan berbeda tergantung pada karakteristik kendaraan bermotor tersebut. Karakteristik tersebut antara lain jenis kendaraan bermotor, umur kendaraan bermotor, perawatan kendaraan dan jenis bahan bakar yang digunakan. Kendaraan diklasifikasikan menjadi berbagai jenis, yaitu heavy vehicle (HV), light vehicle (LV), motorcycle (MC), dan unmotorized (UM). Setiap jenis kendaraan mengeluarkan kadar emisi yang berbeda pula.

Berikut ini adalah penjelasan mengenai klasifikasi tersebut.

Tabel 2. 5 Klasifikasi Kendaraan Bermotor

| Klasifikasi  | D. (° · ·       | Jenis-Jenis                      |  |  |
|--------------|-----------------|----------------------------------|--|--|
| Kendaraan    | Definisi        | Kendaraan                        |  |  |
| Kendaraan    | Kendaraan       | Mobil pribadi,                   |  |  |
| ringan       | ringan          | mikrobis, oplet, pick-           |  |  |
|              | (LV=Light       | <i>up</i> , truk kecil, angkutan |  |  |
|              | Vehicle).       | penumpang dengan                 |  |  |
|              | Kendaraan       | jumlah penumpang                 |  |  |
|              | beroda empat    | maksimum 10 orang                |  |  |
|              |                 | termasuk pengemudi               |  |  |
| Kendaraan    | Kendaraan       | Bus, truk dan truk               |  |  |
| Umum         | umum            | kombinasi sesuai                 |  |  |
|              | (HV=Heavy       | sistem klasifikasi Bina          |  |  |
|              | Vehicle).       | Marga, angkutan                  |  |  |
|              | Kendaraan       | penumpang dengan                 |  |  |
|              | bermotor        | jumlah tempat duduk              |  |  |
|              | dengan lebih    | 20 buah termasuk                 |  |  |
|              | dari empat      | pengemudi                        |  |  |
|              | roda            |                                  |  |  |
| Sepeda       | Sepeda motor    | Sepeda motor dan                 |  |  |
| motor        | (motorcycle).   | kendaraan beroda tiga            |  |  |
|              | Kendaraan       | sesuai sistem                    |  |  |
|              | bermotor        | klasifikasi Bina Marga           |  |  |
|              | dengan dua      |                                  |  |  |
|              | atau tiga roda. |                                  |  |  |
| Kendaraan    | Kendaraan tak   | Sepeda, becak, kereta            |  |  |
| tak bermotor | bermotor        | kuda, kereta dorong              |  |  |

| Klasifikasi<br>Kendaraan | Definisi                                                                        | Jenis-Jenis<br>Kendaraan |
|--------------------------|---------------------------------------------------------------------------------|--------------------------|
|                          | (UM=unmotor cycle). Kendaraan beroda yang menggunakan tenaga manusia atau hewan |                          |

Sumber: Manual Kapasitas Jalan Indonesia 1997 (MKJI 1997)

# 2.2.2 Pertumbuhan jumlah kendaraan

Kendaraan bermotor merupakan salah satu sarana transportasi yang digunakan oleh masyarakat di Indonesia. Maka kendaraan bermotor menjadi sebuah kebutuhan bagi masyarakat. Oleh sebab itu terjadi pertumbuhan jumlah kendaraan yang cukup signifikan. Pertumbuhan ini pada umumnya disebabkan oleh jumlah penduduk dan jumlah pendapatan per kapita. Kedua hal ini berpengaruh secara positif terhadap pertumbuhan jumlah kendaraan. Dengan kata lain semakin tinggi jumlah penduduk yang ada di daerah tersebut, maka semakin tinggi pula jumlah kendaraan yang ada. Demikian pula dengan semakin tingginya pendapatan per kapita, maka semakin tinggi pula jumlah kendaraan. Terutama penduduk di kota maju, seperti Jakarta, tingkat perekonomiannya pasti lebih tinggi dibandingkan dengan kota-kota lain. Dengan demikian, penduduknya pasti memiliki kendaraan bermotor bahkan banyak yang lebih dari satu.

# 2.2.3 Prasarana Transportasi

Prasarana adalah barang atau benda tidak bergerak yang dapat menunjang atau mendukung pelaksanaan tugas dan fungsi unit kerja. Jalan dan jembatan adalah prasarana transportasi darat. Menurut Nasution (2008), berdasarkan perannya klasifikasi jalan dikelompokkan atas 5 golongan, sesuai dengan karakteristik masing-masing.

- Jalan arteri, yaitu jalan yang melayani angkutan umum utama dengan ciri perjalanan jarak jauh, kecepatan tinggi dan jumlah jalan masuk yang membatasi secara efisien.
- 2. Jalan kolektor, yaitu jalan yang melayani angkutan menuju/keluar ke suatu tempat dengan ciri perjalanan jarak sedang dengan kecepatan yang sedang dan jumlah jalan masuk yang dibatasi.
- 3. Jalan lokal, yaitu jalan yang melayani angkutan setempat dengan ciri perjalanan jarak dekat dengan kecepatan rata-rata rendah atau lambat dan jumlah jalan masuk tidak dibatasi.
- 4. Jalan akses, yaitu melayani angkutan pedesaan, dengan ciri-ciri: perjalanan jarak sangat dekat, kecepatan sangat lamban, dan banyak jalan masuk persimpangan.
- 5. Jalan setapak, yaitu melayani perjalanan kaki, sepeda dan sepeda motor, serta umumnya belum beraspal.

Berdasarkan jenis-jenis jalan di atas, mempengaruhi jumlah kendaraan yang melewati setiap klasifikasi jalan tersebut. Tidak seimbangnya prasarana transportasi dengan jumlah kendaraan yang ada. Hal yang paling ditekankan adalah kapasitas jalan, yaitu kemampuan ruas jalan untuk menampung arus atau volume lalu lintas yang ideal dalam satuan waktu tertentu.

# 2.2.4 Jenis Penggunaan Lahan

Jenis penggunaan lahan yang dimaksud antara lain adalah kawasan perekonomian terpusat, jarak terhadap kawasan permukiman dan ketersediaan ruang terbuka hijau. *Central Business District* (CBD) yang berada di daerah perkotaan dapat meningkatkan aktivitas yang terjadi di daerah tersebut. Meningkatnya aktivitas dapat menimbulkan mobilitas yang tinggi. Perpindahan manusia dan barang lebih intens di daerah tersebut sehingga emisi yang dikeluarkan kendaraan juga besar.

Selain itu jarak asal dan destinasi juga berpengaruh terhadap emisi yang dikeluarkan kendaraan. Asal yang dimaksud pada umumnya adalah kawasan permukiman, sementara destinasi adalah kawasan penggunaan lahan lainnya. Semakin kecil jarak antara asal dan destinasi maka semakin tinggi emisi yang dikeluarkan kendaraan, demikian pula sebaliknya.

Volume kendaraan yang besar menyebabkan emisi CO yang dihasilkan juga semakin besar. Untuk menjaga kondisi lingkungan maka diperlukan adanya ruang terbuka hijau. Ruang terbuka hijau dapat menyerap emisi CO yang dikeluarkan kendaraan, sehingga hal ini

dapat meminimalisir penyebaran emisi yang mengakibatkan pencemaran udara.

## 2.2.5 Manajemen lalu lintas

Menurut Fachrurrozy (2000), manajemen lalu lintas adalah suatu proses pengaturan dan penggunaan sistem jalan yang sudah ada dengan tujuan untuk memenuhi suatu tujuan tertentu tanpa perlu penambahan/pembuatan infrastruktur baru. Berdasarkan Malkhamah (1995), manajemen lalu lintas dapat diklasifikasikan menjadi empat bagian, yaitu:

- 1. Manajemen lalu lintas dengan melakukan perubahan sistem jalan secara fisik. Salah satunya seperti perbaikan jaringan jalan jarak antar persimpangan.
- 2. Manajemen lalu lintas dengan melakukan perubahan sistem jalan secara non-fisik. Salah satunya sepertinya pengaturan lampu lalu lintas.
- 3. Penyediaan informasi bagi pemakai jalan
- 4. Penetapan tarif untuk pemakai prasarana lalu lintas

Berdasarkan klasifikasi manajemen lalu lintas di atas, hal tersebut dapat berpengaruh terhadap tingkat kontribusi emisi kendaraan. Manajemen lalu lintas yang kurang tepat dapat mengakibatkan emisi yang dikeluarkan kendaraan tergolong tinggi. Contohnya seperti jarak antar persimpangan jalan yang terlalu dekat mengakibatkan penggunaan gas dan rem yang tidak stabil. Akibatnya, jumlah emisi yang dikeluarkan akan semakin besar. Oleh sebab itu akan digunakan variabel jarak antar persimpangan.

# 2.3 Kebijakan Penurunan Emisi pada Bidang Transportasi

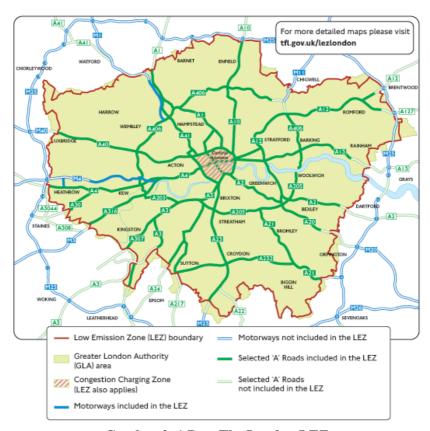
Terdapat beberapa kebijakan dalam menangani permasalahan emisi di bidang transportasi. Kebijakan-kebijakan tersebut terdiri atas kebijakan dari dalam negeri melalui strategistrategi dan rencana aksi dan dari luar negeri melalui peraturan-peraturan zona rendah emisi. Kebijakan yang akan dibahas pada penelitian ini adalah Low Emission Zone (LEZ) dan Rencana Aksi Nasional Gas Rumah Kaca (RAN-GRK) pada bidang transportasi.

## 2.3.1 Low Emission Zone (LEZ)

Peraturan mengenai pembatasan kepemilikan dan pemanfaatan kendaraan pribadi sedang meningkat dengan tujuan untuk meningkatkan efisiensi dan kualitas sistem transportasi di seluruh dunia. Pencemaran udara yang diakibatkan oleh permasalahan di bidang transportasi mendorong para pengambil keputusan untuk mengadopsi kebijakan strategis untuk membatasi lalu lintas. Salah satu upaya pembatasan lalu lintas yang sudah dilakukan adalah Low Emission Zone (LEZ). Pada umumnya Low Emission Zone (LEZ) merupakan regulasi kendaraan untuk meningkatkan kualitas udara di daerah perkotaan. LEZ disebut juga environmental zone. Konsep ini berfokus pada pembatasan di sekitar daerah perkotaan untuk mencegah lalu lintas yang sangat mencemari.

LEZ adalah wilayah yang secara geografis terdefinisi atau jalan yang melarang atau membatasi akses untuk kendaraan yang menyebabkan polusi. Kendaraan harus memiliki standar emisi kendaraan untuk memasuki kawasan LEZ. Seharusnya LEZ dapat diimplementasikan kepada semua jenis kendaraan, tetapi pada umumnya

diimplementasikan pada *heavy vehicle* (HV) karena kontribusi polusi udara yang diberikan relatif lebih besar. Kendaraan yang memasuki kawasan LEZ tetapi tidak sesuai standar akan dikenakan denda. Akan tetapi ada beberapa kawasan LEZ yang memperbolehkan kendaraan yang tidak sesuai standar untuk masuk dengan syarat telah melakukan pembayaran biaya zona. Kawasan ini beroperasi selama 24 jam. Ada pula zona yang sepenuhnya melarang kendaraan berbahan bakar bensin untuk masuk, yang diperbolehkan hanya kendaraan dengan bahan bakar elektrik, zona ini disebut *Zero Emission Zone* (ZEZ). Salah satu contoh penerapan LEZ terdapat di London dan Berlin.


## 1. The London Low Emission Zone

Kualitas udara di London dipertimbangkan sebagai kualitas udara terburuk di Eropa. Dengan kondisi yang seperti ini, The London LEZ mulai diterapkan pada tahun 2008 dengan tujuan untuk meningkatkan kualitas udara bagi semua yang mengunjungi, menetap dan bekerja di London. Konsep LEZ ini difokuskan pada kendaraan berbahan bakar diesel, bus dan kendaraan berat (HV) lainnya. Kendaraan roda empat dan roda dua tidak terdampak tetapi diharuskan menaati *London Congestion Charge*. Kendaraan yang tidak sesuai standar masih dapat melewati zona tersebur dengan syarat membayar biaya harian.

Tabel 2. 6 Arahan Teknis The London LEZ

| Pengantar      | 2008                            |  |  |
|----------------|---------------------------------|--|--|
| tahun          |                                 |  |  |
| Terbaru        | 2012                            |  |  |
| Jangkauan      | Semua jalan di Greater          |  |  |
| Jungmuun       | London, yang berada di          |  |  |
|                | Heathrow dan bagian dari        |  |  |
|                | jalan raya M1 dan M4 dalam      |  |  |
|                | batas Greater London            |  |  |
|                | Authority (GLA) disertakan      |  |  |
| Jenis          | Truk-truk Diesel, bus, pelatih, |  |  |
| kendaraan      | karavan motor, gerobak          |  |  |
| yang           | bermotor, van dan minibus       |  |  |
| terpengaruh    | yang lebih besar                |  |  |
| Standar emisi  | Standar Euro III untuk PM,      |  |  |
| Standar Christ | kecuali untuk lori (> 3,5 ton), |  |  |
|                | bus dan pelatih (> 5 ton) yang  |  |  |
|                | harus memenuhi Standar          |  |  |
|                | Euro IV untuk PM                |  |  |
| Jam opeasi     | Permanen, 365 hari setahun      |  |  |
| Registrasi     | Kendaraan yang terdaftar di     |  |  |
| Registrasi     | Great Britain hanya perlu       |  |  |
|                | mendaftar jika kendaraan        |  |  |
|                | diklasifikasikan sebagai tidak  |  |  |
|                | memenuhi standar emisi,         |  |  |
|                | tetapi bukti dokumenter dapat   |  |  |
|                | diberikan bahwa itu benar.      |  |  |
|                | Kendaraan dari luar Great       |  |  |
|                | Britain harus mendaftar         |  |  |
|                | dengan mengisi formulir         |  |  |
|                | dengan mengisi formum           |  |  |

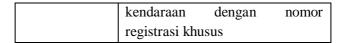
|              | unduhan dan mengirimnya        |  |  |
|--------------|--------------------------------|--|--|
|              | masuk                          |  |  |
| Biaya harian | £ 100 per hari untuk van besar |  |  |
|              | dan £ 200 untuk kendaraan      |  |  |
|              | berat                          |  |  |
| Pelaksanaan  | Kamera Automatic Plate         |  |  |
|              | Recognition (ANPR)             |  |  |
|              | membaca plat nomor dan         |  |  |
|              | mengeceknya terhadap           |  |  |
|              | register                       |  |  |
| Denda        | £ 500 untuk van besar dan £    |  |  |
|              | 1000 untuk kendaraan berat:    |  |  |
|              | diskon 50% jika pembayaran     |  |  |
|              | diterima dalam waktu 14 hari   |  |  |
| Pengecualian | Kendaraan khusus yang          |  |  |
|              | dibangun untuk penggunaan      |  |  |
|              | di luar jalan, kendaraan       |  |  |
|              | bersejarah, kendaraan dan      |  |  |
|              | kendaraan pawai yang           |  |  |
|              | dioperasikan oleh              |  |  |
|              | Departemen Pertahanan          |  |  |

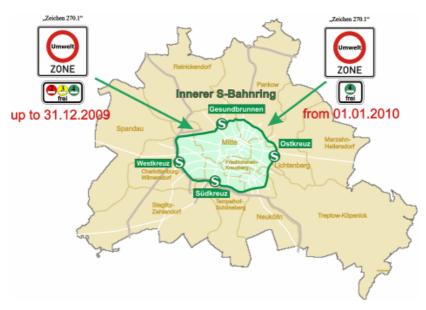


Gambar 2. 1 Peta The London LEZ

Sumber: Low Emission Zone, Deutsche Gesellschaft für Internationale Zusammnarbeit (GIZ) GmbH (2014)

## 2. The Berlin "Umweltzone"


Polusi udara di pusat kota Berlin sudah melebihi ambang PM10 dan NOx, maka dikembangkan rencana aksi udara bersih untuk mengatasi pengurangan emisi. Berlin menyebutnya dengan "Umweltzone" atau zona lingkungan. Aksi ini


diimplementasikan pada tahun 2008 untuk mengurangi emisi diesel. Petugas dapat mengetahui kesesuaian standar emisi kendaraan dengan melihat tempat stiker berwarna di layar jendela mobil yang mengkategorikan klasifikasi emisi kendaraan masingmasing. Hanya kendaraan dengan stiker hijau (Euro IV) yang diizinkan berkendara di dalam kawasan LEZ di Berlin.

Tabel 2. 7 Arahan Teknis Umweltzone Berlin

| Pengantar   | 2008 (LEZ memberikan akses ke        |  |
|-------------|--------------------------------------|--|
| tahun       | kendaraan tempel merah, kuning       |  |
|             | dan hijau, Euro III atau lebih baik) |  |
| Terbaru     | 2010 (LEZ hanya memberikan           |  |
|             | akses ke kendaraan dengan stiker     |  |
|             | hijau, Euro IV atau lebih baik)      |  |
| Jangkauan   | LEZ mencakup pusat kota di           |  |
|             | dalam ring rail S-Bahn (sekitar 88   |  |
|             | km). Sejumlah jalan (besar) di       |  |
|             | dalam rel cincin S-Bahn bukan        |  |
|             | bagian dari LEZ dan tetap dapat      |  |
|             | diakses secara bebas,                |  |
|             | memungkinkan kendaraan tanpa         |  |
|             | stiker hijau untuk melewati LEZ      |  |
|             | tanpa memutar                        |  |
| Jenis       | Semua kendaraan diesel dan           |  |
| kendaraan   | kendaraan bensin tanpa catalytic     |  |
| yang        | converter loop tertutup (Euro I      |  |
| terpengaruh | atau yang setara)                    |  |

| Standar emisi | Euro IV atau Euro III dengan          |  |  |
|---------------|---------------------------------------|--|--|
|               | filter partikulat. Semua mesin        |  |  |
|               | bensin dengan catalytic converter     |  |  |
|               | dan semua LPG atau kendaraan          |  |  |
|               | gas alam                              |  |  |
| Jam opeasi    | Permanen. 365 hari setahun            |  |  |
| Registrasi    | Stiker harus dibeli dan               |  |  |
|               | ditampilkan di kaca depan yang        |  |  |
|               | berlaku untuk semua LEZ di            |  |  |
|               | Jerman. Bukti standar emisi           |  |  |
|               | diperlukan untuk membeli stiker.      |  |  |
|               | Stiker dapat dibeli dari registrasi   |  |  |
|               | kendaraan, otoritas, garasi lokal     |  |  |
|               | resmi, dan organisasi uji             |  |  |
|               | kendaraan seperti TUV, DEKRA,         |  |  |
|               | atau beberapa situs web               |  |  |
| Biaya harian  | Tidak diterapkan                      |  |  |
| Pelaksanaan   | Pelaksanaan manual oleh polisi        |  |  |
|               | lalu lintas dan petugas ketertiban    |  |  |
|               | umum                                  |  |  |
| Denda         | € 40 denda dan satu poin dalam        |  |  |
|               | register penalti lalu lintas nasional |  |  |
| Pengecualian  | Kendaraan diesel yang tidak           |  |  |
|               | dapat di-retrofitted tetapi sesuai    |  |  |
|               | dengan standar Euro III (stiker       |  |  |
|               | kuning), pengecualian umum            |  |  |
|               | berlaku untuk orang dengan            |  |  |
|               | amelia ganda atau phocomelia,         |  |  |
|               | untuk kendaraan uji dan untuk         |  |  |





Gambar 2. 2 Peta Umweltzone Berlin

Sumber: Low Emission Zone, Deutsche Gesellschaft für Internationale Zusammnarbeit (GIZ) GmbH (2014)

Konsep Low Emission Zone (LEZ) dapat diterapkan di wilayah perkotaan khususnya dengan emisi kendaraan yang tergolong tinggi. Konsep ini akan menentukan zona rendah emisi di Senayan, Jakarta Selatan. Konsep yang akan diterapkan merupakan adaptasi dari penerapan konsep di luar negeri, sehingga tidak semua secara detail memiliki kesamaan dalam pelaksanaannya. Oleh sebab itu perlu diketahui karakteristik-karakteristik kendaraan bermotor yang mempengaruhi jumlah emisi yang dikeluarkan oleh kendaraan di Indonesia khususnya Senayan, Jakarta.

# 2.3.2 Rencana Aksi Nasional Gas Rumah Kaca (RAN-GRK) Bidang Transportasi

Berdasarkan Pedoman Pelaksanaan Rencana Aksi Penurunan Emisi Gas Rumah Kaca yang disusun oleh Kementrian Perencanaan Pembangunan Nasional/Badan Perencanaan Pembangunan Nasional pada tahun 2011, terdapat pelaksanaan RAN-GRK menuju *Nationally Appropriate Mitigation Actions* (NAMAs) di bidang transportasi. Salah satu bentuk pelaksanaannya adalah usulan potensi aksi mitigasi di bidang transportasi.

Berdasarkan ICCSR (2010), terdapat tiga strategi utama yang dapat dikombinasikan untuk membuat perbaikan dan pengembangan di bidang transportasi, yaitu *avoid* (hindari), *shift* (pindahkan), dan *improve* (tingkatkan). Prinsip-prinsip yang mendasari ketiga strategi tersebut dan langkah-langkah praktis untuk implementasi dijelaskan pada tabel di bawah ini.

Tabel 2. 8 Prinsip dan Tahapan Implementasi Strategi RAN-GRK Bidang Transportasi

| Strategi             | Prinsip                                                            |   | Tahapan<br>Implementasi                                                                                                                                                               |
|----------------------|--------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Avoid<br>(Hindari)   | Hindari atau<br>kurangi<br>kebutuhan<br>untuk<br>berpergian        | • | Menghindari km- perjalanan yang tidak perlu melalui integrase perencanaan tata guna lahan dan perencanaan transportasi. Mengembangkan area perkotaan melalui koridor transit (Transit |
| Shift<br>(Pindahkan) | Berpindah atau<br>beralih ke<br>moda<br>transportasi<br>yang lebih | • | Oriented Development)  Mengembangkan atau mengaktifkan kondisi untuk moda transportasi                                                                                                |
|                      | ramah<br>lingkungan                                                | • | rendah karbon (untuk angkutan penumpang dan barang) Mencegah peralihan Non Motorized                                                                                                  |

|              | a             |   | Tahapan           |
|--------------|---------------|---|-------------------|
| Strategi     | Prinsip       |   | Implementasi      |
|              |               |   | Transport (NMT)   |
|              |               |   | seperti berjalan  |
|              |               |   | kaki dan          |
|              |               |   | bersepeda dan     |
|              |               |   | angkutan umum     |
|              |               |   | (bus dan becak)   |
|              |               |   | ke kendaraan      |
|              |               |   | pribadi melalui   |
|              |               |   | perbaikan dan     |
|              |               |   | pengembangan      |
|              |               |   | kualitas angkutan |
| Improve      | Meningkatkan  | • | Memastikan        |
| (Tingkatkan) | efisiensi     |   | kendaraan masa    |
|              | energy moda   |   | depan yang lebih  |
|              | transportasi  |   | beralih,          |
|              | dan teknologi |   | mendorong         |
|              | kendaraan     |   | pemakaian         |
|              | bermotor      |   | kendaraan kecil   |
|              |               |   | yang efisien      |
|              |               |   | (termasuk         |
|              |               |   | kendaraan roda    |
|              |               |   | dua yang sering   |
|              |               |   | digunakan di      |
|              |               |   | negara-negara di  |
|              |               |   | Asia)             |
|              |               | • | Mendesain         |
|              |               |   | inovasi untuk     |
|              |               |   | kendaraan NMT     |

| Strategi | Prinsip | Tahapan<br>Implementasi      |  |
|----------|---------|------------------------------|--|
|          |         | tradisional seperti<br>becak |  |

Sumber: Pedoman Pelaksanaan Rencana Aksi Penurunan Emisi Gas Rumah Kaca, 2011

Berdasarkan strategi-strategi tersebut, maka dapat diidentifikasi beberapa upaya di bidang transportasi, antara lain:

- 1. Upaya perencanaan, termasuk perencanaan tata guna lahan dan transit oriented development.
- 2. Upaya regulasi, termasuk penetapan standar emisi, regulasi atau peraturan lalu lintas seperti pembatasan kecepatan, penataan parkir, alokasi ruang jalan dan juga proses produksi kendaraan bermotor.
- 3. Upaya ekonomi, termasuk pajak bahan bakar, penetapan biaya kemacetan (congestion parking), subsidi untuk angkutan umum.
- 4. Upaya informasi, termasuk kampanye publik untuk angkutan umum, manajemen mobilitas, skema pemasaran dan skema *eco driving*.
- 5. Upaya teknologi, termasuk perbaikan infrastruktur, kendaraan dan bahan bakar.

# 2.4 Sintesa Tinjauan Pustaka

Sintesa pustaka merupakan sintesa keseluruhan tinjauan pustaka beserta kajian teoritisnya untuk mencapai tujuan penelitian. Pada sub bab ini memuat faktor dan variabel berdasarkan sasaran yang sudah ditentukan, yaitu identifikasi sumber gas buang kendaraan, menghitung jumlah emisi gas buang kendaraan, menganalisis faktor-faktor yang mempengaruhi emisi gas buang kendaraan dan merumuskan strategi pengembangan kebijakan dengan konsep LEZ berdasarkan faktor-faktor tersebut.

Tabel 2. 9 Sintesa Tinjauan Pustaka

| No | Sasaran            | Tinjauan<br>Pustaka | Indikator       | Variabel         | Parameter |
|----|--------------------|---------------------|-----------------|------------------|-----------|
| 1  | Identifikasi       | Pencemaran          | Klasifikasi     | Jumlah kendaraan | unit      |
|    | volume kendaraan   | udara               | kendaraan       | Nilai ekivalen   | -         |
|    |                    |                     | bermotor (LV,   | mobil penumpang  |           |
|    |                    |                     | HV, MC, UM)     | (EMP)            |           |
|    |                    |                     |                 | Volume kendaraan | smp/jam   |
| 2  | Menghitung         | Perhitungan         | Beban emisi     | Volume kendaraan | smp/jam   |
|    | jumlah emisi gas   | beban emisi         | dan hasil       | Panjang jalan    | km        |
|    | buang kendaraan    |                     | sasaran 1       | Faktor emisi     | g/liter   |
|    |                    |                     |                 | Konsumsi energy  | liter/km  |
|    |                    |                     |                 | spesifik         |           |
|    |                    |                     |                 | Jumlah emisi gas | gram/jam  |
|    |                    |                     |                 | buang            |           |
| 3  | Menganalisis       | Hasil               | Hasil sasaran 2 | Jumlah emisi gas | gram/jam  |
|    | faktor-faktor yang | identifikasi        |                 | buang            |           |
|    | mempengaruhi       | volume              |                 | Kapasitas jalan  | smp/jam   |

| No | Sasaran         | Tinjauan<br>Pustaka | Indikator    | Variabel           | Parameter |
|----|-----------------|---------------------|--------------|--------------------|-----------|
|    | emisi gas buang | kendaraan dan       | Prasarana    | Kapasitas dasar    | smp/jam   |
|    | kendaraan       | perhitungan         | transportasi | Faktor penyesuaian | -         |
|    |                 | beban emisi         |              | lebar jalur lalu   |           |
|    |                 | serta faktor-       |              | lintas             |           |
|    |                 | faktor yang         |              | Faktor penyesuaian | -         |
|    |                 | mempengaruhi        |              | pemisahan arah     |           |
|    |                 | emisi gas           |              | Faktor penyesuaian | -         |
|    |                 | buang               |              | akibat hambatan    |           |
|    |                 | kendaraan           |              | samping            |           |
|    |                 |                     |              | Faktor penyesuaian | -         |
|    |                 |                     |              | kapasitas ukuran   |           |
|    |                 |                     |              | kota               |           |
|    |                 |                     | Jenis        | Jarak dari         | km        |
|    |                 |                     | penggunaan   | permukiman ke      |           |
|    |                 |                     | lahan        | tujuan             |           |

| No | Sasaran | Tinjauan<br>Pustaka | Indikator             | Variabel                                     | Parameter                                     |
|----|---------|---------------------|-----------------------|----------------------------------------------|-----------------------------------------------|
|    |         |                     |                       | Waktu tempuh dari<br>permukiman ke<br>tujuan | jam                                           |
|    |         |                     |                       | Luas ruang terbuka<br>hijau                  | ha                                            |
|    |         |                     | Manajemen lalu lintas | Jarak antar<br>persimpangan jalan            | km                                            |
|    |         |                     | Karakteristik         | Umur kendaraan                               | km                                            |
|    |         |                     | kendaraan             | Perawatan                                    | ("1" = 2                                      |
|    |         |                     | bermotor              | kendaraan                                    | kali/tahun dan<br>bengkel resmi;<br>"0" = < 2 |
|    |         |                     |                       |                                              | kali/tahun dan<br>tidak di bengkel<br>resmi)  |

| No | Sasaran         | Tinjauan<br>Pustaka | Indikator       | Variabel            | Parameter |
|----|-----------------|---------------------|-----------------|---------------------|-----------|
| 4  | Merumuskan      | Hasil faktor-       | Hasil sasaran 3 | Jumlah emisi gas    | gram/jam  |
|    | strategi        | faktor yang         |                 | buang               |           |
|    | pengembangan    | mempengaruhi        |                 | Kapasitas jalan     | smp/jam   |
|    | kebijakan       | dan RAN-            |                 | Jarak perjalanan    | km        |
|    | penurunan emisi | GRK bidang          |                 | dari asal ke tujuan |           |
|    | kendaraan       | transportasi        |                 | di Senayan          |           |
|    |                 |                     |                 | Waktu perjalanan    | jam       |
|    |                 |                     |                 | dari asal ke tujuan |           |
|    |                 |                     |                 | di Senayan          |           |
|    |                 |                     |                 | Luas ruang terbuka  | ha        |
|    |                 |                     |                 | hijau               |           |
|    |                 |                     |                 | Jarak antar         | km        |
|    |                 |                     |                 | persimpangan jalan  |           |
| Ì  |                 |                     |                 | Umur kendaraan      | km        |

| No | Sasaran | Tinjauan<br>Pustaka | Indikator | Variabel       | Parameter        |
|----|---------|---------------------|-----------|----------------|------------------|
|    |         |                     |           | Perawatan      | ("1" = 2         |
|    |         |                     |           | kendaraan      | kali/tahun dan   |
|    |         |                     |           |                | bengkel resmi;   |
|    |         |                     |           |                | "0" = < 2        |
|    |         |                     |           |                | kali/tahun dan   |
|    |         |                     |           |                | tidak di bengkel |
|    |         |                     |           |                | resmi)           |
|    |         |                     |           | RAN-GRK Bidang | -                |
|    |         |                     |           | Transportasi   |                  |

Sumber: Sintesa Tinjauan Pustaka, 2018

## **BAB III**

## METODOLOGI

## 3.1 Pendekatan Penelitian

Pendekatan yang digunakan pada penelitian ini adalah pendekatan positivistik. Pendekatan ini meyakini bahwa realita atau fenomena dapat diklarifikasikan dan relatif tetap, konkrit, teramati, terukur, dan terdapat hubungan sebab akibat. Pendekatan positivistic merupakan pendekatan yang berawal dari keyakinan bahwa legitimasi suatu ilmu berasal dari penggunaan data yang telah terstruktur secara tepat. Data ini dapat diperoleh dari hasil survey atau kuisioner dan dianalisis dengan menggunakan analisis statistika.

## 3.2 Jenis Penelitian

Jenis penelitian yang digunakan pada penelitian ini adalah penelitian kuantitatif yang didukung oleh penelitian kualitatif. Menurut Watson (2002), pendekatan kuantitatif merupakan salah satu upaya pencarian ilmiah (scientific inquiry) yang didasari oleh filsafat positivism logikal (logical positivism) yang beroperasi dengan aturan-aturan yang ketat mengenai logika, kebenaran, hukum-hukum dan perdiksi. Sementara menurut Saryono (2010), penelitian kualitatif merupakan penelitian yang digunakan untuk menyelidiki, menemukan, menggambarkan dan menjelaskan kualitas atau keistimewaan dari pengaruh sosial yang tidak dapat digambarkan melalui pendekatan dijelaskan, diukur atau kuantitatif. Maka pada penelitian ini pendekatan kualitatif berfungsi sebagai sumber hipotesis yang diuji secara kuantitatif,

sebagai pengembang dan pemandu instrument-instrumen penelitian kuantitatif seperti kuisioner, skala dan indeks pengukuran serta sebagai pembanding temuan-temuan kuantitatif. Analisis data dilakukan menggunakan teknik statistik untuk mereduksi dan mengelompokan data, menentukan hubungan serta mengidentifikasikan perbedaan antar kelompok data. Maka pada penelitian ini, pendekatan kuantitatif dilakukan pada saat pengambilan data berupa *traffic counting* dan perhitungan jumlah emisi gas buang. Sementara penelitian kualittaif dilakukan pada saat analisis pengaruh faktor-faktor yang mempengaruhi emisi gas buang kendaraan dan perumusan strategi kebijakan penurunan emisi kendaraan.

# 3.3 Variabel dan Definisi Operasional

Menurut Dr. Ahmad Watik Pratiknya (2007), variabel adalah konsep yang mempunyai variabilitas. Sedangkan konsep adalah penggambaran atau abstraksi dari suatu fenomena tertentu. Konsep yang berupa apapun, asal mempunyai ciri yang bervariasi, maka dapat disebut sebagai variabel. Dengan demikian, variabel dapat diartikan sebagai segala sesuatu yang bervariasi. Sedangkan definisi operasional variabel adalah pengertian dari variabel (yang diteliti) tersebut, secara operasional, secara praktik dan secara nyata dalam lingkup obyek penelitian/obyek yang diteliti. Berikut merupakan variabel dan definisi operasional penelitian ini.

Tabel 3. 1 Variabel dan Definisi Operasional

| NO | VARIABEL<br>PENELITIAN | DEFINISI OPERASIONAL                                          |
|----|------------------------|---------------------------------------------------------------|
| 1  | Jumlah kendaraan       | Jumlah kendaraan berdasarkan                                  |
|    |                        | klasifikasi kendaraan bermotor,                               |
|    |                        | yaitu <i>light vehicle</i> (LV), <i>heavy</i>                 |
|    |                        | vehicle (HV), motorcycle (MC) dan                             |
|    | X                      | unmotorized (UM). (unit)                                      |
| 2  | Volume kendaraan       | Kuantitas kendaraan yang melewati                             |
|    |                        | wilayah penelitian pada peak hour                             |
|    |                        | yang telah dikonversi menjadi                                 |
|    |                        | satuan mobil penumpang per jam                                |
| 3  | Daniana ialan          | (smp/jam).                                                    |
| 3  | Panjang jalan          | Panjang jalan dengan emisi gas<br>buang kendaraan tinggi pada |
|    |                        | wilayah penelitian. (km)                                      |
| 4  | Faktor emisi           | Faktor emisi berdasarkan kategori                             |
| 4  | Taktor chiisi          | kendaraan tertentu (g/km)                                     |
| 5  | Jumlah emisi gas       | Jumlah emisi yang telah dihitung                              |
|    | buang                  | berdasarkan formula perhitungan                               |
|    | o uning                | beban emisi. (ton/tahun)                                      |
| 6  | Kapasitas jalan        | Jumlah maksimum kendaraan pada                                |
|    |                        | satu atau dua jalur lebar jalan                               |
|    |                        | dengan emisi gas buang kendaraan                              |
|    |                        | tinggi pada wilayah penelitian.                               |
|    |                        | (unit/tahun)                                                  |
| 7  | Pergerakan             | Jarak (km) dan waktu (menit)                                  |
|    | kendaraan dari asal    | tempuh dari asal (permukiman) ke                              |
|    | ke tujuan              | tujuan di wilayah penelitian.                                 |

| NO | VARIABEL<br>PENELITIAN | DEFINISI OPERASIONAL                |
|----|------------------------|-------------------------------------|
| 8  | Luas ruang terbuka     | Luas area ruang terbuka hijau yang  |
|    | hijau                  | ada di wilayah penelitian. (m2)     |
| 9  | Jarak antar            | Jarak antar persimpangan (tiga atau |
|    | persimpangan jalan     | empat) yang ada di wilayah          |
|    |                        | penelitian. (km)                    |
| 10 | Umur kendaraan         | Lama pemakaian kendaraan            |
|    |                        | tersebut telah digunakan yang       |
|    |                        | diukur dalam kilometer kendaraan    |
|    |                        | pada wilayah penelitian. (km)       |
| 11 | Perawatan              | Jumlah suatu kendaraan telah        |
|    | kendaraan              | melakukan perawatan mobil           |
|    |                        | minimal 2 kali dalam setahun pada   |
|    |                        | wilayah penelitian.                 |

Sumber: Penulis, 2018

# 3.4 Populasi dan Sampel

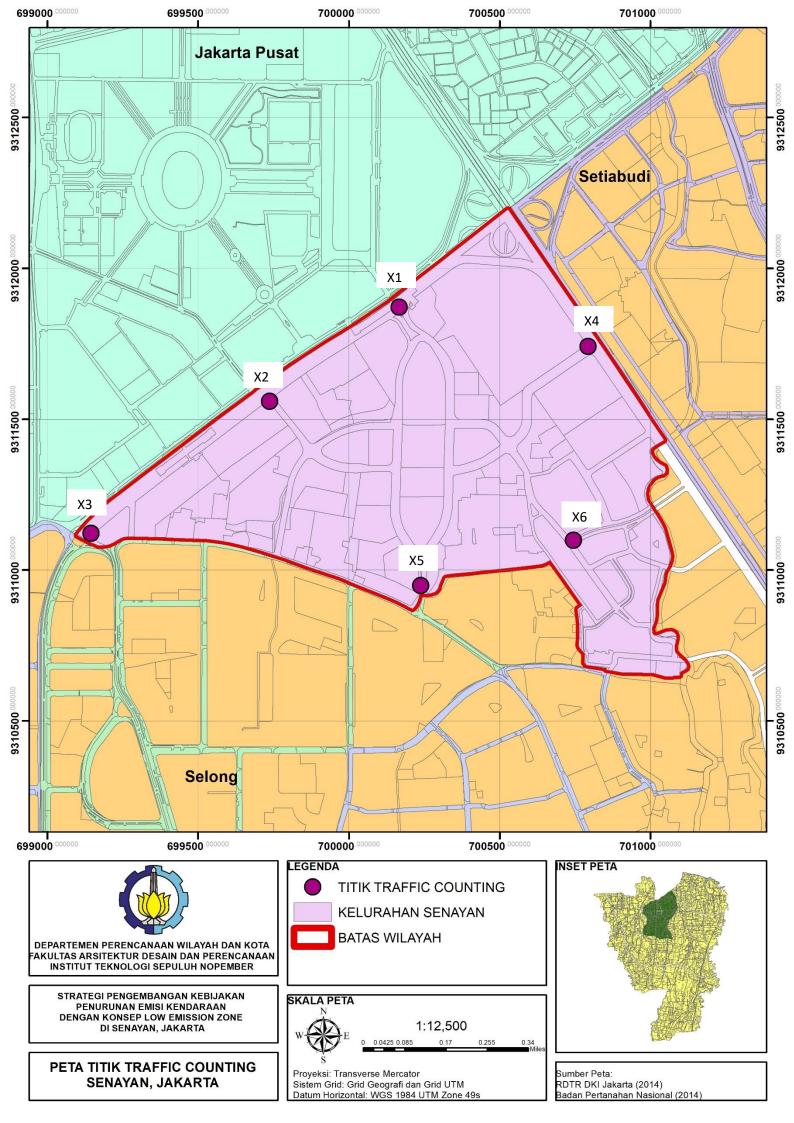
Menurut Sugiyono (2010:117), populasi adalah wilayah generalisasi yang terdiri atas obyek/subyek yang mempunyai kualitas dan karakteristik tertentu yang ditetapkan oleh peneliti untuk dipelajari dan kemudian ditarik kesimpulannya. Sedangkan sampel adalah sebagian dari jumlah dan karakteristik yang dimiliki oleh populasi tersebut. Apabila peneliti melakukan penelitian terhadap populasi yang besar, sementara peneliti ingin meneliti tentang populasi tersebut dan peneliti memiliki keterbatasan dana, tenaga dan waktu, maka peneliti menggunakan teknik pengambilan sampel, sehingga generalisasi kepada populasi yang diteliti. Maknanya sampel yang diambil dapat mewakili atau representative bagi populasi tersebut.

Dalam penelitian ini, yang termasuk sebagai populasi adalah seluruh jumlah kendaraan bermotor yang melewati wilayah penelitian. Jenis sampling yang digunakan pada penelitian kuantitatif (traffic counting dan perhitungan matematis) termasuk ke dalam teknik probability sampling. Teknik Probability Sampling adalah teknik pengambilan sampel dimana semua elemen mempunyai peluang untuk terpilih menjadi sampel. Adapun perinciannya lagi, teknik sampling yang digunakan adalah stratified random sampling. Teknik stratified random sampling adalah teknik sampling yang membagi populasi yang ada menjadi beberapa kelompok sesuai dengan klasifikasi dengan mendasarkan diri pada relevansi, kebutuhan dan keselarasan dengan tujuan studi.

Sedangkan untuk penelitian kualitatif (penentuan faktor yang mempengaruhi emisi gas buang kendaraan dan perumusan strategi kebijakan) adalah teknik non-probability sampling. Teknik Non-Probability Sampling adalah teknik sampling yang memberi peluang atau kesempatan tidak sama bagi setiap unsur atau anggota populasi untuk dipilih menjadi sampel. Lebih rincinya lagi adalah quota sampling. Quota Sampling adalah metode penetapan sampel berdasarkan pertimbangan peneliti saja, besar dan kriteria sampel telah ditentukan terlebih dahulu. Sampel ini digunakan dalam pengisian kuisioner. Adapun jumlah sampel untuk quota sampling ditentukan berdasarkan sampel traffic counting, yaitu 30 responden dari keseluruhan sampel traffic counting. Pemilihan jumlah sampel tergantung kebutuhan penelitian.

Sampel lalu lintas atau seluruh jumlah kendaraan bermotor yang melewati wilayah penelitian paling baik diambil pada jamjam puncak (*peak hour*) pada satu hari agar volume kendaraan menunjukan volume maksimum sehingga emisi yang dikeluarkan juga beban emisi maksimum. Jam-jam puncak pada koridor studi

akan dihitung pada saat pagi (07:00 – 09:00), siang (12:00 – 14:00), dan sore (16:00 – 18:00). *Traffic counting* dilakukan pada hari Senin dan Rabu (*weekdays*), dan hari Sabtu (*weekend*). Setelah identifiksi jam-jam puncak, maka dilakukan survei primer dengan cara *traffic counting* (observasi) dan penyebaran kuisioner pada titik-titik yang sudah ditentukan pada koridor studi. Penentuan titik-titik *traffic counting* didasari oleh observasi lapangan yang menunjukan bahwa pada titik-titik tersebut terdapat beberapa hambatan karena banyak simpangan. Selain itu, pada jam-jam tertentu kendaraan pada persimpangan tersebut cukup padat. Kendaraan yang berkumpul dalam satu wilayah dengan kecepatan yang tidak stabil mengonsumsi bahan bakar lebih banyak sehingga emisi yang dikeluarkan juga lebih besar. Berikut ini adalah penjelasan pada masing-masing titik traffic counting.


**Tabel 3. 2 Koridor Traffic Counting** 

| Koridor               | Panjang<br>Jalan (m) | Gambar |
|-----------------------|----------------------|--------|
| Pacific<br>Place (X1) | 440,73               |        |

| Koridor                   | Panjang   | Gambar |
|---------------------------|-----------|--------|
|                           | Jalan (m) |        |
| Grand<br>Lucky (X2)       | 520,32    |        |
| Jend.<br>Sudirman<br>(X3) | 1723,18   |        |
| Polda Metro<br>Jaya (X4)  | 442,84    |        |
| Senopati<br>(X5)          | 486,57    |        |

| Koridor                  | Panjang<br>Jalan (m) | Gambar |
|--------------------------|----------------------|--------|
| Widya<br>Chandra<br>(X6) | 708,11               |        |

Sumber: Hasil Survey, 2019



"Halaman ini sengaja dikosongkan"

### 3.5 Metode Pengumpulan Data

Metode pengumpulan data merupakan metode yang digunakan dalam mengumpulkan data-data yang dibutuhkan untuk analisis dalam penelitian. Metode pengumpulan data yang digunakan dalam penelitian ini adalah metode pengumpulan data primer dan sekunder. Pengumpulan data dan analisis pada penelitian ini dilakukan sebelum dioperasikannya MRT (*Mass Rapid Transit*) di Jakarta.

## 3.5.1 Metode Pengumpulan Data Primer

Survei primer merupakan metode pengumpulan data primer dengan pengamatan secara langsung di lapangan atau observasi lapangan dan penyebaran kuisioner. Hal ini bertujuan untuk mendapatkan gambaran kondisi eksisting dan perubahan-perubahan yang terjadi dengan melihat fakta yang ada. Teknik pengumpulan data primer ini adalah melalui observasi (*traffic counting*) dan penyebaran kuisioner.

Observasi lapangan yang dilakukan dalam penelitian ini adalah perhitungan jumlah kendaraan yang melewati wilayah studi atau traffic counting. Traffic Counting adalah perhitungan volume lalu lintas pada ruas jalan yang dikelompokkan dalam jenis kendaraan dan periode waktunya. Metode traffic counting yang digunakan adalah metode manual count yang dimana pencatatan jumlah kendaraan yang melewati wilayah studi dilakukan dengan tenaga manusia. Pencatatan dilakukan pada alat counter. Traffic counting dilakukan pada beberapa titik yang dianggap mewakili keadaan lalu lintas di wilayah studi. Selain itu, observasi juga dilakukan untuk mengetahui jarak antar persimpangan. Sementara

kuisioner dilakukan untuk mengetahui pergerakan kendaraan, umur kendaraan dan perawatan kendaraan.

## 3.5.2 Metode Pengumpulan Data Sekunder

Survei sekunder merupakan metode pengumpulan data sekunder melalui literature yang berkaitan dengan penelitian. Berikut merupakan jenis literature yang digunakan dalam penelitian ini:

#### A. Studi Literatur

Data-data sekunder yang dibutuhkan dalam penelitian ini diambil dari referensi buku maupun artikel ilmiah yang tersedia di perpustakaan. Sedangkan, data sekunder yang didapatkan dari instansi-instansi bertujuan untuk mendapatkan data atau informasi yang memeliki relevansi dengan penelitian. Instansi-instansi yang dituju adalah sebagai berikut: Dinas Perhubungan Jakarta Selatan, Badan Lingkungan Hidup Jakarta Selatan, Badan Perencanaan dan Pembangunan DKI Jakarta, serta Dinas Cipta Karya dan Tata Ruang Jakarta Selatan.

#### B. Media

Informasi-informasi lain yang dibutuhkan dalam penelitian ini didapatkan dari media elektronik seperti internet atau televisi dan media cetak seperti koran atau majalah. Informasi yang didapatkan dari platform media ini merupakan informasi tambahan yang mendukung tinjauan literature dan hasil survei primer yang telah didapat.

Tabel 3. 3 Kebutuhan Data Primer dan Sekunder

| DATA             | TEKNIK<br>PENGUMPULAN<br>DATA | SUMBER DATA                   |
|------------------|-------------------------------|-------------------------------|
| Jumlah kendaraan | Survey primer                 | Hasil observasi               |
| X                |                               | (traffic counting)            |
| Volume           | Survey primer                 | Hasil observasi               |
| kendaraan        |                               | (traffic counting)            |
| Panjang jalan    | Survey sekunder               | Pendekatan                    |
|                  |                               | Geographic                    |
|                  |                               | Information                   |
|                  |                               | System (GIS)                  |
| Faktor emisi     | Survey sekunder               | Literatur                     |
|                  |                               | artikel ilmiah                |
|                  |                               | <ul> <li>Referensi</li> </ul> |
|                  |                               | buku                          |
| Jumlah emisi gas | Survey sekunder               | Perhitungan                   |
| buang            |                               | matematis                     |
| Kapasitas jalan  | Survey sekunder               | Perhitungan                   |
|                  |                               | matematis                     |
| Pergerakan       | Survey primer                 | Hasil kuisioner               |
| kendaraan dari   |                               |                               |
| asal ke tujuan   |                               |                               |
| Luas ruang       | Survey sekunder               | Pendekatan                    |
| terbuka hijau    |                               | Geographic                    |
|                  |                               | Information                   |
|                  |                               | System (GIS)                  |
| Jarak antar      | Survey sekunder               | Pendekatan                    |
| persimpangan     |                               | Geographic                    |
| jalan            |                               |                               |

| DATA           | TEKNIK<br>PENGUMPULAN<br>DATA | SUMBER DATA     |
|----------------|-------------------------------|-----------------|
|                |                               | Information     |
|                |                               | System (GIS)    |
| Umur kendaraan | Survey primer                 | Hasil kuisioner |
| Perawatan      | Survey primer                 | Hasil kuisioner |
| kendaraan      |                               |                 |

Sumber: Penulis, 2018

## 3.6 Metode Analisis

Metode analisis bertujuan untuk menjawab sasaransasaran penelitian sehingga dapat menjawab tujuan penelitian secara keseluruhan. Pengumpulan data dan analisis pada penelitian ini dilakukan sebelum dioperasikannya MRT (*Mass Rapid Transit*) di Jakarta. Berikut merupakan metode analisis yang digunakan.

**Tabel 3. 4 Metode Analisis** 

| NO | SASARAN      | TAHAPAN<br>ANALISIS | INPUT DATA          | TEKNIK<br>ANALISIS | OUTPUT       |
|----|--------------|---------------------|---------------------|--------------------|--------------|
| 1  | Identifikasi | Mengidentifikasi    | Hasil observasi     | Analisis           | Jumlah       |
|    | volume       | klasifikasi         | (traffic counting)  | deskriptif         | kendaraan    |
|    | kendaraan    | kendaraan           | jumlah kendaraan    |                    | berdasarkan  |
|    |              |                     |                     |                    | klasifikasi  |
|    |              |                     |                     |                    | kendaraan    |
|    |              |                     |                     |                    | bermotor     |
|    |              | Konversi satuan     | Jumlah kendaraan    | Analisis           | Volume       |
|    |              | jumlah kendaraan    | berdasarkan         | deskriptif         | kendaraan    |
|    |              | ke smp/jam          | klasifikasi         | kuantitatif        |              |
|    |              |                     | kendaraan           | (perhitungan       |              |
|    |              |                     | bermotor dengan     | matematis)         |              |
|    |              |                     | satuan (unit/tahun) |                    |              |
| 2  | Menghitung   | Menghitung          | • Volume            | Analisis           | Jumlah beban |
|    | jumlah emisi | jumlah beban        | kendaraan           | beban emisi        | emisi        |
|    |              | emisi               | Panjang jalan       |                    |              |

| NO | SASARAN                                                                               | TAHAPAN<br>ANALISIS                                                 | INPUT DATA                                                                                                            | TEKNIK<br>ANALISIS                               | OUTPUT                                                     |
|----|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|
|    | gas buang<br>kendaraan                                                                |                                                                     | Faktor emisi                                                                                                          | (perhitungan matematis)                          |                                                            |
| 3  | Menganalisis<br>faktor-faktor<br>yang<br>mempengaruhi<br>emisi gas buang<br>kendaraan | Mengidentifikasi<br>pergerakan<br>kendaraan                         | Hasil kuisioner<br>jarak dan waktu<br>tempuh perjalanan<br>dari asal<br>(permukiman) ke<br>tujuan (pusat<br>kegiatan) | Analisis<br>deskriptif                           | Pergerakan<br>kendaraan<br>(jarak dan<br>waktu)            |
|    |                                                                                       | Mengukur luas ruang terbuka hijau Mengukur jarak antar persimpangan | Hasil pengukuran<br>luas dengan GIS<br>Hasil pengukuran<br>jarak dengan GIS                                           | Analisis<br>deskriptif<br>Analisis<br>deskriptif | Luas ruang<br>terbuka hijau<br>Jarak antar<br>persimpangan |

| NO | SASARAN | TAHAPAN<br>ANALISIS | INPUT DATA         | TEKNIK<br>ANALISIS | OUTPUT         |
|----|---------|---------------------|--------------------|--------------------|----------------|
|    |         | Mengidentifikasi    | Hasil kuisioner    | Analisis           | Umur           |
|    |         | umur pemakaian      | lamanya            | deskriptif         | kendaraan      |
|    |         | kendaraan           | kendaraan tersebut |                    |                |
|    |         |                     | dipakai dalam      |                    |                |
|    |         |                     | kilometer          |                    |                |
|    |         | Mengidentifikasi    | Hasil kuisioner    | Analisis           | Perawatan      |
|    |         | perawatan           | kuantitas          | deskriptif         | kendaraan      |
|    |         | kendaraan           | kendaraan tersebut |                    |                |
|    |         |                     | di- <i>service</i> |                    |                |
|    |         | Menghitung          | Kapasitas dasar    | Analisis           | Kapasitas ruas |
|    |         | kapasitas ruas      | (Co)               | kapasitas ruas     | jalan          |
|    |         | jalan               | • Faktor           | jalan              |                |
|    |         |                     | penyesuaian        | (perhitungan       |                |
|    |         |                     | lebar jalur lalu   | matematis)         |                |
|    |         |                     | lintas (FCw)       |                    |                |

| NO | SASARAN | TAHAPAN<br>ANALISIS                                   | INPUT DATA                                                                                                                                                                                                                                             | TEKNIK<br>ANALISIS                     | OUTPUT                                     |
|----|---------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------|
|    |         |                                                       | <ul> <li>Faktor         penyesuaian         pemisahan arah         (FCsp)</li> <li>Faktor         penyesuaian         akibat         hambatan         samping (FCsf)</li> <li>Faktor         penyesuaian         ukuran kota         (FCcs)</li> </ul> |                                        |                                            |
|    |         | Mengetahui<br>pengaruh kapasitas<br>jalan, pergerakan | Kapasitas ruas<br>jalan                                                                                                                                                                                                                                | Analisis<br>regresi linier<br>berganda | Pengaruh<br>kapasitas jalan,<br>pergerakan |

| NO | SASARAN                                             | TAHAPAN<br>ANALISIS                                                                                                                                         | INPUT DATA                                                                                                                                                                                    | TEKNIK<br>ANALISIS | OUTPUT                                                                                                                              |
|----|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                     | kendaraan, ruang<br>terbuka hijau,<br>jarak antar<br>persimpangan,<br>umur kendaraan<br>dan perawatan<br>kendaraan<br>terhadap emisi gas<br>buang kendaraan | <ul> <li>Pergerakan kendaraan</li> <li>Luas ruang terbuka hijau</li> <li>Jarak antar persimpangan</li> <li>Umur kendaraan</li> <li>Perawatan kendaraan</li> <li>Jumlah beban emisi</li> </ul> |                    | kendaraan, ruang terbuka hijau, jarak antar persimpangan, umur kendaraan dan perawatan kendaraan terhadap emisi gas buang kendaraan |
| 4  | Merumuskan<br>strategi<br>pengembangan<br>kebijakan | Mengadaptasikan<br>faktor-faktor yang<br>mempengaruhi                                                                                                       | <ul> <li>Pengaruh         kapasitas         jalan,         pergerakan</li> </ul>                                                                                                              | Analisis<br>SWOT   | Strategi<br>pengembangan<br>kebijakan<br>penurunan                                                                                  |

| NO | SASARAN       | TAHAPAN<br>ANALISIS | INPUT DATA     | TEKNIK<br>ANALISIS | OUTPUT    |
|----|---------------|---------------------|----------------|--------------------|-----------|
|    | penurunan     | dengan konsep       | kendaraan,     |                    | emisi     |
|    | emisi         | LEZ                 | ruang terbuka  |                    | kendaraan |
|    | kendaraan     |                     | hijau, jarak   |                    |           |
|    | dengan konsep |                     | antar          |                    |           |
|    | LEZ           |                     | persimpangan,  |                    |           |
|    |               |                     | umur           |                    |           |
|    |               |                     | kendaraan dan  |                    |           |
|    |               |                     | perawatan      |                    |           |
|    |               |                     | kendaraan      |                    |           |
|    |               |                     | terhadap emisi |                    |           |
|    |               |                     | gas buang      |                    |           |
|    |               |                     | kendaraan      |                    |           |
|    |               |                     | buang          |                    |           |
|    |               |                     | kendaraan      |                    |           |
|    |               |                     | Strategi RAN-  |                    |           |
|    |               |                     | GRK pada       |                    |           |

| NO | SASARAN | TAHAPAN<br>ANALISIS | INPUT DATA   | TEKNIK<br>ANALISIS | OUTPUT |
|----|---------|---------------------|--------------|--------------------|--------|
|    |         |                     | sektor       |                    |        |
|    |         |                     | transportasi |                    |        |

Sumber: Penulis, 2018

#### 3.6.1 Identifikasi Volume Lalu Lintas

Menurut Sukirman (1994), volume lalu lintas menunjukan jumlah kendaraan yang melintasi satu titik pengamatan dalam satu satuan waktu (hari, jam, menit). Identifikasi emisi gas buang kendaraan pada wilayah penelitian didapatkan dari hasil pengamatan langsung di 6 titik *traffic counting* (observasi). Indikator yang ditinjau untuk mengidentifikasi hal tersebut adalah klasifikasi kendaraan bermotor pada wilayah penelitian.

Klasifikasi kendaraan bermotor dilakukan untuk melihat komposisi emisi gas buang pada setiap klasifikasi kendaraannya sehingga dapat terlihat klasifikasi kendaraan bermotor yang mana yang menjadi sumber emisi gas terbesar dan terkecil. Pada umumnya klasifikasi kendaraan memiliki faktor emisi yang berbeda-beda, tetapi hal ini dapat diminimalisir lagi hanya menjadi tiga klasifikasi kendaraan yang dapat diobservasi. Berikut adalah jenis kendaraan yang diobservasi pada wilayah peneitian.

Tabel 3. 5 Klasifikasi Kendaraan Penelitian

| Jenis Kendaraan | Deskripsi                    |
|-----------------|------------------------------|
| Sepeda motor    | Kendaraan bermotor dengan 2  |
| Bajaj           | atau 3 roda                  |
| Mobil penumpang | Kendaraan bermotor roda 4,   |
| Truk kecil      | baik angkutan orang maupun   |
| Bus kecil       | angkutan barang              |
| Angkot          |                              |
| Truk besar      | Kendaraan bermotor > roda 4, |
| Bus besar       | baik angkutan orang maupun   |
|                 | angkutan barang              |

Sumber: Penulis, 2018

Klasifikasi kendaraan bermotor ini berbeda dengan klasifikasi kendaraan menurut MKJI. Klasifikasi menentukan besar atau kecil emisi yang dikeluarkan oleh jenis kendaraan tertentu. Sehingga dapat dikatakan semakin detail klasifikasi kendaraannya maka perhitungan emisi yang didapat akan semakin tepat. Akan tetapi klasifikasi kendaraan tersebut harus disetarakan dengan MKJI karena akan menentukan EMP untuk menghitung volume kendaraan.

Tabel 3. 6 Penyetaraan Klasifikasi Kendaraan

| Tipe Kendaraan MKJI | Klasifikasi Kendaraan<br>Penelitian |
|---------------------|-------------------------------------|
| Motorcycle (MC)     | Sepeda motor                        |
|                     | Bajaj                               |
| Light Vehicle (LV)  | Mobil penumpang                     |
|                     | Truk kecil                          |
|                     | Bus kecil                           |
|                     | Angkot                              |
| Heavy Vehicle (HV)  | Truk besar                          |
|                     | Bus besar                           |

Sumber: Penulis, 2018

Dari tabel di atas dapat disimpulkan bahwa klasifikasi kendaraan pada penelitian disetarakan menjadi tiga tipe kendaraan menurut MKJI. Klasifikasi kendaraan sepeda motor dan bajaj masuk ke dalam *motorcycle* (MC); mobil penumpang, truk kecil, bus kecil dan angkot masuk ke dalam *light vehicle* (LV); dan truk besar dan bus besar masuk ke dalam *heavy vehicle* (HV).

Berdasarkan MKJI (1997), rumus perhitungan arus lalu lintas total dalam smp/jam adalah:

$$Qsmp = (emp \ lv \ x \ LV) + (emp \ hv \ x \ HV) + (emp \ mc \ x \ MC)$$

## Keterangan:

Qsmp : volume kendaraan bermotor (smp/jam)
EmpLV : nilai ekivalen mobil penumpang untuk

kendaraan ringan

EmpHV: nilai ekivalen mobil penumpang untuk

kendaraan berat

EmpMC: nilai ekivalen mobil penumpang untuk

sepeda motor

LV : notasi untuk kendaraan ringan HV : notasi untuk kendaraan berat MC : notasi untuk sepeda motor

Berikut merupakan EMP yang digunakan sebagai konstanta pengkonversi satuan nilai ekivalen masingmasing klasifikasi kendaraan.

Tabel 3. 7 EMP Menurut Klasifikasi Kendaraan Penelitian

| Tipe Kendaraan<br>MKJI | EMP  | Klasifikasi Kendaraan<br>Penelitian |
|------------------------|------|-------------------------------------|
| Light Vehicle (LV)     |      | Mobil Penumpang                     |
|                        | 1    | (Bensin)                            |
|                        |      | Bus/truk kecil                      |
| Heavy Vehicle (HV)     | 1,2  | Truk besar                          |
|                        | 1,2  | Bus besar                           |
| Motorcycle (MC)        | 0,25 | Sepeda motor                        |

Sumber: MKJI, 1997

Dengan demikian dapat diketahui volume lalu lintas berdasarkan *traffic counting* pada 6 titik pengamatan dengan satuan smp/jam. Hasil volume lalu lintas ini dapat dijadikan data untuk analisis selanjutnya.

# 3.6.2 Perhitungan Jumlah Emisi Gas Buang Kendaraan

Metode perhitungan jumlah emisi gas buang kendaraan dalam penelitian ini menggunakan formula perhitungan beban emisi menurut Zhongan, *et al.* dalam Maarif (2016)

$$Q = Ni x Fei x Ki x L$$

## Keterangan:

Q : Jumlah emisi (gram/jam) Ni : Volume kendaraan bermotor

(smp/jam)

Fei : Faktor emisi lokal kendaraan

bermotor (gram/liter)

Ki : Konsumsi energi spesifik

kendaraan bermotor tipe-i

(liter/km)

L : Panjang jalan (km)

Perhitungan ini merupakan faktor emisi yang digunakan dalam perhitungan ini nantinya adalah faktor emisi lokal. Faktor emisi lokal yang dimaksud adalah faktor emisi yang dihitung berdsarkan IPCC (1996), tetapi disesuaikan dengan kondisi yang ada di Indonesia. Berikut merupakan faktor emisi lokal berdasarkan hasil penelitian Boedisantoso, *et al.* (2011).

Tabel 3. 8 Faktor Emisi Lokal

| No | Jenis Bahan<br>Bakar | Faktor Emisi<br>IPCC 1996<br>(gr/liter) | Faktor Emisi<br>Lokal<br>(gr/liter) |
|----|----------------------|-----------------------------------------|-------------------------------------|
| 1  | Premium/Bensin       | 2.597,86                                | 2.003,40                            |
| 2  | Diesel/Solar         | 2.924,90                                | 2.220,40                            |

Sumber: IPCC, 1996 dan Boedisantoso, et al., 2011

Selanjutnya adalah tabel Konsumsi Energi Spesifik berdasarkan BPPT dan Jinca, *et al.* (2009).

Tabel 3. 9 Konsumsi Energi Spesifik Bahan Bakar Kendaraan

| No | Jenis Kendaraan | Konsumsi Energi<br>Spesifik (liter/km) |
|----|-----------------|----------------------------------------|
| 1  | Mobil Penumpang |                                        |
|    | Bensin          | 0,1179                                 |
|    | Diesel/Solar    | 0,1136                                 |
| 2  | Bus Besar       |                                        |
|    | Bensin          | 0,2315                                 |
|    | Diesel/Solar    | 0,1689                                 |
| 3  | Bus Sedang      | 0,1304                                 |
| 4  | Bus Kecil       |                                        |
|    | Bensin          | 0,1135                                 |
|    | Diesel/Solar    | 0,1183                                 |
| 5  | Bemo/Bajaj      | 0,1099                                 |
| 6  | Taksi           |                                        |
|    | Bensin          | 0,1088                                 |
|    | Diesel/Solar    | 0,0625                                 |
| 7  | Truk Besar      | 0,1582                                 |

| No | Jenis Kendaraan | Konsumsi Energi<br>Spesifik (liter/km) |
|----|-----------------|----------------------------------------|
| 8  | Truk Sedang     | 0,1515                                 |
| 9  | Truk Kecil      |                                        |
|    | Bensin          | 0,0811                                 |
|    | Diesel/Solar    | 0,1064                                 |
| 10 | Sepeda Motor    | 0,0266                                 |

Sumber: BPPT Dalam Jinca, et al., 2009

Setelah mendapatkan volume kendaraan, maka akan terlihat *peak hour* (jam puncak) pada masing-masing titik sampel. Penelitian ini menggunakan jam puncak untuk mengetahui beban emisi maksimal yang dikeluarkan di wilayah penelitian.

# 3.6.3 Fakor-faktor yang Mempengaruhi Emisi Gas Buang Kendaraan

Terdapat beberapa faktor yang mempengaruhi emisi gas buang kendaraan, yaitu kapasitas ruas jalan, pergerakan kendaraan, ruang terbuka hijau, jarak antar persimpangan, umur kendaraan dan perawatan kendaraan. Sebelum menganalisis pengaruh dari masing-masing variabel, perlu dilakukan identifikasi dan perhitungan untuk mengukur variabel-variabel tersebut.

### 1) Kapasitas Ruas Jalan

Menurut Oglesby dan Hick (1993), kapasitas ruas jalan dalam suatu sistem jalan raya adalah jumlah kendaraan maksimum yang memiliki kemungkinan yang cukup untuk melewati ruas jalan tersebut, baik satu maupun dua arah dalam periode waktu tertentu di bawah kondisi jalan dan lalu lintas yang umum. Untuk mencari kapasitas ruas jalan (C), dapat menggunakan rumus sebagai berikut:

$$C = Co x FCw x FCsp x FCsf x FCcs$$

## Keterangan:

C : Kapasitas ruas jalan (smp/jam)

Co : Kapasitas dasar

FCw : Faktor penyesuaian lebar jalur lalu

lintas

FCsp : Faktor penyesuaian pemisahan arah FCsf : Faktor penyesuaian akibat hambatan

samping

FCcs : Faktor penyesuaian kapasitas ukuran

kota

Setiap faktor memiliki klasifikasi masing-masing berdasarkan kondisi lapangan yang ada. Berikut ini adalah keterangan kapasitas dasar.

Tabel 3. 10 Kapasitas Dasar Ruas Jalan

|               | Tipe          | Kapasitas Dasar (smp/jam) |                       |                         |           |
|---------------|---------------|---------------------------|-----------------------|-------------------------|-----------|
| Tipe<br>Jalan | Alinye<br>men | Jalan<br>Perkotaan        | Jalan<br>Luar<br>Kota | Jalan Bebas<br>Hambatan | Catatan   |
| 4/2 D         | Datar         | 1650                      | 1900                  | 2300                    | Per lajur |
|               | Bukit         |                           | 1850                  | 2250                    |           |
|               | Gunung        |                           | 1800                  | 2150                    |           |
| 4/2 UD        | Datar         | 1500                      | 1700                  |                         | Per lajur |
|               | Bukit         |                           | 1650                  |                         |           |
|               | Gunung        |                           | 1600                  |                         |           |
| 2/2 UD        | Datar         | 2900                      | 3100                  | 3400                    | Total     |
|               | Bukit         |                           | 3000                  | 3300                    | dua arah  |
|               | Gunung        |                           | 2900                  | 3200                    |           |

Sumber: MKJI, 1997

Selanjutnya adalah keterangan faktor penyesuaian lebar jalur lalu lintas, sebagai berikut.

Tabel 3. 11 Faktor Penyesuaian Kapasitas untuk Lebar Jalur Lalu Lintas (FCw)

|            | Lebar                                       | FCw                |                    |                            |  |
|------------|---------------------------------------------|--------------------|--------------------|----------------------------|--|
| Tipe Jalan | Jalur Lalu<br>Lintas<br>Efektif<br>(Wc) (m) | Jalan<br>Perkotaan | Jalan<br>Luar Kota | Jalan<br>Bebas<br>Hambatan |  |
| 4/2 D      | Per jalur                                   |                    |                    |                            |  |
|            | 3,00                                        | 0,92               | 0,91               |                            |  |
|            | 3,25                                        | 0,96               | 0,96               | 0,96                       |  |
|            | 3,50                                        | 1,00               | 1,00               | 1,00                       |  |

|                                     | Lebar          | FCw                |                    |                            |
|-------------------------------------|----------------|--------------------|--------------------|----------------------------|
| Tipe Jalan Lintas  Efektif  (Wc) (m |                | Jalan<br>Perkotaan | Jalan<br>Luar Kota | Jalan<br>Bebas<br>Hambatan |
|                                     | 3,75           | 1,04               | 1,03               | 1,03                       |
|                                     | 4,00           |                    |                    |                            |
| 4/2 UD                              | Per Jalur      |                    |                    |                            |
|                                     | 3,00           | 0,91               | 0,91               |                            |
|                                     | 3,25           | 0,95               | 0.96               |                            |
|                                     | 3,50           | 1,00               | 1,00               |                            |
|                                     | 3,75           | 1,05               | 1,03               |                            |
|                                     | 4,00           |                    |                    |                            |
| 2/2 UD                              | Total Dua Arah |                    |                    |                            |
|                                     | 5,0            | 0,56               | 0,69               |                            |
|                                     | 6,0            | 0.87               | 0,91               |                            |
|                                     | 6,5            |                    |                    | 0,96                       |
|                                     | 7,0            | 1,00               | 1,00               | 1,00                       |
|                                     | 7,5            |                    |                    | 1,04                       |
|                                     | 8,0            | 1,14               | 1,08               |                            |
|                                     | 9,0            | 1,25               | 1,15               |                            |
|                                     | 10,0           | 1,29               | 1,21               |                            |
|                                     | 11,0           | 1,34               | 1,27               |                            |

Sumber: MKJI, 1997

Selanjutnya adalah keterangan faktor penyesuaian pemisahan arah, sebagai berikut.

Tabel 3. 12 Faktor Penyesuaian Pemisah Arah

| Pemisahar<br>SP (%- |     | 50-50 | 55-45 | 60-40 | 65-35 | 70-30 |
|---------------------|-----|-------|-------|-------|-------|-------|
| FCsp                | 2/2 | 1,00  | 0,97  | 0,94  | 0,91  | 0,88  |
| resp                | 4/2 | 1,00  | 0,985 | 0,97  | 0,955 | 0,94  |

Sumber: MKJI, 1997

Selanjutnya adalah keteranganfaktor penyesuaian akibat hambatan samping, sebagai berikut.

Tabel 3. 13 Faktor Penyesuaian Akibat Hambatan Samping untuk Jalan Perkotaan (Jalan dengan Kereb)

| Tipe   | Kelas               | FCsf (Jalan dengan Kereb) |      |      | reb)  |
|--------|---------------------|---------------------------|------|------|-------|
| Jalan  | Hambatan<br>Samping | <=0,5                     | 1,0  | 1,5  | >=2,0 |
| 4/2 D  | VL                  | 0,95                      | 0,97 | 0,99 | 1,01  |
|        | L                   | 0,94                      | 0,96 | 0.98 | 1,00  |
|        | M                   | 0,91                      | 0,93 | 0,95 | 0,98  |
|        | Н                   | 0,86                      | 0,89 | 0,92 | 0,95  |
|        | VH                  | 0,81                      | 0,85 | 0,88 | 0,92  |
| 4/2 UD | VL                  | 0,95                      | 0,97 | 0,99 | 1,01  |
|        | L                   | 0,93                      | 0,95 | 0,97 | 1,00  |
|        | M                   | 0,90                      | 0,92 | 0,95 | 0,97  |
|        | Н                   | 0,84                      | 0,87 | 0,90 | 0,93  |
|        | VH                  | 0,77                      | 0,81 | 0,85 | 0,90  |
| 2/2 UD | VL                  | 0,93                      | 0,95 | 0,97 | 0,99  |
| atau   | L                   | 0,90                      | 0,92 | 0,95 | 0,97  |
| jalan  | M                   | 0,86                      | 0,88 | 0,91 | 0,94  |
| satu   | Н                   | 0,78                      | 0,81 | 0,84 | 0,88  |
| arah   | VH                  | 0,68                      | 0,72 | 0,77 | 0,82  |

Sumber: MKJI, 1997

Selanjutnya adalah keterangan faktor penyesuaian kapasitas ukuran kota, sebagai berikut.

Tabel 3. 14 Faktor Penyesuaian Ukuran Kota

| Ukuran Kota (juta<br>penduduk) | Faktor Penyesuaian<br>untuk Ukuran Kota<br>(FCcs) |
|--------------------------------|---------------------------------------------------|
| <0,1                           | 0,86                                              |
| 0,1-0,5                        | 0,90                                              |
| 0,5-1,0                        | 0,94                                              |
| 1,0-3,0                        | 1,00                                              |
| >3,0                           | 1,04                                              |

Sumber: MKJI, 1997

Data ini didapatkan dari hasil perhitungan volume lalu lintas. Setelah mendapatkan kapasitas ruas jalan, maka data ini digunakan untuk analisis selanjutnya dalam mengetahui besar pengaruh variabel tersebut terhadap beban emisi.

## 2) Pergerakan Kendaraan

Pergerakan kendaraan mewakili variabel aktivitas penggunaan lahan, yaitu aktivitas di pusat kegiatan maupun di kawasan permukiman. Oleh sebab itu pada penelitian ini akan dilakukan penyebaran kuisioner yang terhadap masyarakat melewati wilavah penelitian mengenai asal dan tujuan dari perjalanan masing-masing kendaraan. Pada variabel ini "asal" diasumsikan sebagai kawasan permukiman, sementara "tujuan" diasumsikan sebagai pusat kegiatan di wilayah penelitian. Berdasarkan Tugaswati (2007), aktivitas penggunaan lahan seperti kawasan perekonomian dan permukiman mempengaruhi beban emisi yang dikeluarkan kendaraan. Asumsinya semakin besar jarak antara kawasan permukiman dari pusat kegiatan, maka semakin besar emisi kendaraan yang dikeluarkan.

## 3) Ruang Terbuka Hijau

Proporsi ruang terbuka hijau merupakan gambaran kebutuhan RTH dalam satu kawasan. Proporsi RTH perkotaan secara umum membutuhkan minimal 30%. Sedangkan untuk KDH (RTH Privat) membutuhkan minimal 10% dari total luas kavling. Akan tetapi besar ini harus mampu mengakomodasi proporsi permasalahan lingkungan dari kegiatan perkotaan, salah satunya transportasi. Ruang terbuka hijau diperuntukan untuk mengurangi tingkat pencemaran, yaitu nilai emisi yang dihasilkan oleh sektor transportasi. Selain itu, ruang terbuka hijau juga menjaga diperuntukan untuk keseimbangan lingkungan udara perkotaan. Maka perlu diukur luas area ruang terbuka hijau yang ada di wilayah penelitian untuk melihat besar pengaruh ruang terbuka hijau tersebut terhadap beban emisi yang tersebar di wilayah penelitian. Data ini didapat dari pendekatan geographic information system (GIS).

### 4) Jarak antar Persimpangan

Manajemen lalu lintas yang ada di wilayah penelitian juga dapat mempengaruhi beban emisi yang dikeluarkan oleh kendaraan. Lebih rincinya adalah manajemen lalu lintas non-fisik yang mengatur lampu lalu lintas, rambu dll. Asumsinya semakin dekat jarak antar persimpangan, maka kendaraan cenderung akan lebih padat dan berhenti cukup sering. Hal ini mengakibatkan emisi yang dikeluarkan oleh kendaraan juga cenderung tinggi. Data ini didapat dari pendekatan geographic information system (GIS).

#### 5) Umur Kendaraan

Umur kendaraan yang dimaksud adalah lama kendaraan tersebut sudah dipakai. Pemakaian kendaraan diukur dari jumlah kilometer yang sudah ditempuh oleh kendaraan tersebut. Asumsinya semakin tinggi jumlah kilometer suatu kendaraan, maka emisi yang dikeluarkan juga semakin tinggi. Data ini didapat berdasarkan hasil kuisioner dengan masyarakat yang melewati wilayah penelitian.

#### 6) Perawatan Kendaraan

Kadar gas berbahaya CO dan NOx pada gas buang kendaraan bermotor bisa ditekan sekecil mungkin dengan perawatan yang baik terhadap mesin kendaraan tersebut. Perawatan yang dilakukan terhadap mesin kendaraan berpengaruh terhadap emisi yang dihasilkan. Semakin rutin sepeda motor melakukan servis maka emisi CO, HC dan NOx yang dihasilkan semakin kecil. Pada umumnya kendaraan dirawat (*service*) setiap enam bulan sekali. Maka data kuantitatif yang tercatat adalah "1" jika kendaraan

dirawat minimal dua kali dalam setahun dan "0" jika kendaraan dirawat kurang dari dua kali dalam setahun. Data ini didapat berdasarkan hasil kuisioner dengan masyarakat yang melewati wilayah penelitian.

Berdasarkan faktor-faktor di atas, maka analisis selanjutnya adalah mengetahui besar pengaruh dari masing-masing faktor terhadap jumlah beban emisi yang telah teridentifikasi. Analisis yang digunakan adalah analisis regresi linier berganda. Regresi linier merupakan metode untuk mengukur pengaruh lebih dari satu variabel bebas terhadap 1 variabel terikat. Analisis ini memiliki persamaan sebagai berikut:

$$Y = a + (b x X1) + (c x X2) + (d x X3) + \cdots + (n x Xn)$$

## Keterangan:

Y : Variabel dependen (terikat)

a : Konstanta

b,c,d,..,n : Konstanta untuk setiap

variabel bebas

X1,X2,X3,...,Xn : Variabel independen (bebas)

Dalam hal ini, variabel independen (terikat) adalah jumlah beban emisi. Sementara variabel dependen (bebas) adalah kapasitas ruas jalan, pergerakan kendaraan, luas ruang terbuka hijau, jarak antar persimpangan, umur kendaraan, dan perawatan kendaraan. Untuk mengetahui variabel independen yang paling berperan terhadap variabel dependen diperlukan dengan melihat tabel anova

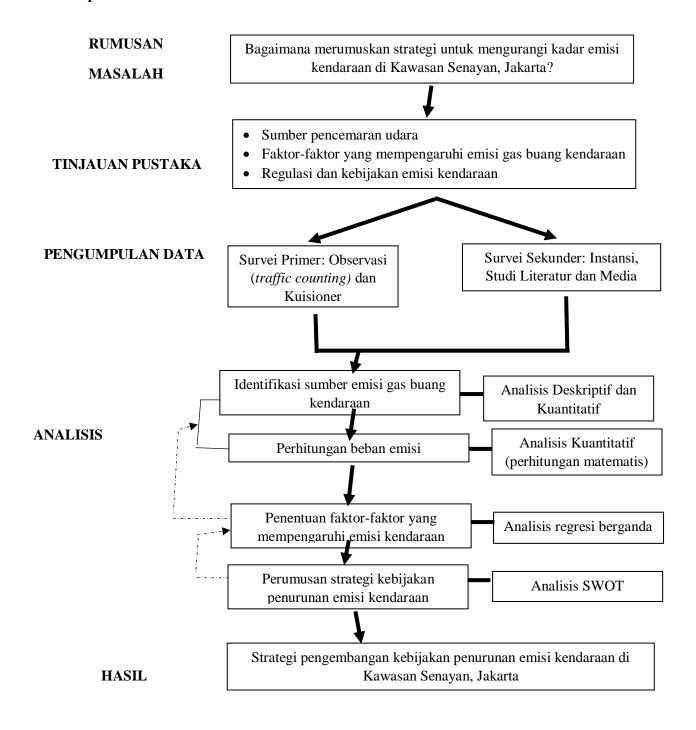
untuk mereduksi variabel yang kurang berpengaruh. P-Value < 0,05 adalah variabel yang berpengaruh. Adjustment R-Squared menunjukkan besarnya pengaruh variabel independen terhadap variabel dependen. Semakin besar nilai R-Squared maka semakin tinggi pengaruh variabel independen terhadap variabel dependen.

Setelah mengetahui variabel-variabel yang mempengaruhi maka akan disusun skenario untuk menangani permasalahan emisi di Kawasan Senayan berdasarkan variabel-variabel tersebut. Skenario yang dimaksud berupa data kuantitatif yang dapat diukur. Skenario ini yang akan digunakan untuk sasaran selanjutnya yaitu merumuskan strategi pengembangan kebijakan penurunan emisi kendaraan di Kawasan Senayan.

# 3.6.4 Perumusan Strategi Pengembangan Kebijakan Penurunan Emisi Kendaraan

Pada tahap ini dilakukan adaptasi faktor-faktor yang mempengaruhi terhadap konsep low emission zone itu sendiri. Hal ini dilakukan untuk mengetahui hal-hal apa yang perlu diatur di dalam zona LEZ. Adaptasi ini dilakukan dengan menggunakan Analisis SWOT (Strength, Weakness, Opportunities, Threat). Berdasarkan Rangkuti (1997), Analisis SWOT adalah proses identifikasi berbagai faktor yang dilakukan secara sistematis agar bisa merumuskan strategi dengan tepat. Analisis dilakukan berdasarkan logika mengoptimalkan kekuatan (strength) atau (opportunities). Akan tetapi secara beriringan, analisis ini juga harus bisa meminimalkan ancaman (threat) dan kelemahan (*weakness*). Berikut ini adalah tabel analisis SWOT yang pada umumnya digunakan.

**Tabel 3. 15 Contoh Tabel Analisis SWOT** 


| IFAS                     | Strenghts (S) =  | Weakness (W) = |
|--------------------------|------------------|----------------|
|                          | Kekuatan         | Kelemahan      |
|                          | • S1             | • W1           |
|                          | • S2             | • W2           |
| EFAS                     | • S3             | • W3           |
| Opportunities            | Strategi SO      | Strategi WO    |
| (O) = Peluang            | Strategi 30      | Strategi WO    |
| • O1                     | (S1-S2-S3-O1-    | (W1-W2-W3-O1-  |
| • O2                     | O2-O3)           | O2-O3)         |
| • O3                     |                  |                |
| Threats (T) =<br>Ancaman | Strategi ST      | Strategi WT    |
| • T1                     | (S1-S2-S3-T1-T2- | (W1-W2-W3-T1-  |
| • T2                     | T3)              | T2-T3)         |
| • T3                     |                  |                |

Sumber: Penulis, 2018

Dalam menyusun strategi, pertama dikelompokan terlebih dahulu faktor-faktor internal dan eksternal. Pada penelitian ini faktor internal adalah variabel-variabel yang paling berpengaruh terhadap beban emisi kendaraan. Sementara faktor eksternal adalah strategi atau kebijakan yang sudah ada dalam menangani permasalahan emisi di Kawasan Senayan. Berdasarkan tabel tersebut dapat strategi berdasarkan kekuatan, kelemahan, disusun peluang dan ancaman yang telah didapat dari faktor-faktor mempengaruhi. Maka yang terbentuklah pengembangan kebijakan penurunan emisi kendaraan di Senayan, Jakarta.

"Halaman ini sengaja dikosongkan"

## 3.7 Tahapan Penelitian



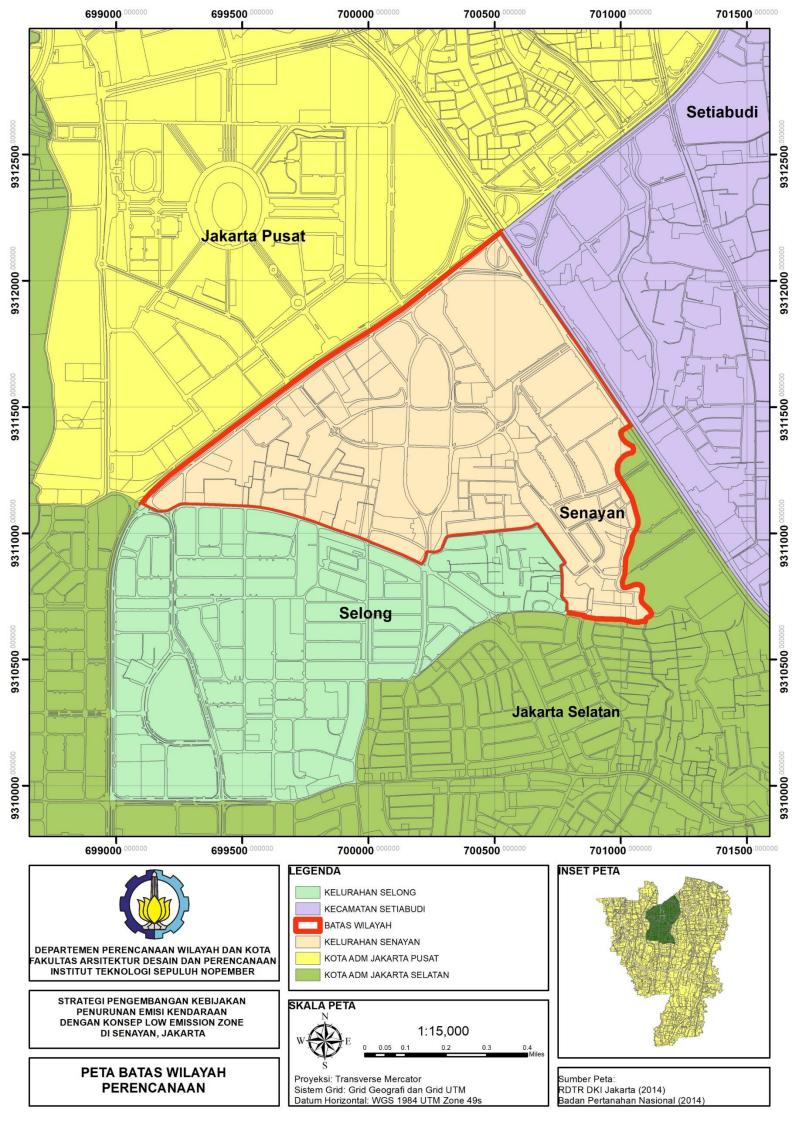
#### **BAB IV**

## HASIL DAN PEMBAHASAN

### 4.1 Gambaran Umum

# 4.1.1 Wilayah Administrasi

Sesuai dengan tujuan penelitian ini, yaitu merumuskan strategi pengembangan kebijakan penurunan kada emisi pada sektor transportasi di Senayan, Jakarta maka, lokasi studi yang diambil dari penelitian ini adalah batas administrasi Senayan itu sendiri. Wilayah penelitian yang dipilih dalam penelitian ini adalah Senayan, Kebayoran Baru sebagai Ibukota Administrasi Jakarta Selatan, Provinsi DKI Jakarta. Senayan memiliki batas wilayah sebagai berikut:

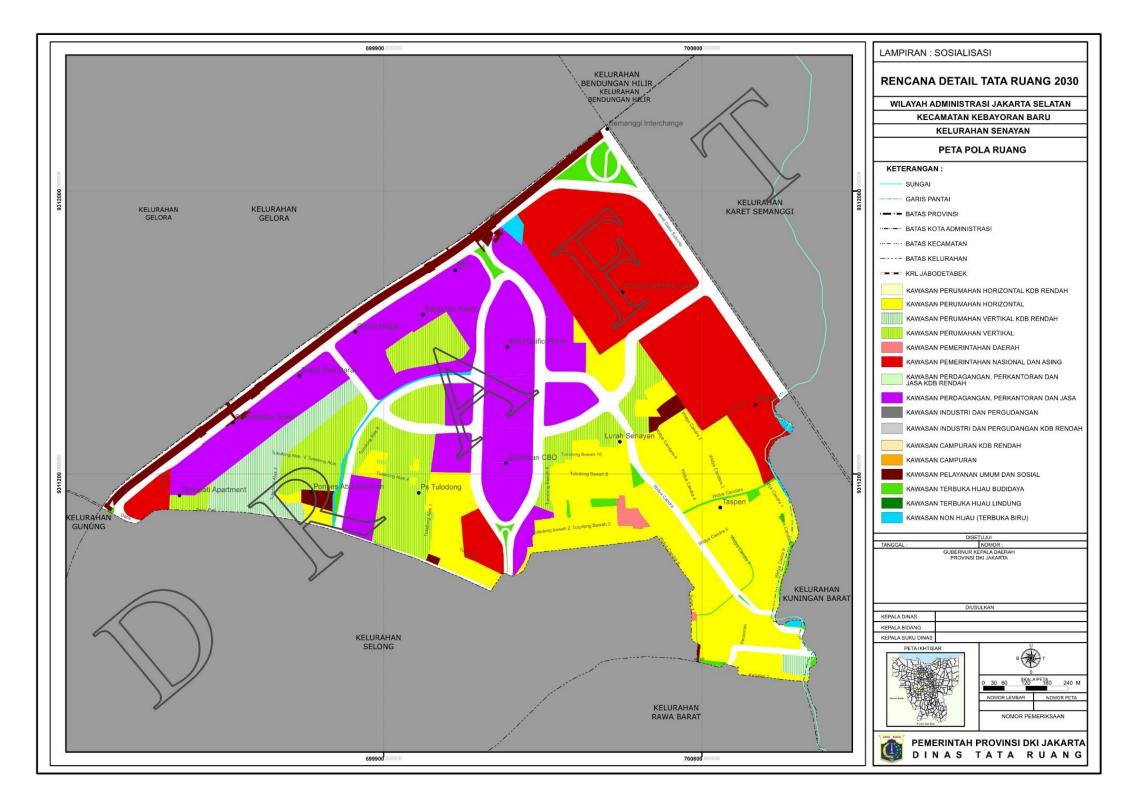

Batas utara : Kota Administrasi Jakarta Pusat

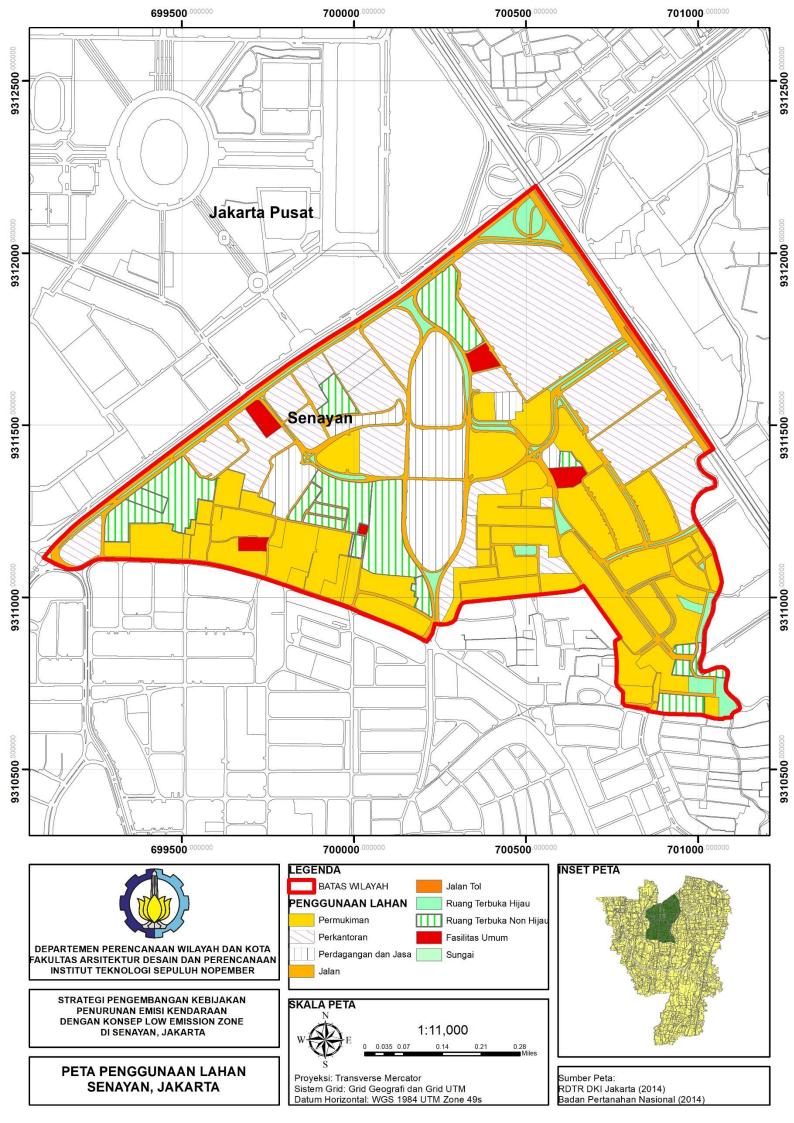
Batas timur : Kecamatan Setiabudi

Batas selatan : Kelurahan Selong

Batas barat : Kota Administrasi Jakarta Pusat

Berikut ini merupakan peta batas wilayah studi:





Kelurahan Senayan memiliki luas area sebesar 1,53 km2. Luas ini merupakan salah satu luas area terbesar di Kecamatan Kebayoran Baru. Jarak dari kantor kelurahan ke kecamatan adalah 3,6 km. Selain itu, ketinggian wilayah dari permukaan laut adalah sebesar 26,2 m. Kelurahan Senayan memiliki jumlah penduduk sebanyak 3582 jiwa yang tersusun atas jumlah Kepala Keluraga (KK) sebanyak 1364 KK dan komposisi RW dan RT masing-masing sebanyak 3 RW dan 19 RT. Dengan demikian, kepadatan penduduk di Kelurahan Senayan adalah 2341,18 jiwa/km2.

## 4.1.2 Penggunaan Lahan

Berdasarkan kondisi eksisting yang ada, penggunaan lahan di Kelurahan Senayan didominasi oleh permukiman, fasilitas umum, perkantoran, perdagangan dan jasa. Permukiman di Senayan terdiri atas permukiman horizontal dan permukiman vertikal. Fasilitas umum seperti kantor pemerintah daerah dan kantor pemerintah nasional serta asing. Perdagangan dan jasa di wilayah tersebut didominasi oleh pusat perbelanjaan, seperti pusat perbelanjaan, restoran, bank, dan lain-lain. Sementara perkantoran yang ada di wilayah tersebut adalah kantor pusat kepolisian dan kantor-kantor swasta lainnya.

Berdasarkan RDTR Kebayoran Baru, Kelurahan Senayan merupakan wilayah *Central Business District* (CDB) yang disebut juga sebagai Sudirman CBD. Maka terjadi banyak pergerakan di wilayah tersebut akibat bangkitan dan tarikan penggunaan lahan yang ada. Penggunaan lahan yang ada pada wilayah tersebut dapat dilihat pada peta berikut.





## 4.2 Identifikasi Volume Kendaraan

Volume kendaraan yang dimaksud adalah jumlah kendaraan per jenis yang sudah dikonversikan satuannya menjadi smp/jam. Hal ini bertujuan agar emisi gas yang dihasilkan masingmasing jenis kendaraan bermotor dapat diakumulasikan karena mempunyai satuan yang sama. Sebelum konversi menjadi satuan smp/jam, perlu diketahui jumlah kendaraan per jalur pada masingmasing titik pengamatan. Berikut adalah jumlah kendaraan per jalur pada masing-masing titik pengamatan.

Tabel 4. 1 Jumlah Kendaraan Masing-Masing Titik Pengamatan Weekday dan Weekend (Kendaraan/Jam)

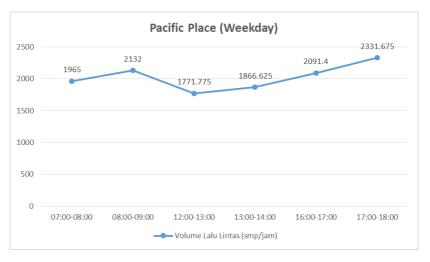
|               | Waktu      |        |        |        |        |        |
|---------------|------------|--------|--------|--------|--------|--------|
| Titik         | Titik Pagi |        | Siang  |        | Sore   |        |
| Pengamatan    | 07:00-     | 08:00- | 12:00- | 13:00- | 16:00- | 17:00- |
|               | 08:00      | 09:00  | 13:00  | 14:00  | 17:00  | 18:00  |
| Weekday       |            |        |        |        |        |        |
| Pacific Place | 3352       | 3660   | 2675   | 2789   | 3733   | 4179   |
| Grand Lucky   | 1251       | 1263   | 837    | 806    | 1315   | 1363   |
| Jend.         | 6390       | 6504   | 5341   | 5326   | 5643   | 5747   |
| Sudirman      |            |        |        |        |        |        |
| Polda Metro   | 838        | 645    | 738    | 696    | 916    | 910    |
| Jaya          | 030        | 043    | 730    | 070    | 710    | 710    |
| Senopati      | 2413       | 2383   | 2929   | 2997   | 2665   | 2671   |
| Widya         | 1799       | 1825   | 1284   | 1337   | 1336   | 1338   |
| Chandra       | 1/99       | 1023   | 1204   | 1337   | 1550   | 1336   |
| Weekend       |            |        |        |        |        |        |
| Pacific Place |            |        | 2255   | 2241   | 1523   | 1521   |
| Grand Lucky   |            |        | 768    | 730    | 762    | 717    |

|             | Waktu  |        |        |        |        |        |
|-------------|--------|--------|--------|--------|--------|--------|
| Titik       | Pagi   |        | Siang  |        | Sore   |        |
| Pengamatan  | 07:00- | 08:00- | 12:00- | 13:00- | 16:00- | 17:00- |
|             | 08:00  | 09:00  | 13:00  | 14:00  | 17:00  | 18:00  |
| Jend.       |        |        | 5089   | 5222   | 5620   | 5752   |
| Sudirman    |        |        | 3007   | 3222   | 3020   | 3132   |
| Polda Metro |        |        | 566    | 543    | 630    | 677    |
| Jaya        |        |        | 300    | 343    | 030    | 077    |
| Senopati    |        |        | 2464   | 2471   | 2803   | 2731   |
| Widya       |        |        | 1052   | 1062   | 1001   | 1021   |
| Chandra     |        |        | 1032   | 1002   | 1001   | 1021   |

Sumber: Hasil Observasi, 2019

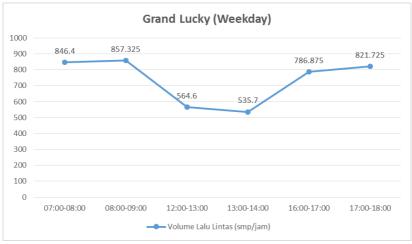
Pada setiap titik pengamatan memiliki karakteristik masing-masing. Karakteristik tersebut dapat dilihat dari masing-masing penggunaan lahan, fasilitas pendukung, dan regulasi yang sudah ada. Berikut ini adalah keterangan tambahan mengenai masing-masing titik pengamatan pada wilayah penelitian.

Tabel 4. 2 Keterangan Tambahan Masing-Masing Titik Pengamatan


| Titik<br>Pengamatan | Foto | Keterangan<br>Tambahan                                                                                                                                                      |
|---------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pacific Place       |      | <ul> <li>Didominasi oleh perkantoran dan perdaganga n dan jasa</li> <li>Termasuk ke dalam ruas jalan ganjilgenap</li> <li>Terdapat Bus SCBD sebagai transportasi</li> </ul> |
| Grand Lucky         |      | <ul> <li>Didominasi oleh perkantoran dan perdaganga n dan jasa</li> <li>Termasuk ke dalam ruas jalan</li> </ul>                                                             |

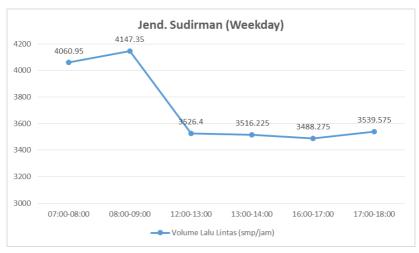
| Titik       | Foto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | Keterangan   |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------|
| Pengamatan  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Tambahan     |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | ganjil-      |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | genap        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • | Terdapat     |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Bus SCBD     |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | sebagai      |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | transportasi |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | umum         |
| Jend.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • | Didominasi   |
| Sudirman    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | oleh         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | perkantoran  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | , sarana     |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | pelayanan    |
|             | The state of the s |   | umum dan     |
|             | the tracker !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | perdaganga   |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | n dan        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • | Termasuk     |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | ke dalam     |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | ruas jalan   |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | ganjil-      |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | genap.       |
| Polda Metro |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • | Didominasi   |
| Jaya        | 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | oleh         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | perkantoran  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | dan sarana   |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | pelayanan    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | umum         |
|             | 74-75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • | Termasuk     |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | ke dalam     |

| Titik      | Foto | Keterangan                                                                                                                                                                               |
|------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pengamatan | roto | Tambahan                                                                                                                                                                                 |
|            |      | ruas jalan ganjil-genap.  • Terdapat Bus SCBD sebagai transportasi umum                                                                                                                  |
| Senopati   |      | <ul> <li>Didominasi oleh perkantoran dan perdaganga n dan jasa.</li> <li>Tidak termasuk ke dalam ruas jalan ganjilgenap.</li> <li>Terdapat Bus SCBD sebagai transportasi umum</li> </ul> |


| Titik<br>Pengamatan | Foto | Keterangan<br>Tambahan                                                                                   |  |
|---------------------|------|----------------------------------------------------------------------------------------------------------|--|
| Widya<br>Chandra    |      | <ul> <li>Didominasi oleh permukima n</li> <li>Tidak termasuk ke dalam ruas jalan ganjilgenap.</li> </ul> |  |

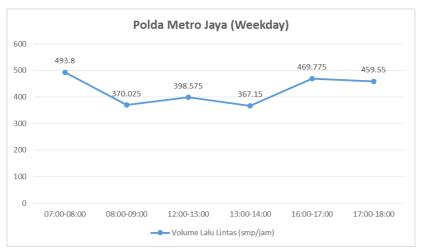
Selanjutnya setelah diketahui jumlah kendaraan per jam, data ini dikonversi menjadi volume lalu lintas kendaraan dengan satuan smp/jam. Maka jumlah kendaraan setiap jenis kendaraan dikalikan dengan konstanta Ekivalensi Mobil Penumpang (EMP) dengan berdasarkan MKJI 1997 pada **Tabel 3.7**. Berikut merupakan volume kendaraan dari hasil *traffic counting* yang telah dikonversikan satuannya menjadi smp/jam.




Gambar 4. 1 Volume Lalu Lintas Pacific Place (Weekday)

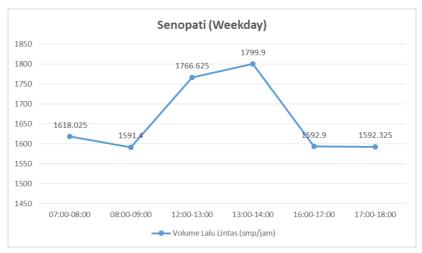
Berdasarkan **Gambar 4.1**, dapat diketahui bahwa jam puncak pada titik Pacific Place di hari kerja adalah pada sore hari. Volume lalu lintas mengalami peningkatan dari siang pukul 12:00 sebanyak 1771,78 smp/jam menjadi 2331,68 smp/jam pada sore hari pukul 18:00. Rata-rata volume lalu lintas selama hari kerja di titik Pacific Place adalah 2026,41 smp/jam.




Gambar 4. 2 Volume Lalu Lintas Grand Lucky (Weekday)

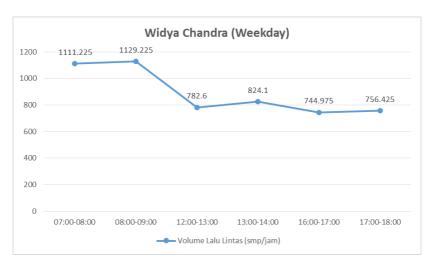
Berdasarkan **Gambar 4.2**, dapat diketahui bahwa jam puncak pada titik Grand Lucky di hari kerja adalah pada pagi hari. Volume lalu lintas paling tinggi di pagi hari adalah 857,33 smp/jam. Sementara dari siang hari pukul 13:00 sampai sore hari pukul 18:00 mengalami peningkatan dari 535,70 smp/jam menjadi 821,73 smp/jam. Rata-rata volume lalu lintas selama hari kerja di titik Grand Lucky adalah 735,44 smp/jam.




Gambar 4. 3 Volume Lalu Lintas Jend. Sudirman (Weekday)

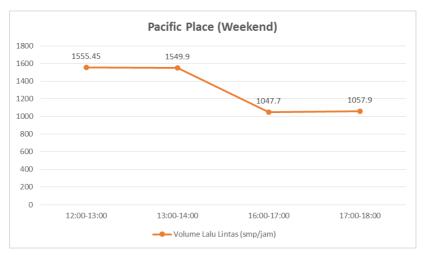
Berdasarkan **Gambar 4.3**, dapat diketahui bahwa jam puncak pada titik Jend. Sudirman di hari kerja adalah pada pagi hari. Volume lalu lintas paling tinggi di pagi hari adalah 4147,35 smp/jam. Sementara dari siang hari ke sore hari volume lalu lintas tidak terjadi perubahan secara signifikan yaitu 3516,23 smp/jam pada siang hari dan 3539,58 smp/jam pada sore hari. Rata-rata volume lalu lintas selama hari kerja di titik Jend. Sudirman adalah 3713,13 smp/jam.




Gambar 4. 4 Volume Lalu Lintas Polda Metro Jaya (Weekday)

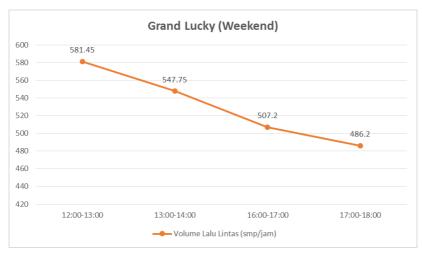
Berdasarkan **Gambar 4.4**, dapat diketahui bahwa jam puncak pada titik Polda Metro Jaya di hari kerja adalah pada pagi hari. Volume lalu lintas paling tinggi di pagi hari adalah 493,80 smp/jam. Sementara dari siang hari ke sore hari mengalami peningkatan dari 367,15 smp/jam menjadi 469,78 smp/jam. Akan tetapi mengalami penurunan sedikit pada sore hari pukul 18:00 menjadi 459,55 smp/jam. Rata-rata volume lalu lintas di titik Polda Metro Jaya pada hari kerja adalah 426,48 smp/jam.




Gambar 4. 5 Volume Lalu Lintas Senopati (Weekday)

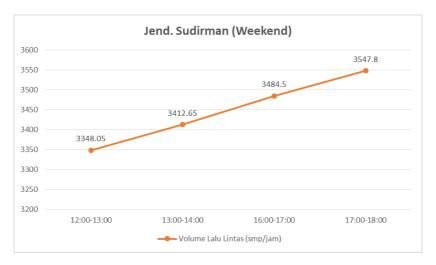
Berdasarkan **Gambar 4.5**, dapat diketahui bahwa jam puncak pada titik Senopati di hari kerja adalah pada siang hari. Volume lalu lintas paling tinggi di siang hari adalah 1799,90 smp/jam. Sementara dari siang hari ke sore hari mengalami penurunan menjadi 1592,33 smp/jam. Rata-rata volume lalu lintas di titik Senopati pada hari kerja adalah 1660,20 smp/jam.




Gambar 4. 6 Volume Lalu Lintas Widya Chandra (Weekday)

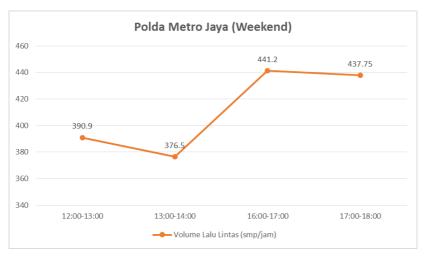
Berdasarkan **Gambar 4.6**, dapat diketahui bahwa jam puncak pada titik Widya Chandra di hari kerja adalah pada pagi hari. Volume lalu lintas paling tinggi di pagi hari adalah 1129,23 smp/jam. Setelah itu volume lalu lintas terus mengalami penurunan menjadi 824,10 smp/jam pada siang hari pukul 14:00 dan 756,43 smp/jam pada sore hari pukul 18:00. Rata-rata volume lalu lintas di titik Widya Chandra pada hari kerja adalah 891,23 smp/jam.




Gambar 4. 7 Volume Lalu Lintas Pacific Place (Weekend)

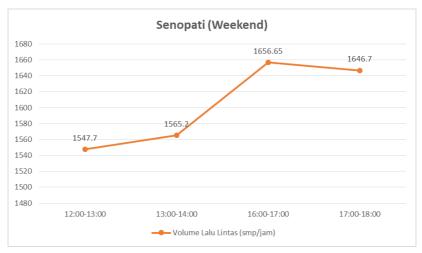
Berdasarkan **Gambar 4.7**, dapat diketahui bahwa jam puncak titik Senopati di hari libur adalah pada siang hari. Volume lalu lintas paling tinggi di siang hari adalah 1555,45 smp/jam. Setelah itu mengalami penurunan di sore hari menjadi 1057,90 smp/jam. Rata-rata volume lalu lintas di titik Senopati pada hari libur adalah 1302,74 smp/jam.




Gambar 4. 8 Volume Lalu Lintas Grand Lucky (Weekend)

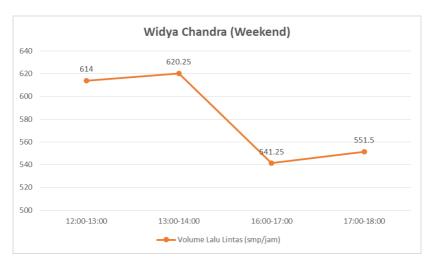
Berdasarkan **Gambar 4.8**, dapat diketahui bahwa jam puncak pada titik Grand Lucky di hari libur adalah pada siang hari. Volume paling tinggi di siang hari adalah pukul 13:00, yaitu 581,45 smp/jam. Setelah itu volume lalu lintas terus mengalami penurunan hingga menjadi 486,20 smp/jam di sore hari pada pukul 18:00. Rata-rata volume lalu lintas di titik Grand Lucky pada hari libur adalah 530,65 smp/jam.




Gambar 4. 9 Volume Lalu Lintas Jend. Sudirman (Weekend)

Berdasarkan **Gambar 4.9**, dapat diketahui bahwa jam puncak pada titik Jend. Sudirman di hari libur adalah pada sore hari. Volume lalu lintas paling tinggi di sore hari pada pukul 18:00, yaitu 3547,80 smp/jam. Siang hari sampai sore hari terus mengalami peningkatan per jamnya, mulai dari 3348,05 smp/jam menjadi 3547,80 smp/jam. Rata-rata volume lalu lintas di titik Jend. Sudirman pada hari libur adalah 3448,25 smp/jam.




Gambar 4. 10 Volume Lalu Lintas Polda Metro Jaya (Weekend)

Berdasarkan **Gambar 4.10**, dapat diketahui bahwa jam puncak pada titik Polda Metro Jaya di hari libur adalah pada sore hari. Volume lalu lintas paling tinggi di sore hari pada pukul 17:00, yaitu 441,20 smp/jam. Dari siang hari pukul 14:00 ke sore hari pukul 17:00 mengalami peningkatan dari 376,50 smp/jam menjadi 441,20 smp/jam, lalu kembali konstan pada pukul 18:00 menjadi 437,75 smp/jam. Rata-rata volume lalu lintas di titik Polda Metro Jaya pada hari libur adalah 411,59 smp/jam.



Gambar 4. 11 Volume Lalu Lintas Senopati (Weekend)

Berdasarkan **Gambar 4.11**, dapat diketahui bahwa jam puncak pada titik Senopati di hari libur adalah sore hari. Volume lalu lintas paling tinggi di sore hari pada pukul 17:00, yaitu 1656,65 smp/jam. Siang hari ke sore hari terus mengalami peningkatan dari 1547,70 smp/jam menjadi 1656,65 smp/jam. Akan tetapi pada sore hari dari pukul 17:00 sampai 18:00 mengalami sedikit penurunan menjadi 1646,70 smp/jam. Rata-rata volume lalu lintas di titik Senopati pada hari libur adalah 1604,06 smp/jam.



Gambar 4. 12 Volume Lalu Lintas Widya Chandra (Weekend)

Berdasarkan **Gambar 4.12**, dapat diketahui bahwa jam puncak pada titik Widya Chandra di hari libur adalah siang hari. Volume lalu lintas paling tinggi di siang hari pada pukul 14:00, yaitu 620,25 smp/jam. Setelah itu volume lalu lintas mengalami penurunan di sore hari pada pukul 17:00 dan 18:00, menjadi 541,25 smp/jam dan 551,50 smp/jam. Rata-rata volume lalu lintas di titik Widya Chandra pada hari libur adalah 581,75 smp/jam.

Dengan demikian, dapat disimpulkan bahwa masingmasing titik pengamatan memiliki jam puncak sebagai berikut.

- Titik Pacific Place pada pukul 17:00-18:00 di hari kerja dan 12:00-13:00 di hari libur
- Titik Grand Lucky pada pukul 08:00-09:00 di hari kerja dan 12:00-13:00 di hari libur
- Titik Jend. Sudirman pada pukul 08:00-09:00 di hari kerja dan 17:00-18:00 di hari libur
- Titik Polda Metro Jaya pada pukul 07:00-08:00 di hari kerja dan 16:00-17:00 di hari libur
- Titik Senopati pada pukul 13:00-14:00 di hari kerja dan 16:00-17:00 di hari libur
- Titik Widya Chandra pada pukul 08:00-09:00 di hari kerja dan 13:00-14:00 di hari libur

# 4.3 Perhitungan Emisi Gas Buang Kendaraan

Berdasarkan hasil analisis volume lalu lintas sebelumnya, maka dapat dilakukan perhitungan emisi gas buang kendaraan berdasarkan jam puncak. Sebelum memasukan ke dalam rumus, perlu diketahui panjang jalan pada masing-masing titik pengamatan. Berikut ini adalah panjang jalan masing-masing titik tersebut.

Tabel 4. 3 Panjang Jalan Masing-Masing Titik Pengamatan

| Titik Pengamatan | Panjang Jalan (Km) |
|------------------|--------------------|
| Pacific Place    | 0,44               |
| Grand Lucky      | 0,52               |
| Jend. Sudirman   | 1,72               |
| Polda Metro Jaya | 0,44               |
| Senopati         | 0,49               |
| Widya Chandra    | 0,71               |

Sumber: Hasil Observasi, 2019

Setelah mengetahui volume lalu lintas pada jam puncak dan panjang jalan ada masing-masing titik, dapat dilakukan perhitungan beban emisi yang dikeluarkan pada masing-masing kendaraan dengan menggunakan rumus:

$$O = Ni x Fei x Ki x L$$

# Keterangan:

Q : Jumlah emisi (gram/jam)

Ni : Volume kendaraan bermotor tipe-i

(smp/jam)

Fei : Faktor emisi lokal kendaraan bermotor

(gram/liter) dapat dilihat pada Tabel 14

Ki : Konsumsi energi spesifik kendaraan

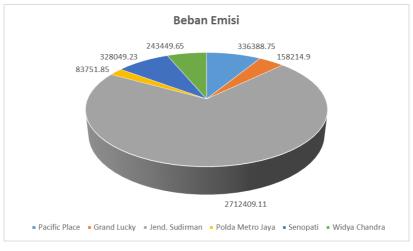
bermotor (liter/km) dapat dilihat pada

Tabel 15

L : Panjang jalan (km) dapat dilihat pada

Tabel 24

Berdasarkan rumus di atas, maka perhitungan beban emisi masing-masing klasifikasi kendaraan dapat dilihat pada tabel berikut.


Tabel 4. 4 Emisi Gas Buang Kendaraan pada Koridor Penelitian

| Emisi Gas              | ,                |                  |            |                  |  |  |
|------------------------|------------------|------------------|------------|------------------|--|--|
| Buang<br>(gram/jam)    | Heavy<br>Vehicle | Light<br>Vehicle | Motorcycle | Total            |  |  |
| Weekday                |                  |                  |            |                  |  |  |
| Pacific<br>Place       | 297,52           | 178.430,80       | 14.465,03  | 193.193,3<br>5   |  |  |
| Grand<br>Lucky         | 234,16           | 88.611,26        | 3.746,77   | 92.592,20        |  |  |
| Jend.<br>Sudirma<br>n  | 89.468,5<br>4    | 1.308.560,6<br>4 | 72.843,50  | 1.470.972,<br>68 |  |  |
| Polda<br>Metro<br>Jaya | 797,17           | 39.120,45        | 2.713,93   | 42.631,55        |  |  |
| Senopati               | 437,94           | 160.727,16       | 10.345,88  | 171.510,9<br>9   |  |  |
| Widya<br>Chandra       | 159,34           | 149.861,97       | 8.759,38   | 158.780,6<br>8   |  |  |
| TOTAL                  | 91.494,6<br>7    | 1.925.312,2      | 112.874,49 | 2.129.681,<br>45 |  |  |
| Weekend                |                  |                  |            |                  |  |  |
| Pacific<br>Place       | 198,34           | 137.518,72       | 5.478,33   | 143.195,4<br>0   |  |  |

| Emisi Gas              |                  |                  |            |                  |  |
|------------------------|------------------|------------------|------------|------------------|--|
| Buang<br>(gram/jam)    | Heavy<br>Vehicle | Light<br>Vehicle | Motorcycle | Total            |  |
| Grand<br>Lucky         | 234,16           | 63.662,46        | 1.726,08   | 65.622,70        |  |
| Jend.<br>Sudirma<br>n  | 84.527,8<br>9    | 1.088.711,3      | 68.137,25  | 1.241.436,<br>43 |  |
| Polda<br>Metro<br>Jaya | 199,29           | 39.434,25        | 1.486,76   | 41.120,30        |  |
| Senopati               | 437,94           | 146.188,74       | 9.911,56   | 156.538,2<br>4   |  |
| Widya<br>Chandra       | 0                | 79.112,40        | 5.556,57   | 84.668,97        |  |
| TOTAL                  | 85.597,6<br>3    | 1.554.687,8<br>7 | 92.296,55  | 1.732.582,<br>05 |  |

Berdasarkan hasil perhitungan emisi gas buang di atas, maka total dari keseluruhan emisi pada hari kerja (weekday) dan hari libur (weekend) adalah sebagai berikut:

Pacific Place : 336.388,75 gram/jam
 Grand Lucky : 158.214,90 gram/jam
 Jend. Sudirman : 2.712.409,11 gram/jam
 Polda Metro Jaya : 83.751,85 gram/jam
 Senopati : 328.049,23 gram/jam
 Widya Chandra : 243.449,65 gram/jam



Gambar 4. 13 Beban Emisi Kawasan Senayan

Sumber: Hasil Analisis, 2019

Menurut **Tabel 25** dan **Gambar 16**, terlihat bahwa emisi yang paling besar terdapat pada Jalan Jendral Sudirman sebanyak 2.712.409,11 gram/jam dari total keseluruhan yaitu 3.862.263,50 gram/jam. Sementara kedua terbesar sampai yang paling kecil adalah Kawasan Pacific Place sebanyak 336.388,75 gram/jam, Kawasan Senopati sebanyak 328.049,23 gram/jam, Kawasan Widya Chandra sebanyak 243.449,65 gram/jam, Kawasan Grand Lucky sebanyak 158.214, 90 gram/jam dan terakhir adalah Kawasan Polda Metro Jaya sebanyak 83.751,85 gram/jam.

Jenis kendaraan yang mengeluarkan emisi paling besar adalah kendaraan ringan seperti mobil dan minibus berbahan bakar bensin. Sementara jenis kendaraan yang mengeluarkan emisi paling kecil adalah kendaraan berat seperti truk dan bus berbahan bakar solar. Kendaraan berat seperti truk dan bus lebih jarang terlihat di wilayah perkotaan dibandingkan dengan kendaraan ringan seperti mobil dan minibus. Dengan demikian, hasil perhitungan emisi gas buang kendaraan ini akan digunakan sebagai input untuk mengetahui besar pengaruh beberapa faktor terhadap emisi gas pada analisis selanjutnya.

# 4.4 Faktor-Faktor yang Mempengaruhi Emisi Gas Buang Kendaraan

Berdasarkan studi literatur, terdapat beberapa faktor yang mempengaruhi emisi gas buang kendaraan. Faktor –faktor tersebut adalah kapasitas ruas jalan, jarak tempuh dari asal ke Kawasan Senayan, waktu tempuh dari asal ke Kawasan Senayan, luas ruang terbuka hijau, jarak antar persimpangan, umur kendaraan dalam kilometer dan perawatan kendaraan. Sebelum menganalisis pengaruh keseluruhan faktor terhadap emisi gas buang, perlu dilakukan identifikasi masing-masing faktor. Berikut ini adalah masing-masing identifikasi faktor.

## 4.4.1 Kapasitas Ruas Jalan

Faktor ini digunakan untuk mengetahui jumlah kendaraan maksimum yang memiliki kemungkinan yang cukup untuk melewati ruas jalan tersebut dalam periode waktu tertentu. Setelah mengetahui klasifikasi jalan berdasarkan lebar jalur lalu lintas efektif, pemisahan arah, kelas hambatan samping, dan ukuran kota maka dapat dihitung kapasitas ruas jalan dengan menggunakan rumus:

$$C = Co x FCw x FCsp x FCsf x FCcs$$

# Keterangan:

C : Kapasitas ruas jalan (smp/jam)

Co : Kapasitas dasar dapat dilihat pada

Tabel 16

FCw : Faktor penyesuaian lebar jalur lalu

lintas dapat dilihat pada Tabel 17

FCsp : Faktor penyesuaian pemisahan arah

dapat dilihat pada Tabel 18

FCsf : Faktor penyesuaian akibat hambatan

samping dapat dilihat pada Tabel 19

FCcs : Faktor penyesuaian kapasitas ukuran

kota dapat dilihat pada Tabel 20

Berikut ini adalah data-data yang dibutuhkan untuk mengidentifikasi kapasitas dasar, faktor penyesuaian lebar jalur lalu lintas, faktor penyesuaian pemisahan arah, faktor penyesuaian akibat hambatan samping dan faktor penyesuaian kapasitas ukuran kota.

Tabel 4. 5 Keterangan yang Dibutuhkan untuk Kapasitas Ruas Jalan

| Titik<br>Pengam<br>atan          | Pacific<br>Place | Grand<br>Lucky | Jend.<br>Sudirm<br>an | Polda<br>Metro<br>Jaya | Seno<br>pati | Widya<br>Chan<br>dra |
|----------------------------------|------------------|----------------|-----------------------|------------------------|--------------|----------------------|
| Tipe<br>Alinye<br>men            | Datar            | Datar          | Datar                 | Datar                  | Datar        | Datar                |
| Jenis                            | Jalan            | Jalan          | Jalan                 | Jalan                  | Jalan        | Jalan                |
| Jalan                            | Perkotaa         | Perkot         | Perkotaa              | Perkot                 | Perk         | Perkot               |
|                                  | n                | aan            | n                     | aan                    | otaan        | aan                  |
| Tipe<br>Jalan                    | 4/2 D            | 4/2<br>UD      | 4/2 D                 | 4/2 D                  | 4/2<br>D     | 4/2<br>UD            |
| Lebar<br>Jalur<br>Efektif<br>(m) | 3                | 3              | 3,25                  | 3                      | 3            | 3                    |

| Titik<br>Pengam<br>atan                  | Pacific<br>Place | Grand<br>Lucky | Jend.<br>Sudirm<br>an | Polda<br>Metro<br>Jaya | Seno<br>pati | Widya<br>Chan<br>dra |
|------------------------------------------|------------------|----------------|-----------------------|------------------------|--------------|----------------------|
| Pemisa<br>h arah<br>(%-%)                | 50-50            | 50-50          | 50-50                 | 50-50                  | 50-<br>50    | 50-50                |
| Jarak<br>ke<br>Kereb<br>(m)              | 1                | 1              | 1                     | 1                      | 1            | 1                    |
| Ukuran<br>Kota<br>(juta<br>pendud<br>uk) | >3,0             | >3,0           | >3,0                  | >3,0                   | >3,0         | >3,0                 |

Sumber: Hasil Observasi, 2019

Berdasarkan rumus dan **Tabel 26**, maka perhitungan kapasitas ruas jalan pada satu ruas jalan masing-masing koridor adalah sebagai berikut.

Tabel 4. 6 Perhitungan Kapasitas Ruas Jalan

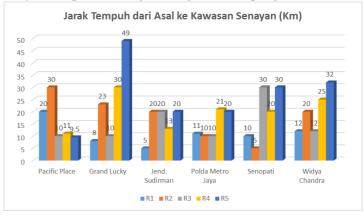
| Titik                  | Co   | FCw  | FC<br>sp | FCsf | FCcs | C<br>(smp/ja<br>m) |
|------------------------|------|------|----------|------|------|--------------------|
| Pacific<br>Place       | 1650 | 0.92 | 1        | 0.89 | 1.04 | 1.405,06<br>08     |
| Grand<br>Lucky         | 1500 | 0.91 | 1        | 0.87 | 1.04 | 1.235,05           |
| Jend.<br>Sudirman      | 1650 | 0.96 | 1        | 0.89 | 1.04 | 1.466,15<br>04     |
| Polda<br>Metro<br>Jaya | 1650 | 0.92 | 1        | 0.89 | 1.04 | 1.405,06<br>08     |
| Senopati               | 1650 | 0.92 | 1        | 0.89 | 1.04 | 1.405,06<br>08     |
| Widya<br>Chandra       | 1500 | 0.91 | 1        | 0.95 | 1.04 | 1.348,62           |

Sumber: Hasil Analisis, 2019

Berikut ini adalah grafik kapasitas ruas jalan pada masing-masing titik.

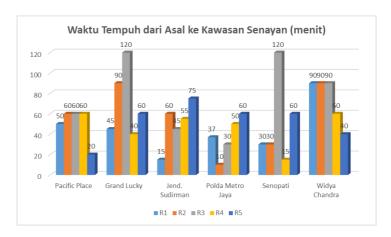


Gambar 4. 14 Kapasitas Ruas Jalan Masing-Masing Koridor Pengamatan


Sumber: Hasil Analisis, 2019

Dengan demikian kapasitas ruas jalan pada masing-masing titik pengamatan adalah sebagai berikut.

Pacific Place : 1.405,06 smp/jam
Grand Lucky : 1.235,05 smp/jam
Jend. Sudirman : 1.466,15 smp/jam
Polda Metro Jaya : 1.405,06 smp/jam
Senopati : 1.405,06 smp/jam
Widya Chandra : 1.348,62 smp/jam


### 4.4.2 Pergerakan Kendaraan

Pergerakan kendaraan yang dimaksud adalah jarak dan waktu perjalanan yang ditempuh oleh masyarakat yang memakai kendaraan dari asal ke tujuan yaitu Kawasan Senayan itu sendiri. Pada setiap kawasan pengamatan diambil 5 responden untuk mengetahui jarak dan waktu perjalanan yang ditempuh. Berikut ini adalah hasil kuisioner jarak dan waktu tempuh perjalanan masyarakat pada masing-masing kawasan pengamatan.



Gambar 4. 15 Jarak Tempuh dari Asal ke Kawasan Senayan (Km)

Sumber: Hasil Kuisioner, 2019

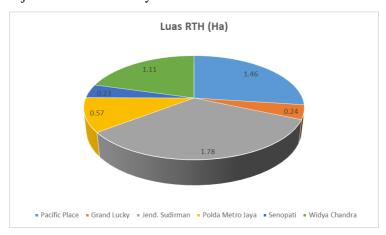


Gambar 4. 16 Waktu Tempuh dari Asal ke Kawasan Senayan (menit)

Sumber: Hasil Kuisioner, 2019

Berdasarkan **Gambar 18**, rata-rata jarak perjalanan yang ditempuh masyarakat dari asal ke Kawasan Senayan adalah 18,22 Km. Sementara berdasarkan **Gambar 19**, rata-rata waktu perjalanan yang ditempuh masyarakat dari asal ke Kawasan Senayan adalah 55,57 menit.

# 4.4.3 Ruang Terbuka Hijau


Data yang digunakan dalam faktor ini adalah luas ruang terbuka hijau yang ada di Kawasan Senayan, Jakarta Selatan. Ruang terbuka hijau di Senayan terdiri atas jalur hijau dan taman. Berikut ini adalah luas ruang terbuka hijau pada masing-masing kawasan pengamatan.

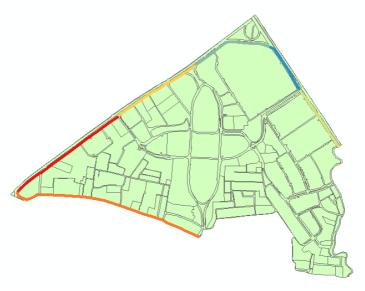
Tabel 4. 7 Luas Ruang Terbuka Hijau pada Kawasan Pengamatan

| Kawasan Pengamatan | Luas RTH (Ha) |
|--------------------|---------------|
| Pacific Place      | 1,46          |
| Grand Lucky        | 0,24          |
| Jend. Sudirman     | 1,78          |
| Polda Metro Jaya   | 0,57          |
| Senopati           | 0,23          |
| Widya Chandra      | 1,11          |
| TOTAL              | 5,39          |

Sumber: Badan Pertanahan Nasional, 2018

Berikut ini adalah diagram luas ruang terbuka hijau di Kawasan Senayan.




Gambar 4. 17 Luas Ruang Terbuka Hijau di Kawasan Senayan

Sumber: Hasil Analisis, 2019

Berdasarkan **Tabel 28** dan **Gambar 20**, luas ruang terbuka hijau paling besar ada di Kawasan Jend. Sudirman, yaitu 1,78 Ha. Sementara luas yang paling kecil adalah di Kawasan Senopati, yaitu 0.23 Ha. Luas ruang terbuka hijau secara keseluruhan adalah 5,39 Ha.

#### 4.4.4 Jarak antar Persimpangan

Data yang digunakan pada faktor ini adalah jarak antar persimpangan di koridor pengamatan dalam kilometer. Persimpangan ini terletak pada bagian luar wilayah penelitian. Berikut ini adalah peta lokasi dan tabel jarak antar persimpangan di koridor pengamatan dalam kilometer.



Gambar 4. 18 Peta Lokasi Jarak antar Persimpangan

Sumber: Hasil Analisis, 2019

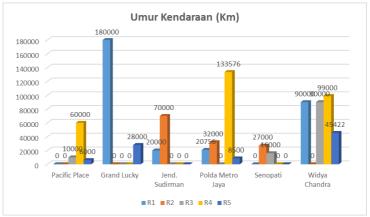
Tabel 4. 8 Jarak antar Persimpangan dalam kilometer

| Kawasan Pengamatan | Warna | Jarak (km) |
|--------------------|-------|------------|
| Pacific Place      | -     | 0,48       |
| Grand Lucky        |       | 0,55       |
| Jend. Sudirman     |       | 0,75       |
| Polda Metro Jaya   | _     | 0,31       |
| Senopati           |       | 1,13       |
| Widya Chandra      |       | 0,41       |

Sumber: Hasil Survey, 2019

Berikut ini adalah grafik jarak antar persimpangan dalam kilometer.




Gambar 4. 19 Jarak Antar Persimpangan di Kawasan Senayan

Sumber: Hasil Analisis, 2010

Berdasarkan **Tabel 29** dan **Gambar 22**, jarak antar persimpangan yang paling panjang adalah di koridor Senopati, yaitu 1,13 km. Sementara jarak antar persimpangan yang paling pendek adalah di koridor Polda Metro Jaya, yaitu 0,33 km.

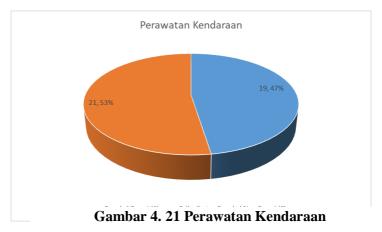
#### 4.4.5 Umur Kendaraan

Umur kendaraan hanya dilihat dari masyarakat yang memiliki kendaraan pribadi. Sementara untuk masyarakat yang menggunakan transportasi umum tidak ditanyakan. Data ini diambil pada masing-masing kawasan pengamatan. Berikut ini adalah grafik umur kendaraan atau kilometer kendaraan milik masyarakat yang rutin digunakan untuk pergi ke Kawasan Senayan.



Gambar 4. 20 Umur Kendaraan dalam Kilometer

Sumber: Hasil Kuisioner, 2019


Berdasarkan **Gambar 23**, umur kendaraan atau kilometer kendaraan paling tinggi terdapat di Kawasan Grand Lucky sebanyak 180.000 km. Sementara untuk data dengan angka 0 menandakan bahwa responden menggunakan transportasi umum untuk menuju Kawasan Senayan. Rata-rata umur atau kilometer kendaraan pada wilayah penelitian adalah 55.073,76 km.

#### 4.4.6 Perawatan Kendaraan

Perawatan kendaraan juga hanya dilihat dari masyarakat yang memiliki kendaraan pribadi. Sementara untuk masyarakat yang menggunakan transportasi umum tidak ditanyakan. Data ini diambil pada masing-masing kawasan pengamatan. Data yang diambil berupa data biner, dimana:

- Angka 1 : Perawatan kendaraan dilakukan minimal 2 kali dalam setahun dan di bengkel resmi
- Angka 0 : Perawatan kendaraan dilakukan kurang dari 2 kali dalam setahun dan secara pribadi atau tidak di bengkel resmi

Berikut ini adalah grafik perawatan kendaraan pada kendaraan pribadi yang masyarakat rutin digunakan untuk pergi ke Kawasan Senayan.



Sumber: Hasil Kuisioner, 2019

Berdasarkan **Gambar 24**, sebanyak 53% dari responden menjawab merawat kendaraannya secara pribadi atau di bengkel non resmi. Sementara sebanyak 47% dari responden menjawab merawat kendaraannya secara pribadi.

Menurut data hasil survey dan analisis di atas, maka analisis selanjutnya adalah mengetahui besar pengaruh kapasitas jalan, jarak perjalanan, waktu perjalanan, luas ruang terbuka hijau, jarak antar persimpangan, umur kendaraan dan perawatan kendaraan terhadap jumlah beban emisi. Analisis yang digunakan adalah analisis regresi linier berganda. Analisis ini memiliki persamaan sebagai berikut:

$$Y = a + (b x X1) + (c x X2) + (d x X3) + (e x X4) + (f x X5) + (g x X6) + (h x X7)$$

#### Keterangan:

Y : Jumlah Beban Emisi (gram/jam)

a : Konstanta

X1 : Kapasitas Ruas Jalan (smp/jam)

X2 : Jarak Perjalanan dari asal ke Kawasan Senayan

(km)

X3 : Waktu Perjalanan dari asal ke Kawasan

Senayan (jam)

X4 : Luas Ruang Terbuka Hijau (Ha) X5 : Jarak antar Persimpangan (km)

X6 : Umur Kendaraan (km)

X7 : Perawatan Kendaraan (1 atau 0)

Analisis regresi yang digunakan adalah analisis regresi linear berganda. Regresi linear berganda merupakan metode untuk mengukur pengaruh lebih dari satu variabel bebas terhadap satu variabel terikat. Berikut ini adalah langkah-langkah dalam melakukan analisis regresi linier berganda dengan menggunakan Wolfram Matematics.

# A. Penentuan Fungsi Persamaan Regresi Linier Berganda

$$y = -1,25697 \times 10^6 + 2507,77 jarak$$
  
  $+ 4,03838 kapasitas$   
  $- 124810 perawatan + (1,21553$   
  $\times 10^6 RTH) + (1,47783 \times 10^6 simpang)$   
  $+ 0,216561 umur - 69486,9 waktu$ 

## B. R-Squared berdasarkan Fungsi Persamaan

Berdasarkan hasil di atas, maka dapat dihitung R-Squared dari persamaan tersebut. R-squared adalah besar pengaruh dari keseluruhan variabel bebas terhadap variabel terikat dalam bentuk prosentase.

0.671909

Berdasarkan hasil R-Squared tersebut maka pengaruh dari keseluruhan variabel bebas terhadap variabel terikat adalah sebesar 67,19%.

### C. ANOVA-Table berdasarkan Fungsi Persamaan

Untuk mengetahui variabel bebas yang paling berperan terhadap variabel terikat diperlukan dengan melihat tabel anova untuk mereduksi variabel yang kurang berpengaruh.

FungsiEMISILinear["ANOVATable"]

|           | DF | SS                       | MS                       | F-Statistic | P-Value     |
|-----------|----|--------------------------|--------------------------|-------------|-------------|
| kapasitas | 1  | $8.57156 \times 10^{12}$ | $8.57156 \times 10^{12}$ | 22.1784     | 0.000106726 |
| jarak     | 1  | $7.59506 \times 10^{10}$ | $7.59506 \times 10^{10}$ | 0.196518    | 0.661875    |
| waktu     | 1  | $2.90343 \times 10^{11}$ | $2.90343 \times 10^{11}$ | 0.751245    | 0.395437    |
| rth       | 1  | $4.49501 \times 10^{12}$ | $4.49501 \times 10^{12}$ | 11.6306     | 0.00250848  |
| simpang   | 1  | $3.89568 \times 10^{12}$ | $3.89568 \times 10^{12}$ | 10.0798     | 0.0043838   |
| umur      | 1  | $7.35831 \times 10^9$    | $7.35831 \times 10^9$    | 0.0190392   | 0.891509    |
| perawatan | 1  | $7.68514 \times 10^{10}$ | $7.68514 \times 10^{10}$ | 0.198848    | 0.66001     |
| Error     | 22 | $8.50261 \times 10^{12}$ | $3.86482 \times 10^{11}$ |             |             |
| Total     | 29 | $2.59154 \times 10^{13}$ |                          |             |             |

Berikut ini adalah hasil dari analisis anova tersebut.

Variabel yang memiliki P-Value < 0,05 maka tidak akan tereduksi, tetapi jika variabel memiliki P-Value > 0,05 maka akan tereduksi. Berdasarkan hasil anova, interpretasi dari hasil di atas adalah:

**Tabel 4. 9 Interpretasi Anova Table** 

| Variabel      | P-Value | Ketera       | angan     |
|---------------|---------|--------------|-----------|
| Kapasitas     | 0,0001  | P-Value<0,05 | Tidak     |
| ruas jalan    |         |              | tereduksi |
| Jarak         | 0,66    | P-Value>0,05 | Tereduksi |
| perjalanan    |         |              |           |
| Waktu         | 0,39    | P-Value>0,05 | Tereduksi |
| perjalanan    |         |              |           |
| Luas ruang    | 0,002   | P-Value<0,05 | Tidak     |
| terbuka hijau |         |              | tereduksi |
| Jarak antar   | 0,004   | P-Value<0,05 | Tidak     |
| persimpangan  |         |              | tereduksi |
| Umur          | 0,89    | P-Value>0,05 | Tereduksi |
| kendaraan     |         |              |           |
| Perawatan     | 0,66    | P-Value>0,05 | Tereduksi |
| kendaraan     |         |              |           |

Sumber: Hasil Analisis, 2019

Variabel-variabel bebas yang tereduksi tersebut adalah jarak perjalanan dari asal ke Kawasan Senayan, waktu perjalanan dari asal ke Kawasan Senayan, umur kendaraan dan perawatan kendaraan. Sementara variabel-variabel yang tidak tereduksi adalah kapasitas ruas jalan, luas ruang terbuka hijau dan jarak antar persimpangan. Maka dapat dikatakan variabel-variabel tersebut yang memiliki pengaruh yang besar terhadap variabel terikat.

Agar data yang diperoleh valid, maka dilakukan analisis regresi linier berganda ulang ulang terhadap variabel-variabel bebas yang paling berpengaruh. Berikut ini adalah langkahlangkah yang sama dalam melakukan analisis regresi linier berganda terhadap tiga variabel bebas yang paling berpengaruh terhadap variabel terikat.

# A. Penentuan Fungsi Persamaan Regresi Linier Berganda

$$y = -1,25276 \times 10^6 - 115,899 kapasitas + (1,23151 \times 10^6 RTH) + (1,56969 \times 10^6 simpang)$$

Interpretasi dari hasil di atas adalah:

- Koefisien kapasitas ruas jalan sebesar 115,899 memiliki arti bahwa setiap penambahan 1 smp/jam kapasitas ruas jalan, maka emisi akan bertambah sebanyak 115,899 gram/jam
- Koefisien luas ruang terbuka hijau sebesar  $1,23151 \times 10^6$  memiliki arti bahwa setiap penambahan 1 hektar luas ruang terbuka hijau, maka emisi berkurang sebanyak  $1,23151 \times 10^6$  gram/jam
- Koefisien jarak antar persimpangan sebesar 1,56969  $\times$  10<sup>6</sup> memiliki arti bahwa setiap penambahan 1 km jarak antar persimpangan, maka emisi berkurang sebanyak 1,56969  $\times$  10<sup>6</sup> gram/jam

## B. R-Squared berdasarkan Fungsi Persamaan

Berdasarkan hasil di atas, maka dapat dihitung R-Squared dari persamaan tersebut. R-squared adalah besar pengaruh dari keseluruhan variabel bebas terhadap variabel terikat dalam bentuk prosentase.

## FungsiEMISI2Linear["RSquared"]

#### 0.667658

Berdasarkan hasil R-Squared tersebut maka pengaruh dari keseluruhan variabel bebas terhadap variabel terikat adalah sebesar 66,77%.

#### C. ANOVA-Table berdasarkan Fungsi Persamaan

Untuk mengetahui variabel bebas yang paling berperan terhadap variabel terikat diperlukan dengan melihat tabel anova untuk mereduksi variabel yang kurang berpengaruh. Berikut ini adalah hasil dari anova-table yang telah dianalisis.

FungsiEMISI2Linear["ANOVATable"]

|           | DF | SS                       | MS                       | F-Statistic | P-Value     |
|-----------|----|--------------------------|--------------------------|-------------|-------------|
| kapasitas | 1  | $8.57156 \times 10^{12}$ | $8.57156 \times 10^{12}$ | 25.8756     | 0.000026729 |
|           |    |                          | $4.772 \times 10^{12}$   |             |             |
| simpang   | 1  | $3.95904 \times 10^{12}$ | $3.95904 \times 10^{12}$ | 11.9515     | 0.00189125  |
| Error     | 26 | $8.61276 \times 10^{12}$ | $3.3126 \times 10^{11}$  |             |             |
| Total     | 29 | $2.59154 \times 10^{13}$ |                          |             |             |

Berdasarkan hasil di atas, semua variabel sudah memiliki P-Value<0,05 maka tidak ada lagi variabel bebas yang direduksi. Maka berdasarkan hasil analisis regresi di atas, variabel bebas yang memiliki pengaruh paling besar terhadap jumlah emisi adalah kapasitas ruas jalan, luas ruang terbuka hijau dan jarak antar persimpangan.

Meskipun variabel bebas lainnya tereduksi, bukan berarti tidak memiliki pengaruh sama sekali, melainkan hanya memberikan kontribusi pengaruh lebih sedikit dibanding variabel-variabel bebas yang tidak tereduksi. Hal ini dapat dibuktikan dengan R-Squared. R-Squared sebelum direduksi adalah 67,19%. Sementara R-Squared setelah direduksi adalah 66,77%. Dengan demikian selisih sebesar 0,42% merupakan pengaruh dari variabel-variabel bebas lain yang tereduksi.

Berikut ini adalah penjelasan mengenai pengaruh masingmasing variabel bebas terhadap variabel terikat.

## 1. Kapasitas Ruas Jalan

Variabel ini merupakan salah satu variabel yang tidak tereduksi, melainkan variabel ini merupakan salah satu variabel yang paling berpengaruh terhadap jumlah emisi. Dengan koefisien sebesar 115,899 sehingga setiap penambahan 1 smp/jam kapasitas ruas jalan, maka emisi akan meningkat sebanyak 115,899 gram/jam. Hal ini menunjukan bahwa kapasitas ruas jalan memiliki hubungan berbanding lurus dengan jumlah emisi.

## 2. Jarak Perjalanan dari asal ke Kawasan Senayan

Variabel ini merupakan salah satu variabel yang direduksi, sehingga dapat dikatakan bahwa variabel ini memiliki pengaruh yang relatif lebih kecil dibanding variabel lain terhadap jumlah emisi. Berdasarkan fungsi persamaan pertama yang sebelum direduksi, koefisien emisi adalah negatif. Akan tetapi koefisien pada variabel jarak perjalanan adalah positif. Hal ini menunjukan bahwa jarak perjalanan memiliki hubungan berbanding terbalik dengan jumlah emisi.

Berdasarkan Studi Literatur tentang Pencemaran Udara oleh Ismiyati, dkk (2014), pola lalu lintas perkotaan berorientasi memusat akibat terpusatnya kegiatan perekonomian dan perkantoran. Hal ini yang mengakibatkan tingginya emisi di pusat perekonomian dan perkantoran. Maka semakin rendah jarak perjalanan, semakin tinggi jumlah emisi.

# 3. Waktu Perjalanan dari asal ke Kawasan Senayan

Variabel ini merupakan salah satu variabel yang direduksi, sehingga dapat dikatakan bahwa variabel ini memiliki pengaruh yang relatif lebih kecil dibanding variabel lain terhadap jumlah emisi. Berdasarkan fungsi persamaan pertama yang sebelum direduksi, koefisien emisi adalah negatif. Koefisien pada variabel waktu perjalanan adalah negatif. Hal ini menunjukan bahwa waktu perjalanan memiliki hubungan berbanding lurus dengan jumlah emisi. Berdasarkan Studi Literatur tentang Pencemaran Udara oleh Ismiyati, dkk (2014), pola lalu lintas perkotaan berorientasi memusat akibat terpusatnya kegiatan perekonomian dan perkantoran. Hal mengakibatkan tingginya emisi di pusat perekonomian dan perkantoran. Maka semakin lama waktu perjalanan dari asal ke pusat perekonomian, semakin tinggi jumlah emisi yang dikeluarkan kendaraan.

# 4. Luas Ruang Terbuka Hijau

Variabel ini merupakan salah satu variabel yang tidak tereduksi, melainkan variabel ini merupakan salah satu variabel yang paling berpengaruh terhadap jumlah emisi. Berdasarkan fungsi persamaan kedua yang sebelum direduksi, koefisien emisi adalah negatif. Akan tetapi koefisien pada variabel ruang terbuka hijau adalah positif. Dengan koefisien sebesar  $1,23151 \times 10^6$  sehingga setiap penambahan 1 hektar ruang terbuka hijau, maka emisi berkurang sebanyak  $1,23151 \times 10^6$  gram/jam. Hal ini menunjukan bahwa luas ruang terbuka hijau memiliki hubungan berbanding terbalik dengan jumlah emisi.

#### 5. Jarak antar Persimpangan

Variabel ini merupakan salah satu variabel yang tidak tereduksi, melainkan variabel ini merupakan salah satu variabel yang paling berpengaruh terhadap jumlah emisi. Berdasarkan fungsi persamaan kedua yang sebelum direduksi, koefisien emisi adalah negatif. Akan tetapi koefisien pada variabel jarak antar persimpangan adalah koefisien sebesar  $1,56969 \times 10^6$ positif. Dengan km jarak antar sehingga setiap penambahan 1 maka emisi berkurang persimpangan, sebanyak  $1,56969 \times 10^6$  gram/jam. Hal ini menunjukan bahwa jarak antar persimpangan memiliki hubungan berbanding terbalik dengan jumlah emisi.

#### 6. Umur Pemakaian Kendaraan

Variabel ini merupakan salah satu variabel yang direduksi, sehingga dapat dikatakan bahwa variabel ini memiliki pengaruh yang relatif lebih kecil dibanding variabel lain terhadap jumlah emisi. Berdasarkan fungsi persamaan kedua yang sebelum direduksi, koefisien emisi adalah negatif. Akan tetapi koefisien pada variabel umur kendaraan adalah positif. Hal ini menunjukan bahwa umur pemakaian kendaraan memiliki hubungan berbanding terbalik dengan jumlah emisi.

Berdasarkan Jurnal "Model Emisi Gas Buangan Kendaraan Bermotor Akibat Aktivitas Transportasi" tahun 2015, pembatasan usia kendaraan akan menekan tingkat kemacetan lalu lintas sehingga akan mengurangi emisi gas buang. Maka semakin tinggi umur pemakaian kendaraan dalam kilometer, semakin rendah jumlah emisi yang dikeluarkan.

#### 7. Perawatan Kendaraan

Variabel ini merupakan salah satu variabel yang direduksi, sehingga dapat dikatakan bahwa variabel ini memiliki pengaruh yang relatif lebih kecil dibanding variabel lain terhadap jumlah emisi. Berdasarkan fungsi persamaan kedua yang sebelum direduksi, koefisien emisi adalah negatif. Koefisien pada variabel perawatan kendaraan adalah negatif. Hal ini menunjukan bahwa perawatan kendaraan memiliki hubungan berbanding lurus dengan jumlah emisi.

Berdasarkan Jurnal "Model Emisi Gas Buangan Kendaraan Bermotor Akibat Aktivitas Transportasi" tahun 2015, perawatan yang dilakukan terhadap mesin kendaraan berpengaruh terhadap emisi yang dihasilkan. Semakin rutin kendaraan melakukan servis maka substansi emisi yang dihasilkan semakin kecil.

#### 4.4.7 Skenario Pengurangan Emisi Kendaraan

Berdasarkan hasi analisis regresi linier berganda, variabel yang paling mempengaruhi jumlah beban emisi di Kawasan Senayan adalah kapasitas ruas jalan, ruang terbuka hijau, dan jarak antar persimpangan. Berikut ini adalah data jumlah emisi pada masing-masing koridor *traffic counting* di hari kerja dan hari libur.

Tabel 4. 10 Beban Emisi di Kawasan Senayan

| Koridor Traffic Counting | Beban Emisi (gram/jam) |
|--------------------------|------------------------|
| Pacific Place            | 336.388,75             |
| Grand Lucky              | 158.214,90             |
| Jend. Sudirman           | 2.712.409,11           |
| Polda Metro Jaya         | 83.751,85              |
| Senopati                 | 328.049,23             |
| Widya Chandra            | 243.449,65             |
| TOTAL                    | 3.862.263,49           |

Sumber: Hasil Analisis, 2019

Oleh sebab itu dibutuhkan skenario untuk mengatasi permasalahan emisi di Kawasan Senayan. Skenario disesuaikan dengan standar kesehatan pencemaran udara zat karbon monoksida berdasarkan Indonesian Multi-sectoral Action Plan Group on Vehicle Emissions Reduction (2002). Volume zat yang dikeluarkan merupakan per satuan kendaraan bermotor. Berikut ini adalah standar kesehatan pencemaran udara tersebut.

Tabel 4. 11 Standar Emisi Nasional Sejak Tahun 2007

| Kategori            | Standar Emisi (gram/km) |
|---------------------|-------------------------|
| 2-wheeled           | 5                       |
| motorcycles         | 3                       |
| Gas fueled vehicles |                         |
| (passenger cars and | 2,2                     |
| mini buses)         |                         |
| Trucks              | 4                       |

Sumber: Indonesian Multi-sectoral Action Plan Group on Vehicle Emissions Reduction, 2002

Berdasarkan hasil tersebut, maka setelah dikalikan jumlah kendaraan pada masing-masing koridor selama 9 jam maka didapatkan standar kesehatan zat CO kendaraan adalah sebagai berikut.

Tabel 4. 12 Standar Emisi Kendaraan Zat CO pada Koridor Traffic Counting

| Koridor<br>Traffic<br>Counting | Klasifikasi<br>Kendaraan | Standar<br>Kesehatan<br>(gram/km) | Rata-rata<br>(gram/km) |
|--------------------------------|--------------------------|-----------------------------------|------------------------|
| Pacific                        | MC                       | 125.310                           |                        |
| Place                          | LV                       | 47.130,6                          | 57.536,2               |
| Flace                          | HV                       | 168                               |                        |
| Grand                          | MC                       | 38.005                            |                        |
| Lucky                          | LV                       | 18.033,4                          | 18.703,47              |
| Lucky                          | HV                       | 72                                |                        |
| Jend.<br>Sudirman              | MC                       | 223.835                           |                        |
|                                | LV                       | 87.531,4                          | 106.067,5              |
| Sudminan                       | HV                       | 6.836                             |                        |

| Koridor<br>Traffic<br>Counting | Klasifikasi<br>Kendaraan | Standar<br>Kesehatan<br>(gram/km) | Rata-rata<br>(gram/km) |
|--------------------------------|--------------------------|-----------------------------------|------------------------|
| Polda                          | MC                       | 34.290                            |                        |
| Metro Jaya                     | LV                       | 9.391,8                           | 14.611,27              |
| Metro Jaya                     | HV                       | 152                               |                        |
|                                | MC                       | 108.340                           |                        |
| Senopati                       | LV                       | 40.317,2                          | 49.596,4               |
|                                | HV                       | 132                               |                        |
| Widyo                          | MC                       | 59.670                            |                        |
| Widya<br>Chandra               | LV                       | 22.068,2                          | 27.256,73              |
| Chandia                        | HV                       | 32                                |                        |
|                                | TOTAL                    |                                   | 273.771,57             |

Sumber: Hasil Analisis, 2019

Berikut ini adalah skenario berdasarkan ketiga variabel tersebut.

# • Kapasitas Ruas Jalan

Berdasarkan perhitungan kapasitas ruas jalan, maka kapasitas ruas jalan pada masing-masing koridor *traffic* counting adalah sebagai berikut.

Tabel 4. 13 Kapasitas Ruas Jalan Kawasan Senayan

| Koridor Traffic Counting | Kapasitas Ruas<br>Jalan (smp/jam) |
|--------------------------|-----------------------------------|
| Pacific Place            | 1.405,06                          |
| Grand Lucky              | 1.235,05                          |
| Jend. Sudirman           | 1.466,15                          |
| Polda Metro Jaya         | 1.405,06                          |
| Senopati                 | 1.405,06                          |
| Widya Chandra            | 1.348,62                          |

Sumber: Hasil Analisis, 2019

Berdasarkan hasil analisis regresi linier berganda, interpretasi dari pengaruh kapasitas ruas jalan dan jumlah emisi adalah setiap penambahan 1 smp/jam kapasitas ruas jalan, maka emisi akan meningkat sebanyak 115,899 gram/jam. Hubungan antara kapasitas ruas jalan dan jumlah emisi berbanding lurus. Oleh sebab itu diperlukan pengurangan kapasitas ruas jalan untuk mengurangi jumlah beban emisi. Berikut ini adalah rumus pengurangan jumlah kapasitas ruas jalan berdasarkan jumlah emisi dan standar emisi serta hasil pengurangan kapasitas ruas jalan untuk mengurangi beban emisi. Rumus tersebut didapatkan berdasarkan analisis penulis.

$$Kapasitas \ Kurang = \frac{(Beban \ Emisi \ - Standar \ Emisi)}{115,899}$$
 
$$Kapasitas \ Kurang = \frac{(3.862.263,49 \ - 273.771,57)}{115,899}$$

 $Kapasitas\ Kurang=30.962,23\ smp/jam$ 

Kapasitas ruas jalan harus berkurang sebesar 30.962,23 smp/jam secara keseluruhan untuk mengurangi emisi sebesar 3.588.491,92 gram/jam agar sesuai standar. Berikut ini adalah penjabaran pengurangan kapasitas ruas jalan pada masing-masing koridor traffic counting.

Tabel 4. 14 Pengurangan Kapasitas Ruas Jalan pada Masing-Masing Koridor Pengamatan

|                  | Pengurangan    | Mengurangi    |
|------------------|----------------|---------------|
| Koridor Traffic  | Kapasitas Ruas | Emisi sebesar |
| Counting         | Jalan          | (gram/jam)    |
|                  | (smp/jam)      |               |
| Pacific Place    | 2.405,99       | 278.852,55    |
| Grand Lucky      | 1.203,73       | 139.511,43    |
| Jend. Sudirman   | 22.488,04      | 2.606.341,61  |
| Polda Metro Jaya | 596,56         | 69.140,58     |
| Senopati         | 2.402,55       | 278.452,83    |
| Widya Chandra    | 1.865,36       | 216.192,22    |

Sumber: Hasil Analisis, 2019

Hasil di atas didapatkan berdasarkan pengurangan jumlah beban emisi dengan standar kesehatan emisi lalu dibagi dengan koefisien yang didapatkan berdasarkan persamaan analisis regresi linier berganda. Kondisi kapasitas ruas jalan yang sudah ada di Kawasan Senayan sulit untuk dikurangi. Oleh sebab itu dapat diberkan solusi alternatif seperti penambahan jalur pejalan kaki atau pengendalian manajemen lalu lintas, tetapi diperlukan kajian dan penelitian lebih lanjut untuk hal tersebut.

#### • Ruang Terbuka Hijau

Berdasarkan hasil survey, luas ruang terbuka hijau pada masing-masing kawasan *traffic counting* di Kawasan Senayan adalah sebagai berikut.

Tabel 4. 15 Luas Ruang Terbuka Hijau pada Masing-Masing Kawasan Pengamatan

| Kawasan Pengamatan | Luas RTH (Ha) |
|--------------------|---------------|
| Pacific Place      | 1,46          |
| Grand Lucky        | 0,24          |
| Jend. Sudirman     | 1,78          |
| Polda Metro Jaya   | 0,57          |
| Senopati           | 0,23          |
| Widya Chandra      | 1,11          |
| TOTAL              | 5,39          |

Sumber: Badan Pertanahan Nasional, 2018

Berdasarkan hasil analisis regresi linier berganda, interpretasi dari pengaruh ruang terbuka hijau dan jumlah emisi adalah setiap penambahan 1 hektar ruang terbuka hijau, maka emisi akan diserap atau berkurang sebanyak  $1,23151 \times 10^6$  gram/jam. Hubungan antara kapasitas ruas jalan dan jumlah emisi berbanding terbalik. Oleh sebab itu diperlukan penambahan ruang terbuka hijau untuk mengurangi jumlah beban emisi. Berikut ini adalah rumus penambahan luas ruang terbuka hijau berdasarkan jumlah emisi dan standar emisi serta hasil penambahan ruang terbuka hijau untuk mengurangi beban emisi. Rumus tersebut didapatkan berdasarkan analisis penulis.

$$RTH \ Tambah = \frac{(Beban \ Emisi \ - Standar \ Emisi)}{1.231.510}$$
 
$$RTH \ Tambah = \frac{(3.862.263,49 \ - 273.771,57)}{1.231.510}$$

 $RTH\ Tambah = 2,91\ Hektar$ 

Berdasarkan perhitungan tersebut maka di Kawasan Senayan perlu ditambahkan ruang terbuka hijau seluas 2,91 Hektar untuk mengurangi emisi sebesar 3.588.491,92 gram/jam agar sesuai standar. Ruang terbuka hijau yang disarankan dapat berupa jalur hijau di median jalan atau jalur pejalan kaki. Akan tetapi hal tersebut diperlukan kajian dan penelitian lebih lanjut.

## • Jarak Antar Persimpangan

Berdasarkan hasil survey, jarak antar persimpangan pada masing-masing kawasan pengamatan adalah sebagai berikut.

Tabel 4. 16 Jarak Antar Persimpangan pada Masing-Masing Kawasan Pengamatan

| Kawasan Pengamatan | Jarak (km) |
|--------------------|------------|
| Pacific Place      | 0,48       |
| Grand Lucky        | 0,55       |
| Jend. Sudirman     | 0,75       |
| Polda Metro Jaya   | 0,31       |
| Senopati           | 1,13       |
| Widya Chandra      | 0,41       |

Sumber: Hasil Survey, 2019

Berdasarkan hasil analisis regresi linier berganda, interpretasi dari pengaruh jarak antar persimpangan dan jumlah emisi adalah setiap penambahan 1 km jarak antar persimpangan, maka emisi berkurang sebanyak  $1,56969 \times 10^6\,\mathrm{gram/jam}$ . Hubungan antara kapasitas ruas jalan dan jumlah emisi berbanding terbalik. Oleh sebab itu diperlukan pengurangan jarak antar persimpangan untuk mengurangi jumlah beban emisi. Berikut ini adalah rumus pengurangan jarak antar persimpangan berdasarkan jumlah emisi dan standar emisi serta hasil pengurangan jarak antar persimpangan untuk mengurangi beban emisi.

$$Jarak \ Kurang = \frac{(Beban \ Emisi - Standar \ Emisi)}{1.569.690}$$

$$Jarak \ Kurang = \frac{(3.862.263,49 - 273.771,57)}{1.569.690}$$

$$Jarak \ Kurang = 2,29 \ km$$

Berdasarkan perhitungan tersebut maka di Kawasan Senayan perlu ditambahkan jarak antar persimpangan sepanjang 2,29 km untuk mengurangi emisi sebesar 3.588.491,92 gram/jam agar sesuai standar.

Oleh sebab itu kesimpulan yang dapat diambil dari perhitungan skenario pada masing-masing variabel di atas adalah mengurangi kapasitas ruas jalan sebesar 30.962,23 smp/jam secara keseluruhan, menambahkan ruang terbuka hijau seluas 2,91 hektar dan menambahkan jarak antar persimpangan sepanjang 2,29 km untuk mengurangi emisi sebesar 3.588.491,92 gram/jam agar memenuhi standar emisi di Kawasan Senayan.

# 4.5 Perumusan Strategi Pengembangan Kebijakan Penurunan Emisi Kendaraan

Berdasarkan hasil analisis dari sasaran sebelumnya, maka hal tersebut dapat dijadikan dasaran dalam merumuskan strategi pengembangan kebijakan. Perumusan strategi dilakukan dengan menggunakan analisis SWOT (*Strength, Weakness, Opportunities* dan *Threat*). Analisis dilakukan berdasarkan logika yang bisa mengoptimalkan kekuatan (*strength*) atau peluang (*opportunities*). Akan tetapi secara beriringan, analisis ini juga harus bisa meminimalkan ancaman (*threat*) dan kelemahan (*weakness*).

Faktor yang mempengaruhi analisis SWOT terdiri dari dua hal, yaitu faktor internal dan faktor eksternal. Faktor internal yaitu berasal dari dalam, yang terdiri dari kekuatan (*strength*) dan kelemahan (*weakness*). Sementara faktor eksternal yaitu faktor dari luar yang secara tidak langsung terlibat dengan objek penelitian. Faktor ini terdiri atas peluang (*opportunities*) dan ancaman (*threat*). Apabila sudah diketahui kekuatan, kelemahan, peluang dan ancaman dari keseluruhan variabel, maka dapat menentukan strategi untuk mengatasi permasalahan tersebut. Oleh sebab itu perlu dilakukan pengelompokkan faktor internal dan faktor eksternal dari masing-masing variabel bebas yang mempengaruhi jumlah emisi. Faktor internal didapatkan dari variabel-variabel yang paling mempengaruhi jumlah beban emisi. Sementara faktor eksternal adalah regulasi mengenai emisi di bidang transportasi yang sudah ada.

Tabel 4. 17 Faktor Internal dan Faktor Eksternal SWOT

| Faktor    | Variabel                                  |  |
|-----------|-------------------------------------------|--|
| Internal  | Kapasitas ruas jalan                      |  |
|           | Luas ruang terbuka hijau                  |  |
|           | Jarak antar persimpangan                  |  |
| Eksternal | Rencana aksi dan upaya penurunan emisi di |  |
|           | bidang transportasi                       |  |

Sumber: Hasil Analisis, 2019

Variabel bebas yang memiliki pengaruh yang besar hanya kapasitas ruas jalan, luas ruang terbuka hijau dan jarak antar persimpangan. Ketiga variabel ini dianggap memiliki pengaruh besar karena analisis regresi sebelumnya yang menyatakan bahwa ketiga variabel ini tidak direduksi berdasarkan ANOVA-Table dan memiliki nilai R-Squared sebesar 66,77%. Oleh sebab itu ketiga variabel ini dijelaskan secara kuantitatif melainkan menerjemahkan hasil analisis regresi dalam angka ke dalam penysunan strategi dalam SWOT.

Sementara variabel-variabel lain seperti jarak perjalanan, waktu perjalanan, umur pemakaian kendaraan dan perawatan kendaraan memiliki pengaruh yang kecil dibandingkan dengan yang lainnya. Keempat variabel ini adalah variabel-variabel yang tereduksi berdasarkan hasil dari ANOVA-Table. Oleh sebab itu keempat variabel ini tidak dijelaskan lebih lanjut. Variabel-variabel yang dijelaskan secara kualitatif adalah kebijakan mengenai emisi kendaraan yang sudah ada yaitu rencana aksi dan upaua penurunan emisi di bidang transportasi berdasarkan RAN-GRK

Setelah mengelompokkan faktor internal dan faktor eksternal variabel-variabel bebas terhadap jumlah emisi, maka dapat dijabarkan kekuatan (*strength*), kelemahan (*weakness*), peluang (*opportunities*) dan ancaman (*threat*) dari masing-masing kategori faktor internal dan faktor eksternal.

Tabel 4. 18 Penjabaran Kekuatan, Kelamahan, Peluang dan Ancaman

| Penjabaran |                                  | Kode |
|------------|----------------------------------|------|
| Kekuatan   | Pengurangan kapasitas ruas jalan | S1   |
| (Strength) | sebesar 30.962,23 smp/jam dapat  |      |
|            | mengurangi emisi sampai sesuai   |      |
|            | standar emisi                    |      |
|            | Penambahan ruang terbuka hijau   | S2   |
|            | seluas 2,91 hektar dapat         |      |
|            | mengurangi emisi sampai sesuai   |      |
|            | standar emisi                    |      |
|            | Penambahan jarak antar           | S3   |
|            | persimpangan sepanjang 2,29      |      |
|            | km dapat mengurangi emisi        |      |
|            | sampai sesuai standar emisi      |      |
| Kelemahan  | Kurangnya ruang terbuka hijau    | W1   |
| (Weakness) | di Kawasan Senayan. RTH          |      |
|            | publik yang hanya terdiri dari   |      |
|            | 3% jalur hijau dan taman seluas  |      |
|            | 5,39 Ha                          |      |
|            | Pengurangan kapasitas ruas jalan | W2   |
|            | dan penambahan jarak antar       |      |
|            | persimpangan yang sulit karena   |      |
|            | kondisi eksisting yang ada       |      |

|                 | Penjabaran Kode                   |    |  |
|-----------------|-----------------------------------|----|--|
| Peluang         | Terdapat rencana aksi berupa      | 01 |  |
| (Opportunities) | avoid (hindari) untuk             |    |  |
|                 | menghindari perjalanan yang       |    |  |
|                 | tidak perlu dan mengembangkan     |    |  |
|                 | perkotaan melalui koridor transit |    |  |
|                 | (TOD)                             |    |  |
|                 | Terdapat rencana aksi berupa      | O2 |  |
|                 | shift (pindahkan) untuk           |    |  |
|                 | mengaktifkan kondisi untuk        |    |  |
|                 | moda transportasi rendah karbon   |    |  |
|                 | dan mencegah peralihan NMT        |    |  |
|                 | ke kendaraan pribadi              |    |  |
|                 | Terdapat rencana aksi berupa      | O3 |  |
|                 | <i>improve</i> (tingkatkan) untuk |    |  |
|                 | mendorong pemakaian               |    |  |
|                 | kendaraan yang lebih efisien dan  |    |  |
|                 | mendesain inovasi untuk           |    |  |
|                 | meningkatkan kualitas             |    |  |
|                 | kendaraan                         |    |  |
| Ancaman         | Rencana aksi yang masih belum     | T1 |  |
| (Threat)        | terealisasi secara utuh dan belum |    |  |
|                 | sepenuhnya diimplementasikan      |    |  |
|                 | dalam bentuk program              |    |  |
|                 | Penetapan target penurunan        | T2 |  |
|                 | emisi yang kurang jelas dasarnya  |    |  |
|                 | karena perhitungannya masih       |    |  |
|                 | dinamis tergantung pada           |    |  |
|                 | aktivitas yang berkembang         |    |  |
|                 | dalam suatu waktu                 |    |  |

Sumber: Hasil Analisis, 2019

Setelah menjabarkan kekuatan, kelemahan, peluang, dan ancaman, maka dapat disusun strategi dari penjabaran tersebut. Berikut ini adalah tabel strategi yang telah disilangkah antar kekuatan, kelemahan, peluang dan ancaman.

Tabel 4. 19 Strategi SWOT (Strength, Weakness, Opportunities dan Threat)

| Internal                   | Strength                                                              | Weakness                                                                           |
|----------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Eksternal                  | (S1, S2, S3)                                                          | (W1, W2)                                                                           |
| Opportunities (O1, O2, O3) | Pengurangan kapasitas ruas jalan<br>sebesar 30.962,23 smp/jam dan     | Meningkatkan RTH publik agar<br>masyarakat lebih nyaman                            |
| (02, 02, 00)               | penambahan jarak antar<br>persimpangan sepanjang 2,29 km              | melakukan perjalanan secara<br>NMT dibandingkan dengan                             |
|                            | untuk menciptakan koridor transit (TOD) agar masyarakat               | <ul><li>kendaraan pribadi (W1-O2)</li><li>Pengendalian kendaraan pribadi</li></ul> |
|                            | menghindari perjalanan yang tidak<br>perlu dan bila sangat dibutuhkan | yang melewati ruas jalan dan<br>persimpangan tertentu karena                       |
|                            | perjalanan tersebut dilakukan secara NMT atau mendorong               | tidak sepenuhnya kapasitas ruas<br>jalan dan jarak antar                           |
|                            | masyarakat untuk menggunakan<br>kendaraan umum yang lebih ramah       | persimpangan dapat secara<br>langsung dikurangi. Selain itu                        |
|                            | lingkungan (S1-S2-O1-O2-O3)  • Penambahan ruang terbuka hijau         | hal ini juga dapat<br>mengembangkan koridor transit                                |
|                            | seluas 2,91 hektar untuk                                              | (TOD), mengaktifkan perjalanan                                                     |

| Internal        | Strength                                                                                                                                                                                                                                                                                                   | Weakness                                                                                                                                                                                                                                                                                                          |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eksternal       | (S1, S2, S3)                                                                                                                                                                                                                                                                                               | (W1, W2)                                                                                                                                                                                                                                                                                                          |
|                 | mengurangi emisi agar memenuhi<br>standar dan membuat masyarakat<br>lebih nyaman beraktivitas secara<br>NMT sehingga meminimalisir<br>peralihan NMT ke kendaraan<br>pribadi (S2-O2)                                                                                                                        | masyarakat secara NMT dan<br>mendorong masyarakat untuk<br>menggunakan kendaraan umum<br>yang lebih ramah lingkungan<br>(W2-O1-O2-O3)                                                                                                                                                                             |
| Threat (T1, T2) | Program yang akan dilaksanakan menetapkan target penurunan emisi kendaraan berdasarkan penelitian yang sudah disusun yaitu dengan mengurangi kapasitas ruas jalan sebesar 30.962,23 smp/jam, menambahkan ruang terbuka hijau seluas 2,91 hektar dan menambahkan jarak antar persimpangan sepanjang 2,29 km | <ul> <li>Menambahkan RTH publik sebagai salah satu program rencana aksi agar salah satu variabelnya dapat terealisasi secara utuh (W1-T1)</li> <li>Perlu dilakukan penyaringan atas penelitian yang sudah dilakukan karena tidak semua dapat dikurangi secara langsung, contohnya kapasitas ruas jalan</li> </ul> |

| Internal  | Strength                                                                                                                                                                                                                                     | Weakness                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eksternal | (S1, S2, S3)                                                                                                                                                                                                                                 | (W1, W2)                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | di seluruh Kawasan Senayan (S1-S2-S3-T1-T2)  • Melakukan penelitian lanjutan pada setiap kurun waktu tertentu karena karakteristik yang mempengaruhi emisi kendaraan mungkin berubah sehingga emisi kendaraan sifatnya dinamis (S1-S2-S3-T2) | dan jarak antar persimpangan. Oleh sebab itu diperlukan rekayasa lalu lintas untuk mengatur kendaraan yang ada di kawasan tersebut (W2-T1)  • Melakukan penelitian lanjutan berdasarkan variabel-variabel yang masih memiliki banyak kekurangan seperti kapasitas ruas jalan, ruang terbuka hijau, jarak antar persimpangan dan variabel- variabel baru lain agar perhitungan emisi tidak lagi bersifat dinamis (W1-W2-T2) |

Sumber: Hasil Analisis, 2019

Setelah menyilangkan kekuatan, kelemahan, peluang dan ancaman yang ada maka terbentuk strategi dari penyilangan tersebut. Strategi-strategi yang telah disusun dapat dijabarkan secara rinci pada berikut ini,

- 1. Penambahan ruang terbuka hijau publik seluas 2,91 hektar untuk mengurangi emisi agar memenuhi standar dan membuat masyarakat lebih nyaman beraktivitas secara NMT sehingga meminimalisir peralihan NMT ke kendaraan pribadi.
- 2. Perlu dilakukan penyaringan atas penelitian yang sudah dilakukan karena tidak semua dapat dikurangi secara langsung, contohnya kapasitas ruas jalan dan jarak antar persimpangan. Oleh sebab itu diperlukan rekayasa lalu lintas untuk mengatur kendaraan yang ada di kawasan tersebut. Contohnya pengendalian kendaraan pribadi yang melewati ruas jalan dan persimpangan tertentu yang setara dengan pengurangan kapasitas ruas jalan sebesar 30.962,23 smp/jam dan penambahan jarak antar persimpangan sepanjang 2,29 km. Selain itu hal ini juga dapat mengembangkan koridor transit (TOD), mengaktifkan perjalanan masyarakat secara NMT dan mendorong masyarakat untuk menggunakan kendaraan umum yang lebih ramah lingkungan.
- 3. Program yang akan dilaksanakan menetapkan target penurunan emisi kendaraan berdasarkan penelitian yang sudah disusun yaitu dengan mengurangi kapasitas ruas jalan sebesar 30.962,23 smp/jam, menambahkan ruang terbuka hijau seluas 2,91 hektar dan menambahkan jarak antar persimpangan sepanjang 2,29 km di seluruh Kawasan Senayan.

4. Melakukan penelitian lanjutan pada setiap kurun waktu tertentu karena karakteristik yang mempengaruhi emisi kendaraan mungkin berubah sehingga emisi kendaraan sifatnya dinamis.

"Halaman ini sengaja dikosongkan"

#### BAB V

#### PENUTUP

#### 5.1 Kesimpulan

Berdasarkan fakta empiris yang ada, Jakarta Selatan merupakan Kotamadya di Provinsi DKI Jakarta yang memberikan kontribusi emisi pada bidang transportasi paling besar. Hal ini juga didukung dengan adanya dokumen rencana tata ruang yang mengarahkan Senayan sebagai Kawasan Central Business District (CDB). Selain itu fakta ini juga didukung oleh temuan penelitian yaitu volume kendaraan pada jam puncak (peak hour) di Kawasan Senayan. Volume kendaraan pada hari kerja (weekday) didominasi pada pagi hari dan sore hari. Sementara volume kendaraan pada hari libur (weekend) didominasi dari siang sampai sore hari. Volume kendaraan pada saat jam puncak tersebut dimasukkan ke dalam rumus jumlah emisi. Berdasarkan perhitungan matematis, jumlah emisi paling tinggi dikeluarkan di Koridor Jend. Sudirman gram/jam. sebanyak 2.712.409.11 Jenis kendaraan mengeluarkan emisi paling besar adalah kendaraan ringan seperti mobil dan minibus berbahan bakar bensin. Sementara jenis kendaraan yang mengeluarkan emisi paling kecil adalah kendaraan berat seperti truk dan bus berbahan bakar solar.

Studi literatur mengasumsikan bahwa faktor-faktor yang mempengaruhi emisi kendaraan adalah kapasitas ruas jalan, jarak perjalanan dari asal ke Kawasan Senayan, waktu perjalanan dari asal ke Kawasan Senayan, ruang terbuka hijau, jarak antar persimpangan, umur pemakaian kendaraan dan perawatan kendaraan. Berdasarkan hasil analisis regresi linier berganda, faktor-faktor yang memberikan pengaruh paling besar

dibandingkan dengan faktor-faktor lain adalah kapasitas ruas jalan, ruang terbuka hijau dan jarak antar persimpangan. Oleh sebab itu ketiga faktor ini dijelaskan pada strategi secara kuantitatif, sementara faktor-faktor lainnya seperti jarak perjalanan, waktu perjalanan, umur pemakaian kendaraan dan perawatan kendaraan tidak dijelaskan. Faktor-faktor yang dijelaskan secara kualitatif adalah strategi penurunan emisi pada bidang transportasi berdasarkan Rencana Aksi Nasional Gas Rumah Kaca (RAN-GRK).

Berdasarkan strategi yang sudah terbentuk berdasarkan hasil analisis regresi linier berganda, studi literatur dan hasil survey, maka strategi-strategi tersebut dapat diklasifikasikan menjadi empat strategi, yaitu:

- 1. Penambahan ruang terbuka hijau publik seluas 2,91 hektar untuk mengurangi emisi agar memenuhi standar dan membuat masyarakat lebih nyaman beraktivitas secara NMT sehingga meminimalisir peralihan NMT ke kendaraan pribadi.
- 2. Perlu dilakukan penyaringan atas penelitian yang sudah dilakukan karena tidak semua dapat dikurangi secara langsung, contohnya kapasitas ruas jalan dan jarak antar persimpangan. Oleh sebab itu diperlukan rekayasa lalu lintas untuk mengatur kendaraan yang ada di kawasan tersebut. Contohnya pengendalian kendaraan pribadi yang melewati ruas jalan dan persimpangan tertentu yang setara dengan pengurangan kapasitas ruas jalan sebesar 30.962,23 smp/jam dan penambahan jarak antar persimpangan sepanjang 2,29 km. Selain itu hal ini juga dapat mengembangkan koridor transit (TOD), mengaktifkan perjalanan masyarakat secara NMT dan mendorong masyarakat untuk menggunakan kendaraan umum yang lebih ramah lingkungan.

- 3. Program yang akan dilaksanakan menetapkan target penurunan emisi kendaraan berdasarkan penelitian yang sudah disusun yaitu dengan mengurangi kapasitas ruas jalan sebesar 30.962,23 smp/jam, menambahkan ruang terbuka hijau seluas 2,91 hektar dan menambahkan jarak antar persimpangan sepanjang 2,29 km di seluruh Kawasan Senayan.
- 4. Melakukan penelitian lanjutan pada setiap kurun waktu tertentu karena karakteristik yang mempengaruhi emisi kendaraan mungkin berubah sehingga emisi kendaraan sifatnya dinamis.

#### 5.2 Saran

Adapun beberapa saran dan rekomendasi untuk penelitian ini antara lain:

- Mengimplementasikan strategi penelitian dalam bentuk arahan dan program untuk mewujudkan berkurangnya kadar emisi kendaraan di pusat kota lebih tepatnya Kawasan Senayan.
- 2. Melakukan kerjasama antar pemerintah dan swasta dalam mewujudkan realisasi dari penelitian tersebut, terutama kerja sama dengan peraturan ganjil-genap dilengkapi dengan fasilitas kamera E-TLE (*Electronic Traffic Low Enforcement*) agar dapat diimplementasikan secara bersamaan.
- 3. Melakukan penelitian yang lebih rinci dengan mempertimbangkan jenis bahan bakar yang tepat untuk setiap unit kendaraan.

4. Melakukan penelitian lanjutan mengenai emisi kendaraan yang ada di seluruh bagian Jakarta, agar tidak hanya satu bagian saja memiliki zona rendah emisi tetapi seluruh bagian Jakarta.

#### DAFTAR PUSTAKA

- Amin, Muhammad Choirul. 2017. Faktor-Faktor yang Mempengaruhi Pertumbuhan Kendaraan Bermotor Roda Dua di Kota Pekanbaru. Pekanbaru: JOM Fekon, Fakultas Ekonomi, Universitas Riau.
- Badi, Chamelia. 2016. Evaluasi Faktor Penyesuaian Hambatan Samping Menurut MKJI 1997 untuk Jalan Satu Arah. Manado: Jurnal Sipil Statik Vol. 4 No. 12, Universitas Sam Ratulangi Manado.
- Dharma, Surya. 2008. *Pendekatan, Jenis dan Metode Penelitian Pendidikan*. Jakarta: Direktorat Tenaga Kependidikan, Direktorat Jenderal Peningkatan Mutu Pendidik dan Tenaga Kependidikan, Departemen Pendidikan Nasional.
- Institut Teknologi Sepuluh Nopember. 2018. *Pencemaran Udara: Jenis-Jenis, Klasifikasi dan Parameter Pencemar Udara.* Surabaya: Jurusan Teknik Lingkungan FTSP ITS.
- Ismiyati, Devi Marlita dan Deslida Saidah. 2014. *Pencemaran Udara Akibat Emisi Gas Buang Kendaraan Bermotor*. Jakarta: ISSN 2355-4721.
- Johnson, Boris. 2012. *The Low Emissions Zone*. London: Worthing BNII 9PU.
- Kementrian Energi dan Sumber Daya Mineral. 2017. *Kajian Penggunaan Faktor Emisi Lokal (Tier 2) dalam Inventarisasi GRK Sektor Energi*. Jakarta: Pusat Data dan Teknologi Informasi Energi dan Sumber Daya Mineral.

- Kementrian Energi dan Sumber Daya Mineral. 2016. *Data Inventory Emisi GRK Sektor Energi*, Jakarta: Pusat Data dan Teknologi Informasi Energi dan Sumber Daya Mineral.
- Kementrian Perencanaan Pembangunan Nasional/Badan Perencanaan Pembangunan Nasional. 2011. *Pedoman Pelaksanaan Rencana Aksi Penurunan Emisi Gas Rumah Kaca*. Jakarta: Kementrian Perencanaan Pembangunan Nasional/Badan Perencanaan Pembangunan Nasional.
- Khoiroh, Muhimmatul dan Alia Damayanti. 2010. Analisis Kemampuan Jalur Hijau Jalan Sebagai Ruang Terbuka Hijau (RTH) Publik untuk Menyerap Emisi Karbon Monoksida (CO) dari Kendaraan Bermotor di Kecamatan Sukolilo, Surabaya. Surabaya: Digilib ITS.
- Koordinator Statistik Kecamatan Kebayoran Baru. 2018. Kecamatan Kebayoran Baru dalam Angka 2018. Jakarta: BPS Kota Administrasi Jakarta Selatan.
- Muziansyah, Devianti dan lain-lain. 2015. Model Emisi Gas Buangan Kendaraan Bermotor Akibat Aktivitas Transportasi (Studi Kasus: Terminal Pasar Bawah Ramayana Kota Bandar Lampung). Lampung: JRSDD.
- Noor, Hadiyah Asma dan Asep Sofyan. 2016. *Inventarisasi Emisi Pencemaran Udara dan Gas Rumah Kaca di Jabodetabek dengan Menggunakan Metode SIG (Sistem Informasi Geografis)*. Bandung: Program Studi Teknik Lingkungan, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung.

- Peraturan Presiden Republik Indonesia Nomor 61 tahun 2011 tentang Rencana Aksi Nasional Penurunan Emisi Gas Rumah Kaca.
- Risdiyanto. 2014. *Rekayasa dan Manajemen Lalu Lintas: Teori dan Aplikasi*. Yogyakarta: PT Leutika Nouvalitera.
- Sekaryadi, Yudi dan Wimpy Santosa. 2017. *Emisi Kendaraan Pada Ruas Jalan Provinsi di Jawa Barat*. Bandung: Jurnal HPII.
- Suhadi, Dollaris Riauaty dan Anissa S. Febrina. 2012. *Pedoman Penyusunan Inventarisasi Emisi Pencemar Udara di Perkotaan*. Jakarta: Asdep Pengendalian Pencemaran Udara Sumber Bergerak, Deputi Bidang Pengendalian Pencemaran Lingkungan, Kementrian Lingkungan Hidup.
- Syafruddin, Ahmad dan lain-lain. 2002. *Integrated Vehicle Emission Reduction Strategy for Greater Jakarta, Indonesia*. Jakarta: Asian Development Bank (ADB).
- Utami, Putri Khoiriyah. 2009. *Penentuan Nilai Ekuivalensi Mobil Penumpang (emp) Pada Bundaran (Studi Kasus Bundaran Joglo*. Surakarta: Teknik Sipil, Fakultas Teknik, Universitas Sebelas Maret.
- Wienmann, Viviane. 2014. Low Emission Zone (LEZ) Vehicle Travel Restriction to Improve Air Quality in Inner Cities.

  Beijing: Deutsche Gesellschaft für Internationale Zusammnarbeit (GIZ) GmbH.

"Halaman ini sengaja dikosongkan"

# LAMPIRAN

Lampiran 1. Desain Survey

| NO | SASARAN      | TAHAPAN          | DATA YANG        | METODE PENGA       | MBILAN DATA | INPUT DATA                        | METODE       | OUTPUT       |
|----|--------------|------------------|------------------|--------------------|-------------|-----------------------------------|--------------|--------------|
| NO | SASAKAN      | ANALISIS         | DIBUTUHKAN       | PRIMER             | SEKUNDER    | INIUIDAIA                         | ANALISIS     | 001101       |
| 1  | Identifikasi | Mengidentifikasi | Jumlah kendaraan | Observasi (traffic | -           | Hasil observasi                   | Analisis     | Jumlah       |
|    | volume       | sumber emisi gas | berdasarkan      | counting)          |             | (traffic counting)                | deskriptif   | kendaraan    |
|    | kendaraan    | buang kendaraan  | klasifikasi      | • Weekdays:        |             | jumlah kendaraan                  |              | berdasarkan  |
|    |              |                  | kendaraan (HV,   | Senin dan          |             |                                   |              | klasifikasi  |
|    |              |                  | LV, MC) dalam    | Rabu (07:00-       |             |                                   |              | kendaraan    |
|    |              |                  | unit             | 09:00; 12:00-      |             |                                   |              | bermotor     |
|    |              |                  |                  | 14:00; 16:00-      |             |                                   |              |              |
|    |              |                  |                  | 18:00)             |             |                                   |              |              |
|    |              |                  |                  | • Weekend:         |             |                                   |              |              |
|    |              |                  |                  | Sabtu (12:00-      |             |                                   |              |              |
|    |              |                  |                  | 14:00; 16:00-      |             |                                   |              |              |
|    |              |                  |                  | 18:00)             |             |                                   |              |              |
|    |              | Konversi satuan  | Jumlah kendaraan |                    |             | Jumlah kendaraan                  | Analisis     | Volume       |
|    |              | jumlah kendaraan | berdasarkan      |                    |             | berdasarkan                       | deskriptif   | kendaraan    |
|    |              | ke smp/jam       | klasifikasi      |                    |             | klasifikasi                       | kuantitatif  |              |
|    |              |                  | kendaraan        |                    |             | kendaraan                         | (perhitungan |              |
|    |              |                  | bermotor         |                    |             | bermotor dengan                   | matematis)   |              |
|    |              |                  |                  |                    |             | satuan                            |              |              |
|    |              |                  |                  |                    |             | (kendaraan/tahun)                 |              |              |
| 2  | Menghitung   | Menghitung       |                  |                    |             | • Volume                          | Analisis     | Jumlah beban |
|    | jumlah emisi | jumlah beban     |                  |                    |             | kendaraan                         | beban emisi  | emisi        |
|    | gas buang    | emisi            |                  |                    |             | <ul> <li>Panjang jalan</li> </ul> | (perhitungan |              |
|    | kendaraan    |                  |                  |                    |             | <ul> <li>Faktor emisi</li> </ul>  | matematis)   |              |

| NO | SASARAN       | TAHAPAN          | DATA YANG         | METODE PENGA | MBILAN DATA | INPUT DATA                 | METODE       | OUTPUT         |
|----|---------------|------------------|-------------------|--------------|-------------|----------------------------|--------------|----------------|
| NU | SASAKAN       | ANALISIS         | DIBUTUHKAN        | PRIMER       | SEKUNDER    | INPUT DATA                 | ANALISIS     | OUTPUT         |
| 3  | Menganalisis  | Menghitung       | Jumlah kendaraan  |              |             | Kapasitas dasar            | Analisis     | Kapasitas ruas |
|    | faktor-faktor | kapasitas ruas   | berdasarkan       |              |             | (Co)                       | kapasitas    | jalan          |
|    | yang          | jalan            | klasifikasi       |              |             | <ul> <li>Faktor</li> </ul> | ruas jalan   |                |
|    | mempengaruhi  |                  | kendaraan         |              |             | penyesuaian                | (perhitungan |                |
|    | emisi gas     |                  | bermotor          |              |             | lebar jalur lalu           | matematis)   |                |
|    | buang         |                  |                   |              |             | lintas (FCw)               |              |                |
|    | kendaraan     |                  |                   |              |             | <ul> <li>Faktor</li> </ul> |              |                |
|    |               |                  |                   |              |             | penyesuaian                |              |                |
|    |               |                  |                   |              |             | pemisahan arah             |              |                |
|    |               |                  |                   |              |             | (FCsp)                     |              |                |
|    |               |                  |                   |              |             | <ul> <li>Faktor</li> </ul> |              |                |
|    |               |                  |                   |              |             | penyesuaian                |              |                |
|    |               |                  |                   |              |             | akibat                     |              |                |
|    |               |                  |                   |              |             | hambatan                   |              |                |
|    |               |                  |                   |              |             | samping (FCsf)             |              |                |
|    |               |                  |                   |              |             | • Faktor                   |              |                |
|    |               |                  |                   |              |             | penyesuaian                |              |                |
|    |               |                  |                   |              |             | ukuran kota                |              |                |
|    |               |                  |                   |              |             | (FCcs)                     |              |                |
|    |               | Mengidentifikasi | Jarak dan waktu   | Kuisioner    | -           | Hasil kuisioner            | Analisis     | Pergerakan     |
|    |               | pergerakan       | tempuh perjalanan |              |             | jumlah kendaraan           | deskriptif   | kendaraan      |
|    |               | kendaraan        | kendaraan dari    |              |             | yang melakukan             |              |                |
|    |               |                  | asal ke destinasi |              |             | perjalanan dari            |              |                |
|    |               |                  | di Senayan        |              |             | asal ke tujuan             |              |                |
|    |               |                  | (dalam kilometer  |              |             | (pusat kegiatan)           |              |                |
|    |               |                  | dan menit)        |              |             |                            |              |                |

| NO | SASARAN | TAHAPAN          | DATA YANG           | METODE PENGA | MBILAN DATA | INPUT DATA                     | METODE         | OUTPUT           |
|----|---------|------------------|---------------------|--------------|-------------|--------------------------------|----------------|------------------|
| NU | SASARAN | ANALISIS         | DIBUTUHKAN          | PRIMER       | SEKUNDER    | INPUT DATA                     | ANALISIS       | OUTPUT           |
|    |         | Mengukur luas    | Luas ruang          | -            | Geographic  | Hasil pengukuran               | Analisis       | Luas ruang       |
|    |         | ruang terbuka    | terbuka hijau       |              | Information | luas dengan GIS                | deskriptif     | terbuka hijau    |
|    |         | hijau            | (dalam meter        |              | System      |                                |                |                  |
|    |         |                  | kuadrat)            |              |             |                                |                |                  |
|    |         | Mengukur jarak   | Panjang jarak       | -            | Geographic  | Hasil pengukuran               | Analisis       | Jarak antar      |
|    |         | antar            | antar               |              | Information | jarak dengan GIS               | deskriptif     | persimpangan     |
|    |         | persimpangan     | persimpangan        |              | System      |                                |                |                  |
|    |         |                  | (dalam meter)       |              |             |                                |                |                  |
|    |         | Mengidentifikasi | Jarak yang sudah    | Kuisioner    | -           | Hasil kuisioner                | Analisis       | Umur             |
|    |         | umur pemakaian   | ditempuh oleh       |              |             | lamanya                        | deskriptif     | kendaraan        |
|    |         | kendaraan        | kendaraan (dalam    |              |             | kendaraan tersebut             |                |                  |
|    |         |                  | kilometer)          |              |             | dipakai dalam                  |                |                  |
|    |         |                  |                     |              |             | kilometer                      |                |                  |
|    |         | Mengidentifikasi | Jumlah kendaraan    | Kuisioner    | -           | Hasil kuisioner                | Analisis       | Perawatan        |
|    |         | perawatan        | tersebut di-service |              |             | kuantitas                      | deskriptif     | kendaraan        |
|    |         | kendaraan        | ("1" jika dalam     |              |             | kendaraan tersebut             |                |                  |
|    |         |                  | setahun minimal 2   |              |             | di- <i>service</i>             |                |                  |
|    |         |                  | kali service; "0"   |              |             |                                |                |                  |
|    |         |                  | jika dalam          |              |             |                                |                |                  |
|    |         |                  | setahun kurang      |              |             |                                |                |                  |
|    |         |                  | dari 2 kali         |              |             |                                |                |                  |
|    |         |                  | service)            |              |             |                                | 4 1            |                  |
|    |         | Mengetahui       | • Jumlah            |              |             | Kapasitas ruas                 | Analisis       | Pengaruh         |
|    |         | pengaruh         | kendaraan           |              |             | jalan                          | regresi linier | kapasitas jalan, |
|    |         | kapasitas jalan, | berdasarkan         |              |             | • Pergerakan                   | berganda       | pergerakan       |
|    |         | pergerakan       | klasifikasi         |              |             | kendaraan                      |                | kendaraan,       |
|    |         | kendaraan, ruang | kendaraan           |              |             | <ul> <li>Luas ruang</li> </ul> |                | ruang terbuka    |
|    |         | terbuka hijau,   | bermotor            |              |             | terbuka hijau                  |                | hijau, jarak     |

| NO | SASARAN      | TAHAPAN         | DATA YANG                         | METODE PENGA | MBILAN DATA | INPUT DATA                       | METODE   | OUTPUT         |
|----|--------------|-----------------|-----------------------------------|--------------|-------------|----------------------------------|----------|----------------|
| NO | SASAKAN      | ANALISIS        | DIBUTUHKAN                        | PRIMER       | SEKUNDER    | INPUT DATA                       | ANALISIS | OUTPUT         |
|    |              | jarak antar     | Jarak dan                         |              |             | <ul> <li>Jarak antar</li> </ul>  |          | antar          |
|    |              | persimpangan,   | waktu tempuh                      |              |             | persimpangan                     |          | persimpangan,  |
|    |              | umur kendaraan  | perjalanan                        |              |             | • Umur                           |          | umur           |
|    |              | dan perawatan   | kendaraan                         |              |             | kendaraan                        |          | kendaraan dan  |
|    |              | kendaraan       | dari asal ke                      |              |             | <ul> <li>Perawatan</li> </ul>    |          | perawatan      |
|    |              | terhadap emisi  | destinasi di                      |              |             | kendaraan                        |          | kendaraan      |
|    |              | gas buang       | Senayan                           |              |             | <ul> <li>Jumlah beban</li> </ul> |          | terhadap emisi |
|    |              | kendaraan       | (kilometer                        |              |             | emisi                            |          | gas buang      |
|    |              |                 | dan menit)                        |              |             |                                  |          | kendaraan      |
|    |              |                 | <ul> <li>Luas ruang</li> </ul>    |              |             |                                  |          |                |
|    |              |                 | terbuka hijau                     |              |             |                                  |          |                |
|    |              |                 | (dalam meter                      |              |             |                                  |          |                |
|    |              |                 | kuadrat)                          |              |             |                                  |          |                |
|    |              |                 | <ul> <li>Panjang jarak</li> </ul> |              |             |                                  |          |                |
|    |              |                 | antar                             |              |             |                                  |          |                |
|    |              |                 | persimpangan                      |              |             |                                  |          |                |
|    |              |                 | (dalam meter)                     |              |             |                                  |          |                |
|    |              |                 | <ul> <li>Jarak yang</li> </ul>    |              |             |                                  |          |                |
|    |              |                 | sudah                             |              |             |                                  |          |                |
|    |              |                 | ditempuh oleh                     |              |             |                                  |          |                |
|    |              |                 | kendaraan                         |              |             |                                  |          |                |
|    |              |                 | (dalam                            |              |             |                                  |          |                |
|    |              |                 | kilometer)                        |              |             |                                  |          |                |
| 4  | Merumuskan   | Mengadaptasikan | Hasil sasaran 3                   |              |             | <ul> <li>Pengaruh</li> </ul>     | Analisis | Strategi       |
|    | strategi     | faktor-faktor   |                                   |              |             | kapasitas                        | SWOT     | pengembangan   |
|    | pengembangan | yang            |                                   |              |             | jalan,                           |          | kebijakan      |
|    | kebijakan    | mempengaruhi    |                                   |              |             | pergerakan                       |          | penurunan      |
|    | penurunan    |                 |                                   |              |             | kendaraan,                       |          |                |

| NO | SASARAN       | TAHAPAN       | DATA YANG  | METODE PENGA | MBILAN DATA | INPUT DATA     | METODE   | OUTPUT    |
|----|---------------|---------------|------------|--------------|-------------|----------------|----------|-----------|
| NO | SASARAN       | ANALISIS      | DIBUTUHKAN | PRIMER       | SEKUNDER    | INFUI DAIA     | ANALISIS | OUTFUL    |
|    | emisi         | dengan konsep |            |              |             | ruang terbuka  |          | emisi     |
|    | kendaraan     | LEZ           |            |              |             | hijau, jarak   |          | kendaraan |
|    | dengan konsep |               |            |              |             | antar          |          |           |
|    | LEZ           |               |            |              |             | persimpangan,  |          |           |
|    |               |               |            |              |             | umur           |          |           |
|    |               |               |            |              |             | kendaraan dan  |          |           |
|    |               |               |            |              |             | perawatan      |          |           |
|    |               |               |            |              |             | kendaraan      |          |           |
|    |               |               |            |              |             | terhadap emisi |          |           |
|    |               |               |            |              |             | gas buang      |          |           |
|    |               |               |            |              |             | kendaraan      |          |           |
|    |               |               |            |              |             | buang          |          |           |
|    |               |               |            |              |             | kendaraan      |          |           |
|    |               |               |            |              |             | • Konsep LEZ   |          |           |

"Halaman ini sengaja dikosongkan"

## Lampiran 2. Form Kuisoner



# STRATEGI PENGEMBANGAN KEBIJAKAN PENURUNAN EMISI KENDARAAN DI SENAYAN, JAKARTA

Bapak/Ibu/Saudara/I yang saya hormati,

Sehubungan dengan penyusunan Tugas Akhir, saya selaku mahasiswa Perencanaan Wilayah dan Kota ITS Surabaya akan melakukan penelitian berjudul "Strategi Pengembangan Kebijakan Penurunan Emisi Kendaraan di Senayan, Jakarta". Adapun tujuan dari penelitian ini adalah untuk merumuskan strategi pengembangan kebijakan penurunan kadar emisi pada sektor transportasi di Senayan, Jakarta Selatan.

Untuk memenuhi kebutuhan data penelitian, saya memohon kesediaan dari Bapak/Ibu/Saudara/I untuk berkenan menjadi responden dan mengisi kuisioner berikut. Saya sebagai peneliti akan menjamin kerahasiaan jawaban dan identitas Bapak/Ibu/Saudara/I, serta jawaban yang diberikan hanya untuk keperluan penelitian ini. Demikian permohonan ini, atas partisipasi Bapak/Ibu/Saudara/I saya ucapkan terima kasih.

## Hormat saya,

(Sebastiana G. A. Jahja)

## Identitas peneliti

Nama : Sebastiana Ganthya Agape Jahja

NRP : 08211540000107

Departemen : Perencanaan Wilayah dan Kota

Perguruan Tinggi : Institut Teknologi Sepuluh Nopember

Kontak : 08113325085 /

sebastianajahja@gmail.com

#### **IDENTITAS RESPONDEN**

| Nama Responden          |               |
|-------------------------|---------------|
| Jenis Kelamin           | L/P           |
| Usia                    | tahun         |
| No. Telepon/HP          |               |
| Alamat Email            |               |
| Pertanyaan Responden    |               |
| Saya menyatakan bahwa   | TTD Responden |
| kuisioner ini telah     |               |
| dilaksanakan benar-     |               |
| benar sesuai dengan     |               |
| speisifikasi yang telah |               |
| diterapkan              |               |

#### **IDENTITAS INTERVIEWER**

| Nama Interviewer  |  |
|-------------------|--|
| Waktu Interview   |  |
| Tanggal Interview |  |

## Tujuan:

Mengetahui pergerakan kendaraan dari asal ke tujuan, umur pemakaian kendaraan yang digunakan dan perawatan kendaraan yang digunakan.

## Kriteria Responden:

- Usia minimal 17 tahun
- Pengguna kendaraan roda 2 (motor/bajaj) dan/atau kendaraan roda 4 (mobil/truk kecil/bus kecil) dan/atau kendaraan roda lebih dari 4 (truk besar/bus besar)
- Beraktivitas (perkantoran, pusat perbelanjaan dll.) di Senayan, Jakarta

| NO | PERTANYAAN           | JAWABAN                         |
|----|----------------------|---------------------------------|
| 1. | Pengguna             | a) Sepeda motor (Roda 2)        |
|    | kendaraan            | b) Sedan (Roda 4)               |
|    |                      | c) Mini bus (Roda 4)            |
|    |                      | d) Truk Besar / Bus Besar       |
|    |                      | (Roda lebih dari 4)             |
| 2. | Tujuan ke Senayan    | a) Bekerja                      |
|    |                      | b) Belanja                      |
|    |                      | c) Pulang ke apartemen          |
|    |                      | d) Makan                        |
|    |                      | e) Lainnya,                     |
| 3. | Jarak perjalanan     | km                              |
|    | dari asal ke Senayan |                                 |
| 4. | Waktu yang           | menit                           |
|    | ditempuh dari asal   |                                 |
|    | ke Senayan           |                                 |
| 5. | Umur pemakaian       | km                              |
|    | kendaraan            |                                 |
| 6. | Perawatan            | a) Dua atau lebih dari dua kali |
|    | kendaraan            | dalam setahun atau berkala      |
|    |                      | (sesuai kilometer               |
|    |                      | kendaraan)                      |

| NO | PERTANYAAN       | JAWABAN                       |
|----|------------------|-------------------------------|
|    |                  | b) Kurang dari dua kali dalam |
|    |                  | setahun                       |
| 7. | Tempat perawatan | a) Bengkel resmi              |
|    | kendaraan        | b) Pribadi                    |

"Halaman ini sengaja dikosongkan"

## Lampiran 3. Form Traffic Counting

| Form traffic co | ounting di Wilayah Penelitian Kelurahan Senayan, K | Kecamatan Kebayoran Baru, Jakarta Selatan |
|-----------------|----------------------------------------------------|-------------------------------------------|
| Nama Surveyo    | r:                                                 |                                           |
| Hari/Tanggal    | :                                                  |                                           |
| Titik Lokasi    | :                                                  |                                           |

| Waktu (Per 15 menit) | Sepeda Motor | Mobil Penumpang | Truk/Bus Kecil | Truk/Bus Besar |
|----------------------|--------------|-----------------|----------------|----------------|
|                      |              |                 |                |                |
|                      |              |                 |                |                |
|                      |              |                 |                |                |
|                      |              |                 |                |                |
|                      |              |                 |                |                |
|                      |              |                 |                |                |
|                      |              |                 |                |                |
|                      |              |                 |                |                |
|                      |              |                 |                |                |
|                      |              |                 |                |                |
|                      |              |                 |                |                |
|                      |              |                 |                |                |
|                      |              |                 |                |                |
|                      |              |                 |                |                |
| TOTAL 2 JAM          |              |                 |                |                |
| Rata-rata/Jam        |              |                 |                |                |

# Lampiran 4. Hasil Survey

1. Data traffic counting hari biasa dan hari libur Pacific Place (X1)

|             | SEN  | IN   |      |             | RAE  | <br>BU |      | SABTU       |      |      |      |
|-------------|------|------|------|-------------|------|--------|------|-------------|------|------|------|
| WAKTU       | HV   | LV   | MC   | WAKTU       | HV   | LV     | MC   | WAKTU       | HV   | LV   | MC   |
|             | PAC  | 3I   |      |             | PA   | Gl     |      |             |      |      |      |
| 07:00-07:15 | 2    | 356  | 370  | 07:00-07:15 | 1    | 359    | 339  |             |      |      |      |
| 07:16-07:30 | 3    | 731  | 755  | 07:16-07:30 | 2    | 721    | 956  |             |      |      |      |
| 07:31-07:45 | 3    | 1093 | 1121 | 07:31-07:45 | 2    | 1089   | 1571 |             |      |      |      |
| 07:46-08:00 | 4    | 1450 | 1489 | 07:46-08:00 | 3    | 1548   | 2209 |             |      |      |      |
| 08:01-08:15 | 4    | 1901 | 1856 | 08:00-08:15 | 3    | 1812   | 2833 |             |      |      |      |
| 08:16-08:30 | 4    | 2252 | 2320 | 08:16-08:30 | 4    | 2169   | 3459 |             |      |      |      |
| 08:31-08:45 | 5    | 2806 | 2797 | 08:31-08:45 | 5    | 2522   | 4095 |             |      |      |      |
| 08:46-09:00 | 5    | 3254 | 3268 | 08:46-09:00 | 5    | 2984   | 4508 |             |      |      |      |
|             | SIAN | IG   |      |             | SIAN | ١G     |      |             | SIAN | NG   |      |
| 12:00-12:15 | 1    | 391  | 294  | 12:00-12:15 | 1    | 334    | 241  | 12:00-12:15 | 0    | 329  | 230  |
| 12:16-12:30 | 4    | 734  | 600  | 12:16-12:30 | 4    | 693    | 558  | 12:16-12:30 | 0    | 677  | 457  |
| 12:31-12:45 | 4    | 1108 | 874  | 12:31-12:45 | 4    | 1072   | 901  | 12:31-12:45 | 0    | 984  | 696  |
| 12:46-13:00 | 4    | 1499 | 1188 | 12:46-13:00 | 5    | 1431   | 1223 | 12:46-13:00 | 1    | 1321 | 933  |
| 13:01-13:15 | 5    | 1956 | 1478 | 13:01-13:15 | 6    | 1807   | 1546 | 13:01-13:15 | 1    | 1655 | 1163 |
| 13:16-13:30 | 5    | 2281 | 1776 | 13:16-13:30 | 6    | 2205   | 1882 | 13:16-13:30 | 1    | 1979 | 1376 |
| 13:31-13:45 | 6    | 2672 | 2066 | 13:31-13:45 | 7    | 2564   | 2199 | 13:31-13:45 | 1    | 2314 | 1624 |
| 13:46-14:00 | 7    | 3066 | 2364 | 13:46-14:00 | 7    | 2976   | 2508 | 13:46-14:00 | 3    | 2638 | 1855 |
|             | SOF  | RE   |      |             | SOF  | RE     |      |             | SOF  | RE   |      |
| 16:00-16:15 | 2    | 266  | 331  | 16:00-16:15 | 4    | 319    | 331  | 16:00-16:15 | 1    | 223  | 156  |
| 16:16-16:30 | 4    | 622  | 942  | 16:16-16:30 | 4    | 675    | 961  | 16:16-16:30 | 1    | 452  | 325  |
| 16:31-16:45 | 4    | 1068 | 1561 | 16:31-16:45 | 4    | 1133   | 1597 | 16:31-16:45 | 1    | 677  | 472  |
| 16:46-17:00 | 5    | 1512 | 2172 | 16:46-17:00 | 4    | 1565   | 2208 | 16:46-17:00 | 1    | 888  | 634  |
| 17:01-17:15 | 5    | 1963 | 2790 | 17:01-17:15 | 5    | 2013   | 2832 | 17:01-17:15 | 2    | 1116 | 791  |
| 17:16-17:30 | 5    | 2406 | 3401 | 17:16-17:30 | 5    | 2531   | 3447 | 17:16-17:30 | 2    | 1338 | 945  |
| 17:31-17:45 | 6    | 2847 | 4022 | 17:31-17:45 | 5    | 2856   | 4058 | 17:31-17:45 | 3    | 1572 | 1098 |
| 17:46-18:00 | 6    | 3298 | 4633 | 17:46-18:00 | 6    | 3207   | 4674 | 17:46-18:00 | 3    | 1789 | 1252 |

# 2. Data *traffic counting* hari biasa dan hari libur Grand Lucky (X2)

|             | SEN   | IN   |      |             | RAB   | BU   | •    | SABTU       |     |      |     |
|-------------|-------|------|------|-------------|-------|------|------|-------------|-----|------|-----|
| WAKTU       | HV    | LV   | MC   | WAKTU       | HV    | LV   | MC   | WAKTU       | HV  | LV   | MC  |
|             | PAC   | 31   |      |             | PAG   | Gl   |      |             |     |      |     |
| 07:00-07:15 | 1     | 198  | 146  | 07:00-07:15 | 1     | 165  | 125  |             |     |      |     |
| 07:16-07:30 | 1     | 376  | 288  | 07:16-07:30 | 1     | 325  | 248  |             |     |      |     |
| 07:31-07:45 | 1     | 581  | 441  | 07:31-07:45 | 2     | 479  | 372  |             |     |      |     |
| 07:46-08:00 | 2     | 776  | 579  | 07:46-08:00 | 2     | 642  | 501  |             |     |      |     |
| 08:01-08:15 | 2     | 965  | 725  | 08:00-08:15 | 2     | 805  | 632  |             |     |      |     |
| 08:16-08:30 | 3     | 1160 | 868  | 08:16-08:30 | 3     | 977  | 748  |             |     |      |     |
| 08:31-08:45 | 3     | 1344 | 1018 | 08:31-08:45 | 3     | 1155 | 875  |             |     |      |     |
| 08:46-09:00 | 3     | 1542 | 1159 | 08:46-09:00 | 3     | 1318 | 1002 |             |     |      |     |
|             | SIANG |      |      |             | SIANG |      |      | SIANG       |     |      |     |
| 12:00-12:15 | 2     | 107  | 97   | 12:00-12:15 | 3     | 154  | 89   | 12:00-12:15 | 0   | 152  | 61  |
| 12:16-12:30 | 3     | 219  | 186  | 12:16-12:30 | 3     | 276  | 181  | 12:16-12:30 | 0   | 287  | 125 |
| 12:31-12:45 | 3     | 342  | 278  | 12:31-12:45 | 3     | 382  | 266  | 12:31-12:45 | 0   | 385  | 186 |
| 12:46-13:00 | 3     | 447  | 369  | 12:46-13:00 | 3     | 493  | 359  | 12:46-13:00 | 1   | 518  | 249 |
| 13:01-13:15 | 4     | 571  | 454  | 13:01-13:15 | 4     | 620  | 452  | 13:01-13:15 | 1   | 657  | 307 |
| 13:16-13:30 | 4     | 690  | 551  | 13:16-13:30 | 4     | 718  | 535  | 13:16-13:30 | 1   | 766  | 376 |
| 13:31-13:45 | 4     | 765  | 639  | 13:31-13:45 | 4     | 831  | 631  | 13:31-13:45 | 1   | 888  | 427 |
| 13:46-14:00 | 4     | 891  | 736  | 13:46-14:00 | 4     | 938  | 712  | 13:46-14:00 | 1   | 1005 | 492 |
|             | SOF   | RE   |      |             | SOF   | RE   |      |             | SOF | RE   |     |
| 16:00-16:15 | 0     | 148  | 131  | 16:00-16:15 | 0     | 116  | 119  | 16:00-16:15 | 1   | 104  | 81  |
| 16:16-16:30 | 0     | 307  | 324  | 16:16-16:30 | 0     | 280  | 318  | 16:16-16:30 | 1   | 210  | 166 |
| 16:31-16:45 | 0     | 471  | 523  | 16:31-16:45 | 0     | 436  | 504  | 16:31-16:45 | 1   | 316  | 253 |
| 16:46-17:00 | 0     | 627  | 715  | 16:46-17:00 | 0     | 595  | 692  | 16:46-17:00 | 1   | 421  | 340 |
| 17:01-17:15 | 0     | 793  | 909  | 17:01-17:15 | 0     | 753  | 899  | 17:01-17:15 | 2   | 522  |     |
| 17:16-17:30 | 1     | 951  | 1098 | 17:16-17:30 | 0     | 914  | 974  | 17:16-17:30 | 2   | 634  | 492 |
| 17:31-17:45 | 1     | 1112 | 1291 | 17:31-17:45 | 0     | 1076 | 1176 | 17:31-17:45 | 2   | 733  | 556 |
| 17:46-18:00 | 1     | 1269 | 1482 | 17:46-18:00 | 0     | 1234 | 1370 | 17:46-18:00 | 2   | 829  | 648 |

# 3. Data *traffic counting* hari biasa dan hari libur Jend. Sudirman (X3)

|             | SEN  | IN   |      |             | RAE  | BU   | •    | SABTU       |     |      |      |
|-------------|------|------|------|-------------|------|------|------|-------------|-----|------|------|
| WAKTU       | HV   | LV   | MC   | WAKTU       | HV   | LV   | MC   | WAKTU       | HV  | LV   | MC   |
|             | PAC  | 3I   |      | PAGI        |      |      |      |             |     |      |      |
| 07:00-07:15 | 28   | 842  | 813  | 07:00-07:15 | 30   | 776  | 775  |             |     |      |      |
| 07:16-07:30 | 52   | 1587 | 1521 | 07:16-07:30 | 44   | 1476 | 1563 |             |     |      |      |
| 07:31-07:45 | 78   | 2431 | 2344 | 07:31-07:45 | 69   | 2231 | 2337 |             |     |      |      |
| 07:46-08:00 | 107  | 3279 | 3148 | 07:46-08:00 | 100  | 3028 | 3118 |             |     |      |      |
| 08:01-08:15 | 134  | 4111 | 4057 | 08:00-08:15 | 125  | 3769 | 3888 |             |     |      |      |
| 08:16-08:30 | 160  | 5056 | 4778 | 08:16-08:30 | 154  | 4571 | 4663 |             |     |      |      |
| 08:31-08:45 | 178  | 5898 | 5589 | 08:31-08:45 | 182  | 5332 | 5435 |             |     |      |      |
| 08:46-09:00 | 220  | 6638 | 6403 | 08:46-09:00 | 218  | 6100 | 6209 |             |     |      |      |
|             | SIAN | IG   |      |             | SIAN | NG   |      | SIANG       |     |      |      |
| 12:00-12:15 | 31   | 708  | 611  | 12:00-12:15 | 27   | 684  | 608  | 12:00-12:15 | 18  | 675  | 600  |
| 12:16-12:30 | 55   | 1407 | 1219 | 12:16-12:30 | 43   | 1372 | 1232 | 12:16-12:30 | 32  | 1277 | 1189 |
| 12:31-12:45 | 87   | 2116 | 1823 | 12:31-12:45 | 77   | 2077 | 1833 | 12:31-12:45 | 66  | 2032 | 1767 |
| 12:46-13:00 | 111  | 2828 | 2447 | 12:46-13:00 | 103  | 2744 | 2449 | 12:46-13:00 | 89  | 2655 | 2345 |
| 13:01-13:15 | 130  | 3539 | 3048 | 13:01-13:15 | 129  | 3441 | 3051 | 13:01-13:15 | 105 | 3283 | 2997 |
| 13:16-13:30 | 158  | 4227 | 3656 | 13:16-13:30 | 154  | 4138 | 3649 | 13:16-13:30 | 131 | 4025 | 3544 |
| 13:31-13:45 | 188  | 4942 | 4267 | 13:31-13:45 | 181  | 4802 | 4267 | 13:31-13:45 | 154 | 4609 | 4169 |
| 13:46-14:00 | 219  | 5646 | 4888 | 13:46-14:00 | 216  | 5472 | 4893 | 13:46-14:00 | 196 | 5329 | 4786 |
|             | SOF  | RE   |      |             | SOF  | RE   |      |             | SOF | RE   |      |
| 16:00-16:15 | 29   | 633  | 728  | 16:00-16:15 | 27   | 690  | 757  | 16:00-16:15 | 25  | 680  | 747  |
| 16:16-16:30 | 46   | 1257 | 1459 | 16:16-16:30 | 44   | 1392 | 1509 | 16:16-16:30 | 42  | 1277 | 1398 |
| 16:31-16:45 | 77   | 1887 | 2177 | 16:31-16:45 | 73   | 2074 | 2210 | 16:31-16:45 | 73  | 1939 | 2138 |
| 16:46-17:00 | 105  | 2522 | 2903 | 16:46-17:00 | 99   | 2760 | 2896 | 16:46-17:00 | 100 | 2646 | 2874 |
| 17:01-17:15 | 131  | 3155 | 3634 | 17:01-17:15 | 118  | 3444 | 3661 | 17:01-17:15 | 119 | 3325 | 3626 |
| 17:16-17:30 | 155  | 3789 | 4362 | 17:16-17:30 | 147  | 4145 | 4412 | 17:16-17:30 | 144 | 3976 | 4375 |
| 17:31-17:45 | 185  | 4424 | 5088 | 17:31-17:45 | 176  | 4839 | 5148 | 17:31-17:45 | 163 | 4652 | 5136 |
| 17:46-18:00 | 220  | 5061 | 5824 | 17:46-18:00 | 211  | 5541 | 5922 | 17:46-18:00 | 209 | 5321 | 5842 |

# 4. Data *traffic counting* hari biasa dan hari libur Polda Metro Jaya (X4)

|             | SEN   | IN  |     |             | RAE  | U   | •    | SABTU       |      |     |     |
|-------------|-------|-----|-----|-------------|------|-----|------|-------------|------|-----|-----|
| WAKTU       | HV    | LV  | MC  | WAKTU       | HV   | LV  | MC   | WAKTU       | HV   | LV  | MC  |
|             | PAC   | 31  |     | PAGI        |      |     |      |             |      |     |     |
| 07:00-07:15 | 2     | 161 | 186 | 07:00-07:15 | 2    | 130 | 189  |             |      |     |     |
| 07:16-07:30 | 2     | 257 | 265 | 07:16-07:30 | 3    | 184 | 271  |             |      |     |     |
| 07:31-07:45 | 3     | 338 | 369 | 07:31-07:45 | 3    | 271 | 363  |             |      |     |     |
| 07:46-08:00 | 4     | 412 | 455 | 07:46-08:00 | 4    | 336 | 465  |             |      |     |     |
| 08:01-08:15 | 4     | 492 | 541 | 08:00-08:15 | 4    | 385 | 555  |             |      |     |     |
| 08:16-08:30 | 5     | 563 | 649 | 08:16-08:30 | 4    | 442 | 641  |             |      |     |     |
| 08:31-08:45 | 5     | 634 | 722 | 08:31-08:45 | 5    | 517 | 728  |             |      |     |     |
| 08:46-09:00 | 6     | 715 | 837 | 08:46-09:00 | 6    | 585 | 816  |             |      |     |     |
|             | SIANG |     |     |             | SIAN | 1G  |      |             | SIAN | NG  |     |
| 12:00-12:15 | 1     | 101 | 117 | 12:00-12:15 | 3    | 82  | 119  | 12:00-12:15 | 1    | 81  | 57  |
| 12:16-12:30 | 2     | 163 | 206 | 12:16-12:30 | 5    | 147 | 251  | 12:16-12:30 | 1    | 157 | 120 |
| 12:31-12:45 | 2     | 235 | 297 | 12:31-12:45 | 5    | 215 | 384  | 12:31-12:45 | 2    | 239 | 178 |
| 12:46-13:00 | 2     | 291 | 388 | 12:46-13:00 | 5    | 271 | 519  | 12:46-13:00 | 2    | 330 | 234 |
| 13:01-13:15 | 3     | 353 | 470 | 13:01-13:15 | 6    | 344 | 643  | 13:01-13:15 | 2    | 401 | 295 |
| 13:16-13:30 | 3     | 418 | 564 | 13:16-13:30 | 6    | 409 | 775  | 13:16-13:30 | 2    | 488 | 339 |
| 13:31-13:45 | 4     | 475 | 655 | 13:31-13:45 | 7    | 476 | 912  | 13:31-13:45 | 2    | 552 | 404 |
| 13:46-14:00 | 4     | 535 | 741 | 13:46-14:00 | 7    | 537 | 1044 | 13:46-14:00 | 2    | 651 | 456 |
|             | SOR   | RE  |     |             | SOF  | RE  |      |             | SOF  | RE  |     |
| 16:00-16:15 | 2     | 121 | 135 | 16:00-16:15 | 2    | 59  | 144  | 16:00-16:15 | 1    | 97  | 65  |
| 16:16-16:30 | 4     | 207 | 252 | 16:16-16:30 | 4    | 126 | 329  | 16:16-16:30 | 1    | 188 | 126 |
| 16:31-16:45 | 4     | 294 | 371 | 16:31-16:45 | 4    | 195 | 518  | 16:31-16:45 | 1    | 279 | 178 |
| 16:46-17:00 | 5     | 375 | 488 | 16:46-17:00 | 4    | 256 | 703  | 16:46-17:00 | 1    | 377 | 252 |
| 17:01-17:15 | 5     | 467 | 605 | 17:01-17:15 | 5    | 329 | 889  | 17:01-17:15 | 1    | 468 | 325 |
| 17:16-17:30 | 5     | 552 | 723 | 17:16-17:30 | 5    | 391 | 1070 | 17:16-17:30 | 1    | 552 | 388 |
| 17:31-17:45 | 6     | 639 | 840 | 17:31-17:45 | 5    | 457 | 1257 | 17:31-17:45 | 1    | 622 | 457 |
| 17:46-18:00 | 6     | 724 | 954 | 17:46-18:00 | 6    | 522 | 1439 | 17:46-18:00 | 1    | 735 | 571 |

# 5. Data *traffic counting* hari biasa dan hari libur Senopati (X5)

|             | SEN  | N    |      |             | RAE   | BU   | -    | SABTU       |      |      |      |
|-------------|------|------|------|-------------|-------|------|------|-------------|------|------|------|
| WAKTU       | HV   | LV   | MC   | WAKTU       | HV    | LV   | MC   | WAKTU       | HV   | LV   | MC   |
|             | PAC  | 31   |      |             | PA    | GI   | -    |             |      |      |      |
| 07:00-07:15 | 2    | 353  | 309  | 07:00-07:15 | 2     | 315  | 218  |             |      |      |      |
| 07:16-07:30 | 2    | 711  | 621  | 07:16-07:30 | 2     | 648  | 446  |             |      |      |      |
| 07:31-07:45 | 2    | 1064 | 933  | 07:31-07:45 | 2     | 955  | 666  |             |      |      |      |
| 07:46-08:00 | 2    | 1427 | 1242 | 07:46-08:00 | 2     | 1274 | 879  |             |      |      |      |
| 08:01-08:15 | 4    | 1776 | 1552 | 08:00-08:15 | 3     | 1587 | 1098 |             |      |      |      |
| 08:16-08:30 | 4    | 2129 | 1860 | 08:16-08:30 | 3     | 1883 | 1321 |             |      |      |      |
| 08:31-08:45 | 4    | 2482 | 2171 | 08:31-08:45 | 4     | 2212 | 1533 |             |      |      |      |
| 08:46-09:00 | 4    | 2831 | 2489 | 08:46-09:00 | 4     | 2520 | 1744 |             |      |      |      |
|             | SIAN | IG   |      |             | SIANG |      |      |             | SIAN | NG.  |      |
| 12:00-12:15 | 3    | 355  | 421  | 12:00-12:15 | 1     | 317  | 270  | 12:00-12:15 | 0    | 313  | 303  |
| 12:16-12:30 | 3    | 703  | 821  | 12:16-12:30 | 2     | 667  | 678  | 12:16-12:30 | 0    | 625  | 611  |
| 12:31-12:45 | 3    | 1057 | 1225 | 12:31-12:45 | 2     | 1012 | 1075 | 12:31-12:45 | 1    | 944  | 904  |
| 12:46-13:00 | 3    | 1395 | 1618 | 12:46-13:00 | 2     | 1357 | 1483 | 12:46-13:00 | 1    | 1241 | 1222 |
| 13:01-13:15 | 4    | 1751 | 2036 | 13:01-13:15 | 3     | 1711 | 1869 | 13:01-13:15 | 1    | 1555 | 1535 |
| 13:16-13:30 | 4    | 2098 | 2422 | 13:16-13:30 | 3     | 2054 | 2282 | 13:16-13:30 | 1    | 1863 | 1818 |
| 13:31-13:45 | 4    | 2445 | 2832 | 13:31-13:45 | 3     | 2399 | 2667 | 13:31-13:45 | 2    | 2191 | 2149 |
| 13:46-14:00 | 5    | 2796 | 3223 | 13:46-14:00 | 4     | 2753 | 3070 | 13:46-14:00 | 2    | 2503 | 2430 |
|             | SOR  | Ε    |      |             | SOF   | RE   |      |             | SOF  | RE   |      |
| 16:00-16:15 | 3    | 264  | 277  | 16:00-16:15 | 3     | 321  | 422  | 16:00-16:15 | 1    | 322  | 473  |
| 16:16-16:30 | 5    | 574  | 636  | 16:16-16:30 | 3     | 633  | 784  | 16:16-16:30 | 1    | 651  | 809  |
| 16:31-16:45 | 5    | 887  | 997  | 16:31-16:45 | 3     | 944  | 1137 | 16:31-16:45 | 1    | 954  | 1144 |
| 16:46-17:00 | 5    | 1201 | 1352 | 16:46-17:00 | 4     | 1259 | 1508 | 16:46-17:00 | 2    | 1272 | 1529 |
| 17:01-17:15 | 6    | 1512 | 1714 | 17:01-17:15 | 4     | 1571 | 1867 | 17:01-17:15 | 2    | 1603 | 1911 |
| 17:16-17:30 | 6    | 1814 | 2075 | 17:16-17:30 | 4     | 1877 | 2226 | 17:16-17:30 | 2    | 1923 | 2300 |
| 17:31-17:45 | 6    | 2121 | 2439 | 17:31-17:45 | 5     | 2183 | 2584 | 17:31-17:45 | 3    | 2254 | 2681 |
| 17:46-18:00 | 6    | 2428 | 2796 | 17:46-18:00 | 5     | 2495 | 2941 | 17:46-18:00 | 3    | 2556 | 2975 |

# 6. Data traffic counting hari biasa dan hari libur Widya Chandara (X6)

|             | SEN  | IN   |      |             | RAE  | BU   | •    | SABTU       |      |     |      |
|-------------|------|------|------|-------------|------|------|------|-------------|------|-----|------|
| WAKTU       | HV   | LV   | MC   | WAKTU       | HV   | LV   | MC   | WAKTU       | HV   | LV  | MC   |
|             | PAC  | 31   |      |             | PA   | Gl   |      |             |      |     |      |
| 07:00-07:15 | 0    | 230  | 226  | 07:00-07:15 | 0    | 219  | 241  |             |      |     |      |
| 07:16-07:30 | 0    | 442  | 432  | 07:16-07:30 | 0    | 417  | 466  |             |      |     |      |
| 07:31-07:45 | 0    | 674  | 653  | 07:31-07:45 | 1    | 638  | 703  |             |      |     |      |
| 07:46-08:00 | 0    | 904  | 888  | 07:46-08:00 | 1    | 859  | 945  |             |      |     |      |
| 08:01-08:15 | 0    | 1139 | 1114 | 08:00-08:15 | 1    | 1077 | 1189 |             |      |     |      |
| 08:16-08:30 | 0    | 1365 | 1335 | 08:16-08:30 | 1    | 1291 | 1422 |             |      |     |      |
| 08:31-08:45 | 1    | 1596 | 1562 | 08:31-08:45 | 1    | 1510 | 1666 |             |      |     |      |
| 08:46-09:00 | 1    | 1824 | 1789 | 08:46-09:00 | 1    | 1732 | 1901 |             |      |     |      |
|             | SIAN | IG . |      |             | SIAN | NG   |      |             | SIAN | 1G  |      |
| 12:00-12:15 | 0    | 194  | 163  | 12:00-12:15 | 1    | 121  | 174  | 12:00-12:15 | 0    | 119 | 145  |
| 12:16-12:30 | 0    | 352  | 331  | 12:16-12:30 | 1    | 283  | 356  | 12:16-12:30 | 0    | 221 | 294  |
| 12:31-12:45 | 0    | 512  | 501  | 12:31-12:45 | 1    | 442  | 529  | 12:31-12:45 | 0    | 249 | 433  |
| 12:46-13:00 | 0    | 667  | 672  | 12:46-13:00 | 1    | 563  | 664  | 12:46-13:00 | 0    | 468 | 584  |
| 13:01-13:15 | 0    | 836  | 848  | 13:01-13:15 | 1    | 755  | 856  | 13:01-13:15 | 0    | 586 | 729  |
| 13:16-13:30 | 0    | 992  | 1005 | 13:16-13:30 | 1    | 909  | 1017 | 13:16-13:30 | 0    | 703 | 875  |
| 13:31-13:45 | 1    | 1149 | 1176 | 13:31-13:45 | 1    | 1074 | 1190 | 13:31-13:45 | 0    | 814 | 1018 |
| 13:46-14:00 | 1    | 1302 | 1347 | 13:46-14:00 | 1    | 1233 | 1357 | 13:46-14:00 | 0    | 941 | 1173 |
|             | SOF  | RE   |      |             | SOF  | RE   |      |             | SOF  | RE  |      |
| 16:00-16:15 | 1    | 172  | 203  | 16:00-16:15 | 0    | 102  | 188  | 16:00-16:15 | 0    | 100 | 156  |
| 16:16-16:30 | 1    | 359  | 422  | 16:16-16:30 | 0    | 211  | 382  | 16:16-16:30 | 0    | 197 | 309  |
| 16:31-16:45 | 1    | 533  | 615  | 16:31-16:45 | 0    | 309  | 577  | 16:31-16:45 | 0    | 304 | 451  |
| 16:46-17:00 | 1    | 697  | 824  | 16:46-17:00 | 0    | 398  | 751  | 16:46-17:00 | 0    | 388 | 613  |
| 17:01-17:15 | 1    | 854  | 1012 | 17:01-17:15 | 1    | 510  | 963  | 17:01-17:15 | 0    | 479 | 777  |
| 17:16-17:30 | 1    | 1049 | 1234 | 17:16-17:30 | 1    | 621  | 1140 | 17:16-17:30 | 0    | 573 | 945  |
| 17:31-17:45 | 2    | 1231 | 1442 | 17:31-17:45 | 1    | 722  | 1328 | 17:31-17:45 | 0    | 669 | 1087 |
| 17:46-18:00 | 2    | 1404 | 1624 | 17:46-18:00 | 2    | 812  | 1504 | 17:46-18:00 | 0    | 783 | 1239 |

# 7. Data jumlah kendaraan di hari biasa (weekday)

|                   |    |      |          | JUMLAH    | JUMLAH   | KENDARAAN PER | SMP PER  | RATA2 SMP |
|-------------------|----|------|----------|-----------|----------|---------------|----------|-----------|
| WAKTU             | HV | LV   | MC       | KENDARAAN | SMP      | JAM           | JAM      | PER JAM   |
| Pacific Place (X1 | )  | 1    | <u> </u> |           |          |               |          |           |
| 07:00-07:15       | 2  | 358  | 355      | 714       | 447.925  |               |          |           |
| 07:16-07:30       | 3  | 726  | 856      | 1584      | 942.875  | 3352          | 1965     |           |
| 07:31-07:45       | 3  | 1091 | 1346     | 2440      | 1430.5   | 3332          | 1903     |           |
| 07:46-08:00       | 4  | 1499 | 1849     | 3352      | 1965.45  |               |          |           |
| 08:01-08:15       | 4  | 1857 | 2345     | 4205      | 2446.825 |               |          |           |
| 08:16-08:30       | 4  | 2211 | 2890     | 5104      | 2937.675 | 3660          | 2132     |           |
| 08:31-08:45       | 5  | 2664 | 3446     | 6115      | 3531.5   | 3000          | 2132     |           |
| 08:46-09:00       | 5  | 3119 | 3888     | 7012      | 4097     |               |          |           |
| 12:00-12:15       | 1  | 363  | 268      | 631       | 430.575  | 5             |          |           |
| 12:16-12:30       | 4  | 714  | 579      | 1297      | 863.05   | 2675          | 1771.775 |           |
| 12:31-12:45       | 4  | 1090 | 888      | 1982      | 1316.675 | 2073          |          | 2026.4125 |
| 12:46-13:00       | 5  | 1465 | 1206     | 2675      | 1771.775 |               |          |           |
| 13:01-13:15       | 6  | 1882 | 1512     | 3399      | 2266.1   |               |          |           |
| 13:16-13:30       | 6  | 2243 | 1829     | 4078      | 2706.85  | 2789          | 1866.625 |           |
| 13:31-13:45       | 7  | 2618 | 2133     | 4757      | 3158.925 | 2109          | 1000.023 |           |
| 13:46-14:00       | 7  | 3021 | 2436     | 5464      | 3638.4   |               |          |           |
| 16:00-16:15       | 3  | 293  | 331      | 627       | 378.85   |               |          |           |
| 16:16-16:30       | 4  | 649  | 952      | 1604      | 891.175  | 3733          | 2091.4   |           |
| 16:31-16:45       | 4  | 1101 | 1579     | 2684      | 1500.05  | 3133          | 2031.4   |           |
| 16:46-17:00       | 5  | 1539 | 2190     | 3733      | 2091.4   |               |          |           |
| 17:01-17:15       | 5  | 1988 | 2811     | 4804      | 2696.75  | 4179          | 2331.675 |           |
| 17:16-17:30       | 5  | 2469 | 3424     | 5898      | 3330.5   | 71/)          | 2331.073 |           |

|                 |    |      |      | JUMLAH    | JUMLAH   | KENDARAAN PER | SMP PER | RATA2 SMP |  |
|-----------------|----|------|------|-----------|----------|---------------|---------|-----------|--|
| WAKTU           | HV | LV   | MC   | KENDARAAN | SMP      | JAM           | JAM     | PER JAM   |  |
| 17:31-17:45     | 6  | 2852 | 4040 | 6897      | 3868.1   |               |         |           |  |
| 17:46-18:00     | 6  | 3253 | 4654 | 7912      | 4423.075 |               |         |           |  |
| Grand Lucky (X2 | 2) |      |      |           |          |               |         |           |  |
| 07:00-07:15     | 1  | 182  | 136  | 318       | 216.575  |               |         |           |  |
| 07:16-07:30     | 1  | 351  | 268  | 620       | 418.7    | 1251          | 846.4   |           |  |
| 07:31-07:45     | 2  | 530  | 407  | 938       | 633.425  | 25            |         |           |  |
| 07:46-08:00     | 2  | 709  | 540  | 1251      | 846.4    |               |         |           |  |
| 08:01-08:15     | 2  | 885  | 679  | 1566      | 1057.025 |               |         |           |  |
| 08:16-08:30     | 3  | 1069 | 808  | 1880      | 1274.1   | 1263          | 857.325 |           |  |
| 08:31-08:45     | 3  | 1250 | 947  | 2199      | 1489.725 | 1203          | 1203    |           |  |
| 08:46-09:00     | 3  | 1430 | 1081 | 2514      | 1703.725 |               |         |           |  |
| 12:00-12:15     | 3  | 131  | 93   | 226       | 156.75   |               |         |           |  |
| 12:16-12:30     | 3  | 248  | 184  | 434       | 296.975  | 837           | 564.6   | 564.6     |  |
| 12:31-12:45     | 3  | 362  | 272  | 637       | 433.6    | 6             | 304.0   |           |  |
| 12:46-13:00     | 3  | 470  | 364  | 837       | 564.6    |               |         | 735.4375  |  |
| 13:01-13:15     | 4  | 596  | 453  | 1053      | 713.55   |               |         |           |  |
| 13:16-13:30     | 4  | 704  | 543  | 1251      | 844.55   | 806           | 535.7   |           |  |
| 13:31-13:45     | 4  | 798  | 635  | 1437      | 961.55   | 000           | 333.7   |           |  |
| 13:46-14:00     | 4  | 915  | 724  | 1643      | 1100.3   |               |         |           |  |
| 16:00-16:15     | 0  | 132  | 125  | 257       | 163.25   |               |         |           |  |
| 16:16-16:30     | 0  | 294  | 321  | 615       | 373.75   | 1315          | 786.875 |           |  |
| 16:31-16:45     | 0  | 454  | 514  | 967       | 581.875  | 1313          | 700.073 |           |  |
| 16:46-17:00     | 0  | 611  | 704  | 1315      | 786.875  |               |         |           |  |
| 17:01-17:15     | 0  | 773  | 904  | 1677      | 999      |               |         |           |  |
| 17:16-17:30     | 1  | 933  | 1036 | 1969      | 1192.1   | 1363          | 821.725 |           |  |
| 17:31-17:45     | 1  | 1094 | 1234 | 2328      | 1402.975 |               |         |           |  |

| WEEKDAY           |     |      |      |           |          |               |          |             |
|-------------------|-----|------|------|-----------|----------|---------------|----------|-------------|
|                   |     |      |      | JUMLAH    | JUMLAH   | KENDARAAN PER | SMP PER  | RATA2 SMP   |
| WAKTU             | HV  | LV   | MC   | KENDARAAN | SMP      | JAM           | JAM      | PER JAM     |
| 17:46-18:00       | 1   | 1252 | 1426 | 2678      | 1608.6   |               |          |             |
| Jend. Sudirman (X | 3)  |      |      |           |          |               |          |             |
| 07:00-07:15       | 29  | 809  | 794  | 1632      | 1042.3   |               |          |             |
| 07:16-07:30       | 48  | 1532 | 1542 | 3122      | 1974.6   | 6390          | 4060.95  |             |
| 07:31-07:45       | 74  | 2331 | 2341 | 4745      | 3004.325 | 0370          | 4000.73  |             |
| 07:46-08:00       | 104 | 3154 | 3133 | 6390      | 4060.95  |               |          |             |
| 08:01-08:15       | 130 | 3940 | 3973 | 8042      | 5088.525 |               |          |             |
| 08:16-08:30       | 157 | 4814 | 4721 | 9691      | 6182.025 | 6504          | 4147.35  |             |
| 08:31-08:45       | 180 | 5615 | 5512 | 11307     | 7209     | 0304          | 4147.33  |             |
| 08:46-09:00       | 219 | 6369 | 6306 | 12894     | 8208.3   |               |          |             |
| 12:00-12:15       | 29  | 696  | 610  | 1335      | 883.175  |               |          |             |
| 12:16-12:30       | 49  | 1390 | 1226 | 2664      | 1754.675 | 5341          | 3526.4   |             |
| 12:31-12:45       | 82  | 2097 | 1828 | 4007      | 2651.9   | 3341          | 3320.4   |             |
| 12:46-13:00       | 107 | 2786 | 2448 | 5341      | 3526.4   |               |          | 3713.129167 |
| 13:01-13:15       | 130 | 3490 | 3050 | 6669      | 4407.775 |               |          | 3/13.12910/ |
| 13:16-13:30       | 156 | 4183 | 3653 | 7991      | 5282.825 | 5326          | 3516.225 |             |
| 13:31-13:45       | 185 | 4872 | 4267 | 9324      | 6160.15  | 3320          | 3310.223 |             |
| 13:46-14:00       | 218 | 5559 | 4891 | 10667     | 7042.625 |               |          |             |
| 16:00-16:15       | 28  | 662  | 743  | 1432      | 880.725  |               |          |             |
| 16:16-16:30       | 45  | 1325 | 1484 | 2854      | 1749.5   | 5643          | 3488.275 |             |
| 16:31-16:45       | 75  | 1981 | 2194 | 4249      | 2618.875 | 3043          | 3700.273 |             |
| 16:46-17:00       | 102 | 2641 | 2900 | 5643      | 3488.275 |               |          |             |
| 17:01-17:15       | 125 | 3300 | 3648 | 7072      | 4360.775 |               |          |             |
| 17:16-17:30       | 151 | 3967 | 4387 | 8505      | 5244.95  | 5747          | 3539.575 |             |
| 17:31-17:45       | 181 | 4632 | 5118 | 9930      | 6127.6   | 3/4/          | 3337.313 |             |
| 17:46-18:00       | 216 | 5301 | 5873 | 11390     | 7027.85  |               |          |             |

| WEEKDAY          | <u> </u> | <u> </u> | <u> </u> | JUMLAH                | JUMLAH  | KENDARAAN PER | SMP PER | RATA2 SMP   |
|------------------|----------|----------|----------|-----------------------|---------|---------------|---------|-------------|
| WAKTU            | HV       | LV       | MC       | JUMLAH<br>  KENDARAAN | SMP     | JAM           | JAM     | PER JAM     |
|                  |          | LV       | MC       | KENDARAAN             | SMP     | JAM           | JAW     | PER JAINI   |
| Polda Metro Jaya | `        | 146      | 100      | 1 225                 | 104.775 | T             | 1       | 1           |
| 07:00-07:15      | 2        | 146      | 188      | 335                   | 194.775 |               |         |             |
| 07:16-07:30      | 3        | 221      | 268      | 491                   | 290.5   | 838           | 493.8   |             |
| 07:31-07:45      | 3        | 305      | 366      | 674                   | 399.6   |               |         |             |
| 07:46-08:00      | 4        | 374      | 460      | 838                   | 493.8   |               |         |             |
| 08:01-08:15      | 4        | 439      | 548      | 991                   | 580.3   |               |         |             |
| 08:16-08:30      | 5        | 503      | 645      | 1152                  | 669.15  | 645           | 370.025 |             |
| 08:31-08:45      | 5        | 576      | 725      | 1306                  | 762.75  |               |         |             |
| 08:46-09:00      | 6        | 650      | 827      | 1483                  | 863.825 |               |         |             |
| 12:00-12:15      | 2        | 92       | 118      | 212                   | 123.4   |               |         |             |
| 12:16-12:30      | 4        | 155      | 229      | 387                   | 216.325 | 738           | 398.575 |             |
| 12:31-12:45      | 4        | 225      | 341      | 569                   | 314.325 | 730           | 398.373 |             |
| 12:46-13:00      | 4        | 281      | 454      | 738                   | 398.575 |               |         | 426.4791667 |
| 13:01-13:15      | 5        | 349      | 557      | 910                   | 493.025 |               |         | 420.4791007 |
| 13:16-13:30      | 5        | 414      | 670      | 1088                  | 586.275 | 696           | 367.15  |             |
| 13:31-13:45      | 6        | 476      | 784      | 1265                  | 677.975 | 090           | 307.13  |             |
| 13:46-14:00      | 6        | 536      | 893      | 1434                  | 765.725 |               |         |             |
| 16:00-16:15      | 2        | 90       | 140      | 232                   | 127.275 |               |         |             |
| 16:16-16:30      | 4        | 167      | 291      | 461                   | 243.925 | 016           | 460 775 |             |
| 16:31-16:45      | 4        | 245      | 445      | 693                   | 360.425 | 916           | 469.775 |             |
| 16:46-17:00      | 5        | 316      | 596      | 916                   | 469.775 |               |         |             |
| 17:01-17:15      | 5        | 398      | 747      | 1150                  | 590.75  |               |         |             |
| 17:16-17:30      | 5        | 472      | 897      | 1373                  | 701.625 | 010           | 450.55  |             |
| 17:31-17:45      | 6        | 548      | 1049     | 1602                  | 816.725 | 910           | 459.55  |             |
| 17:46-18:00      | 6        | 623      | 1197     | 1826                  | 929.325 |               |         |             |
| Senopati (X5)    | ı        | ı        | ı        | L                     | L       | L             |         | 1           |

| WEEKDAY          |     |      |      |           |          |               |          |             |
|------------------|-----|------|------|-----------|----------|---------------|----------|-------------|
|                  |     |      |      | JUMLAH    | JUMLAH   | KENDARAAN PER | SMP PER  | RATA2 SMP   |
| WAKTU            | HV  | LV   | MC   | KENDARAAN | SMP      | JAM           | JAM      | PER JAM     |
| 07:00-07:15      | 2   | 334  | 264  | 600       | 402.275  |               |          |             |
| 07:16-07:30      | 2   | 680  | 534  | 1215      | 815.275  | 2413          | 1618.025 |             |
| 07:31-07:45      | 2   | 1010 | 800  | 1811      | 1211.775 | 2413          | 1018.023 |             |
| 07:46-08:00      | 2   | 1351 | 1061 | 2413      | 1618.025 |               |          |             |
| 08:01-08:15      | 4   | 1682 | 1325 | 3010      | 2016.95  |               |          |             |
| 08:16-08:30      | 4   | 2006 | 1591 | 3600      | 2407.825 | 2383          | 1591.4   |             |
| 08:31-08:45      | 4   | 2347 | 1852 | 4203      | 2814.8   | 2363          | 1391.4   |             |
| 08:46-09:00      | 4   | 2676 | 2117 | 4796      | 3209.425 |               |          |             |
| 12:00-12:15      | 2   | 336  | 346  | 684       | 424.775  |               |          |             |
| 12:16-12:30      | 3   | 685  | 750  | 1437      | 875.375  | 2929          | 1766.625 |             |
| 12:31-12:45      | 3   | 1035 | 1150 | 2187      | 1325     | 2929          | 1700.023 |             |
| 12:46-13:00      | 3   | 1376 | 1551 | 2929      | 1766.625 |               |          | 1660.195833 |
| 13:01-13:15      | 4   | 1731 | 1953 | 3687      | 2223.325 |               |          | 1000.193833 |
| 13:16-13:30      | 4   | 2076 | 2352 | 4432      | 2668.2   | 2997          | 1799.9   |             |
| 13:31-13:45      | 4   | 2422 | 2750 | 5175      | 3113.575 | 2991          | 1799.9   |             |
| 13:46-14:00      | 5   | 2775 | 3147 | 5926      | 3566.525 |               |          |             |
| 16:00-16:15      | 3   | 293  | 350  | 645       | 383.475  |               |          |             |
| 16:16-16:30      | 4   | 604  | 710  | 1318      | 785.8    | 2665          | 1592.9   |             |
| 16:31-16:45      | 4   | 916  | 1067 | 1987      | 1187.05  | 2003          | 1392.9   |             |
| 16:46-17:00      | 5   | 1230 | 1430 | 2665      | 1592.9   |               |          |             |
| 17:01-17:15      | 5   | 1542 | 1791 | 3337      | 1995.125 |               |          |             |
| 17:16-17:30      | 5   | 1846 | 2151 | 4001      | 2389.125 | 2671          | 1592.325 |             |
| 17:31-17:45      | 6   | 2152 | 2512 | 4669      | 2786.475 | 2071          | 1392.323 |             |
| 17:46-18:00      | 6   | 2462 | 2869 | 5336      | 3185.225 |               |          |             |
| Widya Chandra (X | (6) |      |      |           |          |               |          |             |
| 07:00-07:15      | 0   | 225  | 234  | 458       | 282.875  | 1799          | 1111.225 | 891.425     |

| WEEKDAY     |      |        |        |           |          |               |          |           |
|-------------|------|--------|--------|-----------|----------|---------------|----------|-----------|
|             |      |        |        | JUMLAH    | JUMLAH   | KENDARAAN PER | SMP PER  | RATA2 SMP |
| WAKTU       | HV   | LV     | MC     | KENDARAAN | SMP      | JAM           | JAM      | PER JAM   |
| 07:16-07:30 | 0    | 430    | 449    | 879       | 541.75   |               |          |           |
| 07:31-07:45 | 1    | 656    | 678    | 1335      | 826.1    |               |          |           |
| 07:46-08:00 | 1    | 882    | 917    | 1799      | 1111.225 |               |          |           |
| 08:01-08:15 | 1    | 1108   | 1152   | 2260      | 1396.475 |               |          |           |
| 08:16-08:30 | 1    | 1328   | 1379   | 2707      | 1673.225 | 1825          | 1129.225 |           |
| 08:31-08:45 | 1    | 1553   | 1614   | 3168      | 1957.7   | 1023          | 1129.223 |           |
| 08:46-09:00 | 1    | 1778   | 1845   | 3624      | 2240.45  |               |          |           |
| 12:00-12:15 | 1    | 158    | 169    | 327       | 200.225  |               |          |           |
| 12:16-12:30 | 1    | 318    | 344    | 662       | 403.975  | 1284          | 782.6    |           |
| 12:31-12:45 | 1    | 477    | 515    | 993       | 606.35   | 1204          | 782.0    |           |
| 12:46-13:00 | 1    | 615    | 668    | 1284      | 782.6    |               |          |           |
| 13:01-13:15 | 1    | 796    | 852    | 1648      | 1009.1   |               |          |           |
| 13:16-13:30 | 1    | 951    | 1011   | 1962      | 1203.85  | 1337          | 824.1    |           |
| 13:31-13:45 | 1    | 1112   | 1183   | 2296      | 1408.45  | 1337          | 024.1    |           |
| 13:46-14:00 | 1    | 1268   | 1352   | 2621      | 1606.7   |               |          |           |
| 16:00-16:15 | 1    | 137    | 196    | 333       | 186.475  |               |          |           |
| 16:16-16:30 | 1    | 285    | 402    | 688       | 386.1    | 1336          | 744.975  |           |
| 16:31-16:45 | 1    | 421    | 596    | 1018      | 570.6    | 1330          | 744.973  |           |
| 16:46-17:00 | 1    | 548    | 788    | 1336      | 744.975  |               |          |           |
| 17:01-17:15 | 1    | 682    | 988    | 1671      | 930.075  |               |          |           |
| 17:16-17:30 | 1    | 835    | 1187   | 2023      | 1132.95  | 1338          | 756.425  |           |
| 17:31-17:45 | 2    | 977    | 1385   | 2363      | 1324.55  | 1330          | 130.423  |           |
| 17:46-18:00 | 2    | 1108   | 1564   | 2674      | 1501.4   |               |          |           |
| TOTAL       |      |        |        |           |          |               |          |           |
| WEEKDAY     | 3164 | 197463 | 210137 |           |          | 91890         | 56718    | 157       |

# 8. Data jumlah kendaraan di hari libur (weekend)

|                    |    |      |      | JUMLAH    | JUMLAH  | KENDARAAN PER | SMP PER | RATA2 SMP |
|--------------------|----|------|------|-----------|---------|---------------|---------|-----------|
| WAKTU              | HV | LV   | MC   | KENDARAAN | SMP     | JAM           | JAM     | PER JAM   |
| Pacific Place (X1) | )  |      |      |           |         |               |         | •         |
| 12:00-12:15        | 0  | 329  | 230  | 559       | 386.5   |               |         |           |
| 12:16-12:30        | 0  | 677  | 457  | 1134      | 791.25  | 2255          | 1555.45 |           |
| 12:31-12:45        | 0  | 984  | 696  | 1680      | 1158    | 2233          | 1333.43 |           |
| 12:46-13:00        | 1  | 1321 | 933  | 2255      | 1555.45 |               |         |           |
| 13:01-13:15        | 1  | 1655 | 1163 | 2819      | 1946.95 |               |         |           |
| 13:16-13:30        | 1  | 1979 | 1376 | 3356      | 2324.2  | 2241          | 1549.9  |           |
| 13:31-13:45        | 1  | 2314 | 1624 | 3939      | 2721.2  | 2241          | 1349.9  |           |
| 13:46-14:00        | 3  | 2638 | 1855 | 4496      | 3105.35 |               |         | 1302.7375 |
| 16:00-16:15        | 1  | 223  | 156  | 380       | 263.2   |               |         | 1302.7373 |
| 16:16-16:30        | 1  | 452  | 325  | 778       | 534.45  | 1523          | 1047.7  |           |
| 16:31-16:45        | 1  | 677  | 472  | 1150      | 796.2   | 1323          | 1047.7  |           |
| 16:46-17:00        | 1  | 888  | 634  | 1523      | 1047.7  |               |         |           |
| 17:01-17:15        | 2  | 1116 | 791  | 1909      | 1316.15 |               |         |           |
| 17:16-17:30        | 2  | 1338 | 945  | 2285      | 1576.65 | 1521          | 1057.9  |           |
| 17:31-17:45        | 3  | 1572 | 1098 | 2673      | 1850.1  | 1321          | 1037.9  |           |
| 17:46-18:00        | 3  | 1789 | 1252 | 3044      | 2105.6  |               |         |           |
| Grand Lucky (X2)   | )  | •    | •    | •         |         |               | •       | •         |
| 12:00-12:15        | 0  | 152  | 61   | 213       | 167.25  |               |         |           |
| 12:16-12:30        | 0  | 287  | 125  | 412       | 318.25  | 768           | 581.45  |           |
| 12:31-12:45        | 0  | 385  | 186  | 571       | 431.5   | 700           | 301.43  | 530.65    |
| 12:46-13:00        | 1  | 518  | 249  | 768       | 581.45  |               |         |           |
| 13:01-13:15        | 1  | 657  | 307  | 965       | 734.95  | 730           | 547.75  |           |

|                  |      |      |      | JUMLAH    | JUMLAH  | KENDARAAN PER | SMP PER | RATA2 SMP |
|------------------|------|------|------|-----------|---------|---------------|---------|-----------|
| WAKTU            | HV   | LV   | MC   | KENDARAAN | SMP     | JAM           | JAM     | PER JAM   |
| 13:16-13:30      | 1    | 766  | 376  | 1143      | 861.2   |               |         |           |
| 13:31-13:45      | 1    | 888  | 427  | 1316      | 995.95  |               |         |           |
| 13:46-14:00      | 1    | 1005 | 492  | 1498      | 1129.2  |               |         |           |
| 16:00-16:15      | 1    | 104  | 81   | 186       | 125.45  |               |         |           |
| 16:16-16:30      | 1    | 210  | 166  | 377       | 252.7   | 762           | 507.2   |           |
| 16:31-16:45      | 1    | 316  | 253  | 570       | 380.45  | 702           | 307.2   |           |
| 16:46-17:00      | 1    | 421  | 340  | 762       | 507.2   |               |         |           |
| 17:01-17:15      | 2    | 522  | 408  | 932       | 626.4   |               |         |           |
| 17:16-17:30      | 2    | 634  | 492  | 1128      | 759.4   | 717           | 486.2   |           |
| 17:31-17:45      | 2    | 733  | 556  | 1291      | 874.4   | /1/           | 460.2   |           |
| 17:46-18:00      | 2    | 829  | 648  | 1479      | 993.4   |               |         |           |
| Jend. Sudirman ( | (X3) |      |      |           |         |               |         | •         |
| 12:00-12:15      | 18   | 675  | 600  | 1293      | 846.6   |               |         |           |
| 12:16-12:30      | 32   | 1277 | 1189 | 2498      | 1612.65 | 5089          | 3348.05 |           |
| 12:31-12:45      | 66   | 2032 | 1767 | 3865      | 2552.95 | 3009          | 3346.03 |           |
| 12:46-13:00      | 89   | 2655 | 2345 | 5089      | 3348.05 |               |         |           |
| 13:01-13:15      | 105  | 3283 | 2997 | 6385      | 4158.25 |               |         |           |
| 13:16-13:30      | 131  | 4025 | 3544 | 7700      | 5068.2  | 5222          | 3412.65 |           |
| 13:31-13:45      | 154  | 4609 | 4169 | 8932      | 5836.05 | 3222          | 3412.03 | 3448.25   |
| 13:46-14:00      | 196  | 5329 | 4786 | 10311     | 6760.7  |               |         | 3446.23   |
| 16:00-16:15      | 25   | 680  | 747  | 1452      | 896.75  |               |         |           |
| 16:16-16:30      | 42   | 1277 | 1398 | 2717      | 1676.9  | 5620          | 3484.5  |           |
| 16:31-16:45      | 73   | 1939 | 2138 | 4150      | 2561.1  | 3020          | 3404.3  |           |
| 16:46-17:00      | 100  | 2646 | 2874 | 5620      | 3484.5  |               |         |           |
| 17:01-17:15      | 119  | 3325 | 3626 | 7070      | 4374.3  | 5752          | 3547.8  |           |
| 17:16-17:30      | 144  | 3976 | 4375 | 8495      | 5242.55 | 3132          | 3347.8  |           |

| WEEKEND          |      |      |      |           |         |               |         |           |
|------------------|------|------|------|-----------|---------|---------------|---------|-----------|
|                  |      |      |      | JUMLAH    | JUMLAH  | KENDARAAN PER | SMP PER | RATA2 SMP |
| WAKTU            | HV   | LV   | MC   | KENDARAAN | SMP     | JAM           | JAM     | PER JAM   |
| 17:31-17:45      | 163  | 4652 | 5136 | 9951      | 6131.6  |               |         |           |
| 17:46-18:00      | 209  | 5321 | 5842 | 11372     | 7032.3  |               |         |           |
| Polda Metro Jaya | (X4) |      |      |           |         |               | ·       | •         |
| 12:00-12:15      | 1    | 81   | 57   | 139       | 96.45   |               |         |           |
| 12:16-12:30      | 1    | 157  | 120  | 278       | 188.2   | 566           | 390.9   |           |
| 12:31-12:45      | 2    | 239  | 178  | 419       | 285.9   | 300           | 390.9   |           |
| 12:46-13:00      | 2    | 330  | 234  | 566       | 390.9   |               |         |           |
| 13:01-13:15      | 2    | 401  | 295  | 698       | 477.15  |               |         |           |
| 13:16-13:30      | 2    | 488  | 339  | 829       | 575.15  | 543           | 376.5   |           |
| 13:31-13:45      | 2    | 552  | 404  | 958       | 655.4   | 343           | 370.3   |           |
| 13:46-14:00      | 2    | 651  | 456  | 1109      | 767.4   |               |         | 411.5875  |
| 16:00-16:15      | 1    | 97   | 65   | 163       | 114.45  |               |         | 411.3873  |
| 16:16-16:30      | 1    | 188  | 126  | 315       | 220.7   | 630           | 441.2   |           |
| 16:31-16:45      | 1    | 279  | 178  | 458       | 324.7   | 030           | 771.2   |           |
| 16:46-17:00      | 1    | 377  | 252  | 630       | 441.2   |               |         |           |
| 17:01-17:15      | 1    | 468  | 325  | 794       | 550.45  |               |         |           |
| 17:16-17:30      | 1    | 552  | 388  | 941       | 650.2   | 677           | 437.75  |           |
| 17:31-17:45      | 1    | 622  | 457  | 1080      | 737.45  | 077           | 437.73  |           |
| 17:46-18:00      | 1    | 735  | 571  | 1307      | 878.95  |               |         |           |
| Senopati (X5)    |      |      |      |           |         |               |         |           |
| 12:00-12:15      | 0    | 313  | 303  | 616       | 388.75  |               |         |           |
| 12:16-12:30      | 0    | 625  | 611  | 1236      | 777.75  | 2464          | 1547.7  |           |
| 12:31-12:45      | 1    | 944  | 904  | 1849      | 1171.2  | Z404          | 1347.7  | 1604.0625 |
| 12:46-13:00      | 1    | 1241 | 1222 | 2464      | 1547.7  |               |         | 1004.0023 |
| 13:01-13:15      | 1    | 1555 | 1535 | 3091      | 1939.95 | 2471          | 1565.2  |           |
| 13:16-13:30      | 1    | 1863 | 1818 | 3682      | 2318.7  | ∠+/1          | 1303.2  |           |

| WEEKEND         |     |      |      |           |         |               |         |           |
|-----------------|-----|------|------|-----------|---------|---------------|---------|-----------|
|                 |     |      |      | JUMLAH    | JUMLAH  | KENDARAAN PER | SMP PER | RATA2 SMP |
| WAKTU           | HV  | LV   | MC   | KENDARAAN | SMP     | JAM           | JAM     | PER JAM   |
| 13:31-13:45     | 2   | 2191 | 2149 | 4342      | 2730.65 |               |         |           |
| 13:46-14:00     | 2   | 2503 | 2430 | 4935      | 3112.9  |               |         |           |
| 16:00-16:15     | 1   | 322  | 473  | 796       | 441.45  |               |         |           |
| 16:16-16:30     | 1   | 651  | 809  | 1461      | 854.45  | 2803          | 1656.65 |           |
| 16:31-16:45     | 1   | 954  | 1144 | 2099      | 1241.2  | 2003          | 1030.03 |           |
| 16:46-17:00     | 2   | 1272 | 1529 | 2803      | 1656.65 |               |         |           |
| 17:01-17:15     | 2   | 1603 | 1911 | 3516      | 2083.15 |               |         |           |
| 17:16-17:30     | 2   | 1923 | 2300 | 4225      | 2500.4  | 2731          | 1646.7  |           |
| 17:31-17:45     | 3   | 2254 | 2681 | 4938      | 2927.85 | 2/31          | 1040.7  |           |
| 17:46-18:00     | 3   | 2556 | 2975 | 5534      | 3303.35 |               |         |           |
| Widya Chandra ( | X6) |      |      |           |         |               |         |           |
| 12:00-12:15     | 0   | 119  | 145  | 264       | 155.25  |               |         |           |
| 12:16-12:30     | 0   | 221  | 294  | 515       | 294.5   | 1052          | 614     |           |
| 12:31-12:45     | 0   | 249  | 433  | 682       | 357.25  | 1052          | 014     |           |
| 12:46-13:00     | 0   | 468  | 584  | 1052      | 614     |               |         |           |
| 13:01-13:15     | 0   | 586  | 729  | 1315      | 768.25  |               |         |           |
| 13:16-13:30     | 0   | 703  | 875  | 1578      | 921.75  | 1062          | 620.25  |           |
| 13:31-13:45     | 0   | 814  | 1018 | 1832      | 1068.5  | 1002          | 020.23  |           |
| 13:46-14:00     | 0   | 941  | 1173 | 2114      | 1234.25 |               |         | 581.75    |
| 16:00-16:15     | 0   | 100  | 156  | 256       | 139     |               |         |           |
| 16:16-16:30     | 0   | 197  | 309  | 506       | 274.25  | 1001          | 541.25  |           |
| 16:31-16:45     | 0   | 304  | 451  | 755       | 416.75  | 1001          | 341.23  |           |
| 16:46-17:00     | 0   | 388  | 613  | 1001      | 541.25  |               |         |           |
| 17:01-17:15     | 0   | 479  | 777  | 1256      | 673.25  |               |         |           |
| 17:16-17:30     | 0   | 573  | 945  | 1518      | 809.25  | 1021          | 551.5   |           |
| 17:31-17:45     | 0   | 669  | 1087 | 1756      | 940.75  |               |         |           |

| WEEKEND     | WEEKEND |        |        |           |         |               |          |             |  |  |  |
|-------------|---------|--------|--------|-----------|---------|---------------|----------|-------------|--|--|--|
|             |         |        |        | JUMLAH    | JUMLAH  | KENDARAAN PER | SMP PER  | RATA2 SMP   |  |  |  |
| WAKTU       | HV      | LV     | MC     | KENDARAAN | SMP     | JAM           | JAM      | PER JAM     |  |  |  |
| 17:46-18:00 | 0       | 783    | 1239   | 2022      | 1092.75 |               |          |             |  |  |  |
| TOTAL       |         |        |        |           |         |               |          |             |  |  |  |
| WEEKEND     | 1749    | 112661 | 106774 |           |         | 49221         | 31516.15 | 1313.172917 |  |  |  |

# 9. Jumlah emisi berdasarkan volume kendaraan di peak hour

| Jumlah emisi (gram/ja | nm)         |             |             |             |                          |
|-----------------------|-------------|-------------|-------------|-------------|--------------------------|
| Pacific Place (X1)    |             |             |             |             |                          |
| Hari Biasa/Hari Libur | HV          | LV          | MC          | TOTAL       | RATA-RATA                |
| Hari Biasa (weekday)  | 297.5164023 | 178430.8041 | 14465.03277 | 193193.3532 | 336388.7549              |
| Hari Libur (weekend)  | 198.3442682 | 137518.7235 | 5478.333904 | 143195.4017 | 330366.7349              |
| Grand Lucky (X2)      |             |             |             |             |                          |
| Hari Biasa (weekday)  | 234.1608593 | 88611.2633  | 3746.771447 | 92592.1956  | 158214.8972              |
| Hari Libur (weekend)  | 234.1608593 | 63662.46101 | 1726.079723 | 65622.70159 | 130214.0972              |
| Jend. Sudirman (X3)   |             |             |             |             |                          |
| Hari Biasa (weekday)  | 89568.541   | 1308560.641 | 72843.49725 | 1470972.679 | 2712409.113              |
| Hari Libur (weekend)  | 84527.88718 | 1088771.295 | 68137.25176 | 1241436.434 | 2/12409.113              |
| Polda Metro Jaya (X4) | )           |             |             |             |                          |
| Hari Biasa (weekday)  | 797.1735316 | 39120.44998 | 2713.925435 | 42631.54895 | 83751.85187              |
| Hari Libur (weekend)  | 199.2933829 | 39434.25038 | 1486.759152 | 41120.30292 | 03/31.0310/              |
| Senopati (X5)         |             |             |             |             |                          |
| Hari Biasa (weekday)  | 437.9428482 | 160727.1611 | 10345.88223 | 171510.9861 | 328049.2287              |
| Hari Libur (weekend)  | 437.9428482 | 146188.7371 | 9911.56261  | 156538.2426 | 320049.2201              |
| Widya Chandra (X6)    |             |             |             |             |                          |
| Hari Biasa (weekday)  | 159.3360596 | 149861.9704 | 8759.376161 | 158780.6826 | 243449.6515              |
| Hari Libur (weekend)  | 0           | 79112.40178 | 5556.567107 | 84668.96888 | 2 <del>+344</del> 7.0313 |

## 10. Data Analisis Regresi Linier Berganda

| Titik | Kapasitas Jalan<br>(smp/jam) | Jarak<br>Tempuh | Waktu Tempuh<br>(jam) | Luas RTH<br>(Ha) | Jarak<br>Persimpangan | Umur<br>Kendaraan | Perawatan<br>Kendaraan | Jumlah<br>Emisi |
|-------|------------------------------|-----------------|-----------------------|------------------|-----------------------|-------------------|------------------------|-----------------|
|       |                              | (km)            | • /                   | ` ,              | (km)                  | (km)              | ("1" atau "0")         | (gr/jam)        |
| X1,1  | 1.405,06                     | 20              | 0,83                  | 1,46             | 0,48                  | 0                 | 0                      | 336.388,75      |
| X1,2  | 1.405,06                     | 30              | 1                     | 1,46             | 0,48                  | 0                 | 1                      | 336.388,75      |
| X1,3  | 1.405,06                     | 10              | 1                     | 1,46             | 0,48                  | 10000             | 1                      | 336.388,75      |
| X1,4  | 1.405,06                     | 11              | 1                     | 1,46             | 0,48                  | 60000             | 1                      | 336.388,75      |
| X1,5  | 1.405,06                     | 9.5             | 0,33                  | 1,46             | 0,48                  | 6000              | 1                      | 336.388,75      |
| X2,1  | 1.235,05                     | 8               | 0,75                  | 0,24             | 0,55                  | 180000            | 0                      | 158.214,90      |
| X2,2  | 1.235,05                     | 23              | 1,50                  | 0,24             | 0,55                  | 0                 | 0                      | 158.214,90      |
| X2,3  | 1.235,05                     | 10              | 2                     | 0,24             | 0,55                  | 0                 | 1                      | 158.214,90      |
| X2,4  | 1.235,05                     | 30              | 0,67                  | 0,24             | 0,55                  | 0                 | 1                      | 158.214,90      |
| X2,5  | 1.235,05                     | 49              | 1                     | 0,24             | 0,55                  | 28000             | 1                      | 158.214,90      |
| X3,1  | 1.466,15                     | 5               | 0,25                  | 1,78             | 0,75                  | 20000             | 1                      | 2.712.409,11    |
| X3,2  | 1.466,15                     | 20              | 1                     | 1,78             | 0,75                  | 70000             | 1                      | 2.712.409,11    |
| X3,3  | 1.466,15                     | 20              | 0,75                  | 1,78             | 0,75                  | 0                 | 0                      | 2.712.409,11    |
| X3,4  | 1.466,15                     | 13              | 0,92                  | 1,78             | 0,75                  | 0                 | 0                      | 2.712.409,11    |
| X3,5  | 1.466,15                     | 20              | 1,25                  | 1,78             | 0,75                  | 0                 | 0                      | 2.712.409,11    |
| X4,1  | 1.405,06                     | 11              | 0,62                  | 0,57             | 0,31                  | 20756             | 1                      | 83.751,85       |
| X4,2  | 1.405,06                     | 10              | 0,17                  | 0,57             | 0,31                  | 32000             | 1                      | 83.751,85       |
| X4,3  | 1.405,06                     | 10              | 0,50                  | 0,57             | 0,31                  | 0                 | 1                      | 83.751,85       |
| X4,4  | 1.405,06                     | 21              | 0,83                  | 0,57             | 0,31                  | 133576            | 1                      | 83.751,85       |
| X4,5  | 1.405,06                     | 20              | 1                     | 0,57             | 0,31                  | 8500              | 1                      | 83.751,85       |
| X5,1  | 1.405,06                     | 10              | 0,50                  | 0,23             | 1,13                  | 0                 | 0                      | 328.049,23      |
| X5,2  | 1.405,06                     | 5               | 0,50                  | 0,23             | 1,13                  | 27000             | 0                      | 328.049,23      |
| X5,3  | 1.405,06                     | 30              | 2                     | 0,23             | 1,13                  | 16000             | 1                      | 328.049,23      |
| X5,4  | 1.405,06                     | 20              | 0,25                  | 0,23             | 1,13                  | 0                 | 0                      | 328.049,23      |
| X5,5  | 1.405,06                     | 30              | 1                     | 0,23             | 1,13                  | 0                 | 1                      | 328.049,23      |
| X6,1  | 1.348,62                     | 12              | 1,5                   | 1,11             | 0,41                  | 90000             | 0                      | 243.449,65      |

|       | Kapasitas Jalan | Jarak  | Waktu Tempuh | Luas RTH | Jarak        | Umur      | Perawatan      | Jumlah     |
|-------|-----------------|--------|--------------|----------|--------------|-----------|----------------|------------|
| Titik | _               | Tempuh | •            | (Ha)     | Persimpangan | Kendaraan | Kendaraan      | Emisi      |
|       | (smp/jam)       | (km)   | (jam)        | (па)     | (km)         | (km)      | ("1" atau "0") | (gr/jam)   |
| X6,2  | 1.348,62        | 20     | 1,5          | 1,11     | 0,41         | 0         | 1              | 243.449,65 |
| X6,3  | 1.348,62        | 12     | 1,5          | 1,11     | 0,41         | 90000     | 0              | 243.449,65 |
| X6,4  | 1.348,62        | 25     | 1            | 1,11     | 0,41         | 99000     | 1              | 243.449,65 |
| X6,5  | 1.348,62        | 32     | 0,67         | 1,11     | 0,41         | 45422     | 1              | 243.449,65 |

## Lampiran 5. Hasil Analisis

1. Data Analisis Regresi Linier Berganda 1

| TITIK | KAPASITAS JALAN | JARAK TEMPUH | WAKTU DALAM JAM | LUAS RTH | JARAK PERSIMPANGAN | UMUR KENDARAAN | PERAWATAN KENDARAAN | JUMLAH EMISI          |
|-------|-----------------|--------------|-----------------|----------|--------------------|----------------|---------------------|-----------------------|
| X1,1  | 1405.06         | 20.          | 0.833333        | 1.45887  | 0.484553           | 0.             | 0.                  | 336389.               |
| X1,2  | 1405.06         | 30.          | 1.              | 1.45887  | 0.484553           | 0.             | 1.                  | 336389.               |
| X1,3  | 1405.06         | 10.          | 1.              | 1.45887  | 0.484553           | 10000.         | 1.                  | 336389.               |
| X1,4  | 1405.06         | 11.          | 1.              | 1.45887  | 0.484553           | 60000.         | 1.                  | 336389.               |
| X1,5  | 1405.06         | 9.5          | 0.333333        | 1.45887  | 0.484553           | 6000.          | 1.                  | 336389.               |
| X2,1  | 1235.05         | 8.           | 0.75            | 0.236767 | 0.551311           | 180000.        | 0.                  | 158215.               |
| X2,2  | 1235.05         | 23.          | 1.5             | 0.236767 | 0.551311           | 0.             | 0.                  | 158215.               |
| X2,3  | 1235.05         | 10.          | 2.              | 0.236767 | 0.551311           | 0.             | 1.                  | 158215.               |
| X2,4  | 1235.05         | 30.          | 0.666667        | 0.236767 | 0.551311           | 0.             | 1.                  | 158215.               |
| X2,5  | 1235.05         | 49.          | 1.              | 0.236767 | 0.551311           | 28000.         | 1.                  | 158215.               |
| X3,1  | 1466.15         | 5.           | 0.25            | 1.78107  | 0.745067           | 20000.         | 1.                  | $2.71241 \times 10^6$ |
| X3,2  | 1466.15         | 20.          | 1.              | 1.78107  | 0.745067           | 70000.         | 1.                  | $2.71241 \times 10^6$ |
| X3,3  | 1466.15         | 20.          | 0.75            | 1.78107  | 0.745067           | 0.             | 0.                  | $2.71241 \times 10^6$ |
| X3,4  | 1466.15         | 13.          | 0.916667        | 1.78107  | 0.745067           | 0.             | 0.                  | $2.71241 \times 10^6$ |
| X3,5  | 1466.15         | 20.          | 1.25            | 1.78107  | 0.745067           | 0.             | 0.                  | $2.71241 \times 10^6$ |
| X4,1  | 1405.06         | 11.          | 0.616667        | 0.569211 | 0.31328            | 20756.         | 1.                  | 83751.9               |
| X4,2  | 1405.06         | 10.          | 0.166667        | 0.569211 | 0.31328            | 32000.         | 1.                  | 83751.9               |
| X4,3  | 1405.06         | 10.          | 0.5             | 0.569211 | 0.31328            | 0.             | 1.                  | 83751.9               |
| X4,4  | 1405.06         | 21.          | 0.833333        | 0.569211 | 0.31328            | 133576.        | 1.                  | 83751.9               |
| X4,5  | 1405.06         | 20.          | 1.              | 0.569211 | 0.31328            | 8500.          | 1.                  | 83751.9               |
| X5,1  | 1405.06         | 10.          | 0.5             | 0.225001 | 1.13193            | 0.             | 0.                  | 328049.               |
| X5,2  | 1405.06         | 5.           | 0.5             | 0.225001 | 1.13193            | 27000.         | 0.                  | 328049.               |
| X5,3  | 1405.06         | 30.          | 2.              | 0.225001 | 1.13193            | 16000.         | 1.                  | 328049.               |
| X5,4  | 1405.06         | 20.          | 0.25            | 0.225001 | 1.13193            | 0.             | 0.                  | 328049.               |
| X5,5  | 1405.06         | 30.          | 1.              | 0.225001 | 1.13193            | 0.             | 1.                  | 328049.               |
| X6,1  | 1348.62         | 12.          | 1.5             | 1.10771  | 0.413378           | 90000.         | 0.                  | 243450.               |
| X6,2  | 1348.62         | 20.          | 1.5             | 1.10771  | 0.413378           | 0.             | 1.                  | 243450.               |
| X6,3  | 1348.62         | 12.          | 1.5             | 1.10771  | 0.413378           | 90000.         | 0.                  | 243450.               |
| X6,4  | 1348.62         | 25.          | 1.              | 1.10771  | 0.413378           | 99000.         | 1.                  | 243450.               |
| X6,5  | 1348.62         | 32.          | 0.666667        | 1.10771  | 0.413378           | 45 422.        | 1.                  | 243450.               |

### 2. Hasil analisis 1

#### Normal[FungsiEMISILinear]

 $-1.25697 \times 10^6 + 2507.77$  jarak + 4.03838 kapasitas - 124810. perawatan +  $1.21553 \times 10^6$  rth +  $1.47783 \times 10^6$  simpang + 0.216561 umur - 69486.9 waktu

### FungsiEMISILinear["RSquared"]

0.671909

#### FungsiEMISILinear["ANOVATable"]

|           | DF | SS                       | MS                       | F-Statistic | P-Value     |
|-----------|----|--------------------------|--------------------------|-------------|-------------|
| kapasitas | 1  | $8.57156 \times 10^{12}$ | $8.57156 \times 10^{12}$ | 22.1784     | 0.000106726 |
| jarak     | 1  | $7.59506 \times 10^{10}$ | $7.59506 \times 10^{10}$ | 0.196518    | 0.661875    |
| waktu     | 1  | $2.90343 \times 10^{11}$ | $2.90343 \times 10^{11}$ | 0.751245    | 0.395437    |
| rth       | 1  | $4.49501 \times 10^{12}$ | $4.49501 \times 10^{12}$ | 11.6306     | 0.00250848  |
| simpang   | 1  | $3.89568 \times 10^{12}$ | $3.89568 \times 10^{12}$ | 10.0798     | 0.0043838   |
| umur      | 1  | $7.35831 \times 10^9$    | $7.35831 \times 10^{9}$  | 0.0190392   | 0.891509    |
| perawatan | 1  | $7.68514 \times 10^{10}$ | $7.68514 \times 10^{10}$ | 0.198848    | 0.66001     |
| Error     | 22 | $8.50261 \times 10^{12}$ | $3.86482 \times 10^{11}$ |             |             |
| Total     | 29 | $2.59154 \times 10^{13}$ |                          |             |             |

### 3. Data Analisis Regresi Linier Berganda 2

| TITIK | KAPASITAS JALAN | LUAS RTH | JARAK PERSIMPANGAN | JUMLAH EMISI          |
|-------|-----------------|----------|--------------------|-----------------------|
| X1,1  | 1405.06         | 1.45887  | 0.484553           | 336389.               |
| X1,2  | 1405.06         | 1.45887  | 0.484553           | 336389.               |
| X1,3  | 1405.06         | 1.45887  | 0.484553           | 336389.               |
| X1,4  | 1405.06         | 1.45887  | 0.484553           | 336389.               |
| X1,5  | 1405.06         | 1.45887  | 0.484553           | 336389.               |
| X2,1  | 1235.05         | 0.236767 | 0.551311           | 158215.               |
| X2,2  | 1235.05         | 0.236767 | 0.551311           | 158215.               |
| X2,3  | 1235.05         | 0.236767 | 0.551311           | 158215.               |
|       |                 | 0.236767 | 0.551311           | 158215.               |
| X2,5  | 1235.05         | 0.236767 | 0.551311           | 158215.               |
| X3,1  | 1466.15         | 1.78107  | 0.745067           | $2.71241 \times 10^6$ |
| X3,2  | 1466.15         | 1.78107  | 0.745067           | $2.71241 \times 10^6$ |
| X3,3  | 1466.15         | 1.78107  | 0.745067           | $2.71241 \times 10^6$ |
| X3,4  | 1466.15         | 1.78107  | 0.745067           | $2.71241 \times 10^6$ |
| X3,5  | 1466.15         | 1.78107  | 0.745067           | $2.71241 \times 10^6$ |
| X4,1  | 1405.06         | 0.569211 | 0.31328            | 83751.9               |
|       | 1405.06         | 0.569211 | 0.31328            | 83751.9               |
| X4,3  | 1405.06         | 0.569211 | 0.31328            | 83751.9               |
| X4,4  | 1405.06         | 0.569211 | 0.31328            | 83751.9               |
| X4,5  | 1405.06         | 0.569211 | 0.31328            | 83751.9               |
| X5,1  | 1405.06         | 0.225001 | 1.13193            | 328049.               |
| X5,2  | 1405.06         | 0.225001 | 1.13193            | 328049.               |
|       | 1405.06         | 0.225001 | 1.13193            | 328049.               |
| X5,4  | 1405.06         | 0.225001 | 1.13193            | 328049.               |
| X5,5  | 1405.06         | 0.225001 | 1.13193            | 328049.               |
| X6,1  | 1348.62         | 1.10771  | 0.413378           | 243450.               |
| X6,2  | 1348.62         | 1.10771  | 0.413378           | 243450.               |
|       | 1348.62         | 1.10771  | 0.413378           | 243450.               |
|       |                 | 1.10771  | 0.413378           | 243450.               |
| X6,5  | 1348.62         | 1.10771  | 0.413378           | 243450.               |

#### 4. Hasil Analisis 2

#### Normal[FungsiEMISI2Linear]

 $-1.25276 \times 10^6 - 115.899 \text{ kapasitas} + 1.23151 \times 10^6 \text{ rth} + 1.56969 \times 10^6 \text{ simpang}$ 

#### FungsiEMISI2Linear["RSquared"]

0.667658

#### FungsiEMISI2Linear["ANOVATable"]

|           | DF | SS                       | MS                       | F-Statistic | P-Value     |
|-----------|----|--------------------------|--------------------------|-------------|-------------|
| kapasitas | 1  | $8.57156 \times 10^{12}$ | $8.57156 \times 10^{12}$ | 25.8756     | 0.000026729 |
| rth       | 1  | $4.772 \times 10^{12}$   | $4.772 \times 10^{12}$   | 14.4056     | 0.000795175 |
| simpang   | 1  | $3.95904 \times 10^{12}$ | $3.95904 \times 10^{12}$ | 11.9515     | 0.00189125  |
| Error     | 26 | $8.61276 \times 10^{12}$ | $3.3126 \times 10^{11}$  |             |             |
| Total     | 29 | $2.59154 \times 10^{13}$ |                          |             |             |

#### **BIODATA PENULIS**



Nama lengkap penulis adalah Sebastiana Jahia. Penulis Ganthya Agape anak sulung dari merupakan tiga bersaudara perempuan dari pasangan Bapak Jahja Fitriono Sudarmanto dan Ibu Stefanini Sumardiman. Lahir di Jakarta, 2 Mei 1997, penulis menempuh pendidikan formal Sekolah Dasar di SD Mahanaim Bekasi tahun dengan 2009. Kemudian kelulusan penulis melanjutkan pendidikan Sekolah Pertama **SMP** Menengah di

Internasional Mahanaim Bekasi dengan tahun kelulusan 2012, serta Sekolah Menengah Atas di SMA Kristen 7 BPK Penabur Jakarta Timur dengan tahun kelulusan 2015 hingga akhirnya menempuh Pendidikan Tinggi di Departemen Perencanaan Wilayah dan Kota Institut Teknologi Sepuluh Nopember Surabaya tahun angkatan 2015.

Selama masa perkuliahan, penulis aktif dalam kegiatan organisasi dan kepanitian. Penulis pernah menjadi Volunteer Aiesec Surabaya di Shenzhen, China. Selain itu juga menjadi staf serta koordinator dari Badan Perwakilan Angkatan Himpunan Mahasiswa Planologi (HMPL) ITS.

"Halaman ini sengaja dikosongkan"